
THE LIMITATIONS OF STATISTICAL LOW RUNS PREDICTION IN ROUGH SEAS: A STUDY BASED 

ON REAL WAVE DATA 

 

G. Caiazzo1, D.J. Taunton1, P.A. Wilson1 

1 University of Southampton, Boldrewood Innovation Campus, Burgess Rd, Southampton SO16 7QF, UK. 

 

Abstract 

 

This work aims to estimate the feasibility of wave runs statistical prediction in rough seas, 

with a specific application of Kimura’s theory (Kimura, A.,1980). According to Kimura, the 

probability of a low run of waves of assigned length is a function of the correlation between 

consecutive waves in a group. Time series from wave buoy measurements (located at 

Bideford Bay, England and data downloaded from the Channel Coast website) have been 

tested. The spectral analysis showed that higher values of the significant wave height 

correspond to broader bandwidth spectra. The Kimura’s low runs prediction is noticeably 

affected by this aspect: by plotting the low runs probability against the number of incoming 

waves, narrow spectra show a steeper behaviour of the low runs probability curve, whereas 

broader spectra correspond to flat probability curves settled on lower values. Therefore, it 

appears that broader spectra are characterised by more grouping phenomena. Moreover, the 

Kimura’s estimation has been calculated in an adaptive frame applied to the signal, in order 

to test the sensitivity to the length of the data; a minimum length of 6 to 8 hours has been 

found to have a stable prediction of the low runs probability. 
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1. Introduction 

 

The problem of predicting the evolution of the sea state is an important topic in several 

operational marine scenarios. A relevant example is the problem of predicting the Quiescent 

Periods (QP) for launch and recovery of vehicles from ships in rough seas: in general, a QP is 

defined as the amount of time during which the ship motion or encountered wave amplitude 

stays below assigned thresholds, depending on the specific application or operation. The 

success of such an operation entirely relies on the accuracy of the prediction of the surface 

behaviour in the very short term (in ranges between 30 seconds to 5 minutes), as a fast 

prediction of the wave elevation allows an immediate estimation of the resulting ship motion. 

It is clear how such accurate results can be crucial in high risk operations, during which for 

example the pilot of an air vehicle does not have a clear visual sense of the vertical movement 

of the ship, therefore the importance of a landing-aid technology is vital. Besides the realm 

of vehicle launch and recovery, the problem of short time ship motion prediction is important 

in regard to the future of unmanned naval transport. EU’s FP7 project MUNIN aims to develop 

a concept for an autonomous dry bulk carrier, as  highlighted by Burmesteir et al. [1]. 

However, a scenario of unmanned ferries for civil transport appears to be an established 

reality in the future, Levander [2]: it is expected that such vessels will be equipped with a QP 



estimator in case of accidents or emergency situation, in order to allow the passengers to 

leave the ship in the most favourable sea conditions possible.  

The literature makes a general distinction between two essential approaches to the topic of 

sea surface elevation prediction. Usually the methodologies that rely on statistical elaboration 

of ‘previous’ sea elevation data in order to estimate probabilities of a run of either low or high 

waves are considered as ‘backwards’; a ‘run’ is meant as a series of consecutive waves 

exceeding or being inferior to a specified threshold (hence the definition of high or low run). 

Vice versa, methodologies that implement wave propagation models based on the current 

surface elevation measurements are typically defined as ‘forwards’, as they do not rely on the 

wave time history. A comprehensive overview of both deterministic prediction 

methodologies and the traditional statistics is illustrated by Giron-Sierra et al [3]. In regard to 

the topic of wave data acquisition in real time by using X-radar technology, Nieto-Borge [4] 

describes a technique to estimate wave elevation maps which takes into account a 

modulation transfer function to describe the radar imaging mechanisms at grazing incidence 

and horizontal polarization.  

 

One of the most renowned backwards run prediction methodology is Kimura’s theory , 

Kimura [5]: as it will be largely explained in section 4, Kimura’s theory schematizes the 

evolution of the sea surface as a Markov chain, according to which the transition from a state 

to the next one is only a function of the immediately previous state. In this regard, the 

prediction of a run is based on the wave to wave correlation factor. Kimura assumes that the 

probability of two consecutive waves exceeding or staying below an arbitrary threshold can 

be represented by a Rayleigh distribution, which is a function of the aforementioned wave to 

wave correlation parameter. Kimura’s runs prediction theory has not been traditionally used 

in the realm of ship motion prediction, although it finds large application in the problem 

related to the stress fatigue prediction on wave energy converters (WEC) due to the impact 

of consecutive waves exceeding an assigned critical threshold. Coastal defence is another 

context of frequent use of the Kimura’s methodology. In this regard, the literature mostly 

deals with the problem of predicting the length of high runs from a condition of a quiet sea, 

with particular regard to applications such as coastal defence and the aforementioned energy 

wave converters structural stability or harvested energy prediction. However, many other 

applications require to approach the problem from the opposite perspective: launch and 

recovery of vehicles on ships in rough seas is a remarkable case where the prediction of a 

quiescent period of the vessel is crucial to perform the operation in safety. 

In this paper, the authors aim to test the applicability of the traditionally well-known 
Kimura’s theory for determining QP prediction for maritime launch and recovery operations. 

A first problem consists in the choice of the data to test, as in several cases wave records in 

specific conditions (for examples wave measurements in open sea) are not easily available or, 

more generally, it is difficult to access an arbitrarily long record of wave data corresponding 

to the conditions of interest. In this regard, a very common approach in the realm of runs 

prediction is to assume the sea state represented by a standard ideal spectrum, hence it is 

possible to generate a synthesized wave time history from the frequency domain according 



to the target spectrum. However, the literature shows examples where both synthetic data 

and long wave records acquired from the field have been both used and compared: Elgar et 

al. [6] compare the low runs probability from the Kimura’s model for both synthetic waves 

and from a real wave record measured with bottom-mounted pressure sensors, which 

continuously gathered data for 5 hours daily over a period of 4 weeks. A comparison between 

the mean length of the runs calculated on both theoretical and experimental waves shows 

good agreement, although the authors do not specify the conditions of the sea state during 

the acquisition.  

The work of Saulnier et. al [7] implicitly confirms the reliability of the Kimura’s model in such 

contexts: the paper focuses on the energy harvesting prediction for a WEC stochastic model 

which is tested with both buoy data (two wave time series collected on a period of 13 and 9 

years respectively) and with theoretical waves. As the harvested energy is proven to be a 

function of peak period, significant wave height and wave groupiness, good consistency 

between the results from synthetic and real data can be considered as a good estimator for 

the Kimura’s theory performed on long time series. 

It is evident how such literature always considers technical cases where the analysed data 

(both synthesized and real) have been gathered over long periods, or at least cases where a 

long sampling time is possible. Weeks or even months of recorded or simulated data can be 

a standard time on which Kimura’s theory is applied. Moreover, most of the data used in such 

works correspond to conditions of calm sea or, in general, a sea state that is far from a rough 

sea scenario. However, to the knowledge of the authors, there are apparently no works 

showing the application of Kimura’s theory to wave histories of rough seas, neither have 

significant studies been made on the reliability of the Kimura’s theory in the short term. In 

this regard, the most relevant point to investigate is how the length of the recorded data 

affects the reliability of Kimura’s results.  Is there a minimum sampling time threshold and is 

it compatible with the short time operations involved in cases like landing and recovery of 

vehicles? 

Generally, the literature approaching the problem of QP prediction in rough seas is small. An 

extensive presentation of the state of the art in deterministic sea wave prediction is given by 

Giron-Sierra [8], where the general principle of real time X-band radar data retrieval is 

explained and its subsequent implementation in a wave propagation model. Similarly, the 

process described by Giron-Sierra is well detailed in the work by Edgar et al.[9] , in which the 

maximum prediction time is estimated against a number of significant parameters, mainly 

water depth and spectral width of the analysed wave signal. 

 

Although [8-9] seem to concur about the use of wave data recorded in real time as the 

standard for short time predictions, it is difficult to identify a standard methodology for the 

wave analysis process and the prediction of the surface elevation.  

In light of these considerations, the work presented in this paper essentially focuses on two 

main points: firstly, the correlation between the weather conditions, the bandwidth of the 

spectrum of the wave time series and the corresponding wave to wave correlation parameter. 



Secondly, the sensitivity of the Kimura’s method to the length of analysed data is considered: 

here, wave buoy measurements are tested by applying an adaptive frame analysis, as it will 

be shown in section 5. 

 

2. Broadness factor and low runs probability according to Kimura 

The broadness factor  is a non-dimensional parameter which is generally used to estimate 

the ‘narrow bandedness’ of a wave time history and its wave energy spectrum, as described 

by Lloyd  [10]. If 𝜉(𝑡) is the wave signal in the time domain, the Fourier transform ‘translates’ 

the signal to the frequency domain. The aim is to have a representation of how the energy of 

the signal is distributed at various frequencies; this quantity is known as a power spectral 

density (PSD). PSD is theoretically defined as: 

𝑆(𝜔) = lim
𝑇→∞

𝐸[|𝜉(𝜔)|
2

]                                                                                                                      (1) 

𝜉(𝜔) is defined as: 

𝜉(𝜔) =  
1

√𝑇
∫ 𝜉(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

𝑇

0
                                                                                                                   (2) 

𝐸 [|𝜉(𝜔)|
2

] represents the expected value. 

In this work, 𝑆(𝜔) has been calculated by implementing the Fast Fourier Transform algorithm 

(FFT) in Matlab.  

The broadness factor definition, according to Lloyd [10], Cartwright [11] and Longuet - Higgins 

[12] , can be calculated from the PSD though the spectral momenta 𝑀𝑛: 

𝜀 =  √1 −
𝑀2

2

𝑀0×𝑀4
                                                                                                                                  (3) 

where M0, M2 and M4 represent the 0th, 2nd and 4th order momenta, defined by the generic 

𝑛𝑡ℎorder equation: 

𝑀𝑛 = ∫ 𝑆(𝜔) × 𝜔𝑛𝑑𝜔
∞

0
                                                                                                                     (4) 

𝜀 has value between 0 and 1: values close to 0 represent a narrow spectrum, whereas a wide 

band spectrum corresponds to a broadness factor tending to 1.  

Theoretically, in the simplified hypothesis to approximate a pure swell sea as a simple sine 

wave, its  broadness factor equals to zero, as the spectrum calculated for such types of wave 

signal reduces to only one frequency component. A more realistic representation of a swell 

sea includes more frequency components  and a more complex sea state, for example a 

‘rough’ sea condition, is expected to have a richer spectrum and therefore a higher value of 

the broadness factor.  

The Kimura’s theory uses an estimation of the wave to wave correlation in order to estimate 

the probability of a high or low run and its corresponding time length. Therefore, it is 



important to investigate how the sea conditions affect the broadness factor 𝜀 and the 

estimation of the low runs probability according to Kimura’s theory. 

More specifically, Kimura’s runs prediction model estimates the probability of a run by 

considering the sea state as a Markov chain system, which considers the probability of 

transition to the next state to be solely dependent upon the previous state and not the entire 

history. Kimura uses a two dimensional Rayleigh distribution to describe the probability of 

two consecutive wave heights h1 and h2 . This probability value is expressed by Longuet-

Higgins [12] as:  
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and 

                                                                                                                                                  (9) 
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I0  represents the modified Bessel function of order 0; the wave correlation coefficient   is 

defined as: 

𝛾 =  
1

𝜎2(𝐻)

1

𝑁−1
∑ (𝐻𝑖 − 𝐻𝑚)(𝐻𝑖+1 − 𝐻𝑚)𝑁−1

𝑖=1                                                                                   (10) 

with 𝜎(𝐻) is the standard deviation of a large number N, of wave heights H , whereas 𝐻𝑚 

representsthe mean wave height. As defined by Uhlenbeck [13], k is correlated to the wave 

to wave correlation coefficient   according with the following equation: 

 

𝛾 =  
𝐄(𝑘)−

1

2
(1−𝑘2)𝐊(𝑘)−

𝜋

4

1−
𝜋

4

                                                                                                                        (11) 

where K and E represent complete elliptic integrals of the first and second kind respectively. 

However, according to Cartwright and Longuet-Higgins [11], for broad spectra (corresponding 

to k≃1), it is possible to prove that : 

   𝛾~1 − (1 − 𝑘2)/(4 − 𝜋)                                                                                                                   (12) 

For narrower spectra, when k2 is less than 0.6, according to Longuet – Higgins [12]  it can be 

assumed that: 

𝛾~𝑘2                                                                                                                                                          (13) 

The probability that a certain wave exceeds or is lower than a critical threshold h* can be 

expressed as: 

                                                                                                         (14.a)                                       

                                                                                                         (14.b)                                                                                                                     

                      

p(Hj) and p(Lj) express the probability of  a high and low runs respectively, whose length is 

equal to the number of waves j. The conditional probabilities p+ and p- can be calculated 

directly from the joint density expressed in equation (5).  

 

 

                                              (15.a) 

 

 

 

 

𝑝(𝐻𝑗) = 𝑝+
𝑗−1

(1 − 𝑝+) 

𝑝(𝐿𝑗) = 𝑝−
𝑗−1(1 − 𝑝−) 

𝑝+ =  
∫ ∫ 𝑝(ℎ1, ℎ2)𝑑ℎ1𝑑ℎ2

∞

ℎ∗

∞

ℎ∗

∫ ∫ 𝑝(ℎ1, ℎ2)𝑑ℎ1𝑑ℎ2
∞

ℎ∗

∞

0

⁄  



 

                                              (15.b) 

 

If p(Hj) and p(Lj) represent the probability of a run of j consecutive waves, it is possible to 

calculate the corresponding mean length of the run as: 

𝐻̅ = ∑ 𝑝(𝐻𝑗) =
1

1−𝑝+

∞
1                                                                                                                        (16.a) 

𝐿̅ = ∑ 𝑝(𝐿𝑗) =
1

1−𝑝−

∞
1                                                                                                                      (16.b) 

 

At this point, it is interesting to investigate a possible correlation between  and  and its 

consequences on the low runs prediction expressed by equation 16.b. As the wave to wave 

correlation parameter can be considered as an indicative factor about the possibility of 

grouping phenomena in a wave time series, it is important to evaluate its possible correlation 

with the spectral width of the original signal and therefore with the low runs prediction. In 

the next section, both  and   have been evaluated for the Channel Coast data, extracted 

from different months throughout the year; moreover, the significant wave height for such 

signals has been compared to the broadness factor, in order to test the dependence of the 

spectral width from the weather conditions.  

 

3. 𝜺  and for wave buoy data 

In this section we compare the broadness factor  and the wave to wave correlation 

parameter   for the wave buoy data from the Channel Coast website [14].  

More specifically, the sampling point is Bideford Bay, England , Fig 1,  where several time 

series of 24 hours in length, sampled at a frequency Fs=1.28 Hz and ranging from April 2017 

to April 2018 have been considered.  

𝑝− =  
∫ ∫ 𝑝(ℎ1, ℎ2)𝑑ℎ1𝑑ℎ

ℎ∗

0

ℎ∗

0

∫ ∫ 𝑝(ℎ1, ℎ2)𝑑ℎ1𝑑ℎ2
ℎ∗

0

∞

0

⁄  



 

Figure 1– Bideford Bay  

 

Fig.2 reports the behaviour of the significant wave height 𝐻̅1/3 for each time series of the 

Channel Coast data recorded at Bideford Bay, corresponding to each month from May 2017 

to April 2018, in intervals of 30 minutes. 𝐻̅1/3 has been calculated according with Cartwright 

and Longuet-Higgins [11][12] from the spectral momentum M0 defined by equation (4) and 

the broadness factor  defined by equation (3): 

𝐻̅1/3 = 4.00√𝑀0√1 −
𝜀2

2
                                                                                                                          (17) 



 

Figure 2 - Significant wave height of the Channel Coast wave buoy measurements 

Fig.3 shows the broadness factor calculated for the Channel Coast data: as previously 

mentioned, each time series is 24 hours long. The signal has been analysed in adjacent 

windows of 30 minutes, within which the broadness factor has been calculated. 



 

Figure 3.a-Broadness factor for Channel Coast wave data 



 

Figure 3.b - Wave correlation coefficient for Channel Coast wave data 



 

Figure 2.c – Linear regression of broadness factor and wave correlation coefficient for the Channel Coast data 

 



 

Figure 3.d -Power spectral density of the Channel Coast time series 

Fig. 3.d reports the power spectral density calculated for the Channel Coast time series: it is 

important to consider these diagrams and observe the distribution of the frequencies along 

the spectrum. According with (3), the broadness factor depends on M4, which is noticeably 

affected by the truncation error of the original data. In Fig.3.d it is possible to see that the 

effect of the truncation error can be neglected in all the analysed time series. 

Fig.3.a,b show the broadness factor and the wave correlation coefficient of the analysed wave 

buoy time series respectively; one a time span corresponding to one year,  ranges in a broad 

interval from around 0.5 to 0.9, whereas  ranges in an even broader interval from 0.1 to 0.9.  

Fig. 3.c shows the linear regression between  and   for the time series corresponding to each 

month: it is possible to notice that, generally, an increment of the broadness factor 

corresponds to and increment of the wave correlation coefficient. In some cases (April 2017, 

October 2017, January 2018), increments of  can be observed on a very narrow range of ; 

in July 2017, and December 2017 it is possible to observe how  appears to stay constant.   It 

is important to compare this results with the corresponding sea conditions 

 

A comparison of the significant wave height data (Fig.2)  with the Douglas scale [15] shows 

that the series from January 2018 and February 2018 correspond to a condition of very rough 

sea (average maximum wave height equal to 5 m), whereas the data from November 2017 

and March 2018 correspond to a condition of calm sea. It is possible to observe that the time 

series corresponding to January 2018 shows a value of the broadness factor floating around 



0.85, whereas the time series corresponding to March has a value of  oscillating between 0.4 

and 0.55.  

 

 

 

 

Degree Height [m] Height [ft] Description 

0 No wave Calm (glassy) 

1 
0–0.10 

0.00–0.33 Calm (rippled) 

2 0.10–0.50 0.33–1.64 Smooth 

3 0.50–1.25 1.6–4.1 Slight 

4 1.25–2.50 4.1–8.2 Moderate 

5 2.50–4.00 8.2–13.1 Rough 

6 4.00–6.00 13.1–19.7 Very rough 

7 6.00–9.00 19.7–29.5 High 

8 9.00–14.00 29.5–45.9 Very high 

9 14.00+ 45.9+ Phenomenal 

Table 1 - Douglas scale 

 

Generally, it appears that for the buoy data corresponding to calm sea conditions,  𝜀 ranges 

in an interval of  lower values than those corresponding to rough weather, where the time 

series appear to be characterized by narrow ranges of high broadness. Although the wave 

correlation coefficient  generally increases with the broadness factor, conditions of rough 

weather do not seem to correspond necessarily to  an increase of  .  Therefore, whereas a 

time series with a broad spectrum generally corresponds to an higher correlation between 

successive waves, the grouping phenomena occurring in a time series are not necessarily a 

consequence of the weather conditions. 

 



 

 

4. Kimura’s low run prediction  

In Fig.5, the low run probability curves corresponding to each wave buoy time series is 

reported. The probability is plotted against the number of incoming waves: this diagram 

simply expresses the probability of a low run of an assigned length, which is expressed as the 

number of incoming waves in the range from 1 to 8. The longer the assigned time length, the 

lower the probability of a run of that length. It is possible to observe how the curves broadly 

range from a flatter shape which is settled on lower probability values, to steeper behaviour 

which exhibit significantly higher probabilities for short time lengths (e.g. for ‘fewer’ incoming 

waves) which rapidly decreases as the number of waves increases.  

 

Figure 4-Low runs prediction for time series extrapolated monthly from April 2017 to April 2018 

 

In order to understand the reason of such different behaviour according with the period of 

the year during which the time series has been measured, an evaluation of the significant 

wave height for each time series has been calculated. Fig.5 shows the values of both 

maximum as significant wave height in June and November 2017, which respectively 

correspond to a flat and a steep probability behaviour in Fig.4. 



 

 

Figure 5 - Maximum and significant wave heigth for Channel Coast buoy data 

It is to expected that the June 2017 series has a lower significant and maximum wave height 

than the November 2017 series.  

This result seems to be confirmed also in the low runs prediction obtained from the Kimura’s 

theory. Waves in rough seas are more statistically correlated and therefore characterized by 

higher groupiness effects; and vice versa, waves in calm seas are less correlated and they are 

characterized by less grouping phenomena. This result can also be confirmed in the wave 

correlation coefficient diagrams in Fig.3.b. 

From the application of the Kimura’s methodology to the Channel Coast data, it appears that 

the time series corresponding to rough weather conditions show a flat behaviour and a 

general low value of the low runs probability. Such values range between 0.1 and 0.25: in a 

real navigation scenario characterized by rough weather conditions, it is clear that the success 

of a delicate operation (like landing or recovery of a vehicle) completely relies on the accuracy 

of the prediction of the sea surface elevation. The low runs probability values obtained from 

the Kimura’s methodology applied to the buoy wave data appear to be incompatible with the 

accuracy that is requested in sensitive marine operations.  

 

 



5. Kimura’s low run prediction applied in an adaptive frame context 

 
 As mentioned in the previous section, the issue about applying a statistics based 

methodology for the wave elevation prediction is the amount of data needed in order to have 

a reliable result. As clarified in section 4, the spectrum of a wave record sample, especially in 

the case of rough water, is unlikely to be represented by an ideal spectrum: for this reason, it 

is expected that the spectral shape changes from sample to sample. In order to verify this 

assumption, wave buoy time series have been analysed in an adaptive time window: 

specifically, a progressively increasing time window is applied to the signal and the Kimura’s 

low runs probability is calculated at each, ever increasing window. The use of the adaptive 

window is used to find a threshold amount of data corresponding to the minimum sampling 

time required to have a stable prediction of the low runs: it will be shown that below the 

threshold, the estimation of the probability can oscillate before settling on a stable value.  

Fig.6 summarizes the analysis iterative scheme: wSIZE is the incremental size of the window 

applied to the signal, resulting in an analysis frame which increases at each iteration n =

[1, … , N], which has been run in Matlab. Therefore each iteration corresponds to an analysis 

frame equal to n × wSIZE; eventually, the last iteration corresponds to a window of N ×

wSIZE, which is equal to the entire signal length T. Kimura’s low runs prediction model is 

applied at each iteration: as n increases, the analysed frame corresponds to an amount of 

data which is wSIZE times bigger than the previous one.  

                                         

Figure 6 – Calculation of low runs probability  

Figs.7 to 10 report the Kimura’s model results for the Channel Coast data, corresponding to 

June 2017, November 2017, January 2018 and March 2018 respectively: the points in each 

curve represent the low runs probability corresponding to the current analysis window and 

its size. For example, the third point from left on the top curve represents the low runs 

probabilities occurring at the first wave for a window equal to 3 × wSIZE. In this case, a 

wSIZE = 30 min has been used, so this point represents the low runs probability for the first 

wave after 90 minutes of data analysis. Similarly, the fourth point on the second curve from 



the top represents the probability of having a low run at the second incident wave after 120 

minutes and so on. 

 

Figure 7– Behaviour of low runs probabilities in time for a 24h time series in June 2017 (Channel Coast data) 



 

Figure 8- Behaviour of low runs probabilities in time for a 24h time series in November 2017 (Channel Coast data) 



 

Figure 9-  Behaviour of low runs probabilities in time for a 24h time series in January 2018 (Channel Coast data) 



 

Figure 10- Behaviour of low runs probabilities in time for a 24h time series in March 2018 (Channel Coast data) 

An analysis of Fig.7 to 10 shows that the amount of data required in order to achieve a reliable 

prediction of the low run probability can change from record to record; the results from the 

Kimura’s method applied to the time series corresponding to June 2017 shows that a sampling 

time of roughly 15-20 time windows, corresponding to a theoretical amount of 7-8 hours 

hours which is required to have a stable prediction of the low runs probability. This result 

should be interpreted by giving a more accurate observation of the behaviour of the 

probability curves: in the first five windows, the curves shows a quite steep behaviour, to 

progressively stabilize as more data are elaborated by the model. By observing the maximum 

and significant wave heights corresponding to June 2017 time series (Fig.5), it is possible to 

see that they show a quite stable behaviour of the sea conditions. This means that , assuming 

a sufficiently stable sea condition, the Kimura’s model needs a minimum threshold of sample 

data in order to produce a result that can be considered reliable 

Similar results can be observed also for Fig.8, corresponding to November 2017; here, after a 

steep transient behaviour, the low run probability curves tend to stabilize around the value 

of 0.25 after 15 time windows, corresponding to 7 hours. Also in this case, by observing the 

behaviour of the corresponding significant and maximum wave height (Fig.5), it is possible to 

observe a quite stable conditions of the sea conditions.  

For Figures 9 and 10 (November and March 2018) it seems that the required sampling time is 

slightly shorter (around 10 time windows, corresponding to 3 hours). 



In general, it is possible to conclude that the Kimura’s model is characterized by an amount 

of time that is required to elaborate a record corresponding to a specific sea condition and 

provide a reliable result for it.   

Moreover, it is important to highlight an important aspect about the intrinsic limit of the 

Kimura’s methodology in such contexts: the low runs probability calculated on the base of the 

recorded data only provides information about the probability of the next run and its average 

length, however it does not give any indication about the timing at which the low run is 

expected to occur. 

 More generally, it is possible to say that Kimura’s theory, however valuable, provides 

estimation on a very low resolution time scale. 

 

6. Conclusions 

The paper has discussed the limitation of the traditional statistical backwards approach for 

the prediction of low runs in short time applications, such as launch and recovery operations.  

A correlation between weather conditions, spectrum bandwidth and wave to wave 

correlation has been shown: conditions of rough sea generally correspond to broader spectra 

and higher values of correlation between two consecutive waves. The effect of spectrum 

broadness and wave groupiness is remarkably reflected on the low run prediction calculated 

with the Kimura’s theory: more correlated time series correspond to flatter curves in a low 

runs probability vs. run length diagram (the run length is expressed as number of incoming 

waves); such conditions correspond to curves which are settled on low probability values 

(around 20-25%), which results in a poor estimation of the length of the next low run.  

Moreover, by calculating the low runs probability in an adaptive window that expands along 

the signal, it is shown that a stable prediction occurs after circa six to eight hours of local data 

recording in conditions of rough sea. 

Eventually, another intrinsic limitation of the statistic estimation of the low runs consists in 

the fact that it only gives information about the length of the next run, but not on when the 

next run is expected to happen: such information is vital in the QP prediction realm. 

Future investigations on this work involve the development of a wave synthesis methodology 

in order to produce realistic time series to be arbitrarily used as test data for the statistical 

runs prediction methodology. 
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