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Abstract
Changes in the global water cycle critically impact environmental, agricultural, and energy systems
relied upon by humanity (Jiménez Cisneros et al 2014 Climate Change 2014: Impacts, Adaptation, and
Vulnerability (Cambridge: Cambridge University Press)). Understanding recent water cycle change is
essential in constraining future projections. Warming-induced water cycle change is expected to
amplify the pattern of sea surface salinity (Durack et al 2012 Science 336 455–8). A puzzle has,
however, emerged. The surface salinity pattern has amplified by 5%–8% since the 1950s (Durack et al
2012 Science 336 455–8, Skliris et al 2014 Clim. Dyn. 43 709–36) while the water cycle is thought to
have amplified at close to half that rate (Durack et al 2012 Science 336 455–8, Skliris et al 2016 Sci. Rep.
6 752). This discrepancy is also replicated in climate projections of the 21st century (Durack et al 2012
Science 336 455–8). Using targeted numerical ocean model experiments we find that, while surface
water fluxes due to water cycle change and ice mass loss amplify the surface salinity pattern, ocean
warming exerts a substantial influence. Warming increases near-surface stratification, inhibiting the
decay of existing salinity contrasts and further amplifying surface salinity patterns. Observed ocean
warming can explain approximately half of observed surface salinity pattern changes from 1957–2016
with ice mass loss playing a minor role. Water cycle change of 3.6%± 2.1% per degree Celsius of
surface air temperature change is sufficient to explain the remaining observed salinity pattern change.

1. Introduction

Rates of rainfall and evaporation are tightly linked
to the vapour pressure of water, which increases by
approximately 7% per degree Celsius of warming, rais-
ing concerns global warming will substantially enhance
the hydrological cycle (Held and Soden 2006). Global
climate models project overall increases in evaporation
and precipitation, rainfall extremes, and the implied
net transport of moisture from net precipitation to
net evaporation zones (Durack et al 2012, Liu et al
2012, Lau et al 2013). At regional scale, increased
vapour pressure may be compensated by changes in
atmospheric circulation (Chadwick et al2013) and sub-
ject to influences on evaporation other than warming
(Laîné et al 2014).

Given limitations in the global network of rain-
fall measurements (Hegerl et al 2015) and substantial
discrepancies between atmospheric reanalysis prod-
ucts, model-based reconstructions of past rainfall and
water cycle change avoid proper scrutiny and projec-
tions of future change are highly uncertain (Schanze
et al 2010, Skliris et al 2014, Levang and Schmitt
2015, Grist et al 2016, Yu et al 2017). It has been
proposed that ocean salinity be used to estimate past
water cycle change via its imprint on surface salinity
patterns. Net evaporation increases salt concentration,
while net precipitation lowers salt concentration. Sur-
face salinity changes are indeed dramatic, with saline
regions of the globe becoming more saline and fresh
regions becoming more fresh (Durack and Wijffels
2010, figures 1(a)–(c)).
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Figure 1. (a) Mean fresh water flux out of the ocean from reanalysis data. Mean (b) and long term trend (c) in sea surface salinity from
observational analysis. Simulated sea surface salinity trend over 100 years in response to: (d) 1% per decade water cycle amplification;
(e) idealised water flux anomaly from ice mass loss (water flux anomalies are applied in green boxes); (f) 0.2 W m−2 per decade surface
heat flux anomaly; (g) combined water cycle amplification, heat flux and glacial mass loss forcing; and (h) sum of responses shown in
(d)–(f). The colour scale for panel (e) has been reduced to amplify the small signal in that experiment.

Because surface signals are rapidly advected by
ocean currents, salinity measurements at individual
locations are not akin to ‘rain gauges’ (Yu 2011).
Full depth salinity observations combined with a three
dimensional picture of ocean circulation could provide
strong constraints onwater cycle change. However sub-
surface observations remain sparse. Bulk measures of
global salinity change, such as salinity pattern amplifi-
cation (PA hereafter, see methods), can filter out and/
or integrate over some of the rearrangement effects
caused by variability inocean currents (Helm et al2010,

Durack et al 2012, Zika et al 2015). PA has been used
to infer historical trends in water cycle change (Durack
et al 2012, Skliris et al 2016). However, the relation-
ship between surface salinity pattern changes and water
cyclechange ispuzzling(VinogradovaandPonte2017).
While the surface salinity pattern has amplified by
5%–8% since 1950 (Durack et al 2012, Skliris et al
2014), changes in full depth salinity suggest a water
cycle change of only 2%–3% (Skliris et al 2016). Sur-
face salinity PA also exceeds amplification of the water
cycle in climate model projections (Durack et al 2012).
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To address the above puzzle, we undertake
perturbation experiments using a realistic global ocean
model. We find that, in addition to water cycle changes
and ice mass loss, surface ocean warming is a key and
previously overlooked process driving sea surface salin-
ity amplification. We then consider observations of
salinity pattern amplification, glacial melt and ocean
warming and use these to estimate historical water cycle
changes.

2. Data and methods

2.1. Observational data
Observed multi-decadal salinity changes are investi-
gated here using the UK Met Office Hadley Centre
Enhanced Ocean Data Assimilation and Climate
prediction (ENACT) archive version 4 (EN4, subver-
sion En4.2.2 (Good et al 2013)) objectively-analysed
monthly dataset covering the 1950–2016 period, at
1◦ × 1◦ horizontal grid and a vertical grid of 42 levels.

PAof sea surface salinity isdefinedas the slopeof the
linear regression by basin zonal averages of SSS change
versus the climatological mean SSS anomaly from the
global climatological sea surface salinity (Durack et al
2012).

Ocean heat content time series for the upper
2000 m between 1957 and 2016 are obtained from
data.nodc.noaa.gov and Boyer et al (2013). Although
standard error estimates are provided with these, we
add an uncertainty of 15% to be consistent with
uncertainties in long term ocean heat content change
recently reported (e.g. 288± 44 ZJ; ZJ = 1021 Joules)
for the period 1960–2015 (Cheng et al 2017). For the
ocean deeper than 2000 m and period 1991–2010 an
additional 33± 22 TW of ocean heat uptake has been
reported (Desbruyères et al 2016). To create a time
series for this deep component we assume there is a
linear trend in heat uptake from 1956 reaching 33 PW
in the year 2000 and increasing linearly there after.
The resulting ocean heat uptake between 1957 and
2016 is 345± 75 ZJ in close agreement with recent
estimates (e.g. 335± 70 ZJ for the period 1960–2010
(Cheng et al 2017)).

Church et al (2013) document estimates of fresh
water input into the ocean for the period 1993–2010
attributed to mass loss from glaciers and the Greenland
ice sheet (1.2± 0.4 mm yr−1), mass loss from Antarc-
tic ice sheets (0.27± 0.11 mm yr−1) and land water
storage changes (0.38± 0.12 mm yr−1). This fresh
water input totals 1.7± 0.4 mm yr−1 or 19± 5 mSv
(Sv = 106 m3 s−1). The contrast between estimates of
northern and southern hemisphere ice mass loss moti-
vated the 2:1 ratio of fresh water input into the North
AtlanticOceanandSouthernOceans respectively inour
ice mass loss numerical ocean modelling experiments
discussed below.

An estimate of the rate of multi-year sea-ice
mass loss of 3.1± 1.0 km decade−1 (9.8± 3.2 mSv)

is obtained from http://psc.apl.uw.edu/research/
projects/arctic-sea-ice-volume-anomaly/ and was
derived using the method described by Schweiger
et al (2011). For simplicity, we assume that fresh water
input from both land-ice mass loss and sea-ice mass
loss increased linearly from zero in 1957 to reported
values at the midpoint of their respective observational
period (i.e. 2001 for land-ice and 1998 for sea-ice),
increasing linearly thereafter.

2.2. Numerical ocean model perturbation experi-
ments
We use NEMO (Nucleus for European Modelling of
the Ocean) (Madec 2008) v3.5 in the global ORCA1
configuration. The model grid has a 1◦ longitudi-
nal resolution at the equator with refined meridional
resolution in the tropics transitioning to a tri-polar
isotropic mercator grid elsewhere. The model has 75 z
coordinate vertical levels increasing in thickness from
1 m at the surface to 250 m in the abyssal ocean. This
model configuration is the National Oceanography
Centre contribution to a recent model intercomparison
project (Danabasoglu et al 2014) where it is described
in further detail.

The control simulation starts from rest and is inte-
grated for a spin-up period of 400 years. It is then
continued for a further 100 years to allow comparison
with the control simulation conducted with explicit
flux forcing. Surface forcing is provided by CORE-2
normal year forcing (Large and Yeager 2009), inter-
faced to the model through CORE bulk formulae.
Ice is represented by the Louvain-la-Neuve ice model
version 2 (LIM2) sea ice model (Timmermann et al
2005). Climatological initial conditions for tempera-
ture and salinity were taken in January from PHC2.1
(Steele et al 2001) at high latitudes, MEDATLAS
(Jourdan et al 1998) in the Mediterranean, and else-
where using the World Ocean Atlas (Boyer et al 2013).

Drift in temperature and salinity is negligible below
1000 m (supplementary figures S1(a) and (b) avail-
able at stacks.iop.org/ERL/13/074036/mmedia). The
upper 1000 m shows a gradual warming, which sta-
bilises at 0.7 ◦C after around 200 years. There is a
small surface fresh bias in the upper 200 m, with a
saline bias subsurface between 500–800 m. Again these
appear stable after 200 years. The mean surface tem-
perature and salinity bias from the EN4 1980–1999
average (figures S1(c) and (d)) is minimal over most
of the global ocean. The largest temperature biases are
in the North Atlantic and Nordic Seas. Salinity biases
are largest in the Arctic. Rigorous tuning of NEMO
ORCA2, forced by the CORE2 normal year, identified
a persistent warm bias in the upper ocean which was
largest around 200 m depth, and spatial distributions
of surface T and S anomalies (similar to those in fig-
ure S1), suggesting that the biases may be inherent to
the forcing, arise from the use of the EN4 climatology,
or are structural to NEMO (Williamson et al 2017).
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Surface fluxes for the decade spanning years 391
and 400 of the spin-up integration, including those at
the base of the ice (surface of the liquid ocean) and
those due to the weak salinity restoring, were stored
at 6 hourly intervals. The model was then adjusted to
remove the interactive ice model and to read surface
fluxes directly instead of computing them through the
CORE bulk formulae. A 100 year explicit flux forced
control experiment, starting at year 391, was then con-
ducted using 10 repeat cycles of this decade of explicit
surface fluxes. Although the effect of surface salinity
restoring is captured in the saved fluxes from the spin-
up, no salinity restoring is used throughout the 100 year
control and perturbation experiments.

The difference in drift between the bulk formu-
lae forced and explicit flux forced control simulations
is small, with differences in global mean temperature
and salinity both in the region of two hundredths of a
unit (degree/pss) (figure S1(e) and (f)). This shows the
model to be in a stable state close to equilibrium, and
forms the baseline on which to assess heat and water
flux anomaly experiments.

Flux anomaly patterns are introduced temporally
in two ways: as a step-increase with respect to time (e.g.
following Marshall et al 2015, Gregory et al 2016) and
as a linear trend.

Three types of perturbation patterns were added to
the saved fluxes to force perturbation experiments: the
first was a global amplification of the mean water flux
pattern (10% step change and 1%/decade linear trend);
the second was a globally constant heat flux anomaly
(2 W m−2 step change and 0.2 W m−2 decade−1 linear
trend); and the third was an idealised glacial and sea-
ice mass loss fresh water flux two thirds of which is
distributed over the sub-polar North Atlantic between
50◦N and 70◦N (i.e. following Stouffer et al 2006) and
one third of which was evenly distributed south of 50◦S
(the total flux 0.03 Sv for step change experiment and
0.003 Sv decade−1 in the linear trend case).

Our forcing anomaly patterns for water fluxes, sur-
face heat fluxes and glacial and sea-ice mass loss are
highly idealised and simplify their complex dynam-
ics. Climate model inter-comparison project (CMIP5)
experiments with one per cent per year atmospheric
CO2 radiative forcing increases, show water flux pat-
tern changes qualitatively similar to an amplification
of the mean water flux pattern (Gregory et al 2016).
Warming patterns tend to be associated with larger
downward heat fluxes at high latitudes and weaker
downward (or even upward heat fluxes) at low lati-
tudes (Gregory et al 2016). The latter is likely closely
coupled to an individual model’s circulation change
(Marshall et al 2015). We consider our uniform heat
flux approach to be useful since it does not assume
or force particular ocean circulation changes and is
straightforward to reproduce. To our knowledge, there
is no consensus on how high latitude ice mass loss
will be distributed as the climate warms. Most likely,
some will remain near coasts and be influenced by

boundarycurrentswhilea substantial fractionwill likely
be distributed further offshore via iceberg drift and
melting, as in the present day (Martin and Adcroft
2010, Marsh et al 2015). We have chosen our ice
mass loss flux strategy so as to maintain simplicity and
consistency with other model studies.

In addition we have run an experiment with all
three forcings applied (in the linear-trend forcing cases)
to the same experiments to assess the linearity of
the responses. All data from perturbation experiments
shown in the manuscript are deviations from the con-
trol experiment.

The above experimental design was inspired by
Marshall et al (2015). Our approach differs from theirs
in the following ways however: (i) in addition to the
surface heat flux we also perturb fresh water fluxes; (ii)
we do not include any feedbacks between the ocean
state and the surface flux (both heat and fresh water
flues are explicitly controlled); and (iii) 6 hourly data
were used for the explicit flux forced experiments rather
than daily data.

3. Results

In water cycle experiments, 1% per decade amplifica-
tion over 100 years leads to simulated surface salinity
changes (figure 1(d)) that are qualitatively consistent
with the observed pattern of change (figure 1(c)). Some
differences can be identified, such as freshening in the
sub-polar North Atlantic in our model—which is not
seen in observations. This region does not appear to
conform to the wet gets wetter dry gets dryer paradigm
in observations. Some re-analysis products suggest a
large increase in net evaporation over the whole North
Atlantic and even a reduction in net precipitation over
the North Atlantic sub-polar region (Skliris et al 2014).
Such changes have been associated with Atlantic Mul-
tidecadal Variability (Zhang 2017) which we do not
account for in our forcing anomalies.

Idealised ice mass loss experiments apply a fresh-
ening in the sub-polar North Atlantic (0.002 Sv per
decade) and Southern Ocean (0.001 Sv per decade).
These led to surface freshening at high latitudes, in
particular the North Atlantic, with limited changes at
lower latitudes (figure 1(e)), the latter likely due to
teleconnected changes in ocean circulation.

In warming experiments with surface heat flux
anomalies increasing by 0.2 W m−2 per decade, sur-
face salinity changes after 100 years (figure 1(f)) are
also qualitatively similar to that in the water cycle
change experiments. Differences are most prominent
in the equatorial Pacific where water cycle amplifica-
tion drives freshening, while warming leads to only a
muted response. Furthermore some local changes,
such the a patch of freshening at the centre of the
South Atlantic, are likely related to a circulation
responseunique to thismodel configuration and exper-
imental set-up.
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Figure 2. Response of surface salinity pattern amplification (PA; %) to surface forcing changes in numerical ocean model experiments.
Shown are responses to amplified water cycle (cyan), uniform anomalous ocean warming (red) and fresh water input from ice mass
loss distributed over the sub-polar North Atlantic and Southern Ocean (blue). Solid lines show experiments where fluxes increase
linearly with time and dashed lines experiments where fluxes have an abrupt step change. Also shown is the response of the model to
the sum of all forcing changes (linear increases; solid grey) and the sum of forcing responses when simulated independently (dotted
grey).

We now compare PA per experiment (figure 2).
A water cycle trend of 1% per decade yields PA of
5.8% after 100 years. A 10% step change in the water
cycle leads to a rapid initial PA adjustment approaching
quasi-equilibrium after 40 years at 5.9%. A linear trend
in ice mass loss of 0.003 Sv decade−1 leads to a linear
change in PA reaching 0.6% after 100 years, while a
step change of 0.03 Sv per (sub-polar North Atlantic:
0.02 Sv; Southern Ocean: 0.01 Sv) leads to PA of 0.8%
which plateaus after 40 years.

Following heat flux linear trends of 0.2 W m−2 per
decade (figure 2), PA reaches 7.3% after 100 years, indi-
cating considerable PA response to warming. Under a
step change warming of 2 W m−2, PA increases mono-
tonically throughout the century, reaching 13.4% at
year 100.

The response of surface salinity to these different
forcing anomalies is approximately linear. A simulation
combining water cycle change, ice mass loss and sur-
face warming forcing anomalies yields approximately
the same surface salinity response (figures 1(g) and
2) as the sum of the individual simulated responses
to each forcing anomaly (figures 1(h) and 2). There
are regions where the response to warming and fresh
water fluxes are not linear. West of Australia is a
prime example where a wave like pattern of salinity
change is seen. These patterns differ from experiment
to experiment and are likely associated with nonlinear
circulation processes (such as variability of the Leeuwin

Current and meanders of Antarctic Circumpolar
Current fronts) which are sensitive to differences in
initial and boundary conditions.

The perturbation experiments suggest that, while
the surface salinity pattern amplifies with the water
cycle, the ratio of PA to water cycle amplification on
multi-decadal timescales is less than unity (in terms
of % change), in the absence of other forcing anoma-
lies. Ocean warming however drives substantial salinity
pattern amplification.

4. Discussion

We now address two outstanding questions: (i) by
what mechanism does ocean warming lead to PA?; and
(ii) can historical ocean warming plausibly explain a
substantial portion of observed PA?

4.1. How does ocean warming lead to salinity pattern
amplification?
To address this question, we employ a method based
on the water mass framework. Specifically we will con-
sider changes in the distribution of ocean volume as
a function of salinity (Zika et al 2015). The volume
of water contained between surfaces of constant salin-
ity only varies if there are changes in surface water
fluxes or changes in mixing. The latter acts in a fairly
predictable way, always mixing salt from high to low
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salinity regions. In contrast surface salinity is influ-
enced by ocean circulation changes and variability and
the effects of ocean mixing on surface salinity are not
as straightforward (Yu 2011).

The water mass framework permits a balance to
be defined between the rate of change of the mean
deviation of salinity over the whole ocean (W; the
average deviation of salinity, S, from its global mean,
�̄� ) variations in the water cycle F𝑤 , which transports
fresh water from saline regions (where 𝑆 > �̄�) to fresh
regions (where 𝑆 < �̄�) and a diffusive flux D which
transports salt back from saline to fresh regions (Zika
et al 2015). This balance is given by

d𝑊
d𝑡

= 2�̄�
𝑉0

𝐹𝑤 − 2
𝑉0

𝐷 (1)

where V0 is the total volume of the ocean. The above
equation is exact in the Boussinesq approximation and
when there is no net fresh water flux into or out of
the ocean (i.e. the total volume of the ocean remains
constant) which is the case in our experiments where
no water cycle or water flux change is applied. In
our control and linearly increasing heat flux anomaly
experiments �̄� = 34.72pss (this value does not change
with the perturbation since the total fresh water flux
is identical in both runs). In the final decade of the
control experiment W = 0.18 pss and in the pertur-
bation W increases by = 0.0021 pss. Although the
geographical pattern of water fluxes do not change
between these two runs, the pattern of salinity does
change, implying different salinity layers are exposed
to different fresh water fluxes and hence different rates
of fresh water transport from saline to fresh regions.
This leads to an increase in F𝑤 of 11 mSv between
the control and perturbation.

Using (1) and changes in W and F𝑤 we
infer a reduction in D of 8.45× 102 kg s−1 between
the control and linearly increasing heat flux experi-
ment. This is equivalent to a fresh water flux anomaly
of 24 mSv from saline to fresh regions (i.e. a reduction
in the mean fresh water flux due to mixing which is
from fresh to saline waters). This change in diffusive
flux due to the warming anomaly has the same effect
on the full depth salinity contrast (i.e. not only the sur-
face salinity pattern) as an increase in the water cycle of
approximately 1% on average over the experiment.

We hypothesise that the reduction in the diffusive
flux of fresh water from fresh to saline regions in our
warming experiments is at least in part explained by
changes in near-surface stratification. Surface warm-
ing (figure 3(a)) changes surface stratification and thus
increases the stability of surface layers. More stable
surface stratification inhibits the formation of deep
mixed layers and isolates surface salinity anomalies
from dilution with the ocean interior (Capotondi et al
2012). This hypothesis is corroborated by generally
shallower mixed layer depths in warming experiments
(figure 3(c)).

Salinity can also strongly influence ocean stratifica-
tion (de Boyer Montégut et al 2007). However, in our
simulations we find that warming is a far stronger driver
of stratification change than water fluxes. For example
with and without water flux changes (holding other
forcingpatternsfixed)we seenear negligible differences
in surface temperature changes between simulations.
The North Atlantic is an exception. There high lati-
tude freshening causes weakening of the AMOC and
consequent SST changes (not shown).

4.2. How does ocean warming affect estimates of
water cycle change?
Here to attribute observed salinity PA to the three dis-
cussed processes (water cycle change, ice mass loss and
ocean warming), we use a linear transient response
approach (Hasselmann et al1993). Using this approach
we can diagnose the time-dependent response of a
particular variable (such as PA) based on the time-
dependent change in a particular forcing (water cycle
change, ice mass loss and warming), using the time-
dependent response of the system to step changes in
those forcings.

If RPA is the linear transient response (LTR) of PA
to a step increase in a specified forcing (F; e.g. the water
cycle), then the linear response of PA to time-variable
forcing (F(t)) follows as:

PA(𝑡) = ∫
𝑡

0
𝑅PA(𝑡 − 𝑡

′) d𝐹
d𝑡′

d𝑡′. (2)

Our step change perturbation experiments allow us
to diagnose RPA for each forcing: water cycle change;
ice mass loss; and surface warming.

A fundamental assumption in the linear transient
response approach is that the relationship between
forcing effects and their response is linear. We assess
this assumption by comparing the linear trend forc-
ing experiment results to predictions made by LTR
whichexploit output fromthe step change experiments.
That is, we are asking how well can we predict the lin-
ear trend response given output from the step change
experiments.

Figure S2 shows PA between each linear trend
experiment and its LTR reconstruction. The period of
interest for our observational reconstruction is between
1958 and 2017 so we will focus on validation of 60 year
reconstructions. After 60 years PA for the water cycle
amplification experiment matches the LTR reconstruc-
tion to within a factor of 0.03 (i.e. PA is 3.22% for the
simulation and 3.31% based on LTR). For the ice melt
case the difference is a factor 0.1 and in the warming
case a factor of 0.12. For all the forcings combined the
discrepancy is less than a factor of 0.11.

Using the time series of ocean heat content change
discussed in section 2.1, we estimate that ocean warm-
ing resulted in a contribution to PA of 2.21%± 0.46%
between 1958 and 2016 (figure 4(b)). Estimates of fresh
water input into theocean, comprisingboth total glacial
melt (mass input into the ocean from melting land
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Figure 3. (a) Trend in sea surface temperature since 1950 from observational analysis. Simulated trend over 100 years of (b) sea surface
temperature and (c) mixed layer depth in response to an 0.2 W m−2 per decade surface heat flux anomaly.

glaciers and ice sheets) and melting of multi-year sea
ice, suggest a contribution to PA of 0.75%± 0.14% up
to 2016 (figure 4(b)).

We have estimated PA based on the most recent
objectively analysed hydrographic observations for
periods 1957 to: 1985; 1995; 2005 and 2016. Between
1957 and 2016, the surface salinity pattern amplified
by 5%± 1.1%. Having inferred the contributions to
PA from surface ocean warming and ice mass loss, we

subtract these from the observed PA up to 2016. The
resulting residual PA is 2.04%± 1.2% over 1957–2016
(figure 4(b)), which we attribute to water cycle change.

Observational estimates of water cycle change are
unreliable (Hegerl et al 2015). Model studies, how-
ever, have consistently suggested a tight relationship
between measures of water cycle change (e.g. global
mean precipitation, meridional moisture transport,
etc) and global mean surface air temperature change
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Figure 4. (a) Global mean surface air temperature change (ΔSAT) relative to the period 1880–1920 (cyan); five-year running mean
global ocean heat content anomaly relative to 1957 (red); ice mass loss from glaciers (blue) and sea-ice (light gray). (b) Proposed
budget of contributions to salinity pattern amplification including surface warming (red), idealised ice mass loss (blue) and water cycle
amplification related linearly to surface air temperature change (cyan). Shown in grey is the sum of these contributions and in black
observationally based linear trend estimates (1957–1987, 1957–1995, 1957–2005, 1957–2016).

(ΔSAT; see Kirtman et al (2013) and references
therein). We thus reduce the problem of quantifying
water cycle change to a single multiplying factor for
ΔSAT. We use NASA air temperature data (Hansen
et al 2010) and note that uncertainties in global air
temperature are negligible compared to the range of
possible water cycle to SAT amplification factors. Com-
bining the transient linear response approach and
the water cycle forced PA inferred above and the
ΔSAT time-series we infer an amplification factor of
3.6%± 2.1% per degree Celsius ΔSAT.

Our 60 year PA estimate based on EN4 is weaker
than 50 year estimates from recent authors (5.4%
Boyer et al (2005), 5.5% Hosoda et al (2009), and
8% Durack et al (2012)). Linearly extrapolating those
three estimates to 60 years and weighting them equally
with our EN4 based estimate yields PA of 6.9%± 1.9%.
Subtracting the effect of ocean warming and ice mass
loss, as above, the implied amplification factor is

6.9± 3.6%/◦C. Analysis by Durack et al (2012) was
distinct in that trends estimated in regions where
data coverage was substantial were extrapolated to
regions where data coverage was not sufficient to
discern a trend. Conversely in other analyses, which
used optimal interpolation or objective analysis, trends
were only estimated, and therefore contributed to PA,
close to regions where observations supported a trend.
Excluding Durack et al’s estimate yields an amplifi-
cation factor of 5.4± 0.18%/◦C and considering only
their estimate and reported uncertainty (0.7%) yields
an amplification of 11.6± 1.7%/◦C.

5. Conclusions

Surface salinity observations have previously been put
forward as a means to estimate past water cycle ampli-
fication and monitor ongoing variability and change
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(Schmitt 2008, Kerr et al 2010). Our analysis suggests
a strong influence of ocean warming on the evolution
of surface salinity. In numerical simulations with
anomalous surface warming we have shown that the
surface salinity pattern amplifies substantially. This
change is coincident with a reduction in the diffu-
sive flux of fresh water from fresh to saline waters
and reduced mixed layer depths. There is potential
for water cycle changes to be monitored using surface
salinity observations if these surface warming effects are
appropriately accounted for.

Combining both numerical model experiments
and observational analysis up to 2016 we report that
approximately one third of observed salinity pattern
amplification can be explained by ocean warming and
one sixth by ice mass loss. The remaining signal can be
attributed toawater cycle amplificationof 3.6% ± 2.1%
per degree Celsius of global surface air temperature
rise.
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