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MAXIMAL SUBGROUPS OF THE MODULAR AND OTHER GROUPS

GARETH A. JONES

Abstract. In 1933 B. H. Neumann constructed uncountably many subgroups of SL2(Z) which act

regularly on the primitive elements of Z2. As pointed out by Magnus, their images in the mod-

ular group PSL2(Z) � C3 ∗ C2 are maximal nonparabolic subgroups, that is, maximal with re-

spect to containing no parabolic elements. We strengthen and extend this result by giving a sim-

ple construction using planar maps to show that for all integers p ≥ 3, q ≥ 2 the triangle group

Γ = ∆(p, q,∞) � Cp ∗ Cq has uncountably many conjugacy classes of nonparabolic maximal sub-

groups. We also extend results of Tretkoff and of Brenner and Lyndon for the modular group by

constructing uncountably many conjugacy classes of such subgroups of Γ which do not arise from

Neumann’s original method. These maximal subgroups are all generated by elliptic elements, of

finite order, but a similar construction yields uncountably many conjugacy classes of torsion-free

maximal subgroups of the Hecke groups Cp ∗ C2 for odd p ≥ 3. Finally, an adaptation of work of

Conder yields uncountably many conjugacy classes of maximal subgroups of ∆(2, 3, r) for all r ≥ 7.

1. Introduction

In response to a question of Schmidt concerning the foundations of geometry, B. H. Neu-

mann [13] constructed uncountably many subgroups of SL2(Z) acting regularly on the primitive

elements of Z2 (those with coprime coordinates, or equivalently the members of bases for Z2).

Magnus [11] (see also [12, §III.2]) showed that their images in the modular group Γ = PSL2(Z)

are what he called Neumann subgroups, those complemented by the maximal parabolic subgroup

P generated by the Möbius transformation t 7→ t + 1, which implies that they are maximal non-

parabolic subgroups, that is, maximal with respect to containing no parabolic elements of Γ. Mag-

nus conjectured in [11] that Neumann had constructed all the maximal nonparabolic subgroups of

Γ, but subsequently C. Tretkoff [15] produced further examples of Neumann subgroups not arising

from Neumann’s construction, while Brenner and Lyndon [1] (see also [9]) found further examples

of maximal nonparabolic subgroups of Γ which are not Neumann subgroups.

In algebraic map theory [5, 6] subgroups of Γ correspond to trivalent (or triangular) oriented

maps; nonparabolic subgroups correspond to trivalent maps with no finite faces, and among these,

Neumann subgroups correspond to those with a single (infinite) face. In this paper simple construc-

tions of maps will be used to extend the above results by producing uncountably many conjugacy

classes of nonparabolic maximal subgroups, that is, subgroups which are both nonparabolic and

maximal (as in fact most of Neumann’s are), in a much wider class of hyperbolic triangle groups:
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Theorem 1. For each pair of integers p ≥ 3 and q ≥ 2 the triangle group Γ = ∆(p, q,∞) � Cp ∗Cq

has uncountably many conjugacy classes of nonparabolic maximal subgroups.

Of course, if p, q and r are all integers then every subgroup of ∆(p, q, r) is nonparabolic, since

this group, being cocompact, has no parabolic elements.

Neumann subgroups and their maximality properties have also been studied geometrically by

Kulkarni in [8]. In one sense he does so in a wider context, since he takes Γ to be a free product

of an arbitrary finite number of finite cyclic groups. On the other hand, his main theorem on

maximality requires all these cyclic groups to have prime order, which is not a requirement here.

After some preliminary results in §2, we will prove Theorem 1, dealing first with the Hecke

groups ∆(p, 2,∞) � Cp ∗ C2 in §3, and then with the groups ∆(p, q,∞) � Cp ∗ Cq for p, q ≥ 3 in

§4. The nonparabolic maximal subgroups constructed there are all free products of cyclic groups

of order p or q, but in §5 we will use a similar method to construct uncountably many conjugacy

classes of torsion-free maximal subgroups, each freely generated by an infinite set of parabolic

elements, in the Hecke groups ∆(p, 2,∞) for all odd p ≥ 3. In §6, §7 and §8 we will revisit

the constructions by Neumann, by Tretkoff and by Brenner and Lyndon, reinterpreting them in

terms of maps, and showing how their results can be extended to other hyperbolic triangle groups

∆(p, q,∞). In §9 we will briefly consider some consequences and generalisations to other groups,

such as cocompact hyperbolic groups ∆(p, q, r).

2. Neumann permutations, subgroups and maps

Let p and q be integers such that p ≥ 3 and q ≥ 2. We define a Neumann permutation of type

(p, q) to be a permutation y of Z such that

(yz)p
= yq

= 1,

where z is the translation i 7→ i+1, and 1 denotes the identity permutation. For the case p = 3, q = 2

see [13], and also [11] and [12, Lemma 3.6] where the function f plays the role of y.

For p ≥ 3 and q ≥ 2 the triangle group

Γ = ∆(p, q,∞) = 〈X, Y, Z | Xp
= Yq

= XYZ = 1〉 � Cp ∗ Cq

is a group of orientation-preserving isometries of the hyperbolic plane H, where X and Y are

elliptic elements (with a unique fixed point in H) and Z is parabolic (with a unique fixed point in

∂H). Extending Magnus’s definition in [11, 12] for subgroups of the modular group ∆(3, 2,∞), let

us define a Neumann subgroup of Γ to be a subgroup M which complements the maximal parabolic

subgroup P = 〈Z〉 of Γ, that is, Γ = MP and M ∩ P = 1.

We define a Neumann map of type (p, q) to be an infinite oriented bipartite map N with one

face, with the vertices in the two parts coloured black and white, and every black or white vertex

having valency dividing p or q respectively. (Combinatorialists may recognise this as the Walsh

bipartite map [16] for the hypermap corresponding to this representation of Γ.) If q = 2 we can

simplify N to a map N† by omitting all the white vertices, leaving free or non-free edges where

vertices of valency 1 or 2 are removed, so that the directed edges ofN† correspond to the edges of

N ; there is no loss of information in doing this, sinceN can be recovered by adding a white vertex

to each edge of N†, of valency 1 or 2 as the edge is free or not.
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For a given pair p, q there are natural bijections between (isomorphism classes of) these three

sets of objects. Given a Neumann permutation y we define a permutation representation of Γ on Z

by sending X, Y and Z to the permutations x := (yz)−1, y and z. This representation is transitive, and

P acts regularly, so it complements the subgroup M of Γ fixing a particular integer. This stabiliser

M is uniquely determined up to conjugacy. Conversely, given a Neumann subgroup M of Γ, we

can use the powers of Z as coset representatives of M, so that Z, acting on the cosets of M, induces

the translation z : i 7→ i + 1 on Z, while Y induces a permutation y satisfying (yz)p
= yq

= 1.

As in the more general algebraic theory of maps [6], a Neumann map N determines a triple of

permutations x, y, z of the set Ω of its edges, with x and y using the orientation of the surface to

rotate edges around their incident black and white vertices, so that xp
= yq

= 1, while z := (xy)−1

follows the orientation around the unique face, so that it has a single (infinite) cycle on Ω; given

any chosen edge α we can identify each edge β = αzi ∈ Ω with the integer i, so that z acts as

the translation i 7→ i + 1 on Z, and y is a Neumann permutation. Conversely, given a Neumann

permutation y one can reconstruct N from the permutations x := (yz)−1, y and z of Z, with edges

corresponding to elements of Z, and black and white vertices corresponding to the cycles of x and

y, so that the cyclic order of incident edges determines the local orientation around each vertex.

The significance of Neumann permutations, subgroups and maps lies in the following simple

result (see [11, Theorem 4] and [12, Theorem 3.4(i)] for the case p = 3, q = 2, and [8, Prop. 2.1]

for a more general result):

Proposition 2. Each Neumann subgroup M is a maximal nonparabolic subgroup of Γ.

Proof. The parabolic elements of Γ are the conjugates of the non-identity powers of Z. Since z has

no finite cycles on Z (equivalently, the mapN has no finite faces), there are no such elements in the

stabiliser M, which is therefore a nonparabolic subgroup of Γ. It is, in fact, maximal with respect

to this property, for if a subgroup M∗ of Γ properly contains M, it must contain a coset Mg , M of

M in Γ, and hence contains the corresponding coset representative Zi
, 1, which is parabolic. �

Non-isomorphic Neumann maps give inequivalent permutation representations of Γ, and hence

distinct conjugacy classes of stabilisers M. We will show that for each pair p ≥ 3 and q ≥

2 there are 2ℵ0 isomorphism classes of Neumann maps of type (p, q), so we obtain 2ℵ0 distinct

conjugacy classes of maximal nonparabolic subgroups of Γ. In particular, by taking p = 3 and

q = 2 we obtain uncountably many maximal nonparabolic subgroups of the modular group (for

background on this group, see [12] or [7, Ch. 6]). In [13] Neumann used a different method to

construct such subgroups, involving a rather complicated construction of suitable permutations of

Z, though it is conceivable that his purely algebraic approach was originally based on combinatorial

or topological ideas.

In fact, for any p ≥ 3 and q ≥ 2, many of the Neumann subgroups M of Γ are maximal as

subgroups of Γ, not just as nonparabolic subgroups. This is equivalent to Γ acting primitively on

Ω, that is, preserving no equivalence relations on Ω other than the identity and universal relations.

Now we can identify Ω with Z as above, so that Z acts on Z by z : i 7→ i + 1. Any nontrivial

Γ-invariant equivalence relation ∼ on Ω must therefore induce a nontrivial translation-invariant

equivalence relation on Z, and the only possibility for this is congruence mod (n) for some integer
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n ≥ 2. Since Γ = 〈Y, Z〉, the relation ∼ will then be Γ-invariant if and only if it is preserved by y,

that is, i ≡ j mod (n) implies iy ≡ jy mod (n). In many cases, for each n there will be some pair

i, j for which this implication fails, so that Γ acts primitively and the stabilisers M are maximal

subgroups. Indeed, it is easy to construct Neumann mapsN for which this happens. For example:

Lemma 3. Suppose that x fixes i and y fixes j, where i ≡ j mod (n) for some integer n ≥ 2. Then

congruence mod (n) is not Γ-invariant.

Proof. Suppose that congruence mod (n) is Γ-invariant. Let E denote the congruence class [i] = [ j]

of i and j mod (n). Since ix = i we have Ex = E, and similarly jy = j implies that Ey = E. Since

Γ = 〈X, Y〉 it follows that E is invariant under Γ. But Γ acts transitively on Ω, and E , ∅, so E = Ω.

Thus n = 1, against our hypothesis. �

3. Proof of Theorem 1: the case q = 2

By using the ideas in the preceding section we obtain a simple proof of a generalisation of

Neumann’s result:

Corollary 4. For each integer p ≥ 3 the Hecke group Γ = ∆(p, 2,∞) � Cp ∗ C2 has uncountably

many conjugacy classes of nonparabolic maximal subgroups.

6 − 4p4 − 3p3 − 2p

−p

1 − p

−2

−1

0

1

2

3

4 5

6

7 3n − 1

3n

3n + 1

(p − 3) (p − 3) (p − 2) (p − 3) (p − 2) (p − 2) (p − 3) (p − 2)

F

Figure 1. A p-valent Neumann mapNp for p ≥ 3

Proof. Let Np be the Neumann map of type (p, 2) shown in Figure 1, where white vertices have

been omitted as explained earlier, and the numbers in parentheses indicate how many free edges

there are in each ‘fan’. The pattern repeats periodically to the right. The leftmost directed edge,

with the unique 1-valent vertex as its target, has been chosen as α, so that each directed edge

β = αzi ∈ Ω is labelled with the integer i. (To save space in the diagram, only a few significant

labels are shown.) For each n ≥ 2 we can apply Lemma 3 to the directed edges labelled i = 0

and j = 3n, fixed by x and y respectively, to show that congruence mod (n) is not a Γ-invariant

relation. It follows that the representation of Γ is primitive, and the stabiliser M = Γα, together

with its conjugates Γβ for β ∈ Ω, is a nonparabolic maximal subgroup of Γ.
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In order to produce 2ℵ0 conjugacy classes of such subgroups we can modify Np by adding 1-

valent black vertices to an arbitrary subset of the free edges with negative labels (those below the

horizontal axis): this adds extra directed edges (fixed by x) to Ω, and changes the labelling below

the axis, but it has no effect on the labelling above the axis, so the preceding proof still applies. �

In fact, there are many Neumann maps of type (p, 2) giving rise to uncountably many conjugacy

classes of nonparabolic maximal subgroups of Γ, after suitable addition or deletion of 1-valent

black vertices. Define an edge of a Neumann map N of type (p, 2) to be terminal if it is a free

edge or is incident with a vertex of valency 1. Define two such maps to have the same shape if they

differ only by the addition or deletion of vertices of valency 1 on terminal edges.

Proposition 5. Given any shape of Neumann maps of type (p, 2) with infinitely many terminal

edges, there are uncountably many Neumann maps of that shape for which the corresponding

nonparabolic subgroups of Γ = ∆(p, 2,∞) are maximal in Γ.

Proof. Let N0 be a Neumann map of the given shape, with just one 1-valent vertex v0. Let α be

the directed edge with target v0, and use α to identify the set Ω of directed edges of N0 with Z as

above. Since there are infinitely many terminal edges, N0 has infinitely many free edges, so there

must be infinitely many with label i > 0, or infinitely many with label i < 0, or both; replacing

N0 with its mirror image if necessary (since the conclusion is invariant under reflection) we may

assume the former.

We will now add 1-valent vertices to positively labelled free edges of N0, thus changing labels,

to ensure that for each n ≥ 2 there is a free edge labelled with some multiple of n, so that Lemma 3

shows that congruence mod (n) is not Γ-invariant. Adding a 1-valent vertex to a free edge labelled

i > 0 adds a directed edge labelled i + 1 to Ω, and increases all existing labels j > i by 1, leaving

all labels j ≤ i unchanged. By doing this to at most one free edge with label i > 0 we can produce

a free edge with label j2 divisible by 2. Then by doing this to at most two free edges with labels

i > j2 we can produce a free edge with label j3 divisible by 3. Continuing in this way we produce

a Neumann map N , of the same shape as N0, with the property that for every n ≥ 2 there is a

free edge labelled with some multiple jn of n. Then Lemma 3, with i = 0 fixed by x and j = jn

fixed by y, shows that congruence mod (n) is not Γ-invariant, so that Γ acts primitively on Ω and

the subgroup M = Γα is maximal. Moreover, at each stage of this process, in producing jn, we

have a choice of which free edges should receive 1-valent vertices, so there are 2ℵ0 non-isomorphic

possibilities for N , giving 2ℵ0 conjugacy classes of maximal subgroups M. �

Here it is necessary to include the hypothesis that the shape has infinitely many terminal edges,

since there are Neumann maps with only finitely many, or even none, as we shall see in §7. How-

ever, it is easy to see (for instance, by considering finite subgraphs) that every planar Neumann

map has infinitely many.

4. Proof of Theorem 1: the case q ≥ 3

Having dealt with the case q = 2 of Theorem 1 in the preceding section, we now deal with the

case q ≥ 3. Since q , 2 we will use bipartite Neumann maps, with vertices coloured black and

white, and take Ω to be the set of edges, rather than directed edges.
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Theorem 6. For each pair of integers p ≥ 3 and q ≥ 3 the triangle group Γ = ∆(p, q,∞) has

uncountably many conjugacy classes of nonparabolic maximal subgroups.

2 − q

−1

0

1 2

3

4

5

2n

2n + 1

(q − 3) (p − 3) (q − 2) (p − 3) (q − 2) (q − 2) (p − 3) (q − 2)

F

Figure 2. The bipartite mapNp,q for p, q ≥ 3

Proof. Let Np,q be the Neumann map of type (p, q) shown in Figure 2, where (as before) the

integers in parentheses give the number of edges and 1-valent vertices in each ‘fan’. Thus the

black vertices all have valency p or 1, and the white vertices all have valency q or 1.

This map corresponds to a transitive permutation representation of Γ on the set Ω of its edges.

As in the case q = 2, the single face F corresponds to the single cycle C of z = (xy)−1 on Ω;

defining α to be the leftmost edge in Figure 2, we can label each edge αzi with the integer i.

The proof that Γ acts primitively on Ω is identical to that for q = 2, except that we now permute

edges rather than directed edges, and it is the edge labelled 2n and fixed by y which shows that

Ey = E. It follows that the stabiliser M = Γα of α in Γ is a maximal subgroup. As before, it

is nonparabolic because z has no finite cycles. In order to produce 2ℵ0 such subgroups we can

modify the map Np,q by adding fans of p − 1 or q − 1 edges and 1-valent white or black vertices

to an arbitrary set of the 1-valent black and white vertices below the horizontal axis: the resulting

expansion of Ω and redefining of negative labels have no effect on the preceding proof. �

5. Structure of maximal subgroups

The maximal subgroups M constructed so far in this paper are all free products of cyclic groups

of order p (= 3 for the modular group) and q (= 2 for the Hecke groups), in bijective correspon-

dence with the fixed points of x and y on Ω. (More generally, by the Kurosh Subgroup Theorem

(see [10, Ch. IV, Theorem 1.10]), any subgroup of Γ = Cp∗Cq is a free product of subgroups Cr for

r dividing p or q or r = ∞. However, by the construction of the various maps we have used, proper

divisors d of p and q do not arise as black or white vertex-valencies and hence as cycle-lengths for

x or y, so proper divisors r = p/d or q/d do not arise.)

Topologically, the corresponding generators for M can be seen as monodromy generators for

the covering of the corresponding map by the universal map of that type on H, induced by the

inclusion of the identity subgroup in M. Algebraically, one can see this free product structure
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by applying the Reidemeister–Schreier algorithm [10, §II.4] to obtain a presentation for M. If M

is any Neumann subgroup of type (p, q), the elements Zi of the maximal parabolic subgroup P

form a Schreier transversal for M in Γ. Applying the algorithm to this transversal, and eliminating

redundancies, we find that each black vertex of valency d < p yields a generator ZiXdZ−i for M

(where an incident edge is labelled i ∈ Z), together with a relation that its p/d-th power is the

identity; a similar remark applies to the white vertices, giving conjugates of powers of Y , and there

are no further generators or relations, so we obtain the claimed free product decomposition for M.

A more general planar bipartite map of type (p, q), with any number of faces, can be transformed

into a coset diagram for M in Γ with respect to the generators X and Y , with a vertex on each edge

of the map, and directed edges showing the actions of X and Y . The geodesics in a spanning tree for

this graph, from a chosen vertex α to the other vertices, then yield words in X and Y representing

a Schreier transversal for M in Γ. The Reidemeister–Schreier algorithm then gives a free product

decomposition as before, except that now any face of finite valency d, corresponding to a cycle of

z of length d, yields an additional infinite cyclic free factor, generated by a conjugate of Zd.

With this idea in mind, one can use or adapt the preceding constructions to produce maximal

subgroups with various other types of generating sets. For example, the conjugacy class of sub-

groups associated with the Neumann map Np in Figure 1 are each generated by one element of

order p and infinitely many of order 2. Similar arguments show that a map of the same shape but

with the fixed points of x and y transposed yields maximal subgroups generated by one element of

order 2 and infinitely many of order p. However, there are some obvious restrictions. For instance,

one cannot construct maximal subgroups of Γ = ∆(p, q,∞) generated entirely by elements of the

same finite order k > 1: such elements are elliptic, and are conjugate to powers of X′ := Xp/k or

Y ′ := Yq/k as k divides p or q (possibly both), so any subgroup they generate must be contained in

the normal closure of X′ and Y ′, which is a proper subgroup of Γ for k > 1.

As an example of what can be achieved, we have the following:

Theorem 7. For each odd integer p ≥ 3 the Hecke group Γ = ∆(p, 2,∞) has uncountably many

conjugacy classes of torsion-free maximal subgroups, each freely generated by a countably infinite

set of parabolic elements.

Proof. Define l := (p − 1)/2, so that l ≥ 1. Let N ′p be the planar map in Figure 3, where each

vertex on or off the horizontal axis is incident with l − 1 or l loops respectively, so that all vertices

have valency p. This map therefore represents a transitive permutation representation Γ → G in

which the point-stabilisers are freely generated by parabolic elements, corresponding to the loops

in the map. In particular, these subgroups are torsion-free. Our aim is to modify this construction

in order to produce uncountably many conjugacy classes of such subgroups, all maximal in Γ.

In Figure 3 the label 0 indicates a directed edge α, and each other directed edge αzi (i ∈ Z) in the

cycle C of z containing α is labelled i. This cycle corresponds to the unbounded face F, whileΩ\C

consists of fixed points of z, one for each loop. By analogy with gardening, we will refer to the

connected subgraphs above the axis as ‘flowers’ Fn for n ≥ 0, and that below it as a ‘bulb’B0. Note
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−2l − 2
−2l − 1

−2l

−l − 1

−l

−l + 1

−1
0

1

l

t − 2

t − 1
t

t + 1

2t − 3

2t − 2

2t − 1
2t

2t + 1

3t − 3

3t − 2

3t − 1
nt

nt + 1

(n + 1)t − 3

(n + 1)t − 2

(n + 1)t − 1

F

F0 F1 F2

B0

Fn (n ≥ 0)

Figure 3. The p-valent mapN ′p, with l = (p − 1)/2 and t = l + 3

Fn

v

Fn+1

Figure 4. A bulb inserted between two flowers

that the downward directed edge in the ‘stem’ of Fn has the label tn, where t := l + 3 = (p + 5)/2;

we will call these the principal directed edge and the principal label λ(n) of Fn.

Now suppose that, as shown in Figure 4, we modify N ′p by inserting an additional bulb (copy

of B0) at a new vertex v on the horizontal axis between adjacent flowers Fn and Fn+1, including

l − 1 loops at v, below the axis, to ensure that v has valency p; then the labelling is changed,

and in particular all labels in flowers Fm for m > n, including their principal labels, are increased

by 1 because of the extra edge on the horizontal axis. By inserting various numbers of bulbs

between flowers, we can arrange that, for each integer d ≥ 1, every congruence class in Zd is
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represented by the principal label λ(n) of some flower Fn. For example, we could deal with the

gaps between successive flowers from left to right, at each stage inserting enough bulbs so that,

in increasing order of d, all classes in Zd have been represented. Moreover, by using additional

redundant bulbs at arbitrary stages, we can do this in uncountably many different ways. As a result,

we obtain uncountably many non-isomorphic maps giving transitive permutation representations

of Γ, and hence uncountably many conjugacy classes of point-stabilisers in Γ, all with the required

generating sets.

It remains to prove that these subgroups are all maximal, or equivalently, that the permutation

representations are primitive. Any Γ-invariant equivalence relation ∼ on Ω restricts to the labels

on C as congruence mod (n) for some n ∈ N ∪ {∞}, where we allow n = 1 and ∞ to represent the

universal and identity relations on Z. If we define W := Zl+1Y ∈ Γ, inducing w := zl+1y ∈ G on Ω,

then by inspection βw = β whenever β is the principal directed edge of a flower, so if n , ∞ then

by our choice of gaps, w preserves every equivalence class appearing in C. However, inspection

of Figure 3 shows that w, in its induced action on integer labels, sends 1 to −2l − 2, and −l − 1 to

l + 1, so n divides both 2l+ 3 and 2l+ 2, giving n = 1. Thus all elements of C are equivalent under

∼, and hence so are all elements of Cy. But Ω = C ∪ Cy with α ∈ C ∩ Cy, so ∼ is the universal

relation.

Thus we may assume that n = ∞, so all elements of C are in different classes, and hence the

same applies to Cy. Since α ∈ C ∩Cy we have E ∩C = E ∩Cy = {α}. Since Ω = C ∪Cy it follows

that E = {α}, so all equivalence classes are singletons and ∼ is the identity relation. �

The condition that p should be odd is essential here: the parabolic elements are all contained in

the normal closure of Z, which is a proper subgroup of Γ if p is even. This suggests the following:

Conjecture 8. Theorem 7 extends to the groups ∆(p, q,∞) for all mutually coprime pairs of inte-

gers p, q > 1, that is, each of these groups has uncountably many conjugacy classes of torsion-free

maximal subgroups, each freely generated by a countably infinite set of parabolic elements.

As in the case q = 2 above, the coprimality condition is necessary here; whether it is also

sufficient is not clear. A proof along the lines developed in this paper would require the construction

of a map similar to the map Np,q used to prove Theorem 6, but with the black and white vertices

all of valency p and q respectively, and none of valency 1.

6. Neumann’s construction revisited

Neumann’s construction of uncountably many Neumann permutations in [13], summarised by

Magnus in [12, §III.4], is rather complicated, but it may be useful to restate it in terms of maps.

Neumann starts with an arbitrary sequence h = (hl)l≥1 of terms hl = 0 or 1, and defines a

sequence (gl)l≥1 by

g1 = 2, gl = 6l − 5

l−1∑

i=1

hi − 4 (l ≥ 2).

Thus gl+1 − gl = 6 or 0 as hl = 0 or 1, so every integer g ≥ 2 can be expressed uniquely in one of

the forms

g = gl, or g = gl + σ where σ ∈ {1, 2, 3, 4, 5} and hl = 0.
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Neumann then uses this to define a permutation β of Z, corresponding to our x−1, and checks that it

satisfies the conditions equivalent to y := (zx)−1 being what we have called a Neumann permutation

of type (3, 2).

In order to define his permutation β, Neumann uses a long list of equations [13, (68)], sum-

marised later by Magnus in [12, Table 3.1] where his f corresponds to our y. Instead we will

define our permutation y (and hence also x and z) using the Neumann map Nh in Figure 5. This is

constructed as follows. There are two free edges at the leftmost vertex, corresponding to y fixing

0 and −1, while the third edge at that vertex shows that y transposes 1 and −2. As we move to the

right along the horizontal axis, Nh is built up from a sequence (Bl)l≥1 of adjacent blocks Bl, each

of which is of one of the two following types, depending on the value of hl:

• if hl = 0 then Bl consists of three free edges above the horizontal axis, attached to succes-

sive vertices on the axis and corresponding to fixed points gl, gl+2 and gl+4 for y, together

with edges along the axis corresponding to transpositions (gl + 1,−3l), (gl + 3,−3l− 1) and

(gl + 5,−3l − 2) in y;

• if hl = 1 then Bl consists of a single edge below the horizontal axis, connecting a vertex on

the axis with a vertex below it, corresponding to transpositions (−3l,−3l−1) and (gl,−3l−2)

in y, with −3l fixed by x.

−2

−1

0

1

gl

gl + 1

gl + 2

gl + 3

gl + 4

gl + 5

−3l + 1 −3l −3l − 1 −3l − 2

gl

−3l + 1

−3l

−3l − 1
−3l − 2

Bl (hl = 0)

Bl (hl = 1)

Figure 5. The Neumann mapNh, with blocks Bl for hl = 0 and 1

The meaning of gl should now be clear from Figure 5: it is the lowest positive label appearing

in the l-th block Bl, corresponding to the term hl in the chosen sequence h = (hl). The 2ℵ0 possible

sequences h give mutually non-isomorphic maps Nh, and hence give 2ℵ0 conjugacy classes of

Neumann subgroups Mh of the modular group Γ. They are maximal nonparabolic subgroups, each

a free product of cyclic groups of order 3 and 2 corresponding to the fixed points of x and y. In

fact, in all cases except one this construction yields a conjugacy class of maximal subgroups of Γ:

Theorem 9. The Neumann subgroup Mh is a maximal subgroup of the modular group Γ if and

only if h is not the constant sequence (0) given by hl = 0 for all l.

Proof. Suppose that h , (0), so that X has a fixed point. If Mh is not maximal, then Γ acts

imprimitively on Z, preserving congruence mod (n) for some integer n ≥ 2. Let θ : Nh → Nh

be the projection onto the corresponding quotient map, reducing labels mod (n). Since X and Y
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have fixed points in Nh, they also have fixed points in Nh. A case-by-case argument shows that θ

sends non-trivial cycles of X and Y in Nh to non-trivial cycles in Nh, so it induces an unbranched

covering of the embedded graphs. For example, let e be an edge of Nh on the horizontal axis,

separating two free edges (copies of Bl where hl = 0); let i and j = iY be the positive and negative

labels of the directed edges in e, and suppose that i ≡ j mod (n). Now Y fixes iX and jX−1, so it

fixes the congruence classes [i]X and [ j]X−1
= [i]X−1 as well as [i]; these three directed edges thus

form an orbit of Γ, and therefore give all the directed edges ofNh. However, there has to be a fixed

point of X inNh, so they are all equal, andNh is trivial, a contradiction. Thus i . j, so e is mapped

isomorphically into Nh. The other edges are dealt with similarly, as are the trivalent vertices.

Hence θ induces an unbranched covering of graphs, so in particular the subgraph consisting of the

leftmost vertex v of Nh and its incident edges is mapped isomorphically into Nh, and its image

must lift to more than one (in fact infinitely many) isomorphic copies of it inNh; however, v is the

only vertex in Nh incident with two free edges, a contradiction. Thus Mh is maximal if h , (0).

This argument fails if h = (0) since then X has no fixed points in Nh, and one can form a

quotient Nh, with one vertex and three free edges, by reducing labels mod (3). In this case Mh is

a free product of infinitely many copies of C2, each corresponding to a fixed point of Y; it is not

maximal since it is contained in the normal closure of Y , a subgroup of index 3 in Γ. (This is, in

fact, the first example presented by Neumann in [13, §1]: see the last comment in his §15.) �

7. Tretkoff’s construction revisited

In [11] Magnus conjectured that every maximal nonparabolic subgroup of the modular group Γ

arises as a subgroup Mh from Neumann’s construction in [13]; this was later phrased as a question

rather than a conjecture in [12, §III.4]. In [15], C. Tretkoff disproved the conjecture by finding

examples of Neumann subgroups which do not arise in this way. In fact, it is clear from the

discussion in the preceding section that the subgroups Mh form a very small subset of the set of

all Neumann subgroups: one can construct examples of the latter by starting with the semi-infinite

path along the horizontal axis in Figure 5, and then attaching finite rooted binary plane trees,

possibly with free ends, to the vertices, two at the leftmost vertex and one at each of the other

vertices, on either side of the axis. There are no restrictions, as there are for Neumann’s maps Nh,

that the attached trees should each have just one edge, that the free and non-free edges should be

respectively above and below the axis, or that the free edges should come in blocks of three.

Like Neumann and Magnus, Tretkoff defines her subgroups in terms of permutations, but again

it is instructive to reinterpret them in terms of maps. Any subgroup of Γ = C2 ∗ C3 is a free

product of subgroups Cr for r = 2, 3 or ∞; as we have seen, Neumann’s subgroups Mh have only

C2 and C3 as free factors, whereas Tretkoff’s can have factors of all three types. As in Neumann’s

case, the corresponding maps are constructed from a sequence of blocks. Her main ingredients

are of three types, shown in Figure 6. The first two, corresponding to her permutation patterns 1

and 2 and contributing free factors C2 and C3 to M, are obvious, but the third, corresponding to

her pattern 3, requires some explanation: a bridge, or handle, is added to the surface to avoid the

apparent crossing of edges. One can easily check that this results in a Neumann map (which is
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Type 1 Type 2 Type 3

Figure 6. Tretkoff’s construction of Neumann maps, with blocks of type 1, 2 and 3

now nonplanar), and that each block of this type contributes a free factor F2 = C∞ ∗ C∞ to M.

Different sequences of blocks of these three types yield 3ℵ0 = 2ℵ0 conjugacy classes of maximal

nonparabolic subgroups. In fact, by careful arrangement of the blocks one can use Lemma 3, as in

the proof of Corollary 4, to obtain 2ℵ0 conjugacy classes of nonparabolic maximal subgroups.

8. Brenner and Lyndon’s construction revisited

In [1] (see also [9, §2]) Brenner and Lyndon went further and found examples of maximal

nonparabolic subgroups of the modular group Γ which are not Neumann subgroups. Again, their

construction can be explained by using maps, namely quotients of the Petrie dual (explained below)

of the trivalent tessellation M = {6, 3} of the euclidean plane by regular hexagons. They first

construct a nonparabolic normal subgroup N, which is maximal among all such subgroups, though

not itself maximal parabolic; they then classify the maximal nonparabolic subgroups containing

N, showing that these form a countably infinite set of conjugacy classes. None of these subgroups

is maximal in Γ.

The construction in [1] is as follows. The isometry group ofM is the extended triangle group

∆ = ∆[3, 2, 6], equivalently the 2-dimensional euclidean crystallographic group p6m. It has three

subgroups of index 2. Two of these are obvious: the orientation-preserving subgroup, which is

the triangle group ∆(3, 2, 6) = p6, and the extended triangle group ∆[3, 3, 3] = p3m1, generated

by reflections in the sides of an equilateral triangle with a side along an edge of M. The latter

is also the subgroup of ∆ preserving the black and white bipartite colouring of the vertices ofM.

However, there is a third subgroup of index 2, namely the ‘mixed’ subgroup Q = p31m consisting

of the elements of ∆ which either preserve the orientation and the colouring (forming the subgroup

∆(3, 3, 3) = p3 of index 4 in ∆), or reverse them both; this subgroup has the form

Q = 〈R, S | R2
= S 3

= (RS −1RS )3
= 1〉,

where R is the reflection in an axis through the midpoints of two opposite edges of a hexagonal

face, and S and RS −1R are rotations about the vertices incident with one of those edges.

This presentation of Q shows that there is an epimorphism Γ → Q given by X 7→ S , Y 7→ R;

its kernel is the normal closure N of (YX−1YX)3 in Γ. By using coset diagrams, Brenner and
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Lyndon show that N is nonparabolic, and is maximal among all nonparabolic normal subgroups of

Γ. By considering the (well-known) subgroups of Q, they describe all the nonparabolic subgroups

containing N, and in particular they identify the maximal nonparabolic subgroups among them.

There are ℵ0 such subgroups, and they show that none of them is a Neumann subgroup.

If we reinterpret their work in terms of maps, then N corresponds to the Petrie dualN of the map

M = {6, 3}. This is an embedding of the same graph asM, but with the hexagonal faces replaced

with new faces, following the Petrie paths ofM. These are zig-zag paths, alternately turning left

and right at successive vertices; there are three parallel families of them, all of infinite length, so

N has three mutually disjoint families of faces, all with infinitely many sides. A subgroup of Γ

containing N is nonparabolic if and only if it induces no translations ofM in the three directions

of the Petrie paths, so that the corresponding quotient map of N has no finite faces. In all such

cases there is more than one face, so the subgroup is not a Neumann subgroup.

By adapting our earlier constructions we can extend their results to give uncountably many

nonparabolic maximal subgroups of Γ = ∆(p, q,∞), for all p ≥ 3 and q ≥ 2, none of them

Neumann subgroups. They arise from maps which have all the properties of a Neumann map,

except that they have more than one face, so that the maximal parabolic subgroup P is intransitive

on Ω and therefore does not complement the stabilisers M = Γα.

Theorem 10. For each pair of integers p ≥ 3 and q ≥ 2 the group Γ = ∆(p, q,∞) has uncountably

many conjugacy classes of nonparabolic maximal subgroups which are not Neumann subgroups.

−3 −2
−1

0

1 2

3

4 5

6

−3′−2′
−1′

0′

1′2′

3′
4′5′

6′

F

F′

? ?

? ?

Figure 7. A set of trivalent maps N with two faces

Proof. For simplicity of exposition, and to avoid repetition, we will give the proof only in the case

of the modular group Γ = ∆(3, 2,∞). The extension to other groups ∆(p, q,∞) is straightforward.

Figure 7, which repeats in the obvious way to the right and left, represents 2ℵ0 trivalent planar

maps N , where each question mark represents the possibility of either adding a 1-valent vertex,

or leaving the edge as a free edge, corresponding to a directed edge fixed by x or y respectively.

Whatever choices are made, N represents a transitive permutation representation of Γ, in which

the two faces F and F′ correspond to the two infinite cycles C and C′ of z on the set Ω = C ∪C′ of

directed edges of N . In each face F or F′, a particular directed edge α or α′ has been chosen, and

each directed edge αzi or α′zi is labelled i or i′, so that z acts on Ω (now identified with the disjoint
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union of two copies of Z) by i 7→ i+1, i′ 7→ (i+1)′. Note that positive labels are independent of the

choice of extra vertices, whereas negative labels are not, so they are mostly omitted in Figure 7.

We need to show that the extra vertices can be allocated so that Γ acts primitively on Ω. Any

Γ-invariant equivalence relation ∼ on Ω must restrict to each of C and C′ as congruence mod (n)

or (n′) for some n, n′ ∈ N ∪ {∞}, where we again include 1 and ∞ to represent the universal and

identity relations on Z. As in the proof of Corollary 4, applying Lemma 3 to the pairs of directed

edges labelled 0, 3n and 0′, 3n′ shows that we must have n, n′ ∈ {1,∞}.

Suppose that n = 1, so that all elements of C are equivalent. It follows that all elements of Cy

are equivalent; this set includes distinct elements of C′ (−2y = −2′ and 1y = −3′, for example), so

n′ , ∞ and hence n′ = 1, that is, all elements of C′ are equivalent. Since Cy includes elements

of C (such as 0y = −1), all elements of Cy are in the same class as those in C, and hence ∼ is the

universal relation on Ω. By symmetry we obtain the same conclusion if n′ = 1, so we may assume

that n = n′ = ∞, that is, ∼ restricts to the identity relation on C and on C′.

If ∼ is not the identity relation on Ω, then each equivalence class must have size 2, consisting of

one element from each of C and C′. This means that the stabiliser M = Γα of α in Γ has index 2

in the subgroup ΓE of Γ preserving the equivalence class E = [α]. Having index 2, M is normal in

ΓE, so ∼ is induced by a group of automorphisms A � ΓE/M � C2 of N , transposing equivalent

pairs of directed edges. The generator of A must preserve the orientation of the plane, and must

send free edges to free edges, and vertices to vertices of the same valency, so the only possibility

is the half-turn about the centre of Figure 7, transposing pairs i and i′. However, we can eliminate

this possibility by choosing the allocations of extra vertices above and below the horizontal axis

so that they are not equivalent under this half-turn, for instance by allocating a black vertex at

the rightmost question mark above the axis, but not at the leftmost question mark below it. This

restriction still leaves us 2ℵ0 possible allocations, and hence that number of conjugacy classes of

maximal subgroups M of Γ. As before, these subgroups are nonparabolic since z has no finite

cycles, but now they are not Neumann subgroups since z has more than one cycle. �

9. Consequences and generalisations

For a finitely generated group Γ, the following two properties are equivalent:

(1) Γ has uncountably many conjugacy classes of maximal subgroups of infinite index;

(2) Γ has uncountably many maximal subgroups.

Clearly (1) implies (2), and the converse depends on the facts that Γ has only countably many

subgroups of finite index, and that each subgroup of Γ has only countably many conjugates. This

equivalence remains valid even if one restricts attention to maximal subgroups satisfying some

condition invariant under conjugation, such as being torsion-free, nonparabolic, etc.

If Γ̃ → Γ is an epimorphism of groups, and Γ has property (1) or (2), then Γ̃ also has that

property. Thus the fact that the modular group has property (1) implies that it is shared by many

other groups, such as non-abelian free groups, and hence by surface groups of genus g > 1, etc.

This has consequences outside group theory: for instance a Riemann surface of genus g > 1 has

uncountably many inequivalent coverings of infinite degree, each with no intermediate coverings.
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In this paper, we have given explicit constructions for uncountable sets of conjugacy classes

of maximal subgroups M in hyperbolic triangle groups ∆(p, q,∞). These subgroups are in fact

‘almost maximal’ in the corresponding extended triangle groups Γ∗ = ∆[p, q,∞], in the sense that

Γ is the only subgroup M∗ of Γ∗ such that M < M∗ < Γ∗: any other such subgroup must contain

M with index 2, and induce an orientation-reversing automorphism of the corresponding map,

whereas it is clear from the constructions that no such automorphism exists.

One might also consider maximal subgroups of triangle groups Γ = ∆(p, q, r) where r is finite.

Much is known about those of finite index, since the finite quotients of triangle groups have been

intensively studied. However, much less seems to be known about those of infinite index.

These certainly exist. For example, by a result of Ol’shanskiı̆ [14, Theorem 1], any hyperbolic

triangle group Γ has a quotient Q , 1 with no proper subgroups of finite index. Since Q is finitely

generated, Zorn’s Lemma implies that it has maximal subgroups. These must have infinite index,

so they lift back to maximal subgroups of infinite index in Γ. However, this argument gives us no

information about the number of such subgroups, their structure, or the corresponding primitive

permutation groups and bipartite maps.

One way of constructing specific examples is to adapt the Higman–Conder technique of ‘sewing

coset diagrams together’, used in [2, 3] to construct finite alternating and symmetric quotients of

∆(2, 3, r) and ∆[2, 3, r] for integers r ≥ 7.

Proposition 11. If r ≥ 7 then the groups ∆(2, 3, r) and ∆[2, 3, r] each have uncountably many

conjugacy classes of maximal subgroups of infinite index.

Proof. If r = 7 one can use Conder’s coset diagrams G and H in [2] to form an infinite diagram

H(1)G(1)G(1)G(1) · · · , where (1) denotes (1)-composition, and then by (1)-compositions attach a

copy of his diagram A to each of an arbitrary subset of the copies of G in this chain. This gives

2ℵ0 inequivalent infinite transitive permutation representations of ∆[2, 3, 7]. As in [2], the ‘useful

cycle’ of length 17 appearing in H ensures that ∆(2, 3, 7) acts primitively in each case, so the point-

stabilisers in both groups are maximal subgroups of infinite index. (Those in ∆(2, 3, 7) constructed

in this way are free products of cyclic groups of order 2 and 3.) This argument can be extended to

the case r ≥ 7, with the roles of A, G and H now taken by the diagrams V(h, d), S (h, d) and U(h, d)

in [3], where r = h + 6d with d ∈ N and h = 7, . . . , 12. �

It is hoped to give full details of this proof in a later paper, together with some applications of

maximal subgroups. It seems plausible that coset diagrams constructed by Everitt [4] and others

could be used to extend this result to other triangle groups, and to more general Fuchsian groups.

In particular, Theorem 1 and Proposition 11 suggest:

Conjecture 12. Every hyperbolic triangle group has uncountably many conjugacy classes of max-

imal subgroups of infinite index.

Each conjugacy class of maximal subgroups constructed in this paper corresponds to a primitive

permutation representation of infinite degree of some triangle group, acting as the monodromy

group of the associated map or hypermap. It would be interesting to know more about these

representations. For example, are they faithful, and if not, what are their kernels? Are they multiply

transitive, and if not, which relations do they preserve?
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As a simple example, if in §6 we take hl = 1 for all l ≥ 1, then we obtain a doubly transitive rep-

resentation of the modular group Γ, since (as is easily verified) the subgroup 〈Y, Z−1YZ, Z−3XZ3〉

of the stabiliser Mh of 0 acts transitively on Z \ {0}. How typical is this?
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