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It is known that every dessin (map or hypermap) corresponds to a finite index
subgroup of a triangle group and can be embedded naturally into some Riemann
surface [JS1, JS3]. A dessin is uniform if its (hyper)vertices all have the same
valency, its (hyper)edges all have the same valency, and its (hyper)faces all have
the same valency; uniform dessins correspond to torsion-free subgroups of triangle
groups. By the theorems of Belyl [Bel] and Wolfart [Wol], a compact Riemann
surface X is defined over the field of algebraic numbers Q if and only if X carries a
dessin (also see [Gro]). In this thesis we study the uniform dessins of genus g < 3

and investigate their connections with algebraic curves, Belyl’s Theorem, and the
absolute Galois group Gal(Q/Q).

An elliptic curve of modulus 7 can be uniformized by a finite index subgroup of a
Euclidean triangle group if and only if 7 € Q(2) or 7 € Q(p); these elliptic curves
are said to have Euclidean Belyi uniformizations and naturally carry the uniform
dessins of genus 1. Using results from number theory, it is proved that there are only
five rational elliptic curves with Euclidean Belyi uniformizations. A classification of
the genus 1 uniform maps is given which extends the notation for genus 1 regular
maps found in [CMo]. Formulae are derived for the number of genus 1 uniform
maps with a given number of vertices, and the reflexible maps are described. Belyi
functions are computed in a number of cases, and arbitrarily large Galois orbits of

genus 1 uniform dessins are constructed.

The existence of two uniform maps of genus g > 1 lying on conformally equivalent
Riemann surfaces is considered. This leads naturally to the study of arithmetic
Fuchsian groups [Vi] and motivates the definitions of arithmetic and non-arithmetic
maps. General results are proved for non-arithmetic maps, and specific examples

are given in the arithmetic case.
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Introduction

A map can be thought of as a two-cell decomposition of an orientable sur-
face into vertices, edges and simply connected open regions called faces. Jones and
Singerman [JS1] have developed a theory of maps on orientable surfaces in which
every map M corresponds to a finite index subgroup A of a triangle group I'(m, 2, n).
The map M can be embedded into the Riemann surface X = U/M (where U is
the Riemann sphere ¥, the complex plane C, or the upper half-plane H) so that
every automorphism of M extends naturally to an automorphism of its underly-
ing Riemann surface X. More generally, a finite index inclusion A < T'(lp,l1,12)

corresponds to a geometric object called a hypermap (for example see [CoSi).

A Riemann surface X is compact if and only if it can be obtained as the normal-
ization of some algebraic curve defined by an irreducible homogeneous polynomial
T(z,y,z) € Clz,y, 2] (see [Gri] for precise details); X is said to be defined over a
field F C C if we can choose T(z,y,2) € F[z,y, z]. Belyl’s Theorem [Bel] states
that X is defined over the field of algebraic numbers Q if and only if there exists
a nonconstant meromorphic function §: X — ¥ ramified over at most 3 points; 3
is called a Belyi function for X. As a corollary to Belyl’s Theorem, Wolfart [Wol,
Wo2] has proved that X is defined over Q if and only if X can be uniformized by a
finite index subgroup of a cocompact triangle group. Hence the Riemann surfaces

that carry finite maps and hypermaps are precisely those that are defined over Q.

The most familiar embeddings of maps into Riemann surfaces are the regular
maps (those with the most symmetry). Examples include the Platonic solids embed-
ded into the Riemann sphere, the regular maps of genus 2 [Sh] and the embedding
of Klein’s map into a Riemann surface of genus 3 [Gre]. However, regular maps are
restrictive if one wishes to study the underlying Riemann surfaces; there are only
two Riemann surfaces underlying the regular maps of genus 1 (the square torus and
the hexagonal torus) and just three Riemann surfaces underlying the regular maps

of genus 2. A larger family of Riemann surfaces can be obtained by relaxing the
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symmetry conditions and considering uniform maps. A map is uniform if all of its
vertices have the same valency, all of its faces have the same valency, and it either
has no free edges or all of its edges are free. Jones and Singerman [JS1] have proved
that M is a uniform map if and only if M corresponds to a torsion-free subgroup

of a triangle group.

The connections between Belyi functions, Galois theory and dessins d’enfants
(we will think of these as maps or hypermaps) were first outlined by Grothendieck
in his Esquisse d’un programme [Gro] (also see [Sc]). The absolute Galois group
Gal(Q/Q) is the set of all field automorphisms of the algebraic numbers Q fixing Q.
Grothendieck observed that Gal(Q/Q) acts naturally on Belyi functions and their
associated Riemann surfaces via its action on their algebraic number coefficients,
and that this induces an action of Gal(Q/Q) on the set of all dessins (maps and
hypermaps); Grothendieck’s idea was to use this geometric action as a tool for

studying the structure of the absolute Galois group.

The study of plane trees (see [SZ]) has provided many examples illustrating
the general theory of dessins d’enfants. To appreciate Grothendieck’s ideas more
fully, one would like to study dessins of higher genus; however there are few concrete
examples for genus g > 0. In this thesis we will study the uniform dessins of genus
g < 3, and develop techniques for calculating their associated algebraic curves and

Belyi functions, and for constructing Galois orbits.

A map of genus 0 is uniform if and only if it is regular [JS1], and so the
genus 0 uniform maps correspond to the five Platonic solids and several infinite
families. The situation becomes much more interesting if we consider uniform maps
of genus 1. Here the underlying Riemann surfaces correspond to elliptic curves, and
we find many connections with number theory. Every elliptic curve corresponds to
a point 7 in the fundamental region of the modular group, and an elliptic curve
can be uniformized by a finite index subgroup of a Euclidean triangle group if and
only if its associated modulus 7 lies in Q(¢) or Q(p) (see Chapter 3); these elliptic
curves are said to have Fuclidean Bely? uniformizations, and by Belyi’s Theorem
are defined over the algebraic numbers. We prove that there are only five rational

elliptic curves with Euclidean Belyi uniformizations.

The regular maps of genus 1 are classified in [CMo] by their Schlafli symbols
{4,4},.4, {3,6},4 and {6,3}, 4. The study of elliptic curves with Euclidean Belyl

uniformizations leads naturally to a classification of the uniform maps of genus 1;



if an elliptic curve F has a modulus 7 € Q(7) then its corresponding uniform maps
have type (4,4) and are denoted by {7},+4:; where p+ gi € Z[i], while for 7 € Q(p)
the uniform maps have type (6,3) and are denoted by {7}p+4, Where p+gp € Z[p)].
In particular, {i}p1+q: and {p}p4+qp correspond to the regular maps {4,4},, and
{37 6}P,Q'

If E is an elliptic curve with modulus 7 € Q(i) or 7 € Q(p), then E carries a
unique minimal map M, such that every other uniform map lying on E has a strictly
greater number of vertices, edges and faces (see §4.2). One can use the minimal
maps to construct arbitrarily large Galois orbits of dessins, and the associated Belyi
functions and elliptic curves are computed in a number of cases. In addition, we
derive formulae for the number of genus 1 uniform maps with n vertices, and describe

those that are reflexible.

Our study of uniform dessins extends naturally to higher genus. The regular
maps and hypermaps of genus 2 are known (see [CMo] and [BJ]), and Threlfall
[Th] has calculated the genus 2 uniform maps of type (10,5). In §5.1 we enumerate
all of the uniform maps and hypermaps of genus 2, and show that there are 978
uniform maps and 3133 uniform hypermaps (one can show that for every genus

g > 1, there are only finitely many uniform dessins of genus g).

We have classified the uniform maps lying on a given elliptic curve of modu-
lus 7 € Qi) or 7 € Q(p), and one might ask if a similar classification exists for
uniform maps of higher genus. Every uniform map corresponds to a conjugacy
class of surface groups contained in a triangle group, and two surface groups de-
fine conformally equivalent Riemann surfaces if and only if they are conjugate in
PSLy(R). Hence the existence of two non-isomorphic uniform maps of type (m,n)
lying on conformally equivalent Riemann surfaces is equivalent to finding two sur-
face groups My, My < T'(m,2,n) such that M; and M; are conjugate in PSLy(R)
but not conjugate in I'(m, 2, n). This problem leads naturally to the study of arith-
metic Fuchsian groups (see [Vi]), and motivates the definitions of arithmetic and
non-arithmetic maps. One can easily distinguish the Riemann surfaces underlying
non-arithmetic uniform maps (Theorem 5.21), while the situation for arithmetic
maps is more complicated (but also more interesting). We prove some general

results for non-arithmetic maps, and give examples in the arithmetic case.



Chapter 1

Riemann surfaces

We introduce the theory of Riemann surfaces and give some preliminary defi-
nitions and results. There are several classical ways of obtaining compact Riemann
surfaces, for example using complex algebraic curves [Gri] or by means of cocom-
pact groups [JS2]; a particularly interesting (and difficult) problem is how one
might begin to unify these two different approaches. The theorems of Belyi [Bel]
and Wolfart [Wol] provide a good starting point:

A compact Riemann surface X can be obtained through the normalization of some
algebraic curve defined over the field of algebraic numbers Q if and only if X can

be uniformized by a finite index subgroup of a cocompact triangle group.

In the following chapters we will give examples to illustrate this correspondence.
For further details we refer the reader to [JS2], [JS3] and [Gri].

Abstract Riemann surfaces

We define a surface to be a Hausdorff topological space S which is locally
homeomorphic to C; that is each point z € S has an open neighbourhood U, C S
which is homeomorphic (by some mapping, ¢, say) to an open subset V, C C. We
call the homeomorphism ¢, : U, — V,, a chart or local coordinate mapping on S. If

{U,} is a cover of S by open sets U,, then
D ={¢g:Us — Vo}

is called an atlas of S. If ¢po : Uy — V,, and ¢g : Ug — V3 are two charts in & with

Ug NUg # 0, then ¢o(Uy NUg) and ¢5(Uqy N Ug) are open subsets of C and the
homeomorphism

¢a6 = Qba o (]5[3“1 : ¢B(Ua N Uﬁ) - ¢a(Ua N Uﬁ)
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is called a transition function for ®. An atlas ® is said to be holomorphic if all of

its transition functions ¢, are holomorphic.

Example 1.1. & = {idc : C — C} is a holomorphic atlas for the complex plane

C consisting of just one chart and the identity map idc. o

Example 1.2. The set &' consisting of all open sets U C C together with the
identity mapping idy : U — C is also a holomorphic atlas for C. o

Two holomorphic atlases ® and ¥ of a surface S are said to be compatible if
the atlas ® U ¥ is holomorphic (the atlases given in Examples 1.1 and 1.2 for the
complex plane are compatible). Compatibility of atlases is an equivalence relation,

and an equivalence class of holomorphic atlases is called a complex structure on S.
Definition 1.3. A surface with a complex structure is called a Riemann surface. o

Given two Riemann surfaces X and Y with holomorphic atlases & and ¥, we

can define holomorphic mappings between X and Y in terms of their charts.

Definition 1.4. Let X and Y be Riemann surfaces with holomorphic atlases ® =
{¢g : Uy — Vo} and ¥ = {¢; : M; — N,}. A holomorphic mapping f : X — Y

with respect to the atlases ® and ¥ is a family of continuous mappings
fa:Us—Y

such that
(1) fo = fg on Uy NUg for U, NUg # 0;
(ii) 1h;0 fa oot is holomorphic on ¢o(f ~H(M;)NU,) whenever f~1(M;)NU, # 0.

a

Examples 1.1 and 1.2 show that the complex plane C admits a complex struc-
ture and so forms a Riemann surface, which we denote by C (where there is no
ambiguity we use the same notation for the Riemann surface and its underlying
space). The one-point compactification of C, P1(C) = C U {oo} also forms a
Riemann surface [JS2], the Riemann sphere ¥. Holomorphic and meromorphic
functions on a Riemann surface X (in the traditional sense of complex analysis)
can then be thought of as being holomorphic mappings from X to C and X respec-

tively in the sense of Riemann surfaces.




Let f : X — Y be a non-constant holomorphic mapping between compact
connected Riemann surfaces (all surfaces considered in this thesis will be connected).
Then there exists a positive integer n and a finite set of points C(f) C Y such that
| /7l y) | =nforally e Y\C(f) and 1 < | f~1(y)| < nfor all y € C(f) (see [Ac)).
The elements of C(f) are called the critical values of f. The map f: X — Y is
said to be an n-sheeted covering, branched or ramified above the points in C(f) and
unramified if C(f) = 0. If one chooses suitable local coordinates at z € X and f(z),
then f ‘looks like’ 2z — 27 for some positive integer q; the order of branching of f
at z is equal to ¢ — 1. If the order of branching at x € X is equal to zero, then z is

said to be a regular point of f; otherwise x is a critical point.

Definition 1.5. Two Riemann surfaces X and Y are conformally equivalent if

there exists a holomorphic bijection f : X — Y. o

A holomorphic bijection f : X — X is called an automorphism of X, and the set
Aut X of all automorphisms of X forms a group under composition. Every Riemann
surface X is orientable ([JS2]), with the automorphisms of X preserving orienta-
tion. (Unless otherwise specified, all automorphisms will be orientation-preserving
or conformal automorphisms; where necessary we will refer to orientation-reversing

or anti-conformal automorphisms.)

Classical uniformization

A Riemann surface X is simply connected if its underlying topological space
is simply connected. The Uniformization Theorem (for example see [Sp|) states
that up to conformal equivalence there are just three simply connected Riemann
surfaces: the Riemann sphere ¥, the complex plane C, and the upper half-plane H.

The automorphism groups of these three Riemann surfaces are well-known:

(i) Aut: =PSLy(C) = {2 — &t |a,b,c,d € C,ad — be = 1};

(ii) AutC ={z—az+b|a,be C,a#0}; 1.6
(ili) AutH = PSLy(R) = {2z — 225 |a,b,c,d € R,ad — bc = 1}.

If T is a subgroup of Autif (where U = 3,C or H) then T' is said to act
discontinuously on U if every s € U has some neighbourhood V' such that Vv (V) =
() for all non-identity v € I'; consequently such an action is free. Using ideas from

the theory of covering spaces it can be shown that ([JS2]):
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Theorem 1.7. Every connected Riemann surface X is conformally equivalent to

U/T U =3%,C or H) where T is a subgroup of Autl acting discontinuously on U.

[m]

Let X = U/T for some I' < AutYf acting discontinuously on &. Then the group
of conformal automorphisms of X, Aut X, is isomorphic to N(I')/T" where N(T') is
the normalizer of I" in AutY{. Furthermore, every group of automorphisms of X is
isomorphic to K/T', for some group K < Autl containing I" as a normal subgroup
(see [JS2]).

An anti-conformal automorphism of the complex plane has the form z — azZ+b.
The set of all conformal and anti-conformal automorphisms of C forms a group,
denoted by Aut C, which contains Aut C with index 2. The groups Aut ¥ and Aut H
are defined similarly: anti-conformal automorphisms of ¥ have the form z +— gig
with a,b,c,d € C and ad — bc = 1, while for H they have the form z — %ig— with
a,b,c,d € R and ad — bc = —1 (one can show that Aut H =2 PGL,(R)). A Riemann
surface X = U/T admits an anti-conformal automorphism if I" is normalized by

some element n € Autf \ Autl.

Groups with signature

Let g be a non-negative integer and my,...,m, € N U {oo}. Then a group
with signature (g;m1,...,m,) is a group I' with the presentation
g T
I'=<z,....¢r,01,b1,...,00,bg|21™ =... =2, = H[ai,bi]ij =1>
i=1 j=1

where any relation of the form z7;° = 1 is omitted; the m; are called the periods
of I'. If none of the periods are equal to 1 or oo, then two groups with signa-
ture (g;ma,...,m;) and (¢’;n1,...,ns) are isomorphic if and only if g = ¢’ and
(m1,...,m,) is a permutation of (ny,...,ns). If we define

4 1

p(r) = 2m{ (20 -2+ 301~ )}

i=1

where 1/00 = 0, then it is known that an index k£ subgroup I'; of I satisfies

u(l') = kp(I). 1.8

Singerman [Sinl] has proved the following. (Note: Only the case p(I'") > 0 is
considered in [Sin1], however the proof for u(I') = 0 follows similarly. For u(T") < 0

the groups involved are finite, and so each group can be checked directly.)
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Theorem 1.9. Let I' be a group with signature (g;ms,...,m,) where u(I') > 0.

Then T" contains a subgroup I'; of index k with signature

‘.
(g55m11y s Mapyy s Ml oo, N, )

if and only if there exists a finite permutation group G, transitive on k points, and

an epimorphism 6 : I' — G such that

(i) each permutation 6(z;) has precisely p; cycles of lengths less than m;, these

lengths being nﬂﬁ, BN %DL,
(i) p(T'1) = ku(T).

If m; = oo, then in (i) the number of infinite periods of I'; induced by m; is equal
to the number of cycles of 8(x;). If stab(1) is the stabilizer of the point 1 in G, then
['; = 6~ (stab(1)) is a subgroup of I with the required signature. o

A group I' acts properly discontinuously on U if for each compact set U C U,
{veT|yUNU # 0}

is finite. Every group with signature acts as a properly discontinuous group of
conformal isometries of one of the three simply-connected Riemann surfaces U =
¥, C or H depending on whether u(T") < 0, u(I') = 0 or u(T") > 0. The quotient
U /T will be a Riemann surface; compact if all of the periods m; are finite, otherwise

non-compact with one cusp or puncture for each infinite period.

Examples 1.10. (i) A group with signature (g; —) is called a surface group of
genus g. Every surface group is torsion-free and acts freely on U. If I is a surface

group, then the fundamental group of #/I" is isomorphic to T

&g RlT

R.T a1T o

RoT

Figure 1.1

(ii) A group with signature (0; lo, {1, [2) is called a triangle group and will be denoted
by I'(lp, 11,12). The extended triangle group I'*(lo, l1,[2) is the group generated by
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reflections in the sides of a triangle 7 with vertices ag, a1, @3 and corresponding
angles 7 /lp, m/ly, 7 /l2 (see Figure 1.1). The triangle will lie in ¥, C or H as 1/lg +
1/l + 1/l > 1,= 1 or < 1. If R; is a reflection in the side of 7 opposite to the
vertex a; (1 =0, 1,2) then I'*(ly, 11, l5) has the presentation

< Ro,R1, R | R§ = Ri = R} = (RiRp)"® = (RyRo)"* = (RoR1) = 1>

(see [Mag]). The triangle group I'(lo,1,15) is the index 2 subgroup of I'™*(lg, 1, l2)
consisting of the orientation-preserving transformations. Setting zg = R1 R, 1 =
Ry Ry and z9 = RoR; so that x; acts by rotating 7 anticlockwise through an angle
27 /l; about «; (1 = 0,1,2), we obtain the presentation

T(lo, l1,15) =< mo,ml,mgle{’ = xlll = ml; = ToT1ZTo = 1> .
(iii) Using Theorem 1.9 we give some necessary conditions for the triangle group
['(lo, l1,12) to contain a surface group (g; —) with index k. Since a surface group
contains no periods, the epimorphism 6 : I' — G must satisfy: 6(zq) has precisely %
cycles of length lg; 6(x1) has precisely f cycles of length ly; and 6(z2) has precisely
% cycles of length l,. Hence lg,l; and [, must all divide &, and further by Theorem

1.9(ii) g, k, lo, l1, 15 must satisfy the Riemann-Hurwitz formula

2(9—1):k<1—1—1—i). o 1.11

A Fuchsian group is a discrete subgroup of PSLy(R), the automorphism group
of the upper half-plane H, and it is known that a subgroup I' < PSL,(R) is a
Fuchsian group if and only if I' acts properly discontinuously on H. A Fuchsian
group I is of the first kind if its limit set L(I') = RU{oo}. Every finitely generated
Fuchsian group of the first kind is a group with signature, where p(I") is the hyper-
bolic measure of a fundamental region for I'. For a proof of the following theorem
see [JS2]:

Theorem 1.12. Let 'y and I'y be Fuchsian surface groups. Then H/T'y and H/T',

are conformally equivalent if and only if I'y and I'y are conjugate in PSLy(R). o

It is known (see [JS2, p.261]) that any cocompact Fuchsian group I' satisfies

s

w(I') > 37. Hence if a cocompact Fuchsian group I' contains an index k surface

group I'; with signature (g; —), we have by 1.8 that
- #l) _ 2m(29-2)  2m(29 - 2)
() wT)y 7 (59)

= 84(g — 1). 1.13



In particular, if the Fuchsian triangle group I'(lg, 1,12) (for lg, 11,12 < o) contains

a surface group (g; —) with index k, then by 1.13 we must have k < 84(g — 1).

Fundamental polygons and Schreier generators

Let I' be a properly discontinuous group of isometries of . A polygon will
be a closed, connected set with non-empty interior whose boundary is a union of
geodesic segments (these will be called the sides of the polygon). A fundamental
polygon P for I' is a polygon (possibly with infinitely many sides) satisfying the
following conditions:

Fl. Uyer"P =U;
F2. PN+yP =0 for all 1 #~ € I' (where P denotes the interior of P);

F3. If b is a side of P, then there exists a unique side b of P (possibly equal to b)
and a unique element 8 € I' such that 8b = b and B8P is a polygon adjacent to
P along b (see Figure 1.2). We will say that 3 pairs b with b;

BP gl P

Figure 1.2

F4. P is locally finite. That is, any compact set U C U intersects only finitely

many images of P.

It is known (see [Beal) that the side-pairing elements of P generate I'; and so to a

fundamental polygon P for I' we have a generating set

¢ = {f1,052,..-}

consisting of elements which pair the sides of P. Let I' be a group with the gen-
erating set ®, and suppose that A is a subgroup of I'' A set T of right coset

representatives for A in I which satisfies:
(i) T' = User At (where U denotes the disjoint the union);
(i1) if t1t5...tp isa word in @, then ty...t, €T =1t1...th1 €T,

is called a (right) Schreier transversal for A in I'. For any v € I' there is a unique
element t € T such that At = A~, and we let ¥ = t. The set of elements

{t8(t8) " teT,pe}

10



generate A and are called the Schreier generators for A in T" (see [John]). The
following theorem of Hoare and Singerman [HS] proves that a Schreier transversal
for A in T is exactly the set needed to construct a connected fundamental polygon

for A. The result will be used extensively in Chapter 2.

Theorem 1.14. Let I be a properly discontinuous group of isometries of U (where
U =%, C, or H) with a fundamental polygon P. If A is a subgroup of ' with a
(right) Schreier transversal T, then

P =|]JtP

teT

is a fundamental polygon for A whose sides are paired by the Schreier generators

corresponding to T

Proof. Suppose that t € T has the form ¢t = s where 3 € ® (these are taken to be
words in ®). Then tP and sP are adjacent along sb for some edge b of P, and since
T is a Schreier transversal we must have s € T. Now by induction on the lengths
of words in T, P’ is connected. The boundary of P’ will be the set of all edges sb
of sP (b aside of P and s € T') which have no tP (¢t € T') adjacent to them; these
sb are the sides of P’. Hence P’ is a connected polygon. We now show that P’ is a

fundamental polygon for A satisfying F'1 to F'4 above.
F1: This holds for P’ since AP’ = ATP =TP =U.

F2: Suppose that z € P'NAP' for 1 # X € A. Then z € sPN AP for some s,t € T
with s # At, and because P is a fundamental polygon for I, we must have z € sb for
some side b of P. We now show that sb is on the boundary of P’. For if not, then
by our definition of the boundary for P/, At € T and so by the Schreier property
we have A € T. However A € A so that AA = Al, and since 1 € T, we must have
A =1, a contradiction. Therefore A\t & T and sb 3 x is on the boundary of P’.

F3: Let 8 € ® pair b with b where b and b are sides of P, and let s € T. Then sb
is a side of P’ if and only if s & T, and so if and only if there exists t € T with
AsB = At and t # sB3. This happens if and only if the Schreier generator s8¢~ # 1.
In this case tb is a side of P’ paired with sb by the (unique since F'3 holds for P)

element sBt™1.

F4: This holds for P’ since it holds for P. o

11



Algebraic curves and Belyi’s theorem

IfT(z,y,2) € C[z,y, 2] is an irreducible homogeneous polynomial with complex

coefficients, then the algebraic curve
Cr ={[z,y,2] € P*(C)|T(z,y,2) =0}

can be normalized to obtain a compact Riemann surface Xy (we note that Xr is
not necessarily isomorphic to Cp, see [Ki] or [Ful]). Conversely, given a compact
Riemann surface X there exists an irreducible homogeneous polynomial T'(z, y, z) €
Clz,y, 2] such that X7, the normalization of Cr, is isomorphic to X (see [Gri] for
precise details). We say that a Riemann surface X is defined over a subfield ' C C
if X = Xp for some polynomial T'(z,y,2) € Flz, y, 2].

A complex number a € C is an algebraic number if f(a) = 0 for some non-zero
polynomial f(z) € Z[z], and « is said to be an algebraic integer if f(z) is a monic
polynomial. The set of all algebraic numbers forms a field, denoted Q. We are

particularly interested in Riemann surfaces that are defined over finite extension
fields of Q.

Definition 1.15. Let X be a compact Riemann surface. Then a non-constant
holomorphic mapping 3 : X — ¥ is called a Bely? function if C() C {0,1,00}. o

The group Aut X acts triply transitively on X, so if f : X — ¥ is any non-constant
holomorphic mapping with at most three critical values, then by composing f with
an automorphism of ¥ we can obtain a Belyl function. A compact Riemann surface
with a Belyl function will be called a Belyi surface, and (X, 3) will be called a Belyi
pair. Belyi [Bel] (or see [JS3]) gave the following classification of compact Riemann

surfaces defined over the algebraic numbers:

Theorem 1.16. A compact Riemann surface X is defined over Q if and only if

there exists a Belyi function 8: X — X. o

An alternative classification of compact Riemann surfaces defined over Q was given
by Wolfart [Wol, Wo2]:

Theorem 1.17. A compact Riemann surface X is defined over Q if and only if
X = U/A where A is a finite index subgroup of a cocompact triangle group and
U=3>,CorH.
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Proof. (<) Suppose that X = U/A where Y = £,C or H and A is a finite
index subgroup of the triangle group I' = I'(ly, l1,l3) where [; < oo for ¢ = 0,1, 2.
Then I'(lo, 11, 12) acts on a triangle with vertex angles 7/ly, /11, 7/l5 as described in
Examples 1.10(ii), and the projection 7 : Y — U/T has at most three critical values
C(m) corresponding to the orbits of those vertices with {; > 1. Since Aut ¥ acts
triply transitively on ¥, there is an isomorphism U/ /T — 3 which sends the critical
values C(7) into {0,1,00} (one can use the Schwarz triangle functions to define
this isomorphism, see [Wo02]). We note that the critical values of the projection
U/A — U/T are contained in the set C(x). Hence by composing the isomorphism
X 22 U/A with the projection U /A — U/T and the above isomorphism U/T" 2 3 we
obtain a Belyf function on X, so that X is defined over Q by Theorem 1.16. (=)

We refer the reader to [Wol] for a proof of the converse. o

The connections between Belyi functions, algebraic curves and geometric ob-
jects called dessins d’enfants (otherwise called maps and hypermaps, see Chapter 2)
were first outlined by Grothendieck in his Esquisse d’un programme [Gro] (or see
[Sc]). In the following chapters we will produce examples illustrating Grothendieck’s

ideas, and their connections with the absolute Galois group Gal(Q/Q).
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Chapter 2

Maps and hypermaps

We will use the term dessin to encompass two related theories: maps which are
two-cell decompositions of orientable surfaces [JS1], and hypermaps [JS3, CoSi]
which can be thought of as bipartite maps. Jones and Singerman [JS1, JS3] have
shown that every finite dessin can be embedded naturally into some Riemann surface
X = U/A where A is a finite index subgroup of a cocompact triangle group, and
conversely that every finite index inclusion A < T where T is a cocompact triangle
group defines a dessin embedded into &//A. Thus by the theorems of Belyi and
Wolfart, the Riemann surfaces that carry finite dessins are precisely those that are
defined over Q.

2.1. Topological and algebraic maps

For a detailed account of the material in this section, we refer the reader to
[JS1]. A map is informally an embedding of a connected graph G into an orientable
surface S such that the connected components of S\G (called the faces of the map)
are simply connected. We note that G is allowed to contain loops and free-edges
(i.e. edges for which only one end is incident with a vertex). If the map has an
underlying surface S and an associated graph G with vertex set V, then the map is
represented by the triple (G, V,S). Plane trees embedded into the complex plane C
as studied by Shabat and Zvonkin [SZ] are examples of maps, as are the Platonic

solids embedded into the Riemann sphere 3.

Figure 2.1(a) shows a map with one vertex, one face and three edges (one
of which is free) embedded into the torus. The torus is obtained by identifying

opposite sides of the square.
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P
<

(a) / | (b) 1
3~ e
~ T

Figure 2.1: A map of genus 1

We now show how to associate an algebraic structure to a map M. Whenever
an edge intersects a vertex we put an arrow on the edge facing that vertex, as shown
in Figure 2.2; every such vertex-edge pair is called a dart of M. The genus 1 map
of Figure 2.1(a) has five darts, and they are shown in Figure 2.1(b) labelled from 1
to 5.

o<

Figure 2.2: A dart

Letting Q denote the set of darts of M, we define two permutations of {2 as
follows: rq consists of cycles formed by going round each vertex in an anticlockwise
direction, while 1 is the permutation consisting of cycles which interchange the two
darts on an edge or loop, and fix the dart on a free edge. The product ro = 7171y !
consists of cycles which define anticlockwise rotations about each face of M, where
the composition is taken from left to right. We let G = gp < 79,71, >< S be the
group generated by ro and r1, and note that G is a transitive permutation group
because the graph underlying M is connected; G will be called the monodromy
group of M. We define the algebraic map of M to be Alg M = (G,Q,rg,71) and
if ro and 7, have orders m and n respectively, we say that M has type (m,n).
We prove in Theorem 2.9 that from any algebraic map (G, 2,79,r1) where G is a
transitive permutation group, one can recover a topological map M with Alg M =
(G,Q,19,71). If M has type (m,n), then M is said to have type dividing (r,s) for

all 7, s such that m|r and n|s.

The genus 1 map of Figure 2.1(b) has the set of darts @ = {1,2,3,4,5} with
ro = (12345), r; = (1)(24)(35), and 7o = (15234). The map has type (5,5).
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Map subgroups

The triangle group I'(m, 2, n) has a presentation of the form

'(m,2,n) =gp < zo, 71 | 2] = 75 = (T125 )" =1 > . 2.1

If M is a map of type (m,n) with Alg M = (G,,rg,71), then there is an epimor-
phism 0 : T'(m,2,n) — G given by g — ro and 1 — . f G, = {g € G| ag = a}
for any a € Q, then M = 071(G,,) is called the (canonical) map subgroup associ-
ated to M. (All maps considered will have finite type (m,n), so that I'(m,2,n) is
cocompact.) We can identify  with the set of right M-cosets in I'(m, 2,n) by the
bijection

Mh — a(h8) 2.2

where h € T'(m,2,n). (The map 2.2 is well defined, since if Mg = Mh then
gh™! € M and so (gh™1')8 € G, which implies that a(gf) = a(hf). By reversing
this argument we see that 2.2 is injective, while az € 2 is the image of My for
any y € 8~ 1(z) so that 2.2 is surjective.) The permutation 7o (respectively r1) then
corresponds to the action of zg (respectively z1) on the right M-cosets in I'(m, 2, n),
and in this way any finite index subgroup M < I'(m,2,n) is the map subgroup for
some algebraic map. An algebraic map may be defined more abstractly as a finite

transitive permutation representation 6 : I'(m,2,n) — G.

Let M be a map with an associated map subgroup M < I'(m,2,n). From
Theorem 1.14 we see that X = U /M (where U = £, C, or H) defines a Riemann
surface which can be constructed by ‘gluing together’ copies of a fundamental region
for T'(m, 2,n). It will be proved in this section that M can be embedded naturally
into X, so that the edges of M are geodesics in X.

Map automorphisms

If M; = (G, Vs, Si) (i = 1,2) are topological maps, then a morphism ¢ :
M; — My is a (possibly branched) covering of surfaces ¢ : S; — Ss, preserving

orientation, such that:
(i) #71(G2) = G1 and ¢~ (Vo) = Vi
(ii) all branch points have finite order.

We say that M; covers M, if there exists a morphism from M; to Msy. The

following theorem concerning morphisms of maps was proved in [JS1]:
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Theorem 2.3. Let My, M, be maps of type (m,n). Then M; covers M, if and
only if we can find map-subgroups M; < T'(m,2,n) for M; (i = 1,2) with My, < M,.

a

Two topological maps are isomorphic if there exists a morphism between them
such that the covering of surfaces ¢ is a homeomorphism. Thus an automorphism of
a topological map is a self-morphism induced by a homeomorphism of the underlying
surface to itself. We can also define morphisms between algebraic maps: an algebraic
morphism between Alg My = (G1,Q4,70,71) and Alg My = (G2, Qa, So, 51) is a pair
(6,0) of functions 6 : 1 — Qq, 0 : G; — G4, where ¢ is a group homomorphism,
To0 = Sp, 10 = 81 and the diagram in Figure 2.3 commutes (the horizontal arrows
in the diagram represent the actions of G; and G3). Thus we require that (ag)§ =
(a6)(go) for all g € Gy, a € Q1. Two algebraic maps are then isomorphic if there
exists an algebraic morphism (8, o) between them where ¢ is a group isomorphism

and ¢ is a bijection.

M xG —

(6, a)l Jé

QQ X Gz —_— QQ
Figure 2.3
The set of topological automorphisms of a map forms an infinite group since
its edges can be continuously deformed, and each vertex can be perturbed in some
small neighbourhood. We therefore follow Jones and Singerman by defining the au-

tomorphism group Aut M of a map M to be the group of algebraic automorphisms
of its associated algebraic map Alg M.

Theorem 2.4. Let M be a map with Alg M = (G,Q,rq,r1). Then
Aut M = CS'Q (G)
where Cga(G) is the centralizer of G in S%.

Proof. The map is defined by the two permutations rg and r;. Therefore (8,0) €

Aut M if and only if rgo = rg, r10 = r1, 706 = 619 and 716 = ér;. Since rg and
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generate G, o must be equal to the identity permutation and so

Aut M = {§ € S%|6 centralizes G}. o

It follows from Theorem 2.4 that Aut M will be a finite group for any finite map
M. We will require the following results, which are proved in [JS1]:

Theorem 2.5. Let M;, M, be map subgroups of I'(m,2,n). Then they give rise

to isomorphic maps if and only if they are conjugate in I'(m,2,n). o

Theorem 2.6. If M has a map subgroup M < T'(m,2,n), then Aut M =
Nr(M)/M, where Ny (M) is the normalizer of M in T'(m,2,n). o

Let M be a map of type (m,n) with Alg M = (G,Q,r¢,71), and the associated
map subgroup M = 671(G,) < I'(m,2,n) where ¢ : I'(m,2,n) — G and G, are
defined as above. If we identify  with the set of right M-cosets in I'(m,2,n)
as in 2.2, then the normalizer Np(M) acts by left-multiplication on the cosets; so
n € Np(M) acts by

Mg+— n"*Mg= Mn"1g.

This action commutes with the right action of T'(m, 2, n), since Mn~1(gh) =
M(n=1g)h for all n,g,h € T'. Using Theorem 2.6 and the epimorphism
6 :T'(m,2,n) —» G we have

Aut M = Ng(Ga)/Ga

where Ng(G,) is the normalizer of G, in G. We can then identify 2 with the set
of right Gy-cosets in G, so that n € Ng(Gg) acts by Gog — n71Gag = Gan™lyg.

Quotient maps and universal maps

Let A = (G,Q,79,71) be an algebraic map. If T' is a group of automorphisms
of A, then T induces an equivalence relation ~ on €2 where a ~ 3 if a = [t for some
t € T. There is an action of G on the quotient set @ = Q/ ~ given by g : [a] — [ag],
and if K is the kernel of this action, then K <G and G = G/K acts faithfully and
transitively on Q. Setting 7o = Kro and 7; = Krq, we call A = (G,Q,7o,7;) the
quotient map of A by T.

Given the presentation for I'(m, 2,n) in 2.1, the universal algebraic map of type
(m,n) is defined to be
./i =< F, |Fl,l‘0,$1 >
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where I' = I'(m, 2,n), |I'| is the set underlying I'(m, 2,n), and g € I'(m, 2, n) acts on
IT'| by right multiplication: g : h + hg for all h € |T'|. Any subgroup M < T'(m,2,n)
acts as a group of automorphisms of A by the left action a : h — a~‘h for all h € T,

a € M. We can therefore form the quotient algebraic map
A/M = (D/M*,T /M, M*zo, M*z,)

where I'/M = {Mg|g € T}, M* = the core of M in T, and I'’/M* acts on I'/M by
M*g: Mh— Mhg for all g,h € I'. It is proved in [JS1] that every algebraic map

of type (m,n) can be obtained as a quotient of the universal algebraic map of type
(m,n).

Maps on Riemann surfaces

The triangle group

I'(m,2,n) =< zo, 1|2 = 22 = (zoz1) " =1>

acts naturally on the =, 7 triangle 7 of Figure 2.4(a) as described in Examples

1.10(ii); as usual 7 liesin Y = 3,C,or H as % + % > %,z % or < % If P is the
fundamental polygon for I' formed by reflecting 7 in the side with angles 7 and
I as shown in Figure 2.4(b), then xo and ; are the side pairing transformations
of P. We draw a half-edge and a dart on P as shown in Figure 2.4(c). The set
Q = {vP]|y € T'} will tessellate U, and the map formed by the set of half-edges will
be called the universal topological map M of type (m,n). The darts of M will be
identified with Q in the obvious manner (they will be called the topological darts
of M) Let V denote the vertex set of M and G its underlying graph, so that

M= (G, V,U).

=13
R

5l

(a) (c)

Figure 2.4

We will show that I' = I'(m, 2, n) acts in two different ways on M through its action
on the topological darts ; firstly as the monodromy group, and secondly as the

automorphism group.

19



1. For the first action T} of I'(m, 2,n) on M, we define
g:vP = vgP

for all vP € 1 and g € I. To check that 77 is an action, we have for all ¥P €
and g,h €T

(gh) : YP — v(gh)P

which is equivalent to applying ¢

g:7P = 9P = (vg)P

and then A
h:(vg)P — (vg)hP = ~(gh)P.
(a)
(b)
x¢P P YXP YP
Figure 2.5

We now prove that I'(m,2,n) is acting as the monodromy group of M. For all
~vP € Q, we have 1 : YP — ~z1P and z¢ : vP — ~vzoP. As shown in Figure
2.5(a), the topological darts yP and yz1P lie on the same edge, while from Figure
2.5(b) the topological dart yxoP corresponds to an anticlockwise rotation of the
topological dart 4P about its vertex. Hence zy acts by rotating topological darts
anticlockwise about vertices, and z; acts by interchanging the topological darts on

an edge. Since I'(m, 2,n) = < xg, ;1 >, this implies that I'(m, 2, n) is isomorphic to
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the monodromy group of M. In this case we note that I'(m,2,n) is not acting as a

group of conformal automorphisms of the underlying surface U.

The algebraic map associated to M has the set of algebraic darts IT'(m,2,n)]
where the topological dart yP corresponds to the algebraic dart v for all ¥ € I'. The
monodromy group of Alg M is isomorphic to I'(m,2,n) where g € T acts on the
algebraic darts by g : v — g for all v € |T'|; in particular g induces anticlockwise
rotations of the algebraic darts about each vertex and z; interchanges the algebraic
darts on each edge. Hence the algebraic map Alg M is isomorphic to the universal

algebraic map A defined above. We have therefore proved:

Theorem 2.7. Let M be the universal topological map of type (m,n). Then
Alg M is isomorphic to the universal algebraic map A of type (m,n). o

2. The second action Ty of I'(m,2,n) does induce conformal automorphisms of U.
We define

a:yP—a yP

for all vP € Q and a € . Then I'(m, 2,n) acts transitively on 2, and because

a H(vg)P = (a"'y)gP

for all a, g,y € I, the two actions 77 and T, commute. Therefore T defines an action
of I'(m, 2,n) as the automorphism group of M. Any subgroup M < I'(m,2,n) will
act as a group of automorphisms of M, and so we can form the quotient topological
map M/M = (G/M,V/M,U/M) induced by the natural projection p : U — U/M.
Now M acts on the topological darts of M (via the action Tb) and defines an
equivalence relation on € corresponding to the orbits of this action; the equivalence
classes have the form [yP]ps for v € T'(m,2,n), with [11P]y = [v2P]a if and only
if v1v5 e M.

Since the two actions T} and T3 of I'(m, 2,n) commute, I'(m, 2,n) also acts on
the set /M by

g: [YPlm = [v9PIm

for all ¢ € T and vP € Q (call this action T3). An element g € I'(m, 2,n) is in the
kernel of this action if and only if [ygP]a = [YP]um for all v € T'(m, 2,n); that is if

and only if ygy~! € M for all v € I'(m, 2,n), and so if and only if g € M*, the core
of M in I'(m, 2,n). If yP,vxoP, ... , vz "' P are the topological darts surrounding
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a vertex v € V of M, then [yPar, [yzoPlars - - - [yz5~*P)as (where r is the smallest
positive integer for which yzfy~! € M) are the topological darts surrounding the
vertex p(v) € V/M of M/M. Similarly if vP and vz, P are the topological darts
on an edge of M, then [yP]ps and [yz1P]as (equal if yz17~1 € M) are the darts on
an edge of M /M. Hence the algebraic map corresponding to the quotient M /M
is isomorphic to the quotient algebraic map A/M = (I'/M*,T'/M, M*zq, M*z,).
Thus we have proved:

Theorem 2.8. Let M and A be the universal topological and algebraic maps of
type (m,n) respectively, with M < I'(m,2,n). Then Alg(M/M) = A/M. o

We also note that the stabilizer of the topological dart [P]as € /M under the action
T3 of I'(m, 2,n) is equal to M. Therefore for any M < I'(m, 2,n), the topological
map M /M has a corresponding map subgroup M < I'(m, 2, n).

Theorem 2.9. If A is an algebraic map, then there is a topological map M such
that Alg M = A.

Proof. Let A have type (m,n). Then by the discussion of quotient algebraic maps
we have A = A/M, where A is the universal algebraic map of type (m,n) and M is
some subgroup of I'(m, 2,n). If M is the universal topological map of type (m,n),
then by Theorem 2.8 we have Alg (M /M) = A. Therefore the required map is
M= M/M. o

If M is a topological map of type (m,n) with a map subgroup M < T'(m,2,n),
then the isomorphism M =2 M/M defines an embedding of M into the Riemann
surface X = U /M. In this way, every topological map can be embedded naturally

into some Riemann surface.

Example 2.10. Let A; be a genus 2 subgroup of index 8 in I'(8, 2, 8) corresponding

to the permutation representation

20— (12345678)
21— (15)(26)(37)(48) | 2.11
2y > (14725836)

(see Theorem 1.9) where we take
F(8,2,8):gp<xo,x1,x2|x8:$%:m§:x0x1x2:1> 519

:gp<$0,$1|3§(8):$% = (CL'QCL‘l)_s =1>.
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Using the second presentation for I'(8,2,8) given in 2.12, we choose

2 .3 .4 .5 .6 .7
{1, zo, 25, x5, 5, T3, TG, TH} 2.13

to be a Schreier transversal for A; in I'(8, 2, 8) and obtain the corresponding Schreier

generators

4 5.7 6. .6 7 5
{zoz1, TyT12l, TT1TY, THT1TE}

(see Chapter 1). We have seen that the map M associated to the inclusion A; <
I'(8,2,8) lies on the Riemann surface X = H/A1, and we construct M using the
technique for constructing X given in Theorem 1.14. Take the hyperbolic triangle

7T = agayoe shown in Figure 2.6(a) with Zasagar = B logonan = 5, Lajasap =

Z and the let I'(8,2,8) act upon T as follows: zo is a & anticlockwise rotation
about ag, =7 is a 7 rotation about @y and z, is a 3871 anticlockwise rotation about
Q9.
[0 5) o
(a) T (b) P
Qg
Figure 2.6

By reflecting 7 in the side apa; we obtain the fundamental region P for
I'(8,2,8) shown in Figure 2.6(b); the bold line and dart drawn on P will form
one half-edge of the map. We now obtain X (and hence the map M) by ‘gluing
together’ 8 copies of P as specified by the Schreier transversal. Thus we take the
regions

{P,zoP,23P,23P, 24P, i P, z5P, z{ P} 2.14

which, as shown in Figure 2.7, fit together to form a regular hyperbolic octagon.
The Schreier generators pair the sides of the octagon as follows: xéxl pairs the side
A of P with the side E of z3P, z3z12] pairs B with F, z§z1z§ pairs C with G and
w12y pairs D with H. Hence X is represented as a regular hyperbolic octagon
with opposite sides identified. The resulting map on X (formed by the bold lines)

is of type (8,8) and has one face, one vertex and four edges. The map has genus 2.
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F

Figure 2.7

The eight darts of M can be associated with the eight cosets of M in I'(8, 2, 8)
and labelled 1,2,..., 8 according to the correspondence i +— Ma:f)_l fori=1,...,8.
From Figure 2.8 we see that the defining permutations of M are rqg = (12345678),
r1 = (15)(26)(37)(48) and r, = (14725836), with r; = r§. We therefore have
G =gp < rg,r1 >= gp < 19 >= Cs, the cyclic group of order 8. The only element
in G that stabilizes the dart o = 1 is the identity element e, and so G; = {e} with
N¢(G1) = G. Hence the automorphism group of the map is given by

AutM = Ng(Gl)/Gl G Cg.

These automorphisms can be realized as rotations about the centre of the octagon

in Figure 2.8 through integer multiples of 7.

If A is a group of automorphisms of M corresponding to a rotation of the
octagon through an angle 7, then A can be represented by its action on the eight
darts as A = gp < (15)(26)(37)(48) >. Letting M = M/A be the quotient map
of M by A, M has the set of darts {1, 2, 3, 4} where 1 = [1], 2 = [2], 3 = [3]
and 4 = [4] with the defining permutations 7o = (1 4 3 2), 71 = (1)(2)(3)(4) and
7o = (1 2 3 4). Then M is the genus 0 star map S, shown in Figure 2.9. In
general, the star map S,, is the genus 0 map with one vertex, one face and n free
edges. The map M is a 2-sheeted cover of a map on the sphere; such a map is
said to be hyperelliptic (a Riemann surface is hyperelliptic if it is a 2-sheeted cover
of the Riemann sphere). We note that not all maps on hyperelliptic surfaces are

themselves hyperelliptic [Sind]. o
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Figure 2.8 Figure 2.9

Example 2.15. We take a second genus 2 subgroup As < I'(8,2,8) corresponding

to the permutation representation

zo — (12345678)
21— (17)(24)(35)(68) 2.16
29— (16785234)

and using the same Schreier transversal 2.13 of Example 2.10, we obtain the Schreier

generators

3.7 .6 7 .3 4. .6
{zgz12), THT1, TET1Th, TET1Tg )

for A, in I'(8,2,8). The map corresponding to the inclusion Ay < I'(8,2,8) can now
be constructed by gluing together the same eight copies of the fundamental region
for T'(8, 2, 8) given in 2.14. The resulting hyperbolic octagon, shown in Figure 2.10,
has the following side pairings: the Schreier generator z$z; pairs A with G, z3z,x}
pairs B with D, z3z,2§ pairs C with E and z]z 1z} pairs F with H. The map we

obtain is of genus 2 and type (8, 8), with one vertex, one face and four edges.
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Figure 2.10

As in the previous example we associate the darts of M with the eight cosets
of M in I'(8,2,8) by the correspondence i — Mz{ '. The map is shown in Figure
2.11 with the defining permutations 7o = (12345678), r; = (17)(24)(35)(68)
and ro = (16785234) where G = gp < 79,71 > has order 32 and contains eleven
elements of order 2, four elements of order 4 and sixteen elements of order 8. The
group G then has the form

(Cg X Cy) X Cy

(see [TW]) where G1 X G3 is the semidirect product of G; with Ga, with G; as a

normal subgroup. The stabilizer in G of the dart & = 1 is given by
G1 =< (26)(47),(35)(47) >= Cy x Cy
with the normalizer
Ng(G1) =< (35)(47),(26)(47),(18)(47) >= Cy x Cy X Cs.
The automorphism group of the map is therefore
Aut M = Ng(G1)/G = C;

and this can realized as a rotation about the centre of the octagon in Figure 2.11
through an angle m. Representing the automorphism group as a permutation of
the darts of M gives Aut M =< (15)(26)(37)(48) >. The map M = M/Aut M
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then has the set of darts {1,2,3,4} where i = [i] for i = 1,2,3,4 and the defining
permutations 7o = (12 3 4), 7; = (T 3)(2 4) and 7 = (1 3 2 4). The resulting map
has genus 1 and is shown in Figure 2.12. Thus M is a 2-sheeted cover of a map on

the torus; such a map is said to be elliptic-hyperelliptic. o

Figure 2.11 Figure 2.12

Uniform and regular maps

Definition 2.17. A map M is uniform if all of its vertices have the same valency,
all of its faces have the same valency, and it either has no free edges, or all of its

edges are free. o

The only uniform map with a free edge is the genus 0 star map S,, which has one
vertex, one face and n free edges. The embeddings of the Platonic solids into the
sphere are uniform maps of genus 0, while the maps in Examples 2.10 and 2.15 are

uniform of type (8,8). A stronger condition on a map is for it to be regular:

Definition 2.18. A map M is regular if Aut M acts transitively on the darts of
M. o

The automorphism group of the map M in Example 2.10 acts transitively upon
the set of darts of M, and so the map is regular. The genus 0 embeddings of the

Platonic solids are also regular maps; indeed it is known that a genus 0 map is
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uniform if and only if it is regular (see [JS1]). More generally, every regular map
is uniform (since if Aut M acts transitively on the darts, it must act transitively
upon vertices and faces), however not all uniform maps are regular. For example,
the uniform map in Example 2.15 is not regular because Aut M divides 2 into four
orbits. The following classification of uniform and regular maps in terms of their

canonical map subgroups is given in [JS1]:

Theorem 2.19. A finite non-star map is uniform if and only if its canonical map-

subgroup is torsion free. o

Theorem 2.20. Let M be a map with canonical map-subgroup M < I'(m,2,n)

and associated algebraic map (G, rg,71). The following are equivalent:
(i) M is regular;
(ii) M <«T'(m,2,n);

(iii) (G,Q) is a regular permutation group (i.e. G, = {e} foralla € Q). ©

Using Theorem 1.9 one can verify that the permutation representations in
Examples 2.10 and 2.15 define torsion-free map subgroups Ay, As < I'(8,2,8), so
that by Theorem 2.19 the associated maps are uniform of type (8,8). Also note
that in Example 2.10, the stabilizer in G of any dart of the map is trivial, so that
by Theorem 2.20(iii) the map is regular.

Regular covers of maps

Given a subgroup M < I'(m,2,n) the core of M in I", denoted M™*, is the
intersection of all conjugates of M in T'(m, 2,n). The core M™* is the largest subgroup
of M that is normal in I'(m, 2,n), and M* contains every other subgroup of M with

this property.

Theorem 2.21. [JS1] Every finite map M of type (m,n) can be finitely covered
by a regular map of type (m,n).

Proof. If M < I'(m,2,n) is a canonical map-subgroup for M, then M has finite
index in T'(m,2,n) and hence so does its core M*. Therefore the map M* with
map-subgroup M* is finite and since M* < M, M* covers M by Theorem 2.3.
Since M* aT'(m,2,n), M* is a regular map of type dividing (m,n), and because

M* covers M, M* must have type (m,n). o
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The map M™* defined in the proof of Theorem 2.21 is the smallest regular map that
covers M. If |M : M*| = k then we say that M has a minimal regular cover of
index k. The index of the minimal regular cover of a map gives some measure of its
regularity; the smaller the index, the more regular the map. For examples of regular
covers, we refer the reader to §4.4 where the minimal regular cover is calculated for

a family of toroidal maps.

2.2. Hypermaps

A hypermap is a generalization of a map in which an edge is allowed to inter-
sect any finite number of vertices. We begin by giving an algebraic definition of a
hypermap, and then describe three ways in which this can be interpreted topologi-

cally.

Algebraic and topological hypermaps

An algebraic hypermap H consists of a set of objects 2 called the bits of H,
together with two permutations rg and 71 on 2 such that G = gp < rg,71 > is a
transitive permutation group. The cycles in 7o and ry correspond to hypervertices
and hyperedges respectively, while the cycles of ry = (ror1) ™! correspond to hyper-
faces. The hypermap is represented by the quadruple (G, €, rg,71), and if r; has
order I; (for ¢ = 0,1,2), then H is said to have type (ly,l1,l2). The degree of H is
equal to €.

If H = (G,Q,rg,r1) has type (lo,l1,{2), then there is a natural epimorphism
0 :T(lo,l1,l2) — G given by xg +— 79, 21 + 71 Where

F(lo,l1;l2) == gp < To, X1 |:L’loo = Qjél = (:Coml)”'l2 — 1 > .

If Gy ={g€Glag=a} forany a € Q, then H = 671(G,) is called the canonical
hypermap subgroup associated to H. We can think of H as being the finite transitive

permutation representation 8 : I'(lg, l1,l2) — G.

Example 2.22. We let Q = {1,2,3,4,5,6,7,8} and take

ro = (1248)(365)(7)
r = (1)(23)(4567)(8) 2.23
ro = (18473)(25)(6)
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so that the group G' = gp < 7o, r1 > acts transitively on Q. Then H = (G, Q,70,71)
is an algebraic hypermap of type (12,4, 10), whose hypermap subgroup is obtained
by considering the natural epimorphism 6 : I'(12,4,10) — G. o

The following topological interpretations of a hypermap H on an orientable
surface S are due to Cori [Cor], Walsh [Wa] and James [Ja]:

Definition 2.24. The Cori representation. Hypervertices and hyperedges are rep-
resented by closed polygons, called 0-faces and 1-faces respectively. Hypervertices
are mutually disjoint, as are the hyperedges, with the hypervertices intersecting the
hyperedges at a finite number of points, corresponding to the bits. The orientation
of S induces a cyclic ordering (in an anticlockwise direction) of the bits around each
0-face and 1-face, giving the permutations ¢y and r; respectively. Let V C S and
E C S be the sets of hypervertices and hyperedges respectively. Then the compo-
nents of S\ (VUE) are called the hyperfaces (2-faces), each one homeomorphic to an
open disc and inducing the permutation 73 = (ror1)~!. Hypervertices, hyperedges
and hyperfaces will be represented in black, grey and white respectively. Figure
2.13 shows the Cori representation C(H) of the hypermap H in Example 2.22; the

hypermap is drawn on a surface of genus 0. o

Figure 2.13: The Cori representation C(H) of the hypermap H

Definition 2.25. The Walsh representation. Starting with the Cori representation,
hypervertices are replaced by black vertices (0-vertices) and hyperedges are replaced
by white vertices (1-vertices). A 0O-vertex and a 1-vertex are joined by an edge if

and only if the associated hypervertex and hyperedge intersect at a bit, so that the
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Walsh representation W(H) is a bipartite map. The edges of W (H) correspond to
bits, with r; giving an ordering of the edges around each i-vertex (i = 0,1), and the
permutation r, giving an ordering of the edges around each face. Figure 2.14 shows
the Walsh representation of the hypermap in Example 2.22. o

Figure 2.14: The Walsh representation W (H) of the hypermap H

Definition 2.26. The James representation. We begin once again with the Cori
representation. Whenever a hypervertex and a hyperedge intersect, we ‘squash’

them together to form an extra edge as in Figure 2.15.

Figure 2.15

The James representation J(H) is then a trivalent map with O-faces, 1-faces
and 2-faces corresponding to hypervertices, hyperedges and hyperfaces respectively.
The bits correspond to those vertices in J(H) about which the ordering of the faces
in an anticlockwise direction is (012). Figure 2.16 shows the James representation

of the hypermap in Example 2.22. o
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Figure 2.16: The James representation J(H) of the hypermap H

The hypermap H associated with the inclusion H < I'(lo,!l;,l2) can be em-
bedded naturally into the Riemann surface //H. The Walsh hypermap W (H) is

I
%, l—”l— to form the fundamental region P for I'(ly,l1,[l3) shown in Figure 2.17. The

embedded as follows: take a %, %, triangle and reflect it in the edge with angles
bold line drawn onto P will form one edge of the Walsh hypermap, and the black
(resp. white) circle represents a hypervertex (resp. hyperedge). If {mi,ma,...,mg}
is a Schreier transversal for H in I'(lg,l1,l2), then we obtain the hypermap W (H)
by gluing together the regions m,P, ..., mxP and identifying sides according to the

Schreier generators.

P

] -1
‘> X1 %o

A

4

Figure 2.17

Other concepts such as hypermap coverings, isomorphisms, automorphisms and
the definitions of uniform and regular hypermaps all follow by analogy with maps,

and so we omit the details (for more information see [JS3], [CMa] and [CoSi]).
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2.3. Dessins and Belyl functions

We have seen that every dessin admits a natural embedding into a Riemann
surface X, where X has the form U//A for A a finite index subgroup of a triangle
group; by Belyl’s Theorem, X will be defined over the algebraic numbers Q. Con-
versely, if X is a Riemann surface defined over Q, then X can be uniformized by
a finite index subgroup of a triangle group (Theorem 1.17) and so naturally carries
a dessin. Let B; denote the trivial bipartite map lying on the Riemann sphere ¥;
as shown in Figure 2.18 B, has one edge corresponding to the interval [0, 1] with a

black and a white vertex at 0 and 1 respectively.

&—O

0 1

Figure 2.18. The trivial bipartite map B,

The Belyl pair (X, 3) defines an n-sheeted branched cover 8 : X — ¥ with
critical values C(8) C {0,1,00}. Hence § will lift B; to a (connected) bipartite map
B = $7Y(B,) lying on X; the black (respectively white) vertices of B correspond
to the points 371(0) (respectively S71(1)), and the face centres of B will lie above
x = 0o. The bipartite map B will have n edges, which we label from 1 to n, with
each edge lying on a unique branch. Analytic continuation in a positive sense about
z = 0 and z = 1 on the Riemann sphere will induce permutations of the n sheets
which we denote by gg and g;. The group G =< gy, g1 > is called the monodromy
group of the cover. Since (3 lifts the positive orientation of ¥ to X, the permutations
go and g, define cyclic orderings of the edges about each black and white vertex of
B. If g is the permutation of sheets induced by analytic continuation about the
point £ = oo, then go. = (gog1) ! and so g defines a cyclic ordering of the edges
about each face of B (see [JS3] for more details).

The Belyl pairs (X, 3) and (X’,') are said to be equivalent if there is an
isomorphism 7 : X — X’ such that 8’ o¢ = §. Equivalence classes of Belyl pairs
correspond precisely to isomorphism classes of bipartite maps (see [Sc] or [JSt] for

example):

Lemma 2.27. Let (X,) and (X', ') be Belyl pairs, with associated bipartite
maps B and B, and associated monodromy groups G = < go, g1 > and

G' =< g4,9, > in Sy. Then the following are equivalent:

(i) The Bely{ pairs (X, 3) and (X', ') are equivalent;
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(ii) The bipartite maps B, B’ are isomorphic by a colour-preserving isomorphism;

(iii) The pairs (go,91) and (g3, 97) are conjugate in Sy, that is there exists some

s € Sy with sgis ! =gl fori=0,1. o

The Walsh representation of a hypermap defines a natural correspondence be-
tween hypermaps and bipartite maps. Thus a Belyf pair (X, ) corresponds to
a hypermap H if we replace the black and white vertices of the bipartite map
B = 37 1(B;) with hypervertices and hyperedges. The monodromy permutations
Jo: 91, goo then define cyclic orderings of the bits about the hypervertices, hyperedges
and hyperfaces respectively of H.

A Bely! function f is said to be pre-clean if the points 871(1) all have order
of branching less than or equal to 1 (equivalently if the monodromy permutation
g1 satisfies g2 = 1), and clean if they all have order of branching exactly equal to 1
(that is, if g1 is a product of disjoint transpositions). The pair (X, 3) is said to be
(pre-)clean if B is (pre-)clean. Every pre-clean Belyi pair (X, 3) corresponds to a
map M if we replace the white vertices of the bipartite map B = 371(B;) with edge
centres of M, as shown in Figure 2.19. The monodromy permutation gg will then
define a cyclic ordering of the darts around each vertex of M, and g; (which is a
disjoint product of transpositions and 1-cycles) will define the edges and free-edges
of M. Using this construction, clean Belyi pairs correspond to maps without free
edges, while maps associated to pre-clean Belyl pairs may have free edges (these
correspond to points in the set 371(1) whose order of branching is equal to 0). If
B is any Belyi function, then By = 48(1 — 8) is a clean Belyi function. If 371(B;)
defines a hypermap H, then the map associated to 3;;/ (B;) is the Walsh double of
H (see Definition 2.43 and [JS3]).

@ O @ 0—< >—@

Figure 2.19

The absolute Galois group Gal(Q/Q) is the set of all automorphisms of the
algebraic numbers Q that fix Q. Now Gal(Q/Q) acts on Belyi pairs (and hence on
equivalence classes of Belyl pairs) via its action on their algebraic number coeffi-
cients; so o € Gal(Q/Q) will send (X, 8) to (X7, 37). Grothendieck [Gro] observed
that the action of Gal(Q/Q) on equivalence classes of Belyi pairs induces a faithful
action of Gal(Q/Q) on isomorphism classes of dessins; indeed Gal(Q/Q) is known

34




to act faithfully on the set of genus 1 dessins, and even on the set of plane trees [Sc].
Jones and Streit [JSt] have determined the following invariants for Galois orbits of

dessins:

Theorem 2.28. The following properties of a dessin remain invariant under the
action of Gal(Q/Q): genus; numbers of (hyper)vertices, (hyper)edges and (hy-
per)faces; valency partitions of (hyper)vertices, (hyper)edges and (hyper)faces;

monodromy group and automorphism group (up to isomorphism). o

However, it is still possible for two dessins in the same Galois orbit to be non-

isomorphic. In §4.6 we give some examples of non-trivial Galois orbits.

2.4. Truncations and stellations

Jones [Jon] shows that an inclusion of triangle groups I'(l, m,n) < T'(I',m’,n’)
gives rise to a functor from the category of (hyper)maps of type (I,m,n) to those
of type (I',m/,n’). If the finite index inclusion H < T'({,m,n) corresponds to a
(hyper)map H, then a second (hyper)map H’ can be obtained from the inclusion
H <T(',m',n"); we would like to determine geometric operations which allow us
to pass from H to H’. In this section we define truncations and stellations of maps
(see [Sh] and [Coxe2]) and show how they relate to some triangle group inclusions

given in [Sin2]. Further examples of functors between maps are given in §5.3.

Definition 2.29. If M is a map, then the dual map D(M) is defined as follows:
every g-valent vertex of M Is replaced by a g-valent face of D(M) and every q-
valent face of M is replaced by a g-valent vertex of D(M). The vertices of D(M)
are joined so that the edge centres of D(M) coincide with the edge centres of M. o

@ ® ¢

Figure 2.20: A genus 1 map M and its dual D(M)

If we use the convention that a free edge has an ‘edge centre’ at its tip, then
Definition 2.29 applies to maps with free edges. If M is a map of type (m,n) then
its dual D(M) will have type (n,m). The genus 1 map M in Figure 2.20(a) has
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type (4,4), as does its dual D(M) shown in Figure 2.20(b); as usual the maps are
obtained by identifying opposite sides of the squares.

Definition 2.30. The type 1 truncation Ty (M) of a map M is defined as follows:
the vertices of T1(M) correspond to the edge centres of M, and the vertices are
joined so that a q-valent vertex of M is replaced by a g-valent face of T1(M), or
equivalently so that a q-valent face of M is replaced by a q-valent face of T1(M).

Figure 2.21: The type 1 truncations Ty (M) = Ty D(M)

The type 1 truncations T3(M) and T3 D(M) of the genus 1 map and its dual
considered above are isomorphic to the map in Figure 2.21. This is a general
phenomenon: 737(M) is defined in terms of the vertices, edge centres and face
centres of M. There is a one-to-one correspondence between the edge centres of
M and the edge centres of D(M), with g-valent vertices of M corresponding to
g-valent faces of D(M) and g¢-valent faces of M corresponding to g-valent vertices

of D(M). It follows that the resulting type 1 truncations are isomorphic:

Ty (M) = Ty D(M). 2.31

Lemma 2.32. Two maps M1 and My have isomorphic type 1 truncations if and

only if My and Mg are isomorphic or dual.

Proof. Isomorphic maps will have isomorphic type 1 truncations, and we have
shown that Ty (M) = T3 D (M) for any map M. Now let M; and M, be maps with
Ti(M;) = T1(Ms). We assign a labelling L; to the faces of T1(M;) as follows:
a face of T1(M;) is labelled v if it corresponds to a vertex of M;, and f if it
corresponds to a face of My (Figure 2.22 shows the labelling for the genus 1 map
Ty (M)).

v

Figure 2.22: The face labelling for Ty (M)
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This labelling has the property that no two adjacent faces of T7(M;) have the
same label, and we note that L; uniquely determines the map Mj; to recover
M place a vertex in the centre of every v-face of T7(M;) and join two vertices
whenever their associated v-faces share a common vertex in T7(M;). We define a
similar labelling Ly for the faces of T3 (Ms3) corresponding to the map M,. The
isomorphism between the maps T7(M;) and T7(Ms) restricts to an isomorphism
between their faces, and hence the labelling Lo induces a labelling Ly on the faces
of T1 (M) corresponding to Mo.

The labellings L; and Ly define bipartite structures on the faces of T3 (M)
(i.e. faces are labelled either v or f and no two adjacent faces have the same label)
and so L1 and L, are either the same or have v-faces and f-faces interchanged. In
the former case I; and L5 define isomorphic maps and M; = M,, while in the

latter case the vertices and face centres of M; and My are interchanged so that

Ml = D(Mz) a

Definition 2.33. The type 1 stellation S;(M) of a map M is defined as follows:
the vertices of S1(M) correspond to the vertices and face centres of M, and the
vertices are joined so that every vertex corresponding to a face centre of M is joined

to the vertices surrounding that face (see Figure 2.23). o

M S1(M)
Figure 2.23

The type 1 stellation of the genus 1 map considered above is shown in Figure
2.24, and we note that S;(M) is dual to the truncated map 77 (M) of Figure 2.21.
It can be deduced from the definitions that for any map M, the type 1 truncation
and type 1 stellation of M are dual maps

S1 (M) = DT (M)
and furthermore, since
S1(M) =2 DT (M) = DTy D(M) = S1D(M)
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any map and its dual will have isomorphic type 1 stellations.

Figure 2.24: The type 1 stellation S1(M)

From Singerman’s list of triangle group inclusions [Sin2] we have
[(s,t,8) <2 T(2t,2,s)

where s and t are chosen so that I'(s, ¢, s) is a Euclidean or hyperbolic triangle group
(only hyperbolic triangle groups are considered in [Sin2], but some of the inclusions
hold also for Euclidean groups). Let us fix the presentations

[(2t,2,8) = < z¢,21 |23 =22 = (zoz1) =1 >

2.34
T(s,t,8) = <wyo,v1|ys =9 = (yov1)*=1>

and define a homomorphism 0 : '(2t,2,s) — Cs by

z1 — (12)
(zoz1) ™"+ (1)(2)

so that #~!(stab(1)) is isomorphic to I'(s, t,s) by Theorem 1.9 (note that we have
chosen a particular inclusion ['(s,t,s) < T'(2t,2,s)). We choose the Schreier
transversal {1,z¢} for I'(s,¢,s) in I'(2¢,2, s) and obtain the corresponding Schreier

2
generators {zoz1, =3}

If M is a map of type (m,n) then its type 1 truncation T3 (M) will be a map
of type (4,s) where s = lL.c.m.(m,n). Now M has type dividing (s, s), and so we
can find a map subgroup M < I'(s,2,s) for M. Since I'(s,2,s) <3 I'(4,2, s), the
inclusion M < T'(4,2, s) will define a second map M’ of type (4, s); we will prove
that M’ is the type 1 truncation of M. The presentations given in 2.34 will be used
with ¢t = 2.

Lemma 2.35. Let the finite index inclusion M < I'(s,2,s) correspond to a map
M. Then T'(s,2,s) < T(4,2,s) as defined above, and the inclusion M < T'(4,2,s)
corresponds to the type 1 truncation Ty (M).
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Proof. We construct M using the method given in Example 2.10: take the funda-
mental region P for I'(s, 2, s) shown in Figure 2.25 where the bold line represents
one free-edge of the map M. If {m;,...,my} is a Schreier transversal for M in
I'(s,2,s), then M is constructed by gluing together the regions {m;P,...,miP}
and identifying sides according to the Schreier generators.

Figure 2.25

To construct the map M’ corresponding to the inclusion M < I'(4,2,s) we
use the fundamental region P’ for I'(4, 2, s) shown in Figure 2.26(a) where one free-
edge is marked in bold. Since I'(s,2,s) <5 I'(4, 2, s) we can glue together two copies
of P’ to form a fundamental region for I'(s,2,s): taking the Schreier transversal
{1,z0} for I'(s,2,s) in I'(4, 2, s) given above, we glue together {P’, zoP’'} to obtain
the fundamental region Q for I'(s, 2, s) shown in Figure 2.26(b). By Theorem 1.14,
the Schreier generators pair the sides of @ and so we can identify them with the

generators o, y1 of ['(s,2,s): yo = mlxo—l, y1 =12, (yoy1)~! = :1:51331.

2
X0

Ve
</ G

XX

Figure 2.26

Therefore, if they are chosen carefully we can regard P and © as being the same
region with different edges marked in bold (of course in the Euclidean case P and
Q must have the same area). Thus to construct M’, we replace every fundamental
region P used to construct M with the fundamental region Q. The vertices of M’

correspond to the edge centres of M, and the vertices of M’ are joined so that the
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g-valent vertices of M are replaced by g-valent faces of M’. Hence M’ = T1(M)
by Definition 2.30. o

In the proof of Lemma 2.35 it was shown that the generators yo,y1 of I'(s, 2, s)

can be expressed in terms of the generators zg,z; of I'(4, 2, s):

-1
Yo = T1T

Y1 = CC%
(yoy1) " =z 21 .
Conjugation of I'(s, 2, s) by the element z; € I'(4,2, s) will induce an outer auto-
morphism of I'(s, 2, s) interchanging its two conjugacy classes of elements of order

s; let the image of M <T'(s,2,s) under this automorphism be M* <T'(s,2,s).

Lemma 2.36. Let M be the map corresponding to the finite index inclusion M <
['(s,2,8). Then the inclusion M** < T'(s,2,s) corresponds to the dual map D(M).
In particular, M is self dual if and only if M and M® are conjugate in I'(s, 2, s).

Proof. Let [M]|r(s 2, ) represent the conjugacy class of M in I'(s, 2, s). Then since
I'(s,2,5) <2 T'(4,2,s) with I'(4,2,5) =T(s,2,5) UI'(s, 2, s)21, we have [M]p 2.5 =
[M]r(s,2,5) U [M™]p(s,2,5)- There are two cases to consider:

(i) If M and M?** are not conjugate in I'(s,2,s), then they correspond to non-
isomorphic maps, say M; and Ms. Since M and M7*! are conjugate in
I'(4,2,s), M; and Mj have isomorphic type 1 truncations by Lemma 2.35.
Non-isomorphic maps with the same type 1 truncations must be dual by Lemma
2.32.

(ii) If M and M are conjugate in I'(s, 2, s), then
[M]r,2,s) = [M]res,2,s)- 2.37

Let M < T(s,2,s) be the map subgroup corresponding to the dual map D(M).
Then M and M are conjugate in I'(4, 2, s) because M and D(M) have isomor-
phic type 1 truncations (Lemmas 2.32 and 2.35). Therefore M and M are
conjugate in I'(s, 2, s) by 2.37, and so M and D(M) are isomorphic maps. o

If M is a finite index subgroup of the triangle group I'y, then there exists a
Belyi function 81 : U/M — U/T'; = ¥ such that 87 ' (By) is isomorphic to the dessin
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corresponding to the inclusion M < I'y. Let I'; be a second triangle group with
'y <T,. Then the projection U /T’y — U /T3 can be thought of as a Belyl function
B2 from the sphere to itself, and the composition 33 = B0 81 : U/ M — U /Ty = %
is a Belyi function with 83 '(B;) isomorphic to the dessin corresponding to the
inclusion M < T'; (for details see [Jon]).

The trivial map corresponding to I'(s, 2, s) is shown in Figure 2.27(a), and the
map corresponding to the inclusion I'(s, 2, s) < T'(4, 2, s) is shown in Figure 2.27(b);
note that the sides of each fundamental region must be paired appropriately. The

map in Figure 2.27(b) has the corresponding Bely! function

—(z—1)2

Br, 1 x — o

with two branch points of order 1 at x = 1 and z = —1 with 5, (1) = 0 and
Br,(—1) = 1. The only other points sent into {0,1,00} are S, (0) = oo and
B, (00) = oo. Hence if §: X — X is a Belyl function for a map M, the com-
position B, o f: X — ¥ will be a Belyi function for the type 1 truncation 77 (M).

(a) (b)

Figure 2.27

We now consider a second type of truncation in which g-valent vertices are

replaced by g-gons, but the g-gons do not intersect one another.

Definition 2.38. The type 2 truncation To(M) of a map M is defined as follows:
every edge of M corresponds to two vertices of To(M), and the vertices are joined

so that a gq-valent vertex of M is replaced by a q-valent face of To(M), as shown in
Figure 2.28. o

++ o

Figure 2.28: A map M and its type 2 truncation To(M)
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Definition 2.39. The type 2 stellation S2(M) of a map M is defined as follows:
the vertices of Sa(M) correspond to the vertices and face centres of M, and the
vertices are joined so that every vertex corresponding to a face F' of M is joined to

the vertices surrounding F', and to the vertices corresponding to the faces adjacent
with F' (see Figure 2.29).

Figure 2.29: A map M and its type 2 stellation Sz(M)

Figure 2.30 shows the type 2 truncation and type 2 stellation of the genus 1
map considered above. We note that the two maps of Figure 2.30 are dual; in fact
for any map M we have To(M) = DSy(M).

T2(M) Sa(M)

Figure 2.30

Another inclusion from [Sin2] is
I'(2s,2,s) <3 I'(3,2,2s)

where we choose s > 3 so that ['(2s, 2, s) is either a Euclidean or hyperbolic triangle
group. If we fix the presentations

I'(3,2,28) = < zg,z1 |28 =27 = (Toz1) > =1> 040
[(25,2,8) = <yo, 41 95" =1 = (voyn) " =1>
and define a homomorphism 6 : I'(3,2,2s) — C3 by
xo — (123)
z1 — (1)(23)
(zoz1) ™" +— (13)(2)
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then 671 (Stab(1)) is isomorphic to I'(2s,2,s) by Theorem 1.9 (note that we have
chosen a particular inclusion I'(2s,2,s) < I'(3,2,2s)). We take the Schreier
transversal {1,zo,z3} for I'(2s,2,s) in I'(3,2,2s), and obtain the Schreier gener-

ators {zoz120,z1}.

If M is a map of type (m,n) with s = l.c.m.(m,n), then M has type dividing
(2s, s) and so will correspond to a map subgroup M < I'(2s,2,s) <T'(3,2,2s). We
will prove that the map corresponding to the inclusion M < I'(3,2,2s) is the type
2 truncation of M.

Lemma 2.41. Let the finite index inclusion M < T'(2s,2,s) correspond to a map
M. ThenT'(2s,2,s) <T(3,2,2s) as defined above, and the inclusion M < T'(3,2,2s)
corresponds to the type 2 truncation To(M).

Proof. The proof is similar to that of Lemma 2.35. To construct the map M
corresponding to the inclusion M < T'(2s,2,s), we take the fundamental region P
for I'(2s,2, s) shown in Figure 2.31 where the bold line represents one free-edge of
the map M. If {m,...,my} is a Schreier transversal for M in I'(2s, 2, s), then we
construct M by gluing together the regions {m1P...,m;P} and identifying sides
according to the Schreier generators.

Yo

‘> Yi¥

Figure 2.31

To construct the map M’ corresponding to the inclusion M < I'(3,2,2s) we
take the fundamental region P’ for I'(3,2,2s) shown in Figure 2.32(a) where one
free-edge is marked in bold. Since I'(2s,2,s) <3 I'(3,2,2s), we can glue together
three copies of P’ to form a fundamental region for I'(2s, 2, s): taking the Schreier
transversal {1, zg, 3} for T'(2s,2,s) in I'(3, 2, 2s) given above, we glue together the
regions {P’,zoP’, z3P’} to form the fundamental region Q for I'(2s,2, s) shown in

Figure 2.32(b). By Theorem 1.14, the Schreier generators pair the sides of Q and so
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we can identify them with the generators yo,y1 of T'(2s, 2, s): yo = Toz120, y1 = T1,

(yoy1) ™t = (zoz1) 2.

(@) P (b)

Ay -1
X X0 X1 %0

Figure 2.32

Therefore, if they are chosen carefully we can regard P and Q as being the
same region with different highlighted edges. To construct the map M’ we replace
every fundamental region P used to form M with the fundamental region Q. Con-
sequently, every edge of M is replaced by two vertices of M’ and the vertices of
M/’ are joined so that every g-valent vertex of M is replaced by a g-valent face.
Thus M’ = Ty (M) by Definition 2.38. o

As shown in Lemma 2.41 we can express the generators yo,y; of I'(2s,2,s) in

terms of the generators zg, 1 for T'(3,2,2s):

Yo = ToT1Zg
Y1 =23 2.42

(yoy1) ™' = (zoz1) 2.

The trivial map corresponding to I'(2s,2,s) is shown in Figure 2.33(a), and
the map corresponding to the inclusion I'(2s,2, s) < I'(3,2,2s) is shown in Figure
2.33(b) (the sides of each region must be paired appropriately). The map in Figure
2.33(b) has the corresponding Belyl function

(4 — 1)

By 1o 27x

with two branch points: one of order 2 at z = % and one of order 1 at z = —%

with ﬁTz(%) = 0 and ﬂTQ(—§) = 1. The only other points sent into {0,1,00} are
Br,(0) = oo = f1,(c0) and fr, (1) = 1. Hence if §: X — ¥ is a Belyl function
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for a map M, the composition 81, o 5 : X — X is a Belyl function for the type 2
truncation T (M).

0

(a) (b)

Figure 2.33

We recall that every Walsh map W (H) naturally corresponds to a bipartite
map (for example see [Wa] and §2.2).

Definition 2.43. The Walsh double of W(H) is the map formed by forgetting the

bipartite structure on the vertices of W(H). o

Since any map has at most one (unique up to a choice of colouring) bipartite
structure associated with its vertices, it is clear that (up to isomorphism) any map
is the Walsh double of at most two hypermaps. If two hypermaps H; and H, have
isomorphic Walsh doubles, then one can be obtained from the other by Machi’s

hypermap operation H; = Hgm)

which interchanges their hypervertices and hyper-
edges (see [Mach]). If a hypermap H has type (I, 1,[2), then H has type dividing
(s,s,t) where s = l.c.m.(lp,l1) and t = ;. Consequently there exists a hypermap

subgroup H < T'(s, s, t) corresponding to W (H).
We consider again the inclusion
(s, s,t) <3 T(s,2,2t) 2.44

where s and t are chosen so that I'(s,s,?) is a Euclidean or hyperbolic triangle
group. We fix the presentations

2t

I'(s,2,2t) = < xo, 21|25 = :c% = (zoz1) ' =1>

T(s,s,t) = <yo,41]y5 =93 = (Yoy1) " =1>
and define a homomorphism 6 : I'(s, 2,2t) — C; by
zo —(1)(2)
z; —(12)
(zoz1) ™t +—(12)
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so that 67 !(Stab(1)) is isomorphic to I'(s, s,t). We choose the Schreier transversal
{1,21} for I'(s,s,t) in I'(s, 2,2t), and obtain the corresponding Schreier generators

{CE(), 3311'0:61}.

Lemma 2.45. Let the finite index inclusion H < T'(s,s,t) correspond to a hy-
permap H. Then H < T'(s,s,t) < I'(s,2,2t) as defined above, and the inclusion
H < T(s,2,2t) corresponds to the Walsh double of H.

Proof. The proof is similar to that of Lemma 2.35 and Lemma 2.41 and so we
describe only the important step of defining a fundamental region for I'(s,s,t) in
terms of a fundamental region for I'(s,2,2t). The hypermap H is built from the
fundamental region P of ['(s, s,t) shown in Figure 2.34; the black and white circles

correspond to hypervertices and hyperedges respectively.

Yo
P
) vy
N
Yy
Figure 2.34

If M’ is the map corresponding to the inclusion M < I'(s,2,2t), then we
start with the fundamental region P’ for T'(s,2,2t) shown in Figure 2.35(a). Since
(s, s,t) <2 I'(s,2,2t), we can use the Schreier transversal {1,z1} given above to
glue together the regions {P’, z1P’} and form the fundamental region Q for I'(s, s, t)
shown in Figure 2.35(b); the bold line will form one edge of the map M’.

The Schreier generators {zo,z1zoz1} will pair the sides of Q, and so we can
identify them with the generators yo,y1 of ['(s,s,t): yo = Zo, y1 = T1Tox1,
(yoy1)™! = (wox1)~2. Thus to construct the map M’ we replace every funda-
mental region P used to form H with the fundamental region Q. The map M’ is
formed by disregarding the labelling of hyperedges and hypervertices on the Walsh
hypermap H, and so M’ is the Walsh double of H. o
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Figure 2.35

In the proof of Lemma 2.45, it was shown that we can express the generators

Yo, y1 of I'(s, s,t) in terms of the generators zg,z; of I'(s, 2, 2t):

Yo = Zo
Y1 = T1Tpx1 2.46

(voy1) ™" = (zox1)™?

and hence that conjugation of ['(s, s, t) by the element z; € I'(s,2,2t) induces an
outer automorphism of I'(s, s, t) interchanging its two conjugacy classes of elements
of order s. We let the image of H < I'(s, s,t) under this automorphism be H*! <
I'(s,s,t).

Lemma 2.47. Let the inclusion H < T'(s, s,t) correspond to a hypermap H. Then
the inclusion H*' < T'(s, s,t) corresponds to the hypermap H(°Y) obtained from H
by interchanging its hypervertices and hyperedges. In particular, H = HOL if and
only if H and H®! are conjugate in ['(s, s, t).

Proof. We have observed that two hypermaps H; and H, have isomorphic Walsh
doubles if and only if either H, = Hy or H; = Hém). The proof is now similar to

that of Lemma 2.36. o

If 5: X — X is a Belyl function for a hypermap H, then the composition of 3 with
the Belyl function
Bw :z— 4z(l — x)

will be a Bely function By o §: X — ¥ for the Walsh double W(H) (see §2.3).
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Chapter 3

Elliptic curves and Belyi’s Theorem

In this chapter we restrict our attention to genus 1 Riemann surfaces uni-
formized by finite index subgroups of Euclidean triangle groups. Such Riemann
surfaces are said to have Fuclidean Belyt uniformizations, and by Belyl’s Theorem
their associated elliptic curves are defined over the field of algebraic numbers Q.
Using quadratic forms and a powerful result from algebraic number theory, we pro-
duce an algorithm to find (for a fixed positive integer k) the moduli of all elliptic
curves with Euclidean Belyi uniformizations that are defined over extension fields of
degree k over Q. In particular, using the computational work of Berwick [Ber], we
determine all elliptic curves with Euclidean Bely! uniformizations that are defined

over the rational numbers Q, and quadratic and cubic extensions of Q.

3.1. Elliptic curves

Every compact Riemann surface of genus 1 has the form C/A where A < Aut C

is some group acting discontinuously on the complex plane [JS2]. As shown in 1.6,
AutC = {z+—az+bla,be C,a # 0}

where 2z +— az 4+ b has a fixed point z = 1—f3 for a # 1. Hence A is a group of
translations of the form 2 — 2z + b. It is shown further in [JS2] that A must be a
lattice, that is a group generated by two independent translations z — z + w; and
z v+ z + wy with wy,ws € C and %ﬁ— g R. If we let puA = {puw|w € A}, then two
lattices A1 and Ay are similar if Ay = puA; for some p € C*. Similarity defines an
equivalence relation on the set of all lattices. The following theorem is well-known

(for example see [Ki)):
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Theorem 3.1. C/A; and C/A; represent conformally equivalent Riemann surfaces

if and only if A1 and A, are similar lattices. o

Given wy, wp € C with $2 € R, let A(w1,wa) denote the lattice generated by
wy and we; that is A(wy, w2) = {mw; + nws |m,n € Z}. If A(wy,w2) = A(w], wh)

then {wy, we} and {w}, wy} are said to generate the same lattice.

Theorem 3.2. A(wi,wz) = A(w],w)) if and only if wh = awy + bwy and w| =
cwy + dwy for a,b,c,d € Z and ad — bc = +1. o

The modulus of a lattice A(wy,ws) is defined to be the ratio 7 = %12, where wy
and wy are ordered so that Im(7) > 0. Every lattice determines a set of moduli
corresponding to its different generating pairs, and since pA(wy,w2) = A(pwy, pws)
with % = ;‘%"1’, similar lattices determine the same moduli. It follows from The-
orems 3.1 and 3.2 that A(w;,ws) and A(w],w)) are similar lattices if and only
if

,_wy _ plawg +bwr)  ar+b

= = = 3.3
i wy  plews +dwy) et +d

where a,b,c¢,d € Z and ad — bc = x1. Transformations of the form z — %{% with

a,b,e,d € Z and ad — bc = —1 act on C by interchanging the upper and lower
half-planes. Since 7 and 7/ both lie in the upper half-plane H, 3.3 must satisfy

ad — bc = 1. The set of all transformations of the form z +— ‘C’jig with a,b,c,d € Z
and ad — bc = 1 forms a group, called the modular group, denoted PSLy(Z). Thus

we have proved:

Theorem 3.4. If A = A(wy,wq) and A’ = A(w],w)) are lattices in C with moduli
T = Z“’U—f and 7' = % lying in H, then the following are equivalent:

(i) C/A, C/A’ are conformally equivalent;

(ii) The lattices A, A’ are similar;

(iii) 7/ = T(1) for some T € PSLy(Z). o

Theorem 3.4 shows that there is a one-to-one correspondence between confor-
mal equivalence classes of genus 1 Riemann surfaces and orbits of the modular group

in the upper half-plane. The set

F={zeH||z| > 1,|Re(z)| < 5} 3.5

NN
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shown in Figure 3.1 is a fundamental region for the modular group acting on H
with side pairing transformations z — 2z + 1, z — —%; the corresponding Riemann
surface H/PSL2(Z) is conformally equivalent to the complex plane. Under side
pairings, each point in F represents a distinct conformal equivalence class of genus
1 Riemann surfaces. For convenience, we will say that each point in F defines a

distinct Riemann surface, the technicality of side pairings being understood.

| |
| |
o F |
| |
! !
! . |
l/ R
—1+\/?§‘ \‘1+\/—_3
2 2
Figure 3.1

Definition 3.6. An elliptic curve defined over a field F' is an algebraic curve of
genus 1 with coefficients in F', which contains at least one point with coefficients in
F (the base point). o

Unless otherwise specified, we will take F' to be a subfield of the field of complex
numbers C. A classical result (see [Kn]) states that any elliptic curve defined over

F' is birationally equivalent to one in Weierstrass normal form
y? =4z° — goz — g3 3.7

where g3,93 € F and g,% — 27932 # 0 (corresponding to the right hand side of 3.7
having distinct roots). By the above discussion, a Riemann surface defined by 3.7
has the form C/A for some lattice A lying in C. The lattice A and g9, g3 are related
by the following absolutely convergent series (see [JS2]):

g2 (A) = 603w, gs(A) = 1403w " 3.8

weA weA
where Z' denotes the sum over all the non-zero lattice points. Furthermore, given
any equation of the form 3.7 with go% — 27g32 # 0, there exists a unique lattice A
satisfying 3.8.
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If we think of g2, g3 as being functions of the lattice A, then the following

expression
g2(A)®
92(A)? — 27g3(A)?

J(A) = 1728 3.9
called the j-function is also a function of A. It is easy to check that j(A) = j(uA)
for 4 € C\{0}, and hence that j(A) is an invariant of the similarity class of A. We
have observed the one-to-one correspondence between similarity classes of lattices
and orbits of the modular group acting on H, so for 7 € H we set j(7) = j(A(1,7)).
The j-function then defines a PSL;(Z)-automorphic function on H:

92(7)3
92(7)3 — 27g5(7)?

where j(7) = j(T(7)) for all 7 € H, T € PSLy(Z). The j-function 3.10 has the

following important property (see for example [Cox]):

§(r) = 1728 3.10

Theorem 3.11. Let A, A’ be lattices with moduli 7,7’ respectively. Then C/A
and C/A' are conformally equivalent if and only if j(7) = j(7’). o

As an example we will calculate the j-invariants and elliptic curve equations
corresponding to the Riemann surfaces C/A(1,7) and C/A(1,p). We first observe
that the square lattice A = A(1,4) is invariant under multiplication by 4, so that
A(1,47) =4A(1,4). Letting A = A(1,14), by the absolute convergence of gs we have

/

gs= 140) w™°

and so g3 = —gs = 0. Since any lattice A satisfies g3 — 2792 # 0, it follows that
g2 # 0 and hence that

g5 g5
§(A(1,1)) = 1728 > = 17282 = 1728.
(AL2)) g5 — 2793 93

Therefore, the elliptic curve corresponding to C/A(1, 1) has the form

y? =423 — goz 3.12
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where gz is any non-zero complex number. All elliptic curves of the form 3.12
correspond to conformally equivalent Riemann surfaces, since for any go € C* the

resulting elliptic curve has a j-invariant equal to 1728.

If p= :~1+—2—-‘/—__3 then the lattice A = A(1, p) satisfies A(1, p) = pA(1, p). By the

absolute convergence of g; we have

g2 =605 w

weEA

=603 (pw) ™

wEA

!
=60p">  w ™t = gop”
weA

so that g; = gop? = 0 and g3 # 0 with

3

: 92
95 — 2793
Hence for g3 € C* the elliptic curve
y? =4z° — g3

is conformally equivalent to C/A(1,p). The elliptic curves corresponding to the
moduli 7 = ¢ and 7 = p are defined over the rational number field Q, as are their

j-invariants j(z) and j(p).

Theorem 3.13. An elliptic curve E is defined over a field F' if and only if j(E) € F,
where j(E) is the j-invariant of E.

Proof. If F is defined over F' then it is birationally equivalent to a curve E’ in
Weierstrass normal form with g3,95 € F, so j(E) = j(E') € F. Conversely if
J(E) € F, we find go,93 € F satisfying 3.10 as follows:

(i) if j(E) =0 set g2 =0, g5 = 1;
(ii) if j(E) = 1728 set go = 1, g3 = 0;

(i) if j(E) # 0,1728 set g, = gs = =5 To5g. O
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The group law on the cubic

It is convenient to transform the standard Weierstrass model E : 72 = 47° —

g2 — g3 to one of the form
E:y=2+az+b 3.14

using the birational transformation E — E, (Z,7) — (z,y) where z =Z and y = }_i
The non-singular elliptic curve E defines a compact Riemann surface if we complete
E by adding a point at infinity. Formally, this is done by working in homogeneous

coordinates [X,Y, Z] and setting z = 7, y = % to obtain the projective curve
Y?Z = X%+ aXZ%+bZ°.

A point (x,y) € E has the homogeneous coordinates [z,y,1], with the point at
infinity corresponding to O = [0,1,0]. With a slight abuse of notation, we let E
denote the set of points of the elliptic curve y? = 23 + axz + b and the point at
infinity O.

Let P, = (z1,y1) and P, = (z3,y2) be two points on the elliptic curve £ — {O}.
We define an addition law P; + P, for the points of E as follows:

(i) If z1 = 25 and y; = —ys, then P, + P, = O.
Otherwise
(ii) If 21 # zo then let A = }/—L , U =1y — Axg and P3 = P; + P, where
z(Ps) = \? — 1 — 29
y(P3) = —Azg —v
and (z(P3),y(P3)) denotes the (x,y)-coordinate of Ps.
(iii) If 21 = x5 and y; = yo then we use the duplication formula P+ P = [2] P where

zt — 20122 — 8bx + a?
4x3 + 4dax + 4b

z([2)P) =
and y([2]P) can be calculated by substituting z = z([2]P) into 3.14.

For any P, € E the addition law satisfies P+ O =P =0+ P, (P+ Q)+ R =
P+(Q+R)yand P+Q =Q+ P. If P = (z,y) € E, then —P = (z,~y) € E
satisfies P + (—P) = O. Hence the points of E together with the law of addition

defined above form an abelian group with identity element O. (For all of this, see
[Sil).)



Definition 3.15. Let E; and E, be elliptic curves. Then an isogeny between E,
and F, is a mapping
¢:E1— By

induced by rational functions with ¢(O1) = Os where O and O, are the points at
infinity of Eq and Ey respectively. o

Let ¢ : 1 — E5 be an isogeny of elliptic curves. It can be shown that ¢ is
either the zero isogeny with ¢(E1) = {02}, or else ¢ is surjective and ¢(F;) = Eo;
E; and E, are said to be isogenous if ¢(E71) # {O2}. An isogeny ¢ : Fy — E5 also
induces a homomorphism between the underlying group structures of £y and FEs,
so that

(P = Q) =¢(P)+¢(Q) 3.16

for all P,Q € E;. As a consequence ([Sil]) it can be shown that a non-zero isogeny
¢ satisfies | ¢~ H(U) | = | ¢~ 1(V) | for all U,V € E,, and hence that every non-zero
isogeny is unramified in the sense of Chapter 1 (we note that the term unramified

has a more specific meaning in [Sil] with reference to the function fields of F; and
E,).

Proposition 3.17. [Sil, p.78] Let E be an elliptic curve and ® a finite subgroup
of E. Then there is a unique elliptic curve E’ and an isogeny ¢ : E — E’ such that
ker¢g =®. o

We will refer to E’ as the quotient curve FE/®, and as observed above, the isogeny
¢ : E — E/® is unramified. Vélu [Ve] has determined formulae for the isogeny
¢ and the quotient curve E/® in terms of the coeflicients of E and the (z,y)-
coordinates of the points in ®. If E : y? = 23 +ax + b is an elliptic curve containing
a finite group of points @, then for P € E — @ the isogeny ¢ : E — E/® is given by
¢: P (X,Y) where

X=zP)+ Y [#(P+Q) —=z(Q)

Re2-{0}

Y=yP)+ > [wP+Q)-yQ)

QRed-{0}

3.18

and ¢(P) = O for P € . The quotient curve E/® will have the the equation
Y?=X°4+AX +B
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where

A=a-5 Z (32(Q)* + a)

Qed—{0}

B=b-77% (72(Q)°+5az(Q) + 4b) 3.19
QEF, .

-7 Y (52(Q)° + 3az(Q) + 2b)
Qed—F,—- {0}
and Fy denotes the set of points of & — {O} with order 2. Extensive use will be
made of isogenies induced by subgroups of orders 2 and 3, and so we determine the

explicit equations of the isogenies and quotient curves in these cases.

Examples 3.20. (i) Let E : 4% = 2% + ax + b be an elliptic curve. Then (r,s) € E
is a point of order two if and only if s = 0, that is if and only if r is a root
of the cubic polynomial z3 + azx + b [ST, p.40]. If (r,0) € E has order 2, then
setting ® =< O,(r,0) > and using 3.18 we obtain the isogeny ¢ : E — E/®,
¢ (z,y) — (X,Y) where

2 2
(X,Y) = m+3r +a’ y+2(37‘_+_@
T—T (z — )2

for all (z,y) € E—® and ¢(z,y) = O otherwise. By 3.19 the corresponding quotient
curveis E/® : Y2 = X3 + AX + B where

A= —15r° —4a

B =b-—17(7r® + 5ar + 4b)
(see [Ve] for more details).
(ii) A point (r,s) € E : y*> = x> + az + b has order 3 if and only if 7 is a root of
the quartic polynomial 3z* + 6az? 4 12bx — a? [ST, p.40]. If (r,s) € E is a point of

order 3 generating the group ® =< O, (1, s), (r, —s) >, then we obtain the isogeny
¢$:E—E/®, ¢:(z,y)— (X,Y) where

672 +2a  4(r® +ar +b)

X=z+ T —rT (x — )2
Ve 2y(3r® +a)  8y(r’®+ar+b)
IRCEDE @—r)?

for all (z,y) € E — ® and ¢(x,y) = O otherwise. The quotient curve has the
equation E/® : Y? = X3 + AX + B where

A= —30r* —9a
B = b— 7(10r® + 6ar +4b). o
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The Weierstrass pe-function

Let A(wi,ws) be a lattice. The Weierstrass pe-function g : C — X given by

1 ' 1 1
SRR (cem Sy
is a meromorphic function satisfying p(z + w) = p(z) for all z € C and w € A.
Hence p(z) is an elliptic function with respect to A, sometimes denoted p(z, A).
The poles of p(z) and its derivative p'(z) correspond to the lattice points A and
have orders two and three respectively. The functions p(z) and ©'(z) satisfy the
relation

@I(za A>2 = 4p(z, A)3 - gg(A)p(Z, A) - gS(A)

and so for every complex number z € C — A we obtain a point (p(z), ©'(2)) on the
elliptic curve Ev: 72 = 47% — goT — g3, with all z € A corresponding to the point at
infinity ©. Conversely, given any (Z,7) € E there exists a complex number z € C
with (Z,9) = (p(2),9'(2)). The Riemann surfaces associated to E and C/A are
isomorphic by the map f: C/A — E given by

(p(z),p’(z)) 2e C—-A

O z€A

flz]) =

where [z] denotes an equivalence class of points in C with [z] = [u] if and only if
z—u € A. If we use the convention that (p(w), ¢’(w)) = O for allw € A, then since
the isomorphism satisfies f([z] + [u]) = f([z]) + f([u]), we have

(p(z +u), ¢ (z + 1) = (p(2),0'(2)) + (p(u), o' (u)) 3.21

for all z,u € C where z + u is the usual addition of complex numbers, and
(p(2), 0 (2)) + (p(u), ©'(w)) is the addition of points on an elliptic curve (see [Sil,
p.158]).

Let P be a fundamental parallelogram for A with sides w; and w, as shown in
Figure 3.2, and set #4542 = €2 and ¢; = p(%*) for i = 1,2,3. Then since % + %+ =
w; € A, we use 3.21 to deduce that f maps the points {[0], [%], [%2], [%#]} to the
four points of order dividing 2 in E with the coordinates {O, (e1,0), (e, 0), (e3,0)}.
It is known ([JS2]) that the e; are all distinct and correspond to the roots of the

cubic polynomial 47° — goT — g5. Hence the map 7 : C/A — ¥ given by [2] — p(2) is
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a 2-sheeted cover of the Riemann sphere with branch points at z = [0] and z = [%}]
for 1 =1,2,3.

w1l
2

Wy
2
Figure 3.2

3.2. Euclidean Belyl uniformizations of elliptic curves

One can parameterize compact Riemann surfaces of genus 1 by the set of moduli
7 € F, the fundamental region for the modular group (see §3.1). For each 7 € F the
corresponding Riemann surface X has the form X, = C/A(1,7), and we have seen
that X, may also be defined by the algebraic curve y? = 4z — gox — g3 where g3, g3
are functions of A. Belyi’s Theorem tells us that an algebraic curve corresponding
to X, can be defined over the field of algebraic numbers Q if and only if X, can be

uniformized by a finite index subgroup of a triangle group.

Definition 3.22. A Riemann surface X of genus 1 has a Fuclidean Belyi uni-
formization if X = C/A, where A is a finite index subgroup of a Euclidean triangle

group. o

A complex number 7 € C will be called a modulus if T lies in H, the upper
half-plane. We will determine those moduli 7 for which X, admits a Euclidean
Belyi uniformization; i.e. X, can be uniformized by a finite index subgroup of a
Euclidean triangle group. We note that by the Riemann-Hurwitz formula, a genus 1
subgroup of a Euclidean triangle group is torsion-free (and hence a surface group),
while a genus 1 subgroup of a hyperbolic triangle group necessarily contains torsion.
All Euclidean triangle groups are conjugate to I'(4,2,4), I'(3, 3,3) or ['(6, 2, 3) in the
isometry group of C, and since I'(3, 3, 3) < I'(6,2,3), A is a subgroup of a Euclidean
triangle group if and only if A is a subgroup of I'(4,2,4) or I'(6, 2, 3).
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Lemma 3.23. A lattice A is contained in a triangle group I'(4,2,4) if and only
if A is similar to A(1,7) for some modulus 7 € Q(i); a lattice A is contained in
a triangle group I'(6,2,3) if and only if A is similar to A(1,7) for some modulus
7 € Q(p) where p = "HT‘/:—?’

Proof. (see [JS1,87]) We can represent I'(4,2,4) as the group
< zo,z1 |25 = 22 = (2oz1) P = 1>

where zg and x; are the transformations

To:z+— 12

r1:z+— —z+1

and (zoz1)~!: 2+ iz + 1. So'(4,2,4) consists of all transformations of the form
zr> az+ b where a = +1,%i and b € Z[i]. It is easy to see that if a = —1, ¢ or —1¢
then 2z — az + b has a fixed point in C. If A < T'(4, 2, 4) is torsion-free, then A must
be contained in the set of torsion-free elements T' = {z + z+b|b € Z[i] }, where T is
a normal subgroup of index 4 in I'(4,2,4). T is isomorphic to the Gaussian integer
lattice under the obvious mapping, and so all torsion-free subgroups of I'(4,2,4)
correspond to subgroups of A(1,4); in particular, finite index torsion-free subgroups
of A(1,7) correspond to sublattices of A(1,47). Every sublattice of A(1,7) has the

form A(a + bi,c + di) with a,b,c,d € Z, which is similar to the lattice A(1,7) for

ct+di ct+di
a-+bi a+bi

suitable a,b,c,d € Z. Thus A(1,¢) contains a lattice similar to A(1,7), which by

reversing the above argument corresponds to a torsion-free subgroup of I'(4, 2, 4).

T = € Q(i). Conversely, given a modulus 7 € Q(7), we can write 7 = for

The proof for T'(6, 2, 3) is similar: we represent I'(6, 2, 3) as the group

< Tg, T1 |CL‘8 = xf = (330:1:1)—3 =1>

with zg : 2z = —p%2, 21 : 2+ —2z+1 and (zoz1) "' : 2 — pz+1. Thus I'(6,2, 3) con-
sists of the set of all transformations of the form z — az +b, where a = +1, &p, £p?
and b € Z[p]. It can be shown that I'(6,2, 3) contains a normal subgroup of index 6
isomorphic to A(1, p), and that every torsion-free subgroup of I'(6, 2, 3) corresponds
to a sublattice of A(1, p). The proof then proceeds as before. o

Thus we have proved:



Corollary 3.24. The genus 1 Riemann surface X, admits a Euclidean Belyi uni-

formization if and only if T is a modulus with T € Q(3) or 7 € Q(p). ©

It was shown in §3.1 that the Riemann surface X; corresponds to the elliptic
curve y? = 4z®—1z, and that X, corresponds to the curve y? = 4z®—~1. Now i € Q(7)
and p € Q(p), so by Corollary 3.24 X; and X, have Euclidean Bely1 uniformizations.
In the representation of I'(4,2,4) as {z — az +b|a = £1,+i, b € Z[i] }, we have
X; = C/T where T is the index 4 normal subgroup of I'(4,2,4) generated by
z+— z+1and z — 2z +4. Similarly, X, = C/S where S is the index 6 normal

subgroup of I'(6, 2, 3) generated by 2z +— 2+ 1 and z — z + p.

The Riemann surfaces X; and X, admit Euclidean Belyl uniformizations, and
so by BelyT's Theorem are defined over Q; indeed we have seen that they are defined
over Q. To obtain more general results on the fields of definition of elliptic curves
with Euclidean Belyl uniformizations, we require some results from the theory of

quadratic forms.

3.3. On number theory

For a more detailed study of the material in this section, we refer the reader to

Davenport’s treatment of quadratic forms [Da], and Chapter 7.2 of [Coh].

Quadratic forms

A binary quadratic form Q(z,y) is a second degree homogeneous polynomial

in two variables with integer coeflicients:
Q(z,y) = pz® + gzy +1y*, pgreZ 3.25

where Q(z,y) is primitive if p,q,r are coprime integers. Every quadratic form

represents a set of integers

{Q(e, B)|ax, B € Z} 3.26

and it is known that the quadratic forms Q(z,y), Q'(z,y) represent the same sets

of integers if and only if
Qlaz + by, cx + dy) = Q'(z,y) 3.27

with a,b,c,d € Z,ad — bec = £1. A substitution with ad — bc = 1 is said to be

unimodular.



Definition 3.28. Two quadratic forms are properly equivalent if they are related

by a unimodular substitution of the form 3.27. o

Proper equivalence can be shown to be an equivalence relation on the set of all

quadratic forms. Consider the quadratic form
Q(z,y) = 2627 + 1027y + 101y?

under the unimodular transformation Q'(z,y) = Q(2z —y,y — z). Then

Q' (z,y) = 26(2x — y)2 +102(2z — y)(y — z) + 101(y — 33)2
= z” + 25y°

and so 26x% 4+ 102zy + 101y? and z? + 25y? are properly equivalent.

Definition 3.29. The discriminant of a quadratic form pz? + qzy + ry® is d =
qg> —4pr. o

Both Q(z,y) = 2622 +102zy+101y? and Q'(z,y) = 22+25y? have discriminant
d = —100. It is shown in [Cox] that any two properly equivalent forms have the
same discriminant, although the converse is not true. For example the quadratic

form

H(z,y) = 2x° + 2zy + 133>
has discriminant d = —100 but is not properly equivalent to Q(z,y) or Q' (z,v).

Since d = ¢° — 4pr = ¢ mod 4, we must have either d = 0 mod 4 or d = 1 mod

4. Given d = 0,1 mod 4 we can find at least one quadratic form of discriminant d:

d
(i) z? — Zyz if d = 0 mod 4;
3.30

d—1
(ii) $2+xy—Ty2 if d =1 mod 4.

The quadratic forms given in 3.30 are called the principal forms of discriminant d.
The non-zero integers 3.26 represented by a quadratic form of negative discriminant
are either all positive or all negative; the quadratic form then being either positive or
negative definite. Quadratic forms with positive discriminant represent both positive
and negative integers (so are called indefinite), while forms with discriminant equal
to zero are just squares of linear forms. From now on we consider only primitive,
positive definite, binary quadratic forms; that is forms of type 3.25 with (p,q,7) = 1,
q® —4pr < 0, and p > 0.
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Definition 3.31. A primitive positive definite form px? + qxy + ry? is said to be
reduced if || <p <r, and ¢ >0 ifeither|¢/=porp=r.0

The quadratic forms Q(z,y) = % + 25y? and H(z,y) = 222 + 2zy + 13y? are
reduced, with Q(z,y) being the principal form of discriminant d = —100.

Tlr.leorem 3.32. Every primitive positive definite form is properly equivalent to a

unique reduced form. o

Thus, every equivalence class of primitive positive definite forms has a canonical
representative given by the unique reduced form for that class. Let d < 0 be the
discriminant of a reduced form, and set D = —d so that D = 4pr — ¢?. From
Definition 3.31 we deduce that ¢? < p? < pr, and hence that D = 4pr — ¢ > 3pr.
There are only finitely many integers p, r satisfying D > 3pr > 0, and for each of
these at most two possibilities for g. We conclude that there are only finitely many

reduced forms having a given negative discriminant d.

Definition 3.33. Let d < 0 be fixed. The class number h(d) of d is the number of
proper equivalence classes of primitive positive definite binary quadratic forms of

discriminant d. o

By Theorem 3.32, h(d) is equivalently the number of reduced forms of discrim-
inant d, and the discussion before Definition 3.33 shows that h(d) is finite for d < 0.
We have seen that Q(z,y) = x2 + 25y? and H(z,y) = 222 + 2zy + 13y? are two
inequivalent reduced forms of discriminant d = —100. It is shown in [Coh, p.29]
that Q(z,y) and H(zx,y) are the only reduced forms of discriminant d = —100, and
hence that the class number h(—100) = 2.

Quadratic imaginary numbers

Definition 3.34. 7 € H is a quadratic imaginary number if and only if pr? + q7 +
r = 0 for some p,q,7 € Z, with ¢> —4pr < 0. o

Lemma 3.35. There is a one-to-one correspondence between quadratic Imaginary

numbers lying in H and primitive positive definite quadratic forms.

Proof. From Definition 3.34 every quadratic imaginary in H determines a quadratic

polynomial, which is unique up to multiplication by a constant. We choose the
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unique polynomial pX2+¢X +r with p,q,7 € Z, ¢>—4pr <0, (p,q,7) = 1landp > 0
(conversely such a polynomial determines a unique quadratic imaginary in H). The
set of all such polynomials is in one-to-one correspondence with the set of primitive

positive definite quadratic forms pz? + gzy + ry®. o

Cox [Cox] proves further that the quadratic imaginary numbers form an in-
variant subset of H under the action of the modular group on H, and that two
quadratic imaginary numbers lie in the same orbit under this action if and only
if their associated quadratic forms are properly equivalent. The quadratic forms
Q(z,y) = 26z +102zy + 101y? and Q'(z,y) = 2 + 2532 have associated quadratic
imaginary numbers 7 = %5“51' and 7' = bi respectively. We have seen that
Q(z,y) and Q'(z,y) are properly equivalent under the unimodular transformation
Q'(z,y) = Q(2z — y,y — =), and so 7 and 7’ lie in the same modular group orbit
with 7/ = % Cox proves the following connection between reduced forms and

the modular fundamental region:

Lemma 3.36. A quadratic imaginary 7 lies in the fundamental region F of the

modular group if and only if its associated quadratic form is reduced.

Proof. Let pz? + qzy + ry? be a reduced quadratic form satisfying |q| < p < 7,

— A/ —a2
with its associated quadratic imaginary 7 = “—;frg—z € H. Then |Re(7)| =

|§§ = ‘2% < —;— and || = %;— = % >1,so0 7 e F. Conversely, if 7 € F is a quadratic
imaginary satisfying pX? + ¢X + r = 0 with p, ¢, 7 in reduced form, then a similar

argument implies that |[¢| <p<7r. o

The quadratic forms Q(z,y) = 2% + 25y% and H(z,y) = 222 + 2zy + 13y? are
reduced, and their associated quadratic imaginary numbers 5¢ and 113—5—’ both lie

in the modular fundamental region F.

If 7 € H is a quadratic imaginary number, we define the discriminant of =
be the discriminant of its associated quadratic form. We recall that an algebraic
integer is a complex number which is the root of a monic polynomial with rational
integer coefficients. We will require the following important theorem (for example
see [Coh, p.377]):

Theorem 3.37. Let 7 € H be a quadratic imaginary number of discriminant

d < 0. Then j(r) is an algebraic integer of degree h(d). Furthermore, the minimal
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polynomial over Z satisfied by j(7) is given by

[T (x=4)=0

where « runs over the quadratic imaginary numbers associated to the reduced forms

of discriminant d. o

Example 3.38. We have seen that there are only two proper equivalence classes of
quadratic forms of discriminant —100, so that h(—100) = 2. These are represented

by the reduced forms
z? +25y% and 2z% 4 2zy + 1332

which have the associated quadratic imaginary numbers 7, = 57 and 75 = :l—ziﬁ
respectively. By Theorem 3.37, the j-invariants j(57) and j (%) are algebraic
integers of degree h(—100) = 2 and are conjugate in some quadratic extension field

of Q.

Consider the Riemann surfaces X, = C/A(1,5() and X,, = C/A(1, =152,
Then by Theorem 3.13, X, can be represented by an elliptic curve E,, defined over
the field Q(j(71)). Similarly X, corresponds to an elliptic curve E,, defined over
the field Q(j(72)). Since j(m1) and j(m3) are conjugate in some quadratic field, E,
and E,, are Galois-conjugate elliptic curves defined over a quadratic extension field

of Q. o

Quadratic residues

If ged(d, m) = 1, then d is called a gquadratic residue modulo m if the congruence
z2 = dmod m

has a solution. If there is no solution, then d is called a quadratic nonresidue
modulo m. Since 02 =0 mod 3, 12 = 1 mod 3, and 22 = 1 mod 3 it follows that 1 is
a quadratic residue mod 3, while 2 is a quadratic nonresidue mod 3. If p is an odd

prime, then the Legendre symbol is defined to be

1 if d is a quadratic residue mod p
d
(—): -1 if d is a quadratic nonresidue mod p
p
0 if p|d
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so that (%) =1 and (%) = —1. The following elementary properties of the Legendre
symbol are proved in [NZM p.132]:

Theorem 3.39. If p is an odd prime then
(i) (%) = d(*7") mod p;

(i) (4 )(;?) =( );
(iii) (?1) (L“)
(iv) d = b mod p implies that ( ) = (%). o

The Legendre symbol (%) requires p (the second argument) to be an odd prime.
Jacobi introduced an extension to the Legendre symbol which allows the second
argument to be any odd positive integer P. Writing P = pips...ps where the p;

are odd primes (not necessarily distinct) the Jacobi symbol is defined to be

) -11(3)

P/ \p

where (%) is the Legendre symbol. A further extension to the Legendre symbol was
given by Kronecker. This allows the second argument to be any positive integer,

although the first argument is restricted to d = 0,1 mod 4. The Kronecker symbol

is defined as follows:

Definition 3.40. [Ro, p.65] Let d = 0 or 1 mod 4 with d a non-square. The
Kronecker symbol (%) is defined for n > 0 by

(i) (£) =0 if ged(d,n) > 1;

(i) () =

)
(iif) if d is odd (&) = (|d|) a Jacobi symbol;
)

(iv) if n = [[}_;p: then () = [[5_; (), a product of Legendre symbols and

n Pi

possibly the symbol (g) o

Hence we have the Kronecker symbols

(F)=0 (F)=()= 341
2 -_— 4 2 - 3 — . .
Note that the Legendre, Jacobi and Kronecker symbols agree with one another on

the intersections of their domains. There is therefore no ambiguity in the notation

(%), since it is obvious from the context which symbol is to be used.
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3.4. Fields of definition of Euclidean Belyi uniformizations

It was proved in §3.2 that an elliptic curve E, with modulus 7 admits a Eu-
clidean Belyi uniformization if and only if 7 is a quadratic imaginary number with
7 € Qi) or 7 € Q(p). By Theorem 3.13, E; is defined over a field F' if and only
if j(E;) = j(r) € F. The results on class numbers and quadratic forms detailed
in §3.3 give more information about F; j(7) is an algebraic integer of degree h(d)
where d is the discriminant of 7, so that F' is a field extension of degree h(d) over
Q. The discriminants of quadratic imaginary numbers lying in Q(i) and Q(p) have

a particularly simple form.

Lemma 3.42. Let T be a quadratic imaginary number. Then T has discriminant
d = —4m? (for some integer m) if and only if T € Q(i), while T has discriminant

d = —3m? (for some integer m) if and only if T € Q(p).

Proof. Let 7 € Q(4i) have the associated quadratic form pz? + gzy + ry?. Then
T = :g“gp—\/__di, where d = ¢ —4pr < 0 is the discriminant of 7. Since 7 € Q(3), v/—d
must be an integer, and so —d must be a square. In particular, —d = 4pr — ¢* =
0,3 mod 4 must be a square modulo 4. Hence —d = 0 mod 4, and d = —4m? for

some integer m. Conversely if d = —4m?2, it is obvious that 7 € Q(3).

Similarly, if 7 € Q(p) with the associated quadratic form pz? + gzy + 132,
then 7 = jiz\;—:_‘ﬁ € Q(p) and so we must have v/—d = v/3m for some integer m.

Consequently, d = —3m?2. o

Let us consider the moduli 7 = ¢ and 7 = p. The quadratic form associated to
T =14 is 2 + y?, and so the corresponding discriminant is d = —4. For 7 = p the

quadratic form is z% + zy + y2, for which the discriminant is d = —3.

Euclidean Belyi uniformizations of rational elliptic curves

An elliptic curve E, admits a Euclidean Belyl uniformization if and only if
its modulus has the form 7 € Q(i) or 7 € Q(p), and E; is defined over Q if and
only if its j-invariant j(7) is rational. Hence by Theorem 3.37, a rational elliptic
curve admits a Fuclidean Belyl uniformization if and only if the discriminant of its
modulus has class number 1. The following theorem, first proved by Heegner [He] in
1952, and later by Baker [Ba] and Stark [St] determines all negative discriminants

with class number 1:
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Theorem 3.43. (Heegner-Baker-Stark) Let d < 0. Then h(d) = 1 if and only if

d=-3,-4,-7,-8,-11,-12,-16, —-19, -27, —28, —43, —67,—163. o

By Lemma 3.42, the moduli corresponding to elliptic curves with Euclidean
Belyi uniformizations all have discriminants of the form —3m? or —4m?, and so we

require only 5 discriminants from Theorem 3.43:

d=—3,—-4,-12,—16, —27. 3.44

In general, given a discriminant d having class number h(d) = k, one will
obtain k distinct points in the modular region F corresponding to the k reduced
forms of discriminant d. The 5 discriminants of 3.44 have class number 1, so each
corresponds to a unique reduced form and hence to one modulus in . For example

d = —16 corresponds to the reduced form
22 + dy?

with associated modulus 7 = 2¢. The j-invariants of the moduli with class number
1 are well-known (see [Cox] for example) and we display them in Table 1 together

with an equation for each elliptic curve E.

By Belyl’s Theorem, every rational elliptic curve has the form U /T" where T" is
a finite index subgroup of a triangle group. From Table 1 we see that for only 5
rational elliptic curves will " be a subgroup of a Euclidean triangle group. For every
other rational elliptic curve, I' must be a genus 1 subgroup of a hyperbolic triangle
group, and so must contain elements of finite order (i.e. I' must have torsion). As

a consequence we have the following result:

Theorem 3.45. There are 5 rational elliptic curves that admit a Fuclidean Belyi
uniformization. Their j-invariants are 0, 1728, 54000, 287496, or — 12288000. Every
other rational elliptic curve is (by Belyl’s Theorem) of the form H/T where T is a

subgroup of a hyperbolic triangle group. o

Elliptic curves defined over quadratic and cubic extensions of Q

The results of Theorem 3.45 were obtained by finding all of the solutions to
h(=3m?) =1 or h(—4m?) =1.
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To find elliptic curves that are defined over extension fields of degree k& over Q,
we need to find those values of d for which h(d) = k. Although this problem has
been solved in principle by Goldfeld, Gross and Zagier ([Coh, p.229)), the explicit
calculations have only been carried out for the cases k& < 4. However, we require
discriminants of the form d = —3m? or —4m?, and in these cases formulae exist for

the class number (see for example [Cox, p.148]):

1 m=1
h(—3m?) =
T A (1= (2)1) met
3.46
1 m=1
h(—4m?) =

where p ranges over all prime divisors of m. If p is an odd prime then (%) (v =
—3,—4) is the Legendre symbol, while if p = 2 the Kronecker symbol is used and
(5}) =0, (32) = —1 by 3.41. From 3.46 one can deduce that h(—3m?) is either
even or a power of three, while h(—4m?) is even for all m > 2. In particular, this

means that there are no values of m for which h(—4m?) = 3.

In §3.2 we stated a result from [Cox] that there are only two reduced forms of
discriminant d = —100. By Theorem 3.32, this is equivalent to h(—100) = 2. Since
—100 = —4.5% we have by the formula in 3.46 that

=30 (2))) =

which confirms the result. As a further example we take d = —900 = —4(3.5)2,
which using the formula from 3.46 gives h(—4(3.5)%) = 8. The class number formu-
lae 3.46 are not multiplicative functions of m; for example h(—4.3%) = 2 = h(—4.5?)
and so h(—4.32)h(—4.5%) = 4 # h(—4(3.5)?). In order to make computation of the
class number easier, we define the following two functions which are multiplicative

in m

h(=3m?) = 3.47(a)



1 m=1
h(—4m?) = 3.47(b)
mlLm (1-(32)2)  m>1

where h(-3.12) = h(-=3.12) = 1 = h(—4.1%) = h(—4.1%) and for m > 1, h(—3m?) =
3h(—3m?) and h(—4m?) = 2h(—4m?). If we calculate h(—900), then
h(—4(3.5)?) = h(—4.3%) h(—4.5%)

o1+ 3)s(1- )

=16

and since 2(—900) = 2h(—900), we deduce that h(—900) = 8.

The functions h(—4m?) and h(—3m?) prove to be useful in determining all
discriminants d = —3m? or d = —4m? with a given class number. For suppose
that h(—3m?) = k. Then either m = 1 in which case h(—3.1°) = 1 = k, or else
m > 1 and h(—3m?) = 1h(—3m?). Hence solving h(—3m?) = k is equivalent to
solving h(—3m?) = 3k with the additional solution m = 1 when k = 1. Similarly, if
h{(—4m?) = k, then either m = 1 and h(—4.12) = 1 =k, or m > 1 and h(—4m?) =
1h(—4m?). Thus solving h(—4m?) = k is equivalent to solving h(—4m?) = 2k with

the additional solution m = 1 when k£ = 1.

Example 3.48. We have seen that h(—900) = 8. Using the multiplicative functions
3.47 we determine all discriminants of the form d = —4m? for which h(d) = 8. By
the above discussion, this corresponds to finding all solutions to h(—4m?) = 16.
Since h(—4m?) is a multiplicative function of m, it is sufficient to determine all
prime powers p* for which h(—4(p*)?) is a divisor of 16. There are three cases to

consider:

(1) If p = 1 mod 4 then substituting m = p* into 3.47 gives
R(=4(p*)?) =p* ' (p—1) =2,4,8 or 16.

If £ > 1 then p =2 # 1 mod 4. Hence we must have k =1 andsop=5or p =17
with h(—4.5%) = 4 and h(—4.17%) = 16.

(2) If p = 3 mod 4 then substituting m = p* into 3.47 gives
h(—4(p")?) = p* " H(p+1) =2,4,8 or 16.

68



As above we must have k = 1, and so either p = 3 or p = 7 with h(—4.3%) = 4 and
h(—4.7%) = 8.

(3) Finally, if m = 2% we have
h(—4(2F)?) =28 =2,4,8 or 16

which gives h(—4(2)?) = 2, h(—4(2%)?) = 4, h(—4(2%)?) = 8, and h(—4(2%)?) = 16.

If h(—4m?2) = 16 then the divisors of m must be contained in the set
{1,2,3,4,5,7,8,16,17}

and it is easy to deduce that the only values of m for which h(—4m?) = 16 are m =
12,14,15, 16,17 and 20. Hence there are six discriminants of the form d = —4m?
for which h(d) = 8; d = —576, —784, —900, —1024, —1156, and —1600.

Using a similar method, one can show that there is only one discriminant of
the form d = —3m? for which h(d) = 8; d = —768. o

By generalizing Example 3.48 one can determine all the discriminants d =
—3m? or d = —4m? for which h(d) = k, where k is a positive integer. In particular

when k = 1 we obtain the five discriminants shown in Table 1.

The only solutions to h(—4m?2) = 2 are m = 3,4, 5 with corresponding discrim-
inants d = —36, —64, —100, and the only solutions to h(—3m?) = 2 are m = 4,5,7
with d = —48, —75,—147. These six discriminants have class-number two, and so
each one corresponds to two reduced forms and hence two moduli lying in the mod-
ular fundamental region F. The j-invariants of these moduli are algebraic integers
of degree two by Theorem 3.37, and have been calculated by Berwick [Ber] (see
Table 2). The twelve moduli of Table 2 correspond precisely to those elliptic curves
that are defined over quadratic extensions of Q and admit Euclidean Belyi uni-
formizations. Using the j-invariants from Table 2 and Theorem 3.13 we give the
equations of the corresponding elliptic curves in Table 3. As a consequence we have

the following result:

Theorem 3.49. There are 12 elliptic curves defined over Q(y/m), (m a square-
free integer) that admit a Euclidean Belyl uniformization. Their j-invariants are
listed in Table 2 and the corresponding elliptic curve equations are given in Table

3. Every other elliptic curve defined over a quadratic extension of Q is of the form
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H/T', where T" is a subgroup of a hyperbolic triangle group. In particular, this is
the case for elliptic curves defined over Q(y/m) for m # 2,3,5,21. o

We have seen that there are five discriminants of the form —3m?2 or —4m?
which have class number one. The following lemma proves that for any other odd

integer £ > 1, there are at most two such discriminants having class number k.

Lemma 3.50. Let £k > 1 be an odd integer. Then there are no solutions to
h(—4m?) = k and if k is not a power of three, there are no solutions to h(—3m?) = k.
If k = 3" for r > 0, then h(—3m?) = k has precisely two solutions, m = 3" and

m=2.3".

Proof. By the discussion before Example 3.48, solving h(—4m?) = k > 1 is equiv-
alent to solving h(—4m?) = 2k. Since h(—4(2%)?) = 2% by 3.47, there must be
some odd prime power p’lm with b > 0 and h(—4(p®)?)|2k. If p = 1 mod 4 then
h(=4(p?)?) = p*~Y(p — 1) = 0mod 4, while if p = 3 mod 4 then h(—4(p®)?) =
p*~1(p + 1) = 0 mod 4, both giving a contradiction since 2k = 2 mod 4 by assump-
tion. Hence there are no solutions to h(—4m?) = 2k.

Similarly, solving h(—3m?) = k > 1 is equivalent to solving h(—3m?) = 3k.
Consider the prime power p?|m with a > 0 and h(—3(p®)?)|3k. If p =1 mod 3 then
h(=3(p*)?) = p*~1(p—1) = 0 mod 2 because p is odd, contradicting the assumption
that k is odd. If p = 2 mod 3 then h(—3(p®)?) = p®*~!(p+1). Either p>~1(p+1) =
0 mod 2 for p odd, a contradiction, or else if p = 2 then p*~!(p + 1) = 3.2%7 !, and
so a = 1. Finally if p = 3, then h(—3(3%)?) = 3%. Hence the only possibilities are

m = 3"t! or m = 2.3" with r > 0 and h(—3m?) = 3"+, a power of three. o

Applying Lemma 3.50 to the case kK = 3, we see that there are no solutions
to h(—4m?) = 3, while there are exactly two solutions to h(—3m?) = 3: m = 2.3
and m = 32 with corresponding discriminants d = —108 and d = —243. These
discriminants have class number 3, and so each one corresponds to three moduli
lying in the modular fundamental region whose j-invariants are algebraic integers
of degree 3. These j-invariants have also been calculated by Berwick [Ber, pp. 62-
63] and we list them in Table 4. The equations for the three elliptic curves whose

moduli have discriminant d = —108 are given in Table 5.

Theorem 3.51. There are 6 elliptic curves defined over cubic extensions Q(6) of

Q that admit Euclidean Belyl uniformizations. These are defined over Q(6) where
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63 = 2 or 6% = 3, and correspond to the six moduli in Table 4. Every other elliptic
curve defined over a cubic extension of Q is of the form H/T', where I is a subgroup

of a hyperbolic triangle group. o

In general, the total number of elliptic curves defined over extension fields of
degree k over Q that admit Euclidean Bely! uniformizations is given by kf(k), where
f(k) is the number of solutions to h(—3m?) = k or h(—4m?) = k. Using Lemma
3.50 we can see that if £ > 1 is odd and not a power of three then f(k) = 0, while
if Kk = 3" for r > 1 then f(k) = 2. This means that there are no elliptic curves
with Euclidean Belyl uniformizations defined over extension fields of degree k over
Q where k is odd and not a power of three, while if k¥ = 3" for r > 0, then there

are exactly 2k elliptic curves defined over extension fields of degree k = 3" over Q.

In Example 3.48 it was shown that there are seven solutions to h{(—3m?) = 8 or
h(—4m?) = 8, and so f(8) = 7. Therefore, there are 56 elliptic curves defined over
extension fields of degree 8 over Q that admit Euclidean Belyi uniformizations. One
can calculate the moduli of these elliptic curves by finding all of the reduced forms
whose discriminants have class number 8, but although the j-invariants associated to

these moduli are algebraic integers by Theorem 3.37, the precise values are unknown.
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Chapter 4

Uniform dessins of genus 1

The regular maps of genus 1 were first described by Brahana [Brl] (also see
[Coxel]) and the regular hypermaps of genus 1 have been classified by Corn and
Singerman [CoSi]. The elliptic curves with Euclidean BelyT uniformizations studied
in Chapter 3 are precisely those that carry genus 1 uniform dessins. This correspon-
dence leads naturally to a classification of the genus 1 uniform maps in terms of the
moduli 7 € F of their associated elliptic curves, and to the definition of a minimal
map. We show that all reflexible genus 1 uniform maps occur as truncations and
stellations of certain minimal maps, and that the minimal regular cover of a genus

1 uniform map is related to the discriminant of 7.

Cangiil and Singerman [CaSi] have given formulae for the number of genus
1 regular maps with n vertices, and in §4.5 we extend these results to uniform
maps. We conclude by constructing some Galois orbits of genus 1 uniform maps

and calculate their associated Belyi functions.

4.1. Uniform maps and hypermaps of genus 1

The regular maps of genus 1 are classified in [CMo]. They have either square,
triangular or hexagonal faces and have type (4, 4), (6,3) or (3,6) respectively. Cox-
eter and Moser give the following method for constructing regular maps of type
(4,4) on the torus:

Choose any non-zero Gaussian integer a + bi € Z[i] and form the sublattice A(a +
bi, —b + ai) < A(1,4). The projection of A(1,7) to C/A(a + bi,—b+ ai) induced by
the natural projection of C to C/A(a+bi, —b+ai) gives a regular map of type (4,4)

on the torus, which is denoted {4,4},4. (There is a difference in notation between
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[CMo] and [JS1], but we use the established Coxeter notation for regular maps of

genus 1.)

Example 4.1. Figure 4.1 shows the regular map {4,4}3 _; obtained by choosing

the Gaussian integer 3 —i. o

4
g — 7
=~ - L /
T4
Figure 4.1
Similarly, by choosing some 0 # a + bp € Z[p] (where p = :1—452—‘/:—5) and

considering the sublattice A(a + bp, ap + bp?) < A(1, p), one obtains a regular map
of type (6,3) which is denoted {3,6},5. The regular maps of type (3,6) occur as
the duals of regular maps of type (6, 3); the dual of {3,6}, being denoted {6, 3}, 5.
It is shown in [Coxel] that all regular maps of genus 1 can be obtained using these

constructions.

Example 4.2. Figure 4.2(a) shows the regular map {3,6}2 2 obtained by choosing
2 + 2p, and Figure 4.2(b) gives its dual, the regular map {6,3}2 2. O

(a)

Figure 4.2

Regular hypermaps of genus 1 were considered in [CoSi], and we now extend
these results and those of Coxeter and Moser to classify the uniform maps and
hypermaps of genus 1. Recall that a map of genus g > 1 is uniform if all of its
vertices have the same valency, all of its faces have the same valency, and it contains

no free edges; while a hypermap is said to be uniform if its hypervertices all have
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the same valency, its hyperedges all have the same valency, and its hyperfaces all
have the same valency. By Theorem 2.19, uniform maps and hypermaps of genus 1
correspond to torsion-free subgroups of I'(4, 2,4) giving maps of type (4, 4), torsion-
free subgroups of I'(6,2,3) = I'(3,2,6) giving maps of type (6,3) and (3,6), or
torsion-free subgroups of I'(3, 3, 3) giving hypermaps of type (3, 3, 3).

Using Lemma 3.23 we see that torsion-free subgroups of I'(4, 2, 4) correspond
to sublattices of the Gaussian integer lattice A(1,7). Since A(1,i) represents the
universal topological map associated to I'(4,2,4) (see §2.1), it follows that the map
corresponding to the sublattice A’ < A(1,4) is given by the natural projection of
A(1,7) to C/A’. These maps are uniform of type (4,4).

Example 4.3. Let us consider the torsion-free subgroup of I'(4, 2, 4) which corre-
sponds to the lattice A(3,2 + 2¢). The uniform map which results from projecting
A(1,7) to A(3,2 + 27) is shown in Figure 4.3. o

o

®

Figure 4.3

Similarly, a torsion-free subgroup of I'(6, 2, 3) can be represented by a sublattice
A < A(1, p), the corresponding map of type (6,3) being the natural projection of
A(1,p) to C/A’. As with regular maps, every genus 1 uniform map of type (3,6)
corresponds to the dual of some uniform map of type (6,3). We therefore identify
two genus 1 uniform maps with each torsion-free subgroup of I'(6, 2, 3): one of type

(6,3) as constructed above, and its dual of type (3,6).

Example 4.4. We take the torsion-free subgroup of I'(6, 2, 3) represented by the
lattice A(3 + p,2 4 4p), and display its associated uniform maps of type (6,3) and
(3,6) in Figures 4.4(a) and 4.4(b) respectively. As noted above, the map in Figure
4.4(a) is dual to the map in Figure 4.4(b). o
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(a)

Figure 4.4

Since I'(3, 3, 3) < I'(3,2,6) by 2.44, every torsion-free subgroup of I'(3, 3,3) is
a torsion-free subgroup of I'(3,2,6), and so by Lemma 2.45 every genus 1 uniform
hypermap of type (3,3,3) has a corresponding Walsh double of type (3,6). The

following example illustrates this correspondence:

Example 4.5. Figure 4.5 shows two uniform Walsh hypermaps W; and W, where
Wy = W) (i.e. one may be obtained from the other by interchanging hyperver-
tices and hyperedges). The Walsh doubles of W; and W, are both isomorphic to
the map of Figure 4.4(b). Conversely, there is a bipartite structure on the vertices
of the map in Figure 4.4(b) which is unique up to the choice of colouring; by inter-
changing the black and white vertices we obtain the Walsh hypermaps W; or W;.

o

Figure 4.5

It will be proved that every genus 1 uniform map of type (3, 6) admits a bipartite
structure on its vertices and furthermore that the two Walsh hypermaps obtained
by interchanging the hypervertices and hyperedges are isomorphic; in particular
this will mean that W; and W, in Figure 4.5 are isomorphic hypermaps. This will

enable us to show that there is a one-to-one correspondence between: the set of
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genus 1 uniform hypermaps of type (3,3,3), the set of genus 1 uniform maps of
type (3,6), and the set of genus 1 uniform maps of type (6,3). We will need the

following two lemmas.

Lemma 4.6. If M <T'(3,2,6) is torsion-free, then M <T'(3,3,3).

Proof. We can represent I'(3,2,6) =< zg,z1 |23 = 22 = (z9z21)"® = 1 > as

the group of transformations generated by z¢g : 2 — pz —p, 1 : 2z — —2z + 1 as
in the proof of Lemma 3.23. We then think of I'(3,2,6) as being the set of all
transformations of the form z + az + b where a = +1,+p, +p? and b € Z[p|. By
Lemma 3.23 all torsion-free subgroups of I'(3,2,6) are subgroups of A(1,p). Let
Yo = Tg : z — pz—pand y; : 12Ty : 2 — pz + 1, so that gp < yo,y1 >
is an index 2 subgroup of I'(3,2,6) isomorphic to I'(3,3,3) by 2.46. Hence we
can represent ['(3,3,3) as the set of elements 2 — cz + d where ¢ = 1,p, p? and
d € Z[p]; in particular we note that A(1,p) < T'(3,3,3). Any torsion-free subgroup
M <T(3,2,6) is a subgroup of A(1, p), and so M < A(1,p) <TI(3,3,3). o

Lemma 4.7. Let My, M, <T'(3,2,6) be torsion-free. Then My, My are conjugate
in T'(3,2,6) if and only if they are conjugate in I'(3, 3, 3).

Proof. If M; and M are conjugate in I'(3, 3, 3) then they are certainly conjugate in
I'(3,2,6). Conversely if M7 and M, are conjugate in I'(3,2,6) then M; = hMyh™!
for some h € I'(3,2,6). From the proof of Lemma 4.6 we can write I'(3,2,6) =
I'(3,3,3)UI(3,3,3)z;, so it suffices to show that if M; = :1;1M2:c1_1, then M; and
M, are conjugate in I'(3,3,3). Now M, is torsion-free, and so it has elements of

the form ¢ : z — z + d for suitable d € Z[p]. Conjugating by z; gives
ri¢zit iz 2 —d

so every element ¢ € M, is sent to its inverse ¢~ € M,. Therefore M; =

:1:1]\12351"1 = M, and being equal, M; and M; are conjugate in I'(3,3,3). o

Thus by Lemmas 4.6 and 4.7 there is a bijection between conjugacy classes of
torsion-free subgroups of I'(3,3,3) and conjugacy classes of torsion-free subgroups
of T'(3,2,6), which induces by Theorem 2.5 a one-to-one correspondence between
isomorphism classes of genus 1 uniform hypermaps of type (3,3, 3), genus 1 uniform
maps of type (6,3) and genus 1 uniform maps of type (3,6). This correspondence
can be defined as follows:
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Theorem 4.8. There is a one-to-one correspondence between the following three
sets of elements: isomorphism classes of genus 1 uniform hypermaps of type (3, 3, 3),
isomorphism classes of genus 1 uniform maps of type (6,3), and isomorphism classes

of genus 1 uniform maps of type (3,6).

(i) The correspondence between genus 1 uniform maps of type (3,6) and (6, 3) is

defined by the operation of duality.

(ii) A genus 1 uniform hypermap H of type (3,3,3) corresponds to a unique map
of type (3,6) by taking the Walsh double associated to H.

(iii) A genus 1 uniform map M of type (3,6) corresponds to a unique hypermap of
type (3,3,3) by defining a bipartite structure on the vertices of M.

Proof. (i) This follows by considering the map subgroup inclusions M < I'(3,2,6)
>~ T(6,2,3). (ii) and (iii). If H is the hypermap subgroup corresponding to H, then
['(3,3,3) <TI'(3,2,6) and by Theorem 2.45 the inclusion H < I'(3,2,6) corresponds
to the Walsh double of H. Conversely if M < I'(3,2,6) is a map subgroup for a
genus 1 uniform map M of type (3,6), then M < I'(3,3,3) by Lemma 4.6 and
the inclusion M < T'(3,3,3) corresponds to a uniform hypermap H of type (3,3, 3)
where M is the Walsh double of H. This means that M admits a bipartite structure
on its vertices, and that by a choice of hypervertices and hyperedges we obtain H.

Uniqueness follows from Lemma 2.47 and Lemma 4.7. o

In particular, this means that every uniform hypermap of type (3,3, 3) can be
obtained by choosing a bipartite structure on the vertices of some uniform map
of type (3,6). We recall that a uniform map or hypermap defined by a torsion-
free subgroup M < I'(lg,l1,1l2) is regular if and only if M is a normal subgroup of

L(lp,l1,12). As a corollary to Lemma 4.7 we have:

Corollary 4.9. Let M <T'(3,2,6) be torsion-free. Then M is normal in I'(3,2,6)
if and only if M is normal in T'(3, 3, 3).

Proof. By Lemma 4.7 there is a bijection between the conjugates of M in I'(3, 2, 6)
and the conjugates of M in I'(3,3,3). The result follows from the fact that M is

normal in [' if and only if M has no other conjugates in I'. o

Therefore, the correspondence between uniform maps and hypermaps defined

in Theorem 4.8 restricts to a one-to-one correspondence between genus 1 regular
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hypermaps of type (3,3, 3), genus 1 regular maps of type (6,3) and genus 1 regular
maps of type (3, 6); this result is proved in [CoSi].

4.2. Classification of uniform maps of genus 1

It was shown in §4.1 that genus 1 uniform maps of type (4,4) or (6,3) cor-
respond to sublattices of A(1,7) or A(1,p), and that by using simple geometric
operations one can obtain any of the genus 1 uniform maps of type (3,6) or the
genus 1 uniform hypermaps of type (3,3,3). For brevity, we restrict our attention
in this section to uniform maps of type (4,4) and (6,3) and derive a classification

of them in terms of their underlying lattices.

Uniform maps of type (4,4)

By Theorem 2.5, the maps associated to subgroups M; and M; of I'(4, 2, 4) are
isomorphic if and only if M; and M, are conjugate in I'(4,2,4). It is therefore im-
portant for us to determine when two sublattices of A(1,7) correspond to conjugate

torsion-free subgroups of I'(4, 2, 4).

Lemma 4.10. Let A; and A, be sublattices of A(1,7). Then Ay and Ay correspond
to conjugate torsion-free subgroups of I'(4,2,4) if and only if A} = ul; where u is

a unit in Z[i].

Proof. Using the representation of I'(4,2,4) given in Lemma 3.23, a lattice A <
A(1,4) corresponds to a torsion-free subgroup of I'(4, 2,4) consisting of elements of
the form ¢ : 2z — 2z + d where d € Z[i]. A general element of I'(4,2,4) has the form
g: 2z az+bwitha==1or +i and b € Z[i]. Since

1

gopog " :zw z+ad,

conjugation by g corresponds to multiplying the lattice A by a, where a = £1 or +i.
Hence the lattices A, A, —A, —tA form a complete set of conjugates in I"(4, 2,4). We
observe that A = —A for any lattice A. o

We note that the uniform map obtained from a lattice A < A(1,7) is inde-
pendent of any specified basis for A. For if {wy,wq} and {w'y,w’s} are two bases
for A, then A(wq,w2) = A = A(w'1,w's) and the maps associated to A(w;,ws) and
A(w'y,w’s) are isomorphic since they have the same map subgroups. The following

corollary will be of use:
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Corollary 4.11. Let A(wi,ws) < A(1,4) be a lattice with non-zero elements p +
qi,m + si € Z[i]. Then the lattices (p + gi)A(w1,wz) and (r + si)A(wy,ws) are
conjugate in I'(4,2,4) if and only if p+ qi and r + si are associates in Z[i].

Proof. If p + ¢qi = u(r + si) for some unit u € Z[i] then (p + gi)A(wy,ws) =
u(r+ si)A(w1,wq) and the lattices are conjugate by Lemma 4.10. Conversely if they
are conjugate in I'(4,2,4) then (p + ¢i)A(wy,ws) = u(r + si)A(w1,w2) for some unit
in Z[i]. Hence there exist integers a, b, ¢, d such that

(p+ gi)wr = u(r + si)(awy + bws)

(p + qi)ws = u(r + si)(cwr + dws)

and choosing v € Z[i] so that w) = %L and wy = #2 are coprime gives

(p + gi)wy = u(r + si)(aw; + bws)
(p + qi)wy = u(r + si)(cwy + dwy).

Since w and w) are coprime, this implies that (r + s7)|(p + ¢¢). Similarly one can

show that (p + ¢7)|(r + si) and hence that p + gi and r 4 si are associates in Z[i]. o

Figure 4.6

Example 4.12. Figures 4.6(a) and 4.6(b) show the uniform maps associated to the
lattices A(2,1+2¢) and A(2+414, 2+ 37) respectively. The unimodular transformation

1 —2\[142\ [(-3+2i

1 -1 2 )\ -1+2i
gives the following change of basis: A(2,1 4 2i) = A(—1 + 2i,—3 + 2i) = iA(2 +
1,2+ 37). Therefore, by Lemma 4.10 the lattices A(2,1+42i) and A(2+14,2 + 37) are

conjugate in I'(4, 2,4) and so by Theorem 2.5 the maps in Figure 4.6 are isomorphic.

m]
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The regular maps of type (4,4) correspond to normal subgroups of I'(4,2,4).
Since a subgroup K < H is normal if and only if K has no other conjugates in H,

we have as a corollary to Lemma 4.10:

Corollary 4.13. A sublattice A < A(1,i) corresponds to a normal torsion-free
subgroup of I'(4,2,4) if and only if A = iA. o

Since any lattice satisfying the conditions of Corollary 4.13 corresponds to an
ideal in the ring Z[i], a lattice corresponding to a normal subgroup of I'(4,2,4)
will be called an ideal lattice of A(1,7). Now Z[i] is a principal ideal domain [Alle,
p.113], and so every ideal lattice of A(1,7) has the form A(a + bi,ai — b) for some
a+ bi € Z[i]. The ideal lattice A(a + bi,ai —b) < A(1,4) corresponds to the regular
map {4,4}, in Coxeter and Moser’s notation (see §4.1). We now extend Coxeter

and Moser’s notation to give a description of all genus 1 uniform maps of type (4, 4).

We recall from §3.1 that if A is a lattice, then we can choose a basis {wq,ws}
with A = A(wq,w2) such that the modulus 7 = £2 of A lies in 7, the fundamental
region for the modular group acting on the upper half-plane. Furthermore, the set
of moduli 7 € F parameterizes the set of all genus 1 compact Riemann surfaces.
Therefore, given any sublattice A < A(1,4), we can choose a basis {a + bi,c + di}
with A = A(a+bi, c+di) such that the modulus 7 = Zj;i; lies in F, and the uniform
map associated with A lies on the Riemann surface C/A of modulus 7. For example,
the two (isomorphic) maps associated to the lattices A(2,1+27) and A(2+14,2+ 37)

in Figure 4.6 lie on the Riemann surface of modulus 1“;”. By specifying a modulus

7 € Q(7) however, there are an infinite number of sublattices of A(1,7) with modulus

T, each one associated to a uniform map.

\
(a) +4—g () »

[ 8

Figure 4.7
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Example 4.14. The similar lattices A(2,1+27) and (1+7)A(2, 1+427) both have the

same modulus 7 = —1—2-21 Their associated uniform maps, shown in Figure 4.7, both

lie on the same Riemann surface (of modulus %) but are clearly non-isomorphic
because they have different numbers of faces. Indeed, by considering the similar
lattices given by (p + ¢i)A(2,1 + 2¢) with 0 # p + gi € Z[i], one obtains an infinite

family of uniform maps lying on the Riemann surface of modulus 1+Tzz

By Corollary 4.11, two lattices (p+ ¢i)A(2,1+2:¢) and (p’ +¢'1)A(2, 1+ 24) will
correspond to isomorphic uniform maps if and only if p+¢i and p’ +¢’i are associates
in Z[i]. Therefore the maps corresponding to the lattices (3 + 7)A(2,1 + 2¢) and
(—1+3i)A(2,1+2¢) are isomorphic, while the maps corresponding to (3+14)A(2,1+
2¢) and (3 —4)A(2,1 + 2i) are not; we shall see that these last two maps are mirror

images of each other. o

The lattice A(a + bi,c + di) has a fundamental parallelogram of area
n = |ad — bc|

giving a subgroup of index n in A(1,4). The map associated to A(a + bi, ¢+ di) will
then have n faces, since each face is a square of unit area; 47” = 2n edges, since
each face is bounded by 4 edges and 2 faces meet each edge; and ﬂi—"-)- = n vertices,
since each edge is incident with 2 vertices and 4 edges meet at each vertex. If A is
an index n sublattice of A(1,7), then the uniform map M associated to A is also
said to have index n. (It is important not to confuse the index of M with the index
of its map subgroup. We recall that A < T'(4,2,4) is the map subgroup for M (see
§2.1), and because A <, A(1,7) <4T'(4,2,4), A has index 4n in I'(4,2,4)). We have

proved:

Lemma 4.15. Let M be an index n uniform map of type (4,4). Then M hasn

faces, n vertices and 2n edges. o

For example, the lattice A(2,1 + 2¢) has index n = 4 in A(1,4), and its cor-
responding map shown in Figure 4.7(a) has 4 faces, 4 vertices and 8 edges. For
0 # p + qi € Z[i], the lattice

(p+ qi)A(a+ bi,c+ di) = A(pa — gb + i(pb + qa), pc — qd + i(pc + qd))
has index 4.16
|(pa — qb)(pc + qd) — (pb+ qa)(pc — qd)| = (p* + ¢°)|(ad — be)| = (p* + ¢*)n
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in A(1,4). Hence the lattice (1414)A(2, 1+27) has index 4(12+12) = 8 in A(1,1); the

corresponding uniform map of Figure 4.7(b) has 8 faces, 8 vertices and 16 edges.

Let us return to the family of lattices considered in Example 4.14. Since 1+ 27
and 2 are coprime Gaussian integers, every sublattice of A(1,7) with modulus 1£2
has the form (p + gi)A(2,1 + 2i) where p + gi € Z[i]. The map associated to
A(2,1 + 21) has index 4, while the map associated to (p + ¢i)A(2,1 + 2¢) has index
4(p? + q?) > 4 with equality if and only if p+¢i is a unit in Z[i], and so if and only if
the uniform maps associated to A(2,14 2¢) and (p + qi)A(2, 1 + 2:) are isomorphic.
Hence the map associated to the lattice A(2,1 + 27) is minimal in the sense that
every other uniform map of type (4,4) lying on the Riemann surface of modulus
1—% has an index strictly greater than 4. We can define a minimal map for every

genus 1 Riemann surface of modulus 7 € Q(3):

Definition 4.17. Given a modulus 7 € Q(i), the minimal map M, represented

by 7 corresponds to the lattice A(a + bi,c + di) where 7 = Zjﬁ; and a + bi, c + di

are coprime in the ring Zi]. o

u(c+di)
u({a+bi)

unit u € Zi], A(u(a+bi),u(c+di)) = uA(a+bi,c+di) and so the associated maps

are isomorphic by Lemma 4.10. Our classification now uses the fact that every

We note that M. is unique, since although we can write 7 = for any

genus 1 uniform map of type (4,4) lies on a unique Riemann surface, and hence can
be identified with a unique modulus 7 € Q(7) lying in the modular fundamental

region. Furthermore, 7 can be expressed uniquely (up to multiplication by units)

ct+di
a+bi

as 7 = where a + bi and ¢ + di are coprime Gaussian integers.

Notation 4.18. Let M be a genus 1 uniform map of type (4,4) associated to
a sublattice A < A(1,7). By choosing a suitable basis we can write A = (p +

gi)A(a + bi,c + di) where a + bi and ¢ + di are coprime Gaussian integers and

c+di
a+bi

be the map {7}p+qi . Conversely, for a modulus 7 € Q(¢) lying in the modular

the modulus 7 = lies in the modular fundamental region F. Then M will

fundamental region, {7}, q: represents the uniform map corresponding to the lattice

(p + qi)A(a + bi,c + di) where T = Zi‘éz and a + bi, ¢ + di are coprime Gaussian

integers. o

The uniform map M of Figure 4.7(a) corresponds to the lattice A(2,1 + 21).
Since 2 and 1 + 2i are coprime in Z[i] and 4% € F, M is the map {_1;;&}1

Similarly, the map in Figure 4.7(b) corresponding to the lattice (1 +¢)A(2,1 + 21)
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has the form {—11;&

following lemma:

}1 4 The results in this section are brought together in the
Lemma 4.19. Let 7,7" € Q(i) be moduli lying in the modular fundamental region.

(i) Every uniform map of type (4,4) lying on the genus 1 Riemann surface of
modulus 7 has the form {7}y for some p + qi € Z[i};

ii) The uniform maps {7 i and {7}, 14 are isomorphic if and only if 7 = 7/
p+q p'+q

and p+ qi,p' + ¢'i are associates in the ring Z[il;
(iii) The minimal map M, corresponds to the uniform map {7}1;

(iv) The uniform map {7},+q: is regular if and only if T = i. Hence {i}pyq corre-

sponds to Coxeter and Moser’s {4,4}p.4 ;

(v) If T = ijz where a+ bi, ¢+ di are coprime Gaussian integers and n = |ad — bc|,
then {T}p4q: is a uniform map with (p* + ¢*)n faces, (p* + ¢*)n vertices and
2(p? + ¢%)n edges.

Proof. (i) If a uniform map M lies on the Riemann surface of modulus 7, then
it has an associated lattice A < A(1,7) with a basis {w;,wa} where wi,ws € Z][i],
A = Alwi,wo) and 7 = 22 € F. Writing w1 = (p+gi)(a + bi), wa = (p+ qi)(c+ di)

where a + bi and ¢ + di are coprime Gaussian integers, M has the form {7},+4.

(i) We observe that every genus 1 uniform map lies on a unique Riemann
surface of modulus 7 € F. By the 1—1 correspondence between genus 1 Riemann
surfaces and points in F, if {7},14 and {7'}p 44 are isomorphic we must have
7 = 7'. The lattices corresponding to {7}p4+q; and {7}p4qi can be written as
(p+qi)A(a+bi, c+di), (p" +¢'i)A{la+bi,c+di) where T = %}% and a+bi,c+di are
coprime Gaussian integers, and so by Corollary 4.11 and Theorem 2.5 the maps are
isomorphic if and only if p + ¢i,p’ + ¢'i are associates in Z[i]. The converse follows

easily from Corollary 4.11.
(iii) This follows immediately from Definition 4.17.

(iv) Suppose that 7 = i. Then the lattice associated to {i},4¢; has the form
(p+qi)A(1,4), and since i(p+qi)A(1,3) = (p+qi)A(i, —1) = (p+¢qi)A(1,7), the map
is regular by Corollary 4.13 and Theorem 2.20. Conversely, if {T}p44: is a regular
map, then the associated lattice A corresponds to an ideal in Z[i] (see the remarks
following Corollary 4.13), and so has the form A = (p-+qi)A(1,1) for some Gaussian

integer p + qi. Therefore 7 = % = 1.
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(v) The map {7},+4 has an associated lattice (p + qi)A(a + bi,c + di), and
hence has index (p? + ¢?)n by 4.16. We now apply Lemma 4.15. o

Truncations of uniform maps

If M is a uniform map of type (4,4), then its dual D(M) and its type 1
truncation T7(M) will also be uniform maps of type (4,4).

Lemma 4.20. Every genus 1 uniform map of type (4,4) is self-dual. If M =

c+di
a+bi

map {£LY 1 (ptqi)-

}p+qi Is a uniform map, then its type 1 truncation T1(M) corresponds to the

Proof. We let Ty = I'(4,2,4) =< zo,71 |78 = 12 = (zox1)™? = 1 > where
Tg:zr>iz,T1: 2+ —z+1. SoI'; consists of all the elements of the form z — az-+b
where a = +1, +7 and b € Z[i]. From Lemma 2.35 we see that ['; contains an index
2 subgroup 'y = I'(4,2,4) with Ty =< yo,v1|vs = v? = (Yoy1)™* = 1 > where
Yo = xlxo—l :2z+—iz+1,y; =3 : 2 —z. Then I'y consists of all elements of the
form z — *+z+d and 2z — Fiz +d + 1 where d € (1 +i)Z[i]. Hence torsion-free

subgroups of 'y correspond to sublattices of A(R, Ri) where R = 1+14. If M is

c+di
a-+bi

sublattice generated by z — z+ (p+qi)(aR+ bRi) and z — z + (p+ qi)(cR + dRi).
By Lemma 2.35 the type 1 truncation of M corresponds to the inclusion M < T'q,
where we think of M as being the lattice generated by 2z — z+ (p+qi)(1+1)(a+ bi)

and 2z — 2 + (p+ qi)(1 +7)(c + di). Hence T1(M) is the map {i:—‘tﬁ}(l+i)(p+qi).

Let M be a map with the map subgroup M < T'; =2 T'(4,2,4). Then by Lemma
2.36 the dual of M corresponds to the map subgroup AM*t. If M is uniform, then

the map { }p+qi> then M has a map subgroup M < I'; corresponding to the

from the above M < A(R, Ri) and so will contain elements of the form ¢ : 2z —
z+eR+ fRi for e, f € Z. We have :clqb:cl_l : 2z +— z—eR — fRi and since any
lattice contains its inverse elements, M = M?Z1. Therefore the map subgroups are

equal and so M is isomorphic to its dual. o

Consider the uniform map {27}, shown in Figure 4.8(a) with the corresponding
lattice A(1,2¢). By Lemma 4.20, {2i}; is self-dual and has the type 1 truncation
{2i}1.4; shown in Figure 4.8(b) corresponding to the lattice (1 +i)A(1,27)
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(a) (b) »

Figure 4.8

Uniform maps of type (6, 3)

Genus 1 uniform maps of type (6,3) correspond to torsion-free subgroups of
['(6,2,3), and it was shown in §3.2 that these correspond precisely to sublattices
of A(1, p), where p = ——135—‘[& Our classification follows analogously to the classi-
fication of uniform maps of type (4,4) given above; the proofs required are almost

identical, and so we only outline the details.

The ring Z[p] is a principal ideal domain with the group of units given by
Zlp|* = {£1,%p,£p?} (see [Alle]). We now determine when two sublattices of
A(1, p) correspond to conjugate torsion-free subgroups of I'(6,2, 3).

Lemma 4.21. Let A; and A, be sublattices of A(1, p). Then Ay and Ay correspond
to conjugate torsion-free subgroups of I'(6,2,3) if and only if Ay = uAy where u
is a unit in Z[p]. The sublattice A < A(1,p) corresponds to a normal torsion-free
subgroup of I'(6,2,3) if and only if A = pA.

Proof. The proof follows similarly to that of Lemma 4.10: Using the representation
of I'(6,2,3) given in Lemma 3.23 it can be shown that there are at most two other
lattices conjugate to A; < A(1,p) in I'(6,2, 3), namely pA; and p?A;. Hence Ay
corresponds to a normal subgroup of I'(6,2,3) if and only if A; = pA; = p?A;.
Otherwise, it can be shown that A, pA; and p?A; are all distinct lattices. o

Every conjugacy class of torsion-free subgroups in I'(6,2,3) contains either
one element (for normal subgroups) or exactly three elements (for non-normal sub-
groups). A lattice corresponding to a normal subgroup of I'(6, 2, 3) will be called an
ideal lattice of A(1, p) (since it corresponds to an ideal in Z[p]). Every ideal lattice
of A(1, p) has the form A(p + gp, pp + gp?) for some p + qp € Z[p] and corresponds
to the regular map {3,6}, , in the notation of Coxeter and Moser (see §4.1).
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Corollary 4.22. Let A(wy,ws) < A(1,p) be a lattice with non-zero elements p +
gp,m + sp € Z[p]. Then the lattices (p + gp)A(w1,w2) and (r + sp)A(w1,ws) are
conjugate in I'(6,2,3) if and only if p+ gqp and r + sp are associates in Z[p).

Proof. As for Corollary 4.11. o
The lattice A(a + bp, c + dp) has a fundamental parallelogram of area
n = |ad — bc|

giving a subgroup of index n in A(1, p). The map associated to A(a + bp,c + dp)

then has 2n faces, since two faces form a parallelogram having unit area; 3%”) =3n

edges, since each face is bounded by 3 edges and 2 faces meet each edge; and
2%9—) = n vertices, since each edge is incident with 2 vertices and 6 edges meet
at each vertex. If A is an index n sublattice of A(1,p), then we will say that the

uniform map of type (6, 3) associated to A has index n. We have therefore proved:

Lemma 4.23. Let M be an index n uniform map of type (6,3). Then M has n

vertices, 3n edges and 2n faces. o

If we now take 0 # p + qp € Z[p], then the lattice (p + gp)A(a + bp, c + dp)
will have index (p? — pq + ¢®)n in A(1, p). Therefore, for every modulus 7 € Q(p)
there exists a minimal map M, corresponding to the lattice A(a+ bp, c+ dp) where
T = %L‘;% and a + bp,c + dp are coprime in Z[p]. The minimal map M. is the
smallest uniform map of type (6, 3) lying on the Riemann surface of modulus 7, and
is unique since although we can multiply a + bp and ¢ + dp by any unit u € Z[p],
the resulting lattices uA(a + bp, ¢ + dp) are conjugate in I'(6,2,3) by Lemma 4.21
and so the associated maps are isomorphic. We classify the genus 1 uniform maps

of type (6, 3) as follows:

Notation 4.24. Let M be a genus 1 uniform map of type (6,3) associated to a
sublattice A of A(1, p). By choosing a suitable basis we can write A = (p+gp)A(a+
bp,c + dp) where a + bp and ¢ + dp are coprime in the ring Z[p] and the modulus
T = % lies in the modular fundamental region. Then M will be the map {7} p14,-
Given any modulus T € Q(p) lying in the modular fundamental region, {7}p4q,
represents the uniform map corresponding to the lattice (p + qp)A(a + bp,c + dp)

where T = g—:—(éﬁ and a + bp, c + dp are coprime in Z[p]. o
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Lemma 4.25. Let 7,7’ € Q(p) be moduli lying in the modular fundamental region.

(i) Every uniform map of type (6,3) lying on the Riemann surface of modulus T

has the form {7},44, for some p+ qp € Z[pl;

(ii) The uniform maps {T}p+qp and {7'}p/+q, are isomorphic if and only if T = 7/

and p + qp,p’ + ¢'p are associates in the ring Z|p|;
(iii) The minimal map M, corresponds to the uniform map {7} ;

(iv) The uniform map {T}p4yq, Is regular if and only if 7 = p. Hence {p}piqp

corresponds to Coxeter and Moser’s {3,6}, 4 ;

(v) If T = %ﬁ- where a + bp, ¢ + dp are coprime in Z[p| and n = |ad — bc|, then
{7} p+qp is a uniform map with (p? + ¢* — pq)n vertices, 3(p* + ¢*> — pg)n edges

and 2(p® + ¢* — pg)n faces. o

Proof. (i) If a uniform map M lies on the Riemann surface of modulus 7, then
it has an associated lattice A < A(1, p) with a basis {w;,ws} where wy,wy € Z[p],
A = Alwr,wz) and 7 = £ € F. Writingw; = (p+gp)(a+bp), w2 = (p+gp)(c+dp)
where a + bp and ¢ + dp are coprime in Z[p], M has the form {7},4,.

(ii) Every genus 1 uniform map lies on a unique Riemann surface and so if
{7}piqp and {7'}p+q, are isomorphic we must have 7 = 7'. The lattices corre-
sponding to {7}p+q, and {7}p 14, can be written as (p + qp)A(a+bp, c+dp), (p' +
q'p)A(a+bp,c+dp) where 7 = %‘;J% and a+bp, c+dp are coprime in Z[p], and so by
Corollary 4.22 and Theorem 2.5 the maps are isomorphic if and only if p+qp, p' +4'p

are associates in Z[p]. The converse follows easily from Corollary 4.22.
(iii) This follows from the definition of a minimal map given above.

(iv) Suppose that 7 = p. Then the lattice associated to {p},+q, has the
form (p + gp)A(1,p). Using p? = —1 — p, we find that p(p + qp)A(1,p) = (p +
qp)A(p, p*) = (p+qp)A(1, p) and so the map is regular by Lemma 4.21 and Theorem
2.20. Conversely if {T}p+4, is a regular map, then as observed the corresponding

lattice A has the form A = A(p+qp, pp+qp®) = (p+ap)A(1, p) for some p+qp € Z[p).
Therefore 7 = p.

(v) The map {7},+4, has an associated lattice (p + gp)A(a + bp, c + dp), and
hence has index (p? — pg + ¢%)n. We now apply Lemma 4.23. ©

We consider the uniform map in Figure 4.4(a) corresponding to the lattice

A(B+p,2+4p). As 3+ p and 2 + 4p are coprime in Z[p] and 2314;’ = 3+57‘/§i € F,
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the map is denoted { 35 }1 .

Stellations of uniform maps

If M is a uniform map of type (8, 3), then its type 2 truncation T5(M) will be
a uniform map of type (3,6). By taking the dual DT3(M) we obtain a map of type
(6,3) which, by the discussion following Definition 2.39, is isomorphic to the type
2 stellation Sp(M) .

Lemma 4.26. Let {a+bp }p+qp be a uniform map. Then its type 2 stellation Sy (M)

is the uniform map {a+bp}(2+p)(p+qp)'

Proof. Letting I'; = I'(3,2,6) =< z¢,71 |23 = 22 = (2071)7% = 1 > where
To 2z pz—p,x1 2z — —2z+ 1 we see that 'y consists of all elements of the
form z v az + b where a = 1, £p, +p? and b € Z[p]. By Lemma 2.41, I'; contains
an index 3 subgroup 'y = I'(6,2,3) with Ty =< yo,v1 %8 = ¥? = (yoy1) 3 =1>
and yg = ToT1T0 : 2 — —p?2—1—p, y1 =1 : 2 +— —z + 1. Hence I'y consists
of all elements of the form 2z + cz +d and 2z — —cz +d + 1 where ¢ = 1, p, p?
and d € (2+ p)Z[p]. Torsion-free subgroups of 'y then correspond to sublattices of
A(R, Rp) where R = 2+p. If M is the map {Ziip }p+qp, then M has a map subgroup
M < Ty corresponding to the sublattice generated by z — z + (p + ¢p)(aR + bRp)
and z — z + (p + gp)(cR + dRp). By Lemma 2.41 the type 2 truncation of M
corresponds to the inclusion M < T'j; note that To(M) has type (3,6). Now
Sa(M) is the dual map of T5(M) and so Sz(M) also corresponds to the inclusion
M < T'j by Theorem 4.8. Hence we think of M as being the lattice generated by
z— 24+ (p+qp)(2+p)(a+bp) and z — 2+ (p+ gp)(2+ p)(c+ dp), so that Sy(M)

: d
is the map {%%}(2+p)(p+qp)' o

Figure 4.9
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The uniform map {izfig}l corresponding to the lattice A(2,1+ 3p) is shown in
Figure 4.9(a). By Lemma 4.26 its type 2 stellation is the map {3£22},,, shown in
Figure 4.9(b).

4.3. Reflexible uniform maps

A Riemann surface that admits an anti-conformal involution is said to be sym-
metric. It is known ([Alli]) that a genus 1 Riemann surface is symmetric if and only
if its modulus 7 lies on the boundary of the modular figure F or on the imaginary
axis with Im(7) > 1 (or any point in the same orbit under the modular group).

These moduli correspond precisely to the real values of j(7).

A map is said to be reflexible if it admits an orientation-reversing involution and
chiral otherwise. A chiral pair consists of two chiral maps, one being the reflected
image of the other. The regular reflexible maps of genus 1 are classified in [CMo]:
the regular map {i}p4q is reflexible if and only if pg(p — q) = 0, while {p}p4q, is
reflexible if and only if pg(p — 2¢) = 0 (this condition is equivalent to that given
in [CMo] where the triangular lattice is generated by 1 and —p?). We will extend
these results to classify the reflexible uniform maps of genus 1. We recall that the
extended triangle group I'*(lg,l1,(l2) is the group generated by reflections in the
sides of a triangle with angles 11 for i = 0,1,2. The triangle group I'(lp, {1, l2) is the

index 2 subgroup of I'*(lg,[;,2) consisting of all the conformal transformations.

If A is a lattice with the basis {wy,ws}, then A is the lattice generated by the

complex conjugate basis {51,52}.

Theorem 4.27. The lattice A < A(1,7) is normalized by some anti-conformal
element h € T*(4,2,4)\T'(4,2,4) if and only if A = u A for some unit u € Z[i].

Proof. As in Lemma 3.23 we represent ['(4,2,4) as the set of transformations
U = {2z az+bla==x1,+i, b€ Z[i]}. The extended triangle group I'*(4,2,4)
can be represented by the group of transformations generated by the elements of
¥ and the anti-conformal involution z +— Z. Every lattice A < A(1,7) consists of
elements of the form ¢ : 2 — 2+ f for f € Z[f]. If A is normalized by some

anti-conformal element h : 2z — ¢Z + d of I'*(4,2,4) then since
hoh™ Yz z+cf

we must have A = u A for some unit u € Z[i]. Conversely, if A = uA for a unit

u € Z[i], then A is normalized by the anti-conformal element z — uZz. o
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Let A7 = A(1,2i) and A, = (1 + 4)A(1,2i). Then A; = A; and so A, is
normalized by the element z — Zz. We also have Ay = (1 — 4)A(1,-2i) = (1 —
i)A(1,2i) = iA; and so A, is normalized by 2 — iZ. Before proving the main

classification, we need the following simple lemma:

Lemma 4.28. Let « € Z[i]. Then o and @ are associates in Z[i] if and only if

a =n,n(l + 1) or any associate of these in Z[i] for some integer n.

Proof. There are 4 cases to consider: a = @ and o = +i@. By setting a = z+yi
and equating real and imaginary parts, we deduce that a = n,in,n(1+14) or n(i—1)
for any integer n. Conversely, if & = n or @ = n(1 + ¢) (or some associate) then it

is easy to check that o and @ are associates in Z[3]. o

c+di
a+bi

Theorem 4.29. The uniform map { }p+qi Is reflexible if and only if the follow-

ing two conditions hold:

(i) 7= g—:% lies on the boundary of the modular figure F or on the imaginary axis

with Im(7) > 1;
(i1) p+¢qi = n,n(1+1) or any associate of these in Z[i| for some non-zero integer n.

Proof. We show first that the conditions are necessary. (i) As noted in §2.1, a map
automorphism extends naturally to an automorphism of its underlying Riemann
surface. Therefore a reflexible map must lie on a symmetric Riemann surface. By
the discussion concerning symmetric Riemann surfaces of genus 1 at the beginning
of this section, a reflexible map must have a modulus lying on the boundary of
F or on the imaginary axis with Im(r) > 1. (ii) If {%}%}pﬂi is reflexible then
the map must admit an anti-conformal automorphism, and so its associated lattice
(map subgroup) must be normalized by some anti-conformal element in I'*(4,2,4).
Hence by Theorem 4.27 its associated lattice must satisfy (p+ qi)A(a+bi,c+di) =
u(p — qi)A(a — bi, c — di) for some unit v € Z[i]. Since a + bi and ¢+ di are coprime
(as are their conjugates), we deduce as in the proof of Corollary 4.11 that p + ¢i
and p — ¢i are associates in Z[i]. Therefore by Lemma 4.28 p 4+ ¢qi = n,n(1 +1) or
some associate for a non-zero integer n.

The sufficiency of the conditions can be checked explicitly. If the minimal

map {SE1 s reflexible, then it is easy to show that {<+f1}, and {SHY} L are

reflexible for all p € Z\{0} by considering their underlying lattices and applying

Theorem 4.27. We must therefore show that for all 7 lying on the boundary of
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the modular fundamental region or on the imaginary axis, the minimal map M is

reflexible. There are three cases to consider:

(a)

(b)

Suppose 7 lies on the imaginary axis. Then there exist coprime integers a,d
4

@ n

associated to M, is A = A(a,di) which satisfies A = A. Hence by Theorem

4.27 A is normalized by some anti-conformal element, and so M is reflexible.

with 7 = £ (note that a and di are also coprime Gaussian integers). The lattice

Suppose Re(r) = 2. Then 1 = %ﬁ“ where ¢, d are coprime integers. To find the

minimal map associated with 7, we must express C;ré“ in lowest terms. It can

be shown that either ¢+ di and 2c¢ are coprime Gaussian integers, or ¢+ di and
2c have exactly one non-unit divisor 1 + ¢ (up to multiplication by a unit). In
the former case the lattice associated to M. is A = A(2¢, ¢+ di) which satisfies
A = A. In the latter case, 2¢c = (1 +14)(1 —4)c and c+ di = (f + gi)(1 + 1) for
some Gaussian integer f + gi. Equating real parts gives ¢ = f — g so that the
lattice associated to M, is A = A((1 —)(f — g), f + gi). Then

A=A +3)(f - 9). f~gi)
=A-14+)(f—9),—g+ fi) (change of basis)
= iA1= 9)(f—9), f +91)
= 3A

and M is reflexible.

If 7 lies on the unit circle, then there exist integers a, ¢, d with ged(a, ¢, d) =1,
a? =c?+d*and 7 = —Cia@. Since a® = ¢?+d? = (c+di)(c—di), it can be shown
that there exist coprime integers f and g such that a = (f + gi)(f — g7) and
c+di = (f + gi)?. Since f and g are coprime integers, f + gi and f — g7 must
be coprime Gaussian integers, and so in reduced form we have C—%ﬁi—i = %g%
The lattice associated to M, clearly satisfies A = A, and so M., is reflexible. o

A similar characterization of reflexible genus 1 uniform maps of type (6, 3) may

be obtained by considering lattices of the extended triangle group I'*(6, 2, 3).

Theorem 4.30. The lattice A < A(1,p) is normalized by some anti-conformal
element h € 1'*(6,2,3) \T'(6,2,3) if and only if A = uA for some unit u € Z[p)].

Proof. As for Theorem 4.27 using the representation for I'(6, 2, 3) given in Lemma
3.23. o
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As in Lemma 4.28 it is easy to show that o, @ € Z[p] are associates in Z[p] if and
only if & = n,n(2+ p) or an associate of these in Z[p] for some integer n. The proof

of the following theorem is similar to that of Theorem 4.29.

Theorem 4.31. The uniform map {5358} 44, is reflexible if and only if the fol-

a+bp
lowing two conditions hold:

(i) T = a+b lies on the boundary of the modular figure F or on the imaginary
axis with Im(r) > 1.

(ii) p+gp =n,n(2+ p) or any associate of these in Z[p] for some non-zero integer
n.

Proof. The necessity of the conditions follows as for the proof of Theorem 4.29.
Since2+p=1-p=—p(2+ p), 1t is also clear that if the minimal map {a+b b is

a+bp }n and {a-i—bp
that every minimal map M, whose modulus lies on the boundary of the modular

reflexible, then so are the maps { <22 }n(2+p)- Thus it remains to show
fundamental region or on the imaginary axis is reflexible.

(a) If 7 lies on the imaginary axis, then 7 = —a(lJcﬂp )

where a and ¢ are coprime
integers. If 1+2p and c are coprime Gaussian integers, then A = A{a(1+2p), ¢)
is the lattice associated to M, and since A = A(a(l + 2p?),c) = A(—a(l +
2p),c) = A, M. will be reflexible by Theorem 4.30. Otherwise ¢ = —c'(1+2p)?

and M has the associated lattice A(a, —c’(1+2p)). Hence M is also reflexible.

(b) If Re(r) = 3 then we can write 7 = a(chp)%p where a and ¢ are coprime
integers. Then either a(1 4 2p) — ¢p and ¢ are coprime in Z[p] or else ¢ =
—c/(1 + 2p)2. In both cases it can be shown that the lattice A associated to

M. satisfies A = A, so that M, is reflexible.

(c) If 7 lies on the unit circle, then as in the proof of Theorem 4.29 it can be
shown that the lattice associated to the minimal map M. has the form A =
Alp + qp,p + qp?). Since A = A, M, is reflexible. o

If My = {2:%2}07%1 and My = {a+bp}(P+qp) are uniform maps, then for any

non-zero integer a € Z — {0} the maps Ziiz}a(pﬂl) and {a+bp }a(p+qp) are said to

be enlargements of M7 and My respectively. It follows from Theorems 4.29 and

4.31 that an enlargement of a reflexible uniform map is also reflexible. If Ziﬁ:}l

is reflexible, then its type 1 truncation {Ziﬁi}lﬂ is reflexible by Theorem 4.29.

Similarly, if { }1 is reflexible then its type 2 stellation { }2+p is reflexible
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by Theorem 4.31.

By Theorems 4.29 and 4.31 all reflexible uniform maps of genus 1 occur as
truncations and enlargements of reflexible minimal maps of type (4, 4), or stellations
and enlargements of reflexible minimal maps of type (6, 3). We have therefore proved

the following alternative characterization of reflexible genus 1 uniform maps:

Theorem 4.32. Consider a modulus 7 € Q(i) or Q(p). Then the minimal map
M. is reflexible if and only if 7 lies on the boundary of the modular fundamental
region or on the imaginary axis. Every reflexible genus 1 uniform map of type (4,4)
is an enlargement or type 1 truncation of a reflexible minimal map of type (4,4).
Every reflexible genus 1 uniform map of type (6,3) is an enlargement or type 2

stellation of a reflexible minimal map of type (6,3). o

Figure 4.8 shows two maps, the minimal map My; and its type 1 truncation
{2i}14+4. The minimal map Mp; has the associated modulus 7 = 27 and so is reflex-
ible by Theorem 4.29; the type 1 truncation of Ms; is also reflexible by Theorem
4.32. Consider two maps of type (6,3): the minimal map {1 + 3p}; and its type 2
stellation {1 + 3p}o4,. Since Re(l + 3p) = —%, {1 + 3p}1 is a reflexible minimal

map, and hence its type 2 stellation is also reflexible.

4.4. Regular covers of uniform maps

It was shown in §2.1 that every finite map M of type (m,n) admits a finite
cover by a regular map of type (m,n). If M < I'(m,2,n) is a canonical map
subgroup for M, then the map M* corresponding to the inclusion M* < I'(m,2,n)
is a regular cover of M, where M* is the core of M in I'(m,2,n). Furthermore, M*

is the minimal regular cover of M in the sense that every regular map that covers
M also covers M*.

A genus 1 uniform map of type (4,4) has a map subgroup corresponding to
a lattice A, where A < A(1,7) < T'(4,2,4). A lattice is normal in T'(m,2,n) if
and only if it is an ideal lattice, that is A = (p + q?)A(1,4) for 0 # p + qi € Z[i]
(see the discussion following Corollary 4.13). If M is a genus 1 uniform map with
the map subgroup A < A(1,%), the regular covers of M correspond to the ideal
lattices contained in A; in particular, the minimal regular cover will correspond to

the maximal ideal lattice contained in A.
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Example 4.33. We consider the lattice A(a + bi,c + di) where a + b and ¢ + di

are coprime Gaussian integers, and let n = ad — be. Since
dla+bi) —blc+di)=ad—bc=n
and — c(a+ bi) + a(c+ di) = (ad — be)i = ni
A{a + bi, c + di) contains the ideal lattice A(n,ni). o

We will now prove that A(n,ni) is the maximal ideal lattice contained in A(a +
bi,c+ di).

Lemma 4.34. Let a + bi, ¢ + di be coprime Gaussian integers with ad — bc = n.

Then A(n,ni) is the maximal ideal lattice contained in A(a + bi, c + di).

Proof. By Example 4.33, A(a + bi,c + di) contains the ideal lattice A(n,ni). If
A(p + qi, pi — q) is any ideal lattice contained in A(a + bi, c + di), we will show that
Alp + qi,pi — q) C A(n,ni). Since A(p + qi,pi — q) C A(a + bi,c + di), there exist
integers «, 3,, 6 such that

a [ a+bt\ (p+aq
(’y 6) <c+di>_<pi—q> 4.35
where we let A = a6 — (7. By calculating the index of the lattice (p + gi)A(1,4) in
A(1,7), we deduce from 4.35 that
p* + ¢ = (ad — be)(ab — B7) = nA 4.36

from which it is easy to see that A = ad — Sy # 0 (since p? + g% = 0 implies that
p = 0 = q). Hence by taking inverses

at+bi\ _ 1 /(6 -8B\ [(p+taq
c+di)]  A\-v «a pi—q

and so - 5 - Bi)
Ala+bl)=(p+q)(0— B
( . _ 4.37
Alc+di) = (p+ qi)(—7 + i),
Since a + bi and ¢ + di are coprime, (p + ¢7)|A and therefore
A = (u+vi)(p+ qi) 4.38

for some u + vi € Z[i]. Substituting 4.38 into 4.36 gives
P’ +q° = (p+qi)(p — qi) = n(p + qi)(u + vi)
and hence that
p—q=n{ut+wvi), p+qi=n(u—vi.
Therefore A(p + qi, pi — q) = (u — vi)A(n,ni) C A(n,ni). o
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Corollary 4.39. Let L = (r + si)A(a + bi, c + di) be a lattice where a + bi, c + di
are coprime Gaussian integers and ad — bc = n. Then L' = (r + si)A(n,ni) is the

maximal ideal lattice contained in L.

Proof. Let Q = (e+ fi)A(1,7) be any ideal lattice in L; we will show that @ C L.
Since @ C (r+si)A(a + bi, c+ di), we can write Q = (7 + si)A(u+ vi, ui — v) where
(r+si)(u+vi) =e+ fi and u+vi,ui —v € Ala+ bi,c+di). Now, A(u+vi,ui —v)
is an ideal lattice in A(a + bi,c + di) and so A(u + vi,ui —v) C A(n,ni) by Lemma
4.34. Hence Q = (1 + si)A(u + vi,ui —v) C (r + si)A(n,ni) = L. o

Similar results may be obtained for maximal ideal lattices contained in sublat-
tices of A(1, p); if Z[d] is replaced by Z[p] in Lemma 4.34 and Corollary 4.39, the

proofs required are almost identical.

Lemma 4.40. Let L = (r + sp)A(a + bp,c + dp) be a lattice where a + bp,c + dp
are coprime in the ring Z[p| and ad — bc = n. Then L' = (r + sp)A(n,np) is the

maximal ideal lattice contained in L. o

Our results on maximal ideal lattices can be interpreted in terms of minimal

regular covers of uniform maps.

Theorem 4.41. Let M = {%}Hsi and My = {%ﬁ rtsp be uniform maps
of genus 1 with lad — bc| = n. Then {i}y(r44:) is the minimal regular cover of M,
and {p}n(rysp) is the minimal regular cover of My. In both cases the index of the

minimal regular cover is equal to n.

Proof. The uniform map M;j has a corresponding map subgroup (r+si)A(a+bi, c+
di) < A(1,1) <T(4,2,4) with |ad —bc| = n. Let M7 be the minimal regular cover of
M corresponding to the maximal ideal lattice contained in (r + si)A(a+ bi, ¢+ di),
which is (r + si)A(n,ni) by Lemma 4.39 (we may assume that n is positive, since
A(n,ni) = A(—n,—ni)). Therefore M7 = {i},(r4s:). Since (r + si)A(n,ni) has

index n?(r?+s2) in A(1,14), and (r+si)A(a+bi, c+di) has index (r?+s2)|(ad—bc)| =
(P ts?)
ey T M

Similarly, M5 has a map subgroup (r + sp)A(a + bp,c + dp) < A(1,p) < T(6,2,3)

which contains the maximal ideal lattice (r + sp)A(n,np) by Lemma 4.40. Hence

(r? + s?)n in A(1,17), the index of the minimal regular cover is

the minimal regular cover of My is the map {p}n(r4sp), and the index of the cover
n?(r?+s%—rs)

I s 0 O
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4.5. Enumerating uniform maps

Altshuler [Alt] has given bounds for the number of genus 1 uniform maps of
type (6,3) with n vertices. By Lemmas 4.15 and 4.23, the number of vertices of a
genus 1 uniform map is uniquely determined by its index, and so Altshuler’s problem
generalizes to finding the number of uniform maps with a given index. The special
case of enumerating genus 1 regular maps of index n was solved by Cangiil and

Singerman [CaSi| using the functions

1
R(n) = Z‘{(p,Q)|p2+q2 =nand p,q € Z}l
1
S(n) = g‘{(p,q) |p° +¢*—pg=nandp,qe Z}I

where n is any positive integer. The multiplicative functions R(n) and S(n) may be
evaluated as follows: R(n) is equal to the number of positive divisors of n that are
congruent to 1 mod 4 minus the number congruent to 3 mod 4; S(n) is equal to the
number of positive divisors of n that are congruent to 1 mod 3 minus the number

congruent to 2 mod 3 (for proofs see [Hu, §12.4]).

Theorem 4.43. The number of type (4, 4) genus 1 regular maps of index n is equal

to R(n), and the number of type (6,3) genus 1 regular maps of index n is equal to

S(n).

Proof. Every regular map of type (4,4) satisfying the conditions of the theorem
has the form {i},+4 where p? + ¢ = n, and conversely every p + gi for which
p? + ¢*> = n determines such a map (see Lemma 4.19). If we identify the complex
number p + qi with the ordered pair (p,q), then the number of Gaussian integers
p + qi satisfying p? + ¢? = n is equal to 4R(n). Note that every such p + ¢i has four
distinct associates in Z[i], p+qi, —q+ip, —p—qt, g—ip, which also satisfy p?+¢? = n.
By Lemma 4.19, two regular maps {i}p+q; and {i},44 are isomorphic if and only if
p -+ qi and r + si are associates in Z[i]. Hence the number of non-isomorphic genus

1 regular maps of type (4,4) and index n is equal to R(n).

Similarly, every such regular map of type (6,3) has the form {p},+,, where
p + qp € Z[p] satisfies p? + ¢2 — pg = n. The number of such elements is equal to
6S(n). The six associates of p+ gp correspond to isomorphic maps by Lemma 4.25,
and every other r + sp € Z[p] corresponds to a distinct regular map. Hence the

number of genus 1 regular maps of type (6, 3) and index n is equal to S(n). o
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Before giving formulae for the number of genus 1 uniform maps of index n
(Theorem 4.53), we discuss practical methods for constructing all uniform maps
with a given index. The following two theorems relate the index of the minimal
map M, to the discriminant of its modulus 7. These results will be used in §4.6 to

determine some Galois orbits of uniform maps.

Theorem 4.44. Let a modulus T € Q(i) have discriminant d = —4n? and the
associated minimal map {Zﬁz}l where T = Ziﬁ and a + bi,c + di are coprime in

Z[i). Then |ad — bc| = n.

Proof. It can be verified that 7 satisfies the quadratic polynomial

(¢ + d*)z? — 2(ac + bd)z + (a® + b?) = 0. 4.45
If the coefficients of 4.45 have greatest common divisor s (where s is a rational
integer), then a direct calculation gives the discriminant of 7 to be =3 (ad — bc)?.

We now show that s = 1. If s # 1, then we can choose some Gaussian prime p|s
with p|(c? + d?), p|2(ac + bd) and p|(a? + b?).

(1) Since p|(a? + b?) = (a + bi){a — bi), either p|(a + bi) or p|(a — bi). We suppose
that p|(a + bi).

(2) Also p|(c® +d?) = (c + di)(c — di). If p|(c + di) we contradict the assumption
that a + bi and ¢ + di are coprime. Hence p|(c — di) which implies p|(c + di).

(3) Finally p|2(ac + bd) = (a + bi)(c — di) + (a — bi)(c + di). Since p|(a + bi),
we conclude that either p|(a — bi) or p|(c + di). Now p|(c + di) leads to a
contradiction as in (2), and if p|(a — bi) then p|(a + bi) which means p is a

common factor of a + bi and ¢ + di, a contradiction.

A similar contradiction is reached if we suppose that p|(a — bi) in (1). We therefore

conclude that s = 1. o

Using a similar argument, we can also prove:

Theorem 4.46. Let a modulus 7 € Q(p) have discriminant d = —3n? and the
associated minimal map'{fj%%}l where 7 = Z—i—%ﬁ and a + bp, c + dp are coprime in
Z[p]. Then |ad —bc] =n. o

Hence the minimal map M lying on a surface of modulus 7 € Q(z) or Q(p)
will have index n, where 7 has discriminant —3n? or —4n2. The results of Theorem

4.41 on regular covers of uniform maps may be restated as follows:
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Corollary 4.47. Let M be a uniform map of genus 1 lying on a surface of modulus
7. Then T € Q(¢) or Q(p), and the index of the minimal regular cover of M is equal

to n, where T has discriminant —4n? or —3n?.

Proof. If M is a uniform map lying on a surface of modulus 7 € Q(%), then M has
the form {<t&i} . . by Lemma 4.19. By Theorem 4.41 the index of the minimal

a-+bi
regular cover of M is n = |ad — bc|, and by Theorem 4.44, the discriminant of
7 =4 s —4n?. Similarly for 7 € Q(p). o
Example 4.48. We consider the moduli 7, = 5¢ and , = “12+ % Tt was shown
in Example 3.38 that both 7, and 7, have discriminant d = —4.52, and so their
associated minimal maps have index 5 by Theorem 4.44. The minimal map M, =
{57} is shown in Figure 4.10(a). In reduced form, _12+5i = _fjizi, and so M., =

{'f’ifi}l; this map is shown in Figure 4.10(b). By Corollary 4.47, M; and Mo
have minimal regular covers of index 5; indeed by Theorem 4.41 both have the same

minimal regular cover M* = {i}s.

In §3.4 we calculated that the class number hA(—100) = 2, and hence that 71
and T, are the only moduli in Q(7) lying in the modular fundamental region with
discriminant —100. Any minimal map of type (4,4) and index 5 must have an
associated 7 with discriminant —100 by Theorem 4.44, so that M, and M,, are
the only minimal maps of type (4,4) with index 5. o

Figure 4.10

More generally, we might ask for the number of minimal maps of type (4,4)
and index n. By Theorem 4.44, this is equivalent to asking for the number of moduli

7 € Q(i) lying in the modular fundamental region with discriminant —4n?, and by
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Definition 3.33 this is equal to the class number h(—4n?). Thus we have proved,

with a similar argument for uniform maps of type (6, 3):

Theorem 4.49. Let h(—3n?) and h(—4n?) be the class number formulae of 3.46.
Then the number of minimal maps of type (4,4) and index n is equal to h(—4n?);

the number of minimal maps of type (6,3) and index n is equal to h(—3n?). o

Example 4.50. We use Theorem 4.49 to calculate the number of uniform maps of

type (4,4) and index 10. Every such uniform map has the form {“132 }pqi where

lad — be|(p® + ¢*) = 10

(see 4.16) and {%}1 is a minimal map. There are four possibilities to consider:

(i) |ad — bc| =1 and p? + ¢? = 10. Since h(—4.12) = 1, there is a unique minimal
map {i}; with index 1 by Theorem 4.49. Also R(10) = 2, and so there are two
possibilities for p? + ¢? = 10 up to multiplication by units in Z[i]: 1 + 3i and
1 — 3i. Since the maps {i}r4+4 and {i}pq are isomorphic if and only if r + si
and p + ¢i are associates in Z[i] (see Lemma 4.19), this case contributes two

maps of index 10: {i}143; and {i}1_3;.

(ii) |ad—bc| = 2 and p? +¢* = 5. The class number h(—4.22) = 1 from 3.46, and so
there is only one minimal map {2i}; with index 2 by Theorem 4.49. We have
R(5) = 2, so that there are two possibilities for p?+¢? = 5 up to multiplication
by units: 14 27 and 1 — 2i. We therefore obtain two index 10 maps: {2i}140:
and {2i}1_2;.

(iii) |ad — bc| =5 and p? + ¢> = 2. This case yields two maps of index 10: {5i}; 4

and { 1+21 }H—z

(iv) lad — be| = 10 and p* + ¢® = 1. These will be minimal maps. Using the class-
number formula in 3.46, h(—4.10%) = 4, so there are four moduli in Q(3) lying
in the modular fundamental region with discriminant —4.102. By finding these

four moduli (as shown in §3.3) and writing them in reduced form, we obtain

the maps {10:}4, {51} { 22_:'231}1 and {§+gz

In total, there are are 10 non-isomorphic uniform maps of type (4, 4) with index 10.

|m]

By generalizing Example 4.50 we can express the number of genus 1 uniform
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maps of index n as Dirichlet products involving the class number formulae and the
functions R(n) and S(n).

Theorem 4.51. Let M 4y(n) and M 3)(n) denote the number of index n genus
1 uniform maps of type (4,4) and (6, 3) respectively. Then

May(n) = Y h(—4t*)R
tin

M(Gg) Zh 3t2
tin

where h(—4t%) and h(—3t?) are the class number formulae from 3.46.

Proof. A map of type (4,4) satisfying the conditions of the theorem has the form

{gigz}qu where {aﬂn

p* + ¢* = 2 (so that ¢|n). By Lemma 4.49, there are h(—4t?) distinct minimal

maps with index t. For each of these minimal maps we want to choose all p + gi

}1 is a minimal map with some index ¢ = |ad — bc| and

such that p? +¢? = 2 and no two are associates in Z[i]. The number of such choices
is given by the function R(%), and so by starting with a minimal map of index t,

we obtain h(—4t*)R(%) uniform maps of index n. We now sum over all ¢|n.

The proof for maps of type (6, 3) is similar: every such map has the form
{c+dp }p+qp Where (p? +¢* — pg)lad — bc| = n. For each t = |ad — bc| where t | n there
are h(—3t?) minimal maps of type (6,3) and index t. We must then determine all

n

p + gp for which p? + ¢® — pg = = and no two are associates in the ring Z[p]; the

number of these is S(2). This gives h(—3t?)S(%) uniform maps of index n, and we

now sum over all t|n. o

We apply Theorem 4.51 to the case n = 10, considered in Example 4.50:

Mg,0y(10) = > h(—4£ R(—)

t{10
= h(—4.1%)R(10) + h(—4.2*)R(5) + h(—4.5*)R(2) + h(—4.10®)R(1)

= ME@)+ 1))+ @)A) + 4)(1)
=10

which confirms the result. Although Theorem 4.51 provides a systematic way of
building uniform maps of a given index from minimal maps, the resulting formulae

fail to be multiplicative, and so are not practical for large values of n. We will see,
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however, that it is possible to express M4 4)(n) and M 3)(n) as the sum of two
multiplicative functions. The author would like to thank Gareth Jones for pointing

out the following lemma, proved in [Se p.99]:

Lemma 4.52. The lattice A = A{w1,ws) contains o(n) sublattices of index n,

where o(n) is equal to the sum of the positive divisors of n.

Proof. Let A(n) denote the set of index n sublattices of A(w;,ws), and S, the set
of matrices (8 Z) with a,b,d € Z,ad =n,a>1and 0 < b < d. For o = (g Z) €S,
let A, be the lattice with basis

/
Wy = aw;y + bwa, wh = dws,

then A, is an index n sublattice of A(wy,wz). We will prove that the map o +— A,
is a bijection of S, onto the set A(n) of index n sublattices of A. Suppose that
A" € A(n). We define

Y1 =A/(A 4+ Zwy) and Yz = Zwy/(A' N Zws)

where Y1 and Y5 are cyclic groups of orders (say) a and d respectively; Y; is generated

by the image of w; (i = 1,2). If we consider the exact sequence
0-Ys L A/N LY —0

defined by f : swo/(A' N Zws) +— swy /A and g : (rwy + swa) /A +— rwi /(A + Zws)
for integers r and s, then Yy 2 (A/A")/f(Y2) and so n = ad. Setting w) = dws,
then w) € A’. Also, there exists an element w] € A’ such that w] = aw; mod Zws,

and so we can write w] in the form
W = awy + bws

for b € Z uniquely determined modulo d. Furthermore, if we impose on b the
inequality 0 < b < d, then b, and so w{ are fixed. It is clear that w| = aw; + bw,
and w), = dwy form a basis for A’ with ad = n . Hence we have associated to every
A’ € A(n) a matrix o(A’) € S,. It can be checked that the maps ¢ — A, and
A" — o(A’) are inverses to each other and so define a bijection between A(n) and
S

Finally, a matrix o = (8 Z) € S, satisfies ad = n and 0 < b < d where a,d are
positive integers. So for every d |n the choice of a is fixed. The possible values of b
are then 0,1,2,...d — 1 from which it follows that |[S,| =3_,,d =0o(n). o
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Theorem 4.53. Let M, 4)(n) and Mg 3)(n) be the number of index n, genus 1
uniform maps of type (4,4) and (6, 3) respectively. Then

Missy(n) = 5 (o(n) + R(m)

Ms(n) = 5 (o(n) + 25(n)

where R(n), S(n) are the functions from 4.42 and o(n) is equal to the sum of the

positive divisors of n.

Proof. Genus 1 uniform maps of type (4,4) and index n correspond to index n
sublattices of A(1,7). We define an equivalence relation on the set A(n) of index n
sublattices of A(1,1) as follows: two lattices A1, Ay are equivalent if A} = uA; for a
unit u € Z[i]. By Lemma 4.10, the maps corresponding to two lattices of A(n) are
isomorphic if and only if they are equivalent. In the proof of Lemma 4.10, it was
shown that each equivalence class of lattice contains either 1 element (corresponding
to a regular map) or 2 elements (corresponding to a non-regular map). The number
of index n sublattices of A(1,4) is equal to o(n) by Lemma 4.52 above, and the
number of regular maps of index n is equal to R(n) by Theorem 4.43. The number

of distinct index n uniform maps is therefore equal to %(o(n) + R(n)).

Similarly, a genus 1 uniform map of type (6,3) and index n corresponds to
an index n sublattice of A(1, p). Define an equivalence relation on the set A(n) of
index n sublattices of A(1, p) so that two lattices A1, Ay are equivalent if Ay = ul,
for a unit u € Z[p]. The maps associated to two lattices are isomorphic if and only
if they are equivalent. Every equivalence class of lattice contains either 1 element
(corresponding to a regular map) or 3 elements (corresponding to a non-regular
map). Since A(1, p) contains o(n) lattices of index n by Lemma 4.52, with S(n)
regular maps of index n, the number of index n uniform maps of type (6, 3) is equal
to 3(o(n) +25(n)). o

The function o(n) is multiplicative, with

= _;)_:_1__
for any prime p and integer k > 0 (see [NZM, p.191]). We apply Theorem 4.53 to
the case n = 10. Since 0(10) =1+ 2+ 5+ 10 = 18 and R(10) = 2, the number of
uniform maps of index 10 and type (4,4) is given by

1
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Table 6 gives the number of genus 1 uniform maps of index n for 1 < n < 20; the

results were obtained using Theorem 4.53.

The number of uniform maps of a given index has been expressed in two dif-
ferent ways: firstly as a Dirichlet product involving the class number formulae in
Theorem 4.51, and secondly as a sum involving the function o(n) in Theorem 4.53.
In §3.4 we introduced the multiplicative versions of the class number formulae,
h(—4n?) and h(—3n?), where h(—4n?) = 2h(—4n?) and h(-3n?) = 3h(=3n?) for

all n > 1. It can be shown that the formulae in Theorem 4.51 may be expressed as

Mg.4y(n (Zh t2)R +R(n)>

tln

(Z h(— tz)S + 25(n))

tln

M3 (n

oo|»—-

where the two Dirichlet products, being composed of multiplicative functions, are
themselves multiplicative. Furthermore, one can show (although this requires the

consideration of a number of different cases) that

Zh —4tHR Zh —3t%)S

tln tln

from which we obtain the formulae given in Theorem 4.53.

4.6. Uniform maps and Belyl functions

Every genus 1 uniform map M is associated with a finite index subgroup of a
Euclidean triangle group, and so can be embedded naturally into a Riemann surface
of the form X = C/A, where A <T'(4,2,4) or A <TI(6,2,3). By Theorem 1.17, X
will be defined over the algebraic numbers Q, and so by Belyi’s Theorem there exists
a Belyl function §: X — ¥ with critical values C(8) C {0,1, o0}; one can choose
the BelyY function so that the Walsh double of 37!(B;) defines a map isomorphic
to M (see §2.3).

In §3.4 we determined all elliptic curves with Euclidean Bely! uniformizations
that are defined over the rational numbers Q, and quadratic and cubic extensions of
Q. Table 7 lists the equations of these elliptic curves, together with their associated
minimal maps. In this section we will construct Belyl functions for many of the

minimal maps in Table 7.
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Examples 4.54. (i) The minimal map M, corresponds to the lattice A(1, p) and
lies on the elliptic curve E, : y? = 4z3 — 1. Figure 4.11 shows a fundamental
parallelogram P for A(1, p) with the vertices and edge centres of the minimal map

represented by black and white vertices respectively.

4_%p
P 0 43 Qe——o]
4°%p2
A
4x3
Figure 4.11

We can normalize A(1,p) by a complex number o € C*, so that the sim-
ilar lattice A(a, ap) satisfies ga(A{a, ap)) = 0, gs(A(a,ap)) = —1. The Weier-
strass function p(az,aA(1,p)) = a=2p(z,A(1,p)) then induces an isomorphism
from C/A(1,p) to E, [Cox, p.206] taking the vertex [0] to the point at infinity O,
and the edge centres {[3], [2], [132]} to {(47%,0),(473p,0), (47 3p%,0)}. Hence the
projection E, — 3 defined by (z,y) — =z sends the vertex of M, to infinity, and
the three edge centres to the cube roots of é. By composing this projection with
z +— oz (whose only critical values lie at = 0 and z = oo) we obtain the Bely{

function 3, : (z,y) — ﬁ. By construction, ,8;1(81) is isomorphic to M,,.

(ii) The minimal map M; corresponds to the lattice A(1,7) and lies on the elliptic
curve E; : y?> = 42 — z. The map M; is drawn on the fundamental parallelogram
P for A(1,7) shown in Figure 4.12; the vertex corresponds to a black circle, the edge

centres to white circles, and the face centre is marked with a dot.

For a suitable a € C*, the Weierstrass function a~2p(z, A(1,4)) defines an
isomorphism from C/A(1,7) to E; mapping the vertex [0] to the point at infinity
O and the edge and face centres {[1],[%],[12]} to {(3,0),(—2,0),(0,0)}. One
can show that p(3,A(1,4)) = —p(%,A(1,7)), and hence that the two edge centres
correspond to the points (3,0) and (—3,0) of E;. Therefore, under the projection
(z,y) — z, the vertex is sent to infinity, the face centre to x = 0, and the two edge
centres to x = i%. Composing this with the map z +— ‘éy gives the Belyl function

Gi: (z.y) — ﬁz— By construction, Bi_l(Bl) defines a map isomorphic to M;. o
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Figure 4.12

The action of the absolute Galois group Gal(Q/Q) upon Belyi pairs (or more
precisely equivalence classes of Belyf pairs) induces an action of Gal(Q/Q) on the
set of all dessins. The Belyi pairs (E,, 8,) and (Ej, ;) described in Examples 4.54
are defined over the rational number field Q, and so they are fixed by every element
of Gal(Q/Q). Therefore, the minimal maps M, and M, have orbits of length one
under the action of Gal(Q/Q).

Lemma 4.55. Let E be an elliptic curve with discriminant —3m? or —4m?, and
let B be a Belyi function for E where 37 1(B;) is a minimal map lying on E. If
o € Gal(Q/Q) is such that E and E° are conformally equivalent Riemann surfaces,
then 37 1(B;) and (3°)"1(B;) are isomorphic maps.

Proof. We note that 371(B;) is the unique minimal map lying on E, with every
other uniform map on F having a strictly greater index. If E' and E are conformally
equivalent, then by Theorem 2.28, 37*(B;) and (3°)~!(B;) are two uniform maps

with the same index lying on F; therefore they must be isomorphic. o

Hence every Galois orbit of minimal maps corresponds to a Galois orbit of the
underlying elliptic curves. This fact will allow us to construct arbitrarily large
Galois orbits of minimal maps without explicitly constructing their Belyi functions.

Firstly, we demonstrate the procedure with two examples from [SiSy].

Examples 4.56. (i) Consider the two elliptic curves listed in Table 2 that have
discriminant —100. Their j-invariants, and hence the elliptic curves (see Table 7)

are conjugate in the field Q(v/5). The elliptic curve E; with modulus 7 = 5¢ has
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the associated minimal map {5¢}; of index 5 shown in Figure 4.10(a), and it follows

from 4.16 that any other uniform map on E; has an index strictly greater than 5.

Similarly, the elliptic curve E; with modulus 7 = =18 = =342i hag the minimal

1+
map {_f’ifi}l of index 5 shown in Figure 4.10(b), and is the unique uniform map

of index 5 lying on Fs.

The absolute Galois group Gal(Q/Q) will act on the elliptic curves (interchang-
ing F; and F5), and hence on their associated uniform maps. From Lemma 4.55
we see that if an element of Gal(Q/Q) fixes E; or Fy, then it must also fix the
minimal maps lying on them. The minimal map {5:}; will be taken to a map on
FE5 which, by Theorem 2.28, will be uniform of index 5. By the above discussion,
{5i}; must be taken to {=2t%};, and we conclude that the dessins of Figure 4.10

1+1
form an orbit under Gal(Q/Q).

Figure 4.13. A Galois orbit, d = —243

(ii) The three elliptic curves E1, F», B3 whose associated moduli have discriminant
—243 correspond to the minimal maps M1 = {4 +9p}1, Mo = {1%%9}1 and M3 =
{2{—33 }1 respectively. These minimal maps have index 9 and are illustrated in Figure

4.13; we note that any other uniform map lying on Ej, 5, or F3 will have an index
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strictly greater than 9. The three elliptic curves form an orbit under the action of
Gal(Q/Q). Now, the minimal map M; lying on E; will be taken to a map of index
9 lying on F5, which by the above discussion must be the minimal map Ms. Using a
similar argument, we see that the minimal maps My, My, M3 form an orbit under

Gal(Q/Q). o

These examples can be generalized as follows. Let E. denote the elliptic curve

c+di . .
P where a + b and ¢ + ds

are coprime Gaussian integers. On E, we can construct, as in Definition 4.17, the

with modulus 7. If 7 € Q(i), we can write 7 =

minimal map M, of type (4,4) and index n = |ad — bc|. By Theorem 4.44 the
discriminant of 7 is —4(ad — bc)? = —4n?, and every other uniform map lying on

E; will have an index strictly greater than n.

We now fix a discriminant d = —4n?2. Let 7q,..., s be the s = h(d) quadratic
imaginary numbers lying in the modular region F and having discriminant d (we
note that 7, € Qi) for 1 < k < s). The j-values j(7y),...,j(7s), being the roots of
the irreducible polynomial given in Theorem 3.37 form an orbit under Gal(Q/Q),
and hence so do the elliptic curves E. ,..., E, . The elliptic curve E,, (1 <k <3s)
carries the unique minimal map M., of index n as defined above, with every other
uniform map on E;, having an index strictly greater than n. The index of these
maps is invariant under the action of Gal(Q/Q) by the result of Jones and Streit
given in Theorem 2.28. Since by Lemma 4.55 an element of Gal(Q/Q) acts non-
trivially on a minimal map if and only if it acts non-trivially on the underlying
elliptic curve, the minimal maps M,,,..., M., form an orbit under Gal(Q/Q).
Conversely, if M, and M, (for 7,7/ € Q(i)) are in the same Galois orbit then 7

and 7’ have the same index and hence the same discriminant. Thus we have proved

Theorem 4.57. For 7,7’ € Q(3) let M,, M, be two minimal maps. Then M.,
M. are in the same orbit under Gal(Q/Q) if and only if T and 7' have the same

discriminant. o

Similarly, every 7 € Q(p) corresponds to a unique minimal map M, with index n,
where 7 has discriminant —3n? (see Theorem 4.46). By considering discriminants
of the form —3n?, one obtains a corresponding theorem about the orbits of minimal

maps of type (6,3) under Gal(Q/Q).

Theorem 4.58. For 7,7’ € Q(p), let M., M, be two minimal maps. Then M.,
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M. are in the same orbit under Gal(Q/Q) if and only if T and 7' have the same

discriminant. o

Theorems 4.57 and 4.58 enable us to construct arbitrarily large Galois orbits
of minimal maps. As an example, we will construct the Galois orbit of minimal
maps of type (4,4) and index 27; each map will have 27 vertices, 27 faces and 54
edges. By Theorem 4.44, all of these maps will have the form M, where 7 € Q(7)
has discriminant —4(27)? = —2916. Using the class number formula in 3.46, we see
that

h(—4(27)%) = 18

and so there will be 18 such minimal maps in the Galois orbit. In order to find
the minimal maps, we first find all of the values of 7 € Q(7) lying in the modular
fundamental region F with discriminant —2916, which by Lemma 3.36 is equivalent

to finding all of the reduced quadratic forms
az? + bxy + cy?

with b% — 4ac = —2916, ged(a,b,c) =1, |b| <a<cand b>0if |b| =a or a = c.
The required values of 7 are then the roots of the quadratic equations a X? +bX +c¢
with positive imaginary part. By expressing each of the 7 values in reduced form,

we obtain the 18 minimal maps

) —14 + 1317 —11+ 52 11+ 54 84 3¢ -8+ 31
g, {FHEI) [l (s sy s
141 1 1+2¢ )1 1—-2¢ )1 1—-31J1 1+32 1

{—1+9i} {1+97j} {—5+4i} {5-1—41'} {—74-32’} {7+3i}
3 1 3 U343 J00W3=-3iJ107 L24+3i S l2-3iJ1
{5+2i} {5—2i} {—3+6i} {3+6i} {-5+3i} {5+3i}
14510 L1 +54J07° 447 J1Va—4d 010 L4431 J170 l4—=3i)4

which are shown in Figure 4.14. By Theorem 4.57 they form a complete Galois

orbit. The author would like to thank Simon Cox for his help in producing the
MATLAB code used to draw the diagrams of Figure 4.14.

Examples 4.59. (i) The minimal map Maj,3, lies on the elliptic curve Fo.3, :
y? = 423 — 120z — 253 and corresponds to the lattice A(1,2 + 3p) which, with
a suitable change of basis, has the form A(1,3 + 3p). We will define an isogeny

¢ : Iioy3, — K, corresponding to the quotient of Fy, 3, by a group of order three,
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Figure 4.14. A Galois orbit, d = —2916




which as shown in Figure 4.15 will induce an unbranched cover of M, by My 3,.

The composition 8, o ¢ : Fay3, — 2 will then be a Belyl function for M, 3,.

Zyﬁ_ﬁe/_i—/p_ﬁg»_

Figure 4.15

We transform Fs.3, to the curve E 75> =7 -30T — %3 by the birational
transformation ¢; : (z,y) — (Z,y) where T =z and J = ¥. As shown in Example

3.20(ii), (r, s) is a point of order 3 of E if and only if 7 is a root of the polynomial
3z* — 180Z° — 759Z — 900. 4.60

Choosing an integer root T = —3 of 4.60, we take the point (-3, %) € E of order 3
with [2](=3, 3) = (-3, —%) and [3](—3, ) = O and set

1 1
q) =< 0,(—3, 5),(—3, —'5) > .

The isogeny ¢2 : E — E/® is given by ¢2(0) = ¢2(—3, %) = ¢o(-3, —%) = O and
&2 : (T,7) — (X,Y) where

Z° + 672 4+ 37 — 19 7(z2 4 972 + 33T + 47)
(X,Y)= — ; —
(T + 3)2 (T + 3)3

otherwise. The quotient curve E/® will have the equation

Y2—_—X3——
4

which is isomorphic to the elliptic curve E, : Y’ 4X° 1 by the birational

transformation ¢3 : (X,Y) — (X,Y) where X = & and Y = 22, Hence the
9 27

required isogeny ¢ : Fyi3, — E, is given by the composition ¢ = ¢3 o ¢ 0 ¢1 with
H(O) = ¢(—3.1) = ¢(=3,—1) = O and ¢ : (z,y) — (X,Y) where

X7 = (x?’ + 622 +3x—19 y(z®+ 922+ 33z +47>

9(z + 3)2 ' 27(z + 3)3

110




otherwise. If we now take the composition B243, = 8,0 ¢ : Eai 3, — X then

729(z + 3)°
4(x3 4 622 4+ 3z — 19)3

Pavsp o (2,9) —
is the required Belyi function for the minimal map Mgy 3,.

(ii) The minimal map M3z ¢, lies on the elliptic curve
Esyep: y? = sz® — 2805z — 1

where
s = 4(761257259 — 1570586402 + 160025472 \3/1)

and with a change of basis we take the corresponding lattice to be A(1,6 + 6p). As
shown in Figure 4.16 we will construct an isogeny ¢ : E3,¢, — FE2.3, corresponding
to the quotient of E3.¢, by a group of order two, and then compose this with the

Belyi function $24.3, found above.

Figure 4.16
Using the birational transformation ¢; : (z,y) — (Z,7) where T = z and § = %,
we take the isomorphic curve

— 28
E .72 =7 — 055—

[

S

It can be shown (for example using MAPLE) that

50111 — 30400+/2 — 40448/4
"= 97984073

is a root of the cubic equation T° — 28227 — 1, so that (r,0) is a point of order 2 of E

by Example 3.20(i). Setting ® =< O, (r,0) >, we obtain the isogeny ¢ : E — E/®
given by ¢2(0) = ¢2(r,0) = O, and ¢, : (T,7) — (X,Y) where
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3(702421711735936 /4 — 1261310690142071 + 116109236985392 V2)

X=T-
25087450114628(97984073% — 50111 + 304002 + 40448\3/1)
V=7 3@(702421711735936\3/1 —1261310690142071 + 116109236985392 %)
=7y —

25087450114628(97984073F — 50111 + 30400+/2 + 40448+/4)2
otherwise. The quotient curve is given by
Y2=X3+ AX+B
where
A= —15r% +11220s7!
B= —s71 —7(7r® — 14025rs™1 — 457 1).

The birational transformation ¢3 : (X,Y) — (X,Y) where X = %2 Y = %)3: and
. 120B
7T 2534

maps E/® to the curve
-9 —3 —
E2+3p Y =4X - 120X - 253

so that the required isogeny from E3¢, to Eoy3, is given by ¢ = ¢30¢20¢1. We now
take the composition 8316, = Ba13p © ¢ : E3y6, — X to obtain the required BelyT
function B34¢, for the minimal map Ms46,; this Belyl function is listed in Table 8.
(Where necessary, the Belyl functions in Table 8 are written as compositions of
functions to preserve space. Note that the y-coordinate is merely denoted Y, since

it is not required in the final Belyi function.)

By considering the non-trivial action of Gal(Q/Q) on E36, and the Bely¥
function for Ms,6,, we obtain Belyl functions for the minimal maps M2+s, and
2

M 113, ; these are also listed in Table 8. o

In addition to the above examples, we have calculated Belyi functions for many
of the minimal maps given in Table 7. These are listed in Table 8, and were
obtained using the techniques developed in Examples 4.59, and the general isogenies

determined in Examples 3.20.
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Chapter 5

Higher genus and arithmetic groups

An enumeration of the regular maps of genus 2 was initiated by Erréra [Er]
and completed by Threlfall [Th]; there are ten of them, and they are listed in Table
9 of [CMo]. The regular hypermaps of genus 2 have also been classified (see [CoSi]
and [BJ]) and there are 42 of them. Threlfall [Th] also considers uniform maps
(which are referred to as regelméssige Zellsysteme) and determines all of the genus
2 uniform maps of type (10,5). In §5.1 we complete Threlfall’s classification by

enumerating all uniform maps and hypermaps of genus 2.

One might ask if the classification of uniform maps on a given elliptic curve
extends to higher genus uniform maps and their underlying Riemann surfaces. This
problem leads to the study of arithmetic Fuchsian groups and motivates the defi-
nitions of arithmetic and non-arithmetic maps. We prove some general results for
non-arithmetic uniform maps and give examples for the arithmetic case, including

Klein’s map on a Riemann surface of genus 3.

5.1. Uniform dessins of genus 2

By Theorem 2.19, every genus 2 uniform map of type (m,n) corresponds to a
genus 2 surface group A < I'(m, 2,n) and by Theorem 2.5, two such surface groups
determine isomorphic maps if and only if they are conjugate in I'(m, 2, n). Thus the
number of genus 2 uniform maps of type (m,n) is equal to the number of conjugacy
classes of genus 2 surface groups in I'(m,2,n). Similarly, for uniform hypermaps
of type (lp,l1,l2) we must determine the number of conjugacy classes of genus 2
surface groups in I'(lg, l1,12). By Examples 1.10(iii), a necessary condition for the

triangle group I'(lg, {1, 12) to contain a genus 2 surface group with index k is that



where lg,lq,ly all divide k. Furthermore, we have 1 < k < 84 by 1.13. It is
therefore an easy matter to determine all triples (lg,l1,l2) with Iy < I; < I, such
that T'(lo,l1,l2) could contain a genus 2 surface group. There are 22 possibilities,
and these are listed in the first column of Table 9.

We use the MAGMA computer package to determine the number of conjugacy
classes of genus 2 surface groups in each of the triangle groups of Table 9. By fixing

a triangle group I'(lo, 1, [2), the method is as follows:

(i) Enter the presentation of I'(lp,!1,l2) into MAGMA and let £ be the index of
(2; —) in F(lo, ll, lz):

I'=<zo,21 |2 = 2 = (zoz1) ™2 =1 >;
(ii) Use the low index subgroup process of MAGMA to select a representative from

each conjugacy class of subgroups of index k in T

(iii) For each such subgroup A, determine whether or not it is a surface group by
testing the coset action of I' on A and applying Theorem 1.9. Hence we require that
the action of zg on the A-cosets is a product of lg-cycles, the action of 1 on the
A-cosets is a product of [1-cycles, and the action of x5 on the A-cosets is a product

of la-cycles.

The third column of Table 9 gives, for each triangle group I', the number of con-
jugacy classes of genus 2 surface groups contained in I". The data was produced
using Program 1 (see Appendix II). The author would like to thank Prof. Marston
Conder for his helpful suggestions with the MAGMA program.

From Table 9 we see that I'(8,2,8) contains four conjugacy classes of genus 2
surface groups, so that there are four genus 2 uniform maps of type (8,8). We also
observe that I'(5, 2, 10) contains seven conjugacy classes of genus 2 surface groups,
so there are seven genus 2 uniform maps of type (5, 10), and seven of type (10, 5);
every uniform map of type (5, 10) has a corresponding dual of type (10,5). In Table
10 we give for each map type (m,n) with m < n, the number of genus 2 uniform
maps of that type. If there are p uniform maps of type (m,n), then for m # n
there are also p uniform maps of type (n,m); each map of type (m,n) being dual
to one of type (n,m). It can be calculated from Table 10 that there are 978 genus

| 2 uniform maps.

{ Table 10 also lists the number of genus 2 uniform maps that are reflexible or hy-

perelliptic. A map corresponding to the inclusion M < I'(m, 2, n) is reflexible if and
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only if M is normalized by some anti-conformal element n € I'*(m, 2, n)\I'(m, 2, n).
Program 2 was used to determine the number of conjugacy classes of genus 2 sur-
face groups contained in each extended triangle group I'*(m,2,n). A genus 2 map
corresponding to the inclusion M < I'(m,2,n) is hyperelliptic if and only if there
is an inclusion of the form M <, (0;2(8)) < T'(m,2,n) [Sin4]. Every group (0;2(®)
contains a unique genus 2 surface group, and the hyperelliptic involution is unique
for Riemann surfaces of genus g > 1 [Ac, p.44]. Thus there is a one-to-one corre-
spondence between hyperelliptic genus 2 uniform maps of type (m,n) and conjugacy
classes of (0; 2(6)) contained in I'(m, 2, n); the number of these can be obtained by
adapting Program 1.

Every map has an automorphism group (possibly trivial), and for each map
type we list the order of the biggest automorphism group for a map of that type
(see Program 3). This information is useful since it identifies the regular maps (see
Theorem 2.20 for example). In Table 10 we let R denote a regular map, and we

note that there is at most one genus 2 regular map for each type (also see [KulNa]).

Table 11 lists the number of genus 2 uniform hypermaps of type (lo,l1,12)
for 2 < lp <l <y and in addition the number of those that are reflexible and
hyperelliptic. Letting R denote a regular hypermap, we see that there are three
regular hypermaps of type (5,5, 5). For each hypermap type one can obtain further
uniform hypermaps by applying Machi’s hypermap operations, while every map of
type (m,n) also corresponds to a hypermap of type (m,2,n). In total there are
3133 uniform hypermaps of genus 2.

Example 5.1. (see [Sh], [SV]) The genus 2 regular map M of type (8, 8) shown in
Figure 2.8 is a 2-sheeted cover of the star map Sy shown in Figure 2.9. Figure 5.1
shows S; drawn on the Riemann sphere with its vertex at the origin, its face centre
at infinity, and its four free edges at x = *1,47. Let X be the genus 2 Riemann

surface associated to the algebraic curve

y? =25 — .
Then the projection 7 : X — %, 7 : (z,y) — x is a 2-sheeted cover of the sphere,
branched above z = 0,1, +i,00 so that the lift #7!(S4) defines a hyperelliptic
uniform map of type (8,8) lying on X. From Table 10 we see that there is a
unique genus 2 hyperelliptic uniform map of type (8,8), and so 7!(S;) must be
isomorphic to M. The composition of © with the map = — z* gives the Belyf
function 8: X — %, B: (z,y) — z* for M. o
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Figure 5.1

5.2. Quaternion algebras and arithmetic Fuchsian groups

We introduce the theory of quaternion algebras, and show how they can be
used to construct certain Fuchsian groups. For more details, the reader is referred
to [Ka], [Pi] and [Vi]. We begin with the definition of an algebra:

Definition 5.2. An F-algebra A is a vector space over a field F' which is also a
ring with 1, such that (Aa)b = Aab) = a(A\b) for alla,be A, A€ F. o

An F-algebra A is associative if a(bc) = (ab)c for all a,b,c € A, and a division
algebra if for every a € A\{0} there exists a™! € A with aa™! =1 = a71la. A
central algebra satisfies Z(A) = F, and a simple algebra contains no non-trivial
2-sided ideals. If F is a field then the set of two-by-two matrices with entries in F',
M, (F), is an associative F-algebra. Note that M,(F) is not a division algebra.

Definition 5.3. Let F be a field with a,b € F*. A quaternion algebra over F is a
4-dimensional associative F-algebra A with basis {1,1,j,k} where 1 is the multi-

plicative identity of A, and the multiplication of basis elements given by
iZ=a(=al), #=0b(=0b1),ij=—ji=k

is extended linearly to A. o

Every quaternion algebra is a 4-dimensional central simple algebra, and conversely
every 4-dimensional central simple algebra is isomorphic to a quaternion algebra

[Pi]. The quaternion algebra of Definition 5.3 will be denoted by the Hilbert symbol
a,b
(7)
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and we note that by choosing different pairs of basis elements from {i,j,k}, the
Hilbert symbols
(5. (452). (52)
F /) \F)’ F
define isomorphic quaternion algebras. For any A, u € F'* the quaternion algebras

(5. (22

are also isomorphic [Pi, p.19]. If A = (—a——lf) is a quaternion algebra, then the map

f i A— M(F(/a)) given by
=) = (0 )

(@) ()

defines an isomorphism of A into M»(F(y/a)) where

. To + 331\/C_l Ty + .’1,‘3\/5
f(x) o (b($2 — 1}3\/5) o — Il\/a> 5.6
for t = zg + 11 + zoj + 73k € A. If a € (F*)?, so that F(y/a) = F, then
f defines an isomorphism between A and Mz(F) (to prove this one can show
that f(1), f(i), f(§), f(k) are linearly independent over F' and hence generate a
4-dimensional F-module which, by a dimension count, must be equal to My (F)).

Any quaternion algebra (%’b) is isomorphic to one of

G G2 6)

by 5.5. Now H = (_11;{—1) is a division algebra corresponding to Hamilton’s quater-

nions. If we set a = 1 = b then the map f in 5.6 defines an isomorphism between
(%1) and M(R), which is not a division algebra. Finally, (lﬁi) and (%) are
isomorphic to M2(R) by 5.4. Hence up to isomorphism there are only two distinct
quaternion algebras defined over the real number field: Hamilton’s quaternions H
and the matrix algebra M>(R). The following theorem is a special case of Wedder-

burn’s Structure Theorem (sce [Pi]).

Theorem 5.7. Any quaternion algebra over a field F' is either a division algebra,

or is isomorphic to My(F). o
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IfA= (Qp—b) is a quaternion algebra with = zg + z1i + z2j + 23k € A, then

the conjugate of z in A is defined to be T = z¢ — z1i — z3j — z3k. We then define
Trd(z) = 2+ T = 2z
Nrd(z) = 27 = 2 — az? — bz} + abx?

where Trd(z) is the reduced trace and Nrd(z) the reduced norm of . One can check

that the reduced trace and reduced norm correspond to the trace and determinant

respectively of the matrix representation for A given in 5.6.

Theorem 5.8. A quaternion algebra A is a division algebra if and only if Nrd(x) #
0 for all z € A\{0}.

Proof. If Nrd(z) # 0 for all z € A\{0}, then since Nrd(z) = 27 € F we have
z~! = Z/Nrd(z) and A is a division algebra. Conversely, if A is a division algebra,
then every z € A\{0} has an inverse 27! € A for which zz=! = 1. One can check
that Nrd(zy) = Nrd(z)Nrd(y) for all z,y € A, and so Nrd(z)Nrd(z~!) = Nrd(1) =
1 whence Nrd(z) # 0. o

Now suppose that F'is a number field with the ring of integers Op, and that

A is a quaternion algebra over F. Then x € A is an integer element of A if
Trd(:r) € Op and Nrd(:r:) € Op.

The integer elements of A do not necessarily form a ring, and so we study subsets

of integer elements called orders.

Definition 5.9. Let A be a quaternion algebra over a field F'. An order O in Ais a
finitely generated ring of integer elements of A, containing O, such that F.O = A.

a

If K is a field extension of F', then the tensor product of A = (a—lz) with K

(5 or = (32)

which will be denoted Ax. Thus A can be embedded naturally into Agx. If we
assume further that F' is a totally real number field of degree n = |F' : Q|, then

over F' gives

there are n distinct Galois embeddings
¢o;: F—- R 1<i<n 5.10
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where we take ¢; to be the identity. For each embedding ¢; we define A4, to be
the tensor product

(9%)) 29, R = (Qbi(a)la{(ﬁi(b)) l<i<n

and say that A is ramified at ¢; if Ay, is isomorphic to Hamilton’s quaternions H,
and unramified at ¢; if Ay, is isomorphic to M>(R).

Let F be a totally real number field with n distinct embeddings ¢; : FF — R as
defined above. If A is a qﬁaternion algebra over F', unramified at ¢; but ramified
at all other ¢; (1 < i < n) then Ay, = My(R); welet p: A — M;(R) be the
restriction of this isomorphism to A, and note that p is uniquely determined up to
GLy(R)-conjugation [Tal]. If O is an order in A and

O' = {z € O|Nrd(z) = 1}

is the group of units in O, then p(O!) = I'(4,0) is a subgroup of SLy(R). The

following theorem is a special case of [Vi, p.104, Theorem 1.1].

Theorem 5.11. The group I'(A, O) is a discrete subgroup of SLo(R) with finite

covolume, cocompact if A is a division algebra. o

If we take the natural map P : SLo(R) — PSLy(R), then PT'(A, O) is a discrete
subgroup of PSL,(R)) with finite covolume and hence is a Fuchsian group of the first
kind (PT(A4, O) is sometimes written 'y, see [Bor]). A Fuchsian group is said to be
derived from a quaternion algebra if it is a finite index subgroup of some PT'(4, O).
As an example we let A = M>(Q), the matrix quaternion algebra over Q. Then
O = M,(Z) is a maximal order in M2(Q) [Vi, p.25] and O! = SL,(Z). Hence
PT(A,0) = PSLy(Z), the modular group (0;2,3,00). Two groups are said to be

commensurable if their intersection has finite index in both of them.

Definition 5.12. A Fuchsian group I is said to be arithmetic if it is commensurable
with some PT'(A,0). o

Since an arithmetic Fuchsian group I' is commensurable with a Fuchsian group
of the first kind, I' must also be of the first kind. If we let trvy denote the trace
of v € PSLy(R) (this is slightly ambiguous, see [MR1]) then Takeuchi [Tal] gives
the following characterization of arithmetic Fuchsian groups in terms of their trace

fields:
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Theorem 5.13. Let I' be a Fuchsian group of the first kind. Then I' is an arith-

metic Fuchsian group if and only if
(i) k1 = Q(try |y € T') is an algebraic number field and the set of traces trI' C O,,
where Oy, is the ring of integers in £y, and

(ii) if ko = Q((try)? |y €T) then for every isomorphism ¢ : k; — C such that ¢|k2
is not the identity, ¢(trT") is bounded in C. o

If T is a Fuchsian group of the first kind, then let I'® denote the subgroup of T’
generated by the set of elements {v?|~ € ['}.

Theorem 5.14. [Tal] Let I' be a Fuchsian group of the first kind. Then T is

arithmetic if and only if T'?) is derived from a quaternion algebra. o

If T is an arithmetic Fuchsian group, then I'® is a finite index subgroup of some
PT(A,O) by Theorem 5.14. Takeuchi [Tal] shows that the vector space spanned
by T(® over the field kb = Q(try |y € T'?),

AC®) = {3 e

is a quaternion algebra isomorphic to A. Therefore, the quaternion algebra associ-

a; € Ky, v € F(z)}

ated to an arithmetic Fuchsian group I' is uniquely determined up to isomorphism
by I

Theorem 5.15. [Ta3] Let I'y and I's be arithmetic Fuchsian groups. Then T'y
is commensurable with a PGLy(R)-conjugate of 'y if and only if their associated

quaternion algebras are isomorphic. o
For a Fuchsian group I', the commensurator of I is defined to be
Comm(l') = {t € PGL2(R) |T and tI't"" are commensurable}.

Note that I' < Npgr,w)(I') < Comm(I") for all such I'. We also note that if I'; and
['» are commensurable, then Comm(I';) = Comm(I'z). A result of Margulis (see
[Zi]) gives an alternative characterization of arithmetic Fuchsian groups in terms of

their commensurators:

Theorem 5.16. Let I' be a Fuchsian group of the first kind. Then I' is a finite

index subgroup of Comm(T") if and only if I' is non-arithmetic. o

120



If (m, 2, n) represents the triangle group I'(m, 2, n), then the following is a complete
list of cocompact arithmetic Fuchsian triangle groups with one elliptic period equal
to 2 (see [Ta2)):

(3,2,7),(3,2,8),(3,2,9), (3,2,10), (3,2,11), (3,2,12), (3,2, 14), (3,2, 16),
(3,2,18),(3,2,24),(3,2,30), (4,2,5), (4,2,6), (4,2,7), (4,2,8), (4,2, 10),
(4,2,12),(4,2,18), (5,2,5), (5,2,6), (5,2,8), (5,2,10), (5,2, 20), (5,2,30),  5.17
(6,2,6),(6,2,8),(6,2,12),(7,2,7), (7,2,14), (8,2,8), (8,2,16), (9,2, 18),
(10,2,10), (12, 2,12), (12,2, 24), (15, 2, 30), (18, 2, 18).

We now suppose that I is a non-arithmetic cocompact Fuchsian triangle group
with one elliptic period equal to 2, say I' = I'(m,2,n). We define Comm™(T") =
Comm(I") N PSLy(R). Now I' has finite index in Comm(I') by Theorem 5.16 and
so the inclusion ' < Comm™ (I') must also have finite index; as a consequence
Comm™ (T") will also be a Fuchsian triangle group (see [Sin2]). Following [Sin2]
we define a Fuchsian group to be maximal if there does not exist another Fuchsian
group containing it with finite index. If we assume (without loss of generality) that

m > n, then from [Sin2] I'(m, 2, n) will safisfy exactly one of the following:
(i) ' =T'(m,2,n) is maximal and so Comm™ (") = I'(m, 2,n);

(i) m =n with I' =T'(n,2,n) <. I'(4,2,n). Since I'(4,2,n)

is maximal, Comm™(I") = I'(4,2, n); 5.18
(iti) m = 2n with T =T(2n,2,n) <3 I'(3,2,2n). Since I'(3, 2, 2n)

is maximal, Comm™ (") = I'(3, 2, 2n).
We note that if I' is a maximal Fuchsian triangle group, then the extended triangle

group I'* will be maximal in PGL2(R). If I' is an arithmetic Fuchsian group, then
Comm(T") is dense in PGLy(R) and so Comm™ (I') is dense in PSLy(R).

5.3. Arithmetic and non-arithmetic maps

A map M of type (m,n) will have a canonical map subgroup M < I'(m,2,n)
and as shown in §2.1 can be embedded naturally into the Riemann surface X =
U/M. In this way every map M is associated to a unique (up to conformal equiv-

alence) Riemann surface X = X(M). We therefore have a well defined function
R: M+— X(M) 5.19
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from isomorphism classes of maps to conformal equivalence classes of Riemann
surfaces; note that by Belyi’s Theorem all of the Riemann surfaces X (M) will be
defined over the algebraic numbers Q, and so R is not surjective. It was proved in
Chapter 4 that every genus 1 Riemann surface with a modulus 7 € Q(i) or 7 € Q(p)
carries a unique minimal map M, and that two minimal maps are isomorphic if
and only if their underlying Riemann surfaces are conformally equivalent. Hence R

is injective on the set of genus 1 minimal maps of type (4, 4) or (6, 3).

A map of type (m,n) where % + % < %— corresponds to a finite index inclusion
M < T'(m,2,n) of a Fuchsian triangle group. In this section we will see that the
dichotomy between arithmetic and non-arithmetic Fuchsian triangle groups extends

in some way to the maps they represent.

Definition 5.20. Let M be a map of type (m,n) where 7—% + % < % Then M will
be called an arithmetic map if T'(m,2,n) is one of the arithmetic triangle groups
listed in 5.17; otherwise M will be called a non-arithmetic map. We will say that
M has mazimal type (m,n) if I'(m,2,n) is a maximal Fuchsian group in the sense
of [Sin2]. o

By the classification of non-arithmetic Fuchsian triangle groups in 5.18 above, a

non-arithmetic map M of type (m,n) will satisfy exactly one of the following:
(i) T(m,2,n) is maximal, so M is a non-arithmetic map of maximal type (m,n);

(i1) m = n so that ['(n,2,n) <T'(4,2,n) and by Lemma 2.35 the type 1 truncation
T1 (M) is a non-arithmetic map of maximal type (4,n);

(iii) m = 2n so that I'(2n,2,n) < I'(3,2,2n) and by Lemma 2.41 the type 2 trun-
cation T3(M) is a non-arithmetic map of maximal type (3, 2n);

(iv) n = 2m so that the dual D(M) is a map of type (2m,m) and by (iii) above
T>D(M) is a non-arithmetic map of maximal type (3,2m).

Hence any non-arithmetic map easily extends to a non-arithmetic map of maximal

type using the operations of duality and truncation defined in §2.4. Let M be a non-

arithmetic map of maximal type (m, n) with a dual D(M) of type (n,m). Since m #

n, M and D(M) are non-isomorphic maps lying on conformally equivalent Riemann

surfaces (see Lemma 2.36). This is the only way in which two non-arithmetic

uniform maps of maximal type can lie on conformally equivalent Riemann surfaces:

Theorem 5.21. Let M; and My be non-arithmetic uniform maps of maximal
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type. Then X(M1) = X(My) if and only if My and My are isomorphic or dual.

Proof. It is clear that X (M) = X(M;) for M; = My or My = D(M,). If
m # n, then every finite index inclusion M < T'(m, 2,n) defines two non-isomorphic
maps: one of type (m,n) and its dual of type (n, m). We note that for ¢t € PSLy(R),
the inclusions M < T'(m,2,n) and tMt~! < tI'(m,2,n)t"! define isomorphic maps.
Suppose that M; and M, are non-arithmetic uniform maps of maximal type for
which X(M;) & X(M3). Then My, D(M;) and Mz, D(My) correspond to (finite
index) surface group inclusions M; < I'; and Mj; < T'; respectively where I'; and
['2 are maximal non-arithmetic Fuchsian triangle groups. If H/M; and H/M, are
conformally equivalent, then by Theorem 1.12 there exists some ¢ € PSLy(R) for
which M; = tMst™!, and so M; < Ty Ntlat~!. Now I'y and tI'yt~! are maximal,

non-arithmetic and commensurable so that by Theorem 5.16
Iy = Comm™(I';) = Comm™ (tI'gt™1) = Tyt ™}

and hence I'; = tI'y¢t~1. Thus the maps M, and D (M) associated to the inclusion
M, < Ty are isomorphic to the maps of the inclusion My = tMyt™! <yt~ ! =T,
which are just M; and D(M;). o

In particular, the function R defined in 5.19 is injective on the set of non-arithmetic
uniform maps of maximal type (m,n) where m < n. The absolute Galois group
Gal(Q/Q) acts on dessins, taking uniform maps to uniform maps. If M is a non-
arithmetic uniform map of maximal type (m,n), then by Theorem 2.28 every map
in the Galois orbit of M must also be a non-arithmetic uniform map of maximal

type (m,n).

Corollary 5.22. Let M be a non-arithmetic uniform map of maximal type. Then
there is a one-to-one correspondence between isomorphism classes of maps in the

Galois orbit of M and conformal equivalence classes of Riemann surfaces in the
Galois orbit of X (M).

Proof. We restate the corollary: If M; and Mj are non-arithmetic uniform maps
of maximal type in.the same Galois orbit, then X (M;) = X (M) if and only if
M1 = My, Clearly if M; & M; then X(M;) = X(M;). By Theorem 5.21 if
X (M) =2 X(M;) then either M; =2 My or My = D(M;). Being in the same
Galois orbit, M; and M, must have the same type, say (m,n). Since m # n for

non-arithmetic maps of maximal type, D(M3) has type (n,m) # (m,n). Thus M,
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and D(M3) have different map types and so cannot lie in the same Galois orbit.
We deduce that M; = Ms. o

Hence an element of Gal(Q/Q) acts non-trivially on a non-arithmetic uniform
map M of maximal type if and only if it acts non-trivially on X(M). A non-
arithmetic uniform map of maximal type also has the property that it completely

determines the automorphisms of its underlying Riemann surface.

Theorem 5.23. Let M be a non-arithmetic uniform map of maximal type. Then
every conformal (resp. anti-conformal) automorphism of X (M) can be realized by

a conformal (resp. anti-conformal) automorphism of M.

Proof. Let automorphism mean conformal or anti-conformal automorphism. We
recall that every automorphism of M extends naturally to an automorphism of
X (M). The non-arithmetic uniform map M of maximal type corresponds to a
(finite index) surface group inclusion M < T where I is a maximal non-arithmetic
Fuchsian triangle group. If I'* is the extended triangle group with I' <, I'* <
PGL,(R), then since I' is maximal in PSLy(R), I'* is maximal in PGLy(R). Now
Aut M = Np.(M)/M and Aut X(M) = Npgr,r)(M)/M where of course
Npgr,r)(M) < Comm(I"). Note that I' is non-arithmetic and so the inclusions
M < T < I < Comm(I') all have finite index. Since I'* is maximal, I'* =
Comm(T"). Hence Npgr,r)(M) < T and we deduce that Aut M = Aut X (M). o

Singerman [Sin4] has proved that a regular map M is hyperelliptic if and only
if X(M) is hyperelliptic. Using Theorem 5.23 we extend this to non-arithmetic

uniform maps of maximal type, and deduce a similar result for reflexible maps.
Corollary 5.24. Let M be a non-arithmetic uniform map of maximal type. Then

(i) M is hyperelliptic if and only if X (M) is hyperelliptic;
(ii) M is reflexible if and only if X (M) is reflexible.

Proof. This follows as an immediate corollary to Theorem 5.23. o

All of the triangle groups listed in Table 9 are arithmetic, and so all of the
uniform maps of genus 2 are arithmetic. However, non-arithmetic uniform maps
do exist; for example there are 335 non-arithmetic uniform maps of type (6,9) and
genus 3. Indeed, since there are only finitely many arithmetic triangle groups, a

uniform map of genus g > 3 will ‘usually’ be non-arithmetic.
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We have proved that two non-arithmetic uniform maps of maximal type lie on
conformally equivalent Riemann surfaces if and only if they are isomorphic or dual,
and that a non-arithmetic uniform map M of maximal type completely determines
the automorphisms of X (M). In general, these results do not hold for arithmetic
uniform maps; for example all Riemann surfaces of genus 2 are hyperelliptic [FK],
but not all uniform maps of genus 2 are hyperelliptic (see Table 10). We conclude
this chapter with some examples of arithmetic uniform maps; extensive use will be

made of Theorem 1.14 and the techniques developed in the proof of Lemma 2.35.

Example 5.25. The arithmetic triangle groups I'(3,2,18) and I'(3,2,9) are com-
mensurable (see the tables given in [MR2] and [Ta3]); we will use this fact to
construct two arithmetic uniform maps that lie on conformally equivalent Riemann
surfaces. By Theorem 1.9, I'(3,2,9) contains an index 4 subgroup isomorphic to
I'(3,3,9) and I'(3, 2, 18) contains an index 2 subgroup isomorphic to I'(3, 3,9). Fuch-
sian triangle groups are uniquely determined up to PSL;(R)-conjugation, and so
we may assume that I'(3,2,9) and I'(3,2,18) contain the same I'(3,3,9) triangle
group. We take the presentation

I'(3,3,9) =<y |y =y =(Wy) °=1>

where yo = (y1y2)7 L.

given by

If ¢ and ¢, are permutation representations of I'(3,3,9)

$1(y1) = (135)(267)(789)  ¢o(y1) = (124)(368)(597)
¢1(y2) = (173458296) Ga2(y2) = (193478256)
(

$1(yo) = (124)(368)(597) ¢2(yo) = (135)(267)(789)
then by an application of Theorem 1.9, H; = ¢] *(stab(1)) and Hy = ¢; ! (stab(1))
are genus 2 surface groups contained in I'(3,3,9). Taking {1,y2,%2,...,%5} to be

(O—g”

n I
3 3

olA

Figure 5.2
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Figure 5.3
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a Schreier transversal for H; and H; in I'(3,3,9), we obtain the corresponding

Schreier generators

S1 = {y198, ySy1ve, YEV1YS, YSY1Ys, YsU1, YSULIYS, Younys, vay1YE, vayiyS)
Sy = {y193, vSy195, viy1ve, Yay1, Yav1YS, YSu1Ys, Va1V, Y U1Ye, YoYUy}

for H; and Hj respectively. The inclusions Hy, Hy < I'(3,3,9) will correspond to
uniform hypermaps Hj, Hz of type (3,3,9) lying on the Riemann surfaces H/H;
and H/H,. If we take the %, %, 5 triangle of Figure 5.2(a) and reflect in one
side, we obtain the fundamental region P for I'(3,3,9) shown in Figure 5.2(b); the
black and white circles represent hypervertices and hyperedges respectively. To
form each hypermap we glue together the regions {P,y2P,...,y5P} corresponding
to the Schreier transversal and identify sides according to the Schreier generators.
The resulting hypermaps are shown in Figure 5.3; for 1 < i < 9 the ith Schreier
generator of S; will pair the two sides of the 18-gon for H; labelled i. Similarly for

S5 and Hs.

Now H; and Ho are non-isomorphic (one can check that their defining permu-
tations are not simultaneously conjugate in Sy, see [CMa]), but they are related by
Machi’s hypermap operation H; = Hgm) so that one is obtained from the other by
interchanging hypervertices and hyperedges. By Lemmas 2.45 and 2.47, the Walsh
doubles of H; and H, are isomorphic and so H; and H; will be conjugate inside
I'(3,2,18). Therefore H/H; and H/H; are conformally equivalent Riemann sur-
faces (one can also see that the side identifications of each 18-gon are the same up

to a rotation).

p P
0 1 0 1
p* p?
Hi1/Aut Hy Ha/Aut Ho
Figure 5.4

It can be verified (for example by the generalization of Theorem 2.4 to hyper-

maps) that H; and H; both have automorphism groups of order 3, corresponding to
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a 231 rotation about the centre of each 18-gon. The quotient hypermaps H;/Aut H;
and Ho/Aut H, have genus zero, and are shown in Figure 5.4 with their ‘free’ hy-

pervertices and hyperedges drawn at the cube roots of unity 1, p, p2.

Let X be the Riemann surface corresponding to the algebraic curve

v’ = (2~ 1)*(z - p)(z ~ p°)

with the projection m : X — ¥, 7 : (z,y) — z. Then 7 : X — ¥ is a 3-sheeted
cover of the sphere with four branch points of order 2 lying above 1, p, p?, 00 and
so by the Riemann-Hurwitz formula [JS2, p.196] X has genus g = 2. The genus 0
hypermap Hs/ Aut Hs is lifted via 7 to a hypermap H = 7 ~1(Ha/ Aut Hs) lying on
X; 'H has three hypervertices of valency 3 at (0, 1), (0, p), (0, p?), three hyperedges
of valency 3 at the critical points (1,0), (p,0), (p?,0) and one hyperface of valency
9 with centre the point at infinity. Thus H is a uniform hypermap of type (3, 3,9)
lying on X.

We note that X has an automorphism of order 3 corresponding to the bira-
tional transformation (z,y) — (z, py) which induces an automorphism of the lifted
hypermap H. This automorphism fixes each of the hyperedges and cyclically per-
mutes the hypervertices of H. The quotient of H by the corresponding group of
automorphisms of order three is the genus 0 hypermap Ha/Aut Hs.

Using Table 11 we see that there are only four genus 2 uniform hypermaps of
type (3,3,9): the two discussed in this example with automorphism groups of order
3, and two with trivial automorphism groups (this can be checked by implementing
Program 3 of Appendix II). Since the hypermaps H;/Aut H; and Hy/Aut H, are
not isomorphic, we deduce that 71 (Hz/Aut Hy) = Ha.

Hence the composition of 7 : X — ¥ with the map z ~— z* defines a Belyi
function
Prs - (z,y) v 2°
from X to X with Bﬁi (By) isomorphic to Hz. Now H; can be obtained from H,
by interchanging hypervertices and hyperedges, so composing (3, with the map
x +— 1 — z gives the Belyl function

B?‘h : (.’E,y)’—’ 1—:133

from X to ¥ for Hy. If 8 is a Bely! function for a hypermap H, then 45(1 — () is
a Belyl function for the Walsh double W(7) (see §2.4). Therefore Sy : (z,y) —
4x3(1 — 23) is a Bely¥ function for the isomorphic Walsh doubles of H, and H,.
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Figure 5.5

Since T'(3,3,9) < I'(3,2,9), the subgroups H; and H; correspond to maps of
type (3,9) via the inclusions Hi, H, < I'(3,2,9). We will construct these maps
using the techniques developed in §2.4. Using the presentation

I(3,2,9) =< 21,23 |22 =2 = (z122) 2> =1 >

where zo = (z112)7 !, Figure 5.5(a) shows a fundamental region Q for I'(3,2,9)
formed by reflecting a %, 7, § triangle in one of its sides; one edge of the map is
represented in bold. If we take the permutation representation ¢3 of I'(3,2,9) given

by

¢3(z1) = (13)(24)
¢3(z2) = (123)(4)
¢3(zo) = (1)(234)

then ¢3! (stab(1)) is isomorphic to I'(3,3,9) by Theorem 1.9; by our comments
above we take this I'(3,3,9) to be contained in the intersection of I'(3,2,9) and
I'(3,2,18). Taking the Schreier transversal for I'(3,3,9) in I'(3,2,9) to be

{1, 2,22, 2971}, we obtain the Schreier generators {z3,z27172212;'}. A funda-

mental region for I'(3, 3, 9) formed by gluing together the regions
{Q: T Qa ‘T%Q7 ToT1 Q}

is shown in Figure 5.5(b). The Schreier generators pair the sides of this region,
and so we may identify them with the generators y;,y2 of I'(3, 3,9) defined above:
Yy = a:‘;’, Yo = 5132:1313325171:132_1 and yg = (ylyz)—l = :1:2:1:1:1:2'13:13:3. Hence the maps
M1 and M, corresponding to the inclusions Hy, Hy < T'(3,2,9) can be obtained by
replacing every fundamental region for I'(3, 3,9) in the hypermap pictures of Figure
5.3 with the fundamental region for I'(3, 3, 9) shown in Figure 5.5(b). The resulting
maps are displayed in Figure 5.6.
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Figure 5.6
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Now M; and M, are non-isomorphic because they have different automor-
phism groups: Aut M; = Cs the cyclic group of order 3, while Aut My = Dy
the dihedral group of order 12. Therefore we have constructed two non-isomorphic
uniform maps which lie on the conformally equivalent Riemann surfaces H/H; and

H/H,. In particular we note that M; and Mj are arithmetic uniform maps.

1 10-6v/3
1 10+6v/3

Figure 5.7

The trivial hypermap corresponding to I'(3,3,9) is shown in Figure 5.7(a),
and the map corresponding to the inclusion I'(3, 3,9) < I'(3,2,9) is shown in Figure
5.7(b); note that the sides of each fundamental region must be paired appropriately.
The map in Figure 5.7(b) has the corresponding Belyi function

—z(8 + z)3
Frem i a)p
with four critical points: of order two at x = —8 and z = 1, and order one at

z = 10 & 6v/3 with 3(—8) = 0, /(10 £ 6+/3) = 1 and 3(1) = co. The only other
points sent by 3 into {0,1, 00} are 8(0) = 0 and SB(00) = oco. Belyl functions for the
maps M; and M of Figure 5.6 are given by the compositions 8o 83, and 3o Bx,:

(z® = 1)(9 —2°)°
64x°

Bam, =BoPBu, : (z,y) —

—23(8 + 2%)?

Bm, = Bo b, (z,y) — 641 = 29)°

where Baq,, Bm, : X — 2 (see §2.4 or [Jon] for more details). o

Example 5.26. An application of Theorem 1.9 shows that I'(3,2,7) and I'(3, 2, 14)
both contain the triangle group I'(3,3,7); Fuchsian triangle groups are uniquely
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determined up to PSLy(R)-conjugation, and so we will assume that they contain
the same I'(3,3,7). We take the presentation

[(3,2,7) =<z, 222 =25 = (T122) > =1>

where zg = (z172)"!. If we define a permutation representation ¢; of I'(3,2,7) by

$1(z1) = (12)(38)(45)(67)
b1(z2) = (1)(2345678)
$1(z0) = (123)(486)(5)(7)

then ¢ !(Stab(1)) is isomorphic to I'(3,3,7) by Theorem 1.9. We take the Schreier
transversal

2 3 4 5 6
{13 T1,T1%2,X1T5,T1T5,X1T5,T1T9, $1$2}

for I'(3,3,7) in I'(3,2,7) and obtain the corresponding Schreier generators
(12201232, o125 022, }

where xlx%mlm‘éxl and xlsz:%:vl:c%xl have order three and their product is equal
to z; ', which has order seven. Figure 5.8(a) shows a fundamental region 7 for
['(3,2,7); the bold line represents one edge of the map. By gluing together the
regions {7,117 ,...,z1257 } corresponding to the Schreier transversal we obtain a
fundamental region P for I'(3, 3, 7) whose sides are paired by the Schreier generators,
as shown in Figure 5.8(b).

4 2 2, 4
X|X5X | X5X X|X3X X, X

X
1

Ags T
(a) 2 (b) %A% i

,(2

X2

Figure 5.8

We take the following presentation for I'(3, 3, 7)

<Y, Y1, Y2 1Yo =¥ = ys = yoyr1y2 =1 >
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where I'(3,3,7) acts on the %, %, Z triangle of Figure 5.9(a) as described in Chap-
ter 1; the black and white circles represent hypervertices and hyperedges respec-
tively. Now P is a fundamental region for I'(3, 3, 7) and contains the §, %, T triangle
as shown in Figure 5.9(b). Hence we can identify the generators yo, y1, y2 of I'(3,3,7)
with the Schreier generators

2 4 _ 4 2 .
Yo = T1TX1TT1, Y1 = T1XT1TX1, Y2 = T2

found above. Therefore if H is a hypermap corresponding to the inclusion H <
I'(3,3,7), the map M corresponding to the inclusion H < I'(3,2,7) is formed by
replacing every fundamental region for H shown in Figure 5.9(b) with the funda-
mental region of Figure 5.8(b).

4. 2 2, 4
XXX X5Xy XXX XXy

Y1 ﬁYo

(2) (b)

Figure 5.9

Singerman’s embedding of the Fano plane as a hypermap H into Klein’s Rie-
mann surface of genus 3 [Sin3] is shown in Figure 5.10 (the Fano plane is the

underlying hypergraph of H). Now H corresponds to a permutation representation
@2 of I'(3,3,7) where
da2(yo) = (1,11,17)(2,8,21)(3,12,18)(4,9,15)(5, 13,19)(6, 10, 16)(7, 14, 20)
d2(y1) = (1,15,8)(2,19,12)(3,16,9)(4, 20, 13)(5,17,10)(6, 21, 14)(7, 1, 11)
da(y2) = (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,15,16,17, 18, 19, 20, 21)
and H = ¢5 ' (Stab(1)) is the hypermap subgroup for H. Now H is a surface group
of genus 3 by Theorem 1.9, and G = gp < ¢2(yo), ¢2(y1) > is a group of order 21

(in fact G = ZAff(1,7), the unique subgroup of index 2 in Aff(1,7)). Therefore H
is a normal subgroup of I'(3,3,7) and H is a regular hypermap by Theorem 2.20.

If we let I'(3,2,14) = < wi,ws |w} = wi? = (wywy)™3 =1 > then as shown in
§2.4 we can assume that H <T'(3,3,7) <TI'(3,2.14). By Lemma 2.47 the conjugate
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HY = lewl—l also lies in I'(3, 3, 7), and the inclusion H*? < I'(3,3,7) defines the
hypermap H(V formed by interchanging the hypervertices and hyperedges of H.
Now HV is a regular hypermap and has an underlying hypergraph isomorphic to
the Fano plane, but H and H(Y are not isomorphic hypermaps (to see this one can
use MAGMA to construct the subgroups H and H"* explicitly and check that they
are not conjugate in I'(3,3,7)). Since H and H™! are conjugate in I'(3,2,14), the
genus 3 Riemann surfaces H/H and H/H"* underlying H and H©") are conformally

equivalent.

Figure 5.10

The inclusions H < I'(3,2,7) and H** < TI'(3,2,7) define the maps M; and
M respectively which are shown in Figure 5.11 (they are constructed using the
procedure described above). Using MAGMA one can check that H is an index
168 normal subgroup of I'(3,2,7). By the Hurwitz bound [JS2] a Riemann surface
of genus 3 has at most 168 automorphisms, and so Aut (H/H) = I'(3,2,7)/H is
a Hurwitz group of order 168; this uniquely determines H/H as Klein’s Riemann
surface of genus 3 with Aut (H/H) = PSLo(7) (see [Macb] and [Gre]). Hence
Aut M; = PSLy(7) and M; is a regular map. By contrast, the normalizer of H*?
in I'(3,2,7) is equal to I'(3,3,7) and so Aut M, = %Aﬁ(l, 7). The maps M; and

M are non-isomorphic because they have non-isomorphic automorphism groups.

We have therefore constructed two arithmetic uniform maps of type (3, 7) which

can both be embedded into Klein’s Riemann surface of genus 3. o
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Figure 5.11
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Appendix I

Tables

Table 1. The five rational elliptic curves with

Euclidean Belyi uniformizations (§3.4)

d T 3 (1) Elliptic curve E;
-3 p 0 y? =4x% -1
—4 i 1728 y? =4z% -z
—-12 14+ 2p 54000 y? = 4z% — 152 — 11
—16 2% 287496 y? =423 - 11z -7
—27 2+ 3p —12288000 y? = 4z3 — 120z — 253

Table 2. The siz discriminants of the form —3m? or —4m?
with class number 2 (§3.4)

d 71 T2 j(m), j(r2) *
~36 3 S1E3 76771008 & 443304964/3
48 244p e 1417905000 + 818626500/3
—64 47 _—1—;12—1 41113158120 + 29071392966+/2
—75 —1%53 2+ 5p —327201914880 + 1463291412485
—100 91 :1—;52 22015749613248 + 9845745509376+/5

147 22 347p  —17424252776448000 + 3802283679744000+/21

* 7(m1) with positive sign
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Table 3. The twelve elliptic curves that are defined over quadratic

extensions of Q and admit Euclidean Belyi uniformizations (§3.4)

T Elliptic curve E;
3 y? = 1568(44372 — 1767+/3)x3 — 759z — 1
=L y? = 1568(44372 + 1767v/3)z® — 759z — 1
2+ 4p y? = 12(937215 + 323408+/3)z% — 495z — 1
dp y? = 12(937215 — 323408v/3)z® — 495z — 1
4i y? = 4(83987 — 53808v/2)z> — 1081z — 77
=12 y? = 4(83987 + 53808+/2)2% — 1081z — 77
24 5p y? = 100(3777190 — 165393+/5)z® — 1320z — 1
1450 y? = 100(3777190 + 165393v/5)z® — 1320z — 1
5i y? = 16(4622595160 — 269169v/5)z® — 46079z — 14
=145t y? = 16(4622595160 + 269169v/5)z3 — 46079z — 14
3+7p y? = 588(164146563 — 94714+/21)23 — 42840z — 11
e y? = 588(164146563 + 94714+/21)z® — 42840z — 11
Table 4. The two discriminants of the form
—3m? with class number 3 (§3.4)
d T J(7) Field
34 6p a1 + @23 + 23 Q(2%)
~108 23 o1+ 23p+ as23p?  Q(23)p)
1 1
e o1 + 232+ a325p Q25 )
4+ 9p o4 + a53% + ag33 Q(3%)
—243 G—J“,{.gﬁ s +as35p+ag33pr Q(33p)
5% ag+ as33p? + ag33p  Q(33p%)

ay = 50337742902000, as = 39953093016000, az = 31710790944000,
oy = —618587635244888064000, as = —428904711070941184000,
ag = —297385917043138560000.
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Table 5. Three elliptic curves that are defined over cubic extensions
of Q and admit Euclidean Belyt uniformizations (§3.4)

T Elliptic curve E;
3+ 6p y? = 4(761257259 — 157058640/2 + 160025472 /4)2® — 2805z — 1
243p y? = 4(761257259 — 157058640/2p + 160025472/4p?)z> — 2805z — 1
143p y? = 4(761257259 ~ 157058640/2p% + 160025472 /4p)x® — 2805z — 1

Table 6. The number of genus 1 uniform maps of index 1 <n <20 (§4.5)

n a(n) R(n) S(n) M g(n)  Meggz)(n)
1 1 1 1 1 1
2 3 1 0 2 1
3 4 0 1 2 2
4 7 1 1 4 3
5 6 2 0 4 2
6 12 0 0 6 4
7 8 0 2 4 4
8 15 1 0 8 5
9 13 1 1 7 )
10 18 2 0 10 6
11 12 0 0 6 4
12 28 0 1 14 10
13 14 2 2 8
14 24 0 0 12
15 24 0 0 12 8
16 31 1 1 16 11
17 18 2 0 10 6
18 39 1 0 20 13
19 20 0 2 10 8
20 42 2 0 22 14
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Table 7. Some minimal maps and their associated elliptic curves (§4.6)

M., Elliptic curve equation E,

M, y? =4z® -1

M; y? =4z — 2

Mite,  y?=42%— 15z —11

Mo, y? =4z - 1lz -7

Mays,  y? =4z® — 120z — 253

Ms; y? = 1568(44372 — 1767/3)2% — 759z — 1

Moies y? = 1568(44372 + 1767+/3)x3 — 759z — 1

Mars, Y2 =12(937215 + 323408v/3)z3 — 495z — 1

Moasap Y% = 12(937215 — 323408+/3)z% — 495z — 1

My, y® = 4(83987 — 53808+/2)z® — 1081z — 77

Moz y® =4(83987 + 53808v/2)x3 — 1081z — 77

Muss, y? = 100(3777190 + 165393/5)z% — 1320z — 1

Mays,  y?=100(3777190 — 165393v/5)z3 — 1320z — 1

M, y? = 16(4622595160 — 269169+/5)z° — 46079z — 14

Mozisse y? =16(4622595160 + 269169v/5)x3 — 46079z — 14

Mazz, Y2 = 588(164146563 + 94714+/21)z% — 42840z — 11

Maiz,  y? =588(164146563 — 94714/21)z® — 42840z — 11

Msis, Y2 = 4(761257259 — 1570586402 -+ 160025472v/4)z> — 2805z — 1
4(761257259 — 1570586400+/2 + 160025472p2¥/4)z® — 2805z — 1
4(761257259 — 1570586400 ¢/2 + 160025472p/4) 2> — 2805z — 1

y2
2
Miise y?
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Table 8. Minimal maps and their associated Belyi functions (§4.6)

M. Belyt function §: E, — X

M, br: (z,y) — ﬁ

M; Bz (zy) — ﬁ

Miya, Bz i (z,y) (2:1;5_:5)((;1:(—;;3)_31)3

Moy By : (z,y) Gé(ffll)f

Moz, Bs i (z,y) 4(xsi%i(zmj3:2ilg)s

M, Bs : (z,y) _ 1882056627(2374+45v/3+155848x)*
(3264+3361+/3) (194812 —17+32+/3)2 (1558482 +305—83+/3)4

M zagos Pr: (z,y) 32(3264—336115;)2(0159646821735(33177_—252\5%;1(51551?125+305+83\/§)4

Mass B ) 00 ey + 0 Y )




71

(Table 8 continued)

M, Belyi function §: E, — X

_ . 3(—5926+/3—10245) (603—502v/3)x
Maree By (2,y) = O <176(35673x+219+64\/§) + 4 ’Y>

My, Bio : (z,y) — Pa

609—430+/2 + (334+2v2)x %
16(10812+25+64v/2) 4 ’

M 12 B : (z,y) 609+430v2 1 (33—3\/5)95 ,Y)

16(1081z+25—64v/2)

Msyep P12 :(z,y) P5\ 1048(079840735 140448 V450111430400 72)

—3(82248497p ¥/2+139575268p2 ¥/4—325185920)

Mzi3p B3 : (z,y) — Bs

4048(97984073x+40448p2 ¥/4—50111+30400p /2)

—3(82248497p% ¥/2+139575268p ¥/4—325185920)

(1177644141p ¥/2+4196p2 V4)zx
+ 7 Y

M 1430 Bia: (z,y)

4048(97984073z+40448p v/4—50111+30400p2 ¥/2)

(—3(82248497{*/5+1395752683/1—325185920) i (11776+4141 /244196 ¥4)x Y)
4 9

(117764+4141p2 ¥/24+4196p ¥/4)x v




Table 9. Triangle groups containing genus 2 surface groups (85.1)

Triangle Index of #(2;—) up
Group (2;—) to conjugacy
I'(5,5,5) 5 4
I'(3,6,6) 6 4
T(8,2,8) 8 4
T'(4,4,4) 8 6
I'(3,3,9) 9 4
I'(5,2,10) 10 7
I'(4,2,12) 12 6
I'(6,2,6) 12 13
I'(3,3,6) 12 8
T'(3,4,4) 12 10
1'(3,3,5) 15 9
I'(4,2,8) 16 19
I'(3,2,18) 18 9
I'(5,2,5) 20 21
I(3,2,12) 24 25
I'(4,2,6) 24 40
T(3,3,4) 24 28
T'(3,2,10) 30 20
1'(3,2,9) 36 37
I'(4,2,5) 40 75
I'(3,2,8) 48 77
T(3,2,7) 84 155
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Table 10. The uniform maps of genus 2 (§5.1)

Map # Uniform # Reflexible # Hyper- Order of largest
type maps uniform elliptic aut. group
(8,8) 4 4 1 8 R
(5,10) 7 5 1 10 R
(4,12) 6 6 2 4

(6,6) 13 11 4 12 R
(4,8) 19 17 10 16 R
(3,18) 9 7 1 3

(5,5) 21 7 2

(3,12) 25 15 7

(4,6) 40 26 33 24 R
(3,10) 20 10 7 10

(3,9) 37 11 13 12

(4,5) 75 27 65 8

(3,8) 77 37 51 48 R
(3,7) 155 25 113 12

Table 11. The uniform hypermaps of genus 2 (§5.1)

Hypermap # Uniform # Reflexible # Hyper- Order of largest

type hypermaps uniform elliptic aut. group

(5,5,5) 4 4 0 5 RRR

(3,6,6) 4 4 0 6 R

(4,4,4) 6 6 1 8 R

(3,3,9) 4 4 0 3

(3,3,6) 8 6 0 3

(3,4,4) 10 6 1 12 R

(3,3,5) 9 5 0 5

(3,3,4) 28 14 1 24 R
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Appendix 11

Computer Programs

Program 1. (§5.1) This program runs on MAGMA and determines up to conjugacy
all genus 2 surface groups that lie inside the triangle group I'(l, m, n) with index k.

The surface groups are returned in the file ‘surgpsl’.

A<rs>:=CGroup<rs|rt=sm=(rxs)"=1>;
surgpsl:= [|;
P := LowIndexProcess(4, < k, k >);
while not IsEmpty(P) do
R := ExtractGroup(P);
f,q,t := CosetAction(4, R);
if CycleStructure(f(r)) eq [< {,% >]
and CycleStructure(f(s)) eq [< m, £ >]
and CycleStructure(f(r) = f(s)) eq [< n, £ >] then
Append(~ surgpsl, R);
end if;
NextSubgroup(~ P);

end while;

Program 2. (§5.1) Following the execution of Program 1, Program 2 will determine
the genus 2 surface groups contained in I'(l, m, n) up to conjugacy in the extended

triangle group I'* (I, m, n). The surface groups are returned in the file ‘surgps2’.

B < z,y,z >=CGroup < z,y, 2|t =42 = 22 = (z*y) = (y*x2)™ = (z*2)" =1 >;
C :=sub < B|(z xy), (y *x 2) >;
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h:=hom < A— > Clr— > C.1l,s— > (C.2>;
surgps2:= [|;
for ¢ in [1..#surgpsl] do
if IsEmpty(surgps2) then
Append(~ surgps2, surgpsl|i]);
else p := 0;
for j in [1..#surgps2] do
if IsConjugate(B, h(surgpsl|i]), h(surgps2[;])) then

p=1
break;
end if;

end for;
if p eq 0 then
Append(~ surgps2, surgps1[i]);
end if;
end if;

end for;

Program 3. (§5.1) Following the execution of Program 2, Program 3 will determine
the automorphism groups of the uniform maps corresponding to the surface groups
in the file ‘surgps2’. The automorphism groups and their orders are returned in the

files ‘autgps’ and ‘autgpsorder’ respectively.

autgps:= [|;

autgpsorder:= [];

perm:=Sym(k);

for 4 in [1..#surgps?] do
fsq,t ;= CosetAction(A, surgps2[i]);
cent:= Centralizer(perm, ¢);
Append(~ autgps, cent);
Include(~ autgpsorder, Order(cent));

end for;
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