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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Institute of Sound and Vibration Research

Doctor of Philosophy

WAVE PROPAGATION IN REINFORCED CONCRETE BEAMS WITH

APPLICATION TO NON-DESTRUCTIVE TESTING

by Evelyne El Masri

Steel reinforcements bars (rebars) are vital to reinforced concrete (RC) structures and

their damage leads to catastrophic failure. Most damage occurs due to corrosion and

delamination, and an early detection is necessary. Wave based methods are popular for

detecting the damage remotely. However, most of these techniques require direct contact

with the rebars. The aim of this project is to exploit guided waves to detect damage of

the rebars via measurements only on the concrete surface.

The Wave Finite Element (WFE) is well suited to predict the wave characteristics of RC

waveguides. It requires knowledge of the mass and stiffness matrices of only a segment of

the waveguide which can be obtained from conventional FE analysis. A new RC model

approach using embedded reinforcements is suggested and compared to conventional FE

models. Next, the WFE methodology is discussed including associated numerical and

ill conditioning errors. Wave solutions for RC beams with and without prestress, in the

form of dispersion curves and mode shapes, were found to be similar.

Having established free wave solutions for an undamaged RC waveguide, one can couple

it to a damaged segment that can be modelled in FE. Alternatively, if the damage

is modelled as a reduction in rebar diameter over a certain length, then this permits

the WFE coupling approach to couple damaged and undamaged RC models for better

computational efficiency. High magnitudes for the reflection coefficients due to damage

are found, which are associated with evanescent waves at their cut-on frequencies.

Based on these findings, a new damage identification algorithm is proposed in which

the amplitudes of left and right propagating waves are estimated from surface measured

forced responses. The experimental based methodology was successful in detecting rebar

reduction without any prior knowledge of the dispersion relations. Experimental valida-

tion of the algorithm is found to be successful and in good agreement with simulations.

The potential and limitations of the algorithm for practical structures are discussed.

mailto:eem3g14@soton.ac.uk
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Chapter 1

Introduction

1.1 Background

Repair of concrete structures is essential both to increase their lifetime and for them

to remain serviceable. One major step before the repair is to investigate the potential

damage of the structure and to decide upon a proper procedure. By practical testing and

laboratory observations, it has been shown that the majority of cracking in concrete and

premature failures are dominated by corrosion of the reinforcement rebars. The loss of

structural strength is due to delamination of its concrete cover. Although these failures

do not imply the structural breakdown, essentially it affects the structural serviceability

due to such damage.

The appearance and sustainability of concrete structures are disturbed by cracking, and

the repairs of infrastructure impose a serious issue related to maintenance that costs

around $100 billion annually worldwide Li et al. (2007). Obviously, a serious investi-

gation of corrosion and delamination of reinforced concrete is essential to cut down the

renovation expenses and sustain the serviceability of these constructions. The incidence

of this type of damage is random and its pattern irregular. Normally concrete delami-

nation is a most complex issue and is related to corrosion of the reinforcement rebars.

Many methods and factors have though been suggested to quantify these problems.

The principal origin of premature corrosion of the steel reinforcement is due to exposure

to chloride ions. Existing in de-icing salts and seawater, with the presence of oxygen

and moisture, the intrusion of chloride ions enhances corrosion of the steel reinforcement.

Also, chloride ions can exist in water or admixtures, and can be dissolved from sound

concrete to reach internal steel and cause corrosion. Another key reason for steel rein-

forcement corrosion is the freeze-thaw effect. Once the water in moist concrete freezes,

it expands by 9% which produces stresses in the capillary voids of concrete. When these

stresses exceed the tensile strength of concrete, the cavities will crack. In addition,

1
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some chemical exposures deteriorate the structure. Portland cement concrete does not

possess good resistance to acid environments. Also, mineral acids and acid-containing

substances like industrial waste and silage cause damage to concrete PCA (2002).

Consequently, there are many causes of cracking of reinforced concrete that produce a

higher probability of environmental and chemicals attacks. Thus, these attacks lead to

corrosion and delamination at a later stage. For these reasons, detection and localization

of the damage especially at early stages are important before any repair strategy takes

place.

Non-destructive testing (NDT) of concrete structures has proven to be an efficient tech-

nique to detect the damage without any additional harm to the structure. Many tech-

niques have been applied to reinforced concrete, and these can be classified into different

categories based on the concept behind their approach and their application as shown in

Figure 1.1. This chapter discusses these general approaches, including their advantages

and limitations.

NOT methods 

Visual methods 

I 

Vibration methods 

I 
I 

Modal methods 

Natural frequencies, 
mode shapes, 

damping methods, ... 

I 

Wave methods 

Ultrasonic, acoustic 
emission, guided 
waves methods 

I 

Electro and magnetic 
methods

t------i Eddy current method 

Magnetic particle 
method 

I 

Thermal/Infrared and 
radiographic methods 

............Magnetic flux method 

Figure 1.1: Diagram of NDT techniques classification based on The American
Society of Non-destructive Testing ASNT (2015).



Chapter 1 Introduction 3

1.2 Literature review

1.2.1 RC beams

A reinforced concrete beam is a composite medium comprising concrete material sur-

rounding steel reinforcements (rebars) at the top and bottom of the beam. The concrete

is designed to take compression and partial shear stresses; however, steel reinforcements

(horizontal rebars) are designed to handle the tensile stresses. The remaining shear

stresses are taken by the stirrups (vertical rebars). The number, diameter and position

of the horizontal rebars are designed based on the bending moment distribution along

the beam. A typical RC beam is illustrated in Figure 1.2.

Support

Support

Hooked bar

Hooked
bar

Top horizontal rebars
Bottom horizontal rebars

Stirrups (vertical rebars)

Figure 1.2: Typical RC beam with horizontal and vertical reinforcements (re-
bars).

Prestressed concrete is a type of reinforced concrete in which at least part of the steel

reinforcement has been tensioned against the concrete. While concrete is strong and

ductile in compression it is weak and brittle in tension, and hence its response to external

loads is improved by applying precompression. This approach substantially increases the

external load required to crack the concrete.

In the pretensoning system, steel rods or tendons (individual wires or strands) are first

tensioned on a casting bed using jacks, and then concrete is poured as shown in Fig-

ure 1.3. However, in post-tensioning system, the concrete is first cast by taking into
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account grooves to include the tendons. When the concrete achieves enough strength,

the tendons are tensioned using jacks Raju (2007). In both cases, one should assure

good bonding between steel and concrete in order for the prestress effect to transmit

from steel to surrounding concrete.

Figure 1.3: A diagram illustrating a procedure for introducing prestress in a
reinforced concrete beam.

The prestressing of concrete has several advantages as compared to traditional rein-

forced concrete. A fully prestressed concrete member is usually subjected exclusively to

compression throughout its service life. This remedies or rectifies several deficiencies of

concrete. This results in many advantages for prestress of concrete compared to usual

RC.

First, due to the prestress effect, the concrete section remains uncracked under service

load. This produces a reduction of the steel corrosion and an increase in durability.

In addition, the full section is applied under the load effect since no cracking occurs

under service loads. This leads to a higher stiffness due to higher second moment of

area, and lower deformation and deflection causing improved serviceability. Besides, an

increase in shear capacity is resolved. Second, prestressed concrete allows high values of

the span-to-depth ratio, which is more suitable for bridges and high-rise buildings. This

capability gives a positive advantage for prestressed RC compared to usual RC when it

comes to architectural concepts for open area structures where longer spans are required.

Third, prestressed RC is more suitable for precast construction. This facilitates rapid

construction, better quality control, reduced repair and multiple use of the formwork.

The force applied to prestressing strands is normally 70 - 80% of the ultimate tensile

strength. There are a number of factors affecting the loss of force within the strands.

Furthermore, the degree to which these factors affect the prestressing force varies with
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time. For example, elastic shortening occurs at the moment of transfer, but relaxation

of the steel is assumed to have reached its peak after one thousand hours have passed

since prestressing.

Despite all the advantages of prestressed reinforced concrete versus conventional RC,

the circumstances of any damage in the reinforcement steel in prestressed RC is more

disastrous than in RC. This due to the fact that stress is present inside the steel strands.

For example, corrosion of these strands causes degradation of their diameter, and a

consequent increase in the stress within it. For a high level of corrosion, this phenomenon

leads to complete failure of the steel strands at the point where the stress exceeds the

ultimate tensile strength of the strands. For these reasons, an early detection of corrosion

in steel reinforcement in prestressed RC is crucial to prevent the subsequent damage at

later stages.

1.2.2 Overview of NDT methods

Non-destructive testing methods has been widely used in order to detect various types

of damage in structures. Based on the concepts behind their application, these methods

are classified into the following four main types shown as in Figure 1.1.

Visual methods involve the visual observation by the operator during inspection of the

structure whereby only visible damage can be identified. Vibration methods use the

vibration characteristics as a mean to detect damage, where either a modal or a wave

approach can be adopted. The modal methods consider modal vibration parameters,

such as natural frequencies, mode shapes and damping. However, wave methods focus

on wave features while waves are travelling in a waveguide. It includes ultrasonic, acous-

tic emission and guided waves. Ultrasonic approaches are local methods to detect the

damage through the thickness of a beam. Guided waves apply the change in the wave

scattering properties to identify the damage. In addition, the acoustic emission methods

are considered passive techniques that track down on the generation of waves produced

by a sudden redistribution of stress in a material. Other NDT techniques are possible,

such as electromagnetic methods applied to metallic materials, where resistance of the

metal and changes in the magnetic fields are associated with discontinuities and dam-

age. Finally, another method comprises a map surface scanning of the structure using

thermal/infrared or radiation approaches.

Most non-destructive assessment methods need advance knowledge of the likely locality

of the damage in the structure, and also require it to be humanly accessible. Thus, these

techniques only provide a local assessment of the structure Zou et al. (2000). Another

limitation concerns aging structures where built specifications are not available (design

drawings and building records). In this case, the structure ratings are provided by the

use of finite element models where these numerical models are based on the best assumed
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properties of the structure under investigation. Furthermore, most of these techniques

are time-consuming and expensive to apply. They are based on the principle of local

health monitoring. Eddy current testing, for example, requires pre-knowledge of the

crack location to determine the damage extent Chang et al. (2003).

Many techniques are presented in the literature for damage detection in reinforced con-

crete such as corrosion and delamination of the steel reinforcement. However, most of

these techniques are electrochemical techniques like electrical resistance probe, half-cell

potential and linear polarization that are only effective for small distances and are con-

sidered as local methods. For instance, an electrical resistance (ER) probe can monitor

corrosion by embedding a particular type of sensor in reinforced concrete. The resistance

can be expressed by a balancing bridge that is inversely proportional to the steel rein-

forcement cross section. As a result, corrosion is attributed to cross section reduction

due to corrosion by tracking the change in the resistance measured by the probes. Since

the ER method is directly related to the physical effect of carrion on steel reinforce-

ment and not vulnerable to electrochemical parameter variations, it is only effective for

long-term corrosion detection in reinforced concrete Lei and Zheng (2013).

Consequently, global health monitoring methods are essential to establish that damage

is occurring at the first stage before locating it and to avoid further deterioration. Exam-

ples of these methods include visual inspection and tap tests that are limited to locating

voids near the surface of concrete, de-bonding, spalling of cover, and major cracks due to

audible variations. These methods are only feasible when the damage is severe. Hence,

these type of evaluation methods are not feasible for large area structures such as slabs

and bridge decks. In contrast, the vibration based damage identification techniques can

work as both global and local health assessment methods.

Vibration-based methods can be divided into modal and wave based methods. The

modal methods require the modal characteristics, and the wave-based methods typically

require the wave characteristics of the structure. The majority of vibration methods are

model based methods where an intact structure is used as a baseline for comparison in

order to detect damage. For instance, guided waves are defined as stress waves forced

to follow a path defined by the material boundaries of the structure. Generally, when

a guided wave is incident on a structural discontinuity, it scatters in all directions. The

structural discontinuity could be damage in the structure such as a crack, delamination

or boundary. The pulse-echo and pitch-catch are the two approaches commonly used in

the guided wave techniques. In the pulse-echo method, the structure is excited with a

narrow bandwidth pulse, and a sensor collocated with the actuator is used to detect the

returning pulse coming from discontinuities. Using the wave speed and the boundary

locations, the the signals from the boundaries can be filtered out. Subsequently, the

remaining signal is employed to locate the damage. In the pitch-catch method, a pulse

signal is sent across the specimen where the receiver is located at the other end. From



Chapter 1 Introduction 7

various characteristics of the received signal, such as delay in time of transit, amplitude,

frequency content, etc., information about the damage can be inferred.

In this chapter both modal and wave based methods are discussed, focusing on the

advantages and limitations of each. Then, methods for modelling reinforced concrete

sections via FE are reviewed for different approaches. The FE modelling comprises both

reinforced concrete and prestressed reinforced concrete. In addition, the WFE method

is introduced, showing different applications especially for composite waveguides. Later,

coupling of damaged and undamaged waveguides using WFE solution is reviewed in

detail.

1.2.3 Modal damage identification techniques

Modal domain methods can provide global and local characterisation. Since the modal

parameters are functions of the physical characteristics of the structures (stiffness, mass,

damping and the boundary conditions), any variation of these features will lead to a

change in the modal features. Typically, damage decreases the stiffness of the structures

locally but increases damping. These methods are divided into natural frequency based

methods, mode shapes based methods and damping properties based methods.

Natural frequency based methods

Variations in the natural frequency is one of the main characteristics considered in modal

domain methods. One main limitation regarding the natural frequency based methods

relates to the lack of sensitivity to small cracks. Besides, the crack is often modelled as a

rotational spring using fracture mechanics that is not applicable for the high-frequency

modes and deep crack identification. As a result, these assumptions make the methods

limited to a particular type of beam and damage, and applicable to the first few lower

order modes based on the assumptions.

Another limitation is that the frequency shift due to damage can be small and hidden due

to environmental effects and errors. That is why this method works better under con-

trolled laboratory operating conditions. To account for this limitation, Ni et al. (2005)

introduced a method that quantifies the effect of temperature on modal frequencies

based on mapping the two features. Additionally, Kim et al. (2007) proposed a warning

model that identifies the damage using the changes in the natural frequencies and by

introducing temperature effects. Also, it was demonstrated that the damage could be

detected using frequency shifts of more than 1% once the environmental impacts are

filtered out.

Moreover, even with no measurement noise effects, damage identification suffers from

non-uniqueness in the possible solution. Obviously symmetric structures with symmet-

ric damage locations produce similar natural frequency shifts. Also, different crack
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severities and locations produce the same changes in the fundamental frequencies. This

phenomenon poses a problem for detecting various damage types and sizes. Dilena and

Morassi (2004) proposed the use of resonances and anti-resonances, when the frequency

measurements are limited, to detect a single crack and avoid non-uniqueness. Another

critical limitation is that changes in frequencies due to the presence of damage might be

undetectable or insignificant in comparison with changes resulting from environmental

and temperature conditions. For in situ applications, it is necessary that one has at least

a 10% change in the natural frequency due to damage in order for it to be detected. Sub-

sequently, a statistical damage detection model using pattern recognition technique was

developed to distinguish damage-induced changes from temperature-induced changes

(Ni et al. (2005), Kim et al. (2007)).

The forward problem is to determine the resonance changes based on the location and

severity of the damage. Gudmundson (1982) used an energy-based perturbation ap-

proach to derive an explicit expression for the resonance frequencies of damaged struc-

tures where this method expresses the losses in stiffness. Due to the fact that the

frequency sensitivity is proportional to the potential energy stored in the cracked cross

section of the undamaged beam, Liang and Choy (1992) developed the relationship

between the fundamental natural frequencies and the location and the severity of the

damage for a simply supported or cantilevered beam based on a frequency sensitivity

method. Also, Morassi (1993) showed that the frequency sensitivity approach can be

used for a cracked beam using a general perturbation approach. Kasper et al. (2008)

derived the explicit expressions for frequency shifts for a cracked symmetric uniform

beam that can be applied for shallow and deep cracks. These expressions are based on

a high-frequency approximation and are not effective for the fundamental frequencies.

On the other hand, the inverse problem method is the identification of the damage based

on the natural frequency measurements. Liang and Hu (1991) developed a method for

detecting the crack in a uniform cantilevered or simply supported beam using three

bending natural frequencies. Based on fracture mechanics, the crack size is related to its

stiffness. Nandwana and Maiti (1997) had extended this method to stepped beams, and

Chaudhari and Maiti (2000) to segmented beams using the Frobenius method to solve

an Euler-Bernoulli type differential equation. Then, Lele and Maiti (2002) extended

Nandwana and Maiti’s method to cover a short beam; the shear and rotational inertia

effects are provided through the Timoshenko beam theory.

Using shifts in a pair of the natural frequencies, Morassi (2001) identified a single crack

in a vibrating rod based on an explicit expression for the frequency sensitivity to dam-

age. Later, Morassi and Rollo (2001) extended the method to cover two cracks of the

same severity in a simply supported beam under flexural vibrations. In addition, cracks

with different severity in symmetrical positions and in various locations produce iden-

tical changes in the first three natural frequencies. By relating fractional changes in

the modal energy to changes in natural frequencies due to damage, Kim and Stubbs
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(2003) presented a single damage indicator (SDI) method to locate the crack in a beam

using a few fundamental frequencies. Zhong et al. (2008) introduced the spectral cen-

tre correction method (SCCM) that provides a simple solution to damage identification

using output only time histories of the beam’s response. However, only finite element

verification was presented in free noise setup for detecting small changes in the natural

frequencies. Also, Pawar and Ganguli (2016) applied the fuzzy genetic system to detect

a matrix crack in thin-walled composite structures. Nevertheless, in concrete structures

the deterioration of steel reinforcement has a small effect on the changes in the natural

frequencies since the majority of the structural stiffness is related to the concrete.

Mode shape based methods

The use of mode shapes and their derivatives for damage detection is considered more

advantageous than natural frequencies. First, the mode shapes represent local infor-

mation. Second, mode shapes are less affected by the environmental effects such as

temperature. On the other hand, mode shape measurements require a set of sensors,

and are more sensitive to noise contamination than natural frequency measurements

(Wei and Pizhong (2010)).

Methods based only on the mode shapes are not too sensitive to damage and suffer many

limitations. Without applying signal processing or pattern recognition techniques, these

methods seem more applicable as a preliminary damage detection approach rather than

specific localization for damage. Therefore, these methods are limited when it comes to

in situ testing especially for experiments on undamaged structures. In fact, mode shape

based methods require measurements at multiple locations that necessitate a high spatial

resolution, and a high signal to noise ratio should be provided for the measurements to

be valid. Also, changes due to the damage should be distinguished from those due to

environmental effects (Burcu and Oguz (2013)).

Methods based only on mode shapes are not effective for detecting damage due to cor-

rosion, connection problems, degradation and delamination that provoke small changes

and they are usually contaminated with measurement noise. Also, it uses the baseline

data from the intact structure or its accurate finite element model and compares it to

the mode shapes of the damaged structures for damage identification. Shi et al. (2000)

extended the damage localisation method based on multiple damage location by using a

two-step damage detection: using mode shape data first as a preliminary step to localise

the damage region, and then using the natural frequency changes to precisely identify

the damage location and size. Abdo and Hori (2002) showed that the rotation (first

derivative of displacement) is more sensitive to damage and shows better sensitivity to

multiple damage than the displacement modes, that do not have a good performance

when it comes to small damage even with high spatial resolution measurements. The

mode shape curvature (MSC) is a second derivative method, and it is more efficient at
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recognising stiffness loss of the damaged member rather than the mode shapes them-

selves. However, the MSC method is very sensitive to noise.

Using Euler-Bernoulli beam theory, the strain at the top surface of the beam under

bending is proportional to the curvature. As a result, the curvature mode shape of

a slender beam can be measured by strain mode shapes. On the other hand, this

method is not quite valid if the damage is distributed along the structure and if no

baseline is available for the undamaged structure. However, even with no baseline,

by observing anomalies in the deflection profile or curvature, one can locate possible

damage. Abdel Wahab and De Roeck (1999) suggested the use of a fine mesh to derive

the modal curvature for high order modes and that the first mode will provide the

most accurate curvature in practical applications due to the limited number of sensors.

Subsequently, the curvature damage factor was established as a damage indicator, that is

the absolute average difference between the intact and damaged curvature mode shapes.

This technique was applied to a bridge and proved its effectiveness for multiple damage

locations. Rahai et al. (2007) subsequently developed a finite element based approach

using incomplete measured mode shapes and natural frequencies to detect the damage

in structures.

Damping based methods

Damping properties have been rarely used for damage detection due to the high er-

ror and variability associated with damping measurements and the variety of damping

definitions. Reliable measurement and accurate modelling of damping are difficult. Far-

rar and Doebling (1999) presented large differences in the measured damping values

under laboratory tests. In the case of a long suspension bridge, damping ratios were

overestimated due to bias errors.

Undetectable cracks exist, because the effect is to produce very small changes in the

natural frequencies and hence it is necessary for higher order mode shapes to be exam-

ined. However, they lead to larger changes in the levels of damping. Kawiecki (2000)

has suggested that damping can be a real damage indicator when it comes to lightweight

structures and microstructures. Also, Curadelli et al. (2008) used wavelet transforms to

obtain the instantaneous damping coefficients. The experiment was conducted on a sim-

ply supported reinforced concrete beam and a one-bay six-story aluminum frame, and

the results showed that damping is more sensitive to damage than natural frequency.

1.2.4 Wave based methods and damage detection in RC beams

All modal based techniques are dependent on the boundary conditions of the struc-

ture, since they involve resonances produced by wave reflections in the waveguide. In

reinforced concrete structures, structural members like beams and columns are not com-

pletely fixed nor completely pinned. For this reason, the use of modal based techniques
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for damage detection is not always very robust, since the boundary conditions are not

well categorised. In contrast to modal based techniques, wave based techniques are

inherent characteristics that are independent of the boundary conditions and are there-

fore more feasible to detect damage in reinforced concrete structures with uncertain

boundary conditions.

By tracking the changes in the wave characteristics throughout the waveguide, or by

comparing wave propagation features, damage can be detected. For instance, flexural

wave reflection coefficients in a cracked isotropic uniform beam are proven as a feature for

damage detection since they depend on frequency and the size of the damage Shone et al.

(2007). To present a dynamic model of the cracked beam, a combination of the finite

element method and spectral element method was used. The dynamic stiffness matrix of

a section of the beam introducing a single-edge transverse crack was determined via finite

element analysis. Then, by combining finite element analysis with a spectral element

model, reflection and transmission matrices for the crack were derived. It was shown

that certain cracks provide considerable wave reflection.

Also, locating discontinuities (known boundaries or unknown damage) using two or more

point frequency response functions (FRFs) has also been used (Shone et al. (2009)). By

plotting against the flexural wavenumber, the FRF phase shows variations due to wave

interference between incident and reflected waves. Thus, this is related to the distance of

the excitation source from these discontinuities, that are allocated after using an inverse

Fourier transform to translate from the wavenumber domain to the spatial domain.

Several uniform isotropic beams damaged by sawing transverse slots produced successful

results during experiments.

Different wave-based techniques have been used as potential methods for locating dam-

age. However, difficulties arise when it comes to composite structures due to coupling

and energy leakage between two or more media. Another limitation is present due to the

correct modelling of the composite media and the proper coupling of different degrees of

freedom associated with each material. Potential solutions and limitations of detecting

corrosion and delamination in steel reinforcements were reported in the use of the guided

waves approach (Lei and Zheng (2013)). For instance, these approaches were demon-

strated to detect corrosion effectively via tracking the interface roughness or debonding

between the steel reinforcement bar and the surrounding concrete. However, it is still a

challenge to develop an efficient technique for monitoring both combined effects.

Furthermore, due to expansion stresses induced by corrosion of the reinforcement steel,

the surrounding concrete cracks and releases energy in the form of sound waves. Conse-

quently, these waves can be pursued using acoustic emission sensors. Although acoustic

emission methods are efficient to detect corrosion in reinforced concrete, they are passive

method and only applicable in structural health monitoring while the structure is under

service and loading and not structural inspection conditions. Moreover, none of the
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techniques already presented focus on corrosion detection directly through assessment

of the steel reinforcement. These latter based methods are known as physical based

techniques and compared to other methods, proposed to be more precise in early term

detection of steel corrosion. Ultrasonic guided waves (UGW) were among the early

proposed physical based techniques (Lei and Zheng (2013)).

When mechanical vibrations propagate in elastic media, they produce elastic waves and

when the frequency is greater than 20 kHz these are called ultrasonic waves. Bulk

waves propagate in an infinite media and are associated with longitudinal and shear

waves, and guided waves are like Rayleigh and Lamb waves in finite media that are in

accordance with boundary reflections and refraction. The guided waves are compatible

with the elastic theory when propagating in elastic media, and with viscoelastic theory

in non-elastic media. By considering a steel rebar as an elastic media, the guided waves

propagating are associated with the elastic theory (Li et al. (2012)).

In detecting corrosion in steel reinforcement, guided waves are based on two main prin-

ciples. Due to corrosion, the surface of the rebar becomes rougher which increases the

friction and bonding with the surrounding concrete. Consequently, energy leakage from

the rebar to the concrete arises, and implies a decrease in the strength of the recorded

guided waves signal. In contrast, delamination of concrete caused by corrosion leads to

separation between the rebar and the surrounding concrete. As a result, energy leakage

from the rebar to the concrete decreases, and implies an increase in the strength of the

recorded guided waves signal (Miller et al. (2012)).

By considering the steel rebar as a solid cylindrical waveguide, there are three types of

propagating waves: longitudinal L (0, m), torsional T (n, m), and flexural waves F (n,

m). The notation m is associated with the circumferential displacement, and n with the

sequential order of the mode. When n = 0, the displacement is axisymmetric. However,

when n = 1,2,3 ... the displacement is asymmetrical. For instance, L (0, m) and T (0,

m) are axisymmetrical nodes, while F (n, m) is an asymmetrical mode.

As shown by Lei and Zheng (2013), the two main parameters for wave propagation are

the phase and group velocities as shown in Figure 1.4 and Figure 1.5 respectively. The

numerical results are for a 22 mm diameter steel bar in air with density 7932 kg/m3. The

first is the speed of the wave propagation at each discrete frequency in the waveguide,

whereas the second is the speed of the wave envelope propagation. Both plots are called

dispersion curves and show the variation of the velocities with respect to frequency for

all wavetypes (axisymmetrical and asymmetrical). Clearly different modes are present

at a single frequency, which indicates the possibility of multiple modes propagating in

UGWs. Furthermore, the cut-off frequency is clear for all modes except for L (0, 1) and

F (1, 1), which are the only modes to be excited and propagate below 87 kHz. This

limit is critical when selecting the excitation frequency of the guided wave in a rebar.
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Figure 1.4: Phase velocity dispersion curve of steel reinforcement rebar Lei and
Zheng (2013).

Figure 1.5: Group velocity dispersion curve of steel reinforcement rebar Lei and
Zheng (2013).

The effects of stress, temperature and concrete strength on the guided waves through

the steel reinforcement are presented in Li et al. (2012). Although the wave velocity of

the guided waves changes with external stress according to elasticity theory, it has been

shown that the group velocity of the L (0, 1) mode remains approximately unchanged

at the same frequency. As a result, in the concrete interface delamination detection, the

stress effects can be ignored via the UGW method. In addition, a set of different concrete

strength specimens were tested in a chamber with the typical ambient temperature of

civil engineering structures ranging from -40 ◦C to 60 ◦C. It has been shown that these

specimens with different strength have similar group velocities for the L (0, 1) mode.



14 Chapter 1 Introduction

Thus, this group velocity remained stable for the selected temperature range. Moreover,

concrete with higher strength corresponds to having a higher bonding strength with the

steel reinforcement, leading to higher energy leakage from the rebar to the surrounding

concrete. This has been proved by comparing concrete strengths of different specimens

with the received UGW signal at the first wave peak value. It has been found that an

increase in the concrete strength is associated with a decrease of this peak value and

vice versa.

Despite the fact that UGWs are effective techniques to detect damage in steel reinforce-

ment, they face three main difficulties as presented in Miller et al. (2012). First, since

during corrosion both roughnesses of the steel section and separation from surrounding

concrete occur simultaneously, the net signal strength might either rise or fall based

on which effect is dominant at that time. Thus, a change in the net signal strength is

not always associated with increased corrosion. Second, there are two energy profiles

associated with two modes A and B related to the guided waves through the rebar from

transmitter T to receiver R. It should be distinguished that both longitudinal and flex-

ural modes can be of type A or B. In Figure 1.6, since mode A is associated with the

energy profile propagating near the circumference of the steel rebar, it is more sensitive

to corrosion at the interface between steel and concrete. While for mode B, the energy

is restricted to be located near to the core of rebar and thus it is less affected by inter-

face corrosion, but it causes the wave to propagate longer distances through the rebar.

Therefore, mode B is preferably used in UGW due to the low level of energy leaking from

steel rebar into the concrete. Finally, when the plain steel bar is replaced by a rebar,

mode A cannot be used as a propagating wave through the rebar since it is sensitive to

its non uniform surface texture that increases wave attenuation significantly.

Figure 1.6: Two types of guided wave modes A and B can propagate from the
transmitter T to the receiver R Miller et al. (2012).

In Li et al. (2012), the longitudinal UGW has been validated experimentally to de-

tect interface corrosion. Proper signal length and modes are selected after plotting the

dispersion curves of a steel rebar via numerical calculation. Small defects are recog-

nised through numerical simulation, and modes are separated via a 2D FFT based on
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the coupled waveforms. The peak signal value decreases with an increase in the con-

crete strength, and the condition of the steel-concrete interface is analysed in both the

time and frequency domain. Consequently, energy attenuation is found as an accurate

factor for defining the bonding condition. Miller et al. (2012) proposed a new guided

wave-based technique for corrosion detecting in reinforced concrete, which expresses the

change in the time of flight (TOF) of the propagating wave in loaded reinforced concrete

structures with different corrosion levels. Unlike other UGWs techniques in steel rein-

forcement, this method is insensitive to the binding condition between the sensors and

the specimen. Moreover, experimental results verify that the degree of corrosion affects

both the recorded signal strength and TOF and that interface corrosion increases the

signal strength while induced corrosion in bars reduces it. For in situ applications, a

TOF shift between a corroded and non-corroded rebar is considered to obtain the level

of corrosion.

All of the reported UGW experiments in reinforced concrete are based on the config-

urations shown in Figure 1.7 and Figure 1.8, where the transmitter and receiver of

longitudinal guided waves are attached to the exposed ends of steel reinforcement that

are offset from the sides of the concrete beam. These two configurations are not feasible

for practical civil engineering structure conditions where steel reinforcement offset is not

present. In addition, from reinforced concrete design theory, a rebar is added to concrete

to take tension stresses induced by transverse load. Thus, no rebar exists in the central

section in the concrete beam where the flexural stresses are zero.

Figure 1.7: Concrete beam with central reinforcement rebar Miller et al. (2012).

As a result, the experimental configuration in the current UGWs used for corrosion

detection in reinforced concrete is only feasible in laboratory conditions, where longitu-

dinal guided waves are introduced in the rebar by directly attaching the transducers to

the offset part of it. However, for typical reinforced concrete beams, this installation is

impossible since no steel reinforcement is visible outside the concrete section. Thus, an

alternative solution is needed where all these structural limitations are considered. So,

this project will adopt vibration-based techniques and more precisely guided waves in
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Figure 1.8: Schematic diagram of concrete beam with two reinforcement rebar
and PZT positions Lu et al. (2013).

detecting corrosion in steel reinforcement embedded in concrete beams. The challenge

is to develop these methods which can be adapted on reinforced concrete beams without

direct contact between the transmitter and steel reinforcement. One step towards this

goal is to identify the wave types present. Since it is a composite medium, a numerical

approach is needed and WFE method has been adopted. However, it is necessary first

to model a reinforced concrete section via FE in order to extract the associated mass

and stiffness matrices. A review of the WFE approach is presented in the subsequent

section.

1.2.5 Modelling RC using Finite Element method

Before applying the WFE approach to an RC beam, the reinforced and prestressed

concrete section should be modelled via FE in order to extract the associated mass

and stiffness matrices. An FE model is required with the least number of DOFs to

decrease the computational time and cost. Across the literature, different scenarios

have been used to model RC and prestressed RC. However, all of the methods modelled

concrete using solid elements and the publications differed in how they modelled the steel

reinforcements. Modelling of damage as pitting corrosion in a steel rebar was modelled

using a finite element model by removing elements along the circumference as presented

in Subsection 1.2.4 via Lu et al. (2013) and Zheng et al. (2014).

One approach is to model a reinforcement as bar or link element. To ensure bonding

between the steel reinforcement and concrete, combined elements are used alongside

the linked elements. Another approach is to use smeared elements, representing as a

percentage reinforcement in the concrete solid elements, and therefore no bonding slip is

assured. The smeared reinforcing method is suitable for modelling clusters of reinforcing

fibres appearing in group or layer form. Each is simplified as a homogeneous membrane

having unidirectional stiffness, and must have uniform cross-section, material, spacing

and orientation (ANSYS (2013)). In addition, modelling of a prestressed RC is similar

to a typical RC model except that one needs to introduce the effect of prestressing in

the reinforcement rebars.
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Modelling RC using linked or smeared elements

In most of the literature, concrete was modelled using 3D eight node brick elements.

In the latest version of ANSYS for example, concrete corresponds to the SOLID65

element, and the steel reinforcements are present using two node elements, via LINK8

or LINK180. The latter connects nodes of adjacent concrete solid elements with a steel

reinforcement location to ensure that the two materials shared the same nodes. Another

approach is to model steel reinforcements as smeared elements and introduced them as

a percentage change in the properties of the concrete element.

For an example of using linked elements in modelling RC, Ibrahim and Mahmood (2009)

presented a finite element model of a reinforced concrete beam using ANSYS, where

it was additionally reinforced with fibre reinforced polymer laminates (FRP) on the

external bottom surface. The results obtained from the finite element model as load-

deflection curves at mid-span and failure load were compared to experimental data, and

good agreement was shown between the two. Ravi and Arulraj (2010) introduced an

FE model for the behaviour of reinforced concrete beam-column joints retrofitted with

carbon fibre reinforced polymer sheet. In order to validate the model, the performance of

the retrofitted beam-column joint to static load was compared to the control specimens.

Fathelbab et al. (2011) published a parametric study of the strengthening of reinforced

concrete beams due to excessive uniform loads in flexure, shear and a combination of

flexure and shear, using externally introduced bonded FRP sheets. ANSYS models have

been used to perform many structural linear and non-linear predictions using several

FRP configurations. The models demonstrated that the beam is strengthened in both

flexure and shear, gave a higher ultimate load capacity and helped in delaying the failure

and preventing debonding.

In addition, Jayajothi et al. (2013) applied a nonlinear finite element analysis to simulate

the behaviour of failure modes of strengthened FRP RC beams. This is accomplished

by selecting the large displacement option in the solution control. Four beams were

modelled using ANSYS. A quarter of the full beam was used for modelling, taking

advantage of the beam symmetry, loading and boundary conditions. From analysing

the load deflection relationships until failure, the crack patterns were obtained from

plotting results and compared with the experimental results available in the literature.

Another ANSYS based investigation tried to identify a crack in RC beams. Dahmani

et al. (2010) presented a three-dimensional nonlinear finite element model of a reinforced

concrete beam, where the concrete was again modelled using SOLID65 elements. How-

ever, the steel reinforcements were modelled as smeared reinforcements and introduced

as a percentage of the steel embedded in concrete. Convergence between analytical and

simulation results was illustrated including critical crack regions, reaction loads and

deflections for various types of loadings. Al-Amin and Ahsan (2012) conducted the per-

formance of an RC column under monotonic lateral loads via finite element modelling.
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Cantilever columns modelled using ANSYS considered the nonlinear stress-strain rela-

tionship of the concrete and bilinear behaviour of steel. The results were in agreement

with field experimental data, and the sensitivity of the load-deflection curve to changes

in the column geometry was discussed.

Modelling RC using linked and combine elements

Combine elements ANSYS (2013) are used alongside the linked elements in order to

model reinforcements and to insure bondage with the concrete. They are unidirectional

springs with generalized force-deflection capability that can be used in any analysis.

They have longitudinal or torsional capability in 1-D, 2-D or 3-D applications. The

longitudinal option is a uniaxial tension-compression element with up to three degrees

of freedom at each node i.e. translations in the nodal x, y, and z directions. No bending

or torsion is considered. The torsional option is a purely rotational element with three

degrees of freedom at each node i.e. rotations about the nodal x, y, and z axes. No

bending or axial loads are considered. The element has large displacement capability

for which there can be two or three degrees of freedom at each node ANSYS (2013).

For instance, Ghods et al. (2014) studied the effect of rebar corrosion on the behaviour

of a reinforced concrete beam using modelling and experimental results. A corroded

reinforced concrete beam, whose experimental results are available, was modelled in

FE using ANSYS. The concrete was modelled using SOLID65 elements, and the steel

reinforcements were present via LINK8 elements. In addition, the COMBIN39 element

was applied for modelling the cohesion between the concrete and the rebar. This element

can have zero length, and the start and end nodes between the steel and concrete can be

defined as coincident as shown in Figure 1.9. The results show that a reduction in the

steel reinforcement area and a change in the bond strength between the concrete and

the reinforcement were seen in the model. The effect of reinforcement corrosion on the

force-displacement curve and the modelled beam were also studied and compared with

the results from actual reinforced beams tested.

Badiger and Malipatil (2014) undertook a parametric study of a four bending point

analysis. Their ANSYS model, with nonlinear static analysis, modelled the concrete

using SOLID65 elements, and the steel reinforcements were represented via LINK180

elements. The results with respect to mesh density, varying depths, use of steel cush-

ions for support and loading points, effect of shear reinforcement on flexure behaviour

and impact of the tension reinforcement on the behaviour of the beam were analysed

and discussed. More recently, Jnaid and Aboutaha (2015) predicted the behaviour of

reinforced concrete beams with unbonded reinforcement using a nonlinear FE ANSYS

model. Loss of bond between the reinforcing steel and surrounding concrete was mod-

elled using vertical spring elements COMBIN14, where the longitudinal spring-damper

option was activated and the element was considered as a uniaxial tension-compression
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Figure 1.9: RC section model in ANSYS using SOLID65 (solid element for
concrete) and LINK8/180 (beam element for steel).

element with up to three degrees of freedom at each node. The FEA model was com-

pared to existing experimental data. The model was able to predict the ultimate flexural

strength, load-deflection curve and crack pattern of concrete beams with unbonded re-

inforcement.

Modelling prestressed RC using linked and combine elements

Similar to RC beams, prestressed reinforced concrete beams need to be modelled via

FE before applying the WFE approach. In most of the ANSYS based models in the

published literature, the concrete was modelled using SOLID65 elements, and the steel

reinforcements and prestressed tendon were represented via LINK8 or LINK180 ele-

ments. The post-tensioning was modelled via an initial strain in the tendon elements,

corresponding to tendon tensile forces in a preliminary load stage. For this reason,

smeared elements cannot be used to model prestressed RC since they are introduced as

a percentage change in the concrete solid element and one cannot assign an initial strain

to this kind of representation.

Fanning (2001) introduced nonlinear models of reinforced and post-tensioned concrete

beams using ANSYS. Appropriate numerical modelling strategies were recommended

and comparisons with experimental load-deflection responses were discussed for ordinary

reinforced and post-tensioned concrete T-beams. Following on from this, Kim et al.

(2010) undertook nonlinear finite element analysis of unbonded post-tensioned concrete

beams. A 3-D finite element model using ANSYS was developed for simulating the

nonlinear flexural behaviour and comparisons made with experimental results. The

effects of various prestressing forces on the flexural behaviour of post-tensioned beams

were investigated. In these models the concrete was modelled using SOLID65 elements,

the steel reinforcements represented via LINK8 elements with prestress effect introduced
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via initial strain in the latter. Li and Zhang (2011) identified natural frequencies and

mode shapes of a prestressed concrete beam using ANSYS. Kote et al. (2014) illustrated

the analysis of a prestressed concrete beam for determination of the physical responses

such as deflection and stress distribution under a static concentrated load at the centre

of the beam, also using ANSYS.

Joshuva et al. (2014) studied load-deflection responses, variations in the stresses in the

concrete and steel and the crack patterns at critical stages of loading for reinforced

and prestressed RC beams. The numerical predictions were compared to the data ob-

tained using the theories of structural analysis. Padmarajaiah and Ramaswamy (2002)

assessed flexural strength of prestressed concrete beams with fibre reinforcement. A

three-dimensional nonlinear finite element analysis was conducted using ANSYS to study

the flexural behaviour of both fully and partially prestressed fibre reinforced concrete

beams. The interface behaviour between the concrete and reinforcement was modelled

using COMBIN14 spring elements, with different properties to capture the effect of bond,

bond-slip and peel-off. Each prestressing/deformed bar LINK8 contains two springs at

each end (COMBIN14 elements), one acting perpendicular to the prestressing/bar steel

to maintain concrete-steel bondage and one acting parallel to prestressing/bar steel to

express the effect of prestress. A comparison of the results from both test and analysis on

all 15 specimens, confirm that inclusion of fibres over a partial depth on the tensile side

of the prestressed flexural structural members was economical and led to considerable

cost saving without sacrificing the desired performance.

Subsequently, most of the literature reported follows a representation of the concrete as

solid elements in the FE model approach. However, steel reinforcements can be modelled

as linked with combine elements or a smeared element in the concrete media. In the

prestressed RC model, the prestress effect is introduced as an initial strain in the linked

elements. That is why the smeared approach cannot be used for prestressed RC in FE.

Modelling of damaged rebar due to corrosion

The two most common types of corrosion phenomena that affect reinforcing steel are

general and pitting (localised) corrosion. General corrosion is found when there is a

relatively uniform surface attack on the steel. This rarely happens for steel embedded

in concrete exposed to an aggressive chloride environment, but is more likely a result of

carbonation.

On the other hand, in a chloride environment, pitting corrosion is the most likely cor-

rosion phenomena to occur in RC structures. Attacked by the chlorides ions, the metal

protective layer is damaged and corrosion starts to develop. Chloride sources vary, such

as salt spray in marine environments from the application of de-icing salts and in some

cases from concrete admixtures Darmawan (2010).
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In Lu et al. (2013), the characteristics of UGWs were investigated for detection of cor-

rosion in reinforced concrete beams where damage was represented experimentally by

the partial removal of different lengths of the rebar. Due to leakage of energy from the

steel to the surrounding concrete, the guided wave’s magnitude and velocity decrease

along the steel reinforcement. To compensate for this effect, statistical parameters rep-

resenting the wave characteristics were extracted from the captured signals to identify

the rebar conditions.

Subsequently, in Mustapha et al. (2014), the propagation properties of UGWs in steel

reinforcement were investigated. Also, to reduce the noise in the captured wave and to

overcome the difficulty of wave conversion, a wavelet transform was adopted. Afterwards,

in Zheng et al. (2014), pitting corrosion in a steel rebar was modelled using a finite

element model by removing elements around the circumference. Numerical simulations

show the feasibility of corrosion prediction via UGWs by tracking the characteristic of

the time-frequency localization using a wavelet transform. Due to energy leakage from

the steel rebar to the surrounding concrete, the wavelet analysis was used for extremely

weak signals.

In this thesis, different amounts of damage representing corrosion of the steel reinforce-

ment in the RC members are considered. Corrosion is modelled as a percentage reduction

in a reinforcement diameter over a specified length. Moreover, this reduction is localised

over a small length in order to represent the pitting corrosion effect.

1.2.6 Wave Finite Element method and coupling of waveguides

After modelling a reinforced and prestressed concrete section using an FE model, and

after extracting the corresponding mass and stiffness matrices, the WFE approach can

be applied to each waveguide. Throughout the literature, the WFE method has been

applied to both simple and complex waveguides in order to identify the wave character-

istics. The WFE concept relies on the notion of predicting the wave characteristics of a

repetitive structure through analysing the wave propagation within a periodic element.

By taking a short section of the waveguide, and by expressing the continuity of displace-

ments and equilibrium of forces between the boundaries, an eigenvalue problem is posed

in terms of a transfer function. By solving this problem at each specified frequency, the

eigenvalues are related to the wavenumbers of the waveguide that relate the variables

to the right and left side of the section, and the eigenvectors are associated with the

internal displacements and forces.

Duhamel et al. (August 2003) presented the WFE method for simple homogeneous one

dimensional waveguides. The efficiency of this method was compared to the spectral FE

method via the forced response of a finite beam and plate-strip. In Mace et al. (2005),

wavenumbers, energy and group velocity were presented and discussed for a beam, a
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simply supported plate strip and a viscoelastic laminate. Mencik and Ichchou (2007)

formulated and solved wave propagation in guided elastodynamic structures filled with

acoustic fluid using WFE. Free and forced frequency responses of the waveguide were

presented, and comparisons between the proposed method and classical theories were

formulated showing that this method is not limited to low frequencies. Arrud et al.

(2007) also compared the wave finite element and spectral element method. A simple

Timoshenko beam and Kirchhoff Levy plates were used as an illustration. In a later

application, Waki et al. (2009b) expressed free and forced vibrations of a tyre using

the WFE formulation on a short circumferential segment, and results were compared to

experiments. Then, Waki et al. (2009a) considered numerical issues concerning the wave

and finite element method for free and forced vibrations of waveguides, and a robust

procedure was proposed.

Manconi and Mace (2009) applied the WFE approach to identify the wave characteristics

in cylindrical and curved panels. These include isotropic, orthotropic, and laminated

sandwich constructions. Despite the complexity of these sandwich panels, accurate dis-

persion curves were found at a small computational cost. Later, Manconi and Mace

(2010) employed the approach to predict wave dispersion, wave attenuation and dis-

sipation in viscoelastic laminated panels. In addition, a formulation to calculate the

average loss factor of an anisotropic component was proposed. Dispersion curves for

different damped laminated panels were evaluated. Renno and Mace (2010) formulated

a rectangular segment as a waveguide via WFE. Then, the forced response to a con-

vected harmonic pressure (CHP) was formulated, where a comparison was presented

between FE and WFE predictions of a frequency response function for a cantilevered

laminated beam. Furthermore, Renno and Mace (2011) calculated the forced response of

two-dimensional homogeneous media via WFE. Numerical examples covered isotropic,

orthotropic and laminated plates. Zhou et al. (2011) compared the wave propagation

between the semi-analytical finite element (SAFE) method and WFE for a steel pipe.

Efficiency and accuracy of both methods were examined.

Following this, Manconi et al. (2013) predicted the effect of pre-stress on the damping

of curved panels through the waves solution via WFE. It has been shown that prestress

reduces the global loss factor especially for radial displacement modes. Renno et al.

(2013) modelled the dynamic behaviour of plane and axisymmetric laminated struc-

tures via WFE. Numerical examples were presented, including anisotropic, plane and

cylindrical foam-cored laminated sandwich constructions with pre-stress.

One of the major advantages of the WFE method is that the solutions produce the dis-

placement and forces at each DOF, which can be used to couple damaged and undamaged

waveguides to predict the reflection and transmission coefficients due to a defect. One

method is to implement the continuity and force equilibrium conditions between the

damaged and undamaged section. In this case, the coupling of a WFE-FE-WFE model

approach is used where the damaged waveguide is only modelled via FE.
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For instance, Ichchou et al. (2009) formulated the WFE method to obtain the eigen-

values/eigenvectors solutions for rectangular cross section waveguides. The diffusion

matrix prediction model (DMM) was used to couple damaged and undamaged waveg-

uides, where higher modes show sensitivity to damage modelled as a notch within the

section. In addition, Zhou and Ichchou (2010a) expressed wave excitation and scatter-

ing using the eigensolutions from WFE of coupled structures comprising damaged and

undamaged plates. Then, Zhou and Ichchou (2010b) used the WFE method to obtain

the wave characteristics of a curved beam. Mode conversion, reflection and transmission

coefficients were used to localise damaged portions.

Renno and Mace (2013) calculated the reflection and transmission coefficients of joints

using a hybrid finite element/wave and finite element approach, where the joint was

modelled via FE and a small portion of the waveguide is described via a WFE model.

The two waveguides are coupled in order to get the reflection and transmission coeffi-

cients of the joint. Forced response examples were presented for two rods connected at

a point mass, an L-frame configuration and lap-jointed laminated beams with a slot.

Kharrat et al. (2011) proposed the identification and sizing of defects in pipelines by the

wave finite element method using torsional guided waves. Reflections from cracks are

expressed as a methodology to identify damage sizing. WFE was adapted to predict the

wave characteristics of hollow cylinders, and good agreement was found with respect to

full finite element simulation. Later, Kharrat et al. (2014) used WFE to construct a

numerical database of reflection coefficients by varying the dimensions of the damage in

pipelines. Torsional guided waves were also proposed for pipeline inspection. Further-

more, Kessentini et al. (2016) used the evolution of the scattering coefficients via the

dynamic stiffness matrix of the coupling elements in order to illustrate the forced re-

sponse to pressure excitations for both single and coupled waveguides with and without

damping effects.

Another method is to model each waveguide via WFE, and couple damaged and undam-

aged sections via a wave approach by considering a junction between the waveguides of

different types. In this case, the coupling of a WFE-WFE-WFE model methodology

is used. For instance, Harland et al. (2001) presented the reflection and transmission

coefficients of waves passing through two different beam waveguides. By considering

the continuity and equilibrium equations at the junction, incident, reflected and trans-

mitted waves can be related through WFE solutions as displacement and forces of each

waveguide. Next, Lee et al. (2007) introduced the reflection and transmission calcula-

tion through a finite length connector separating two beams by expressing the incident,

reflected and transmitted waves at each junction. Comparison of an exact solution with

discrete models were presented as well.

To summarise, the WFE method has been applied to both simple and complex waveg-

uides. The solution can be used to couple damaged and undamaged waveguides. Scat-

tering properties can be identified and subsequently, potential damage-sensitive modes
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associated with high reflection features can be classified. However, the WFE approach

has not been applied to RC sections in any of the literature. In this thesis, the approach

is applied to RC sections with different damage scenarios. Then, the solution is em-

ployed to define a damage sensitive criteria based on the high reflection of particular

wave modes.

1.2.7 Conclusions

In summary, damage detection due to delamination in composite structures is not de-

tected effectively and precisely using a single vibration-based methodology. In reinforced

concrete structures, the stiffness of the structures is dominated by the concrete. There-

fore, the delamination/corrosion or debonding in the steel reinforcement is not accu-

rately identified by using only a single vibration-based method. Also, damage should

be detected at earlier stages to increase the durability and life cycle of the structure.

Furthermore, a reinforced concrete section cannot be modelled as a thin beam to be

completely consistent with Euler-Bernoulli theory. That is why it is preferable for the

reinforced concrete beam to be modelled as a deep beam, and consequently compatible

with a Timoshenko beam theory model.

Moreover, none of the techniques already presented focuses on corrosion detection di-

rectly through assessment of the steel reinforcement. These latter methods are known

as physical based techniques and are compared to other methods. Ultrasonic guided

waves (UGW) was among the proposed physical based techniques. In detecting corro-

sion in steel reinforcement, guided waves are based on two main principles: roughness

of interference and separation of the steel and concrete. However, in all UGW experi-

ments on reinforced concrete, the transmitter and receiver for longitudinal guided waves

are attached to the steel reinforcement that are offset from the ends of the concrete

beam. This arrangement is only feasible in the laboratory and not in situ conditions.

Local methods are time and cost consuming, and methods that can act both globally

and locally are more highly appreciated. For all these reasons, a mix of vibration-based

methodologies is preferable for the examination of deep reinforced concrete beams.

By using wave-based methods, identification of the wave characteristics is essential in

reinforced concrete. Before applying the WFE approach for the waveguide, the rein-

forced and prestressed concrete section should be modelled via FE in order to extract

the associated mass and stiffness matrices. A proper FE model is required with the least

number of DOFs to decrease the computational time and cost. Across the literature,

different scenarios have been used to model RC and prestressed RC. However, all of the

methods modelled the concrete using solid elements and the differences occurred on how

to model the steel reinforcements. One approach is to model the reinforcement as a

bar or link elements. To ensure bonding between the steel reinforcement and concrete,

combine elements are used alongside the linked elements. Another approach is to use
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smeared elements presented as percentage reinforcement in concrete solid elements, and

therefore no bonding slip is assured. In addition, the modelling of prestressed RC is

similar to typical RC except that one needs to introduce the effect of prestressing in the

reinforcement rebars. However, this is only accomplished by using linked elements, and

not through smeared elements, that requires the presence of nodes at the location of the

rebars to be assigned.

After modelling reinforced and prestressed concrete section in FE, and after extracting

the corresponding mass and stiffness matrices, a WFE approach could be applied to each

waveguide. Throughout the literature, the WFE method has been applied to simple

and complex waveguides in order to identify the wave characteristics. WFE solutions

as displacements and forces associated with each DOF have been employed to couple

damaged and undamaged waveguides. One approach is to implement the continuity and

force equilibrium conditions between the damaged and undamaged section, via a WFE-

FE-WFE model where the damaged part is only modelled via FE. For computational

efficiency, this coupling approach is more feasible for discontinuities covering a small

length of a section.

1.3 Aims of the thesis

The aims of this thesis are summarised as follow.

1- Develop accurate and numerical efficient static and dynamic models for RC beams.

2- Determine the type of wave propagation and their characteristics in deep RC beams

with and without prestress.

3- Quantify the dynamic effect of damage in the embedded rebars of RC beam on wave

propagation in the beam.

4- Identify a damage detection algorithm which is particularly sensitive to rebar thickness

reduction. It should not require direct excitation of the embedded rebar.

5- Perform and evaluate the success of the detection algorithm using experimental vali-

dation.

1.4 Outline of the thesis

In Chapter 1, discussions including advantages and limitations of different NDT tech-

niques to detect corrosion of the reinforcement in reinforced concrete have been pre-

sented. Modal damage identification techniques and wave based methods for reinforced

concrete are compared. In this project, the focus is on a wave based approach and more



26 Chapter 1 Introduction

specifically into guided waves. In order to identify the waves characteristics within the

reinforced concrete waveguide, the wave finite element method is applied. This method

requires the knowledge of the mass and stiffness matrices of the waveguide. That is

why a finite element model of a section is needed. Subsequently, a literature review of

the finite element modelling of reinforced concrete structures is presented in addition to

the application of wave finite element methods for composite waveguides and its role in

coupling different waveguides.

Chapter 2 presents the methodology of modelling reinforced concrete and prestress rein-

forced concrete section using the finite element method. A new approach using embedded

reinforcements is suggested and compared to conventional models and published results

in the literature covering static and dynamic analysis.

Chapter 3 covers a review of the wave finite element methodology including the numer-

ical and ill conditioning errors associated with it. Also, the formulation for the forced

response using WFE is presented. Furthermore, Chapter 4 covers the wave solutions us-

ing wave finite elements for reinforced, prestress and post-tensioned reinforced concrete

as dispersion curves and wave mode shapes. In addition, the forced response generated

via FE and WFE solutions are compared.

In Chapter 5, the wave finite element solution uses nodal displacements and forces to cou-

ple damaged and undamaged reinforced concrete waveguides. Two coupling approaches

are compared with respect to their advantages and limitations. One approach is then

chosen to couple different damaged and undamaged models. The magnitude of the re-

flection coefficients associated with the least attenuated modes are plotted for reinforced

concrete. A potential damage criterion is then identified.

Subsequently, Chapter 6 defines a damage identification algorithm based on the findings

of the previous chapters. The algorithm is demonstrated via simulations on damaged

and undamaged RC beams possessing different boundaries. The potential and accuracy

of the algorithm to locate the damage is tested.

In Chapter 7, the damage detection algorithm is validated experimentally on specifically

designed RC beams with no discontinuities and various level of rebar reduction. Fabri-

cation of the specimens is briefly described. In addition, the wavenumbers are estimated

experimentally using a correlation method. The potential of the algorithm to detect and

locate the damage is validated and quantified.

Finally, in Chapter 8, conclusions are presented covering the main outcomes of this

thesis, and suggestions for further research and potential limitations are outlined. In

addition, the details of some of the calculations and analysis are presented in Appendix

A and B.
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1.5 Contributions of the thesis

The original contributions of this thesis are as follows.

1- Modelling of reinforced concrete sections using embedded reinforcements is proven

accurate and possible rather than using the LINK element typically available in FE

software. The new model requires less mesh than the conventional one, and no coupling

elements are needed between the rebar and the adjacent concrete solid nodes.

2- The WFE method is successfully applied to obtain the dispersion relations and the

corresponding wave mode shapes of an RC beam. Sensitivity of the free wave propaga-

tion to the rebar geometry and properties is presented.

3- A new approach to coupling damaged and undamaged waveguides using WFE-WFE-

WFE is presented and compared to the WFE-FE-WFE technique present in the litera-

ture.

4- Significant scattering of high order wave modes, where cross sectional deformation

occurs, is shown to occur at the junction between damaged and undamaged waveguides,

due to wave propagation in one waveguide not propagating in the other at a specific

frequencies.

5- A damage detection algorithm to identify and locate the loss of thickness in a rebar

is proposed which requires no benchmark or numerical model for the intact structure.

6- Experimental validation and implementation of the damage detection algorithm is

performed based on identifying and measuring the cross section wave modes at their cut-

on frequencies. The potential benefits and limitations of the novel wave based damage

detection method are discussed.





Chapter 2

Finite Element modelling of

reinforced concrete beams

2.1 Introduction

Reinforced concrete is a major structural component in civil structures such as buildings

and bridges. Understanding its behaviour under loading service is important for the

development of an overall feasible and safe structure. For this purpose, different methods

had been used to study the performance of concrete structural members.

Finite Element (FE) modelling has become more attractive in recent years especially

with the progressing knowledge and capabilities of computer software and hardware. It

is used in simulations of many reinforced concrete structures in order to understand the

response of individual structural components and their contribution to a structure as a

whole, in addition to the behaviour under different loading/analysis scenarios.

Since reinforced concrete is a composite medium where the steel bars are embedded

within concrete, it has always been a challenge to model the RC section correctly in FE

software with the most effective mesh size, number of nodes and degree of freedoms.

In addition, it is necessary to incorporate the bond accurately between the steel rein-

forcements and the surrounding concrete. In this research, a new approach is presented

for modelling RC beams using new features in the ANSYS FE software, and then it is

compared to existing conventional techniques.

Before identifying the RC wave characteristics by applying the Wave Finite Element

(WFE) method to reinforced and prestressed concrete waveguides, the two sections

should be modelled via FE in order to extract the associated mass and stiffness matrices.

In this chapter, two FE modelling approaches for a reinforced concrete section with and

without prestress using FE are compared statically and dynamically. The approaches

differ in their modelling of the steel reinforcements: linked elements are applied as bars

29
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connecting nodes where the reinforcements are present, and embedded elements are

modelled as beams inside the concrete solid elements. Subsequently, one approach is

selected for the subsequent simulation models.

2.2 Finite Element modelling of RC beams using embed-

ded reinforcements

As seen in the literature review, typically the concrete is modelled using SOLID65 ele-

ments and the steel reinforcements are modelled via LINK8 or LINK180 in the current

version of ANSYS. This model is assigned as Model A. The alternative, proposed here,

is assigned as Model B where the reinforcement rebars are modelled via the 3D discrete

element REINF264 embedded in the SOLID65 element. Both models’ cross sections are

plotted in Figure 2.1.

FE model properties

Both beams share the same dimensions. They are 2 m long with fixed boundary con-

ditions. All the steel reinforcements are of 25 mm diameter. In addition, the two

cross-sections have the same geometry and rebars location as shown in Figure 2.1. Due

to the difference in defining the LINK180 and REINF264 elements in the model, the

mesh attributes are different for the two cross-sections. This will be clearly explained in

the elements description.

SOLID65 is a 3D eight nodes brick solid element, and it has three DOFs per node, which

are translations in the X, Y and Z directions. The solid is capable of cracking in ten-

sion and crushing in compression representing the concrete material behaviour ANSYS

(2013). This is essential for the FE static analysis validation to represent the brittle

behaviour of the concrete. The geometry and node locations are shown in Figure 2.2.

LINK180 is a 3-D spar that is useful in a variety of engineering applications. The

element can be used to model trusses, sagging cables, links and springs. It is a uniaxial

tension-compression element with three degrees of freedom at each node in the X, Y

and Z directions. As in a pin-jointed structure, no bending of the element is considered.

Plasticity, creep, rotation, large deflection and large strain capabilities are included

ANSYS (2013). It is defined via two nodes, and in modelling the RC section it is used in

connecting nodes of adjacent concrete solid elements with a steel reinforcement location

to ensure that the two materials share the same coincident common nodes as illustrated

in Figure 2.1. The geometry and node locations are shown in Figure 2.3. The diameter

of the reinforcement is identified as a real constant for the element.

The REIN264 element is used to model the reinforcement in Model B. REINF264 is

embedded in the SOLID65 element (referred to here as the base element). The element
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Figure 2.1: RC section meshes using (A) linked and (B) embedded reinforce-
ments.

Model A comprises 16 SOLID65 elements per cross-section compared to 25 elements
for Model B. Dimensions are in mm.

Figure 2.2: SOLID65 geometry and nodes locations ANSYS (2013).
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Figure 2.3: LINK180 geometry and nodes locations ANSYS (2013).

is suitable for simulating reinforcing fibres with arbitrary orientations. Each fibre is

modelled separately as a spar that only has uniaxial stiffness. The nodal locations,

degrees of freedom and connectivity of the REINF264 element are identical to those

of the base element. REINF264 has plasticity, stress stiffening, creep, large deflection

and large strain capabilities. The location of the rebar is defined as an offset distance

from the edges of the base element selected ANSYS (2013). The geometry and node

locations are shown in Figure 2.4. The diameter of the reinforcement is identified in

the reinforcing window in ANSYS. The associated shapes functions of REINF264 are

presented in Appendix C.

Figure 2.4: REINF264 geometry and nodes locations ANSYS (2013).

SOLID65 element (nodes: I-J-K-L-M-N-O-P) representing the concrete with embedded
REINF264 (nodes: II-JJ) representing the discrete reinforcement.

In this chapter, RC and prestressed RC beams are considered and analysed under static

and dynamic loading as shown in Figure 2.5.Considering the RC beam, when the load
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state is large then a nonlinear analysis is more suitable. However, the dynamic analysis

is associated with small deformations about the statically loaded equilibrium position.

The latter is the solution of either a linear or non-linear static FE solution. Subsequently,

a linear analysis is suitable and accurate for the dynamic analysis simulation. Similarly

in the case of dynamic analysis of prestressed RC beams where the prestress load keeps

the RC beam within the linear behaviour for the dynamic response.

Figure 2.5: Analysis types to be conducted on RC and prestressed RC beams.

Material properties

Concrete material is considered non-linear in this chapter only when its is under static

analysis. The nonlinear behaviour of the concrete originates from the crack growing

along the concrete since the load is large. The crack produces a reduction of the material

stiffness as a function of the levels of the strain. However, in the next chapters, free

and forced wave propagation are considered and the cross section of the RC section is

uncracked. Therefore, concrete is linear in the latter case.

The SOLID65 element requires linear isotropic and multilinear isotropic material prop-

erties to model concrete properly. The multilinear isotropic material uses the von Mises

failure criterion along with the Willam and Warnke model to define the failure of the

concrete Willam and Warnke (1974). In ANSYS, EX is the modulus of elasticity of

the concrete (Ec), and PRXY is the Poisson’s ratio (υ). The modulus is based on the

equation,

Ec = 4700
√
f ′c (MPa) (2.1)

with f ′c as the compressive strength of concrete of value equal to 33 MPa. The Poisson

ratio υ is assumed to be 0.3. The compressive uniaxial stress-strain relationship for the

concrete model was obtained using the following equations to compute the multilinear
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isotropic stress-strain curve for the concrete by MacGregor (2012).

f =
Ec ε

1 + ( εε0 )2
(2.2)

ε0 =
2f ′c
Ec

(2.3)

Ec =
f

ε
(2.4)

where f is the stress at any strain ε in MPa, and ε0 is the strain at the ultimate

compressive strength f ′c. The multilinear isotropic stress-strain implemented requires

the first point of the curve to be defined by the user. It must satisfy Hookes Law, i.e

E =
σ

ε
(2.5)

The multilinear curve is used to help with convergence of the nonlinear solution algo-

rithm. Figure 2.6 shows the stress-strain relationship used for this study which is based

on work reported in Kachlakev et al. (2001). Point 1 is defined as 0.30 f ′c, and it is

calculated in the linear range by Equation 2.4. Points 2, 3 and 4 are calculated from

Equation 2.2 with ε0 obtained from Equation 2.3. Strains are selected and the stress is

calculated for each strain. Point 5 is defined at f ′c with ε0 = 0.003 indicating traditional

crushing strain for unconfined concrete.

Figure 2.6: Uniaxial stress-strain curve for concrete MacGregor (2012).

Implementation of the Willam and Warnke material model Willam and Warnke (1974)

in ANSYS requires different constants to be defined: (to express the non-linearity of

concrete material to be defined as input in ANSYS as in Table 2.1)

1. Shear transfer coefficients for an open crack.

2. Shear transfer coefficients for a closed crack.

3. Uniaxial tensile cracking stress.
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4. Uniaxial crushing stress (positive).

Typical shear transfer coefficients range from 0.0 to 1.0, with 0.0 representing a smooth

crack (complete loss of shear transfer) and 0.9 representing a rough crack (no loss of shear

transfer). The shear transfer coefficients for open and closed cracks were determined

using the work established in Kachlakev et al. (2001). Convergence problems occurred

when the shear transfer coefficient for the open crack dropped below 0.2. No deviation

of the response occurs with the change of the coefficient. Therefore, the coefficient for

the open crack was set to 0.3. The uniaxial cracking stress was based upon the modulus

of rupture. This value is determined using,

fr = 0.7
√
f ′c (MPa) (2.6)

The uniaxial crushing stress in this model is based on the uniaxial unconfined com-

pressive strength f ′c, and is denoted by ft. It is entered as -1 to turn off the crushing

capability of the concrete element as suggested in Kachlakev et al. (2001). Convergence

problems have been repeated when the crushing capability was turned on.

The biaxial crushing stress refers to the ultimate biaxial compressive strength f ′cb. The

ambient hydrostatic stress state is denoted as σh and is defined as

σh =
1

3
(σxp + σyp + σzp) (2.7)

where σxp, σyp, and σzp are the principal stresses in the principal directions. The biaxial

crushing stress under the ambient hydrostatic stress state refers to the ultimate compres-

sive strength for a state of biaxial compression superimposed on the hydrostatic stress

state f1. The uniaxial crushing stress under the ambient hydrostatic stress state refers

to the ultimate compressive strength for a state of uniaxial compression superimposed

on the hydrostatic stress state f2. The failure surface can be defined with a minimum

of two constants: ft and f ′c. The remainder of the variables in the concrete model are

left to default value based on the following equations.

f ′cb = 1.2f ′c ; f1 = 1.45f ′c ; f2 = 1.725f ′c (2.8)

LINK180 and REIN264 elements are used for all of the steel reinforcement in Model A

and B respectively. Both elements are assumed to be bilinear isotropic based on the

Von Mises failure criteria. The bilinear model requires the yield stress fy as well as the

hardening modulus of the steel to be defined. All the material properties were converted

into SI units and have been entered into ANSYS following the values in Table 2.1.
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Element Type Material Properties

SOLID65

Linear isotropic

EX 2.8×1010 Pa

PRXY 0.3

Density 2400 kg/m3

Multilinear isotropic

Strain Stress

0.00036 9.8×106 Pa

0.0006 1.5×107 Pa

0.0013 2.8×107 Pa

0.0019 3.2×107 Pa

0.00243 3.3×107 Pa

Concrete

Open shear transfer coefficient 0.3

Closed shear transfer coefficient 0.9

Uniaxial cracking stress 3.6×106 Pa

Uniaxial crushing stress -6.9×103 Pa

Link 180

REINF264

Linear isotropic

EX 2.0×1011 Pa

PRXY 0.3

Density 7850 kg/m3

Bilinear

Yield stress 4.1×108 Pa

Tangent modulus 2.0×107 Pa

SOLID45

Linear isotropic

EX 2.0×1011 Pa

PRXY 0.3

Density 7850 kg/m3

Table 2.1: Material properties for Models A and B.

Modelling

For the nonlinear static analysis, a steel plate is used between the load and the top surface
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of the RC and prestressed RC beam. This is used to ensure the proper transition of

the load into the beam, and to prevent local failure due to concentration of the load

into one node of the beam before reaching its actual failure. Subsequently, a 3D solid

element SOLID45 is used for a steel plate supporting the load on the beam. The element

is defined by eight nodes having three degrees of freedom at each node: translations in

the X, Y and Z directions. The element has plasticity, creep, swelling, stress stiffening,

large deflection and large strain capabilities ANSYS (2013). The geometry and node

locations are shown in Figure 2.7.

Figure 2.7: SOLID45 geometry and nodes locations ANSYS (2013).

The beam and plate, onto which the loading is directly applied, are modelled as volumes

that are meshed with the solid elements. Both beams are modelled in ANSYS as shown

in Figure 2.8 and Figure 2.9.

The material, reinforcement cross section and reinforcement offset distance from the

concrete solid element sides are defined (the offset distance is 0.5). To obtain good

results from the SOLID65 element, the use of a rectangular mesh is recommended.

Therefore, the mesh was set up such that square or rectangular elements were created

for both models. The dimension and size of each model mesh is chosen in such a way that

the reinforcements in each model are at the same locations inside the beam, as shown in

Figure 2.10. The longitudinal mesh size is set to 0.01 m. No mesh of the reinforcement

is needed because individual elements are created in the modelling through the nodes

created by the mesh of the concrete volume in Model A, or by assigning the base element

for Model B.
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Figure 2.8: RC beam model (A) using LINK180 elements with supporting load
plate and fixed boundaries.

Figure 2.9: RC beam model (B) using REINF264 elements with supporting load
plate and fixed boundaries.

The size and the mesh of the steel plate should be consistent with the nodes in the

concrete portion of both models. The steel plate dimensions were chosen as 200×200×30

mm, and it is positioned in the middle of the beam. The coincident nodes between

the concrete and the plate need to be merged. Furthermore, displacement boundary

conditions are needed to constrain the model to get a solution. The beam was modelled

with fully fixed constraints. As a result, nodes at each end of the beam are constrained

as a fixed support by setting the displacements UX, UY and UZ to zero.
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Figure 2.10: RC beam model cross-section using LINK180 (left) and REINF264
(right) elements with supporting load plate on top surface and fixed boundaries
in ANSYS.

2.3 Finite Element modelling of prestressed RC beams us-

ing embedded reinforcements

In the majority of the literature, concrete is modelled using SOLID65 elements, and the

steel reinforcements and prestressed tendon represented via LINK8 or LINK180. This

approach requires the coupling between the linked reinforcements and nearby concrete

element nodes for the transfer of the prestress. However, in this study, steel rebars are

modelled via REINF264 elements as embedded reinforcements to ensure the transfer of

the prestress effect from steel reinforcement to the surrounding concrete with no use

of coupling elements. Similarly to other studies, the prestress effect will be modelled

via an initial strain in the tendon elements, corresponding to tendon tensile forces, in

a preliminary load stage. The initial strain value will be calculated based on steel

reinforcement material properties and the prestress force applied. Then, this value is

defined for the bottom layer reinforcement before any further application and analysis

takes place in ANSYS.

Saiidi et al. (1994) investigated the prestress force effect on the natural frequencies of

vibration of concrete bridges. A lab experiment was performed to measure changes in

dynamic modal properties by adjusting the prestress forces applied to the test structure.

The simply supported beam was reinforced longitudinally and in the transverse direction.

Using the Fast Fourier Transformation technique (FFT), the first two frequencies of the

bending mode were obtained for each in-situ prestress-force case as listed in Table 2.4.

The listed frequencies are the averaged values.
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The frequencies found experimentally by Saiidi et al. (1994) were compared to finite

analysis results using ANSYS. A finite element dynamic analysis using ANSYS of the

Saiidi beam was conducted by Li and Zhang (2011). Saiidi’s beam was modelled in

FE using SOLID65 element for concrete. The LINK8 element was used to simulate

regular reinforcing steel and the LINK10 element was employed to simulate the prestress

wire, since it has the feature of uniaxial tension only. The applied prestressing force

was introduced by an initial strain value, and transfer to the prestressing force from

prestressed wire to concrete is achieved by coupling elements. The predicted frequencies

are listed in Table 2.4.

Here, the prestressed RC section is a replica of the section tested in Saiidi et al. (1994)

and shown in Figure 2.11. The beam is 3.66 m long with four steel non-prestressed

reinforcements of 9.525 mm diameter at each corner. In addition, a prestressed strand

is located in the middle of the cross section with a diameter of 12.7 mm. This strand

is prestressed via an initial strain value in ANSYS corresponding to the prestress force

defined in Saiidi et al. (1994). The El Masri model does not contain stirrups, but the

Saiidi beam model included 12 stirrups. The total mass of these stirrups is very small

compared to the total mass of the structure. Therefore, no significant effect will result on

the dynamic performance of the beam without stirrups. The length of the element was

set to 0.01 m. The beam is modelled as simply supported at both ends. The material

properties for concrete and steel reinforcement are shown in Table 2.2.

Figure 2.11: Prestressed RC beam model cross section with details of embedded
steel reinforcements (mm).

Material properties Concrete Steel

Young Modulus E (Pa) 21.52×109 200×109

Poisson ratio υ 0.18 0.3
Density ρ (kg/m3) 2400 7850

Table 2.2: Material properties for concrete and steel.
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2.4 Nonlinear static analysis of RC beams

The two approaches using linked and embedded reinforcements are compared under

static loading through nonlinear analysis in ANSYS. The force P applied at the steel

plate is located across the entire centreline of the plate with a maximum value of 100

kN.

The Solution Controls command dictates the use of a non-linear solution for the fi-

nite element model. The Analysis Option defines the use of static analysis with small

displacement. For the Time control, the automatic stepped option was chosen with a

maximum of 1000 substeps and a minimum of one substep calculation. Results were

output at every substep. The Newton-Raphson method of analysis was applied by the

FE solver to compute the nonlinear response. The application of the loads up to fail-

ure was done incrementally, as required by the Newton-Raphson procedure. After the

analysis was completed, the deflection of the mid bottom node of the beam was plotted

against the load increment for both models.

As illustrated in Figure 2.12, the deflection due the load P for Models A and B are almost

identical up to a load of approximately 40 kN. Above this value, the two deflection curves

start to deviate, and the deflection of Model B is slightly smaller than Model A. At a

higher load, the mesh of the cross section becomes a crucial factor. The cross section

meshes are not exactly the same; it is coarser for Model A. For this reason, one might

expect that at higher load values the deflection between the models are not as close as

it was for lower loads. Despite this behaviour, the differences between the two model

deflections are not too significant at high loads, and under small linearised dynamic

response they should be able to be considered as equivalent representations. This is to

be investigated in the next section.

2.5 Linear dynamic analysis of RC and prestressed RC

beams

RC beams

The two approaches, using linked and embedded reinforcements, were compared for

dynamic mode calculations through linear analysis in ANSYS. For this analysis, the two

beams were modelled in the same manner as before. Block Lanczos was selected for the

full mode extraction method, and the number of modes extracted was set to 50. The

natural frequency values were then plotted for each model, as shown in Figure 2.13.

From visual inspection of this graph, one can observe that the natural frequencies for

both models using either LINK180 or REINF264 as the reinforcement correlate well. As
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Figure 2.12: Deflection versus load applied midspan for a fixed RC beam when
the nonlinear static solver is applied.

Two alternative representations of the reinforcements were used respectively: LINK180
(—) and REINF264 (- - -) elements in ANSYS (2013).

a result, one would expect similar dynamic behaviour for both model representations

under small loads.

Hence, from both analyses it was decided that the RC model with embedded reinforce-

ment would be employed in this project due to several advantages. First, the embedded

rebars model requires a less fine mesh, since they are assigned in the concrete solid el-

ement. Therefore, the total number of degrees of freedom is minimised as well as the

time required for analysis, calculations and extraction of the results. Secondly, since the

reinforcement bar is embedded inside the solid element, no slip effect needs to be con-

sidered and full bond between the two materials is assured. Subsequently, no additional

COMBIN elements need to be created between the steel rebars and the solid concrete

at shared nodes, as are recommended when modelling with LINK elements in order to

ensure no slip effect between the two materials.

Prestressed RC beams

Up to this point the reinforcements were considered unstressed. The Block Lanczos

method was selected for a full mode extraction in order to update the model matrices

with the prestress effect. At each step, the initial strain inside the reinforcements was

modified with respect to the change in the prestressed force. The strain value is the
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Figure 2.13: Natural frequencies of a fixed RC beam.

LINK180 (◦), REINF264 (+).

ratio of the stress value resulting from the prestressed force on the cross sectional area

of the strand over the Young’s Modulus of steel Es. The values of initial strain for each

step are listed in Table 2.3. The linear dynamic analysis is repeated at each step and

the first two frequencies of the bending modes were recorded.

Load case Prestressed force (kN) Initial strain values

1 0 0
2 15.71 6.04×10−4

3 27.05 1.04×10−3

4 36.49 1.40×10−3

5 57.25 2.20×10−3

6 91.26 3.51×10−3

7 121.46 4.67×10−3

8 130.91 5.04×10−3

9 132.8 5.11×10−3

Table 2.3: Initial strain values with respect to the prestressed force.

The first two bending natural frequencies were extracted from ANSYS at each prestress-

ing force listed in Table 2.4. The percentage differences in the natural frequencies of Li

and Zhang (2011) and this current thesis (El Masri results) versus the experimentally

determined values by Saiidi et al. (1994) are presented in Table 2.5.
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In situ prestress Experimental frequency Saiidi et al. (1994) FE model frequency Li and Zhang (2011) FE model frequency El Masri

force (kN)

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

0 11.41 43.99 11.674 43.990 11.978 47.682

15.71 12.09 44.11 12.526 49.213 12.316 48.024

27.05 13.47 44.89 13.059 51.306 12.557 48.273

36.49 12.89 44.69 13.428 52.754 12.751 48.475

57.25 13.63 45.62 14.050 55.193 13.172 48.923

91.26 14.72 46.32 14.677 57.649 13.834 49.647

121.46 14.72 45.86 14.973 58.809 14.395 50.279

130.91 14.97 46.10 15.031 59.035 14.569 50.479

132.8 15.07 45.87 15.040 59.073 14.602 50.517

Table 2.4: Natural frequency comparison from different models, published re-
sults and the current thesis (El Masri) for a simply beam reported by Saiidi.

Case % Difference, Li and Zhang (2011) % Difference, El Masri
Mode 1 Mode 2 Mode 1 Mode 2

1 2.3 0 5 8.4
2 3.6 11.6 1.9 8.9
3 -3.1 14.3 -6.8 7.5
4 4.2 18.0 -1.1 8.5
5 3.1 21.0 -3.4 7.2
6 -0.3 24.5 -6.0 7.2
7 1.7 28.2 -2.2 9.6
8 0.4 28.1 -2.7 9.5
9 -0.2 28.8 -3.1 10.1

Table 2.5: Percentage differences for the predicted natural frequencies in this
study against Saiidi’s experimental results.

Both Li’s and the model herein show small differences compared to the experimental

results by Saiidi et al. (1994). For the first bending mode natural frequency, Li’s model

produced a smaller error than El Masri. However, for the second bending mode natural

frequency, El Masri showed significantly lower error than the Li model. In addition,

one needs to confirm the transfer of the prestress effect from the steel reinforcement to

the surrounding concrete. Using the LINK elements, this requirement is accomplished

by coupling the shared nodes with the solid element. However, using the embedded

reinforcement, the degrees of freedom and connectivity of the REINF264 element are

identical to those of the base element that is the SOLID65 element, and therefore no

coupling methods have to be applied. Subsequently, the prestressed RC model with

REINF264 reinforcement was adopted for later use in this research.
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2.6 Finite Element modelling of damping

Damping is one of the most important factors for the evaluation of the structural dy-

namic forced response. High damping means that the vibrational energy is dissipated

in the material reducing the resonant vibration response. Thus, internal damping is

an important property for structures. In this section, ways in which damping can be

incorporated in finite element models are briefly presented.

Here, structural or hysteretic damping is considered. The general form of this stiffness

proportional damping is given by Petyt (1990) for multi-degree of freedom system as

Mq̈ + K[1 + iη]q = f (2.9)

This form of damping can only be applied when the excitation is harmonic. The complex

term [1 + iη] is obtained by replacing Young’s Modulus E by a complex one E(1 + iη)

while deriving the element stiffness matrix, where η is the material loss factor.

For simplicity purposes, a constant damping ratio will be used to specify an equivalent

damping value which structural damping would produce for the model at resonance. In

this thesis, the input constant damping ratio ζ is set to half the value of the loss factor

η, and will be defined as an input in ANSYS using the DMPRAT command.

2.7 Conclusions

Since both RC models using linked and embedded reinforcement act similarly in ei-

ther their static or dynamic behaviour, the model with embedded reinforcements will

subsequently be employed in this thesis due to several advantages.

First, the model requires less nodes by using embedded rebars since they are built into

the concrete solid element. Therefore, the number of total degrees of freedom compared

to using linked elements will decrease as well as the analysis time and calculation com-

putation. Second, since the reinforcement bar is embedded inside the solid element, no

slip effect needs to be considered and a full bond between the two materials is guaran-

teed. Therefore, no additional COMBIN elements need to be created between the steel

rebars and the concrete solid shared nodes, as is recommended when modelling with

LINK elements to ensure no slip effect between the two materials. Third, for prestressed

and post-tensioned RC model, one needs to confirm the transfer of the prestress effect

from the steel reinforcement to the surrounding concrete. Using the LINK elements, this

approach is accomplished by coupling the shared nodes with the solid element. How-

ever, using the embedded reinforcement, the degrees of freedom and connectivity of the

REINF264 element are identical to those of the base element that is the SOLID65, and

therefore no coupling methods need to be applied.
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Furthermore, damping is one of the most important factors for the evaluation of the

structural dynamic response. For simplicity purposes, a constant hysteretic loss factor

is used. The associated value for concrete dissipation is selected via results published in

the previous literature.



Chapter 3

Modelling of waves in RC beams

3.1 Introduction

Vibration based methods are popular to detect the damage remotely in RC structures.

In this research, guided waves are employed to detect possible damage of the rebars

in deep RC beams. In this chapter, deep RC beams are considered. Subsequently, for

comparison the Timoshenko beam solutions are evaluated numerically for their corre-

sponding dispersion relationships.

Due to the complex cross section of RC beams, the Timoshenko beam wave solution

is not expected to be an accurate representation especially at high frequencies. As a

result, another approach is needed. For this the Wave Finite Element (WFE) method is

selected as it is well suited to identify the wave characteristics within the RC waveguide.

In this chapter, the formulation of the WFE method is presented. The complex cross

section of the waveguide is initially modelled via an FE package as described in Chapter

2. Then, the dynamic stiffness matrix of a small length of the assumed periodic structure

is evaluated using the extracted mass and stiffness matrices. The dynamic stiffness

matrix can be rearranged to form a transfer matrix relating the forces and degrees of

freedom at one end of the waveguide to the same quantities at the other end. By applying

the periodicity condition, the free wave propagation characteristics are then obtained

from the transfer matrix. In addition, causes of the numerical errors and ill conditioning

are investigated and solutions to reduce these errors are suggested and implemented.

Finally, having established and obtained the WFE free wave solutions, one can consider

calculation of the forced response. By applying a wave approach, the forced response

is computed by determining the amplitudes of the directly excited waves, calculating

the boundary reflection and subsequently superimposing the wave amplitudes at the

response point in question.

47
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3.2 Timoshenko beam and dispersion solutions

Euler-Bernoulli beam theory is based on the assumption that plane cross sections per-

pendicular to the beam axis remain plane and perpendicular to this axis even after

deformation. This theory assumes that transverse shear strains are zero, and therefore

it is valid only for thin beams undergoing small amplitude and relatively long wave-

length bending. However, when dealing with deep beams, the effect of the transverse

shear strain cannot be neglected. Timoshenko Beam theory is an extension of Euler-

Bernoulli beam theory, where shear deformation and rotatory inertia are introduced and

thus it is applicable for deep beams Wang (1995).

For an Euler-Bernoulli beam, the bending wave number (phase change per unit length

in rad/m) is given by the following dispersion relationship Mace (1984)

kb =
4

√
ρAω2

EI
=

2π

λb
(3.1)

where A is the cross-sectional area, ρ is the density, ω is the angular frequency, E is

the Young’s Modulus, I is the second moment of area of the cross section and λb is the

free bending wavelength at this frequency. There are four solutions: two wavenumbers

are strictly real, and the other two are strictly imaginary. The real wavenumbers are

associated with the propagating waves, and the imaginary wavenumbers are associated

with the near-field or evanescent waves that decay exponentially with distance from the

boundary or a disturbance.

For a Timoshenko beam, the differential equation of motion is given by Mei and Mace

(2005)

ρA
∂2y(x, t)

∂2t
+ EI

∂4y(x, t)

∂4x
− ρI(1 +

E

κG
)
∂4y(x, t)

∂2t∂2x
+
ρ2I

κG

∂4y(x, t)

∂2t
= 0 (3.2)

where y(x, t) is the flexural deflection of the Timoshenko beam, G is shear modulus, and

κ is a shear correction factor dependent upon the beam cross section. The solution of

Equation 3.2 is written as

y(x, t) = (C1e
−jk1x + C2e

jk1x + C3e
−jk2x + C4e

jk2x)ejωt (3.3)

where k1, k2 are the wavenumbers and ω is angular frequency.

The corresponding dispersion relationship for the Timoshenko beam is given by

k2 =
1

2EI

(
±
√(

ρI − ρEI

κG

)
ω4 + 4ρAEIω2 + ρI

(
1 +

E

κG

)
ω2

)
(3.4)

The solution of Equation 3.4 provides one pair of real wavenumbers that are related

to propagating waves. The second pair is imaginary at low frequency and linked to
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evanescent waves. The cut-on frequency is the frequency limit where the second pair

become real and thus associated with propagating waves. This mode of transition at a

cut-on frequency can be found by setting Equation 3.4 to zero, such as

ωc =

√
κGA

ρI
(3.5)

First, one considers a Timoshenko beam with the following dimensions and material

properties: ρ is equal to 2400 kg/m3, the cross sectional area of the beam is of a height

0.3 m and width 0.2 m, E is equal to 4 × 1010 Pa and L is the total length of beam of

2 m. The shear modulus G is defined as E
2(1+ν) with ν as the Poisson ratio of 0.18. The

shear correction factor κ is defined using the cross section dimensions as in Gruttman

and Wagner (2001). Then, Equation 3.4 is solved and the dispersion curve is plotted in

Figure 3.1. One can notice the real wavenumber solution valid over all of the frequency

range associated with the propagating wave. The evanescent wave starts cutting on at

4450 Hz, where its associated wavenumber becomes real.
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Figure 3.1: Dispersion curve of flexural waves in a Timoshenko beam.

(a): real wavenumber of propagating wave (—), real part of wavenumber of evanescent
wave with cut-on frequency of 4450 Hz (- - -), (b): imaginary part of wavenumber of

propagating wave (—), imaginary wavenumber of evanescent wave (- - -).
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3.3 Formulation of the Wave Finite Element Method

In this section, the WFE method is reviewed. Causes of numerical errors and ill condi-

tioning are investigated. Suggestions using concatenating elements and conditioning of

the eigenvalue problem are presented to reduce these errors.

3.3.1 Transfer matrix

Consider a segment of short length ∆ of a uniform waveguide as shown schematically

in Figure 3.2. Commercial FE packages are used first to model this segment and to

extract the required mass and stiffness matrices. The only constraint required in FE is

that the nodes and their associate degrees of freedom (DOFs) are ordered identically

on the left and right sides of the segment. The extracted matrices are employed to

develop the associated dynamic stiffness matrix. Time harmonic motion eiωt is implicit

throughout this thesis and suppressed for brevity. The equation of motion for the section

by Duhamel et al. (2006) is

Dq = f (3.6)

where

D = K + jωC− ω2M (3.7)

q and f are (2n × 1) vectors of the nodal DOFs and forces respectively, while n is

the number of DOFs on each side of the segment. Here, only one segment in length

is considered. Condensation of internal nodes is required as per Section 3.5 if they are

present. K, C and M are the stiffness, damping and mass matrices extracted from

FE. D is the dynamic stiffness matrix and ω is the angular frequency. The dynamic

stiffness matrix can be partitioned to reflect the influence of the left and right nodes of

the segment. Equation 3.6 can be expressed as[
DLL DLR

DRL DRR

][
qL

qR

]
=

[
f L

f R

]
(3.8)

The subscripts L and R are designated for the left and right sides of the segment.

Consider a series of segments of the waveguide as shown in Figure 3.2. Continuity of

displacement and force equilibrium of adjacent sections give[
qN+1
L

f N+1
L

]
=

[
qNR
−f NR

]
(3.9)

For each segment, the transfer matrix T can then be defined as

T

[
qNL
f NL

]
=

[
qN+1
L

f N+1
L

]
(3.10)
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Figure 3.2: Structure with periodic elements: an N cell or segment of length ∆
is shown with the internal forces and displacements vectors.

The periodic conditions for the displacements and the equilibrium condition at the junc-

tion of two successive elements are qR = λ qL and f R = - λ f L where the propagation

constant

λj = e−ikj∆ (3.11)

relates the right and left displacements and forces where k is the unknown wavenumber.

Equation 3.8 can be rearranged, and the free wave motion along the x-axis of the segment

is therefore described in the form of an eigenvalue problem

T

{
qL

f L

}
= λ

{
qL

f L

}
(3.12)

Subsequently, one can define the transfer matrix T as

T =

[
−D−1

LRDLL D−1
LR

−DRL + DRRD
−1
LRDLL −DRRD

−1
LR

]
(3.13)

3.3.2 Wave solutions

The transfer matrix eigenvalue problem in Equation 3.13 is solved at each frequency

step to yield the propagation constants λj and the corresponding wavenumbers kj as

in Equation 3.11. The wavenumber can be purely real, purely imaginary or complex,

associated with a propagating, a nearfield (evanescent) or an oscillating decaying wave

respectively.

In Zhong (1995), it has been shown that that the eigenvalues of the transfer matrix

occur in reciprocal pairs as λ+
j and λ−j = 1/ λ+

j . The corresponding wavenumbers are

k+
j and k−j = - k+

j as the positive and negative going waves, respectively. Furthermore,
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Φ+
j and Φ−j are the associated positive and negative going right eigenvectors, where

each wavemode is divided into displacement q and force f sub-vectors, i.e.

Φj =

{
Φq

Φf

}
j

(3.14)

The positive-going waves are characterized by | λ+
j | < 1 and the negative going waves by

| λ+
j | > 1. . However, for | λ+

j | = 1, the associated waves are considered positive-going

if they fulfil the condition Re
{
f H
L q̇L

}
= Re

{
iωf H

L qL

}
< 0. This means that if the

wave is travelling in the positive direction, then its amplitude should be deceasing. If

its amplitude remains constant, then time average power transmission in the positive

direction occurs. In the case of evanescent waves that do not transfer energy, they con-

tribute to the input response at discontinuities/boundaries by giving rise to propagating

and evanescent waves(Mace (1984)).

Subsequently, the wave modes associated with the eigenvectors which are the solutions

of Equation 3.13 are grouped into positive and negative going waves

Φ+ = [Φ+
1 · · ·Φ

+
n ] ; Φ− = [Φ−1 · · ·Φ

−
n ] ; Φ = [Φ+ Φ−] (3.15)

One can obtain the left eigenvectors of the transfer matrix T as well (Equation 3.12).

They can be partitioned and grouped as follows

Ψj =
{

Ψf Ψq

}
j

; Ψ± =

Ψ±1
· · ·
Ψ±n

 ; Ψ =

[
Ψ+

Ψ−

]
(3.16)

The left and right wavemodes are orthogonal, and can be normalised so that

Ψ+Φ+ = I ; Ψ−Φ− = I (3.17)

A useful consequence of this normalisation is to avoid inverting matrices that can lead

to numerical problems (Waki et al.). This can be accomplished by premultiplying the

intended matrix by the normalised right eigenvectors. This benefit is due to the property

that

ΨTΦ = diag(λj) (3.18)

However, at higher frequencies, numerical errors can affect this orthogonality assump-

tion. A simple orthogonality check was carried out to check this especially at higher

frequency. This helped in identifying the number of retained wave modes at each fre-

quency. Thus, only m pairs of positive and negative going waves are retained based

on a user-defined criterion at each frequency step considering least decaying evanescent

waves. As a result, the size of the model will be smaller and the calculation time reduced.
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The partitions of the left and right eigenvectors can be used to form the positive and

negative going wave components as displacement and force matrices

Φ+
q = [Φ+

q,1 · · ·Φ
+
q,n] ; Ψ+

q =

Ψ+
q,1

· · ·
Ψ+
q,n

 (3.19)

Φ−q = [Φ−q,1 · · ·Φ
−
q,n] ; Ψ−q =

Ψ−q,1
· · ·

Ψ−q,n

 (3.20)

Φ+
f = [Φ+

f,1 · · ·Φ
+
f,n] ; Ψ+

f =

Ψ+
f,1

· · ·
Ψ+
f,n

 (3.21)

Φ−f = [Φ−f,1 · · ·Φ
−
f,n] ; Ψ−f =

Ψ−f,1
· · ·

Ψ−f,n

 (3.22)

The transformations between the physical domain, where the motion is described in

terms of q and f , and the wave domain, where the motion is described in terms of the

wave amplitudes a+ and a− travelling in the positive and negative directions respectively,

are accomplished via {
qL

f L

}
=

[
Φ+

q Φ−q

Φ+
f Φ−f

]{
a+

a−

}
(3.23)

Near a discontinuity, there will be evanescent waves created from an incident propagating

wave. The inclusion of these wave modes is fundamental for scattering analysis.

3.4 Numerical errors in the WFE method

The WFE method suffers from some numerical and ill conditioning errors. They include

FE discretization errors and errors due to round-off of the inertia terms. These issues

and methods to reduce their effects are presented in this section.

3.4.1 Finite element discretization error

The FE discretization error becomes large when the phase change over the length of a

segment ∆ increases. There are always numerical errors since the FE modelling is an

approximate representation of a system. In the usual application of FEA, 6 or more

linear shape function elements are generally needed for each wavelength to represent the

system vibrational motion accurately Waki et al. (2009b). The phase change over an
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element is recommended to obey

| k∆ |≤ 1 i.e.
∆

λ
≤ π (3.24)

For small FE discretisation errors, this condition should be fulfilled both across the cross-

section of a waveguide and in the direction of the wave propagation. On the other hand,

FE discretisation errors depend as well on the shape function used in the formulation

of an element. For instance, even for the same values of k∆, errors in the WFE results

using a linear shape function for the displacement are higher than those using a cubic

polynomial shape function.

Propagating waves carry power and it is important to predict propagating waves ac-

curately. The length of the section ∆ should therefore be determined to satisfy the

condition in Equation 3.24 at the maximum frequency of interest, where the propagat-

ing wavenumber typically takes its maximum value. In this project, the length of the

section ∆ is chosen to satisfy this condition in order for all propagating wavenumbers

to be accurately predicted.

On the other hand, numerical errors and inaccuracies can be also due to a poor dis-

cretisation of the cross-section rather than the choice of the segment length. This is

particularly crucial at higher frequencies. Here, a convergence analysis can assist in

finding an efficient mesh size for the cross section. A modal analysis was carried out

on the cross-section for different mesh sizes and the associated natural frequencies of

mode shapes above 10 KHz are listed in Table 3.1. One can notice that the values of

the natural frequencies start to converge when the number of segments per one side is

4, whilst further refinement of the mesh does not make a significant difference to the

values. Subsequently, the mesh size equal to four segments per side was selected for

representing the RC cross sections.

Number of segments/one side Frequency 1 (kHz) Frequency 2 (kHz)

2 10.5 11.3
4 12.5 13.8
6 12.7 13.8
8 12.7 13.9

Table 3.1: Natural frequencies of the free-free RC cross section occurring after
10 kHz associated with different mesh size for a beam length of 2 m.

3.4.2 Round-off of the inertia terms

An upper bound for the length ∆ of the element can be decided from the FE discretiza-

tion error in Equation 3.24, considering the maximum wavenumber of interest in the

frequency range analysed. On the other hand, the lower bound of ∆ may be defined
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considering round-off of the inertia terms. In the WFE method, the round-off error can

be significant specifically when D = K - ω2 M is evaluated numerically. For very small

∆, and in particular at low frequencies, some effective significant figures of the inertia

terms will be rounded-off since K might be very large compared to ω2 M. The criterion

for the smallest permissible value of ∆ should therefore be determined to satisfy

log10(
Kii

ω2Mii
) < αii i = 1, · · · , n (3.25)

Using the double precision calculations for accurate results, αii < 16 is chosen at the

minimum frequency of interest.

3.4.3 Condensation of internal nodes in WFE

For periodic structures, the condensation of internal nodes is necessary for some appli-

cations to decrease the size of the structure and thus limit the size of the matrices which

need to be processed. Another reason to apply this condensation in WFE at each chosen

frequency is to reduce the errors related to the FE discretisation and the roundoff due

to inertia. For uniform structural waveguides, the equation of motion of an element is

given by

Mq̈ + Cq̇ + Kq = f (3.26)

Steady state time-harmonic motion is assumed. The DOFs are composed into sets

corresponding to the L (left), R (right) and I (interior) nodes. Assuming no external

forces are being applied to the internal nodes, one hasDLL DLR DLI

DRL DRR DRI

DIL DIR DII


qL

qR

q I

 =

f L

f R

0

 (3.27)

which can be written as[
DMM DMI

DIM DII

][
qM

q I

]
=

[
f M

0

]
; qM =

[
qL

qR

]
and f M =

[
f L

f R

]
(3.28)

where the subscript M is denoted by master nodes (Left and Right). Using the second

row of Equation 3.28, one can write[
qM

q I

]
=

[
I

D−1
II DIM

]
qM = RqM (3.29)

where I is the identity matrix, and by using the R matrix, Equation 3.27 becomes

RT

[
DMM DMI

DIM DII

]
RqM = f M (3.30)
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This equation is essential to derive the reduced mass, stiffness and damping matrices

by using them instead of D in the transfer matrix such that the interior nodes are

eliminated. After removing the internal nodes, Equation 3.27 becomes like Equation 3.8

which is frequency dependent. For example, the reduced mass matrix is shown below as

RTMR = MMM−DMID
−1
II M IM−MMID

−1
II DIM+DMID

−1
II M IID

−1
II DIM (3.31)

3.5 Conditioning of the eigenvalue problem

Apart from FE discretisation errors and errors due to the round-off of inertia terms, ill-

conditioning of the eigenvalue problem develops when using the transfer matrix T having

formed the eigenvalue problem in Equation 3.12. Ill-conditioning arises when inverting

the DLR matrix. Therefore, methods for improving the conditioning of the eigenvalue

problem are described in this section. In particular, Zhong′s method is introduced as

the conditioned eigenvalue problem Zhong (1995). The method was used for better

conditioning of the transfer matrix in different WFE applications such as in Waki et al.

(2009b) and (2009a).

Zhong′s method is applied to formulate the eigenvalue problem represented via the

transfer matrix T. The application of singular value decomposition (SVD) is proposed

to determine the eigenvectors more accurately and to avoid inverting the DLR matrix.

The method starts from a reformulation of Equation 3.10 into the relationships for

the displacement vectors alone. After some matrix operations using the periodicity

condition, the eigenvalue problem becomes[
0 DLR

−DRL 0

][
Φq,i

λΦq,i

]
= (λi+

1

λi
)

[
(DLR −DRL) −(DLL + DRR)

(DLL + DRR) (DLR −DRL)

][
Φq,i

λΦq,i

]
(3.32)

This eigenvalue problem has repeated eigenvalues of λ + 1/λ. In addition, the repeated

eigenvectors are considered as a linear combination of the original displacement eigen-

vectors given by Equation 3.14. Then, the force eigenvectors can be found from the first

row of Equation 3.8 together with Equation 3.11

Φf,i = (DLL + λiDLR)Φq,i (3.33)

Numerical issues concerning the determination of the eigenvectors and an application of

singular value decomposition to improve numerical difficulties are described in detail by

Waki et al. (2009b).
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3.6 Forced response via WFE

In this section, the forced response is formulated using the wave approach applied to the

WFE solutions. First, the amplitudes of directly excited waves are computed. Then,

the reflection coefficient matrix is defined for boundaries. Subsequently, the total wave

amplitude is computed using the result of wave superposition at a specific point in the

waveguide.

Considering first an infinite waveguide, the external force in applied and decomposed in

the physical domain. By applying continuity for the displacements and equilibrium of

forces, one can write (see Appendix A for details)[
Φ+

q −Φ−q

Φ+
f −Φ−f

][
e+

e−

]
=

[
0

f ext

]
(3.34)

where e+ and e− are column vectors of positive and negative going directly excited wave

amplitudes, respectively. f ext is the external force vector. By rearranging Equation 3.34,

the directly excited wave amplitudes are defined by[
e+

e−

]
=

[
Φ+

q −Φ−q

Φ+
f −Φ−f

]−1 [
0

f ext

]
(3.35)

Due to matrix inversion, numerical errors related to ill conditioning occur. However,

one can benefit from the orthogonality of the left and right eigenvectors of the transfer

function as in Equation 3.18 to reduce these errors. By premultiplying Equation 3.34

by the left eigenvector matrix,[
Ψ+

f −Ψ+
q

Ψ−f −Ψ−q

][
Φ+

q −Φ−q

Φ+
f −Φ−f

][
e+

e−

]
=

[
Ψ+

f −Ψ+
q

Ψ−f −Ψ−q

][
0

f ext

]
(3.36)

one can obtain [
Ψ+Φ+ 0

0 −Ψ−Φ−

][
e+

e−

]
=

[
Ψ+

q f ext

Ψ−q f ext

]
(3.37)

By applying the orthogonality relations in Equation 3.17 and 3.18, Equation 3.37 be-

comes

e+ = Ψ+
q f ext ; e− = −Ψ−q f ext (3.38)

One can notice that Equation 3.38 does not require matrix inversion which results in

reducing chances of numerical errors. In addition, m pairs of positive and negative going

waves are retained for which their imaginary wavenumbers are small. This due to the

fact that rapidly decaying waves offer a small contribution to the total response.
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In a finite waveguide, the waves are reflected at the boundaries. The boundary matrix

r relates the wave change at the boundaries between the incident and reflected waves as

a− = ra+ (3.39)

where a+ and a− are column vectors of incident and reflected wave amplitudes at bound-

ary, respectively. In general, as shown in Harland et al. (2001), the boundary condition

can be expressed as

Af + Bq = 0 (3.40)

where A and B are frequency dependent matrices that involve the stiffness, damping,

etc. The displacement q and force f vectors can be related to wave amplitudes as in

Equation 3.23. As a result, the boundary matrix is refined as

r = −(AΦ−f + BΦ−q )−1(AΦ+
f + BΦ+

q ) (3.41)

The diagonal of the boundary matrix r represents the reflection coefficients relating the

incident and reflected waves at the boundary. However, the off-diagonal terms in r

represent wave mode conversion. In other words, when one wave type of the incident

wave is scattered to another wave type. Subsequently, if r is a diagonal matrix, the

incident wave at a boundary gets reflected with no wave mode conversion. In addition,

when only m waves are retained for the solution, a pseudo matrix inverse is applied in

Equation 3.41.

After travelling a distance x in the waveguide, the propagation matrix τ relates the

wave amplitudes as

τ (x) = diag(e−ik
+
1 x, · · · , e−ik

+
mx) (3.42)

To ensure good conditioning, only m waves are retained for the solution where the

elements corresponding to high-order waves being nearly zero in the τ (x) matrix. Sub-

sequently, the magnitudes of the elements of the propagation matrix τ (x) are ≤ 1.

To compute the forced response at any point in the waveguide, wave superposition is

considered. For a finite waveguide illustrated in Figure 3.3, the wave amplitudes a+ and

a− are the result of the directly excited waves e+ and e−, in addition to travelling waves

from left and right side g+ and g− as

a+ = e+ + g+ ; g− = e− + a− (3.43)

By applying wave propagation and boundary matrices, one can express the a+ waves as

a+ = e+ + τ (xe)rLτ (xe)g
− (3.44)
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Figure 3.3: Wave amplitudes in finite structure.

By using Equation 3.43 and rearranging Equation 3.44,

a+ = e+ + τ (xe)rLτ (L)rRτ (L− xe)a
+ + τ (xe)rLτ (xe)e

− (3.45)

then,

a+ = {I− τ (xe)rLτ (L)rRτ (L− xe)}−1{e+ + τ (xe)rLτ (xe)e
−} (3.46)

where L is the total length of the waveguide, and xe is the position of the excitation

force. In addition, rL and rR are the boundary matrices of the left and right boundary,

respectively. Next, the negative going wave amplitude a− can be related to the positive

going wave a+ as

a− = τ (L− xe)rRτ (L− xe)a
+ (3.47)

Then, the transfer response can be obtained at position xr by

b+ = τ (xr − xe)a
+ (3.48)

and

b− = τ (L− xr)rRτ (L− xr)b
+ (3.49)

Finally, the total displacement at a point xr of the waveguide is expressed as

q =
n∑
i=1

(b+
i Φ+

qi + b−i Φ−qi ) (3.50)
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3.7 Conclusions

In this chapter, the formulation of the WFE approach was presented. The method

starts from the dynamic stiffness matrix of a short section of the waveguide that can be

modelled using conventional FE. By applying the periodicity condition, the eigenvalue

problem is formed from the transfer matrix of the rearranged elements in the dynamic

stiffness matrix. In addition, causes of WFE numerical errors such as FE discretisa-

tion and the round-off of inertia terms errors were discussed. A solution to reduce

ill-conditioning errors associated with inverting the DLR matrix was also presented.

The forced response was presented using the wave approach via the WFE solution as

nodal displacements and forces for an infinite waveguide. Then, the wave amplitudes in

finite structures were identified by applying wave propagation and reflection coefficients

of boundaries.



Chapter 4

Simulations of waves in RC beams

4.1 Introduction

The WFE formulation was introduced in the previous chapter. The method is now

applied to RC waveguides to obtain the wave characteristics.

Reinforced concrete, prestressed and post-tensioned reinforced concrete segments are

modelled via finite element. Then, the associated mass and stiffness matrices are ex-

tracted and processed via WFE to obtain the dynamic stiffness matrix for each model.

Later, the eigenvalue problem based on the transfer matrix T is formed.

In order to track the calculated eigenvalues/eigenvectors at different frequencies, a Wave

Assurance Criterion (WAC) is applied to the extracted eigenvectors. Next, the wavenum-

bers corresponding to waves in damaged and undamaged segments are evaluated and

plotted in the form of dispersion curves. Damage is subsequently introduced as a diam-

eter reduction of one rebar. Furthermore, the normalised wave mode shapes are plotted

for undamaged waveguides.

Subsequently, the effects of the concrete properties and rebar diameter reduction on the

computed dispersion relations are investigated. In addition, the WFE free wave solution

is used to calculate the forced response in finite RC beams which is compared with

conventional FE.

4.2 RC, prestressed and post-tensioned RC models

RC, prestressed and post-tensioned RC segments are first modelled in ANSYS before

applying the WFE approach. The undamaged reinforced concrete section is modelled

using 16 SOLID65 elements, with the dimensions and properties shown in Table 4.1.

61
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The length ∆ of the element is set equal to 0.01 m, the total number of DOFs n, is 150,

and a hysteretic damping value equal to η = 0.004 is chosen for both models.

Material properties Concrete Steel

Young Modulus E (Pa) 40×109 200×109

Poisson ratio ν 0.18 0.3
Density ρ (kg/m3) 2400 7850

Table 4.1: Material properties of concrete and steel in FE.

The reinforcements are modelled via the embedded approach as described in Chapter 2

using REINF264 elements. The damaged reinforced concrete section is modelled in the

same way as for the undamaged section except that the area of the damaged reinforced

rebar at the right bottom corner is reduced to represent a loss of thickness due to

corrosion. In this model, the corroded rebar is taken to have a diameter equivalent to a

36% reduction compared to the intact one. Both damaged and undamaged sections are

shown in Figure 4.1.

a b

Figure 4.1: FE mesh of RC cross section: (a) undamaged and (b) damaged.
Dimensions in mm.

The prestressed RC section is first modelled in ANSYS using SOLID65 elements for con-

crete and REINF264 elements for the embedded reinforcement as shown in Figure 4.2(a).

The prestressing effect is modelled via an initial strain in the tendon elements, corre-

sponding to tendon tensile forces in a preliminary load stage. The initial strain value is

calculated based on the steel reinforcement material properties and the prestress force
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applied. In this model, one can assume that the tensile prestress force of the steel re-

inforcement is equal to 70 percent of its ultimate tensile strength (0.4 × 109 Pa). This

force is used to prestress both the damaged and undamaged rebars. Thus the stress

value used to calculate the initial strain for the damaged rebar is higher than that for

the undamaged one, since the cross sectional area is smaller for the same amount of

prestress force. Subsequently, ε1 = 0.0014 and ε2 = 0.0036 are the initial longitudinal

strain values for the undamaged and damaged rebars respectively. In this model, the

damaged reinforcement included the bottom right rebar. The RC section details for the

damaged and undamaged prestress RC and material properties are similar to those of

conventional RC model defined previously.

Figure 4.2: RC and prestressed RC section (a), post-tensioned RC section (b)
with the surrounded concrete (patterned area).

In the case of the post-tensioned concrete segment, the model involves reinforcements as

small diameter tendons placed in the bottom layer of concrete as in Figure 4.2(b). The

undamaged reinforcement has a diameter representing an 8 mm steel bar. Similarly, for

the RC section, the damaged rebar in post-tensioned model is reduced by 36% of its

area compared to the undamaged one. In addition, ε1 = 0.0014 and ε2 = 0.0023 are the

initial strain values for the undamaged and damaged rebars respectively. In this model,

the damaged reinforcements were included in all of the bottom layer reinforcement where

the strain values were assigned. The length ∆ of element is equal to 0.01 m, the total

number of DOFs n is 240, and hysteretic damping value is η = 0.004 is chosen for both

models. The difference between the models is shown in Figure 4.2 where the surrounding
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concrete is highlighted as the patterned area. One would expect some differences in the

dynamic behaviour of the post-tensioned RC since the majority of concrete is separated

from the bottom layer of the reinforcement.

The mass and stiffness matrices were extracted using the ANSYS software for both the

damaged and undamaged sections, and then post-processed using WFE. There are 150

different wavenumbers in accordance with the number of DOFs for RC and prestressed

RC, and there are 240 different wavenumbers in accordance with the post-tensioned

RC model. However, most of these wavenumbers have a significant imaginary part

corresponding to highly attenuated waves, and therefore need to be eliminated. In these

models, only the wave modes associated with | Im (k ∆) | ≤ 0.3 are retained at each

frequency step. This corresponds to an attenuation of 10 dB along the element length

in the propagating direction.

4.3 Wave mode tracking

The eigenvalues and associated eigenvectors were calculated at each frequency step.

However, a new problem arises to ensure and compare the correlation of the calculated

eigenvalues/eigenvectors between frequencies.

To solve this issue, as the eigenvalue ordering was not necessarily consistent at different

frequencies, the Wave Assurance Criterion (WAC) presented in Houillon et al. (2005) was

used to order of the eigenvalues/eigenvectors between each small increment in frequency.

This takes advantage of the fact that the eigenvectors capture a spatial similarity of the

other corresponding eigenvector at the previous frequency. The WAC value is given by

WAC(ωj , ωj+1) =
(ΦH

j ΦH
j+1)2

(ΦH
j Φj)(ΦH

j+1Φj+1)
(4.1)

where ωj and ωj+1 are the frequency of the jth and j+1 steps, and Φj is the eigenvector

related with the jth step.

The WAC equation uses two consecutive eigenvectors to give a value between 0 and 1.

Based on this, the closer the value of WAC is to 1, the more the consecutive pair of

eigenvectors are related to the same wave mode. Using this criterion, one can choose if

the calculated eigenvectors are associated with the same wave mode or not. By choosing

only the positive travelling wavenumbers, the WAC configuration is plotted for two

values of frequency of the associated eigenvectors at f1 = 1000 Hz and f2 =2000 Hz as

in Figure 4.3 for an RC beam.

The WAC plot demonstrates the correlation of the related eigenvectors, that is shown

by the strength of the values plotted on the diagonal of the WAC with values equal or

very close to 1. The corresponding eigenvectors belong to the same type of wave. This is
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Figure 4.3: Wave Assurance Criterion (WAC) plot for eigenvectors at 1000 Hz
and 2000 Hz for an RC beam.

required to join the corresponding discrete points plotted in the dispersion curves. Apart

from the diagonal, the WAC values are between 0 and 0.3, where the eigenvectors are

not well correlated. The WAC plot is essential to check the uniqueness of the correlation

of two consecutive eigenvalues/eigenvectors where only one set of the WAC values equals

to 1 is shown.

4.4 Dispersion relations and wave mode shapes

One of the contributions of this research involves the solution and production of the dis-

persion curves and mode shapes of RC sections. Previous work only involved analytical

and experimental calculation of limited wave modes wavenumbers. For instance, Zerwer

et al. (2006) used the formulation by Aalami (1973) in order to compute the dispersion

curves and mode shapes associated with the first ten modes for uncracked and unrein-

forced concrete beam. The cross section of the concrete member was divided into linear

triangular elements in the x-y plane and steady state wave motion was assumed along

the length of the bar in the z-direction. However, the present research involves all of the

wave modes associated with the DOFs for damaged and undamaged RC, prestressed and

post-tensioned RC. Here, only the dispersion relations associated with the propagating
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and evanescent wave modes are plotted for comparison purposes. However, other wave

modes are illustrated and listed in detail separately.

First, the effect of the concrete strength on the dispersion curves is examined. Different

undamaged RC sections are modelled with different concrete properties. The strength of

concrete increases with time due to the continuous concrete hydration while most of this

strength is gained in the first 28 days after casting. The compressive strength of concrete

is directly proportional to its Young’s Modulus. Subsequently, two undamaged RC

sections are modelled with different Young’s Modulus values. The associated dispersion

curves are plotted in Figure 4.4. Due to the increase in the concrete stiffness, the

wavenumbers decrease especially at high frequencies and the cut-on frequencies shift to

the right.
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Figure 4.4: Dispersion curves for the real part of the wavenumbers for an un-
damaged RC with different concrete properties.

Ec = 2.0 × 1010 Pa (-), Ec = 2.5 × 1010 Pa (−−−).

Second, the effect of steel reinforcement on wave modes is investigated. Two undamaged

segments are modelled using ANSYS. One is modelled with concrete only, and the second

is modelled as reinforced concrete. Next, the associated stiffness and mass matrices are

extracted and rearranged to formulate the transfer matrix for each waveguide. Solutions

are calculated for each eigenvalue problem. The wave modes were evaluated within the

frequency range of 1 to 15 kHz with a frequency step of 50 Hz. Dispersion curves for

concrete and RC waveguides are shown in Figure 4.5. One can notice the small changes

between the two sets of wavenumber values. However, the wavenumber values of RC

are higher than the ones for concrete especially at high frequencies. This is due to the

added mass of the reinforcement rebars present. The most distinctive difference in the

wavenumbers between the concrete and RC section occurs at lower frequency, where the
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latter are complex and have a high imaginary part. Consequently, they are considered

highly attenuated within this frequency range of interest.
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Figure 4.5: Dispersion curves for the real part of the wavenumbers for wave
modes in a concrete and reinforced concrete beam.

Concrete section (—), RC section (−−−).

In Figure 4.4 and Figure 4.5, the real wavenumbers plotted can be associated with

wave modes that are either propagating, evanescent or complex. The propagating wave

modes are presented as purely real wavenumber over the whole frequency range. The

evanescent ones are presented as purely real wavenumber after they cut-on. However,

the complex wave modes are associated with real and imaginary part over the whole

frequency range (the imaginary part is plotted at a later stage). In addition, one can

notice the numerical artefact that is the shallow gradient at cut-on caused largely (but

not entirely) by limited frequency resolution.

Also, in Figure 4.4 and Figure 4.5, there are some real wavenumbers that increase

from and then decrease back to zero. Waves with such positive and the negative group

velocities have been discovered in other solids such as layered media, shells and cylinders

as in Tamm et al. (2017).

Third, the effect of damage in RC is investigated. Two segments of damaged and un-

damaged RC are modelled. Then, the WFE approach is applied over the same frequency

range. The dispersion curves relating to wave modes of the damaged and undamaged



68 Chapter 4 Simulations of waves in RC beams

RC waveguides are shown in Figure 4.6. It can be seen that only a slight change exists

between the wavenumbers associated with the damaged and undamaged RC waveguides.

The cut-on frequencies are shifted to the right i.e. to higher frequencies once damage is

present. The effect on these wavenumbers of the rebar diameter reduction as loss due

to stiffness or mass are investigated in detail in the next chapter.
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Figure 4.6: Dispersion curves for the real part of the RC wavenumbers for wave
modes.

Undamaged section (—), damaged section (−−−).

The dispersion curves related to the least attenuated waves are selected for both the

damaged and undamaged waveguides. In other words, only the wave modes associated

with | Im (k∆) | ≤ 0.3 are retained at each frequency step. Figure 4.7 shows the

dispersion curves for those modes that can propagate over the whole frequency band for

the RC segment. Only the real part of the wavenumbers is plotted. Mode 1 is associated

with axial motion, mode 2 with torsional displacements around the x-axis, and modes

3 and 4 with bending in the vertical and transverse directions respectively. Figure 4.8

presents the dispersion curves of the waves that are evanescent at low frequency. This

means that before a specific frequency associated with each wave mode, its wavenumber

is purely imaginary. Starting from this specific frequency, the wavenumber becomes

purely real. This frequency is called the cut-on frequency. Figure 4.9 illustrates the

dispersion curves of the complex modes at low frequency for both waveguides, where
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the wavenumber is complex below the cut-on frequency. Above cut-on, the wavenumber

becomes purely real.
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Figure 4.7: Dispersion curves for the real part of the wavenumbers for propa-
gating wave modes in an RC beam.

Undamaged section (—), damaged section (- - -): mode 1 axial (-), mode 2 torsional

(−), mode 3 bending (−) and mode 4 bending transversal (−).

0 5000 10000 15000
0

5

10

15

20

25

30

35

40

R
e(

k)
 (

ra
d/

m
)

0 5000 10000 15000

Frequency (Hz)

-40

-35

-30

-25

-20

-15

-10

-5

0

Im
(k

) 
(r

ad
/m

)

Figure 4.8: Dispersion curves for the real and imaginary parts for the RC
wavenumbers for evanescent wave modes.

Undamaged section (—), damaged section (- - -): E4200 (-), E5000 (−), E6300 (−),

E8700 (−), E11700 (−), E12500 (−). E stands for an evanescent wave with its

associated cut-on frequency in Hz.
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Figure 4.9: Dispersion curves for the real and imaginary parts for the RC
wavenumbers for complex wave modes.

C6300 in undamaged RC (—), C6300 in damaged RC (- - -), C6600 in undamaged RC

(· · · ), C6600 in damaged RC (+), C7250 in undamaged RC (◦), C7250 in damaged RC

(∗), C8750 in undamaged RC (−), C8750 in damaged RC (−−−), C9450 in

undamaged RC (· · ·), C9450 in damaged RC (+), C10250 in undamaged RC (◦),
C10250 in damaged RC (∗), C10400 in undamaged RC (−), C10400 in damaged RC

(−−−), C11400 in undamaged RC (· · ·), C11400 in damaged RC (+), C14200 in

undamaged RC (◦), C14200 in damaged RC (∗), C14500 in undamaged RC (−),

C14500 in damaged RC (−−−). C stands for a complex wave with its associated

cut-on frequency in Hz.

Fourth, the effect of the prestress in the embedded reinforcements on the dynamic prop-

erties of RC is investigated. The dispersion curves for RC waveguides with and without

prestress are shown in Figure 4.10. By comparing these dispersion curves, one can no-

tice that prestress has a small effect on the wavenumbers of the waveguide. Due to the

prestress effect in increasing the stiffness matrix of the segment and maintaining the

mass matrix invariant, the wavenumbers are shifted to the right compared to the ones

present for the RC section. Due to the similarity between the dispersion relations of

RC and prestressed RC, only RC beams are considered from this point forward in this

research for simulations and experimental validations.

Fifth, the dispersion curves relating to all wave modes of damaged and undamaged post-

tensioned RC waveguides are illustrated in Figure 4.11. One can notice the change in the

dispersion relations compared to the RC section. In addition, only a slight change exists
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between the wavenumbers associated with the damaged and undamaged post-tensioned

RC waveguides. The cut-on frequencies of the evanescent wave modes are shifted to the

right.
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Figure 4.10: Dispersion curves for the real part for the wavenumbers of wave
modes and the effect of prestress.

RC section (—), prestress RC section (−−−).
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Figure 4.11: Dispersion curves for the real part of the wavenumbers of wave
modes for the post-tensioned RC.

Undamaged section (—), damaged section (−−−).

In all of the above cases, only a slight change is observed between the wavenumbers

associated with the concrete and RC sections, damaged and undamaged sections, RC,
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prestressed and post-tensioned RC. This due to the fact that the majority of the struc-

tural stiffness is governed by the concrete rather than the reinforcement rebars.

After solving the eigenvalue/eigenvector problem, one can plot the wave mode shapes by

extracting the nodal displacements from Equation 3.14. The wavemodes are complex,

but only the real part of the displacements is plotted rather than the amplitude for sim-

plicity. The imaginary parts were not very significant. The objective here is to validate

the wave mode shapes and to visualise the cross section deformation especially for higher

order modes. The nodal displacements in the Y and Z directions of propagating wave

mode shapes in the undamaged RC section are plotted in Figure 4.12. The axial mode

shows zero displacements in the selected directions since it occurs it the X direction.
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Figure 4.12: Nodal displacements in the plane of the beam cross section, i.e. in
the Y and Z directions for selected propagating wave modes in an undamaged
RC section.

Undeformed section (—), deformed section (−−−) at 1000 Hz.

Similarly, the selected evanescent wave modes in the undamaged RC section are plotted

in Figure 4.13. For E4200 and E6300, the wave modes have no displacements in these

directions. Then, their major nodal displacements occur in X direction (same as the

propagation direction). In contrast, the remaining evanescent wave modes (i.e. E5000,

E8700, E11700 and E 12500) have shown high nodal displacements in the Y and Z

directions. Subsequently, they are cross sectional modes where the majority of their

displacements occur in the cross section of the waveguide.
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Figure 4.13: Nodal displacements in the plane of the beam cross section, i.e. in
the Y and Z directions for selected evanescent wave modes in an undamaged
RC section.

Undeformed section (—), deformed section (−−−). E stands for evanescent with its

associated cut-on frequency.

In addition, the nodal displacements in the Y and Z directions of selected complex

wave modes in an undamaged RC section are plotted in Figure 4.14. For the C7250,

C10400, C11400, and C14200 wave modes there are no displacements in these directions;

their major nodal displacements occur in the X direction. However, the remaining

complex wave mode (i.e. C6300, C6600, C8750, C9450, C10250 and C14500) have

shown high nodal displacements in the Y and Z directions. Subsequently, they are cross

sectional modes where the majority of their displacements occur in the cross section of

the waveguide.
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Figure 4.14: Nodal displacements in Y and Z directions of selected complex
wave modes in undamaged RC section.

Undeformed section (—), deformed section (−−−). C stands for complex with its

associated cut-on frequency.

4.5 FE and WFE forced response

In this section, the forced response of an undamaged cantilever RC beam is computed

via FE and WFE for comparison and validation purpose. The RC structure is modelled

in full FE with SOLID65 elements of length ∆ 10mm with REINF264 embedded rein-

forcements. Each segment has 25 nodes at each face with three translational DOFs per

node. Thus, there are 75 DOFs on each side of the segment. The total length of the

beam is L = 2 m with fixed boundaries at the left end and free at the right end as shown

in Figure 4.15. Thus, the full FE model contains 15075 DOFs. Harmonic analysis was

selected with a frequency range from 0 to 15 kHz with a frequency step of 50 Hz. The

excitation force is located at xe = 0.3 m from the left boundary. The vertical FRF on

of the top middle node at xr = 0.5 m is selected.
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Figure 4.15: FRF in ANSYS for an RC cantilever beam model.

For the WFE section, there are only 75 DOFs at each end. First, the free wave propa-

gation is solved via the transfer matrix in Equation 3.13. Then, the eigenvalue solution

has 75 pairs of positive and negative going waves. Most of the wave modes obtained

are strongly decaying waves at each frequency and their contribution to the response is

negligible. Therefore, only those wave modes for which | Im(k∆) | ≤ 0.3 were retained

at each step frequency. Then, the directly excited waves e+ and e− are calculated using

Equation 3.38.

The boundary matrices need to be identified using Equation 3.41. For the left fixed

boundary, A = 0 and B = I. However, for the right free boundary, B = 0 and A =

I. After solving for the boundary matrices, one can estimate the waves amplitudes at

xr = 0.5 m of the top middle node as per Equation 3.48 and 3.49. Finally, the total

displacement can be obtained by superposing all of the wave amplitudes considered using

Equation 3.50.
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The WFE forced response predictions are then compared with those of the full FE model

of the beam. The FRF vertical response of both models is plotted in Figure 4.16. Perfect

agreement is seen between the two responses. Subsequently, the potential of WFE as a

concise and efficient approach to estimate the forced response is validated. In the next

chapters, the forced response using WFE solution is applied instead of solving a full FE

model since the WFE solution is already available.
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Figure 4.16: FRF vertical response of the cantilever RC beam at xr = 0.5 m.
Excitation is at xe = 0.3 m.

FE (—), WFE (−−−).

4.6 Conclusions

The WFE method was applied to damaged and undamaged RC, prestressed and post-

tensioned RC beams and the dispersion relations were identified. The effect of the

concrete strength on the wavenumbers was investigated first. An increase in the con-

crete stiffness leads to a decrease in the wavenumbers especially at high frequencies. In

addition, the cut-on frequencies increase. In contrast, adding steel reinforcements to

concrete beam leads to an increase in the wavenumbers especially at high frequencies,

and the corresponding cut-on frequencies decrease. This is due to the added mass of the

reinforcement rebars with minimal effect on the overall RC beam stiffness.
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Damage introduced by reducing the diameter of one rebar results in a small shift in

the values of the wavenumbers. They become lower especially at higher frequencies,

with higher values for the corresponding wave mode cut-on frequencies compared to the

undamaged case. The least attenuated wave modes are selected and grouped as either

propagating, evanescent or complex.

The prestressed effect introduced as initial strain in the embedded reinforcements results

in a negligible effect on the dispersion relations. Subsequently, only RC beams are

considered in this research for further simulations and experimental validation. Similar

to conventional RC, damage introduced in the post-tensioned RC section results in

small changes in the dispersion relations. This is due to the fact that the majority of

the structural stiffness is governed by the concrete rather than the reinforcement rebars.

By using the wave mode solutions represented as eigenvectors, one can plot the wave

mode shapes by using the nodal displacement results. Most of the evanescent and

complex modes have shown cross sectional dominant displacements in the Y and Z

directions.

Frequency response functions (FRFs) predicted using both the full FE and WFE models

are compared. The full FE model contains 15075 DOFs, however the WFE model only

contains 75 DOFs on each end of the segment. Both responses align perfectly, and

therefore the WFE forced response approach is selected for the subsequent simulations

of the response of damaged RC beams and the identification of damage via simulations.





Chapter 5

Wave scattering due to simulated

damage in RC beams

5.1 Introduction

Structural and serviceability failures of reinforced concrete cause different damages sce-

narios within the structure. Although structural failures are shown through large cracks

and deformations, serviceability damages are typically presented through small surface

cracks and increased deflections of the structure. For this reason, the visibility of the

damage has more potential for the structural damage identification, and therefore the

probability of detection is higher compared to serviceability damage.

The principal origin of premature corrosion of steel reinforcement is due to exposure

by chloride ions. The corroded layer between the steel reinforcement and the concrete

causes changes in the tensile stresses due to contraction and expansion. Once these

stresses exceed the concrete tensile capacity, cracks start to form from the steel rein-

forcement toward the surface of the concrete (PCA (2002)). For this reason, corrosion

of reinforced concrete is considered as a long-term damage scenario, and it is challenging

to detect the early rate of corrosion when surface cracking is not yet visible. In the cor-

rosion scenario of the steel reinforcement, the reflection and transmission properties for

propagating waves at a damage interface are advantageous, especially during the early

stage of corrosion development. The reflection and transmission properties of a damage

of finite size are hence considered in this chapter.

The WFE approach using the internal nodal displacements and forces can be used to

couple damaged and undamaged waveguides, and subsequently to predict the reflection

and transmission coefficients due to a defect. In this chapter, numerical simulations

representing a finite length damage are considered. Two approaches are presented to

couple the damaged and undamaged waveguides. These are namely the WFE-FE-WFE

79
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and WFE-WFE-WFE approaches. Results will be produced and compared, and one

methodology will be subsequently selected to obtain the scattering matrices associated

with damage. In addition, the effect of the loss of rebar stiffness versus mass is investi-

gated by examination of the kinetic and potential energies of the rebars. Then, a suitable

and damage sensitive criterion is selected for potential damage detection technique.

5.2 Coupling of waveguides

Damage or discontinuities in structures give rise to scattering of incident waves, which

is potentially of use for damage inspection. One can model the damaged and undam-

aged waveguides as two semi-infinite beams, and couple the waves at the interface of the

junction. This model is denoted here as the WFE-WFE approach. When considering

the total scattering caused by a discontinuity of finite length, coupling of a finite dam-

age section to undamaged waveguides is a more appropriate model. In this case, the

finite section can be modelled either in FE or WFE. In this section, both approaches

are introduced and applied to an RC model. Results are compared and one coupling

approach is selected for further simulations.

5.2.1 Coupling of waveguides using WFE-FE-WFE approach

As presented in Renno and Mace (2013), one can model the undamaged waveguides as

two semi-infinite beams via WFE, and the finite length of the damaged section via FE,

and couple the sections representing the undamaged waveguides using the continuity and

equilibrium conditions at the interfaces with the FE damaged section. This approach

is known as the WFE-FE-WFE approach, and it is presented in this section with the

associated scattering matrix due to simulated damage as shown Figure 5.1.

Figure 5.1: The interface between wave finite elements (Sections 1 and 2) con-
nected to a finite element model of the coupling joint.

First, the damaged section is modelled via FE of finite length h and with elements of

length ∆i, i.e. here there are h/∆i elements in the length direction of the section. Let

Dc be the dynamic stiffness matrix of the coupling joint, which is given in terms of its
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mass Mc, damping Cc and stiffness Kc matrices as follows (Kessentini et al. (2016))

Dc = −ω2Mc + jωCc + Kc (5.1)

The left and right interface nodes of the finite section are expressed by l and r respec-

tively. Internal nodes are denoted by i. A block matrix formulation of the matrix Dc

can be written as

Dc =

Dll Dli Dlr

Dil Dii Dir

Drl Dri Drr

 (5.2)

The dynamic stiffness matrix Dc of the coupling element is condensed to eliminate

the internal nodes onto the nodes situated on the left and right faces. The dynamic

condensation at every frequency ω is presented in Waki et al. (2009b). The condensed

matrix can be denoted as

D∗c =

[
Dll −DliD

−1
ii Dil Dlr −DliD

−1
ii Dir

Drl −DriD
−1
ii Dil Drr −DriD

−1
ii Dir

]
(5.3)

The dynamic stiffness matrix D∗c of the coupling joint relates the displacements and

forces on the interfaces with the two WFE modelled sections as

D∗c

{
q cl
q cr

}
=

{
f cl
f cr

}
(5.4)

Two coupled waveguide segments 1 and 2 belonging respectively to waveguides 1 and 2

are modelled via WFE. Let a+ and b− be the amplitudes of the waves incident on the

coupling joint interface, and a− and b+ be the amplitudes of the waves reflected by the

coupling joint interface. Vectors q and f are defined in the wave domain by Equation

3.23. For waveguides 1 and 2
q1
r

q2
l

f 1
r

f 2
l

 =


Φ+

q1
0 Φ−q1

0

0 Φ+
q2

0 Φ−q2

Φ+
f 1

0 Φ−f 1
0

0 Φ+
f 2

0 Φ−f 2



a+

b−

a−

b+

 (5.5)

where Φ+
q,f and Φ−q,f are now defined by concatenating the relevant vectors for individual

waveguides 1 and 2 after the application of WFE as follows

Φinc
q =

(
Φ+

q1
0

0 Φ+
q2

)
Φref

q =

(
Φ−q1

0

0 Φ−q2

)
Φinc

f =

(
Φ+

f 1
0

0 Φ+
f 2

)
Φref

f =

(
Φ−f 1

0

0 Φ−f 2

)
(5.6)

By implementing the continuity and force equilibrium conditions, the nodal DOFs and

forces at the interfaces are equal to those of the undamaged waveguides on each side,
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i.e. (
q cl
q cr

)
=

(
q1
r

q2
l

)
;

(
f cl
f cr

)
=

(
f 1
r

f 2
l

)
(5.7)

The scattering matrix S is defined as(
a+

b−

)
= S

(
a−

b+

)
(5.8)

By combining Equation 5.5 to 5.7, then

S = −(−D∗cΦ
ref
q + Φref

f )−1(−D∗cΦ
inc
q + Φinc

f ) (5.9)

The scattering matrix S is a block matrix, where the diagonal matrices comprise the

reflection coefficients and the off-diagonal matrices contain the transmission coefficients.

In these models, the reflection coefficients of the damaged section are of interest. Once

again, if a reduced number of waves is retained then the matrix to be inverted in Equation

5.9 is not square and pseudo-inversion is required Renno and Mace (2013). However,

since the inversion of this matrix can cause ill-conditioning errors, appropriate use of

the left eigenvector matrix Ψ from Equation 3.16 and the orthogonality condition from

Equation 3.17 can eliminate these numerical errors. As a result, one can premultiply

Equation 5.9 by matrix Ψref
q defined as

Ψref
q =

[
Ψ−q1

0

0 Ψ−q2

]
(5.10)

Subsequently, the scattering matrix S becomes

S = −Ψref
q (−D∗cΦ

ref
q + Φref

f )−1Ψref
q (−D∗cΦ

inc
q + Φinc

f ) (5.11)

Given this WFE-FE-WFE coupling approach, which has been presented, the undamaged

waveguides can be modelled as two semi-infinite beams via WFE, and the finite size of

the damaged joint waveguide via FE. In principle, due to the generality of the FE

modelled section, a large number of damage scenarios can be considered.

5.2.2 Coupling of waveguides using a WFE-WFE-WFE approach

Since the damaged waveguide is uniform, another approach to couple the damaged and

undamaged waveguides can be applied via a WFE-WFE-WFE model. The two undam-

aged waveguides are modelled as before as two semi-infinite beams via WFE. Unlike the

WFE-FE-WFE approach, the finite damaged waveguide length is modelled using WFE.

Coupling of the waveguides is achieved by applying the continuity and equilibrium con-

ditions at each junction. The approach is presented in this section and the associated

scattering matrix due to changes in the waveguide properties is formulated.
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The interfaces between the semi-infinite sections and the damage section are compatible,

since for convenience they can be chosen to have the same nodal meshes and DOFs on the

common cross-sections. In order to obtain the scattering matrix due to the finite damage

section, one should get the scattering matrix at each junction of the waveguides as shown

in Figure 5.2. A segment of length ∆i is taken to represent each of the waveguides.

Sections 1 and 3 represent the undamaged waveguide, and section 2 represents the

damaged waveguide. Each section is modelled via WFE. Using the solution of the WFE

as nodal displacement and forces, the scattering matrices at Junctions 1 and 2 are first

obtained. Then, the total scattering matrix due to the finite length of the coupling

element is developed and confirmed.

Figure 5.2: The interface between wave finite elements waveguides: Sections 1,
2 and 3.

At Junction 1, a− and b+ are the amplitudes of the wave modes reflected by the cou-

pling element interface. a+ and b− are the amplitudes of the wave modes incident onto

the coupling element interface. Furthermore, Φ+ and Φ− are negative going right eigen-

vectors, where each wavemode is divided into displacement q and force f sub-vectors.

The displacements and forces in waveguides 1 and 2 are given by

q1 = Φ+
q1
a+ + Φ−q1a

− ; f 1 = Φ+
f1
a+ + Φ−f1

a− (5.12)

q2 = Φ+
q2
b+ + Φ−q2b

− ; f 2 = Φ+
f2
b+ + Φ−f2

b− (5.13)

Both waveguides are modelled such that positive going waves are travelling to the right.

In addition, the continuity of displacements and equilibrium of forces at junction 1 are

given by

q1 = q2 ; f 1 = f 2 (5.14)

By applying Equation 5.14 into Equation 5.12 and 5.13[
−Φ−q1

Φ+
q2

−Φ−f 1
Φ+

f 2

]{
a−

b+

}
=

[
Φ+

q1
−Φ−q2

Φ+
f 1
−Φ−f 2

]{
a+

b−

}
(5.15)
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The scattering matrix S1 at Junction 1 is defined as{
a−

b+

}
= S1

{
a+

b−

}
(5.16)

Then

S1 =

[
−Φ−q1

Φ+
q2

−Φ−f 1
Φ+

f 2

]−1 [
Φ+

q1
−Φ−q2

Φ+
f 1
−Φ−f 2

]
(5.17)

The scattering matrix S1 is a block matrix where the diagonal matrices comprise the

reflection coefficients, and the off-diagonal matrices contain the transmission coefficients.

Subsequently, the scattering matrix S1 is defined as

S1 =

[
R12 T21

T12 R21

]
(5.18)

where R and T are the reflection and transmission matrices at the junction. In addition,

the subscripts 1 and 2 are used to indicate the reflection and transmission matrices when

the wave is incident from waveguide 1 to 2 respectively.

Using the same procedure and definitions, the scattering matrix S2 at Junction 2 is

defined as

S2 =

[
−Φ−q2

Φ+
q3

−Φ−f 2
Φ+

f 3

]−1 [
Φ+

q2
−Φ−q3

Φ+
f 2
−Φ−f 3

]
(5.19)

with

S2 =

[
R23 T32

T23 R32

]
(5.20)

The matrices S1 and S2 may suffer from ill conditioning error when inverting the inner

matrices. Alternatively, a numerical implementation is proposed where the orthogonality

of the left and right vectors is used as per Equation 3.17. Thus, premultiplying Equation

5.12 by the left eigenvector matrix[
Ψ+

f 1
Ψ+

q1

Ψ−f 1
Ψ−q1

]{
q1

f 1

}
=

[
Ψ+

f 1
Ψ+

q1

Ψ−f 1
Ψ−q1

][
Φ+

q1
Φ−q1

Φ+
f 1

Φ−f 1

]{
a+

a−

}
(5.21)

Then, Equation 5.21 becomes[
Ψ+

f 1
Ψ+

q1

Ψ−f 1
Ψ−q1

]{
q1

f 1

}
=

[
I 0

0 I

]{
a+

a−

}
(5.22)

Therefore, {
q1

f 1

}
=

[
Ψ+

f 1

∗
Ψ+

q1

∗

Ψ−f 1

∗
Ψ−q1

∗

]{
a+

a−

}
(5.23)
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Subsequently, Equation 5.17 and 5.19 become

S1 =

[
−Ψ+

q1

∗
Ψ+

f 2

∗

−Ψ−q1

∗
Ψ−f 2

∗

]−1 [
Ψ+

f 1

∗ −Ψ+
q2

∗

Ψ−f 1

∗ −Ψ−q2

∗

]
(5.24)

S2 =

[
−Ψ+

q2

∗
Ψ+

f 3

∗

−Ψ−q2

∗
Ψ−f 3

∗

]−1 [
Ψ+

f 2

∗ −Ψ+
q3

∗

Ψ−f 2

∗ −Ψ−q3

∗

]
(5.25)

After solving the scattering matrices at each junction, the total scattering matrix due

to the coupling damage element is derived based on the reflection and transmission

matrices of each junction. It is assumed that d− is zero since it is a semi-infinite beam

(the Sommerfeld radiation condition). Using Equation 5.16,

a− = R12a
+ + T21b

− (5.26)

Let F be the propagation matrix between the two edges of the coupling element of length

h, and k3 are the wavenumbers associated with it. Then,

F =


e−i(k

+
2 )h · · · 0

...
. . .

...

0 · · · e−i(k
+
n )h

 (5.27)

Next, b− is defined as

b− = Fc− = FR23c
+ = FR23Fb+ (5.28)

with

b+ = T12a
+ + R21b

− (5.29)

then,

b− = FR23F[I−R21FR23F]T12a
+ (5.30)

Substituting Equation 5.30 into Equation 5.26

a− = RTa
+ ; RT = R12 + T21FR23F[I−R21FR23F]T12 (5.31)

Subsequently, RT is the net reflection matrix due to the full finite length of the coupling

element.

Using Equation 5.20,

d+ = T23Fb+ (5.32)

d+ = TTa
+ ; TT = T23F[I−R21FR23F]T12a

+ (5.33)
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where TT is the net transmission matrix due to the full finite length of the coupling

element.

Subsequently, the full scattering matrix of the coupling element is given by{
a−

d+

}
=

[
RT

TT

]{
a+
}

(5.34)

5.2.3 Comparison and discussions

Both coupling methods have been simulated. Results such as the magnitude of the

reflection coefficients are compared. In addition, the advantages and limitations of

each approach are presented and discussed. Finally, one approach is chosen to get

the scattering matrices for different damage scenarios.

The undamaged and damaged RC sections were modelled as described in Section 4.2.

The undamaged reinforced concrete section is modelled using 16 SOLID65 elements. The

element length is ∆i = 0.01 m for all waveguides, the total number of DOFs n is 150, and

a hysteretic damping value of 0.004 is chosen for both models. However, for the damaged

coupling section, the total length is h = 0.2 m. The reinforcements are modelled via

the embedded approach using REINF264 elements. The damaged reinforced concrete

section is modelled in the same way as for the undamaged section, except that the area

of the damaged reinforced rebar at the bottom right corner is reduced to represent a

loss of thickness due to corrosion. In this model, the corroded rebar is taken to have a

diameter equivalent to a 36% reduction compared to the intact one. Both damaged and

undamaged sections are shown in Figure 4.1. The scattering matrix for each approach

was calculated, and the magnitude of the reflection coefficients of all propagating modes

are plotted in Figure 5.3.

In the WFE-FE-WFE coupling approach, a single FE model is needed for both undam-

aged and damaged sections. For the finite damaged joint, an FE model is needed for each

different damage scenario. The damage is modelled with different rebar diameter reduc-

tion. Subsequently, the FE approach uses a dynamic condensation to eliminate internal

nodes for each damage scenario. In this example, the nodes comprising 20 elements were

needed to be condensed into left and right DOFs. Calculation and ill-conditioning errors

related to dynamic condensation arise with the increased number of DOFs in the model.

As a result, a proper element length and Zhong’s approach are required to decrease

the effect of these errors. After defining the WFE solutions of the undamaged section

and the dynamic condensed matrix of the finite coupling element, both waveguides can

be coupled and the net scattering matrix calculated using Equation 5.11. To eliminate

ill-conditioning errors due to matrix inversion, a multiplication by the right eigenvectors

is used. The magnitude of the diagonal of reflection matrix is then plotted as shown in

Figure 5.3.
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Figure 5.3: Magnitude of the reflection coefficients due to simulated damage in
RC beam.

36% reduction of one of steel diameter over a length h = 0.2 m and element size of 0.01
m. WFE-FE-WFE approach (—), WFE-WFE-WFE approach (∗).

However, in the WFE-WFE-WFE coupling approach, an FE model of the section is

needed for both the undamaged and damaged segment. For the damaged element, only

one FE model is sufficient to model one reduction of diameter at a time for different

damaged lengths. In this example, an element of length 0.01 m is modelled to represent

each waveguide respectively. After extracting the associated mass and stiffness matrices

of each FE model, the WFE approach is applied for both damaged and undamaged

sections. Since the element length is small, no dynamic condensation is needed for

the damaged section since no internal nodes exist. As a result, calculation and ill-

conditioning errors related to dynamic condensation are not present. However, a proper

segment length is required. This length should be not too small with respect to the

shortest wavelength to avoid round off errors, nor too large to reduce discretization

errors. After defining the WFE solutions for all of the waveguides, the damaged and

undamaged sections are coupled first at the junctions as per Equation 5.24 and 5.25. One

should check the matching of the wave modes between the waveguides at a junction. For

these reasons, the WAC approach was applied between the wave modes in the waveguides

in order to make sure that the wave modes are listed in the same order for each waveguide

at each frequency step. Similarly to WFE-FE-WFE, errors related to ill-conditioning

occur and can be reduced via pre-multiplication by the right eigenvectors. The net



88 Chapter 5 Wave scattering due to simulated damage in RC beams

scattering matrix is calculated using Equation 5.31, and the magnitudes of the terms

in the diagonal of the reflection matrix are then plotted and compared to the ones via

WFE-FE-WFE as shown in Figure 5.3.

It can be seen that both methods give exactly the same solution. Subsequently, the

WFE-WFE-WFE approach was chosen to be used in the next section where scattering

matrices are to be calculated for different damage scenarios. The advantage of this

approach is summarised by the fact that it evaluates the phase change over different

finite lengths between the two undamaged waveguides and it is only necessary to model

one FE model, as used for example for the diameter reduction of one rebar.

5.3 Scattering due to damage in RC beams

In this section, different damage scenarios for corrosion of steel reinforcement are consid-

ered in RC members. Corrosion is modelled as a percentage reduction in a reinforcement

diameter. Moreover, this reduction is localised over a small length in order to represent

the pitting corrosion effect. As a result, the damaged part is considered as a coupling

element localised between two undamaged waveguides.

For each RC model, a damage scenario is selected and the WFE-WFE-WFE approach

is applied. The scattering matrix is then calculated accordingly with the magnitude of

the reflection coefficients plotted. Furthermore, the least attenuated modes are selected

as potential modes sensitive to the damage. In addition, the effect of the loss of the

rebar stiffness and mass is compared based on the rebar kinetic and strain energies.

5.3.1 Scattering properties of RC beams

Both undamaged and damaged RC sections are modelled as described in Section 4.2.

The element length is ∆i = 0.01m for all waveguides. However, for the damaged coupling

section, the total length is h = 0.05 m, and the damage is represented by a 36% and

60% diameter reduction in one of the bottom reinforcement debars. Then, the length of

the damage is increased to h = 0.2 m for the 36% damage case.

In Figure 5.4, the magnitude of the reflection coefficients associated with a 36% and

60% rebar diameter reduction over a length h = 0.2 m are plotted. The magnitude

of the reflection coefficients of wave modes are high at specific frequencies and related

to the increase in the extent of the damage. Next, the effect of the damage length is

investigated. In Figure 5.5, the magnitude of the reflection coefficients due to simulated

36% damage is plotted for different damage length h. These magnitudes increase with

an increase in the damage length.
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In Figure 5.6, d is the intact diameter of the rebar, a is the diameter reduction and h is

the damage length. In all cases, a x h is kept constant. It simulates a loss of material at

each stage. In Figure 5.7, the effects of diameter reduction and the increase of damage

length on the magnitude of reflection coefficients are compared. The magnitude of the

highest reflection coefficients at cut-on frequencies are selected and plotted. One can

observe the increase in the magnitude of the reflection coefficients with respect to the

greater diameter reduction. This means that the wave modes are more sensitive to the

change in the rebar diameter rather than its length. Subsequently, attention is more

focused on the damage represented by the rebar diameter reduction.
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Figure 5.4: Magnitude of the RC reflection coefficients due to simulated damage
length h = 0.2 m.

Rebar diameter reduction: 36% (—), 60% (−−−).

The magnitude of the reflection coefficients of the least attenuated wave modes is selected

and plotted for the 60% damage over a length h = 0.2 m. The magnitude of the reflec-

tion coefficients of fundamental wave modes (axial, torsional, bending and transverse

bending) are plotted in Figure 5.8. These reflections are negligible and therefore the

fundamental wave modes are not sensitive to this type of damage due to rebar diameter

reduction. However, high magnitudes of the reflection coefficients are associated with

some evanescent and complex wave mode shapes as seen in Figure 5.9 and Figure 5.10.

Not all evanescent and complex wave modes defined in Section 4 have shown high magni-

tude of reflection coefficients. The peaks of these reflection coefficients are at the cut-on

frequency of these wave modes. This is due to the shift between the wavenumbers in
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Figure 5.5: Magnitude of the RC reflection coefficients due to simulated a as
36% diameter reduction.

Damage length h: 0.05 m (—), 0.2 m (−−−).

Figure 5.6: Damaged rebar details with d is rebar diameter, a is rebar reduction
and h is the damage length.

the damaged and undamaged waveguides of the evanescent and complex wave modes,

seen in Figure Figure 4.8 and Figure 4.9. These wave modes start propagating in the

undamaged waveguide before the damaged one in this frequency range. Subsequently,

the high reflection coefficients are present in narrow frequency bands. In addition, the

magnitude of these reflection coefficients associated with this damage scenario are listed

in Table 5.1.
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Figure 5.7: Variation of the magnitude of the reflection coefficient associated
with wave modes at cut-on with respect to the damage depth ratio whilst keeping
the product diameter reduction times length (a × h) a constant.
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Figure 5.8: Magnitude of the reflection coefficients of fundamental wave modes
in an RC section with a 60% single rebar diameter reduction damage over a
length h =0.2 m.

Axial (—), torsional (−), bending(−), bending transversal (−).
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Figure 5.9: Magnitude of the reflection coefficients of evanescent wave modes in
an RC section with a 60% single rebar diameter reduction damage over a length
h =0.2 m.

E4200 (-), E5000 (−), E6300 (−), E8700 (−), E11700 (−), E12500 (−). E stands for
evanescent with their associated cut-on frequency.
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Figure 5.10: Magnitude of the reflection coefficients of complex wave modes in
an RC section with 60% single rebar diameter reduction damage over a length
h =0.2 m.

C6300 (-), C6600 (· · · ), C7250 (- - -), C8750 (−), C9450 (−−−), C10250 (o), C10400
(−), C11400 (−−−), C14200 (o), C14500 (−). C stands for complex wavenumbers

with their associated cut-on frequency.
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Wave description Cut-on frequency (Hz) Reflection coefficient

Axial - 0
Torsional - 0
Bending - 0

Bending transversal - 0
E4200 4200 0.2
E5000 5000 0.4
E6300 6300 0.27
C6300 6300 0.1
C6600 6600 0.17
C7250 7200 0.33
E8700 8700 0.8
C8750 8800 0.6
C9450 9450 0.3
C10250 10250 0.48
C10400 10400 0.1
C11400 11400 0.25
E11700 11700 0.53
E12500 12500 0.3
C14200 14200 0.27
C14500 14500 0.74

Table 5.1: Characteristics of the least attenuated waves in an RC beam asso-
ciated with 60% rebar reduction damage for length h = 20 cm. E refers to
evanescent waves and C refers to complex waves

5.3.2 The effect of loss in rebar stiffness and mass

The rebar potential energy Ep is related to its stiffness, and its kinetic energy Ek is

related to its mass. Subsequently, the potential and kinetic energies of the embedded

reinforcement were computed via conventional FE and compared to the total energies

in the RC cross section.

Modal analysis was applied to the undamaged RC beam. Wave modes associated with

high reflection are listed in Table 5.1. Then, the modal kinetic and potential energies

associated with the concrete and reinforcement elements were extracted for each wave

mode. The energy ratio of the reinforcement to the total beam elements is computed.

In Figure 5.11 the percentage of the kinetic energy of the reinforcements evaluated

at cut-on frequencies is plotted for each wave mode. The magnitude of the reflection

coefficients increases with the rebars’ increased kinetic energy. Similarly, the magnitude

of the reflection coefficients increases with the rebars’ percentage potential energy as

seen in Figure 5.12. However, the kinetic energy ratio is much more significant and

dominant. Therefore, the effect of the rebar mass is more significant than its stiffness.
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In other words, the reflection coefficients are more sensitive to the loss of mass of the

rebar compared to changes in its stiffness.
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Figure 5.11: Magnitude of the reflection coefficients for fundamental wave modes
in an RC section with respect to percentage of kinetic energy associated with
the rebars at cut-on frequencies.

5.3.3 Discussion and damage criteria

The scattering matrices were formulated for the damaged model. The damage was

modelled as a diameter reduction over a specific length to simulate the pitting corrosion

of the reinforcement. One would expect a decrease in the diameter of the rebar to

increase the magnitude of the reflection coefficients. For this reason, only the smallest

detectable damage was modelled for each model respectively. This is why the damage

was only limited to a decrease in the rebar diameter equal to 40% or 60%. Full rebar

reduction was not considered, since its effect can be seen from external visual inspection

of the outer surface of the concrete and therefore it does not need an internal detection

method in the first place.

It can be seen from Table 5.1 that the reflection coefficient corresponding to different

modes are sensitive at different levels to the rebar diameter reduction. When damage is

present, the majority of the nodal displacements in the least attenuated modes possessing

high reflection are in the transverse Y and Z directions. In addition, the maximum
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Figure 5.12: Magnitude of the reflection coefficients of fundamental wave modes
in an RC section with respect to percentage of potential energy associated with
the rebars at cut-on frequencies.

displacement is located at the corners and in the middle side surface of the beam cross

section. This configuration gives a possibility to specify a damage criterion associated

with the measurement of the side displacements in these directions. The challenge is

to separate the displacement due to the defined mode at its cut-on frequency from all

other modes excited at this particular frequency.

5.4 Conclusions

To summarise, a WFE-WFE-WFE coupling approach has been presented, where the

undamaged waveguides were modelled as two semi-infinite beams, and the finite size of

the damaged joint waveguide has been modelled via WFE. Then, the waveguides were

coupled using the continuity and equilibrium conditions at each junction. Subsequently,

the total scattering matrix was formed as a combination of reflection and transmission

coefficients due to the finite length of the damaged coupling element.The WFE-WFE-

WFE approach was compared to the WFE-FE-WFE approach. Both gave similar results

due to rebar diameter reduction. Due to many advantages such as its flexibility for

extending the length of the damage, the WFE approach was selected for subsequent

simulations.
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For each RC model, damage scenarios with different diameter reduction and damage

length were selected to represent corrosion. The magnitude of the reflection coefficients

were found to be more sensitive to the change in the rebar diameter rather than the

damage length. This is related to the physics of the strength of the wave reflection

at the interface between the original and reduced rebar sections. From simulation, it

has been shown that the effect of the rebar diameter reduction is primarily governed

by the mass reduction which is more significant than the length over which the rebar

reduction has taken place. In addition, the rebar kinetic energy at the cut-on frequencies

is dominant in comparison to their potential energy. Therefore, the effect of rebars’ loss

in mass is more significant on the magnitude of the reflection compared to its stiffness.

Furthermore, the least attenuated modes were selected as potential modes sensitive to

the damage and the associated nodal displacements were shown in Figure 4.13 and

Figure 4.14 in Chapter 4. The majority of the nodal displacements for these least

attenuated modes with high reflection are in the Y and Z directions. This configuration

gives a possibility for a defined damage criterion associated with the measurement of

the corner displacements in these directions. This will be an area for experimental

investigation and validation presented in the next chapter.



Chapter 6

Damage identification using

cut-on waves

6.1 Introduction

The ultimate aim of this research is to define a damage identification algorithm for steel

reinforced concrete beams that does not require direct contact with the reinforcements.

In the previous chapter, it was seen that guided waves have high reflection coefficients at

their cut-on frequencies due to damage modelled by loss of rebar thickness. In practice,

one cannot reliably estimate these magnitudes from forced response measurements on

the surface unless all the dispersion relations for all contributing wavetypes are known.

One is interested only in frequencies where strong reflections occur, i.e. near the cut-

on frequencies, close to which the wavenumber is small. It is thus proposed that for

this purpose the amplitudes of the positive and negative going waves near cut-on can

be estimated using the Wave Amplitude Decomposition method in Halkyard and Mace

(1995) using an assumed small wavenumber value i.e. exact knowledge of the dispersion

curve would be unnecessary.

To evaluate the algorithm, it is first applied to infinite RC beams, where the estimated

wave amplitudes are compared with the exact solution. In order to test and validate

its robustness, the technique is then applied to finite beams with different boundaries

namely perfectly reflecting, fixed and coupled to another beam. In addition, a parametric

study is presented which considers the effect of the value of the wavenumber adopted

and transducer spacing. A change in the estimated wave amplitudes along the length of

the beam is then proposed as a potential damage localisation technique. Subsequently

the benefits, accuracy and limitations of the approach are discussed.

97
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6.2 Wave Amplitude Decomposition approach

The Wave Amplitude Decomposition (WAD) approach is adapted here to estimate the

wave amplitudes in the RC beams where only values at wave cut-on are of interest. First,

the feasibility of this method is tested using simulations, where a parametric study is

applied in a noise free environment.

In a waveguide, the WAD method has been employed to identify the positive and neg-

ative going wave amplitudes at a specific point. Halkyard and Mace (1995) applied

the WAD method to an experimental uniform beam undergoing flexural vibration in

order to evaluate intensity, energy density and reflection coefficients. Optimisation of

the condition number of the WAD matrix showed preferable transducer separations for

better results. Subsequently, Mace and Halkyard (2000) applied the WAD method to

digitally filtered outputs of an array of the sensors in the frequency domain followed by

a reconstruction in the time domain. Compared to other methods, numerical simula-

tions of the measurements were presented and the approach was shown to be reasonably

insensitive to sensor miscalibration and measurement noise. Later, Muggleton et al.

(2007) estimated the reflection and transmission coefficients of a joint when a pipe is

undergoing flexural vibration. The wave amplitudes of fundamental modes were iden-

tified via the WAD approach as applied to experimental data. So, the WAD method

has been demonstrated on flexural and other fundamental wave types present in a thin

beam. However, in this research, the approach was applied to a deep non-homogeneous

beam where multiple and complicated wave types can coexist.

One can assume a set of measurements from n transducers at n locations on a waveguide,

where there are m wave components to be estimated. The output responses (displace-

ment, velocity or acceleration) are related to the wave amplitudes by

W = ΛA (6.1)

where

W =


W(x1)

W(x2)
...

W(xn)

 ; Λ =


e−ik1x1 . . . e−ikmx1 eik1x1 . . . eikmx1

e−ik1x2 . . . e−ikmx2 eik1x2 . . . eikmx2

...
...

...
...

e−ik1xn . . . e−ikmxn eik1xn . . . eikmxn

 ; A =

{
A+

A−

}

(6.2)

W is an n×1 vector comprising FRFs relating outputs at different points from x1 to xn

due to an excitation force. In addition, Λ is a propagation matrix of size n×2m which

is dependent on the positive and negative going wavenumbers to be considered in the

waveguide at each measurement location, and A is a 2m×1 vector comprising A+ and

A− as the m positive and negative going wave amplitudes estimated at the mid point of

the sensor array. In general, one needs to include all waves that contribute significantly
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to the observed response and their wavenumbers should be estimated beforehand to

evaluate the Λ matrix.

If the number of measurements is less than the number of wave components, i.e. n

< m, the system is considered undetermined and additional conditions are required

to compute the solution. In a determined system where the number of measurements

matches the number of wave components, one can determine these wave amplitudes by

A = Λ−1W (6.3)

In an overdetermined system, where n > m, the wave components can be found in a

least squares manner as

A = (ΛHΛ)−1ΛHW (6.4)

where superscript H indicates the conjugate transpose of a matrix. Normally the matrix

is singular when the transducer spacing is an integer number of half-wavelengths. In

this case, the matrix is ill-conditioned and may cause disproportionately large errors in

the estimated wave amplitudes. Therefore, it is suggested that the transducer spacing

must be less than half the shortest wavelength in the frequency range of interest for the

method to identify the positive and negative going wave amplitudes correctly.

In addition, the number of transducers considered in the WAD approach has been dis-

cussed in the literature. In Halkyard and Mace (1995), when evanescent waves are

ignored and only two propagating waves are considered, only two transducers are re-

quired to compute the wave amplitudes. However, if in addition a single evanescent

wave is considered, then three or more transducers are required. Furthermore, where

two evanescent waves are present then at least four transducers are necessary in the ar-

ray to evaluate the wave amplitudes. It has also been shown that the condition number

of matrix Λ deteriorates with an increasing number of unknown wave components.

Regarding the transducers’ positions, the condition number of matrix Λ is dependent on

the position of the centre of the transducer array when evanescent waves are considered

(see Halkyard and Mace (1995)). The closer the transducers are to the excitation force

or discontinuity, the higher is the condition number. Therefore, one tends to select the

transducer positions in the far-field.

6.3 Wave amplitude estimation at cut-on

For the purpose of detecting reflections from regions of damage, one is interested only in

estimating wave amplitudes near the cut-on frequencies close to which the wavenumber is

small. First though, an undamaged infinite RC beam is considered, where the estimated

WAD solutions from using a small wavenumber representing the wave modes cutting on

are compared with the exact solutions.
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At the cut-on of a wave, which corresponds to a cross-section resonance, it is assumed

here that the wave dominates the response such that the contributions of all other waves

are negligible. Furthermore, one could also assume the wavenumber is zero (real and

imaginary parts) representing the value of the evanescent waves’ wavenumber when they

start cutting on, but then Λ becomes singular. To overcome this problem, a small value

for the wavenumber is selected. Subsequently, the Λ matrix and A vector in the WAD

Equation (6.2) can be reduced.

When a small real wavenumber value ks is selected, the Λ matrix is of size n×2 com-

prising the positive and negative propagating waves as

Λ =


e−iksx1 eiksx1

...
...

e−iksxn eiksxn

 (6.5)

The associated A vector is of size 2×1 comprising A+ and A− as scalar values for the

positive and negative propagating wave amplitudes respectively.

However, if the ks value is selected to be real and imaginary representing the wavenumber

just before or after q cut-on frequency, the Λ matrix becomes of size n×4 comprising

the positive and negative propagating waves in addition to evanescent ones as

Λ =


e−iksrx1 eksix1 eiksrx1 e−ksix1

...
...

...
...

e−iksrxn eksixn eiksrxn e−ksixn

 (6.6)

where ksr and ksi are the real and imaginary wavenumbers, respectively. The associated

A vector is of a size 4×1 comprising A+ and A− as positive and negative propagat-

ing/evanescent going wave amplitudes, respectively.

This reduced WAD approach was then applied to the response of an infinite undamaged

beam. The infinite undamaged RC beam is modelled in WFE as a small segment

with the material properties as given in Table 4.1. The steel rebars are 25 mm in

diameter. The WFE solutions are employed to calculate the forced response from exact

wave amplitudes at xr = 0.375 m. Since no boundaries are present, only the positive

going wave amplitudes are calculated. In this model, one should apply the excitation

force on the structure in a particular direction to excite specific waves. Figure 4.13

and Figure 4.14 show that the maximum displacement occurs in the Z direction in the

middle of the top and bottom faces of the cross section for evanescent and complex wave

modes respectively. Based on this observation, it is preferable to excite the beam in the

Z-direction to excite these wavemodes, since typically only the top and bottom faces

of the RC beams are accessible in real structures. The amplitude of the positive going

wave was computed using a small value for the wavenumber ks = 0.1 and 0.1 + 0.1 i

rad/m, with four transducers at 0.3 to 0.45 m from the excitation force. The estimated
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and exact amplitudes of the least attenuated waves defined in Section 4.4 are illustrated

in Figure 6.1.
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Figure 6.1: The amplitudes of the least attenuated waves in an infinite undam-
aged RC beam at xr = 0.375 m.

WFE solution: torsion (—), bending (- - -), E4200 (· · · ), C6600 (×), C7250 (+), E8700
(5), E11700 (4), E12500 (◦), C14500 (?), C15000 (�); WAD solution: using ks = 0.1

rad/m (∗), using ks = 0.1 + 0.1 i rad/m (∗).

Using a small real wavenumber, the estimated wave amplitude was estimated using

Equation 6.5 and is depicted by the red markers in Figure 6.1. It can be seen that

it aligns with the exact solution at the peaks corresponding to the cut-on frequencies

of 8700, 11700 and 12500 Hz. However, these peaks are not captured well at 6600 and

14500 Hz. This is due to the fact that a small real wavenumber of 0.1 rad/m representing

the waves cutting on is present at the cut-on frequencies of 8700, 11700 and 12500 Hz

as in Figure 4.8 for the evanescent waves E8700, E11700 and E12500 wave modes. In

contrast, this value of wavenumber is not correct for the complex waves C6600 and

C14500 at their cut-on frequencies as shown in Figure 4.9. This means that the WAD

approach correctly identifies the response at the cut-on frequencies associated with the

small real trial wavenumber used but only for evanescent not complex waves. This is

essential for the later application of the algorithm, since high reflection coefficients exist

at these frequencies when damage is present.

Using a small complex wavenumber, the estimated wave amplitude was estimated using

Equation 6.6 and is depicted by the blue markers in Figure 6.1. One can notice that

it lacks the correct peak at all cut-on frequencies compared to the exact solution. This

means that the use of a small complex wavenumber does not detect the response of the

evanescent waves at their cut-on frequencies. Subsequently, a real wavenumber value

of ks = 0.1 rad/m was selected for the damage detection algorithm since it correctly
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estimates the response near the cut-on frequencies, at which the reflection coefficients

are sensitive to loss of rebar thickness.

6.4 The damage identification algorithm for infinite and

semi-infinite RC beams

Damage introduced as a rebar diameter reduction produced high reflection at the cut-on

frequencies of evanescent waves as shown in Chapter 5. Using the simulated RC beam

forced response, one could obtain these coefficients by using the full WAD approach with

a priori knowledge of all the wavenumbers present. However, since one is only interested

in the wave amplitudes at the cut-on frequencies, it is an inverse problem that can be

simplified if only one wavetype is dominant.

In Section 6.3, it has been shown that using a small real wavenumber detects the correct

wave amplitudes near the cut-on frequencies of 8700, 11700 and 12500 Hz. Having

computed the positive and negative going wave amplitudes from the forced response

using the WAD approach, these values can be compared to identify the presence or

absence of the damage. Here only the solution near the cut-on frequency is of interest.

One can estimate the positive and negative wave amplitudes in a waveguide using the

reduced WAD approach presented in Section 6.3. Then, a damage identification met-

ric can be defined simply as the ratio of negative to positive going wave amplitudes.

The variability of this ratio with respect to the absence/presence of damage and beam

boundaries are discussed in this section.

Considering first an infinite damaged RC beam in Figure 6.2, a+ is the incident wave at

the damage interface, a− and b+ are the reflected and transmitted waves respectively.

When no damage is present in the beam, only the positive going waves are present.

Hence, the ratio of the amplitudes of the negative to positive going waves |a−
a+
| is equal

to 0. However, when damage exists in the beam, this ratio |a−
a+
| = RT 12 is less than 1

but greater than zero. This is due to the presence of the damage, where RT 12 is the

reflection coefficient relating the incident and reflected waves travelling from waveguide

1 to 2 as presented in Section 5.2.2.

Subsequently, when damage is introduced as a loss of rebar thickness, |RT 12| > 0 near

the cut-on frequency. Away from the latter, |RT 12| ≈ 0. Then, a plot of the wave

amplitude ratio |a−
a+
| resembles that as shown in Figure 6.3, where the peak is greater

than zero only near the cut-on frequency. In Figure 6.4, the ratio of negative to positive

wave amplitudes in an infinite RC beam is plotted at cut-on frequencies for different

loss of thickness of a single rebar with length h of 0.2 m. It can be seen that the ratio

increases with the level of damage. However, the E8700 wave mode is more sensitive to

lower damage than the E11700 and E12500 wave modes cutting on.
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Figure 6.2: Wave amplitudes of infinite beam with damage.
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Figure 6.3: The magnitude of teh reflection coefficient for waves in an infinite
beam incident on a reduced diameter (damaged) semi-infinite length beam plot-
ted against non-dimensionalised frequency. The cut-on frequency of a wave in
the undamaged (no reduced rebar diameter)RC beam −−−)
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Figure 6.4: Ratio of negative to positive wave amplitudes at cut-on frequencies
in infinite RC beam with different damage extents.

E8700 (—), E11700 (- - -), E12500 (-∗-).
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Consider next a semi-infinite damaged beam with right boundary as shown in Figure 6.5.

a+ is the incident wave travelling from waveguide 1 to 2 at the damage interface, a−

and b+ are the reflected and transmitted waves defined as

a− = RT12a
+ ; b+ = TT12a

+ (6.7)

c− is the transmitted wave travelling from waveguide 2 to 1. Therefore, the total negative

going wave amplitude is |a− + c−|.

When no damage is present in the semi-infinite beam, the amplitude of the positive

going wave should be equal to the negative going one provided that the far boundary

is perfectly reflecting i.e. |a+| = |c−| with a− = 0. Hence, the practically observable

ratio of the amplitudes of the negative to positive going waves |a−+c−

a+
| is equal to 1.

In this chapter, perfectly reflecting boundaries are defined as those with unity diagonal

reflection matrices, i.e. full reflection with neither phase change nor mode conversion.

Waveguide 1 

damage

Waveguide 2 

Figure 6.5: Wave amplitudes in semi-infinite beam with loss of rebar thickness
as damage scenario.

However, when damage exists, the amplitude ratio of the negative to positive going

waves can be written as

|a
− + c−

a+
| ≤ |a

−

a+
|+ | c

−

a+
| (6.8)

c− is related to the incident wave as (see Appendix B for details)

c− = (TT21 [I− τ(L2)rRτ(L2)RT21 ]−1τ(L2)rRτ(L2)TT12)a+ (6.9)

where TT 21 is the transmission coefficient for the wave travelling from waveguide 2 to

1, τ is the propagation matrix value, L2 is the beam length after the damage, rR is

the right boundary scattering value and TT 12 is the transmission coefficient relating the

wave amplitude travelling from waveguide 1 to 2 (Section 5.2.2).
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Then, by using Equation 6.7 and 6.9, one can write

|a
−

a+
| = RT12 ; | c

−

a+
| = TT21 [I− τ(L2)rRτ(L2)RT21 ]−1τ(L2)rRτ(L2)TT12 (6.10)

Consider a semi-infinite RC beam with a perfectly reflecting right boundary. The beam

is damaged with 60 % diameter reduction over a length of 20 cm. In Figure 6.6, the

ratio of exact wave amplitudes using Equation 6.10 are plotted for different wave modes.

At the cut-on frequencies, the ratio of the combined total negative to positive wave

amplitudes |a−+c−

a+
| is dominated by the contribution due to the |a−

a+
| = |RT 12| value.

Away from the cut-on frequency, |RT 12| is ≈ 0 and | c−
a+
| is given by Equation 6.10.
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Figure 6.6: Ratio of the negative to positive wave amplitudes in a semi-infinite
beam with a perfectly reflecting right boundary and 60 % loss of rebar thickness.

Ratio of wave amplitudes: |a−
a+
| = |RT 12| (—), | c−

a+
| (- - -), |a−+c−

a+
| (∗). Cut-on

frequencies (−−−).

By applying the damage algorithm using a small real wavenumber, the plot of the ratio

of the estimated wave amplitudes should resemble Figure 6.7. At the cut-on frequency,

the ratio is close to the value of |RT 12|. At other frequencies, the amplitudes of the

positive and negative going waves are equal and the amplitude ratio is very close to 1.

Considering the case of a semi-infinite RC beam with perfectly reflecting right boundary,

the ratio of wave amplitudes can be estimated for different extents of the damage at the

cut-on frequencies. This is illustrated is Figure 6.8. When there is no damage in the RC

beam, the ratio of positive to negative going wave amplitudes is 1 when considering the

application of a small wavenumber in the WAD solution. Further demonstration of this

statement is presented in simulation in Section 6.6.
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Figure 6.7: Ratio of the negative to positive wave amplitudes in a semi-infinite
beam, with right boundary, due to loss of rebar diameter as a damage scenario
when considering the application of a small wavenumber in the WAD solution.
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Figure 6.8: Ratio of negative to positive wave amplitudes at cut-on frequencies
in semi-infinite RC beam with different extents of damage.

E8700 (—), E11700 (- - -), E12500 (-∗-).

When damage is present in one rebar, this ratio starts to decrease until the damage

is 10% and is similar for the wave types plotted. This due to the small values of the

reflection coefficients associated with this small damage scenario. After which the ratio

starts increasing to become fairly constant for damage greater than 60%. However,
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between 10% and 60% damage, the ratio is distinct for different wave types. For very

small damage, less than 5 % rebar diameter reduction, the waves propagate past the

reduction and reflect off the finite end and so the reflection coefficient is close to unity.

As the damage increases to 10 % reduction, a small reflection occurs as the incident wave

propagates past the damage but then the wave gets trapped between the damage and

the end of the beam. As the level of rebar diameter reduction or equivalently damage

increases still further, higher reflection occurs in the incident wave due to the change in

impedance at the first reflection between the damaged and undamaged sections. Then,

the wave reflection is independent of the finite end and similar to the reflection from a

damaged section in the middle of an infinite length RC beam.

The aim here not to have full rebar reduction since its effect can be seen from external

visual inspection of the outer surface of the concrete and therefore it does not need an

internal detection method in the first place as explained earlier in Section 5.3.3. Here,

as the amount of damage increases so the ratio of wave amplitudes increases again. This

means that the ratio of wave amplitudes may not be effectively used to convey the extent

of rebar reduction when the latter is too small or too large.

6.5 Damage identification on finite RC beams with per-

fectly reflecting boundaries

The damage identification technique is now applied to finite damaged and undamaged

RC beams where the boundaries are perfectly reflecting at both ends. This is to validate

the algorithm accuracy when no mode conversion is present at the boundaries. In

addition, the effect of transducer spacing on the estimated wave amplitudes from the

WAD approach is investigated.

Figure 6.9: Forced response and wave amplitudes of a finite RC beam with
perfectly reflecting left and right boundaries.

The forced response setup of a finite RC beam with left and right boundaries BCL and

BCR is considered as shown in Figure 6.9. BCL and BCR are considered to be perfectly
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reflecting and so no wave mode conversion occurs. The negative and positive going

waves are related by the term τ (L - xr)rRτ (L - xr) as shown in Equation 3.49. In the

absence of damping, the propagation matrix τ (L - xr) is a phase change between the

two positions L and xr. As a result, the negative and positive going waves are related

based on the reflection coefficient matrix of the right boundary rR. The model material

properties are given in Table 4.1. The undamaged diameter of the steel rebars is 25 mm

and the total length of the beam is L = 2 m. The excitation force is at a distance xe =

0.3 m from the left boundary.

The finite damaged RC beams were then modelled with 40% and 60% rebar diameter

reduction with perfectly reflecting boundaries. The damage detection algorithm is ap-

plied using the following: the small wavenumber ks = 0.1 rad/m, four transducers at

0.3 to 0.45 m from the excitation force. The ratio of the negative to positive estimated

wave amplitudes is plotted for the damaged and undamaged beams in Figure 6.10. The

undamaged beam shows a constant reflection ratio value of 1 over the frequency range,

due to the absence of damage and wave mode conversion at the boundaries.

However, the damaged models show a reflection ratio of less than 1 near the cut-on

frequencies of 8700, 11700 and 12500 Hz. The values of this ratio agree approximately

with the magnitudes of the reflection coefficients due to damage as per the illustration

presented in Section 6.4. Away from these cut-on frequencies, the ratio of the negative

to positive estimated wave amplitudes is near 1. This is due to the fact that no wave

mode conversion occurs at the boundaries and the change in the wave amplitudes is only

present at the cut-on frequencies.

Next, a parametric simulation investigates the effect of the transducer spacing. Normally

the Λ matrix is singular when the transducer spacing is an integer number of half-

wavelengths. The matrix is then ill-conditioned and may cause errors in the calculated

wave amplitudes. Therefore, it is suggested that the transducer spacing must be less

than half the shortest wavelength for the method to correctly identify the positive and

negative going wave amplitudes.

However, the use of a small real wavenumber results in higher imaginary parts in the Λ

matrix (dominated by e−ikx) and therefore deteriorates its condition number. In order

to improve the conditioning of the Λ matrix, whilst using a small real wavenumber, one

can modify the transducer spacing. Here, four transducers (denoted as transducers 1

to 4) are used with different array lengths and spacing. In Figure 6.11, the condition

number of the Λ matrix is plotted against the various array length for ks = 0.1 rad/m.

When a uniform spacing is applied, the transducer spacing is a constant value of the

array length divided by 4. However, when non-uniform spacing is used, the position of

each transducer (denoted from 1 to 4) is retrieved from Figure 6.12. Here, transducers 2

and 3 have been shifted by the same absolute amounts and so the transducer separation

is almost uniform for longer arrays. For instance, for an array length of 0.6 m, transducer
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Figure 6.10: The ratio of the estimated negative to positive wave amplitudes
for damaged and undamaged RC beams with perfectly reflecting boundaries.

(a): undamaged RC beam, (b): 40% damaged RC beam, (c): 60% damaged RC beam.
Cut-on frequencies (−−−).

2 is located at 0.18 m, transducer 3 is located at 0.42 m and transducer 4 at 0.6 m from

transducer 1.

For these reasons, the use of non-uniform transducer spacing improves the conditioning

of the Λ matrix whilst using a smaller array length as shown in Figure 6.11. Therefore,

a non-uniform transducer spacing with a small array length was subsequently selected

for implementing the damage detection algorithm.

The condition number decreases with increased transducer spacing. This agrees with

the discussion in Mace and Halkyard (2000). Therefore, larger transducer spacing is

recommended for better results. However, transducer spacing selection is limited when

it comes to damaged beams. Based on previous discussions and findings, one is interested

in estimating the positive and negative going wave amplitudes spatially on the beam on

one side of the damage.

Since the damage location is considered unknown, it is advisable to select a smaller

transducer spacing that leads to a smaller array length that does not interfere or overlap

with the damage location.
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Figure 6.11: Condition number of propagating matrix for four transducers array
length for undamaged RC beam.

Wavenumber ks = 0.1 rad/m: uniform spacing (—), non-uniform spacing (- - -).
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Figure 6.12: Transducer position with respect to array length when non-uniform
spacing is applied. Transducer 1 is taken as the origin of various positions.

Transducer notation: 1 (—), 2 (- ∗ -), 3 (- ◦ -) and 4 (- - -).
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6.6 Damage identification on RC beams with fixed bound-

aries

So far, the damage identification algorithm has been demonstrated on damaged and

undamaged RC beams with perfectly reflecting boundaries. In this section, its robustness

and potential to detect damage in the presence of mode conversion is investigated.

First, both beam’s ends BCL and BCR are considered to be fully fixed at all the interface

nodes. The corresponding reflection coefficients rL and rR are calculated using Equa-

tion 3.41. In this situation, these matrices are not diagonal matrices and wave mode

conversion is present. First, the effect of the fixed boundary on exact wave amplitudes

is investigated. Since the negative and positive going waves are related by the reflection

coefficient matrix of the right boundary rR, the magnitudes of these coefficients for each

of the least attenuated are plotted in Figure 6.13 showing that these coefficients are not

constant over the frequency range. However, their magnitudes are close to 1 for the

evanescent waves only at their associated cut-on frequencies. Elsewhere non-equal wave

amplitudes of positive and negative going waves occur as illustrated in Figure 6.14. Con-

sequently, even when no damage is present, the magnitude of the positive and negative

going waves are not similar due to the boundary conditions which represent wave mode

conversion.

Next, the same RC beam as in Table 4.1 is modelled for with fixed boundaries for

three cases namely undamaged, damaged with 40 % and damaged with 60 % diameter

reduction of one of the rebars. For a finite waveguide with no discontinuity, the forced

response includes the following steps as mentioned in Section 3.6. The magnitudes of the

directly excited waves due to the external point excitation are computed. The reflection

matrices due to the boundaries are calculated and all of the equations governing the

propagating waves are assembled. Then, the physical response at a specific point is

evaluated via superposition of the waves. When a discontinuity is present, the same

procedure is employed except that one needs to compute and add the reflection matrices

of the discontinuity to the system of equations. The details of these computations are

found in Appendix B.
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Figure 6.13: Magnitude of the reflection coefficients of the least attenuated
waves in a finite RC beam due to fixed BCs.

Reflection coefficients(—), cut-on frequencies (−−−).
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Figure 6.14: Least attenuated wave amplitudes in a finite RC beam with fixed
BCs.

Positive going waves (—), negative going waves (− − −), response at cut-on frequency
(◦).

The WAD approach is applied to the three beams with the following parameters: ks = 0.1

rad/m, with four non-uniformly spaced transducers at 0.3 to 0.45 m from the excitation

force at 0.3 m. The estimated positive and negative wave amplitudes are identified.

Considering first the undamaged finite RC beam, the amplitudes of the evanescent and
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estimated waves are plotted in Figure 6.15. The estimated wave amplitudes align with

the exact solution when this wavenumber value is correct, i.e. at the cut-on frequencies.

Away from the cut-on, the use of the small real wavenumber is not correct and the

estimated wave amplitudes follow the peaks of the dominant solution. However, this

does not mean that the estimated wave amplitudes are equal to the exact solution since

the wavenumber value is not applicable in this case. As demonstrated in Figure 6.15,

the positive and negative wave amplitudes are equal away from the cut-on frequencies

despite the fact that the exact ones (not fully shown for clarity) are different due to wave

mode conversion at the boundaries as illustrated in Figure 6.14. This is advantageous to

the algorithm, since only changes in the wave amplitudes at the cut-on frequencies are

detected when the application of the small real wavenumber is correct. Subsequently,

the ratio of the negative to positive estimated wave amplitudes is 1 for the fixed-fixed

undamaged beam.
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Figure 6.15: The wave amplitudes of the evanescent and estimated waves for
undamaged fixed RC beam .

WFE solution: E8700 (—), E11700 (- - -), E12500 (· · · ); WAD solution using ks = 0.1
rad/m: positive going wave (−), negative going wave (∗); Cut-on frequencies (−−−).

In contrast, damaged models show a reflection ratio less than 1 near the cut-on frequen-

cies of 8700 , 11700 and 12500 kHz as shown in Figure 6.16. The dips in the ratio at the

cut-on frequencies is in accordance with the reflection coefficients, due to the presence of

the damage predicted in Table 5.1 for the evanescent waves. Here, the term ’larger dips’

is used to mean those reflection amplitude ratios being closer to zero, and ’small dips’



Chapter 6 Damage identification using cut-on waves 115

is small deviation of the ratio from 1. Higher reduction in the rebar diameter leads to

higher reflection coefficients, and therefore to a smaller dip. Subsequently, values of the

dip for the 40% damaged RC beam are lower than the 60% ones since lower magnitudes

of reflection coefficients are associated with the extent of the damage. Similarly by com-

paring the dips for the same RC beam, the evanescent waves with the higher magnitude

of the reflection coefficients tend to have small dips in the ratio (as seen in Figure 6.8).

The dips in the ratio of the wave amplitudes due to damage at cut-on frequencies clarify

the advantages of the damage detection algorithm. First, a pre-simulation of the actual

structure including a pre-investigation of the material properties is not required. Second,

no prior knowledge of the wavenumbers and cut-on frequencies is necessary. One can

simply apply the method taking into account the position and number of transducers

and look for the minimum values of the ratio of the wave amplitudes. Thus, an intact

beam model is not needed for application of the methodology or comparison with the

results of predictions. Third, one can link the extent of the damage to the size of the

dips. Greater damage represented by rebar diameter reduction is associated with a

smaller dip since the wave amplitude ratio at the cut-on frequencies is dominated by

the cut-on wave reflection coefficients, which tend to 1 with the increased amount of

damage. In this case, it is only true when damage is between 10% and 60% diameter

reduction. Apart from that, the ratio of the wave amplitudes is not very distinctive as

shown in Figure 6.8.

6.7 Damage localisation

In this section, the ability of the algorithm to locate damage is tested via simulation. The

forced response is computed as displacement along the top surface of the 60% damaged

rebar finite RC beam. These responses are then applied via WAD in order to calculate

the positive and negative going waves. The RC beam is divided into Zones 1 to 4 as

shown in Figure 6.17. Each Zone contains 4 transducers with non uniform spacing. Zone

1 starts at 0.3 m from the excitation force, and Zone 3 is associated with the damage

section. The ratio of the negative to positive going wave amplitudes is estimated by an

array of simulated responses in each Zone and then plotted in Figure 6.18.

One can notice that the wave amplitude ratio in Zone 2 is less than 1 near the cut-on

frequencies of 8700, 11700 and 12500 Hz. This due to the presence of the measurement

array before the damage as shown in Figure 6.17. The dips have shown approximately

similar values in Zone 1 (Figure 6.16) and 2. This is due to the fact that using a small real

wavenumber in the WAD approach only detects the response near the cut-on frequencies

that is independent of transducer location. On the other hand, the ratio of the wave

amplitudes is almost 1 for Zone 3 and 4: For Zone 3, all the transducers are in the

damaged part. The positive and negative wave amplitudes are related to the reflection



116 Chapter 6 Damage identification using cut-on waves

4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000
0

0.2

0.4

0.6

0.8

1

1.2
(a)

4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000
0

0.2

0.4

0.6

0.8

1

1.2

R
at

io
 o

f w
av

e 
am

pl
itu

de
s

(b)

4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2
(c)

Figure 6.16: Ratio of negative to positive estimated wave amplitudes for dam-
aged and undamaged RC beams with fixed boundaries.

(a): undamaged RC beam, (b): 40% damaged RC beam, (c): 60% damaged RC beam.
Cut-on frequencies (−−−).

Figure 6.17: Finite damaged RC beam with Zones 1 to 5 associated with the
group of transducers considered. Zone 3 is associated with the damage section.

coefficients due to the interface change between the undamaged and damaged parts and

to the right fixed boundary. Since the reflection coefficients of the latter are known, one

can apply the WFE-WFE coupling approach to identify these coefficients at the interface

as shown in Table 6.1. The evanescent waves have reflection coefficients near 1 at their

cut-on frequencies due to the interface change between the damaged and undamaged.

In addition, these waves possess reflection coefficients of 1 near their cut-on frequencies

due to the fixed boundary. Subsequently, the ratio of wave amplitudes is 1 when the
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Figure 6.18: The ratio of the wave amplitudes of the negative to positive going
waves with 60% diameter rebar reduction in different zones.

transducers are within the damaged length. For Zone 4, all the transducers are after

the damaged part. Therefore, the positive and negative going waves are related only

via the scattering matrix of the right fixed boundary. Another Zone can be considered

Wave description Cut-on frequency (Hz) Reflection coefficient

Torsional - 0
Bending - 0
E4200 4200 0.86
C6600 6600 0.2
C7250 7200 0.9
E8700 8700 1.0
E11700 11700 0.9
E12500 12500 0.9

Table 6.1: Least attenuated waves’ reflection coefficients due to interface change.

where the transducers chosen are located in the damaged and undamaged parts. For

instance, one can select 4 transducers to stagger the interface between the damaged

and undamaged zones as in Zone 5 in Figure 6.17. In this case, the transducers are

positioned between 0.3 and 0.45 m from the excitation force with non-uniform spacing.

Despite dips being present at the cut-on frequencies, their values are less than the ones
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associated with Zones 1 and 2. This is due to the fact that only two transducers are

located before the damaged part to pick up the associated reflected waves.

The use of the damage detection algorithm along the beam length gives an estimation

of the damage location. If no damage exists, the ratio of negative to positive wave

amplitudes is 1. However, when damage exists, this ratio is less than 1 at the cut-

on frequencies of excited evanescent waves if the measurements are located before the

damage. One can locate the damage by tracking down the value of the dips at the cut-

on frequencies. If the ratio of the wave amplitudes exhibit values less than 1, then the

transducers are before the damage. Once the ratio is 1, this means that the transducers

are at or after the damage location. To locate the damage more precisely, one can check

the position where the dips gets closer to 1 due to the location of transducers between the

interface of the damaged and undamaged waveguides. Alternatively, one can use other

methods (like ultrasound) that are more precise in assessing the site of the damage once

it has been generally located.

6.8 Damage detection algorithm applied to coupled RC

beams

In real civil engineering structures, RC beams are connected together in order to ensure

the distribution of the loads. So far, the damage detection algorithm approach has been

demonstrated only on single uniform beams. In this section, the algorithm is tested on

coupled RC beams where both connected beams share similar or different damping. The

aim is to demonstrate the potential and identify some of the limitations of the method

when applied to connected beams.

The coupled RC beam model involves the modelling of two attached beams in FE as

shown in Figure 6.19. The two beams share the same material properties, damping and

dimensions as in Section 4.2 . All the boundary nodes are modelled as fixed. The two

beams share the same nodes at the interface in order to ensure good coupling between

them. One interest is in how the wave type conversion occurs between the two beams.

Therefore, the vibration mode shapes are plotted for fundamental modes in Figure 6.20.

For example, the axial motion in the original beam is converted into transverse bending

motion in the attached beam.

A harmonic solution is applied to the original beam over the frequency range from 0

to 15 kHz with a frequency step of 3 Hz. Using the WAD approach, the positive and

negative going wave amplitudes are computed. In all cases, ks = 0.1 rad/m is employed

as the wavenumber value for the WAD, with the transducers positioned at non-uniform

spacing between 0.3 and 0.45 m from the excitation point. The first model includes no

damage in the original beam. In Figure 6.21, the ratio of negative to positive going wave
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Figure 6.19: Built-in RC beam model in FE with fixed boundaries.

(a): original beam, (b): attached beam.

amplitudes is plotted for the undamaged original beam. The ratio is less than 1 at the

cut-on frequencies of 8700, 11700, and 12500 Hz. Since the RC beam is undamaged, one

can attribute the reason for these values to the attached beam, where wave reflections

and conversions are present. Since these values are present at the cut-on frequencies,

one can conclude that the magnitude of the reflection coefficients at these frequencies is

not 1 for their associated wave type.

In addition, one can plot the vertical receptance of a point on the top surface of the

original and attached beams while exciting the original beam. In Figure 6.22, the FRFs

due to a point force of a point associated with the original and attached beam are plotted.

One can notice the absence of the peak in the receptance of the point associated with

the attached beam at the cut-on frequencies of 8700, 11700, and 12500 Hz. This is due

to the mode conversion between the two attached beams, that leads to wave amplitude

ratios less than 1 at these cut-on frequencies despite the absence of damage.

Similarly, the damage identification algorithm is applied to the damaged original RC

beam (a) as in Figure 6.19. In Figure 6.21, the ratio of negative to positive going wave

amplitudes is plotted for a 40% and 60% damaged RC beam with attached beam at

the right boundary. One observes a change in the values of the dips associated with
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Figure 6.20: Fundamental mode shapes of coupled RC beams modelled in FE
with fixed boundaries.

(a):axial to transverse bending, (b): torsional to bending, (c): bending to torsional,
(d): transverse bending to axial.

the presence of the damage and its extent at 8.7, 11.7, and 12.5 kHz. This due to the

superposition effect of the damage and the mode conversion at the right boundary.

As discussed in Section 6.6, dips not associated with the presence of damage are observed

when the the boundary is not perfectly reflecting at the cut-on frequencies. Subsequently,

this imposes a limitation to the damage identification algorithm associated with the

requirement of an intact model. However, one can examine the variation of the ratio

of wave amplitudes with respect to the transducers within the Zones considered in the

WAD approach as in Figure 6.17. The 60% damaged RC beam with attached beam at

the right boundary is selected for this simulation. In Figure 6.23, the ratio of negative

to positive going waves associated with each Zone is plotted. Since the measurements in

Zone 2 are before the damage location, the dips at the cut-on frequencies are associated

with both damage and the attached beam at the right boundary. That is why the dip

locations and levels are similar to the ones in Zone 1.

However, once the measurements are in the damage location as in Zone 3, the dips

at the cut-on frequencies are superimposed due to the effect of the interface between

the damaged and undamaged sections, and the right boundary wave mode conversion.

This is why the greater dips occur in comparison to the previous Zone. Then, after

the damage location as in Zone 4, the values of the dips are associated with the right

boundary only. Subsequently, the dips get smaller and changes are only associated



Chapter 6 Damage identification using cut-on waves 121

4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000
0

0.2

0.4

0.6

0.8

1

1.2

4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Frequency(Hz)

0

0.2

0.4

0.6

0.8

1

1.2

4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000
0

0.2

0.4

0.6

0.8

1

1.2

R
at

io
 o

f w
av

e 
am

pl
itu

de
s

(a)

(b)

(c)

Figure 6.21: Ratio of estimated negative to positive going wave amplitudes for
undamaged and damaged coupled RC beams.

(a): undamaged RC beam, (b): 40% damaged RC beam, (c): 60% damaged RC beam.
Cut-on frequencies (−−−).

with the cut-on frequencies of 11700 and 12500 Hz in comparison with ones in Zone

3. In this case, their levels are in accordance with the undamaged coupled RC beam

as in Figure 6.21, since all the transducers are after the damage. However, Zone 5 is

associated with transducers positioned before and after the damage interface. The dips

are present at the same cut-on frequencies as for Zones 1 and 2 but with smaller values.

This is due to the fact that only the transducers located before the damage pick up the

associated reflected waves.

The use of the damage detection algorithm along the length of the beam gives an es-

timation for the damage location, and helps in identifying if the right boundary is not

fully reflecting at the cut-on frequencies. One can locate the damage by tracking down

the values of the dips. If the values of the dips remain similar all along the beam length,

this means that the beam is undamaged and therefore the dips are associated with the

right boundary effect. However, if these values change along the beam length then the

beam is damaged. The damage location is associated with the sudden change of these

values. Subsequently, the presence of an intact model is not required in order to identify

experimentally the presence of the damage.
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Figure 6.22: Magnitude of receptance at a point on the top surface of the RC
beams.

original beam (—), attached beam (- - -). Cut-on frequencies (−−−).
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Figure 6.23: The ratio of the amplitudes of negative to positive going waves in
a coupled RC beam with 60% diameter rebar reduction in different Zones.
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The previous results are associated with the attached beams having the same damping.

Therefore, one might be interested in investigating the effect of higher damping in the

attached beam on the positive and negative going wave amplitudes. This is to model

the effect of radiation damping when the RC beam is connected to various beams.

The following model includes modelling the transverse beam with higher damping than

the original one. In Figure 6.24, the ratio of negative to positive wave amplitude is

plotted for the undamaged, 40% and 60% damaged RC beam with higher damping in

the attached beam at the right boundary. In all cases, the overall ratio of the wave

amplitudes dropped from 1. The presence of higher damping in the attached beam

reduces the amplitude of all the reflected waves at all frequencies. In addition, the dips

associated with the right boundary and the damage are present at the same frequency

as the model with similar damping, except that their levels are shifted accordingly with

the overall decrease in the ratio of the wave amplitudes.
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Figure 6.24: The ratio of the estimated negative to positive wave amplitudes
for damaged and undamaged coupled in RC beams with higher damping in the
attached beam.

(a): undamaged RC beam, (b): 40% damaged RC beam, (c): 60% damaged RC beam.

Cut-on frequencies (−−−).
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6.9 Conclusions

A damage identification algorithm has been introduced based on the ratio of the ampli-

tudes of the reflected to incident waves. To determine the wave amplitudes, the WAD

approach using the assumption of a small wavenumber can be employed to identify the

evanescent waves cutting-on. The proposed technique is demonstrated via simulations

and results are successful in identifying and locating the damage introduced as rebar

diameter reduction.

The use of a real small wavenumber in the WAD approach gives correct peaks for the

estimated wave amplitudes. They align with the exact solutions of the propagating and

evanescent waves at they cut-on. This proves that the use of this value of ks detects the

contribution of the dominant evanescent wave cutting on. The number of transducers is

set based on findings in past literature. In addition, the transducer position was selected

based on the decay of the evanescent wave amplitude to ensure good conditioning. On the

other hand, the transducer spacing was selected to be non-uniform. This is essential to

reduce the numerical errors due to bad conditioning when using a small real wavenumber,

Away from the cut-on frequencies, where the use of the small real wavenumber is not

correct, the estimated wave amplitudes follow the peaks of the dominant solution without

picking out the differences between the positive and negative wave amplitudes. This is

advantageous, since only changes in the waves amplitudes at the cut-on frequencies are

detected when the application of a small real wavenumber is correct. As a result, the

ratio of wave amplitudes is less than one only when damage is present. The dips occur

at the cut-on frequencies.

In finite RC beams, the ratio of the negative to positive wave amplitudes is close to

1 when no damage is present. In damaged beams, it is less than 1 near the cut-on

frequencies. The levels of the dips are in approximate accordance with the magnitude

of the reflection coefficients defined previously in Chapter 5. In the case of undamaged

coupled RC beams, the ratio of wave amplitudes is less than 1 near cut-on frequencies

due to wave mode conversion in the attached beam. The presence of the damage is

superimposed on the original dips. In addition, the presence of higher damping in the

attached beam reduces all the reflected wave types and subsequently the ratio is less

than 1 over all the frequency range. Also, the dips get larger accordingly.

Application of the damage detection algorithm has shown many advantages compared to

other wave damage detection techniques. First, a numerical model or simulation of the

actual structure is not required. Second, no prior knowledge of the wavenumbers and

cut-on frequencies is necessary. One can simply apply the method taking into account

the position and number of transducers and look for the minimum values in the ratio of

the wave amplitudes. Thus, an intact beam is not needed for comparison. Third, one
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can link and correlate the extent of the damage to the minimum values in the estimated

wave amplitude ratio.





Chapter 7

Experimental validation

7.1 Introduction

In the previous chapter a damage identification algorithm was proposed and validated

through simulations without added noise. In this chapter, it is tested via an experimental

implementation. The damage identification algorithm is applied to undamaged as well

as damaged RC beams to check for false positive diagnoses.

First, the specimen properties are introduced, i.e. properties of the concrete, steel

reinforcements and formwork are given. Two of the steel rebars were manufactured

with loss of thickness over a specific length representing the localised damage. Next,

the experimental setup is introduced including the concrete surface finishing, boundary

conditions, transducers and instrumental hammer selection for measuring the FRFs.

The dispersion curves were identified using a correlation technique Ferguson et al. (2002),

although this is not required for implementation of the damage identification method.

Then, the effect of concrete strength and the presence of damage on the estimated

wavenumber values are analysed. In addition, the nodal displacements from surface

measurements are plotted to validate the wave mode shapes at cut-on frequencies.

Data selection based on the measured coherence is discussed and the associated frequency

forced response plotted at various positions along the RC beams. The damage detection

algorithm is applied to the various RC beams. In addition, the potential and limitations

of the method are discussed.

127
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7.2 Fabrication of specimens

7.2.1 Concrete

This subsection involves the concrete mix design, concrete mixing and curing. Then,

after the concrete has gained enough strength, its compressive strength can be measured

and therefore its associated Young’s Modulus estimated.

The concrete mix is composed of the following materials: high strength cement, water,

sand and 10 mm aggregate. The proportions of each component are first defined by

volume, and then by using the proper densities one can compute their masses for each

batch. The total volume of each batch Vb is selected based on the capacity of the mixer.

In this case, the value of Vb was selected to be 0.03 m3.

Since one is interested in designing a high strength concrete, then the water/cement

(w/c) ratio should be small and was selected to be a value of 0.27. This value is the

ratio of the mass of free water to the mass of cement in the mix. The term free water

refers to the net water remaining free in the mix after some is absorbed by the sand and

aggregate. Therefore, the total volume of the water required for each mix is

Vw = Vwf + Vwabs ; Vwf = ρw(w/c×Wc) (7.1)

where Vw is the total volume of water required for each batch, Vwf is the volume of free

water as a function of water density ρw, water cement ratio w/c and cement mass Wc

and Vwabs is the volume of water absorbed by sand and aggregates based on their water

content and absorption rate to reach saturation.

The mix proportions were selected to be 1:1 per weight for cement and sand. Then one

can select the volume for each component respectively by using the associated density.

Using the ratio w/c, one can compute the value for Vwf . After taking samples of both

sand and aggregate, one can identify their absorption rate and calculate Vwabs accord-

ingly. Next, the volume of the aggregate is the remainder of the total volume of the

batch after subtracting the volume of all the other components. Next, all the quantities

are scaled for a 0.03 m3 batch. In addition, three RC beams are made and each is of

total volume of 0.12 m3 (0.2×0.3×2 m). Subsequently, a total of 12 concrete batches

were required.

Despite the fact that the use of a small w/c ratio results in high strength concrete,

the workability of the mix is very low. Therefore, a small amount of superplasticizer is

used for each batch to enhance the workability and ease the handling of the mix. The

cycle for concrete mixing and levelling is presented in Figure 7.1. In addition, samples

from each batch were taken for later testing. After the proper pouring and levelling

of concrete into the formwork, the concrete beams were left for proper hardening and

curing processes for 7 days.
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Weighing of mixing 
proportions:
Cement, Water, Sand 
and Aggregates

Put these proportions into 
the concrete mixer with 
proper proportion of 
superplasticizer,  and mix 
the amount for 3 min

Empty the concrete mix 
into formwork. Use the 
vibrator in order to 
minimise segregation 
inside the mix. Use small 
darby tool for levelling of 
concrete inside the 
formwork

Repeat the cycle until the 
total volume of required 
concrete is achieved

Figure 7.1: Cycle for concrete mixing and levelling.

Next, the beams were taken out of the frameworks. Cylindrical samples of the concrete

mix were crushed in order to identify the concrete’s compressive strength f ′c. The average

strength was found to be 70 MPa. One can relate the concrete compressive strength f ′c

to its Young’s Modulus Ec in MPa using ACI (1995)

Ec = 4700
√
f ′c (7.2)

Subsequently, the associated Young’s Modulus of concrete at 28 days was found to be

approximately 3.89×1010 Pa.

7.2.2 Steel reinforcements

The concrete material is considered brittle and weak in tension. Therefore, horizontal

steel reinforcements are essential to compensate for this weakness in the tension zones

identified by internal moments due to the external loads applied to the beam. In contrast,

the shear force applied due to that load should be resisted by both the concrete and the

vertical reinforcements (stirrups).

Grade 60 steel reinforcements were used for each beam, which were separated into hori-

zontal and vertical rebars as illustrated in Figure 7.2. Each beam comprises 4 horizontal

rebars of length of 2 m, and of 10 stirrups spaced at 20 cm intervals. The undamaged

horizontal rebars are of continuous 25 mm diameter and the damaged ones show a re-

duction to 16 mm and 10 mm respectively as shown in Figure 7.3. The horizontal and

vertical reinforcements were tied together using steel fibres.
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Figure 7.2: Cross section details of the RC beam reinforcement.

Figure 7.3: Details of damaged steel reinforcements.

In addition, a sufficient concrete cover is essential i.e. the distance between the horizontal

steel reinforcements and the outer surface of concrete. The distance was set to be 30 mm

and it was applied by fixing a concrete spacer of the same height at different positions

along the length of the bottom two reinforcement rebars.

7.2.3 Formwork and placement of fresh concrete

The formwork were made using timber sheets. The design is illustrated in Figure 7.4.

One can notice the double layer of timber in the bottom one third of the beam to resist

the hydrostatic pressure of the concrete. For additional support, inclined timber ties

were placed to ensure stability of the formwork.



Chapter 7 Experimental validation 131

Level of concrete

Figure 7.4: Formwork details.

Since the formwork is made of timber, one needs to make sure that the water mix is

not absorbed by the formwork. Subsequently, an impermeable coating is applied on the

inner surface of the formwork before pouring the concrete. In addition, this coating

helps in the ease of removing the formwork after the concrete hardens.

A mechanical vibrator was used after each mix was poured to homogenise the concrete

in the formwork. No vibration leads to air bubbles entrained in the concrete and a

non-homogeneous texture to the beam. Excessive vibration leads to separation of the

aggregate and mortar. For these reasons, an intermediate time of vibration took place

to ensure the proper mixing of the new and old placement of concrete. Once the level

of concrete was achieved in the formwork, a small darby tool was used for levelling the

concrete. The details of the steel reinforcements’ manufacturing, fixation and placement

of concrete in the formwork are illustrated in Figure 7.5.

7.3 Experimental setup

This subsection involves concrete surface finishing, boundary conditions, transducers

and hammer selection.

First, the concrete surface was dusty after it had hardened. To ensure good bonding

of transducers on the surface of the beams, an acrylic resin based concrete seal was

applied on all the external surfaces. The sealer formula is designed to penetrate deep

into concrete to form a long lasting, dust free coating which repels water, oil and grease.

Second, each RC beam has a mass of approximately 300 kg. Therefore, it is hard to

recreate fixed boundary conditions as introduced in the previous chapter. However, one

can design the boundary at the edge of the RC beam as a roller. As illustrated in

Figure 7.6, a steel plate was positioned first at the bottom surface of the concrete. This
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Figure 7.5: Steps of RC beam casting.

(a) damaged steel reinforcement bars, (b) horizontal and vertical steel reinforcements
fixation, (c) placement of concrete in formwork.

was to protect this surface against any damage due to the direct contact with the steel

rebar that acts as a roller. Then, the latter is positioned on top of a pad to stabilise it.

This boundary configuration is applied at both ends of each RC beam.

Figure 7.6: RC beam roller boundary details.

Deep RC beams are considered in this experiment to test over the frequency range of

interest up to 13 kHz. A ceramic shear ICP accelerometer (PCB352C22) was used to

measure the accelerance at different positions along the length of the RC beam. It

was attached to the surface using an adhesive stud. In addition, it was powered by a

simple constant current signal conditioner that gave a low-noise voltage output signal

compatible with standard data acquisition equipment.

An ICP Impulse Force Test Hammer (PCB086C03) was used to excite the structure.

The FRF measurements involved fixing the accelerometer at one location and impacting
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the RC beam at various locations. The hammer size, length, tip material and velocity

of impact determine the amplitude and frequency content of the impulse force. The

impact cap on the hammer generally determines the impact energy content. Based on

the force spectra of an impact, one can select the appropriate tip to use. A hard tip

shows the least reduction at higher frequencies and so it is subsequently used.

7.4 Estimation of wavenumbers and wave mode shapes

The damage identification algorithm does not require estimation of the wavenumbers

of free wave propagation in the waveguide. It has been shown that by using a small

real wavenumber the amplitudes of the dominant wave near cut-on frequencies can be

estimated. Despite the fact that it is not a requirement for the approach, estimation

of the wavenumbers is beneficial to identify the cut-on frequencies and compare and

validate the numerical WFE model results. In addition, the surface displacements are

plotted to validate the predicted wave mode shapes at cut-on frequencies.

A wavenumber estimation technique that uses spatial arrays of data is advantageous,

because the same measurements can also be employed for the damage identification

algorithm as the next step. Ferguson et al. (2002) proposed a correlation technique

for the estimation of wavenumbers in two-dimensional structures. However, one can

apply the same approach for a one-dimensional structure by modifying the equations

accordingly.

The formulation of this correlation technique for propagation of a single wave in a one-

dimensional structure is given below

Ŵ (ktx, ω) =

∫ lx/2

−lx/2
w(x, ω)e−iktxxdx (7.3)

where Ŵ (ktx, ω) is a correlation coefficient at a trial wavenumber ktx with frequency ω.

lx is the length of the spatial array and x is the spatial location on structure where the

response w is measured. The correlation coefficient will have peak values at particular

wavenumbers ktx. Then, the ktx value with the highest correlation coefficient at each

frequency step is plotted as the dominant wavenumber.

For discrete response measurements, the correlation coefficient in Equation 7.3 can be

approximated by an expression evaluated by the summation over the discrete measure-

ment locations.

Ŵ (ktx, ω) ≈ lx
N

N∑
i=1

w(xi, ω)e−iktxxi (7.4)

The correlation technique was applied to the three beams. One is interested in analysing

the effect of the concrete strength and damage on the estimated wavenumbers. In all
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cases, the impact excitation was positioned at xe = 0.3 m, and the frequency forced

response measurements were at 20 positions from xr = 0.5 to 1.5 m (including the

damaged zone). The trial wavenumber was selected within the range of 0 to 50 rad/m

with a step size of 0.2 rad/m.

First, the undamaged RC beam is considered to test the effect of the reinforced concrete

on the estimated wavenumbers. Sets of forced response measurements were collected

after different concrete ageing periods: 7, 14 and 28 days. In addition, concrete cylinders

were crushed on the same days to compute the strength and therefore identify the

concrete Young’s Modulus as per Equation 7.2 and presented in Table 7.1. In Figure 7.7,

the estimated wavenumbers are plotted for each concrete age in days. The slopes of the

dispersion curves become lower and the cut-on frequencies of the evanescent waves are

shifted to the right with the increase in the concrete age and strength. This is due to

the increased concrete Young’s Modulus related to its compressive strength with respect

to time.

Days Compressive strength (MPa) Young’s Modulus (Pa)

7 48 3.25× 1010

14 63 3.7× 1010

28 70 3.89× 1010

Table 7.1: Concrete samples compressive strength and Young’s Modulus vari-
ability with respect to the concrete age in days.
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Figure 7.7: Estimated wavenumbers of the undamaged RC beam at different
concrete ages.

7 days (∗), 14 days (∗), 28 days (∗).

Second, the damaged and undamaged beams were considered to test the effect of the

rebar diameter reduction on the estimated wavenumbers. In Figure 7.8, the predicted
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(from Chapter 3) and estimated wavenumbers using the correlation technique on the

damaged and undamaged beams after 28 days are plotted. One can notice the good

agreement between the predicted and the estimated wavenumbers: bending, E4950,

E8700, E11700, and E12500. The correlation technique shows that the evanescent waves

are the ones dominant near their cut-on frequencies since the dominant ktx values as-

sociated with high correlation coefficient are present at these frequencies. On the other

hand, there is a slight change between the estimated wavenumbers when damage is

present. This means that one can still estimate the correct wavenumbers values even if

such damage is present.
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Figure 7.8: Predicted and estimated wavenumbers for the damaged and undam-
aged RC beams after 28 days.

WFE wavenumbers of undamaged model (−), undamaged beam (+), 40% damaged
(+), 60% damaged (+).

Next, FRF measurements were taken on the top and side surfaces of the undamaged

RC beam as shown in Figure 7.9. Since uniaxial transducers were used, the top surface

measurements were only in the Z direction, and the side ones were only in the Y di-

rection. Then, wave mode shapes associated with cut-on frequencies were plotted. The

top surface displacements at cut-on frequencies in the Z direction are illustrated in Fig-

ure 7.10. The corresponding side surface displacements in the Y direction are illustrated

in Figure 7.11. Good agreement is seen between the experimental and WFE predicted
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wave mode shapes (in the Z and Y direction separately). This means that these cut-on

frequencies correspond to the correct wave modes of interest.

Figure 7.9: Transducers surface measurement location and coordination. Spac-
ing in mm.

E8700 E11700 E12500

Figure 7.10: Nodal displacements in the Z direction of selected evanescent wave
modes at cut-on frequencies on the top surface of undamaged RC beam.

Undeformed section (—), WFE deformed section (−−−), experimental deformed
section (∗). E denotes evanescent with its associated cut-on frequency.
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E8700 E11700 E12500

Figure 7.11: Nodal displacements in the Y direction of selected evanescent wave
modes at cut-on frequencies on the side surface of undamaged RC beam.

Undeformed section (—), WFE deformed section (−−−), experimental deformed
section (∗). E denotes evanescent with its associated cut-on frequency.

7.5 Validation of the damage identification algorithm

In this section, the damage identification algorithm is validated experimentally. The

WAD approach is applied with the previously identified parameters on damaged and

undamaged RC beams. In all cases, ks = 0.1 rad/m is employed as the wavenumber value

with the transducers non-uniformly spaced between 0.3 and 0.45 m from the excitation

force. The potential for locating the damage is demonstrated.

The measurement setup is as follows. A frequency span of 20 kHz was selected with

frequency resolution of 3.125 Hz. A rectangular window was chosen and each FRF

is estimated from three averages. One expects to have a better resolution than the

numerical solution since the frequency step is smaller. This is due to the limitation

of solving the eigenvalue problem associated with the WFE method, where a larger

frequency step is required to ensure correct tracking of the eigenvalues/eigenvectors

sequence.

The coherence is related to the FRF, and it varies from zero to one and is a function

of frequency. Only the response points associated with coherence values of greater or

equal to 0.9 are considered. For instance, the FRF at four positions on the undamaged
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Figure 7.12: Forced response FRF as displacements of the undamaged RC beam
at xr = 0.6 to 0.75 m.

FRF response (· · · ), cut-on frequencies of interest (- - -).

beam at xr = 0.6 to 0.75 m are illustrated in Figure 7.12. The number of data points

considered in the response starts to drop after 10 kHz, due to elimination of points

corresponding to lower coherence values. The peaks associated with the response at the

cut-on frequencies of interest are highlighted.

The damage identification algorithm was applied via the WAD approach on the RC

beams as discussed in Chapter 6. The accelerance associated with coherence values

greater or equal to 0.9 were considered. In Figure 7.13, the ratio of the negative to

positive wave amplitudes is plotted for the undamaged, 40% and 60% damaged RC

beams. For the undamaged RC beam, the wave amplitude ratio is approximately 1 over

all of the frequency range. Subsequently, this gives an indication that the RC beam is

undamaged. In addition, one expects the presence of mode conversion at the boundaries.

However, based on the findings of Chapter 6 and since no dips are present in the ratio

plot, the evanescent waves are fully reflected at their cut-on frequencies.

However, for the damaged beams, dips are present at 8800, 11700 and 12500 Hz. They

indicate the presence of the damage. Their values are correlated with the extent of the

damage; they are smaller dips with the increased diameter reduction based on the find-

ings of the previous chapter. In addition, one can notice a slight shift in the frequencies
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Figure 7.13: Ratio of negative to positive estimated wave amplitudes for dam-
aged and undamaged experimental RC beams.

(a): undamaged RC beam, (b): 40% damaged RC beam, (c): 60% damaged RC beam.
Cut-on frequencies (−−−).

of the dips. This are associated with the small changes in the concrete’s Young’s Modu-

lus between the three beams. Due to the small difference in the stiffness of the three RC

beams associated with the concrete mix design, small shifts in the cut-on frequencies

occur accordingly.

On the other hand, if measurements on the undamaged beam are unavailable for compar-

ison, one would question whether these dips are associated with damage or wave mode

conversion at the boundary. Subsequently, the 60% damaged RC beam is selected for

quantification of the ratio of wave amplitudes in different zones. If the dip is unchanged

over the beam length, this means that the dips are associated with mode conversion

occurring at the right boundary. However, if the dip gets smaller, this means that they

are associated with the presence of the damage.

In Figure 7.14, the ratio of negative to positive going waves is plotted for each Zone

as in Figure 6.17. By using a small real wavenumber, the computed wave amplitudes

detect only the response of evanescent waves at their cut-on frequencies. In Zone 2, the

dip values are similar to those in Zone 1 in Figure 7.13. This is due to the fact that at

cut-on frequencies the magnitude of the negative going wave amplitude is independent

of the position of the transducers. However, by getting closer to the damage zone, the
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Figure 7.14: Ratio of amplitudes of negative to positive going waves in ex-
perimental RC beam with 60% diameter rebar reduction at different Zones.
Damage occurs at Zone 5.

value of the dip gets smaller. After the damage zone, the algorithm only detects the

wave reflection due to the boundaries. As shown before, although mode conversion exists

at the boundary, perfect reflection occurs at the cut-on frequencies. Therefore, the ratio

of the negative to positive wave amplitudes is closer to unity when measured after the

damage location. The sudden change in the level of the dips can locate more precisely

the damage location.

7.6 Conclusions

In this chapter, the damage identification algorithm was validated on damaged and

undamaged RC beams through experimental investigation and implementation.

The estimated wavenumbers show the shift to higher frequencies with respect to the

change of concrete strength with days. This is due to the increase of concrete Young’s

Modulus related to its compressive strength with respect to time. However, this is only
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crucial for the early period in the life cycle of concrete. After 28 days from casting the

mix, the rate of change of concrete strength becomes less significant.

In addition, the effect of damage on the estimated wavenumbers is considered. Good

agreement is presented between the wavenumbers of both the damaged and undamaged

RC beams and numerical (WFE) results. This means that one can correctly estimate

wavenumbers even if the damage is present in the form of rebar diameter reduction.

Also, the WFE model accurately produces the correct propagating wave characteristics

as seen in the dispersion curves.

Furthermore, the wave mode shapes were plotted at cut-on frequencies. These experi-

mental wave mode shapes are in good agreement with the WFE ones. Therefore, the

wave modes measured at cut-on frequencies have been correctly identified.

Next, the damage identification algorithm was tested experimentally. For the undam-

aged beam, the ratio of the estimated negative to positive wave amplitudes is approxi-

mately 1 over the entire measured frequency range. Subsequently, this gives an indication

that the RC beam is undamaged and that the right boundary is fully reflective at the

cut-on frequencies. For the damaged RC beams, the ratio of the wave amplitudes ex-

hibits dips at the cut-on frequencies. The values of these dips are correlated with the

amount of damage. Furthermore, the change in the dips with respect to the response

along the beam assists in identifying the damage location and the nature of the right

boundary. If the dips are unchanged with measurement location, this means that mode

conversion is occurring at the right boundary. In contrast, if the dip gets smaller, this

means that damage is present in the beam. Subsequently, it can be seen that neither

an intact beam or experimental data from an undamaged beam are required for the

application of the algorithm and for changes in the RC beam to be identified.





Chapter 8

Conclusions

8.1 Summary of present work

Wave based methods showed potentials in detecting the damage remotely. Whilst many

of these NDT techniques focused on the damage in rebars embedded reinforced concrete

beams, they required access to these reinforcements. In this thesis, one is interested in

developing guided wave technique that does not rely on contact with the rebars.

For better understanding of RC behaviour statically and dynamically, a proper FE model

is required. The model with embedded reinforcement was employed in this project due

to several advantages compared to the conventional models using LINK elements. After

applying the WFE to a short section of the damaged and undamaged RC waveguides,

the associated wavenumbers were computed and plotted as dispersion curves. In all

cases, only a slight change was observed between the wavenumbers associated with the

damaged and undamaged waveguides. This is due to the fact that the majority of the

structural stiffness is governed by the concrete rather by the reinforcement rebars. In ad-

dition, the cut-on frequencies increased with the rebar diameter reduction. This means

that evanescent wave modes start propagating in the undamaged waveguide at lower

frequency than the damaged one. Furthermore, the least attenuated wave modes are se-

lected and their mode shapes are plotted. The majority of the displacements were found

in the cross sectional directions. In addition, WFE solutions for free wave propagation

were employed to calculate the forced response in finite beams. Both solutions from FE

and WFE align perfectly. However, the WFE model requires significantly fewer DOFs

to compute the same forced response.

The WFE approach, using the internal nodal displacements and forces, can be used

to couple damaged and undamaged waveguides, and subsequently to predict the re-

flection and transmission coefficients due to rebar diameter thickness reduction over a

specific length. The WFE-WFE-WFE approach was applied to couple the damage and
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undamaged waveguides. Then, the scattering matrix was calculated accordingly. The

magnitude of the reflection coefficients was subsequently plotted. The least attenuated

modes were selected as potential modes sensitive to the damage, and the associated

nodal displacements were shown. The majority of the nodal displacements for these

least attenuated modes with high reflection due to damage are in the cross sectional

directions. This configuration gives a possibility for a defined damage criteria associated

with post-processing the surface measurements.

A damage identification algorithm was introduced based on the ratio of reflected to

incident wave amplitudes. To determine the latter, the WAD approach using the as-

sumption of a small wavenumber can be employed to identify evanescent waves cutting

on. This is essential since high reflection coefficients were found associated with the

modes cutting on. The proposed techniques was successfully demonstrated via simu-

lation in identifying and locating the damage as rebar diameter reduction in finite RC

beams. The use of a small real wavenumber detected the contribution of a dominant

evanescent wave at its cut-on frequency. Away from cut-on frequencies, where the use

of the small real wavenumber is not correct, the estimated wave amplitudes follow the

peaks of the dominant solution without picking out the differences between the positive

and negative wave amplitudes. This is advantageous, since only changes in the wave

amplitudes at the cut-on frequencies are detected when the application of a small real

wavenumber is correct.

The WAD approach was subsequently demonstrated on simulated finite damaged and

undamaged RC beams. It has been shown that the ratio of the negative to positive wave

amplitudes is less than 1 near the cut-on frequencies. The levels of the dips were related

to the magnitude of the reflection coefficients defined previously in Chapter 5. In built-in

RC beams, when no damage is present, the ratio of wave amplitudes is less than 1 near

cut-on frequencies due to wave mode conversion in the attached beam. The presence of

the damage is superimposed on the original dips. Also, the presence of higher damping

in the attached beam reduces all of the reflected wave types and subsequently the ratio

is less than 1 over all the frequency range. Also, the dips get larger accordingly.

Application of the damage detection algorithm has shown many advantages compared to

other wave damage detection techniques. First, a numerical model or simulation of the

actual structure is not required. Second, no prior knowledge of the wavenumbers and

cut-on frequencies is necessary. One can simply apply the method taking into account

the position and number of transducers and look for the minimum values in the ratio

of the wave amplitudes. Thus, an intact beam is not needed for comparison. Third,

one can link the extent of the damage to the minimum values in the estimated wave

amplitude ratio. Also, damage can be located by tracking the values of the dips along

the length of the beam.
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The damage identification algorithm was validated experimentally and successfully matched

the simulation results. For the undamaged beam, the ratio of the estimated negative

to positive wave amplitudes was approximately 1 all over the frequency range. Subse-

quently, this gives an indication that the RC beam is undamaged and that the right

boundary is fully reflective at the cut-on frequencies. For the damaged RC beams, the

ratio of the wave amplitudes exhibits dips at the cut-on frequencies. The values of these

dips were related to the amount of damage. Furthermore, the change in the dips with

respect to the response along the beam assists in identifying the damage location and

the nature of the right boundary. If the dips are unchanged with measurement location,

this means that mode conversion is occurring at the right boundary. In contrast, if the

dip gets smaller, this means that damage is present in the beam. In conclusion, it can

be seen that an intact model is not required for the application of the algorithm and for

changes in the RC beam to be identified.

8.2 Suggestions for further research

In this thesis, the damage detection algorithm was successfully demonstrated and tested

on finite RC beams with one damaged rebar. Possible further research related to the

damage detection algorithm is proposed. This can be summarised as:

• Testing the algorithm limitations via simulation when more than one rebar is

damaged and/or different damaged sections occurring occur along the same rebar.

• Testing the algorithm limitations via simulation when a different damage scenario

is present, i.e. concrete cracks instead of rebar diameter reduction.

• The algorithm application on built in RC beams was demonstrated only via sim-

ulation. Experimental investigations can take place to validate the results when

two or more RC beams are connected.

• Identify the potential of the identified method on other structural elements. For

instance, the damage occurring in composite concrete beams and FRP (fiber rein-

forced polymer) RC beams.

• Consider extending the technique to more complex geometries such as circular or

non-uniform beams, or other 1-D waveguide systems.





Appendix A

Theoretical details of the WFE

solution and forced reponse

As seen in Figure A.1, the N th and (N + 1)th waveguides are excited by the external

force f ext. This gives arise to directly excited waves e+ and e− as the positive and

negative going wave amplitudes, respectively. The positive going waves are propagating

to the right. The associated nodal displacements (qR and qL) and forces (f R and f L)

of the right and left interfaces of N th and (N + 1)th waveguides respectively.

Figure A.1: Nodal displacements (qR and qL) and forces (f R and f L) of the
right and left interfaces of N th and (N + 1)th waveguides excited by the exter-
nal force f ext. e+ and e− are the positive and negative directly excited wave
amplitudes.

Considering the continuity of displacements on the right and left sides of the N th and

(N + 1)th waveguides respectively, one can write

qL − qR = 0 (A.1)
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By applying the equilibrium of forces on the right and left sides of the N th and (N+1)th

waveguides respectively, one can write

f L − f R = f ext (A.2)

As per Equation 3.23, one can relate the motion described in the physical domain using

q and f with the wave domain described using the wave amplitudes e+ and e−. Then,

Equation A.1 and A.2 become

Φ+
q e+ −Φ−q e− = 0 ; Φ+

f e+ −Φ−f e− = f ext (A.3)

Then, one can write Equation A.3 in matrix form as (similar to Equation 3.34)[
Φ+

q −Φ−q

Φ+
f −Φ−f

][
e+

e−

]
=

[
0

f ext

]
(A.4)



Appendix B

Details of forced response of a

finite beam with discontinuity

Consider a finite beam with discontinuity of length h as shown in Figure B.1. f ext is

the external force. e+ and e− are positive and negative going directly excited wave

amplitudes, respectively. The latter wave amplitudes can be defined using Equation

3.38. xe is the position of the excitation force and xr is the response position associated

with the positive and negative going wave amplitudes d+ and d−, respectively. h is the

length of the discontinuity, L1 is the length of the beam before the discontinuity and L2

is the length after it.

Figure B.1: Forced response on a finite beam with a discontinuity of length h
resulting in positive and negative going waves. BCL and BCR are the left and
right boundaries.

c−1 and c−2 are the wave amplitudes reflected by the discontinuity. c+
1 and c+

2 are the

amplitudes of the wave modes incident onto the coupling element interface. As per

Section 5.2.2, one can write {
c−1
c−2

}
=

[
RT12 TT21

TT12 RT21

]{
c+

1

c+
2

}
(B.1)
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where RT and TT are the net reflection and transmission matrices due to the discon-

tinuity of length h . The subscripts 1 and 2 are associated with the waveguides before

and after the damage from left to right respectively.

The other wave amplitudes are defined as follows,

b+ = a+ + g+

= a+ + τ (xe)rLτ (xe)g
−

= a+ + τ (xe)rLτ (xe)a
− + τ (xe)rLτ (xe)b

−

= a+ + τ (xe)rLτ (xe)a
− + τ (xe)rLτ (xe)τ (L1 − xe)c−1

(B.2)

where τ is the propagation matrix and rL is the reflection coefficient matrix of the left

boundary.

In addition, c+
2 is defined as

c+
2 = τ (L2)rRτ (L2)c−2 (B.3)

where c−2 is defined via Equation B.1. Then, Equation B.3 becomes

c+
2 = τ (L2)rRτ (L2)TT12c

+
1 + τ (L2)rRτ (L2)RT21c

+
2 (B.4)

By combining the two equations defining c+
2 in Equation B.1 and B.4, one can write

c+
2 = [I− τ (L2)rRτ (L2)RT21 ]−1τ (L2)rRτ (L2)TT12c

+
1 (B.5)

Using Equation B.5 in the relation of c−1 in Equation B.1,

c−1 = [RT12 + TT21 [I− τ (L2)rRτ (L2)RT21 ]−1τ (L2)rRτ (L2)TT12 ]c+
1 (B.6)

However,

c+
1 = τ (L1 − xe)b+ (B.7)

Substituting Equation B.7 in B.6,

c−1 = [RT12 + TT21 [I− τ (L2)rRτ (L2)RT21 ]−1τ (L2)rRτ (L2)TT12 ]τ (L1 − xe)b+ (B.8)

Combining Equation B.2 and B.8, then rearranging for b+

b+ =(I− [τ (xe)rLτ (xe)τ (L1 − xe)[RT12 + TT21 [I− τ (L2)rRτ (L2)RT21 ]−1τ (L2)rR

τ (L2)TT12 ]τ (L1 − xe)])−1(a+ + τ (xe)rLτ (xe)a
−)

(B.9)

Then, the wave amplitudes at xr are computed via

d+ = τ (xr − xe)b+ ; d− = τ (L1 − xr)c−1 (B.10)



Appendix C

REINF264 element shape

functions in ANSYS

Use REINF264 with standard base elements 3-D link, beam, shell and solid elements to

provide reinforcements. Here, shape functions are presented for REINF264 element.

For base element as linear 3D spar, beam, solid or shell, the shape functions of REINF264

are as (ANSYS (2013))

u = 1/2(uI(1− s) + uJ(1 + s) (C.1)

v = 1/2(vI(1− s) + vJ(1 + s) (C.2)

w = 1/2(wI(1− s) + wJ(1 + s) (C.3)

For base element as quadratic 3D beam, solid or shell, the shape functions of REINF264

are as (ANSYS (2013))

u = 1/2(uI(−s+ s2) + uJ(s+ s2) + uK(1− s2)) (C.4)

v = 1/2(vI(−s+ s2) + vJ(s+ s2) + vK(1− s2)) (C.5)

w = 1/2(wI(−s+ s2) + wJ(s+ s2) + wK(1− s2)) (C.6)
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