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Abstract

The nucleolus offers a desirable payoff-sharing solution in cooperative games, thanks to its attrac-

tive properties —it always exists and lies in the core (if the core is non-empty), and it is unique. The

nucleolus is considered as the most ‘stable’ solution in the sense that it lexicographically minimizes

the dissatisfactions among all coalitions. Although computing the nucleolus is very challenging, the

Kohlberg criterion offers a powerful method for verifying whether a solution is the nucleolus in rel-

atively small games (i.e., with the number of players n ≤ 15). This approach, however, becomes

more challenging for larger games because of the need to form and check a criterion involving possi-

bly exponentially large collections of coalitions, with each collection potentially of an exponentially

large size. The aim of this work is twofold. First, we develop an improved version of the Kohlberg

criterion that involves checking the ‘balancedness’ of at most (n − 1) sets of coalitions. Second, we

exploit these results and introduce a novel descent-based constructive algorithm to find the nucleolus

efficiently. We demonstrate the performance of the new algorithms by comparing them with existing

methods over different types of games. Our contribution also includes the first open-source code for

computing the nucleolus for games of moderately large sizes.
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1 Introduction

Cooperative games model situations where players can form coalitions to jointly achieve some objective.

Assuming that it is more beneficial for the players to work together, a natural question is how to divide

the reward of the collaboration among the players in such a way that ensures the stability of the grand

coalition, i.e. avoiding any subgroup of players to break away in order to form their own coalition and

increase their total payoff. Solution concepts in cooperative games provide the means to achieve this.

In a cooperative game (with transferable utilities), each coalition of players is associated with a value,

a real number that represents what that coalition could achieve by working together, independently of

other players. We are looking for a stable allocation of the value associated with the grand coalition,

that includes every player in the game. A natural requirement from such an outcome is to allocate

exactly the grand coalition value, and to do that individually rationally, i.e. each player should receive

at least her stand-alone value. There are games where no such outcome exists, however, for our purposes

in particular, we consider games where at least one individually rational outcome exists.

Applying the same concept to all groups of players, coalitionally rational outcomes form the core,

guaranteeing to every coalition at least the amount that they could achieve by breaking away from

the grand coalition. In this sense, core outcomes can be considered stable. However, it is possible

that no payoff vector satisfies this condition, and a core outcome might not exist. Furthermore, in the

appealing case of a non-empty core, one might find multiple core payoffs, offering possibly different

levels of stability.

There are other solution concepts which provide outcomes that are, in a certain sense, as stable

as possible. The first such solution concept is called the least core, which minimizes the worst level

of dissatisfaction, i.e. the difference of what a coalition could achieve on their own and the amount

allocated to the coalition, among all the coalitions. Note that least core payoffs always exist, but such

a payoff vector might still not be unique.

Least core outcomes minimize the worst (largest) dissatisfaction level among all coalitions over the set

of efficient payoff vectors, that allocate exactly the grand coalition value. Since there might be multiple

of such outcomes, we might be interested in minimizing the second (third, etc.) largest dissatisfaction

level of the remaining coalitions among these outcomes. By lexicographically minimizing the non-

increasingly ordered dissatisfactions of all coalitions, we arrive at one of the most widely known solution

concepts in cooperative game theory, the nucleolus, which is the ‘most stable’ individually rational

outcome. In this paper we are focusing on the computation and the verification of the nucleolus.
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The nucleolus was introduced in 1969 by Schmeidler [1] as a solution concept with attractive prop-

erties: it always exists (in a game with individually rational outcomes), it is unique, and it lies in the

core, if the core is non-empty. Despite the desirable properties that the nucleolus has, its computation

is, however, very challenging because the process involves the lexicographical minimization of 2n excess

values, where n denotes the number of players. While there is a few classes of games whose nucleoli can

be computed in polynomial time (e.g. [2, 3, 4, 5, 6, 7]), it has been shown that finding the nucleolus

is NP-hard for many classes of games, such as the utility games with non-unit capacities [6] and the

weighted voting games [8].

While finding the nucleolus is very difficult, Kohlberg [9] provides a necessary and sufficient condition

for a given imputation to be the nucleolus, which we will describe in the next section. This set of

criteria is particularly useful for relatively small games (e. g. less than 10 players). The verification of it,

however, becomes time consuming when the number of players exceeds 15, and becomes computationally

extremely demanding when the number of players exceeds 20, even if we have an educated guess on

the nucleolus based on the structure of a game. This is because the criterion involves the formation of

collections of (tight) coalitions from all 2n possible coalitions and iteratively verifying if unions of these

collections are ‘balanced’ in a way to be described in details in Section 2.2. The first aim of our work

is to resolve these issues and propose a new improved set of criteria for verifying the nucleolus.

Kopelowitz [10] suggested using nested linear programming (LP) to compute a closely related solu-

tion concept, the kernel of a game. This encouraged a number of researchers to focus on the computation

of the nucleolus using LPs, rather than sharpening the Kohlberg criterion1. For example, Kohlberg [12]

presents a single LP with O(2n!) constraints which later on is improved by Owen [13] to O(4n) con-

straints (at the cost of having larger coefficients). Puerto and Perea [14] recently introduced a different

single-LP formulation with O(4n) constraints and O(4n) decision variables and with coefficients in

{−1, 0, 1}. The nucleolus can also be found by solving a sequence of LPs. However, either the number

of LPs involved is exponentially large ([15], [16]) or the sizes of the LPs are exponential ([17], [18], [19],

[20]). Our second aim is to directly solve the lexicographical minimization problem via introducing a new

descent-based approach. We compare our method with classical sequential LP methods (primal and dual

sequences as described in [17]), the prolonged simplex method of [18], and the simplex implementation

for finding the nucleolus from Derks and Kuipers [19].

The four key contributions of our work are:

1The only result we are aware of is the nonlinear approximation described in [11].
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• We present a new set of necessary and sufficient conditions for a solution to be the nucleolus in

Section 3.1. The number of collections of coalitions to be checked for balancedness is at most

(n− 1) (instead of exponentially large as in the original Kohlberg criterion).

• We derive a new lexicographical descent algorithm for finding the nucleolus in Section 4. The new

algorithm is distinguished from existing methods in that we directly solve the lexicographical min-

imization problem by iteratively finding improving directions through the balancedness checking

procedure within the improved Kohlberg criterion.

• We demonstrate the performance of the proposed methods through numerical tests on various

types of games in Section 5.

• We develop the first open-source code for computing the nucleolus of moderately large sizes in

[21]. For completeness it also includes the implementation of algorithms from [17], [18] and [19].

In addition, we provide further contributions such as:

• The balancedness condition is essentially equivalent to solving a linear program with strict inequal-

ities —a somewhat undesirable situation in mathematical programming. We provide an efficient

tool for checking the balancedness condition in Section 3.3, requiring solving less number of LPs.

• While checking the Kohlberg criterion, we might end up having to store collections of exponentially

large number of coalitions. We provide a method for reducing the storage size of these collections

to at most (n− 1) coalitions in Section 3.2.

2 Notations and Preliminaries

2.1 Notations

Let n be the number of players and N = {1, 2, . . . , n} be the set of all the players. A coalition S is

a subset of players; i. e. S ⊆ N . The characteristic function v : 2N 7→ R maps each coalition to a

real number v(S) (such that v(∅) = 0). An outcome in a game is a payoff vector (payoffs, for short)

x = (x1, x2, . . . , xn) of real numbers, with xi (i ∈ N ) being the share of player i. We focus on profit

games and assume that it is more desirable to have higher shares. All our results can be extended to

cost games through transforming the characteristic function to the corresponding profit game.

Let us denote x(S) =
∑

i∈S xi. Given the total payoff v(N ), efficient outcomes x, also called

preimputations, satisfy
∑

i∈N xi = v(N ). Let us denote by PI the set of these: PI = {x ∈ Rn :
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x(N ) = v(N )}. The set of imputations, denoted by I, contain efficient outcomes that satisfy individual

rationality ; that is, xi ≥ v({i}),∀i ∈ N . The core of the game is the set of all efficient payoffs x such

that no coalition has an incentive to break away, i.e. x(S) ≥ v(S) for all S ( N .

For each outcome x, the excess value of a coalition S is defined as d(S,x) := v(S)−x(S), which can

be regarded as the level of dissatisfaction the players in coalition S have with respect to the proposed

payoff vector x. Then the least core is defined as follows: the set of preimputations {x ∈ PI : d(x,S) ≤

ε∗ ∀S ( N ,S 6= ∅} form the least core, where ε∗ is the smallest value such that the set is nonempty.

For any imputation x, let Θ(x) = (Θ1(x),Θ2(x), . . . ,Θ2n(x)) be the vector of all the 2n excess

values at x sorted in a non-increasing order; i.e., Θi(x) ≥ Θi+1(x) for all 1 ≤ i < 2n. Let us denote

Θ(x) <L Θ(y) if there exists r ≤ 2n such that Θi(x) = Θi(y), ∀1 ≤ i < r and Θr(x) < Θr(y). Then

ν(N , v) ∈ I is the nucleolus (ν for short) if Θ(ν) <L Θ(x), ∀x ∈ I, x 6= ν.

If we only require x and ν to be preimputations, we arrive at the definition of the prenucleolus, which

can be seen as the most stable efficient outcome. In this paper every result is focusing on the nucleolus,

hence throughout the paper we consider only games with non-empty imputation set. However, the aim

is to develop algorithms applicable to a general class of games, thus we make no further assumptions

on the characteristic function. Moreover, with suitable modifications, every result can be applied to the

prenucleolus, making them applicable to every cooperative game (with transferable utilities).

For each collection Q ⊆ 2N , let us denote the size of Q by |Q|. We associate each collection Q

with a weight vector in R|Q| with each element denoting the weight of the corresponding coalition in

Q. Throughout this paper, we use bold font for vectors and italic font for scalars. Whenever it is clear

from context, we are going to omit the argument x from maximal dissatisfaction levels εk, tight sets T0

and Tk, collection of tight sets Hk, and so on (the latter notions introduced in Section 2.2).

For S ⊆ N , let us denote by e(S) the characteristic vector of S in {0, 1}n whose ith element is

equal to one if and only if player i is in coalition S. With this, for all x ∈ Rn, we have x(S) =∑
i∈S xi = xTe(S). Furthermore we can consider (linear) spans and the rank of collections: coalition

S is in the linear span of collection Q if its characteristic vector e(S) is in span({e(T ) : T ∈ Q}) and

rank(Q) := rank({e(T ) : T ∈ Q}). Next, we formally define the concept of balancedness.

Definition 1. A collection of coalitions Q ⊆ 2N is balanced if there exists a weight vector ω ∈ R|Q|>0

such that e(N ) =
∑
S∈Q ωSe(S). Given a collection T0 ⊆ 2N , a collection Q ⊆ 2N is called T0-balanced

if there exist weight vectors γ ∈ R|T0|≥0 and ω ∈ R|Q|>0 such that e(N ) =
∑
S∈T0 γSe(S) +

∑
S∈Q ωSe(S).

Remark 1. We make the following observations about balancedness:
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a) Balancedness implies T0-balancedness for any T0, while for T0 = ∅ the two concepts are equivalent.

b) All results in this paper are concerned with the nucleolus. These results and the corresponding

algorithms to be described can be adapted for the prenucleolus by setting T0 = ∅.

2.2 Algorithmic view of the Kohlberg criterion

We first formalize the concept of balancedness and summarize the main results of Kohlberg [9] from

an algorithmic viewpoint. For any efficient payoff distribution x ∈ PI, Kohlberg [9] first defines the

following sets of coalitions: T0(x) = {{i}, i = 1, . . . , n : xi = v({i})}, H0(x) = {N} and Hk(x) =

Hk−1(x) ∪ Tk(x), k = 1, 2, . . . , where for each k ≥ 1,

Tk(x) = argmax
S6∈Hk−1(x)

{v(S)− x(S)} , εk(x) = max
S6∈Hk−1(x)

{v(S)− x(S)} .

Here, Tk(x) includes all coalitions that have the same excess value εk(x) and ε1(x) > ε2(x) > . . .,

while T0(x) contains the players for which x is on the boundary of violating individual rationality. We

call Tk(x) the set of ‘tight’ coalitions in the sense that coalition S belongs to Tk(x) if and only if the

constraint v(S) − x(S) = εk(x) is active/tight. In the followings, the terms ‘collection of coalitions’

(collection for short) and ‘subset of the power set 2N ’ are equivalent and are used interchangeably.

For any collection of coalitions Q, let us define

Y (Q) = {y ∈ Rn : y(S) ≥ 0 ∀S ∈ Q, y(N ) = 0} .

We have Y (Q) 6= ∅ since 0 ∈ Y (Q). The first key result in Kohlberg [9] that will be exploited in this

work is the following lemma:

Lemma 1 (Kohlberg [9]). Given a collection T0 ⊆ 2N , a collection T ⊆ 2N is T0-balanced if and only

if y ∈ Y (T0 ∪ T ) implies y(S) = 0, ∀S ∈ T .

This result allows the author to define two sets of equivalent properties regarding a sequence of

collections (Q0, Q1, . . .):

Definition 2. (Q0, Q1, . . .) has Property I if for all k ≥ 1, the following claim holds: y ∈ Y (∪kj=0Qj)

implies y(S) = 0, ∀S ∈ ∪kj=1Qj.

Definition 3. (Q0, Q1, . . .) has Property II if for all k ≥ 1, ∪kj=1Qj is Q0-balanced.

The main result of [9] can be summarized in the following theorem:
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Theorem 1 (Kohlberg [9]). For games with a non-empty imputation set, the followings are equivalent:

(a) x is the nucleolus; (b) (T0(x), T1(x), . . .) has Property I; (c) (T0(x), T1(x), . . .) has Property II.

For the sake of completeness, in Appendix A of the e-companion [22] we provide a proof of Theorem 1

slightly different than the one in [9]. To appreciate the practicality of the Kohlberg criterion and for

convenient development later, we present the algorithmic view of the criterion in Algorithm 1.

Algorithm 1: (Original) Kohlberg algorithm for verifying if a payoff vector is the nucleolus

of a cooperative game.

Input: Game (N , v), imputation x ∈ I;

Output: Conclude if x is the nucleolus or not;

1. Initialization: Set H0 = {N}, T0 = {{i} : xi = v({i}), i = 1, . . . , n} and k = 1;

while Hk−1 6= 2N \ {∅} do

2. Set Tk = argmax
S6∈Hk−1

{v(S)− x(S)};

if (∪kj=1Tj) is T0-balanced then

3. Set Hk = Hk−1 ∪ Tk, k = k + 1 and continue

else

4. Stop the algorithm and conclude that x is not the nucleolus

end

end

5. Conclude that x is the nucleolus.

In this algorithm, we iteratively form the tight sets Tj (j = 0, 1, . . .) until either all the coalitions

are included, and we conclude that the input payoff vector is the nucleolus (i.e. stopping at Step 5), or

stop at a point where the union of the tight coalitions is not T0-balanced (in Step 4), in which case we

conclude that the payoff vector is not the nucleolus.

3 An improved Kohlberg criterion

The Kohlberg criterion, as described in Section 2.2, offers a powerful tool to assess whether a given

payoff distribution is the nucleolus by providing necessary and sufficient conditions. These conditions

can be used in relatively small or well-structured games, where a potential candidate for the nucleolus

can be easily identified and where checking the balancedness of the corresponding tight sets can be done

easily (possibly analytically). For larger games, it is inconvenient to apply the Kohlberg criterion as it
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could involve forming and checking the balancedness of exponentially large number of subsets of tight

coalitions (this is the case when the while loop in Algorithm 1 takes an exponentially large number of

steps), each of which could be of exponentially large size. This section aims to resolve these issues.

3.1 Bounding the number of iterations to (n− 1)

The key idea to check the Kohlberg criterion in a more efficient way is to note that, once we have

obtained and verified the T0-balancedness of ∪kj=1Tj , we do not have to be concerned about those

coalitions that belong to span(∪kj=1Tj). In brief, this is because once a collection is T0-balanced, its

span is also T0-balanced as formalized in the following lemma:

Lemma 2. For any collection T0 ⊆ 2N , the following results hold:

(a) If a collection T is T0-balanced, then span(T ) is also T0-balanced2.

(b) If collections U, V are T0-balanced then U ∪ V and span(U) ∪ span(V ) are also T0-balanced.

(c) If U is T0-balanced and U ⊆ V , then span(U) ∩ V is also T0-balanced.

We provide a proof of Lemma 2 in Appendix E of [22]. With these results, we can provide an

improved Kohlberg algorithm as shown in Algorithm 2.

The differences between Algorithm 2 and Algorithm 1 are: (a) the stopping condition of the while

loop has been changed from Hk−1 6= 2N \{∅} to rank(Hk−1) < n, and (b) the search space at Step 2 has

been changed from S 6∈ Hk−1 to S 6∈ span(Hk−1). As a result, we have the following desirable property:

Theorem 2. The while-loop in Algorithm 2 terminates after at most (n− 1) iterations and it correctly

decides whether a given imputation is the nucleolus.

Proof. First, by the construction in Step 2 of the algorithm, Tk ∩ span(Hk−1) = ∅ and hence, by Step

3, we have that rank(Hk) = rank(Hk−1 ∪ Tk) keeps increasing. Therefore,

n ≥ rank(Hk) = rank(Hk−1 ∪ Tk) ≥ rank(Hk−1) + 1 ≥ rank(H0) + k = k + 1,

and hence the algorithm (i.e. the while loop) terminates in at most (n − 1) iterations. Here, we also

note that the algorithm terminates at either Step 4 or Step 5 with complementary conclusions.

2Lemma 2.4 from [23].
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Algorithm 2: Improved Kohlberg Algorithm for verifying if a payoff vector is the nucleolus.

Input: Game (N , v), imputation x ∈ I;

Output: Conclude if x is the nucleolus or not;

1. Initialization: Set H0 = {N}, T0 = {{i} : xi = v({i}), i = 1, . . . , n} and k = 1;

while rank(Hk−1) < n do

2. Find Tk = argmax
S6∈span(Hk−1)

{v(S)− x(S)};

if (∪kj=1Tj) is T0-balanced then

3. Set Hk = Hk−1 ∪ Tk, k = k + 1 and continue;

else

4. Stop the algorithm and conclude that x is not the nucleolus.

end

end

5. Conclude that x is the nucleolus.

Proving that the algorithm correctly decides whether an impuation is the nucleolus is equivalent to

showing that (a) if x is the nucleolus then the algorithm correctly terminates at Step 5, and (b) if the

algorithm terminates at Step 5, then the input payoff vector must be the nucleolus.

Part (a): We first note that, although the sequences of Tk and Hk generated from Algorithm 2

are generally different from those in Algorithm 1, these are the same in the initialization and the first

iteration; that is, T0, T1, H0, H1 are the same in both algorithms. Therefore, if x is the nucleolus, then

T1 must be T0-balanced as a direct result from the Kohlberg criterion described in Theorem 1. Thus,

the algorithm goes through to Step 3 at k = 1. Suppose, for the purpose of deriving a contradiction,

that the algorithm goes through to Step 4 instead of Step 5, for some index k > 1; that is (∪kj=1Tj) is

not T0-balanced. By Lemma 1, there exists y ∈ Rn such that

y(S) ≥ 0,∀S ∈ ∪kj=0Tj ; y(N ) = 0; y(S ′) > 0, for some S ′ ∈ ∪kj=1Tj . (1)

Notice, however, that ∪k−1j=1Tj is T0-balanced by the construction in Step 3 of the previous iteration.

Therefore, S ′ 6∈ Hk−1 since otherwise Lemma 1 is violated. Thus, S ′ ∈ Tk and hence (1) leads to

(x + y)(S) ≥ x(S),∀S ∈ Tk; (x + y)(S ′) > x(S ′), for some S ′ ∈ Tk.

As a result

d(S,x + y) ≤ d(S,x),∀S ∈ Tk; d(S ′,x + y) < d(S ′,x), for some S ′ ∈ Tk;
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that is, for all coalitions in Tk, the corresponding excess values for (x + y) are not greater than that of

x with at least one strict inequality for some coalition S ′. Thus,

ΦTk(x + y) <L ΦTk(x), (2)

where, for each collection of coalitions Q, ΦQ is the non-increasingly ordered excess values with respect

to only those coalitions in Q. Since Hk−1 is T0-balanced by the construction in Step 3 of the previous

iteration, span(Hk−1) is also T0-balanced by Lemma 2. Thus, y(S) = 0, ∀S ∈ span(Hk−1) and

Φspan(Hk−1)(x + y) =L Φspan(Hk−1)(x). (3)

From (2) and (3) we have

Φspan(Hk−1)∪Tk(x + y) <L Φspan(Hk−1)∪Tk(x). (4)

Note that (4) also holds if we scale y by any positive factor δ, i. e.

Φspan(Hk−1)∪Tk(x + δy) <L Φspan(Hk−1)∪Tk(x). (5)

For all S 6∈ (span(Hk−1) ∪ Tk) we have v(S) − x(S) < εk. Thus, there exists δ > 0 small enough

such that x + δy is an imputation and that

v(S)− (x + δy)(S) < εk, ∀S 6∈ (span(Hk−1) ∪ Tk). (6)

Results (5) and (6) imply that the | span(Hk−1)∪Tk| largest excess values at x are lexicographically

larger than those at (x + δy). As a result, Φ(x) is lexicographically larger than Φ(x + δy) considering

all coalitions, which means x is not the nucleolus, i. e. we have arrived at a contradiction.

Part (b): If the algorithm bypassed Step 4 and went to Step 5, then (∪kj=1Tj) is T0-balanced for all

k until rank(Hk−1) = n. Let z be the nucleolus; then by its definition, its worst excess value should be

no larger than the worst excess value of x, which is equal to ε1. Thus, the excess value of z over any

coalition, including those in T1, must be at most ε1; i. e.

(z− x)(S) ≥ 0, ∀S ∈ T1.

Notice that (z − x)(N ) = 0 and (z − x)(S) ≥ 0, ∀S ∈ T0 by the construction of T0 and because z ∈ I.

Then since T1 is T0-balanced, we have by Lemma 1 that (z− x)(S) = 0 for all S ∈ T1. Using a similar

argument, given that x and z are lexicographically equivalent on span(T1) and since z is the nucleolus,

we also have (z− x)(S) ≥ 0,∀S ∈ T2. Thus,

(z− x)(S) ≥ 0,∀S ∈ T1 ∪ T2.
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Again, given that (T1 ∪T2) is T0-balanced, we have by Lemma 1 that (z−x)(S) = 0 for all S ∈ T1 ∪T2.

We can continue and use an induction argument to show that (z − x)(S) = 0 for all S ∈ Hk−1, k ≥ 1.

Given that rank(Hk−1) = n, we have x = z, i.e. x is the nucleolus.

Remark 2. Step 2 in both Algorithms 1 and 2 still involves comparing vectors of exponential lengths.

The key finding in Theorem 2, however, is to show that Step 2 of Algorithm 2 is not repeated more than

(n− 1) times (instead of possibly exponential in the original Kohlberg criterion described in Algorithm

1). There are structured games such as weighted voting games, network flow games and coalitional skill

games in which Step 2 can be executed efficiently. We refer the readers to [20] for details.

We demonstrate the effectiveness of Algorithm 2 in Section 5. Before that, let us discuss how to

resolve some other computationally demanding tasks of our algorithm.

3.2 Reducing the sizes of the tight sets

When checking the Kohlberg criterion we might end up having to store an exponentially large number

of coalitions. The computational requirements of checking T0-balancedness depend entirely on the size

of the tight sets we encounter. Therefore, it is of particular interest to find compact representations of

large tight sets. We provide a method for reducing the size of Hk to at most (n− 1). This is achieved

by replacing tight sets with their compact representations.

Lemma 3. The following statements hold:

(a) The collection T is T0-balanced if and only if there exists γ ∈ R|T0|≥0 , ω ∈ R|T |>0, µ ∈ R such that

∑
S∈T0

γSe(S) +
∑
S∈T

ωSe(S) + µe(N ) = e(N ). (7)

(b) Suppose T contains a T0-balanced subcollection Q. Then T is T0-balanced if and only if there exists

γ ∈ R|T0|≥0 , ω ∈ R|T\Q|>0 , µ ∈ R|Q| such that

∑
S∈T0

γSe(S) +
∑
S∈T\Q

ωSe(S) +
∑
S∈Q

µSe(S) = e(N ). (8)

The proof of Lemma 3 is provided in Appendix G of [22].

Lemma 3b allows us to represent each Hk by a collection Rk of size rank(Hk) ≤ n with the following

updating procedure. We need to have span(Rk) = span(Hk−1∪Tk) in order to guarantee at most (n−1)

iterations. Therefore starting from R0 = H0, we get Rk by expanding Rk−1 from a T0-balanced Tk only
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with coalitions that increase its rank. As a result, span(Rk) = span(Hk), while rank(Rk) = |Rk|. We

denote such a subset Rk = rep(Tk;Rk−1) and call Rk the representative of Hk.

As a result we can modify Algorithm 2 to be an Improved Kohlberg Algorithm with compact represen-

tation (denoted by IKAcr in the numerical results of Section 5). In Step 3 we can set Rk = rep(Tk;Rk−1)

instead of Hk = Hk−1 ∪ Tk without changing balancedness whatsoever. This means we replace all tight

sets Tk and store only a representative Rk of their union for the subsequent steps. Accordingly, as

Rk−1 is a collection of coalitions with full rank, the stopping criterion can be simplified to checking the

cardinality of the representative set Rk−1. The correctness of the algorithm can be proven very similarly

to Theorem 2 using Lemma 3b.

3.3 A fast algorithm for checking balancedness

According to the Kohlberg criterion, to check T0-balancedness of T we need to check for the existence

of γ ∈ R|T0|≥0 and ω ∈ R|T |>0 such that

e(N ) =
∑
S∈T0

γSe(S) +
∑
S∈T

ωSe(S).

Solymosi and Sziklai [24] [Lemma 3] provide an approach by solving |T | linear programs as follows. For

each C ∈ T , let

q∗C =

maxωC :
∑
S∈T0

γSe(S) +
∑
S∈T

ωSe(S) = e(N ), (γ, ω) ∈ R|T0|+|T |≥0

 .

Then T is T0-balanced if and only if q∗C > 0,∀C ∈ T . Notice, however, that the collection T appearing

in the Kohlberg criterion could be exponentially large, and hence solving all the |T | linear programs is

not practical for larger games. Solymosi [17] (see Routine 3.2) presents a faster approach that involves

at most rank(T ) linear programs. We improve upon these results by exploiting the knowledge of a

T0-balanced subcollection in T to reduce the upper bound of rank(T ) in [17].

Exploiting Lemma 3, we can formulate an efficient algorithm that checks T0-balancedness of a

collection T ⊆ 2N with a known T0-balanced subcollection Q ( T (possibly Q = ∅) by finding the

largest balanced subcollection within T , as described in Algorithm 3 below.

When we check the T0-balancedness of (∪kj=1Tj), through (Rk−1∪Tk) exploiting Lemma 3 and using

Algorithm 3, (Rk−1∪Tk) and Rk−1 play the role of T and Q respectively. In this case, when we initialize

U as span(Q)∩ T , the set U essentially equals its representative set. However, this is not necessary the

case any more when we perform the update in Step 4 of Algorithm 3. Moreover, Algorithm 3 can be
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Algorithm 3: Algorithm finding largest T0-balanced subcollection

Input: Collection T with T0-balanced subcollection Q ( T ;

Output: U ⊆ T largest T0-balanced subcollection;

1. Initialization: Set U = span(Q) ∩ T ;

while rank(U) < rank(T ) do

2. Find γ∗ ∈ R|T0|≥0 , ω∗ ∈ R|T\U |≥0 , µ∗ ∈ R|U | that solve

argmax
γ,ω,µ

 ∑
S∈T\U

ωS :
∑
S∈T0

γSe(S) +
∑
S∈T\U

ωSe(S) +
∑
S∈U

µSe(S) = e(N )

 (9)

if ω∗ = 0 or (9) is infeasible then

3. Stop the algorithm and output U ( T .;

else

4. Set U = span(U ∪ {S : ω∗S > 0}) ∩ T ;

end

end

5. Output U = T .

used for general Q, not necessarily only those that are equal to their own representative set. Both cases

can be easily treated by replacing U with its representative set in the corresponding occurrences (Steps

1 and/or 4 of Algorithm 3), not effecting balancedness and hence the outcome of the algorithm. In

the following, we establish the improvement in the number of iterations required by our balancedness-

checking subroutine, Algorithm 3.

Theorem 3. Collection T is T0-balanced if and only if Algorithm 3 terminates at Step 5 with U = T ,

and the algorithm terminates after at most (rank(T )− rank(Q)) iterations.

Proof. The while loop terminates as rank(U) keeps increasing via the construction of U in Steps 1

and 4; that is, the set U is enlarged by adding coalitions outside its span, starting from rank(Q).

Thus, the algorithm terminates at either Step 3 or 5 and we need to prove that the corresponding

conclusions from the output U are correct. Also, notice that since span(U) ∩ T = U , we have U ( T if

rank(U) < rank(T )3.

If the algorithm terminates at Step 3, then ω∗ = 0 or (9) is infeasible and hence T is not T0-balanced,

3Therefore we could replace the stopping condition rank(U) = rank(T ) with U = T or |U | = |T | as well.
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as otherwise we should have found a feasible ω∗ 6= 0. If the algorithm terminates at Step 5 then, prior

to that, we have rank(U) = rank(T ) in order for the while loop to terminate. The construction of U in

Step 4 ensures that U is a T0-balanced set by Lemmas 2b, 2c and 3b. Thus, T = span(U) ∩ T is also

T0-balanced by Lemma 2c.

3.4 Nucleolus-defining coalitions and characterization sets

We conclude the first part of this article on the improved Kohlberg criterion by linking it with an

important development in the nucleolus literature on the characterization set introduced by Granot

et al. [23] and the B-nucleolus by Reijnierse and Potters [25].

A cooperative game G(N , v) is represented by (2n−1) coalitional values and although the nucleolus

is defined as a function of all these values, i.e. lexicographical minimization of all the (2n − 2) excess

values, Granot et al. [23] and Reijnierse and Potters [25] show that the nucleolus can be determined by

a subset of coalitions in the sense that lexicographical minimization with those coalitions as admissible

ones will determine the nucleolus. Reijnierse and Potters [25] show that there exists a characterization

set in every game with a size of at most 2(n − 1) coalitions. Although the authors emphasize that

identifying this characterization set (or the B−set) would be as hard as finding the nucleolus itself,

the result is still quite striking since this essentially means that we can ignore (2n − 2(n − 1)) other

coalitional values in calculating the nucleolus. The authors also show that the characterization set or

the B-nucleolus can be identified efficiently in a number of games, including the assignment games, the

balanced matching games, standard tree games, etc. We first define the characterization set.

Definition 4. For a collection of coalitions F ∈ 2N , the F-nucleolus of the game G(N , v), denoted as

ν(N ,F , v), consists of imputations that lexicographically minimizes the excess values of coalitions in F .

A set F is called a characterization set (or a B-set) if ν(N ,F , v) = ν(N , 2N , v) = ν(N , v).

We now investigate how the improved Kohlberg criterion is linked to the concepts in [23, 25].

We prove that the set of coalitions generated from the improved Kohlberg criterion form ‘special’

characterization sets. We first identify the set of coalitions which are critical in defining the nucleolus.

Definition 5. A coalition S is nucleolus-defining in game G(N , v) if a small perturbation on its coali-

tional value can lead to a change in the nucleolus. Formally, for all δ > 0, there exists |ε| < δ such

that ν(N , ṽ) 6= ν(N , v), where ṽ(S) = v(S) + ε and ṽ(S ′) = v(S ′) for all N ⊃ S ′ 6= S. All remaining

coalitions are called non-nucleolus-defining.
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Theorem 4. The set of all nucleolus-defining coalitions is precisely ∪kr=1Tr, where Tr, r = 1, . . . , k are

the collections of coalitions generated by the improved Kohlberg Algorithm 2 on the nucleolus x.

Proof. We prove two parts: (a) for all j ≤ k, each S ∈ Tj is a nucleolus-defining coalition and (b) all

the remaining ones are non-nucleolus-defining.

Let S0 ∈ Tj for some 1 ≤ j ≤ k. Suppose on contradiction that S0 is non-nucleolus-defining, i.e.,

there exists ε > 0 and small enough such that if we change v(S0) to v(S0) + ε the nucleolus of the new

game is still x. By setting 0 < ε < εj−1 − εj4 we have εj < v(S0) − x(S0) < εj−1. Therefore the tight

sets for x are T1, . . . , Tj−1, {S0}, Tj\S0, Tj+1, . . . , Tk. Here, note that both ∪j−1i=1Ti and ∪j−1i=1Ti ∪ S0 are

balanced due to x being the nucleolus (according to the Kohlberg criterion). By Lemma 1, there exists

α > 0 and β > 0 such that e(N ) =
∑
S∈∪j−1

i=1Ti
αSe(S) = βS0e(S0) +

∑
S∈∪j−1

i=1Ti
βSe(S). Thus,

βS0v(S0) =
∑

S∈∪j−1
i=1Ti

(αS − βS)e(S),

that is S0 ∈ span(∪j−1r=1Tr), contradicting the construction Tj ∩ span(∪j−1r=1Tr) = ∅ in Algorithm 2. Part

(a) of the theorem is proven.

Now let S0 6∈ ∪kj=1Tj . We note, however, that S0 ∈ span(∪kj=1Tj) since span(∪kj=1Tj) has full rank.

This means there exists a smallest index r ∈ {1, . . . , k} such that S0 6∈ ∪rj=1Tj while S0 ∈ span(∪rj=1Tj).

This construction leads to v(S0)− x(S0) > εr > εj , ∀j < r. Let us set δ = v(S0)− x(S0)− εr. Then for

any |ε| < δ, if we change v(S0) to v(S0) + ε the nucleolus of the new game is still x because according

to Algorithm 2, all the steps still lead to the same collection of coalitions ∪kj=1Tj .

While all characterization sets lead to the same unique nucleolus, it can be more desirable if the

subset of excess values generated from the restricted game can carry more information about the worst

excess values in the original game. For example, consider a game with three players where v({1, 2, 3} =

9, v({1}) = v({2}) = v({3}) = 0 and v({1, 2}) = v({2, 3}) = v({3, 1}) = 5. It can be verified

that both {{1}, {2}, {3}} and {{1, 2}, {2, 3}, {3, 1}} form characterization sets. However, the former

characterization set contains all non-nucleolus-defining coalitions while the latter contains all nucleolus-

defining ones. It can be seen that the excess values generated from the latter provide more information

on the most unhappy coalitions.

We define a meaningful characterization set as one that contains nucleolus-defining coalitions only.

Following the result from Theorem 4, the next corollary provides us a method to construct these

characterization sets.
4We require the second inequality only for j > 1.
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Corollary 1. A meaningful characterization set can be constructed as ∪ki=1Fi, where for each i =

1, . . . , k, Fi is a ‘representation’ of Ti; that is, Fi ⊂ Ti and rank(Fi) = rank(Ti). The smallest size of

meaningful characterization set is n + k − 1 which is constructed from minimals Fi, i = 1, . . . , k, i.e.,

when rank(Fi) = |Fi| = rank(Ti).

Theorem 4 and Corollary 1 are related to the results in Granot et al. [23] and Reijnierse and Potters

[25], however, we show exactly how some characterization sets are constructed. We skip the proof of

Corollary 1 for brevity as it is quite straightforward based on the result of Theorem 4 and it shares

analogies with the proof on the size of characterization sets in Reijnierse and Potters [25], which makes

use of the nested LP sequence.

4 Lexicographical descent algorithm for finding the nucleolus

Our improved Kohlberg criterion allows us to formulate a constructive algorithm that not only verifies

whether a given imputation is the nucleolus, but also gives means to find it, in case the given candidate

is not the desired payoff. This new algorithm fits into a general iterative descent framework as follows:

• Starting from any imputation x ∈ I we perform a (local) optimality test.

• If x fails the test, we generate an improving direction y and step size α (here, ‘improving’ is w.r.t.

the lexicographical ordering of the corresponding dissatisfactions).

• We update x = x + αy and repeat the procedure until no further improving direction is found.

In this scheme, the optimality test is derived from the new Kohlberg criterion developed in Section

3, improving directions are generated using duality, while step sizes are found exactly to guarantee

necessary and sufficient change in the imputation and its tight collection of coalitions.

Our new algorithm also fits somewhat into the simplex framework for linear programming: improving

directions are chosen using considerations similar to reduced costs, and the step size provides the pivoting

rule through a sort of minimal ratio test. Indeed, we are moving on the facets of polytopes in Maschlers

scheme, but not necessarily from vertex to vertex, like most traditional simplex implementations do.

4.1 Finding improving directions

Algorithm 3 not only handles the tedious strict positivity constraints related to balancedness, it essen-

tially finds the largest T0-balanced subcollection in T , starting from a previously identified (possibly
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empty) balanced subcollection Q. Suppose that Algorithm 2 with compact representation (Algorithm

1 of [22]) terminates in Step 4, which happens precisely when Algorithm 3 exits with ω∗ = 0 or (9) is

infeasible, while rank(U) < rank(T ). In the former case, we found the largest T0-balanced subcollection

U in T , but since T \U 6= ∅, T is not T0-balanced. In the latter case, there is no T0-balanced subcollec-

tion in T (more precisely, the largest one is the empty set). In both cases we know that precisely the

collection T \ U 6= ∅ is responsible for the lack of T0-balancedness.

Recall that in iteration k of Algorithm 2 (with compact representation), when we check T0-balancedness

with Algorithm 3, input T is (Rk−1 ∪ Tk) while the T0-balanced subcollection Q is Rk−1, and we get

the output U . For sake of simplicity we use T as (Rk−1 ∪ Tk) and U as the corresponding output from

Algorithm 3.

If T is not T0-balanced, it is possible to generate an improving direction y, such that moving from

x to (x + αy) will fulfill all of the following three objectives:

(a) not changing the excess of coalitions in span(Rk−1),

(b) remaining in the set of imputations and not increasing the excess of coalitions in U ,

(c) decreasing the excess of coalitions in T \ U .

In other words, the change from x to (x + αy) will increase the satisfaction of the most dissatisfied

unbalanced coalitions, while maintaining the excess of the already settled balanced coalitions. In this

subsection we focus on how to generate an improving direction while Subsection 4.2 is devoted to the

calculation of the optimal step size.

When Algorithm 3 terminates with rank(U) < rank(T ) the system∑
S∈T0

γSe(S) +
∑
S∈T\U

ωSe(S) +
∑
S∈U

µSe(S) = e(N )

ωQ > 0

γS , ωP ≥ 0 ∀S ∈ T0,P ∈ T \ U

µS ∈ R ∀S ∈ U

(10)

is infeasible for all Q ∈ T \ U .Therefore, using Farkas’ lemma we get

{y ∈ Rn : y(Q) > 0,y(P) ≥ 0, ∀P ∈ T0 ∪ (T \ U),y(S) = 0, ∀S ∈ U ∪ {N}} 6= ∅.

Note that the preceding result holds for any Q ∈ T \ U . While the corresponding y might differ for

different Q, we can take the average (or sum) of all these to arrive at a common, normalized y in

{y ∈ Rn : y(Q) ≥ 1,∀Q ∈ T \ U,y(P) ≥ 0,∀P ∈ T0,y(S) = 0, ∀S ∈ U ∪ {N}} (11)
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Furthermore, Lemma 3b shows that whenever we iteratively check whether a collection of coalitions

∪kj=1Tj satisfies T0-balancedness for all k or not, it is sufficient to require strict positivity from the weights

of the current new set of coalitions Tk, if we already found that the collection is T0-balanced up to level

(k− 1). The lemma is not only useful to make checking of balancedness easier, as shown in Section 3.3,

it also yields an improved system via (11). In iteration k, if T is not T0-balanced, then in (11) we can

require y(Q) = 0 from all coalitions Q ∈ ∪k−1j=1Tj ∪ {N} and still get a feasible system. Additionally,

because for all S ∈ ∪k−1j=1Tj ∪ {N} there exists λ ∈ R|Rk−1| such that y(S) =
∑
Q∈Rk−1

λQy(Q), the set

{y ∈ Rn : y(Q) ≥ 1, ∀Q ∈ Tk \ U,y(P) ≥ 0,∀P ∈ T0,y(S) = 0, ∀S ∈ Rk−1 ∪ (U ∩ Tk)} (12)

is non-empty as well. We call vectors y in (12) improving directions. Since improving directions are

defined through a feasible set of constraints, there could be many different improving directions, and

we have the freedom to choose an objective function to optimize over that set. The following section

determines the optimal step size, also shedding light on the most suitable objective function to choose.

4.2 Step size

A feasible point y in (12) is an improving direction in the sense that moving along y from our current

point (which is not the nucleolus) improves the satisfaction of the coalitions that are currently worst

off and causing the lack of balancedness, while still maintaining the satisfaction of previously checked

balanced subcollections and ensuring that we stay in the imputation set for small enough step size.

When determining a suitable step size α > 0 for a given improving direction y, we naturally want to

choose α large enough in order to avoid small steps that do not result in changes in T , since T is not

T0-balanced. Also, we want to increase α only until we experience a change in T (or in T0) in the hope

that the new collection is T0-balanced.

Suppose that, at iteration k, we are currently at imputation x. For all coalitions S, the change of

excess as we move in direction y with step size α is

d(S,x + αy)− d(S,x) = v(S)− (x(S) + αy(S))− (v(S)− x(S)) = −αy(S).

Currently the largest dissatisfaction among coalitions not in span(Rk−1) is εk(x) = d(S,x) for any

S ∈ Tk(x). Thus, for sufficiently small α > 0 the new maximal dissatisfaction is εk(x+αy) = d(S,x+αy)

for some (possibly more than one) S ∈ Tk(x). Fix one such coalition as S̃, then the change in the

maximal dissatisfaction is εk(x + αy)− εk(x) = −αy(S̃).
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We are essentially interested in the tightness of coalitions measured as the difference of their excess

from the maximal dissatisfaction, that is how far they are from being tight. Specifically, we are interested

in the change of their tightness

(d(S,x + αy)− εk(x + αy))− (d(S,x)− εk(x)) = α(y(S̃)− y(S)) ≥ α(1− y(S)), (13)

with the last inequality due to y(S̃) ≥ 1.

This brings us back to the practical question of how to choose improving directions from the cone

determined by (12). Since every feasible point of that set is an improving direction we can use, we have

the freedom to choose an objective function to optimize over this set. In order to control minS∈Tk\U y(S)

as well as to make the bound we used in (13) sharp, we choose to minimize
∑
S∈Tk\U y(S).

Recall that when we check the T0-balancedness of ∪kj=1Tj in iteration k, we choose y solving

min
y

∑
Q∈Tk\U

y(Q)

s.t. y(Q) ≥ 1 ∀Q ∈ Tk \ U

y(P) ≥ 0 ∀P ∈ T0

y(S) = 0 ∀S ∈ U \ Tk

(ID(T0;Tk;U))

Thus, for every optimal solution y of ID(T0;Tk;U), we have y(S̃) = 1. As we increase α from 0, we

see that the tightness of coalition S decreases if y(S) > 1, the tightness does not change if y(S) = 1, and

it increases if y(S) < 1. By increasing tightness we mean that the difference εk(x + αy)− d(S,x + αy)

decreases. Let us denote the collection of coalitions with increasing tightness as J = {S /∈ span(Rk−1)∪

Tk : y(S) < 1}, the coalitions that are candidates to enter the tight set as we make a step.

We know that d(S, x) < εk(x) for all coalitions S /∈ span(Rk−1) ∪ Tk. Hence, there exists α > 0

sufficiently small such that

d(S,x)− αy(S) = d(S,x + αy) ≤ εk(x + αy) = εk(x)− αy(S̃) ≤ εk(x)− α.

Rearranging these terms, we get d(S,x) + α(1− y(S)) ≤ εk(x). Candidates of coalitions satisfying the

latter relation with equality for large enough α are in collection J , thus we increase α until we reach

equality for some coalition in J . However, we also need to bound α such that we stay in the imputation

set. Taking both constraints into account, and introducing N0 = {j ∈ N \ T0 : yj < 0}, the optimal

step size is

α = min

({
εk(x)− d(S,x)

1− y(S)
: S ∈ J

}
∪
{
xj − v({j})
−yj

: j ∈ N0

})
, (14)
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Figure 1: Optimal step size

the smallest step size for which we experience either Tk(x) 6= argmax
S6∈span(Rk−1)

{v(S)− (x + αy)(S)} or

T0 6= {{i} : xi + αyi = v({i}), i ∈ N}.

Figure 1 captures how the tight set changes as we move from x to (x + αy). At x, the largest dis-

satisfaction outside of the already settled span(Rk−1) belongs to coalitions in Tk. Their dissatisfactions

decrease with varying rates, depending on y, but with no smaller than 1. The new largest dissatisfaction

εk(x + αy) is determined by coalitions in argminS∈Tk\U {y(S)}.

In Figure 1, the dissatisfaction of coalitions in J increases (relative to the moving target of εk(x +

αy)), again with varying speed depending on y. The coalition first meeting argminS∈Tk\U {y(S)} enters

the tight set5.

4.3 Lexicographical descent algorithm

Now that we have all necessary elements at our disposal, we formulate the new algorithm for calculating

the nucleolus of a cooperative game.

Algorithm 4 starts with an arbitrarily chosen imputation. If, at the current point, the tight set Tk

fails to pass a balancedness requirement related to the Kohlberg criterion, we generate an improving

direction and a step size.

Beside the descent-based nature of the algorithm as presented in the preceeding sections, Algorithm

4 also shares some similarities with the simplex method for linear programming, as finding an improving

direction y and a suitable step size α in Step 3 of the algorithm is similar to a pivot step in the simplex

5If there are multiple, all of them enter the tight set.

20



Algorithm 4: Algorithm computing the nucleolus of a cooperative game.

Input: Game (N , v) with I 6= ∅;

Output: ν nucleolus of game (N , v);

1. Initialization: Set x ∈ I arbitrary, R0 = {N} and k = 1;

while |Rk−1| < n do

2. Find εk(x) = max
S /∈span(Rk−1)

d(S,x), Tk(x) = {S /∈ span(Rk−1) : d(S,x) = εk},

T0(x) = {{i} : xi = v({i}), i ∈ N}, and U ⊆ (Rk−1 ∪ Tk) generated by Algorithm 3;

if Tk \ U 6= ∅ then

3. Find y solving ID(T0;Tk;U) and α using (14). Update x = x +αy and go to Step 2.;

else

4. Set Rk = rep(Tk;Rk−1), and k = k + 1;

end

end

5. x = ν is the nucleolus.

algorithm. Inside the while loop the algorithm keeps ’pivoting’ until T0-balancedness is achieved, while

the iterations of the loop correspond to solving LPs in the sequential LP formulation of the nucleolus

(cf. [17]). The overall algorithm can also be interpreted as an active-set or column generation approach,

because checking the balancedness of a collection of (primal) tight coalitions is nothing else than solving

relaxed dual programs in the aforementioned LP sequence (cf. [19]).

Example 1. Consider the 3-player game v with coalition values v({1}) = 1, v({2}) = 2, v({3}) = 5,

v({1, 2}) = 6, v({1, 3}) = 7, v({2, 3}) = 8, and v(N ) = 12. For readability, during this example we use

superscripts to distinguish between different imputations, while subscripts of maximum dissatisfaction

levels εk and tight sets Tk are used to keep track of iterations. We are using Algorithm 4 to find the

nucleolus ν from a starting imputation x0 = [1, 4, 7].

First, we find that our distance to the boundary of the core is 1, hence ε1(x
0) = 1. Also, currently

the largest infeasibility among core inequalities belongs to constraint x1 + x2 ≥ 6. Therefore, T1(x
0) =

{{1, 2}}, while T0(x
0) = {{1}} because x01 = v({1}). It is easy to see that the current tight set T1(x

0) is

not T0(x
0)-balanced. In the algorithm we run into an infeasible system when checking the balancedness,

so we can find improving directions by solving ID(T1(x
0);T0(x

0); {N}), for example y = [−1, 0, 1].

Notice that we measure the distance from the boundary with a special signed distance; in the interior
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of the core the distance from the boundary is understood to be negative. Thus, we can move even further

along the direction after reaching the core, until we can not decrease the distance any more. This

happens precisely when the distances from both constraints (x3 ≥ 5) and (x1 + x2 ≥ 6) are −0.5, that

is when x1 = [2.5, 4, 5.5], ε1(x
1) = −0.5, T1(x

1) = {{1, 2}, {3}} and T0(x
1) = ∅. This is similar to a

pivot step in a simplex-like algorithm, where coalition {3} enters the basis. According to (14), the step

size chosen in direction y is α = 1.5. After this step, we find that T1(x
1) is T0(x

1)-balanced, therefore

we expand R0 with an arbitrary element of T1(x
1) as rank(R0 ∪ T1(x1)) = 2. By doing so we lift those

inequality constraints that limit the decrease; that is, throughout the remaining execution of the algorithm

those constraints remain satisfied with equality at the current largest excess level of ε1(x
1) = −0.5.

The set of imputations having the coalitions in T1(x
1) being tight at ε1 = −0.5 actually form the

least core of the game. At the current point x1, among constraints not in span(R1), we are closest to

violating x1 + x3 ≥ 7 with ε2(x
1) = −1. Also we have that T0 remains empty at x1 and the tight set

T2(x
1) = {{1, 3}} is not T0-balanced, so we find an improving direction parallel to the set of least core

payoffs. That is, the unique solution of ID(T2(x
1);T0;R1) is y = [1,−1, 0], and we can take a step size

of α = 1/4 until coalition {2, 3} becomes tight as well. The resulting point is x2 = [2.75, 3.75, 5.5]> with

largest excess ε2(x
2) = −1.25, T0 = ∅ and tight set T2(x

2) = {{1, 3}, {2, 3}}. Since T1(x
2) ∪ T2(x2) is

T0-balanced and rank(R1 ∪ T2(x2)) = n we found the nucleolus ν = x2.

In the followings we establish results regarding the convergence of Algorithm 4 and its connection

to sequential LP methods. The results also justify why we call Algorithm 4 a lexicographical descent

method.

Lemma 4. Suppose that at iteration k, Algorithm 4 goes through to Step 3 and updates x to (x +αy).

Then we have Θ(x + αy) <L Θ(x). Furthermore,

(a) if U ∩ Tk = ∅, then εk(x + αy) < εk(x),

(b) if U ∩ Tk 6= ∅, then εk(x + αy) = εk(x) = εk(ν) and Tk(x + αy) = Tk(ν).

Proof. Let us start by noting that by the definition of y solving ID(T0;Tk;U) and α in (14), the new

point (x + αy) ∈ I if x ∈ I. Additionally x(S) = (x + αy)(S) for all S ∈ span(Rk−1), also due to y

solving ID(T0;Tk;U). As a result, both Θ(x) and Θ(x + αy) contain (and start with) the same excess

values for coalitions S with excess d(S, ν) ≥ εk−1(ν). Therefore, in order to make the lexicographical

comparison, it is sufficient to focus on the truncated ordered excess vectors over the set 2N \span(Rk−1),

i.e., between Θ2N \span(Rk−1)(x) and Θ2N \span(Rk−1)(x + αy).
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εk+1(x + αy)

εk(x) =
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. . .
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y(S|U|+2)

...

Q1

y(Q1)

Q2J
y(Q2)

Q3

y(Q3)

...

Figure 2: Changes of tight coalitions at a pivot step when U 6= ∅.

(a) The first component of both truncated ordered excess vectors is a value corresponding to a tight

coalition S ∈ Tk(x). Since y(S) ≥ 1 for all S ∈ Tk(x) and α > 0, we have that εk(x +αy) < εk(x)

(as Figure 1 demonstrates) and therefore Θ(x + αy) <L Θ(x) in this case.

(b) However, if U ∩Tk 6= ∅, then we have y(Q) = 0 for all Q ∈ U since y is a solution of ID(T0;Tk;U),

hence εk(x) = εk(x + αy) = d(Q,x) for Q ∈ U . Note that at Step 3 of Algorithm 4, we have

Tk \ U 6= ∅. Since y(S) ≥ 1 for all S ∈ Tk \ U , we also have U ∩ Tk(x) = Tk(x + αy) ( Tk(x), as

Figure 2 demonstrates. Consequently, Θ(x+αy) <L Θ(x) because of Θ2N \span(Rk−1)(x+αy) starts

with less excess values of εk(x) than Θ2N \span(Rk−1)(x); that is |Tk(x + αy)| < |Tk(x)|. On the

other hand, since Tk(x+αy) is T0-balanced, we have εk(x+αy) = εk(ν) and Tk(x+αy) = Tk(ν).

Remark 3. We have the following observations by Lemma 4:

• Lemma 4 justifies naming Algorithm 4 lexicographical descent. Starting from an arbitrary imputa-

tion, we follow a trajectory of imputations by generating improving directions and step sizes, with

the corresponding ordered vector of excesses keep strictly lexicographically decreasing in every step

of the trajectory. The only other ‘descent’ method [19] that we are aware of for general cooperative

games does not have this property.
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• Due to the strict lexicographical descent, during Algorithm 4 we never circulate in the imputation

set x ∈ I.

• Furthermore, Algorithm 4 is connected to the classical sequential LP methods by Lemma 4b: as

soon as we have U ∩Tk 6= ∅, that is, we have found a balanced (sub)collection in the new tight set,

we have solved the k-th LP of the sequence due to primal-dual feasibility. Notice, however, that

even in that case we could make a further step in the lexicographical descent, since the original

tight set was not balanced, allowing us to find the interior of the optimal facet of the LP.

Theorem 5. Algorithm 4 stops after a finite number of steps. The while loop is executed at most

(n− 1) iterations before finding the nucleolus ν.

Proof. We start by showing the iteration limit of the while loop. Note that rank(Rk) increases in every

iteration as ∅ 6= Tk ⊆ 2N \ span(Rk−1), and since rank(R0) = 1 the algorithm terminates in at most

(n− 1) iterations for the while loop.

Thus, for finite convergence to ν, we only need to show that, within a single iteration, a finite number

of steps from x to (x + αy) is sufficient to reach a T0-balanced tight set, which gets the algorithm out

of the current iteration. For that purpose let us fix that iteration to be k, and for notational ease, for

the remainder of the proof we omit the iteration subscripts k; i.e. T is used in place of Tk, and so on.

According to Lemma 4, as soon as U ∩ T 6= ∅, we reached a T0-balanced tight set U ∩ T itself.

Therefore we suppose that U ∩ T = ∅.

Since T ⊆ 2N \ span(R), the possible tight sets we can encounter is finite, among which there exists

T0-balanced as well, for instance T (ν). Thus, the only way not to reach a T0-balanced tight set is to

encounter an infinite series of tight sets T = (T 1, T 2, . . . , Tm, T 1, Tm+1 . . . ), among which none is T0-

balanced. Here, we use the superscripts to denote the different steps that we encounter under the same

iteration k. Again because of the finitely many tight sets, we guaranteed to revisit at least one tight

set infinitely many times. W.l.o.g., let that one be T 1 and suppose that we first revisit it after taking

m steps. Let us denote the corresponding improving directions, step sizes and maximal dissatisfactions

we encounter at each tight set as (y1,y2, . . . ), (α1, α2, . . . ) and (ε1, ε2, . . . , εm, εm+1, . . . ), respectively.

Let us suppose that the starting tight set T 1 corresponds to the imputation x1 = x. By Lemma 4

we have ε1 > εm > εm+1 and x +
∑m

j=1 αjyj ∈ I. Thus, we generate improving direction y1 solving the
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LP

min
y

∑
Q∈T 1

y(Q)

s.t. y(Q) ≥ 1, ∀Q ∈ T 1,

y(P) ≥ 0, ∀P ∈ T0,

y(S) = 0, ∀S ∈ R.

(ĨD(T 1))

Note that, here we assume T 1 ∩ U = ∅ and hence we obtain a simpler version of ID(T0;T
1;U).

Since
∑m

j=1 αjyj(S) = ε1 − εm+1 is constant through S ∈ T 1, β
∑m

j=1 αjyj is feasible in ĨD(T 1)

for large enough β > 0, thus we have
∑m

j=1 αjyj

ε1−εm+1
is optimal in ĨD(T 1). As a result, y1(S) = 1 for all

S ∈ T 1 as y1 is also an optimal solution of ĨD(T 1). Consequently all coalitions remain tight, while

some coalition must join, based on the definition of the step size, hence T 1 ( T 2.

Note that it is not always the case that T 1 is followed by the same T 2. However, since T 2 is pooled

from the finite power set, there must be at least one set T 2 such that the subsequence (T 1, T 2) is

repeated infinitely many times with T 1 ( T 2. Using the same line of arguments, we arrive at longer

repeated subsequences T 1 ( T 2 . . . ( T j for as large j as we wish. This is impossible because the size of

T j is bounded. Thus, the series of tight set T is finite under each iteration. As the number of iterations

is bounded by (n− 1), the algorithm converges in finitely many steps.

Remark 4. We have the following observations by Theorem 5:

• During Algorithm 4, not only in the imputations, but we never circulate in the tight set space

either.

• Note that requiring a finite number of steps is enough to achieve the result claimed above. Numer-

ical experiments indicate that Algorithm 4 executes a very small number of steps, see Subsections

5.1 and 5.2.

Remark 5. The (n − 1) linear programs in Maschler’s scheme [26], the (n − 1) iterations in the

improved Kohlberg criterion for verifying the nucleolus (Algorithm 2), the upper bound of n iterations in

the balancedness checking algorithm (Algorithm 3), and finally the (n−1) iteration in our lexicographical

descent algorithm as stated in Theorem 5 is due to the fact that all of these algorithms are designed to

increase the rank of the collection of tight coalitions considered. While eventually in an implementation

of Maschler’s scheme (e.g. [18]) the same collection of tight coalitions is found as in our lexicographical

descent method, the trajectory how the two different methods reaches this point is different, as evidenced

by the different number of iterations required (cf. Section 5).

25



Finally we note that Algorithm 4 can be easily adapted to the case when we have a characterization

set F ⊆ 2N at our disposal, by simply changing the search space in εk(x) and Tk(x) from S /∈ span(Rk−1)

to S /∈
(
span(Rk−1) ∪

(
2N \ F

))
. The computational bottleneck of Algorithm 4 is performing Step 2

and computing the step size in Step 3. However, given a characterization set F of polynomial size as

an additional input, the algorithm runs in polynomial time. That characterization set is available, if we

restrict our attention, for example to the class of assignment games ([2]), to balanced matching games

([25]), to standard tree games ([27]), among many other classes ([23]).

5 Numerical results

In the following subsections we present numerical results assessing the performance of the algorithms

described above. Both the different versions of Kohlberg algorithms (Algorithms 1, 2 and 1 of [22]) and

the constructive algorithm (Algorithm 4) have been tested on 4 different types of games, the player set

size ranging from 5 to 30. For games with n ≤ 25, fifty instances were generated from each type, and

we report averages of computational time in seconds, number of iterations, pivot steps and subroutines

(wherever applicable), as well as number of coalitions saved from storage by compact representation

sets. Similarly, for games with n > 25, ten instances were generated from each type. In each category

the corresponding minimal values are highlighted with bold (wherever applicable).

For the sake of completeness the Kohlberg algorithms are tested with 4 solution points including the

nucleolus, a random imputation, a point in the least core and in the least-least core (an element of the

least core with T0-balanced (T1∪T2)). For brevity, we only present here results for the solution being the

nucleolus. Results for the other three solutions are presented in Appendix H of [22]. The original and

improved Kohlberg algorithms 1 and 2 are denoted with Kohlberg and IKA respectively, while Algorithm

1 of [22] that includes the compact representation is denoted with IKAcr. The lexicographical descent

Algorithm 4 (denoted BFN ) is compared to 4 methods: SP (SD) are the primal (dual) nested LP

algorithms due to Solymosi [17], DK is Derks and Kuipers [19]’s algorithm, while PRA denotes the

prolonged simplex algorithm by [18].

All algorithms were implemented in C++ and computations were carried out on a desktop PC with

Intel Core i5-2500 3.30 GHz CPU and 16 Gb RAM6. All the LPs involved are solved with CPLEX

6In this configuration, the time-efficient implementation of the algorithms run out of memory at n = 28 while processing

initialization, therefore we used a memory-efficient implementation instead for n > 28.
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12.7.1’s primal simplex method (with default settings7). Time limitations were set with 12 hours for

n ≤ 25, 15 hours for n ≤ 28, and 18 hours for n > 28. All of the codes (along with the test instances)

used to produce these results are available for free access at the GitHub repository [21].

5.1 Type I and II games

Type I and II games both appear in [18] and [28]. The characteristic function for type I is given by

v({i}) = 0 for all i ∈ N , v(N ) is a random integer between 100(n−2) and 100n, while v(S) is a random

integer between 1 and 100|S| for all other (non-empty) coalitions S. Type II games are generated as

v({i}) = 0 for all i ∈ N and v(S) is a random integer between 1 and 50n for all other (non-empty)

coalitions S.

Table 1: Original and Improved Kohlberg algorithms on type I games and nucleolus solution

n Time Iterations Subroutines Repr.

Kohlberg IKA IKAcr Kohlberg IKA IKAcr Kohlberg IKA IKAcr IKAcr

5 0.014 0.0016 0.0014 25.6 2.6 2.6 43.3 3.3 2.6 2.6

10 2.5 0.0034 0.0042 964.1 2.3 2.3 1279.8 3 2.3 2.4

15 OoT 0.068 0.068 OoT 1.9 1.9 OoT 2.5 1.9 1.9

20 - 3.3 3.2 - 1.7 1.7 - 1.9 1.7 1.8

25 - 161 159 - 1.9 1.9 - 2.4 1.9 1.9

26 - 257 250 - 1.6 1.6 - 1.7 1.6 1.6

27 - 650 631 - 1.9 1.9 - 2.4 1.9 1.9

28 - 2827 2591 - 1.9 1.9 - 2.2 1.9 1.9

29 - 2087 2145 - 1.7 1.7 - 2 1.7 1.7

30 - 3248 3323 - 1.4 1.4 - 1.7 1.4 72842.4

In terms of the verifying Kohlberg algorithms we can start with the general observation that the

classical Kohlberg algorithm is only usable up to a limited size. From Tables 1, 2, 5 and 6 we find that

games of size n = 15 provide already a challenge that Algorithm 1 can not tackle, as it runs out of time.

For the remaining two algorithms IKA and IKAcr, the differences in performance do not seem to be

significant. The advantage of having a compact representation only affects a small number of coalitions

most of the time, with the notable exception of one type I game with 30 players. This is a random game

with quite substantially larger tight set T1(x) than the other games considered. However, as both IKA

7In the case of SP and SD, the average number of pivots reflect the values of CPLEX parameter iterations reported

in the output. In order to obtain realistic pivot numbers, preprocessing was turned off (which did not change the overall

computation time significantly).
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Table 2: Original and Improved Kohlberg algorithms on type II games and nucleolus solution

n Time Iterations Subroutines Repr.

Kohlberg IKA IKAcr Kohlberg IKA IKAcr Kohlberg IKA IKAcr IKAcr

5 0.014 0.0016 0.0016 26.1 2.8 2.6 48.3 3.9 2.6 1.6

10 6.9 0.0033 0.0036 951 2.6 2.5 2023.5 3.6 2.6 2.1

15 OoT 0.11 0.11 OoT 2.5 2.5 OoT 3.6 2.6 2.3

20 - 5.3 5.2 - 2.5 2.5 - 3.4 2.5 2.5

25 - 295 289 - 3.6 3.6 - 5.8 3.6 3.6

26 - 576 558 - 3.1 3.1 - 3.8 3.1 3.1

27 - 1061 1041 - 3 3 - 4.2 3.1 3.1

28 - 5672 5271 - 4.8 4.8 - 7.9 4.8 4.9

29 - 7253 7547 - 4.4 4.4 - 7.3 4.4 4.4

30 - 12766 13325 - 3.8 3.8 - 5 3.8 3.9

and IKAcr terminate after performing only 1 iteration, the advantage of a compact representation is

not realised during any subsequent iterations. On the contrary, the small additional workload necessary

for finding this compact representation appears to provide a slight disadvantage in computation time.

Table 3: Computing the nucleolus of type I games

n Time Iterations Pivots Subrout.

BFN DK SP SD PRA BFN DK SP SD PRA BFN DK SP SD PRA BFN SP

10 0.011 0.014 0.009 0.016 0.11 2.02 2.04 2.02 2.06 2.06 11.8 14.1 55.6 63.6 41 14.3 3.1

15 0.1 0.17 0.42 0.17 370 1.5 1.52 1.5 1.52 1.52 19.2 25.9 93.6 153 161 21 2

20 4.4 7.69 22.1 8.43 OoM 1.46 1.46 1.46 1.46 OoM 28.9 40.6 159 330 OoM 31.4 1.9

25 227 425 OoM OoT - 1.78 1.8 OoM OoT - 42.1 56.5 OoM OoT - 47.6 OoM

26 463 958 - - - 1.6 1.6 - - - 40.6 71.8 - - - 43.3 -

27 1261 2047 - - - 1.9 1.9 - - - 57.1 70.4 - - - 69 -

28 4406 6421 - - - 1.9 1.9 - - - 48.5 82.1 - - - 53.7 -

29 12220 17796 - - - 1.7 1.7 - - - 58.1 78 - - - 66.4 -

30 19232 OoT - - - 1.4 OoT - - - 44.4 OoT - - - 47.4 -

Turning to constructive algorithms, we can start with a general observation similar to the one made

on verification algorithms. Considering the results presented in Table 3 and 4, one finds that classical

sequential LP formulations can not solve games with n = 25 players or more; while SP runs out of

memory, SD does not finish within reasonable time restrictions. It is of little surprise, considering that

these methods handle exponential sized (either in rows or columns) LPs. As impressive the prolonged

simplex method by [18] is, it suffers more having exponential number of both rows and columns, thus
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Table 4: Computing the nucleolus of type II games

n Time Iterations Pivots Subrout.

BFN DK SP SD PRA BNF DK SP SD PRA BFN DK SP SD PRA BFN SP

10 0.01 0.013 0.012 0.007 0.066 2.5 2.6 2.5 2.6 2.72 11 14.3 44.2 50.1 22.7 13.8 4

15 0.13 0.18 0.62 0.29 246 2.5 2.5 2.5 2.6 2.72 21.6 21 116 103 106 26.4 4

20 5.06 9.05 38 15 OoM 2.5 2.5 2.5 2.5 OoM 34.1 34 257 198 OoM 42.5 4

25 294 611 OoM OoT - 3.6 3.6 OoM OoT - 53.2 69 OoM OoT - 69.6 OoM

26 524 1155 - - - 3.1 3.1 - - - 42.7 65.6 - - - 49 -

27 1167 2322 - - - 3 3.1 - - - 52.3 69.1 - - - 66.3 -

28 5222 7846 - - - 4.8 4.8 - - - 58.3 61.7 - - - 77.6 -

29 14624 21429 - - - 4.4 4.4 - - - 69.7 78.3 - - - 96.7 -

30 29593 OoT - - - 3.8 OoT - - - 68.1 OoT - - - 90.7 -

running out of memory already at 20 players. This is the case for all types of games considered, as

Tables 7 and 8 also confirm.

Regarding the number of iterations needed, we see from Table 3 and 4 that type I and II games

barely distinguish between primal (BFN, SP) and dual methods (DK, SD, PRA), the latter requiring at

least as many iterations as the former, by nature. Even though the main advantage of primal methods,

i. e. having a smaller number of iterations, is barely realised in these types of games, BFN still produces

the best computing times, outperforming DK for every size of games, while the latter becomes unusable

at n = 30. Furthermore, while BFN requires less pivots at the price of invoking subroutine Algorithm

3, this seems to be rarely rewarded with fewer number of iterations, at least for type I and II games.

5.2 Type III and IV games

Derks and Kuipers [19] were interested in games where the number of iterations grows more or less

linearly with the number of players, and so they introduced type III games as v(S) = 0 for all |S| < n−2,

v(S) = 1 with probability 0.9 for n − 2 ≤ |S| < n and v(N ) = 1. According to Table 7 the authors

were obviously successful in terms of generating games where their (dual) method struggles, whereas

for primal methods these games can be considered as trivial. As a result, it is no wonder that the

computation times of DK are magnitudes higher compared to those of BFN.

In order to test the methods on games, which distinguish between the number of iterations required

by primal and dual methods more realistically, that is games that are ‘somewhere between types I-II

and III’, we introduce type IV games as v({i}) = 0 for all i ∈ N and v(S) is a random integer between

1 and n for all other (non-empty) coalitions S.
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Table 5: Original and Improved Kohlberg algorithms on type III games and nucleolus solution

n Time Iterations Subroutines Repr.

Kohlberg IKA IKAcr Kohlberg IKA IKAcr Kohlberg IKA IKAcr IKAcr

5 0.0021 0.0006 0.0011 5.2 1 1 6.1 2.0 2.0 5.0

10 0.43 0.0012 0.0028 10.7 1 1 12.7 2.6 2.9 30.2

15 OoT 0.026 0.026 OoT 1 1 OoT 2.2 2.5 80.9

20 - 1.00 1.0 - 1 1 - 2 2.7 152.2

25 - 38.7 39.7 - 1 1 - 2.1 2.9 245.2

26 - 81.8 81.6 - 1 1 - 2.2 2.6 270.3

27 - 168 170 - 1 1 - 2.3 2.7 291.5

28 - 1092 1076 - 1 1 - 2.2 2.6 315.7

29 - 217 226 - 1 1 - 2.2 2.7 336.0

30 - 447 449 - 1 1 - 2.2 2.8 358.5

Table 6: Original and Improved Kohlberg algorithms on type IV games and nucleolus solution

n Time Iterations Subroutines Repr.

Kohlberg IKA IKAcr Kohlberg IKA IKAcr Kohlberg IKA IKAcr IKAcr

5 0.010 0.0009 0.0009 14.2 1.6 1.6 24.5 2.6 1.8 2.8

10 2.2 0.0027 0.0028 285 2 2 608 3.4 2.4 3.7

15 OoT 0.079 0.079 OoT 2 2 OoT 3.6 2.8 9.4

20 - 3.7 3.6 - 2.1 2.1 - 4.3 4 18.6

25 - 220 225 - 2.9 2.9 - 6.1 3.9 15.6

26 - 590 573 - 3.4 3.4 - 6.2 5 16.1

27 - 1305 1269 - 3.6 3.6 - 7.1 4.7 18.1

28 - 4576 4344 - 3.7 3.7 - 7.4 5.1 18.2

29 - 5464 5658 - 3.5 3.5 - 7.2 5.4 25.2

30 - 9647 9842 - 2.8 2.8 - 5.9 4.4 29.1

Both IKA and IKAcr solve type III games extremely easily, making them hard to compare with

each other8. Their performance for type IV games show a similar behaviour as games of types I and II.

Tables 7 and 8 show that as soon as the required number of iterations at least moderately distin-

guishes between primal and dual methods, the difference in computational time between BFN and DK

greatly increases.

8The non-monotonicity in computation time occurring between 28- and 29-player games are due to the two types of

implementations, a so-called time-efficient and memory-efficient version. The time-efficient implementation is actually not

efficient in terms of computational time, as it wastes time at initialization compared to the memory-efficient version.

30



Table 7: Computing the nucleolus of type III games

n Time Iterations Pivots Subrout.

BFN DK SP SD PRA BFN DK SP SD PRA BFN DK SP SD PRA BFN SP

10 0.001 0.051 0.003 0.007 0.099 1 5.8 1 2.9 5.72 0 52.1 15.5 55.7 28.5 3.1 2.6

15 0.007 0.73 0.18 0.25 164 1 6.7 1 2.6 6.22 0 110 23.5 102 61.4 3.9 2.4

20 0.18 47.6 8.44 15.2 OoM 1 11 1 3 OoM 0 234 33.8 933 OoM 3.8 2.8

25 6.48 2571 OoM OoT - 1 11.6 OoM OoT - 0 348 OoM OoT - 4.7 OoM

26 13.6 5705 - - - 1 13.5 - - - 0 385 - - - 5.1 -

27 29.1 12208 - - - 1 12.6 - - - 0 408 - - - 5.2 -

28 729 29867 - - - 1 14.7 - - - 0 471 - - - 5.4 -

29 120 OoT - - - 1 OoT - - - 0 OoT - - - 6 -

30 239 - - - - 1 - - - - 0 - - - - 6 -

Table 8: Computing the nucleolus of type IV games

n Time Iterations Pivots Subrout.

BFN DK SP SD PRA BFN DK SP SD PRA BFN DK SP SD PRA BFN SP

10 0.007 0.014 0.008 0.007 0.054 2 2.5 2 2.5 2.62 6.6 15.1 33.5 42.4 18.4 9.3 3.3

15 0.05 0.2 0.36 0.27 122 2 2.9 2 2.5 2.72 8.9 27.4 71.1 95.7 106 12.1 3.6

20 2.17 11.4 20.7 19.1 OoM 2.1 4.2 2.1 3.4 OoM 10.8 44.4 130 223 OoM 15.2 4.5

25 102 563 OoM OoT - 2.9 4.2 OoM OoT - 16.8 69.3 OoM OoT - 23.1 OoM

26 188 1375 - - - 3.4 5.2 - - - 16.4 70.5 - - - 22.6 -

27 486 3024 - - - 3.6 5.4 - - - 19.7 78.3 - - - 31 -

28 3128 9648 - - - 3.7 6 - - - 19.3 106 - - - 26.3 -

29 4665 22760 - - - 3.5 6.1 - - - 21.3 89 - - - 32.1 -

30 8550 OoT - - - 2.8 OoT - - - 18.9 OoT - - - 25.4 -

5.3 Limitations of our algorithm

We now study the bottleneck of the lexicographical descent algorithm in attempt to find games that

our proposed method struggles with. The performance of Algorithm 3 as the balancedness subroutine

of Algorithm 4 depends on the size of the tight set, so we now look for games with extremely large tight

sets. From a verification point of view we expect that the compact representation of tight sets carries an

improvement in these games, therefore also providing significant distinguishment between Algorithms

2 and 1 of [22].

For our purposes we adopt the United Nations (UN) Security Council voting mechanism into

weighted voting games with arbitrary size, where there are 5 big (veto) players and the rest (origi-

nally 10) are small. Formal description and results for the verification algorithms can be found in
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Appendix H.3 of [22].

Our attempts to find a game our method struggles with were somewhat successful, meaning that

while we have a sizeable advantage in computation time over other algorithms for n ≤ 26, this advantage

vanishes at n = 27, until eventually BFN runs out of memory for n = 28. This is due to the fact that

these games have extremely large tight sets, which severely affects BFN through Algorithm 3 with a

very large |T | of exponential size, while by the nature of [19]’s method this does not affect DK.

It should be noted that finding the nucleolus of these games is trivial, i.e. one can easily find

analytically that the 5 veto players share the total payoff of 1 amongst themselves in an egalitarian way,

while all the small players get 0. Therefore anyone interested in finding the nucleolus of such a game

would never turn to any of the aforementioned algorithms. Instead, since these games are of a very

peculiar nature from an algorithmic perspective, they carry a theoretical interest from a computational

point of view. For games with structures like this, we expect further improvement by exploiting the

structure in a similar way to [20]. However, within the scope of this paper, we want to provide a

like-for-like comparison and hence leave further improvements for future research.

5.4 Comparing Kohlberg algorithms on different solutions

Finally, we consider further numerical tests of the various Kohlberg algorithms (Algorithms 1, 2 and

1 of [22]) that verify whether a particular solution of a game is the nucleolus or not. We test these

algorithms on four kinds of solutions: a random imputation, an element each of the least core and the

least-least core (i.e. T1 ∪ T2 is T0-balanced), and the nucleolus. Results for the latter were presented

above in Sections 5.1-5.2, while we cover the former three in Appendix H of [22].

Naturally, our expectations are that random imputations are probably in no relation with the nucle-

olus, therefore should be rejected straight away, while as we ‘go deeper’ into the least core, more effort

is needed to reject solutions that are not the nucleoli themselves.

As a general observation, our first expectation is met, regardless of the type of the game. Tables 1,

2, 7, 8 and 11 of [22] show that all of the algorithms reject random solutions without any significant

effort (and therefore we omit these cases from further analysis). Our other expectations seem to be

met as well, as we clearly notice increases in time, iterations and subroutine calls when moving towards

more involved solutions.

Another observation is that the original Kohlberg algorithm is again not able to solve instances with

more than 10 players as soon as we consider a solution from the least core, or more than 15 players and

the least-least core in case of the UN Security Council game cf. Tables 12-13 of [22]. Thus, as before,
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algorithms IKA and IKAcr provide the only option for most games and the solutions to be verified.

Hence, in our further analysis we again restrict ourselves to comparing these two algorithms, with the

details provided in Appendix H of [22].

6 Conclusion

In this paper, we present both an Improved algorithmic approach for verifying whether a payoff vector

is the nucleolus and a novel constructive method for finding it. In the first part, we develop an Improved

Kohlberg criterion in which the number of iterations is bounded by at most (n− 1) instead of possibly

exponentially large in the original Kohlberg criterion. This also comes with introducing representative

sets for more efficient storage of the coalitions and a faster algorithm for checking balancedness. In

the second part, we develop a novel descent-based algorithm for computing the nucleolus that exploits

the new and Improved Kohlberg criterion. We compare the performance of our new algorithms with

existing methods and demonstrate their effectiveness through numerical testing with a number of games

proposed in the literature. Finally, we provide our algorithms, as well as the relevant literature’s in an

online open-source code repository, which we believe is an important step forward, that the cooperative

game theory community can build upon.
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