Finding and verifying the nucleolus of cooperative games

Marton Benedek* Jorg Fliegef Tri-Dung Nguyen?

May 25, 2020

Abstract

The nucleolus offers a desirable payoff-sharing solution in cooperative games, thanks to its attrac-
tive properties —it always exists and lies in the core (if the core is non-empty), and it is unique. The
nucleolus is considered as the most ‘stable’ solution in the sense that it lexicographically minimizes
the dissatisfactions among all coalitions. Although computing the nucleolus is very challenging, the
Kohlberg criterion offers a powerful method for verifying whether a solution is the nucleolus in rel-
atively small games (i.e., with the number of players n < 15). This approach, however, becomes
more challenging for larger games because of the need to form and check a criterion involving possi-
bly exponentially large collections of coalitions, with each collection potentially of an exponentially
large size. The aim of this work is twofold. First, we develop an improved version of the Kohlberg
criterion that involves checking the ‘balancedness’ of at most (n — 1) sets of coalitions. Second, we
exploit these results and introduce a novel descent-based constructive algorithm to find the nucleolus
efficiently. We demonstrate the performance of the new algorithms by comparing them with existing
methods over different types of games. Our contribution also includes the first open-source code for

computing the nucleolus for games of moderately large sizes.

*Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences, Téth Kélmén
u. 4., Budapest, 1097, Hungary, benedek.marton@krtk.mta.hu, ORCID: 0000-0002-7492-1174; Corvinus University of
Budapest, Févam tér 8., Budapest, 1093, Hungary; Budapest University of Technology and Economics, Egry Jézsef u. 1.,

Budapest, 1111, Hungary.
TMathematical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom,

J.Fliege@soton.ac.uk.
#Mathematical Sciences, Business School and CORMSIS, University of Southampton, Southampton, SO17 1BJ, United

Kingdom, T.D.Nguyen@soton.ac.uk.

1 Introduction

Cooperative games model situations where players can form coalitions to jointly achieve some objective.
Assuming that it is more beneficial for the players to work together, a natural question is how to divide
the reward of the collaboration among the players in such a way that ensures the stability of the grand
coalition, i.e. avoiding any subgroup of players to break away in order to form their own coalition and
increase their total payoff. Solution concepts in cooperative games provide the means to achieve this.

In a cooperative game (with transferable utilities), each coalition of players is associated with a value,
a real number that represents what that coalition could achieve by working together, independently of
other players. We are looking for a stable allocation of the value associated with the grand coalition,
that includes every player in the game. A natural requirement from such an outcome is to allocate
exactly the grand coalition value, and to do that individually rationally, i.e. each player should receive
at least her stand-alone value. There are games where no such outcome exists, however, for our purposes
in particular, we consider games where at least one individually rational outcome exists.

Applying the same concept to all groups of players, coalitionally rational outcomes form the core,
guaranteeing to every coalition at least the amount that they could achieve by breaking away from
the grand coalition. In this sense, core outcomes can be considered stable. However, it is possible
that no payoff vector satisfies this condition, and a core outcome might not exist. Furthermore, in the
appealing case of a non-empty core, one might find multiple core payoffs, offering possibly different
levels of stability.

There are other solution concepts which provide outcomes that are, in a certain sense, as stable
as possible. The first such solution concept is called the least core, which minimizes the worst level
of dissatisfaction, i.e. the difference of what a coalition could achieve on their own and the amount
allocated to the coalition, among all the coalitions. Note that least core payoffs always exist, but such
a payoff vector might still not be unique.

Least core outcomes minimize the worst (largest) dissatisfaction level among all coalitions over the set
of efficient payoff vectors, that allocate exactly the grand coalition value. Since there might be multiple
of such outcomes, we might be interested in minimizing the second (third, etc.) largest dissatisfaction
level of the remaining coalitions among these outcomes. By lexicographically minimizing the non-
increasingly ordered dissatisfactions of all coalitions, we arrive at one of the most widely known solution
concepts in cooperative game theory, the nucleolus, which is the ‘most stable’ individually rational

outcome. In this paper we are focusing on the computation and the verification of the nucleolus.

The nucleolus was introduced in 1969 by Schmeidler [1] as a solution concept with attractive prop-
erties: it always exists (in a game with individually rational outcomes), it is unique, and it lies in the
core, if the core is non-empty. Despite the desirable properties that the nucleolus has, its computation
is, however, very challenging because the process involves the lexicographical minimization of 2" excess
values, where n denotes the number of players. While there is a few classes of games whose nucleoli can
be computed in polynomial time (e.g. [2, 3, 4, 5, 6, 7]), it has been shown that finding the nucleolus
is NP-hard for many classes of games, such as the utility games with non-unit capacities [6] and the
weighted voting games [§].

While finding the nucleolus is very difficult, Kohlberg [9] provides a necessary and sufficient condition
for a given imputation to be the nucleolus, which we will describe in the next section. This set of
criteria is particularly useful for relatively small games (e. g. less than 10 players). The verification of it,
however, becomes time consuming when the number of players exceeds 15, and becomes computationally
extremely demanding when the number of players exceeds 20, even if we have an educated guess on
the nucleolus based on the structure of a game. This is because the criterion involves the formation of
collections of (tight) coalitions from all 2" possible coalitions and iteratively verifying if unions of these
collections are ‘balanced’ in a way to be described in details in Section 2.2. The first aim of our work
is to resolve these issues and propose a new improved set of criteria for verifying the nucleolus.

Kopelowitz [10] suggested using nested linear programming (LP) to compute a closely related solu-
tion concept, the kernel of a game. This encouraged a number of researchers to focus on the computation
of the nucleolus using LPs, rather than sharpening the Kohlberg criterion!. For example, Kohlberg [12]
presents a single LP with O(2"!) constraints which later on is improved by Owen [13] to O(4") con-
straints (at the cost of having larger coefficients). Puerto and Perea [14] recently introduced a different
single-LP formulation with O(4") constraints and O(4") decision variables and with coefficients in
{—1,0,1}. The nucleolus can also be found by solving a sequence of LPs. However, either the number
of LPs involved is exponentially large ([15], [16]) or the sizes of the LPs are exponential ([17], [18], [19],
[20]). Our second aim is to directly solve the lexicographical minimization problem via introducing a new
descent-based approach. We compare our method with classical sequential LP methods (primal and dual
sequences as described in [17]), the prolonged simplex method of [18], and the simplex implementation
for finding the nucleolus from Derks and Kuipers [19].

The four key contributions of our work are:

!The only result we are aware of is the nonlinear approximation described in [11].

e We present a new set of necessary and sufficient conditions for a solution to be the nucleolus in
Section 3.1. The number of collections of coalitions to be checked for balancedness is at most

(n — 1) (instead of exponentially large as in the original Kohlberg criterion).

e We derive a new lexicographical descent algorithm for finding the nucleolus in Section 4. The new
algorithm is distinguished from existing methods in that we directly solve the lexicographical min-
imization problem by iteratively finding improving directions through the balancedness checking

procedure within the improved Kohlberg criterion.

e We demonstrate the performance of the proposed methods through numerical tests on various

types of games in Section 5.

e We develop the first open-source code for computing the nucleolus of moderately large sizes in

[21]. For completeness it also includes the implementation of algorithms from [17], [18] and [19].
In addition, we provide further contributions such as:

e The balancedness condition is essentially equivalent to solving a linear program with strict inequal-
ities —a somewhat undesirable situation in mathematical programming. We provide an efficient

tool for checking the balancedness condition in Section 3.3, requiring solving less number of LPs.

e While checking the Kohlberg criterion, we might end up having to store collections of exponentially
large number of coalitions. We provide a method for reducing the storage size of these collections

to at most (n — 1) coalitions in Section 3.2.

2 Notations and Preliminaries

2.1 Notations

Let n be the number of players and N’ = {1,2,...,n} be the set of all the players. A coalition S is
a subset of players; i. e. S C N. The characteristic function v : N R maps each coalition to a
real number v(S) (such that v(#) = 0). An outcome in a game is a payoff vector (payoffs, for short)
x = (21,2, ...,2T,) of real numbers, with z; (i € N') being the share of player i. We focus on profit
games and assume that it is more desirable to have higher shares. All our results can be extended to
cost games through transforming the characteristic function to the corresponding profit game.

Let us denote x(S) =) ,cgzi. Given the total payoff v(N), efficient outcomes x, also called
preimputations, satisfy > ._\-x; = v(N). Let us denote by PI the set of these: PI = {x € R" :

x(N) =v(N)}. The set of imputations, denoted by I, contain efficient outcomes that satisty individual
rationality; that is, z; > v({i}),Vi € N. The core of the game is the set of all efficient payoffs x such
that no coalition has an incentive to break away, i.e. x(S8) > v(8S) for all S C N.

For each outcome x, the excess value of a coalition S is defined as d(S,x) := v(S) —x(S), which can
be regarded as the level of dissatisfaction the players in coalition & have with respect to the proposed
payoff vector x. Then the least core is defined as follows: the set of preimputations {x € PI: d(x,S) <
e* VS C N, S # 0} form the least core, where €* is the smallest value such that the set is nonempty.

For any imputation x, let O(x) = (01(x), O2(x),...,02n(x)) be the vector of all the 2" excess
values at x sorted in a non-increasing order; i.e., ©;(x) > ©;41(x) for all 1 < i < 2". Let us denote
O(x) <r, O(y) if there exists r < 2" such that ©;(x) = ©;(y),V1 < i < r and 0,(x) < O,(y). Then
v(N,v) € 1is the nucleolus (v for short) if O(v) <y O(x), Vx €I, x # v.

If we only require x and v to be preimputations, we arrive at the definition of the prenucleolus, which
can be seen as the most stable efficient outcome. In this paper every result is focusing on the nucleolus,
hence throughout the paper we consider only games with non-empty imputation set. However, the aim
is to develop algorithms applicable to a general class of games, thus we make no further assumptions
on the characteristic function. Moreover, with suitable modifications, every result can be applied to the
prenucleolus, making them applicable to every cooperative game (with transferable utilities).

For each collection @ C 2V let us denote the size of Q@ by |Q]. We associate each collection @
with a weight vector in RI9! with each element denoting the weight of the corresponding coalition in
Q. Throughout this paper, we use bold font for vectors and italic font for scalars. Whenever it is clear
from context, we are going to omit the argument x from maximal dissatisfaction levels e, tight sets Ty
and T}, collection of tight sets Hj, and so on (the latter notions introduced in Section 2.2).

For § C N, let us denote by e(S) the characteristic vector of S in {0,1}"™ whose ith element is
equal to one if and only if player i is in coalition S. With this, for all x € R", we have x(S) =
> ies i = x'e(S). Furthermore we can consider (linear) spans and the rank of collections: coalition
S is in the linear span of collection @ if its characteristic vector e(S) is in span({e(7) : 7 € @}) and
rank(Q) :=rank({e(7) : T € Q}). Next, we formally define the concept of balancedness.

Q|
>0

such that e(N) = 3" scowse(S). Given a collection Ty C 2N a collection Q C 2V is called Ty-balanced

Definition 1. A collection of coalitions Q C 2V is balanced if there exists a weight vector w € R

if there exist weight vectors v € RIZTS‘ and w € R|>QO| such that e(N) = > s, 15€(S) + D scqwse(S).

Remark 1. We make the following observations about balancedness:

a) Balancedness implies Ty-balancedness for any Ty, while for Ty = 0 the two concepts are equivalent.

b) All results in this paper are concerned with the nucleolus. These results and the corresponding

algorithms to be described can be adapted for the prenucleolus by setting Ty = ().

2.2 Algorithmic view of the Kohlberg criterion

We first formalize the concept of balancedness and summarize the main results of Kohlberg [9] from
an algorithmic viewpoint. For any efficient payoff distribution x € PI, Kohlberg [9] first defines the
following sets of coalitions: Ty(x) = {{i},i = 1,...,n : z; = v({i})}, Ho(x) = {N} and Hi(x) =
Hy_1(x)UTg(x),k=1,2,..., where for each k > 1,
Ti(x) = argmax {v(S) —z(S)}, ex(x)= max {v(S)—xz(S)}.
S¢Hy_1(x) S¢Hy—1(x)

Here, Ty (x) includes all coalitions that have the same excess value €;(x) and €1(x) > e2(x) > ...,
while Tp(x) contains the players for which x is on the boundary of violating individual rationality. We
call Tj(x) the set of ‘tight’ coalitions in the sense that coalition S belongs to Tj(x) if and only if the
constraint v(S) — x(S) = ex(x) is active/tight. In the followings, the terms ‘collection of coalitions’
(collection for short) and ‘subset of the power set 2N are equivalent and are used interchangeably.

For any collection of coalitions @, let us define
V(Q)={yeR" : y(§)>20¥S€Q, y(N)=0}.

We have Y (Q) # () since 0 € Y(Q). The first key result in Kohlberg [9] that will be exploited in this

work is the following lemma:

Lemma 1 (Kohlberg [9]). Given a collection Ty C 2V, a collection T C 2V is Ty-balanced if and only
ify €e Y(ToUT) implies y(S) =0,VS € T.

This result allows the author to define two sets of equivalent properties regarding a sequence of

collections (Qo, Q1, - - .):

Definition 2. (Qo,Q1,...) has Property I if for all k > 1, the following claim holds: y € Y(U;?:OQj)
implies y(S) =0, VS € Ugf’:le.

Definition 3. (Qo, Q1,...) has Property II if for all k > 1, U;‘}:le s Qo-balanced.

The main result of [9] can be summarized in the following theorem:

Theorem 1 (Kohlberg [9]). For games with a non-empty imputation set, the followings are equivalent:

(a) x is the nucleolus; (b) (To(x),T1(x),...) has Property I; (c¢) (To(x),T1(x),...) has Property II.

For the sake of completeness, in Appendix A of the e-companion [22] we provide a proof of Theorem 1
slightly different than the one in [9]. To appreciate the practicality of the Kohlberg criterion and for

convenient development later, we present the algorithmic view of the criterion in Algorithm 1.

Algorithm 1: (Original) Kohlberg algorithm for verifying if a payoff vector is the nucleolus

of a cooperative game.

Input: Game (N, v), imputation x € I;

Output: Conclude if x is the nucleolus or not;

1. Initialization: Set Hy = {N}, Tp = {{i} : z; = v({i}),i =1,...,n} and k = 1;
while H;_; # 2V \ {0} do

2. Set T}, = argmax {v(S) — x(S)};
S¢Hy_ 1

if (U;‘-”:lTj) is To-balanced then
| 3. Set H, = Hx_1 UT}, k =k + 1 and continue

else
| 4. Stop the algorithm and conclude that x is not the nucleolus

end

end

5. Conclude that x is the nucleolus.

In this algorithm, we iteratively form the tight sets 7 (j = 0,1,...) until either all the coalitions
are included, and we conclude that the input payoff vector is the nucleolus (i.e. stopping at Step 5), or
stop at a point where the union of the tight coalitions is not Tp-balanced (in Step 4), in which case we

conclude that the payoff vector is not the nucleolus.

3 An improved Kohlberg criterion

The Kohlberg criterion, as described in Section 2.2, offers a powerful tool to assess whether a given
payoff distribution is the nucleolus by providing necessary and sufficient conditions. These conditions
can be used in relatively small or well-structured games, where a potential candidate for the nucleolus
can be easily identified and where checking the balancedness of the corresponding tight sets can be done

easily (possibly analytically). For larger games, it is inconvenient to apply the Kohlberg criterion as it

could involve forming and checking the balancedness of exponentially large number of subsets of tight
coalitions (this is the case when the while loop in Algorithm 1 takes an exponentially large number of

steps), each of which could be of exponentially large size. This section aims to resolve these issues.

3.1 Bounding the number of iterations to (n — 1)

The key idea to check the Kohlberg criterion in a more efficient way is to note that, once we have
obtained and verified the Ty-balancedness of UleTj, we do not have to be concerned about those
coalitions that belong to span(U;?:lTj). In brief, this is because once a collection is Tp-balanced, its

span is also Tp-balanced as formalized in the following lemma:

Lemma 2. For any collection Ty C 2N the following results hold:
(a) If a collection T is Ty-balanced, then span(T) is also Ty-balanced.
(b) If collections U,V are Ty-balanced then U UV and span(U) Uspan(V') are also Ty-balanced.
(c) If U is Ty-balanced and U C V', then span(U) NV is also Ty-balanced.

We provide a proof of Lemma 2 in Appendix E of [22]. With these results, we can provide an
improved Kohlberg algorithm as shown in Algorithm 2.

The differences between Algorithm 2 and Algorithm 1 are: (a) the stopping condition of the while
loop has been changed from Hj,_; # 2V \ {0} to rank(Hj_;) < n, and (b) the search space at Step 2 has

been changed from S € Hy_1 to S ¢ span(Hy_1). As a result, we have the following desirable property:

Theorem 2. The while-loop in Algorithm 2 terminates after at most (n — 1) iterations and it correctly

decides whether a given tmputation is the nucleolus.

Proof. First, by the construction in Step 2 of the algorithm, T} N span(Hy_1) = @ and hence, by Step

3, we have that rank(Hj) = rank(Hy_1 U T})) keeps increasing. Therefore,
n > rank(Hy) = rank(Hg_q U T) > rank(Hy—1) + 1 > rank(Hp) + k = k + 1,

and hence the algorithm (i.e. the while loop) terminates in at most (n — 1) iterations. Here, we also

note that the algorithm terminates at either Step 4 or Step 5 with complementary conclusions.

*Lemma 2.4 from [23].

Algorithm 2: Improved Kohlberg Algorithm for verifying if a payoff vector is the nucleolus.

Input: Game (N, v), imputation x € I;

Output: Conclude if x is the nucleolus or not;

1. Initialization: Set Hyo = {N}, Tp = {{i} : z; = v({i}),i =1,...,n} and k = 1;
while rank(Hy_1) < n do

2. Find T, = argmax {v(S) —x(S)};
S¢span(Hy_1)

if (Ug?:lTj) is Tp-balanced then
3. Set H, = H;,_1 UT}, k =k + 1 and continue;

else
| 4. Stop the algorithm and conclude that x is not the nucleolus.

end

end

5. Conclude that x is the nucleolus.

Proving that the algorithm correctly decides whether an impuation is the nucleolus is equivalent to
showing that (a) if x is the nucleolus then the algorithm correctly terminates at Step 5, and (b) if the
algorithm terminates at Step 5, then the input payoff vector must be the nucleolus.

Part (a): We first note that, although the sequences of T} and Hj generated from Algorithm 2
are generally different from those in Algorithm 1, these are the same in the initialization and the first
iteration; that is, Ty, 11, Ho, H1 are the same in both algorithms. Therefore, if x is the nucleolus, then
T1 must be Tp-balanced as a direct result from the Kohlberg criterion described in Theorem 1. Thus,
the algorithm goes through to Step 3 at kK = 1. Suppose, for the purpose of deriving a contradiction,
that the algorithm goes through to Step 4 instead of Step 5, for some index k > 1; that is (U;?:lTj) is

not Tp-balanced. By Lemma 1, there exists y € R™ such that
y(S) > 0,VS € U;‘:OTj; y(N) =0; y(S') > 0, for some &’ € Ui Tj. (1)

Notice, however, that U;‘f;llTj is Tp-balanced by the construction in Step 3 of the previous iteration.

Therefore, S’ & Hj_; since otherwise Lemma 1 is violated. Thus, &’ € T}, and hence (1) leads to
(x+y)(S) >x(S5),VS € Ty; (x+y)(S) >x(S'), for some &' € Tj.
As a result

d(S,x+y) <d(8,x),VS € Ty; d(S',x+y) < d(S',x), for some &' € Ty;

that is, for all coalitions in T}, the corresponding excess values for (x +y) are not greater than that of

x with at least one strict inequality for some coalition &’. Thus,
T (x +y) <1 " (x), (2)

where, for each collection of coalitions @, ®? is the non-increasingly ordered excess values with respect
to only those coalitions in Q). Since Hj_1 is Tp-balanced by the construction in Step 3 of the previous

iteration, span(Hy_1) is also Tp-balanced by Lemma 2. Thus, y(S) =0, VS € span(Hy_1) and
(bspan(Hk—1)(X + y) = q)span(kal)(X)‘ (3)
From (2) and (3) we have
(I)span(Hk,l)UTk (X + y) <7 (I)span(Hk.,l)UTk (X) (4)
Note that (4) also holds if we scale y by any positive factor 9, i. e.
(I)span(Hk_l)UTk (X + 6}’) <7 (I)span(Hk_l)UTk (X) (5)

For all § ¢ (span(Hy_1) U T}) we have v(S) — x(S) < €. Thus, there exists 6 > 0 small enough

such that x + dy is an imputation and that
v(S) — (x4 0y)(S) < ek, VS & (span(Hg—1) U Tk). (6)

Results (5) and (6) imply that the | span(Hy_1)UT}| largest excess values at x are lexicographically
larger than those at (x + Jy). As a result, ®(x) is lexicographically larger than ®(x 4 dy) considering
all coalitions, which means x is not the nucleolus, i. e. we have arrived at a contradiction.

Part (b): If the algorithm bypassed Step 4 and went to Step 5, then (Ug‘?:lTj) is Tp-balanced for all
k until rank(Hy_1) = n. Let z be the nucleolus; then by its definition, its worst excess value should be
no larger than the worst excess value of x, which is equal to €;. Thus, the excess value of z over any

coalition, including those in 77, must be at most €1; i. e.
(z—x)(S)>0,VS € T1.

Notice that (z — x)(N) =0 and (z — x)(S) > 0,VS € T by the construction of Ty and because z € 1.
Then since T is Tp-balanced, we have by Lemma 1 that (z — x)(S) = 0 for all S € T}. Using a similar
argument, given that x and z are lexicographically equivalent on span(77) and since z is the nucleolus,

we also have (z — x)(S) > 0,VS € Ty. Thus,
(z—x)(S)>0,VS € T1 UTs.

10

Again, given that (77 UT3) is Tp-balanced, we have by Lemma 1 that (z —x)(S) =0 for all S € T} UT».
We can continue and use an induction argument to show that (z — x)(S) =0 for all S € Hx_1,k > 1.

Given that rank(Hy_1) = n, we have x = z, i.e. x is the nucleolus. O

Remark 2. Step 2 in both Algorithms 1 and 2 still involves comparing vectors of exponential lengths.
The key finding in Theorem 2, however, is to show that Step 2 of Algorithm 2 is not repeated more than
(n — 1) times (instead of possibly exponential in the original Kohlberg criterion described in Algorithm
1). There are structured games such as weighted voting games, network flow games and coalitional skill

games in which Step 2 can be executed efficiently. We refer the readers to [20] for details.

We demonstrate the effectiveness of Algorithm 2 in Section 5. Before that, let us discuss how to

resolve some other computationally demanding tasks of our algorithm.

3.2 Reducing the sizes of the tight sets

When checking the Kohlberg criterion we might end up having to store an exponentially large number
of coalitions. The computational requirements of checking Ty-balancedness depend entirely on the size
of the tight sets we encounter. Therefore, it is of particular interest to find compact representations of
large tight sets. We provide a method for reducing the size of Hj, to at most (n — 1). This is achieved

by replacing tight sets with their compact representations.
Lemma 3. The following statements hold:

(a) The collection T is Ty-balanced if and only if there exists v € Rgg',w e R/

~0> 1 € R such that

S vselS) + 3 wsel(S) + pe() = e(N). 7)
SeTy SeT

(b) Suppose T contains a Ty-balanced subcollection Q). Then T is Ty-balanced if and only if there exists
e RgS‘vw € RLTO\Q‘,,M e RI9l such that

D se(S) + Y wse(S)+ Y use(S) =eN). (8)
SeTy SeT\Q SeQ
The proof of Lemma 3 is provided in Appendix G of [22].
Lemma 3b allows us to represent each Hj, by a collection Ry, of size rank(Hy) < n with the following
updating procedure. We need to have span(Ry) = span(Hy_1UTy) in order to guarantee at most (n—1)

iterations. Therefore starting from Ry = Hy, we get Ry by expanding Rj_1 from a Tp-balanced T}, only

11

with coalitions that increase its rank. As a result, span(Ry) = span(Hy), while rank(Ry) = |Ry|. We
denote such a subset Ry = rep(Ty; Rr—1) and call Ry the representative of H.

As aresult we can modify Algorithm 2 to be an Improved Kohlberg Algorithm with compact represen-
tation (denoted by I K Acr in the numerical results of Section 5). In Step 3 we can set Ry, = rep(Ty; Rx—1)
instead of Hy, = Hy_1 UT}, without changing balancedness whatsoever. This means we replace all tight
sets T} and store only a representative Ry of their union for the subsequent steps. Accordingly, as
Ry _1 is a collection of coalitions with full rank, the stopping criterion can be simplified to checking the
cardinality of the representative set Ri_1. The correctness of the algorithm can be proven very similarly

to Theorem 2 using Lemma 3b.

3.3 A fast algorithm for checking balancedness

According to the Kohlberg criterion, to check Tp-balancedness of T' we need to check for the existence

of v € Rgg' and w € RLTA such that

e(N) =D yse(S)+ > wse(S).
SeTy SeT

Solymosi and Sziklai [24] [Lemma 3] provide an approach by solving |T'| linear programs as follows. For

each C € T, let

go = qmaxwe : Y yse(S) + Y wse(S) = e(N), (1,w) € RET

Then T' is Tp-balanced if and only if g5 > 0,VC € T. Notice, however, that the collection T" appearing
in the Kohlberg criterion could be exponentially large, and hence solving all the |T'| linear programs is
not practical for larger games. Solymosi [17] (see Routine 3.2) presents a faster approach that involves
at most rank(7T") linear programs. We improve upon these results by exploiting the knowledge of a
To-balanced subcollection in T' to reduce the upper bound of rank(7") in [17].

Exploiting Lemma 3, we can formulate an efficient algorithm that checks Tp-balancedness of a
collection T C 2V with a known Tp-balanced subcollection Q C T (possibly Q = 0) by finding the
largest balanced subcollection within T, as described in Algorithm 3 below.

When we check the Tp-balancedness of (UleT), through (Rj_ UT}) exploiting Lemma 3 and using
Algorithm 3, (Ry—1UT})) and Ry play the role of T and @) respectively. In this case, when we initialize
U as span(Q) NT, the set U essentially equals its representative set. However, this is not necessary the

case any more when we perform the update in Step 4 of Algorithm 3. Moreover, Algorithm 3 can be

12

Algorithm 3: Algorithm finding largest Tp-balanced subcollection

Input: Collection T with Tp-balanced subcollection Q C T
Output: U C T largest Typ-balanced subcollection;
1. Initialization: Set U = span(Q) N7}

while rank(U) < rank(T") do
2. Find 7* € Rggl,w* € Rgo\m,u* € RIYI that solve

argmax{ > ws: Y vse(S)+ Y wse(S)+ > pse(S)=e(N) (9)
TR ser\U SeTy SeT\U SeuU
if w* =0 or (9) is infeasible then
‘ 3. Stop the algorithm and output U C T'.;
else

‘ 4. Set U = span(U U{S : w§ > 0}) N T

end
end

5. Output U =T.

used for general @), not necessarily only those that are equal to their own representative set. Both cases
can be easily treated by replacing U with its representative set in the corresponding occurrences (Steps
1 and/or 4 of Algorithm 3), not effecting balancedness and hence the outcome of the algorithm. In
the following, we establish the improvement in the number of iterations required by our balancedness-

checking subroutine, Algorithm 3.

Theorem 3. Collection T is Ty-balanced if and only if Algorithm 3 terminates at Step 5 with U =T,

and the algorithm terminates after at most (rank(7T") — rank(Q)) iterations.

Proof. The while loop terminates as rank(U) keeps increasing via the construction of U in Steps 1
and 4; that is, the set U is enlarged by adding coalitions outside its span, starting from rank(Q).
Thus, the algorithm terminates at either Step 3 or 5 and we need to prove that the corresponding
conclusions from the output U are correct. Also, notice that since span(U) NT = U, we have U C T if
rank(U) < rank(7T)?.

If the algorithm terminates at Step 3, then w* = 0 or (9) is infeasible and hence T is not Tp-balanced,

3Therefore we could replace the stopping condition rank(U) = rank(T) with U = T or |U| = |T| as well.

13

as otherwise we should have found a feasible w* # 0. If the algorithm terminates at Step 5 then, prior
to that, we have rank(U) = rank(T") in order for the while loop to terminate. The construction of U in
Step 4 ensures that U is a Tp-balanced set by Lemmas 2b, 2¢ and 3b. Thus, T' = span(U) N T is also

Ty-balanced by Lemma 2c. O

3.4 Nucleolus-defining coalitions and characterization sets

We conclude the first part of this article on the improved Kohlberg criterion by linking it with an
important development in the nucleolus literature on the characterization set introduced by Granot
et al. [23] and the B-nucleolus by Reijnierse and Potters [25].

A cooperative game G (N, v) is represented by (2" — 1) coalitional values and although the nucleolus
is defined as a function of all these values, i.e. lexicographical minimization of all the (2" — 2) excess
values, Granot et al. [23] and Reijnierse and Potters [25] show that the nucleolus can be determined by
a subset of coalitions in the sense that lexicographical minimization with those coalitions as admissible
ones will determine the nucleolus. Reijnierse and Potters [25] show that there exists a characterization
set in every game with a size of at most 2(n — 1) coalitions. Although the authors emphasize that
identifying this characterization set (or the B—set) would be as hard as finding the nucleolus itself,
the result is still quite striking since this essentially means that we can ignore (2" — 2(n — 1)) other
coalitional values in calculating the nucleolus. The authors also show that the characterization set or
the B-nucleolus can be identified efficiently in a number of games, including the assignment games, the

balanced matching games, standard tree games, etc. We first define the characterization set.

Definition 4. For a collection of coalitions F € 2V, the F-nucleolus of the game G(N,v), denoted as
v(N, F,v), consists of imputations that lexicographically minimizes the excess values of coalitions in F.

A set F is called a characterization set (or a B-set) if (N, F,v) = v(N, 2V v) = v(N,v).

We now investigate how the improved Kohlberg criterion is linked to the concepts in [23, 25].
We prove that the set of coalitions generated from the improved Kohlberg criterion form ‘special’

characterization sets. We first identify the set of coalitions which are critical in defining the nucleolus.

Definition 5. A coalition S is nucleolus-defining in game G(N,v) if a small perturbation on its coali-
tional value can lead to a change in the nucleolus. Formally, for all 6 > 0, there exists |e| < & such
that v(N,0) # v(N,v), where 9(S) = v(S) + € and O(S") = v(S') for al N D 8§ # S. All remaining

coalitions are called non-nucleolus-defining.

14

Theorem 4. The set of all nucleolus-defining coalitions is precisely UleTT, where T.,r =1,...,k are

the collections of coalitions generated by the improved Kohlberg Algorithm 2 on the nucleolus x.

Proof. We prove two parts: (a) for all j < k, each S € T} is a nucleolus-defining coalition and (b) all
the remaining ones are non-nucleolus-defining.

Let Sp € T} for some 1 < j < k. Suppose on contradiction that Sy is non-nucleolus-defining, i.e.,
there exists e > 0 and small enough such that if we change v(Sp) to v(Sp) + € the nucleolus of the new
game is still x. By setting 0 < € < €;_1 — ¢;* we have ¢; < v(Sp) — x(Sp) < €j—1. Therefore the tight
sets for x are T1,...,T;—1,{So}, Tj\So0, Tj+1, - .., T. Here, note that both Uf?%Ti and Ug;%Ti U Sy are
balanced due to x being the nucleolus (according to the Kohlberg criterion). By Lemma 1, there exists

a > 0 and B > 0 such that e(N) = ZSEU?;;TZ_ ase(S) = Bs,e(So) + ESEU{;fTi Bse(S). Thus,

Bsyv(So) = Y (as—Bs)e(S),
SeulZ|T;
that is Sp € span(uf;}Tr), contradicting the construction 7 N span(uf;}Tr) = () in Algorithm 2. Part
(a) of the theorem is proven.
Now let Sy ¢ U;‘?:lTj. We note, however, that Sy € Span(Ué‘?:lTj) since span(ué‘f:lTj) has full rank.
This means there exists a smallest index r € {1,...,k} such that Sy ¢ U’_,T; while Sy € span(Uj_;T}).
This construction leads to v(Sp) — x(Sp) > € > €;,Vj < r. Let us set § = v(Sp) —x(Sp) — €. Then for

any |e| < 9, if we change v(Sp) to v(Sp) + € the nucleolus of the new game is still x because according

to Algorithm 2, all the steps still lead to the same collection of coalitions U;?:lTj.]

While all characterization sets lead to the same unique nucleolus, it can be more desirable if the
subset of excess values generated from the restricted game can carry more information about the worst
excess values in the original game. For example, consider a game with three players where v({1,2,3} =
9, v({1}) = v({2}) = v({3}) = 0 and v({1,2}) = v({2,3}) = v({3,1}) = 5. It can be verified
that both {{1},{2},{3}} and {{1,2},{2,3},{3,1}} form characterization sets. However, the former
characterization set contains all non-nucleolus-defining coalitions while the latter contains all nucleolus-
defining ones. It can be seen that the excess values generated from the latter provide more information
on the most unhappy coalitions.

We define a meaningful characterization set as one that contains nucleolus-defining coalitions only.
Following the result from Theorem 4, the next corollary provides us a method to construct these

characterization sets.

4We require the second inequality only for j > 1.

15

Corollary 1. A meaningful characterization set can be constructed as UleFi, where for each i =
1,...,k, F; is a ‘representation’ of T;; that is, F; C T; and rank(F;) = rank(T;). The smallest size of
meaningful characterization set is n + k — 1 which is constructed from minimals F;,i = 1,....k, i.e.,

when rank(F;) = |F;| = rank(T;).

Theorem 4 and Corollary 1 are related to the results in Granot et al. [23] and Reijnierse and Potters
[25], however, we show exactly how some characterization sets are constructed. We skip the proof of
Corollary 1 for brevity as it is quite straightforward based on the result of Theorem 4 and it shares
analogies with the proof on the size of characterization sets in Reijnierse and Potters [25], which makes

use of the nested LP sequence.

4 Lexicographical descent algorithm for finding the nucleolus

Our improved Kohlberg criterion allows us to formulate a constructive algorithm that not only verifies
whether a given imputation is the nucleolus, but also gives means to find it, in case the given candidate

is not the desired payoff. This new algorithm fits into a general iterative descent framework as follows:
e Starting from any imputation x € I we perform a (local) optimality test.

e If x fails the test, we generate an improving direction y and step size « (here, ‘improving’ is w.r.t.

the lexicographical ordering of the corresponding dissatisfactions).
e We update x = x + ay and repeat the procedure until no further improving direction is found.

In this scheme, the optimality test is derived from the new Kohlberg criterion developed in Section
3, improving directions are generated using duality, while step sizes are found exactly to guarantee
necessary and sufficient change in the imputation and its tight collection of coalitions.

Our new algorithm also fits somewhat into the simplex framework for linear programming: improving
directions are chosen using considerations similar to reduced costs, and the step size provides the pivoting
rule through a sort of minimal ratio test. Indeed, we are moving on the facets of polytopes in Maschlers

scheme, but not necessarily from vertex to vertex, like most traditional simplex implementations do.

4.1 Finding improving directions

Algorithm 3 not only handles the tedious strict positivity constraints related to balancedness, it essen-

tially finds the largest Tp-balanced subcollection in T, starting from a previously identified (possibly

16

empty) balanced subcollection (). Suppose that Algorithm 2 with compact representation (Algorithm
1 of [22]) terminates in Step 4, which happens precisely when Algorithm 3 exits with w* = 0 or (9) is
infeasible, while rank(U) < rank(7"). In the former case, we found the largest Tp-balanced subcollection
U in T, but since T\ U # 0, T is not Tp-balanced. In the latter case, there is no Tp-balanced subcollec-
tion in T (more precisely, the largest one is the empty set). In both cases we know that precisely the
collection T\ U # () is responsible for the lack of Ty-balancedness.

Recall that in iteration k of Algorithm 2 (with compact representation), when we check Tp-balancedness
with Algorithm 3, input 7' is (Rx_1 U T}) while the Ty-balanced subcollection @ is Ri_1, and we get
the output U. For sake of simplicity we use T" as (Rp_1 UT}) and U as the corresponding output from
Algorithm 3.

If T is not Ty-balanced, it is possible to generate an improving direction y, such that moving from

X to (x 4+ ayy) will fulfill all of the following three objectives:

(a) not changing the excess of coalitions in span(Ry_1),
(b) remaining in the set of imputations and not increasing the excess of coalitions in U,

(c) decreasing the excess of coalitions in 7"\ U.

In other words, the change from x to (x + ayy) will increase the satisfaction of the most dissatisfied
unbalanced coalitions, while maintaining the excess of the already settled balanced coalitions. In this
subsection we focus on how to generate an improving direction while Subsection 4.2 is devoted to the
calculation of the optimal step size.
When Algorithm 3 terminates with rank(U) < rank(7T) the system
D vse(S)+ Y wse(S)+ Y use(S) =e(N)
SETy SeT\U SeuU
wg >0 (10)
vs,wp >0 VS eTy,PeT\U
us €R VS e U

is infeasible for all @ € T'\ U.Therefore, using Farkas’ lemma we get
{y eR":y(Q) > 0,y(P) >0,VP € ToU(T'\U),y(S) = 0,¥vS € UU{N}} # 0.

Note that the preceding result holds for any Q € T'\ U. While the corresponding y might differ for

different Q, we can take the average (or sum) of all these to arrive at a common, normalized y in
{yeR":y(Q)>1,VQeT\U,y(P)>0,YP € Ty, y(S) =0,¥vS € UU{N}} (11)

17

Furthermore, Lemma 3b shows that whenever we iteratively check whether a collection of coalitions
U;‘?:lTj satisfies Tp-balancedness for all £ or not, it is sufficient to require strict positivity from the weights
of the current new set of coalitions T}, if we already found that the collection is Tp-balanced up to level
(k—1). The lemma is not only useful to make checking of balancedness easier, as shown in Section 3.3,
it also yields an improved system via (11). In iteration k, if T" is not Tp-balanced, then in (11) we can
require y(Q) = 0 from all coalitions Q € U?;llTj U {N} and still get a feasible system. Additionally,
because for all S € U?;llTj U {N} there exists A € RIf-1l such that y(S) = > 0eR,_, 2oy (Q), the set

{yeR":y(Q)>1,vQ e T \U,y(P)>0,VP € Tp,y(S) =0,VS € Ri_1 U(UNTy)} (12)

is non-empty as well. We call vectors y in (12) improving directions. Since improving directions are
defined through a feasible set of constraints, there could be many different improving directions, and
we have the freedom to choose an objective function to optimize over that set. The following section

determines the optimal step size, also shedding light on the most suitable objective function to choose.

4.2 Step size

A feasible point y in (12) is an improving direction in the sense that moving along y from our current
point (which is not the nucleolus) improves the satisfaction of the coalitions that are currently worst
off and causing the lack of balancedness, while still maintaining the satisfaction of previously checked
balanced subcollections and ensuring that we stay in the imputation set for small enough step size.
When determining a suitable step size @ > 0 for a given improving direction y, we naturally want to
choose a large enough in order to avoid small steps that do not result in changes in 7', since 7' is not
To-balanced. Also, we want to increase o only until we experience a change in T' (or in Tj) in the hope
that the new collection is Tp-balanced.

Suppose that, at iteration k, we are currently at imputation x. For all coalitions S, the change of

excess as we move in direction y with step size « is
d(S,x + ay) — d(S,x) = v(S) = (x(S) + ay(5)) — (v(S) = x(5)) = —ay(S).

Currently the largest dissatisfaction among coalitions not in span(Ry_1) is €x(x) = d(S,x) for any
S € Tk (x). Thus, for sufficiently small & > 0 the new maximal dissatisfaction is ex (x+ay) = d(S, x+ay)
for some (possibly more than one) S € Ti(x). Fix one such coalition as S, then the change in the

maximal dissatisfaction is ex(x + ay) — ex(x) = —ay(S).

18

We are essentially interested in the tightness of coalitions measured as the difference of their excess
from the maximal dissatisfaction, that is how far they are from being tight. Specifically, we are interested

in the change of their tightness

(d(S,x + ay) — e(x + ay)) — (d(5,%) — & (x)) = a(y(S) —y(S5)) =2 a1 = y(5)), (13)

with the last inequality due to y(S) > 1.

This brings us back to the practical question of how to choose improving directions from the cone
determined by (12). Since every feasible point of that set is an improving direction we can use, we have
the freedom to choose an objective function to optimize over this set. In order to control minger,\rr v(S)
as well as to make the bound we used in (13) sharp, we choose to minimize) e\ ¥(S)-

Recall that when we check the Ty-balancedness of Ué‘?:lTj in iteration k, we choose y solving
min
in > y(Q)

s.t. y(Q) >1 VQeT; \ U (ID(T(); Th: U))
y(P) >0 VPeldy
v(S) =0 VSeU\Ty

Thus, for every optimal solution y of I D(Ty; T}; U), we have y(S) = 1. As we increase « from 0, we
see that the tightness of coalition S decreases if y(S) > 1, the tightness does not change if y(S) = 1, and
it increases if y(S) < 1. By increasing tightness we mean that the difference ex(x + ay) — d(S,x + ay)
decreases. Let us denote the collection of coalitions with increasing tightness as J = {S ¢ span(Ry_1)U
T} : y(S) < 1}, the coalitions that are candidates to enter the tight set as we make a step.

We know that d(S,z) < e;(x) for all coalitions S ¢ span(R;—1) U Ti. Hence, there exists o > 0

sufficiently small such that
d(S,x) — ay(8) = d(S,x + ay) < ex(x + ay) = ex(x) — ay(S) < &(x) —a.

Rearranging these terms, we get d(S,x) + a1 — y(S)) < ex(x). Candidates of coalitions satisfying the
latter relation with equality for large enough « are in collection J, thus we increase a until we reach
equality for some coalition in 7. However, we also need to bound « such that we stay in the imputation

set. Taking both constraints into account, and introducing Ny = {j € N\ T : y; < 0}, the optimal

a:min({WM:Sej}u{W:jeNo}>, (14)

Yj

step size is

19

| IR |
d(S,X) { T T {

Figure 1: Optimal step size

the smallest step size for which we experience either Tj(x) # argmax {v(S)— (x+ ay)(S)} or
S¢span(Ry—1)
To # {{i} : @i + ay; = v({i}),i € N'}.

Figure 1 captures how the tight set changes as we move from x to (x + ay). At x, the largest dis-
satisfaction outside of the already settled span(Ry_1) belongs to coalitions in Tj. Their dissatisfactions
decrease with varying rates, depending on y, but with no smaller than 1. The new largest dissatisfaction
ex(x + ay) is determined by coalitions in argmingep\p {y(S)}-

In Figure 1, the dissatisfaction of coalitions in J increases (relative to the moving target of e (x +
ay)), again with varying speed depending on y. The coalition first meeting argmingcq,\ i {y(S)} enters

the tight set”.

4.3 Lexicographical descent algorithm

Now that we have all necessary elements at our disposal, we formulate the new algorithm for calculating
the nucleolus of a cooperative game.

Algorithm 4 starts with an arbitrarily chosen imputation. If, at the current point, the tight set T}
fails to pass a balancedness requirement related to the Kohlberg criterion, we generate an improving
direction and a step size.

Beside the descent-based nature of the algorithm as presented in the preceeding sections, Algorithm
4 also shares some similarities with the simplex method for linear programming, as finding an improving

direction y and a suitable step size « in Step 3 of the algorithm is similar to a pivot step in the simplex

SIf there are multiple, all of them enter the tight set.

20

Algorithm 4: Algorithm computing the nucleolus of a cooperative game.

Input: Game (N,v) with I # §);

Output: v nucleolus of game (N, v);

1. Initialization: Set x € I arbitrary, Ry = {N'} and k = 1;
while |R;_1| < n do

2. Find () = max d(S.%), Ti(x) = {S # span(Rucr) : d(S,) = e,

To(x) = {{i} : 2, = v({i}),i e N}, and U C (Rj_1 U T}) generated by Algorithm 3;
if Ty, \ U # () then

‘ 3. Find y solving I D(Ty;T}; U) and « using (14). Update x = x + ayy and go to Step 2.;
else

‘ 4. Set Ry = rep(Ty; Ri—1), and k = k + 1;

end

end

5. x = v is the nucleolus.

algorithm. Inside the while loop the algorithm keeps 'pivoting’ until Tp-balancedness is achieved, while
the iterations of the loop correspond to solving LPs in the sequential LP formulation of the nucleolus
(cf. [17]). The overall algorithm can also be interpreted as an active-set or column generation approach,
because checking the balancedness of a collection of (primal) tight coalitions is nothing else than solving

relaxed dual programs in the aforementioned LP sequence (cf. [19]).

Example 1. Consider the 3-player game v with coalition values v({1}) = 1, v({2}) = 2, v({3}) = 5,
v({1,2}) =6, v({1,3}) =7, v({2,3}) =8, and v(N) = 12. For readability, during this example we use
superscripts to distinguish between different imputations, while subscripts of mazximum dissatisfaction
levels €, and tight sets T}, are used to keep track of iterations. We are using Algorithm 4 to find the
nucleolus v from a starting imputation x° = [1,4,7].

First, we find that our distance to the boundary of the core is 1, hence e1(x°) = 1. Also, currently
the largest infeasibility among core inequalities belongs to constraint x1 + xo > 6. Therefore, Ty (x") =
{{1,2}}, while Ty(x°) = {{1}} because x§ = v({1}). It is easy to see that the current tight set Ti(x") is
not Ty (x°)-balanced. In the algorithm we run into an infeasible system when checking the balancedness,
s0 we can find improving directions by solving ID(Ty(x%); To(x%); {N'}), for ezample y = [-1,0,1].

Notice that we measure the distance from the boundary with a special signed distance; in the interior

21

of the core the distance from the boundary is understood to be negative. Thus, we can move even further
along the direction after reaching the core, until we can not decrease the distance any more. This
happens precisely when the distances from both constraints (xs > 5) and (z1 + x2 > 6) are —0.5, that
is when x!' = [2.5,4,5.5],¢1(x}) = —0.5,T1(x) = {{1,2},{3}} and To(x') = 0. This is similar to a
pivot step in a simplez-like algorithm, where coalition {3} enters the basis. According to (14), the step
size chosen in direction y is a = 1.5. After this step, we find that Ti(x') is To(x')-balanced, therefore
we expand Ry with an arbitrary element of T1(x') as rank(Ro U Ty (x')) = 2. By doing so we lift those
inequality constraints that limit the decrease; that is, throughout the remaining execution of the algorithm
those constraints remain satisfied with equality at the current largest excess level of e1(x') = —0.5.

The set of imputations having the coalitions in Ty (x') being tight at ey = —0.5 actually form the
least core of the game. At the current point x', among constraints not in span(Ry), we are closest to
violating x1 + x3 > 7 with ea(x') = —1. Also we have that Ty remains empty at x' and the tight set
Ty(x') = {{1,3}} is not Ty-balanced, so we find an improving direction parallel to the set of least core
payoffs. That is, the unique solution of ID(Ts(x'); To; R1) isy = [1,—1,0], and we can take a step size
of a = 1/4 until coalition {2,3} becomes tight as well. The resulting point is x> = [2.75,3.75,5.5] | with
largest excess e3(x?) = —1.25, Ty = 0 and tight set To(x?) = {{1,3},{2,3}}. Since T1(x?) U Ta(x?) is

To-balanced and rank(Ry U Ty(x?)) = n we found the nucleolus v = x2.

In the followings we establish results regarding the convergence of Algorithm 4 and its connection
to sequential LP methods. The results also justify why we call Algorithm 4 a lexicographical descent

method.

Lemma 4. Suppose that at iteration k, Algorithm 4 goes through to Step 3 and updates x to (x + ay).
Then we have O(x + ay) <p, ©(x). Furthermore,

(a) if UNTy, =0, then ex(x + ay) < ex(x),
(b) if UNTy #0, then ex(x + ay) = ex(x) = ex(v) and T (x + ay) = Ti(v).

Proof. Let us start by noting that by the definition of y solving I D(7y;T;U) and « in (14), the new
point (x + ay) € I'if x € I. Additionally x(S) = (x + ay)(S) for all S € span(Ry_1), also due to y
solving I D(1y;Ty; U). As a result, both O(x) and ©(x + ayy) contain (and start with) the same excess
values for coalitions S with excess d(S,v) > €,_1(v). Therefore, in order to make the lexicographical
comparison, it is sufficient to focus on the truncated ordered excess vectors over the set 2V \span(Rx_1),

i.e., between G)QN\Span(Rk*l)(x) and GQN\Span(kal)(x + ay).

22

€rr1(X +ay)

er(x) =
er(x+ay) €1
d(S, %) — |

y(Sjui+1)
o
Y(Sivi+2)

Figure 2: Changes of tight coalitions at a pivot step when U # ().

(a) The first component of both truncated ordered excess vectors is a value corresponding to a tight
coalition § € Ty(x). Since y(S) > 1 for all S € Ti(x) and o > 0, we have that e (x+ ay) < ex(x)

(as Figure 1 demonstrates) and therefore ©(x + ay) <z O(x) in this case.

(b) However, if UNT} # 0, then we have y(Q) = 0 for all Q € U since y is a solution of 1D(Ty; Ty; U),
hence €x(x) = ex(x + ay) = d(Q,x) for Q € U. Note that at Step 3 of Algorithm 4, we have
T \U # 0. Since y(S) > 1 for all S € T}, \ U, we also have U N T(x) = T(x + ay) C Ti(x), as
Figure 2 demonstrates. Consequently, ©(x+ay) <1 ©(x) because of @2N\Span(Rk—1)(x+ay) starts
with less excess values of e;(x) than G)QN\Span(Rk*l)(x); that is |Tx(x + ay)| < |Tk(x)|. On the

other hand, since Ty (x + ay) is Typ-balanced, we have e (x4 ay) = €;(v) and Ty (x+ ay) = Ti(v).

O]

Remark 3. We have the following observations by Lemma 4:

e Lemma 4 justifies naming Algorithm 4 lexicographical descent. Starting from an arbitrary imputa-
tion, we follow a trajectory of imputations by generating improving directions and step sizes, with
the corresponding ordered vector of excesses keep strictly lexicographically decreasing in every step
of the trajectory. The only other ‘descent’ method [19] that we are aware of for general cooperative

games does not have this property.

23

e Due to the strict lexicographical descent, during Algorithm J we never circulate in the imputation

setx e1.

o Furthermore, Algorithm 4 is connected to the classical sequential LP methods by Lemma 4b: as
soon as we have UNTy # 0, that is, we have found a balanced (sub)collection in the new tight set,
we have solved the k-th LP of the sequence due to primal-dual feasibility. Notice, however, that
even in that case we could make a further step in the lexicographical descent, since the original

tight set was not balanced, allowing us to find the interior of the optimal facet of the LP.

Theorem 5. Algorithm j stops after a finite number of steps. The while loop is executed at most

(n — 1) iterations before finding the nucleolus v.

Proof. We start by showing the iteration limit of the while loop. Note that rank(Ry) increases in every
iteration as () # Ty, C 2V \ span(Rj_1), and since rank(Rg) = 1 the algorithm terminates in at most
(n — 1) iterations for the while loop.

Thus, for finite convergence to v, we only need to show that, within a single iteration, a finite number
of steps from x to (x + «ay) is sufficient to reach a Ty-balanced tight set, which gets the algorithm out
of the current iteration. For that purpose let us fix that iteration to be k, and for notational ease, for
the remainder of the proof we omit the iteration subscripts k; i.e. T is used in place of T}, and so on.

According to Lemma 4, as soon as U N'T # (), we reached a Ty-balanced tight set U N T itself.
Therefore we suppose that U N'T = (.

Since T C 2V \ span(R), the possible tight sets we can encounter is finite, among which there exists
To-balanced as well, for instance T'(v). Thus, the only way not to reach a Tp-balanced tight set is to
encounter an infinite series of tight sets 7 = (T, T2,...,T™, T, T™*! .. .), among which none is Tp-
balanced. Here, we use the superscripts to denote the different steps that we encounter under the same
iteration k. Again because of the finitely many tight sets, we guaranteed to revisit at least one tight
set infinitely many times. W.l.o.g., let that one be T'' and suppose that we first revisit it after taking
m steps. Let us denote the corresponding improving directions, step sizes and maximal dissatisfactions
we encounter at each tight set as (y1,y2,...), (a1,a2,...) and (€1, €2,...,€m, €mt1,...), respectively.

Let us suppose that the starting tight set 7' corresponds to the imputation x; = x. By Lemma 4

we have €1 > €y, > €41 and X + Z;n:l a;yj € I. Thus, we generate improving direction y; solving the

24

LP

Y Qert

s.t. y(Q >1, vQeT!, (ID(T"))
y(P) >0, VYPeTy,
y(§) =0, VSeR.

Note that, here we assume 7' N U =) and hence we obtain a simpler version of ID(Tp; T U).
Since 3 7" ajy;(S) = €1 — €m41 is constant through S € T, B35 ayy; is feasible in flv)(Tl)
=195 g optimal in IAD(Tl). As a result, y1(S) = 1 for all

€1 —€m+1

for large enough 8 > 0, thus we have
S € T! as y; is also an optimal solution of ﬁ)(Tl). Consequently all coalitions remain tight, while
some coalition must join, based on the definition of the step size, hence T C T2

Note that it is not always the case that T is followed by the same T2. However, since T2 is pooled
from the finite power set, there must be at least one set T2 such that the subsequence (T%,7?) is
repeated infinitely many times with 70 C T2. Using the same line of arguments, we arrive at longer
repeated subsequences 71 C T? ... C TV for as large j as we wish. This is impossible because the size of
T7 is bounded. Thus, the series of tight set 7 is finite under each iteration. As the number of iterations

is bounded by (n — 1), the algorithm converges in finitely many steps.]
Remark 4. We have the following observations by Theorem 5:

e During Algorithm /, not only in the imputations, but we never circulate in the tight set space

either.

e Note that requiring a finite number of steps is enough to achieve the result claimed above. Numer-
ical experiments indicate that Algorithm j executes a very small number of steps, see Subsections

5.1 and 5.2.

Remark 5. The (n — 1) linear programs in Maschler’s scheme [26], the (n — 1) iterations in the
improved Kohlberg criterion for verifying the nucleolus (Algorithm 2), the upper bound of n iterations in
the balancedness checking algorithm (Algorithm 3), and finally the (n—1) iteration in our lexicographical
descent algorithm as stated in Theorem 5 is due to the fact that all of these algorithms are designed to
increase the rank of the collection of tight coalitions considered. While eventually in an implementation
of Maschler’s scheme (e.g. [18]) the same collection of tight coalitions is found as in our lexicographical
descent method, the trajectory how the two different methods reaches this point is different, as evidenced

by the different number of iterations required (cf. Section 5).

25

Finally we note that Algorithm 4 can be easily adapted to the case when we have a characterization
set F C 2V at our disposal, by simply changing the search space in e;(x) and Tj,(x) from S ¢ span(Ry,_1)
to S ¢ (span(Ry_1) U (2N \ F)). The computational bottleneck of Algorithm 4 is performing Step 2
and computing the step size in Step 3. However, given a characterization set F of polynomial size as
an additional input, the algorithm runs in polynomial time. That characterization set is available, if we
restrict our attention, for example to the class of assignment games ([2]), to balanced matching games

([25]), to standard tree games ([27]), among many other classes ([23]).

5 Numerical results

In the following subsections we present numerical results assessing the performance of the algorithms
described above. Both the different versions of Kohlberg algorithms (Algorithms 1, 2 and 1 of [22]) and
the constructive algorithm (Algorithm 4) have been tested on 4 different types of games, the player set
size ranging from 5 to 30. For games with n < 25, fifty instances were generated from each type, and
we report averages of computational time in seconds, number of iterations, pivot steps and subroutines
(wherever applicable), as well as number of coalitions saved from storage by compact representation
sets. Similarly, for games with n > 25, ten instances were generated from each type. In each category
the corresponding minimal values are highlighted with bold (wherever applicable).

For the sake of completeness the Kohlberg algorithms are tested with 4 solution points including the
nucleolus, a random imputation, a point in the least core and in the least-least core (an element of the
least core with Ty-balanced (77UT3)). For brevity, we only present here results for the solution being the
nucleolus. Results for the other three solutions are presented in Appendix H of [22]. The original and
improved Kohlberg algorithms 1 and 2 are denoted with Kohlberg and IKA respectively, while Algorithm
1 of [22] that includes the compact representation is denoted with IKAcr. The lexicographical descent
Algorithm 4 (denoted BFN) is compared to 4 methods: SP (SD) are the primal (dual) nested LP
algorithms due to Solymosi [17], DK is Derks and Kuipers [19]’s algorithm, while PRA denotes the
prolonged simplex algorithm by [18].

All algorithms were implemented in C++ and computations were carried out on a desktop PC with

Intel Core i5-2500 3.30 GHz CPU and 16 Gb RAMY. All the LPs involved are solved with CPLEX

5In this configuration, the time-efficient implementation of the algorithms run out of memory at n = 28 while processing

initialization, therefore we used a memory-efficient implementation instead for n > 28.

26

12.7.1’s primal simplex method (with default settings’). Time limitations were set with 12 hours for
n < 25, 15 hours for n < 28, and 18 hours for n > 28. All of the codes (along with the test instances)

used to produce these results are available for free access at the GitHub repository [21].

5.1 Type I and II games

Type I and II games both appear in [18] and [28]. The characteristic function for type I is given by
v({i}) =0 for all i € N, v(N) is a random integer between 100(n —2) and 100n, while v(S) is a random
integer between 1 and 100|S| for all other (non-empty) coalitions §. Type II games are generated as
v({i}) = 0 for all ¢ € N and v(S) is a random integer between 1 and 50n for all other (non-empty)

coalitions S.

Table 1: Original and Improved Kohlberg algorithms on type I games and nucleolus solution

n Time Iterations Subroutines Repr.
Kohlberg IKA IKAcr | Kohlberg IKA IKAcr | Kohlberg IKA IKAcr | IKAcr

5 10.014 0.0016 0.0014 | 25.6 2.6 2.6 43.3 33 2.6 2.6

10| 2.5 0.0034 0.0042 |964.1 2.3 23 1279.8 3 2.3 2.4

15 | OoT 0.068 0.068 OoT 1.9 1.9 OoT 25 1.9 1.9

20 | - 3.3 3.2 - 1.7 1.7 - 1.9 1.7 1.8

25| - 161 159 - 1.9 1.9 - 24 1.9 1.9

26 | - 257 250 - 1.6 1.6 - 1.7 1.6 1.6

27| - 650 631 - 1.9 1.9 - 24 1.9 1.9

28 | - 2827 2591 - 1.9 1.9 - 22 1.9 1.9

29 | - 2087 2145 - 1.7 1.7 - 2 1.7 1.7

30| - 3248 3323 - 1.4 1.4 - 1.7 1.4 72842.4

In terms of the verifying Kohlberg algorithms we can start with the general observation that the
classical Kohlberg algorithm is only usable up to a limited size. From Tables 1, 2, 5 and 6 we find that
games of size n = 15 provide already a challenge that Algorithm 1 can not tackle, as it runs out of time.

For the remaining two algorithms IKA and IKAcr, the differences in performance do not seem to be
significant. The advantage of having a compact representation only affects a small number of coalitions
most of the time, with the notable exception of one type I game with 30 players. This is a random game

with quite substantially larger tight set 77(x) than the other games considered. However, as both IKA

"In the case of SP and SD, the average number of pivots reflect the values of CPLEX parameter iterations reported
in the output. In order to obtain realistic pivot numbers, preprocessing was turned off (which did not change the overall

computation time significantly).

27

Table 2: Original and Improved Kohlberg algorithms on type II games and nucleolus solution

n Time Iterations Subroutines Repr.
Kohlberg IKA IKAcr | Kohlberg IKA IKAcr | Kohlberg IKA IKAcr | IKAcr
5 |0.014 0.0016 0.0016 | 26.1 2.8 2.6 48.3 39 2.6 1.6
10| 6.9 0.0033 0.0036 | 951 26 2.5 2023.5 3.6 2.6 2.1
15 | OoT 0.11 0.11 OoT 2.5 2.5 OoT 3.6 2.6 2.3
20| - 5.3 5.2 - 2.5 2.5 - 34 2.5 2.5
25 | - 295 289 - 3.6 3.6 - 5.8 3.6 3.6
26 | - 576 558 - 3.1 3.1 - 3.8 3.1 3.1
27 | - 1061 1041 - 3 3 - 42 3.1 3.1
28 | - 5672 5271 - 4.8 4.8 - 79 4.8 4.9
29 | - 7253 7547 - 4.4 4.4 - 7.3 4.4 4.4
30| - 12766 13325 |- 3.8 3.8 - 5 3.8 3.9

and IKAcr terminate after performing only 1 iteration, the advantage of a compact representation is
not realised during any subsequent iterations. On the contrary, the small additional workload necessary

for finding this compact representation appears to provide a slight disadvantage in computation time.

Table 3: Computing the nucleolus of type I games

n Time Iterations Pivots Subrout.

BFN DK SP SD PRA | BFN DK SP SD PRA |BFN DK SP SD PRA |BFN SP

10| 0.011 0.014 0.009 0.016 0.11 |2.02 2.04 2.02 2.06 206 |11.8 14.1 556 63.6 41 14.3 3.1
15]0.1 0.17 0.42 0.17 370 |1.5 1.52 1.5 1.52 1.52 |19.2 259 93.6 153 161 |21 2
20 4.4 7.69 22.1 843 OoM |1.46 1.46 1.46 1.46 OoM |28.9 40.6 159 330 OoM |314 1.9

25 | 227 425 OoM OoT - 1.78 1.8 OoM OoT - 42.1 56.5 OoM OoT - 47.6 OoM
26 | 463 958 - - - 1.6 1.6 - - - 40.6 71.8 - - - 43.3 -
2711261 2047 - - - 1.9 1.9 - - - 57.1 70.4 - - - 69 -
28 | 4406 6421 - - - 1.9 19 - - - 48.5 82.1 - - - 53.7 -
29 | 12220 17796 - - - 1.7 1.7 - - - 58.1 78 - - - 66.4 -
30| 19232 OoT - - - 1.4 OoT - - - 44.4 OoT - - - 47.4 -

Turning to constructive algorithms, we can start with a general observation similar to the one made
on verification algorithms. Considering the results presented in Table 3 and 4, one finds that classical
sequential LP formulations can not solve games with n = 25 players or more; while SP runs out of
memory, SD does not finish within reasonable time restrictions. It is of little surprise, considering that
these methods handle exponential sized (either in rows or columns) LPs. As impressive the prolonged

simplex method by [18] is, it suffers more having exponential number of both rows and columns, thus

28

Table 4: Computing the nucleolus of type Il games

n Time Iterations Pivots Subrout.

BFN DK SP SD PRA | BNF DK SP SD PRA |BFN DK SP SD PRA |BFN SP

10 | 0.01 0.013 0.012 0.007 0.066|2.5 26 2.5 26 272 |11 14.3 442 50.1 227 |13.8 4
151 0.13 0.18 0.62 0.29 246 25 25 25 26 272 (216 21 116 103 106 |264 4
20 | 5.06 9.05 38 15 OoM (2.5 2.5 2.5 2.5 OoM|341 34 257 198 OoM 425 4
251294 611 OoM OoT - 3.6 3.6 OoM OoT - 53.2 69 OoM OoT - 69.6 OoM
26 | 524 1155 - - - 3.1 3.1 - - - 42.7 65.6 - - - 49 -
2711167 2322 - - - 3 3.1 - - - 52.3 69.1 - - - 66.3 -
28 | 5222 7846 - - - 4.8 4.8 - - - 58.3 61.7 - - - 77.6 -
29 | 14624 21429 - - - 4.4 4.4 - - - 69.7 783 - - - 96.7 -
30| 29593 OoT - - - 3.8 OoT - - - 68.1 OoT - - - 90.7 -

running out of memory already at 20 players. This is the case for all types of games considered, as
Tables 7 and 8 also confirm.

Regarding the number of iterations needed, we see from Table 3 and 4 that type I and Il games
barely distinguish between primal (BFN, SP) and dual methods (DK, SD, PRA), the latter requiring at
least as many iterations as the former, by nature. Even though the main advantage of primal methods,
i. e. having a smaller number of iterations, is barely realised in these types of games, BF'N still produces
the best computing times, outperforming DK for every size of games, while the latter becomes unusable
at n = 30. Furthermore, while BFN requires less pivots at the price of invoking subroutine Algorithm

3, this seems to be rarely rewarded with fewer number of iterations, at least for type I and II games.

5.2 Type III and IV games

Derks and Kuipers [19] were interested in games where the number of iterations grows more or less
linearly with the number of players, and so they introduced type III games as v(S) = 0 for all |S| < n—2,
v(8) = 1 with probability 0.9 for n — 2 < |§| < n and v(N) = 1. According to Table 7 the authors
were obviously successful in terms of generating games where their (dual) method struggles, whereas
for primal methods these games can be considered as trivial. As a result, it is no wonder that the
computation times of DK are magnitudes higher compared to those of BFN.

In order to test the methods on games, which distinguish between the number of iterations required
by primal and dual methods more realistically, that is games that are ‘somewhere between types I-11
and IIT", we introduce type IV games as v({i}) = 0 for all i € N and v(S) is a random integer between

1 and n for all other (non-empty) coalitions S.

29

Table 5: Original and Improved Kohlberg algorithms on type III games and nucleolus solution

n Time Iterations Subroutines Repr.
Kohlberg IKA IKAcr | Kohlberg IKA IKAcr | Kohlberg IKA IKAcr | IKAcr
5 |0.0021 0.0006 0.0011 | 5.2 1 1 6.1 2.0 2.0 5.0
10 | 0.43 0.0012 0.0028 | 10.7 1 1 12.7 2.6 29 30.2
15 | OoT 0.026 0.026 | OoT 1 1 OoT 2.2 25 80.9
20 | - 1.00 1.0 - 1 1 - 2 2.7 152.2
25 | - 38.7 39.7 - 1 1 - 2.1 29 245.2
26 | - 81.8 81.6 - 1 1 - 2.2 26 270.3
27 | - 168 170 - 1 1 - 2.3 2.7 291.5
28 | - 1092 1076 |- 1 1 - 2.2 26 315.7
29 | - 217 226 - 1 1 - 2.2 2.7 336.0
30 |- 447 449 - 1 1 - 2.2 28 358.5

Table 6: Original and Improved Kohlberg algorithms on type IV games and nucleolus solution

n Time Iterations Subroutines Repr.
Kohlberg IKA IKAcr | Kohlberg IKA IKAcr | Kohlberg IKA IKAcr | IKAcr
5 10.010 0.0009 0.0009 | 14.2 1.6 1.6 24.5 2.6 1.8 2.8
10 | 2.2 0.0027 0.0028 | 285 2 2 608 34 24 3.7
15| OoT 0.079 0.079 | OoT 2 2 OoT 3.6 2.8 9.4
20 | - 3.7 3.6 - 2.1 21 - 4.3 4 18.6
25 | - 220 225 - 2.9 2.9 - 6.1 3.9 15.6
26 | - 590 573 - 3.4 34 - 62 5 16.1
27 | - 1305 1269 |- 3.6 3.6 - 71 4.7 18.1
28 | - 4576 4344 | - 3.7 3.7 - 74 5.1 18.2
29 | - 5464 5658 - 3.5 3.5 - 72 5.4 25.2
30 | - 9647 9842 - 2.8 2.8 - 59 44 29.1

Both IKA and IKAcr solve type III games extremely easily, making them hard to compare with
each other®. Their performance for type IV games show a similar behaviour as games of types I and II.
Tables 7 and 8 show that as soon as the required number of iterations at least moderately distin-
guishes between primal and dual methods, the difference in computational time between BFN and DK

greatly increases.

8The non-monotonicity in computation time occurring between 28- and 29-player games are due to the two types of
implementations, a so-called time-efficient and memory-efficient version. The time-efficient implementation is actually not

efficient in terms of computational time, as it wastes time at initialization compared to the memory-efficient version.

30

Table 7: Computing the nucleolus of type III games

n Time Iterations Pivots Subrout.
BFN DK SP SD PRA | BFN DK SP SD PRA |BFN DK SP SD PRA | BFN SP
10 | 0.001 0.051 0.003 0.007 0.099 |1 5.8 1 29 572 |0 52.1 15.5 55.7 28,5 |3.1 2.6
15(0.007 0.73 0.18 0.25 164 1 6.7 1 26 622 |0 110 23.5 102 614 |3.9 2.4
2010.18 476 844 152 OoM |1 11 1 3 OoM | 0 234 33.8 933 OoM |3.8 2.8
25(16.48 2571 OoM OoT - 1 11.6 OoM OoT - 0 348 OoM OoT - 4.7 OoM
26 |13.6 5705 - - - 1 13.5 - - - 0 385 - - - 5.1 -
271 29.1 12208 - - - 1 12.6 - - - 0 408 - - - 5.2 -
28 | 729 29867 - - - 1 14.7 - - - 0 471 - - - 54 -
29 | 120 OoT - - - 1 OoT - - - 0 OoT - - - 6 -
30| 239 - . . . 1 0 § . . . 6 .
Table 8: Computing the nucleolus of type IV games
n Time Iterations Pivots Subrout.
BFN DK SP SD PRA | BFN DK SP SD PRA |BFN DK SP SD PRA | BFN SP
10 | 0.007 0.014 0.008 0.007 0.054 |2 2.5 2 2.5 262 |6.6 15.1 335 424 184 |93 3.3
15/0.05 0.2 0.36 0.27 122 2 2.9 2 2.5 272 |89 274 T1.1 957 106 12.1 3.6
20217 114 207 191 OoM |[2.1 4.2 2.1 34 OoM |10.8 444 130 223 OoM |15.2 4.5
25| 102 563 OoM OoT - 2.9 4.2 OoM OoT - 16.8 69.3 OoM OoT - 23.1 OoM
26 | 188 1375 - - - 3.4 52 - - - 16.4 705 - - - 22.6 -
27 | 486 3024 - - - 3.6 54 - - - 19.7 783 - - - 31 -
28 | 3128 9648 - - - 3.7 6 - - - 19.3 106 - - - 26.3 -
29 | 4665 22760 - - - 3.5 61 - - - 21.3 89 - - - 32.1 -
30 | 8550 OoT - - - 2.8 QOoT - - - 18.9 OoT - - - 25.4 -

5.3 Limitations of our algorithm

We now study the bottleneck of the lexicographical descent algorithm in attempt to find games that
our proposed method struggles with. The performance of Algorithm 3 as the balancedness subroutine
of Algorithm 4 depends on the size of the tight set, so we now look for games with extremely large tight
sets. From a verification point of view we expect that the compact representation of tight sets carries an

improvement in these games, therefore also providing significant distinguishment between Algorithms

2 and 1 of [22].

For our purposes we adopt the United Nations (UN) Security Council voting mechanism into
weighted voting games with arbitrary size, where there are 5 big (veto) players and the rest (origi-

nally 10) are small. Formal description and results for the verification algorithms can be found in

31

Appendix H.3 of [22].

Our attempts to find a game our method struggles with were somewhat successful, meaning that
while we have a sizeable advantage in computation time over other algorithms for n < 26, this advantage
vanishes at n = 27, until eventually BFN runs out of memory for n = 28. This is due to the fact that
these games have extremely large tight sets, which severely affects BFN through Algorithm 3 with a
very large |T'| of exponential size, while by the nature of [19])’s method this does not affect DK.

It should be noted that finding the nucleolus of these games is trivial, i.e. one can easily find
analytically that the 5 veto players share the total payoff of 1 amongst themselves in an egalitarian way,
while all the small players get 0. Therefore anyone interested in finding the nucleolus of such a game
would never turn to any of the aforementioned algorithms. Instead, since these games are of a very
peculiar nature from an algorithmic perspective, they carry a theoretical interest from a computational
point of view. For games with structures like this, we expect further improvement by exploiting the
structure in a similar way to [20]. However, within the scope of this paper, we want to provide a

like-for-like comparison and hence leave further improvements for future research.

5.4 Comparing Kohlberg algorithms on different solutions

Finally, we consider further numerical tests of the various Kohlberg algorithms (Algorithms 1, 2 and
1 of [22]) that verify whether a particular solution of a game is the nucleolus or not. We test these
algorithms on four kinds of solutions: a random imputation, an element each of the least core and the
least-least core (i.e. T7 U Ty is Tp-balanced), and the nucleolus. Results for the latter were presented
above in Sections 5.1-5.2, while we cover the former three in Appendix H of [22].

Naturally, our expectations are that random imputations are probably in no relation with the nucle-
olus, therefore should be rejected straight away, while as we ‘go deeper’ into the least core, more effort
is needed to reject solutions that are not the nucleoli themselves.

As a general observation, our first expectation is met, regardless of the type of the game. Tables 1,
2, 7, 8 and 11 of [22] show that all of the algorithms reject random solutions without any significant
effort (and therefore we omit these cases from further analysis). Our other expectations seem to be
met as well, as we clearly notice increases in time, iterations and subroutine calls when moving towards
more involved solutions.

Another observation is that the original Kohlberg algorithm is again not able to solve instances with
more than 10 players as soon as we consider a solution from the least core, or more than 15 players and

the least-least core in case of the UN Security Council game cf. Tables 12-13 of [22]. Thus, as before,

32

algorithms IKA and IKAcr provide the only option for most games and the solutions to be verified.
Hence, in our further analysis we again restrict ourselves to comparing these two algorithms, with the

details provided in Appendix H of [22].

6 Conclusion

In this paper, we present both an Improved algorithmic approach for verifying whether a payoff vector
is the nucleolus and a novel constructive method for finding it. In the first part, we develop an Improved
Kohlberg criterion in which the number of iterations is bounded by at most (n — 1) instead of possibly
exponentially large in the original Kohlberg criterion. This also comes with introducing representative
sets for more efficient storage of the coalitions and a faster algorithm for checking balancedness. In
the second part, we develop a novel descent-based algorithm for computing the nucleolus that exploits
the new and Improved Kohlberg criterion. We compare the performance of our new algorithms with
existing methods and demonstrate their effectiveness through numerical testing with a number of games
proposed in the literature. Finally, we provide our algorithms, as well as the relevant literature’s in an
online open-source code repository, which we believe is an important step forward, that the cooperative

game theory community can build upon.

Acknowledgement

The authors would like to thank the Editor and the two anonymous reviewers for their valuable com-
ments and detailed suggestions on how to improve the manuscript. The first author acknowledges
that the research reported in this paper has been supported by the National Research, Development
and Innovation Fund (TUDFO/51757/2019-ITM, Thematic Excellence Program). The third author
acknowledges the funding support from the Engineering and Physical Sciences Research Council (grant

EP/P021042/1).

References

[1] D. Schmeidler. The nucleolus of a characteristic function game. SIAM Journal of Applied Mathe-
matics, 17(6):1163-1170, 1969. URL http://dx.doi.org/10.1137/0117107.

[2] T. Solymosi and T.E.S. Raghavan. An algorithm for finding the nucleolus of assignment games.
International Journal of Game Theory, 23(2):119-143, 1994.

33

http://dx.doi.org/10.1137/0117107

[3]

H. Hamers, F. Klijn, T. Solymosi, S. Tijs, and D. Vermeulen. On the nucleolus of neighbor games.
European Journal of Operational Research, 146(1):1-18, 2003.

T. Solymosi, T. Raghavan, and S. Tijs. Computing the nucleolus of cyclic permutation games.

European journal of operational research, 162(1):270-280, 2005.

J. Potters, H. Reijnierse, and A. Biswas. The nucleolus of balanced simple flow networks. Games

and Economic Behavior, 54(1):205-225, 2006.

X. Deng, Q. Fang, and X. Sun. Finding nucleolus of flow game. Journal of combinatorial optimiza-

tion, 18(1):64-86, 2009.

W. Kern and D. Paulusma. On the core and f-nucleolus of flow games. Mathematics of Operations

Research, 34(4):981-991, 2009.

E. Elkind, L.A. Goldberg, P. Goldberg, and M. Wooldridge. Computational complexity of weighted
threshold games. In Proceeding of the National Conference On Artificial Intelligence, volume 22,
page 718, 2007.

E. Kohlberg. On the nucleolus of a characteristic function game. SIAM Journal on Applied
Mathematics, 1(20):62-66, 1971.

A. Kopelowitz. Computation of the kernels of simple games and the nucleolus of n-person games.

Technical report, DTIC Document, 1967.

K. Kido. A modified kohlberg criterion and a nonlinear method to compute the nucleolus of a

cooperative game. Taiwanese Journal of Mathematics, pages 15681-1590, 2008.

E. Kohlberg. The nucleolus as a solution of a minimization problem. SIAM Journal on Applied

Mathematics, 23(1):34-39, 1972.
G. Owen. A note on the nucleolus. International Journal of Game Theory, 3(2):101-103, 1974.

J. Puerto and F. Perea. Finding the nucleolus of any n-person cooperative game by a single linear

program. Computers and Operations Research, 40(10):2308-2313, 2013.

M. Maschler, B. Peleg, and L.S. Shapley. Geometric properties of the kernel, nucleolus, and related

solution concepts. Mathematics of operations research, 4(4):303-338, 1979.

34

[16]

[17]

18]

[19]

[23]

[24]

[25]

[26]

[27]

[28]

J.K. Sankaran. On finding the nucleolus of an n-person cooperative game. International Journal

of Game Theory, 19(4):329-338, 1991.

T. Solymosi. On computing the nucleolus of cooperative games. Ph.D. Thesis, University of Illinois,

1993. doi: 10.13140/RG.2.2.28952.80642.

J.A.M. Potters, J.H. Reijnierse, and M. Ansing. Computing the nucleolus by solving a prolonged
simplex algorithm. Mathematics of operations research, 21(3):757-768, 1996.

J. Derks and J. Kuipers. Implementing the simplex method for computing the prenucleolus of

transferable utility games. 1997.

T. Nguyen and L. Thomas. Finding the nucleoli of large cooperative games. Furopean Journal of

Operational Research, 3(248):1078-1092, 2016.
M. Benedek. Nucleolus. https://github.com/blrzsvrzs/nucleolus, 2018.

M. Benedek, J. Fliege, and T.D. Nguyen. Finding and verifying the nucleolus of cooperative games
— technical report, 2019.

Daniel Granot, Frieda Granot, and Weiping R Zhu. Characterization sets for the nucleolus. Inter-

national Journal of Game Theory, 27(3):359-374, 1998.

T. Solymosi and B. Sziklai. Characterization sets for the nucleolus in balanced games. Operations

Research Letters, 44(4):520-524, 2016.

Hans Reijnierse and Jos Potters. The b-nucleolus of tu-games. Games and FEconomic Behavior, 24

(1-2):77-96, 1998.

M. Maschler, J.A.M. Potters, and S.H. Tijs. The general nucleolus and the reduced game property.
International Journal of Game Theory, 21(1):85-106, 1992.

Daniel Granot, Michael Maschler, Guillermo Owen, and Weiping R Zhu. The kernel/nucleolus of
a standard tree game. International Journal of Game Theory, 25(2):219-244, 1996.

J.H. Reijnierse. Games, graphs and algorithms. Ph.D. Thesis, Nijmegen, 1995.

35

https://github.com/blrzsvrzs/nucleolus

	Introduction
	Notations and Preliminaries
	Notations
	Algorithmic view of the Kohlberg criterion

	An improved Kohlberg criterion
	Bounding the number of iterations to (n-1)
	Reducing the sizes of the tight sets
	A fast algorithm for checking balancedness
	Nucleolus-defining coalitions and characterization sets

	Lexicographical descent algorithm for finding the nucleolus
	Finding improving directions
	Step size
	Lexicographical descent algorithm

	Numerical results
	Type I and II games
	Type III and IV games
	Limitations of our algorithm
	Comparing Kohlberg algorithms on different solutions

	Conclusion

