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Optimal Inventory Policies with Postponed Demand by Price Discounts

by Muzaffer Alim

This thesis introduces a demand postponement policy in order to improve the perfor-
mance of inventory management under batch ordering, advance demand information, ca-
pacitated /uncapacitated and periodic/continuous review inventory systems. The main
aim of this study is to find integrated demand postponement and inventory policies. The
structure of the thesis consists of five main chapters which starts with an introduction
in Chapter 1 which summarizes the main objectives of the study with a background
information, followed by a Chapter 2 presenting an overview of the relevant literature
and the methodology. Chapter 3 as the first research paper, an inventory problem with
stochastic demand and batch ordering and lost sales based on a real case is introduced
and a demand postponement policy applied on this system to convert some of the lost
sales to advance demand. A Markov Decision Process model is proposed and it is solved
through Linear Programming (LP). The dual of the primal model is used to reduce
the computational effort and it is tested with several numerical data sets. The optimal
inventory policy and discount policy for different batches are shown for managerial in-
sights. In Chapter 4, the same problem without batch ordering is formulated by Markov
Decision Process (MDP) solved by Backward induction algorithm. In addition, the de-
mand pattern is changed to Advance Demand Information (ADI) which combines both
stochastic and deterministic demand. The properties of optimal inventory and post-
ponement policy parameters are analyzed and the numerical experiments are carried
out under the uncapacitated and capacitated systems to show the impact of the post-
ponement policy. The comparison of policy parameters with the literature shows that
the demand postponement policy is highly effective for the efficient use of capacity. In
Chapter 5, the extension of the problem to a continuous review inventory system with
distribution strategies is studied by an Net Present Value (NPV) approach. The effec-
tiveness of demand postponement under different financial settings are examined and

an extensive numerical experiments are presented.
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The thesis ends with a conclusion in Chapter 6 including the summary of the results,

limitations of the study and further research directions.

Keywords. Operational research, Supply Chain management, Logistic, Inventory man-
agement, Advance demand information, net present value, Periodic/continuous review
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Fiyat Indirimleri ile Ertelenen Taleple Optimal Stok Politikalari

by Muzaffer Alim

Bu caligmada, fiyat indirimleri ile saglanan talep erteleme politikasinin gesitli sartlardaki
stok sistemlerinin performansini iyilestirmede nasil katki yapacagi incelenmistir. Asil
amag, stok sistemini en iyileyecek biitiinlesmis bir stok ve talep erteleme politikasi
bulmaktir. Calisma beg ana kisimdan olugsmaktadir. Birinci boliimde, problem ile il-
gili genel bir bilgi verilmekte ve calismanin amaclar: belirtilmektedir. Ardindan ikinci
boliimde stok problemleri ile ilgili literatiir taramas: ve ilgili metodoloji genel hatlar ile
sunulmustur. Ilk makale olan {i¢iincii boliimde ise stokastik talep ve parti halinde siparis
verilebilen stok sistemlerinin talep erteleme ile iyilestirilmesi ¢aligmasi yapilmistir. Prob-
lem, Markov Karar Degigskeni Siireci yontemi ile formiiliize edilmig ve beklenen toplam
kar optimize edilmistir. Modelin ¢6ziimiinde Lineer Model kullanilmig ve gesitli parame-
treler altindaki en iyi stok ve indirim politikalar1 gosterilmigtir. Dordiincii boliimde, bir
onceki problemdeki parti halindeki siparig kisit1 kaldirilmig ve problem Markov Karar
Siireci ile modellenmistir. Talep, bilinyesinde deterministik ve stokastik talep bulun-
duran erken talep bilgisi ile degistirilmigtir. Formiilasyon, dinamik programlama ile
¢ozlimlenmis olup en uygun stok ve erteleme politikalarinin 6zellikleri analiz edilmistir.
Model, farkli problem parametreleri ile kapasiteli ve kapasitesiz stok modelleri igin
test edilmis ve erteleme politikasinin etkisi gozlemlenmigtir. Literatiir ile karsilagtirma
yapildiginda fiyat indirimi ile talep erteleme politikasinin, stok kapasitesinin verimli
kullaniminda oldukga etkili oldugu goriilmiigtiir. Besinci boliimde, problem siirekli kon-
trol altinda ve dagitim stratejilerini de iceren stok sistemleri icin incelenmistir. Net
buglinkii deger yaklagimi kullanilarak talep erteleme politikasinin farkl finansal parame-
treler altindaki performansi Ol¢lilmily ve genis bir numerik sonug¢ sunulmustur. Bu
calismanin son bolimiinde elde edilen sonuclar 6zetlenmis ve calismanin smirlarr ve

gelecek caligmalar igin oneriler sunulmustur.
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Chapter 1

Introduction

This chapter consists of four sections. Section 1.1 provides a overview of the research
problem and Section 1.2 introduces the relevant methodology used in research chapters.
In Section 1.3, the main research aims and objectives are discussed and in Section 1.4

presents a detailed outline of the thesis.

1.1 Context of the Research Problems

Supply Chain Management (SCM) is the controlling and planning of all supply chain
activities, starting from supplying raw material and including production, stocking, and
distribution of the finished products to right locations and ending with the delivery to
end customers. The main objective of SCM is to establish the integration between the
partners such as suppliers, manufacturers, warehouses and retailers in order to minimise
the total cost while answering customers’ needs. For key literature on SCM and future

research directions, see Power (2005) and Burgess and Koroglu (2006).

Supply chain systems which are designed for a stable environment might be vulnerable to
uncertainties on both the supply and the demand side. Inaccurate demand forecasting,
variable/stochastic lead times, price changes in the market, disruptions due to the nat-
ural and human disasters and uncompleted shipments create uncertainties in the supply
chain (Tang 2006b). Companies deal with these by having inventory as a preparation
to avoid delays on their services. While holding high amounts of inventories might be

a solution to deal with uncertainties, keeping higher levels of inventories could be too

1
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costly. Inventory management then plays a key role through the process of SCM due to
its direct impact on both cost and customer service. The competitive markets require
a strong need for inventory management to determine the right amount of inventory
while considering the balance between the service level and cost of having it (Russell

and Taylor 2011).

Inventory management is defined as the controlling of product kept in stock over time.
The main purpose is to answer the questions of ”When to order?” and ”"How much to
order?” under various problem environments. The first model for inventory management
is introduced by Harris (1913) and known as the Economic Order Quantity (EOQ)
model. In spite of its deterministic and simple problem assumptions, the EOQ model has
been a valuable tool and is still considered to be a fundamental method in the inventory
literature (Cérdenas-Barrén et al. 2014). The constant demand assumption has been
changed to a demand varying over time in the Dynamic Lot Sizing (DLS) problem and
a Dynamic Programming (DP) approach is proposed by Wagner and Whitin (1958)
to solve it. The literature has been growing in order to deal with more complicated
problems such as stochastic demand, non zero lead times, backorder /lost sales, quantity
discounts, restricted orders, capacitated inventory systems, perishable products etc. For

an extensive literature review, we refer to Brahimi et al. (2006).

Inventory models are often categorized by the stochastic or deterministic nature of the
model parameters. For the stochastic cases, the uncertainties on both supply and the de-
mand make flexible inventory management crucial. The traditional inventory approach
focuses on finding the optimal ordering policy for meeting a given demand pattern. On
the other hand, the modern approach works to change the demand pattern if applicable
and to simultaneously set an inventory policy which leads to less inventory costs and
higher profits. Well-known examples are the class of quantity discount models which
focus on changing the demand by offering discounts. Offering discounts may reduce the
uncertainty on demand or increase the demand rate and is by now a widely applied

method (Shin and Benton 2007, Wee 1999, Weng 1993).

Although the forecasting and planning for stochastic demand is getting more sophisti-
cated, there still exists a high risk of being stock out (Yang and Burns 2003). Recent
improvements of information technology and increased usage of online channels have

equipped inventory managers with more accurate information from customers (Ozer
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2011). This includes the demand information which is placed by customers in advance
of their due date, and which is called Advance Demand Information (ADI). Real-life
examples of this demand type can be observed in many areas such as room booking of
hotels, flight reservations for airline companies, pre-order of new technological products

or computer games etc.

1.2 Context of Methodology

The first methodological approach is to study the inventory problem with batch ordering
and demand postponement formulated by Markov Decision Process (MDP) with an NPV
objective function. The Linear Programming (LP) model and its dual have been used
to carry out the numerical experiments for finite time horizon. The second approach is
to study the extension of the first problem to a case which has advance demand infor-
mation. The problem is formulated by MDP and we solve it by Dynamic Programming
DP for capacitated and uncapacitated inventory systems under finite time horizon. DP
is one of the most common methods in literature on dynamic lot sizing problems. To
reduce the computational effort, additional valid inequalities are presented. The third
methodology used is calculating the annuity stream of an inventory cash flow, i.e. the
Net Present Value (NPV) approach. Although classical models are commonly used in
the literature, the postponement of payments and order decisions force us to consider
the time value of money in order to obtain accurate inventory solutions. In addition,
we include the distribution of the goods by using average travelled distance model (Da-
ganzo and Newell 1985). The problem then is solved by exhaustive search algorithm for

numerical experiments.

1.3 Research Aims and Objectives

The main purpose of this thesis is to analyse several variants of inventory problems and
to improve their efficiency by using price discounts as a mechanism for manipulating the

demand. The main aims of each chapter are summarized as follows.
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The first paper focuses on periodic review inventory systems with stochastic demand,
batch ordering and improving its performance by postponing demand using price dis-

counts with NPV objective function.

The main research aim of the second paper is to develop an optimal inventory and dis-
count policy for a periodic review inventory system with stochastic Advance Demand
Information (ADI) by modeling the problem as a Markov Decision Process for capaci-

tated and uncapacitated cases.

In the third paper, we address a continuous review inventory system and investigate the
importance of payment structures on inventory policies by using a Net Present Value
(NPV) approach and a distribution strategy based on the average travelled distance is

integrated into the inventory model.
In more detail, the research objectives are summarized as follows:

The objectives of the first paper will be:

to identify the inventory models for batch ordering system in literature;

to formulate the periodic review inventory system with batch ordering and discount

decision as an MDP and solve it by LP model;

to analyse the relation between batch ordering and demand postponement;

to perform computational experiments under several parameters settings.

The objectives of the second paper are:

e to review the relevant literature on advance demand information and include the

discount decision to the inventory systems with ADI;

e to investigate the conditions under which the price discount mechanism performs

better and brings benefit to the system;
e to develop an MDP formulation and its solution by Dynamic Programming;

e to introduce additional valid inequalities to improve the computational perfor-

mance of the solution techniques;
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e to perform extensive computational experiments with several parameters under

capacitated and uncapacitated cases.

The objectives of the third paper are:

e to research the area of continuous review inventory systems with discounts in the

literature;

e to formulate the problem in second paper to a continuous review case with constant

demand rate;

e to test the impact of financial terms (postponed payment, deposit, interest rate)

on inventory system:;

e to see the impact of outsourcing distribution or self distribution by considering the

average travelled distance Daganzo and Newell (1985) with the inventory model.

1.4 General Outline of the Thesis

The remainder of this transfer thesis is organized as follows. Chapters 2 presents an
overview to the literature of inventory problems and review the various solution methods
for inventory problems. These methods include Mathematical Programming, Dynamic

Programming, heuristics and Markov Decision Process.

Chapter 3 introduces a batch ordering inventory problem with stochastic demand and
lost sales. The demand postponement policy is applied to convert some lost sales into
advance demand information and an MDP formulation is proposed. The model is solved
through Linear Programming method and a numerical experiments are carried out to

obtain some managerial insights.

Chapter 4 extends the problem in the first research paper to a backordering case without
batch ordering. The inventory system already contains some advance demand and post-
ponement policy is used to buy more advance demand when it is needed and profitable.
The problem is solved by Dynamic Programming and the structure of the optimal pol-
icy is discussed. The model is numerically tested for uncapacitated and capacitated

inventory systems and an extensive numerical results are presented.
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Chapter 5 investigates the impact of such demand postponement policy on continuous
review inventory models. The NPV value of objective function is considered to test
the system with different financial settings. A distribution strategy is included into
the problem which is to choose whether outsource the delivery or make it locally. An
exhaustive search algorithm is used to find the integrated inventory and distribution

plan under various system parameters.

Chapter 6 concludes the thesis with a conclusion including the discussion of the limitation

of the study and further research directions.



Chapter 2

Literature Review

This chapter begins with an overview to the supply chain, its improvements and shifting
demand across time. Next, the evolution of the lot sizing problems which are Economic
Order Quantity and Dynamic Lot Sizing models is reviewed. Then, the implications of
NPV into lot sizing problems are discussed. The various solutions methods including
mathematical programming, dynamic programming, heuristics and Markov Decision
Process are discussed and finally, there is a conclusion to compare the methodologies

and connect it to the research chapters.

2.1 Overview of the Literature

A Supply Chain (SC) is the entire process to deliver the product from the supplier to
the end user. Mainly this procedure can be examined under two classes: (1) Production
Planning and Inventory Control and (2) the distribution and Logistic Process (Beamon
1998). Supply Chain Management (SCM) is characterized as the controlling, arranging
and integration of these process. Earlier it was basic with a stream of raw material to
manufacturer and then to the markets. However, with the shorter product lifecycles,
uncertainties on increasing demand, competitive market environment, off-shoring and
outsourcing strategies make the SCM more challenging (Tang and Nurmaya Musa 2011).
Failure of a partner in a SC creates disruption for all partners both upstream and
downstream (Yang and Yang 2010). Thus, there has been an increasing need on effective

and flexible SCM to deal with these challenges.
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There has been a growing attention on making SCM more flexible and robust. Tang
(2006a) propose nine strategic ways including postponement and revenue management
for this purpose. They classified the postponement into the classes. First one is the
manufacturing postponement which is to postpone the customization, final assembly or
packing of the product until the order information received from the customers Yang and
Burns (2003). The second on logistic postponement on the other hand is to postpone
the changing on inventory locations to the latest point possible (Pagh and Cooper 1998).
These studies use the postponement to manage the supply side. Yang and Yang (2010)
review the postponement strategies on supply and discuss the complexity of application

of such strategies.

The flexibility on supply side is very limited since there is a fixed capacity restriction on
supply in most situations. In such cases, the firms focus on demand management. Tang
(2006b) summarizes the strategies for demand management as shifting demand across

time, markets and products.

Shifting demand across time is getting more popular with the effective usage in industries
such as airlines, hotels, utilities as increase the usage of online channels Xu et al. (2017).
Customers are offered some price incentives to shift their demand to off-peak periods.
Similarly pre-order incentives are applied to gather the demand information from the
customers prior to the release of the product. Some customers prefer advance bookings
due to uncertainty on the future availability of the product Seref et al. (2016). By
getting this information, the firm can overcome the lack of forecasting (Tang et al. 2004)
or could increase the effective usage of capacity (Zhuang et al. 2017). These should
not be compared with the price incentives to increase the total demand. The main
focus on shifting demand is to change the timing of the demand regardless of aiming
to change its size. Another study on this area is Iyer et al. (2003) which analyses
the demand postponement strategy when the demand exceeds the short term supply
capacity. The main idea they define behind demand postponement is to preempt stock-
outs or shortages to reduce the expected costs. The shifting demand over times by
price incentives are considered under the context of Revenue Management(RM). Quante
et al. (2009), Talluri and Hillier (2005) offer a detailed review of revenue management

strategies to manage the demand.
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FI1GURE 2.1: Classification of Lot Sizing Problem

2.2 Lot Sizing Problems

The lot sizing problem has received much attention from both academia and practice
since the first publication in 1913. The reason of this interest is the direct impact of
inventory management on both customer service and cost. The lot sizing problems have
been classified into different categories. One of the main classification by Glock et al.
(2014) is based on the technical structure of the problem as in Fig. 2.1. The more

detailed version of theirs has been presented by Aggarwal (1974).

Fig. 2.1 considers the classification of lot sizing problems by the nature of the prob-
lem parameters which could be changing over time (stationary-dynamic) and uncertain
(stochastic-deterministic). Specifically, based on the nature of the demand the inven-
tory models are named as Economic Order Quantity (EOQ) for constant demand rate
or Dynamic Lot Sizing (DLS) for time varying demand. These two are the main models
of lot sizing and they have been extended to multiple cases. In the next sections, we

present an overview to these models with their extensions in literature.

2.2.1 Economic Order Quantity Models

The first lot sizing model is introduced by Harris in 1913 and called Economic Order
Quantity(EOQ) model. The model is developed for a continuous review inventory sys-
tem on an infinite time horizon with constant demand rate. It provides the optimal
order size which is satisfying the trade-off between the ordering and holding costs under
stationary parameters and deterministic demand. This model has been extended for
different problem environments. Hax and Candea (1984) analyses several extensions of

EOQ including backorders and lost sales models. Bakker et al. (2012) review the EOQ
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models with deterioration in which the items on the stock has a limited lifetime on stock.
The EOQ model is called Economic Production Quantity (EPQ) when it considers pro-
ducing item with a finite production rate (Holmbom and Segerstedt 2014). The review of
EOQ and EPQ models with deterministic parameters and partial backordering has been
studied by Pentico and Drake (2011). The EOQ model with stochastic parameters has
also been interested in literature. Yano and Lee (1995) provides a review of stochastic
cases where yield and demand are random for continuous and discrete time models. We
refer readers to an early review of EOQ literature (Erlenkotter 1990), as recent study
Holmbom and Segerstedt (2014) and Glock et al. (2014) which provide extensive review

on Economic lot sizing problems.

Up to this point, all reviewed studies are introduced based on the nature of the problem
parameters. There are studies focusing on studying on the content of the problem.
Under various parameters settings, the two stage and multi stage cases of the lot sizing
problem have been reviewed by Goyal and Gunasekaran (1990), Cardenas-Barrén (2007)
and Bakker et al. (2012). The extensions of the problem with consideration of scheduling
and incentives have also been studied in the literature (Glock et al. 2014). Lot sizing
and scheduling decisions are closely related to each other so they are often studied in
combination. This has been named as Economic Lot Scheduling Problem (ELSP) in
which the sequences of the products in production need to be determined in addition
to the inventory decisions (Elmaghraby 1978). An early review of ELSP is presented
by Graves (1981) and Winands et al. (2011) for the stochastic problem. Incentives are
another content issue in literature. Pricing strategies as incentives are the most common
way for demand management in inventory models and Elmaghraby and Keskinocak
(2003) presents an extensive review of the relation between dynamic pricing and demand.
Quantity discounts as an application of incentives are offered if the order amount is higher
(Pentico and Drake 2011, Shin and Benton 2007). There are also studies to offer delay

in payment instead of quantity discounts (Chung et al. 2005, Pal and Chandra 2014).

2.2.2 Dynamic Lot Sizing Models

The stationary lot sizing problem is updated to a case where the demand is varying
over time and it is called Dynamic Lot Sizing Problem (DLSP). It has been received

considerable attention in inventory literature especially for periodic review inventory



Chapter 2. Literature Review 11

systems. The first paper is Wagner and Whitin (1958) which studies DLSP for a single
item and single supplier case. They propose a dynamic programming approach to solve
the DLSP with deterministic time varying demand and fixed ordering and linear holding
costs. Another early study on DLSP is Zangwill (1966) which includes the backlogging
into the DLSP. Aksen et al. (2003) analyse the DLSP with lost sales and propose an
efficient algorithm for solution. Lee et al. (2001) introduce time windows for the demand
in DLSP and it is required to satisfy the demand within that time window. For the
detailed review of DLSP, we refer readers to the studies of Holmbom and Segerstedt

(2014) and Brahimi et al. (2017) and Karimi et al. (2003) for capacitated DLSP.

The DLSP has also been considered for two and multi stages and the reader may be
referred to Gupta and Keung (1990), Aggarwal (1974) and Brahimi et al. (2006) for
a detailed review. Production scheduling has a significant impact on stock especially
when multiple items are on production line. Thus, the integrated problem of DLSP with
scheduling has been taken in analysis by Beck et al. (2015), Robinson et al. (2009) and
Staggemeier and Clark (2001). Incentives are also used often in DLSP problems. Chung
(1987) and Federgruen and Lee (1990) consider the quantity discounts in an DLSP.
Furthermore, Mazdeh et al. (2015) add multiple suppliers into the problem where each
suppliers have different quantity discounts. Thus, the model needs to determine the
supplier and the optimal lot size. The same problem with backlogging has been studied
by Ghaniabadi and Mazinani (2017).

2.3 Inventory Models by Net Present Value (NPV) Ap-

proach

In classic EOQ models, the main objective is to minimise the Average Cost (AC). The
payment structure does not have an impact on the objective. Some studies focus on this
issue and use Net Present Value (NPV) approach in the lot sizing problem to consider
the time value of money. Hadley (1964) is the first study to use NPV in a lot sizing
problem and they compare the results with average cost model. Sun and Queyranne
(2002) investigate the NPV approach on multiproduct and multistage production and
inventory model and show that AC is a good approximation of NPV for a deterministic

demand. Chao (1992) investigate the NPV for an inventory system with stochastic
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demand. Grubbstrom (2007) presents the transform methodologies for using NPV in a

stochastic environment.

All the studies show that NPV model is more accurate than AC model. However,
the usage of NPV in literature is very limited. This is due to the complexity of NPV
model and the close results of AC to NPV. Van der Laan (2003) point out that AC
is a nice approximation for fast moving products on stock, low interest rates and not
changing payment structure with the inventory policy. However, when there is a payoff
of long term investments, the time value of money has to be considered (Marchi et al.
2016). Hsieh et al. (2008) investigate the lot sizing problem with two warehouses and
deterioration with an NPV objective value and they claim that the reorder interval of
AC objective must be longer than NPV. There are some other interesting studies on
NPV and we refer readers to Grubbstrém (1998), Giri and Dohi (2004), Beullens and
Janssens (2014) and Ghiami and Beullens (2016).

2.4 Methodology

In this section, we introduce the most commonly used methodology in inventory litera-
ture by their applications in literature. Both exact methods and heuristics are applied
to inventory problem in literature. Among these methods, we present a background
information on Mathematical Programming (MP) including Linear Programming, Inte-
ger Programming and Mixed Integer Programming (MIP) and Markov Decision Process
(MDP). We refer readers to Karimi et al. (2003) and Buschkiihl et al. (2008) for a re-
view of solution approaches for capacitated lot sizing problem and Tempelmeier (2013),

Buschkiihl et al. (2008) and Aloulou et al. (2013) for stochastic DLSP.

2.4.1 Mathematical Programming

The Mathematical Programming (MP) includes the Linear Programming (LP), Inte-
ger Programming (IP) and Mixed Integer Programming (MIP). Linear programming
is an Operations Research (OR) technique to optimize (either maximise or minimise)
the models with linear objectives and constraints Taha (2007). The graphical solution
method of LP is enumerating all the basic solutions (corner points). But, the simplex

method only focuses on a few points on these solutions which makes this method more
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effective. Integer programming is a kind of LP with a condition that all the variables
are restricted to be integer. MIP is an integer programming but some of the variables
can take on real number values. For the theory behind the LP and its applications are

presented by Lewis (2008).

There have been extensive real life applications of mathematical programming methods
including scheduling, facility location, transportation, production and inventory etc.
The nature of lot sizing inventory problem mostly requires to have both continuous and
integer decision variables which lead to MIP. Implications of MIP are very common in
literature. Pochet and Wolsey (2011) contain papers on alternative applications of MIP

on production and inventory systems with a background knowledge on MIP.

Tempelmeier (2013) model the single item uncapacitated lot sizing problem as an MIP
for fixed and variable replenishment periods. He also updates the model for a stochastic
case. For the capacitated case, Drexl and Kimms (1997) present the MIP models for both
discrete and continuous lot sizing and scheduling problem. Gao et al. (2008) compare
the MIP model for coordinated DLSP with the LP relaxation. They use the result of
LP relaxation as a lower bound for MIP and they obtain (0.022%) as a worst optimality
gap. Zhao and Guan (2014) take the dual of LP model incorporating Bellman equations
for stochastic uncapacitated lot sizing problem. Lulli and Sen (2004) use branch and
price algorithm for multistage stochastic problem and compare it with MIP. On the
other hand, Guan et al. (2005) define some valid inequalities to the same problem and
use branch and cut algorithm. Lee et al. (2013) construct a MIP model for LSP with

multiple suppliers and quantity discounts.

In most cases, it has been shown that the MIP models are NP hard for lot sizing problems
and therefore many researchers focus on heuristic methods (Drexl and Kimms 1997).
Mazdeh et al. (2015) develop a heuristic method based on Fordyce - Webster Algorithm
for the DLSP with supplier selection and quantity discounts. Lee et al. (2013) study
the same problem with MIP model and compare it with the Genetic Algorithm. For the
complicated problem or NP hard case, the Genetic Algorithm provide nearly optimal
results in a short computational time. Gaafar (2006) develop a Genetic Algorithm for
batch ordering inventory models. Baciarello et al. (2013) compare the several heuristic
methods for the solution of uncapacitated single item LSP in terms of their performance.

Meta-heuristics are also widely applied in DLSP and Jans and Degraeve (2007) review
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them and make a comparison among these heuristics. Beck et al. (2015) review the
Wagner-Whitin algorithm and provide an extension for dynamic lot sizing heuristics

including Least unit cost, Groff’s rule, Leinz-Bossert-Habenicht.

2.4.2 Markov Decision Process

Markov Decision Process (MDP) provides a mathematical framework to formulate the
decision sequence where the system can move stochastic or deterministic to another state
(Puterman 1994). The main property of Markov is that the state on next stage only
depends on the current state and given decision at the current stage. Except the previous
state, Markov property requires states to be history independent. In fact, the theory
behind the MDP lies upon the recursive Bellman Equations. Main components of MDP
are state variables from a state space, decisions, reward/cost function and transition
function and probability. MDP is mainly categorized into two class, as Finite Horizon

and Infinite Horizon problems.

Puterman (1994) applies the MDP into different cases including stochastic inventory,
shortest route and critical path problem and discrete time queuing systems. The im-
plication of MDP into an inventory problem with batch ordering and lost sales has
been presented by Woensel, van et al. (2013). Fianu and Davis (2018) study the equi-
tably distribution of donated and uncertain supplies and formulate it as a discrete time
Markov Decision Process. Ahiska et al. (2013) use the MDP approach for a stochastic
inventory problem with two suppliers including one that is unreliable with better price
and other one is perfectly reliable. Qiu and Loulou (1995) consider the MDP for an in-
ventory system with random demand and multiple products. White (1985) summarizes
the problems defined by MDP in literature and identifies the MDP models which are

implemented into real cases.

The main solution algorithms for MDP are value iteration, policy iteration and Linear
programming. Value iteration is the most common method used in dynamic program-
ming and for the finite time horizon it is identical to the backward induction algo-
rithm (Powell 2007). The application of dynamic programming on inventory problems
starts with the model proposed by Wagner and Whitin (1958). After this seminal work,
there has been a lot of studies considering the dynamic programming for the inventory

problems. Yano and Lee (1995) use the dynamic programming approach to solve the
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stochastic DLSP. Similarly, Gallego and Ozer (2001) consider the backward induction
algorithm for the solution of periodic review inventory problem with stochastic advance
demand. The policy iteration, on the other hand starts with an initial policy and then
calculates the value of that policy. Then a new policy is chosen and the value is getting
improved by the changes on policy. Ye (2011) proves that policy iteration is strongly
polynomial for the fixed discounted MDPs. Another solution method is to use the Lin-
ear Programming model. Herndndez-Lerma O. (1999) state that LP approach allows to
identify the optimal policy on a subset of state space. The superiority of the LP model
on value iteration only arises for the relatively small state and action spaces. While the
LP model with 50000 constraints is assumed to be a large problem, dynamic programs
with the same size of constraints are considered relatively small problems (Powell 2007).
Similarly, Abbasi-Yadkori et al. (2014) state that LP is not practical for the large size
of variables and constraints and study an approximation method for MDP with large

scale state spaces.

2.5 Conclusion

In this chapter, we review the lot sizing problems and the applications of various op-
erational research methods into the lost sizing problems. The MDP formulation of lot
sizing problems can be solved by dynamic programming, policy iteration and linear pro-
gramming. Although the most common method is dynamic programming, the literature
shows that LP models can perform better for small state sizes. Also there are recent
improvements on LP solvers which can solve large problem instances in an acceptable
time. These will lead us to consider the LP model as a solution method for lost sales

problem in Chapter 3.

For the finite time horizon lot sizing problem, the research studies in literature prefer
dynamic programming. Considering backordering increases the state size since the in-
ventory level can be negative. Thus, in Chapter 4, we use dynamic programming and
MDP formulation helps us to state the structure of the optimal policies. Additional
state space reduction is introduced and the computational time is reduced. Finally, in
the review of NPV approach, we see that the AC model cannot be a good approximation
of NPV when the payment structure changes by the inventory policy. The postpone-

ment decision cause customers to pay a deposit when they place the order and pay the
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remaining on the delivery. Therefore, the payment structure depends on discount and
inventory policy. These motive us to consider the NPV of the objective function in
Chapter 5. We test the system under different financial settings by the help of NPV

approach.



Chapter 3

Converting lost sales to advance
demand with promised delivery

date

Abstract

This paper looks into the periodic review inventory problem with batch ordering and
postponed demand by price discounts. The demand pattern is stochastic and unsatisfied
demand on time is lost. Beside the classical inventory decisions of order time and
amount, there are also postponement decisions of how many demand to be discounts
and for how long. To entice customers for postponement, we offer price discount for only
some part of the customers at some times. Customers are accepting the postponement
with a rate. We formulate the problem with Markov Decision Process (MDP) and
solve it through Linear Programming (LP) model. Dual of the primal model is taken
into account as to reduce the computational time. We present extensive numerical
experiments to show how the optimal policy is affected by changing batch size and

postponement policy.

17
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3.1 Introduction

Matching supply and demand in an efficient way is the main purpose of inventory man-
agement. Traditionally, solution strategies were focused on determining an optimal
supply policy to meet given demand characteristics. More and more, however, inven-
tory theory also considers options to actively influence demand patterns, and seeking

for jointly optimized supply and demand management policies.

On the supply side, replenishment policies are often based on particular conditions set
out by suppliers. In the classical EOQ model, it is assumed that the order size can
take any value. In many production/inventory systems, however, there can be various
restrictions. A common restriction is the specification of a minimum order quantity
(Zhou et al. 2007, Kesen et al. 2010), either imposed as a hard constraint or a soft
constraint in the form of a penalty cost for smaller orders, or a quantity discount if the
order exceeds this threshold. Next to this being a strategy for the supplier to stimulate
demand, the underlying reasons typically relate to the supplier’s cost structure in its
production or transportation system, making it not sufficiently economical to supply
small quantities. Another form of restriction is known as batch ordering (Veinott 1965,
Broekmeulen and van Donselaar 2009). Here, the order size has to be an integer number
of a base batch quantity. Application of batch ordering is e.g. common in the retail
industry (groceries and other products). It is often the consequence of the way individual
products are being packaged in larger boxes at production sites and/or fit onto pallets
for distribution to wholesalers or retailers, where again costs savings in production,
distribution, and inventory handling may be an underlying reason why dealing in larger
units is adopted in the supply chain. This practise can furthermore have other benefits,
such as minimising the risk of damage to products. Selling in larger quantities also
induces the buyers to keep on average more stock, which results in financial benefits for
the supplier of receiving profits earlier, referred to as the supplier’s reward in Beullens

and Janssens (2014).

We study a inventory system with stochastic unit-sized demand but with batch ordering
from a supplier. The motivation for this study originates from a project undertaken
for an organization supplying and maintaining information technology equipment to
the University of Southampton. The company provides laptops, monitors and other

computer equipment and peripherals to the university’s staff and postgraduate students.
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The focus of study was on the supply of laptops and desktops. Staff and students, as
customers and users of these computers, can request these via an online ordering system.
This demand is difficult to predict and is to be regarded as stochastic. The university
expects that these requests can be fulfilled quickly. As some time is needed to install
hardware and software components individualized to the user, the company effectively
needs to be able to fulfill these orders from stock on hand. To help achieve this, as
well as achieve sharp prices from the producers, and further reduce on installation and
maintenance costs, the computer types available to the users is restricted to a selection
of standardized types. In addition, the orders from the producers of each of these types
have to occur in batches (pallets) with base batch quantities ranging around 10 to 20,

depending on the computer type.

The company felt that this batch ordering was perhaps restrictive. They thus desired
insight into the impact of different base batch quantity levels on financial (holding) costs
and service levels, so that they could get an understanding of the commercial value of

reducing base quantity levels in potential re-negotiations with suppliers.

Another issue the firm wanted to investigate relates to the demand side. It was quite
important to the company to ensure customer satisfaction and part of the performance
measures they needed to track was the amount of customers orders completed according
to the customer desired delivery time. While customers were encouraged to submit their
requests ahead of their needs, this almost never occurred, which means that products
always needed to be kept on hand, and delivered within three to five days. One way in
which customers can be induced to order in advance is to offer price incentives linked
to requested delivery time. However, offering these schemes to all customers can also
becomes expensive. A good fraction of demand, however, was related to the upgrade
of computers still working. The company thought that it would be possible to convert
some of this demand to later delivery times by offering a small financial incentive. This
only needed to occur at times when stock was running short. Next to improving service
performance, such a strategy will also affect the optimal ordering policy from suppli-
ers. Examining the impact of such a demand postponement strategy has thus to be

considered jointly with the first question about the impact of batch ordering.

In this paper, we develop a stylized model that has most of these characteristics and can

be used to develop insights into these questions. We consider a batch ordering periodic
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review inventory problem with stochastic demand and demand postponement enticed
by price discounts. The supplier lead-time is shorter than the length of a review period.
Without a postponement option, demand arriving within a period has to be met in that
period or else is lost. While in the above described example most of this demand would
result in backorders instead, the assumption of lost sales is more pertinent for computer
stores facing competition. The products are supplied from an external supplier but the

order size has to be in integer numbers of a base quantity.

The demand postponement with a price discount is used to persuade some of the cus-
tomers to accept later delivery within a given maximum delay time. By this, we aim to
transform some of the lost sales into advance demand information, which avoids the firm
from losing profit. We would also expect this postponement strategy to reduce the nega-
tive impact of the batch ordering constraint. The postponement option is only offered to
customers in periods when it is needed, and not all customers giving this option would
accept it. We consider the maximisation of the total profit and model the problem as a
Markov Decision Process (MDP). Our main objective is to investigate the system per-
formance with the postponement policy and increase insight into the conditions under

which postponement is beneficial under different levels of base batch quantities.

The remaining parts of this article are organized as follows. In Section 3.2, we provide a
review of relevant literature on batch ordering, demand postponement and lost sales. In
Section 3.3, we describe the problem environment with relevant notation and assump-
tions and develop the model using a MDP. We conduct the computational results in

Section 3.4. Finally, conclusions and areas for further research are given in Section 4.8.

3.2 Overview of Literature

Shifting demand across time is an important aspect in the studied problem. There are
two approaches in the literature. The first strategy is to obtain the demand information
from the customers at earlier times. Li and Zhang (2013) examine the benefits of offering
price discounts to customers who pre-order prior to release date of a (new) product.
Huang and Van Mieghem (2013) focus on increasing insight from data mining on the
behaviour of customers in an online sales setting. The second strategy is to convince

customers to accept later delivery, often referred to as demand postponement, which



Chapter 3. Converting lost sales to advance demand with promised delivery date 21

might be helpful in particular when the system is not able to satisfy earlier delivery.
Kremer and Van Wassenhove (2014) and Yang and Burns (2003) discuss the potential
benefits of postponement as a means of sharing supply chain risk with the customers.
Although there have been studies on strategies and benefits of the postponement, and
while it is often encountered in other areas (e.g. booking systems for airlines), few
applications of postponement are available in the inventory literature. Yang and Yang
(2010) state that this may be in part a result from the increased complexity of the

analysis and management of inventory systems with demand postponement options.

Another aspect in this study is batch ordering. This restriction refers to the case where
the products are to be supplied in multiples of fixed supply lots (e.g., carton, pallet,
container, full truckload). Veinott (1965) is one of the earliest works on batch ordering
for dynamic lot sizing problems with a constant lead time. Zheng and Chen (1992) study
the quantized ordering by considering the (r,n@) inventory policies, where @) and r are
decision variables. The comparison of this policy with the (s, .S) policy shows very little
change under the assumption that both s and .S are a multiple of Q). Although a simple
form of optimal policy does not exist, (r, nQ) policies are commonly applied in the batch
ordering models, where () is the base batch quantity. For the multi-echelon case with
exogenously determined batch size, Chen (2000) shows the optimality of the (r;,n;Q)
policy, which consists of ordering n; batches when the inventory position is at or below
the reorder level r; at stage i. Lagodimos et al. (2012) show that the batch ordering
restriction, for situations with a fixed review interval T, can introduce a significant
cost increase when applying a (r,n@,T) policy. Fixed review periods in multi-echelon
situations are also studied in Chao and Zhou (2009) and Shang and Zhou (2010). While
dynamic programming is a frequently applied solution approach, Gaafar (2006) apply
a genetic algorithm approach to solve the batch order dynamic lot sizing problem with

backorders allowed.

A variation known as partial batch ordering occurs when the order is allowed to be
in any size, but where a total set-up cost is charged as an integer multiple of a fixed
batch size. For example, if the batch size is 100 and the order quantity is 330, then four
times the unit set-up costs is being charged. Tanrikulu et al. (2009) reports that full
batch ordering is favored in inventory systems with relatively high backordering cost.
Alp et al. (2014) study the problem based on a case where the order size is a partially

or fully loaded truck. They formulate the infinite time horizon problem as a MDP and



Chapter 3. Converting lost sales to advance demand with promised delivery date 22

propose two heuristic policies based on the analysis of the MDP formulation. They find
that the option of postponing demand would help achieve full truckloads. According to
our knowledge, this seems to be the only study in which selective demand postponement

is considered in the context of stochastic inventory theory.

In comparison to backorders, stochastic lost sales models are less commonly studied and
are harder to solve. Woensel, van et al. (2013) seem first to study the batch ordering
inventory system with lost sales and handling costs. The model in this paper has similar
characteristics to their model, however also includes the demand postponement strategy.
Instead of solving the MDP formulation by backward induction as in Woensel, van
et al. (2013), we demonstrate how a reformulation based on dual linear programming
can solve instances relatively quickly. Despite these computational advantages, the
approach seems relatively unused when compared with other methods in the literature

on stochastic inventory theory, see also Powell (2007).

3.3 Model Development

This section introduces the problem with relevant notation and the mathematical formu-
lation of the MDP for an inventory system with stochastic demand, demand postpone-
ment and batch ordering. We consider this problem for a single item under a periodic

review inventory system.

3.3.1 Problem Description

The products are supplied from an external supplier and batch size a; placed at the
beginning of period ¢ to be delivered at the beginning of period ¢ + L, where L is the
supplier lead time. L is assumed to be less than the review period. The order size has

to be in multiples of batch and each batches contains g items.
The sequence of the events is illustrated in Figure 3.1.

We improve the inventory system with a postponement policy. At some periods, the
customers are offered a price discount in exchange of postponing their due dates. Only

some of the customers accept the late deliveries. The discount decision z; refers the



Chapter 3. Converting lost sales to advance demand with promised delivery date 23
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F1GURE 3.1: Sequence of Events

demand size at period t to be decided to postpone to period i € {t +1,...,t + w} where

w is the maximum waiting time for customers. The customers acceptance rate is S;.

In detail, at the beginning of period ¢, the manager reviews the on hand inventory level
s¢+ and places an order of a; with a fixed ordering cost plus unit costs. The order arrives
in the same review cycle before the fulfillment of the demand. The order a; has to be
a non-negative integer and multiple of a fixed batch size ¢, i.e. a; € {0,q,2¢q,...}. By
the arrival of the order, the observed demand via postponement is satisfied. To avoid
the postponed demand from being lost, the total of on hand stock and placed order is
restricted to be greater than or equal to the postponed demand. Then the stochastic
demand is observed and postponement decision z; is made to postpone some of the
demand to period i. Next, the remaining demand is fulfilled by on hand stock and

unsatisfied demand is lost.

The main notation used in this study is given in Table 3.1.

3.3.2 Mathematical Formulation

We formulate the problem by Markov Decision Process (MDP) for maximising the value
of total profit for a finite time horizon. In this section, we introduce the components of
MDP which are state and decision variables, transition function and probability, reward

function and recursive equation.

The state variable for the inventory problem is mostly the inventory level on hand
(Puterman 1994, Woensel, van et al. 2013). The inventory level is a non negative variable

due to the lost sales. Including the postponement policy into a classic inventory problem
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TABLE 3.1: Notation

Parameters

St On hand inventory level at the beginning of period ¢

D;  Stochastic demand at period ¢

O¢;  Observed demand consists of postponed demand i € ¢,....t + w — 1

K Setup cost per order (£/order)

u  Purchase cost per unit (£/product)

Holding cost per unit (£/product/period)

v Selling price (£/product)

g  Size of a single batch (units/pallet)

L Supplier lead time

T Time horizon

By Rate of customers who accept to be postponed at period ¢

w The maximum postponement length

dy;  Discount amount for postponement from period ¢ to i(£/product)
d(at) The binary decision variable for order decision d(a;) € {0,1}

@);  Demand which is willing to accept the late delivery

x¢  The inventory level after the decisions and fulfillment of observed demand

Variables
a Number of batches ordered in period ¢
zti  Postponed demand at period t delayed to period i € {t +1,....,t + w}

makes us to consider the observed demand vector which includes the sum of previous
postponement demand. With these, the state variables at the beginning of period t are
(s¢, Oy), where s; is on hand inventory level and Oy is the observed demand vector as in

(3.1).

t—1
Ot = (Ot7t7 ceny Ot,t—i—w—l) where Ot,f = Z ZZ'J‘ (31)

i=f—w
Oy vector has Oy for f =t,....,t +w — 1 which is the cumulative postponed demand
at period ¢ for the next periods. These postponement decisions are made in previous

periods.

At the beginning of period ¢, the manager reviews the state variables s; and O; and
places the order decision a;. The placed order decision plus on hand inventory must be
large enough to cover the observed demand for that period. After the order decision, the
stochastic demand which is assumed as based on a known distribution with a probability
pr = P[D = k], k =0,1,... is revealed and the postponement decision z; y placed. For
the simplicity we show the total postponed demand at period ¢ by z; in (3.2). Then the
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demand is fulfilled and any unsatisfied demand is lost. The state variables (s¢41,O¢y1)

for the next period are updated in (3.3), (3.4).

t+w
a= ) ay (3:2)
f=t+1
841 = MAT 5, 4a, >0y {st +a; — Oyt — Dy + 2,0 } (3.3)
a1€{0,9,2q,...}
24 <Bt Dy
Ot+1 = (Ot 41+ 2t 441, s Ot t4w—1 + 2t ttw—15 2t t+w) (3.4)

The inventory cannot be negative since backlogging is not permitted. In transition
(3.3), we add a constraint to guarantee that the on hand stock plus order arrival is suf-
ficient enough to cover the observed demand at that period. This will avoid to lost the
postponed demand and guarantee the delivery of postponed demand. We update the
observed demand with the postponement decision placed at period t by (3.4). The in-
ventory level after the order decision and satisfaction of observed demand is also updated

as in (3.5).

xp =5t +a; — Ot + 2 (3.5)

The probability of a transition from period i = (s¢, O¢) to j = (St+1, Or+1) is shown by

pij(at, z¢) in (3.6).

0 if St41 > Tt
pijlai, z) = { P[D =4] ifa; >80 >0and 2 < ByD Vi=0,..,2;,—1 (3.6)

P[D > x| if s441 =0 and z < ;D

After the decisions are made, the revenue function (i.e., one-period transition profit) of

the current period is calculated based on the ending inventory level as in 3.7.
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x—1 [e'e)
r(st, O, ap, z1) = Z P[Dy = jl(jye — (xe — j)h) + Z P[Dy = jlaey: (3.7)
j=0 Jj=x¢

For a finite time horizon, the value function is calculated based on a recursive formulation
which terminates at ¢ = 7. (3.8) is to calculate the value of being in state i; = (s¢, O¢)
at period t. When the time horizon is completed, (3.9) provides termination condition

which considers only the reward function at the current period.

ve(iy) = MaTae A, {r(it, ag, z¢) + Z pij(a, zt)V}H(th)} vt e {0,1,....,T — 1} (3.8)
feD

Vip(ir) = r(ir,ar,2r) Var € A;, (3.9)

3.3.3 Linear Programming Model

Puterman (1994) states that linear programming formulations are useful in the study of
solving MDPs because of its elegant theory, the fact that constraint inclusions are easy,
and offer the advantage of sensitivity analysis. For these reasons and also in order to
investigate the computational difference between LP model and backward algorithm, we

formulate the MDP for finite horizon as LP model. The LP formulation is;

Min) > Vi, (3.10)

tcT scS

Vis — )\Zp(j|s,a,z)Vt+LS/ >r(s,a,z) Vae As,s€ SVte {0,1,...,T —1} (3.11)
JES

Vrs >1(s,0,0) (3.12)
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The primal model has |S| decision variables and inequality constraints of dimension
|S|x|A]. Since the duality of the model will be computationally better, the dual model
is presented in (3.13),(3.14).

Ma:czz Z r(s,a,2)x(t,s,a,z) (3.13)

teT seS acAs

Z x(t+1,7,a,2) — )\Z Z p(jls,a,z)x(t, s,a,z) = agVt € {0,1,....,T — 1} (3.14)

acAj sES ac A,

x(0,8,a,2) = as (3.15)

where z(t, s, a, z) refers to the total discounted joint probability that the system occupies
state s with an order decision of a and postponement decision z by an initial probability
distribution over states a(s). Unless z(t, s, a, ) becomes greater than zero, an optimal

decision has not been found yet.

3.4 Computational Experiments

In Section 3.3.2, we develop the mathematical model to formulate the stochastic demand
and demand postponement on a batch ordering inventory problem. The unsatisfied de-
mand is lost and we introduce a demand postponement policy which can turn the lost
sales into advance demand information. Additionally, we would expect that postpone-

ment could also help to deal with the negative impact of batch ordering.

In this section, we investigate how the system behaves with different system param-
eters through computational experiments. These experiments are carried out in two
sections. At first, we did not apply our demand postponement policy to analyse the sta-
tus quo. And it is observed that how the policy is changing and batch ordering makes
the biggest impact under what conditions. We use probabilistic transition to get more
accurate results. Next, we apply our postponement strategy and examine the optimal

joint inventory and postponement policy. However, due to computational difficulties we
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assume that transition is deterministic with expected demand. Yet, we calculate the
expected reward by probabilities of demand. The comparison with the status quo (with

deterministic transition) gives us insight about the value of demand postponement.

The numerical values of parameters are set based on the data obtained from ISolutions
case. The demand is assumed to be stochastic based on a Poisson distribution with a
mean of A. The lead time is less than the review period and the demand is satisfied
at the end of the period. The other parameters used in numerical tests are set at the

following values, A =8, K = 0,10,20, y = 1.5u, 1.7Tu, h =1, 3.

3.4.1 The effects of Batch Sizes

There is not know simple form of inventory policy for the problem introduced in Section
3.3.1. Only when the base order quantity is ¢ = 1, the optimal policy is known to be
an (s,S) policy which is order up to S when the inventory level drops to s or below
(Woensel, van et al. 2013). We conducted a number of experiments to illustrate the
structure of the optimal policy for batch ordering. As an illustration, Figure 3.2 depicts
the optimal order quantity by inventory level on hand for different base batch quantities

with K = 10, y = 1.5u, u = 20,h = 1.
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FIGURE 3.2: Optimal Order Quantity by Batch Size

When ¢ = 1, the numerical results indicate that the optimal policy is (s, S) policy as in
Woensel, van et al. (2013). Changing the base batch quantity results in changes to the

optimal policy. The optimal order quantity becomes a step-wise decreasing function of



Chapter 3. Converting lost sales to advance demand with promised delivery date 29

the on hand inventory. The step size is increasing with higher values of ¢q. Although the
order amount is varying by batch sizes, the reorder level shows no difference in Figure
3.2 but we further investigate the impact of batch ordering on reorder level in 3.3 by
setup cost cost and holding cost. The reason to test with different holding cost is that
higher holding cost forces the system to keep less stock on hand. But ordering in batches
does not allow the system to choose the ‘right’ amount to keep on hand. Therefore we

expect the higher holding cost to increase the negative impact of batch ordering.
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F1GURE 3.3: Reorder Level by Batch Size

Although the graph in Figure 3.3 shows no clear pattern, it does offer insight into the
following. Normally the reorder level is decreasing with higher setup costs. However,
in the Figure 3.3, after a certain batch size, the setup cost becomes ineffective on the
reorder level. This could mean that impact of batch ordering is superior to the setup cost
and batch ordering is the dominant parameter that drives reorder level. The holding
cost is also an important parameter that affects reorder level, the latter reducing with
higher holding cost. In addition, the reorder level does not change by batch size when
K = 10,h = 1. On the other hand it makes significant changes when holding cost is
increased to h = 3. This leads us to think that the inventory system with higher holding

cost reacts more to batch ordering restriction.

Due to the changes on optimal policy by base batch quantity, we also observe the vari-
ation on total expected profit. The impact of batch sizes on profit is calculated by

dm = 100(Profity — Profity)/Profit; which represents the percentage deviation on
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profit by the batch size ¢ while the base profit is for ¢ = 1. Figure 3.4 depicts the profit

change by batch size and for various setup/ordering costs
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FIGURE 3.4: Deviation on Profit by Batch Sizes and Setup Cost

The profit deviation is getting higher by increasing batch size and lower value of ordering
cost, K. For the small batch sizes, the difference is relatively small compared to the
higher batch sizes. This clearly shows that the batch ordering makes more impact for
the inventory system with lower ordering costs. This is an expected solution since the
higher the frequency of order is the lower the value of K. Increasing the number of

orders will increase the impact of batch ordering.

3.4.2 The effect of Demand Postponement

In Section 3.4.1 the impact of batch ordering is analysed and the conditions at which
batch restriction has more impact are presented. In this section, we apply our demand
postponement strategy which aims to convert lost sale into observed advance demand.
We test the value of postponement under different parameter settings. To reduce the
computational effort, the expected value of demand is used in calculating transition
probabilities. The demands that accept the later deliveries are postponed to the next
period (w = 1). By doing so, the observed demand vector becomes one dimensional and
the policy depends on observed demand O;;. The discount policy is shown to follow a

(w, W) policy: to offer postponement up to W if the inventory on hand is within [w, W).
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We introduce this policy based on the numerical results and show the optimal inventory

and discount policy in (3.2).

TABLE 3.2: Optimal Policy, K =10,h =1, A =38, Oy, € {0, ...,6}

Parameters 0 1 2 3 4 5 6 Avg Profit &%)
o S() 20 21 22 23 24 25 26
=0y 9 10 11 12 13 14 15 07 0
S(.) 20 21 22 23 24 25 26
B s() 8 9 10 11 12 13 14
f=025 w() 12 13 14 15 16 17 18 714750 4.22
wl) 9 10 11 12 13 14 15
S() 20 21 22 23 24 25 26
B s() 6 7 8 9 10 11 12
=05 () 12 13 14 15 16 17 18 240 822
wl) 7 8 9 10 11 12 13
S() 22 23 24 25 26 27 28
B s() 5 6 7 8 9 10 11
g =0.75 W() 12 13 14 15 16 17 18 768.598 12.07

wl) 6 7 8 9 10 11 12

The increasing customer acceptance reduces the reorder level as expected and shows
more saving on average profit which is within 4—12%. When the 3 is 0.25 or 0.5, the order
up to level remains same with no postponement case. However, making 8 = 0.75 also
affects the order up to level and increase it. The results indicate that the postponement
policy can improve the system performance especially if the customer reaction against
postponement is positive. The manager should focus on convincing customers to get
more benefit. The results in (3.2) are valid when ¢ = 1. But the question still remains
how the postponement performs under batch ordering restriction. Thus, we continue
the numerical test with the inventory and discount policy by different values of batch

sizes. The tests are made with 5 = 0.5 and the results are presented in (3.5).

In (3.5), the order quantity levels below 5 depict the number of postponed demand. The
discount policy remains the same for all sizes of batches. The step size of batch ordering
is reducing due to the postponement policy. The reorder level for ¢ = 5 when there is
no postponement is 9 while it reduces to 6 when the g = 0.5. This is a nice reduction

but we keep discount amount d = £1. For higher discount amount, the difference will
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FI1GURE 3.5: Inventory and Postponement Policy

be getting closer. Thus, we make a sensitivity analysis of parameters on system profit

and show the results in (3.3).

TABLE 3.3: Sensitivity analysis of postponement, d = 1,u = 20

Setup Cost K=10 Setup Cost K=20

Parameters 1 3 5 1 3 5
0.25 71475 713.70 711.31 | 700.81 699.64 697.33
h=1, y=1.5u 0.50 742.14 741.02 738.75 | 729.67 728.47 726.23
0.75 768.60 767.33 763.16 | 757.09 755.62 751.64
0.25 624.81 622.32 618.71 | 602.77 601.36 598.53
h=3, y=1.5u 0.50 651.68 621.70 647.24 | 634.86 633.12 630.43
0.75 679.26 649.79 674.35 | 664.54 661.99 659.61
0.25 885.34 884.07 881.20 | 871.02 869.56 866.73
h=1, y=1.7u 0.50 912.56 911.31 908.64 | 899.81 898.46 895.82
0.75 939.17 937.88 933.93 | 927.49 926.13 921.99

The gap between the profit of ¢ = 1 and ¢ = 5 is expected to reduce by more post-
ponement. The gap is 0.46% when § = 0.5 but it is 0.71% for 5 = 0.75. Based on the
results in (3.3) the gap is always increasing when the /8 increases from 0.5 to 0.75 but
reducing when 8 moves from 0.25 to 0.5. This gives us the insight that more usage of the
postponement strategy does not always reduce the negative impact of batch ordering.
In another words, the postponement makes bigger impact when ¢ = 1. The gap between

batch sizes is increasing by higher holding cost and setup cost.
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3.5 Conclusion

In this chapter, we have studied and analysed a batch ordering problem with lost sales.
We propose a postponement strategy which avoids losing profit due to lost sales. If the
company can convince some lost sales to convert to advance demand and by offering

customers some discount, mutual benefit can occur.

The findings in numerical experiments state the impact of batch ordering and demand
postponement under different system conditions. The impact of batch ordering is rel-
atively higher for higher holding and lower setup costs. But the postponement policy
makes the impact of setup cost reverse. In case of offering postponement under high
setup costs, the negative impact of batch ordering is higher. Normally, it would be
higher for lower setup cost. This indicates that postponement policy performs better

for lower setup costs.

One of the limitation of this study is the curse of dimensionality due to the requirement
to keep track of observed demand. The numerical results, however, indicate structure in
the optimal policy, which can be used in further research on the construction of heuristic
methods. Continued improvements in the technological capability and increasing avail-
ability of better solvers makes the use of LP models an attractive avenue for solving

MDPs.



Chapter 4

Selective state-dependent
purchasing of buyers’ willingness

to wait

Abstract

We consider a single item, periodic review inventory system with advance demand. Reg-
ular customers place their orders with a heterogeneous time ahead of their needs within
a planning time horizon. The focus in the literature has been on how to stimulate cus-
tomers towards advance demand. Predicting how demand will shift can be problematic,
however, and backorders may still occur. We focus on how a firm can address backorders
under a given advance demand pattern by a mechanism of compensation from which
both the firm and the customers will be benefited. We consider that the firm may offer
a price discount to customers for accepting later deliveries. Discounts are only offered
in some periods and to some customers when there is a benefit for the firm to postpone
some of the demand. Customers may decline the offer, but then face the probability of a
backorder. If they agree, they get a promised delivery date and financial compensation.
In each period, the firm has to decide whether to offer a price discount and for how long,
and whether to order from its supplier and how much. We formulate the problem as a
Markov Decision Process and solve it by a backward induction algorithm. We establish

the structure of optimal policies with respect to stationary costs. Numerical examples

34
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illustrate the properties of the state-dependent optimal policies obtained for the both

uncapacitated and capacitated inventory systems.

4.1 Introduction

Inventory control is concerned with matching the supply of a product to its demand.
Supplier lead-time (SLT), i.e. the time it takes to receive the products of an order
placed at the supplier, forms an essential component of many inventory models. In
general, however, also the time when customers place an order may differ from the time
the order is arranged to be delivered. In the inventory literature, this time-lag is defined
as the customer lead-time or ‘demand lead-time’ (DLT), and the techniques to control

and exploit knowledge of DLT's as inventory control under Advance Demand Information

(ADI).

Matching the supply to uncertain demand is a challenging task if SLT is non-zero,
i.e. when supply cannot occur instantaneously. If supply exceeds demand, holding
costs are incurred, and problems with warehouse capacity may arise. In the other case,
backorders or lost sales occur. Improved performance may be reached by either reducing
the SLT or increasing the DLT (Kremer and Van Wassenhove 2014). Typically, the first
is thought of improving the responsiveness of the system, while the latter improving
its anticipatory power. Reducing SLT can be challenging if there are hard constraints
imposed by production and transportation times etc. In some contexts, there might be
a higher potential to increase the DLT. However, this usually requires renegotiating the

terms offered to customers.

Changing the DLT is considered in various businesses in the context of revenue man-
agement (Talluri and Hillier 2005). Increasing the DLT can be realized in two different
ways. The first is known as advance booking or pre-ordering, whereby customers inform
the company of their orders sooner, but without changing their due date. This strategy
is used by Apple, Amazon and Playstation in particular for new products, not yet re-
leased. For movies, games, or electronic products, firms may use it to induce customers
to commit using these services at a later scheduled date, who in return receive a guar-

antee on their availability at a discount (Li and Zhang 2013). This strategy locks in
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demand at earlier times, and enables the firm to better anticipate how to meet these fu-
ture commitments with current decisions. It can indeed be said to improve the system’s
anticipatory power. A second strategy to increase DLT is known as demand postpone-
ment, and consists of offering customers incentives to postpone the date of delivery. It
is a strategy applied in the airline industry as a means to ameliorate overbooking (Tang
2006b), whereby customers are offered financial compensation if they would accept later
flights. This strategy is rather different to pre-ordering because it is only offered selec-
tively and when needed. Rather than being anticipatory, this approach to increasing

DLT is reactive, and only selectively applied depending on the state of the system.

The literature review (Section 4.2) shows that the majority of studies on ADI in the
context of production-inventory systems focus on getting more DLT from customers by
offering them pre-announced DLT-dependent price schemes. Because these schemes are
open to all customers, the level of uptake may highly affect the profitability of the firm,
and it may be difficult to predict how the customers base will react to changes to the
scheme. In this paper, we examine the option to use demand postponement as a means
of better matching supply and demand in these systems. Provided that at least a fair
proportion of customers are open to demand postponement, the financial risk involved
in this approach seems less, as the firm can control the selective application of the policy.
In this paper we do not model risk explicitly, but investigate the impact on the firm’s

expected profits.

In particular, we examine the potential of demand postponement under various DLT
order patterns in a periodic-review inventory system. These patterns may range from
very short DLTs (no ADI), to various heterogeneous DLT patterns (ADI). The demand
postponement option is offered at some time periods only and to some particular cus-
tomers only. We assume that the firm engages in such negotiations at the time when
customers place their orders. From a customer service perspective, this approach is
better than when such negotiations would take place afterward and thus closer to an
initially set due-date. It also signals that the firm is knowledgeable about its own supply
chain constraints, and desires to make promises it can keep. As an incentive, the firm
will offer a price discount on the order if a customer accepts the later delivery date. Like
in other ADI models, the fact of having a policy to affect DLTs will also affect the order
policy of the firm for orders placed at its supplier. The inventory control problem for

the firm is hence to find the best joint supply ordering and ADI synchronization policy
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with respect to the trade-off between the loss due to awarded financial incentives and

the gain in operational and backorders cost.

4.2 Literature Review

The study of ADI in inventory control is relatively recent. Hariharan and Zipkin (1995)
introduce the demand lead-time (DLT) concept and address the case of a continuous
review system where all customers have the same DLT. They show that increasing DLT
is equivalent to reducing SLT as both reduce uncertainty on future demand in the same
manner. When DLT grows and becomes equal to SLT, the optimal inventory policy

changes from make-to-stock to make-to-order.

The more general case of customers being heterogeneous in their DLT is addressed in
Gallego and Ozer (2001). They consider a periodic inventory problem and model the
ADI by the vector of observed demand during period t, Dy = (Dy, ..., Dy 4+ n) and where
Dy ¢ is the demand placed in period ¢ to be delivered at period f(f > t), with a DLT
of (f —t). In the case of zero set-up costs, they show that a state dependent base stock
policy is optimal, and that demand information about due dates that fall behind the
SLT plus a review period (which is called the protection period), has no operational
value. For strictly positive set-up costs, the optimal policy structure becomes a state
dependent (s,S) policy. For a detailed review of literature with ADI, we refer readers

to Gallego and Ozer (2002) and Ozer (2011).

The capacitated inventory system situations of the above two models are presented in
Wijngaard and Karaesmen (2007) and Ozer and Wei (2004), respectively. For positive
set-up costs, the latter authors prove the optimality of a threshold policy. This policy
involves ordering at full capacity when the inventory level at the end of the protection pe-
riod (which is called the modified inventory level) falls below a threshold, and otherwise
order nothing. The papers illustrate that ADI increases the effective usage of capac-
ity. Multi-stage inventory systems with ADI are examined in Gallego and Ozer (2003),
Ozer (2003) and Sarkar and Shewchuk (2013). Lu et al. (2003) study a multiproduct

assemble-to-order system with ADI and stochastic lead times.

Other research in ADI systems investigates the benefits of allowing the firm to ship

products to customers earlier than the due date. This approach is referred to as flexible
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delivery or early fulfillment. The exploitation of early delivery can significantly reduce
inventory costs, see Karaesmen et al. (2004), Sarkar and Shewchuk (2016), Xu et al.
(2017). Wang and Toktay (2008) investigate the cases with homogeneous and hetero-
geneous DLTs, and prove that increasing DLT is preferred over reducing SLT for the
homogeneous DLT case. A variation is examined in Sarkar and Shewchuk (2013), in
which there are two customer classes with equal priority, one class having customers
with zero DLT, and the other class with a positive constant DLT. Xu et al. (2017) study
the flexible delivery on ADI with homogeneous DLT and a penalty cost if the delivery

is made later than its due date.

Most studies assume that ADI, once obtained, is fixed. In studies with imperfect ADI,
such as in Tan et al. (2007), Gayon et al. (2009) and Benjaafar et al. (2011), it is
however allowed that customers may cancel placed orders or make amendments to their
order. The division of customers into different classes is sometimes used so that not only
customers may have different DLTs but also different probabilities about cancellations
or amendments. Gayon et al. (2009) exploit this in a Markov Decision Process having

different transition probabilities for different demand classes.

Since the results in above studies have identified benefits to the inventory system owner
of having more customers adopting longer DLTSs, some studies focus on methods to
establish such transitions towards more ADI. Most studies have focused on offering
financial incentives and evaluating the trade-off with the additional gains from increased
ADI in lowering inventory or other system costs. Unlike in classic price discount models,
where the overall demand may be affected, the studies in ADI typically keep total
demand constant, but focus on establishing how price discounts may affect receiving
future demand information earlier, or thus increasing DLT through advance booking.
As customers might differ in their willingness to wait for their orders, Chen (2001) offers
a price schedule where unit prices are non-increasing function of DLT, and customers
can view the price schedule in advance and self-select according to their preference.
Kunnumkal and Topaloglu (2008) use price discounts to reduce the standard deviation

of demand to a level which minimises the total relevant costs.

It should be noted that increasing DLT by financial incentives does not always lead to

net gains. This is supported by the study of Karaesmen et al. (2004), who model the
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price discount as a function of DLT for the case of homogeneous customers in a produc-
tion/inventory system in order to identify the optimal ADI level. Li and Zhang (2013)
consider a model offering a price discount or price guarantee to customers in exchange
of adopting a larger DLT through pre-ordering, but find that this policy actually may
reduce the seller’s profit in situations of low demand seasonality. Buhayenko and van
Eikenhorst (2015) study the coordination of a supplier production schedule with deter-
ministic demand through a price discount as an incentive for changing customers due

dates and when no backorders are allowed.

In Chen (2001) or Karaesmen et al. (2004), the aim is to obtain ADI through an incentive
scheme offered to all customers in advance. The objective of this study is to take a given
ADI setting as a starting point for seeking further improvements. That is, we assume
that some level of ADI is present in the demand pattern, including the case when there
is no ADI at all (DLT = 0). We focus on establishing when the seller would benefit from
offering to ‘buy’ additional ADI by deciding when to make selective offers for demand

postponement to some customers at the time they place their order.

While demand postponement is a strategy already widely applied in the airline industry,
inventory systems are very different in terms of structure. In an inventory system, for
example, there are no fixed flights schedules. An inventory system may or may not have
capacity constraints, and both products and orders generally differ in when they enter
and leave the system. Customers may also reject the offer of demand postponement and
then expect to have the products at the desired time, which the firm may or may not

be able to meet. Latter case will result in a backorder.

We study the value of demand postponement in a system with stochastic demand that
is similar in set-up to that of Gallego and Ozer (2001). We formulate the problem
of finding the best inventory and offer synchronization strategy as a Markov Decision
Process and solve it by backward induction. We examine the potential of this strategy
in uncapacitated and capacitated systems, in cases of zero and positive set-up costs, and

at various levels of ADI present in the system.
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4.3 Problem Description

This section provides the formal description of the problem and introduces in particular

the modelling of the demand structure in the context of DLT and postponement.

A periodic review inventory problem for a single product type is considered. Table 4.1
summarizes the notation. The firm supplies its stock from an external supplier. A
supply order placed at the beginning of period t is delivered at the beginning of period
t+ L, where L is the supplier lead time. With each supply order placed the firm incurs
a fixed setup cost K; and pays for the items based on a purchase cost per unit item
ut. These cost parameters can be dependent on the time period ¢ in which the order is

placed.

The firm has a large customer base. For each customer, it has agreed on a contract which
specifies an (customer-specific) agreed DLT that applies to all orders the customer will
place. The maximum possible DLT is called the information horizon and denoted by NV,
where we assume N > L + 2 (without loss of generality, see Section 4.4.1). Customers
can place orders at random time periods. Most of the time, an order placed in period ¢
is accepted with the aim to deliver the products in period t4+ DLT, i.e. according to the
agreed DLT. In some periods, the firm will consider making a demand postponement
offer to some customers in order for them to arrange delivery beyond the agreed DLT,

who either accept or reject this offer.

The sequence of events in period ¢ can be summarized as follows: (1) Order from supplier
if placed in period t— L is received; (2) Decision is made to either place a supply order and
the quantity, or not to place an order; (3) During period ¢, customer orders are received,
if relevant then postponement offers are made, and the responses from customers to
accept or reject the offer are received; (4) At the end of the period, customer orders

needing delivery are fulfilled or backordered.

4.3.1 Demand Structure

We consider the advance demand pattern structure as modelled in Gallego and Ozer

(2001). For the sake of clarity, we shortly review its main components. We do not yet
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consider the impact of the postponement policy, which will be introduced in Section

4.3.2.

During a period, the firm gathers the demand information from customers, each of whom
may have a specific contract DLT. If D; s denotes the total demand placed at period ¢
to be delivered according to the contract DLT at period s € {¢,..,t + N}, then at the

end of period ¢, the firm has obtained a demand vector Dy = (Dyy, ..., Dt 14 N).

A similar process has occurred during periods prior to t. Therefore, at the beginning of
period ¢ and prior to obtaining Dy, the cumulative observed demand to be delivered at
period s € {t,..,t + N} according to the contract DLT, will consist of demand orders
placed in periods no earlier than period s — N and no later than ¢ — 1. If none of the

demand is postponed, the cumulative observed demand at the start of period ¢ to be

TABLE 4.1: Notation

Parameters
T Time Horizon
N Information Horizon
L Supplier Lead Time
C Capacity Limit
« Opportunity cost of capital rate per period
P Fraction of demand which is accepting the discount at period ¢
I; Inventory on hand at the beginning of period ¢
B, Backorder level at the beginning of period ¢
Ty Modified Inventory position at period t before the decisions
im Inventory position at period t after decisions made at period ¢
Demand
Ot,s Cumulative observed demand for period s at the beginning of period ¢

Oy Observed demand beyond protection period at the beginning of period ¢
OF Observed protection period demand at the beginning of period ¢

Dy Demand placed at period ¢ to be delivered at the end of period s

Dy Demand placed at the end of period t, (Dyy, ..., Dy 4n)

Q: Demand willing to accept the price discount at period ¢
Costs
K Setup cost per order in period ¢ (£/order)
uy Purchase cost per unit in period ¢ (£/product)
hy Holding cost per unit in period t (£/product/period)
Dt Shortage cost per unit in period ¢(£/product/period)
dg; Discount amount for a product to postpone to period i from period ¢(£/product)
ci(si;ar)  The expected cost including inventory and decision costs.
Variables
2t Order amount placed in period t at supplier to be delivered at t + L

Qi Amount of discounted demand at period t delayed to ¢ € {t+ L+ 1,....t + N}
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delivered in s thus consists of:

t—1
Ons= Y Dy (4.1)
r=s—N

At the beginning of any period t, the observed quantity O;, can be expected to be
only part of the demand destined to be delivered in s, since at any period k € {t,.., s}
additional demand orders will arrive. Let U;, denote the quantity of yet unobserved

demand at the start of ¢ for delivery in s, then:

S
Ups=> Drs, (4.2)
r=t

where these D, quantities are still under determined random variables. The sum of
O:s and Uy s, were the latter quantity known, would thus be the total quantity to be

delivered in s at the beginning of ¢, prior to making any future offers to postpone.

The protection period refers to the period covering the next L 4 1 periods; any customer
orders to be delivered during this time can only be fulfilled from on hand stock and
planned supply order arrivals. At the beginning of ¢, the total observed demand to be

delivered in periods that fall within the protection period is thus:

t+L
Of =) O, (4.3)
s=t

while the total unobserved demand within this protection period equals:

t+L
U => Uss (4.4)
s=t

Figure 4.1 illustrates the demand pattern structure available in period ¢t. Observed and
unobserved demand at the beginning of this period are displayed above the x-asis, where

the components of D, obtained during the period are displayed below.

Ezample 4.3.1. Let us assume that we have a case of N = 2, L = 0, and no postponement
is offered. Then at the beginning of period ¢, we have O;; and O;;y1 as observed
cumulative demand from previous periods. Also we have unobserved demand U;; =
D;y and Upy41 = Dyy41 + Dig1441. During the period ¢, the demand vector D; =

(Dtt, Dt t41, Dy gy2) is observed. We deliver Oy ¢+ Dy 4. To move towards the next period,
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Uit A Utt+1 A Utt+L A Uit+N-1 A Uii+N A
Ot A
Ot t+1 i
Ot t+L T
Ot t+N-1 f
>
t +L t#N-1 +N
A

Dt+ Dt t+1 Dt t+L Dt t+N-1 Dt t+N

FIGURE 4.1: Demand Pattern

we update the observed demand as Oy1441 = Opg41 + Digp1 and Opy1 442 = Dy pqo.
The unobserved demand is also updated, U141 = Diy1,t41 and Uy 442 = Diy1042 +

Diiot1a.

4.3.2 Demand Postponement

Customers are offered a price discount to postpone the due date for their demand. The
discount decision is only available for the protection period demand at only some times.
The reason to consider offering a discount only to these demands is to protect the system
against the lead time demand. The postponement period is a decision variable. Each

customer is treated separately and they might have different delay periods.

After observing the Dy, the manager decides whether to offer price discount. The protec-
tion period demand placed at ¢t consists of (Dyy, ..., D¢ ¢4 1,+1) and the discounted demand
among these are postponed to a period i € {t + L +2,...,t + N + 1}. Postponement
period is also a decision variable in our problem. Only a specific rate of the customers
P, accepts the discount and the demand willing to accept the postponement is shown
by 4.5.The discount decision offered to the demand placed at period ¢ is illustrated in

Figure 4.2.

t+L+1
Qi1 =P Z Dy ¢ (4.5)
=t
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Dit Dt t+1 Dit+L Dit+L+1 Di+N

FIGURE 4.2: Discount Decision

4.4 Model Formulation

The mathematical model and its components are presented in this section. We formulate
the problem as a discrete-time Markov Decision Process (MDP). The main assumptions

of the problem are as follows.

1. Supplier lead time is deterministic and constant.

2. Discounts are not announced beforehand. After all customer order placements are
collected during a period, then the decision is made whether or not to offer the

price discount postponement offer.

3. The amount of discount per product offered can be a function of the number of

periods delivery will be postponed relative to the DLT of the demand.
4. The unobserved part of the demand is not dependent on the observed part.
5. We assume that stationary costs, action and transition functions.
6. All unsatisfied demands are backordered.
7. Early delivery of a demand is not allowed.

The components of a MDP are state space, decision space, transition function/proba-

bility and reward function.

4.4.1 State and Decision Variables

At each decision epoch, the system occupies a state from a state space. Gallego and

Ozer (2001) show that the state space for advance demand information has a dimension
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of 14+ (N — L—1)*". The state variables are modified inventory position x; and observed
demand beyond protection period O;. Adding postponement decision into the system
obligates us to keep track of the information of available demand @Q; for postponement.
So, the state space becomes 2+ (N — L —1)" dimensional. Notice that when N < L+2,
the system becomes two dimensional. However the discount decision will not take place
since there is no point affecting demand beyond the protection period. Therefore the

problem becomes one dimensional.

The state of the MDP at the beginning of period ¢ is shown by s; = (¢, Oy, Q¢) where;

t—1
.ZUtEIt—|— Z Zs—Bt—OtL (46)
s=t—L
t—1
O = (Ot,t+L+1, ey Ot,t+N—1) where; Ot,s = Z (Dr,s + qT,S) (4-7)
r=s—N

t+L
Qi = P Z Dt—l,f (4-8)

f=t—1

x; is the planned ending inventory at the end of period ¢ + L by the planned order
arrivals including on hand inventory and minus observed demand for protection period
as in (4.6). Oy is the cumulative observed demand vector beyond protection period
composed of placed demand and delayed demand at previous periods. This is the demand
information needed to be considered for future periods. The last state variable is

which is the number of demand willing to accept the postponement.

Based on the state variables, order and discount decisions a; = (z¢,q;) are placed.
where z; is the order decision and ¢ is the postponed demand placed at period ¢ to
be delivered at period i. The sum of postponed demand is shown as ¢; by (4.9). The
number of demand available for postponement is limited by ¢, the limitation constraint

is given in (4.10).

t+N

B= > (4.9)

i=t+L+1
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t+N

> @i <Q (4.10)

i=t+L+1

The cost placing the decision set a; = (2, ;) is notated as 5(a;) and calculated by 4.11.

t+N
Blar) = Ké(z) + zeu + Z (digt:) (4.11)

i=t+L+1
After the decisions are made, the modified inventory position is updated to y; in 4.12.
Unless there is a capacity constraint, the order amount is unbounded. For the capaci-

tated systems considered in this paper, y; is capacitated by a limit C; as in (4.13).

Yt =Tt + 2+ G (4.12)

y < Cy (4.13)

The discount decision increases the ending inventory as the ordering decision in (4.12).
But also, the demand beyond protection period increases by price discount decisions,

since the part of the current demand is postponed to those periods.

4.4.2 State Transitions

The system state at the next decision stage depends on the state and the decisions
made at the current period. The transition between one state to another could be either
deterministic or stochastic. However, considering the stochastic transition increases
the computational complexity of the model exponentially. Therefore, in our study, we
focus on deterministic transition like most ADI literature and the function of moving to

St+1 = (.%'t+1, Ot+1, Qt+1> are shown in (414), (415), (416)

t+L+1

Tt4+1 = Yt — Dt,t - Z Dt,s - Ot,t+L+1 — qtt+L+1 (4-14)
s=t+1

Ot11 = (Oty1,44L425 -+ Oty1,04N) (4.15)
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t+L+1
Qi1 =P, Z Dy s (4.16)
f=t

4.4.3 Cost Function

After the decisions, the net inventory level at the end of period ¢ + L becomes y; — U}
where UtL is the unobserved demand for protection period. The expected inventory
costs at that period is calculated based on y; by (4.17). The expected value is due to

the uncertainty on demand placed at period ¢.

A L 5
Gi(yt) = v Eg(y: — Uy) (4.17)

where v is the discount factor and g(z) is total expected holding and backorder cost
based on the inventory level x. We assume that it is a convex function and coercive
since limyg|_,o, g(7) = co. These are the common assumptions in inventory literature

and they are valid when the holding and backorder costs are linear.

The total expected cost including inventory and decisions cost is then shown by ¢; and

calculated by (4.18).

alsiar) = Gi(ye) + B(ar) (4.18)

4.4.4 Recursive Equation

With all the given components, the recursive equation also known as Bellman Equations

are formulated as in (4.19) and (4.20).

V;(ST) = CT(ST, CLT) Vs € S, Yar € AsT (4.19)

Vt*(st):minaNEASN{ct(st;at)+ozEV}+1(st+1)} Vte {0,1,...,T —1}  (4.20)
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Vi*(s¢) is the optimal expected cost when the system in state s; at time ¢. 4.19 presents

the termination condition when time horizon is completed.

4.5 Structure of the Optimal Policy

The recursive function is given in 4.21 and now we will further analyse the system to
derive the structure of the optimal policy. For simplification, the function P;(y, O¢, Q)
denotes the expected cost of moving from a state at ¢ to another state in ¢ + 1 with

ignoring the decision costs as in (4.22).

N
Vi (s1) = minz,>0,4,<Q, {Gt(yt) +EKS(z)+zut Y (digu) +04EVt+1(5t+1)} (4.21)
=t L1
Pi(yt, 01, Q1) = Gi(yt) + aEVip1 (2441, Ory1, Qern) (4.22)

Next, we define Hy(x¢, O, Q¢) as the cost of moving to another state when the order
decision is placed. Thus, it is expected that when H;(x¢, O, Q) < 0 then it is optimal

to order since the cost of moving to the next state with an order decision is negative.

Hi(2t, O, Qt) = K + miny, > { Pe(yr, O, Q1) — Pz, O, Q1) } (4.23)
Lemma 4.1. When the gi(x) is convez, then for any given (O, Qy), the following state-
ments are;
i He(., O, Q) is convex.
it Vi(x, O, Q) is nondecreasing convex in .
When the Lemma 4.1 is satisfied, then the reorder level s; is the maximum inventory
level in which the H; function becomes positive. The order up to level S; is the minimum

value of inventory after the order decision in which expected cost of new inventory is

less than the cost of current inventory as shown in (4.24).
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5¢(0¢, Qr) = max{z : Hy(x,0, Q) < 0}

St(O¢, Q¢) = min{y : Pi(y, O, Q1) < Pi(x, O, Qy) for all x}

(4.24)

After the structure of replenishment policy, the discount policy is presented now. Intu-
itively, it is expected that order decision and discount decision cannot take place together
since they both have the same purpose. In fact, one of the aim of using discount is to

postpone the order decision.

For the case N = L+ 2, we have two dimensional discount decision. The discount policy
needs to determine when to offer the discount and postpone to either period t+ L+ 1 or
t+ L+ 2=1t+ N. The benefit function when the discount decision with delay time ¢ is
placed defined as in 4.25. The delay period affects the expected future cost differently

due to their different impact on transition functions which is previously defined.

Ji (24, Or, Qr) = ming,,<o,{diqri + Pi(yt, Or, Q1) — Py(r, Op, Q1) } (4.25)

Definition 4.2. Let us define the inventory values of w} (O, Q;) and w?(Oy, Q;) where
as the minimum inventory position at which postponing is better than ordering. Thus,

postponement starts from wi() up to the level W} (Oy, Q).

wg(ota Qt) = mzn{:L“ : JZ:(J;,Ot,Qt) S min{oth(vat,Qt)}}

Wti(Ota Qt) = mithiSQt{y =2+ qu: Pt(y, Oy, Qt) < Pt(% Oy, Qt)}

(4.26)

Then the optimal expected cost value at time ¢ with the decision is presented as in

(4.27).

Vi (24, O, Q1) = Pi(z¢, Op, Q) + min{0, Hy(x¢, Op, Qr), min{J} (zs, O, Qe)}}  (4.27)
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4.6 Analysis & Discussion

4.6.1 Action Elimination

Increasing number of state space cause to increase computational complexity. Reducing
action space will help to narrow the searching area at each iteration. In this part, we

focus on reducing the action sets in order to improve the computational complexity.

Theorem 4.3. The following statements hold;

1. If K9 > K > 0 then s¢(o|K2) < s¢(0|K7)
2. s(02) > s(01) if o2 < 01

3. si—1(0) > s¢(0)

Statement 1 indicates that for the systems with higher setup cost will have lower reorder
level. While the observed demand beyond protection period is increasing, the order level
is decreasing and shown in Statement 2. These statements clearly show that the reorder
level is decreasing by increasing setup cost and increasing observed demand. For finite-
horizon with a discount rate, the reorder level is reducing by time since the system is

getting closer to the terminal point as in Statement 3.

These will lead us to accept that reorder level for zero setup cost case is an upper bound
for positive setup cost cases. Gallego and Ozer (2001) prove that the optimum policy is
base stock policy when the setup cost is zero. Thus, for stationary problems, base stock
parameter of myopic policy which only minimises the cost of current stage is optimal

for finite time horizon. This parameter is calculated by 4.28.

Y = min{y : Gu(y) = min,Gy()} (4.28)

Ymin = mazly : Gi(y) = min,Gy(z)} (4.29)

Now, when we take the statements in Theorem 4.3, it is concluded that the reorder
level for zero setup cost is an upper bound for reorder level of positive setup cost case.

Calculating the policy parameter for K = 0 is as easy as shown in 4.28 and this could
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be used to reduce the action space on a case with K > 0. We assume that s;(K() be the
optimal base stock policy parameter for the zero setup cost case. Then, we can make

an additional constraint as (4.30)

z22=0 if x> sk, (4.30)

Practically, (4.30) will reduce the searching area. Because when the modified inventory
level, z; is greater than the reorder level, sk, found by (4.28), then it is known that the

optimal decision is not to order.

4.6.2 Solution Algorithm

Solving the Bellman equations is often performed by backward induction. The backward
algorithm starts to calculate the value function at the last period for each of the states.
It then steps back in time by one period and calculates the values by adding it to the

next periods value function. The algorithm is shown in Algorithm 1.

Algorithm 1: Backward Algorithm
Step 1. Initialize the terminal values. Set t = NV ;
VN(SN) = CN(SN) v SN € S )
Step 2.  Substitute ¢t — 1 for ¢ and compute Vi(s;) V sy € S by ;
Vi¥(s¢) = minaea,, {Ct(St, a)+ay  eqpi(s]s, a)Vt+1(82+1)} ;
Set ;
ts0 = argminaea,, { ei(st,0) + @ X yes pe(s']s,0)Virr(sp) |
Step 3. If t=1 stop; Otherwise return to step 2 ;

4.7 Computational Results

In this section, we carry out a number of numerical experiments to analyse the behaviour
of optimal policies under advance demand and the impact of postponement on these
policies. The most inclusive and simple case on our problem without loss of generality
is to test the case where N = L + 2 in which the observed demand beyond protection
period has become one dimensional. We follow Gallego and Ozer (2001) for the demand

pattern and numerical values of parameters.
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Advance demand D; = (D, Dy 11, Dy 442) is modelled as Poisson distribution with
means A = (Ao, A1, A2) when N = 2. To see the impact of more ADI available we
test the model with different values of A\. While doing this, we keep the total demand
rate constant so that we are able to see the effect of the policy which shifts the urgent
demands to advance demands. The value of ADI in the uncapacitated and capacitated

cases are analysed and compared.

The effect of the discount is also tested under different parameters. Since we have
two dimensional discount decision, we offer higher discount amount to those whose
postponement period is longer. The customers reaction to postponement is chosen as
P =0,0.5,1. When P = 0, then only at the current period, we can offer postponement
if there is any demand available. For future periods, there is no demand available for
postponement. This can be seen as the worst case scenario. P = 0.5 means that only
half of the customers welcome the postponement for all periods. All customers accept
the discount when P = 1 which could be stated as the best case scenario in terms of

customers acceptance of postponement.

Gallego and Ozer (2001) prove that the optimal inventory policy for zero setup cost case
with advance demand is the base stock policy. When the inventory level drops below the
base stock level, then it is optimal to order up to the base stock level. Since the cost is
calculated based on the inventory level at the end of the protection period, the ordering
decision can increase the inventory level to the base stock level. As the order decision
takes place free of charge when the setup cost is zero, we do not need to consider the
demand postponement. Thus, our discount policy does not make any difference. So we

focus on cases with positive setup costs.

For the positive setup cost without discount decision, the optimal policy is a state de-
pendent (s(0), S(0)) policy which is order up to S(o) if inventory level is at s(o) or below.
Adding discount decisions turns the optimal policy to (s(0, @), S(0, Q), w'(0, Q), Wi(0,Q))
where ¢ € {L 4+ 1,.., N} refers to the delay period. The order policy is similar to non

discount case but the parameters are also dependent on Q.

The discount policy is to offer discount up to W#(o, Q) if the inventory level is greater
than w'(o, Q) with a delay period i. The lower bound for w!(o, Q) is the reorder level
while its upper bound is w?(0, Q). Due to the availability of demand for discount, the

W(o,Q) is limited by w'(0, Q) + Q.
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Figure 4.3 illustrates the optimal decisions based on the modified inventory positions.

A

NO ORDER - NO DISCOUNT

Iww( NO ORDER - DISCOUNT UP TO W2(.) DELAY TO t+L+2

NO ORDER - DISCOUNT UP TO W'(.) DELAY TO t+L+1

ORDER UP TO S(.) - NO DISCOUNT

Y

FIGURE 4.3: Order & Discount Policy

In the numerical experiments, we aim to show the value of ADI and effect of demand
postponement in capacitated and uncapacitated inventory systems. Then we would like
to compare these two policies to derive insight into the value of obtaining more ADI
or using postponement policy. The performance of both policies are presented under

different conditions.

4.7.1 Uncapacitated Inventory

4.7.1.1 The value of ADI

In this section, we test the value of ADI and policy parameters for an uncapacitated
inventory system. Initially we ignore the demand postponement to see the status quo
of ADI. We test the no discount model with different means of demand starting from
no advance demand case (A = (6,0,0)) to fully advance demand (A = (0,0,6)). The
percentage saving on cost is calculated by § = 100(Costnoapr — Costy)/Costpoapr. The

results are presented in Table 4.2.

Increasing the ADI present in the system has a reduction on cost up to 6.79%. This
value also give the idea to the manager on how much to invest for obtaining ADI from
customers. As expected, the reorder level and order up to level is decreasing by more
advance demand since the uncertainty on demand is getting disappeared. Although
we use shortage cost relatively higher than the holding cost, one may use service level

constraint which limits the number of backorders as well.
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TABLE 4.2: K =100,h =1,p=9, D; 1441 €0,..10, T = 12

A 0 1 2 3 4 5 6 7 8 9 10 Avg.Cost (%)
6.0.0 f (()) 325 316 317 318 319 410 411 412 413 404 405 989,085 0
SRR R e o
R N I I
s S B BRI BB wm W T w gy
1,14 f(()) P S G S IO (N LR
0,0,6 f(()) PR e S 2% % 69454 679

4.7.1.2 The effect of Postponement on Inventory Policy

In this section, we evaluate the impact of demand postponement on inventory policy
and inventory cost. We test the model with P = 0,1 to show how the policy is changing
between the worst and the best case scenarios. In this section, we offer the same discount
amount to all customers regardless of their postponement period. The costs of each case
is compared with non discounted case and the percentage deviation is calculated. The
results on Table 4.3 reveal the optimal ordering and discount policies when the customers
accepting probability, P = 0. This means that we have a chance to use the advantage of
price discount only at the current period. Further periods customers do not accept the
discount. The results for P = 1 is illustrated on Table 4.4. This time all the customers
accept the discount when offered. Therefore more improvement on costs can be seen and
when compared with P = 0 case, the order up to level is also decreasing with reduction

on reorder level.

Even with P = 0, there still exists a slight improvement on average inventory costs up

to 1% based on the demand available to accept the postponement at current period.



Chapter 4. Selective state-dependent purchasing of buyers’ willingness to wait 55

TABLE 4.3: K =100,h=1,p=9,d=1,P=0,A=4,1,1, D; 1,41 €0,..10, T = 12

C o 1 2 3 4 5 6 7 8 9 10 Avg Cost 6%)
S(.) 32 33 34 35 36 37 38 39 40 41 42

0 s(.) o o o0 -1 -1 -1 -1 -1 -1 -1 -1 280.896 0

S(.) 32 33 34 35 36 37 38 39 40 41 42
s¢.) -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2

1 We() 10 11 12 13 14 15 16 17 18 19 20  286.288 0.21
we() 5 6 7 8 9 10 11 12 13 14 15
Wwi) 5 6 6 6 6 6 6 6 6 6 6
S(.) 32 33 34 35 36 37 38 39 40 41 42
st.) -2 -2 -2 -2 -2 3 -3 -3 -3 -3 -3

2 Wy() 10 11 12 13 14 15 16 17 18 19 20  285.711 0.41
we() 4 5 6 7 8 9 10 11 12 13 14
Wwi() 5 6 6 6 6 6 6 6 6 6 6
S(.) 32 33 34 35 36 37 38 39 40 41 42
s(.) -3 3 3 -3 -3 -3 4 -4 4 -4 A4

3 Wy() 10 11 12 13 14 15 16 17 18 19 20  285.163 0.60
we() 3 4 5 6 7 8 9 10 11 12 13
Wi() 5 6 6 6 6 6 6 6 6 6 6
S(.) 32 33 34 35 36 37 38 39 40 41 42
s(.) 4 4 -4 4 4 4 4 -5 -5 -5 -5

4 Wy() 10 11 12 13 14 15 16 17 18 19 20 284.634 0.79
wa(. 2 3 4 5 6 8 9 10 11 12 13
Wi() 5 6 6 6 6 6 6 6 6 6 6
S(.) 32 33 34 35 36 37 38 39 40 41 42
s(¢) - -5 -5 5 -5 -5 -5 -5 -6 -6 -6

5 Wy(.) 10 11 12 13 14 15 16 17 18 19 20 284.124 0.97
we() 1 2 3 4 5 7 8 9 10 11 12
Wi() 5 6 6 6 6 6 6 6 6 6 6

Order up to level, S is not changing on this case while the reorder level s is decreasing

when more demand is available for discount. Similarly when we consider the P = 1, the

reorder level is also decreasing but also order up to level is decreasing. This means that

additional to ordering later, we also order less which reduces the holding cost as well.

There has been observed a significant reduction on total expected cost which is around

17%. One may expect that the benefit will be higher when holding and setup costs are

higher.

It is clear that more ADI increases the system performance as seen in Table 4.2. However,

when we compare it with the results on Tables 4.3 and 4.4, better potential can be seen

when using demand postponement. OQur intuition supports this because ADI is available
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TABLE 4.4: K =100,h=1,p=9,d=1,P=1,A=4,1,1, D; 1,41 €0,..10, T = 12

C 0 1 2 3 4 5 6 7 8 9 10 Avg Cost &%)
S() 24 25 26 27 28 29 30 31 32 33 34

0 %3 1 0 0 0 0 0 0 0 o o o 2929 165
S() 24 25 26 27 28 29 30 31 32 33 34
s) 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

1 We() 6 7 7 8 9 10 11 12 13 14 15 238876 16.74
wy() 1 2 3 4 5 6 7 8 10 11 12
Wi(.) 2 3 4 5 6 6 6 6 6 6
S() 24 25 26 27 28 29 30 31 32 33 34
s() -1 -1 -1 2 2 2 -2 -2 -2 -2 -2

2 Wy() 6 7 7 8 9 10 11 12 13 14 15 238468 16.88
wy() 0O 1 2 3 4 5 7 8 9 10 11
Wi() 2 3 4 5 6 6 6 6 6 6
S() 24 25 2 27 28 29 30 31 32 33 34
s() 2 2 2 2 -3 -3 -3 -3 -3 -3 -3

3 Wo() 6 7 7 8 9 10 11 12 13 14 15 238.081 17.02
wy() -1 0 1 2 3 4 6 7 8 9 10
Wi() 2 3 4 5 6 6 6 6 6 6
S() 24 25 26 27 28 29 30 31 32 33 34
s() 3 3 3 3 3 4 4 4 4 4 -4

4 Wo() 6 7 7 8 9 10 11 12 13 14 15 237.713 17.14
wy() 2 -1 0 1 2 3 5 6 7 8 9
Wi() 2 3 4 5 6 6 6 6 6 6
S() 24 25 26 27 28 29 30 31 32 33 34
s() 4 4 4 4 4 4 5 5 5 5 -5

5 We() 6 7 7 8 9 10 11 12 13 14 15  236.066 17.72
wy() 3 2 -1 0 1 2 4 5 6 7 8
wi() 2 3 4 5 6 6 6 6 6 6

for all customers. On the other hand, with the discount policy, we only buy the ADI
when we need it. Especially for higher setup costs, the system already needs to keep
large stock most of the time. So, the uncertainty on demand does not effect the system
much. But at the times when the stock is at critical levels, obtaining ADI at that time

will be greatly beneficial. This can be achieved by our postponement policy.

4.7.2 Capacitated Inventory

In this section, we test ADI and postponement policy on capacitated inventory systems.
The literature on ADI mentions that ADI increases the efficient use of capacity. Similar

to this, we expect that our postponement policy is going to increase the efficient usage of
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capacity. However, there is a challenge on usage the ADI and postponement policy. We
only offer postponement to protection period demand. However, increasing presence of
ADI causes to have less demand available for discount. With the numerical experiments,

we aim to solve this issue to decide under which circumstances ADI is better.

In Table 4.5, we report the optimal replenishment and discount policy for a capacitated
case. There supposed to be a reduction on reorder level when Oy is higher. However,
we observe an increase on reorder level when the O; closes to 10. This would suggest
that if higher demand is waiting for the next period, it is better to order earlier. Also
when compared to the uncapacitated case, the discount usage starts at higher inventory

positions. This indicates that postponement is more needed on capacitated case.

Ozer and Wei (2004) show that a threshold policy which is to order full capacity if
the inventory position drops to a threshold level is optimal for capacitated case. Our
findings do not verify this policy when the discount policy is in use. Our intuition also
supports the idea that if more demand is available for discount, then the order up to

level will be lower than the capacity level.

TABLE 4.5: K = 100,h = 1,p = 9,d = (1,1.5),P = 05X = 4,1,1, Dy;_1 441 €
{0,...10},Q; € {0, ...,2},C = 20

Q Parameter 0 1 2 3 4 5 6 7 8 9 10

S(.) 17 18 19 20 20 20 20 20 20 20 20
11 1 o o0 O -1 -2 -2 -2 -1

)
S() 17 18 19 20 20 20 20 20 20 20 20
)

o 0 0 0 -1 -1 2 -3 -3 -2 -1
1 W) 8 9 10 11 12 13 14 15 16 17 18
wa(.) 2 3 4 5 6 7 8 9 10 11 12
Wi() 2 3 4 5 6 6 6 6 6 6 6

S() 17 18 19 20 20 20 20 20 20 20 20

s(.) 1 -1 -1 -1 2 2 -3 4 -3 -2 -1

2 Wy() 8 9 10 11 12 13 14 15 16 17 18
wa(.) 1 2 3 4 5 6 7 8 9 10 11

Wi() 2 3 4 5 6 6 6 6 6 6 6

Next, we address the benefits of ADI and demand postponement and compare them for

different cases. The computational results are presented in Table 4.6.

The cost is increasing with the capacity constraint as expected. But the surprising result
exists when we use our demand postponement strategy. When P = 1, our policy results

in relatively small costs compared to the uncapacitated case with no discount policy.
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TABLE 4.6: Impact of ADI and Postponement, 7' = 12, K = 100, h = 1,p = 9,dy; =

(1,1.5)
Capacity=15 Capacity=20 No Capacity
Demand || P=0 P=05 P= P=0 P=05 P= P=0
6,0,0 449.7  368.0  310.0 | 3785  318.8  286.5 289.1
4,1,1 407.0  360.6  300.6 | 353.3  314.8  281.1 286.9
3,1,2 384.9 3389  299.2 | 335.7 301.6  278.8 283.3
2,1,3 366.9  345.7  299.5 | 321.0  305.3  278.3 279.6
1,1,4 352.0 3254  300.3 | 308.2 2944  279.6 275.8
0,0,6 328.2 292.8 269.5

This clearly shows that if a company can convince customers to accept the postponement,

then they can completely remove the disadvantage of the capacity constraint.

ADI is also reducing the negative impact of capacity. However, when the demand pat-
tern reaches a certain ADI, more ADI might not bring more benefit when having a
postponement policy in place. In Table 4.6, when P = 0.5 and C' = 20, the demand
pattern (3,1, 2) has better cost than (2,1,3). Thus, we are now able to solve the contra-
diction between having more ADI or increasing P. In addtion, the relative benefits of
postponing demand can further increase when considering that having more ADI would
(when offered to all customers) incurs extra costs from incentives. This aspect has not

been considered in our computational experiments.

4.7.2.1 Sensitivity Analysis on Discount Amount

In this section, we observe the system improvements under different discount values.
Since the postponement could bring significant improvements to the system, then the
customers need to be encouraged to accept it. In reality, it is expected that the customers
willingness increases by more discount. We test the sensitivity of discount amount
with different advance demand structures under capacitated case. Since there are two
postponement periods available, we have two different discounts dy; and d;o. We assume
that dyo is always equal to dy; + 0.5. The tests are taken with P = 0.5 and the results

are illustrated in Figure 4.4.

Although in previous experiments we set discount to (1,1.5), the results show that it
can be higher based on the advance demand in the system. The less advance demand
results in more customers being offered postponement. If there is no advance demand

which is (6,0, 0), the discount amount could reach up to 14. Starting from a larger ADI
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18 |

Discount(£) dy;

FIGURE 4.4: Sensitivity of Discount dy1,dis = dy1 + 0.5, K = 100,h =1,p =9, P =
0.5,C =15

in system, the usage and benefit from postponement reduces. When the company thinks
of offering the discount, the balance between the cost of obtaining ADI and discount

amount has to be carefully considered.

Next, we analyse the effect of different prices for different postponement periods. There-
fore, we set dy to £4 first, and observe the changes on improvement by different values
of dis with P = 0.5,1. Next, the same process is repeated to analyse the effect of dy;.
The results are presented in Figure 4.5 and 4.6.

25 T T T T 25 T T T T
—-—P =10.5 —-—P =10.5
20 | —— P = - 20 —— P =
. 15|
X 4
< 10f
5 [
)
0 | | | | O | | | |
0 2 4 6 8 10 0 2 4 6 8
dtg dtl
FIGURE 4.5: Analysis of d;2 when FIGURE 4.6: Analysis of d;; when
dn=4,2=(3,1,2) dip =4,2=(3,1,2)

When we are calculating the cost reduction percentage §, we take the cost without
postponement as base cost. For P = 1 case, the cost reduction is between 25—5%. When
we fix the d;;, then it becomes larger. This clearly shows that longer postponement

periods lead to more reduction in costs. Thus, the customers needs to be convinced
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for longer postponement period. With the increasing discount amount, the difference

between different probabilities of acceptance is getting lower.

4.8 Conclusions

In this paper, we establish the structure of optimal inventory and discount policies for
an inventory model with advance demand information and price discounts. In return of

discounts, customers are expected to wait longer for their demand.

For the zero setup cost case, a simple base stock policy is optimal and there is no need
to use discounts. When the setup cost is positive, state dependent policies are optimal.
The parameters of the policy depend on the observed demand beyond the protection
period and the available demand for the postponement/discount decision. Numerical
examples indicate that the system cost is reducing when more advance demand and
demand for discounts are present. Increasing customers acceptance of discounts results

in reducing reorder and order up to levels.

To our knowledge, this is the first study to develop and analyse a selective state-
dependent strategy to purchasing buyer’s willingness to postpone their delivery in a
variety of ADI settings. This strategy seems, in particular, to be of value in capacitated
inventory situations with a modest level of ADI. It is argued that this strategy can result
in a more profitable system in comparison to a strategies that aim to introduce more

ADI in the system.

The practical drawback from this approach is the computational complexity of the model
and inventory/postponement policy. Further research may thus be devoted to faster

heuristic methods, and examining the efficiency of policies with a simpler structure.



Chapter 5

Joint inventory and distribution
strategy for online sales with a

flexible delivery option

Abstract

This paper develops a strategy to jointly optimise the inventory and distribution for
an online sales firm. The firm has to decide how to distribute the products from its
warehouse to customers: this can either be done by using a company-owned vehicle, or
by outsourcing to a third-party transportation company. The online sales environment
includes a flexible delivery option that gives a discount to customers in return. This
option is offered when the inventory level in the warehouse is lower than a threshold
level. Customers accepting flexible delivery pay a deposit at the time they place the
order and pay the remaining reduced price at the time of delivery. By offering the
flexible delivery option, the firm aims to reduce the cost of distribution to the customers
as well as postpone the timing of paying an outside supplier for stock replenishment. As
the timing of cash-flows are dependent on the customer behaviour and the inventory and
distribution strategy, the profit function is the Net Present Value of future cash-flows.
We analyse the benefit of flexible delivery to the firm and perform sensitivity analysis
with respect to various parameters. The profitability of flexible delivery depends on price
setting and customer behaviour. Flexible delivery, in this model, has great potential to
reduce transport distances and emissions when firms use their own vehicles.

61
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5.1 Introduction

Online sales has been pioneered in the retail sector of products that can be transported
as small parcels by postal or courier services. The strong competition this has generated
has led to closures of many traditional stores in the high street. Online sales channels
allow customers to save on the time and effort needed to select and order desirable
products, but do introduce a time lag between order placement and delivery. Can this

disadvantage turned into an advantage for both customers and online firm?

The difference between customers’ willingness to wait is recognized by several online
retailers by offering customers a choice between delivery options, where price discounts
are given when customers accept increased (uncertainty on) delivery time. Delivery
options range from fast, say within 24 or 48 hours, to delivery at any time within a given
time period of e.g. 7 days. We refer to the latter as a flexible delivery option. If greater
flexibility to plan the delivery allows the online retailer to make costs savings, providing
a financial incentive to customers giving the firm this increased planning flexibility could

thus make economic sense.

The use of online sales channels has become increasingly important for businesses who
sell larger-sized products. In the UK, for example, there now exist a fair number of online
sales companies offering products and materials for home improvement projects. This
may range from kitchen and bathroom units and appliances to materials for plumbing,
electrics, and joinery projects, servicing both professional tradesmen and DIY enthusi-
asts. The bulkier or heavier products require transport in specialized (company-owned)
vehicles for the delivery to customer locations. The model developed and analysed in
this paper is particularly aimed at achieving a better understanding of the impact of

flexible delivery for these types of businesses.

The time lags between ordering and delivery will vary with the sector. In the online
sales of books, delivery options are typically restricted to hours or days. In the home
improvement sector, fast delivery may be within one week, and a flexible delivery may
be any time within several weeks. Another difference is that customers ordering home
improvement products may, instead of having to pay the full price when ordering, only

be required to pay a deposit. The residual payment due is then settled on the day of
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delivery. Given that this payment may occur several weeks later, it is thus of interest to

model the impact of the timing of payments on the profitability of the online business.

The costs that arise from meeting online sales naturally depend on how the supply chain
is organized. In this paper, we assume that the products are stored at the online firm’s
single depot, from which ‘last-mile’ transportation needs to be organized to customer
locations within a sales region surrounding the depot!. See also Figure 5.1. The online
retailer can make use of its own vehicle to make deliveries, or alternatively outsource
to a third party for a fixed price per product (or unit of volume or weight). Next to
delivery costs, costs also arise from the inventory stored at the depot and order costs for
the replenishment from an upstream supplier. In this paper, we aim to get more insight
into how inventory and transportation costs can be minimised in this setting, and how
this depends on other system characteristics such as the proportion of customers that

can be induced to select flexible delivery.

FD : Orders placed with Flexible Delivery
New orders placed (FD) option?

No
FD?
Yes
FD Orders ;

Yes

[

Deliver : Deliver FD order in next delivery
period?

°®
Customer

No

Deliver?

FIGURE 5.1: Process flow of order placement
and delivery.

As the value and timing of both revenue and cost cash-flows will be affected by the
choices made by customers and the firm, the minimisation of average costs only is
not an appropriate objective. We therefore develop the model with the objective of
maximising the Net Present Value (NPV) of the firm’s future cash-flows. The usefulness
of this approach for the study of production-inventory systems was first demonstrated

in Grubbstrom (1980), see also Beullens and Janssens (2011).

!This situation can also represent the case of a firm operating one single online sales website, but
adopting a decentralized organization of its supply chain into disjoint service regions, where each sales
region is serviced by a single depot.
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5.2 Related research

Considering the different ingredients discussed above, this study is of relevance to the
research on supply chain inventory and distribution management, and in particular to

the use of price incentives for shifting demand across time.

Pricing strategies are widely applied in supply chain literature for various purposes. In
the area of revenue management, this approach has been studied in great detail, see e.g.
Quante et al. (2009), Agatz et al. (2013). This area of research is primarily concerned
with maximising the revenue extractable from a capacitated resource with often a fixed
cost structure. This area of research finds application in booking of (airline, rail, ferry)
travel, hotel rooms, and car rentals. Pricing strategies will affect both total demand as

well as the timing of when demand is announced.

Many papers in the inventory literature consider pricing strategies as a means to increase
the total demand or speed up the demand rate, rather than shift demand, as in the
studies on price-dependent demand by Papachristos and Skouri (2003), Wee (2001),
Dye et al. (2007) and quantity discounts by Shin and Benton (2007), Wee (1999), Weng
(1993). Dynamic pricing in the presence of inventory considerations is another area of

application extensively discussed in Elmaghraby and Keskinocak (2003).

Using financial incentives to cause demand to shift across time is an area of research
that has been mainly analysed within the contexts of advance booking (or pre-orders)
and demand postponement, respectively. Advance booking programs entice customers
to place their demand earlier by offering them (financial) incentives, see e.g. Tang et al.
(2004) and Li and Zhang (2013). According to Xu et al. (2017), the success of online
retail channels has made it easier for companies to obtain such advance bookings. The
benefits of using advance booking systems include that it could greatly improve the
demand forecast for new products, as in Tang et al. (2004), or could lead to a better

match between demand and capacity availability, as in Zhuang et al. (2017).

The purpose of demand postponement is to convince customers to shift delivery to a
later date. The concept was first introduced in Iyer et al. (2003), who studied the value
of postponement of a fraction of demand as to allow the firm to procure additional
capacity and reduce overall stockouts. Wu and Wu (2015) use demand postponement

to create a capacity buffer for urgent demand, leading to a reduced expected risk of
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shortages on urgent demand in addition to an overall increased effectiveness of capacity

usage. Tang (2006b) use the strategy as a means to mitigate supply chain disruptions.

The effect of customers choosing for the flexible delivery option in our model is compa-
rable to demand postponement by enticing customers to switch from the fast delivery
option towards a delivery at a later date. This study, however, differs from the previous
literature as decisions need to be made as to when to deliver to which customer based

on the joint consideration of inventory and distribution costs.

Our model and analysis is also different from previous literature on demand postpone-
ment in that it considers the impact of the logistics strategy on the timing of payments
in an NPV framework. Permissible delay in payment when a certain amount is ordered
(Chung et al. 2005), selling price- dependent demand (Dye et al. 2007) and backorders
with a deposit (Ghiami and Beullens 2016) are examples in which payment structures

are shown to affect inventory decisions.

The mechanism of price discounts in combination with deposit values we adopt in this
study was first introduced in Ghiami and Beullens (2016), who used this mechanism in
a production-inventory system with backorders. The impact of deposit value in that
situation was limited. In our inventory-distribution model with the flexible delivery

option, we find that its impact is more pronounced.

The paper is further organized as follows. Section 5.3 introduces the description of the
system. In Section 5.4, the optimisation problem is formulated. Section 5.5 develops
properties and presents the algorithm. Section 5.6 provides insights derived from a
variety of numerical experiments. Conclusions and further research areas are presented

in Section 5.7.

5.3 Description of the System

5.3.1 General characteristics

We consider a single product ordered by customers via an online store at a given constant
demand rate y. Upon placing their order, customers may be given a choice between the

fast (or normal) delivery option and a flexible delivery option. In the fast delivery
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option, the customer pays the full sales price p when placing the order. In the flexible
delivery option, the customer receives a small discount r on the full sales price, but pays
upon placing the order a pre-agreed deposit g, while paying the remainder p — r — g
upon the time of actual delivery. We note that in most online systems we would have
g = p —r. However, in applications were customers’ financial trustworthiness can be
verified, a reduced deposit value ¢ < p — r may help in convincing more customers
accepting the flexible delivery option, in particular in cases where the possible waiting
time may become larger. Furthermore, we assume that more customers will choose the
flexible delivery option the larger the discount value r. Part of the aims of the study is
to investigate how system performance is affected under various different choices for r

and g values.

The performance of the system is further affected by decisions about how to place
replenishment orders from an upstream supplier. In line with EOQ-type model charac-
teristics, we consider that in steady-state a constant order quantity y7" will be placed at
equidistant moments in time, where 7" denotes the inventory cycle time measuring the
time between two consecutive orders arriving in the retailer’s warehouse. In addition,
system performance is further determined by the choices made about how the demand
orders are delivered to customer locations. The choice here is between performing the
distribution by a company-owned vehicle, and the option of outsourcing the delivery to
a third party. The company can also choose to outsource the delivery of only part of
the demand, and make this variable over time. The model constructed will maximise
the Net Present Value of this system by choosing the optimal joint replenishment and

distribution strategy.
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Parameters
Y Constant demand rate per unit time y > 0
P Sales price per unit of the product p > w
w Cost price of a unit product
T Discount amount per unit of product, 0 <r <p —w
g Deposit paid per unit of product, g <p—7r
S Setup cost per replenishment
I(t)  Inventory level at time ¢
U Maximum waiting time promised to customers
At Time of a delivery period
A Size of the total distribution region
Average distance from a customer in distribution region to the depot
n(k)  Number of customers need to be served in the k' delivery period
d(k)  Average distance travelled in the k" delivery period
c(k)  Total distribution cost of the k" delivery period
cu(k) Distribution cost per unit product in the Eth delivery period
when delivered by the company-owned vehicle
Co Transport cost per unit product charged by third-party
15} Ratio of demand accepting the flexible delivery option, 0 < 8 < 1
Q Opportunity cost of capital rate
Euclidean metric factor
0% Vehicle operation cost per mile

Decision Variables

T

J(k)

5.3.2

Inventory cycle time, T' = KAt with K integer, At << T, T >0
Time period during which flexible delivery option is not available, 0 < F' <1

Binary variable to decide whether to use own vehicle (1) or not (0)

Inventory system

An important feature not yet discussed is that the flexible delivery option is not neces-

sarily always made available to customers. That is, the flexible delivery option is only
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made available within a time period (1 — F')T" of a replenishment inventory cycle. The
reason for this is to allow the replenishment cycle T', should this be optimal, to become
(much) larger than the maximum time U that customers may have to wait when choos-
ing the flexible delivery option. To minimise waiting time for customers, it is best to

have the flexible delivery option made available at the end of each inventory cycle?.

Figure 5.2 illustrates the inventory level as a function of time for the first inventory
cycle. It is assumed that the system starts at time 0 with no outstanding demand
orders. At time F'T, the flexible delivery is introduced for a time (1 — F')T". During this
period, it is assumed that customers choose the flexible option at a rate of Sy (further
discussed in Section 5.3.4). Delivery of these orders will be postponed until after the
next replenishment order has arrived at time 7'. Note that the first replenishment order
only needs to cover the demand during the first cycle T for those demands to be delivered
with the normal delivery option. From the second cycle and onwards, the replenishment
order also needs to cover the postponed demand, but is otherwise identical to the first

cycle. The system then repeats itself at infinitum.

I(t)
A

Q
FT (1-F)T > l By(1-F)T

~
A\
~

FI1GURE 5.2: Inventory Flow with Constant

5.3.3 Delivery system

Distribution to customer locations is organized at discrete moments in time (At, 2At

., kAt,...). Let n(k) denote the number of customers to be served in delivery period

2This will also maximise the NPV of revenues and holding costs. The NPV of distribution costs
alone (see Figure 5.3), however, would be maximised by starting each cycle with the flexible delivery
time window instead. Distribution costs are typically small, however, so overall the adopted model in this
paper will be financially better. For high values g = p—r = p, it may be better to have the first inventory
cycle different, i.e. being of length 77 # T in which the flexible delivery option is offered throughout.
The second and all future inventory cycles would then be of length T' and follow the structure as in
Figure 5.3. We do not pursue this possibility in this paper.
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k and n(1) is the number of customers at the first delivery. We then have (with mod

indicating the modulo operator):

yAt At < FT
n(l) = yAt — yB(At — FT) FT < At < FT + At (5.1)
(1 — B)yAt FT+At<At<T
yAt At < kAt mod T < FT
yAt —yB(kAt mod T — FT) FT <kAt mod T < FT + At
n(k) = (5.2)
(1= pB)yAt FT+ At <EkEAt modT<T
n(l)+ (1 — F)TypB kAt mod T = At and k > 1

yAt+(1-F)Tyg
A

yAt yAt

...............

(1-B)yAt

AEREEN

At FT T T+At

FIGURE 5.3: n(k) values within an inventory
cycle

Fig. 5.3 illustrates the resulting distribution pattern. When the delivery occurs at a
time when we do not offer the flexible delivery option, the number of demands to be
delivered equals yAt. If the delivery occurs in the time interval during which flexible
delivery is offered, the number of deliveries is (1 — #)yAt. When it is in the interval
of (FT, FT + At), then both types of demand are to be distributed. Also, at the first
delivery moment after any replenishment order has arrived (except for the first cycle
shown by n(1) ), the delivery of postponed demand from the previous cycle has to
occur. Therefore the initial delivery after the order arrival serves usual customers plus

the postponed customers.

For the delivery of n(k), the company can choose between using a company-owned

vehicle, or outsourcing to a third party. When the company makes its own delivery, the
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distribution cost includes fuel, driver wages, vehicle depreciation and (un)loading costs.
Among these, we focus on the costs directly related to the travelled distance. The average
distance travelled in the k%" delivery is approximated in (5.3). This model is derived
from the continuous approximation method developed in Daganzo and Newell (1985),
where ((n(k)) ~ 0.57 and ~ is the vehicle operation cost per mile including fuel costs
and driver’s wages (at average vehicle speed). The main assumption underlying (5.3) is
that the n(k) customer locations are independently drawn from a uniform distribution
over the service region of area A. The first term measures twice the average distance p
between the warehouse and a customer location. The second term measures the shortest
distance to visit all n(k) customer locations. The corresponding unit distribution cost

is ¢, (k) as in (5.4).

d(k) = 2p+ ((n(k))\/ An(k) (5.3)
d(k)

If the warehouse is located inside the service region, Danganzo’s formula can be simplified
to d(k) =~ (y/A(n(k)+ 1), where ¢ =~ 0.71. Without much loss of generality, we will

adopt this setting here.

An external distribution partner is offering a cost of ¢, per unit item for delivery. The
unit delivery cost of the company’s own vehicle depends on the demand intensity across
the service area. If the unit cost is less than the outsourcing cost then the company
delivers the product itself. The decision variable J(k) is thus as given by (5.5), and the
total distribution cost of the k' delivery as in (5.6).

Tk = 1 eu(k) <eo (55)

0 otherwise
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5.3.4 Customer’s acceptance of flexible delivery

It is in line of expectation that more customers will be induced to accept the flexible
delivery option the higher the discount and the lower the maximum waiting time and
deposit value. We will examine the case that the fraction S is influenced by the discount
amount r, maximum waiting time U, and deposit value g according to the following
relationship:

g
0(U,597)

B(r,Uyg)=e — +r (5.7)

where 6(U, g/(p — r) is a factor that measures the customer resistance to the discount
offer, which increases with U and g/(p — r). According to (5.7), 8 grows faster and
faster towards 1 with the increase in r, and approaches 1 in the limit for large r. Note,
however, that r will always remain finite as » < p — g. For given U, g and r values,

B(r,U, g) = B is thus assumed to be a constant.

5.4 Model Development

As the value and the timing of revenues and cost cash-flows are affected by the choices
made by customers and the firm, we develop the model with the objective to maximise
the Net Present Value of the firm’s future cash-flows. We summarize the main modelling

assumptions:

e Demand occurs at a constant rate and individual customer orders are unit sized.

e Demands which accept the discounts are postponed to the first delivery after the

replenishment order from the supplier is received.
e Customers who choose fast delivery pay the full price upon placing the order online.

e Customers who accept flexible delivery pay a deposit when placing the order, but
pay the discounted remainder at the delivery time epoch in which the delivery is

made.

e Initial inventory is zero and first replenishment occurs at ¢t = 0.



Chapter 5. Inventory and distribution for online sales with a flexible delivery option 72

There is no constraint on the replenishment order size and no quantity discounts

are offered by the external supplier.
e The replenishment lead-time is zero (or any non-zero constant value).
e The supplier is paid upon the arrival of the replenishment order in the firm’s depot.

e Out-of-pocket holding cost are assumed small and will be ignored but we consider

the opportunity cost of capital invested in stock.
e The retailer depot is located within the customer service region.

e When the third-party transportation company is used to delivery in a period, the

cost incurred is paid out at the end of that delivery period.

e When using the company-owned vehicle for transport in a delivery period, costs

are incurred at the end of the delivery period.
e Continuous compounding is used for the net present value analysis.

e The time horizon is infinite.

5.4.1 Inventory level and order quantity

For At << T, the inventory level I(t) as a function of time over one inventory cycle
follows with sufficient accuracy the pattern as in Figure 5.2. The change of inventory

level over any cycle can thus be described by the following differential equation:

dI(t -y , 0t < FT
d((t)) = (5.8)
—(1-=7P)y L FT <t<T
the solution of which is given by:
I1(0) — yt ,0<t<FT
I(t) = (5.9)

I(FT)— (1= B)y(t—FT) ,FT<t<T

Since backorders are not allowed, we must have I(t) > 0. As it is unnecessary to keep

stock that is not used, I(7T") = 0 for each inventory cycle. In the first cycle, the order
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quantity @1 = I1(0) needs to cover the demand that needs to be fulfilled in that cycle:

Q1= yFT + (1 - B)y(1 - F)T. (5.10)

The first term is the demand in the period (0, F'T'), and the second term is the demand
in period (FT,T). In all subsequent cycles, the order quantity @ = I(0) covers the
amount as in (5.10) plus the postponed demand from the previous cycle Sy(1 — F)T,
which gives:

Q=Q1+By(l—F)T =yT. (5.11)

5.4.2 Annuity streams of cash-flows

Since the time horizon is infinite, the appropriate objective function is given by the
Annuity Stream (AS) of the relevent incoming and outgoing cash-flows. The relevant
cash-flows for the revenues and inventory costs is shown in Fig.5.4. (The cash-flows of

the distribution system are not shown in this figure.)

By(1-F)T(p-g-r)
yP YP
(1-Blyp (1-Byp
Byg Byg
FT (1-F)T T Fr (1-F)T -
v A
S+(Q-By(1-F)Tw S+Qw

FIGURE 5.4: Cash-flows of revenue
streams and inventory system costs

At the start of each inventory cycle, the firm incurs a set-up cost .S independent of order
size. In all but the first order cycle, the firm has to pay w@ = wyT for the products
replenished, see (5.11). The total replenishment cost is then C' = S + wyT'. For the first

order cycle, since Q1 = Q — By(1 — F)T, the total replenishment cost can be written as:

C1=S+w@-By(l—F)T)=C—Cy. (5.12)
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The annuity stream of replenishment costs are thus given by:

i=0 (5.13)

1 « _

The approximated value on the right-hand-side is derived from the Maclaurin expansion

of the exponential terms in o', where second and higher orders of « are ignored.

The postponed demand from previous periods is satisfied by on hand inventory and
these customers pay the discounted and deposit-subtracted price as given in (5.14). Not
having postponed demand at ¢t = 0, this revenue stream starts at t = T', thus the annuity

stream value is as given in (5.15).

Ry =Byl = F)T(p—g—r) (5.14)
—aT = —iaT e T
ASRl =€ (Z OéRle ) == ale
i=0 (5.15)

Between 0 and F'T" in each inventory cycle, sales occur at demand rate y for a price of p.
The present value of this revenue for the first cycle is given in (5.16), and the equivalent

annuity stream (from all cycles) in (5.17).

FT py
Ro= [ pyectar =" (1—e—aFT> (5.16)
0

o T 1— e—aTF
ASRy = Z aRse = py<1_€aT>
=0 (5.17)

oTF? + oTF
2 2

~ py (F -
At time F'T, the flexible delivery option becomes available. The demand rate requiring

the fast delivery reduces to (1 — 8)y and generates a revenue stream at the price p. The

demand rate By corresponding to the flexible delivery customers generates a deposit g
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in this interval. Present value of this revenue between F'T and T is given in (5.18), and

corresponding annuity stream function in (5.19).

T
Ry = / (1= B)yp + Byg)e “'dt
FT
_ (1= B)yp + Byg) <e—aFT N e—aT)

a

(5.18)

0 T e—aTF _ e—aT
ASRy = aRge T = ((1 - B)yp + ﬁy9)<1_€_w)

i=0 , (5.19)
~ ((1 - B)yp + Byg) (1 —F+ ol f aTF)

2 2

The distribution cost over time depends on the number of customers served at each
delivery n(k), and on the choice of distribution strategy, producing different possible
values for c(k) as given by (5.6). The structure of the cash-flows of the distribution
system, are given by the reflection about the y-axis of Figure 5.3, and replacing the n(k)
by c(k) values. The present value of the distribution cost in every cycle but the first is
thus given by (5.20). In the first cycle, we do not have postponed demand from previous
periods. So instead of delivering a postponed demand, we only need to consider ¢(1).

This correction is used in the annuity stream function as given by (5.21).

T/At

T
+1)e A 4 Z c(k)e FAt (5.20)
k=2

Cdist - C(E

ASCisr = Z aCyise T — o <C(At +1)— c(l))e‘m
i=0 (5.21)

1 «o T _ -
~ Cist <T + 2> —ac( g +1e A ae(1)e A

The annuity stream of total profit over an infinite time horizon is the sum of all revenues

minus the setup, unit and distribution costs.
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ASTP(F, T) = ASRy + ASRy + ASR3 — ASC — ASCly;st

Our objective is to maximise the annuity stream of the total profit while keeping maxi-

mum waiting time under a certain limit.

maximise ASTP(F,T)
subject to (1 - F)T <U

5.5 Properties and algorithm

To facilitate further analysis as well as algorithm design, we present some properties
related to the impact of flexible delivery on the replenishment pattern and distribution

strategy, respectively.

5.5.1 Special Case: Inventory profit only

In this section, we only consider the inventory system. This situation may arise in the
case where the firm has outsourced the delivery to a third party for an agreed total price
based on an agreed annual demand volume, and paid out according to a fixed payment
structure that is independent of the actual delivery schedules. Flexible delivery will then
only affect the replenishment strategy and we can focus on only the inventory system
related profits arising from the cash-flows depicted in Figure 5.4. The relevant profit
function is given by ASTP as above but where ASCy;; is a constant and can thus be

ignored.
Lemma 5.1. The objective function ASTP(F,T) is a concave function under positive

setup cost.

Based on Lemma 5.1, we conclude that the F' and T values which make the partial

derivatives zero are optimal.



Chapter 5. Inventory and distribution for online sales with a flexible delivery option 77

Proposition 1. Let the Tr<; and Tr—1 be the optimal 7" values in the NPV model where

the flexible delivery option is offered and not offered, respectively. Then:

Tr<1 > Tr=1

Proposition 1 shows that the cycle time for the model without a flexible delivery being

offered is a lower bound for the model with the flexible delivery option.

Lemma 5.2. For the flexible delivery option to be profitable, the discount amount should

8Saw
< VY (5.22)

satisfy the condition:

Lemma 5.2 calculates the value of » which makes F' = 1. This indicates that when the
discount amount reaches this level, it is no longer profitable to offer the flexible delivery

option.

Note that the above results are only valid when the distribution cost is ignored.

5.5.2 Determining the distribution strategy

In principle, the distribution strategy needs to decide on the optimal choice of ¢(k) for
k=1,2,3,.... For any values of T" and F', however, the sum of distribution costs as given
by (5.20) within an inventory cycle is of a structure in which we recognise up to four
different demand intensity situations, see (5.2) and Figure 5.3. The unit distribution cost
for the company when it would execute the delivery by itself is decreasing by the demand
intensity on the service area. We can see this from (5.4): the numerator increases with

the square root of n(k), while the denominator increases by n(k)).

Let ¢} and ¢2 be the minimum and maximum value of the unit distribution cost when
using the companies’ own vehicle, for any values of T'and F. Given the above, c.. is thus
the unit distribution cost that would arise from servicing the highest possible demand
intensity. As seen from Figure 5.3, the highest demand intensity would arise in the

period just after replenishments:

yAt + (1 — F)TyB < yAt + Uyp, (5.23)
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where the upper bound follows from constraint (1 — F)T' < U. Likewise, c¢2 would arise

in the period when flexible delivery is offered and when the demand level is:
(1 — B)yAt. (5.24)

Lemma 5.3. For any values of T and F':

1. Distribution is fully outsourced if

A
B N Ry p— 5.25

2. Distribution is always conducted by the company if

A

A Gai (5.26)

o> o=

3. Distribution is partially outsourced if
<o < E, (5.27)

where J(k) is decided according to (5.5) for every k in an inventory cycle with

given F' and T values.

Lemma 3 will be used in the solution algorithm.

5.5.3 General Case: Solution Algorithm

The decision variables are T' and F, and J(k) as given by (5.5). The main Algorithm
3 performs an exhaustive search over T" and F', and calls Algorithm 2 which decides on
the optimal distribution strategy J(k) over an inventory cycle of length 7" and given F

and such that it maximises the objective function ASTP.

The algorithm assumes that T is restricted to an integer multiple of At. If we have
the fast delivery distribution every x days, then At = z/365, and a maximum waiting
time of three weeks corresponds to U = 21/365, for example. We restrict the search

for an optimal T" value to a maximum of 1/At, or one year, while search for optimal F
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values over 100 possible fractions of T'. These settings can be easily adjusted if a more
refined search is desired. However, the algorithm implementation in C++ on a normal
PC solves all numerical examples we investigated at a sufficient level of accuracy while

keeping computational time at less than 1 second for each instance.

If the model only needs to consider the inventory system, then:

due to Proposition 1, and the call to AT'SP(F,T) in Algorithm 3 simply needs to evaluate
this function. In case the inventory-distribution system is to be optimised, Trog = 1

and Algorithm 2 is used to evaluate ATSP(F,T).

Algorithm 2: Calculation of Profit Function
1: return ASTP(F,T)

2: if ¢, < ¢l then

3 J(k)=0 Vkel[l, ]
4: else if ¢, > c2 then

5. J(k)=1 Vke [1,&]
6: else

7. fork=1 to Aitdo

8: if ¢, < ¢y(k) then
9: J(k)=0

10: else

11: J(k) =1

12: end if

13: end for
14: end if

15: Calculate ASTP(F,T) with given F,T and J(k) values
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Algorithm 3: Exhaustive Search Algorithm for NPV Model
1: return 7%, F* mazprofit

2: initialize; maxprofit, Trog,U

3: for k> 1E9Q o Ait do

At

4: for j =0 to 100 do

5: T = kAt

6:  F =001y

7 if (1—-F)T <U then

8: Call ASTP(F,T)

9: if ASTP(F,T) > maxprofit then
10: T =T
11: F*=F

12: mazxprofit = ASTP(F,T)
13: end if

14: end if

15: end for

16: end for

5.6 Numerical Experiments

We examine the impact of the flexible delivery option and choice of distribution strategy
on the performance of the inventory-distribution system for a set of instances. The
numerical values of the parameters are similar to the study of Ghiami and Beullens
(2016). However, to clearly show the impact of delivery, we increase the demand rate
to 1000 instead of 100 which is used by Ghiami and Beullens (2016). Thus, parameters
are set at the following value ranges: y = 1,000 per year; S = 50 or 80; p = 2w, 1.5w,
or 1.3w; @ = 0.2 or 0.1 (per year); At = 4/365 (fast delivery within 4 days); U = 3 or
6 weeks (maximum waiting time for flexible delivery option). Other parameters are set

as further specified.

First, we examine the special case of only considering inventory profits. We then con-
sider the joint inventory and distribution system in which we optimally decide when
to outsource the distribution. We end with the situation in which outsourcing is not

available.
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5.6.1 Special case: Inventory profits only

We consider here the special case introduced in Section 5.5.1. We compare the perfor-
mance of a system offering flexible delivery (F' < 1) to a system in which this option is
not available (F' = 1). In each case, we use the model to determine the optimal inven-
tory system strategy that maximises the AS profits AST P for the firm. The percentage

difference is calculated as:

§ = 100(AST Pp<i — ASTPp_1)/AST Pp_, (5.28)

The higher value of 9, the higher the benefit obtained from using the flexible delivery
option. The difference is tested with various customers reactions and setup costs. Al-
though we consider r = 1%p, its maximum value 7,,,, beyond which the flexible delivery
option cannot be profitable is also calculated (Lemma 2). A summary of results is given
in Table 5.1.

TABLE 5.1: Impact of flexible delivery (p = 1.3w, w = 10,r = 0.01p, g = 0)

F=1 F <1 (U=3 weeks) F <1 (U=6 weeks)
Parameters T B T F 5(%) T F (%) Tmaz(%D)
a=01,5=50 032 01 032 082 010 0.32 0.63 0.16
0.5 033 082 054 035 066 0.86 2.47

09 035 083 099 040 0.70 1.63

a=01,5=8 040 0.1 041 0.8 0.13 040 0.70 0.23
0.5 042 0.8 067 044 073 1.16 3.13
0.9 042 086 122 046 0.74 2.15

a=025=50 022 01 023 074 026 023 048 0.36
05 023 074 130 026 054 195 3.51
09 026 0.77r 237 029 059 3.74

a=025=8 028 0.1 028 079 031 029 059 0.50
0.5 030 0.80 160 031 062 2.57 4.47
0.9 030 0.80 290 033 064 4.80

As can be observed, the customers’ acceptance rate 3 greatly affects the benefits of
flexible delivery. Although customers do no pay deposits (¢ = 0) and thus delay paying
until delivery takes place, increased profits still result from adopting a larger maximum
delivery window U. Profits increase at higher values of the opportunity cost of capital
«. With higher set-up costs, cycle times 7' increase but the waiting time constraint U

will limit the period in which the flexible delivery is offered.
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Fig. 5.5 and Fig. 5.6 show the impact on the relative performance of the flexible delivery
option system at different marginal profit values, when oo = 0.2, S = 80, w = 10, g = 0,
and r = 0.01p. The results clearly show that the flexible delivery option is more effective

for low profit margins and is then also more sensitive to the maximum waiting time.

5 \ T 5
—=p=1.3w
4 H——p = 1.5w = 4 H =
. 3r 4 - 3r N
S S
S 9l 1= 9l |
1+ - 1r =
| | | |
0.1 0.5 0.9 0.1 0.5 0.9
B B
FIGURE 5.5: U=3 weeks FIGURE 5.6: U=6 weeks

Another financial setting that can be examined in an NPV model is the impact of
the deposit amount g. In many online sales environments, it is reasonable to assume
that customers pay the full discounted price at the time of placing the order, which
corresponds in our model with a deposit value ¢ = p — r. It is intuitively clear that
profits will improve with higher deposit values and in particular for larger U values.
Table 5.2 presents results which show the impact of deposit value on system performance
that confirm this.

TABLE 5.2: Impact of deposit value (S = 80, a = 0.2, p = 1.3w, w = 10,r = 0.01p)

F <1 (U=3 weeks) F < 1(U=10 weeks)

Parameters B T F (%) T F 0(%)
g=20 0.1 0.28 0.79 031 0.29 0.40 0.56
0.5 0.30 0.80 1.60 0.34 045 3.13
09 030 080 290 0.37 0.49 6.15

g=05(p—-r) 01 028 079 034 029 0.32 0.90
0.5 0.30 0.80 1.75  0.32 0.38 4.73

09 030 080 3.18 0.35 0.43 8.85

g=p-—r 0.1 028 079 038 029 0.35 1.20
0.5 0.30 0.80 1.91 0.31 0.39 6.08

09 030 080 347 031 0.39 11.03
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5.6.2 General case: Inventory-Distribution system

In this section, we consider the general inventory-distribution system in which the com-
pany also determines the optimal distribution strategy. We calculate the impact of the

flexible delivery option on the distribution costs as follows:
dgist = 100(ASCyist(F = 1) — ASCyist(F < 1)/ ASCyist(F = 1), (5.29)

where F' = 1 corresponds to the case in which the flexible delivery option is not offered.
In each case, we use the model to find the joint optimal inventory-distribution strategy
that maximises the AST P value, and use the corresponding values obtained as given by

(5.21) in the evaluation of (5.29).

Table 5.3 shows how flexible delivery affects distribution costs on the chosen instance at

six different levels of the distribution cost ¢, charged by the third party.

When ¢, = c., the distribution is always outsourced (see Lemma 3). At first sight,
one may perhaps not expect any improvements in the distribution costs from flexible
delivery in that case. However, since the flexible delivery option affects the timing when
we pay the third party for its distribution tasks, the NPV model does still show a fair
benefit occurring. For example, with U = 3 weeks, we would still expect a benefit of

2.5% from the flexible delivery option.

When ¢, = ¢2, distribution is never outsourced (Lemma 3). The benefits from flexible
delivery now become larger. This can be expected since we will not only have a benefit
from postponing distribution costs (as in the case of ¢, = c.), but also will reduce the

actual average unit distribution cost per demand delivery over a cycle.

In the case of ¢, = ¢y(k), we assume that ¢, equals the company’s unit delivery cost
when delivering to fast delivery customers in periods in which the flexible delivery option
is not offered. In this situation, we expect that only the deliveries including postponed
demand are fulfilled by the company, while the delivery of normal demand customers
in other periods can be outsourced. The results in Table 5.3 now show that flexible
delivery will the highest potential to improve the firm’s distribution costs, with values

ranging between 8% and 22%.
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TABLE 5.3: Impact of flexible delivery on distribution AS costs (S = 80, = 0.2,

w=10,r=0.01lp, =05 g=p—7)

U=3 weeks U=6 weeks
Exp. | Unit Cost Dist. Strategy T F o dgise | T F o dgist
|| o= =005 Outeonree 030 080 25 |029 059 5.0
o= ck = 0.10w 0.30 080 25 [029 059 5.0
2

o= 2 = 0.05w . 030 0.80 3.3 |029 059 7.6

2 | = = 0.10w Local delivery || g o7 o078 35 | 0.26 054 84
¢o = cu(k) = 0.05w . 026 0.77 83 | 026 0.54 17.8

31 ¢y = culk) = 0,100 | T2xtial Outsowrce g og 7 g3 1021 043 21.9

We now consider the impact of flexible delivery on the total system AS profits. The

relative improvement from flexible delivery is calculated as in (5.28), but now including

the variable distribution cost. Figure 5.7 illustrates the percentage improvement as a

function of r for a setting that corresponds to the setting in the bottom row of Table

5.2, while the distribution cost parameters are set as the bottom row in Table 5.3,

case ¢, = 0.05w. Flexible delivery in a jointly optimised inventory-distribution system

performs much better than when only accounting for inventory profits. At r = 1%p and

B = 0.5, for example, flexible delivery could improve the inventory profits by 1.91% (see

Table 5.2), while in the jointly optimised inventory-distribution system this becomes

4.47%. Figure 5.7 also shows that, while a higher 3 brings more benefit, the maximum

profitable discount value r increases only modestly with j3.

——p3=0.5
—=3=0.9

FIGURE 5.7: Impact of flexible delivery on total AS profits (p = 1.3w, g = p — 7,

r(%p)

S =80, ¢, = 0.05w, « = 0.2, U = 3 weeks)

ook

Figure 5.7 also illustrates that is may not always be worthwhile to offer more discount in

order to get more customer acceptance of the flexible delivery option. Instead of offering

5% discount to get 8 = 0.9, for example, the § = 0.5 case with 2% discount would



Chapter 5. Inventory and distribution for online sales with a flexible delivery option 85

achieve a higher overall profit for the firm. Firms wanting to apply the flexible delivery
policy should thus consider the trade-off between customer acceptance and incentive
structure. A low flexible delivery acceptance with low discount amount can sometimes

be better than a higher acceptance with higher discounts.

In order to illustrate this trade-off more clearly, we end this section with an experiment
in which we make use of the customer acceptance function defined in Section 5.3.4. We
use the same parameter settings as used in Figure 5.7, but now let 5 be a function of
r for three different values of the resistance function # = 0.1,0.2,0.5 (for U = 3 weeks
and ¢ = p —r). We can now use the algorithm repeatedly over a range of r values to
produce the results as illustrated in Fig. 5.8. As shown, the optimal discount would
then be 2%, 3%, 4% when 6 = 0.1, 0.2, 0.5, respectively. At these optimal discount rates,
customer acceptance is at the level 5 = 0.68,0.60,0.38, respectively (evaluate (5.7)).
The higher the customer resistance, the higher the optimal discount value but the lower
the customer acceptance rate and the lower the total profit increase achievable from
flexible delivery. When applying the flexible delivery option, firms should thus also aim

to determine the customer acceptance function.

6 T T T T T
——0 =0.1
5, +9:02 n
—=60=0.5
4,
S
e}
2,
1F 'y
0
| | | | |
1 2 3 4 5 6 7
r(%p)

FIGURE 5.8: Effects of Discount by 8(r) (p = 1.3w, w=10,5=80,g=p—7r,U =3
weeks)

To summarize, we have shown that the flexible delivery option can improve system
performance. The joint optimisation of the inventory and distribution strategy shows
larger benefits than only considering the inventory strategy, in particular when the
company has the option to distribute the delivery between a third party and its own

vehicle. The company is able to offer larger discounts to customers accepting flexible
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delivery when performing part of the distribution by itself. To ensure optimal overall
performance of the system with flexible delivery, firms need to investigate how customers
respond to the offer, in particular how acceptance of flexible delivery is a function of the

discount offer, the maximum waiting time, and deposit value.

5.6.3 Impact flexible delivery on distance travelled

In this part, we illustrate the potential impact of flexible delivery on the average trav-
elled distance when the distribution is solely executed by the firm. This measure may
be of interest to firms to assess their impact on emissions from transportation. The

performance measure of interest is now:

0avp = 100(AV Dp—q — AVDFSl)/AVDF:h (5.30)

where AV Dp_; is the average distance travelled in the optimal solution that maximises
the AS profits of the joint inventory-distribution system in the case that no flexible de-
livery is offered, while AV Dp_; is the average distance travelled in the optimal solution

when the flexible delivery option is offered.

The numerical experiments are summarized in Table 5.4. As expected, travelled distance
reduces for higher maximum waiting times and customer acceptance levels. Flexible
delivery can thus not only help the firm to increase its profitability, but may also help
to reduce the impact on the environment. When customers are sensitive to this topic, it
may help the firm to make customers aware of this positive environmental benefit and

thereby increase customers’ willingness to accept flexible delivery.

TABLE 5.4: Average travelled distances ( ¢, = 0.05w,p = 1.3w = 13, g = p — 1,
r =0.01p, A = 50 miles?, v = 0.30)

Max Waiting F=1 F<1
Time T F Dist Ié; T F Dist Savgdist(70)

0.1 0.29 0.8 2267.81 0.396

3 weeks 029 1 2276.84 | 0.5 0.3 0.8 2196.59 3.525

0.9 0.26 0.77 2018.86 11.330

0.1 0.29 0.59 2255.68 0.930

6 weeks 0.29 1 2276.84 | 0.5 0.29 0.59 2095.03 7.985

0.9 0.26 0.54 1720.36 24.441
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5.7 Conclusions

Shifting the demand over time has become an increasingly studied strategy in supply
chain management. Most studies have analysed demand postponement in a context of
production resource capacity constraints. We have developed a model to study the value
of flexible delivery in a continuous review inventory and distribution system. The ma-
jority of studies have focused on static postponement schemes available to all customers
at all times. In our case we only offer the postponement at a time when the inventory
level reaches a critical value, and incorporated not only the discount as a means to
induce customers to accept flexible delivery, but also considered the deposit value and
maximum waiting time as parameters that can affect customer acceptance. In order to
see the impact of changes in the timing of cash-flows as a result of offering the flexible
delivery option, we use a NPV model that is able to consider these financial aspects of
the system. Numerical experiments under different parameters settings were presented
to analyse the benefits of flexible delivery in comparison to a system in which this option

is not offered.

The findings presented show that demand postponement through flexible delivery can
bring significant benefits. With respect to inventory costs, more benefits can be expected
when the marginal profit on a product remains modest, as then the optimisation of
the inventory costs is relatively more important in determining the firm’s profits. At
marginal value p = 1.3w, we find that profits from optimising the inventory system may
be boosted with a few percentages by offering a discount on the sales price of a smaller
to equal magnitude, unless the firm’s replenishment set-up cost and opportunity cost of
capital are very small. We have further shown how profitability depends on customer

acceptance rate (), discount offered (r), maximum waiting time (U), and deposit value

(9)-

Larger benefits from flexible delivery are observed when jointly optimising the inventory-
distribution system. The benefit of flexible delivery to the distribution system depends
on the price of outsourcing distribution relative to the firm’s own delivery cost structure;
the largest benefits in the distribution system can be expected when the firm finds it
optimal to partially outsource delivery in delivery periods with low customer density.

Total profits in the inventory-distribution system analysed can, ceteris paribus, more
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than double in comparison to the inventory system (i.e. with fixed distribution cost

structure).

For given r, U and g, benefits of the flexible delivery option generally increase with
B, but customer acceptance can be expected to increase with r but decrease with U
and g relative to p — r. We have shown that the model can be used to determine the
optimal discount value r when knowing the function S(r,U,g) for different customer
resistance function values 6(U, g). Higher customer resistance values lead to higher
optimal discount values, lower acceptance rates, and lower overall profits achievable.
Extensions of this approach can be readily adopted to identify the optimal combination
of values for all three parameters r, U, and ¢g. To ensure optimal overall performance
of the system with flexible delivery, knowledge of B(r,U, g) is thus important. Further
research into how firms can gather sufficient information to determine how customers
respond to the flexible delivery option is warranted. When the firm only uses its own
vehicle for transport, we have shown that flexible delivery can help to reduce transport

distances and thus save on emissions.

The NPV methodology adopted in this paper also illustrates its benefits in showing how
changes in the timing of payments can affect system performance. While Ghiami and
Beullens (2016) found that deposit values g do not greatly affect performance in their
production-inventory NPV model, they only tested values of deposits up to 20%p, which
is reasonable in the context of backorders. In our context of online ordering, it is possible
and in fact quite common that customers pay in full when placing the order. In our
inventory-distribution system, the impact of g is thus found to be more significant. We
also found that accounting for the timing of transportation costs is of importance in our
system. Even when fully outsourced, i.e. when the total outgoing payments to the third
party transportation company are unaffected by the distribution strategy, the change in
the timing of these costs arising from flexible delivery decreased AS distribution costs
by 2.5% for 3 weeks and 5% for a 6 weeks maximum waiting time. Models not based on
the NPV methodology would not be able to identify such impacts of flexible delivery on

system performance.

Further research in this area can investigate how system performance is affected by the
customer acceptance function, i.e. by the shape of the function S(r,g,U). Different

possible flexible delivery schemes can also be investigated, as well as different types of
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distribution systems or cost structures. Since flexible delivery tends to increase replen-
ishment order sizes, its value may further increase in situations where suppliers would
offer quantity discounts, or offer a delay in payment if the order is higher than a threshold
level, as in e.g. Chung et al. (2005) and Pal and Chandra (2014). Additional benefits of
larger shipments may also lead to reductions in emissions from transportation between

the firm and its supplier, as argued in Van Hoek (1999).



Chapter 6

Conclusions

6.1 Overview

The main focus of this thesis is to make the inventory system more flexible to the
uncertainties through a demand postponement policy. In Chapters 1-2 an overview
introduction including the research aims and the literature review of lot sizing problems
and relevant methodology to identify and address the gaps and address the gaps and
methodology. Chapters 3-5 are the main research papers which present three different

mathematical models.

In this chapter, we present an summary of contributions and the conclusions, limitations

and the further research directions of research problems.

6.2 Summary of the Main Contributions

This thesis has studied a demand postponement policy on several capacitated and unca-
pacitated inventory systems. We model the problem and propose appropriate method-
ology for the solution. The contributions of the research papers are summarized in

following sections.
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6.2.1 Chapter 3. NPV Analysis of a Periodic Review Inventory Model

with Price Discount

The research content in this paper is based on a real case inventory problem which
has batch ordering and lost sales. Using the demand postponement policy helps us to
convert some lost sales into observed advance demand at some inventory levels. Agreeing
with the customers for later deliveries prevents lost sales. We model the problem by a
Markov Decision Process (MDP) formulation and solve it through the LP model. The
structure of MDP could give some insight which can be used to develop a heuristic
method. Although this research looks similar to the partial backordering problems,
agreeing with the customers makes out case more realistic. Moreover, based on the
customers willingness to wait, more delays can be offered which, is not applicable for

backordering.

6.2.2 Chapter 4. Inventory Decisions under Advance Demand Infor-

mation Driven by Price Discount

In this research, an inventory system with stochastic advance demand information (ADI)
is studied for capacitated /uncapacitated inventory systems. We model the problem with
demand postponement by Markov Decision Process (MDP) and provide a backward in-
duction algorithm as a solution technique for finite time horizon. Due to the complexity
of the model, we develop an action elimination method to bound the reorder level and
order up to level. The structure of the optimal integrated replenishment and postpone-
ment policy is presented. The numerical findings indicate that the benefit of demand

postponement can have a potential to deal with the negative impact of capacity limit.

6.2.3 Chapter 5. Analysis of Replenishment and Discount Policies
with Distribution by NPV Analysis

An update of the problem in Chapter 4 to a continuous review case with distribution
strategies has been studied in this section. Beside, having a replenishment policy, the
firm also needs to decide whether to outsource the delivery process or not. The contin-
uous approximation of travelled distance (Daganzo and Newell 1985) has been used to

calculate the total distance. Since the postponement policy affects the number demand
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delivered at each delivery, it has a big impact on delivery process. The analysis of deliv-
ery costs by postponement policy is investigated. An extensive numerical experiments
are presented to show the value of demand postponement on inventory and distribution

policies with different financial settings.

6.3 Limitations of the thesis and directions for future re-

search

For the real life applications of the models developed in this thesis, the limitations of
the research models need to be highlighted and the some further research avenues are

explored.

Firstly, one of the biggest limitations is the computational complexity of the MDP
problems. This limitation only affects the Chapter 3 and Chapter 4. In Chapter 3,
the postponement period is limited to one period in numerical experiments and the
information horizon is limited to N = L + 2 to reduce computational effort. However,
the MDP formulation gives us some structural insights to develop an efficient heuristic

method which could be a good future research direction.

The assumption of having deterministic demand in Chapter 5 is also another limitation.
A more general model should be developed to deal with the stochastic demand and
stochastic lead time. This could a fruitful research idea for future and it is expected that
the demand postponement will make bigger impact for stochastic cases. Considering the
customer acceptance rate dependent on multiple parameters (discount amount, waiting

time, deposit etc.) is also another interesting research idea.

One of the consequences of considering demand postponement into inventory systems
is to make order quantities tend to increase. While the models in this thesis have not
considered the benefits of larger order sizes, many papers in literature focus on this
issue by offering quantity discounts for larger order size (Chung et al. 2005) or a delay in
payment if order size is greater than a threshold level (Pal and Chandra 2014). Another
benefit of larger order size is to reduce the number of orders which lead to reduction in
emissions due to transportation (Van Hoek 1999). These could attract researchers as

future studies on benefits of delivery postponement on supply chain.



Appendix A

Supplement to Chapter 4

A.1 Proof of Lemma 4.1

The proof can be obtained by using the induction argument on recursive function. When
t = T, the problem becomes a single period inventory problem. Then Vi (.,Or,Qr) =
Gr(.) + B(ar) and Gp(.) is a convex and coercive function based on the standard as-
sumptions of inventory literature and $(a;) is also an increasing function. So that makes
Vr(sr) convex. By using the induction for t = T'— 1, we can show the convexity of V;

and P; functions for other periods.

Vi(se) = min{ci(st, ar) + Gr(si1)}

Py(ys, 01, Q¢) = Gi(yt) + AEVr (27, Or, Q1)
With the convexity of Vr(sr), we conclude that P;(y;, O, Q) is a convex function due
to the sum of two convex functions and limy|_,, P(y, O, Q) = co. This properties show

that there is a point x < S;(Op, Q) which satisfies the following function since the P

goes to infinity by |z|— oo.

P(z,0, Q) > K¢ + P(St(O, Qt), O, Q1)

93



Appendix A. Supplement to Chapter 4 94

By considering the equation of Hy(.) at (4.23), it can be derived that H(.) has a sign

change from - to 4+ due to the properties of P(y, O, Q).

A.2 Proof of Theorem 4.3

The proof of first statement based on the definition of s;(O¢, ;). Since it is the maximum
value of x at which Hy(z, Oy, Q¢) is non-positive. The higher setup cost needs to have
higher difference between P(y, O, Q) and P(z, O, Q). Since the higher value of P(z, O, Q)

can be obtained by lower x. Thus, the optimal value of s;() reduces.
For the proof of Statement 2, we refer reader Ozer and Wei (2004) for a detailed proof.

The similar analysis is applied for the Statement 3. We show that P;(z,0,Q) is de-
creasing by ¢ and it is true that P,_; > P, due to the induction with discount rate. The
H(.) function will be higher by increasing P(.) values. Thus, it will be negative for lower

values of s(.).



Appendix B

Supplement to Chapter 5

B.1 Proof of Lemma 5.1

Taking the second partial derivatives of AST P(F,T) with respect to F' and T yields

0?ASTP

W(F,T) = —ap(p—g)Ty <0,
0?ASTP —28

—orz BT =7 <0

The p — g is always positive from the definition, then AST P(F,T) is concave while the

S positive.

B.2 Proof of Prop 1

Recall that the Lemma 5.1 shows that the objective function is concave. Then, the

variables obtained by partial derivatives are optimal. The optimal values of T" are;

0ASTP 25
=" 1= \/ay<w —B1-F)w+r+(1-F)(p—g)

Tr<1 > Tr=1
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\/ 25 >¢25
ay(w =Bl - F)Rw+r+(1-F)p—g) | awy

2w+r+(1—-F)(p—g) >0

w,r and p — g are always non-negative and F' < 1 which left hand side of the equation

is always greater than or equal to 0.

B.3 Proof of Lemma 5.2

The proof is based on the ASTP(F,T') function when F' = 1. The r value can be easily
derived from the partial derivatives of AST P(F,T).

o aASTP(F,T) _ 2aTw+ (ar —2ap +2ag) T — 2r 1
oF (2ap — 209) T
w o (T =2)r 0
p—g 2alp—g)T
_ 20wT
"Taoar
_ 0ASTP 28

T=—57 (RT%:¢aww_5u_4w@w+r+(r—Fxp—m)

T = ﬁwhen F=1
\/ ayw

When we solve the two equations of r and T then the discount amount which makes

F=1is
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B.4 Proof of Lemma 5.3

The findings on Lemma 5.3 are obtained based on the number of demand n(k) and
unit distribution cost ¢, functions (described in Section 5.3.3). The unit distribution
cost with the maximum number of demand is taken as the minimum cost while it is

maximum for the minimum number of demand.
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