The University of Southampton
University of Southampton Institutional Repository

Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets

Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets
Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets
Actual land evapotranspiration (ET) is a key component of the global hydrological cycle and an essential variable determining the evolution of hydrological extreme events under different climate change scenarios. However, recently available ET products show persistent uncertainties that are impeding a precise attribution of human-induced climate change. Here, we aim at comparing a range of independent global monthly land ET estimates with historical model simulations from the global water, agriculture, and biomes sectors participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). Among the independent estimates, we use the EartH2Observe Tier-1 dataset (E2O), two commonly used reanalyses, a pre-compiled ensemble product (LandFlux-EVAL), and an updated collection of recently published datasets that algorithmically derive ET from observations or observations-based estimates (diagnostic datasets). A cluster analysis is applied in order to identify spatio-temporal differences among all datasets and to thus identify factors that dominate overall uncertainties. The clustering is controlled by several factors including the model choice, the meteorological forcing used to drive the assessed models, the data category (models participating in the different sectors of ISIMIP2a, E2O models, diagnostic estimates, reanalysis-based estimates or composite products), the ET scheme, and the number of soil layers in the models. By using these factors to explain spatial and spatio-temporal variabilities in ET, we find that the model choice mostly dominates (24%–40% of variance explained), except for spatio-temporal patterns of total ET, where the forcing explains the largest fraction of the variance (29%). The most dominant clusters of datasets are further compared with individual diagnostic and reanalysis-based estimates to assess their representation of selected heat waves and droughts in the Great Plains, Central Europe and western Russia. Although most of the ET estimates capture these extreme events, the generally large spread among the entire ensemble indicates substantial uncertainties.
1748-9326
1-20
Wartenburger, Richard
d501065f-45a0-4687-bd27-9f646cff9fd9
Seneviratne, Sonia I.
1478d543-9dd8-4247-a416-cf51c2114b20
Hirschi, Martin
08145859-106d-4f95-87ec-65f244166213
Chang, Jinfeng
e42f4cd5-9247-495d-a87e-08f5fc478cf6
Ciais, Philippe
3cf3408c-b15a-46db-89b4-5388b0178da8
Deryng, Delphine
c0767fa0-16e7-4eac-81bc-77412f2441da
Elliott, Joshua
d81c3c45-e146-43e4-8242-81d68993088b
Folberth, Christian
8aa0f4fc-ba17-4f97-93a2-12c654fe0d56
Gosling, Simon N.
327615f9-814d-4b64-9809-d8b4496ac1ca
Gudmundsson, Lukas
c60dc60e-5853-4061-8487-6ef8cc495c2b
Henrot, Alexandra-jane
858a32e2-12c4-4efb-aa5a-4cdce0caf6d9
Hickler, Thomas
ee4ef9a1-5121-4f6e-a5d7-b5ee7339a1cb
Ito, Akihiko
3151d37f-0de9-4210-9709-1b999a7809aa
Khabarov, Nikolay
4f41d741-97bd-4d62-b07c-581b109710e6
Kim, Hyungjun
0f108474-0053-4cf8-8f29-5b91435024b6
Leng, Guoyong
35b4db63-2601-4b2e-963f-ae0a0ac9f595
Liu, Junguo
8d8eb4dc-9e9d-444e-aa41-aa990ea270b3
Liu, Xingcai
8053b8fd-b8cc-4273-8181-6273b869f3af
Masaki, Yoshimitsu
4bc90e21-cb74-4362-a8c0-379d3955137a
Morfopoulos, Catherine
2f3d5fd1-0c16-4265-bb9c-2758bada7299
Müller, Christoph
be010283-56d5-4b34-b05c-a95747a58d20
Schmied, Hannes Müller
b193b411-a044-4b48-9e7c-7e5971d832db
Nishina, Kazuya
0949d383-c49f-445b-9707-d4abec1e74e4
Orth, Rene
8402264b-d198-49f8-9cb3-fecaf2a5645f
Pokhrel, Yadu
9ef46f32-2dcb-451e-9fbb-d6a532c94677
Pugh, Thomas A.M.
c9096108-2539-420e-a7f2-746591715ed1
Satoh, Yusuke
051d0477-0bf8-4e31-a4b4-aa46a7f0af8e
Schaphoff, Sibyll
4639fb1d-3455-4cde-8ed9-3a440ff475d7
Schmid, Erwin
7f00781a-5838-4721-8305-ea17698060b3
Sheffield, Justin
dd66575b-a4dc-4190-ad95-df2d6aaaaa6b
Stacke, Tobias
ef78557a-1980-4788-bd79-ba7c81ee92f2
Steinkamp, Joerg
26fe789d-ea5d-486f-9dfc-1534e6f7a5d6
Tang, Qiuhong
3cf6b95f-58a7-41e4-a7ad-15d929318402
Thiery, Wim
33194552-e305-42f3-bea2-9d4e9c8b8b4f
Wada, Yoshihide
682ed230-5586-496a-b105-ee06ac3d6a8b
Wang, Xuhui
1ef81bd8-f910-4768-8476-10a953deb16d
Weedon, Graham P
bec08379-0210-428c-8acf-820b3f5b9c4d
Yang, Hong
2ea2c94c-8d28-4555-98f9-59b615b0cee7
Zhou, Tian
1c1dfb73-40c5-4863-8b38-5e8992f2a710
Wartenburger, Richard
d501065f-45a0-4687-bd27-9f646cff9fd9
Seneviratne, Sonia I.
1478d543-9dd8-4247-a416-cf51c2114b20
Hirschi, Martin
08145859-106d-4f95-87ec-65f244166213
Chang, Jinfeng
e42f4cd5-9247-495d-a87e-08f5fc478cf6
Ciais, Philippe
3cf3408c-b15a-46db-89b4-5388b0178da8
Deryng, Delphine
c0767fa0-16e7-4eac-81bc-77412f2441da
Elliott, Joshua
d81c3c45-e146-43e4-8242-81d68993088b
Folberth, Christian
8aa0f4fc-ba17-4f97-93a2-12c654fe0d56
Gosling, Simon N.
327615f9-814d-4b64-9809-d8b4496ac1ca
Gudmundsson, Lukas
c60dc60e-5853-4061-8487-6ef8cc495c2b
Henrot, Alexandra-jane
858a32e2-12c4-4efb-aa5a-4cdce0caf6d9
Hickler, Thomas
ee4ef9a1-5121-4f6e-a5d7-b5ee7339a1cb
Ito, Akihiko
3151d37f-0de9-4210-9709-1b999a7809aa
Khabarov, Nikolay
4f41d741-97bd-4d62-b07c-581b109710e6
Kim, Hyungjun
0f108474-0053-4cf8-8f29-5b91435024b6
Leng, Guoyong
35b4db63-2601-4b2e-963f-ae0a0ac9f595
Liu, Junguo
8d8eb4dc-9e9d-444e-aa41-aa990ea270b3
Liu, Xingcai
8053b8fd-b8cc-4273-8181-6273b869f3af
Masaki, Yoshimitsu
4bc90e21-cb74-4362-a8c0-379d3955137a
Morfopoulos, Catherine
2f3d5fd1-0c16-4265-bb9c-2758bada7299
Müller, Christoph
be010283-56d5-4b34-b05c-a95747a58d20
Schmied, Hannes Müller
b193b411-a044-4b48-9e7c-7e5971d832db
Nishina, Kazuya
0949d383-c49f-445b-9707-d4abec1e74e4
Orth, Rene
8402264b-d198-49f8-9cb3-fecaf2a5645f
Pokhrel, Yadu
9ef46f32-2dcb-451e-9fbb-d6a532c94677
Pugh, Thomas A.M.
c9096108-2539-420e-a7f2-746591715ed1
Satoh, Yusuke
051d0477-0bf8-4e31-a4b4-aa46a7f0af8e
Schaphoff, Sibyll
4639fb1d-3455-4cde-8ed9-3a440ff475d7
Schmid, Erwin
7f00781a-5838-4721-8305-ea17698060b3
Sheffield, Justin
dd66575b-a4dc-4190-ad95-df2d6aaaaa6b
Stacke, Tobias
ef78557a-1980-4788-bd79-ba7c81ee92f2
Steinkamp, Joerg
26fe789d-ea5d-486f-9dfc-1534e6f7a5d6
Tang, Qiuhong
3cf6b95f-58a7-41e4-a7ad-15d929318402
Thiery, Wim
33194552-e305-42f3-bea2-9d4e9c8b8b4f
Wada, Yoshihide
682ed230-5586-496a-b105-ee06ac3d6a8b
Wang, Xuhui
1ef81bd8-f910-4768-8476-10a953deb16d
Weedon, Graham P
bec08379-0210-428c-8acf-820b3f5b9c4d
Yang, Hong
2ea2c94c-8d28-4555-98f9-59b615b0cee7
Zhou, Tian
1c1dfb73-40c5-4863-8b38-5e8992f2a710

Wartenburger, Richard, Seneviratne, Sonia I., Hirschi, Martin, Chang, Jinfeng, Ciais, Philippe, Deryng, Delphine, Elliott, Joshua, Folberth, Christian, Gosling, Simon N., Gudmundsson, Lukas, Henrot, Alexandra-jane, Hickler, Thomas, Ito, Akihiko, Khabarov, Nikolay, Kim, Hyungjun, Leng, Guoyong, Liu, Junguo, Liu, Xingcai, Masaki, Yoshimitsu, Morfopoulos, Catherine, Müller, Christoph, Schmied, Hannes Müller, Nishina, Kazuya, Orth, Rene, Pokhrel, Yadu, Pugh, Thomas A.M., Satoh, Yusuke, Schaphoff, Sibyll, Schmid, Erwin, Sheffield, Justin, Stacke, Tobias, Steinkamp, Joerg, Tang, Qiuhong, Thiery, Wim, Wada, Yoshihide, Wang, Xuhui, Weedon, Graham P, Yang, Hong and Zhou, Tian (2018) Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 13 (7), 1-20, [075001]. (doi:10.1088/1748-9326/aac4bb).

Record type: Article

Abstract

Actual land evapotranspiration (ET) is a key component of the global hydrological cycle and an essential variable determining the evolution of hydrological extreme events under different climate change scenarios. However, recently available ET products show persistent uncertainties that are impeding a precise attribution of human-induced climate change. Here, we aim at comparing a range of independent global monthly land ET estimates with historical model simulations from the global water, agriculture, and biomes sectors participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). Among the independent estimates, we use the EartH2Observe Tier-1 dataset (E2O), two commonly used reanalyses, a pre-compiled ensemble product (LandFlux-EVAL), and an updated collection of recently published datasets that algorithmically derive ET from observations or observations-based estimates (diagnostic datasets). A cluster analysis is applied in order to identify spatio-temporal differences among all datasets and to thus identify factors that dominate overall uncertainties. The clustering is controlled by several factors including the model choice, the meteorological forcing used to drive the assessed models, the data category (models participating in the different sectors of ISIMIP2a, E2O models, diagnostic estimates, reanalysis-based estimates or composite products), the ET scheme, and the number of soil layers in the models. By using these factors to explain spatial and spatio-temporal variabilities in ET, we find that the model choice mostly dominates (24%–40% of variance explained), except for spatio-temporal patterns of total ET, where the forcing explains the largest fraction of the variance (29%). The most dominant clusters of datasets are further compared with individual diagnostic and reanalysis-based estimates to assess their representation of selected heat waves and droughts in the Great Plains, Central Europe and western Russia. Although most of the ET estimates capture these extreme events, the generally large spread among the entire ensemble indicates substantial uncertainties.

Text
Wartenburger 2018 Environ. Res. Lett. 13 075001 - Version of Record
Available under License Creative Commons Attribution.
Download (10MB)

More information

Accepted/In Press date: 15 May 2018
e-pub ahead of print date: 21 June 2018
Published date: 1 July 2018

Identifiers

Local EPrints ID: 426611
URI: http://eprints.soton.ac.uk/id/eprint/426611
ISSN: 1748-9326
PURE UUID: 14cd0450-7057-48d3-803b-ff810800c935
ORCID for Justin Sheffield: ORCID iD orcid.org/0000-0003-2400-0630

Catalogue record

Date deposited: 03 Dec 2018 17:30
Last modified: 16 Mar 2024 04:23

Export record

Altmetrics

Contributors

Author: Richard Wartenburger
Author: Sonia I. Seneviratne
Author: Martin Hirschi
Author: Jinfeng Chang
Author: Philippe Ciais
Author: Delphine Deryng
Author: Joshua Elliott
Author: Christian Folberth
Author: Simon N. Gosling
Author: Lukas Gudmundsson
Author: Alexandra-jane Henrot
Author: Thomas Hickler
Author: Akihiko Ito
Author: Nikolay Khabarov
Author: Hyungjun Kim
Author: Guoyong Leng
Author: Junguo Liu
Author: Xingcai Liu
Author: Yoshimitsu Masaki
Author: Catherine Morfopoulos
Author: Christoph Müller
Author: Hannes Müller Schmied
Author: Kazuya Nishina
Author: Rene Orth
Author: Yadu Pokhrel
Author: Thomas A.M. Pugh
Author: Yusuke Satoh
Author: Sibyll Schaphoff
Author: Erwin Schmid
Author: Tobias Stacke
Author: Joerg Steinkamp
Author: Qiuhong Tang
Author: Wim Thiery
Author: Yoshihide Wada
Author: Xuhui Wang
Author: Graham P Weedon
Author: Hong Yang
Author: Tian Zhou

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×