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UNIVERSITY OF SOUTHAMPTON

Abstract

FACULTY OF SOCIAL SCIENCES

SOUTHAMPTON BUSINESS SCHOOL

Doctor of Philosophy in Management Science

Route and Speed Optimization Problems under Uncertainty and

Environmental Concerns

by Moncef Ilies Nasri

This thesis studies logistics problems with the overall aim to reduce the emission of green-

house gases. These problems are formalized, modeled and solved to derive useful insight

for both logistics companies and policy makers. Chapter 1 introduces the background,

presents the research aims and objectives as well as the research context. Chapter 2

studies The Pollution-Routing Problem under traffic uncertainty. The problem assumes

uncertain traffic conditions and aims at reducing the cost of emissions, fuel consumption

and travel times. Stochastic programming has been used to propose new mathematical

models capable of considering traffic conditions as a discrete set of random scenarios.

Extensive computational experiments are carried out, to quantify the savings yielded

by the stochastic approach over a deterministic approach, and by controlling speed.

Chapter 3 reconsiders the problem defined in Chapter 2. However, instead of solving

it with commercial solvers, new solution techniques based on decomposition, and more

precisely integer L-shaped algorithm that uses cuts, lower-bounds and local-branching

are proposed. Chapter 4 focuses on the speed optimization problem that consists of

choosing the optimal speed on each leg of a given vehicle route represented by a fixed

sequence of customers. The objective function accounts also for the pollution emitted

by the vehicles. Each customer in the sequence has a service time window. Early and

late starts of service are allowed, but at the expense of penalties. A natural model of

the problem in the form of a non-linear program is presented, which is then linearized

in several ways. Several algorithms are described based on the use of time-space net-

works. Managerial insight is derived for maritime and road transportation. Chapter 5

concludes by summarizing the key findings and contributions of this thesis, discusses the

limitations of this work and suggests future directions of research.
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 مختصر
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Doctor of Philosophy in Management Science 

حركة السّير غموض  الاعتبارسرعة مركبات توزيع السلع مع أخذ بعين تحسين مسار و 
 بغاية تقليل التلوث

 منصف إلياس ناصري من إعداد:

حتبا  المؤدية للا الانبعاثات الغازيةتهدف لتقليل و  ةوجستي  ل  لا المشاكل بدراسةعنى ت   ذه الأطروحةه
اع ن  للوصول لاستنتاجات تفيد الشركات اللوجستية وص   ل  ت   ج و مذ  ن  ت    ، ت در  هذه المشاكل  الحراري.

 الفصل الثان   ي.سياقه البحث  و  ، غاياتهة البحث، أهدافهل مقدمة عن خلفي  يتناول الفصل الأو   القرار.
 ناقش  ي    و يدر  

 
 البيئي   ثالتلو  د من لحامع زبائن  على سلع لتوزيع ركباتكيفية توجيه الم

(The Pollution-Routing Problem)   كلفة هادفا  إلى تقليل الت  ير و ضاح حالة الس  عدم ات   مفترضا
خدمت البرمجة في هذه الأطروحة است   اليد العاملة.، استهلاك الوقود و اتجة عن الانبعاثات الغازيةالن  

لإنتاج نماذج رياضية قادرة على تمثيل مجموعة سيناريوهات من  (Stochastic Programming)ة العشوائي  
وفير الحاصل من فة لتقييم الت  ة المكث  موعة من التجارب البرمجي  تم إجراء مج ير الغامضة.حالات الس  

الث، تم اقتراح وتطوير طرق في الفصل الث   .حكم في سرعة المركباتوالت   ةاستخدام البرمجة العشوائي  
 اترق على خوارزمي  الط  تعتمد هذه  ابق.مناقشتها في الفصل الس   صة لحل المشكلة التي تم  برمجية مخص  

(L-shaped)  باستخدامالحلول الممكنة مجال والتي تهدف إلى تقليل (cutting-planes)،   ةاستراتيجي 
ابع على ز الفصل الر  رك  ي   .(Local-Branching) ة البحث المحلي  وخوارزمي   (Lower Bounds) الدنياالحدود 

 
 
نفس ي إلى تقيق وتؤد   للم ركبات دةجزء من المسارات المحد   كل    ركبات علىتسين اختيار سرعة الم

لكل زبون حيث  ،زبائن طرق مؤدية إلى ن منالمسارات تتكو   ان.الأهداف المطروحة في الفصل الث  
تصل قبل أو بعد الوقت المحدد من قبل الزبون ولكن بتكلفة  نركبة أللم   ق  د للخدمة. يح وقت محد  

  ةإضافي  
 
وتقديم نماذج  ة،خطي  تها الغير تقديم المشكلة في صف تم   أيضا ،. وفي هذا الفصل ركبةعلى الم

ي مفيدة لشركات النقل البر   لوصول لاستنتاجاتا، المشكلة صة لحل  مخص  ات وخوارزمي  ة خطي  
 قيود ويناقش ،الأطروحة هذه اتومساهم الرئيسية النتائج بتلخيص سالخام الفصل تتمي  . البحري  و 

 .للبحث مستقبلية تجاهاتا ويقترح العمل هذا
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Introduction
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2 Chapter 1 Introduction

1.1 Research context

Road transportation is one of the most common means of transport for freight (Spiel-

mann and Scholz, 2005), but is also one of the most polluting. A report published by

the U.S. Environmental Protection Agency in April 2016 (U.S. Environmental Protec-

tion Agency, April, 2016) shows that the transportation sector was the second largest

contributor of greenhouse gases (GHG) emissions in 2014, with a 26% share of the total.

GHG emissions have increased by 17% between 1990 and 2014, in which period a sharp

increase of 76% was also observed in heavy- and medium-duty trucks emissions. Con-

tinuously deteriorating air quality is believed to result in millions of deaths each year

across the world, and these numbers will double by year 2050 if the current trend holds

(Lelieveld et al., 2015). Many logistics companies and policy makers have started taking

actions to reduce the amount of GHG emissions.

Distribution activities represent a significant share of the cost incurred by companies. It

is for this reason that the Vehicle Routing Problem (VRP) and its variants are among the

most studied optimization problems in the literature (Toth and Vigo, 2014). However,

ever since it was introduced by Dantzig and Ramser (1959), the models and solution

techniques proposed for the problem assumed objective functions representing economic

measures (e.g, distance or cost), and ignored the impact on the environment (Bektaş

et al., 2016).

The amount of GHG emitted by a vehicle is directly related to the quantity of fuel con-

sumed, which in turn is affected by a number of parameters including speed and load.

Bektaş and Laporte (2011) introduced the Pollution-Routing Problem (PRP), an exten-

sion to the classical VRP where the traditional, profit maximization objective function is

extended to explicitly minimize fuel consumption. The PRP aims at optimizing vehicle

routes and speeds to reduce GHG emissions.

Selecting the optimal travel speed of a vehicle depends on the traffic conditions in the

network, which was not taken into account in the original version of the PRP. Vehicle

speed is often affected by unforeseen and random factors such as weather-related events

or traffic congestion. These events deteriorate traffic conditions, which will prevent vehi-

cles from traveling at desired speeds and force them to travel at the traffic speed. This

may result in a cost increase, which may render optimal solutions computed by ignoring

the uncertainty sub-optimal. In addition, unpredictable delays may be experienced at

customers, which reduces the quality of the service provided. Therefore, incorporating

uncertainty in the optimization process may increase the robustness of planned solutions

against speed variations.

Although several studies have looked at VRP variants under uncertainty and environ-

mental concerns (Hwang and Ouyang, 2015; Ehmke et al., 2016a; Eshtehadi et al., 2017;
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Huang et al., 2017), no approach, to the best of the author’s knowledge, has consid-

ered route and speed optimization to tackle the PRP under uncertain traffic conditions.

In this thesis, we investigate this problematic and provide mathematical models and

formulations, methods, algorithms and tools to bridge identified research gaps in this

context.

1.2 Potential application for autonomous trucks

Autonomous trucks (ATs) are an emerging technology with the potential to revolution-

ize the transportation sector. In Europe, a convoy of more than 12 ATs completed a

European cross-border journey in April 2016 (The Guardian, 2016). The ATs formed

platoons of two or three connected trucks that drove close to each other, using the same

speed, acceleration and steering profile. This was achieved by the use of an existing

technology of adaptive cruise control where the trucks were connected via wireless tech-

nologies with a driver sitting in the lead truck. In such a setting, fuel savings of around

5% can be achieved by the lead truck, and between 10–15% for the follower trucks (Tsug-

awa, 2012). In the US, the first freight shipment with an AT was made on the 25th of

October 2016 (Wired.com, 2016). The truck was able to drive without driver assistance

on the highway. It was able to assess traffic conditions, choose acceleration and speed,

and had the ability to self steer to stay in the driving lane. The truck, however, needed

a driver to control it in complex driving areas, such as cities.

The emergence of ATs can also address the problem of truck drivers shortage. In the US,

there was a shortage of 48,000 truck drivers in 2015, which is predicted to be 175,000

by 2024 under the current trend (Costello and Suarez, 2015). ATs can help increase the

overall traffic safety. Traffic crashes including trucks represent 10% of all crashes in the

US, and more than 90% of accident causes are due to driver errors (Singh, 2015).

The introduction of ATs is likely to significantly improve transport efficiency and reduce

pollution. To capture these two aspects, in addition to determining routes, optimal

speeds at which ATs should travel on each leg of a route should be computed. However,

selecting the optimal travel speed depends on the traffic conditions in the network. In

practice, vehicle speed is often affected by factors that are not known with certainty in

advance, such as weather-related events or traffic congestion. In addition, customers may

experience large and unpredictable delays. Consequently, it makes sense to incorporate

uncertainty in the optimization process to ensure that the planned solutions are robust

against speed variations.

There have been several strategies proposed for the implementation of ATs, including

lane reservation (Fang et al., 2013) and exclusive assignment of existing infrastructures

(Wu et al., 2017), although both are deemed to be expensive and restrictive with respect
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to the applicability of this new technology (Vanholme et al., 2013). A preferred feasible

strategy is for ATs to share the same infrastructure with conventional vehicles (driven

by humans) (Vanholme et al., 2013), at least for the foreseeable future. The latter

option would introduce uncertain traffic conditions for ATs, which is precisely what our

research studies.

1.3 Research aims

As highlighted in the analysis of the research context, the lack of studies with regards

to vehicle route and speed optimization problem under uncertainty represents a clear

research gap. In Chapters 2 and 3, we aim to address this gap and contribute to the

state-of-art with new models and solution techniques for pollution-routing problems

where the uncertainty is caused by the traffic conditions. Additionally, in Chapter 4,

we study the problem of optimizing vehicle speed over a fixed customer sequence with

soft time windows. We propose generic solution methods with application in different

transportation modes, including road and maritime transportation. The thesis adopts

the three-paper structure, where the details of research aims of each paper are given

below.

The first paper first reviews the existing literature on (green) vehicle routing problems

under uncertainty. We then study the Pollution-Routing Problem under stochastic traf-

fic conditions. We aim to quantify the fuel consumption savings that can be achieved

by explicitly considering traffic uncertainty. Managerial insights are derived by compre-

hensive computational results.

The second paper builds on the encouraging findings of the first paper, where only small

scale instances were solved. In the second paper we develop specialized techniques to

solve larger instances of the problem. These techniques exploit the structure of two-stage

stochastic programs.

The third paper studies the speed optimization problem with soft time-windows that

arises as a subproblem in the first and second paper. The problem is also encountered in

several logistics applications. We provide an overview of existing techniques to solve sim-

ilar problems. We then propose algorithms capable of optimally solving large instances

of the problem faster than commercial solvers. Managerial insight is derived for road

and maritime transportation.

1.4 Research objectives

The research objectives of Chapter 2 are:
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• to explore the state-of-the art and provide an overview of stochastic green vehicle

routing problems,

• to propose modeling concepts and stochastic mathematical programming models

for the PRP with stochastic travel times and to overcome modeling challenges such

as non-linearity,

• to provide comprehensive computational analysis of the method proposed and

provide insight.

The research objectives of Chapter 3 are:

• to review the literature on implementations of decomposition methods for VRPs,

• to develop an integer L-shaped based algorithm and variations to solve medium to

large-scale instances of the problem introduced in Chapter 2,

• to provide extensive computational analysis and comparison of the algorithms

developed.

The research objectives of Chapter 4 are:

• to review the literature on speed optimization problems in different transportation

modes,

• to overcome the non-linearity of the mathematical model,

• to develop time-space network approaches for the problem,

• to run extensive computational result and compare with non-linear available solvers,

• to provide insight for road and maritime transportation.

1.5 A schematic representation of the thesis

In Figure 1.1 we present a schematic representation of the overall research conducted,

where each rectangle represents a subject treated in this thesis. The overall theme of

this thesis is to reduce greenhouse gases emissions and is represented by the green rect-

angle. To achieve this aim, we consider in the Chapter 2 route and speed optimization

under uncertainty, represented by the black rectangle. In Chapter 3 we consider the

same problem, but we develop an Integer L-shaped method to solve the problem for

larger instances, represented by the yellow rectangle. Chapter 4 focuses on speed opti-

mization over a fixed sequence of customers, a general problem that arises in different

transportation modes, represented by the red rectangle.
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Transportation Modes
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Method
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Figure 1.1: Main themes considered in this thesis
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Abstract

The Pollution-Routing Problem (PRP) is an extension of the classical Vehicle Routing

Problem with a more comprehensive objective function that accounts for the amount of

greenhouse gases emissions, fuel, travel times and their costs. This chapter introduces

a new variant of the PRP that takes into account travel time uncertainty due to traffic

congestion. Uncertainty is modeled through stochastic traffic speeds on the arcs which

are represented by a discrete set of scenarios. Using two different strategies, this study

provides three mathematical formulations in the form of two-stage stochastic program-

ming models. The two strategies differ in the amount of information available during the

decision making process and in the recourse policies. The objective is to minimize the

expected total cost of drivers, fuel costs and greenhouse gases emissions. Computational

results show the added value of stochastic modeling over a deterministic approach.

Keywords: pollution-routing; stochastic programming; stochastic traffic speed; recourse.

2.1 Introduction

The Pollution-Routing Problem (PRP) introduced by Bektaş and Laporte (2011) is a

variant of the classical Vehicle Routing Problem (VRP) that explicitly considers driver,

fuel and pollution costs. In addition to determining vehicle routes, the PRP computes

optimal speeds at which vehicles should travel on each leg of the route, so as to minimize

a comprehensive cost function that includes fuel consumption. In its original version,

the PRP includes time windows and imposes limits on vehicle speeds on every leg of

each route, which are assumed to be constant and known with certainty at the time of

planning.

Constant traffic speeds imposed in the PRP correspond to the minimum and maximum

speeds at which vehicles may legally travel on a given road segment. In practice, however,

vehicle speed is often affected by factors that are not known with certainty in advance,

such as weather-related events or traffic congestion. Such events are likely to reduce

the speed of vehicle and cause deterioration in the general traffic speed. In this case,

the vehicle has to travel at a speed less or equal to the traffic speed. Ignoring this

reality at the planning stage may render optimal solutions computed using deterministic

parameters sub-optimal or even infeasible, and in turn may result in cost increases,

depending on the speeds that are achievable in practice. In addition, customers may

experience large and unpredictable delays. Consequently, it makes sense to incorporate

uncertainty in the optimization process to ensure that the planned solutions are robust

against speed variations.
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Considerable work has been carried out on the stochastic VRP Gendreau et al. (2014,

2016), in particular and of relevance to this study, in what regards stochastic travel times

Laporte et al. (1992); Ehmke et al. (2015). However, vehicle speed was only recently

introduced as a decision variable, only few studies are yet available on the effect of

stochastic traffic speed.

In order to bridge this gap, this chapter models uncertainty as stochastic input param-

eters. We describe two stochastic programming models that differ with respect to the

time at which the routing decisions are made. We consider a finite number of scenarios,

each with a different speed limit for each arc of the network. The first formulation is

a two-stage stochastic programming model with complete recourse. In this case, the

recourse variables correspond to the delays experienced in servicing the customers, and

to the speed reduction needed when the planned speed is higher than the realized speed.

The second formulation is also a two-stage stochastic programming model in which travel

speeds are computed for every scenario separately, assuming that the realizations of the

scenarios are revealed before the start of routing, in the expectation that further cost

minimization will be achieved.

The three key contributions of this chapter are as follows. (1) We describe two recourse

strategies to mitigate the adverse effects of speed uncertainty on fuel consumption and

GHG, where speed reductions, to the best of our knowledge, have been made an integral

part of the recourse decisions for the first time, (2) using a stochastic programming

methodology, we describe several two-stage stochastic programming formulations with

recourse, and present results that numerically compare the recourse strategies, and (3)

we offer insights into the relative performance of each strategy and discuss implications

of the strategies on fuel consumption and total cost.

The remainder of this chapter is structured as follows. Section 2.2 presents a brief

review of the relevant literature on the PRP and on the VRP with stochastic travel

times. Section 2.3 introduces some technical background information. Mathematical

models are described in Section 2.4. Section 2.5 presents computational experiments,

and conclusions follow in Section 2.6.

2.2 Literature review

In this section, we review some of the relevant existing literature of the PRP and its

variants, given the similarities to the problem studied in this chapter. Our study contains

also stochastic travel times within a VRP framework, therefore it can also be viewed as

a natural extension of the VRP with stochastic travel times. Therefore, we also review

the relevant literature on this problem. For recent reviews of the literature on green road

freight transportation, we refer the reader to Demir et al. (2014b) where the authors
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review gas emissions models, and to Lin et al. (2014), Eglese and Bektaş (2014) and

Bektaş et al. (2016) which are surveys of green VRPs. For a wider and comprehensive

overview of the green transportation, including air and maritime transportation, we refer

the reader to Psaraftis (2016).

2.2.1 The Pollution-Routing problem

In the original paper of Bektaş and Laporte (2011), the PRP makes use of the compre-

hensive fuel consumption model proposed by Scora and Barth (2006), and is modeled

through a non-linear mathematical formulation in which the decision variables corre-

spond to the selection of routes and speeds. Non-linear constraints are linearized using

speed discretization. The authors presented extensive computational results on instances

involving up to 20 customers and showed that CO2 emissions could be reduced by up to

8% by solving a comprehensive model that accounts for pollution, which is significant

since the transportation sector has an important share in the global CO2 emissions (U.S.

Environmental Protection Agency, April, 2016). Instead of discretizing speed, Fukasawa

et al. (2016b) tackled the PRP with continuous speed and put forward two arc-based

mixed-integer convex optimization models that can be solved as disjunctive convex pro-

grams, and can handle instances with up to 25 customers. Dabia et al. (2016) described

a branch-and-price algorithm for the PRP based on a column generation mechanism in

which the master problem is a set partitioning problem. The pricing problem is solved

by means of modification of a labeling algorithm for the elementary shortest path prob-

lem with resource constraints. The algorithm can optimally solve all instances with 10

customers, as well as some instances from the PRP-lib with 15 and 20 customers.

Demir et al. (2012) developed an adaptive large neighborhood search (ALNS) meta-

heuristic for larger PRP instances which embeds an adaptation of the speed optimiza-

tion algorithm of Norstad et al. (2011). The algorithm provided solutions for realistic

instances with up to 200 customers within just over 10 minutes. Kramer et al. (2015)

later proposed a matheuristic that combines an iterative local search, based on the ran-

domized variable neighborhood descent heuristic of Subramanian et al. (2010), with a

speed optimization algorithm and an exact method for a set partitioning problem. When

compared with the ALNS of Demir et al. (2012), their matheuristic yielded better quality

solutions on all instances with 100 and 200 customers.

Franceschetti et al. (2013) studied a version of the PRP with time-dependent speeds

which assumes two periods, one characterized by a congestion speed, and the other

when a vehicle can travel at an optimized free-flow speed. The authors used the emis-

sions model of Scora and Barth (2006) to compute fuel consumption. In this problem,

service at customers must start within specified time windows, and it is possible for a

vehicle to wait at customer after completing service to avoid congestion further along

the route. The authors also studied a special case of the problem with a single customer

http://www.apollo.management.soton.ac.uk/prplib.htm
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and analytically characterized optimal solutions. They described a speed optimization

algorithm for the problem and solved to optimality instances with up to 20 customers.

Qian and Eglese (2014) tackled the problem of minimizing fuel consumption under time-

varying speeds. The authors considered both vehicle routes and speeds as decision

variables. They proposed two algorithms based on dynamic programming, one of which

is exact and the other is heuristic, and tested both on a realistic 14-customer instance.

Their results showed that the heuristic is much faster than the exact method, taking five

minutes instead of 12 hours. The same authors (Qian and Eglese, 2016) later proposed

a combined tabu search and column generation algorithm for this problem, based on

an earlier algorithm by Prescott-Gagnon et al. (2009) for the VRP with time windows.

The algorithm was tested on a real instance with 60 customers and one depot, and

the results indicated about three percent savings in GHG emissions compared with a

time-minimizing objective.

Maden et al. (2010) considered the VRP with time windows and time-dependent speeds,

and developed a tabu search heuristic in which the objective is to minimize the total

time spent by the vehicles. The authors showed that up to 7% of CO2 emissions can be

saved on the instances tested.

2.2.2 Stochastic vehicle routing problems

The most common sources of uncertainty in stochastic vehicle routing are customer

availability, customer demand, service times and travel times (Gendreau et al., 2016).

Here we focus on VRPs with stochastic travel times. In the case of stochastic customer

demands, the recourse policies are decided before starting the routing. A recourse action

is needed if vehicle capacity is not always sufficient to satisfy customer demand. Laporte

and Louveaux (1990), Dror et al. (1993) and Yang et al. (2000) used a preventive return

trips to the depot when vehicle load falls below a certain threshold. This policy prevents

vehicles from being unable to meet a customer demand, but may result in unnecessary

travel. Dror et al. (1989); Secomandi (2001) Described policies by which the remaining

route is reoptimized after each customer delivery, but this tends to be computationally

very expensive and therefore rarely used.

Laporte et al. (1992) considered stochastic travel and service times in a VRP in which

the route durations are limited. They described a chance-constrained model and two

two-stage models with simple recourse, i.e. the cost of recourse is proportional to the

travel time in excess of the imposed route duration limit. The authors implemented

a branch-and-cut algorithm and presented computational results on instances with up

to 20 customers. Ehmke et al. (2015) also used a chance-constrained model in which

the aim is to ensure a certain service level for each customer by computing the random

distributions of both arrival and start-service times. They developed a tabu search based
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algorithm which was applied to large instances. The authors pointed out that given wide

time windows, service improvements can be achieved without a significant increase in

the cost of the solution.

Taş et al. (2013) described a tabu search algorithm for a variant of the problem where

customer service can start either before or after the time windows with a penalty. The

objective is to minimize the cost incurred by the total distance, the expected delay,

and the expected drivers’ overtime. Taş et al. (2014) later described a branch-and-

price algorithm based on column generation for the same problem. Agra et al. (2013)

considered a similar problem in a maritime context. The authors proposed a robust

optimization approach that determines a set of routes feasible for all realizations of

stochastic travel times. Lee et al. (2012) developed a robust optimization algorithm

based on a column generation technique considering uncertainty in both travel times

and customer demands.

Hwang and Ouyang (2015) considered the full-truck delivery problem under uncertainty,

defined on a road network where nodes represent major intersections and directed arcs

represent route segments between them. Speed congestion is modeled as an independent

random variable on each arc of the network. The problem is to select the sequence of

arcs to traverse in order to minimize an objective function based on expected total travel

time, GHG emissions and penalties for late or early arrivals. The authors described a

stochastic dynamic approach and a deterministic shortest path heuristic to solve problem

instances with up to 416 nodes. The heuristic approach provided solutions quickly, but

of lower quality as compared to the dynamic approach. Savings between 4% and 8%

were obtained when compared to the same approach without considering emissions.

Ehmke et al. (2016a) developed two algorithms to find expected emissions-minimizing

paths in urban areas with stochastic travel times. They developed an A* algorithm

based on sampling travel times to estimate the expected emissions on each arc of the

graph and a second heuristic based on Dijkstra’s algorithm (Dijkstra, 1959) to solve

a time-dependent but deterministic version of the problem, using expected emissions

on each arc. This simplification was made to reduce the total time required to solve

the problem. The heuristic method showed similar results but the running times were

significantly faster than for the A* algorithm.

Ehmke et al. (2016b) considered the VRP in urban areas, with the objective of minimiz-

ing gas emissions. Using the same model as in Bektaş and Laporte (2011), a heuristic

is used to estimate the emissions-minimizing paths, thus transforming random traffic

speeds to deterministic time-dependent speeds. Solutions obtained with a tabu search

heuristic on real-world instances showed that emissions can be reduced significantly

without a significant increase in cost.
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Eshtehadi et al. (2017) considered the PRP under demand and travel time uncertainty.

The authors focused on stochastic customer demand and proposed three mathematical

models based on a robust optimization approach. The authors defined a hard-worst case

(HWC), a soft-worst case (SWC) scenario and a chance-constrained robust model. The

difference between these approaches is their robustness to uncertainty. Travel time un-

certainty is handled by considering a deterministic congestion level. The results showed

that considering robust optimization technique to provide reliable solutions may result

in 30, 50 and 60 liters of additional fuel consumption for 10-, 15- and 20-node instances

respectively.

Huang et al. (2017) considered the Time-Dependent VRP (TDVRP) with path flexibility.

As opposed to considering a simple path between a pair of customers, the authors start

first by determining the set of time-dependent shortest paths on the network using a

modified version of Dijkstras algorithm. The authors describe a mathematical model to

the TDVRP with path-flexibility and a two-stage stochastic program to solve a stochas-

tic variant in which speeds on arcs are represented by discrete scenarios. The first-stage

decisions relate to customer sequences and the second-stage decisions relate to the se-

lection of paths. Instances with 30 nodes were solved by the deterministic version, and

instances with 10 nodes and three discrete scenarios were solved by the stochastic pro-

gram. The deterministic equivalent of the stochastic PRP with path flexibility yielded

better results than solving a standard TDVRP.

2.2.3 Relationship with the state of knowledge

Although the papers just reviewed share some similarities with the problem we introduce

here, they exhibit two fundamental differences with respect to the types of decisions and

the cost components. The first of these is vehicle speed. The authors of the above

papers argue that speed cannot be controlled in urban areas and vehicles must follow

the traffic speed. In our study, we consider an intercity travel setting, such as highways,

where vehicles are more likely to have control over the speed. From a methodological

point of view, modeling speed as decision variable is challenging due to the non-linearity

it entails. The second fundamental difference relates to the cost. In particular, we

consider driver wage as part of the objective function. While this may seem a relatively

straightforward modification of the objective function, it does make a difference since it

has been shown that the largest component of the PRP objective function is the drivers

wage (Bektaş and Laporte, 2011). Table 2.1 summarizes the differences between the

papers cited above and our paper.

Our work builds on and contributes to the existing body of work in a number of aspects.

First, we continue to treat speed as a decision variable, as was done in the PRP and

other relevant studies reviewed in Section 2.1 (e.g. (Demir et al., 2012), (Fukasawa et al.,

2016b)). However, we break away from the main assumption made in those references
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Paper Objective function Time Speed Path Time Solution method
Cost Fuel dependency decisions flexibility windows Exact Heuristic

Ehmke et al. (2016a) - ✓ ✓ - - - - ✓
Hwang and Ouyang (2015) ✓ ✓ - - ✓ - ✓ ✓
Eshtehadi et al. (2017) - ✓ - ✓ - ✓ ✓ -
Huang et al. (2017) - ✓ ✓ - ✓ - ✓ ✓

This chapter ✓ ✓ - ✓ - ✓ ✓ -

Table 2.1: Comparison of the problem characteristics studied in this chapter and related
papers

in that the vehicle speed is bounded by a constant value. One novel aspect of our

contribution is to restrict the vehicle speed on each arc by a stochastic parameter, the

value of which depends on a future realization of a scenario that prescribes the traffic

speeds. This makes for a more realistic treatment of the problem by reflecting part

of the uncertainty of the traffic conditions in the relevant models. Second, we assume

that the travel times are stochastic by following a line of analysis similar to that of the

references reviewed in this section. However, whereas the references cited above treat

the travel time on an arc as an uncertain input parameter, we model it as a function

of the speed chosen to traverse that arc, implying that travel time itself is effectively

a decision variable, but one that is subject to uncertainty. The latter aspect of our

contribution is therefore different and unique. While the robust approach proposed by

Eshtehadi et al. (2017) for the pollution-routing problem considers speed as a decision

variable, it tends to be over-conservative since it assumes the realization of a worst-case

scenario. Robust solutions are therefore costlier than those produced by the stochastic

programming methods we advocate in this chapter. Finally, we resort to two-stage

stochastic programming formulations with recourse as the modeling framework, for the

very reason that this approach is shown to be a suitable way to formulate such problems

(e.g. (Laporte et al., 1992)), and with an objective function that minimizes the expected

cost (e.g. (Laporte et al., 1992), (Taş et al., 2013)).

2.3 Technical background information

In our study, we use the same consumption model as in Bektaş and Laporte (2011),

which we now describe. From this model and by using an illustrative example, we show

also the impact that stochastic travel times may have on the amount of emissions. We

then propose two ways of modeling our problem.

2.3.1 Calculation of fuel consumption and emissions

There exist numerous emission models, which were reviewed and compared in Demir

et al. (2014b). These models vary with respect to the input parameters and level of
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detail, but most use non-linear functions of vehicle speed. Such functions generally

have a convex U-shaped form, which can be optimized to yield a speed minimizing fuel

consumption and emissions. Our emissions model is an instantaneous model proposed

by Barth and Boriboonsomsin (2008), which estimates the fuel consumed Fr per second

based on the function

Fr = ε(kΩV + P/η)/κ (L/s), (2.1)

where η and κ are constants related to diesel fuel typically used by delivery vehicles, ε is

fuel-to-air mass ratio, k, Ω and V are the engine friction factor, engine speed and engine

displacement respectively. Furthermore, P is the engine power output per second (in

kW) and is calculated as

P = Ptract/ηtf + Pacc (kW), (2.2)

where ηtf is the vehicle drive train efficiency, and Pacc is the engine power demand

associated with running losses of the engine and the operation of vehicle accessories (i.e.,

air conditioning). In our study, we assume that Pacc is equal to zero. The parameter

Ptract is the total tractive power requirements (in kW) placed on the wheels:

Ptract = (Λτ + Λg sin θ + 0.5CdρΓv
2 + ΛgCr cos θ)v/1000 (kW), (2.3)

with Λ and v are the vehicle weight (kg) and speed (m/s) respectively, τ is the acceler-

ation (m/s2), θ is the road angle, g is the gravitational constant (m/s2), and Cd and Cr

are the coefficients of the aerodynamic drag and rolling resistance, respectively. Finally,

ρ is the air density (kg/m3), and Γ is the frontal surface area of the vehicle (m2). For a

given arc (i, j) of length d and assuming that all parameters remain constant except for

the vehicle speed v, we can express fuel consumption in liters (L) as

F (v) = kΩV λd/v (2.4)

+ (wαv + αfv + βv3)λγd/v (L), (2.5)

where λ and γ are constants defined as λ = ε/κΨ, where Ψ is the conversion factor of

fuel from (g/s) to (L/s), and γ = 1/(1000ηtfη) . Furthermore, if Λ is the total weight of

vehicle between node i and j, then Λ = w+f , where w is the weight of an empty vehicle

(curb weight), and f is the vehicle load. Let α = τ + g sin θ + gCr cos θ be a vehicle-arc

specific constant and β = 0.5CdρΓ be a vehicle specific constant. The introduction of d/v

in Equations (2.4) and (2.5) is done to express F(v) in liters (L) instead of liters/seconds

(L/s). We omit indices (i, j) on the variables v, d, f , and α to simplify the presentation.

2.3.2 The impact of travel speed uncertainty on emissions

Traffic congestion is one of the main factors preventing vehicles from driving at an

optimal speed. It can be caused by accidents, bad weather, or simply the traffic level
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in the network. Congestion is typically characterized by low speeds and regular start-

and-stops. As a result, it drastically increases fuel consumption compared with the

non-congestion case.

We now illustrate how congestion may impact the routing decisions on a four-node

instance corresponding to four British cities, where the fictional demand of each customer

and the service times for this instance are given in Table 2.2. The time windows of the

customers (in minutes) are shown in Figure 2.1a. The distance matrix of Table 2.3 shows

the distances (m) between the nodes of the network.

Node index City Demand (kg) Service time (min)

0 Kingston upon Hull (depot) – –
1 Pocklington 721 24
2 Brough 814 27
3 Selby 620 21

Table 2.2: Demand and service time data

Node index 0 1 2 3

0 0 41150 25680 54200
1 40660 0 51980 32800
2 25010 51780 0 61520
3 54270 32750 61560 0

Table 2.3: Distance matrix for the example of Table 2.2

We assume that the traffic speeds on all the arcs of the network is not known in advance,

but is instead a discrete random variable referred to as a scenario. In this example,

we consider three scenarios S1, S2 and S3 with respective probabilities 33%, 33% and

34%. Below, we show the matrices representing the three scenarios S1,S2 and S3 for

this example where each entry (i, j) in a matrix represents the traffic speeds (km/h) on

each arc (i, j). The scenarios S1, S2 and S3 are derived from a probability distribution

discussed further in Section 2.5.1.

S1 =


0 22 28 35

21 0 40 23

67 56 0 59

46 37 29 0

 S2 =


0 59 48 60

31 0 53 28

43 46 0 33

41 70 30 0

 S3 =


0 22 21 50

39 0 60 23

37 21 0 70

33 29 58 0


.

The problem is to find an optimal route and the optimal speeds on each arc, where the

chosen speeds are constrained by the traffic conditions. One way to solve the problem

is by creating an average scenario Sav where the traffics speeds on each arc (i, j) is

the average of all traffic speeds over all scenarios, taking into account their respective

probability and solve a deterministic PRP. Sav is represented by a matrix where each

item Sav(i, j) = 0.33S1(i, j) + 0.33S2(i, j) + 0.34S3(i, j).
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Figure 2.1 shows two optimal solutions obtained by using £1.4 as the combined unit

cost of fuel (per litre) and CO2, and £10 as the hourly driver cost. The solution shown

in Figure 2.1a is obtained by solving the deterministic PRP where the traffic speeds are

prescribed by the matrix Sav, and are imposed as upper limits on the speeds that can be

chosen on each arc. The optimal speeds are shown on the arcs. The cost of this solution

is £99.96, and its expected value when calculated under the realization of S1, S2 and S3,

is equal to £121.58. However, this approach is suboptimal as it does not fully utilize all

the available information. In contrast, Figure 2.1b shows the solution generated using

stochastic programming where the three scenarios S1, S2 and S3 are explicitly taken

into account during the solution process. This solution has an expected cost equal to

£106.70, which represents a saving of 12.26% over the deterministic. The stochastic

program used to produce the latter solution will be further explained in Section 2.4.2.1.

1

[36, 369]

2

[11, 351]

depot 3

[17, 340]

33

30

54

45

1 2

depot 3
63

96

74

74

(a) The solution obtained by considering Sav (b) The solution obtained by considering the scenarios

(S1, S2 and S3)

Figure 2.1: Two solutions of the four-node instance

Variability of traffic speed on a given intercity road can be better represented by dividing

an arc between two customers into smaller segments. The traffic speed will then be

defined for every segment, where for each segment an optimal speed can be prescribed.

To illustrate, we consider the example in Figure 2.2, which shows an arc (1, 2) of 100km

length, on which we assume the traffic speed to be 50 km/h. Suppose now that further

information is available about the variability of traffic speeds on this arc such that it

can be divided into three segments of 50km, 20km and 30km, where the traffic speed

on each segment is 40 km/h, 60 km/h and 50 km/h, respectively. If we consider a

vehicle traveling at 50 km/h, assuming a constant traffic speed throughout the arc, the

combined cost of fuel, CO2 and driver is £34. If however, we consider the three segments

and that the vehicle travels at the traffic speed on each of the segments, the total cost

is £37, which is more accurate, but is at the expense of a 9% increase.
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1 2

40km/h 60km/h 50km/h

Figure 2.2: Example of speed variability

2.3.3 Decision time-lines and modeling of stochasticity

Planning vehicle routes without taking the congestion effect into account may lead to

poor quality solutions when implemented. In addition, the assumption that one has per-

fect information on congestion data is not realistic, due to the difficulty associated with

accurately predicting travel times. In this study, we use a strategy based on stochastic

programming that is able to represent the variability in the traffic speeds. Stochastic

programming has been extensively used in a variety of contexts, and has yielded good

results on routing problems (Gendreau et al., 2016).

Traffic speeds are modeled as discrete random variables. They are represented by a finite

set S of scenarios, where each scenario s ∈ S has an associated probability ps > 0 of

occurring. In our context, a scenario s is characterized by a matrix of traffic speeds in

which every entry (i, j) corresponds to an upper bound usij on the maximum speed that

can be attained on arc (i, j) which depends on the traffic conditions on the corresponding

route leg.

We now describe two ways of modeling the problem as a stochastic program, as well as

the possible recourse actions. To clarify the difference between the proposed strategies,

we use the following notation. We define a planning horizon of D units of time. The time

at which the routing decision are made and the time where speed decisions are made are

denoted T p and T s, respectively, where T p ≤ T s < D. The random variables realization

are revealed at time T r, where T r ≥ T s. We denote by T e the time at which the solution

is executed (i.e., when vehicles leave the depot to visit the customers), where T e ≥ T r .

Under the first strategy, illustrated in Figure 2.3, we assume that the realization of the

random variables will be revealed after the routing plan has been finalized, which also

includes the speeds of travel on each arc of the routes. No further action can be taken

to change the routes and speeds to improve the solution after this point. We will refer

to this strategy as “one-route, one-speed” (OR-OS).

T = 0 T eT p, T s
T = DT r

Figure 2.3: Time-line of the first strategy decision making process
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Under the second strategy, we also assume that the scenarios are revealed after the

routes have been designed. However, before executing the routes, further actions can be

taken to reoptimize the speeds, as shown in Figure 2.4. This situation occurs in practice

when the vehicles must be loaded the day before the routing plans are operationalized,

and the information about traffic speeds is revealed before the start of routing. In this

case, the routes cannot be redesigned assuming that the goods are already loaded in

the vehicles. We will refer to this strategy as “one-route, several speeds” (OR-SS). This

strategy is unlikely to be applied in practice given that the information required is almost

impossible to acquire. However, the aim of considering such a strategy is to assess the

value of the added information and the savings that it can provide.

T = 0 T eT p
T = DT r

T s

Figure 2.4: Time-line of the second strategy decision making process

While allowing to reoptimize routes in a “several-route, several speeds” after visiting

customers may yield further savings, we do not consider this setting in our work for

two reasons. First, the goods in a delivery vehicle are usually loaded in a specific order

so that the driver will unload goods of the first customers first. Therefore, re-routing

is not always feasible in this case as the driver may be required to unload goods that

are not accessible. The second reason is that redesigning vehicle routes is known to

be computationally intractable when exact methods, same as the methods used in this

chapter, are used (Secomandi, 2001).

2.4 Problem description and mathematical models

The problem studied in this chapter is similar to the PRP, where the traffic speeds

constitute the upper bounds on the maximum speed that can be attained on each leg of

the route are not known with certainty at the time of route planning. Instead, they are

described by a discrete and finite set of scenarios. The problem involves determining a

set of vehicle routes and speeds on each leg of the routes, as in the PRP. However, upon

realization of the random variables, the optimal speeds may no longer be feasible with

respect to the traffic speeds, in which case delays may occur in arriving at customer

locations. The objective is to minimize the expected cost of the total fuel consumption,

emissions, drivers and delays. The problem is cast as a two-stage stochastic programming

problem (Birge and Louveaux, 2011), for which we define two variants. The first variant

corresponds to the OR-OS strategy, where the first-stage decisions involve determining

the routes and the arc speeds. The second-stage decisions are the speed reductions

inferred by the traffic speeds, which translate into possible delays. The second variant is



20 Chapter 2 The Pollution-Routing Problem under Traffic Uncertainty

based on the OR-SS strategy, where the first stage decisions are restricted to planning a

route for each vehicle, and the second stage variables correspond to computing the speeds

on each route, separately for each scenario. In what follows, we describe mathematical

models associated with the two problem variants just described.

2.4.1 Notations common to the two models

The stochastic models presented in this chapter are based on the deterministic mathe-

matical model of the classical PRP proposed by Demir et al. (2012). The problem is

defined on a complete graph G = (N,A), where N = {0, 1, . . . , n} is the node set, and

A = {(i, j); i, j ∈ N, i ̸= j} is the arc set, where each arc (i, j) has |Lij | segments of

length dijl, Lij = {1, . . . , l, . . . , |Lij |} . Node 0 represents the depot at which m vehicles

of capacity Q are based, and N0 = N\{0} is the set of customers. Each customer i ∈ N0

has a demand qi > 0, which should start to be delivered within the time window [ai, bi],

and incurs a service time ci. The decision variables are defined as follows: xij is a binary

variable equal to 1 if and only if a vehicle visits customer j immediately after customer i.

A vehicle travels at speed vijl on segment l ∈ Lij of arc (i, j), subject to a lower bound

vlb and an upper bound vub that correspond to legal limits on speed. Under uncertainty,

a traffic speed usijl is defined on segment l ∈ Lij of arc (i, j) for each scenario s ∈ S

which is the maximum attainable speed on that arc. The continuous variable fij is the

amount of commodity carried on the vehicle on arc (i, j) ∈ A. The continuous variable

yi is the time at which service begins at customer i ∈ N0, and the continuous variable

δi is the the cumulative time spent on the route whose last customer is i.

2.4.2 One-route, one-speed strategy

Under the OR-OS strategy, we assume that the decisions concerning routes and speeds

are made simultaneously, and prior to the realization of the random variables. These

two sets of decisions are made at the first stage and cannot subsequently be changed.

However, if v∗ijl > usijl, a vehicle will not be able to drive at speed v∗ijl chosen on a specific

segment l of arc (i, j) for a particular scenario s ∈ S. In this case, the recourse action

is to reduce the speed by at least v∗ijl − usijl in order for the solution to be feasible. To

this end, we introduce a speed reduction recourse variable SRs
ijl to ensure the feasibility

of solutions independently of random variables realizations. The scenarios also imply

that some customers may not be served within their time window. Therefore, the time

window requirements will be treated as soft constraints, in which case, the delay for the

start of service at customer i will be represented by a recourse variable lsi in the second

stage, and penalized by using a unit delay cost e.

It is important to observe that speed reduction recourse variables are needed in the com-

putation of delays and routes durations, but are not explicitly penalized in the objective
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function. They are only implicitly penalized because the vehicle will have to travel at a

speed different from the optimal speed, which will increase the cost accordingly.

The speed chosen on an arc will affect the time yi at which service starts at node i, and

hence it will be different from one scenario to another. For this reason, this time will be

represented by a scenario-dependent variable ysi . This variable captures the fact that a

vehicle can be late to serve a customer in one scenario, but on time in a another one. The

same reasoning applies to the variables representing the overall time spent on a route

δi which will now be δsi . We define M as a large enough constant. The mathematical

model is described as follows:

Minimize
∑

(i,j)∈A

∑
l∈Lij

wfcγλαijdijlxij +
∑

(i,j)∈A

∑
l∈Lij

fcγλαijfijdijl (2.6)

+
∑
s∈S

ps

(
fckΩV λ

∑
(i,j)∈A

∑
l∈Lij

dijl/(vijl − SRs
ijl) (2.7)

+ fcβγλ
∑

(i,j)∈A

∑
l∈Lij

dijl(vijl − SRs
ijl)

2 (2.8)

+
∑
j∈N0

fdδ
s
j (2.9)

+
∑
j

elsj

)
(2.10)
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subject to∑
j∈N

x0j = m (2.11)

∑
j∈N

xij = 1 i ∈ N0 (2.12)

∑
i∈N

xij = 1 j ∈ N0 (2.13)∑
j∈N

fji −
∑
j∈N

fij = qi i ∈ N0 (2.14)

qjxij ≤ fij ≤ (Q− qi)xij (i, j) ∈ A (2.15)

ysi − ysj + ci +
∑
l∈Lij

dijl/(vijl − SRs
ijl) ≤M(1− xij) i ∈ N, j ∈ N0, i ̸= j, s ∈ S

(2.16)

ysj − cj − δsj +
∑
l∈Lij

dj0l/(vj0l − SRs
j0l)M(1− xj0) j ∈ N0, s ∈ S (2.17)

aj ≤ ysj ≤ bj + lsj j ∈ N0, s ∈ S (2.18)

vijl − SRs
ijl ≤ usijl (i, j) ∈ A, l ∈ Lij , s ∈ S (2.19)

vijl − SRs
ijl ≥ vlbxij (i, j) ∈ A, l ∈ Lij , s ∈ S (2.20)

fij ≥ 0 (i, j) ∈ A (2.21)

ysi ≥ 0 i ∈ N0, s ∈ S (2.22)

SRs
ij ≥ 0 (i, j) ∈ A, s ∈ S (2.23)

vlbxij ≤ vijl ≤ vubxij (i, j) ∈ A, l ∈ Lij (2.24)

xij ∈ {0, 1} (i, j) ∈ A. (2.25)

The first term of the objective function computes the cost of the solution that can be

attributed to vehicle weight and load. Similarly, the terms (2.7)–(2.10) represent the

expected cost as a function of speeds, delays at customers, and driving time. Constraints

(2.11) ensure that all vehicles leave the depot. Constraints (2.12)–(2.13) state that each

customer must be visited exactly once. Constraints (2.14) and (2.15) define the flow on

each arc. Constraints (2.16)–(2.17) compute the arrival time at each customer j ∈ N0 in

each scenario s ∈ S, (2.18) calculate the delay at customers, (2.19) ensure that the speed

used in a scenario after any reduction is lower than the traffic speed in that scenario.

Constraints (2.20) ensure that the speeds chosen are at least vl if the arc is in the route

of a vehicle.

Due to the terms (2.7), (2.8), (2.16) and (2.17), the model described above is non-linear.

One way to linearize linear-fractional models is to use Charnes-Cooper transformation

(Charnes and Cooper, 1962). However, due to the fact that vijl and SR
s
ijl variables are
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continuous, this decomposition method cannot be applied here. In the following, we

present two different ways of linearizing these terms.

2.4.2.1 Discrete speeds and discrete recourse

In order to linearize the non-linear terms, we adopt the same strategy as in Bektaş and

Laporte (2011), which consists of discretizing the speed variables. We will also discretize

the recourse variables. The speeds are represented by a set R = {1, . . . , r, . . .} of discrete
levels. A binary variable zrijl is equal to 1 if and only if the rth speed level vr is chosen

for the vehicle traveling on segment l ∈ Lij of arc (i, j). We note that v1 = vlb and

v|R| = vub. The same reasoning applies to the discretized recourse. We define a set |T |
of recourse levels T = {1, . . . , t, . . .}, and a binary variable αts

ijl is equal to 1 if and only

if the level t of speed reduction level ψt is chosen for the vehicle traveling on segment

l ∈ Lij of arc (i, j) in scenario s ∈ S, with ψ1 = 0 and ψ|T | = vub−vlb. We also introduce

M as a large constant. The discretized mathematical model is described as follows.

Minimize
∑

(i,j)∈A

∑
l∈Lij

wfcγλαijdijlxij +
∑

(i,j)∈A

∑
l∈Lij

fcγλαijdijlfij (2.26)

+
∑
s∈S

ps

(
fckΩV λ

∑
(i,j)∈A

∑
l∈Lij

dijl
(∑
r∈R

∑
t∈T

zrijlα
ts
ijl/(v

r − ψt)
)

(2.27)

+ fcβγλ
∑

(i,j)∈A

∑
l∈Lij

dijl
∑
r∈R

∑
t∈T

zrijα
ts
ijl

(
vr − ψt

)2
(2.28)

+
∑
j∈N0

fdδ
s
j (2.29)

+
∑
j

elsj

)
(2.30)
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subject to

(2.11)–(2.15), (2.18), (2.21), (2.22)

ysi − ysj + ci +
∑
l∈Lij

dijl
∑
r∈R

∑
t∈T

zrijlα
ts
ijl/(v

r − ψt) ≤M(1− xij) i ∈ N,

j ∈ N0, i ̸= j, s ∈ S
(2.31)

ysj − cj − δsj +
∑
l∈Lij

dj0l
∑
r∈R

∑
t∈T

zrj0lα
ts
j0l/(v

r − ψt) ≤M(1− xj0) j ∈ N0, s ∈ S

(2.32)

α1s
ijl ≥ (usijl −

∑
r∈R

zrijlv
r)/M (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.33)

α1s
ijl ≤ (usijl −

∑
r∈R

zrijlv
r)/M + 1 (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.34)∑
r∈R

∑
t∈T

zrijlα
ts
ijl(v

r − ψt) ≤ usijl (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.35)∑
r∈R

∑
t∈T

zrijlα
ts
ijl(v

r − ψt) ≥ v1xij (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.36)∑
r∈R

zrijl = xij (i, j) ∈ A, l ∈ Lij

(2.37)∑
t∈T

αts
ijl = xij (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.38)

αts
ijl, z

r
ijl, xij ∈ {0, 1} (i, j) ∈ A, l ∈ Lij ,

s ∈ S, r ∈ R, t ∈ T.
(2.39)

Constraints (2.31)–(2.32) compute the arrival time at each customer j ∈ N0 in each

scenario s ∈ S. Constraints (2.33)–(2.34) ensure that the value of the speed reduction

is 0 if the speed chosen is lower than the traffic speed in scenario s. Constraints (2.35)–

(2.36) play the same role as (2.19)–(2.20). Finally, constraints (2.38) ensure that only

one recourse is chosen if arc (i, j) is selected.

This model is still non-linear due to the presence of products of two binary variables in

constraints (2.35) and (2.36). To linearize these constraints, we introduce a new binary

variable τ rtsijl equal to 1 if and only if a vehicle travels on segment l of arc (i, j) at speed
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vr and applies a speed recourse ψt in scenario s ∈ S. The variables τ rtsijl will replace the

products zrijlα
ts
ijl through the use of the following constraints:

τ rtsijl ≤ zrijl (i, j) ∈ A, l ∈ Lij , r ∈ R, s ∈ S (2.40)

τ rtsijl ≤ αts
ijl (i, j) ∈ A, l ∈ Lij , t ∈ T, s ∈ S (2.41)

τ rtsijl ≥ zrijl + αts
ijl − 1 (i, j) ∈ A, l ∈ Lij , r ∈ R, t ∈ T, s ∈ S (2.42)

τ rtsijl ∈ {0, 1} (i, j) ∈ A, l ∈ Lij , s ∈ S, r ∈ R, t ∈ T. (2.43)

2.4.2.2 Discrete speeds and continuous restricted recourse

In the previous model, we used discretization to linearize the mathematical program.

However, due to the uncertainty about the traffic speeds, using discrete speed reduc-

tions may result in poor quality recourse actions. We therefore introduce an alternative

modeling scheme based on the use of continuous recourse variables, using same notation

as in Section 2.4.2.1. However, here we make an additional assumption that restricts

the value of the recourse action. Recall that SRs
ijl is the speed reduction needed on

segment l of arc (i, j) ∈ A to travel at a speed not exceeding usijl in scenario s ∈ S.

We now assume that if a speed recourse is needed, then SRs
ijl, will be exactly equal

to
∑

r∈R z
r
ijlv

r − usijl. This assumption is needed to linearize the model, and to have

continuous recourse variables. We introduce a binary activation variable asijl equal to 1

if and only if a speed reduction is needed on segment l of arc (i, j) ∈ A in scenario s ∈ S.
The mathematical model is described as follows:

Minimize
∑

(i,j)∈A

∑
l∈Lij

wfcγλαijdijlxij +
∑

(i,j)∈A

∑
l∈Lij

fcγλαijdijlfij (2.44)

+
∑
s∈S

ps

(
fckΩV λ

∑
(i,j)∈A

∑
l∈Lij

dijl
(∑
r∈R

zrijl/(v
r − SRs

ijl)
)

(2.45)

+ fcβγλ
∑

(i,j)∈A

∑
l∈Lij

dijl
∑
r∈R

zrijl
(
vr − SRs

ijl

)2
(2.46)

+
∑
j∈N0

fdδ
s
j (2.47)

+
∑
j

elsj

)
(2.48)
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subject to

(2.11)–(2.15) , (2.18), (2.21)–(2.23)

ysi − ysj + ci +
∑
l∈Lij

∑
r∈R

dijlz
r
ijl/(v

r − SRs
ijl) ≤M(1− xij) i ∈ N, j ∈ N0, i ̸= j, s ∈ S

(2.49)

ysj − cj − δsj +
∑
l∈Lij

∑
r∈R

dj0lz
r
j0l/(v

r − SRs
ijl) ≤M(1− xj0) j ∈ N0, s ∈ S (2.50)

SRs
ijl ≥

∑
r∈R

zrijlv
r − usijl (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.51)

SRs
ijl ≤

∑
r∈R

zrijlv
r − usijl + (1− asijl)M (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.52)

SRs
ijl ≤ asijlM (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.53)

asijl ≥ (
∑
r∈R

zrijlv
r − usijl)/M (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.54)

asijl ≤ (
∑
r∈R

zrijlv
r − usijl)/M + 1 (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.55)

asijl, z
r
ijl, xijl ∈ {0, 1} (i, j) ∈ A, r ∈ R (2.56)∑

r∈R
zrij = xij (i, j) ∈ A. (2.57)

In the objective function, the term (2.44) computes the cost of the solution associated

to the vehicle weight and load. The terms (2.45)–(2.48) compute the expected cost as

a function of speeds, delays at customers and drivers’ wages. Constraints (2.49)–(2.50)

define the arrival time at each customer j ∈ N0 in each scenario s ∈ S. Constraints

(2.51)–(2.55) force SRs
ijl to be equal to

∑
r∈R z

r
ijlv

r − usijl if and only if there is a speed

reduction.

Due to the presence of the terms (2.45) and (2.46) in the objective function, the model is

non-linear. In order to linearize these terms, we introduce two sets of new variables SF s
ijl

and SSs
ijl. These new variables are such that SF s

ijl = 1/usijl −
∑

r∈R z
r
ijl/v

r if and only

if there is a speed reduction. Using the same reasoning, SSs
ijl =

∑
r∈R z

r
ijl(v

r)2− (usijl)
2.
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Components (2.45) and (2.46) then become

fckΩV λ
∑

(i,j)∈A

∑
l∈Lij

dijl

(∑
r∈R

(zrijl/v
r) + SF s

ijl

)
(2.58)

fcβγλ
∑

(i,j)∈A

∑
l∈Lij

dijl

(∑
r∈R

zrijl(v
r)2 − SSs

ijl

)
. (2.59)

We also replace constraints (2.49)–(2.53) with constraints (2.60)–(2.69):

ysi − ysj + ci +
∑
l∈Lij

∑
r∈R

dijl

(∑
r∈R

(zrijl/v
r) + SF s

ijl

)
≤M(1− xij) i ∈ N, j ∈ N0, i ̸= j,

s ∈ S (2.60)

ysj − cj − δsj +
∑
l∈Lij

∑
r∈R

dj0l

(∑
r∈R

(zrj0l/v
r) + SF s

j0l

)
≤M(1− xj0) j ∈ N0, s ∈ S

(2.61)

SF s
ijl ≥ 1/usijl −

∑
r∈R

zrijl/v
r − (1− xij)M (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.62)

SF s
ijl ≤ 1/usijl −

∑
r∈R

zrijl/v
r + (2− asijl − xij)M (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.63)

SF s
ijl ≤ asijlM (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.64)

SSs
ijl ≥

∑
r∈R

zrijl(v
r)2 − (usijl)

2 − (1− xij)M (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.65)

SSs
ijl ≤

∑
r∈R

zrijl(v
r)2 − (usijl)

2 + (2− asijl − xij)M (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.66)

SSs
ijl ≤ asijlM (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.67)

SF s
ijl ≥ 0 (i, j) ∈ A, l ∈ Lij , s ∈ S

(2.68)

SSs
ijl ≥ 0 (i, j) ∈ A, l ∈ Lij , s ∈ S.

(2.69)

We now present a proposition that establishes the equivalence between the non-linear

and the linearized formulations of the discrete speed and continuous recourse. The

example presented in Section 2.3.2 was obtained by solving this mathematical model

with the input parameters of Tables 2.2 and 2.3.
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Proposition 1. Let v∗NLP be the optimal value and (x∗, z∗, k∗, SR∗) be an optimal solution

of the non-linear formulation. Let v∗LP be the optimal value and (x∗, z∗, k∗, SS∗, SF ∗)

be an optimal solution of the linearized formulation. If (2.45)–(2.46) and (2.49)–(2.53)

are replaced by (2.58)–(2.59) and (2.60)–(2.69) respectively, then v∗NLP = v∗LP and the

optimal solutions coincide with respect to (x∗, z∗, k∗).

Proof. To prove the validity of Proposition 1, we compute the value of the two original

terms in the objective functions, and the terms that replace them in the linearized

version. The value of these terms needs to be the same. For a given arc (i, j) ∈ A, there
are four cases:

1. There is a no speed violation on (i, j):

(a) non-linear model: Due to (2.54)–(2.55) asijl = 0, hence, due to (2.53), SRs
ijl =

0 for all s ∈ S. Therefore the values of (2.45)–(2.46) are as follows :

• dijl
∑

r∈R z
r
ijl/(v

r − SRs
ijl) = dijl

∑
r∈R z

r
ijl/v

r = dijl/v
r if zrijl = 1, and 0

otherwise,

• dijl
∑

r∈R z
r
ijl(v

r − SRs
ijl)

2 = dijl
∑

r∈R z
r
ijl(v

r)2 = dijl(v
r)2 if zrijl = 1,

and 0 otherwise.

(b) linearized model: Due to (2.54)–(2.55) asijl = 0, hence, due to (2.64), SF s
ijl = 0

and due to (2.67) SSs
ijl = 0 for all s ∈ S. Therefore the value of (2.58)–(2.59)

are as follows:

• dijl
∑

r∈R(z
r
ijl/v

r) + SF s
ijl = dijl

∑
r∈R z

r
ijl/v

r = dijl/v
r if zrijl = 1, and 0

otherwise,

• dijl
∑

r∈R z
r
ijl(v

r)2−SSs
ijl = dijl

∑
r∈R z

r
ijl(v

r)2 = dijl(v
r)2 if zrijl = 1, and

0 otherwise.

2. There is a speed violation on (i, j) (i.e.
∑

r∈R z
r
ijl > usijl) :

(a) non-linear model: Due to (2.54)–(2.55) asijl = 1, hence, due to (2.51)–(2.52),

SRs
ijl =

∑
r∈R z

r
ijlv

r − usijl for all s ∈ S. Therefore:

• dijl
∑

r∈R z
r
ijl/(v

r − SRs
ijl) = dijl

∑
r∈R z

r
ijl/(v

r −
∑

r∈R z
r
ijlv

r + usijl) =

dijl/u
s
ijl if z

r
ijl = 1, and 0 otherwise,

• dijl
∑

r∈R z
r
ijl(v

r − SRs
ijl)

2 = dijl
∑

r∈R z
r
ijl(v

r −
∑

r∈R z
r
ijlv

r + usijl)
2 =

dijl(u
s
ijl)

2 if zrijl = 1, and 0 otherwise.

(b) linearized model: Due to (2.54)–(2.55) asijl = 1, hence, due to (2.62)–(2.63),

SF s
ijl = 1/usijl−

∑
r∈R z

r
ijl/v

r and due to (2.65)–(2.66) SSs
ijl =

∑
r∈R z

r
ijl(v

r)2−
(usijl)

2 for all s ∈ S. Therefore:

• dijl
∑

r∈R(z
r
ijl/v

r) +SF s
ijl = dijl(

∑
r∈R z

r
ijl/v

r +1/usijl−
∑

r∈R z
r
ijl/v

r) =

dijl/u
s
ijl if z

r
ijl = 1, and 0 otherwise,
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• dijl
∑

r∈R z
r
ijl(v

r)2−SSs
ijl = dijl(

∑
r∈R z

r
ijl(v

r)2−
∑

r∈R z
r
ijl(v

r)2+(usijl)
2) =

dijl(u
s
ijl)

2 if zrijl = 1, and 0 otherwise.

We have shown that in all possible cases, the linearized and non-linear models are equiv-

alent. Therefore, v∗NLP = v∗LP and the optimal solutions of the two models coincide with

respect to (x∗, z∗, k∗).

2.4.3 One-route, several-speeds strategy

As explained in Section 2.3.3, the OR-SS strategy assumes that the actual maximum

speeds are revealed prior to executing the routes, but after the routing decisions have

been made. Here the decisions involve determining a set of routes that will remain intact

regardless of the scenario, but will include a set of optimal speeds for each scenario.

This problem is now modeled as a two-stage stochastic program in which the first-

stage variables correspond to the routes. The variables zrijl that were used to choose a

speed level vr for the segment l of the arc (i, j) in Section 2.4.2.1 will now be second-

stage decision variables and redefined separately for each scenario as zrsijl to denote the

speed level vr. The recourse variables are potential delays experienced when serving

customers. The objective is to minimize the expected cost by taking into account the

scenario probabilities. The second-stage problem is a speed optimization problem and

is independently studied in Chapter 4. The two-stage stochastic program is defined

as follows, where EsW (x, s) represents the expected cost of the objective function of

second-stage problem W (x, s):

Minimize
∑

(i,j)∈A

∑
l∈Lij

wfcγλαijdijlxij (2.70)

+
∑

(i,j)∈A

∑
l∈Lij

fcγλαijdijlfij (2.71)

+
∑
s∈S

ps

( ∑
(i,j)∈A

∑
l∈Lij

fckΩV λdijl
∑
r∈R

zrsijl/v
r (2.72)

+
∑

(i,j)∈A

∑
l∈Lij

fcβγλdijl
∑
r∈R

zrsijl(v
r)2

)
(2.73)

+EsW (x, s) (2.74)
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subject to ∑
j∈N

x0j = m (2.75)

∑
j∈N

xij = 1 i ∈ N0 (2.76)

∑
j∈N

xij = 1 j ∈ N0 (2.77)

∑
j∈N

fij −
∑
j∈N

fji = qi i ∈ N0 (2.78)

qjxij ≤ fij ≤ (Q− qi)xij (i, j) ∈ A (2.79)∑
r∈R

zrsijl = xij (i, j) ∈ A, l ∈ Lij , s ∈ S (2.80)

xij ∈ {0, 1} (i, j) ∈ A (2.81)

fij ≥ 0 (i, j) ∈ A, (2.82)

where the second stage problem is defined as

W (x, s) = minimize{
∑
j∈N0

fdδ
s
j +

∑
j∈N

elsj}, (2.83)

subject to

ysi − ysj + ci +
∑
r∈R

∑
l∈Lij

dijlz
rs
ijl/v

r ≤M(1− xij) i ∈ N, j ∈ N0, i ̸= j, s ∈ S

(2.84)

ysj − cj − δsj +
∑
l∈Lij

∑
r∈R

dj0lz
rs
j0l/v

r ≤M(1− xj0) j ∈ N0, s ∈ S (2.85)

aj ≤ ysj ≤ bj + lsj i ∈ N, j ∈ N0, i ̸= j, s ∈ S (2.86)

ysi ≥ 0 i ∈ N0, s ∈ S (2.87)

zrsijl ∈ {0, 1} (i, j) ∈ A, l ∈ Lij , r ∈ R s ∈ S.
(2.88)

The value of optimal solution yielded by the OR-SS strategy is at least as good as the

optimal value of the OR-OS strategy. The relative difference between these values can

be interpreted as the value of the additional information provided by the OR-SS strategy.

Indeed, the gain in cost is due to the knowledge of traffic speeds before the start of the

routing.
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2.4.4 Discussion about the values of constants M

Big-M constraints are particularly useful in mathematical programming to represent

conditional constraints. While the theoretical value of the constants M is large enough,

a value has to be chosen to do the experiments. To avoid longer solution times, these

values have to be chosen as small as possible. In this section we give typical values that

can be used for these constants in the previous models.

In constraints (2.31), (2.32), (2.49), (2.50), (2.60), (2.61), (2.84), (2.85) the M constant

is used in a time-window constraints, therefore the sum of the n+m longest leg durations

plus the sum of the service-times can be used as an upper bound. In constraints (2.33),

(2.34), (2.52), (2.53), (2.54) the largest value of the usijl can be used. In constraints

(2.62)–(2.64) we can use the largest value of (z
|R|
ijl )

2 and (2.65)–(2.67) we can use the

largest of the values 1/(z
|1|
ijl).

2.5 Computational experiments

The purpose of the computational experimentation carried out in this section is fourfold.

First, we aim to compare the two linear models described in Section 2.4.2, which are

the discrete speed and discrete recourse model, and the discrete speed and continuous

recourse model. This comparison will show which of the linearization techniques is more

suitable to solve the problem. Second, once the best linear stochastic model is identified,

it will be compared with a deterministic model. This model considers only one scenario,

where on each arc the traffic speed is the average of traffic speeds of each scenario. This

comparison will highlight the advantage of using a stochastic strategy rather than a

simple deterministic strategy. The relative difference between the two solutions values

can be interpreted as the value of a stochastic solution (Birge, 1982; Birge and Louveaux,

2011). Third, in order to assess the benefit of having perfect knowledge of the traffic

speeds, we will compare the OR-OS and OR-SS strategies. The difference between the

solution values yielded by these two strategies can be interpreted as the value of complete

information about congestion and random events. Finally, we quantify the benefits of

optimizing speeds as compared with an approach where the vehicles simply travel at the

fixed traffic speed.

We have conducted experiments on the 20 benchmark instances of PRP-lib with 10

customers. All tests were performed on a computer equipped with an Intel Core i7-

3770 processor, 3.4 GHz and a RAM of 8GB. The mathematical models were solved

by CPLEX 12.6.0.1 using default options. A maximum CPU time of three hours was

allowed for the solution of any instance. The typical values of the parameters used in

fuel emission model as described in Bektaş and Laporte (2011) are shown in Table 2.4,

http://www.apollo.management.soton.ac.uk/prplib.htm
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with exception of the driver wage for which we use £10 per hour as per the 2017 rate

reported in (National Careers Service, 2017).

Notation Description Typical values

w Curb-weight (kg) 6350
ε Fuel-to-air mass ratio 1
k Engine friction factor (kJ/rev/L) 0.2
Ω Engine speed (rev/s) 33
V Engine displacement (L) 5
g Gravitational constant (m/s2) 9.81
Cd Coefficient of aerodynamic drag 0.7
ρ Air density (kg/m3) 1.2041
Γ Frontal surface area (m2) 3.912
Cr Coefficient of rolling resistance 0.01
ηtf Vehicle drive train efficiency 0.4
η Efficiency parameter for diesel engines 0.9
fc Fuel and CO2 emissions cost (£/L) 1.4
fd Driver wage (£/s) 0.0028
e Unit delay cost (£/s) 0.0028
κ Heating value of a typical diesel fuel (kJ/g) 44
Ψ Conversion factor (g/s to L/s) 737
θ Road angle 0
vlb Speed lower bound (km/h) 20
vub Speed upper bound (km/h) 96

Table 2.4: Values of the parameters used in the emission model

2.5.1 Probability distribution and scenario generation

As mentioned in Section 2.3.3, the traffic speeds are the random variables of the prob-

lem. To generate traffic speeds, we need to generate different traffic conditions on the

network, which can be achieved through the use of distributions to generate vehicle

speeds. Hofleitner et al. (2012) and Rakha et al. (2006) suggest that compared with

other distributions, the log-normal distribution provides a good fit for vehicle speeds.

This is therefore the distribution we have used to model traffic speeds on arcs.

In the computational experiments carried out, we considered three scenarios S1, S2 and

S3. Each scenario was defined using a log-normal distribution with parameters µ and σ

from which we drew traffic speeds for each arc of the graph. This distribution describes

the general characteristics of the speeds for that scenario. For example, if µ is low,

the traffic is low in general, although some arcs may have higher traffic speeds due to

the long tail of the distribution, particularly if σ is large. The mean and variance of a

sample generated using a log-normal distribution is µ̂ = eµ+σ2/2 and its variance is σ̂2 =

(eσ
2−1)e2µ+σ2

. In the remainder of the paper, we will refer to the log-normal distribution
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by its mean µ̂ and variance σ̂2 defined above. In the first part of the computational

experiments, we consider only one segment per arc (i.e. Lij = {1}, ∀(i, j) ∈ A).

To generate realistic scenarios, we used the Mobile Century Data (Herrera et al., 2010)

that provides vehicles speed collected using phones GPSs during different times. The

first scenario S1 is extracted from the data where the average speed is relatively low but

has a large variance. It represents a relative congestion on some arcs while others have

larger traffic speeds. The scenario S1 is generated using a mean µ̂ = 40 km/h and a

variance σ̂2 = 64 . The second scenario S2 is extracted from data where the average

speed is high but values over the arcs have high fluctuation. It is generated with µ̂ = 70

and σ̂2 = 144. The last scenario is generated using µ̂ = 55 and σ̂2 = 100 The traffic

speed generated usij for all arcs (i, j) ∈ A and all scenarios s ∈ S must lie within the

interval 20 ≤ usij ≤ 96 required by law for delivery vehicles. Below is an example of a

complete graph defined with a single depot and three customers, where on each arc the

traffic speed are drawn from scenario S2:
0 87 20 45

58 0 26 51

29 59 0 29

58 24 61 0


.

For all comparisons provided in this section, every instance was solved on three different,

and randomly generated realizations of S1, S2 and S3, the results displayed on the

tables represents the average of all these tests. This methodology allow the results to be

meaningful and do not rely on a particular realization of the scenarios. It also enables

the assessment of the robustness of the solution algorithms with respect to changes in

traffic conditions.

2.5.2 Comparative results for the discretized and continuous recourse

strategies

We now present the results of experiments in which each of the 20 instances was solved

once by the discretized recourse model, and once by the continuous recourse model,

both described in Section 2.4.2. The results are presented in Table 2.5 which displays

the optimal values for the instances (in £) and solution times in seconds to optimality.

The gap (%) is the percentage of the continuous recourse optimal solution value saved

with respect to the optimal solution value of the discrete recourse model. We can see

from Table 2.5 that the fixed continuous recourse model outperforms the discretized

recourse model by an average of 4.95% in terms of optimal solution value. This table

also shows that the continuous recourse model is more than twice faster on average than

the discretized recourse model. On instance UK10 15, the discretized recourse model
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could not yield a proven optimal solution within the time limit of three hours; in this

case, we report the best known solution value. Given this result, OR-OS, will henceforth

refer to the discretized speed and continuous recourse model.

Instance Discrete recourse Continuous recourse

Optimal
value

Seconds Optimal
value

Seconds Gap (%)

UK10 01 261.6 4799.0 251.3 1119.7 4.1
UK10 02 327.6 2505.3 308.4 1844.7 6.2
UK10 03 295.6 2682.0 282.3 818.7 4.7
UK10 04 284.4 1736.3 270.3 711.0 5.2
UK10 05 240.4 3061.0 232.1 719.0 3.6
UK10 06 343.4 4352.0 328.9 2092.3 4.4
UK10 07 288.5 2250.3 277.7 1004.7 3.9
UK10 08 330.0 1607.5 313.2 487.0 5.4
UK10 09 259.6 763.7 246.4 213.3 5.4
UK10 10 293.1 2319.7 278.0 587.3 5.4
UK10 11 439.0 1206.3 409.8 1083.3 7.1
UK10 12 260.2 849.7 248.4 829.3 4.8
UK10 13 289.5 1408.3 279.7 1431.7 3.5
UK10 14 282.3 5305.7 267.0 2963.0 5.7
UK10 15 210.7 10800.0 199.5 3381.0 5.6
UK10 16 252.0 4616.0 243.8 1447.0 3.4
UK10 17 255.6 1235.3 246.5 347.7 3.7
UK10 18 242.5 3574.0 225.8 1062.0 7.4
UK10 19 266.3 2974.3 251.6 573.3 5.8
UK10 20 244.1 4259.0 235.8 1373.0 3.6

Average 283.32 3115.28 269.82 1204.45 4.95

Table 2.5: Comparison between the solutions of the discretized and continuous recourse
models

2.5.3 Comparative results for the OR-OS strategy with the determin-

istic model and OR-SS strategy

Here, we present the results of experiments in which each of the 20 instances is solved

by the deterministic and the OR-SS approaches, both described in Section 2.4.2 and

2.4.3. The relative difference in cost between the OR-OS and deterministic approach is

the Value of the Stochastic Solution (VSS) (Birge, 1982). It represents the percentage

cost saved when solving a stochastic model rather than a deterministic one. The VSS is

computed as follows:

V SS =
Deterministic solution cost− Stochastic solution cost

Stochastic solution cost
× 100.
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In Table 2.6, we show the optimal solutions values (in £), the solution times in seconds,

and the VSS. We see that the stochastic solutions are on average better than the deter-

ministic ones by 7.48%. The largest saving 17.7%, obtained by the OR-OS strategy is

achieved on instance UK10 15. The average solution time to optimality of the determin-

istic model is 47.03 seconds, while the same statistic for the OR-OS model is 1204.45

seconds.

Instance Optimal value Seconds VSS (%)

UK10 01 265.4 33.0 5.6
UK10 02 332.6 37.7 7.8
UK10 03 297.3 64.3 5.3
UK10 04 288.7 43.3 6.8
UK10 05 241.5 52.5 4.1
UK10 06 352.3 78.7 7.1
UK10 07 295.5 35.3 6.4
UK10 08 332.4 16.0 6.1
UK10 09 256.5 10.7 4.1
UK10 10 294.0 18.0 5.8
UK10 11 444.6 41.7 8.5
UK10 12 263.5 45.3 6.1
UK10 13 290.6 71.3 3.9
UK10 14 282.1 105.3 5.7
UK10 15 234.9 58.7 17.7
UK10 16 254.9 49.0 4.5
UK10 17 281.4 13.7 14.2
UK10 18 259.3 53.7 14.8
UK10 19 277.7 30.0 10.4
UK10 20 246.7 82.3 4.6

Average 289.59 47.03 7.48

Table 2.6: Performance of deterministic approach compared with OR-OS

In Table 2.7 we see that The OR-SS strategy reduces the total cost obtained by the

OR-OS on average by 1.27%. This improvement is the saving achieved when perfect

information about the traffic speeds is available, but this information is in practice

very difficult to acquire. However, the results of these tests show that the use OR-OS

strategy can provide solutions that are on average less than two percent more expensive

than those based on perfect information. Comparing the times required to solve the

instances to optimality, we see that OR-SS strategy requires 191.05 seconds on average,

while the OR-OS strategy is slower, with an average solution time of 1204.45 seconds.

This difference is justified by the fact that no speed recourse decisions are needed under

the OR-SS strategy, and hence fewer solutions need to be checked to prove the optimality

of the current solution.
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Instance Optimal value Seconds Gap (%)

UK10 01 246.3 154.3 −2.0
UK10 02 303.5 138.0 −1.6
UK10 03 278.8 158.3 −1.3
UK10 04 267.4 132.3 −1.1
UK10 05 230.4 187.0 −0.7
UK10 06 325.2 358.7 −1.1
UK10 07 274.5 144.3 −1.2
UK10 08 309.5 57.0 −1.2
UK10 09 243.3 30.0 −1.3
UK10 10 273.5 84.7 −1.6
UK10 11 406.3 218.0 −0.9
UK10 12 245.9 185.3 −1.0
UK10 13 275.0 333.0 −1.7
UK10 14 263.3 427.7 −1.4
UK10 15 196.0 498.0 −1.8
UK10 16 242.0 113.3 −0.7
UK10 17 244.1 58.0 −1.0
UK10 18 223.1 143.7 −1.2
UK10 19 248.4 101.0 −1.3
UK10 20 232.5 298.3 −1.4
Average 266.45 191.05 −1.27

Table 2.7: Performance of OR-SS approach compared with OR-OS

2.5.4 Problem size and difficulty induced by the number of scenarios

In this section we look at the number of variables, number of constraints and solution

times evolution with the increase in the number of scenarios in the OR-OS strategy.

To asses the impact of the number of scenarios, we solve Instance UK10 01 several

times with a number of scenarios varying from one to eight shown in Table 2.8. This

instance has been chosen as it has a solution time close to the average solution time of

10-node instances described in Table 2.5. In addition to showing the number of variables,

constrains and solution time (seconds), we report in Table 2.9 the change in these values

of each additional scenario considered. We see from Table 2.9 that numbers of scenarios

has a significant impact on the size and solution time of the problem. We can see that

considering one additional scenario introduces 246 variables and 1051 constraints on

average, and increase the computational time of 1243 seconds. While the number of

additional variables and constraints increase steadily, it is not the case of the solution

time. The latter depends on the difficulty of solving an instance, which in turn depend

on the size of the instance and the values of traffic speeds generated by the scenarios.

This means that two instances with the same number of scenarios have the same number

of variables and constrains, but differ in the solution time needed.
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Scenario µ̂ σ̂2

S1 40 64

S2 70 144

S3 55 100

S4 35 49

S5 80 121

S6 60 100

S7 70 144

S8 29 64

Table 2.8: Eight scenarios considered

Scenarios Variables Change Constraints Change Time (s) Change

1 1349 - 1490 - 126 -
2 1592 243 2614 1124 714 588
3 1839 247 3578 964 1282 568
4 2089 250 4604 1026 2773 1491
5 2334 245 5747 1143 4525 1752
6 2576 242 6731 984 5165 640
7 2824 248 7789 1058 7488 2323
8 3072 248 8849 1060 8830 1342

Average 2209 246 5175 1051 3863 1243

Table 2.9: Problem size and solution time change depending on the number of scenarios

2.5.5 Correlation between total cost and fuel cost savings

To gain more insight, we provide a pairwise comparison of six scenarios, two with low

means equal to 30 km/h and 40 km/h, two with higher means equal to 55 km/h and 70

km/h, and with variances equal to either 64 or 144, yielding eight combinations. The

tests show how the traffic conditions affect both the fuel consumption and the total cost

of the solutions. The tests are run on the instance UK10 01 and the results are reported

in Table 2.10, where each entry corresponds to a pair of scenarios, and contains two rows.

The first row reports the percentage reduction in fuel consumption achieved by the OR-

OS strategy over the deterministic approach, and it is displayed in the form (minimum,

average, maximum). A negative value indicates that the deterministic approach per-

formed better than the OR-OS strategy. The second row reports similar statistics for

the total solution cost.

The results shown in Table 2.10 suggest that the savings in total cost and in fuel con-

sumption are not necessarily correlated. In fact, a large reduction in total cost does not

imply a large reduction in fuel consumption. In this respect, Demir et al. (2014a) pointed
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µ̂ = 40, σ̂2 = 144 µ̂ = 70, σ̂2 = 144

µ̂ = 30, σ̂2 = 64
(−0.2%, 0.4%, 1.2% ) ( −1.8%, 0.1%, 2.2%)

(9.3%, 12.9%, 15.6% ) ( 7.6%, 15.8%, 20.8%)

µ̂ = 30, σ̂2 = 144
(−1.9%, −1.3%, −0.8% ) ( −1.2%, −0.1%, 1.3%)

(3.2%, 7.6%, 13.3% ) ( 6.7%, 12.7%, 16.2% )

µ̂ = 55, σ̂2 = 64
(−3.7%, −1.1%, 1.1% ) ( −2.0%, −0.7%, 1.4%)

(3.9%, 5.7%, 9.3% ) ( 10.1%, 11.8%, 13.2%)

µ̂ = 55, σ̂2 = 144
(−0.5%, 2.1%, 5.6% ) ( −1.7%, 0.0%, 2.7%)

(4.4%, 11.4%, 20.1% ) ( 7.2%, 13.5%, 24.7%)

Table 2.10: Comparison between deterministic and OR-OS solution values

out that the objective function is composed of two cost components: fuel consumption

and driver cost. These are often conflicting, and the latter plays a more important role

in achieving reductions in the overall cost. The results indicate that the largest savings

both in fuel and in driver cost are achieved when the average speed across all scenarios

is less than the the globally optimal speed v∗ that minimizes fuel consumption (which

depends on the type of vehicle and is between 50 and 60 km/h in our case), otherwise

the savings in fuel consumption are less than 0.6% on average. The results also show

that the deterministic approach was able to save fuel on some instances, but this saving

is achieved at the expense of the overall cost. Finally, when the average speed of one

scenario is lower than v∗ and the other is higher than v∗, the two approaches yield similar

fuel consumptions, but the OR-OS strategy performs better in terms of the overall cost.

2.5.6 The value of optimizing speed

Most papers relevant to the stochastic VRP, such as those reviewed in Section 2.2.2, do

not consider speed as a decision variable. This means that if arc (i, j) is chosen in the

first stage, then it is assumed that the vehicle will travel on that arc at a traffic speed

that is scenario dependent. From a decision-making point of view, this does not allow

any flexibility in changing vehicle speeds and does not take into account the flexibility

of reducing speed to save on fuel cost. From a methodological point of view, this is a

special case of our approach where the speed decision variables are fixed to the traffic

speeds on all arcs.
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To quantify the value of optimizing speed, we present results using the first 10 instances

of the testbed (namely UK 10 01 to UK 10 10), on which we compare the percentage

savings afforded by optimized speeds against the case where speeds are fixed to the traffic

speed value prescribed by the scenarios. Table 2.11 shows the results over 3 realizations

of each scenario in terms of the minimum, average and maximum savings, presented

under the three main columns. For each of the columns, we again provide the minimum,

average and maximum savings obtained. For example, the column titled Minimum and

sub-column titled Av shows the average minimum saving achieved across the 10 instances

and the 3 realizations of the scenarios. The values are expressed in percentage of the

objective value which includes only fuel costs. Each row represents a setting, numbered

1–5, that are generated using the scenarios where settings 1 and 2 include one, settings 3,

4 and 5 include two scenarios. The scenarios are defined by the following distributions

(µ̂ = 40, σ̂2 = 64); (µ̂ = 70, σ̂2 = 144); (µ̂ = 70, σ̂2 = 144), (µ̂ = 30, σ̂2 = 64);

(µ̂ = 70, σ̂2 = 144), (µ̂ = 80, σ̂2 = 164); (µ̂ = 40, σ̂2 = 64), (µ̂ = 30, σ̂2 = 64).

Setting Minimum (%) Average (%) Maximum (%)
Min Av Max Min Av Max Min Av Max

1 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.3 0.4
2 0.0 0.1 0.3 0.1 0.3 0.8 0.2 0.7 1.5
3 0.0 0.0 0.0 0.1 0.1 0.3 0.1 0.3 0.5
4 0.0 0.0 0.2 0.1 0.2 0.4 0.1 0.4 0.7
5 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.2 0.4

Table 2.11: Savings achieved by considering speed as a decision variable

Table 2.11 shows that considering speed as a decision variable can result in average

savings of up to 0.8% in terms of the total cost. Low savings are due to the fact that

driver cost is the largest cost in the objective function (Bektaş and Laporte, 2011). With

the introduction of autonomous trucks, the driver is not in control of the vehicle on the

highways, and hence driver cost can be removed from the objective function to minimize

exclusively fuel consumption and GHG emissions.

In Table 2.12, we repeat the experiment, with the same scenarios described above. This

time however, we do not consider driver wage in the objective function. We can see

that, on average, considering speed as a decision variable can achieve savings on fuel

consumption and GHG emissions between 0.7% and 3.8%. The average minimum saving

is achieved in setting 1, whereas the average maximum is 4.4% is made on setting 2,

where the maximum saving achieved is 8.5%. This shows that the savings made are

highly correlated with general trend of the traffic speed on the network. Indeed, when

the traffic speed is high, the fuel consumption is also high. Therefore, if the vehicle has

to travel on all arcs at the traffic speed, it will not choose some arcs that have high

speed, which in turn will increase the fuel consumption. This situation is avoided by
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considering speed as a decision variable, since the vehicle then has the ability to travel

at speed that is lower than the traffic speed.

Setting Minimum (%) Average (%) Maximum (%)
Min Av Max Min Av Max Min Av Max

1 0.0 0.6 1.4 0.7 1.5 3.8 1.1 2.5 7.9
2 0.0 1.3 2.1 1.7 2.7 3.6 2.5 4.4 8.4
3 0.5 1.1 1.6 1.2 1.8 2.5 1.7 2.6 4.2
4 0.5 1.3 2.6 1.5 2.2 3.3 1.9 3.2 4.5
5 0.2 0.8 1.8 0.8 1.4 1.9 1.5 2.0 2.4

Table 2.12: Savings achieved by considering speed as a decision variable without driver

2.5.7 The effect of variability in traffic speed

This section reports results when more than one segment is assumed for each arc in the

network to be able to evaluate the effect of any speed variability.

We consider a road network where we generate a traffic speed for two segments per arc

and then solve the problem using the OR-OS approach. To compare this approach, we

consider another network where the traffic speed on one arc is the average of its two

segments and solve using the same approach. From this test we see the difference in

cost of the two approaches which represents the accuracy in handling speed variability

brought by considering more segments.

Table 2.13 shows the results of these two settings. We see that, on average, considering

two segments increased the accuracy by 8% compared to only one segment per arc. We

also notice that ignoring speed variability may result in an over-optimistic approach

that underestimates the real cost. From a computational complexity point of view,

considering two segments slows down the solution time by a factor of almost six.

2.6 Conclusions

We have introduced, modeled and solved the Pollution-Routing Problem with stochastic

traffic speed. We have used a comprehensive cost function and considered stochastic

speeds to represent the uncertainty in traffic conditions. Since, the traffic speed on each

arc is stochastic, the travel times were also treated as random variables. We first modeled

the problem considering discrete uncertainty representation, where the traffic speeds are

represented by a finite set of scenarios. A two-stage non-linear stochastic program was

developed. We linearized the resulting model by using a discretization of both speed

variables and speed recourse variables. The use of a discrete recourse has an significant

impact on the performance of the algorithm. We therefore proposed another linearization
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Instance Two segments One segment

Optimal
value

Seconds Optimal
value

Seconds Gap (%)

UK10 01 247.3 7500.0 230.3 804.0 7.4
UK10 02 309.3 8634.0 284.4 797.0 8.8
UK10 03 285.4 6475.0 268.2 1008.0 6.4
UK10 04 275.4 6385.0 253.9 826.0 8.5
UK10 05 252.1 8690.0 237.2 3852.0 6.3
UK10 06 322.5 7916.5 292.1 1347.0 10.4
UK10 07 278.2 3826.0 254.8 410.5 9.2
UK10 08 325.6 1813.0 299.1 223.3 8.9
UK10 09 250.3 3283.0 232.0 239.7 7.9
UK10 10 272.6 2659.0 254.7 274.3 7.0

Average 281.91 5718.15 260.67 978.18 8.0

Table 2.13: Comparison between network with two segments per arc and with one
segment per arc

technique that uses a continuous recourse instead of a discretized one. When 10-node

instances from the PRP-lib were solved using both formulations, the continuous recourse

model outperformed the discretized recourse model, yielding an average cost reduction

of 4.95%. The continuous recourse strategy was also compared with its deterministic

counterpart in which traffic speeds are the averages across all scenarios. This enabled

us to estimate the value of solving a stochastic model as opposed to a deterministic one.

The continuous recourse model yielded average cost savings of 7.48%.

We have also studied a decision making process in which the routing decisions are made

before the information about stochastic events becomes available, but speeds can be

chosen after the realizations of the scenarios. While this scenario is less likely to occur

in practice, it was implemented to evaluate the value of perfect information on traffic

condition. When this model was solved on the same instances, only 1.27% of the total

cost was saved with respect to the continuous recourse model.

We also proposed a way to represent traffic speeds variability by considering several

segments on a given arc. We showed that considering two segments per arc can increase

the accuracy of the solution by 8.0% on average.

http://www.apollo.management.soton.ac.uk/prplib.htm
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Abstract

The previous chapter defined the Pollution-Routing problem with stochastic traffic speed.

It showed that by considering traffic uncertainty, 7.48% of the total cost could be saved

on average on 10-node instances. To model this uncertainty, the PRP was modeled as

a two-stage stochastic program, which is known to be difficult to solve. As a result,

the commercial solver used was not able to solve instances with more than 10 nodes.

With the aim to solve larger instances of the problem, this chapter introduces new

solution techniques based on decomposition. Two-stage stochastic programs have a

particular structure as the first stage problem and the second stage problem can be

solved separately with the relaxation of some constraints. Several techniques based on

the integer L-shaped algorithm are proposed in this chapter. These techniques differ

in the way in which the stochastic program is relaxed and on how the first stage and

the second stage problems interact. Several mathematical formulation, cuts and lower-

bounds are proposed together with local search procedures. The techniques proposed

are tested and compared on instances from the PRP-lib with sizes between 20 and 50

customers.

Keywords: pollution-routing; stochastic programming; Integer L-shaped method; de-

composition.

3.1 Introduction

Stochastic mixed-integer program have been extensively used in the literature to tackle

uncertainty in optimization problems. Two-stage stochastic programs are of particular

interest as they have the ability to model decisions and uncertainty realizations over

a time-line (Grass and Fischer, 2016). However, these problems combine two difficult

decision problems, connected by a set of constraints, which makes them computationally

intractable for large problem sizes (Laporte and Louveaux, 1993).

Although two-stage stochastic programs are difficult to solve in their original form, they

have a special structure that can be exploited by dedicated methods. Several decom-

position methods have been proposed to take advantage of that special structure, by

decomposing the problem in a set of smaller and often relaxed subproblems. The de-

composition of stochastic programs is generally done either on scenarios or on decision

stages (Guo et al., 2015).

We model the PRP under uncertain traffic condition using the two-stage stochastic

program described in Section 2.4.2.2 (2.44)–(2.57), which was proved in Chapter 2 to

provide the best solutions. The first stage of this model consists of finding a set of

feasible routes, whereas the second stage consists of optimizing speed of the vehicle on
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those routes. The first stage uses binary decision variables, and the second stage is a

mixed-integer mathematical program. To decompose this problem we use the integer

L-shaped method of Laporte and Louveaux (1993). We decompose the problem in a

master and a subproblem. The master problem consists of solving the routing part of

the problem, while the subproblem addresses the speed decisions on each leg of the

routes found by solving the master problem. We propose several techniques based on

the integer L-shaped method, together with strategies and lower bounds to improve the

techniques.

The remainder of this chapter is structured as follows. Section 3.2 presents a brief review

of the literature of applications of the integer L-shaped method to stochastic problems.

Section 3.3 explains the methodology of the methods and mathematical models described.

Section 3.4 presents computational experiments, and conclusions follow in Section 3.5

3.2 Literature review

Since the introduction of the PRP (Bektaş and Laporte, 2011), a number of authors

have investigated a range of variants, see (Koç et al., 2014; Franceschetti et al., 2013;

Demir et al., 2014a; Tajik et al., 2014). A review of these papers is available in Section

2.2.2. For a wider and comprehensive overview of the green transportation, including air

and maritime transportation, we refer the reader to Psaraftis (2016). Here, We review

relevant studies that used the integer L-shaped method since its introduction by Laporte

and Louveaux (1993).

Laporte and Louveaux (1993) proposed the integer L-shaped method to solve two-stage

stochastic problems with binary first stage decisions. The method was called inte-

ger L-shaped due to its similarity with the L-shaped method of Van Slyke and Wets

(1969). The method consists of relaxing some constraints in a given formulation, and

re-integrating them gradually until an optimal solution is found. The authors defined

feasibility cuts and optimality cuts that are derived after every iteration.

The integer L-shaped method was first adapted to the VRP with stochastic demands

and customers by Gendreau et al. (1995). The authors found that stochastic customers

are more difficult to handle than stochastic demands. The problem was modeled as a

two-stage stochastic program, where the first stage consists of finding a set of routes,

and the second stage consists of skipping absent customers, and returning to the depot

to unload and resume the route if demand is exceeded. The algorithm could solve

instances with 10 to 70 customers, depending on the difficulty of the instance, and the

values of some input parameters. Salavati-Khoshghalb et al. (2017) considered the same

problem allowing the vehicle to return the depot in anticipation of potential failures

when the capacity becomes less than a threshold. The authors also defined lower bound
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to approximate the cost of the recourse strategy. Instances with four vehicles and 60

customers were solved optimally.

Recent applications of the integer L-shaped method include the integrated problem of

staffing and scheduling nurses by Kim and Mehrotra (2015). The authors model the

problem as a two-stage stochastic program where the first stage finds a feasible solution

to the staffing and scheduling problem. The second stage consists of adjusting the first

stage decisions according to the realizations of the stochastic demand. The authors

developed several cuts for the problem, and showed that significant cost savings were

achieved over the deterministic version of the problem.

Angulo et al. (2016) proposed several strategies to improve the integer L-shaped method.

A first strategy consists of computing the cost of the second stage problem by alternat-

ing between linear and integer programing. In addition, the authors developed a cut-

generating linear program, that finds cuts based on previously explored solutions. The

techniques performance depend on the convexity and complexity of the objective func-

tion of the problem. The method reduces the solution time when tried on two different

problems, the stochastic multiple knapsack and the stochastic server location problem.

3.3 Methodology

In this section, we describe an integer L-shaped decomposition algorithm for the math-

ematical model described in Section 2.4.2.2 (2.44)–(2.57) that results in a master and

a subproblem, and how the interaction between these two problems is operated in the

different methods proposed.

3.3.1 The original integer L-shaped method

A two-stage stochastic problem can be modeled as follows:

min z = cx+Q(x) (3.1)

s.t. Ax = b, x ∈ X, (3.2)

where

Q(x) = Eξ[min
y
{q(ω)y | Wy = h(ω)− T (ω)x, y ∈ Y }], (3.3)

where c and b are two known vectors in Rn1 and Rn2, respectively. The vector x ∈ {0, 1}n

represents the first stage binary decision variables. Q(x) is a function of input x and

random parameters q, W , h and T represented by the set ξ. Finally, the vector y ∈ Y
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represents the second stage decisions. The problem (3.1)–(3.2) can be reformulated as

follows:

min z = cx+ θ (3.4)

s.t. Ax = b, x ∈ X (3.5)

Q(x) − θ ≤ 0, x ∈ X. (3.6)

In order to solve (3.4)–(3.6), the integer L-shaped method consists of relaxing the set

of constraints (3.6), which results in solving a simplified master problem. In this formu-

lation, θ is an underestimate of Q(x). Constraints (3.6) are reincorporated iteratively

for fixed vectors x̂ ∈ X obtained by solving the master problem, until optimality is

reached. The subproblem Q(x) is solved for every optimal solution of the master prob-

lem x̂ in every iteration. If a master problem solution is not feasible for the subproblem,

a feasibility cut is derived and added to the master problem in the next iteration.

3.3.2 Adaptation to the PRP

In the stochastic PRP, the first stage decisions, which are made in the master problem,

consist of selecting routes for all vehicles. The objective function of the master problem

includes cost functions that only depend on routing. All expressions in the objective

function of the stochastic PRP that depends on speed or travel times, are scenario-

dependent, and are therefore in the objective function of the subproblem. The master

problem is as follows:

Minimize
∑

(i,j)∈A

wfcγλαijdijxij +
∑

(i,j)∈A

fcγλαijdijfij + θ (3.7)

subject to

Constraints (2.75)–(2.82).

The output of the master problem is the optimal solution x̂ for the current iteration that

represents a set of routes. We define S as the set of variables xij that are equal to 1 in

x̂. The subproblem consists of finding optimal speeds for vehicles to drive at on each leg

of the routes. This problem is a stochastic version of the speed optimization problem

described by Norstad et al. (2011), which we name here the stochastic speed optimization

problem (SSOP). Here, the arrival times at customers are scenario-dependent, and time-

windows can be violated at the expense of penalties. Therefore, the algorithm designed
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by Demir et al. (2012) for the deterministic version of the SSOP fails to generalize for

our problem. The mathematical model of the subproblem is described as follows:

Minimize Q(x̂) =
∑
s∈S

ps

(
fcKΩV λ

∑
(i,j)∈A

dij

(∑
r∈R

(zrij/v
r) + SF s

ij

)
(3.8)

+ fcβγλ
∑

(i,j)∈A

dij

(∑
r∈R

zrij(v
r)2 − SSs

ij

)
(3.9)

+
∑
j∈N0

fdδ
s
j (3.10)

+
∑
j

elsj

)
(3.11)

subject to

Constraints (2.54)–(2.57), (2.60)–(2.69).

The optimal speeds found by solving the subproblem provide the total cost Q(x̂)∗ of the

routes defined by S, which is used to add a cut to the master problem. The cuts such

as defined by Laporte and Louveaux (1993) for the problem are

θ ≥ Q(x̂)∗(
∑
xij∈S

xij − (|S| − 1)) (3.12)

The solution found by the master problem is evaluated by solving the subproblem. The

algorithm iterates in this manner and converges if solving the master problem returns a

solution already visited. A pseudo-code of this method, that we denote Lshaped O, is

provided in Algorithm 1.

Algorithm 1 Lshaped O

1: Optimal← False
2: θ ← 0
3: while not Optimal do
4: Solve the master problem
5: x̂← Optimal Solution of the master problem
6: if θ > 0 then
7: Optimal = True
8: x∗ ← x̂
9: else

10: Minimize Q(x̂)
11: Add cut (3.12) to the master problem
12: end if
13: end while
14: return x∗
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3.3.3 Integer L-shaped with lower bound

The idea behind the L-shaped method is to relax a set of constraints, and to reincorporate

a subset in an iterative fashion. By relaxing those constraints, no information about the

subproblem is available in the master problem, which may lead the method to explore

non-promising solutions. To guide the master problem in finding promising solution

for the main problem, and without losing optimality, we add a lower bound on the

subproblem in the objective function of the master problem. This lower bound provides

an optimistic estimate of the second stage cost. We refer to this method as Lshaped A.

The lower bound on the second stage problem is obtained with the following reasoning.

The objective function of the deterministic PRP decomposes in two parts, fuel consump-

tion and driver wage, Demir et al. (2014a). In the stochastic PRP, an additional term

representing the cost of delays is also present in the objective function. The fuel con-

sumption expression is also divided into two expressions that depend on load and speed.

The load-dependent expression is determined by the routing decisions, which are made

in the master problem. The speed-dependent expression is minimized in the subproblem.

For a given scenario, the objective function is the sum of the following expressions

fcKΩV λ
∑

(i,j)∈A

dij

(∑
r∈R

(zrij/v
r) + SF s

ij

)
(3.13)

fcβγλ
∑

(i,j)∈A

dij

(∑
r∈R

zrij(v
r)2 − SSs

ij

)
(3.14)

∑
j∈N0

fdδ
s
j (3.15)

∑
j

elsj . (3.16)

Terms (3.13) + (3.14) represent the fuel consumption related to speed variables zrij and

the speed recourse variables. It is also a convex function and its global minimum can be

computed. Terms (3.15) + (3.16) represent the driver wage and the cost of delays, and

is monotonously decreasing as speed increases and has a global minimum which can be

computed analytically. A lower bound for (3.13) + (3.14) + (3.15) + (3.16) is the sum

of a lower bound for (3.13) + (3.14) and one for (3.15) + (3.16).

We define V ∗
f as the speed that minimizes the expression (3.13) + (3.14), and V max

ijs

as the maximum achievable speed across all scenarios s ∈ S on an arc (i, j) ∈ A and

V ∗
ij = min(V ∗

f , V
max
ijs ).
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A lower bound for (3.13) + (3.14) can be found by computing the cost of emissions based

on V ∗
ij as speed on the arc (i, j) ∈ A,

fcKΩV λ
∑

(i,j)∈A

dij/V
∗
ij + fcβγλ

∑
(i,j)∈A

dijV
∗
ij
2. (3.17)

The lower bound on (3.15) + (3.16) is obtained by computing the arrival times at

customer assuming that the vehicle travels on all route legs at speed V max
ijs . This results

in the vehicle arriving at the earliest possible time at each customer and minimizes the

total duration of the routes, yielding minimized driver costs and late arrivals penalties.

We add a new decision variable ζ to the master problem to represent the lower bound

on the cost of the subproblem. The master problem is described as follows.

Minimize
∑

(i,j)∈A

wfcγλαijdijxij +
∑

(i,j)∈A

fcγλαijdijfij + ζ + θ (3.18)

subject to

Constraints (2.75)–(2.82)

ysi − ysj + ti +
∑
r∈R

dij/V
max
ijs ≤M(1− xij) i ∈ N, j ∈ N0, i ̸= j, s ∈ S (3.19)

ysj − tj − δsj +
∑
r∈R

dj0/V
max
j0s ≤M(1− xj0) j ∈ N0, s ∈ S (3.20)

aj ≤ ysj ≤ bj + lsj j ∈ N0, s ∈ S (3.21)

ysi ≥ 0 i ∈ N0, s ∈ S (3.22)

ζ ≥
(
fcKΩV λ

∑
(i,j)∈A

dij/V
∗
ij + fcβγλ

∑
(i,j)∈A

dijV
∗
ij
2 +

∑
j∈N0

fdδ
s
j +

∑
j

elsj

)
. (3.23)

Using this definition of the lower bound ζ, we can compute a lower bound on all the

solutions of the subproblem. We define the constant ι which is equal to the lower bound

on the subproblem over all the master problem solutions. The value of ι is computed by

solving the following problem.

ι = Min ζ (3.24)

subject to

Constraints (2.75)–(2.82),(3.19)–(3.22).

The value of ι is then used to develop strengthened cuts as follows:

θ ≥ (Q(x̂)∗ − ζ − ι)(
∑
xij∈S

xij − (|S| − 1)) + ι (3.25)
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3.3.4 Integer L-shaped with lower bound and local branching

In this section, we propose to include the local branching approach of Fischetti and

Lodi (2003) within the integer L-shaped method. The idea behind the local branching

technique is to explore neighborhoods of a given solution during the solution process.

Commercial MIP solvers have a range of tools and built-in heuristics that makes them

extremely fast in solving relatively small MIPs (Fischetti and Lodi, 2003). These tools

can be effectively used to explore neighborhoods, which are a smaller and a restricted

version of the problem.

In our implementation, after finding a solution that is better than the current best known

solution, we explore its neighborhood until a stopping criterion is reached, following

which we prune the neighborhood from the feasible region of the master problem. If the

stopping criterion verifies that no neighboring solution is better than the best solution

obtained so far, than the algorithm is an exact method. However, if the stopping criterion

does not guarantee this condition, the algorithm becomes a heuristic.

We define a neighborhood of a solution by a set of solutions that has at least g similar arcs.

Fixing the value of g impacts the solution time and the number of solutions discarded

from the master problem. Too small a value of g yields a large neighborhood that is

difficult to explore, whereas too large a value of g reduces the information extracted

from the neighborhood and has smaller impact on the convergence of algorithm. The

constraints added to obtain a neighborhood of a known solution x̂, with S as the set of

variables xij that are equal to 1 in x̂ are∑
xij∈S

x̂ij ≥ g, (3.26)

after reaching the stopping criterion, the neighborhood is pruned by adding the following

constraint ∑
xij∈S

x̂ij < g, (3.27)

The pseudo-code of the integer L-shaped with local branching, which we refer to as

Lshaped LB algorithm, is provided in Algorithm 2.

3.4 Computational experiments

In this section, we computationally compare the performance of the solution techniques

proposed on instances from the PRP-lib with 20, 25 and 50 nodes. Every instance is

solved three times, over different realizations of the traffic speed scenarios. The maxi-

mum time allowed for the resolution of one instance is 30 minutes. We also compare

these results with the ones obtained by solving the original model (2.44)–(2.57) using

http://www.apollo.management.soton.ac.uk/prplib.htm
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Algorithm 2 Lshaped LB

1: Converged← False
2: θ ← 0
3: while not Converged do
4: Solve the master problem
5: x̂← Optimal Solution of the master problem
6: if θ > 0 then Converged = True
7: else
8: Solve Q(x̂)
9: if x̂ is the best solution so far then

10: Add cut (3.26) to the master problem
11: while not stopping criterion of local branching do

12: x̂lb ← Optimal Solution of the restricted master problem
13: if θ = 0 then
14: Solve Q(x̂lb)
15: Add cut (3.12) to the master problem
16: else
17: Neighbourhood fully examined
18: end if
19: end while
20: Add cut (3.27) to prune the neighborhood from the master problem
21: end if
22: end if
23: end while

CPLEX 12.6.0.1 with a maximum number of four threads, and allowing the same max-

imum solution time. The tests were performed on a computer equipped with eight

processors Intel Xeon E7-8837 and a RAM of 1 To.

In the computational experiments carried out, we considered fifteen equiprobable scenar-

ios denoted S1 to S15 generated using a log-normal distribution as explained in Section

2.5.1. The scenarios are defined by their mean µ̂ and variance σ̂2 are displayed in Table

3.1
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Scenario µ̂ σ̂2

S1 26 64

S2 65 144

S3 55 100

S4 35 49

S8 60 100

S5 40 121

S6 70 144

S7 29 64

S9 36 49

S10 90 121

S11 67 144

S12 21 64

S13 50 100

S14 34 49

S15 46 121

Table 3.1: Fifteen scenarios considered in instance

The results are shown in Tables 3.2, 3.3 and 3.4, where the first row displays the name

of the corresponding approach. The column Inst shows the instance name contains the

number of customers and the number of the instance. The best upper bound (UB)

and lower bound (LB) are reported for each of the methods. For the L-shaped based

methods, the iteration Fit and time Ft in seconds at which the best solution was found,

together with the number of cuts Nc, the average master and subproblem solution time

in seconds, AMT and AST, respectively are reported. The best solutions value found

for each instances is displayed in bold in all the tables.

Within both the Lshaped LB method and Lshaped A, the lower bounding cut (3.23) in

the master problem slows down the solution process considerably, as a result of which the

algorithm cannot iterate after the first iteration. Therefore, we simplify the constraints

and instead we use a lower bounding cut that considers the fuel consumption only, as

shown below:

ζ ≥ fcKΩV λ
∑

(i,j)∈A

dij/V
∗
ij + fcβγλ

∑
(i,j)∈A

dijV
∗
ij
2. (3.28)

The performance of the Lshaped LB method depends on the number of solutions to

visit in the neighborhood. To tune this parameter, we solved 30 instances with 20 and

25 nodes. The values that were tested are 5, 10 and 15 solutions per neighborhood.

The results provided by the algorithms were very close, however, selecting 10 solutions
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yielded better result with an average cost of £460 , while selecting 5 and 15 solutions

yielded a cost of £461 and £460.3, respectively.

Table 3.2 shows that the Lshaped LB method provided the best solutions on average, and

found most of the best solutions on 20-node instances. All the L-shaped based method

found lower-cost solutions than CPLEX. On 25-node instances, we can see from Table

3.3 that the Lshaped O found the lowest-cost solutions, on average, and Lshaped LB

and Lshaped A performed almost identically. Results on 50-node instances are reported

in Table 3.4. CPLEX did not provide any feasible solution on 50-node instances within

the 1800 seconds time limit, therefore, we allowed it to solve the instances in three

hours. The L-shaped based methods for these instances did not perform more than

one iteration, and therefore the Lshaped LB and Lshaped A provide the same results

which are reported under column named Lshaped A & LB. CPLEX could not provide

a feasible solution for five instances, and provided the best upper bound on only one

instance. The results provided by all the L-shaped based methods were similar on

average.

It is shown in all the three tables that, even though all the variants of the L-shaped

based method performed similarly on average, the gap between the approaches can be

significant on some instances. This is due to the specificity of each method, which

gives it advantage depending on the instance solved. However, on all the instances,

the method outperformed CPLEX by an average gap in the cost between 5% and 14%.

CPLEX provided the best lower bounds on all instances, followed by Lshaped A then

Lshaped O. Lshaped LB does not provide valid lower bounds. We can also see from the

tables that most of the solution time is spent on solving the master problem, and this

time increases drastically with the size of the instance.

We can also see from the three tables that the Lshaped LB provides the best upper

bounds on 12 instances with 20 nodes, followed by Lshaped A with 7 and Lshaped O

with 3 instances. On 25-node instances Lshaped LB still provides the best upper bounds

on 10 instances, followed by Lshaped O with 7 and Lshaped A with 4 instances. The

Lshaped O yielded to 13 best upper bounds on 50-node instances, while only 7 were pro-

vided by Lshaped A and Lshaped LB which provided the same results on these instances.

We can also see that the number of best upper bounds of the Lshaped O increases with

the number of nodes in the instances. Whereas Lshaped LB performs better on smaller

instances.
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CPLEX Lshaped O Lshaped A Lshaped LB

Inst UB LB UB LB Fit Ft Nc AMT AST UB LB Fit Ft Nc AMT AST UB Fit Ft Nc AMT AST

20 01 560.6 246.4 507.5 141.6 3 57 71 25 0.3 507.8 182.3 12 205 79 23 3.1 507.9 10 121 82 22 0.9
20 02 568.4 261.3 555.2 150.2 6 50 101 18 0.3 551.0 193.9 38 676 83 21 3.1 551.8 65 1034 102 17 1.1
20 03 307.5 158.9 303.0 84.0 43 683 93 19 0.3 300.5 108.0 59 766 107 17 3.6 300.5 23 178 99 18 1.1
20 04 593.2 253.7 525.7 144.2 8 860 17 102 0.3 525.9 185.0 10 804 19 93 3.3 521.2 18 984 29 61 1.1
20 05 529.7 218.9 485.0 131.2 12 262 69 26 0.3 468.7 167.5 52 1161 74 24 2.8 469.7 41 679 87 21 0.9
20 06 706.4 258.7 634.3 153.1 4 991 6 254 0.3 634.1 194.2 3 419 10 174 2.7 633.0 8 434 20 81 0.9
20 07 369.7 176.5 374.1 95.9 2 639 5 322 0.3 367.0 122.1 3 756 4 196 2.9 359.6 7 488 14 98 1.0
20 08 459.6 213.2 436.1 120.2 68 1147 100 18 0.3 427.3 153.5 74 1136 106 17 3.5 426.8 81 1065 121 15 1.2
20 09 588.6 269.4 615.1 147.3 47 1136 64 28 0.3 678.2 190.6 40 170 152 12 1.7 595.9 106 1050 142 13 0.6
20 10 476.3 210.7 462.0 126.7 9 786 18 94 0.3 458.8 162.5 17 1103 27 65 3.4 455.8 19 614 34 52 1.1
20 11 638.7 286.3 650.5 166.6 26 806 49 37 0.3 642.7 211.3 19 222 81 22 2.4 642.7 11 71 78 23 0.7
20 12 580.2 246.7 544.5 138.3 41 1104 60 30 0.3 547.8 179.6 40 1459 47 38 3.1 543.9 48 1189 63 28 1.0
20 13 575.6 231.9 567.7 139.2 29 652 71 25 0.3 558.6 179.0 62 981 99 18 2.1 564.2 35 394 108 17 0.7
20 14 575.6 231.9 587.5 181.3 7 395 25 68 0.3 556.4 235.2 27 938 43 41 2.7 564.0 29 781 51 35 0.8
20 15 607.4 302.8 507.5 140.5 25 1216 32 55 0.3 518.9 181.3 26 1476 30 58 2.5 506.7 31 1115 44 39 1.0
20 16 571.5 262.3 545.8 146.7 6 572 16 108 0.3 531.8 185.5 10 485 31 58 2.9 530.8 22 858 39 46 0.9
20 17 N/A N/A 631.8 165.5 10 815 20 88 0.3 637.6 208.2 15 1261 19 88 3.2 633.2 23 997 35 50 1.1
20 18 603.4 276.6 611.9 155.7 29 881 55 32 0.3 681.0 198.0 31 590 78 23 2.3 691.5 20 169 83 21 0.8
20 19 592.0 242.7 538.6 143.4 6 387 20 86 0.3 538.3 183.5 6 448 20 88 3.0 507.9 10 121 82 22 0.9
20 20 537.7 268.0 543.6 145.9 88 926 126 14 0.3 534.1 189.7 69 293 186 10 2.5 534.1 50 175 162 11 0.9

Av 549.6 243.0 531.4 140.9 23.4 718.2 51.0 72.4 0.3 533.3 180.5 30.5 767.4 64.8 54.2 2.8 527.1 32.9 625.8 73.7 34.5 0.9

Table 3.2: Results on 20-node instances
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CPLEX Lshaped O Lshaped A Lshaped LB

Inst UB LB UB LB Fit Ft Nc AMT AST UB LB Fit Ft Nc AMT AST UB Fit Ft Nc AMT AST

25 01 548.7 194.5 475.5 121.4 32 1385 39 45 0.2 482.9 155.7 15 406 49 36 1.9 477.0 21 1120 32 55 1.3
25 02 593.9 267.2 556.3 146.1 1 1128 3 544 0.2 550.7 188.0 2 1199 4 428 2.1 568.1 1 1041 4 443 1.1
25 03 370.7 145.3 328.7 86.9 1 868 3 518 0.3 319.4 109.9 6 1686 8 237 3.0 319.6 9 1594 12 269 1.5
25 04 479.4 164.3 451.4 56.0 0 1420 1 1420 0.2 446.8 142.0 2 729 4 248 1.8 443.7 3 642 13 105 1.1
25 05 553.4 263.6 442.8 141.2 7 484 20 86 0.2 442.9 181.9 4 692 10 161 3.4 442.8 4 614 11 146 1.2
25 06 500.7 207.9 486.7 121.3 5 831 13 129 0.2 520.2 155.3 23 1077 35 50 1.7 520.0 2 161 17 86 0.9
25 07 632.9 222.4 615.5 98.4 0 1427 1 1445 0.2 688.1 111.5 0 1365 1 1365 1.4 688.1 0 1365 1 1365 1.4
25 08 725.7 234.8 675.1 155.5 1 1127 3 488 0.2 606.0 196.0 8 1025 13 130 1.8 607.5 7 578 15 106 1.2
25 09 481.6 225.1 466.3 121.0 22 1175 29 54 0.8 449.0 157.2 16 848 22 68 1.9 455.9 18 1240 26 64 1.0
25 10 551.7 301.3 545.1 157.3 10 423 43 41 0.7 543.5 200.0 25 857 44 40 2.2 543.3 20 840 39 45 1.2
25 11 654.4 284.8 570.7 80.5 0 1800 0 1800 0.2 619.8 124.2 0 1290 0 1290 1.1 619.8 0 1290 0 1290 1.1
25 12 689.4 306.4 640.0 175.5 38 1087 62 29 0.4 632.9 226.3 23 680 59 30 4.1 633.2 24 501 73 25 1.1
25 13 383.7 170.9 363.6 92.8 43 1411 53 33 0.2 351.7 119.4 3 250 18 98 3.3 348.3 10 640 26 64 1.1
25 14 607.4 302.8 578.4 166.6 32 753 69 26 0.2 578.4 212.8 23 790 46 39 3.4 577.4 32 944 56 32 1.1
25 15 871.1 269.1 723.6 163.3 30 1118 44 40 0.2 738.5 208.4 41 1209 58 30 2.8 723.2 43 1179 60 29 0.9
25 16 601.8 256.1 508.0 148.3 36 1290 48 37 0.3 591.3 190.5 39 709 87 21 1.6 594.8 44 979 73 24 0.7
25 17 847.0 345.8 776.7 206.5 19 915 33 52 0.2 776.7 260.8 7 495 20 82 2.7 776.1 14 880 26 63 1.0
25 18 1276.2 264.5 758.5 171.3 3 346 15 122 0.2 754.5 216.8 5 203 35 50 1.5 754.5 2 96 31 56 0.8
25 19 724.0 322.8 695.1 178.7 42 1023 71 25 0.3 669.9 231.0 52 1384 65 27 3.6 662.8 54 1191 74 24 0.9
25 20 678.4 267.5 572.3 76.8 0 1801 0 1800 0.4 587.1 115.2 0 1801 0 1801 1.2 587.1 0 1801 0 1801 1.2

Av 638.6 250.9 561.5 133.3 16.1 1090.5 27.4 436.8 0.3 567.5 175.1 14.7 934.9 29.0 311.6 2.3 567.2 15.4 934.7 29.3 304.7 1.1

Table 3.3: Results on 25-node instances
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Lshaped O Lshaped A & LB CPLEX

Inst UB LB UB LB UB LB

50 01 919.5 126.1 914.7 190.6 1608 444

50 02 937.9 129.5 953.4 195.6 1290 441

50 03 1012.6 133.2 1018.7 203 1588 449

50 04 1169.7 161.1 1170.5 248.1 1535 584

50 05 1180.3 142.9 1143.7 210.2 - 419

50 06 909.3 118.9 911.3 181.3 1725 412

50 07 856.6 113.2 862.4 172 1588 385

50 08 955.3 116.8 961.5 178.6 - 401

50 09 1100.7 148.1 1110.6 226.4 1251 510

50 10 1122.6 145.6 1123.3 224.6 - 475

50 11 1062.9 135.5 1064 202.6 1073 464

50 13 940.8 119.1 933.8 185.9 957 414

50 12 886.5 120.8 881.8 187.5 1028 445

50 14 1082.9 143.6 1068.0 219.9 1210 505

50 15 1089.1 135.6 1027.5 194.2 - 410

50 16 898.1 124.4 899 191 894 441

50 17 714.3 86.9 742.6 148.6 1816 311

50 18 1096.3 143.5 1107.3 220.1 1170 521

50 19 985.1 126.8 972.1 191.8 1021 422

50 20 1123.9 147.4 1127.1 225.5 - 489

Average 1002.2 131 999.7 199.9 1512 453

Table 3.4: Results on 50-node instances

In Tables 3.2 and 3.3, we report the average results obtained by solving the instances

three times, over different realizations of the 15 traffic speed scenarios described above.

To assess the robustness of the L-shaped algorithms against uncertainty, we show in

Table 3.5 the difference between the best and the worst solution obtained on these three

different realizations. The results are displayed as percentage of the best solution value

found by the algorithm. We see from Table 3.5 that on average Lshaped A has the

lowest variability on both 20 and 25-node instances, followed by Lshaped LB and then

Lshaped O. We can also observe a significant increase in the variability for 25-node

instances compared with 20-node instances for all approaches.
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20 Nodes 25 Nodes

Instance Lshaped O Lshaped A Lshaped LB Lshaped O Lshaped A Lshaped LB

(%) (%) (%) (%) (%) (%)

01 2.5 2.8 2.8 7.4 8.7 6.5

02 4.4 4.2 4.0 2.0 4.1 10.9

03 1.0 1.0 1.0 3.8 1.4 0.9

04 2.4 1.5 3.5 5.7 8.4 6.2

05 3.4 1.3 1.2 0.7 0.7 0.7

06 1.6 1.6 1.1 0.5 1.2 1.5

07 8.3 2.6 3.1 4.2 1.7 1.7

08 3.3 2.4 2.6 8.7 11.1 11.9

09 5.8 5.4 6.4 1.3 1.5 4.2

10 2.3 2.5 1.6 4.8 5.3 5.1

11 6.0 2.5 2.5 6.7 6.7 6.7

12 5.6 7.9 8.1 1.2 0.2 1.1

13 4.6 7.3 7.0 4.7 5.7 5.6

14 6.3 4.1 5.8 1.7 1.8 1.7

15 2.2 4.3 2.2 6.2 0.5 6.2

16 0.5 3.1 2.7 3.0 1.1 0.6

17 8.2 7.7 8.6 5.9 4.2 4.2

18 4.1 5.1 4.3 8.1 6.6 6.6

19 5.7 5.6 5.6 9.8 7.0 6.8

20 1.0 1.8 1.8 6.7 4.4 4.4

Average 4.0 3.7 3.8 4.7 4.1 4.7

Table 3.5: L-shaped algorithms robustness against uncertainty

In Figure 3.1 we display the upper provided by the Lshaped O and Lshaped A on the

instance 20 01 at every iteration. We can see that the initial upper bound found by

the Lshaped O, UB O was better than the one provided by Lshaped A, UB A. During

the solution process the upper bound were similar, however after the 78th iteration

Lshaped A improved the upper bound. In Figure 3.2 we report the same results for the

instance 25 01. We see that the best upper bound provided by Lshaped A was found

initially and was not changed. Lshaped O improves the upper bound two times, however

it does not provide a solution better than the Lshaped A.
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Figure 3.1: Upper and lower bound as obtained on 20-node instance during solution
process by Lshaped O and Lshaped A

Figure 3.2: Upper and lower bound as obtained on 25-node instance during solution
process by Lshaped O and Lshaped A
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3.5 Conclusions

We aimed in this chapter to tackle the Pollution-Routing Problem under uncertain traffic

conditions. We proposed techniques to solve the problem using the Integer L-shaped

method adapted to a stochastic MIP where the first stage has only binary variables. We

developed three approaches, which have different cuts and strategies. The first method

was the adaptation of the original integer L-shaped, whereas the second method was

an adaptation of the previous method, where we defined a lower bound on the cost

of the second stage, which allowed us to strengthen the cuts and approximate better

the subproblem cost in the master problem. The third approach proposed included the

use of local branching technique. It consisted of exploring neighborhood of solution

found during the solution process. The three method were tested on 20, 25 and 50-node

instances from the PRP-lib. No method could provide a proof of optimality for any

instance. However, the L-shaped based method yielded solutions of better quality in

terms of the total cost as compared to CPLEX, which on 50-node instances could find

any feasible solutions except for one instance. On average, the three L-shaped methods

provided similar results.

http://www.apollo.management.soton.ac.uk/prplib.htm
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Abstract

Reducing pollution is increasingly a concern for policy makers and companies in the

transportation sector. The amount of pollution emitted is directly related to the quantity

of fuel consumed by the vehicles. One way of reducing the fuel consumption is to optimize

speed on a given journey. This chapter studies a speed optimization problem that

consists of choosing the optimal speed on each leg of a given route, which is represented

by a fixed visit sequence of customers. Each customer has a delivery time window.

Early and late arrivals to customers are allowed, but at the expense of penalties. The

problem generally arises within a broader set of decisions within maritime and road

transportation planning. The objective function in maritime transportation accounts

for fuel consumption and penalties for early and late arrivals, whereas driver cost is also

taken into account in road transportation. This chapter describes a non-linear program

for the problem, which is linearized in several ways, including the use of time-space

networks. Extensive computational experiments are carried out on road and maritime

instances to assess the performance of the methods and to derive managerial insights

for both modes of transportation.

Keywords: Speed optimization; pollution minimization; time-space networks; non-linear

programming.

4.1 Introduction

The amount of pollution emitted by vehicles is related to the quantity of fuel consumed

(Demir et al., 2014b; Fagerholt et al., 2010), which in turn depends on speed, among

other factors. Optimizing speed is therefore relevant to reducing the fuel consumption

of vehicles. Reducing fuel consumption is a problem faced in many logistics applica-

tions, particularly within maritime and road transportation. Emissions from maritime

transportation were estimated to be 400 million tons in 2014, which contributed to both

air pollution and ocean acidification (i.e, reducing the pH levels of the sea) (Organiza-

tion, 2018). The International Maritime Organization (IMO), which is responsible for

international policies to reduce maritime pollution, has limited the amount of emissions

of certain greenhouse gases, introduced emission controlled areas (EAs), and started in

2018 to track the fuel consumption of ships of at least 5,000 gross tonnage in an attempt

to reduce the overall maritime fuel consumption. Reducing fuel consumption in mar-

itime transportation is also of economic importance for maritime companies. In 2012,

for example, it was estimated that in some modes of maritime transportation, fuel cost

accounts for up to 60% of the total cost (Wang and Meng, 2012). The importance of

reducing fuel consumption in road transportation have been highlighted in Chapter 2.
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In this chapter, we investigate the problem of computing an optimal speed for each

leg of a given route, characterized by a fixed sequence of customers, each of which

should ideally be visited within a specified time window. This is known as the Speed

Optimization Problem (SOP) (Fagerholt et al., 2010). The SOP is particularly relevant

to fuel consumption reduction and its application to different modes of transportation,

including maritime, where it is a core problem for shipping applications with a fixed

sequence of ports to visit (Norstad et al., 2011) and road, where it arises as a subproblem

within the Pollution-Routing Problem (PRP) (Demir et al., 2012). Due to the non-

linear nature of SOP formulations, the problem is usually solved either by a non-linear

optimization software or by specialized algorithms, as in Norstad et al. (2011), who

described a Speed Optimization Algorithm (SOA), under hard time window constraints.

Corbett et al. (2009) explored the effect of speed reduction on the total cost and emissions

in shipping, applied to profit-maximizing shipping companies. The authors took into

account fuel price and CO2 emission taxes. Two possible scenarios were considered.

The first scenario consisted of assuming ships traveling at lower speeds with less frequent

travels. The second scenario assumed speed reduction with the introduction of additional

vessels. The authors showed that CO2 emission taxes can contribute to fuel consumption

reduction, and a reduction in emissions of 70% and 45% can be achieved by reducing

speed by 50% in scenario 1 and scenario 2 respectively.

Norstad et al. (2011) considered the SOP in tramp shipment context within a framework

of ship routing and scheduling. The authors first modeled the problem as a mixed-integer

mathematical program where the authors used speed discretization to overcome the non-

linearity of the model. Two algorithms were developed to solve the problem. The first

algorithms consisted in solving a shortest-path problem on a time-space network where

arrival times at customers were discretized. The second algorithm applied a recursive

process based on customers hard time windows and the convexity of the objective func-

tion. The second was proven better than the first one but is applicable only if the

consumption function does not depend on the load. Hvattum et al. (2013) later proved

the optimality of this recursive algorithm.

Wang and Meng (2012) considered the SOP in the case of liner shipping. The authors

modeled the problem as a mixed integer non-linear program with an objective function

that accounts for ship operating cost, bunker cost and container handling cost. Since

the objective function is proven to be convex, the author proposed an ϵ-optimal outer-

approximation method algorithm. The algorithm solved efficiently a case study with

with 46 ports with an approximation of 0.1%.

Fagerholt et al. (2015) studied the problem of routing and speed optimization for ships in

the presence of EAs. The authors developed a mixed integer linear program, discretizing

speed, to investigated how emission-controlled areas impact ship routes and speeds, as

well as the fuel consumption. The authors studied several realistic case studies, and
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showed that ship routes may change with the introduction of EAs, resulting in ships

sailing longer roads to avoid these areas. It was also showed, that ships may travel at

slower speeds within EAs, and at higher speed outside. The authors also affirm that the

introduction of EAs is likely to reduce general greenhouse gases emissions.

Andersson et al. (2015) the SOP in a roll-on roll-off shipping context. The authors

developed a mixed integer program that integrates speed optimization in the planning

of shipping routes. The authors also proposed a rolling horizon heuristic (RHH) to solve

the problem with a large planning horizon. The RHH obtained good solutions within

reasonable times and performed better than solving the problem using a commercial

mixed-integer programming solver for all instances of realistic size. Instances with up

to 53 ships over a 10-month planning horizon were solved.

Fagerholt (2001) studied the problem of ship scheduling with soft time windows. The

author first generated a set of ship routes, from which the most promising solutions with

respect to defined heuristic rules were retained. For each promising route, the optimal

speeds were computed using a time-space network, and the best schedule was computed

by solving a set partitioning problem. This solution method was designed to solve real-

word ship scheduling problems. In our study, we generalize this speed optimization

algorithm to make it applicable to a wider range of transportation modes.

Fukasawa et al. (2016a) considered a joint route and speed optimization problem with

the objective of minimizing the total cost, including fuel costs. The authors developed a

generic branch-cut-and-price (BCP) algorithm that can be applied to any problem with

a convex fuel consumption function. The authors proposed a novel set partitioning for-

mulation that takes advantage of the structure of the speed optimization problem. The

method was applied to both maritime and road transportation. On maritime instances,

the BCP algorithm was able to solve more instances to optimality than a commercial

solver, and was three times faster on average. On road transportation instances, the

authors solved instances from the PRP-lib and compared the result with those obtained

by the branch-and-cut of Fukasawa et al. (2016b). The BCP algorithm outperformed

the branch-and-cut and solved some instances to optimality for the first time.

He et al. (2017) considered the SOP with heterogeneous arc costs. The authors argued

that fuel consumption also depends on vessel load and weather, and that fuel costs

change between ports which can be captured by using a fuel consumption function for

each arc. The authors developed an efficient algorithm capable of solving instances with

up to 1,000 ports within one second, that is 20 to 100 times faster than a standard non-

linear solver. The SOP has also been studied in road transportation, particularly since

the introduction of the PRP by Bektaş and Laporte (2011). Demir et al. (2012) solved

the SOP as a subproblem of the PRP. The authors adapted the recursive algorithm of

Norstad et al. (2011) as a subroutine of an adaptive large neighborhood search (ALNS)

metaheuristic.
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Our aim in this chapter, is to build on the existing body of literature and study the

SOP with Soft Time Windows (SOPSTW) where penalties are imposed for early or late

arrivals. In some road and maritime applications, customer time window constraints

are allowed to be violated at the expense of a penalty. Similar to (Demir et al., 2012;

Norstad et al., 2011; He et al., 2017) we propose an algorithm capable of solving the

problem efficiently. In addition, we develop methods that do not rely on the infeasibility

in case of time window violation. We show that these outperform the approach presented

in (Fagerholt, 2001) to solve the SOPSTW. We solve instances of the problem in both

road and maritime transportation as in (He et al., 2017), and we propose an acceleration

procedure that allows solving the problem quicker. We first model the problem and then

introduce transformations to overcome its non-linearities, and we develop algorithms that

solve the problem without resorting to a black-box optimization software. An extensive

computational experiment is carried out to derive managerial insight and study the effect

of considering soft time windows.

The remainder of the paper is organized as follows. Section 4.2 formally defines the

problem, and models it by means of a non-linear formulation. Section 4.3 describes

several discretization schemes and algorithms. Section 4.4 presents the computational

results. Concluding remarks follow in Section 4.5.

4.2 Problem description and non-linear model

We first formally define the SOPSTW and present a non-linear mathematical model. The

SOPSTW is defined on a path composed of n arcs representing legs of a route on n+ 1

nodes defining the set N = {0, 1, . . . , i, . . . , n}. Each arc (i, i+ 1) is referred to as arc i.

Node 0 represents the depot, and N0 = {1, . . . , n} is the set of customers. All customers

are served by a single vehicle. Each customer i ∈ N0 requires service of duration ti and

can be serviced at no cost within a time window [ai, bi]. The length of an arc and the

speed at which the vehicle travels on it are denoted by di and vi, respectively. The speed

used on any arc must lie within the interval [vl, vu], as dictated by speed enforcement

laws. The vehicle arrives at node i at time yi in an interval [ai − ei, bi + li], where ei

and li are non-negative decision variables. Unit time penalties pe and pl are applied

for early and late arrivals, respectively. The objective function consists of minimizing

the sum of time window penalties, driver wages with fd as the cost of driver per unit

of time, and a non-linear convex emission function Ef (v, d) that computes the cost of

fuel consumption and GHG emissions for a vehicle traveling at speed v on an arc of

length d. An explicit description of Ef (v, d) is given in Sections 4.4.1 and 4.4.2 for road

and maritime transportation, respectively. A non-linear model (NLM) of the problem
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is described as follows:

Minimize
∑

i∈N\{n}

Ef (vi, di) (4.1)

+fdyn (4.2)

+pl
∑
i∈N0

li (4.3)

+pe
∑
i∈N0

ei (4.4)

subject to

yi+1 = yi + ti + di/vi i ∈ N \ {n} (4.5)

ai − ei ≤ yi ≤ bi + li i ∈ N0 (4.6)

vi ≤ vu i ∈ N \ {n} (4.7)

vi ≥ vl i ∈ N \ {n} (4.8)

y0 = 0 (4.9)

ei ≥ 0 i ∈ N0 (4.10)

li ≥ 0 i ∈ N0. (4.11)

The first term of the objective function computes the cost of fuel consumption and

emissions. Term (4.2) represents the driver wage, and terms (4.3) and (4.4) compute

the penalties for arriving late and early at customer locations, respectively. Constraints

(4.5) compute the arrival time at each customer. Constraints (4.6) model the soft time

windows. Constraints (4.7) and (4.8) ensure that the vehicle speeds lie within the legal

limits. Constraint (4.9) sets the departure time of the vehicle from the depot at time 0.

Constraints (4.10) and (4.11) indicate the non-negativity of ei and li variables.

Due to (4.1) and (4.5), the above formulation is non-linear, and solving it with a standard

optimizer can be time consuming, in particular for large-scale instances. In Section 4.3

we describe alternative models and procedures to overcome the difficulty yielded by this

non-linear model.

4.3 Discretization schemes and algorithms

This section presents discretization schemes and algorithms to overcome the non-linearities

(4.1) and (4.5) in the NLM.
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4.3.1 Discretized speed model (DSM)

One possible discretization scheme is to represent the travel speed on each arc as a

discrete and finite set of speed levels. This technique is similar to that introduced by

Bektaş and Laporte (2011) for the PRP. The travel speed on an arc belongs to a set

R = {v1, . . . , vr, . . .}. We define a binary variable zri equal to 1 if and only if the vehicle

travels on arc (i, i+ 1) at speed vr. The mathematical model is described as follows:

Minimize
∑

i∈N\{n}

∑
r∈R

Ef (z
r
i v

r, di) (4.12)

+fdyn (4.13)

+pl
∑
i∈N0

li (4.14)

+pe
∑
i∈N0

ei (4.15)

subject to

yi+1 = yi + ti + di
∑
r∈R

(zri /v
r) i ∈ N \ {n} (4.16)

ai − ei ≤ yi ≤ bi + li i ∈ N0 (4.17)∑
r∈R

zri = 1 i ∈ N \ {n} (4.18)

y0 = 0 (4.19)

ei ≥ 0 i ∈ N0 (4.20)

li ≥ 0 i ∈ N0 (4.21)

zri ∈ {0, 1} i ∈ N \ {n}, r ∈ R. (4.22)

Expressions (4.12)–(4.17) are equivalent to (4.1)–(4.6). Constraints (4.18) ensure that

only one speed level is chosen per arc. Constraints (4.19)–(4.21) are the same as (4.9)–

(4.11). Constraints (4.22) indicate the binary nature of variables zri .

While the DSM allows overcoming the non-linearity of the model, it may result in solv-

ing a considerably larger model (Norstad et al., 2011). In fact, if the distances between

customers are large, then a small change in speed would induce a significant change in

arrival times at customers. For this reason, one should consider very fine speed discretiza-

tions to achieve sufficient accuracy. One way of avoiding this problem is to discretize

the possible arrival times at customers. This approach is conceptually equivalent to

discretizing speed, but requires fewer discretization steps, and hence results in smaller

models to solve. This will be discussed in the following section.
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4.3.2 Discretized arrival times: time-space networks

In the presence of soft time windows, one cannot readily apply the methodology used

by Norstad et al. (2011) designed for SOP with hard time windows, which consists of

discretizing the possible arrival times at customers. In this section, we present different

ways to discretize arrival times at customers using time-space networks.

To resolve this issue, we first create artificial hard time windows. The lower end of a

hard time window ahi is computed by assuming that the vehicle travels on all the arcs

at the maximal possible speed ahi = ahi−1 + di/v
u. This will yield the earliest possible

arrival time for each customer. We then compute the upper end of the time window bhi
by using this time the slowest possible speed, which will yield the latest possible arrival

time bhi = bhi−1 + di/v
l. We then define a graph G = (V,E), where V and E are the

node and arc sets, respectively. Let Ti be the set of possible arrival times at customer

i. Each customer i is represented by a set of nodes {i1, i2, . . . , i|Ti|}, representing the

discrete arrival times at that customer, and node it corresponds to the vehicle arriving

at customer i at time t ∈ Ti. An arc between two nodes it and (i + 1)k exists if and

only if the vehicle can depart after servicing customer i at time t to arrive at customer

i+1 at time k. The cost of this arc includes the driver wage, the fuel consumption cost

and a penalty for violating the soft time window at customer i+1. We define a dummy

node n+ 1 connected with arcs of cost 0 to all the nodes in the graph corresponding to

the last customer in the route. An optimal solution to the SOPSTW corresponds to a

shortest path from node 0 to node n+ 1. Two examples of such graph are displayed in

Figure 4.1.

The graph G does not contain cycles, and hence computing shortest path from node 0

to node n + 1 can be achieved efficiently by means of topological sorting of the graph

(Cherkassky et al., 1996). The nodes from 0 to n+ 1 are sorted in such a way that if a

node x is ranked before node y, there is no arc going from y to x. The shortest path is

represented as a sequence of nodes SP = (0, 1t1 , 2t2 , . . . , n + 1) where ti, i ∈ N0 is the

index corresponding to the vehicle arriving at customer i at time ti. The shortest path

from node 0 to node n+ 1 is computed as shown in Algorithm 3.

4.3.2.1 Fixed time step (FTS)

Discretizing the arrival times at customers can also be achieved in different ways. The

first technique that we present is that of Fagerholt (2001), which consists of considering

as an input parameter a fixed time step δ > 0 that separates each two consecutive arrival

times, i.e., δ = it − it−1. However, for the last possible arrival time i|Ti| at customer i,

the inequality i|Ti| − i|Ti|−1 ≤ δ holds. Algorithm 4 shows the computation technique of

the possible arrival times at customer i with a hard time window [ai, bi].
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Algorithm 3 Discretized arrival time algorithm

1: Input: distances, customer sequence, service times, soft time windows
2: Input: cost function cost(x, y), defined for every arc (x, y) in graph G
3: Create artificial hard time windows
4: Create graph G
5: Sort topologically graph G (x comes before y, if and only if ∄ arc (x, y) ∈ G )
6: Vector label
7: label[0] = 0
8: for node x ∈ G, x ̸= 0 do label[x]=∞
9: end for

10: for arcs (x, y) ∈ G do
11: if label [y] > label [x] + cost(x, y) then
12: label [y] ← label [y] + cost(x, y)
13: end if
14: end for
15: Compute a shortest path SP
16: return SP

Algorithm 4 Possible arrival times computation

1: Input : time step δ
2: Input : customer index i
3: p← ai
4: t← 1
5: while p < bi do
6: it ← p
7: p← p+ δ
8: t← t+ 1
9: end while

10: it ← bi

This technique considers more possible arrival times at a customer having a large time

window than at a customer with a narrower time window. The time step δ can thus

be seen as the desired accuracy of the discretization. Figure 4.1a depicts an instance

where customer 2 has the largest time window, followed by customer 1 and customer 3.

A node label it means that the vehicle arrives at customer i at time t.
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(a) Fixed time step graph (b) Fixed size graph

Figure 4.1: Time-space networks example with different discretization techniques

4.3.2.2 Fixed size graph (FSG)

An alternative technique to discretize the possible arrival times consists of considering

a discretization set Ti of a fixed and equal cardinality |Ti| = m for all customers i ∈ N0.

The number of nodes in the graph, taking into account the depot and node n + 1, is

then nm+ 2. Figure 4.1b depicts a graph with m = 4.

4.3.2.3 Fixed size graph with zooming (FSG-Z)

Artificial hard time windows built using the procedure described in Section 4.3.2 are

usually large, which yields large-scale graphs. We propose an iterative procedure to

overcome this problem and accelerate the FSG technique. It consists of solving a series

of small problems rather than a single large one. We iteratively solve a series of FSGs

with a fixed and small number of discretization steps until reaching a stopping criterion.

At every iteration, the customer time windows are narrowed down in a zooming fashion.

This approach is described in Algorithm 5.

In Algorithm 5, we first create the artificial hard time windows for each customer. We

then create the graph and find the shortest path SP from 0 to n + 1 using the FSG

method presented in Section 4.3.2.2. We then iterate on the elements of the shortest

path iti ∈ SP, i ∈ N0 that represent the optimal arrival time at each customer. For

all customers i ∈ N0, we recompute the artificial time window taking into account the

arrival time selected in the shortest path in the previous iteration. We repeat this process

until meeting the stopping criterion.
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Algorithm 5 FSG-Z Procedure

1: Input : distances, customer sequence, service times, soft time windows
2: Converged← False
3: Create artificial hard time windows
4: while not Converged do
5: Create graph G
6: Solve FSG on graph G using Algorithm 3 and compute the shortest path SP
7: if SP satisfies stopping criterion then
8: Converged← true
9: else

10: for node iti ∈ SP do
11: if ti = 0 then
12: ai ← iti
13: else
14: ai ← iti−1

15: end if
16: if ti = m then
17: bi ← iti
18: else
19: bi ← iti+1

20: end if
21: end for
22: end if
23: end while
24: return SP

4.3.2.4 Theoretical complexity of time-space algorithms

All three algorithms FTS, FSG and FSG-Z operate on a time-space network, in which

shortest path problems are solved using Algorithm 3 in an acyclic, topologically sorted

graph G = (V,E). We denote by K = |V | the number of nodes in the graph, and we

denote the number of its arcs by M = |E|. The algorithms use labels for every node

of the graph, and does so by visiting all the arcs of the graph following the topological

order. Therefore, the algorithm does O(K +M) iterations to find a shortest path.

The complexity of Algorithm 3 depends on the number of nodes and arcs in the graph.

Therefore, to compare between the approaches FTS, FSG and FSG-Z, we evaluate the

sizes of the graphs produced by each approach, and how many graph each approach

solves.

The FTS approach creates arrival times such that there is a fixed time step δ be-

tween each two discretizations. The maximum number of discretization per customer is

achieved at the customer i with the largest time window of width wi. The number of

nodes of the graph generated with FTS is O(nwi/δ), where n is the number of customers.

Since the nodes representing the same customer are not connected, and only the nodes

of consecutive customers are connected, the number of arcs in the graph is O(n(wi/δ)
2).
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The FSG approach creates a fixed number discretizations m per customer, and therefore

the number of nodes is O(nm). The number of arcs of the graph is O(nm2). We can

conclude that if m is smaller than (wi/δ), then FSG is easier to solve, otherwise FTS

will be easier.

The FSG-Z approach creates the same number of nodes and arcs as FSG, but it operates

differently to attain the desired accuracy. In particular, FSG-Z solves a series of problems

using a smaller number m of discretizations. Since the number of arcs is polynomial in

terms of m, a much smaller number of arcs are generated, which makes FSG-Z faster

than both FSG and FTS.

4.3.2.5 Illustrative example

To show how the algorithms mentioned above operate, we provide an illustrative example

consisting of a route with four ports, starting at Antwerp (Belgium), calling at Milford

Haven (United Kingdom), Boston (United States) and finishing at Charleston (United

States). This example is a sub-route of the example presented by Fagerholt et al. (2010).

Figure 4.2 shows the distances between ports (miles), and time windows (hours) above

each arc and node, respectively. The objective function considered in this illustrative

example is explained in Section 4.4.2.

0

[0,0]

Antwerp

1

[24,120]

Milford Haven

2

[216,312]

Boston

3

[264,336]

Charleston

510 2699 838

Figure 4.2: Distance and time window data

We solve this instance with FTS, FSG and FSG-Z. We present In Figures 4.3 and 4.4 two

graphs created by using FTS in Figure 4.3, with a discretization step of 24 hours, and by

using FSG in Figure 4.4, with 100 discretization steps. We also solve the instance with

the FSG-Z algorithm, we consider 20 discretization steps and stop when the difference

between each two consecutive discretization is 10 hours. Since the graphs created by

FSG-Z are similar to those created by FSG, showing a graph created by using FSG is

sufficient.

In Table 4.1 we give detailed results of solving the instances with FTS, FSG and FSG-Z.

For every algorithm, we report the number of discretizations Nb disc for all four nodes

denoted from n1 to n4. Line Opt speed shows the optimal speed in knots found by

the algorithm on departure from the corresponding node. The cost, number of nodes

Nb nodes and number of arcs Nb arcs in the resulting graph, total number of iterations

performed by the algorithm Nb iterations, the solution time in milliseconds Sol time and
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Figure 4.3: Time-space network created using FTS
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Figure 4.4: Time-space network created using FSG

the number of graphs generated Nb graphs are also reported. We can see from Table

4.1 that the number of discretization in the FTS method depends on the node, while

for the FSG and FSG-Z is fixed. The number of arcs and nodes created by the FTS

and FSG are almost 10 times larger than those created by FSG-Z. We can also see that

FSG-Z yields the lowest cost after solving three graphs. Table 4.2 provides information

about the three graphs solved by FSG-Z represented by columns FSG-Z1, FSG-Z2 and

FSG-Z3. Additionally to what has been reported in Table 4.1, we provide the earliest

discretization Earliest disc and the latest discretization Latest disc for each customer to

show how the zooming procedure works.
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FTS FSG FSG-Z

Nodes n1 n2 n3 n4 n1 n2 n3 n4 n1 n2 n3 n4

Nb disc 1 22 130 163 1 100 100 100 1 20 20 20
Opt speed 11.5 13.2 14.7 - 14.5 14.5 14.5 - 14.1 14.1 14.1 -

Cost 332 323 322
Sol time 10 10 0
Nb nodes 317 302 186
Nb arcs 24072 20100 2460

Nb iterations 24389 20402 2646
Nb graphs 1 1 3

Table 4.1: Algorithms run statistics

We see from Table 4.2 that the number of nodes and arcs is small, which results in a small

number of iterations. We see also that the difference between the earliest discretization

of customers decreases significantly after two iterations, from 490 hours to 5 hours in

the case of the first customer. We see also that the cost is reduced after each iteration

and speed is adjusted accordingly. By solving small instances, the FSG-Z method was

able to provide better solutions faster on this instance.

FSG-Z1 FSG-Z2 FSG-Z3

Nodes n1 n2 n3 n4 n1 n2 n3 n4 n1 n2 n3 n4

Earliest disc 0 20.4 128 161 0 20.4 128 161 0 34 213 269
Latest disc 0 510 3209 4047 0 72 452.63 570 0 39 247 312
Opt speed 0 11 11 11 0 13.9 13.9 13.9 0 14.1 14.1 14.1

Cost 393 322.4 322.1
Sol time 0 0 0
Nb nodes 62 62 62
Nb Arcs 820 820 820

Nb Iterations 882 882 882

Table 4.2: FSG-Z iterations analysis

4.4 Computational experiments

This section aims to evaluate the performances of the linearization methods described

in Section 4.3 compared to the non-linear formulation (NLM), and to derive managerial

insights for maritime and road transportation. We first carry out intensive computa-

tional experiment solving 120 instances in the road transportation context, which allows

us to conclude which method is better and to derive managerial insights for road trans-

portation. We then solve 30 maritime transportation instances with the aim of deriving

insights related to the consideration of soft time windows.

All tests were performed on a computer equipped with an Intel Core i7-3770 proces-

sor, 3.4 GHz and a RAM of 8GB. The non-linear model described in Section 4.2 was

solved using the open-source solver Interior Point Optimizer (Ipopt) 3.12.4 using the

https://projects.coin-or.org/Ipopt
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AMPL modeling language. The mixed integer linear program described in Section 4.3.1

were solved using CPLEX 12.6.0.1 with default options within the C++ programming

language.

4.4.1 Road transportation

There exist several emission models depending on the vehicle type. Demir et al. (2014b)

reviewed and compared the available models for road freight transportation. Here, as

in Chapter 2, we use the emission model of Barth and Boriboonsomsin (2008) which is

defined in Section 2.3. The values of the fuel consumption model parameters are the

same as those used in Table 2.4.

4.4.1.1 Instance generation

All experiments were conducted on randomly generated instances with a number of

nodes varying between 20 and 200, where, for a given number of nodes, we generate and

solve 20 different instances. The distances in meters between successive customers were

generated from a continuous uniform distribution U(3000, 15000). Using these distances,

the minimum speed vl, and the maximum speeds vu, we generated the largest possible

time window [amin
i , bmax

i ] for each customer using an approach similar to that described

in Section 4.3.2. The upper and lower limits of the soft time window were drawn from

the continuous uniform distribution U(amin
i , bmax

i ). The service times (in seconds) were

drawn from the continuous uniform distribution U(300, 1500).

4.4.1.2 Parameters and results

We solved all instances using the NLM and the algorithms described in Section 4.3. The

results are presented in Table 4.3, where the name and the parameters of each algorithm

appear in the columns “Algorithm” and “Parameter”. The remaining columns show the

number of the nodes in the instances solved.

For every algorithm and parameter, we provide the average solution time in milliseconds

(ms), and the normalized cost compared with the optimal value obtained with the non-

linear model, expressed as the ratio (rt) to the value of optimal solution. For example,

a value of 1.02 means that over the 20 instances solved, the gap between the solution

found and the optimum is 2%.

The non-linear model does not contain any parameter. The parameter of the DSM

method represents the speed step between every two speed levels. We considered

three different speed step values which are one km/h (the possible travel speeds are

20, 21, . . . , 96), five km/h and 10 km/h. For the FSG algorithm, the parameter is the

https://ampl.com/
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number of possible arrival times at each customer. We considered four different values

50, 100, 150 and 200 of possible arrival times per customer. The parameter of the FST

is the length of the time step δ between every two possible consecutive arrival times. We

considered four time step values of 60, 180, 300 and 900 seconds.

The FSG-Z method uses two parameters which are displayed in Table 4.3. The first

parameter is the number of possible arrival times at each customer. We considered 10,

20, 50 and 100 possible arrival times per customer. The second parameter is the stopping

criterion. Since at every iteration the customers time windows are narrowed, we stop the

method once the largest time window of any customer is smaller than a given accuracy

threshold. We considered four different threshold values of 60, 300, 600 and 900 seconds.

4.4.1.3 Methods performance: trade-off between accuracy and time

We can see from Table 4.3 that the NLM found an optimal solution on each instance.

The average solution time increases significantly with the size of the instance. This

algorithm needed almost one second to solve instances with 200 customers. In attempt

to reduce solution time for the NLM, we allowed Ipopt to stop if the optimality gap

becomes less than 2%. Due to the convexity of the problem, this could only save one

iteration and the Ipopt returned the same results and did not change the average solution

time of the method.

The DSM algorithm found solutions within less than 0.2% of the optimum for all values

of the single parameter. The solution times are drastically affected by the value of the

speed step. The computation times obtained with one km/h speed step is larger than

those of the NLM on all instances, and this algorithm is therefore not suitable for the

problem. However, the computation times obtained with a speed step of five km/h are

between one and three times smaller than those the NLM, and using a 10 km/h speed

step is slightly faster.

The performance of the FSG algorithm and solution times depend on the number of

nodes of the graph. Using 150 or more discretizations per customer always yields longer

computation times than those of NLM. Using 50 and 100 discretizations yields similar

results in terms of gap with respect to the optimum. However, setting the parameter at

50 discretizations, as opposed to 100, is almost three times faster on all instances.

The FTS with a 900 second time step provides poor solution values lying between 36%

and 53% of the optimum. A time step of 60 or 180 seconds results in slower computing

times than those of the NLM on all instances with at least 50 nodes. Using a 300 second

time step quickly provided solution values quickly within less than 3% of the optimum

for instances with 20 and 50 nodes; however, the algorithm was slower than solving the

NLM by Ipopt on larger instances.
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The FGS-Z algorithm contains two parameters, both of which affected solution time and

accuracy. On the 20-node instances all settings yielded faster times and produced solu-

tion values within less than 1% of the optimum. However, using 10 or 20 discretizations

can be up to 20 times faster than the NLM.

On instances with 50 nodes and more, FGS-Z with 100 discretizations is slower than

NLM; FGS-Z with 50 discretizations yields solutions with an optimality gap between 1%

and 2%, and a solution time similar to or slightly smaller than that of NLM. Applying

FGS-Z with 10 or 20 discretizations yields solutions with an optimality gap of less than

2% and 3%, respectively, and a solution time between 10 to 20 times smaller than that

of solving the NLM by Ipopt. Using 10 nodes provides in most cases the same results

as for 20 nodes, and reduces the solution time by up 50%.

All algorithms tested possess different strengths, and none is strictly faster than the

others or provides the best results on all instances. Whilst the SOP is a stand-alone

problem, it generally arises within a more general problem of finding optimal routes and

schedules where it may need to be repeatedly solved to optimality within very short

time scales. We can obtain solutions within less than 0.2% of the optimum by using the

DSM with five or 10 km/h speed steps, which is faster than solving NLM. If optimality

is not required, and the SOP is solved as subproblem within heuristic methods, we can

obtain solutions up to 10 times faster than with DSM and 20 times than with NLM and

an average optimality gap of 2% by FSG-Z with 10 or 20 discretizations.

4.4.1.4 Soft time window, penalty and fuel consumption

We now investigate the effect of the penalty function on fuel consumption. In Table 4.4

we solve the problem, using the DSM model, with three different values of late and early

arrival penalties: 0.0014, 0.0028 and 0.0056 (£/second). We compare the fuel cost (FC),

the driver cost (DC) and the average time window violation per customer (ATVC) in

minutes. The solution values obtained for the tests with penalties 0.0028 and 0.0056 are

expressed in terms of percentage increase with respect to the solution values obtained for

the 0.0014 penalty; negative percentages correspond to a decrease in the solution value.

Every line reports average values across all solutions obtained for different instances

with the same number of nodes.

We can see from Table 4.4 that using a larger penalty increases both the fuel consumption

and the driver cost. This is due to the fact that the vehicle has to slow down to avoid

arriving early at customer locations, which generally increases the fuel consumption and

the driver cost. We can also see that the fuel cost increase is more important than that

of driver cost; on the other hand, it decreases the ATVC. It is worth mentioning that

for large instances, the ATVC decreases slightly and is almost steady, while the fuel and

driver costs continue to increase.
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Algorithm Parameters 20 nodes 50 nodes 75 nodes 100 nodes 150 nodes 200 nodes
Cost Time Cost Time Cost Time Cost Time Cost Time Cost Time
(rt) (ms) (rt) (ms) (rt) (ms) (rt) (ms) (rt) (ms) (rt) (ms)

NLM - 1.00 144 1.00 157 1.00 209 1.00 310 1.00 554 1.00 945

DSM
1 1.00 642 1.00 241 1.00 430 1.00 512 1.00 1021 1.00 1309
5 1.00 49 1.00 127 1.00 173 1.00 193 1.00 290 1.00 378
10 1.00 44 1.00 106 1.00 130 1.00 169 1.00 293 1.00 332

FSG

200 1.00 197 1.01 500 1.01 763 1.01 1007 1.02 1526 1.03 2016
150 1.00 118 1.01 302 1.02 459 1.02 608 1.03 922 1.03 1216
100 1.00 61 1.02 154 1.03 236 1.03 308 1.04 472 1.04 620
50 1.01 19 1.04 46 1.05 69 1.05 93 1.05 141 1.04 183

FTS

60 1.00 143 1.00 2138 1.00 7119 1.00 16577 1.00 56336 1.00 130471
180 1.01 22 1.01 275 1.01 884 1.01 1998 1.01 6592 1.01 15115
300 1.03 11 1.02 114 1.02 351 1.02 783 1.02 2511 1.01 5695
900 1.36 3 1.48 20 1.48 58 1.50 115 1.53 349 1.52 752

FSG-Z

100, 60 1.00 131 1.00 334 1.01 504 1.01 661 1.02 992 1.02 1453
100, 300 1.00 127 1.00 336 1.01 507 1.01 665 1.02 993 1.02 1299
100, 600 1.00 57 1.00 339 1.01 514 1.01 670 1.02 1002 1.02 1305
100, 900 1.00 57 1.01 281 1.01 510 1.01 665 1.02 1000 1.02 1300
50, 60 1.00 41 1.01 128 1.01 197 1.02 318 1.02 481.5 1.02 632
50, 300 1.00 42 1.01 104 1.01 156 1.02 203 1.02 304 1.02 460
50, 600 1.00 40 1.01 102 1.01 151.5 1.02 198.5 1.02 298.5 1.02 387
50, 900 1.01 19.5 1.01 102 1.01 152.5 1.02 200.5 1.02 298.5 1.02 389
20, 60 1.01 16 1.02 41 1.01 74 1.01 86 1.02 150 1.02 211
20, 300 1.01 11 1.02 34 1.01 62 1.01 80 1.02 121 1.02 156
20, 600 1.01 11 1.02 27 1.01 55 1.02 63 1.02 121 1.02 158
20, 900 1.01 12 1.02 26 1.02 39 1.02 62 1.02 105 1.02 156
10, 60 1.01 9 1.02 24 1.02 40 1.02 49 1.03 85 1.02 110
10, 300 1.01 7 1.02 20 1.02 34 1.02 44 1.03 67 1.02 86
10, 600 1.01 6 1.02 17 1.02 30 1.03 34 1.03 66 1.02 86
10, 900 1.02 5 1.02 17 1.02 26 1.03 35 1.03 56 1.02 88

Table 4.3: Comparison of all algorithms in terms of cost and CPU time
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To further investigate the effect of time windows, we consider the following three different

configurations. In the first one we allow the vehicle to arrive at customers before, during

or after the time window. In the second configuration we allow the vehicle to arrive

only during or after the time window. In the third configuration, we allow the vehicle to

arrive only before and during the time window. In all three configurations, the penalty

for late and early arrivals, if applicable, is the same at 0.0028 £/second. The column

labels are the same as in Table 4.4, and in addition, we show the total cost (TC) in £.

The results are displayed in Table 4.5.

We can see from Table 4.5 that both the TC and ATVC increase significantly when we

only allow late or early arrivals. Allowing early arrivals only yields a reduction in the

FC and the DC, but this is done at the expense of the ATVC which increases drastically.

The TC of the latter is larger than the TC obtained by allowing only late arrivals. We

see therefore that allowing both early and late arrivals, at the same time, is the best

option. If this is not possible, allowing only late arrivals is the second best option.

Instance
Penalty 0.0014 Penalty 0.0028 Penalty 0.0056

FC DC ATVC FC DC ATVC FC DC ATVC

(£) (£) (mins) (%) (%) (%) (%) (%) (%)

20 23 83 14 5 3 −12 12 7 −19
50 63 226 37 4 2 −3 11 5 −6
75 98 348 58 4 2 −2 9 4 −3
100 129 461 83 4 2 −1 9 3 −2
150 199 704 119 3 1 −1 7 2 −1
200 266 951 173 4 1 0 8 2 −1

Average 130 462 81 4 2 −3 9 4 −5

Table 4.4: Comparison of costs under three penalty values

Instance
Early and late arrivals Late arrivals only Early arrivals only

FC DC ATVC TC FC DC ATVC TC FC DC ATVC TC

(£) (£) (mins) (£) (%) (%) (%) (%) (%) (%) (%) (%)

20 25 86 13 153 17 12 51 23 −3 −8 88 19

50 65 231 36 599 20 14 89 53 0 −12 132 62

75 102 355 56 1166 17 12 89 59 −2 −16 169 98

100 135 468 82 1975 21 17 96 72 −1 −15 165 111

150 205 709 119 3902 20 16 107 86 −3 −18 197 148

200 275 957 172 7012 20 17 105 90 −5 −21 203 164

Average 135 468 80 2468 19 15 90 64 −2 −15 159 100

Table 4.5: Comparison of costs for three time window types
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4.4.1.5 Waiting times at customers

We now assess the effect on fuel consumption of allowing idle waiting times at customers,

before or after service. We ran the experiments on all instances, and we provide the

results, obtained by the DSM model, in Table 4.6, where the column labels are similar

to those of Table 4.5. The results under column “No waiting times” displays the values

of the column labels, whereas the results under column “With waiting times” are the

percentage increase with respect to the values of “No waiting times” column.

We can see from Table 4.6 that allowing idle waiting times at customers reduces fuel

consumption, with an average saving of 23% across all instances. The average time

window violation per customer is also significantly decreased, by 18% on average. A

slight average increase of 4% in driver cost can be observed, which means that the time

to complete the route is longer. However, the total cost decreases by 10% on average.

Instance No waiting times With waiting times
FC DC ATVC TC FC DC ATVC TC
(£) (£) (mins) (£) (%) (%) (%) (%)

20 25 86 13 153 −24 3 −36 −12
50 65 231 36 599 −23 5 −20 −11
75 102 355 56 1166 −24 3 −18 −12
100 135 468 82 1975 −22 5 −13 −9
150 205 709 119 3902 −21 3 −11 −9
200 275 957 172 7012 −21 3 −8 −7

Average 135 468 80 2468 −23 4 −18 −10

Table 4.6: Comparison of costs with disallowed or allowed waiting time at customers

4.4.2 Maritime transportation

For maritime transportation, we use the fuel consumption model introduced by Fagerholt

et al. (2010) which was developed using real-word data, and has been then frequently

used in the literature. Equation (4.23) expresses fuel consumption in metric tons (mt)

as function of speed and distance.

Ef (v, d) = d(0.0036v2 + 0.1015v + 0.8848) (4.23)

We test the solving methods on instances generated by He et al. (2017), available at

http://www.menet.umn.edu/ qhe/. We solve 30 instances that have between 10, 100

and 1,000 ports, 10 instances are available for each size. Each instance was generated

with distances uniformly drawn between 100 and 1,000 nautical miles, and the time

windows for each port were set to 240 hours (10 days). A referential bunker price of

470$ is used according to https://shipandbunker.com. To calculate the penalty cost

http://www.menet.umn.edu/~qhe/
https://shipandbunker.com
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incurred in case of time window violation, we use a linear penalty function in terms of

duration of violation, as was done by Fagerholt (2001). For early arrivals a penalty cost

equivalent to the operation cost of the vessel for the violation duration is incurred. For

late arrivals, a penalty equivalent to three times the penalty for early arrivals is applied.

Daily operating costs for a vessel is taken from (Grenier, 2013; Faury and Cariou, 2016)

is considered to be 9,000$ per day. To the best of the authors’ knowledge, there is no

widely accepted penalty value since it depends heavily on ports and ship types. We will

therefore run a cost analysis with different penalty values in Table 4.8.

4.4.2.1 Methods performance on maritime instances

In this section, we compare on maritime instances the methods that performed best on

the road transportation instances. In Table 4.7 each line represents the instance solved,

while the cost of solutions is reported in thousands of dollars (k$), and the solution

time is in milliseconds (ms). The gap in cost between the DSM and FSG-Z solution

values and those of the NLM is also reported in percentage of the optimal solution value.

The NLM model found the optimum on all instances, and as in road transportation

instances, it is the most time consuming. The FSG-Z model with 20 discretizations and

an accuracy of 10 hours found the optimal solutions on 10 ports instances, while the

DSM model had a gap of 0.2%. In instances with 100 ports, FSG-Z found solutions

with less than 0.1%, whereas the DSM, which was slightly faster, had a gap of 0.6% on

average, and a worst gap of 1% on instance 100 8. FSG-Z was the fastest on 1,000 ports

instances, and found solutions with a gap not exceeding 0.1% in gap, while the DSM

model was slower and found solutions with a gap of 0.9%. We also see from Table 4.7

that when the number of ports becomes larger, the solution time of the NLM increases

drastically, followed by that of the DSM model, while the FSG-Z solution time increases

in a linear fashion. Table 4.7 also shows that the NLM solution time is heavily dependent

on the instance solved, whereas the DSM solution time is less instance-dependent, and

the FSG-Z solution time is not instance-dependent.

4.4.2.2 Soft time windows vs hard time windows

In this section we study how the total cost (TC), average time window violation per

customer (ATVC) in hours (h) and average speed (AS) in knots (kt) change with change

in time window type and penalty values. The tests were run on five instances with 100

customers, and we report the average results in Table 4.8. We solve the same instances

with three different time window lengths of three, five and 10 days. The first line shows

the results obtained with the standard penalty costs. The second line shows the results

obtained with consideration of hard time windows. In the third and fourth lines the
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Instance NLM DSM FSG-Z (20,10)
Cost Time Cost Gap Time Cost Gap Time
(k$) (ms) (k$) (%) (ms) (k$) (%) (ms)

10 1 449 513 450.277 0.2 0 449 0.0 0
10 2 399 37 399 0.2 10 399 0.0 0
10 3 374 34 375 0.2 10 374 0.0 10
10 4 403 47 404 0.2 10 403 0.0 10
10 5 260 38 261 0.2 0 260 0.0 10
10 6 388 38 389 0.2 0 388 0.0 10
10 7 345 55 345 0.2 20 345 0.0 10
10 8 382 58 383 0.2 10 382 0.0 10
10 9 384 50 384 0.2 0 384 0.0 0
10 10 317 42 318 0.2 10 317 0.0 10

Average 370.2 91.0 370.9 0.2 7.0 370.2 0.0 7.0

100 1 6117 186 6152 0.6 90 6119 0.0 110
100 2 6074 196 6108 0.6 90 6076 0.0 100
100 3 6074 229 6107 0.6 90 6076 0.0 100
100 4 6074 190 6107 0.5 120 6076 0.0 110
100 5 6296 186 6324 0.4 80 6298 0.0 110
100 6 6564 193 6586 0.3 100 6567 0.0 110
100 7 6081 349 6117 0.6 80 6085 0.1 110
100 8 5422 288 5479 1.0 100 5424 0.0 110
100 9 6164 187 6200 0.6 90 6166 0.0 100
100 10 5662 212 5707 0.8 80 5665 0.1 110

Average 6052.7 222.0 6088.8 0.6 92.0 6055.1 0.0 107.0

1000 1 74547 1829 75185 0.9 2110 74554 0.0 1320
1000 2 74114 17851 74748 0.9 2090 74125 0.0 1320
1000 3 72854 2527 73485 0.9 2010 72873 0.0 1320
1000 4 74416 15639 75052 0.9 1950 74427 0.0 1310
1000 5 72024 2563 72647 0.9 2090 72039 0.0 1320
1000 6 74675 8262 75319 0.9 2060 74685 0.0 1320
1000 7 74618 2392 75260 0.9 2050 74630 0.0 1320
1000 8 74860 2618 75499 0.9 2100 74870 0.0 1320
1000 9 75004 2524 75643 0.9 2040 75012 0.0 1310
1000 10 73710 14754 74343 0.9 2070 73715 0.0 1330

Average 74082.3 7095.9 74718.0 0.9 2057.0 74092.9 0.0 1319.0

Table 4.7: Methods performance on maritime instances



Chapter 4 Speed Optimization under Soft Time Window Constraints 83

value of the penalty is divided by four and two, respectively. In the fifth line, the value

of the penalty is multiplied by two.

We see from Table 4.8 that the ATVC depends more on the value of the penalty than

on the length of the time window. Narrowing the time window from 10 days to three

days increases the ATVC from 0.31 h to 0.54 h, while reducing the value of penalty cost

by two increases the ATVC to 1.93 h. We conclude that the ATVC can be controlled to

achieve a certain service quality level by a fine tuning of the penalty costs. We can also

see that carefully tuning the value of penalty costs with soft time windows can reduce the

cost without increasing the ATVC significantly. the penalty cost and time window type

also have an impact on the average speed of the vessels: with smaller penalty values, it

is optimal to travel at lower speeds, which reduces the amount of fuel consumed. Table

4.8 also shows how the change in time window length affects the total cost. In fact,

considering hard time windows with a length of five days results in lower cost than

three-day soft time windows. This shows that for logistics companies, negotiating larger

hard time windows may yield more savings in the total costs than narrower soft time

windows.

10 days Tw 5 days Tw 3 days Tw
Cost ATVC AS Cost ATVC AS Cost ATVC AS
(k$) (h) (kt) (k$) (h) (kt) (k$) (h) (kt)

Standard 6160 0.31 18.27 6887 0.57 18.94 7211 0.54 19.20
HTW 6195 0.00 18.47 6953 0.00 19.24 7277 0.00 19.55

1/4 Penalty 5986 6.16 17.88 6627 8.41 18.55 6937 9.32 18.86
1/2 Penalty 6079 1.93 18.17 6743 2.24 18.86 7065 2.42 19.17
2 Penalty 6160 0.16 18.34 6839 0.19 19.17 7171 0.19 19.42

Table 4.8: Cost and speed variability with time window length, type and penalty values

4.5 Conclusions

We have introduced, modeled and solved the Speed Optimization Problem with Soft

Time Windows. We first provided a non-linear model, which was then linearized by

discretizing the speed variables. We also proposed a way to model the problem as

a time-space network by discretizing the possible arrival times at the customers, and

solving the resulting problem as a shortest path problem. We considered two different

techniques to discretize the possible arrival times at customers. An iterative method

was developed to accelerate the time-space network algorithm.

We tested all algorithms on 120 generated instances with a number of customers varying

between 20 and 200. Our results show that although the non-linear model found an

optimal solution on all instances, very similar solutions were found up to three times
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faster with a discretized speed model. The time-space network methods, including that

of Fagerholt (2001), found good solutions on small instances, but both the discretized

speed model and the non-linear model provided better solutions faster. The use of the

iterative acceleration method provided solutions with optimality gaps varying between

1% and 3%, but could be found 10 and 30 times faster than with the direct solution of the

non-linear model. We also showed that the penalty value has a more significant impact on

fuel consumption than on driver cost, and can reduce the average time window violations

on small-size instances. We showed that to be efficient, soft time windows should allow

for both early and late arrivals at customers. Finally, we assessed the effect of allowing

idle waiting times at the customers, and showed that it can decrease fuel consumption

by almost 25%, and the average time window violations by almost 20%. The time to

complete the routes slightly increases by 4% on average, but an average saving of 10%

can be achieved on the total cost. We showed that the methods’ performance remains

similar in maritime and road transportation contexts. The FSG-Z solved instances with

1,000 ports almost six times faster than the NLM. We also showed how total cost, time

window violations and average speed change with the penalty values and consideration

of hard time windows. We pointed out that larger hard time windows may result in

lower total costs than narrower soft time windows.
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5.1 Short summary

Throughout the realization of this thesis, minimizing the impact of freight transportation

on the planet was at the heart of the thesis, and its author. Numerous studies have

suggested that an optimal control of vehicle routes and speeds can yield minimized

GHG emissions. In the second chapter of this thesis, we aimed at generalizing these

results, and considered uncertainty in traffic conditions, which was a limitation in the

applicability of previous studies. The third chapter provides decomposition algorithms

to solve this problem for larger instances. In the fourth chapter, we contributed to the

speed optimization problem literature by considering soft time windows and assessing

their value for maritime and road transportation.

In this chapter we highlight the main contributions of the work carried out in this thesis.

We first present the findings of the three main chapters in response to the research

questions proposed in Chapter 1. We then list the research outputs of this study, and

discuss its limitations. We finally conclude by proposing several directions for future

research.

5.2 Main findings

In Chapter 2 we have proposed several two-stage stochastic programs to model and solve

the Pollution-Routing Problem under stochastic traffic conditions. Innovative modeling

techniques were used to linearize the original model. The models proposed were able to

represent traffic speed uncertainty as discrete random variables. Two different recourse

strategies were proposed, one discrete and optimal and one continuous but not always

optimal. The main findings of Chapter 2 can be summarized as:

• Considering uncertainty permits reducing the total cost (including the cost of GHG

emissions) by 7.48% on average for 10-node instances.

• Perfect knowledge of traffic conditions can further save only 1.27% of the total

cost compared to the stochastic approach.

• Despite not being optimal theoretically, fixed continuous recourse provided better

results than discretized recourse,

In Chapter 3, we adapted the Integer L-shaped method to the PRP under uncertain

traffic conditions. We also proposed two variations of the algorithm that embed new

cuts, lower-bounds and local branching. When tested on 20, 25 and 50-node instances

all the methods provided better solution than the commercial solver CPLEX. The main

findings of Chapter 3 are:
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• Integer L-shaped based algorithms outperformed commercial solver CPLEX on all

instances tested.

• The variations of the algorithm yielded similar results on average, but outper-

formed each other on individual instances.

• The cuts proposed for Lshaped A significantly improved the lower bound compared

to Lshaped O.

In Chapter 4 we have considered the Speed Optimization Problem with Soft Time Win-

dows. We provided a non-linear model that we linearized and proposed two algorithms

based on time-space networks, which differs in the way possible arrival times at customers

are discretized. We also proposed an acceleration method for the time-space network

algorithms. We solved instances of the problem in road and maritime transportation

context. The answers proposed by Chapter 4 are:

• The discretized speed model finds optimal solutions up to three times faster than

the non-linear model.

• The accuracy and computational time of time-space network depend on the dis-

cretization technique.

• The acceleration method proposed proposed solutions up to 30 times faster than

the non-linear model, with an optimality gap less than 3%.

• Allowing vehicle to wait idly at customers can reduce fuel consumption by up to

25% and yields a total cost saving of 10% on average.

• Wider hard time windows may yield better solution values than narrower soft time

windows.

5.3 Research outputs

The present thesis has generated scientific papers and conference presentations. One

paper has been published:

• Nasri, M I. Bektaş, T., Laporte, G., 2018. “Route and Speed Optimization for

Autonomous Trucks”, Computers & Operations Research.

One paper has received a “revise and resubmit” verdict and has been resubmitted :

• Nasri, M I. Bektaş, T., Laporte, G., 2018. “Speed Optimization under Soft Time

Window Constraints”, Transportation Research Part E: Logistics and Transporta-

tion Review.
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Five conferences and presentations.

• Nasri, M I. Bektaş, T., Laporte, G. “ The Pollution-Routing problem with stochas-

tic travel times”, Southampton Business School Student Conference, 2015, Southamp-

ton.

• Nasri, M I. Bektaş, T., Laporte, G. 2018. “ The Pollution-Routing problem with

stochastic travel times”, Optimization Days, 2015, Montreal.

• Nasri, M I. Bektaş, T., Laporte, G. “ The Pollution-Routing problem with stochas-

tic travel times”, Vehicle Routing and Logistics Conference (VeRoLog), 2015,

Nantes.

• Nasri, M I. Bektaş, T., Laporte, G. “ Integer L-shaped Based Algorithms for

the Pollution-Routing Problem under Traffic Uncertainty”, Vehicle Routing and

Logistics Conference (VeRoLog), 2016, Amsterdam.

• Nasri, M I. Bektaş, T., Laporte, G. “ Route and Speed Optimization for Au-

tonomous Trucks”, Southampton Business School Student Conference, 2018, Southamp-

ton.

5.4 Research limitations and future research directions

Although the thesis responded to the research questions, it has done so with unavoid-

able limitations. These limitations are due to some necessary assumptions, and some

simplifications made necessary by the time limit to accomplish this thesis. Below are

some limitations of the study with future research directions for each of the three main

chapters.

Chapter 2 • We represented the traffic uncertainty by discrete random variables.

This is a sound technique, that has previously been used successfully in the

literature, however only three scenarios were considered due to the complexity

of the problem. Considering more traffic condition scenarios can prove more

realistic.

• We represented the problem on a network where customers are connected by

arcs. This approach can be used to assess the advantages of taking uncertainty

into account, however it can underestimate the fuel consumption costs due to

speed variability. Therefore, considering a more detailed road network that

represents an actual road network would provide more accuracy.

• Traffic conditions is a dynamic variable that changes with time. Considering

the problem with time-dependent traffic speed can therefore be more realistic.
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• Due to the complexity of the problem, developing a metaheuristic to solve

large instances can prove to be efficient.

Chapter 3 • We have developed in this chapter new cuts and lower-bounds for the

problem which help the algorithm to provide good solutions on some instances,

however stronger cuts able to eliminate a larger number of solutions from the

set of feasible solutions would be better.

• All the algorithms provided outperformed CPLEX on all the instances tested,

however they were not able to provide proof of optimality.

Chapter 4 • We have explored in this chapter the speed optimization problem and

included soft time windows, however in practice choosing the optimal speed

may not always be possible, therefore traffic conditions uncertainty should be

taken into account.

• The computational results fulfilled the aim of assessing which algorithm per-

formed best, but including a practical problem instance could have been ben-

eficial.

• The potential of integrating the algorithms developed in this chapter within a

metaheuristic or a matheuristic to solve a larger route and speed optimization

problem would be within investigation.
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Laporte. The time-dependent pollution-routing problem. Transportation Research

Part B: Methodological, 56:265–293, 2013.

Ricardo Fukasawa, Qie He, Fernando Santos, and Yongjia Song. A joint routing and

speed optimization problem. arXiv preprint arXiv:1602.08508, 2016a.

Ricardo Fukasawa, Qie He, and Yongjia Song. A disjunctive convex programming ap-

proach to the pollution-routing problem. Transportation Research Part B: Method-

ological, 94:61–79, 2016b.

Michel Gendreau, Ola Jabali, and Walter Rei. Stochastic vehicle-routing problems. In

Paolo Toth and Daniele Vigo, editors, Vehicle Routing: Problems, Methods, and Ap-

plications, pages 213–239. MOS-SIAM Series on Optimization, Philadelphia, 2014.

Michel Gendreau, Ola Jabali, and Walter Rei. Future research directions in stochastic

vehicle routing. Transportation Science, 50(4):1163–1173, 2016.

Michel Gendreau, Gilbert Laporte, and René Séguin. An exact algorithm for the vehicle
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