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Abstract—Modern processors use branch prediction as an
optimization to improve processor performance. Predictors
have become larger and increasingly more sophisticated in
order to achieve higher accuracies which are needed in high
performance cores. However, branch prediction can also be a
source of side channel exploits, as one context can deliberately
change the branch predictor state and alter the instruction
flow of another context. Current mitigation techniques either
sacrifice performance for security, or fail to guarantee isolation
when retaining the accuracy. Achieving both has proven to be
challenging.

In this work we address this by, (1) introducing the notions of
steady-state and transient branch predictor accuracy, and (2)
showing that current predictors increase their misprediction
rate by as much as 90% on average when forced to flush
branch prediction state to remain secure. To solve this, (3) we
introduce the branch retention buffer, a novel mechanism that
partitions only the most useful branch predictor components
to isolate separate contexts. Our mechanism makes thread
isolation practical, as it stops the predictor from executing
cold with little if any added area and no warm-up overheads.
At the same time our results show that, compared to the state-
of-the-art, average misprediction rates are reduced by 15-20%
without increasing area, leading to a 2% performance increase.

Keywords-

I. INTRODUCTION

Branch prediction contributes to high performance in
modern processors with deep pipelines by enabling accurate
speculation. Since the inception of the idea of speculative
execution, the improvement has gradually increased overall
processor performance, as Branch Predictor (BP) designs
have steadily become more sophisticated and more complex.

Initially, when transistor scaling was increasing and
pipelines where becoming increasingly deeper, accuracy was
the dominant factor for predictor design. However, as power
became a limiting factor, designs had to take into account
more constraints. Predictors kept improving accuracy as their
primary goal, but also had to consider power and area.

Systems in general have become significantly more com-
plex today, featuring multiple types of cores and accelerators
on a single die. Software, taking advantage of the aforemen-
tioned improvements, has also changed enabling more ap-
plications to be handled simultaneously. Applications today
are often multi-threaded and systems context switch (CS)
frequently between processes.
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Figure 1: Comparison of TAGE and Perceptron with
our predictor that preserves a minimal state between
flushes. This can significantly reduce mispredictions due
to context switches that clear the state for security
purposes.

However, recently discovered vulnerabilities in micro-
architecture permit side-channel attacks that manipulate the
branch predictor [1]. For many of these exploits context
switching is a critical enabler. These vulnerabilities are
difficult to overcome without significantly degrading branch
predictor accuracy and system performance today.

Using narrow, “hot” fixes for separate security issues that
use side-channel attacks does not guarantee that systems are
safe from newer variations, whereas scrubbing the entire
branch predictor state as a “heavy” approach can have a
significant impact on performance. Addressing vulnerabili-
ties in software after they have been found is often worse
as the performance drop when retrofitting security into a
vulnerable implementation is much higher.

The above observations motivate us to design future sys-
tems that take into account one additional design constraint,
that of being able to securely speculate without allowing
information to leak. Duplicating or partitioning BP state to
satisfy isolation is costly in terms of area. Flushing, on the



other hand, inevitably causes frequent operation disruption
of the branch predictor and inhibits effective warm-up. This
can be described by distinguishing between steady-state and
transient predictor accuracy as shown in Figure 1.

To prevent the aforementioned branch predictor side-
channels our proposal guarantees branch predictor state iso-
lation efficiently, without degrading performance. In detail,
our contributions are:

• We introduce the notion of transient prediction accu-
racy, its relevance to designing future side-channel free
branch predictors, and show that it differs from the
steady-state accuracy, with which designs are evaluated
today.

• We show that current state-of-the-art branch predictors
perform notably worse in transient state when flushed
for security. We perform an in-depth analysis of the
TAGE predictor[2], and show how large components
do not contribute to the prediction accuracy under these
new circumstances.

• To solve this, we propose the Branch Retention Buffer
(BRB), a novel mechanism that reduces cold-start
effects by preserving partial branch predictor state
per context. Compared to state-of-the-art, our design
achieves the same high accuracy at steady-state, im-
proved transient accuracy and ensures branch predictor
state isolation without increasing the overall area.

II. BACKGROUND

Due to speculative execution, branch predictors are a
critical part of modern core design, drastically increasing
processor performance. However, mitigation techniques for
recently discovered branch predictor side-channels notably
degrade predictor accuracy and reduce overall system per-
formance.

A. Speculative side-channels

Recent studies have shown that side-channel attacks leak-
ing sensitive data are possible in most contemporary CPU
designs [3, 1, 4, 5]. These exploits take advantage of hard-
ware oversights at design time, leaving the system vulnerable
to code that can cause information to leak outside its defined
scope. While such attacks target various components like the
caches and the DRAM, we focus on those that are based on
exploiting vulnerabilities in branch prediction.

1) Branch predictor side-channels: Spectre [1] class at-
tacks target branch predictor components in a variety of
ways. We focus on one specific case (variant 2) that exploits
conditional branch misprediction that allows malicious code
(a gadget) to be executed. That code uses flush and reload
type timing attacks on the caches to leak information[6, 7].
For this attack to be plausible, some knowledge of the micro-
architectural behavior is needed to influence the predictor to
misspeculate and execute the gadget. With that, an attacker
can poison the predictor entries and guarantee the necessary

misprediction. The attack can also be triggered in cases when
the branch mispredicts without altering the branch predictor
state, although this is significantly harder to orchestrate.

Similar to how Spectre v2 uses the branch predictor
to leak information, BranchScope [4] uses a mechanism
similar to how variant 2 of Spectre to target the Branch
Target Buffer (BTB) to influence the Pattern History Table
(PHT) of the directional branch predictor. In this attack
scheme, the predictor is primed so that it is in a predefined
state the attacker can control. From this starting point, the
target code is triggered to execute the victim code, which
will observably change the PHT state. A simple probe
can then calculate the branch flow based on the primed
branch predictor conditions. The technique has been shown
to successfully leak information from a secure SGX enclave
in Intel processors[4].

The potential scenarios to exploit such attacks are numer-
ous. Any transition from one process to another or a process
to/from the kernel can be a potential point of vulnerability, as
any context switch or system call can be used to let malicious
software “hijack” the branch predictor and leak information.

2) Mitigation techniques: On one hand, Software and
firmware mitigation techniques are often hard to implement
and induce high overheads. Recent studies [8] measure the
actual performance loss for Spectre and Meltdown vulner-
abilities and find that it ranges from 15% to 90%. While
some mitigations for the known exploits have been deployed,
potential unknown exploits can still find ways to exploit
shared components such as the caches, the branch prediction
logic, and the translation tables as the fixes are topical and do
not guarantee security. Furthermore, such vulnerabilities (i.e.
Spectre v1, Branchscope) cannot be addressed in software
or microcode and require hardware redesign.

On the other hand, hardware isolation is a sufficient
measure to ensure no leaks occur, but often comes at the
expense of performance. Cache side-channels are extremely
difficult to address without significant performance loss or
without sacrificing a lot of area. Creating shadow structures
to keep cache and TLB speculative state, proposed in [9],
isolates the information in the caches and protects against
Spectre and Meltdown type attacks. The size of the shadow
structures can be very costly, especially in systems with
much larger caches and TLBs than the ones evaluated in that
study. Similarly, we aim to isolate the branch predictor state
to achieve similar security properties for some of the exploits
without increasing the area or degrading the performance.

For branch prediction, clearing the branch predictor of any
state for each context switch can take care of attacks that ma-
nipulate or eavesdrop on control flow to access data stored
in the caches. However, flushing the entire state results in a
significant accuracy drop with every context switch. Other
alternatives such as hard partitioning can negatively impact
the steady-state accuracy of the predictor, as the effective
size per context is reduced. Tagging the BP entries is also



Figure 2: An abstract representation of TAGE.

not an acceptable solution, because in the worst case it
behaves similar to flushing when most of the entries have
been replaced by another context. More importantly though,
while using tags eliminates branch predictor entry poisoning,
it still allows observation of active entries, which can be
flushed to cause deliberate mispredicts and data leaks.

A more secure BP design that uses isolation, can train
efficiently, and quickly assume its steady-state performance
will be useful in a post Meltdown and Spectre world[5].
Taking into account all of the above, current and future
branch predictors need to be able to protect from potential
side channels, without significant performance overhead
when context switching frequently.

3) Threat model: For this work our threat model assumes
a victim and an attacker application trying to infer without
having authority to access victim information directly. In our
model we assume:

• Both the victim and the attacker reside in the same core
and share the same BP as described in [1, 4].

• Slowdown of the victim execution to be able to detect
the behavior of a single branch. This has also been
proven to be possible in recent studies [1, 4, 10].

• Ability for the attacker to force the victim code to
execute, allowing vulnerable code to be targeted.

• The attacker having the ability to poison BP entries
used by the victim application, forcing a misprediction.

B. Branch prediction design

Branch prediction has evolved over the years [11, 12] from
small and simple designs to large, complex structures storing
long histories of control flow. Here, we focus on the two
most common designs used today as the basis of our study:
the latest TAGE predictor [13], and the Multiperspective
Perceptron predictor [14].

TAGE-based predictors: The TAGE predictor is one of
the most accurate designs. It uses tagged geometric history

Figure 3: An abstract representation of Multiperspective
Perceptron.

lengths that capture correlation from remote branch out-
comes and recent history [2]. Internally, TAGE is comprised
of tables that store the information for different history
lengths. In short, when a prediction is needed, TAGE
searches for the match belonging to the table with the longest
history. If no match is found it uses its base predictor, a
bimodal design, as a fall-back mechanism.

The TAGE design has been improved over the years
incorporating other small components in order to further
improve its accuracy in cases where the original design
was shown to frequently mispredict. For that reason, the
latest version published is the TAGE-SC-L predictor that
also incorporates a statistical corrector and a loop predictor.
In this paper we will use the latest version presented in
Figure 2 as described in [13] as our representative example
of TAGE-type predictors.

Perceptron type predictors: The other popular design that
is widespread today is the Perceptron predictor [15]. Loosely
based on neural network theory, Perceptron type predictors
achieve high accuracy from efficiently stored state. Similar
to the TAGE predictor, we use the latest variant from the 5th

championship of branch prediction (CBP5) [16], achieving
higher accuracy but with more complexity [17, 14].

The principle behind Perceptron, as shown in Figure 3,
uses a table with sets of weights that are multiplied with the
history bits. The output and confidence of the predictor de-
pends on the sign of the sum of all the history×weight prod-
ucts. The confidence can be deduced from the magnitude of
the value. Modern versions of Perceptron have reduced the
amount of calculations required for each prediction and use
multiple hashing tables of weights that are indexed using
both the history and the branch address [18]. These tables
are commonly referred to as feature tables [14].

III. PREDICTOR FLEXIBILITY

Branch predictors have been evaluated based on how
accurate their predictions are; given a reasonable amount
of history they can learn from. However, given the recent
findings described in the previous section, in many real
world cases they operate in a time-frame much shorter than
the ideal, predicting from only a partially warm or cold
state. This happens as in order to fully guarantee isolation of
BP state the predictor needs to be flushed between context
switches causing a notable accuracy drop.
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Figure 4: Contribution to MPKI for each TAGE64 component across different flushing periods.

We mitigate these overheads in our BRB design, by
identifying the components that contribute the most to
accuracy during the warm-up phase and create a mechanism
to retain their state per context – effectively replicating them.
The rest of the predictor that only contributes to long-term
accuracy is instead flushed preventing any state leakage. Our
proposal addresses the overall security-performance trade-
off, by guaranteeing isolation while also increasing accuracy
for frequent switches.

Large predictors that store more information are usually
able to deliver better predictions. However, if the state is
lost or invalidated before the predictor has time to warm up,
then effectively it will not reach peak performance. In this
case, a smaller predictor might be able to deliver equivalent
accuracy for a fraction of the state.

A. Steady-state and transient accuracy

We therefore distinguish between steady-state and tran-
sient accuracy. The term steady-state accuracy refers to
the performance of the branch predictor when it is fully
warm and reached its highest accuracy. Conversely, transient
accuracy describes the behavior during the warm-up phase.

To quantify transient accuracy, we flush the branch predic-
tor state across different branch instruction periods and track
the change in average mispredictions per kilo-instruction
(MPKI). As we show in Figure 1 depending on how fre-
quently the state is flushed, the actual (transient) accuracy
can be significantly worse than the nominal, steady-state
accuracy we normally evaluate against.

Our study examines the TAGE and Perceptron predictors
which are heavily modular. Next, we dissect their behavior
in situations where their state gets frequently disrupted.

Dissecting TAGE: TAGE uses a bimodal base predictor,
12 tables for the main TAGE predictor, a statistical corrector,
and a loop predictor. These components vary in size and
how much they affect the overall accuracy. We assess their
contribution to the prediction as the predictor warms up for
different frequencies of state flushing.

We use TAGE-SC-L to analyse how each of the com-
ponents contributes to the accuracy when in a transient

state. For that, we measure the reduction to the overall
MPKI caused by each component, when preserving its state
between flushes. In Figure 4 we track the size needed
to retain the components in each configuration and the
relative MPKI, normalized to the steady-state accuracy of
TAGE. The analysis in the figure shows the transient state
for a flushing period ranging from 20k to 20M branch
instructions. For instance, it shows that, for 20k branches,
flushing the entire predictor increases the MPKI by 90%.

Additionally, Figure 4 shows that the majority of the
accuracy is delivered by the TAGE tables, which are too
large to preserve. We note that for flushing every 20k
branches, the bimodal base predictor and the statistical
corrector improve the MPKI by 16% and 10% respectively.
However, as bimodal needs only 1.25kB of state to be
preserved, compared to the 8kB of the statistical corrector,
its MPKI improvement per area cost is much higher than
that of the statistical corrector.

Dissecting Perceptron: The evaluated Multiperspective
Perceptron design uses multiple feature tables to deliver a
prediction. Based on the previous studies [14], the features
that contribute the most to increased predictor accuracy are
identified. The most prominent ones are:

• Global History: The outcome of a branch (taken or not
taken). A subset of the entire history is taken for a
specific feature.

• Path: A hash of the recent sequence of branch ad-
dresses. The entries use truncations of the actual branch
addresses to save space.

• Recency: Similar to Path this feature keeps a stack of
recently encountered branches (using an LRU policy)
and hashes them.

For our experiments we use the above features in various
configurations, separately or hashed in combination (i.e.
Global History XOR Path). Other features can be used to
improve the prediction however, we find that they have
limited effect on the overall prediction.
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B. The Branch Retention Buffer

From the predictor analysis, retaining even a small amount
of state per context could improve the transient accuracy
of the predictor, without hurting the maximum accuracy
achieved during long uninterrupted execution. To guarantee
isolation and simultaneously improve transient accuracy,
we propose a mechanism (Figure 5) where state of the
branch predictor (component) is retained per context. The
mechanism uses a dedicated component called the branch
retention buffer (BRB) that replaces part of the predictor.

The branch retention buffer is tightly coupled with the
branch predictor and keeps multiple separate entries. Ideally,
storing the entire state would enable high accuracy without
any warm-up time. However, the size of designs today is
too large to fully store without incurring notable overheads.
To reduce the additional storage costs, we aim to make this
component as small as possible. We find from Figure 4 that
for TAGE 10kBits (1.25kB) sized entries are ideal, as they
match the size of the base predictor for both the 8kB and
64kB variants. As such, the entries are designed to store
entire components that can deliver a standalone prediction.

In short, we propose a low overhead mechanism that
retains partial state that delivers better accuracy than a large
“cold” predictor, with no steady-state accuracy penalty.

We implement the BRB to allow for easy switching
between entries without moving or copying data and thus
with minimal latency. This can be done by keeping multiple
entries in separate SRAM banks. When a switch occurs,
the entry corresponding to the correct context is selected
and used instead of swapping out data from the BRB. The
selection uses the Address Space ID and triggers only when
a context switch occurs. A small CAM is used to map to
the correct BRB entry ID.

After the newly selected entry is activated, the others are
put into retention to save energy. While operating under the
same context, the active BRB entry is directly accessed for
predictions and does not go through the CAM. When the
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Figure 6: Diagram of the BRB. The retained state is
stored in separate SRAM banks which correspond to
different contexts.
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Figure 7: Contribution to MPKI for each TAGE64
component that is retained at 20k branch instructions.
The bimodal reduces the MPKI by 16% while the
statistical corrector by 10% despite it being 8x larger.

BRB is full and a new context requests an entry, the least
recently used entry is evicted. Previous studies show that
3 entries are enough to handle 2 communicating processes
and operating system implications [19] without negatively
impacting system performance.

Retaining the reduced state makes isolation of processes
efficient and, as a consequence, improves security. Keeping
that reduced state separate per process (or between untrusted
parts of the same process, such as browser and script engine),
while emptying the rest of the structures, ensures that no
state is ever shared between mutually untrusted processes
and the kernel. The performance hit is softened in this case,
as the preserved state increases the transient state accuracy.

The obvious question, in this case, is what method is used
to reduce the data in the most impactful way. This question
is not trivial, as it is directly tied to the BP implementation



and the amount of state that can be stored efficiently when
taking into account the overhead constraints.

One way to preserve state is to select certain components
that provide a good balance of the amount of data stored and
accuracy achieved; and discard the state of the remaining
components. This “vertical cut” method can be used in the
case of TAGE as it is comprised of various components that
can provide accurate standalone predictions.

For instance, the base predictor can be isolated from the
rest of the components and still provide reasonable accuracy.
Similarly, separate TAGE tables can be preserved instead of
the entire design, to target certain history lengths.

Other components, however, provide only complementary
benefit to the predictions [14]. Therefore, it does not make
sense to consider preserving the state of them by themselves.
The loop predictor, for instance, is a relatively small com-
ponent that identifies regular loops with a fixed number of
iterations and needs few instructions to warm up. Its overall
effect of on the accuracy of TAGE-SC-L is measured to be
around 0.3% improvement [13].

In Perceptron, the vertical “cut” can be applied by only
retaining certain features. In contrast to TAGE, this is
significantly more complicated, as the empty features do
not properly add up to the sum of all the weights and
therefore skew the prediction outcome. To address this a
special mechanism is needed to adjust all the preserved
weights to deliver valid predictions. We consider this to be
an impractical extra step needed every time a flush occurs.

Another way to preserve state is to store partial state for
all the predictor components. For TAGE this can be done by
naively saving a portion of each of the TAGE tables. This
“horizontal” approach captures information across all of the
history, albeit with less accuracy than storing the entire state.

As mentioned, in Perceptron the tables are combined
to provide accurate predictions. A “horizontal cut” can be
done by merging multiple neighbouring entries, which also
reduces the accuracy.

C. Perceptron amplified / reinforced TAGE

As a specific showcase of our BRB design methodology,
we propose a hybrid approach to preserving the state we call
ParTAGE – Perceptron amplified / reinforced TAGE. The
branch retention buffer in this case stores a Multiperspective
Perceptron predictor using smaller and fewer feature tables
than the Perceptron from the literature as the base predictor
of the TAGE design, replacing the bimodal predictor.

Each entry in the BRB stores an an independent small
perceptron predictor enabling contexts to keep some reduced
state separate. The rest of the branch predictor design can
be cleared to eliminate the possibility of side-channel leaks
targeting the branch predictor.

To reduce the size of the Perceptron within the range of
the allocated budget, we use a similar configuration to the
8kB Multiperspective Perceptron [14] with 8 smaller feature

Figure 8: The ParTAGE predictor combines benefits
from both perceptron and TAGE predictors. It also
allows partial state to be preserved to improve transient
accuracy.

Name Size Details

BiM 64kB 2-bit counter

BiMH

1.25kB
8kbits counter

2kbits hysterisis

625B
4kbits counter

1kbits hysteresis

Perceptron
64kB 37 feature tables

8kB 16 feature tables

TAGE 64kB / 8kB

Loop Predictor,

Statistical Corrector,

BiMH1 base predictor

ParTAGE 64kB / 8kB

Loop Predictor,

Statistical Corrector,

1.25KB 8 table perceptron

Table I: The evaluated branch predictors.

tables instead of 16. The limited size of the Perceptron in
ParTAGE enables its state to be preserved when context
switching. In the intermediate warm-up state, ParTAGE has
to select between transient prediction of the TAGE tables
and the steady-state prediction of the preserved Perceptron.
We design two versions of ParTAGE; one that hardwires
the Perceptron predictor to be always chosen during the
transient operationof the predictor (based on the context
switching frequency), and one that assesses the confidence
of the prediction of the base perceptron predictor before
selecting the outcome.



IV. EXPERIMENTAL SETUP

The experiments conducted use the CBP5 framework with
the traces from 2016 [16] as a base. The framework uses 268
traces, ranging from 100 million to 1 billion instructions for
both mobile and server workloads.

OoO Core Value
Pipeline Width 3-wide
Pipeline Depth 15
Clk. Frequency 1 GHz

Memory Value
L1D Size 32kB
L1I Size 32kB
L2 Size 1MB
L2 Prefetcher Stride

Table II: The specifications of the system used in our
gem5 experiments [20].

We modify the CBP framework so that branch predictors
can perform full or partial flushes on their state. This enables
temporal studies of the behaviour of branch predictors,
revealing the effects of full or partial loss of state.

For our experiments, we use a variety of predictors that are
commonly used today. As a baseline design, we implement a
set of bimodal type predictors, with and without hysteresis.
To compare more contemporary predictors, we use the
submitted TAGE-SC-L [13] and Multiperspective Perceptron
without TAGE [14] from CBP5. We lightly modify both
designs so that we can flush their designs partially or
completely when needed; carefully retaining their their exact
steady-state behaviour.

Furthermore, we implement two variants of ParTAGE
that express different policies for the selection of the best
transient prediction. ParTAGE-S overrides the prediction of
the TAGE tables below a period threshold which we have set
to be 200k branch instructions. ParTAGE uses an integrated
confidence value that is assessed by the rest of the TAGE
design in order to indicate the most accurate prediction.

We focus on 8kB and 64kB predictors, similar to the
ones that are evaluated at CBP. A detailed list of all the
evaluated predictors is shown in Table I. We assess the
transient accuracy of the evaluated predictors for the cases
outlined in Section II. To achieve this, we cover a range
of flushing periods from 10 to 60M branch instructions per
flush; extracting the optimal design for each use case.

We also perform a limit study, that identifies the upper
limit of core performance drop when flushing the predictor
periodically, ranging from 1k to 10M total instructions. We
use an Arm OoO model (Table II) in a gem5 [20] full system
simulation running MiBench [21]. We compare two systems,
one that periodically flushes the state and one that does not.

V. RESULTS

We perform three different types of comparisons focusing
on simple bimodal predictors, current TAGE and Percep-
tron designs, and our ParTAGE proposal. We measure the
frequency of context switches on a modern mobile device
(Table III) and find that switches can happen on average
as often as every 12k branch instructions. This leads to

Application Time(s) Cxt.
Switches

(CS)

CS/s

adobereader 73 459,699 6,279

gmail 23 228,924 9,833

googleslides 108 343,788 3,185

youtube 36 418,254 11,487

yt playback 21 224,631 10,698

angrybirds rio 81 406,711 5,044

camera@60fps 60 1,958,557 32,643

geekbench 60 129,533 2,159

Table III: The frequency of context switches on a Google
Pixel phone.
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Figure 9: Impact of periodical BP flushing (1k to
10M instructions) on core performance normalized to
a system without flushing. Results extracted from gem5
using full system simulation [20] of an Arm OoO model
running MiBench[21].

significant core performance loss, as much as 15% based
on our limit study (Figure 9).

A. Quantifying transient accuracy

1) Bimodal accuracy results: We use Bimodal as a simple
first experiment, consisting of a single table of counter bits.
In Table IV we show how the MPKI of different bimodal
designs improves as the state retention period increases.
Despite a 100x difference in size, the steady-state MPKI
increase is only 12.28%. The results reveal that while size
contributes to the steady-state accuracy, transient accuracy
is not affected by the size of a predictor design.

Instead, a variation in the design such as adding hysteresis
improves transient accuracy, even for smaller predictors.
This happens as the hysteresis bits also affect neighbouring
branches and ultimately warm-up the design faster. This
is clearly visible at smaller flushing periods where the
misprediction is on average 18% lower for the bimodal
designs with hysteresis. Figure 10 shows the difference in
accuracy for different bimodal sizes and designs.



MPKI

Branch instruction flushing period (instructions)

Name 10 100 200 2k 20k 200k 2M 20M 40M 60M

BIM 64kB 36.77 22.22 19.52 14.12 12.13 11.40 11.16 11.14 11.15 11.15

BIM 1kB 36.78 22.26 19.58 14.40 12.87 12.59 12.52 12.51 12.51 12.51

BIMH 40kB 30.97 19.33 17.23 13.40 12.04 11.56 11.41 11.39 11.39 11.39

BIMH 10kB 30.96 19.34 17.24 13.43 12.10 11.63 11.49 11.47 11.47 11.47

BIMH 1.25kB 30.97 19.39 17.33 13.68 12.53 12.17 12.08 12.07 12.07 12.07

BIMH 625B 30.99 19.45 17.42 13.93 12.91 12.62 12.55 12.54 12.54 12.54

Table IV: Mispredction rates of a wide range of bimodal predictors across different state flushing periods measured
in branch instructions.

11

12

13

14

15

16

17

18

19

20

M
is

p
re

d
ic

ti
on

 p
er

 K
il

o 
In

st
ru

ct
io

n

Branch instructions per flush
BiM 64kB BiMH 40kB BiM 1kB BiMH 625B

100 1k 10k 100k 1M 10M 100M

Bimodal Transient MPKI

Figure 10: Comparison of sizes and types of bimodal
predictors. Size contributes to steady-state accuracy,
hysteresis to transient accuracy. Note the Y-axis begins
at 11 MPKI offset.

2) Transcient accuracy: TAGE vs Perceptron: Our second
set of results focuses on comparing the transient behaviour of
the two most prominent designs in modern systems; TAGE
and Perceptron. Figure 11 shows the different transient
behaviour between TAGE and Perceptron designs. We notice
that the 8kB variant of Perceptron has the worst cold start,
however it manages to rapidly improve and assume similar
steady-state accuracy.

The transient MPKI for a flushing period of 20k branch
instructions is 7.75 and 6.98 for the 8kB and 64kB TAGE
designs, and 7.57 and 6.93 respectively for Perceptron.
Switching every 20k branch instructions is within a realistic
range for applications like the ones presented in Table III.
This result shows that TAGE can deliver better steady-state
accuracy. However, for applications that perform frequent
context switching (20k branches), Perceptron is marginally
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Figure 11: A comparison between TAGE and perceptron.
While both exhibit similar steady-state accuracy TAGE
shows better transient behavior.

more accurate.

Another observation can be extracted when comparing the
64kB variants with the 8kB ones at smaller windows of
uninterrupted execution. Considering for instance, flushing
every 20k or 200k branch instructions, the 8kB predictors
perform on average 10% and 15% worse than the 64kB
designs. However, the accuracy gap increases to 33% when
observing the same designs at steady-state.

Using the steady-state accuracy as a baseline and compar-
ing the transient accuracy, across all granularities as fine as
20k branch instructions, we calculate how much worse the
accuracy can be in context-switch-heavy workloads. From
Figure 11, the MPKI increase is as much as 90% and 80%
for TAGE and Perceptron respectively. This reinforces our
belief that predictors today are evaluated without taking into
account disruptions that can occur during realistic execution.
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Figure 12: Comparing bimodal and Perceptron designs
below 1.25KB as base predictors. Results show even
when reduced this size Perceptrons greatly outperforms
competition.

B. ParTAGE

To improve on transient accuracy of branch prediction,
we present the results from our proposal, ParTAGE a design
that is influenced from both Perceptron and TAGE. Next,
we motivate its design choices and proceed to analyse its
accuracy compared to the competitive designs today.

Finding the right, “small” predictor: The TAGE break-
down analysis leads to the underlying idea for the hybrid pre-
dictor: replace components which use a significant amount
of area with other, retainable components that can deliver a
higher transient accuracy.

From Figure 11 we observed that Perceptron predictors
rapidly improve their MPKI over time before reaching
steady-state accuracy. This reveals an interesting insight
about Multiperspective Perceptron predictors: compared to
bimodal predictors, the hashed and common weight values
in modern Perceptron designs are a more effective design,
being able to aggressively train and and store information
in a denser format. We focus on the latter attribute, that
of dense branch information storage, to design the base
predictor as we intend to store and restore it for each
context, thus never letting it return to its transient accuracy.
Furthermore, in Figure 7 the statistical corrector is shown to
add little accuracy when the TAGE tables are cold, despite
its large size (8kB). We use this to experiment with larger
perceptrons but maintaining a balance in terms of size.

In Figure 12 we compare bimodal and Perceptron designs
that will fit roughly within 1.25kB of budget. Results show
that while Perceptron has higher MPKI at granularities as
fine as 200 branch instructions, its steady-state accuracy is
significantly better than bimodal.
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Figure 13: Calibrating the small perceptron

Optimizing the base predictor: We reduce the size of each
BRB entry to 1.25kB and calibrate the amount of feature
tables and size of the Perceptron predictor. We fix the size
of the predictor initially to 1.25kB (Figure 13a). We find that
eight feature tables deliver the most accuracy. We repeat the
process for 3kB perceptron entries, which increase the size
of the predictor by 10% . For this reason, we also evaluate
a design without the statistical corrector maintaining equal
area to the original TAGE design.

Figure 13b shows the best configuration for each size.
Note that changing the feature sizes affects the predic-
tion more than the altering the size does. We find that
for completeness, a genetic algorithm as proposed in past
studies [14] can deliver even better results. We leave these
optimisations for future studies.

C. ParTAGE results

We create the ParTAGE predictor based on our observa-
tions for small predictors replacing the 1.25kB bimodal with
a perceptron.

Comparing ParTAGE variants: The results in Figure 14
compare the designs featuring the BRB, all variants of
ParTAGE and TAGE (B) (that retains the bimodal), to TAG
without the BRB. For ParTAGE, evaluate both variants
that retain both 1.25kB and 3kB BRB entries. ParTAGE-
S statically overrides the TAGE tables for a brief period
after a flush is performed, forcing the Perceptron prediction
to be selected, while ParTAGE selection prediction based
on each component confidence. The 1kB entry designs are
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negligible, but for frequent flushes the improvement is
significant.

overall 3% larger in area, while the 3kB variant removes the
statistical corrector, maintaining the same area budget.

Results of the all the predictors can be seen in Figure
14. When considering current system upper limit context
switching, we see that the most accuracy is delivered by
our proposed BRB extension with the 3kB ParTAGE variant
which is iso-area compared to TAGE-SC-L . Figure 15
shows the improvement is roughly 20% and 15% for 3kB
ParTAGE and TAGE(B) respectively. Overall, preserving
a minimal state can have a significant improvement (15-
20% less MPKI) when the state is frequently flushed but
has a small effect at the steady-state (maximum 5% MPKI
increase). To maintain the same steady-state accuracy the
statistical corrector is included (ParTAGE 3kB + SC in
Figure 15) increasing the overall area by 10% but delivering
better accuracy throughout.
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Figure 16: The steady-state reveals that ParTAGE can
perform competitively and even outperform existing high
accuracy designs.

Comparing ParTAGE to TAGE and Perceptron: Compar-
ing the different implementations of ParTAGE, we notice
that while ParTAGE-S works well for the fine grain switches,
the transient accuracy suffers at larger flushing periods,
as the TAGE tables have not been trained adequately. In
contrast, ParTAGE, which simply feeds the confidence into
TAGE, does not achieve the same transient accuracy. This
happens when TAGE tables are completely cold, but their
prediction is prioritized over the more accurate one from the
perceptron component. This is also why ParTAGE does not
improve the transient accuracy at 20k branch instructions.
We propose to solve this with better tuning of the selection
policy in the future.

Improving the steady-state accuracy of the base predictor
and retaining its state effectively enables efficient operation
at finer granularities. This can be done by either increasing
the size of the branch retention buffer to fit more state,
or develop predictors ranging between 1kB to 3kB with
better steady-state accuracy. For instance, approaching the
accuracy of an 8kB perceptron can further reduce the mis-
prediction, shown in 11.

While the primary focus of this study is the improvement
of the transient accuracy of branch prediction, it is equally
important to maintain a competitive steady-state accuracy
for our proposed design. We perform a direct compari-
son between TAGE-SC-L, both Multiperspective Perceptron
versions submitted to CBP5 [16] and the best version of
ParTAGE. Figure 16 provides a detailed look at the steady-
state MPKI compared to TAGE and the best version of
the Multiperspective Perceptron [22, 14]. We observe that
ParTAGE delivers 3.726 MPKI, competitive to TAGE (3.660
MPKI) and even outperforming perceptron (3.826 MPKI).

VI. RELATED WORK

The effects of context switches on predictor accuracy and
overall performance has been studied in the past with varied
results. Studies like [23] show that in the past when systems
did not switch often (above 400k instructions) and branch
predictors could fully train in 128k instruction periods,



the effects of context switching to the BP accuracy were
negligible.

When switching at a faster rate, [11, 24, 25] show that
the branch predictor accuracy drop is in the range of 7% -
20%. We show that context switches on current hardware can
happen more frequently today than in the past (III), in cases
as often as every 64k instructions. Furthermore, compared
to past studies current branch predictor designs like TAGE
and multiperspective perceptron take much longer to warm
up than 128k instructions. Our results show that branch mis-
predicts can increase by as much as 90% when applications
today are switching aggressively and flushing.

Some studies [26, 27] focus on the effect that context
switches have on actual performance. They find that when
switching is done too frequently, cache misses overshadow
all other overheads and greatly degrade performance. Other
work, namely [28] shows that even when applications have
all of their data in the caches, the performance hit caused
by the branch predictor can be as much as 20% for 100k
instruction switching frequencies for Out-of-Order cores
while In-Order cores show little degradation. Our results
from Figure 9 agree with such findings. Out-of-Order ex-
ecution successfully masks cache misses, but relies heavily
on speculation and branch predictor accuracy to deliver
performance. Flushing for security reasons perfectly matches
these simulations and we expect dimilar performance drop.

Studies break down the contribution to accuracy of the
components in Perceptron predictors [14], but a similar study
of the breakdown of the accuracy into components has not
been done so far for TAGE-type designs.

While many studies track the effects of accuracy across
different sizes of predictors and switching frequency [29,
30, 2, 23] the notion of accuracy under frequent flushes
we believe to be a novel insight, especially when tak-
ing necessary security precautions for side-channel attacks.
Studies have been conducted [19] that focus on isolating
the kernel from the applications in the branch predictor for
performance. This can potentially increase security but will
not completely eliminate BP side channels. Furthermore, the
design proposes a hard partition of the entire BP state which
would be costly in terms of area for current large predictor
designs, unless steady-state accuracy is sacrificed.

Security studies [1, 5] identify practical threats that can
compromise the system using the branch predictor, in their
work they mention branch predictor flushing as a mitigation
technique for the security aspects however they do not
provide an estimate of the performance loss of such an
approach.

Our results contribute to quantifying the performance
loss in such scenarios. The branch retention mechanism
we describe, to the best of our knowledge, has not been
preciously proposed and provides a viable solution when
the performance degradation is significant.

VII. CONCLUDING REMARKS

In this work, we have focused on creating hardware
security mitigations for side-channels in the branch predictor
which can be disruptive to performance when dealt in
software. We highlight realistic scenarios where this can
occur, such as frequent context switches and system calls,
and show that current mitigation techniques for side-channel
attacks targeting the speculation engine are both expensive
and impractical. We show that these disruptions create a
disconnect between the reported nominal accuracy of branch
predictors and the actual one in a real world applications.
To distinguish between the two, we introduce the notions of
steady-state and transient branch predictor accuracy.

We propose a novel mechanism, the Branch Rentention
Buffer (BRB), that keeps a minimal, isolated state per
context to reduce the high number of mispredictions. We
propose two designs that store essential context state in
the BRB; first, an extension to TAGE, named TAGE (B),
that keeps the state of its bimodal predictor. Second, a
novel hybrid branch predictor design, ParTAGE, that re-
places the bimodal in TAGE with a Perceptron. We evaluate
these variants with a new methodology, which modifies the
Championship Branch Prediction framework so we can clear
predictor state across different frequencies and components.

We show that branch predictors can have as much as 90%
more mispredicts than what is evaluated today at steady-
state, under certain realistic conditions. Using the BRB we
manage to guarantee BP state isolation and consequently
increase security when context switching, while achieving
reductions on MPKI of 15% and 20% for TAGE and our
hybrid predictor design respectively.

Improving the steady-state was not the goal of this study
as we focused on isolation while simultaneously mitigat-
ing the negative effects in the transient state. However,
we believe that with future optimisations, our designs can
improve the steady-state as well. We also aim to enhance
the transient accuracy by focusing on improving policies
that select between retained and “cold” state components, in
order to fully exploit all the benefits from the base predictor.
Finally, we aim to focus on more accurate “small” designs
in the 1kB - 3kB range.
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