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UNIVERSITY OF SOUTHAMPTON
Abstract

FACULTY OF SOCIAL SCIENCES
SOUTHAMPTON BUSINESS SCHOOL

Doctor of Philosophy in Management Science

Route and Speed Optimization Problems under Uncertainty and
Environmental Concerns

by Moncef Ilies Nasri

This thesis studies logistics problems with the overall aim to reduce the emission of green-
house gases. These problems are formalized, modeled and solved to derive useful insight
for both logistics companies and policy makers. Chapter 1 introduces the background,
presents the research aims and objectives as well as the research context. Chapter 2
studies The Pollution-Routing Problem under traffic uncertainty. The problem assumes
uncertain traffic conditions and aims at reducing the cost of emissions, fuel consumption
and travel times. Stochastic programming has been used to propose new mathematical
models capable of considering traffic conditions as a discrete set of random scenarios.
Extensive computational experiments are carried out, to quantify the savings yielded
by the stochastic approach over a deterministic approach, and by controlling speed.
Chapter 3 reconsiders the problem defined in Chapter 2. However, instead of solving
it with commercial solvers, new solution techniques based on decomposition, and more
precisely integer L-shaped algorithm that uses cuts, lower-bounds and local-branching
are proposed. Chapter 4 focuses on the speed optimization problem that consists of
choosing the optimal speed on each leg of a given vehicle route represented by a fixed
sequence of customers. The objective function accounts also for the pollution emitted
by the vehicles. Each customer in the sequence has a service time window. Early and
late starts of service are allowed, but at the expense of penalties. A natural model of
the problem in the form of a non-linear program is presented, which is then linearized
in several ways. Several algorithms are described based on the use of time-space net-
works. Managerial insight is derived for maritime and road transportation. Chapter 5
concludes by summarizing the key findings and contributions of this thesis, discusses the

limitations of this work and suggests future directions of research.
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2 Chapter 1 Introduction

1.1 Research context

Road transportation is one of the most common means of transport for freight (Spiel-
mann and Scholz, 2005), but is also one of the most polluting. A report published by
the U.S. Environmental Protection Agency in April 2016 (U.S. Environmental Protec-
tion Agency, April, 2016) shows that the transportation sector was the second largest
contributor of greenhouse gases (GHG) emissions in 2014, with a 26% share of the total.
GHG emissions have increased by 17% between 1990 and 2014, in which period a sharp
increase of 76% was also observed in heavy- and medium-duty trucks emissions. Con-
tinuously deteriorating air quality is believed to result in millions of deaths each year
across the world, and these numbers will double by year 2050 if the current trend holds
(Lelieveld et al., 2015). Many logistics companies and policy makers have started taking

actions to reduce the amount of GHG emissions.

Distribution activities represent a significant share of the cost incurred by companies. It
is for this reason that the Vehicle Routing Problem (VRP) and its variants are among the
most studied optimization problems in the literature (Toth and Vigo, 2014). However,
ever since it was introduced by Dantzig and Ramser (1959), the models and solution
techniques proposed for the problem assumed objective functions representing economic
measures (e.g, distance or cost), and ignored the impact on the environment (Bektas
et al., 2016).

The amount of GHG emitted by a vehicle is directly related to the quantity of fuel con-
sumed, which in turn is affected by a number of parameters including speed and load.
Bektag and Laporte (2011) introduced the Pollution-Routing Problem (PRP), an exten-
sion to the classical VRP where the traditional, profit maximization objective function is
extended to explicitly minimize fuel consumption. The PRP aims at optimizing vehicle

routes and speeds to reduce GHG emissions.

Selecting the optimal travel speed of a vehicle depends on the traffic conditions in the
network, which was not taken into account in the original version of the PRP. Vehicle
speed is often affected by unforeseen and random factors such as weather-related events
or traffic congestion. These events deteriorate traffic conditions, which will prevent vehi-
cles from traveling at desired speeds and force them to travel at the traffic speed. This
may result in a cost increase, which may render optimal solutions computed by ignoring
the uncertainty sub-optimal. In addition, unpredictable delays may be experienced at
customers, which reduces the quality of the service provided. Therefore, incorporating
uncertainty in the optimization process may increase the robustness of planned solutions

against speed variations.

Although several studies have looked at VRP variants under uncertainty and environ-
mental concerns (Hwang and Ouyang, 2015; Ehmke et al., 2016a; Eshtehadi et al., 2017;
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Huang et al., 2017), no approach, to the best of the author’s knowledge, has consid-
ered route and speed optimization to tackle the PRP under uncertain traffic conditions.
In this thesis, we investigate this problematic and provide mathematical models and
formulations, methods, algorithms and tools to bridge identified research gaps in this

context.

1.2 Potential application for autonomous trucks

Autonomous trucks (ATs) are an emerging technology with the potential to revolution-
ize the transportation sector. In Europe, a convoy of more than 12 ATs completed a
European cross-border journey in April 2016 (The Guardian, 2016). The ATs formed
platoons of two or three connected trucks that drove close to each other, using the same
speed, acceleration and steering profile. This was achieved by the use of an existing
technology of adaptive cruise control where the trucks were connected via wireless tech-
nologies with a driver sitting in the lead truck. In such a setting, fuel savings of around
5% can be achieved by the lead truck, and between 10-15% for the follower trucks (Tsug-
awa, 2012). In the US, the first freight shipment with an AT was made on the 25th of
October 2016 (Wired.com, 2016). The truck was able to drive without driver assistance
on the highway. It was able to assess traffic conditions, choose acceleration and speed,
and had the ability to self steer to stay in the driving lane. The truck, however, needed

a driver to control it in complex driving areas, such as cities.

The emergence of ATs can also address the problem of truck drivers shortage. In the US,
there was a shortage of 48,000 truck drivers in 2015, which is predicted to be 175,000
by 2024 under the current trend (Costello and Suarez, 2015). ATs can help increase the
overall traffic safety. Traffic crashes including trucks represent 10% of all crashes in the

US, and more than 90% of accident causes are due to driver errors (Singh, 2015).

The introduction of ATs is likely to significantly improve transport efficiency and reduce
pollution. To capture these two aspects, in addition to determining routes, optimal
speeds at which ATs should travel on each leg of a route should be computed. However,
selecting the optimal travel speed depends on the traffic conditions in the network. In
practice, vehicle speed is often affected by factors that are not known with certainty in
advance, such as weather-related events or traffic congestion. In addition, customers may
experience large and unpredictable delays. Consequently, it makes sense to incorporate
uncertainty in the optimization process to ensure that the planned solutions are robust

against speed variations.

There have been several strategies proposed for the implementation of ATs, including
lane reservation (Fang et al., 2013) and exclusive assignment of existing infrastructures

(Wu et al., 2017), although both are deemed to be expensive and restrictive with respect



4 Chapter 1 Introduction

to the applicability of this new technology (Vanholme et al., 2013). A preferred feasible
strategy is for ATs to share the same infrastructure with conventional vehicles (driven
by humans) (Vanholme et al., 2013), at least for the foreseeable future. The latter
option would introduce uncertain traffic conditions for ATs, which is precisely what our

research studies.

1.3 Research aims

As highlighted in the analysis of the research context, the lack of studies with regards
to vehicle route and speed optimization problem under uncertainty represents a clear
research gap. In Chapters 2 and 3, we aim to address this gap and contribute to the
state-of-art with new models and solution techniques for pollution-routing problems
where the uncertainty is caused by the traffic conditions. Additionally, in Chapter 4,
we study the problem of optimizing vehicle speed over a fixed customer sequence with
soft time windows. We propose generic solution methods with application in different
transportation modes, including road and maritime transportation. The thesis adopts
the three-paper structure, where the details of research aims of each paper are given

below.

The first paper first reviews the existing literature on (green) vehicle routing problems
under uncertainty. We then study the Pollution-Routing Problem under stochastic traf-
fic conditions. We aim to quantify the fuel consumption savings that can be achieved
by explicitly considering traffic uncertainty. Managerial insights are derived by compre-

hensive computational results.

The second paper builds on the encouraging findings of the first paper, where only small
scale instances were solved. In the second paper we develop specialized techniques to
solve larger instances of the problem. These techniques exploit the structure of two-stage

stochastic programs.

The third paper studies the speed optimization problem with soft time-windows that
arises as a subproblem in the first and second paper. The problem is also encountered in
several logistics applications. We provide an overview of existing techniques to solve sim-
ilar problems. We then propose algorithms capable of optimally solving large instances
of the problem faster than commercial solvers. Managerial insight is derived for road

and maritime transportation.

1.4 Research objectives

The research objectives of Chapter 2 are:
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e to explore the state-of-the art and provide an overview of stochastic green vehicle

routing problems,

e to propose modeling concepts and stochastic mathematical programming models
for the PRP with stochastic travel times and to overcome modeling challenges such

as non-linearity,
e to provide comprehensive computational analysis of the method proposed and
provide insight.

The research objectives of Chapter 3 are:

e to review the literature on implementations of decomposition methods for VRPs,

e to develop an integer L-shaped based algorithm and variations to solve medium to

large-scale instances of the problem introduced in Chapter 2,

e to provide extensive computational analysis and comparison of the algorithms

developed.
The research objectives of Chapter 4 are:

e to review the literature on speed optimization problems in different transportation

modes,
e to overcome the non-linearity of the mathematical model,
e to develop time-space network approaches for the problem,
e to run extensive computational result and compare with non-linear available solvers,

e to provide insight for road and maritime transportation.

1.5 A schematic representation of the thesis

In Figure 1.1 we present a schematic representation of the overall research conducted,
where each rectangle represents a subject treated in this thesis. The overall theme of
this thesis is to reduce greenhouse gases emissions and is represented by the green rect-
angle. To achieve this aim, we consider in the Chapter 2 route and speed optimization
under uncertainty, represented by the black rectangle. In Chapter 3 we consider the
same problem, but we develop an Integer L-shaped method to solve the problem for
larger instances, represented by the yellow rectangle. Chapter 4 focuses on speed opti-
mization over a fixed sequence of customers, a general problem that arises in different

transportation modes, represented by the red rectangle.
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Paper 1

Route Optimization

Uncertainty

Speed Optimization

Application to Other

Transportation Modes

Paper 3

Greenhouse Gases Minimization

Integer L-shaped
Method

Figure 1.1: Main themes considered in this thesis
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Abstract

The Pollution-Routing Problem (PRP) is an extension of the classical Vehicle Routing
Problem with a more comprehensive objective function that accounts for the amount of
greenhouse gases emissions, fuel, travel times and their costs. This chapter introduces
a new variant of the PRP that takes into account travel time uncertainty due to traffic
congestion. Uncertainty is modeled through stochastic traffic speeds on the arcs which
are represented by a discrete set of scenarios. Using two different strategies, this study
provides three mathematical formulations in the form of two-stage stochastic program-
ming models. The two strategies differ in the amount of information available during the
decision making process and in the recourse policies. The objective is to minimize the
expected total cost of drivers, fuel costs and greenhouse gases emissions. Computational

results show the added value of stochastic modeling over a deterministic approach.

Keywords: pollution-routing; stochastic programming; stochastic traffic speed; recourse.

2.1 Introduction

The Pollution-Routing Problem (PRP) introduced by Bektas and Laporte (2011) is a
variant of the classical Vehicle Routing Problem (VRP) that explicitly considers driver,
fuel and pollution costs. In addition to determining vehicle routes, the PRP computes
optimal speeds at which vehicles should travel on each leg of the route, so as to minimize
a comprehensive cost function that includes fuel consumption. In its original version,
the PRP includes time windows and imposes limits on vehicle speeds on every leg of
each route, which are assumed to be constant and known with certainty at the time of

planning.

Constant traffic speeds imposed in the PRP correspond to the minimum and maximum
speeds at which vehicles may legally travel on a given road segment. In practice, however,
vehicle speed is often affected by factors that are not known with certainty in advance,
such as weather-related events or traffic congestion. Such events are likely to reduce
the speed of vehicle and cause deterioration in the general traffic speed. In this case,
the vehicle has to travel at a speed less or equal to the traffic speed. Ignoring this
reality at the planning stage may render optimal solutions computed using deterministic
parameters sub-optimal or even infeasible, and in turn may result in cost increases,
depending on the speeds that are achievable in practice. In addition, customers may
experience large and unpredictable delays. Consequently, it makes sense to incorporate
uncertainty in the optimization process to ensure that the planned solutions are robust

against speed variations.
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Considerable work has been carried out on the stochastic VRP Gendreau et al. (2014,
2016), in particular and of relevance to this study, in what regards stochastic travel times
Laporte et al. (1992); Ehmke et al. (2015). However, vehicle speed was only recently
introduced as a decision variable, only few studies are yet available on the effect of

stochastic traffic speed.

In order to bridge this gap, this chapter models uncertainty as stochastic input param-
eters. We describe two stochastic programming models that differ with respect to the
time at which the routing decisions are made. We consider a finite number of scenarios,
each with a different speed limit for each arc of the network. The first formulation is
a two-stage stochastic programming model with complete recourse. In this case, the
recourse variables correspond to the delays experienced in servicing the customers, and
to the speed reduction needed when the planned speed is higher than the realized speed.
The second formulation is also a two-stage stochastic programming model in which travel
speeds are computed for every scenario separately, assuming that the realizations of the
scenarios are revealed before the start of routing, in the expectation that further cost

minimization will be achieved.

The three key contributions of this chapter are as follows. (1) We describe two recourse
strategies to mitigate the adverse effects of speed uncertainty on fuel consumption and
GHG, where speed reductions, to the best of our knowledge, have been made an integral
part of the recourse decisions for the first time, (2) using a stochastic programming
methodology, we describe several two-stage stochastic programming formulations with
recourse, and present results that numerically compare the recourse strategies, and (3)
we offer insights into the relative performance of each strategy and discuss implications

of the strategies on fuel consumption and total cost.

The remainder of this chapter is structured as follows. Section 2.2 presents a brief
review of the relevant literature on the PRP and on the VRP with stochastic travel
times. Section 2.3 introduces some technical background information. Mathematical
models are described in Section 2.4. Section 2.5 presents computational experiments,

and conclusions follow in Section 2.6.

2.2 Literature review

In this section, we review some of the relevant existing literature of the PRP and its
variants, given the similarities to the problem studied in this chapter. Our study contains
also stochastic travel times within a VRP framework, therefore it can also be viewed as
a natural extension of the VRP with stochastic travel times. Therefore, we also review
the relevant literature on this problem. For recent reviews of the literature on green road

freight transportation, we refer the reader to Demir et al. (2014b) where the authors
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review gas emissions models, and to Lin et al. (2014), Eglese and Bektag (2014) and
Bektas et al. (2016) which are surveys of green VRPs. For a wider and comprehensive
overview of the green transportation, including air and maritime transportation, we refer
the reader to Psaraftis (2016).

2.2.1 The Pollution-Routing problem

In the original paper of Bektag and Laporte (2011), the PRP makes use of the compre-
hensive fuel consumption model proposed by Scora and Barth (2006), and is modeled
through a non-linear mathematical formulation in which the decision variables corre-
spond to the selection of routes and speeds. Non-linear constraints are linearized using
speed discretization. The authors presented extensive computational results on instances
involving up to 20 customers and showed that CO2 emissions could be reduced by up to
8% by solving a comprehensive model that accounts for pollution, which is significant
since the transportation sector has an important share in the global COg emissions (U.S.
Environmental Protection Agency, April, 2016). Instead of discretizing speed, Fukasawa
et al. (2016b) tackled the PRP with continuous speed and put forward two arc-based
mixed-integer convex optimization models that can be solved as disjunctive convex pro-
grams, and can handle instances with up to 25 customers. Dabia et al. (2016) described
a branch-and-price algorithm for the PRP based on a column generation mechanism in
which the master problem is a set partitioning problem. The pricing problem is solved
by means of modification of a labeling algorithm for the elementary shortest path prob-
lem with resource constraints. The algorithm can optimally solve all instances with 10

customers, as well as some instances from the PRP-lib with 15 and 20 customers.

Demir et al. (2012) developed an adaptive large neighborhood search (ALNS) meta-
heuristic for larger PRP instances which embeds an adaptation of the speed optimiza-
tion algorithm of Norstad et al. (2011). The algorithm provided solutions for realistic
instances with up to 200 customers within just over 10 minutes. Kramer et al. (2015)
later proposed a matheuristic that combines an iterative local search, based on the ran-
domized variable neighborhood descent heuristic of Subramanian et al. (2010), with a
speed optimization algorithm and an exact method for a set partitioning problem. When
compared with the ALNS of Demir et al. (2012), their matheuristic yielded better quality

solutions on all instances with 100 and 200 customers.

Franceschetti et al. (2013) studied a version of the PRP with time-dependent speeds
which assumes two periods, one characterized by a congestion speed, and the other
when a vehicle can travel at an optimized free-flow speed. The authors used the emis-
sions model of Scora and Barth (2006) to compute fuel consumption. In this problem,
service at customers must start within specified time windows, and it is possible for a
vehicle to wait at customer after completing service to avoid congestion further along

the route. The authors also studied a special case of the problem with a single customer
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and analytically characterized optimal solutions. They described a speed optimization

algorithm for the problem and solved to optimality instances with up to 20 customers.

Qian and Eglese (2014) tackled the problem of minimizing fuel consumption under time-
varying speeds. The authors considered both vehicle routes and speeds as decision
variables. They proposed two algorithms based on dynamic programming, one of which
is exact and the other is heuristic, and tested both on a realistic 14-customer instance.
Their results showed that the heuristic is much faster than the exact method, taking five
minutes instead of 12 hours. The same authors (Qian and Eglese, 2016) later proposed
a combined tabu search and column generation algorithm for this problem, based on
an earlier algorithm by Prescott-Gagnon et al. (2009) for the VRP with time windows.
The algorithm was tested on a real instance with 60 customers and one depot, and
the results indicated about three percent savings in GHG emissions compared with a

time-minimizing objective.

Maden et al. (2010) considered the VRP with time windows and time-dependent speeds,
and developed a tabu search heuristic in which the objective is to minimize the total
time spent by the vehicles. The authors showed that up to 7% of CO2 emissions can be

saved on the instances tested.

2.2.2 Stochastic vehicle routing problems

The most common sources of uncertainty in stochastic vehicle routing are customer
availability, customer demand, service times and travel times (Gendreau et al., 2016).
Here we focus on VRPs with stochastic travel times. In the case of stochastic customer
demands, the recourse policies are decided before starting the routing. A recourse action
is needed if vehicle capacity is not always sufficient to satisfy customer demand. Laporte
and Louveaux (1990), Dror et al. (1993) and Yang et al. (2000) used a preventive return
trips to the depot when vehicle load falls below a certain threshold. This policy prevents
vehicles from being unable to meet a customer demand, but may result in unnecessary
travel. Dror et al. (1989); Secomandi (2001) Described policies by which the remaining
route is reoptimized after each customer delivery, but this tends to be computationally

very expensive and therefore rarely used.

Laporte et al. (1992) considered stochastic travel and service times in a VRP in which
the route durations are limited. They described a chance-constrained model and two
two-stage models with simple recourse, i.e. the cost of recourse is proportional to the
travel time in excess of the imposed route duration limit. The authors implemented
a branch-and-cut algorithm and presented computational results on instances with up
to 20 customers. Ehmke et al. (2015) also used a chance-constrained model in which
the aim is to ensure a certain service level for each customer by computing the random

distributions of both arrival and start-service times. They developed a tabu search based
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algorithm which was applied to large instances. The authors pointed out that given wide
time windows, service improvements can be achieved without a significant increase in

the cost of the solution.

Tag et al. (2013) described a tabu search algorithm for a variant of the problem where
customer service can start either before or after the time windows with a penalty. The
objective is to minimize the cost incurred by the total distance, the expected delay,
and the expected drivers’ overtime. Tag et al. (2014) later described a branch-and-
price algorithm based on column generation for the same problem. Agra et al. (2013)
considered a similar problem in a maritime context. The authors proposed a robust
optimization approach that determines a set of routes feasible for all realizations of
stochastic travel times. Lee et al. (2012) developed a robust optimization algorithm
based on a column generation technique considering uncertainty in both travel times

and customer demands.

Hwang and Ouyang (2015) considered the full-truck delivery problem under uncertainty,
defined on a road network where nodes represent major intersections and directed arcs
represent route segments between them. Speed congestion is modeled as an independent
random variable on each arc of the network. The problem is to select the sequence of
arcs to traverse in order to minimize an objective function based on expected total travel
time, GHG emissions and penalties for late or early arrivals. The authors described a
stochastic dynamic approach and a deterministic shortest path heuristic to solve problem
instances with up to 416 nodes. The heuristic approach provided solutions quickly, but
of lower quality as compared to the dynamic approach. Savings between 4% and 8%

were obtained when compared to the same approach without considering emissions.

Ehmke et al. (2016a) developed two algorithms to find expected emissions-minimizing
paths in urban areas with stochastic travel times. They developed an A* algorithm
based on sampling travel times to estimate the expected emissions on each arc of the
graph and a second heuristic based on Dijkstra’s algorithm (Dijkstra, 1959) to solve
a time-dependent but deterministic version of the problem, using expected emissions
on each arc. This simplification was made to reduce the total time required to solve
the problem. The heuristic method showed similar results but the running times were

significantly faster than for the A™ algorithm.

Ehmke et al. (2016b) considered the VRP in urban areas, with the objective of minimiz-
ing gas emissions. Using the same model as in Bektag and Laporte (2011), a heuristic
is used to estimate the emissions-minimizing paths, thus transforming random traffic
speeds to deterministic time-dependent speeds. Solutions obtained with a tabu search
heuristic on real-world instances showed that emissions can be reduced significantly

without a significant increase in cost.
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Eshtehadi et al. (2017) considered the PRP under demand and travel time uncertainty.
The authors focused on stochastic customer demand and proposed three mathematical
models based on a robust optimization approach. The authors defined a hard-worst case
(HWCQC), a soft-worst case (SWC) scenario and a chance-constrained robust model. The
difference between these approaches is their robustness to uncertainty. Travel time un-
certainty is handled by considering a deterministic congestion level. The results showed
that considering robust optimization technique to provide reliable solutions may result
in 30, 50 and 60 liters of additional fuel consumption for 10-, 15- and 20-node instances

respectively.

Huang et al. (2017) considered the Time-Dependent VRP (TDVRP) with path flexibility.
As opposed to considering a simple path between a pair of customers, the authors start
first by determining the set of time-dependent shortest paths on the network using a
modified version of Dijkstras algorithm. The authors describe a mathematical model to
the TDVRP with path-flexibility and a two-stage stochastic program to solve a stochas-
tic variant in which speeds on arcs are represented by discrete scenarios. The first-stage
decisions relate to customer sequences and the second-stage decisions relate to the se-
lection of paths. Instances with 30 nodes were solved by the deterministic version, and
instances with 10 nodes and three discrete scenarios were solved by the stochastic pro-
gram. The deterministic equivalent of the stochastic PRP with path flexibility yielded
better results than solving a standard TDVRP.

2.2.3 Relationship with the state of knowledge

Although the papers just reviewed share some similarities with the problem we introduce
here, they exhibit two fundamental differences with respect to the types of decisions and
the cost components. The first of these is vehicle speed. The authors of the above
papers argue that speed cannot be controlled in urban areas and vehicles must follow
the traffic speed. In our study, we consider an intercity travel setting, such as highways,
where vehicles are more likely to have control over the speed. From a methodological
point of view, modeling speed as decision variable is challenging due to the non-linearity
it entails. The second fundamental difference relates to the cost. In particular, we
consider driver wage as part of the objective function. While this may seem a relatively
straightforward modification of the objective function, it does make a difference since it
has been shown that the largest component of the PRP objective function is the drivers
wage (Bektas and Laporte, 2011). Table 2.1 summarizes the differences between the

papers cited above and our paper.

Our work builds on and contributes to the existing body of work in a number of aspects.
First, we continue to treat speed as a decision variable, as was done in the PRP and
other relevant studies reviewed in Section 2.1 (e.g. (Demir et al., 2012), (Fukasawa et al.,

2016b)). However, we break away from the main assumption made in those references
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Paper Objective function Time Speed Path Time Solution method

Cost Fuel dependency decisions flexibility windows Exact Heuristic
Ehmke et al. (2016a) - v v - - - - v
Hwang and Ouyang (2015) v v - - v - v v
Eshtehadi et al. (2017) - v - v - v v -
Huang et al. (2017) - v v - v - v v
This chapter v v - v - v v -

Table 2.1: Comparison of the problem characteristics studied in this chapter and related
papers

in that the vehicle speed is bounded by a constant value. One novel aspect of our
contribution is to restrict the vehicle speed on each arc by a stochastic parameter, the
value of which depends on a future realization of a scenario that prescribes the traffic
speeds. This makes for a more realistic treatment of the problem by reflecting part
of the uncertainty of the traffic conditions in the relevant models. Second, we assume
that the travel times are stochastic by following a line of analysis similar to that of the
references reviewed in this section. However, whereas the references cited above treat
the travel time on an arc as an uncertain input parameter, we model it as a function
of the speed chosen to traverse that arc, implying that travel time itself is effectively
a decision variable, but one that is subject to uncertainty. The latter aspect of our
contribution is therefore different and unique. While the robust approach proposed by
Eshtehadi et al. (2017) for the pollution-routing problem considers speed as a decision
variable, it tends to be over-conservative since it assumes the realization of a worst-case
scenario. Robust solutions are therefore costlier than those produced by the stochastic
programming methods we advocate in this chapter. Finally, we resort to two-stage
stochastic programming formulations with recourse as the modeling framework, for the
very reason that this approach is shown to be a suitable way to formulate such problems
(e.g. (Laporte et al., 1992)), and with an objective function that minimizes the expected
cost (e.g. (Laporte et al., 1992), (Tasg et al., 2013)).

2.3 Technical background information

In our study, we use the same consumption model as in Bektag and Laporte (2011),
which we now describe. From this model and by using an illustrative example, we show
also the impact that stochastic travel times may have on the amount of emissions. We

then propose two ways of modeling our problem.

2.3.1 Calculation of fuel consumption and emissions

There exist numerous emission models, which were reviewed and compared in Demir

et al. (2014b). These models vary with respect to the input parameters and level of
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detail, but most use non-linear functions of vehicle speed. Such functions generally
have a convex U-shaped form, which can be optimized to yield a speed minimizing fuel
consumption and emissions. Our emissions model is an instantaneous model proposed
by Barth and Boriboonsomsin (2008), which estimates the fuel consumed F, per second
based on the function

F. =¢<(EQV + P/n)/k (L/s), (2.1)

where 1 and « are constants related to diesel fuel typically used by delivery vehicles, ¢ is
fuel-to-air mass ratio, k, {2 and V are the engine friction factor, engine speed and engine
displacement respectively. Furthermore, P is the engine power output per second (in
kW) and is calculated as

P = Ptract/"?tf + Pace (kW), (2.2)

where 7y is the vehicle drive train efficiency, and P, is the engine power demand
associated with running losses of the engine and the operation of vehicle accessories (i.e.,
air conditioning). In our study, we assume that P,.. is equal to zero. The parameter

Piract is the total tractive power requirements (in kW) placed on the wheels:
Piract = (AT + Agsin @ + 0.5CpT'v* + AgC,. cos 6)v/1000 (kW), (2.3)

with A and v are the vehicle weight (kg) and speed (m/s) respectively, 7 is the acceler-
ation (m/s?), 6 is the road angle, g is the gravitational constant (m/s?), and Cy and C,
are the coefficients of the aerodynamic drag and rolling resistance, respectively. Finally,
p is the air density (kg/m?), and I is the frontal surface area of the vehicle (m?). For a
given arc (i,7) of length d and assuming that all parameters remain constant except for

the vehicle speed v, we can express fuel consumption in liters (L) as

F(v) = kQVAd/v (2.4)
+ (wow + afv + Bv¥)A\vd/v (L), (2.5)

where A and ~ are constants defined as A = ¢/k¥, where ¥ is the conversion factor of
fuel from (g/s) to (L/s), and v = 1/(1000m;¢n) . Furthermore, if A is the total weight of
vehicle between node 7 and j, then A = w+ f, where w is the weight of an empty vehicle
(curb weight), and f is the vehicle load. Let o = 7 + gsin @ + gC,. cos # be a vehicle-arc
specific constant and 5 = 0.5CypI" be a vehicle specific constant. The introduction of d/v
in Equations (2.4) and (2.5) is done to express F(v) in liters (L) instead of liters/seconds
(L/s). We omit indices (7, j) on the variables v, d, f, and « to simplify the presentation.

2.3.2 The impact of travel speed uncertainty on emissions

Traffic congestion is one of the main factors preventing vehicles from driving at an

optimal speed. It can be caused by accidents, bad weather, or simply the traffic level
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in the network. Congestion is typically characterized by low speeds and regular start-
and-stops. As a result, it drastically increases fuel consumption compared with the

non-congestion case.

We now illustrate how congestion may impact the routing decisions on a four-node
instance corresponding to four British cities, where the fictional demand of each customer
and the service times for this instance are given in Table 2.2. The time windows of the
customers (in minutes) are shown in Figure 2.1a. The distance matrix of Table 2.3 shows

the distances (m) between the nodes of the network.

Node index City Demand (kg) | Service time (min)
0 Kingston upon Hull (depot) - -
1 Pocklington 721 24
2 Brough 814 27
3 Selby 620 21

Table 2.2: Demand and service time data

Node index 0 1 2 3
0 0 41150 25680 54200
1 40660 0 51980 32800
2 25010 51780 0 61520
3 54270 32750 61560 0

Table 2.3: Distance matrix for the example of Table 2.2

We assume that the traffic speeds on all the arcs of the network is not known in advance,
but is instead a discrete random variable referred to as a scenario. In this example,
we consider three scenarios S1, So and S3 with respective probabilities 33%, 33% and
34%. Below, we show the matrices representing the three scenarios Si1,S9 and S3 for
this example where each entry (i, j) in a matrix represents the traffic speeds (km/h) on
each arc (i,7). The scenarios S, Sz and S3 are derived from a probability distribution

discussed further in Section 2.5.1.

0 22 28 35 0 59 48 60 0 22 21 50
S, — 21 0 40 23 L= 31 0 53 28 L= 39 0 60 23
67 56 0 59 43 46 0 33 37 21 0 70
46 37 29 O 41 70 30 O 33 29 58 0

The problem is to find an optimal route and the optimal speeds on each arc, where the
chosen speeds are constrained by the traffic conditions. One way to solve the problem
is by creating an average scenario Sy, where the traffics speeds on each arc (i,7) is
the average of all traffic speeds over all scenarios, taking into account their respective
probability and solve a deterministic PRP. S,, is represented by a matrix where each
item Sy (4,7) = 0.3351(4, ) + 0.3352(4, 7) + 0.3453(1, ).
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Figure 2.1 shows two optimal solutions obtained by using £1.4 as the combined unit
cost of fuel (per litre) and COs9, and £10 as the hourly driver cost. The solution shown
in Figure 2.1a is obtained by solving the deterministic PRP where the traffic speeds are
prescribed by the matrix S,,, and are imposed as upper limits on the speeds that can be
chosen on each arc. The optimal speeds are shown on the arcs. The cost of this solution
is £99.96, and its expected value when calculated under the realization of S7, S and Ss,
is equal to £121.58. However, this approach is suboptimal as it does not fully utilize all
the available information. In contrast, Figure 2.1b shows the solution generated using
stochastic programming where the three scenarios Si, So and S3 are explicitly taken
into account during the solution process. This solution has an expected cost equal to
£106.70, which represents a saving of 12.26% over the deterministic. The stochastic

program used to produce the latter solution will be further explained in Section 2.4.2.1.

(36, 369) [11,351]

(a) The solution obtained by considering Sq. (b) The solution obtained by considering the scenarios

(S1, S2 and S3)

Figure 2.1: Two solutions of the four-node instance

Variability of traffic speed on a given intercity road can be better represented by dividing
an arc between two customers into smaller segments. The traffic speed will then be
defined for every segment, where for each segment an optimal speed can be prescribed.
To illustrate, we consider the example in Figure 2.2, which shows an arc (1,2) of 100km
length, on which we assume the traffic speed to be 50 km/h. Suppose now that further
information is available about the variability of traffic speeds on this arc such that it
can be divided into three segments of 50km, 20km and 30km, where the traffic speed
on each segment is 40 km/h, 60 km/h and 50 km/h, respectively. If we consider a
vehicle traveling at 50 km/h, assuming a constant traffic speed throughout the arc, the
combined cost of fuel, CO9 and driver is £34. If however, we consider the three segments
and that the vehicle travels at the traffic speed on each of the segments, the total cost

is £37, which is more accurate, but is at the expense of a 9% increase.
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O 40km/h 60km /h 50km/h
1 | I @

Figure 2.2: Example of speed variability

2.3.3 Decision time-lines and modeling of stochasticity

Planning vehicle routes without taking the congestion effect into account may lead to
poor quality solutions when implemented. In addition, the assumption that one has per-
fect information on congestion data is not realistic, due to the difficulty associated with
accurately predicting travel times. In this study, we use a strategy based on stochastic
programming that is able to represent the variability in the traffic speeds. Stochastic
programming has been extensively used in a variety of contexts, and has yielded good

results on routing problems (Gendreau et al., 2016).

Traffic speeds are modeled as discrete random variables. They are represented by a finite
set S of scenarios, where each scenario s € S has an associated probability ps > 0 of
occurring. In our context, a scenario s is characterized by a matrix of traffic speeds in
which every entry (i, j) corresponds to an upper bound u;; on the maximum speed that
can be attained on arc (7, j) which depends on the traffic conditions on the corresponding

route leg.

We now describe two ways of modeling the problem as a stochastic program, as well as
the possible recourse actions. To clarify the difference between the proposed strategies,
we use the following notation. We define a planning horizon of D units of time. The time
at which the routing decision are made and the time where speed decisions are made are
denoted TP and T, respectively, where TP < T® < D. The random variables realization
are revealed at time 7", where 1" > T'°. We denote by T° the time at which the solution

is executed (i.e., when vehicles leave the depot to visit the customers), where 7¢ > T .

Under the first strategy, illustrated in Figure 2.3, we assume that the realization of the
random variables will be revealed after the routing plan has been finalized, which also
includes the speeds of travel on each arc of the routes. No further action can be taken
to change the routes and speeds to improve the solution after this point. We will refer

to this strategy as “one-route, one-speed” (OR-OS).

T=0 e, T* " Te T=D

Figure 2.3: Time-line of the first strategy decision making process
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Under the second strategy, we also assume that the scenarios are revealed after the
routes have been designed. However, before executing the routes, further actions can be
taken to reoptimize the speeds, as shown in Figure 2.4. This situation occurs in practice
when the vehicles must be loaded the day before the routing plans are operationalized,
and the information about traffic speeds is revealed before the start of routing. In this
case, the routes cannot be redesigned assuming that the goods are already loaded in
the vehicles. We will refer to this strategy as “one-route, several speeds” (OR-SS). This
strategy is unlikely to be applied in practice given that the information required is almost
impossible to acquire. However, the aim of considering such a strategy is to assess the

value of the added information and the savings that it can provide.

T=0 T " T* Te T=D

Figure 2.4: Time-line of the second strategy decision making process

While allowing to reoptimize routes in a “several-route, several speeds” after visiting
customers may yield further savings, we do not consider this setting in our work for
two reasons. First, the goods in a delivery vehicle are usually loaded in a specific order
so that the driver will unload goods of the first customers first. Therefore, re-routing
is not always feasible in this case as the driver may be required to unload goods that
are not accessible. The second reason is that redesigning vehicle routes is known to
be computationally intractable when exact methods, same as the methods used in this

chapter, are used (Secomandi, 2001).

2.4 Problem description and mathematical models

The problem studied in this chapter is similar to the PRP, where the traffic speeds
constitute the upper bounds on the maximum speed that can be attained on each leg of
the route are not known with certainty at the time of route planning. Instead, they are
described by a discrete and finite set of scenarios. The problem involves determining a
set of vehicle routes and speeds on each leg of the routes, as in the PRP. However, upon
realization of the random variables, the optimal speeds may no longer be feasible with
respect to the traffic speeds, in which case delays may occur in arriving at customer
locations. The objective is to minimize the expected cost of the total fuel consumption,
emissions, drivers and delays. The problem is cast as a two-stage stochastic programming
problem (Birge and Louveaux, 2011), for which we define two variants. The first variant
corresponds to the OR-OS strategy, where the first-stage decisions involve determining
the routes and the arc speeds. The second-stage decisions are the speed reductions

inferred by the traffic speeds, which translate into possible delays. The second variant is
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based on the OR-SS strategy, where the first stage decisions are restricted to planning a
route for each vehicle, and the second stage variables correspond to computing the speeds
on each route, separately for each scenario. In what follows, we describe mathematical

models associated with the two problem variants just described.

2.4.1 Notations common to the two models

The stochastic models presented in this chapter are based on the deterministic mathe-
matical model of the classical PRP proposed by Demir et al. (2012). The problem is
defined on a complete graph G = (N, A), where N = {0,1,...,n} is the node set, and
A = {(i,j);4,5 € N,i # j} is the arc set, where each arc (i,j) has |L;;| segments of
length d;j;, Lij = {1,...,1,...,|Li;|} . Node 0 represents the depot at which m vehicles
of capacity @) are based, and Ny = N\{0} is the set of customers. Each customer i € Ny
has a demand ¢; > 0, which should start to be delivered within the time window [a;, b;],
and incurs a service time ¢;. The decision variables are defined as follows: x;; is a binary
variable equal to 1 if and only if a vehicle visits customer j immediately after customer .
A vehicle travels at speed v;j on segment | € L;; of arc (7,7), subject to a lower bound
v!* and an upper bound v*® that correspond to legal limits on speed. Under uncertainty,
a traffic speed ug, is defined on segment [ € L;; of arc (i,j) for each scenario s € S
which is the maximum attainable speed on that arc. The continuous variable f;; is the
amount of commodity carried on the vehicle on arc (i,j) € A. The continuous variable
y; is the time at which service begins at customer ¢ € Ny, and the continuous variable

0; is the the cumulative time spent on the route whose last customer is 1.

2.4.2 One-route, one-speed strategy

Under the OR-OS strategy, we assume that the decisions concerning routes and speeds
are made simultaneously, and prior to the realization of the random variables. These
two sets of decisions are made at the first stage and cannot subsequently be changed.

However, if fu;}l > ufj ;> a vehicle will not be able to drive at speed v;kjl chosen on a specific
segment [ of arc (i,7) for a particular scenario s € S. In this case, the recourse action
* —
ij

this end, we introduce a speed reduction recourse variable SRfjl to ensure the feasibility

is to reduce the speed by at least v ufjl in order for the solution to be feasible. To
of solutions independently of random variables realizations. The scenarios also imply
that some customers may not be served within their time window. Therefore, the time
window requirements will be treated as soft constraints, in which case, the delay for the
start of service at customer ¢ will be represented by a recourse variable [ in the second

stage, and penalized by using a unit delay cost e.

It is important to observe that speed reduction recourse variables are needed in the com-

putation of delays and routes durations, but are not explicitly penalized in the objective
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function. They are only implicitly penalized because the vehicle will have to travel at a

speed different from the optimal speed, which will increase the cost accordingly.

The speed chosen on an arc will affect the time y; at which service starts at node 7, and
hence it will be different from one scenario to another. For this reason, this time will be
represented by a scenario-dependent variable y7. This variable captures the fact that a
vehicle can be late to serve a customer in one scenario, but on time in a another one. The
same reasoning applies to the variables representing the overall time spent on a route
0; which will now be §7. We define M as a large enough constant. The mathematical

model is described as follows:

Minimize Z Z wfc’y)\aijdiﬂxij—i— Z Z fc’}//\aijfijdijl (2.6)

(i.))€AlELy; (i,j)€AIEL;;
+3 ps ( FRQVA ST ST i/ (v — SRE) (2.7)
sES (7,,])614 lELij
1B DD diiviji — SRY)? (2.8)
(i,7)€A €Ly
+ > fad (2.9)
J€No

+ Zelj) (2.10)
J
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subject to

> zg;=m (2.11)

JEN

> mi=1 i€ Ny (2.12)
JEN
> ay=1 j €N (2.13)
1EN

S i fi=ai i€ No (2.14)

JEN JEN

qjrij < fij <(Q — qi)wij (i,j) € A (2.15)
vi—yi et Y dijtf/ (v — SRS;) S M(1—xy) i€ N,jE Ny i#£jseS
I€L;;
(2.16)
yi—ci— 00+ > djor/ (vjor — SRio) M (1 — xj0) jENy,s€S (2.17)
leL;;
aj <y; <bj+1j j € No,s€S (2.18)
viji — SR < ugjy (i,j) € Al € Lij,s € S (2.19)
viji — SR > vy (i,j) € Al € Lij,s € S (2.20)
fij =0 (i,j) € A (2.21)
y; =0 i € No,s €S (2.22)
SR}; >0 (i,j) € A,s €S (2.23)
o2 < v < vy (i,7) € Al € Lyj (2.24)
z;; € {0,1} (i,7) € A. (2.25)

The first term of the objective function computes the cost of the solution that can be
attributed to vehicle weight and load. Similarly, the terms (2.7)—(2.10) represent the
expected cost as a function of speeds, delays at customers, and driving time. Constraints
(2.11) ensure that all vehicles leave the depot. Constraints (2.12)—(2.13) state that each
customer must be visited exactly once. Constraints (2.14) and (2.15) define the flow on
each arc. Constraints (2.16)—(2.17) compute the arrival time at each customer j € Ny in
each scenario s € S, (2.18) calculate the delay at customers, (2.19) ensure that the speed
used in a scenario after any reduction is lower than the traffic speed in that scenario.
Constraints (2.20) ensure that the speeds chosen are at least v if the arc is in the route

of a vehicle.

Due to the terms (2.7), (2.8), (2.16) and (2.17), the model described above is non-linear.
One way to linearize linear-fractional models is to use Charnes-Cooper transformation

(Charnes and Cooper, 1962). However, due to the fact that v;;; and S Rfﬂ variables are
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continuous, this decomposition method cannot be applied here. In the following, we

present two different ways of linearizing these terms.

2.4.2.1 Discrete speeds and discrete recourse

In order to linearize the non-linear terms, we adopt the same strategy as in Bektas and
Laporte (2011), which consists of discretizing the speed variables. We will also discretize
the recourse variables. The speeds are represented by a set R = {1,...,r,...} of discrete
levels. A binary variable Zi s equal to 1 if and only if the r*® speed level v" is chosen

b and

for the vehicle traveling on segment | € L;; of arc (i,7). We note that v! = v
vlBl =y The same reasoning applies to the discretized recourse. We define a set |T|
of recourse levels T'= {1,...,t,...}, and a binary variable 0‘51 is equal to 1 if and only
if the level ¢ of speed reduction level ¢! is chosen for the vehicle traveling on segment
l € L;j of arc (7, 7) in scenario s € S, with ' =0 and Pl = pub — b We also introduce

M as a large constant. The discretized mathematical model is described as follows.

Minimize Z Z wfcfy)\aijdiﬂxij—i- Z Z fc')/)\aijdijlfij (2.26)
(i,j)€AIEL;; (¢,4)€AlEL;

+y ps< FRAVA ST S da (30N aly /(- vt) (2.27)
seS (i,5)€AlELy; reRteT

FEBA Y N dip S0 ahaly (v — ot (2.28)

(ij)€AIEL;;  reRtET

+ > fadl (2.29)

JENo

> elj) (2.30)
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subject to

(2.11)~(2.15), (2.18), (2.21), (2.22)
i —y]—i-cz—i-deZZzwla”l/v — ) < M(1 — 245) i €N,

leL;j  reRteT

jEN()vi#j?SE‘S

(2.31)
G =8+ D dio Y Y Zpalks /(" =) < M1 —xj5)  jENy,sES
lELij reRteT
(2.32)
o > (ufy = Y 2”) /M (i,j) € Al € Lij,s € 8
reR
(2.33)
%'ljsz < (uiy — ZZ%ZUT)/M +1 (i,§) € A,l € Lij,s € S
reER
(2.34)
Zzzzﬂazgl e )<uz]l (i7j)eAal€Lij)SES
reRteT
(2.35)
Z Z zfjlafjl(vr — ¢ty > vlay; (1,j) € Al € Lijj,s € S
reRteT
(2.36)
Dz =i (i,7) € A,l € Ly
reR
(2.37)
Zaﬁ‘;l:mzj (1,j) € Al € Lijj,s € S
teT
(2.38)
ogji: 24, g € 0,1} (i,4) € AL € Ly,
seS,reRtel.
(2.39)

Constraints (2.31)—(2.32) compute the arrival time at each customer j € N in each
scenario s € S. Constraints (2.33)—(2.34) ensure that the value of the speed reduction
is 0 if the speed chosen is lower than the traffic speed in scenario s. Constraints (2.35)—
(2.36) play the same role as (2.19)—(2.20). Finally, constraints (2.38) ensure that only

one recourse is chosen if arc (i, j) is selected.

This model is still non-linear due to the presence of products of two binary variables in
constraints (2.35) and (2.36). To linearize these constraints, we introduce a new binary

variable 7'”5 equal to 1 if and only if a vehicle travels on segment [ of arc (i,j) at speed
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v" and applies a speed recourse 9! in scenario s € S. The variables T[ff will replace the

products z{jlagjl through the use of the following constraints:

7-T’t5 é 2

il il z, EA,ZGLM,’I“ER,SES

(i- ) (2.40)
Trts < Oéts (Z,j) € A,l € Lij,t eT,se S (241)
(i- ) (2.42)
(i-J) (2.43)

il il
i,j) € AJle Lijyrc RiteT,scS

ceAlely,seSreRtel.

rts s ts
T 2 Zig+ogy — 1

Tfjtls € {0,1} i

2.4.2.2 Discrete speeds and continuous restricted recourse

In the previous model, we used discretization to linearize the mathematical program.
However, due to the uncertainty about the traffic speeds, using discrete speed reduc-
tions may result in poor quality recourse actions. We therefore introduce an alternative
modeling scheme based on the use of continuous recourse variables, using same notation
as in Section 2.4.2.1. However, here we make an additional assumption that restricts
the value of the recourse action. Recall that SRfjl is the speed reduction needed on
segment [ of arc (i,j) € A to travel at a speed not exceeding ufﬂ in scenario s € S.
We now assume that if a speed recourse is needed, then SRfjl, will be exactly equal
to > cr zi;v" — ujy. This assumption is needed to linearize the model, and to have
continuous recourse variables. We introduce a binary activation variable afjl equal to 1
if and only if a speed reduction is needed on segment [ of arc (i,j) € A in scenario s € S.

The mathematical model is described as follows:

Minimize E Z wfc’y)\aijdiﬂxij+ Z Z fc’}’)\aijdijlfz’j (2.44)
(i,j)€AlEL;; (i,j)€ALELy
+) ps (fckQV)\ S di (D 2/ (0" = SRy) (2.45)
s€S (i,)EALEL;; reR

BN D D dig > (v - SR (2.46)

(i,j)GA lELi]’ reR

+ > fad} (2.47)

JENo

> els) (2.48)
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subject to

(2.11)-(2.15) , (2.18), (2.21)-(2.23)
yi =S it Y Y digizly /(00— SRY) < M(1 - x)) ieN,jeNy,i#jses

leLij reR
(2.49)
¢ =05+ > > dijnzy /(0" — SRy < M(1—xj)  jE€Ny,s€S (2.50)
lELij reR
’L]l>zzljlv uz] (i,j)GA,lGLZ’j,SGS
reR
(2.51)
Rij <) = ufyy + (1= ajy) M (i,) € Al € Lijs €8
reR
(2.52)
SRZJZ < %zM (i,j) € Al e Lijj,s € S
(2.53)
2][ Zzz]lv zyl M (’57]) EAal ELijaseS
reR
(2.54)
’L]l ZZUIU 'le /M+1 (’i,j)eA,ZELij,SGS
reR
(2.55)
a’fjl’ Z;ﬁjhwijl € {07 1} (’L:j) ceArenRr (256)
reR

In the objective function, the term (2.44) computes the cost of the solution associated
to the vehicle weight and load. The terms (2.45)—(2.48) compute the expected cost as
a function of speeds, delays at customers and drivers’ wages. Constraints (2.49)—(2.50)
define the arrival time at each customer j € Ny in each scenario s € S. Constraints
(2.51)-(2.55) force SR} to be equal to -, . p 270" — uj; if and only if there is a speed

reduction.

Due to the presence of the terms (2.45) and (2.46) in the objective function, the model is

non-linear. In order to linearize these terms, we introduce two sets of new variables SFZ‘; .

and 557, These new variables are such that SF = 1/uj;;, — >, ¢ 2;/v" if and only
if there is a speed reduction. Using the same reasoning, SS7; = >, cp zfjl(v")z — (ufjl)Q.
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Components (2.45) and (2.46) then become

fkova 3% diﬂ(z (/") + S zﬂ) (2.58)

(i,j)EAIELs; reR
FBrn D03 (Y 2 - S53). (2:59)
(i,j)eAleL;j reR

We also replace constraints (2.49)—(2.53) with constraints (2.60)—(2.69):

Y —y; tei+ Z Z%’jl(Z (zi1/v") + S zyl) < M(1— zy5) i€ N,j € No,i# 7,

lELij reR reR
se s (2.60)
-0+ Y Zdjgl<Z(Z§0l/vT) +8 ;Ol) <M(1-=zj0) jE€Nys€eS
ZELU reR reR
(2.61)
SES > 1/uiy — Zzwl/” — (1 —zy)M (1,j) € Al € Lij,s € S
reER
(2.62)
i < l/uwl Zzwl/v + ( —xi5) M (1,j) € Al € Lij,s € S
reER
(2.63)
SF < afyM () eAlelyses
(2.64)
Z]l > Z Z]l — zjl)2 — (1 — :ﬁl])M (Z,]) € A,l S Lij,s es
reR
(2.65)
S S )2 (W) = (ugp)? + (2 - afy — wiyg) M (i,j) € Al € Lij,s €S
reR
(2.66)
8§87 < aiyM (i,§) € Al € Lij,s € S
(2.67)
SF >0 (1,7) € Al e Ljj,s e S
(2.68)
S ”l (i,j)GA,ZELij,SGS.
(2.69)

We now present a proposition that establishes the equivalence between the non-linear
and the linearized formulations of the discrete speed and continuous recourse. The
example presented in Section 2.3.2 was obtained by solving this mathematical model

with the input parameters of Tables 2.2 and 2.3.
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Proposition 1. Let vy p be the optimal value and (x*, z*,k*, SR*) be an optimal solution
of the non-linear formulation. Let vip be the optimal value and (x*,z*,k*,SS*, SF*)
be an optimal solution of the linearized formulation. If (2.45)—(2.46) and (2.49)—(2.53)
are replaced by (2.58)~(2.59) and (2.60)—(2.69) respectively, then vy, p = vip and the

optimal solutions coincide with respect to (x*,z*,k*).

Proof. To prove the validity of Proposition 1, we compute the value of the two original
terms in the objective functions, and the terms that replace them in the linearized
version. The value of these terms needs to be the same. For a given arc (i, j) € A, there

are four cases:

1. There is a no speed violation on (i, 7):

(a) non-linear model: Due to (2.54)-(2.55) af;; = 0, hence, due to (2.53), SR}, =
0 for all s € S. Therefore the values of (2.45)—(2.46) are as follows :

o dij ZTGRZZ]»Z/( SRZ]Z diji Y ren Z]l/v = dy/v" if 2] =1,and 0

otherwise,

® diji ) cp (V" — SRfjl)2 = dij ZreRZZjl(UT)Q = dii(v")? if ziy =1,
and 0 otherwise.

(b) linearized model: Due to (2.54)~(2.55) af;, = 0, hence, due to (2.64), SF}, = 0
and due to (2.67) SS7;; = 0 for all s € S. Therefore the value of (2.58)-(2.59)

are as follows:

o dj ZTGR(zfﬂ/v’") + SF{}I =diji Y ren z;"jl/iﬂ" diji/v" if ziy =1, and 0
otherwise,

® diji) R ijz(UT)Q—SSfjl =diji )R ijl(”T)Q = diji(v")? if ziy =1, and
0 otherwise.

2. There is a speed violation on (i, 7) (i.e. ZreR zfjl > ufﬂ) :

(a) non-linear model: Due to (2.54)~(2.55) a;;; = 1, hence, due to (2.51)-(2.52),
SRy =3 er 7V — ujy for all s € S. Therefore:
e dijid er Z:jz/( SRZ]Z) = diji>_rer zsz/(”r — D reR ijzUT + “fjl) =
ijl/ufﬂ if z;;; =1, and 0 otherwise,
® dijid er m(” - SRZ]Z) = diji ) rer ijz(vr — D reR zglv + uzgl)2 =
diji(u iﬂ) if 27, = 1, and 0 otherwise.
(b) linearized model: Due to (2.54)~(2.55) aj; = 1, hence, due to (2.62)-(2.63),

SFZy = 1/ufy—3 . cr #;/v" and due to (2.65)-(2.66) S5, = Zreszjl(vr)z—

(u fﬂ)Q for all s € S. Therefore:

o diji ) ep(2i/v") + SES = diji(X,er 2i/v" +1/uiy — X er 2i/V") =
zJl/u”l if z;;; =1, and 0 otherwise,
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o diji ZTGR Z{jl(vT)Q_SS%l = dz‘jl(zreR Z{ﬂ(vTV—ZreR ijz(vr)Q‘F(Ufﬂ)Q) =
dijl(ufﬂ)Q if zfjl =1, and 0 otherwise.

We have shown that in all possible cases, the linearized and non-linear models are equiv-
alent. Therefore, vy;; p = v} p and the optimal solutions of the two models coincide with
respect to (x*, z*, k*). O

2.4.3 One-route, several-speeds strategy

As explained in Section 2.3.3, the OR-SS strategy assumes that the actual maximum
speeds are revealed prior to executing the routes, but after the routing decisions have
been made. Here the decisions involve determining a set of routes that will remain intact
regardless of the scenario, but will include a set of optimal speeds for each scenario.
This problem is now modeled as a two-stage stochastic program in which the first-
stage variables correspond to the routes. The variables 2L that were used to choose a
speed level v" for the segment [ of the arc (i, 7) in Section 2.4.2.1 will now be second-
stage decision variables and redefined separately for each scenario as zi5 to denote the
speed level v". The recourse variables are potential delays experienced when serving
customers. The objective is to minimize the expected cost by taking into account the
scenario probabilities. The second-stage problem is a speed optimization problem and
is independently studied in Chapter 4. The two-stage stochastic program is defined
as follows, where EsW(x, s) represents the expected cost of the objective function of

second-stage problem W (z, s):

Minimize Z Z w feyAovjdijis; (2.70)

(i,7)€A €Ly

+ Z Z feyAaijdiji fij (2.71)
(i,7)€AlELyj

—|—Zps( SN kQVAd Y /ot (2.72)
seS (i,J)€AlELy; reR

+ 30 fBdg Y 2)?) (2.73)
(i,5)€AlELy reR

+E,W(x,s) (2.74)
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subject to
Z Toj =M (275)
JEN
> =1 i € No (2.76)
JEN
d =1 j € No (2.77)
JEN
Z fij — Z fji =(q; 1€ NO (2.78)
JEN JEN
gzij < fi; <(Q —aqi)wi;  (i,§) €A (2.79)
Z Z:JSZ = Tyjj (Z,j) cAle Lijv seSs (280)
reR
Tij € {O, 1} (Z,j) €A (2.81)
fij =0 (,7) € A, (2.82)
where the second stage problem is defined as
W (z,s) = minimize{ » _ fa05 + > _ el’}, (2.83)
JENy JEN
subject to
vi—yi ety > dipai /v < M(1—x;)  i€N,jENyi#£j s€S
TERlELij
(2.84)
y; —cj— 05 + Z Zdjmz;gl/vr < M(1—zj) j€ Ny, s€S8 (2.85)

leLij TGR
a; < yj < bj + l;-
y; 20
zi € 0,1}

i€ N,j€ Ny,i £j,s€S (2.86)

1€ Ng,s €S (2.87)
(i,j) e Ajle Ljj, re R s€S.
(2.88)

The value of optimal solution yielded by the OR-SS strategy is at least as good as the

optimal value of the OR-OS strategy. The relative difference between these values can

be interpreted as the value of the additional information provided by the OR-SS strategy.

Indeed, the gain in cost is due to the knowledge of traffic speeds before the start of the

routing.
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2.4.4 Discussion about the values of constants M

Big-M constraints are particularly useful in mathematical programming to represent
conditional constraints. While the theoretical value of the constants M is large enough,
a value has to be chosen to do the experiments. To avoid longer solution times, these
values have to be chosen as small as possible. In this section we give typical values that

can be used for these constants in the previous models.

In constraints (2.31), (2.32), (2.49), (2.50), (2.60), (2.61), (2.84), (2.85) the M constant

is used in a time-window constraints, therefore the sum of the n+m longest leg durations

plus the sum of the service-times can be used as an upper bound. In constraints (2.33),

(2.34), (2.52), (2.53), (2.54) the largest value of the uj; can be used. In constraints

(2.62)—(2.64) we can use the largest value of (zlﬁ‘)Z and (2.65)—(2.67) we can use the
|1]

largest of the values 1/(z;;)-

2.5 Computational experiments

The purpose of the computational experimentation carried out in this section is fourfold.
First, we aim to compare the two linear models described in Section 2.4.2, which are
the discrete speed and discrete recourse model, and the discrete speed and continuous
recourse model. This comparison will show which of the linearization techniques is more
suitable to solve the problem. Second, once the best linear stochastic model is identified,
it will be compared with a deterministic model. This model considers only one scenario,
where on each arc the traffic speed is the average of traffic speeds of each scenario. This
comparison will highlight the advantage of using a stochastic strategy rather than a
simple deterministic strategy. The relative difference between the two solutions values
can be interpreted as the value of a stochastic solution (Birge, 1982; Birge and Louveaux,
2011). Third, in order to assess the benefit of having perfect knowledge of the traffic
speeds, we will compare the OR-OS and OR-SS strategies. The difference between the
solution values yielded by these two strategies can be interpreted as the value of complete
information about congestion and random events. Finally, we quantify the benefits of
optimizing speeds as compared with an approach where the vehicles simply travel at the
fixed traffic speed.

We have conducted experiments on the 20 benchmark instances of PRP-lib with 10
customers. All tests were performed on a computer equipped with an Intel Core i7-
3770 processor, 3.4 GHz and a RAM of 8GB. The mathematical models were solved
by CPLEX 12.6.0.1 using default options. A maximum CPU time of three hours was
allowed for the solution of any instance. The typical values of the parameters used in

fuel emission model as described in Bektag and Laporte (2011) are shown in Table 2.4,


http://www.apollo.management.soton.ac.uk/prplib.htm
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with exception of the driver wage for which we use £10 per hour as per the 2017 rate

reported in (National Careers Service, 2017).

Notation Description Typical values
w Curb-weight (kg) 6350
€ Fuel-to-air mass ratio 1
k Engine friction factor (kJ/rev/L) 0.2
Q Engine speed (rev/s) 33
14 Engine displacement (L) 5
g Gravitational constant (m/s?) 9.81
Cy Coefficient of aerodynamic drag 0.7
p Air density (kg/m?) 1.2041
r Frontal surface area (m?) 3.912
C. Coefficient of rolling resistance 0.01

N f Vehicle drive train efficiency 0.4
n Efficiency parameter for diesel engines 0.9
fe Fuel and COg2 emissions cost (£/L) 14
fa Driver wage (£/s) 0.0028
e Unit delay cost (£/s) 0.0028
K Heating value of a typical diesel fuel (kJ/g) 44
v Conversion factor (g/s to L/s) 737
0 Road angle 0
it Speed lower bound (km/h) 20
pub Speed upper bound (km/h) 96

Table 2.4: Values of the parameters used in the emission model

2.5.1 Probability distribution and scenario generation

As mentioned in Section 2.3.3, the traffic speeds are the random variables of the prob-
lem. To generate traffic speeds, we need to generate different traffic conditions on the
network, which can be achieved through the use of distributions to generate vehicle
speeds. Hofleitner et al. (2012) and Rakha et al. (2006) suggest that compared with
other distributions, the log-normal distribution provides a good fit for vehicle speeds.

This is therefore the distribution we have used to model traffic speeds on arcs.

In the computational experiments carried out, we considered three scenarios Si, So and
S3. Each scenario was defined using a log-normal distribution with parameters p and o
from which we drew traffic speeds for each arc of the graph. This distribution describes
the general characteristics of the speeds for that scenario. For example, if p is low,
the traffic is low in general, although some arcs may have higher traffic speeds due to
the long tail of the distribution, particularly if ¢ is large. The mean and variance of a
sample generated using a log-normal distribution is i = et t9?/2 and its variance is 62 =

(6‘72 — 1)62“+U2. In the remainder of the paper, we will refer to the log-normal distribution
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by its mean fi and variance 62 defined above. In the first part of the computational

experiments, we consider only one segment per arc (i.e. L;; = {1},V(4,7) € A).

To generate realistic scenarios, we used the Mobile Century Data (Herrera et al., 2010)
that provides vehicles speed collected using phones GPSs during different times. The
first scenario 57 is extracted from the data where the average speed is relatively low but
has a large variance. It represents a relative congestion on some arcs while others have
larger traffic speeds. The scenario S; is generated using a mean g = 40 km/h and a
variance 62 = 64 . The second scenario S, is extracted from data where the average
speed is high but values over the arcs have high fluctuation. It is generated with g = 70
and 62 = 144. The last scenario is generated using £t = 55 and 6% = 100 The traffic
speed generated u;; for all arcs (i,7) € A and all scenarios s € S must lie within the
interval 20 < uf; < 96 required by law for delivery vehicles. Below is an example of a
complete graph defined with a single depot and three customers, where on each arc the

traffic speed are drawn from scenario So:

0 87 20 45
58 0 26 51
29 59 0 29
58 24 61 O

For all comparisons provided in this section, every instance was solved on three different,
and randomly generated realizations of S7, S and S3, the results displayed on the
tables represents the average of all these tests. This methodology allow the results to be
meaningful and do not rely on a particular realization of the scenarios. It also enables
the assessment of the robustness of the solution algorithms with respect to changes in

traffic conditions.

2.5.2 Comparative results for the discretized and continuous recourse
strategies

We now present the results of experiments in which each of the 20 instances was solved
once by the discretized recourse model, and once by the continuous recourse model,
both described in Section 2.4.2. The results are presented in Table 2.5 which displays
the optimal values for the instances (in £) and solution times in seconds to optimality.
The gap (%) is the percentage of the continuous recourse optimal solution value saved
with respect to the optimal solution value of the discrete recourse model. We can see
from Table 2.5 that the fixed continuous recourse model outperforms the discretized
recourse model by an average of 4.95% in terms of optimal solution value. This table
also shows that the continuous recourse model is more than twice faster on average than

the discretized recourse model. On instance UK10_15, the discretized recourse model
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could not yield a proven optimal solution within the time limit of three hours; in this

case, we report the best known solution value. Given this result, OR-OS, will henceforth

refer to the discretized speed and continuous recourse model.

Instance Discrete recourse Continuous recourse
Optimal Seconds Optimal Seconds Gap (%)
value value

UK10.01 261.6 4799.0 251.3 1119.7 4.1
UK10.02 327.6 2505.3 308.4 1844.7 6.2
UK10.03 295.6 2682.0 282.3 818.7 4.7
UK10-04 284.4 1736.3 270.3 711.0 5.2
UK10.05 240.4 3061.0 232.1 719.0 3.6
UK10.06 343.4 4352.0 328.9 2092.3 4.4
UK10.07 288.5 2250.3 277.7 1004.7 3.9
UK10.08 330.0 1607.5 313.2 487.0 5.4
UK10-09 259.6 763.7 246.4 213.3 5.4
UK10_10 293.1 2319.7 278.0 587.3 5.4
UK10.11 439.0 1206.3 409.8 1083.3 7.1
UK10.12 260.2 849.7 248.4 829.3 4.8
UK10-13 289.5 1408.3 279.7 1431.7 3.5
UK10.14 282.3 5305.7 267.0 2963.0 5.7
UK10-15 210.7 10800.0 199.5 3381.0 5.6
UK10.16 252.0 4616.0 243.8 1447.0 3.4
UK10_17 255.6 1235.3 246.5 347.7 3.7
UK10_18 242.5 3574.0 225.8 1062.0 7.4
UK10.19 266.3 2974.3 251.6 573.3 5.8
UK10-20 244.1 4259.0 235.8 1373.0 3.6
Average 283.32 3115.28 269.82 1204.45 4.95

Table 2.5: Comparison between the solutions of the discretized and continuous recourse

models

2.5.3 Comparative results for the OR-OS strategy with the determin-
istic model and OR-SS strategy

Here, we present the results of experiments in which each of the 20 instances is solved
by the deterministic and the OR-SS approaches, both described in Section 2.4.2 and
2.4.3. The relative difference in cost between the OR-OS and deterministic approach is
the Value of the Stochastic Solution (VSS) (Birge, 1982). It represents the percentage

cost saved when solving a stochastic model rather than a deterministic one. The VSS is

computed as follows:

VSS =

Deterministic solution cost — Stochastic solution cost

Stochastic solution cost
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In Table 2.6, we show the optimal solutions values (in £), the solution times in seconds,
and the VSS. We see that the stochastic solutions are on average better than the deter-
ministic ones by 7.48%. The largest saving 17.7%, obtained by the OR-OS strategy is
achieved on instance UK10_15. The average solution time to optimality of the determin-
istic model is 47.03 seconds, while the same statistic for the OR-OS model is 1204.45

seconds.

Instance | Optimal value | Seconds | VSS (%)
UK10.01 265.4 33.0 5.6
UK10.02 332.6 37.7 7.8
UK10.03 297.3 64.3 5.3
UK10.04 288.7 43.3 6.8
UK10.05 241.5 52.5 4.1
UK10-06 352.3 78.7 7.1
UK10.07 295.5 35.3 6.4
UK10.08 332.4 16.0 6.1
UK10.09 256.5 10.7 4.1
UK10-10 294.0 18.0 5.8
UK10.11 444.6 41.7 8.5
UK10.12 263.5 45.3 6.1
UK10-13 290.6 71.3 3.9
UK10.14 282.1 105.3 5.7
UK10-15 234.9 08.7 17.7
UK10_16 254.9 49.0 4.5
UK10-17 281.4 13.7 14.2
UK10.18 259.3 53.7 14.8
UK10-19 2717 30.0 104
UK10_20 246.7 82.3 4.6
Average 289.59 47.03 7.48

Table 2.6: Performance of deterministic approach compared with OR-OS

In Table 2.7 we see that The OR-SS strategy reduces the total cost obtained by the
OR-OS on average by 1.27%. This improvement is the saving achieved when perfect
information about the traffic speeds is available, but this information is in practice
very difficult to acquire. However, the results of these tests show that the use OR-OS
strategy can provide solutions that are on average less than two percent more expensive
than those based on perfect information. Comparing the times required to solve the
instances to optimality, we see that OR-SS strategy requires 191.05 seconds on average,
while the OR-OS strategy is slower, with an average solution time of 1204.45 seconds.
This difference is justified by the fact that no speed recourse decisions are needed under
the OR-SS strategy, and hence fewer solutions need to be checked to prove the optimality

of the current solution.
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Instance | Optimal value | Seconds | Gap (%)
UK10.01 246.3 154.3 —2.0
UK10-02 303.5 138.0 -1.6
UK10.03 278.8 158.3 —-1.3
UK10.04 267.4 132.3 —1.1
UK10.05 230.4 187.0 -0.7
UK10-06 325.2 358.7 —-1.1
UK10.07 274.5 144.3 —1.2
UK10-08 309.5 57.0 —-1.2
UK10-09 243.3 30.0 —-1.3
UK10-10 273.5 84.7 —-1.6
UK10.11 406.3 218.0 —-0.9
UK10-12 245.9 185.3 —-1.0
UK10-13 275.0 333.0 —-1.7
UK10.14 263.3 427.7 —-14
UK10.15 196.0 498.0 —-1.8
UK10.16 242.0 113.3 -0.7
UK10-17 244.1 58.0 —-1.0
UK10.18 223.1 143.7 —1.2
UK10-19 248.4 101.0 -1.3
UK10-20 232.5 298.3 —-14
Average 266.45 191.05 —1.27

Table 2.7: Performance of OR-SS approach compared with OR-OS

2.5.4 Problem size and difficulty induced by the number of scenarios

In this section we look at the number of variables, number of constraints and solution
times evolution with the increase in the number of scenarios in the OR-OS strategy.
To asses the impact of the number of scenarios, we solve Instance UK10_01 several
times with a number of scenarios varying from one to eight shown in Table 2.8. This
instance has been chosen as it has a solution time close to the average solution time of
10-node instances described in Table 2.5. In addition to showing the number of variables,
constrains and solution time (seconds), we report in Table 2.9 the change in these values
of each additional scenario considered. We see from Table 2.9 that numbers of scenarios
has a significant impact on the size and solution time of the problem. We can see that
considering one additional scenario introduces 246 variables and 1051 constraints on
average, and increase the computational time of 1243 seconds. While the number of
additional variables and constraints increase steadily, it is not the case of the solution
time. The latter depends on the difficulty of solving an instance, which in turn depend
on the size of the instance and the values of traffic speeds generated by the scenarios.
This means that two instances with the same number of scenarios have the same number

of variables and constrains, but differ in the solution time needed.
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Scenario | fi | 62
St 40 | 64
So 70 | 144
Ss 55 | 100
Sy 35 | 49
S5 80 | 121
Se 60 | 100
S7 70 | 144
Sg 29 | 64

Table 2.8: Eight scenarios considered

Scenarios | Variables | Change | Constraints | Change | Time (s) | Change
1 1349 - 1490 - 126 -
2 1592 243 2614 1124 714 588
3 1839 247 3578 964 1282 568
4 2089 250 4604 1026 2773 1491
) 2334 245 5747 1143 4525 1752
6 2576 242 6731 984 5165 640
7 2824 248 7789 1058 7488 2323
8 3072 248 8849 1060 8830 1342
Average 2209 246 5175 1051 3863 1243

Table 2.9: Problem size and solution time change depending on the number of scenarios

2.5.5 Correlation between total cost and fuel cost savings

To gain more insight, we provide a pairwise comparison of six scenarios, two with low
means equal to 30 km/h and 40 km/h, two with higher means equal to 55 km/h and 70
km/h, and with variances equal to either 64 or 144, yielding eight combinations. The
tests show how the traffic conditions affect both the fuel consumption and the total cost
of the solutions. The tests are run on the instance UK10_-01 and the results are reported
in Table 2.10, where each entry corresponds to a pair of scenarios, and contains two rows.
The first row reports the percentage reduction in fuel consumption achieved by the OR-
OS strategy over the deterministic approach, and it is displayed in the form (minimum,
average, maximum). A negative value indicates that the deterministic approach per-
formed better than the OR-OS strategy. The second row reports similar statistics for

the total solution cost.

The results shown in Table 2.10 suggest that the savings in total cost and in fuel con-
sumption are not necessarily correlated. In fact, a large reduction in total cost does not

imply a large reduction in fuel consumption. In this respect, Demir et al. (2014a) pointed
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[ =40, 62 = 144 [t =70, 6% =144
(—0.2%, 0.4%, 1.2% ) ( —1.8%, 0.1%, 2.2%)

(9.3%, 12.9%, 15.6% ) ( 7.6%, 15.8%, 20.8%)

(=1.9%, —1.3%, —0.8% ) ( —1.2%, —0.1%, 1.3%)

f=30, 6% =144
(3.2%, 7.6%, 13.3% ) ( 6.7%, 12.7%, 16.2% )

(=3.7%, —1.1%, 1.1% ) ( —=2.0%, —0.7%, 1.4%)

(3.9%, 5.7%, 9.3% ) (10.1%, 11.8%, 13.2%)

R X (—0.5%, 2.1%, 5.6% ) ( —1.7%, 0.0%, 2.7%)
[ =055, 6% =144

(4.4%, 11.4%, 201% ) ( 7.2%, 13.5%, 24.7%)

Table 2.10: Comparison between deterministic and OR-OS solution values

out that the objective function is composed of two cost components: fuel consumption
and driver cost. These are often conflicting, and the latter plays a more important role
in achieving reductions in the overall cost. The results indicate that the largest savings
both in fuel and in driver cost are achieved when the average speed across all scenarios
is less than the the globally optimal speed v* that minimizes fuel consumption (which
depends on the type of vehicle and is between 50 and 60 km/h in our case), otherwise
the savings in fuel consumption are less than 0.6% on average. The results also show
that the deterministic approach was able to save fuel on some instances, but this saving
is achieved at the expense of the overall cost. Finally, when the average speed of one
scenario is lower than v* and the other is higher than v*, the two approaches yield similar

fuel consumptions, but the OR-OS strategy performs better in terms of the overall cost.

2.5.6 The value of optimizing speed

Most papers relevant to the stochastic VRP, such as those reviewed in Section 2.2.2, do
not consider speed as a decision variable. This means that if arc (4, j) is chosen in the
first stage, then it is assumed that the vehicle will travel on that arc at a traffic speed
that is scenario dependent. From a decision-making point of view, this does not allow
any flexibility in changing vehicle speeds and does not take into account the flexibility
of reducing speed to save on fuel cost. From a methodological point of view, this is a
special case of our approach where the speed decision variables are fixed to the traffic

speeds on all arcs.
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To quantify the value of optimizing speed, we present results using the first 10 instances
of the testbed (namely UK_10_.01 to UK_10_10), on which we compare the percentage
savings afforded by optimized speeds against the case where speeds are fixed to the traffic
speed value prescribed by the scenarios. Table 2.11 shows the results over 3 realizations
of each scenario in terms of the minimum, average and maximum savings, presented
under the three main columns. For each of the columns, we again provide the minimum,
average and maximum savings obtained. For example, the column titled Minimum and
sub-column titled Av shows the average minimum saving achieved across the 10 instances
and the 3 realizations of the scenarios. The values are expressed in percentage of the
objective value which includes only fuel costs. Each row represents a setting, numbered
1-5, that are generated using the scenarios where settings 1 and 2 include one, settings 3,
4 and 5 include two scenarios. The scenarios are defined by the following distributions
(i = 40, 6% = 64); (i = 70, 6% = 144); (4 = 70, 6% = 144), (@ = 30, 6% = 64);
(o =70, 6% =144), (i = 80, 62 = 164); (i = 40, 62 = 64), (i = 30, 6% = 64).

Setting | Minimum (%) Average (%) Maximum (%)
Min Av Max | Min Av Max | Min Av Max
0.0 0.0 0.0 0.0 01 0.3 00 03 04
0.0 0.1 0.3 0.1 03 038 0.2 07 1.5
00 00 00 |01 01 03|01 03 0.5
0.0 0.0 0.2 0.1 02 04 0.1 04 0.7
0.0 0.0 0.0 0.0 0.1 0.2 0.1 02 04

QU W N =

Table 2.11: Savings achieved by considering speed as a decision variable

Table 2.11 shows that considering speed as a decision variable can result in average
savings of up to 0.8% in terms of the total cost. Low savings are due to the fact that
driver cost is the largest cost in the objective function (Bektag and Laporte, 2011). With
the introduction of autonomous trucks, the driver is not in control of the vehicle on the
highways, and hence driver cost can be removed from the objective function to minimize

exclusively fuel consumption and GHG emissions.

In Table 2.12, we repeat the experiment, with the same scenarios described above. This
time however, we do not consider driver wage in the objective function. We can see
that, on average, considering speed as a decision variable can achieve savings on fuel
consumption and GHG emissions between 0.7% and 3.8%. The average minimum saving
is achieved in setting 1, whereas the average maximum is 4.4% is made on setting 2,
where the maximum saving achieved is 8.5%. This shows that the savings made are
highly correlated with general trend of the traffic speed on the network. Indeed, when
the traffic speed is high, the fuel consumption is also high. Therefore, if the vehicle has
to travel on all arcs at the traffic speed, it will not choose some arcs that have high

speed, which in turn will increase the fuel consumption. This situation is avoided by
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considering speed as a decision variable, since the vehicle then has the ability to travel

at speed that is lower than the traffic speed.

Setting | Minimum (%) Average (%) Maximum (%)
Min Av Max | Min Av Max | Min Av Max
00 06 14 0.7 1.5 38 1.1 25 79
00 13 21 1.7 27 3.6 25 44 84
05 1.1 1.6 1.2 18 25 1.7 26 4.2
05 13 26 1.5 22 33 19 32 45
02 08 1.8 08 14 19 1.5 20 24

QU = W N =

Table 2.12: Savings achieved by considering speed as a decision variable without driver

2.5.7 The effect of variability in traffic speed

This section reports results when more than one segment is assumed for each arc in the

network to be able to evaluate the effect of any speed variability.

We consider a road network where we generate a traffic speed for two segments per arc
and then solve the problem using the OR-OS approach. To compare this approach, we
consider another network where the traffic speed on one arc is the average of its two
segments and solve using the same approach. From this test we see the difference in
cost of the two approaches which represents the accuracy in handling speed variability

brought by considering more segments.

Table 2.13 shows the results of these two settings. We see that, on average, considering
two segments increased the accuracy by 8% compared to only one segment per arc. We
also notice that ignoring speed variability may result in an over-optimistic approach
that underestimates the real cost. From a computational complexity point of view,

considering two segments slows down the solution time by a factor of almost six.

2.6 Conclusions

We have introduced, modeled and solved the Pollution-Routing Problem with stochastic
traffic speed. We have used a comprehensive cost function and considered stochastic
speeds to represent the uncertainty in traffic conditions. Since, the traffic speed on each
arc is stochastic, the travel times were also treated as random variables. We first modeled
the problem considering discrete uncertainty representation, where the traffic speeds are
represented by a finite set of scenarios. A two-stage non-linear stochastic program was
developed. We linearized the resulting model by using a discretization of both speed
variables and speed recourse variables. The use of a discrete recourse has an significant

impact on the performance of the algorithm. We therefore proposed another linearization
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Instance Two segments One segment

Optimal Seconds Optimal Seconds Gap (%)

value value
UK10.01 247.3 7500.0 230.3 804.0 7.4
UK10.02 309.3 8634.0 284.4 797.0 8.8
UK10-03 285.4 6475.0 268.2 1008.0 6.4
UK10.04 275.4 6385.0 253.9 826.0 8.5
UK10.-05 252.1 8690.0 237.2 3852.0 6.3
UK10.06 322.5 7916.5 292.1 1347.0 10.4
UK10.07 278.2 3826.0 254.8 410.5 9.2
UK10.08 325.6 1813.0 299.1 223.3 8.9
UK10-09 250.3 3283.0 232.0 239.7 7.9
UK10.10 272.6 2659.0 254.7 274.3 7.0
Average 281.91 5718.15 260.67 978.18 8.0

Table 2.13: Comparison between network with two segments per arc and with one
segment per arc

technique that uses a continuous recourse instead of a discretized one. When 10-node
instances from the PRP-lib were solved using both formulations, the continuous recourse
model outperformed the discretized recourse model, yielding an average cost reduction
of 4.95%. The continuous recourse strategy was also compared with its deterministic
counterpart in which traffic speeds are the averages across all scenarios. This enabled
us to estimate the value of solving a stochastic model as opposed to a deterministic one.

The continuous recourse model yielded average cost savings of 7.48%.

We have also studied a decision making process in which the routing decisions are made
before the information about stochastic events becomes available, but speeds can be
chosen after the realizations of the scenarios. While this scenario is less likely to occur
in practice, it was implemented to evaluate the value of perfect information on traffic
condition. When this model was solved on the same instances, only 1.27% of the total

cost was saved with respect to the continuous recourse model.

We also proposed a way to represent traffic speeds variability by considering several
segments on a given arc. We showed that considering two segments per arc can increase

the accuracy of the solution by 8.0% on average.


http://www.apollo.management.soton.ac.uk/prplib.htm
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Abstract

The previous chapter defined the Pollution-Routing problem with stochastic traffic speed.
It showed that by considering traffic uncertainty, 7.48% of the total cost could be saved
on average on 10-node instances. To model this uncertainty, the PRP was modeled as
a two-stage stochastic program, which is known to be difficult to solve. As a result,
the commercial solver used was not able to solve instances with more than 10 nodes.
With the aim to solve larger instances of the problem, this chapter introduces new
solution techniques based on decomposition. Two-stage stochastic programs have a
particular structure as the first stage problem and the second stage problem can be
solved separately with the relaxation of some constraints. Several techniques based on
the integer L-shaped algorithm are proposed in this chapter. These techniques differ
in the way in which the stochastic program is relaxed and on how the first stage and
the second stage problems interact. Several mathematical formulation, cuts and lower-
bounds are proposed together with local search procedures. The techniques proposed
are tested and compared on instances from the PRP-lib with sizes between 20 and 50

customers.

Keywords: pollution-routing; stochastic programming; Integer L-shaped method; de-

composition.

3.1 Introduction

Stochastic mixed-integer program have been extensively used in the literature to tackle
uncertainty in optimization problems. Two-stage stochastic programs are of particular
interest as they have the ability to model decisions and uncertainty realizations over
a time-line (Grass and Fischer, 2016). However, these problems combine two difficult
decision problems, connected by a set of constraints, which makes them computationally

intractable for large problem sizes (Laporte and Louveaux, 1993).

Although two-stage stochastic programs are difficult to solve in their original form, they
have a special structure that can be exploited by dedicated methods. Several decom-
position methods have been proposed to take advantage of that special structure, by
decomposing the problem in a set of smaller and often relaxed subproblems. The de-
composition of stochastic programs is generally done either on scenarios or on decision
stages (Guo et al., 2015).

We model the PRP under uncertain traffic condition using the two-stage stochastic
program described in Section 2.4.2.2 (2.44)—(2.57), which was proved in Chapter 2 to
provide the best solutions. The first stage of this model consists of finding a set of

feasible routes, whereas the second stage consists of optimizing speed of the vehicle on
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those routes. The first stage uses binary decision variables, and the second stage is a
mixed-integer mathematical program. To decompose this problem we use the integer
L-shaped method of Laporte and Louveaux (1993). We decompose the problem in a
master and a subproblem. The master problem consists of solving the routing part of
the problem, while the subproblem addresses the speed decisions on each leg of the
routes found by solving the master problem. We propose several techniques based on
the integer L-shaped method, together with strategies and lower bounds to improve the

techniques.

The remainder of this chapter is structured as follows. Section 3.2 presents a brief review
of the literature of applications of the integer L-shaped method to stochastic problems.
Section 3.3 explains the methodology of the methods and mathematical models described.

Section 3.4 presents computational experiments, and conclusions follow in Section 3.5

3.2 Literature review

Since the introduction of the PRP (Bektag and Laporte, 2011), a number of authors
have investigated a range of variants, see (Kog et al., 2014; Franceschetti et al., 2013;
Demir et al., 2014a; Tajik et al., 2014). A review of these papers is available in Section
2.2.2. For a wider and comprehensive overview of the green transportation, including air
and maritime transportation, we refer the reader to Psaraftis (2016). Here, We review
relevant studies that used the integer L-shaped method since its introduction by Laporte
and Louveaux (1993).

Laporte and Louveaux (1993) proposed the integer L-shaped method to solve two-stage
stochastic problems with binary first stage decisions. The method was called inte-
ger L-shaped due to its similarity with the L-shaped method of Van Slyke and Wets
(1969). The method consists of relaxing some constraints in a given formulation, and
re-integrating them gradually until an optimal solution is found. The authors defined

feasibility cuts and optimality cuts that are derived after every iteration.

The integer L-shaped method was first adapted to the VRP with stochastic demands
and customers by Gendreau et al. (1995). The authors found that stochastic customers
are more difficult to handle than stochastic demands. The problem was modeled as a
two-stage stochastic program, where the first stage consists of finding a set of routes,
and the second stage consists of skipping absent customers, and returning to the depot
to unload and resume the route if demand is exceeded. The algorithm could solve
instances with 10 to 70 customers, depending on the difficulty of the instance, and the
values of some input parameters. Salavati-Khoshghalb et al. (2017) considered the same
problem allowing the vehicle to return the depot in anticipation of potential failures

when the capacity becomes less than a threshold. The authors also defined lower bound
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to approximate the cost of the recourse strategy. Instances with four vehicles and 60

customers were solved optimally.

Recent applications of the integer L-shaped method include the integrated problem of
staffing and scheduling nurses by Kim and Mehrotra (2015). The authors model the
problem as a two-stage stochastic program where the first stage finds a feasible solution
to the staffing and scheduling problem. The second stage consists of adjusting the first
stage decisions according to the realizations of the stochastic demand. The authors
developed several cuts for the problem, and showed that significant cost savings were

achieved over the deterministic version of the problem.

Angulo et al. (2016) proposed several strategies to improve the integer L-shaped method.
A first strategy consists of computing the cost of the second stage problem by alternat-
ing between linear and integer programing. In addition, the authors developed a cut-
generating linear program, that finds cuts based on previously explored solutions. The
techniques performance depend on the convexity and complexity of the objective func-
tion of the problem. The method reduces the solution time when tried on two different

problems, the stochastic multiple knapsack and the stochastic server location problem.

3.3 Methodology

In this section, we describe an integer L-shaped decomposition algorithm for the math-
ematical model described in Section 2.4.2.2 (2.44)—(2.57) that results in a master and
a subproblem, and how the interaction between these two problems is operated in the

different methods proposed.

3.3.1 The original integer L-shaped method

A two-stage stochastic problem can be modeled as follows:

min z = cx + Q(x) (3.1)
st. Az =b,z € X, (3.2)

where
Q(z) = E¢lmin{g(w)y | Wy = h(w) - T(w)z,y € Y}, (3.3)

where ¢ and b are two known vectors in R™ and R"2, respectively. The vector z € {0,1}"
represents the first stage binary decision variables. Q(x) is a function of input x and

random parameters ¢, W, h and T represented by the set £. Finally, the vector y € Y



Chapter 3 Integer L-shaped Algorithms for the Pollution-Routing Problem under
Traffic Uncertainty 47

represents the second stage decisions. The problem (3.1)-(3.2) can be reformulated as

follows:

min z =cxr+46 (3.4)
st. Ax=br e X (3.5)
Qz) —0<0,2€X. (3.6)

In order to solve (3.4)-(3.6), the integer L-shaped method consists of relaxing the set
of constraints (3.6), which results in solving a simplified master problem. In this formu-
lation, # is an underestimate of QQ(x). Constraints (3.6) are reincorporated iteratively
for fixed vectors & € X obtained by solving the master problem, until optimality is
reached. The subproblem Q(x) is solved for every optimal solution of the master prob-
lem Z in every iteration. If a master problem solution is not feasible for the subproblem,

a feasibility cut is derived and added to the master problem in the next iteration.

3.3.2 Adaptation to the PRP

In the stochastic PRP, the first stage decisions, which are made in the master problem,
consist of selecting routes for all vehicles. The objective function of the master problem
includes cost functions that only depend on routing. All expressions in the objective
function of the stochastic PRP that depends on speed or travel times, are scenario-
dependent, and are therefore in the objective function of the subproblem. The master

problem is as follows:

Minimize Z wfcv)\ozijdijxij+ Z fc/)/)\aijdijfijJrg (37)
(1,7)€A (1,5)€A

subject to

Constraints (2.75)—(2.82).

The output of the master problem is the optimal solution & for the current iteration that
represents a set of routes. We define S as the set of variables z;; that are equal to 1 in
Z. The subproblem consists of finding optimal speeds for vehicles to drive at on each leg
of the routes. This problem is a stochastic version of the speed optimization problem
described by Norstad et al. (2011), which we name here the stochastic speed optimization
problem (SSOP). Here, the arrival times at customers are scenario-dependent, and time-

windows can be violated at the expense of penalties. Therefore, the algorithm designed
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by Demir et al. (2012) for the deterministic version of the SSOP fails to generalize for

our problem. The mathematical model of the subproblem is described as follows:

Minimize Q(2) =} ps ( fEQVA Y dy ( S G5 + SE‘}) (3.8)

seS (i,7)EA reR
LAY di (DD 0 - 88 (3.9)
(3,7)EA re€R
+ > fadl (3.10)
JENo

+ Zel§> (3.11)
J
subject to

Constraints (2.54)—(2.57), (2.60)—(2.69).

The optimal speeds found by solving the subproblem provide the total cost Q(&)* of the
routes defined by .S, which is used to add a cut to the master problem. The cuts such

as defined by Laporte and Louveaux (1993) for the problem are

0> Q&) () xy—(IS|-1)) (3.12)

zi; €S

The solution found by the master problem is evaluated by solving the subproblem. The
algorithm iterates in this manner and converges if solving the master problem returns a
solution already visited. A pseudo-code of this method, that we denote Lshaped_O, is
provided in Algorithm 1.

Algorithm 1 Lshaped_O

1: Optimal + False
2: 0+ 0
3: while not Optimal do

4: Solve the master problem

5: Z < Optimal Solution of the master problem
6: if 6 > 0 then

7 Optimal = True

8: ¥ T

9: else

10: Minimize Q(&)

11: Add cut (3.12) to the master problem
12: end if

13: end while
14: return z*




Chapter 3 Integer L-shaped Algorithms for the Pollution-Routing Problem under
Traffic Uncertainty 49

3.3.3 Integer L-shaped with lower bound

The idea behind the L-shaped method is to relax a set of constraints, and to reincorporate
a subset in an iterative fashion. By relaxing those constraints, no information about the
subproblem is available in the master problem, which may lead the method to explore
non-promising solutions. To guide the master problem in finding promising solution
for the main problem, and without losing optimality, we add a lower bound on the
subproblem in the objective function of the master problem. This lower bound provides

an optimistic estimate of the second stage cost. We refer to this method as Lshaped_A.

The lower bound on the second stage problem is obtained with the following reasoning.
The objective function of the deterministic PRP decomposes in two parts, fuel consump-
tion and driver wage, Demir et al. (2014a). In the stochastic PRP, an additional term
representing the cost of delays is also present in the objective function. The fuel con-
sumption expression is also divided into two expressions that depend on load and speed.
The load-dependent expression is determined by the routing decisions, which are made
in the master problem. The speed-dependent expression is minimized in the subproblem.

For a given scenario, the objective function is the sum of the following expressions

fEQVA Y dij(Z(z;“j/v’”)JrSFg) (3.13)

(i,5)€EA reR
fn Y dig (3 2 - s8y) (3.14)
(i,7)€EA reR
> fads (3.15)

JENo

> el (3.16)

J

Terms (3.13) + (3.14) represent the fuel consumption related to speed variables z]; and
the speed recourse variables. It is also a convex function and its global minimum can be
computed. Terms (3.15) + (3.16) represent the driver wage and the cost of delays, and
is monotonously decreasing as speed increases and has a global minimum which can be
computed analytically. A lower bound for (3.13) + (3.14) + (3.15) + (3.16) is the sum
of a lower bound for (3.13) + (3.14) and one for (3.15) + (3.16).

We define V' as the speed that minimizes the expression (3.13) + (3.14), and V/Ji**
as the maximum achievable speed across all scenarios s € S on an arc (i,j) € A and
Vi = min(Vy, V7i57).

ijs
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A lower bound for (3.13) + (3.14) can be found by computing the cost of emissions based
on V;; as speed on the arc (i, j) € 4,

FEQUA D dig Vi + foByX D dyVis®. (3.17)

(i,j)eA (i,7)eA

The lower bound on (3.15) + (3.16) is obtained by computing the arrival times at
customer assuming that the vehicle travels on all route legs at speed V7i**. This results
in the vehicle arriving at the earliest possible time at each customer and minimizes the
total duration of the routes, yielding minimized driver costs and late arrivals penalties.
We add a new decision variable ¢ to the master problem to represent the lower bound

on the cost of the subproblem. The master problem is described as follows.

Minimize Z w feyAagdijx; + Z feyAoyjdijfis +C+ 0 (3.18)
(i,j)€A (i,j)€A

subject to

Constraints (2.75)—(2.82)

vi— st Y dig [V < M(1 - w5) ieN,jeNo,i#jseS (3.19)
reR

y;—tj—5;+2dj0/‘/}rgg$SM(l—.%jo) j € Ny,s €S (3.20)
reR

ajgngbj—i—lj j € Ng,seS (3.21)

y; >0 i€ Nog,s €8 (3.22)

¢ > (fCKQV)\ N di/Vi AN Y AVt S fd5s+Zel) (3.23)
(3,7)€A (i,5)€A JENo

Using this definition of the lower bound (, we can compute a lower bound on all the
solutions of the subproblem. We define the constant ¢ which is equal to the lower bound
on the subproblem over all the master problem solutions. The value of ¢ is computed by

solving the following problem.
t=Min ( (3.24)
subject to

Constraints (2.75)—(2.82),(3.19)—(3.22).

The value of ¢ is then used to develop strengthened cuts as follows:

> (Q(@)" = ¢ =) ) wiy— (IS = 1)+ (3.25)

xijES
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3.3.4 Integer L-shaped with lower bound and local branching

In this section, we propose to include the local branching approach of Fischetti and
Lodi (2003) within the integer L-shaped method. The idea behind the local branching
technique is to explore neighborhoods of a given solution during the solution process.
Commercial MIP solvers have a range of tools and built-in heuristics that makes them
extremely fast in solving relatively small MIPs (Fischetti and Lodi, 2003). These tools
can be effectively used to explore neighborhoods, which are a smaller and a restricted

version of the problem.

In our implementation, after finding a solution that is better than the current best known
solution, we explore its neighborhood until a stopping criterion is reached, following
which we prune the neighborhood from the feasible region of the master problem. If the
stopping criterion verifies that no neighboring solution is better than the best solution
obtained so far, than the algorithm is an exact method. However, if the stopping criterion

does not guarantee this condition, the algorithm becomes a heuristic.

We define a neighborhood of a solution by a set of solutions that has at least g similar arcs.
Fixing the value of g impacts the solution time and the number of solutions discarded
from the master problem. Too small a value of g yields a large neighborhood that is
difficult to explore, whereas too large a value of ¢ reduces the information extracted
from the neighborhood and has smaller impact on the convergence of algorithm. The
constraints added to obtain a neighborhood of a known solution z, with S as the set of

variables x;; that are equal to 1 in & are

> @i>g, (3.26)

CEi]'ES

after reaching the stopping criterion, the neighborhood is pruned by adding the following
constraint
> ai<g, (3.27)
;€8
The pseudo-code of the integer L-shaped with local branching, which we refer to as

Lshaped_LB algorithm, is provided in Algorithm 2.

3.4 Computational experiments

In this section, we computationally compare the performance of the solution techniques
proposed on instances from the PRP-lib with 20, 25 and 50 nodes. Every instance is
solved three times, over different realizations of the traffic speed scenarios. The maxi-
mum time allowed for the resolution of one instance is 30 minutes. We also compare

these results with the ones obtained by solving the original model (2.44)—(2.57) using


http://www.apollo.management.soton.ac.uk/prplib.htm
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Algorithm 2 Lshaped LB

1: Converged < False
2: 00
3: while not Converged do

4: Solve the master problem

5: Z < Optimal Solution of the master problem

6: if # > 0 then Converged = True

7: else

8: Solve Q(z)

9: if & is the best solution so far then

10: Add cut (3.26) to the master problem

11: while not stopping criterion of local branching do

12: 2! < Optimal Solution of the restricted master problem
13: if =0 then_

14: Solve Q(z?)

15: Add cut (3.12) to the master problem

16: else

17: Neighbourhood fully examined

18: end if

19: end while

20: Add cut (3.27) to prune the neighborhood from the master problem
21: end if

22: end if

23: end while

CPLEX 12.6.0.1 with a maximum number of four threads, and allowing the same max-
imum solution time. The tests were performed on a computer equipped with eight
processors Intel Xeon E7-8837 and a RAM of 1 To.

In the computational experiments carried out, we considered fifteen equiprobable scenar-

ios denoted S7 to Si5 generated using a log-normal distribution as explained in Section

2

2.5.1. The scenarios are defined by their mean i and variance ¢° are displayed in Table

3.1
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Scenario | fi | 62
S1 26 | 64
S 65 | 144
Ss3 55 | 100
Sy 35 | 49
Ss 60 | 100

Ss 40 | 121
Se 70 | 144
Sy 29 | 64
So 36 | 49
Sio |90 121
Siy 67 | 144
Siy |21 64
Sis | 50 | 100
S |34 49
Si5 | 46 | 121

Table 3.1: Fifteen scenarios considered in instance

The results are shown in Tables 3.2, 3.3 and 3.4, where the first row displays the name
of the corresponding approach. The column Inst shows the instance name contains the
number of customers and the number of the instance. The best upper bound (UB)
and lower bound (LB) are reported for each of the methods. For the L-shaped based
methods, the iteration Fit and time Ft in seconds at which the best solution was found,
together with the number of cuts Ne, the average master and subproblem solution time
in seconds, AMT and AST, respectively are reported. The best solutions value found

for each instances is displayed in bold in all the tables.

Within both the Lshaped LB method and Lshaped_A, the lower bounding cut (3.23) in
the master problem slows down the solution process considerably, as a result of which the
algorithm cannot iterate after the first iteration. Therefore, we simplify the constraints
and instead we use a lower bounding cut that considers the fuel consumption only, as
shown below:

(> fKQUA D> dig/ Vi + fByX D diVis®. (3.28)
(3,5)€A (i,7)€A

The performance of the Lshaped LB method depends on the number of solutions to
visit in the neighborhood. To tune this parameter, we solved 30 instances with 20 and
25 nodes. The values that were tested are 5, 10 and 15 solutions per neighborhood.

The results provided by the algorithms were very close, however, selecting 10 solutions
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yielded better result with an average cost of £460 , while selecting 5 and 15 solutions
yielded a cost of £461 and £460.3, respectively.

Table 3.2 shows that the Lshaped LB method provided the best solutions on average, and
found most of the best solutions on 20-node instances. All the L-shaped based method
found lower-cost solutions than CPLEX. On 25-node instances, we can see from Table
3.3 that the Lshaped_O found the lowest-cost solutions, on average, and Lshaped_LB
and Lshaped_A performed almost identically. Results on 50-node instances are reported
in Table 3.4. CPLEX did not provide any feasible solution on 50-node instances within
the 1800 seconds time limit, therefore, we allowed it to solve the instances in three
hours. The L-shaped based methods for these instances did not perform more than
one iteration, and therefore the Lshaped_LB and Lshaped_A provide the same results
which are reported under column named Lshaped_A & _LB. CPLEX could not provide
a feasible solution for five instances, and provided the best upper bound on only one
instance. The results provided by all the L-shaped based methods were similar on

average.

It is shown in all the three tables that, even though all the variants of the L-shaped
based method performed similarly on average, the gap between the approaches can be
significant on some instances. This is due to the specificity of each method, which
gives it advantage depending on the instance solved. However, on all the instances,
the method outperformed CPLEX by an average gap in the cost between 5% and 14%.
CPLEX provided the best lower bounds on all instances, followed by Lshaped_A then
Lshaped_O. Lshaped_LB does not provide valid lower bounds. We can also see from the
tables that most of the solution time is spent on solving the master problem, and this

time increases drastically with the size of the instance.

We can also see from the three tables that the Lshaped LB provides the best upper
bounds on 12 instances with 20 nodes, followed by Lshaped_A with 7 and Lshaped_O
with 3 instances. On 25-node instances Lshaped_LB still provides the best upper bounds
on 10 instances, followed by Lshaped_O with 7 and Lshaped_A with 4 instances. The
Lshaped_O yielded to 13 best upper bounds on 50-node instances, while only 7 were pro-
vided by Lshaped_A and Lshaped_LB which provided the same results on these instances.
We can also see that the number of best upper bounds of the Lshaped_O increases with
the number of nodes in the instances. Whereas Lshaped_LB performs better on smaller

instances.



CPLEX Lshaped_-O Lshaped_A Lshaped LB

Inst UB LB UB LB Fit Ft Ne AMT AST UB LB Fit Ft Nec AMT AST UB Fit Ft Ne AMT AST
2001 | 560.6 246.4 | 507.5 141.6 3 57 71 25 0.3 507.8 1823 12 205 79 23 3.1 507.9 10 121 82 22 0.9
2002 | 568.4 261.3 | 555.2 150.2 6 50 101 18 0.3 | 551.0 1939 38 676 83 21 3.1 551.8 65 1034 102 17 1.1
2003 | 307.5 158.9 | 303.0 84.0 43 683 93 19 0.3 | 300.5 108.0 59 766 107 17 3.6 300.5 23 178 99 18 1.1
2004 | 593.2 253.7 | 525.7 1442 8 860 17 102 0.3 | 525.9 185.0 10 804 19 93 3.3 | 521.2 18 984 29 61 1.1
2005 | 529.7 218.9 | 485.0 131.2 12 262 69 26 0.3 | 468.7 167.5 52 1161 74 24 2.8 469.7 41 679 87 21 0.9
2006 | 706.4 258.7 | 634.3 153.1 4 991 6 254 0.3 634.1 194.2 3 419 10 174 2.7 633.0 8 434 20 81 0.9
2007 | 369.7 176.5 | 374.1  95.9 2 639 5 322 0.3 | 367.0 1221 3 756 4 196 2.9 | 359.6 7 488 14 98 1.0
2008 | 459.6 213.2 | 436.1 120.2 68 1147 100 18 0.3 427.3 153.5 74 1136 106 17 3.5 | 426.8 81 1065 121 15 1.2
2009 | 588.6 269.4 | 615.1 147.3 47 1136 64 28 0.3 | 678.2 190.6 40 170 152 12 1.7 | 595.9 106 1050 142 13 0.6
20_10 | 476.3 210.7 | 462.0 126.7 9 786 18 94 0.3 458.8 162.5 17 1103 27 65 3.4 455.8 19 614 34 52 1.1
2011 | 638.7 286.3 | 650.5 166.6 26 806 49 37 0.3 | 642.7 211.3 19 222 81 22 2.4 642.7 11 71 78 23 0.7
2012 | 580.2 246.7 | 544.5 1383 41 1104 60 30 0.3 | 547.8 179.6 40 1459 47 38 3.1 | 543.9 48 1189 63 28 1.0
20_13 | 575.6  231.9 | 567.7 139.2 29 652 71 25 0.3 | 558.6 179.0 62 981 99 18 2.1 564.2 35 394 108 17 0.7
20_14 | 575.6 2319 | 587.5 181.3 7 395 25 68 0.3 | 556.4 235.2 27 938 43 41 2.7 564.0 29 781 51 35 0.8
20_15 | 607.4 302.8 | 507.5 140.5 25 1216 32 55 0.3 | 518.9 181.3 26 1476 30 58 25 | 506.7 31 1115 44 39 1.0
20.16 | 571.5 262.3 | 545.8 146.7 6 572 16 108 0.3 531.8 185.5 10 485 31 58 2.9 530.8 22 858 39 46 0.9
20_17 | N/JA N/A | 631.8 165.5 10 815 20 88 0.3 | 637.6 208.2 15 1261 19 88 3.2 633.2 23 997 35 50 1.1
20_18 | 603.4 276.6 | 611.9 155.7 29 881 55 32 0.3 | 681.0 198.0 31 590 78 23 2.3 691.5 20 169 83 21 0.8
20.19 | 592.0 242.7 | 538.6 1434 6 387 20 86 0.3 | 538.3 1835 6 448 20 88 3.0 | 507.9 10 121 82 22 0.9
2020 | 537.7 268.0 | 543.6 1459 88 926 126 14 0.3 | 534.1 189.7 69 293 186 10 2.5 | 534.1 50 175 162 11 0.9
Av | 549.6 243.0 | 5314 1409 234 7182 51.0 724 0.3 | 533.3 180.5 30.5 7674 64.8 54.2 2.8 | 527.1 329 6258 73.7 345 0.9

Table 3.2: Results on 20-node instances
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CPLEX Lshaped_O Lshaped A Lshaped_LB

Inst UB LB UB LB Fit Ft Nec¢ AMT AST UB LB  Fit Ft Ne AMT AST UB Fit Ft Ne AMT AST
2501 | 548.7 1945 | 475.5 1214 32 1385 39 45 0.2 4829 155.7 15 406 49 36 1.9 477.0 21 1120 32 55 1.3
2502 | 593.9 267.2 | 556.3 146.1 1 1128 3 544 0.2 550.7 188.0 2 1199 4 428 2.1 568.1 1 1041 4 443 1.1
2503 | 370.7 1453 | 328.7 86.9 1 868 518 0.3 | 319.4 1099 6 1686 8 237 3.0 319.6 9 1594 12 269 1.5
2504 | 479.4 164.3 | 451.4 56.0 0 1420 1 1420 0.2 446.8 142.0 2 729 4 248 1.8 443.7 3 642 13 105 1.1
2505 | 553.4 263.6 | 442.8 1412 7 484 20 86 0.2 4429 1819 4 692 10 161 34 442.8 4 614 11 146 1.2
2506 | 500.7 2079 | 486.7 121.3 5 831 13 129 0.2 520.2 155.3 23 1077 35 50 1.7 520.0 2 161 17 86 0.9
2507 | 6329 2224 | 615.5 98.4 0 1427 1 1445 0.2 688.1 1115 0 1365 1 1365 14 688.1 0 1365 1 1365 1.4
2508 | 725.7 2348 | 6751 1555 1 1127 3 488 0.2 | 606.0 196.0 8 1025 13 130 1.8 607.5 7 578 15 106 1.2
2509 | 481.6 2251 | 466.3 121.0 22 1175 29 54 0.8 449.0 1572 16 848 22 68 1.9 455.9 18 1240 26 64 1.0
2510 | 551.7 301.3 | 545.1 157.3 10 423 43 41 0.7 543.5 200.0 25 857 44 40 2.2 543.3 20 840 39 45 1.2
2511 | 654.4 284.8 | 570.7 80.5 0 1800 0 1800 0.2 619.8 1242 0 1290 0 1290 1.1 619.8 0 1290 0 1290 1.1
25.12 | 689.4 3064 | 640.0 1755 38 1087 62 29 04 | 6329 2263 23 680 59 30 4.1 633.2 24 501 73 25 1.1
2513 | 383.7 1709 | 363.6 92.8 43 1411 53 33 0.2 351.7 1194 3 250 18 98 3.3 348.3 10 640 26 64 1.1
2514 | 607.4 3028 | 5784 166.6 32 753 69 26 0.2 5784 2128 23 790 46 39 34 577.4 32 944 56 32 1.1
2515 | 871.1 269.1 | 7236 163.3 30 1118 44 40 0.2 738.5 2084 41 1209 58 30 2.8 723.2 43 1179 60 29 0.9
25.16 | 601.8 256.1 | 508.0 148.3 36 1290 48 37 0.3 591.3  190.5 39 709 87 21 1.6 594.8 44 979 73 24 0.7
2517 | 847.0 3458 | 776.7 2065 19 915 33 52 0.2 776.7 260.8 7 495 20 82 2.7 776.1 14 880 26 63 1.0
2518 | 1276.2 264.5 | 7585 171.3 3 346 15 122 0.2 | 754.5 216.8 5 203 35 50 1.5 754.5 2 96 31 56 0.8
25.19 | 724.0 3228 | 695.1 1787 42 1023 71 25 0.3 669.9 231.0 52 1384 65 27 3.6 662.8 54 1191 74 24 0.9
2520 | 678.4 2675 | 572.3 76.8 0 1801 0 1800 0.4 587.1 1152 O 1801 0 1801 1.2 587.1 0 1801 0 1801 1.2

Av 638.6 250.9 | 561.5 133.3 16.1 1090.5 274 436.8 0.3 567.5 175.1 14.7 9349 29.0 311.6 2.3 567.2 154 934.7 29.3 304.7 1.1

Table 3.3: Results on 25-node instances
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Lshaped_O Lshaped A & LB | CPLEX

Inst UB LB UB LB UB LB
50_01 919.5 126.1 914.7 190.6 1608 444
50.02 937.9 129.5 | 953.4 195.6 | 1290 441
50_03 1012.6 133.2 1018.7 203 1588 449
5004 1169.7 161.1 1170.5 248.1 1535 584
50-05 1180.3 142.9 | 1143.7 210.2 - 419
50_06 909.3 118.9 | 911.3 181.3 | 1725 412
5007 856.6 113.2 | 862.4 172 1588 385

50_08 955.3 116.8 961.5 178.6 - 401
50-09 1100.7  148.1 | 1110.6 226.4 | 1251 510
5010 1122.6 1456 | 1123.3 224.6 - 475

50-11 1062.9  135.5 1064 202.6 | 1073 464
50-13 940.8 119.1 | 933.8 185.9 957 414
50.12 886.5 120.8 | 881.8 187.5 | 1028 445
5014 1082.9  143.6 | 1068.0 2199 | 1210 505
50-15 1089.1 135.6 | 1027.5 194.2 - 410
50.16 898.1 124.4 899 191 894 441
5017 714.3 86.9 742.6 148.6 | 1816 311
50_18 1096.3 143.5 | 1107.3 220.1 | 1170 521
50-19 985.1 126.8 | 972.1 191.8 | 1021 422
5020 1123.9 1474 | 1127.1 225.5 - 489
Average 1002.2 131 999.7 199.9 | 1512 453

Table 3.4: Results on 50-node instances

In Tables 3.2 and 3.3, we report the average results obtained by solving the instances
three times, over different realizations of the 15 traffic speed scenarios described above.
To assess the robustness of the L-shaped algorithms against uncertainty, we show in
Table 3.5 the difference between the best and the worst solution obtained on these three
different realizations. The results are displayed as percentage of the best solution value
found by the algorithm. We see from Table 3.5 that on average Lshaped_A has the
lowest variability on both 20 and 25-node instances, followed by Lshaped_LB and then
Lshaped_O. We can also observe a significant increase in the variability for 25-node

instances compared with 20-node instances for all approaches.
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20 Nodes 25 Nodes
Instance | Lshaped O Lshaped A Lshaped LB | Lshaped O Lshaped A Lshaped LB

(%) (%) (%) (%) (%) (%)

01 2.5 2.8 2.8 7.4 8.7 6.5
02 4.4 4.2 4.0 2.0 4.1 10.9
03 1.0 1.0 1.0 3.8 1.4 0.9
04 2.4 1.5 3.5 5.7 8.4 6.2
05 3.4 1.3 1.2 0.7 0.7 0.7
06 1.6 1.6 1.1 0.5 1.2 1.5
07 8.3 2.6 3.1 4.2 1.7 1.7
08 3.3 2.4 2.6 8.7 11.1 11.9
09 5.8 5.4 6.4 1.3 1.5 4.2
10 2.3 2.5 1.6 4.8 5.3 5.1

11 6.0 2.5 2.5 6.7 6.7 6.7

12 5.6 7.9 8.1 1.2 0.2 1.1

13 4.6 7.3 7.0 4.7 5.7 5.6
14 6.3 4.1 5.8 1.7 1.8 1.7
15 2.2 4.3 2.2 6.2 0.5 6.2

16 0.5 3.1 2.7 3.0 1.1 0.6
17 8.2 7.7 8.6 5.9 4.2 4.2
18 4.1 5.1 4.3 8.1 6.6 6.6

19 5.7 5.6 5.6 9.8 7.0 6.8
20 1.0 1.8 1.8 6.7 44 44
Average 4.0 3.7 3.8 4.7 4.1 4.7

Table 3.5: L-shaped algorithms robustness against uncertainty

In Figure 3.1 we display the upper provided by the Lshaped_O and Lshaped_A on the
instance 20_01 at every iteration. We can see that the initial upper bound found by
the Lshaped_O, UB_O was better than the one provided by Lshaped_A, UB_A. During
the solution process the upper bound were similar, however after the 78th iteration
Lshaped_A improved the upper bound. In Figure 3.2 we report the same results for the
instance 25_.01. We see that the best upper bound provided by Lshaped_A was found
initially and was not changed. Lshaped_O improves the upper bound two times, however

it does not provide a solution better than the Lshaped_A.



Chapter 3 Integer L-shaped Algorithms for the Pollution-Routing Problem under
Traffic Uncertainty 29

Solution cost (£)
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Figure 3.1: Upper and lower bound as obtained on 20-node instance during solution
process by Lshaped_O and Lshaped_A

\

Solution cost (£)
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Figure 3.2: Upper and lower bound as obtained on 25-node instance during solution
process by Lshaped_O and Lshaped_A
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3.5 Conclusions

We aimed in this chapter to tackle the Pollution-Routing Problem under uncertain traffic
conditions. We proposed techniques to solve the problem using the Integer L-shaped
method adapted to a stochastic MIP where the first stage has only binary variables. We
developed three approaches, which have different cuts and strategies. The first method
was the adaptation of the original integer L-shaped, whereas the second method was
an adaptation of the previous method, where we defined a lower bound on the cost
of the second stage, which allowed us to strengthen the cuts and approximate better
the subproblem cost in the master problem. The third approach proposed included the
use of local branching technique. It consisted of exploring neighborhood of solution
found during the solution process. The three method were tested on 20, 25 and 50-node
instances from the PRP-lib. No method could provide a proof of optimality for any
instance. However, the L-shaped based method yielded solutions of better quality in
terms of the total cost as compared to CPLEX, which on 50-node instances could find
any feasible solutions except for one instance. On average, the three L-shaped methods

provided similar results.
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Abstract

Reducing pollution is increasingly a concern for policy makers and companies in the
transportation sector. The amount of pollution emitted is directly related to the quantity
of fuel consumed by the vehicles. One way of reducing the fuel consumption is to optimize
speed on a given journey. This chapter studies a speed optimization problem that
consists of choosing the optimal speed on each leg of a given route, which is represented
by a fixed visit sequence of customers. Each customer has a delivery time window.
Early and late arrivals to customers are allowed, but at the expense of penalties. The
problem generally arises within a broader set of decisions within maritime and road
transportation planning. The objective function in maritime transportation accounts
for fuel consumption and penalties for early and late arrivals, whereas driver cost is also
taken into account in road transportation. This chapter describes a non-linear program
for the problem, which is linearized in several ways, including the use of time-space
networks. Extensive computational experiments are carried out on road and maritime
instances to assess the performance of the methods and to derive managerial insights

for both modes of transportation.

Keywords: Speed optimization; pollution minimization; time-space networks; non-linear

programming.

4.1 Introduction

The amount of pollution emitted by vehicles is related to the quantity of fuel consumed
(Demir et al., 2014b; Fagerholt et al., 2010), which in turn depends on speed, among
other factors. Optimizing speed is therefore relevant to reducing the fuel consumption
of vehicles. Reducing fuel consumption is a problem faced in many logistics applica-
tions, particularly within maritime and road transportation. Emissions from maritime
transportation were estimated to be 400 million tons in 2014, which contributed to both
air pollution and ocean acidification (i.e, reducing the pH levels of the sea) (Organiza-
tion, 2018). The International Maritime Organization (IMO), which is responsible for
international policies to reduce maritime pollution, has limited the amount of emissions
of certain greenhouse gases, introduced emission controlled areas (EAs), and started in
2018 to track the fuel consumption of ships of at least 5,000 gross tonnage in an attempt
to reduce the overall maritime fuel consumption. Reducing fuel consumption in mar-
itime transportation is also of economic importance for maritime companies. In 2012,
for example, it was estimated that in some modes of maritime transportation, fuel cost
accounts for up to 60% of the total cost (Wang and Meng, 2012). The importance of

reducing fuel consumption in road transportation have been highlighted in Chapter 2.
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In this chapter, we investigate the problem of computing an optimal speed for each
leg of a given route, characterized by a fixed sequence of customers, each of which
should ideally be visited within a specified time window. This is known as the Speed
Optimization Problem (SOP) (Fagerholt et al., 2010). The SOP is particularly relevant
to fuel consumption reduction and its application to different modes of transportation,
including maritime, where it is a core problem for shipping applications with a fixed
sequence of ports to visit (Norstad et al., 2011) and road, where it arises as a subproblem
within the Pollution-Routing Problem (PRP) (Demir et al., 2012). Due to the non-
linear nature of SOP formulations, the problem is usually solved either by a non-linear
optimization software or by specialized algorithms, as in Norstad et al. (2011), who

described a Speed Optimization Algorithm (SOA), under hard time window constraints.

Corbett et al. (2009) explored the effect of speed reduction on the total cost and emissions
in shipping, applied to profit-maximizing shipping companies. The authors took into
account fuel price and COs emission taxes. Two possible scenarios were considered.
The first scenario consisted of assuming ships traveling at lower speeds with less frequent
travels. The second scenario assumed speed reduction with the introduction of additional
vessels. The authors showed that CO5 emission taxes can contribute to fuel consumption
reduction, and a reduction in emissions of 70% and 45% can be achieved by reducing

speed by 50% in scenario 1 and scenario 2 respectively.

Norstad et al. (2011) considered the SOP in tramp shipment context within a framework
of ship routing and scheduling. The authors first modeled the problem as a mixed-integer
mathematical program where the authors used speed discretization to overcome the non-
linearity of the model. Two algorithms were developed to solve the problem. The first
algorithms consisted in solving a shortest-path problem on a time-space network where
arrival times at customers were discretized. The second algorithm applied a recursive
process based on customers hard time windows and the convexity of the objective func-
tion. The second was proven better than the first one but is applicable only if the
consumption function does not depend on the load. Hvattum et al. (2013) later proved

the optimality of this recursive algorithm.

Wang and Meng (2012) considered the SOP in the case of liner shipping. The authors
modeled the problem as a mixed integer non-linear program with an objective function
that accounts for ship operating cost, bunker cost and container handling cost. Since
the objective function is proven to be convex, the author proposed an e-optimal outer-
approximation method algorithm. The algorithm solved efficiently a case study with

with 46 ports with an approximation of 0.1%.

Fagerholt et al. (2015) studied the problem of routing and speed optimization for ships in
the presence of EAs. The authors developed a mixed integer linear program, discretizing
speed, to investigated how emission-controlled areas impact ship routes and speeds, as

well as the fuel consumption. The authors studied several realistic case studies, and
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showed that ship routes may change with the introduction of EAs, resulting in ships
sailing longer roads to avoid these areas. It was also showed, that ships may travel at
slower speeds within EAs, and at higher speed outside. The authors also affirm that the

introduction of EAs is likely to reduce general greenhouse gases emissions.

Andersson et al. (2015) the SOP in a roll-on roll-off shipping context. The authors
developed a mixed integer program that integrates speed optimization in the planning
of shipping routes. The authors also proposed a rolling horizon heuristic (RHH) to solve
the problem with a large planning horizon. The RHH obtained good solutions within
reasonable times and performed better than solving the problem using a commercial
mixed-integer programming solver for all instances of realistic size. Instances with up

to 53 ships over a 10-month planning horizon were solved.

Fagerholt (2001) studied the problem of ship scheduling with soft time windows. The
author first generated a set of ship routes, from which the most promising solutions with
respect to defined heuristic rules were retained. For each promising route, the optimal
speeds were computed using a time-space network, and the best schedule was computed
by solving a set partitioning problem. This solution method was designed to solve real-
word ship scheduling problems. In our study, we generalize this speed optimization

algorithm to make it applicable to a wider range of transportation modes.

Fukasawa et al. (2016a) considered a joint route and speed optimization problem with
the objective of minimizing the total cost, including fuel costs. The authors developed a
generic branch-cut-and-price (BCP) algorithm that can be applied to any problem with
a convex fuel consumption function. The authors proposed a novel set partitioning for-
mulation that takes advantage of the structure of the speed optimization problem. The
method was applied to both maritime and road transportation. On maritime instances,
the BCP algorithm was able to solve more instances to optimality than a commercial
solver, and was three times faster on average. On road transportation instances, the
authors solved instances from the PRP-lib and compared the result with those obtained
by the branch-and-cut of Fukasawa et al. (2016b). The BCP algorithm outperformed

the branch-and-cut and solved some instances to optimality for the first time.

He et al. (2017) considered the SOP with heterogeneous arc costs. The authors argued
that fuel consumption also depends on vessel load and weather, and that fuel costs
change between ports which can be captured by using a fuel consumption function for
each arc. The authors developed an efficient algorithm capable of solving instances with
up to 1,000 ports within one second, that is 20 to 100 times faster than a standard non-
linear solver. The SOP has also been studied in road transportation, particularly since
the introduction of the PRP by Bektag and Laporte (2011). Demir et al. (2012) solved
the SOP as a subproblem of the PRP. The authors adapted the recursive algorithm of
Norstad et al. (2011) as a subroutine of an adaptive large neighborhood search (ALNS)

metaheuristic.
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Our aim in this chapter, is to build on the existing body of literature and study the
SOP with Soft Time Windows (SOPSTW) where penalties are imposed for early or late
arrivals. In some road and maritime applications, customer time window constraints
are allowed to be violated at the expense of a penalty. Similar to (Demir et al., 2012;
Norstad et al., 2011; He et al., 2017) we propose an algorithm capable of solving the
problem efficiently. In addition, we develop methods that do not rely on the infeasibility
in case of time window violation. We show that these outperform the approach presented
in (Fagerholt, 2001) to solve the SOPSTW. We solve instances of the problem in both
road and maritime transportation as in (He et al., 2017), and we propose an acceleration
procedure that allows solving the problem quicker. We first model the problem and then
introduce transformations to overcome its non-linearities, and we develop algorithms that
solve the problem without resorting to a black-box optimization software. An extensive
computational experiment is carried out to derive managerial insight and study the effect

of considering soft time windows.

The remainder of the paper is organized as follows. Section 4.2 formally defines the
problem, and models it by means of a non-linear formulation. Section 4.3 describes
several discretization schemes and algorithms. Section 4.4 presents the computational

results. Concluding remarks follow in Section 4.5.

4.2 Problem description and non-linear model

We first formally define the SOPSTW and present a non-linear mathematical model. The
SOPSTW is defined on a path composed of n arcs representing legs of a route on n + 1
nodes defining the set N ={0,1,...,4,...,n}. Each arc (¢,7 + 1) is referred to as arc 1.
Node 0 represents the depot, and Ny = {1,...,n} is the set of customers. All customers
are served by a single vehicle. Each customer ¢ € Ny requires service of duration ¢; and
can be serviced at no cost within a time window [a;, b;]. The length of an arc and the
speed at which the vehicle travels on it are denoted by d; and v;, respectively. The speed
used on any arc must lie within the interval [v!,v%], as dictated by speed enforcement
laws. The vehicle arrives at node i at time y; in an interval [a; — e;, b; + [;], where ¢;
and [; are non-negative decision variables. Unit time penalties p. and p; are applied
for early and late arrivals, respectively. The objective function consists of minimizing
the sum of time window penalties, driver wages with f; as the cost of driver per unit
of time, and a non-linear convex emission function Ef(v,d) that computes the cost of
fuel consumption and GHG emissions for a vehicle traveling at speed v on an arc of
length d. An explicit description of Et(v,d) is given in Sections 4.4.1 and 4.4.2 for road

and maritime transportation, respectively. A non-linear model (NLM) of the problem
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is described as follows:

Minimize Y Ef(v;,d;) (4.1)
iEN\{n}

+fayn (4.2)
oYl (4.3)

i€No
+pe Y e (4.4)

i€No

subject to

Yitr1 = ¥i + i +di /v ie N\ {n} (4.5)
a; —e; <y < b+ i € Ny (4.6)
v; < oY ie N\ {n} (4.7
v; > vt ie N\ {n} (4.8)
Yo =10 (4.9)
e; >0 i€ No (4.10)
;>0 i € No. (4.11)

The first term of the objective function computes the cost of fuel consumption and
emissions. Term (4.2) represents the driver wage, and terms (4.3) and (4.4) compute
the penalties for arriving late and early at customer locations, respectively. Constraints
(4.5) compute the arrival time at each customer. Constraints (4.6) model the soft time
windows. Constraints (4.7) and (4.8) ensure that the vehicle speeds lie within the legal
limits. Constraint (4.9) sets the departure time of the vehicle from the depot at time 0.

Constraints (4.10) and (4.11) indicate the non-negativity of e; and I; variables.

Due to (4.1) and (4.5), the above formulation is non-linear, and solving it with a standard
optimizer can be time consuming, in particular for large-scale instances. In Section 4.3
we describe alternative models and procedures to overcome the difficulty yielded by this

non-linear model.

4.3 Discretization schemes and algorithms

This section presents discretization schemes and algorithms to overcome the non-linearities
(4.1) and (4.5) in the NLM.
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4.3.1 Discretized speed model (DSM)

One possible discretization scheme is to represent the travel speed on each arc as a
discrete and finite set of speed levels. This technique is similar to that introduced by
Bektas and Laporte (2011) for the PRP. The travel speed on an arc belongs to a set
R={v',...,v",...}. We define a binary variable 2! equal to 1 if and only if the vehicle

travels on arc (¢,7 + 1) at speed v". The mathematical model is described as follows:

Minimize Y Y Ep(zv",d;) (4.12)

ieN\{n} r€R
+fayn (4.13)
+p Yl (4.14)
1€ Np
+pe Y e (4.15)
1€ N
subject to
yirt=yi+ti+di » (zf/v") i€ N\{n} (4.16)
reR
a; —e; <y < b+ 1 € Ny (4.17)
> =1 ieN\{n} (4.18)
reR
Yo =0 (4.19)
e; >0 i € No (4.20)
;>0 i € No (4.21)
z €{0,1} ie N\ {n},r € R. (4.22)

Expressions (4.12)—(4.17) are equivalent to (4.1)—(4.6). Constraints (4.18) ensure that
only one speed level is chosen per arc. Constraints (4.19)—(4.21) are the same as (4.9)—

(4.11). Constraints (4.22) indicate the binary nature of variables z].

While the DSM allows overcoming the non-linearity of the model, it may result in solv-
ing a considerably larger model (Norstad et al., 2011). In fact, if the distances between
customers are large, then a small change in speed would induce a significant change in
arrival times at customers. For this reason, one should consider very fine speed discretiza-
tions to achieve sufficient accuracy. One way of avoiding this problem is to discretize
the possible arrival times at customers. This approach is conceptually equivalent to
discretizing speed, but requires fewer discretization steps, and hence results in smaller

models to solve. This will be discussed in the following section.
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4.3.2 Discretized arrival times: time-space networks

In the presence of soft time windows, one cannot readily apply the methodology used
by Norstad et al. (2011) designed for SOP with hard time windows, which consists of
discretizing the possible arrival times at customers. In this section, we present different

ways to discretize arrival times at customers using time-space networks.

To resolve this issue, we first create artificial hard time windows. The lower end of a
h

hard time window a; is computed by assuming that the vehicle travels on all the arcs
at the maximal possible speed alh = af_l + d;/v*. This will yield the earliest possible
arrival time for each customer. We then compute the upper end of the time window blh
by using this time the slowest possible speed, which will yield the latest possible arrival
time b = b | + d;/v'. We then define a graph G = (V, E), where V and FE are the
node and arc sets, respectively. Let T; be the set of possible arrival times at customer
i. Each customer i is represented by a set of nodes {ij,io,... ,i‘m}, representing the
discrete arrival times at that customer, and node #; corresponds to the vehicle arriving
at customer 7 at time ¢ € T;. An arc between two nodes i; and (i + 1) exists if and
only if the vehicle can depart after servicing customer ¢ at time ¢ to arrive at customer
i+ 1 at time k. The cost of this arc includes the driver wage, the fuel consumption cost
and a penalty for violating the soft time window at customer i + 1. We define a dummy
node n + 1 connected with arcs of cost 0 to all the nodes in the graph corresponding to
the last customer in the route. An optimal solution to the SOPSTW corresponds to a
shortest path from node 0 to node n + 1. Two examples of such graph are displayed in

Figure 4.1.

The graph G does not contain cycles, and hence computing shortest path from node 0
to node n + 1 can be achieved efficiently by means of topological sorting of the graph
(Cherkassky et al., 1996). The nodes from 0 to n + 1 are sorted in such a way that if a
node z is ranked before node y, there is no arc going from y to x. The shortest path is
represented as a sequence of nodes SP = (0, 14,2¢,,...,n + 1) where ¢;,7 € Ny is the
index corresponding to the vehicle arriving at customer ¢ at time ;. The shortest path

from node 0 to node n + 1 is computed as shown in Algorithm 3.

4.3.2.1 Fixed time step (FTS)

Discretizing the arrival times at customers can also be achieved in different ways. The
first technique that we present is that of Fagerholt (2001), which consists of considering
as an input parameter a fixed time step & > 0 that separates each two consecutive arrival
times, i.e., 6 = iy —it—1. However, for the last possible arrival time iz, at customer 4,
the inequality 47| — ij7;—1 < 0 holds. Algorithm 4 shows the computation technique of

the possible arrival times at customer ¢ with a hard time window [a;, b;].
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Algorithm 3 Discretized arrival time algorithm

e e e e
S A T

Input: distances, customer sequence, service times, soft time windows

Input: cost function cost(z,y), defined for every arc (z,y) in graph G

Create artificial hard time windows

Create graph G

Sort topologically graph G (z comes before v, if and only if 3 arc (z,y) € G )
Vector label

label[0] = 0
for node x € G, = # 0 do label[z]=00
end for

for arcs (z,y) € G do
if label [y] > label [z] + cost(x,y) then
label [y] < label [y] + cost(z,y)
end if

: end for
: Compute a shortest path SP
: return SP

Algorithm 4 Possible arrival times computation

._.
Q@

Input : time step 6
Input : customer index @
P oa;
t+— 1
while p < b; do
i p
p+ p+9
t+— t+1
end while
i bl

This technique considers more possible arrival times at a customer having a large time

window than at a customer with a narrower time window. The time step § can thus

be seen as the desired accuracy of the discretization. Figure 4.1a depicts an instance

where customer 2 has the largest time window, followed by customer 1 and customer 3.

A node label i; means that the vehicle arrives at customer i at time ¢.
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(a) Fixed time step graph (b) Fixed size graph

Figure 4.1: Time-space networks example with different discretization techniques

4.3.2.2 Fixed size graph (FSG)

An alternative technique to discretize the possible arrival times consists of considering
a discretization set T; of a fixed and equal cardinality |T;| = m for all customers i € Np.
The number of nodes in the graph, taking into account the depot and node n + 1, is

then nm + 2. Figure 4.1b depicts a graph with m = 4.

4.3.2.3 Fixed size graph with zooming (FSG-Z)

Artificial hard time windows built using the procedure described in Section 4.3.2 are
usually large, which yields large-scale graphs. We propose an iterative procedure to
overcome this problem and accelerate the FSG technique. It consists of solving a series
of small problems rather than a single large one. We iteratively solve a series of FSGs
with a fixed and small number of discretization steps until reaching a stopping criterion.
At every iteration, the customer time windows are narrowed down in a zooming fashion.

This approach is described in Algorithm 5.

In Algorithm 5, we first create the artificial hard time windows for each customer. We
then create the graph and find the shortest path SP from 0 to n + 1 using the FSG
method presented in Section 4.3.2.2. We then iterate on the elements of the shortest
path i;, € SP,i € Ny that represent the optimal arrival time at each customer. For
all customers ¢ € Ny, we recompute the artificial time window taking into account the
arrival time selected in the shortest path in the previous iteration. We repeat this process

until meeting the stopping criterion.
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Algorithm 5 FSG-Z Procedure

1: Input : distances, customer sequence, service times, soft time windows
2: Converged <+ False

3: Create artificial hard time windows

4: while not Converged do

5: Create graph G

6: Solve FSG on graph G using Algorithm 3 and compute the shortest path SP
7 if SP satisfies stopping criterion then
8: Converged « true

9: else

10: for node i;, € SP do

11: if t;, =0 then

12: a; < iti

13: else

14: a; < iti,1

15: end if

16: if t; = m then

17: b; iti

18: else

19: b; iti—&-l

20: end if

21: end for

22: end if

23: end while
24: return SP

4.3.2.4 Theoretical complexity of time-space algorithms

All three algorithms FTS, FSG and FSG-Z operate on a time-space network, in which
shortest path problems are solved using Algorithm 3 in an acyclic, topologically sorted
graph G = (V, E). We denote by K = |V| the number of nodes in the graph, and we
denote the number of its arcs by M = |E|. The algorithms use labels for every node
of the graph, and does so by visiting all the arcs of the graph following the topological
order. Therefore, the algorithm does O(K + M) iterations to find a shortest path.

The complexity of Algorithm 3 depends on the number of nodes and arcs in the graph.
Therefore, to compare between the approaches FTS, FSG and FSG-Z, we evaluate the
sizes of the graphs produced by each approach, and how many graph each approach

solves.

The FTS approach creates arrival times such that there is a fixed time step § be-
tween each two discretizations. The maximum number of discretization per customer is
achieved at the customer ¢ with the largest time window of width w;. The number of
nodes of the graph generated with FTS is O(nw;/J), where n is the number of customers.
Since the nodes representing the same customer are not connected, and only the nodes

of consecutive customers are connected, the number of arcs in the graph is O(n(w;/J)?).



72 Chapter 4 Speed Optimization under Soft Time Window Constraints

The FSG approach creates a fixed number discretizations m per customer, and therefore
the number of nodes is O(nm). The number of arcs of the graph is O(nm?). We can
conclude that if m is smaller than (w;/d), then FSG is easier to solve, otherwise FT'S

will be easier.

The FSG-Z approach creates the same number of nodes and arcs as FSG, but it operates
differently to attain the desired accuracy. In particular, FSG-Z solves a series of problems
using a smaller number m of discretizations. Since the number of arcs is polynomial in

terms of m, a much smaller number of arcs are generated, which makes FSG-Z faster
than both FSG and FTS.

4.3.2.5 Illustrative example

To show how the algorithms mentioned above operate, we provide an illustrative example
consisting of a route with four ports, starting at Antwerp (Belgium), calling at Milford
Haven (United Kingdom), Boston (United States) and finishing at Charleston (United
States). This example is a sub-route of the example presented by Fagerholt et al. (2010).
Figure 4.2 shows the distances between ports (miles), and time windows (hours) above
each arc and node, respectively. The objective function considered in this illustrative

example is explained in Section 4.4.2.

[0,0] [24,120] 216,312] 264,336]
510 VAR 2699 VAR 838
’ N N ’
Antwerp Milford Haven Boston Charleston

Figure 4.2: Distance and time window data

We solve this instance with FTS, FSG and FSG-Z. We present In Figures 4.3 and 4.4 two
graphs created by using F'TS in Figure 4.3, with a discretization step of 24 hours, and by
using FSG in Figure 4.4, with 100 discretization steps. We also solve the instance with
the FSG-Z algorithm, we consider 20 discretization steps and stop when the difference
between each two consecutive discretization is 10 hours. Since the graphs created by
FSG-Z are similar to those created by FSG, showing a graph created by using FSG is

sufficient.

In Table 4.1 we give detailed results of solving the instances with FTS, FSG and FSG-Z.
For every algorithm, we report the number of discretizations Nb disc for all four nodes
denoted from nl to n4. Line Opt speed shows the optimal speed in knots found by
the algorithm on departure from the corresponding node. The cost, number of nodes
Nb nodes and number of arcs Nb arcs in the resulting graph, total number of iterations

performed by the algorithm Nb iterations, the solution time in milliseconds Sol time and
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Figure 4.3: Time-space network created using FTS
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Figure 4.4: Time-space network created using FSG
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the number of graphs generated Nb graphs are also reported. We can see from Table
4.1 that the number of discretization in the FTS method depends on the node, while
for the FSG and FSG-Z is fixed. The number of arcs and nodes created by the FTS
and FSG are almost 10 times larger than those created by FSG-Z. We can also see that

FSG-Z yields the lowest cost after solving three graphs. Table 4.2 provides information
about the three graphs solved by FSG-Z represented by columns FSG-Z1, FSG-Z2 and
FSG-Z3. Additionally to what has been reported in Table 4.1, we provide the earliest

discretization Farliest disc and the latest discretization Latest disc for each customer to

show how the zooming procedure works.
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FTS FSG FSG-Z
Nodes nl n2 n3 n4 nl n2 n3 n4 nl n2 n3 n4
Nb disc 1 22 130 163 1 100 100 100 1 20 20 20
Opt speed 11.5 13.2 14.7 - 14.5 14.5 14.5 - 14.1 141 141 -
Cost 332 323 322
Sol time 10 10 0
Nb nodes 317 302 186
Nb arcs 24072 20100 2460
Nb iterations 24389 20402 2646
Nb graphs 1 1 3

Table 4.1: Algorithms run statistics

We see from Table 4.2 that the number of nodes and arcs is small, which results in a small
number of iterations. We see also that the difference between the earliest discretization
of customers decreases significantly after two iterations, from 490 hours to 5 hours in
the case of the first customer. We see also that the cost is reduced after each iteration

and speed is adjusted accordingly. By solving small instances, the FSG-Z method was

able to provide better solutions faster on this instance.

FSG-7Z1 FSG-72 FSG-Z3
Nodes nl n2 n3 n4 nl n2 n3 nd | nl n2 n3 n4
Earliest disc | 0 20.4 128 161 0 204 128 161 | O 34 213 269
Latest disc 0 510 3209 4047 | O 72 45263 570 | O 39 247 312
Opt speed 0 11 11 11 0 139 139 139 0 141 14.1 14.1
Cost 393 322.4 322.1
Sol time 0 0 0
Nb nodes 62 62 62
Nb Arcs 820 820 820
Nb Iterations 882 882 882

Table 4.2: FSG-Z iterations analysis

4.4 Computational experiments

This section aims to evaluate the performances of the linearization methods described
in Section 4.3 compared to the non-linear formulation (NLM), and to derive managerial
insights for maritime and road transportation. We first carry out intensive computa-
tional experiment solving 120 instances in the road transportation context, which allows
us to conclude which method is better and to derive managerial insights for road trans-
portation. We then solve 30 maritime transportation instances with the aim of deriving

insights related to the consideration of soft time windows.

All tests were performed on a computer equipped with an Intel Core i7-3770 proces-
sor, 3.4 GHz and a RAM of 8GB. The non-linear model described in Section 4.2 was

solved using the open-source solver Interior Point Optimizer (Ipopt) 3.12.4 using the
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AMPL modeling language. The mixed integer linear program described in Section 4.3.1
were solved using CPLEX 12.6.0.1 with default options within the C++ programming

language.

4.4.1 Road transportation

There exist several emission models depending on the vehicle type. Demir et al. (2014b)
reviewed and compared the available models for road freight transportation. Here, as
in Chapter 2, we use the emission model of Barth and Boriboonsomsin (2008) which is
defined in Section 2.3. The values of the fuel consumption model parameters are the

same as those used in Table 2.4.

4.4.1.1 Instance generation

All experiments were conducted on randomly generated instances with a number of
nodes varying between 20 and 200, where, for a given number of nodes, we generate and
solve 20 different instances. The distances in meters between successive customers were
generated from a continuous uniform distribution ¢/(3000, 15000). Using these distances,
the minimum speed v!, and the maximum speeds v*, we generated the largest possible

min

time window [a]

, b for each customer using an approach similar to that described
in Section 4.3.2. The upper and lower limits of the soft time window were drawn from
the continuous uniform distribution U (a", b"*). The service times (in seconds) were

drawn from the continuous uniform distribution ¢/(300, 1500).

4.4.1.2 Parameters and results

We solved all instances using the NLM and the algorithms described in Section 4.3. The
results are presented in Table 4.3, where the name and the parameters of each algorithm
appear in the columns “Algorithm” and “Parameter”. The remaining columns show the

number of the nodes in the instances solved.

For every algorithm and parameter, we provide the average solution time in milliseconds
(ms), and the normalized cost compared with the optimal value obtained with the non-
linear model, expressed as the ratio (rt) to the value of optimal solution. For example,
a value of 1.02 means that over the 20 instances solved, the gap between the solution

found and the optimum is 2%.

The non-linear model does not contain any parameter. The parameter of the DSM
method represents the speed step between every two speed levels. We considered
three different speed step values which are one km/h (the possible travel speeds are
20,21,...,96), five km/h and 10 km/h. For the FSG algorithm, the parameter is the


https://ampl.com/
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number of possible arrival times at each customer. We considered four different values
50, 100, 150 and 200 of possible arrival times per customer. The parameter of the FST
is the length of the time step § between every two possible consecutive arrival times. We

considered four time step values of 60, 180, 300 and 900 seconds.

The FSG-Z method uses two parameters which are displayed in Table 4.3. The first
parameter is the number of possible arrival times at each customer. We considered 10,
20, 50 and 100 possible arrival times per customer. The second parameter is the stopping
criterion. Since at every iteration the customers time windows are narrowed, we stop the
method once the largest time window of any customer is smaller than a given accuracy
threshold. We considered four different threshold values of 60, 300, 600 and 900 seconds.

4.4.1.3 Methods performance: trade-off between accuracy and time

We can see from Table 4.3 that the NLM found an optimal solution on each instance.
The average solution time increases significantly with the size of the instance. This
algorithm needed almost one second to solve instances with 200 customers. In attempt
to reduce solution time for the NLM, we allowed Ipopt to stop if the optimality gap
becomes less than 2%. Due to the convexity of the problem, this could only save one
iteration and the Ipopt returned the same results and did not change the average solution
time of the method.

The DSM algorithm found solutions within less than 0.2% of the optimum for all values
of the single parameter. The solution times are drastically affected by the value of the
speed step. The computation times obtained with one km/h speed step is larger than
those of the NLM on all instances, and this algorithm is therefore not suitable for the
problem. However, the computation times obtained with a speed step of five km/h are
between one and three times smaller than those the NLM, and using a 10 km/h speed
step is slightly faster.

The performance of the FSG algorithm and solution times depend on the number of
nodes of the graph. Using 150 or more discretizations per customer always yields longer
computation times than those of NLM. Using 50 and 100 discretizations yields similar
results in terms of gap with respect to the optimum. However, setting the parameter at

50 discretizations, as opposed to 100, is almost three times faster on all instances.

The FTS with a 900 second time step provides poor solution values lying between 36%
and 53% of the optimum. A time step of 60 or 180 seconds results in slower computing
times than those of the NLM on all instances with at least 50 nodes. Using a 300 second
time step quickly provided solution values quickly within less than 3% of the optimum
for instances with 20 and 50 nodes; however, the algorithm was slower than solving the

NLM by Ipopt on larger instances.



Chapter 4 Speed Optimization under Soft Time Window Constraints 77

The FGS-Z algorithm contains two parameters, both of which affected solution time and
accuracy. On the 20-node instances all settings yielded faster times and produced solu-
tion values within less than 1% of the optimum. However, using 10 or 20 discretizations
can be up to 20 times faster than the NLM.

On instances with 50 nodes and more, FGS-Z with 100 discretizations is slower than
NLM; FGS-Z with 50 discretizations yields solutions with an optimality gap between 1%
and 2%, and a solution time similar to or slightly smaller than that of NLM. Applying
FGS-Z with 10 or 20 discretizations yields solutions with an optimality gap of less than
2% and 3%, respectively, and a solution time between 10 to 20 times smaller than that
of solving the NLM by Ipopt. Using 10 nodes provides in most cases the same results

as for 20 nodes, and reduces the solution time by up 50%.

All algorithms tested possess different strengths, and none is strictly faster than the
others or provides the best results on all instances. Whilst the SOP is a stand-alone
problem, it generally arises within a more general problem of finding optimal routes and
schedules where it may need to be repeatedly solved to optimality within very short
time scales. We can obtain solutions within less than 0.2% of the optimum by using the
DSM with five or 10 km/h speed steps, which is faster than solving NLM. If optimality
is not required, and the SOP is solved as subproblem within heuristic methods, we can
obtain solutions up to 10 times faster than with DSM and 20 times than with NLM and
an average optimality gap of 2% by FSG-Z with 10 or 20 discretizations.

4.4.1.4 Soft time window, penalty and fuel consumption

We now investigate the effect of the penalty function on fuel consumption. In Table 4.4
we solve the problem, using the DSM model, with three different values of late and early
arrival penalties: 0.0014, 0.0028 and 0.0056 (£/second). We compare the fuel cost (FC),
the driver cost (DC) and the average time window violation per customer (ATVC) in
minutes. The solution values obtained for the tests with penalties 0.0028 and 0.0056 are
expressed in terms of percentage increase with respect to the solution values obtained for
the 0.0014 penalty; negative percentages correspond to a decrease in the solution value.
Every line reports average values across all solutions obtained for different instances

with the same number of nodes.

We can see from Table 4.4 that using a larger penalty increases both the fuel consumption
and the driver cost. This is due to the fact that the vehicle has to slow down to avoid
arriving early at customer locations, which generally increases the fuel consumption and
the driver cost. We can also see that the fuel cost increase is more important than that
of driver cost; on the other hand, it decreases the ATVC. It is worth mentioning that
for large instances, the ATVC decreases slightly and is almost steady, while the fuel and

driver costs continue to increase.



Algorithm | Parameters 20 nodes 50 nodes 75 nodes 100 nodes 150 nodes 200 nodes
Cost  Time | Cost Time | Cost Time | Cost Time | Cost Time | Cost Time
(rt) (ms) | (rt) (ms) | (rt) (ms) | (rt) (ms) | (rt) (ms) | (xt)  (ms)
NLM - 1.00 144 | 1.00 157 | 1.00 209 | 1.00 310 | 1.00 554 | 1.00 945
1 1.00 642 | 1.00 241 | 1.00 430 | 1.00 512 | 1.00 1021 | 1.00 1309
DSM 5 1.00 49 1.00 127 | 1.00 173 | 1.00 193 | 1.00 290 | 1.00 378
10 1.00 44 1.00 106 | 1.00 130 | 1.00 169 | 1.00 293 | 1.00 332
200 1.00 197 | 1.01 500 | 1.01 763 | 1.01 1007 | 1.02 1526 | 1.03 2016
FSG 150 1.00 118 | 1.01 302 | 1.02 459 | 1.02 608 | 1.03 922 | 1.03 1216
100 1.00 61 1.02 154 | 1.03 236 | 1.03 308 | 1.04 472 | 1.04 620
50 1.01 19 1.04 46 1.05 69 1.05 93 1.05 141 1.04 183
60 1.00 143 | 1.00 2138 | 1.00 7119 | 1.00 16577 | 1.00 56336 | 1.00 130471
FTS 180 1.01 22 1.01 275 | 1.01 884 | 1.01 1998 | 1.01 6592 | 1.01 15115
300 1.03 11 1.02 114 | 1.02 351 | 1.02 783 | 1.02 2511 | 1.01 5695
900 1.36 3 1.48 20 1.48 58 1.50 115 | 1.53 349 | 1.52 752
100, 60 1.00 131 | 1.00 334 | 1.01 504 | 1.01 661 1.02 992 | 1.02 1453
100, 300 1.00 127 | 1.00 336 | 1.01 507 | 1.01 665 | 1.02 993 | 1.02 1299
100, 600 1.00 57 .00 339 | 1.01 514 | 1.01 670 | 1.02 1002 | 1.02 1305
100, 900 1.00 57 1.01 281 | 1.01 510 | 1.01 665 | 1.02 1000 | 1.02 1300
50, 60 1.00 41 1.01 128 | 1.01 197 | 1.02 318 | 1.02 481.5 | 1.02 632
50, 300 1.00 42 1.01 104 | 1.01 156 | 1.02 203 | 1.02 304 | 1.02 460
50, 600 1.00 40 1.01 102 | 1.01 151.5| 1.02 198.5 | 1.02 298.5 | 1.02 387
FSG-7, 50, 900 1.01 19,5 | 1.01 102 | 1.01 1525 | 1.02 200.5 | 1.02 298.5 | 1.02 389
20, 60 1.01 16 1.02 41 1.01 74 1.01 86 1.02 150 | 1.02 211
20, 300 1.01 11 1.02 34 1.01 62 1.01 80 1.02 121 1.02 156
20, 600 1.01 11 1.02 27 1.01 55 1.02 63 1.02 121 1.02 158
20, 900 1.01 12 1.02 26 1.02 39 1.02 62 1.02 105 | 1.02 156
10, 60 1.01 9 1.02 24 1.02 40 1.02 49 1.03 85 1.02 110
10, 300 1.01 7 1.02 20 1.02 34 1.02 44 1.03 67 1.02 86
10, 600 1.01 6 1.02 17 1.02 30 1.03 34 1.03 66 1.02 86
10, 900 1.02 5 1.02 17 1.02 26 1.03 35 1.03 56 1.02 88

Table 4.3: Comparison of all algorithms in terms of cost and CPU time
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To further investigate the effect of time windows, we consider the following three different
configurations. In the first one we allow the vehicle to arrive at customers before, during
or after the time window. In the second configuration we allow the vehicle to arrive
only during or after the time window. In the third configuration, we allow the vehicle to
arrive only before and during the time window. In all three configurations, the penalty
for late and early arrivals, if applicable, is the same at 0.0028 £/second. The column
labels are the same as in Table 4.4, and in addition, we show the total cost (TC) in £.

The results are displayed in Table 4.5.

We can see from Table 4.5 that both the TC and ATVC increase significantly when we
only allow late or early arrivals. Allowing early arrivals only yields a reduction in the
FC and the DC, but this is done at the expense of the ATVC which increases drastically.
The TC of the latter is larger than the TC obtained by allowing only late arrivals. We
see therefore that allowing both early and late arrivals, at the same time, is the best

option. If this is not possible, allowing only late arrivals is the second best option.

Instance Penalty 0.0014 Penalty 0.0028 Penalty 0.0056
FC DC ATVC | FC DC ATVC | FC DC ATVC
(£) (£) (mins) | (%) (%) (%) | (%) (%) (%)
20 23 83 14 5 3 —12 12 7 —19
50 63 226 37 4 2 -3 11 5 —6
75 98 348 58 4 2 -2 9 4 -3
100 129 461 83 4 2 -1 9 3 -2
150 199 704 119 3 1 -1 7 2 -1
200 266 951 173 4 1 0 8 2 -1
Average | 130 462 81 4 2 -3 9 4 -5
Table 4.4: Comparison of costs under three penalty values
Early and late arrivals Late arrivals only Early arrivals only

Instance

FC DC ATVC TC | FC DC ATVC TC | FC DC ATVC TC
(£) (£) (mins) (£) | (B) (&) (B) () | () (&) (%) (%)
20 25 8 13 153 | 17 12 51 23 | -3 -8 88 19
50 65 231 36 599 | 20 14 89 53| 0 —12 132 62
75 | 102 355 56 1166 | 17 12 89 59 | —2 —16 169 98
100 |135 468 82 1975 | 21 17 96 72 | -1 -15 165 111
150 | 205 709 119 3902 | 20 16 107 86 | -3 —18 197 148
200 | 275 957 172 7012 | 20 17 105 90 | -5 21 203 164
Average | 135 468 80 2468 | 19 15 90 64 | -2 —15 159 100

(=)

Table 4.5: Comparison of costs for three time window types
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4.4.1.5 Waiting times at customers

We now assess the effect on fuel consumption of allowing idle waiting times at customers,
before or after service. We ran the experiments on all instances, and we provide the
results, obtained by the DSM model, in Table 4.6, where the column labels are similar
to those of Table 4.5. The results under column “No waiting times” displays the values
of the column labels, whereas the results under column “With waiting times” are the

percentage increase with respect to the values of “No waiting times” column.

We can see from Table 4.6 that allowing idle waiting times at customers reduces fuel
consumption, with an average saving of 23% across all instances. The average time
window violation per customer is also significantly decreased, by 18% on average. A
slight average increase of 4% in driver cost can be observed, which means that the time

to complete the route is longer. However, the total cost decreases by 10% on average.

Instance No waiting times With waiting times

FC DC ATVC TC | FC DC ATVC TC
(£) (£) (mins) (£) | (%) (B) (%) (%)
20 25 86 13 153 | =24 3 -36 —12

50 65 231 36 599 | —23 5 -20 -11
75 102 355 56 1166 | —24 3 —-18 12
100 135 468 82 1975 | =22 5 —13 -9
150 205 709 119 3902 | —21 3 —11 -9
200 275 957 172 7012 | —21 3 -8 -7
Average | 135 468 80 2468 | —23 4 —-18 -10

Table 4.6: Comparison of costs with disallowed or allowed waiting time at customers

4.4.2 DMaritime transportation

For maritime transportation, we use the fuel consumption model introduced by Fagerholt
et al. (2010) which was developed using real-word data, and has been then frequently
used in the literature. Equation (4.23) expresses fuel consumption in metric tons (mt)

as function of speed and distance.

Ef(v,d) = d(0.00360 + 0.10150 + 0.8848) (4.23)

We test the solving methods on instances generated by He et al. (2017), available at
http://www.menet.umn.edu/ ghe/. We solve 30 instances that have between 10, 100
and 1,000 ports, 10 instances are available for each size. Each instance was generated
with distances uniformly drawn between 100 and 1,000 nautical miles, and the time
windows for each port were set to 240 hours (10 days). A referential bunker price of

470% is used according to https://shipandbunker.com. To calculate the penalty cost


http://www.menet.umn.edu/~qhe/
https://shipandbunker.com
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incurred in case of time window violation, we use a linear penalty function in terms of
duration of violation, as was done by Fagerholt (2001). For early arrivals a penalty cost
equivalent to the operation cost of the vessel for the violation duration is incurred. For
late arrivals, a penalty equivalent to three times the penalty for early arrivals is applied.
Daily operating costs for a vessel is taken from (Grenier, 2013; Faury and Cariou, 2016)
is considered to be 9,000$ per day. To the best of the authors’ knowledge, there is no
widely accepted penalty value since it depends heavily on ports and ship types. We will

therefore run a cost analysis with different penalty values in Table 4.8.

4.4.2.1 Methods performance on maritime instances

In this section, we compare on maritime instances the methods that performed best on
the road transportation instances. In Table 4.7 each line represents the instance solved,
while the cost of solutions is reported in thousands of dollars (k$), and the solution
time is in milliseconds (ms). The gap in cost between the DSM and FSG-Z solution
values and those of the NLM is also reported in percentage of the optimal solution value.
The NLM model found the optimum on all instances, and as in road transportation
instances, it is the most time consuming. The FSG-Z model with 20 discretizations and
an accuracy of 10 hours found the optimal solutions on 10 ports instances, while the
DSM model had a gap of 0.2%. In instances with 100 ports, FSG-Z found solutions
with less than 0.1%, whereas the DSM, which was slightly faster, had a gap of 0.6% on
average, and a worst gap of 1% on instance 100_8. FSG-Z was the fastest on 1,000 ports
instances, and found solutions with a gap not exceeding 0.1% in gap, while the DSM
model was slower and found solutions with a gap of 0.9%. We also see from Table 4.7
that when the number of ports becomes larger, the solution time of the NLM increases
drastically, followed by that of the DSM model, while the FSG-Z solution time increases
in a linear fashion. Table 4.7 also shows that the NLM solution time is heavily dependent
on the instance solved, whereas the DSM solution time is less instance-dependent, and

the FSG-Z solution time is not instance-dependent.

4.4.2.2 Soft time windows vs hard time windows

In this section we study how the total cost (TC), average time window violation per
customer (ATVC) in hours (h) and average speed (AS) in knots (kt) change with change
in time window type and penalty values. The tests were run on five instances with 100
customers, and we report the average results in Table 4.8. We solve the same instances
with three different time window lengths of three, five and 10 days. The first line shows
the results obtained with the standard penalty costs. The second line shows the results

obtained with consideration of hard time windows. In the third and fourth lines the
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Instance NLM DSM FSG-Z (20,10)
Cost Time Cost Gap Time Cost Gap Time
(k§) (ms) | (k3) (%) (ms) | (k§) (%) (ms)
10_1 449 513 | 450.277 0.2 0 449 0.0 0
102 399 37 399 0.2 10 399 0.0 0
103 374 34 375 0.2 10 374 0.0 10
104 403 47 404 0.2 10 403 0.0 10
105 260 38 261 0.2 0 260 0.0 10
106 388 38 389 0.2 0 388 0.0 10
107 345 55 345 0.2 20 345 0.0 10
108 382 58 383 0.2 10 382 0.0 10
109 384 50 384 0.2 0 384 0.0 0
1010 317 42 318 0.2 10 317 0.0 10
Average | 370.2 91.0 370.9 0.2 7.0 370.2 0.0 7.0
100_1 6117 186 6152 0.6 90 6119 0.0 110
1002 6074 196 6108 0.6 90 6076 0.0 100
1003 6074 229 6107 0.6 90 6076 0.0 100
100_4 6074 190 6107 0.5 120 6076 0.0 110
100_5 6296 186 6324 0.4 80 6298 0.0 110
100-6 6564 193 6586 0.3 100 6567 0.0 110
100_7 6081 349 6117 0.6 80 6085 0.1 110
1008 5422 288 5479 1.0 100 5424 0.0 110
1009 6164 187 6200 0.6 90 6166 0.0 100
100-10 5662 212 5707 0.8 80 5665 0.1 110
Average | 6052.7 222.0 | 6088.8 0.6 92.0 6055.1 0.0 107.0
1000_1 74547 1829 75185 0.9 2110 74554 0.0 1320
1000_2 74114 17851 | 74748 0.9 2090 74125 0.0 1320
1000-3 72854 2527 73485 0.9 2010 72873 0.0 1320
10004 74416 15639 | 75052 0.9 1950 74427 0.0 1310
1000_5 72024 2563 72647 0.9 2090 72039 0.0 1320
1000_6 74675 8262 75319 0.9 2060 74685 0.0 1320
1000-7 74618 2392 75260 0.9 2050 74630 0.0 1320
1000_8 74860 2618 75499 0.9 2100 74870 0.0 1320
10009 75004 2524 75643 0.9 2040 75012 0.0 1310
1000_10 | 73710 14754 | 74343 0.9 2070 73715 0.0 1330
Average | 74082.3 7095.9 | 74718.0 0.9 2057.0 | 74092.9 0.0 1319.0

Table 4.7: Methods performance on maritime instances
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value of the penalty is divided by four and two, respectively. In the fifth line, the value
of the penalty is multiplied by two.

We see from Table 4.8 that the ATVC depends more on the value of the penalty than
on the length of the time window. Narrowing the time window from 10 days to three
days increases the ATVC from 0.31 h to 0.54 h, while reducing the value of penalty cost
by two increases the ATVC to 1.93 h. We conclude that the ATVC can be controlled to
achieve a certain service quality level by a fine tuning of the penalty costs. We can also
see that carefully tuning the value of penalty costs with soft time windows can reduce the
cost without increasing the ATVC significantly. the penalty cost and time window type
also have an impact on the average speed of the vessels: with smaller penalty values, it
is optimal to travel at lower speeds, which reduces the amount of fuel consumed. Table
4.8 also shows how the change in time window length affects the total cost. In fact,
considering hard time windows with a length of five days results in lower cost than
three-day soft time windows. This shows that for logistics companies, negotiating larger
hard time windows may yield more savings in the total costs than narrower soft time

windows.

10 days Tw 5 days Tw 3 days Tw

Cost ATVC AS | Cost ATVC AS | Cost ATVC AS
k) () () | (k$)  (h) (k) | (8) (W) (ki)
Standard | 6160 0.31  18.27 | 6887 0.57 18.94 | 7211  0.54  19.20
HTW 6195 0.00 18.47 | 6953 0.00 19.24 | 7277  0.00  19.55
1/4 Penalty | 5986  6.16  17.88 | 6627 841  18.55 | 6937 9.32  18.86
1/2 Penalty | 6079 1.93 18.17 | 6743 2.24 18.86 | 7065 2.42 19.17
2 Penalty 6160 0.16 18.34 | 6839 0.19 19.17 | 7171 0.19 19.42

Table 4.8: Cost and speed variability with time window length, type and penalty values

4.5 Conclusions

We have introduced, modeled and solved the Speed Optimization Problem with Soft
Time Windows. We first provided a non-linear model, which was then linearized by
discretizing the speed variables. We also proposed a way to model the problem as
a time-space network by discretizing the possible arrival times at the customers, and
solving the resulting problem as a shortest path problem. We considered two different
techniques to discretize the possible arrival times at customers. An iterative method

was developed to accelerate the time-space network algorithm.

We tested all algorithms on 120 generated instances with a number of customers varying
between 20 and 200. Our results show that although the non-linear model found an

optimal solution on all instances, very similar solutions were found up to three times
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faster with a discretized speed model. The time-space network methods, including that
of Fagerholt (2001), found good solutions on small instances, but both the discretized
speed model and the non-linear model provided better solutions faster. The use of the
iterative acceleration method provided solutions with optimality gaps varying between
1% and 3%, but could be found 10 and 30 times faster than with the direct solution of the
non-linear model. We also showed that the penalty value has a more significant impact on
fuel consumption than on driver cost, and can reduce the average time window violations
on small-size instances. We showed that to be efficient, soft time windows should allow
for both early and late arrivals at customers. Finally, we assessed the effect of allowing
idle waiting times at the customers, and showed that it can decrease fuel consumption
by almost 25%, and the average time window violations by almost 20%. The time to
complete the routes slightly increases by 4% on average, but an average saving of 10%
can be achieved on the total cost. We showed that the methods’ performance remains
similar in maritime and road transportation contexts. The FSG-Z solved instances with
1,000 ports almost six times faster than the NLM. We also showed how total cost, time
window violations and average speed change with the penalty values and consideration
of hard time windows. We pointed out that larger hard time windows may result in

lower total costs than narrower soft time windows.
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5.1 Short summary

Throughout the realization of this thesis, minimizing the impact of freight transportation
on the planet was at the heart of the thesis, and its author. Numerous studies have
suggested that an optimal control of vehicle routes and speeds can yield minimized
GHG emissions. In the second chapter of this thesis, we aimed at generalizing these
results, and considered uncertainty in traffic conditions, which was a limitation in the
applicability of previous studies. The third chapter provides decomposition algorithms
to solve this problem for larger instances. In the fourth chapter, we contributed to the
speed optimization problem literature by considering soft time windows and assessing

their value for maritime and road transportation.

In this chapter we highlight the main contributions of the work carried out in this thesis.
We first present the findings of the three main chapters in response to the research
questions proposed in Chapter 1. We then list the research outputs of this study, and
discuss its limitations. We finally conclude by proposing several directions for future

research.

5.2 Main findings

In Chapter 2 we have proposed several two-stage stochastic programs to model and solve
the Pollution-Routing Problem under stochastic traffic conditions. Innovative modeling
techniques were used to linearize the original model. The models proposed were able to
represent traffic speed uncertainty as discrete random variables. Two different recourse
strategies were proposed, one discrete and optimal and one continuous but not always

optimal. The main findings of Chapter 2 can be summarized as:

e Considering uncertainty permits reducing the total cost (including the cost of GHG

emissions) by 7.48% on average for 10-node instances.

e Perfect knowledge of traffic conditions can further save only 1.27% of the total

cost compared to the stochastic approach.

e Despite not being optimal theoretically, fixed continuous recourse provided better

results than discretized recourse,

In Chapter 3, we adapted the Integer L-shaped method to the PRP under uncertain
traffic conditions. We also proposed two variations of the algorithm that embed new
cuts, lower-bounds and local branching. When tested on 20, 25 and 50-node instances
all the methods provided better solution than the commercial solver CPLEX. The main

findings of Chapter 3 are:
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e Integer L-shaped based algorithms outperformed commercial solver CPLEX on all

instances tested.

e The variations of the algorithm yielded similar results on average, but outper-

formed each other on individual instances.

e The cuts proposed for Lshaped_A significantly improved the lower bound compared
to Lshaped_O.

In Chapter 4 we have considered the Speed Optimization Problem with Soft Time Win-
dows. We provided a non-linear model that we linearized and proposed two algorithms
based on time-space networks, which differs in the way possible arrival times at customers
are discretized. We also proposed an acceleration method for the time-space network
algorithms. We solved instances of the problem in road and maritime transportation

context. The answers proposed by Chapter 4 are:

e The discretized speed model finds optimal solutions up to three times faster than

the non-linear model.

e The accuracy and computational time of time-space network depend on the dis-

cretization technique.

e The acceleration method proposed proposed solutions up to 30 times faster than

the non-linear model, with an optimality gap less than 3%.

e Allowing vehicle to wait idly at customers can reduce fuel consumption by up to

25% and yields a total cost saving of 10% on average.

e Wider hard time windows may yield better solution values than narrower soft time

windows.

5.3 Research outputs

The present thesis has generated scientific papers and conference presentations. One

paper has been published:

e Nasri, M I. Bektas, T., Laporte, G., 2018. “Route and Speed Optimization for

Autonomous Trucks”, Computers & Operations Research.
One paper has received a “revise and resubmit” verdict and has been resubmitted :

e Nasri, M I. Bektag, T., Laporte, G., 2018. “Speed Optimization under Soft Time
Window Constraints”, Transportation Research Part E: Logistics and Transporta-

tion Review.
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Five conferences and presentations.

e Nasri, M L. Bektas, T., Laporte, G. “ The Pollution-Routing problem with stochas-
tic travel times” , Southampton Business School Student Conference, 2015, Southamp-

ton.

e Nasri, M I. Bektag, T., Laporte, G. 2018. “ The Pollution-Routing problem with

stochastic travel times”, Optimization Days, 2015, Montreal.

e Nasri, M I. Bektag, T., Laporte, G. “ The Pollution-Routing problem with stochas-
tic travel times”, Vehicle Routing and Logistics Conference (VeRoLog), 2015,

Nantes.

e Nasri, M I. Bektag, T., Laporte, G. “ Integer L-shaped Based Algorithms for
the Pollution-Routing Problem under Traffic Uncertainty”, Vehicle Routing and
Logistics Conference (VeRoLog), 2016, Amsterdam.

e Nasri, M I. Bektag, T., Laporte, G. “ Route and Speed Optimization for Au-
tonomous Trucks”, Southampton Business School Student Conference, 2018, Southamp-

ton.

5.4 Research limitations and future research directions

Although the thesis responded to the research questions, it has done so with unavoid-
able limitations. These limitations are due to some necessary assumptions, and some
simplifications made necessary by the time limit to accomplish this thesis. Below are
some limitations of the study with future research directions for each of the three main

chapters.

Chapter 2 e We represented the traffic uncertainty by discrete random variables.
This is a sound technique, that has previously been used successfully in the
literature, however only three scenarios were considered due to the complexity
of the problem. Considering more traffic condition scenarios can prove more

realistic.

e We represented the problem on a network where customers are connected by
arcs. This approach can be used to assess the advantages of taking uncertainty
into account, however it can underestimate the fuel consumption costs due to
speed variability. Therefore, considering a more detailed road network that

represents an actual road network would provide more accuracy.

e Traffic conditions is a dynamic variable that changes with time. Considering

the problem with time-dependent traffic speed can therefore be more realistic.
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e Due to the complexity of the problem, developing a metaheuristic to solve

large instances can prove to be efficient.

Chapter 3 e We have developed in this chapter new cuts and lower-bounds for the
problem which help the algorithm to provide good solutions on some instances,
however stronger cuts able to eliminate a larger number of solutions from the

set of feasible solutions would be better.

e All the algorithms provided outperformed CPLEX on all the instances tested,

however they were not able to provide proof of optimality.

Chapter 4 e We have explored in this chapter the speed optimization problem and
included soft time windows, however in practice choosing the optimal speed
may not always be possible, therefore traffic conditions uncertainty should be

taken into account.

e The computational results fulfilled the aim of assessing which algorithm per-
formed best, but including a practical problem instance could have been ben-

eficial.

e The potential of integrating the algorithms developed in this chapter within a
metaheuristic or a matheuristic to solve a larger route and speed optimization

problem would be within investigation.
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