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The problem of determining the threshold of motion of a sediment particle resting on
the bed of an open channel has historically been dominated by an approach based on
the time-space-averaged bed shear stress (i.e. Shields criterion). Recently, experimental
studies have promoted an alternative approach to predict the dislodgement threshold,
which is based on the impulse of the flow-induced force. Nonetheless, theoretical analyses
accompanying these studies result in complex expressions that fail to provide a direct
estimate of said impulse threshold. We employ the work-energy principle to derive a pre-
diction of the fundamental impulse threshold that the destabilising hydrodynamic force
must overcome in order to achieve full particle dislodgement. For the bed configuration
studied, which is composed of spheres, the proposed expression depends on the mobile
particle’s size and mass, and shows excellent agreement with experimental observations
previously published. The derivation presented in this paper may thus represent a robust
theoretical framework that aids in the re-interpretation of existing data, as well as in
the design of future experiments aimed at analysing the importance of hydrodynamic
impulse as criterion for particle dislodgement.
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1. Introduction

Accurate estimation of erosion and sediment transport rates in natural, erodible
boundaries (e.g. riverine and estuarine beds) is a key and long-standing challenge in
Earth surface dynamics and engineering. A basic problem underpinning this challenge
is that of determining when a sediment particle resting on the bed will be dislodged by
the flow. The classical approach to this problem, based on the well-known work by A.
Shields in the 1930’s, employs the temporal-spatial average bed shear stress as criterion
for particle dislodgement. A review of Shields-based incipient motion studies (see e.g.
Buffington & Montgomery 1997 and references therein) illustrates the impossibility of
defining an accurate and universal threshold of motion based on time-space averaged
shear stress. This impossibility stems from the intrinsic complexity of the problem, where
turbulent flow typically occurs over a bed surface composed of sediment particles which
are inherently heterogeneous in size and shape. Thus, recent studies on initiation of
motion have shifted towards approaches that investigate the phenomenon at the spatial
scale of individual sediment particles (often idealized in shape, such as spheres) and
temporal scale of turbulent fluctuations. For instance, Kudrolli et al. (2016) emphasised
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the effect of the torque induced by all relevant forces on a spherical particle under steady
flow conditions. Other studies have focused instead on the influence of turbulence on
initiation of particle motion (e.g. Heathershaw & Thorne 1985; Nelson et al. 1995; Sumer
et al. 2003), attributing the latter to the peak velocity magnitude of hydrodynamic
fluctuations. Building on this line of thought, Diplas et al. (2008) (and subsequent
studies discussed below) demonstrated the importance of both magnitude and duration
of turbulent fluctuations in determining whether initiation of motion will occur, thus
establishing a particle dislodgement criterion based on the impulse of the fluctuating
hydrodynamic force (as opposed to its instantaneous maxima). The present paper is
aimed at providing a theoretical analysis for said impulse-based criterion.

The pioneering experiments by Diplas et al. (2008) demonstrated the importance
of impulse for particle dislodgement by carefully controlling and systematically ma-
nipulating the magnitude and duration of the destabilising force. This work paved
the way for other studies supporting the idea of employing impulse (as opposed to
either instantaneous or time-averaged forces) as criterion for dislodgement of individual
particles. Nevertheless, theoretical models derived so far to support this concept (Diplas
et al. 2008; Valyrakis et al. 2010, 2013; Celik et al. 2010) result in complex relations that
do not necessarily predict directly the impulse threshold for particle dislodgement for a
given bed configuration, thus limiting the interpretation of results obtained from their
corresponding, rather insightful experiments. For example, both Diplas et al. (2008) and
Valyrakis et al. (2010) analytically studied the problem by considering time-independent
hydrodynamic forces acting on a resting particle (in the case of the former, only lift was
considered), yielding second-order differential equations of motion and their respective
solutions. Although these studies relate forces and their durations (not necessarily via
simple expressions), they do not provide a direct prediction of the critical impulse for
dislodgement; and the condition that the force be time-independent (i.e. a pulse) is
unnecessarily restrictive, as we show later. Valyrakis et al. (2013) and Celik et al. (2010)
instead invoked energy principles in their respective theoretical analyses. Valyrakis et al.
(2013) employed the concepts of work done on the particle and consequent gain in
mechanical energy, but, as with Diplas et al. (2008) and Valyrakis et al. (2010), the
dislodgement relation obtained does not provide an estimated value for the impulse
threshold. Celik et al. (2010) approached the problem by considering a critical drag force
capable of dislodging the particle, which is computed by defining a hypothetical initial
velocity that the particle would require in order to gain the necessary kinetic energy to
overcome the local elevation threshold for dislodgement. This approach is employed to
predict a critical initial velocity, with good results, but the assumption of a non-zero
initial particle velocity does not represent the condition of initiation of motion from rest;
and as with previously discussed studies, a prediction of the critical impulse (not velocity)
is not provided (see §3.2). All the above-mentioned approaches also depend critically on
empirical coefficients such as drag, lift and energy transfer.

In this paper, we employ the work-energy principle to derive an expression for the mag-
nitude of impulse threshold necessary for particle dislodgement. The proposed criterion is
defined in terms of the time-varying force exerted on the particle by the flow (and not the
flow variables producing said force), which enables us to derive a relation that is simple
and independent of empirical coefficients such as drag and lift. The resulting criterion,
which depends on the mobile particle’s size and mass for the bed setting investigated,
shows excellent agreement with previously published experimental observations.

The derivation of the theoretical impulse threshold is detailed in §2, whereas valida-
tion against experiments is presented in §3. Concluding remarks are discussed in §4.
Complementary derivations are presented in Appendices A and B.
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Figure 1. Sketch of the problem. Left: 3D rendered image of the setting consisting of four spheres
of equal radii r, where the mobile particle rests on top of three fixed and densely packed spheres,
which in turn lie on a horizontal plane; initial and final (dislodged) positions of the particle’s
centroid are denoted by points A and B, coloured blue and red (online version), respectively.
Middle: Side view illustrating the trajectory C followed by the particle during dislodgement,
and the centroid’s angular displacement α with respect to the pivot axis P . Right: Top view.

2. The impulse threshold

We are concerned with the conditions leading to full particle dislodgement, defined as
the event when a sediment particle originally at rest on the bed surface is transported
to a different location on the bed (hereinafter we avoid the alternative terms ‘incipient
motion’ or ‘initiation of motion’, which may evoke local particle movement not necessarily
leading to a different resting position). We focus on the bed configuration employed in
reference works (Diplas et al. 2008; Valyrakis et al. 2010, 2013; Celik et al. 2010, 2013),
where a mobile spherical particle rests on top of three, equal-sized, fixed, well-packed
spheres, as depicted in fig. 1 (the same diameter of both top and base spheres is assumed
unless otherwise stated). A Cartesian frame of reference is adopted, where x, y and z
denote streamwise, transverse and vertical coordinates, respectively. Fundamentally, to
achieve full dislodgement, the work done on the particle by the net external forces must be
sufficient to overcome the elevation threshold resulting from the local micro-topography.
This happens when the particle originally at rest in stable equilibrium (point A) moves
to a higher, unstable position, where an infinitesimally small streamwise force acting
at its centre of mass will lead to a new resting position (point B – a separatrix in the
context of oscillators). Therefore, the minimum work required for full dislodgement can
be defined for the condition of the sphere reaching point B with null kinetic energy. It
is assumed that the particle is dislodged by rolling from A to B, which is in agreement
with experimental evidence that highlights this entrainment mode as the most common
for near-threshold conditions (see e.g. Fenton & Abbott 1977; Celik et al. 2010; Kudrolli
et al. 2016). Moreover, it may be argued that this trajectory and type of motion (as
opposed to sliding) minimises the energy required to get to B from A, and is thus in line
with our objective of finding a fundamental energy threshold for dislodgement. Since the
sphere rolls without sliding, static friction forces act at the points of contact between the
mobile and the base spheres, which in turn create a resultant torque about the rolling
particle’s centre of mass. However, since the mobile sphere arrives at point B with no
angular velocity (we assume null kinetic energy at point B), no net work is done by this
torque on the sphere, and so we exclude static friction forces from our derivation below.
For partly-exposed particles like the one under consideration, the net hydrodynamic force
may not act exactly at the particle’s centre of mass. However, without much knowledge
on the actual line of action of said force (Kudrolli et al. 2016), we assume that it does for
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simplicity, as typically done in similar studies (e.g. Kudrolli et al. 2016; Valyrakis et al.
2010; Celik et al. 2010).

Consider the net force acting on the mobile sphere’s centre of mass at any time t
during a dislodgement event of duration T = t1 − t0, F (t) = FH(t) + ws +

∑
N i(t);

where FH(t) is the net hydrodynamic force (see discussions below); ws = (ρs − ρ)

A

g
is the submerged weight of the particle of volume

A

and density ρs, immersed in a
fluid of density ρ, with g representing the gravitational acceleration; and

∑
N i(t), with

i = 1, 2, ..., p, is the sum of p normal reaction (constraint) forces acting at the p contact
points between the mobile and base particles (e.g. in fig. 1, p = 2 for t0 < t 6 t1).
Applying the work-energy principle to the sphere moving along the trajectory C = s(t)
connecting points A and B, and recalling that its change in kinetic energy is taken as
null, yields

∫
C
F (t) · ds =

∫
C
FH(t) · ds +

∫
C
ws · ds +

∑∫
C
N i(t) · ds = 0; which, after

noting that N i · ds = 0, leads to the dislodgement condition∫
C

FH(t) · ds =

∫ t1

t0

FH(t) · ds
dt
dt > ws∆z, (2.1)

where ws ≡ ‖ws‖ and ∆z is the elevation gained by the particle’s centre of mass (i.e. the
vertical distance between points A and B). Since the particle is at rest at t0, its velocity
v(t) ≡ ds(t)/dt relates, through Newton’s second law, to its own mass and acceleration,
m and a(t), respectively, and F (t) as follows:

v(t) ≡
∫ t

t0

a(τ)dτ =
1

m

∫ t

t0

F (τ)dτ. (2.2)

Substitution of (2.2) in (2.1) yields the following dislodgement criterion in terms of
time integrals of all relevant forces (i.e. impulses):∫ t1

t0

FH(t) ·
[∫ t

t0

FH(τ)dτ + ws(t− t0) +
∑
i

∫ t

t0

N i(τ)dτ

]
dt > mws∆z. (2.3)

Eq. (2.3) represents an exact condition to be verified if dislodgement is to take place.
However, in this form it is of no practical use. The above relation can be simplified
under the assumption that the mobile sphere is highly exposed to the flow, such that
i) the angular displacement of the particle’s centroid during dislodgement with respect
to the pivot axis P is small (see α in fig. 1); and ii) FH is dominated by the drag
component acting predominantly in the streamwise (x) direction, which is supported
by experimental evidence on similar bed configurations (Fenton & Abbott 1977; Celik
et al. 2010; Schmeeckle et al. 2007). Under these assumptions, approximately FH ⊥ ws

and FH ⊥ N i for all t during the dislodgement event, thus leading to vanishing of the
second and third dot products in the left-hand-side of (2.3). (See Appendix A for a more
rigorous treatment of eq. 2.3 and discussion on these assumptions.) Further noting that
FH(t) · FH(τ) represents a symmetric function f(t, τ), such that f(t, τ) = f(τ, t), we
obtain

∫ t1

t0

FH(t) ·
∫ t

t0

FH(τ)dτdt =
1

2

∫ t1

t0

∫ t1

t0

f dτdt =
1

2

∫ t1

t0

FH(t)dt ·
∫ t1

t0

FH(τ)dτ. (2.4)

Combination of (2.4) and the assumption of approximate orthogonality between FH

and both ws and N i discussed above, permits significant simplification of (2.3) (see
Appendix A). This simplification represents an approximate estimate of the magnitude
of the critical impulse imparted to the particle during T , Jc, that a destabilising hydro-
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dynamic force (capable of doing work on the particle) must overcome in order to achieve
full dislodgement; namely:∥∥∥∥∫ t1

t0

FH(t)dt

∥∥∥∥ ≡ Jc ≈√2mws∆z . (2.5)

The elevation threshold ∆z is left as a free parameter in (2.5) for reasons that
become clear in §3.2. Note, however, that for certain ideal configurations, ∆z has
analytical solutions. For instance, data employed for validation in §3.1 are derived from
the experimental setting depicted in fig. 1, for which it can be shown that (see Appendix
B)

∆z =

(
3− 2

√
2√

3

)
r, (2.6)

where r is the radius of the spheres. The mass of the mobile sphere, m, appearing in
(2.5) merits some discussion. If FH(t) is taken as the total hydrodynamic force exerted
on the mobile particle by the surrounding fluid (that is, excluding the buoyancy force,
which is already accounted for in ws) – i.e. the integral of pressure and shear stresses
over the surface of the sphere (minus the buoyancy force) – then m represents the actual
mass of the sphere, i.e. m = ρs

A

. However, direct measurement of FH(t), thus defined,
is extremely challenging. For this reason, experimentalists and modellers alike typically
estimate this force via parametrisations strictly applicable to non-accelerating particles
(drag and lift coefficients being the prime examples). This in turn prompts the need to
account for the effect of the particle’s acceleration separately, which is typically done via
the added mass coefficient, M , by modifying the sphere’s mass as m = (ρs +Mρ)

A

. The
theoretical value of M = 0.5 for a sphere, arising from potential flow theory, is commonly
employed in studies dealing with the dynamics of bed particles (see e.g. Barati et al. 2018
for a recent review on saltating particle models). Although derived from inviscid flow
theory, the value of M ≈ 0.5 also appears to be supported by experiments with spheres
in real (viscous) flows (see e.g. Pantaleone & Messer 2011). In general, if the added mass
effect must be considered (either through a theoretically or empirically defined value of
M) due to the treatment of FH discussed above, (2.5) becomes

Jc ≈
4

3
ρπr3

√
2 (s+M) (s− 1) g∆z , (2.7)

with s ≡ ρs/ρ being the particle’s relative density and g ≡ ‖g‖. The proposed criterion for
critical impulse, derived for spherical particles, is solely dependent on the particle’s size
and density (that is, if M = 0.5 is adopted), and is applicable to a hydrodynamic time-
varying force of arbitrary duration. This contrasts with expressions previously derived for
the same bed configuration, as discussed in §1. The (relative) lack of empirical coefficients
in our derivation is in good measure achieved by the very definition of the criterion,
which expresses the dislodgement condition as a function of the hydrodynamic force
exerted on the particle, rather than the flow variables inducing said force. Naturally,
coefficients such as drag will be necessary in practice when relating the fluid force exerted
on the particle to local hydrodynamic parameters (see §3.2). However, this is beyond the
scope of the present paper, the main aim of which is to provide a theoretical analysis of
existing experiments devoted to exploring the role of hydrodynamic impulse as criterion
for dislodgement.

Even though derivation of (2.5) implicitly assumes a horizontal channel (the simplifying
assumptions invoked depend on this condition), the effect of the local slope is accounted
for via ∆z, which will be affected by variations in the local micro-topography. However,
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use of (2.5) and (2.7) should be restricted to applications involving horizontal or nearly-
horizontal channels, given that terms neglected in (2.3) are anticipated to grow in
importance for steep slopes. In deriving (2.5), we have also assumed exclusively forces
capable of doing work on the particle (but note that this is not a restriction of the full
condition, eq. 2.3 – i.e. hydrodynamic forces too small to move the particle will simply
not comply with the inequality). For the setting considered (fig. 1), the maximum force
opposing motion will be found at the initial position (see end of §3.3).

3. Comparison against experiments

In order to test the validity of the theoretical impulse threshold for particle dislodge-
ment proposed here, we compare predictions of (2.5) and (2.7) against experiments by
Celik et al. (2013), Celik et al. (2010), Diplas et al. (2008) and Valyrakis et al. (2010).
All these experiments deal with a setting similar to that illustrated in fig. 1, where a
mobile spherical particle rests on top of three, fixed, well-packed spheres. Celik et al.
(2010, 2013) employed identical-size top and base spheres, with s = 2.3 and r = 6.35
mm, subject to water flow. On the other hand, Diplas et al. (2008) and Valyrakis et al.
(2010) investigated different combinations of top and base metallic spheres’ sizes subject
to electromagnetic flux. For each of the above experiments, the parameters measured
and methodologies vary, allowing us to test the derived theoretical prediction of critical
impulse under different conditions, as detailed next.

3.1. Direct comparison (impulse)

The most direct comparison is made against the experiments by Celik et al. (2013),
who measured pressure time histories at four points on the surface of a stationary sphere,
which were then used to obtain a direct estimate of the force (and thus impulse) respon-
sible for the dislodgement of another, otherwise-identical mobile sphere subject to the
same flow conditions. Celik et al. (2013) estimate impulse threshold from measurements
of the (streamwise-aligned) drag force, in line with the assumptions we have invoked in
§2. We select for comparison run U8 in the referred publication, which reports the lowest
frequency of particle dislodgement events observed (namely, 0.14 dislodgement events
per minute), which can be interpreted as the experimental conditions that are closest to
a fundamental threshold for dislodgement. For run U8, Celik et al. (2013) report a mean
value of the critical impulse of 0.0002 Ns. For this experimental setting, use of (2.7),
with M = 0.5 and ∆z computed from (2.6), yields a prediction of the critical impulse of
2.27×10−4 Ns. In other words, the proposed criterion shows a virtually exact agreement
(to the precision reported by Celik et al. 2013) with these experimental results.

3.2. Indirect comparison (pseudo-impulse)

Next, we consider the experiments by Celik et al. (2010), who measured the streamwise
component of the fluid velocity, u, one particle diameter upstream of a test (mobile)
sphere. Celik et al. (2010) studied particle dislodgement as a function of pseudo-impulse,
defined as the product

〈
u2
〉
T , where the angle brackets denote time-averaging over the

interval T . The referred researchers employ this surrogate for impulse based on the
proviso that the prevailing hydrodynamic force is drag, FD, which is proportional to
u2. Considering the time-average of the net hydrodynamic force acting on the particle
over the interval T ,

〈FH〉 ≡
1

T

∫ t1

t0

FH(t)dt, (3.1)
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the impulse imparted to the particle by the flow over T can also be expressed as J =
〈FH〉T . We can then find an approximate equivalence between the real impulse, J , and
pseudo-impulse employed by Celik et al. (2010), Jps, as follows:

‖Jps‖ ≡
〈
u2
〉
T =

〈FD〉T
1
2ρApCD

≈ ‖J‖
1
2ρApCD

, (3.2)

where the conventional parametrisation of the drag force has been employed; i.e. FD =
0.5ρApCDu

2, with CD representing the drag coefficient and Ap being the projected area
of the spherical particle. The latter may be approximated, due to the assumption of
the particle being highly exposed to the flow (also employed by Celik et al. 2010), as
Ap = πr2. The assumption of drag being the predominant hydrodynamic force acting on
the particle underpins (3.2).

In their experiments, Celik et al. (2010) observe a range of values of pseudo-impulse
of 0.0034 to 0.0095 m2/s, for which both dislodgement and no-dislodgement events are
observed for all values of

〈
u2
〉

considered. In other words, below(above) this range of
pseudo-impulse, the test particle was never(always) dislodged by the flow. Therefore, the
lower limit of this range (0.0034 m2/s) can be interpreted as the fundamental pseudo-
impulse threshold, below which no particle dislodgement is observed.

To test our prediction of critical impulse (2.7), we first convert it to pseudo-impulse
via (3.2), and use ∆z = 0.4 mm. The reason for fixing ∆z to the value reported by Celik
et al. (2010) is that their experimental setting included the presence of a retention pin
downstream of the mobile particle that ensured that once ‘fully dislodged’, the particle
could return to its original position, thus automating the experiment. To transform
impulse to pseudo-impulse, a value of CD must be assumed (see eq. 3.2). To this end,
we employ the value of CD from run U8 in Celik et al. (2013) (namely, CD = 0.818),
who carried out very similar experiments to those of Celik et al. (2010), reporting values
of CD for a resting sphere under diverse flow conditions. As in §3.1, our focus is on
run U8 because this run represents the experimental conditions which are closest to a
fundamental dislodgement threshold. Use of (2.7) in (3.2), with CD = 0.818, M = 0.5
and ∆z = 0.4 mm, yields a prediction of critical pseudo-impulse of 0.0035 m2/s, which
shows a very good agreement with the lower limit experimentally found by Celik et al.
(2010) (i.e. 0.0034 m2/s), thus supporting the argument that (2.7) describes accurately
the fundamental impulse threshold for particle dislodgement.

Celik et al. (2010) also proposed an algorithm to predict the critical pseudo-impulse,
which yielded an estimate of 0.0033 m2/s for this experimental setting. This estimate
is very close to our prediction of 0.0035 m2/s, but it is important to highlight that
the method proposed by Celik et al. (2010) i) represents a methodology, rather than
an expression, to estimate the critical pseudo-impulse; ii) lacks rigour by requiring
a hypothetical initial velocity of the resting particle; and iii) needs input of certain
geometric variables (such as lever arms) not required in (2.7).

3.3. Recovery of trend F vs T obtained empirically

Diplas et al. (2008) were the first to demonstrate experimentally the importance of
force duration by plotting normalized drag force, F̂D, versus its normalized duration,
T̂D. A metallic particle subject to electromagnetic flux was employed to achieve a
highly-controllable flow. Measurements by Diplas et al. (2008) (328 in total) collapsed
remarkably well into a curve of the form F̂D = KT̂n

D, where K and n are constants
obtained from best-fit curves, the latter of which takes a value of n ≈ −1 (n = −0.99,
to be precise). Later, Valyrakis et al. (2010) extended this study and provided different
values of coefficients K and n arising from best-fit curves for different combinations of
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top and base spheres’ diameters (a total of 1709 data points was obtained); the value
of n ≈ −1 was confirmed: their reported values of n range from −0.89 to −1.07 with a
mean of −0.99 (Valyrakis et al. 2010 employ squared voltage across the electromagnet
as proxy for force). We conclude our experimental comparisons by noting that the value
of n = −1 is to be expected since, by rewriting (2.5) as Jc = ‖〈FH〉‖T ≈

√
2mws∆z, we

obtain

‖〈FH〉‖ ≈
(√

2mws∆z
) 1

T
, (3.3)

where
√

2mws∆z is indeed a constant for a local bed configuration (i.e. K) and n is
precisely equal to −1. Combinations of ‖〈FH〉‖ and T falling above the curve given
by (3.3) will result in particle dislodgement, so long as the net hydrodynamic force
is capable of doing work on the particle during T . For the problem considered, where
FH equals a virtually time-independent constant F̃H over T (a pulse), the condition

to verify is F̃H cosα0 > ws sinα0, where α0 = α(t = t0); or F̃H ' ws/3 for the case
of equal-sized top and base spheres (in fig. 1, the maximum force opposing motion is
found at t0, where sinα0 = 1/3). It is worth remarking that (3.3) is only approximate.
In Appendix A, an exact expression is derived for this experimental setting (eq. A 5),
which is completely determined if the time history of a(t) (or the particle’s position)
is known. However, as discussed in the same appendix, said exact equation reduces to
the approximation proposed here (eq. 2.5) for small angular displacement of the particle
during dislodgement, as is assumed to be the case with the highly-exposed sphere under
consideration. A quantitative comparison between the approximate constant predicted
(i.e.

√
2mws∆z) and K empirically found by Valyrakis et al. (2010) cannot be carried

out without more detailed information on the experiment, especially pertaining to the
electromagnet (e.g. resistance, number of turns in the coil, etc.), which unfortunately is
unavailable.

4. Conclusions

We propose a theoretical estimate of the critical impulse of the destabilising
hydrodynamic force that must be exceeded to achieve particle dislodgement. The
proposed expression, derived from the work-energy principle and valid for the bed
setting depicted in fig. 1 and assumptions discussed in §2, represents a scalar value that
depends exclusively on the local bed arrangement. The derived impulse-based criterion
for dislodgement shows excellent agreement with previously published experimental data
by: i) yielding a virtually exact prediction of the critical impulse reported by Celik et al.
(2013); ii) predicting well the fundamental threshold for particle dislodgement, even
when converted to pseudo-impulse (as defined in §3.2), experimentally observed by Celik
et al. (2010); and iii) naturally recovering the trend F ∝ T−1 obtained approximately
via best-fit curves by Diplas et al. (2008) and Valyrakis et al. (2010) after analysing
a total of 2037 data points combined. The remarkable agreement between the theory
here derived and experimental data is encouraging, especially in view of the notorious
uncertainty associated with the prediction of initiation of sediment motion. However,
availability of relevant empirical data is still rather limited. We hope, therefore, that
the present work may be used as theoretical framework that aids in the design of future
experiments aimed at continuing the investigation on the importance of hydrodynamic
impulse as criterion for particle dislodgement, which will in turn help testing the present
theory further.
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Appendix A

We explore here the simplifications adopted to arrive at (2.5) from (2.3). Referring
to the setting depicted in fig. 1, motion takes place in the x − z plane, such that for
t > t0,

∑
N i(t) ≡ N(t) = Nx(t)̂i + 0ĵ + Nz(t)k̂, where î, ĵ and k̂ are the unit vectors

pointing in the x, y and z directions, respectively. In general, we have FH(t) = FHx(t)̂i+
FHy(t)ĵ + FHz(t)k̂, a(t) = ax(t)̂i + ay(t)ĵ + az(t)k̂ and ws = −wsk̂. At any time, the
position of the particle is completely determined by the angle α(t) formed by the straight
line from the mobile particle’s centroid to the pivot axis P and the vertical (see fig. 1),
which varies from α(t = t0) = α0 to α(t = t1) = α1 = 0. For convenience let us define,
for any function g(θ), the operator

〈g(θ)〉ω ≡
∫ ω

t0

g(θ)dθ, (A 1)

which allows us to write the left-hand-side of (2.3) as

〈FH(t) · [〈FH(τ)〉t + 〈ws〉t + 〈N(τ)〉t ] 〉
t1
. (A 2)

As discussed in §2, the first dot product can be written as 0.5 〈FH〉2t1 (where FH ≡
‖FH‖), so our focus here is on the second and third dot products. Defining n̂(t) =
nx(t)̂i + nz(t)k̂ as the unit vector pointing in the direction of N(t), the sum of forces
along n̂(t) yields N(t) = [(ma(t) − ws − FH(t)) · n̂(t)]n̂(t). We can then write the
products of interest as follows:

〈FH(t) · 〈ws〉t〉t1 = −ws 〈FHz(t) [t− t0]〉t1 (A 3)

and (omitting functions’ arguments for clarity)

〈FH · 〈N〉t 〉t1 = 〈FH · 〈(ma · n̂)n̂〉t 〉t1 +

〈FH · 〈−(ws · n̂)n̂〉t 〉t1 + 〈FH · 〈−(FH · n̂)n̂〉t 〉t1
= m

〈
FHx

〈
axn

2
x + aznxnz

〉
t

+ FHz

〈
axnxnz + azn

2
z

〉
t

〉
t1

+

ws

〈
FHx 〈nxnz〉t + FHz

〈
n2z
〉
t

〉
t1
−〈

FHx

〈
FHxn

2
x + FHznxnz

〉
t

+ FHz

〈
FHxnxnz + FHzn

2
z

〉
t

〉
t1

(A 4)

The assumption invoked in §2 that FH acts predominantly in the x-direction, such
that FH ≈ FHxî (or FHz ≈ 0), leads to vanishing of (A 3) and reduces (A 4) to〈
mFHx

〈
axn

2
x + aznxnz

〉
t

+ wsFHx 〈nxnz〉t − FHx

〈
FHxn

2
x

〉
t

〉
t1

. The second proviso dis-

cussed in §2 states that the angular displacement (α1 − α0) is small, such that nx → 0
(or nz → 1), thus further leading to nxnz → 0 and n2x → 0, and hence vanishing of (A 4)
altogether.

The above discussion justifies simplifying (2.3) to (2.5) (for the conditions stated in
§2) when no detailed information (time series) of all relevant forces is available, which
is the anticipated case for most experimental studies. However, for highly-controlled
experiments such as those discussed in §3.3, where FH has a time-independent magnitude
F̃H and constant direction î, the treatment of the full dislodgement condition presented
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in this appendix may be useful. Under said conditions, (2.3) becomes

F̃H

[
F̃H

2
T 2 +

〈
m
〈
axn

2
x + aznxnz

〉
t

+ ws 〈nxnz〉t − F̃H

〈
n2x
〉
t

〉
t1

]
> mws∆z, (A 5)

which, naturally, reduces to (2.5) if terms nxnz and n2x are neglected as before.

Appendix B

Consider fig. 1, where all spheres have equal radii r. Connecting the centroids of all
four spheres at the initial position draws a regular tetrahedron with edge length 2r.
The distance from any vertex of the base (which is an equilateral triangle) to its own
centroid, c, is thus 2r/

√
3. Then, the vertical distance from c to the centroid of the

upper sphere (point A) is 2
√

2r/
√

3. At the dislodged position, it is readily seen that the
vertical distance from the plane where the centroids of the base spheres lie to the centroid
of the upper (dislodged) sphere (point B) is

√
4r2 − r2 =

√
3r. The change in vertical

distance from the initial to the dislodged position, ∆z, is therefore
√

3r − 2
√

2r/
√

3 =
(3− 2

√
2)r/
√

3 (eq. 2.6). Similarly, if we consider spheres of different size, such that the
top(base) sphere(spheres) has(have) a radius r2(r1), where r2 > r1, the same procedure
yields ∆z =

√
2r1r2 + r22 −

√
2r1r2 + r22 − r21/3 .
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