
On-board Spacecraft Relative Pose Estimation with
High-Order Extended Kalman Filter

Francesco Cavenagoa,∗, Pierluigi Di Liziaa, Mauro Massaria, Alexander Wittigb

aPolitecnico di Milano,Via La Masa 34, 20156 Milano, Italy
francesco.cavenago@polimi.it · pierluigi.dilizia@polimi.it · mauro.massari@polimi.it

bAstronautics Group, University of Southampton, Southampton SO17 1BJ, UK
a.wittig@soton.ac.uk

Abstract

This paper analyzes the real-time relative pose estimation and attitude prediction of

a tumbling target spacecraft through a high-order numerical extended Kalman filter

based on differential algebra. Indeed, in the differential algebra framework, the Taylor

expansion of the phase flow is automatically available once the spacecraft dynamics

is integrated and thus the need to write and integrate high-order variational equations

is completely avoided making the presented solution easier to implement. To validate

the technique, the ESA’s e.deorbit mission, involving the Envisat satellite, is used as

reference test case. The developed algorithms are implemented on a BeagleBone Black

platform, as representative of the limited computational capability available on onboard

processors. The performance is assessed by varying the measurement acquisition fre-

quency and processor clock frequency, and considering various levels of uncertainties.

A comparison among the different orders of the filter is carried out.

Keywords: State estimation, Kalman filter, Differential algebra, Space debris,

Nonlinear filter, Pose estimation, Processor in the loop.

1. Introduction

The nonlinear filtering problem plays an important role in various space-related ap-

plications such as orbit determination and spacecraft navigation problems. Near future
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sample and return missions from small bodies, landing missions to the Moon, Mars and

outer planets, interplanetary exploration missions, as well as relative pose estimation5

during rendezvous maneuvers with uncooperative targets demand navigation systems

based on accurate filtering techniques that are able to perform accurate trajectory esti-

mation in a very reduced lapse of time.

To deal with estimation problems, many filtering techniques have been developed.

At present time, one of the most exploited estimation algorithm is the extended Kalman10

filter1 (EKF). The EKF is based on the main idea of linearizing the equations of mo-

tion and the measurement equations via first-order Taylor expansions around the cur-

rent mean and covariance. In some cases, however, the linear assumption may fail

due to the nature of the dynamics or the frequency of available measurements, leading

to inaccurate realization of the local motion. Therefore, alternative methods capable15

of accounting for system nonlinearity must be used. A different approach is the un-

scented Kalman filter2, 3 (UKF). This technique is based on the unscented transforma-

tion, which does not contain any linearization, and thus provides superior performance

with respect to the EKF in nonlinear problems. However, the UKF is often slightly

slower than the EKF. Conversely, Park and Scheeres4, 5 developed a nonlinear filter20

named higher-order numerical extended Kalman filter (HNEKF) by implementing a

semi-analytic orbit uncertainty propagation technique, that is by solving for the higher-

order Taylor series terms that describe the localized nonlinear motion and by analyt-

ically mapping the initial uncertainties. These higher-order filters are more accurate

than the EKF, as the prediction step relies on a fully nonlinear mapping of the means25

and covariances. However, the HNEKF needs to derive the so-called higher-order ten-

sors, which makes it in many cases - especially for a sophisticated, high fidelity system

model - difficult to use due to computational complexity.

The complexity of deriving the high-order tensors and mapping the mean and co-

variance through the resulting polynomials can be easily solved using Differential Al-30

gebra (DA).6 DA techniques have become increasingly popular in various aerospace

engineering applications over the past 5-10 years. They allow computing polynomial

expansions of functions representing a dynamical system in terms of initial conditions

or parameters. The calculation of these polynomials is computationally expensive, but
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can often replace many iterations of a pointwise computation or provide valuable higher35

order information otherwise not readily available. In particular, in ground based uncer-

tainty propagation and sensitivity analysis, this has been shown to reduce the overall

computational cost significantly when compared to alternative techniques in a wide

variety of fields ranging from particle accelerator physics to astrodynamics.7, 8, 9, 10, 11, 12

By substituting the classical implementation of real algebra with the implementa-40

tion of a new algebra of Taylor polynomials, any function f of n variables can be easily

expanded into its Taylor polynomial up to an arbitrarily order m in the DA framework.

This has a strong impact when the numerical integration of an ordinary differential

equation (ODE) is performed by means of an arbitrary integration scheme. Any inte-

gration scheme is based on algebraic operations, involving the evaluation of the ODE45

right hand side at several integration points. Therefore, starting from the DA represen-

tation of the initial conditions and carrying out all the evaluations in the DA framework,

the flow of an ODE is obtained at each step as its Taylor expansion in the initial condi-

tions. Consequently, considering the HNEKF, by propagating the mean trajectory and

evaluating the measurement function in the DA framework, we readily obtain not only50

their pointwise values, but also the higher-order partials. This eliminates the need to

calculate the higher-order tensors at each time step by solving a complex system of

augmented ODE.

Despite the evident advantages, the DA approach is not free of drawbacks. More

specifically, the approach relies on Taylor expansions. Thus, the problem to be dealt55

with must be well behaved. In addition, the computational burden associated to the

calculation of the polynomials quickly increases with the order, which could limit the

current applicability of the DA-based HNEKF for onboard applications. Consequently,

the aim of this work is to assess the performance and onboard applicability of the DA-

based HNEKF algorithm.60

The target application of estimating the relative pose between two spacecraft dur-

ing a rendezvous maneuver is taken into account. Camera measurements of relative

position and attitude are assumed to be available. Improved estimation processes may

foster an increase of autonomy in guidance, navigation and control (GNC) operations.

Indeed, autonomous rendezvous and docking requires that two spacecrafts start at a65
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remote distance, come together into a common orbit, rendezvous, dock, and control

the new combined spacecraft in both orbit and attitude. Doing this requires developing

and testing a variety of new technologies including absolute and relative autonomous

navigation, autonomous rendezvous and docking hardware and software (both sensors

and actuators), and autonomous control of a "new" spacecraft with different mass and70

inertia properties than either of the two original spacecraft. While there is substantial

potential for cost savings, risk reduction, and new mission modes by use of these tech-

nologies, there is a very strong reticence to allowing operational spacecraft to control

themselves. In order to defeat such reticence, much effort shall be spent to increase the

reliability of the autonomous GNC strategies by improving the accuracy of the estima-75

tion algorithms and the robustness of the control laws to noise and system errors.

Focusing on the problem of rendezvous between two spacecraft, we usually think

of one active spacecraft, called the chaser, and one which is a passive target, whose

principal role is to remain reasonably stable while the chaser does most of the work.

The target may be either cooperative, with some type of beacon or target and a dock-80

ing fixture, if that is required, or uncooperative, i.e., a spacecraft that has no active or

passive equipment, targets, or procedures to help in the process. A typical example of

the latter is the case of a chaser approaching the target during an active debris removal

(ADR) mission.13 Even before attempting the capture, one of the main challenges of

ADR missions is approaching the target, estimating the relative pose with respect to85

the chaser, and studying and predicting the attitude of the target, which, in the general

case, tends to show a tumbling motion. This is crucial for safe proximity operation

and demands accurate, real-time measurements and estimations of relative range and

attitude.14, 15 Generally, attitude and range estimation in rendezvous problems with co-

operative and uncooperative targets can be classified into model-based and non-model-90

based techniques. Non-model-based techniques match corresponding features in the

two views of a stereo camera for pose estimation, not depending on a priori knowledge

of the object. Many such algorithms may have difficulty in image-to-model feature

correlation and foreground-background segmentation. On the contrary, model-based

techniques take advantage of a priori knowledge of the object whose pose and motion95

are to be estimated. Thanks to the available CAD model, these techniques can compute
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the object pose and range from a single image. In both cases, due to the presence of

noise and errors, the estimation method shall include filtering. Thus, the problem of

relative pose estimation and attitude prediction shall go through the following steps:

1. time update of state and covariance of 6 degrees-of-freedom (DOF) motion100

2. measurement update and state vector estimation (in particular the inertial attitude

of the tumbling target).

In all of the above steps, the state vector must include the translational and rota-

tional motion. More specifically, in the time update of the state and covariance, the

nonlinear 6DOF dynamics, including possible couplings between the translational and105

rotational motion, should be considered. In addition, the state vector prediction shall

aim at estimating the inertial attitude of the tumbling target. The necessity of propagat-

ing covariance information, as well as the presence of natural uncertainty in the image

processing and in the mass properties of the target, highlights the need of an accurate

handling of uncertainties throughout the estimation process.110

Hence, the goal of this study is two-fold. First, to develop a DA-based HNEKF

for relative pose estimation, considering the rendezvous with an uncooperative target,

modeled after ESA’s e.deorbit mission.16 A fast and accurate algorithm that provide

an estimate of the uncertainty of the target state suitable for real-time operation is

obtained. Afterwards, this DA algorithm is implemented on hardware mimicking the115

limited computational power available in space hardware. While ESA’s LEON-417 is

currently the most relevant processor for this application, our assessments is based on

an ARM platform, the BeagleBone Black 1. This platform is still representative of

the limited computational capability but easier to develop for, due to wider community

support.120

The performance and onboard applicability of the DA-based algorithm is assessed

in terms of its real-time capabilities under various assumptions on the hardware. Fur-

thermore, sensitivity analysis is performed with respect to several parameters to il-

lustrate the conditions under which the nonlinear filters outperform traditional linear

1https://elinux.org/Beagleboard:BeagleBoneBlack
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Figure 1: Evaluation of the expression 1/(1 + x) in Cr(0) and DA arithmetic.

filtering.125

The paper is organized as follows. First, an introduction to DA is given and the

derivation of the DA-based HNEKF is explained. Then, a comparison among different

orders of the filter is carried out. Afterwards, the considered relative pose estimation

problem is introduced and the dynamics model is developed. Finally, the performance

of the filters are assessed through numerical simulations.130

2. Differential algebra

Differential Algebra techniques allow solving analytical problems through an alge-

braic approach.8 Similar to the computer representation of real numbers as Floating

Point (FP) numbers, DA allows the representation and manipulation of functions on a

computer. Each sufficiently often differentiable function f is represented by its Taylor135

expansion around an expansion point truncated at an arbitrary finite order. Without loss

of generality, we choose 0 as the expansion point. Algebraic operations on the space

of truncated Taylor polynomials are defined such that they approximate the operations

on the function space Cr(0) of r times differentiable functions at 0. More specifically,

each operation is defined to result in the truncated Taylor expansion of the correct re-140

sult computed on the function space Cr(0). This yields the so-called Truncated Power

Series Algebra (TPSA).7

To illustrate the process, consider Fig. 1. The expression 1/(x + 1) is evaluated

once in Cr(0) and then in the DA framework with truncation order 3. Starting with

the identity function x, we add one to arrive at the function x + 1, the representation of145

which is fully accurate in DA as it is a polynomial of order 1. Continuing the evaluation

the multiplicative inversion is performed, resulting in the function 1/(1 + x) in Cr(0).
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As this function is not a polynomial any more, it is automatically approximated in

DA arithmetic by its truncated Taylor expansion around 0, given by 1 − x + x2 − x3.

Note that, by definition of the DA operations, the diagram for each single operation150

commutes. That is to say the same result is reached by first Taylor expanding a Cr(0)

function (moving from the top to the bottom of the diagram) and then performing the

DA operation (moving from left to right), or by first performing the Cr(0) operation

and then Taylor expanding the result.

In addition to algebraic operations, the DA framework can be endowed with nat-155

ural differentiation and integration operators, completing the structure of a differential

algebra. Intrinsic functions, such as trigonometric and exponential functions, are built

from elementary algebraic operations.8 This way, Taylor expansions of arbitrary suffi-

ciently smooth functions given by some closed-form expression can be computed fully

algebraically in a computer environment. An implementation of such DA computer160

routines is available in the software DACE 2.0,18 which is used to implement the algo-

rithm presented in this paper.

An important application of DA in engineering applications is the expansion of the

flow ϕ(t; x0) of an Ordinary Differential Equation (ODE) to arbitrary order with respect

to initial conditions, integration times and system parameters. The following is a short165

summary of the underlying concept. For a more complete introduction to DA, as well

as a fully worked out illustrative example of a DA based ODE integrator using a simple

Euler step, see Valli et al. (2014).6

Consider the initial value problem ẋ = f (x, t)

x(t0) = x0,
(1)

and its associated flow ϕ(t; x0). By means of classical numerical integration schemes,

such as Runge-Kutta or multi-step methods, it is possible to compute the orbit of a sin-170

gle initial condition x0 using floating point arithmetic on a computer. Starting instead

from the DA representation of an initial condition x0, and performing all operations in

the numerical integration scheme in DA arithmetic, DA allows propagating the Taylor

expansion of the flow around x0 forward in time, up to the desired final time t f , yielding
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a polynomial expansion of ϕ(t f ; x0 + δx0) up to arbitrary order.175

The conversion of standard explicit integration schemes to their DA counterparts

is rather straightforward. One simply replaces all operations performed during the

execution of the scheme by the corresponding DA operations. Step size control and

error estimates are performed only on the constant part of the polynomial, i.e. the

reference trajectory of the expansion point. The result is an automatic Taylor expansion180

of the result of the numerical method (i.e. the numerical approximation to the flow)

with respect to any quantity that was initially set to a DA value.

The main advantage of the DA-based approach is that there is no need to derive, im-

plement and integrate variational equations in order to obtain high-order expansions of

the flow. As this is achieved by merely replacing algebraic operations on floating-point185

numbers by DA operations, the method is inherently ODE independent. Furthermore,

an efficient implementation of DA such as the DACE 2.0 package, allows us to obtain

high-order expansions with limited computational time.

3. High-order numerical extended Kalman filter

This section is devoted to introduce the algorithm of the high-order DA-based HNEKF

and to provide a first assessment of its performance. The equations of motion and

measurement equations describing a generic dynamic system are as follows:

xk+1 = Φ(tk+1; xk, tk) + wk,

zk+1 = h(xk+1, tk+1) + vk+1,
(2)

where xk is the m-dimensional vector of state, wk is the process noise perturbing the190

state, zk is the n-dimensional vector of actual measurements, h is the measurement

function, and vk+1 is the measurement noise characterizing the observation error. The

process noise and the measurement noise are assumed to be uncorrelated, that is,

E{vi wT
j } = 0, with the autocorrelations E{wi wT

j } = Qiδi j and E{vi vT
j } = Riδi j for

all discrete time indexes i and j.195

Starting from the general theory of state estimation, HNEKF sequentially estimate

the state and the associated uncertainty by incorporating system nonlinearity in terms
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of higher-order Taylor expansions and relying on the assumption that uncertainties can

be described using Gaussian statistics.

3.1. The DA-based HNEKF200

Consider the system model equations (2). The filtering process can be summarized as

follows:

1. Prediction step: at time tk+1, the mean and covariance of the state vector, m−k+1

and P−k+1, and the mean of the measurements, n−k+1, are estimated as:

m−k+1,i = E{Φi(tk+1; xk, tk) + wk,i}

P−k+1,i j = E{[Φi(tk+1; xk, tk) − m−k+1,i + wk,i][Φ j(tk+1; xk, tk) − m−k+1, j + wk, j]}

n−k+1,p = E{hp(xk+1, tk+1) + vk+1,p},

(3)

where i, j = 1, ...,m, p = 1, ..., n, E{} denotes the expectation operator, and m−k+1,i,

P−k+1,i j and n−k+1,l are the components of m−k+1, P−k+1, and n−k+1 respectively;

2. Update step: the new measurements acquired at time tk+1, zk+1, are incorporated

into the updated estimate of the state vector and covariance matrix as follows:

Pzz
k+1,pq = E{[hp(xk+1, tk+1) − n−k+1,p + vk+1,p][hp(xk+1, tk+1) − n−k+1,q + vk+1,p]}

Pxz
k+1,ip = E{[Φi(tk+1; xk, tk) − m−k+1,i + wk,i][hp(xk+1, tk+1) − n−k+1,p + vk+1,p]}

Kk+1 = Pxz
k+1(Pzz

k+1)−1

m+
k+1 = m−k+1 + Kk+1(zk+1 − n−k+1)

P+
k+1 = P−k+1 − Kk+1Pzz

k+1KT
k+1,

(4)

where q = 1, ..., n, Kk+1 is the Kalman gain matrix, Pxz
k+1 is the cross-covariance205

matrix of the state and the measurement, and Pzz
k+1 is the covariance matrix of the

measurements.

In the classical EKF scheme, at each time tk, the equations of motion and the mea-

surement equation (2) are linearized about the current estimate of the mean and take

the form:
xk+1 = m−k+1 + Akδxk + wk,

zk+1 = h(m−k+1, tk+1) + Ckδxk + vk+1,
(5)
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where Ak =
∂Φ(tk+1;xk ,tk)

∂xk
, Ck =

∂h(xk+1,tk+1)
∂xk

, and δxk is the deviation of the estimated mean

from the true trajectory at time tk, i.e., δxk = x(tk) − m+
k , and m−k+1 is computed as

m−k+1 = Φ(tk+1; m+
k , tk). (6)

Thus, the expectation operator in Eqs. (3) and (4) can take advantage of the linearity of

Eq. (5) with respect to the state.

The DA implementation of the HNEKF relies on the fact that DA can easily provide

the arbitrary order Taylor expansion of both Φ and h in Eq. (2). Thus, the arbitrary

order expansion of the equations of motion and measurement equations can be easily

written, and component-wise reads:

xk+1,i = Φi(tk+1; m+
k , tk) +

∑v
r=1

1
r!

Φ
i,γ1...γr
(tk+1,tk)δxγ1

k,1 . . . δxγr
k,m + wk,i,

zk+1,p = hp(Φ(tk+1; m+
k , tk), tk+1) +

∑v
r=1

1
r!

hp,γ1...γr
(tk+1,tk) δxγ1

k,1 . . . δxγr
k,m + vk+1,p,

(7)

where v is the order of the expansion, γi ∈ {1, ...,m}, Φ
i,γ1...γr
(tk+1,tk) includes the higher-order210

partials of the solution flow, which map the deviations at time k to time k + 1, and

hp,γ1...γr
(tk+1,tk) includes the higher-order partials of the measurement function. Both Φ

i,γ1...γr
(tk+1,tk)

and hp,γ1...γr
(tk+1,tk) are obtained by integrating the equations of motion and evaluating the

measurement equations in the DA framework.

The Taylor polynomials of Eq. (7) can be inserted into Eqs. (3) and (4) to obtain215

the steps of the high-order extended Kalman filter:

1. Prediction step: at time tk+1, the mean and covariance of the state vector, m−k+1

and P−k+1, and the mean of the measurements, n−k+1, are estimated as:

m−k+1,i = Φi(tk+1; m+
k , tk) +

∑v
r=1

1
r!

Φ
i,γ1...γr
(tk+1,tk)E{δxγ1

k,1 . . . δxγr
k,m}

P−k+1,i j =
∑v

r=1
∑v

s=1
1

r!s!
Φ

i,γ1...γr
(tk+1,tk)Φ

j,ξ1...ξs
(tk+1,tk)E{δxγ1

k,1 . . . δxγr
k,mδxξ1

k,1 . . . δxξs
k,m}+

−δmi
k+1δm

j
k+1 + Qi j

k

n−k+1,p = hp(Φ(tk+1; m+
k , tk), tk+1) +

∑v
r=1

1
r!

hp,γ1...γr
(tk+1,tk) E{δxγ1

k,1 . . . δxγr
k,m},

(8)

where ξi ∈ {1, ...,m} and δmi
k+1 = Φi(tk+1; m+

k , tk) − m−k+1,i;

2. Update step: the new measurements acquired at time tk+1, zk+1, are incorporated
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into the updated estimate of the state vector and covariance matrix as follows:

Pzz
k+1,pq =

∑v
r=1

∑v
s=1

1
r!s!

hp,γ1...γr
(tk+1,tk) hq,ξ1...ξs

(tk+1,tk) E{δxγ1
k,1 . . . δxγr

k,mδxξ1
k,1 . . . δxξs

k,m}+

−δnp
k+1δn

q
k+1 + Rpq

k+1

Pxz
k+1,ip =

∑v
r=1

∑v
s=1

1
r!s!

Φ
i,γ1...γr
(tk+1,tk)h

p,ξ1...ξs
(tk+1,tk) E{δxγ1

k,1 . . . δxγr
k δxξ1

k,m . . . δxξs
k }+

−δmi
k+1δn

p
k+1

Kk+1 = Pxz
k+1(Pzz

k+1)−1

m+
k+1 = m−k+1 + Kk+1(zk+1 − n−k+1)

P+
k+1 = P−k+1 − Kk+1Pzz

k+1KT
k+1,

(9)

where δnp
k+1 = hp(Φ(tk+1; m+

k , tk), tk+1) − n−k+1,p.

If the case of variables with Gaussian random distributions is considered, the higher-

order moments E{δxγ1
k . . . δxγp

k } can be completely described by the first two moments220

(i.e., mean and covariance), and can be easily computed in terms of the covariance ma-

trix using Isserlis’ formula on the monomials of the Taylor polynomial.19 It is worth

stressing that, in order to apply standard HNEFK, each high-order partial in Eq. (8)

is computed by integrating for each time interval a dedicated differential equation that

must be derived analytically (see Park and Scheeres4).Conversely, in the DA frame-225

work, this operation is completely avoided since the high-order partials are automati-

cally obtained from the DA-based integration of the dynamic system6 (Eq. (2)).

3.2. Order comparison

Before applying the DA-based HNEKF to the relative pose estimation problem, the ef-

fects of considering high-order expansion of the dynamic flow in the extended Kalman230

filter is discussed.

Consider the illustrative example of an Earth-orbiting spacecraft. The second-order

differential equation governing the motion is

d ṙ
dt

= −
µ

r3 r, (10)

where r is the position vector of the spacecraft and µ is the Earth gravitational param-

eter. It is assumed that there is no external disturbing force for the system except the
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gravitational force between the Earth and the spacecraft. The initial true position and

velocity assumed for this test are

x0 =

 r0

v0

 =



−0.68787

−0.39713

+0.28448

−0.51331

+0.98266

+0.37611


, (11)

where the length units are scaled by the orbit semi-major axis (a=8788 km) and the

time by
√

a3

µ
. The initial estimates for the state are 10% off from the true initial state

values shown in Eq. 11. The adopted initial error covariance is a diagonal matrix

with variance 0.01 for the position vector components and 10−4 for the velocity vector

components. The measurements used in the simulation are the radial position of the

spacecraft with respect to the Earth and the line of sight directions to the planet:

z1 = r + v1

z2 = arctan
( y

x

)
+ v2

z3 = arcsin
( z
r

)
+ v3,

(12)

where vi, represents the measurement noise. The standard deviation of the measure-

ment error for the radial position is assumed to be 10−3 km. The angle error is assumed

to be 1.745 10−6 rad following the conventional measurement accuracy for the direc-

tional measurement. No process noise is included.235

The position and velocity error profiles obtained with the DA-based HNEKF using

first, second, and third order expansions are compared in Figs. 2 and 3. The position

and velocity errors, εr and εv respectively, are defined as the Euclidean norm of the

difference vector between the estimated position and velocity, and the corresponding

true vectors. In one orbit a total number of 12 measurements separated by equal time240

intervals is considered. Note that the results obtained with first order expansions are

representative of the performance of a classical EKF scheme. The simulation results

show that the estimation accuracy significantly improves when we move from a first

order to a second order filter. This confirms that the higher order filters can extract

12
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Figure 2: Orbit determination on Keplerian dynamics, 12 measurements per orbit: position error profiles of

the DA-based HNEKF at different orders.

more information from the available nonlinear measurements compared to the first245

order filter. On the other hand, Figs. 2 and 3 show that there is no accuracy gain when

we use the third order filter, as the errors profiles corresponding to the second and third

order basically overlaps.

0 50 100 150 200 250 300

Time [min]

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

v
 [
k
m

/s
]

order 1

order 2

order 3

Figure 3: Orbit determination on Keplerian dynamics, 12 measurements per orbit: velocity error profiles of

the DA-based HNEKF at different orders.
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Figures 4 and 5 show the standard deviation profiles for the spacecraft position and

velocity. More specifically, the figures report the quantities

σr =
√
σ2

xx + σ2
yy + σ2

zz

σv =
√
σ2

vx + σ2
vy + σ2

vz,
(13)

where σ2
xx, σ

2
yy, σ

2
zz, σ

2
vx, σ

2
vy, σ

2
vz are the diagonal terms of the estimated covariance

matrix.
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Figure 4: Orbit determination on Keplerian dynamics, 12 measurements per orbit: σr profiles of the DA-

based HNEKF at different orders.

250

The filter shows the same behaviour in terms of accuracy gain when different ob-

servation frequencies are adopted. Figures 6 and 7 show the position error profiles

obtained when a total number of 6 and 24 measurements separated by equal time in-

tervals is considered. As can be seen, the results confirm that the estimation accuracy

significantly improves when we move from a first to a second order filter and that no255

further gain is obtained with the third order filter.

The lack of a significant improvement in terms of accuracy between the second and

third order filters lies in the basic assumption of Kalman filters, i.e. in the hypothesis

that all random distributions are Gaussian and, then, completely described by their

mean and covariance.260
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Figure 5: Orbit determination on Keplerian dynamics, 12 measurements per orbit: σv profiles of the DA-

based HNEKF at different orders.
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Figure 6: Orbit determination on Keplerian dynamics, 6 measurements per orbit: position error profiles of

the DA-based HNEKF at different orders.
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Figure 7: Orbit determination on Keplerian dynamics, 24 measurements per orbit: position error profiles of

the DA-based HNEKF at different orders.
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Figure 8: Schematic representation of the illustrative example on the Keplerian dynamics.

To get a deeper insight, consider a spacecraft at the pericenter of an elliptical orbit

of eccentricity e = 0.5, moving in Keplerian dynamics (see Fig. 8 for a schematic

representation of the example). Assume the lengths are scaled by the orbit pericenter
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Figure 9: Propagated mean and covariance for the illustrative example on Keplerian dynamics: comparison

between a Monte Carlo simulation and the DA-based estimation at different orders. Grey dots represent the

propagated samples of the Monte Carlo simulation.

rp and the time by
√

r3
p/µ. Thus, the nominal initial state is:

x0 = 1

y0 = 0

z0 = 0

vx0 = 0

vy0 =
√

1 + e

vz0 = 0,

(14)

The initial position of the spacecraft is assumed to be uncertain with standard devi-

ations 3σx = 0.008 and 3σy = 0.08 on the x and y components of the position vector,

with no correlation between the different components. The uncertain initial state is

propagated forward to the final epoch t f = 0.95 T , where T = 2π is the nominal period

of the orbit. First of all, a Monte Carlo simulation is carried out to propagate 105 initial265

conditions to t f and to compute the resulting mean and covariance, which are used as

reference for the following analysis. As can be seen from Fig. 9, the samples of the

Monte Carlo simulation at t f exhibit an evident nonlinear distribution.

Using the techniques introduced in Sect. 2, DA is then used to compute arbitrary

order Taylor expansions of the spacecraft state at t f with respect to x0 and y0. The270
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resulting polynomials are used to compute the propagated mean and covariance using

the formulas of Eq. (8). Figure 9 reports the results obtained for different expansion

orders. As shown in the figure, the first order expansion fails to accurately estimate

the exact mean and covariance, which are represented by the result of the Monte Carlo

simulation. The second order expansion already introduces sufficient information for275

an accurate representation of both moments. The third order expansion provides only

a slight further improvement in terms of accuracy. Thus, being based on a Gaussian

representation of the propagated uncertainties, the accuracy of the extended Kalman

filter significantly benefits of a second order expansion of the flow of the dynamics.

However, no relevant improvement is obtained with higher orders.280

The importance of higher order partials emerges in the computation of higher order

moments. The DA-based estimates of the mean, covariance, skewness, and kurtosis

are compared with their values obtained with the Monte Carlo simulation in Table 1.

More specifically, the following moments are computed:20

1. Mean: µ = E{x(t f )}285

2. Variance: σ2 = E{[x(t f ) − µ]2}

3. Skewness: γ = E{[x(t f ) − µ]3}/σ3

4. Kurtosis: κ = E{[x(t f ) − µ]4}/σ4 − 3.

Note that, in the DA-based computation of the moments, x(t f ) is replaced by the cor-

responding Taylor expansion. Thus, similarly to Eq. (8), the computation of the above290

expectations reduces to the computation of the expectation of the resulting monomi-

als, which can be addressed using Isserlis’ formula.21 As can be seen from Table 1,

the second order expansion is sufficient to obtain an accurate estimate of the variance.

However, a third order expansion is needed to adequately approximate the skewness

and the kurtosis.295

Based on these results, the assessment of the performance of the DA-based HNEKF

will be limited to the use of first and second order expansions in the following analyses.
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Table 1: DA-based estimates of the moments for the illustrative example on Keplerian dynamics.

Moment Monte Carlo Order 1 Order 2 Order 3

µ 0.6143 0.6574 0.6142 0.6142

σ 0.0366 0.0353 0.0373 0.0363

γ -0.5638 0 -0.5548 -0.5662

κ 0.2545 0 0.4247 0.2214

4. Relative Pose Estimation

This paper focuses on exploiting the proposed DA-based HNEKF to face the challeng-

ing problem of estimating the spacecraft relative state for proximity operations during300

a rendezvous with an uncooperative target. In particular, the ESA e.deorbit mission16

is considered as reference and Envisat is selected as target satellite.

In the following analysis, some assumptions are made. Firstly, an a priori knowl-

edge of both chaser and target is assumed, i.e. the inertia properties are perfectly

known. Secondly, the chaser motion is supposed to be deterministic and, thus, the305

related data are not affected by noise and uncertainties. Finally, neither flexible dy-

namics nor external disturbances are considered. It should be noticed that neglecting

external disturbances and flexibility entails the decoupling of the relative translational

and rotational dynamics. Decoupling the dynamics is beneficial for the onboard imple-

mentation of the DA-based HNEKF, as the number of coefficients needed to represent310

DA quantities increases almost exponentially with the number of variables. Therefore,

decoupling the dynamics grants a significant reduction of the memory requirements.

4.1. Relative translational dynamics

The relative translational dynamic equations are developed in the local vertical local

horizontal (LVLH) frame fixed on the chaser (see Fig. 10). In this frame the target315

relative position rr and velocity vr can be defined as:

rr = xr̂ + yθ̂ + zĥ (15)

19



Figure 10: Chaser local vertical local horizontal frame.

vr = ẋr̂ + ẏθ̂ + żĥ (16)

where x, y and z are the three components of rr in the chaser LVLH frame and r̂, θ̂

and ĥ are the versors of the considered triad. The relative translational dynamics are

governed by the following equations:22

ẍ − 2ν̇ẏ − ν̈y − ν̇2x = −µ(r̄ + x)/[(r̄ + x)2 + y2 + z2]3/2 + µ/r̄2 (17)

ÿ + 2ν̇ẋ + ν̈x − ν̇2y = −µy/[(r̄ + x)2 + y2 + z2]3/2 (18)

z̈ = −µz/[(r̄ + x)2 + y2 + z2]3/2 (19)

where µ is the gravitational parameter, r̄ is the distance from the Earth center to the320

chaser and ν is the true anomaly. Finally, the motion of the chaser is described by the

following equations:

¨̄r = r̄ν̇2 − µ/r̄2 (20)

ν̈ = −2˙̄rν̇/r̄ (21)
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4.2. Relative rotational dynamics

As for the rotational dynamics, the relative orientation of the body-fixed reference

frame on the target with respect to the body-fixed reference frame on the chaser can be325

described through a rotation matrix Γ. Consequently, the relative angular velocity and

acceleration of the target can be expressed as follows:23

ωr = ωt − Γωc (22)

ω̇r = ω̇t − Γω̇c + ω̇app (23)

ω̇app = ωr × Γωc (24)

where ωc and ωt are the angular velocity of the chaser and the target expressed in their

body-fixed reference frame, respectively, whereas ωr is the relative angular velocity

expressed in the target body-fixed reference frame.330

The relative attitude of the target can be described parameterizing the rotation ma-

trix Γ. To this aim, the Modified Rodrigues Parameters (MRP) are adopted in this

study.24 The MRP are related to quaternions and to the rotation matrix by the follow-

ing relations:

ζ =
q̃

1 + q0
(25)

Γ(ζ) = I3 − α
A
1 [ζ×] + αA

2 [ζ×]2 (26)


αA

1 = 4 1−ζT ζ
(1+ζT ζ)2

αA
2 = 8 1

(1+ζT ζ)2

(27)

where ζ are the MRP, q̃ are the quaternions and I3 is the identity matrix.335

The time evolution of the MRP is governed by Eq. 28.

ζ̇ =
1
4
Σ(ζ)ωr (28)
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Σ(ζ) = (1 − ζTζ)I3 + 2ζζT + 2[ζ×] (29)

As for the dynamics, the chaser motion is described by the torque-free Euler equa-

tions, while the relative attitude dynamics can be obtained substituting kinematics rela-

tionship in the Euler absolute equations of the target spacecraft. The resulting dynamic

system is:340

Jtω̇r + ωr × Jtωr = Mapp − Mg − Mci (30)

Mapp = Jtωr × Γωc (31)

Mci = JtΓω̇c (32)

Mg = Mgc + Mgcoup (33)

Mgc = Γωc × JtΓωc (34)

Mgcoup = (ωr × JtΓωc + Γωc × Jtωr) (35)

where Jt is the matrix of inertia of the target, Mapp is the apparent torques, Mci is the

chaser-inertial torques and Mg is the gyroscopic torques.

4.3. Measurement model

In real applications, relative position and relative attitude measurements can be ob-

tained by processing images from a camera. In this study, they are generated numeri-345

cally exploiting a suitable error model.

While the relative position is already part of the state vector, and thus it is linearly

related to it, the attitude is provided in terms of roll, pitch and yaw angles. Conse-

quently, it is necessary to derive the rotation matrix Γ from the MRP (see Eq. (26)) and
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afterwards compute the roll, pitch and yaw angles from the associated parameteriza-350

tion:

φ = arctan(Γ(3, 2)/Γ(3, 3)) (36)

θ = arctan(Γ(2, 1)/Γ(1, 1)) (37)

ψ = arcsin(−Γ(3, 1)) (38)

where φ, θ and ψ are the roll, pitch and yaw angles, respectively, whereas Γ(i, j) is the

component of the rotation matrix Γ in the position (i, j). It can be easily observed that

the relations binding the MRP and the measured attitude introduce other nonlinearities

in the problem.355

For the measurements generation, the true states of the target spacecraft are com-

puted during the integration of the dynamic equations (see Secs. 4.1-4.2). Then, the

measured quantities are derived as previously explained and noise is introduced by

adopting the exponentially correlated random variable model25

E(tk+1) = KE(tk) +
√

1 − K2 · N(0, σ) (39)

K = e−1/( faτ) (40)

where E is the error w.r.t. the true states, N(0, σ) is a random number generated with360

a normal distribution of zero mean and standard deviation σ, fa is the measurement

acquisition frequency and τ is the autocorrelation time. In this model the error at time

k + 1 is exponentially correlated to the error at the previous instant and this correlation

decays with a time scale defined by τ. Considering a camera, this seems to be a more

reasonable model with respect to the Gaussian one in which error values at different365

time instant are completely uncorrelated.
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4.4. Software architecture

Fig. 11 reports the software architecture, which is made up of three main blocks.

The first one is the "dynamics simulator+noise generator" that receives as inputs the

initial states, then propagates the dynamics through a variable-step integrator (Runge-370

Kutta78) and generates the measurements adding noise computed with the exponen-

tially correlated random model. These computations are performed in advance and the

outputs are loaded in memory before running the filter.

For the filtering, the decoupling of the dynamics is exploited to split the problem

into two parts: the estimation of the relative translational states (rr and vr) and the375

estimation of the relative rotational states (ζ and ωr). In this way, six DA variables

have to be initialized for each filter instead of twelve, lightening the computational

burden. In both filters the required measurements and chaser absolute state are loaded

at the beginning and an initial estimate of the relative states, in terms of mean and

covariance, has to be provided. For the relative dynamics propagation inside the filter,380

a 4th-order Runge-Kutta integrator is exploited since it is a better solution for embedded

systems in terms of computational effort.

Finally, the estimated relative state is compared with the true state propagated by

the dynamics simulator to assess the performance of the filters.

5. Results385

In the numerical analysis, the chaser and the target are assumed to lie on the same orbit

at a distance that is compatible with the camera performance. The mass properties of

the two spacecraft are listed in Table 2. The initial conditions of the relative states are

reported in Table 3. The attitude is initialized randomly, while the angular velocity is

selected in order to have an absolute value of about 2.5 deg/s.390

In the following sections, first, the accuracy and robustness of the first and second

order filter are assessed, and then an analysis on the required computational time is

performed in order to verify the real-time feasibility.
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Figure 11: Software architecture.

Table 2: Mass properties.

Chaser Target

M (kg) 1435 7828.867

Jxx (kgm2) 2040 17023.3

Jyy (kgm2) 1670 124825.7

Jzz (kgm2) 2570 129112.2

Jxy (kgm2) 130 397.1

Jxz (kgm2) 25 -2171.4

Jyz (kgm2) -55 344.2
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Table 3: Initial conditions.

Tr. Dyn. Rot. Dyn.

x (m) -0.002 φ (rad) 1.66

y (m) -31.17 θ (rad) 2.27

z (m) 0 ψ (rad) -0.38

ẋ (m/s) -3.5e-6 ωr,x (rad/s) 0.02

ẏ (m/s) -2.0e-6 ωr,y (rad/s) 0.02

ż (m/s) 0 ωr,z (rad/s) 0.04

5.1. Accuracy and robustness analysis

Before illustrating the results, some comments are provided to guide the reader through395

the following analyses. First, the target velocity can be assumed to be the most uncer-

tain variables since neither a priori knowledge nor direct measurements are available.

Then, low measurement acquisition frequencies could be required (or are at least bene-

ficial) for limited-resource systems. Therefore, a Monte Carlo-based sensitivity analy-

sis is carried out to assess the robustness of the first and second order filter with various400

acquisition frequency and initial uncertainty in the relative velocity. In addition, the

effects of different initial linear and angular position uncertainties, initial angular rate

and level of measurement noise are investigated. The examined cases are reported in

Table 4 for the translational filter and in Tables 5-6 for the rotational filter, being σi,0

and σs
i the initial standard deviation and the sensor standard deviation, respectively, of405

the variable i.

Particular attention is paid on the performance of the rotational filter since it has to

deal with more complex dynamics. Indeed, the translational dynamics are very slow

and almost linear and, thus, less significant results are expected, as it will be shown

further.410

For each case, 1000 samples are generated around the true initial conditions, ac-

cording to the statistics, and then the furthest 100 are selected and used as initial esti-

mates of the relative states in the filter. This choice is motivated by the will to study the
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Table 4: Translational dynamics: sensitivity to initial velocity uncertainty and acquisition frequency.

Dynamics Sensors Frequency

σrr ,0 (m) 1 σs
x,y (m) 0.02 0.1 Hz to 3 Hz

σvr ,0 (m/s) K*0.1 σs
z (m) 0.03

K=[0.1, 0.5, 1, 5, 10]

Table 5: Rotational dynamics: sensitivity to angular velocity uncertainty and acquisition frequency

Dynamics Sensors Initial Conditions Frequency

σζ,0 () 0.002 - 0.02 σs
φ,θ (rad) 0.003 ωr,x (rad/s) 0.1 0.1 Hz

σωr ,0 (rad/s) K*0.01 σs
ψ (rad) 0.006 ωr,y (rad/s) 0.2 to 3 Hz

ωr,z (rad/s) 0.2

K=[0.1, 0.5, 1, 5, 10]

Table 6: Rotational dynamics: sensitivity to level of measurement noise.

Dynamics Sensors Frequency

case 1 σζ,0 () G*0.002 σs
φ,θ (rad) G*0.003 3 Hz

σωr ,0 (rad/s) 0.01 σs
ψ (rad) G*0.006

case 2 σζ,0 () G*0.002 σs
φ,θ (rad) G*0.003 0.4 Hz

σωr ,0 (rad/s) 0.01 σs
ψ (rad) G*0.006

G = [1, 2, 4]
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worst circumstances, in which the nonlinearities are expected to play a prominent role.

Afterwards, the performance are quantified by means of some statistical indices,415

reported in Eqs. 41-42.

nµ̄ =

∑100
i=1 RMS Ei

100
(41)

nσµ̄ =

√∑100
i=1 (µ̄ − RMS Ei)2

100
(42)

RMS Ei is the root mean square error of the estimated variables computed at steady

state for the ith simulation, nµ̄ and nσµ̄ are the mean and the standard deviation of

RMSE, respectively, considering the filter of order n. Figure 12 provides a graphical

reference for the different indices. µ̄ gives the mean accuracy of the filter, while σµ̄420

quantifies the dispersion around the mean. If the standard deviation is high, the final

accuracy strongly depends on the estimate of the initial condition and thus large initial

errors may result in bad performance or even failure.

Figure 12: Graphical representation of the statistical indices.

In the following, the main outcomes of the simulations are discussed. All the de-

tailed results of the numerical test campaign are reported in Di Lizia et al.26
425

5.1.1. Translational dynamics filter

As already pointed out, the translational dynamics is slow and almost linear since the

two spacecrafts are very close on the same orbit, which is nearly circular. Therefore,
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high-order filters do not provide better performance w.r.t. a linear one, which is already

capable of following the dynamic evolution. Indeed, both first and second order filters430

succeed in all the considered conditions of acquisition frequency and initial velocity

uncertainty with the same estimation error at steady state, which is in the order of 10−2

m for the position and 10−7 m/s for the velocity. As example, in Fig. 13 the absolute

position and velocity errors considering a frequency of 3 Hz and σrr ,0 = 0.01 m/s are

reported.435

(a) (b)

Figure 13: Position (a) and velocity (b) absolute error with a frequency of 3 Hz and σrr ,0 = 0.01 m/s.

5.1.2. Rotational dynamics filter

Regarding the rotational dynamics filter, the nonlinearities affect the estimation prob-

lem more significantly, especially in case of high uncertainties and low observability

of the system. Focusing initially on the first case reported in Table 5, the performance

of the first order filter, in terms of 1µ̄ and 1σµ̄, are shown in Tables 7-8. Analogously,440

Tables 9-10 refer to the second order filter. These results are obtained taking into ac-

count only the converging solutions. For σωr ,0 = 0.1 rad/s and a frequency of 0.1 Hz,

neither of the two filters converge.

However, in order to compare the two filters and have a deeper insight into their

performance, the ratios 2µ̄

1µ̄
and 2σµ̄

1σµ̄
are computed and reported in Tables 11-12. The445

superscript reports the success percentage of the second order filter, while the subscript

the success percentage of the first order filter.

On one hand, it can be observed that first and second order filters show the same
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performance for low uncertainties and high frequencies. However, moving to high un-

certainties and low frequencies (shaded area), the second order filter starts outperform-450

ing the first order one. Indeed, even though 1µ̄ is very similar to 2µ̄, 1σµ̄ is significantly

larger than 2σµ̄, namely the first order filter features a higher dispersion of the steady-

state estimation error (see Fig. 14). This means that, in case of large deviations from

the true initial conditions, the first order filter performance deteriorates, leading to final

estimates that are up to 1 order of magnitude worse than the ones of the second order455

filter (see Fig. 15).

Finally, the second order filter turns out to be also more robust in terms of failures.

Indeed, in some cases, the first order filter is not able to deal with the nonlinearity and

diverges, while the second order filter converges.

Table 7: 1µ̄ in the sensitivity analysis to initial angular velocity uncertainty and acquisition frequency (nom-

inal case).

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 7.55e-04 7.59e-04 8.92e-04 3.79e-03 -

0.4 1.16e-03 1.16e-03 1.16e-03 1.29e-03 1.47e-03

1 1.22e-03 1.22e-03 1.22e-03 1.22e-03 1.23e-03

3 5.35e-04 5.35e-04 5.35e-04 5.35e-04 5.35e-04

(a) Modified Rodrigues Parameters

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 1.13e-05 1.13e-05 1.20e-05 3.86e-05 -

0.4 3.91e-06 3.91e-06 3.91e-06 4.45e-06 4.81e-06

1 3.16e-06 3.16e-06 3.16e-06 3.16e-06 3.17e-06

3 3.06e-06 3.07e-06 3.06e-06 3.07e-06 3.07e-06

(b) Relative Angular Velocity (rad/s)

The analyses of the other examined cases provide similar results and stress the supe-460
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Table 8: 1σµ̄ in the sensitivity analysis to initial angular velocity uncertainty and acquisition frequency

(nominal case).

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 7.89e-06 1.28e-05 3.24e-04 1.59e-03 -

0.4 5.26e-06 3.40e-06 3.92e-06 3.79e-04 3.38e-04

1 2.56e-06 1.54e-06 1.54e-06 4.70e-06 2.21e-05

3 1.13e-07 7.03e-08 7.19e-08 7.25e-08 1.05e-07

(a) Modified Rodrigues Parameters

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 7.98e-08 6.94e-08 4.24e-06 2.78e-05 -

0.4 2.95e-08 1.61e-08 1.89e-08 1.82e-06 1.95e-06

1 1.92e-09 1.18e-09 1.15e-09 3.54e-09 2.11e-08

3 4.40e-09 2.56e-09 2.34e-09 2.67e-09 3.30e-09

(b) Relative Angular Velocity (rad/s)

Figure 14: MRP (a) and angular velocity (b) absolute error with a frequency of 0.1 Hz and σωr ,0 = 0.01

rad/s.
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Table 9: 2µ̄ in the sensitivity analysis to initial angular velocity uncertainty and acquisition frequency (nom-

inal case).

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 7.51e-04 7.51e-04 7.59e-04 9.70e-04 -

0.4 1.16e-03 1.16e-03 1.16e-03 1.16e-03 1.18e-03

1 1.22e-03 1.22e-03 1.22e-03 1.22e-03 1.22e-03

3 5.35e-04 5.35e-04 5.35e-04 5.35e-04 5.35e-04

(a) Modified Rodrigues Parameters

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 1.09e-05 1.09e-05 1.09e-05 1.09e-05 -

0.4 4.61e-06 4.61e-06 4.61e-06 4.61e-06 4.61e-06

1 2.62e-06 2.62e-06 2.62e-06 2.62e-06 2.62e-06

3 1.48e-06 1.48e-06 1.48e-06 1.48e-06 1.48e-06

(b) Relative Angular Velocity (rad/s)

Figure 15: Maximum values of MRP (a) and angular velocity (b) absolute error with a frequency of 0.1 Hz

and σωr ,0 = 0.01 rad/s.
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Table 10: 2σµ̄ in the sensitivity analysis to initial angular velocity uncertainty and acquisition frequency

(nominal case).

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 7.22e-06 6.95e-06 6.89e-06 4.86e-04 -

0.4 5.24e-06 3.38e-06 3.78e-06 3.25e-06 3.93e-05

1 2.56e-06 1.54e-06 1.54e-06 3.01e-06 1.92e-06

3 1.14e-07 7.08e-08 7.23e-08 7.25e-08 9.68e-08

(a) Modified Rodrigues Parameters

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 7.06e-08 5.51e-08 9.31e-08 4.28e-06 -

0.4 2.93e-08 1.60e-08 1.85e-08 2.32e-08 1.52e-07

1 1.90e-09 1.16e-09 1.14e-09 2.26e-09 1.34e-09

3 4.41e-09 2.56e-09 2.35e-09 2.66e-09 3.15e-09

(b) Relative Angular Velocity (rad/s)
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Table 11: 2 µ̄

1 µ̄
in the sensitivity analysis to initial angular velocity uncertainty and acquisition frequency

(nominal case).

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 0.994100
100 0.993100

100 0.850100
93 0.25550

11 −0
0

0.4 0.996100
100 0.997100

100 0.997100
100 0.902100

88 0.80099
96

1 0.988100
100 0.989100

100 0.989100
100 0.991100

100 0.996100
100

3 1.000100
100 1.000100

100 1.000100
100 1.000100

100 1.000100
100

(a) Modified Rodrigues Parameters

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 0.998100
100 0.998100

100 0.941100
93 0.33450

11 −0
0

0.4 0.999100
100 0.999100

100 0.999100
100 0.881100

88 0.81599
96

1 0.999100
100 0.999100

100 0.999100
100 0.999100

100 0.997100
100

3 1.000100
100 1.000100

100 1.000100
100 1.000100

100 1.000100
100

(b) Relative Angular Velocity (rad/s)
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Table 12: 2σµ̄

1σµ̄
in the sensitivity analysis to initial angular velocity uncertainty and acquisition frequency

(nominal case).

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 0.914100
100 0.543100

100 0.021100
93 0.30550

11 −0
0

0.4 0.998100
100 0.995100

100 0.965100
100 0.008100

88 0.11699
96

1 0.999100
100 0.999100

100 0.997100
100 0.641100

100 0.086100
100

3 1.000100
100 1.000100

100 1.000100
100 0.999100

100 0.919100
100

(a) Modified Rodrigues Parameters

Freq. σωr ,0 (rad/s)

(Hz) 0.001 0.005 0.01 0.05 0.1

0.1 0.884100
100 0.794100

100 0.022100
93 0.15750

11 −0
0

0.4 0.994100
100 0.994100

100 0.998100
100 0.012100

88 0.07899
96

1 0.989100
100 0.986100

100 0.989100
100 0.638100

100 0.633100
100

3 1.000100
100 1.000100

100 1.000100
100 0.998100

100 0.955100
100

(b) Relative Angular Velocity (rad/s)

35



riority of the second order filter for high uncertainties and low acquisition frequencies.

The same result is obtained for the different levels of measurement noise as reported in

Tables 13 and 14. In fact, higher uncertainties, either in dynamics knowledge or in the

measurements (Tables 5-6, respectively), cause an increase of the final error dispersion

of the linear filter and thus a worse performance deterioration with respect to the non-465

linear one, leading to errors up to two orders of magnitude larger. On the other hand,

when the initial angular rate is increased (Table 5), the area in which the second order

filter is more robust becomes larger, for equal uncertainty and frequency domain. This

case is similar to reducing the acquisition frequency and thus the observability of the

system, increasing nonlinearity effects.470

Table 13: 2 µ̄

1 µ̄
in the sensitivity analysis to the levels of measurement noise from Table 6.

Freq. G

(Hz) 1 2 4

0.4 0.997100
100 0.96099

91 0.99498
75

3 1.000100
100 1.000100

100 0.99999
99

(a) Modified Rodrigues Parameters

Freq. G

(Hz) 1 2 4

0.4 0.999100
100 0.97399

91 1.00498
75

3 1.000100
100 1.001100

100 1.00099
99

(b) Relative Angular Velocity (rad/s)

5.2. Computational time on the BeagleBone Black

This section addresses the assessment of the required computational effort of the DA-

based HNEKF on the BeagleBone Black (BBB) Single Board Computer, based on an

ARMv7 processor (Cortex A8) @ 1GHz with 512Mb of RAM. The BBB is deemed

to be representative of the limited computational capability available on onboard space475

processors. The filter is entirely compiled out of C11 code directly on the target ARM
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Table 14: 2σµ̄

1σµ̄
in the sensitivity analysis to the levels of measurement noise from Table 6.

Freq. G

(Hz) 1 2 4

0.4 0.965100
100 0.04299

91 0.03798
75

3 1.000100
100 1.020100

100 0.88799
99

(a) Modified Rodrigues Parameters

Freq. G

(Hz) 1 2 4

0.4 0.998100
100 0.03399

91 0.08898
75

3 1.000100
100 1.002100

100 1.02399
99

(b) Relative Angular Velocity (rad/s)

platform, which is running a tailored Linux 4.9 kernel and proper GCC compiler.

In order to asses the feasibility of the developed filter on the embedded hardware,

a Real-Time Operative System (RTOS) should have been employed, allowing the real

time scheduling of the filter task at the desired frequency. However, the filter does not480

really acquire measurements since those are generated in advance by the dynamics sim-

ulator. Therefore, an accurate real time scheduling is not strictly required. Indeed, the

computational time required by each step of the filter can be measured and compared

to the time step at the desired frequency, checking that it is smaller.

To this aim, the duty cycle concept is introduced. The duty cycle represent the485

fraction of the available sampling time which is used by the filter task, as shown in Fig.

16. Therefore, given the execution time texec and defining the sampling time as:

ta =
1
fa

(43)

the duty cycle is:

DC =
texec

ta
(44)
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Figure 16: Duty cycle concept

The analysis is carried out considering different sampling frequency and processor

clock frequency on the BBB. More specifically, the sampling frequencies are fa =490

[0.1, 0.4, 1, 3] Hz while the clock frequencies are clk =
[
1002, 275, 720, 1000

]
MHz

. First and second order filters are executed considering both the translational and

rotational dynamics. The results of the execution time and duty cycle are reported in

Table 15.

Table 15: Filter execution on BBB

Execution Time [s] - Order 1

fa\clk 100 275 720 1000

0.1 0.381 0.303 0.110 0.006

0.4 0.115 0.091 0.035 0.004

1 0.062 0.049 0.018 0.002

3 0.026 0.021 0.008 0.001

Duty Cycle [%] - Order 1

fa\clk 100 275 720 1000

0.1 3.8% 1.2% 0.1% 0.0%

0.4 4.6% 0.4% 0.0% 0.0%

1 6.2% 0.3% 0.0% 0.0%

3 7.8% 0.2% 0.0% 0.0%

Execution Time [s] - Order 2

fa\clk 100 275 720 1000

0.1 1.342 1.072 0.413 0.043

0.4 0.426 0.339 0.129 0.014

1 0.25 0.199 0.077 0.011

3 0.124 0.099 0.039 0.007

Duty Cycle [%] - Order 2

fa\clk 100 275 720 1000

0.1 13.4% 14.4% 5.9% 0.3%

0.4 17.0% 5.8% 0.7% 0.0%

1 25.0% 5.0% 0.4% 0.0%

3 37.2% 3.7% 0.1% 0.0%

It is clear that both first and second order filters are always feasible, as the duty495

2Interpolated
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cycle remains always well below the 50%, thus allowing for the filtering and also other

necessary tasks. Not surprisingly, the duty cycle increases when reducing the clock

frequency as the processor is capable of executing less operation per seconds. More-

over, at constant clock frequency, the duty cycle reduces when reducing the sampling

frequency, demonstrating that the longer propagation time span, needed for computing500

the expectations, is not highly influencing the overall computational time. Concen-

trating on the lower clock frequency, it is possible to see how the second order filter

is more feasible at lower sampling frequencies, that are the cases in which this filter

outperforms the first order version.

6. Conclusion505

The work investigated the possibility and assessed the advantages of onboard 6DoF

state estimation using DA techniques. The problem of real-time relative pose estima-

tion during proximity operations has been considered as target application, using the

e.deorbit mission with the target Envisat as reference scenario. To attain this goal, a

DA-based HNEKF has been developed and implemented on a BeagleBone Black plat-510

form, which is deemed to be representative of the limited computational performance

available on current onboard space processors. An analysis on the effects of including

high order terms in the EKF implementation has been carried out and has highlighted

that using orders greater than two does not improve the accuracy of the estimation. This

result has been proven to be related to the hypothesis of the filter that all random dis-515

tributions are Gaussian and, thus, completely described by their mean and covariance.

In addition, through an extensive sensitivity analysis, it has been shown that the second

order filter tends to outperform the classical first order counterpart either for relatively

large initial errors and uncertainties, or for relatively low acquisition frequencies. Nev-

ertheless, the second order filter outperforms its first order version in terms of final520

error dispersion and robustness to failure. Finally, the tests have demonstrated that

the second order filter can be run on an ARM processor @ 100 MHz for the target

application.
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