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Abstract—This paper presents an efficient double-layer
ant colony algorithm, called DL-ACO, for autonomous robot
navigation. This DL-ACO consists of two ant colony algo-
rithms which run independently and successively. First,
a parallel elite ant colony optimization (PEACO) method
is proposed to generate an initial collision-free path in a
complex map, and then we apply a path improvement algo-
rithm called turning point optimization algorithm (TPOA),
in which the initial path is optimized in terms of length,
smoothness and safety. Besides, a piecewise B-spline path
smoother is presented for easier tracking control of the
mobile robot. Our method is tested by simulations and
compared with other path planning algorithms. The results
show that our method can generate better collision-free
path efficiently and consistently, which demonstrates the
effectiveness of the proposed algorithm. Furthermore, its
performance is validated by experiments in indoor and
outdoor environments.

Index Terms—Double-layer ant colony optimization (DL-
ACO), path planning, trajectory optimization, piecewise B-
spline curve.

I. INTRODUCTION

GLOBAL path planning is a significant issue in robotics
because of its various applications, such as autonomous

driving, civilian search, emergency rescue, resource exploita-
tion and so forth [1]–[3]. This problem is concerned about
how a mobile robot can find a path from a start position
to a target position, avoiding collision against obstacles and
satisfying constraints. Traditional approaches, such as artificial
potential field [4] and cell decomposition [5], are widely
applied in various tasks and demonstrated remarkable per-
formance thanks to their easy execution. Nevertheless, they
tend to consume expensive computation and easily fall into
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traps in complex problems. Comparing to traditional methods,
heuristic algorithms have been proven to be efficient in robot
path planning [6], including neural network [7], fuzzy logic
technique [8] and nature spired algorithms such as genetic
algorithm (GA) [9], particle swarm optimization (PSO) [10]
and ant colony algorithm (ACO) [11]. The global searching
ability of a good path planning method should be strong, as
well as characterized by stability. However, in some heuristic
algorithms such as PSO and GA, the initial values are all
obtained randomly, this randomness sometimes leads to a great
variation of results. Fig. 1 depicts three widely different routes
generated by the same algorithm. This uncertainty seriously
affects the robustness of path planner in practical applications.

Ant colony optimization has been recognized as an effi-
cient and robust optimization technique and has been used
frequently in different applications [12]–[15]. Studies using
ACO to solve the global path planning problem have been
carried out in recent years. Duan et al. [16] proposed a path
planning method based on ACO and differential evolution
for three-dimension path planning of unmanned combat aerial
vehicle (UCAV). An improved ACO for robot path planning
in a dynamic environment by adding a fuzzy cost function
in path evaluation was introduced in [17]. Zhu et al. [18]
presented an algorithm based on dynamic path re-computation
and an improved scout ant algorithm for robot navigation in
unknown environments. Although ant colony algorithm reflect
good search feature, it has shortcomings of low convergence
rate and premature convergence. Furthermore, the maximum
distance an ant can travel in a single movement is limited,
which results in twists and turns on the path and affects the
path length and smoothness.

Researchers put forward some improved methods to modify
the shortcomings of ant colony optimization. Abdulkader et
al. [19] put forward a hybridized ant colony algorithm, which
combines local search with an existent ant colony algorithm
for less computational time and high performance in larger
problems. Jiao et al. [20] designed an adaptive polymorphic
ant colony algorithm by employing the adaptive state transition
strategy and the adaptive information updating strategy, which
determines the optimal combination parameters in accordance
to actual situation. Chen et al. [21] introduced a two-stage ant
algorithm. With the raid of this method, the heuristic search
is spilt into preprocess stage and path planning stage to avoid
the algorithm falling into local minimum. Parallel computing
and elitist strategy have been widely used to improve the
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performance of algorithms [22]–[25]. Two parallel ant pop-
ulations can widen the searching diversity, and strengthening
the influence of elite ant can speed up the convergence rate.

In this work, the path planning problem is divided into
two parts, path generation and trajectory optimization. We
propose a double-layer ant colony algorithm which contains
two ant algorithms to solve these two parts respectively. First
the parallel elite ant colony optimization is presented for
generating an initial feasible path. According to the twists and
turns, the turning point optimization algorithm is proposed
to make further improvement on the initial path. This type
of double-layer computing structure improves the quality of
solutions and strengthens the stability.

When a mobile robot tracking a path composed by a
sequence of line segments, it must stop at each corner to
reorient its steering wheels. This jerky motion prolongs the
travelling time and shortens the service life of its mechanical
devices. Besides, running on a smooth path reduces the robot’s
energy consumption [26]. Hence these discontinuous segments
must be smoothed. B-spline curve is one of the most efficient
curve interpolations and has been widely applied in many
disciplines, such as medical imaging [27], geometric modeling
[28], surface reconstruction [29] and position control [30].
With the properties of the B-spline curve, this interpolation
scheme is practically useful for path smoothing [31], [32].
However, the fitting degree between the B-spline curve and
the original segments does not meet the requirements in some
cases, which may affect the path safety. Thus, we improve the
conventional B-spline curve and design a piecewise B-spline
curve, which only smooths the path around the corner. Finally,
the DL-ACO and the piecewise B-spline path smoother are
combined to form a complete path planning scheme for
robot navigation. The main contributions of this paper can
be summarized as follows.
1) An enhancement function and a parallel computing struc-

ture is designed for ant colony optimization to widen the
searching diversity and avoid premature convergence.

2) A trajectory optimization method is put forward to improve
the route in terms of both length and smoothness.

3) A piecewise B-spline path smoother is proposed to smooth
the path around the corner without affecting the safety.

4) The proposed DL-ACO generates a shorter and smoother
path in comparison to other heuristic algorithms. Further-
more, the double-layer structure strengthens the stability of
our algorithm.

The rest of this paper is organized as follows. The path
planning problem in the grid-based map is defined in Section

Fig. 1. Three routes generated by the same algorithm. (Square) Start
position. (Star) goal position.

II. Section III describes the execution steps of PEACO. Sec-
tion IV presents the trajectory optimization method including
a turning point optimization algorithm and a piecewise B-
spline path smoother. Computer simulations and results of real
experiments are presented in Section V. Section VI concludes
the paper.

II. ENVIRONMENT DESCRIPTION AND PROBLEM
STATEMENTS

A. Environment Description
The working environment for mobile robot is a grid-based

two-dimensional field with several static obstacles located in it.
Obstacles have no influential negative attributes to free space
and their location is completely known. Hence the grids are
divided into free space grids T f and obstacle grids T o. The
mobile robot is regarded as a mass point R and moves at a
fixed speed.

High-risk area: In view of the safety, robot should keep a
safe distance with obstacles to avoid accidents. As shown in
Fig. 2, given an obstacle grid T o, the grids in four directions
of T o are defined as high-risk grids T h. Robots will try to
avoid this area, but if necessary (e.g. narrow channel), they
are allowed to pass through it.

B. Problem Statements
Here we present the problem statements considered in this

work. The grid-based path planning problem is defined as
follows.

Given a start grid S and a goal grid E, find a set of grids
π(t) : [0, t] → T f such that π(0) = S and π(t) = E, the
path is represented with the grids in π(t) that are sequentially
connected to each other from S to E, and these segments
cannot collide with any T o. Then optimize the path in terms
of length, smoothness and safety. Since there are several
criteria to be optimized, the global path planning problem is
categorized as a multi-objective optimization problem.

III. PARALLEL ELITE ANT COLONY OPTIMIZATION

To generate an initial collision-free path in a complex envi-
ronment, a Parallel Elite Ant Colony Optimization (PEACO)

High-risk 

area

Obstacle

Fig. 2. Illustration of High-risk area.
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is proposed. Different from conventional ACOs, the ant colony
in PEACO is divided into two subpopulations and each sub-
population iterates independently. An enhancement function is
proposed to strengthen the elitist ant at the step of pheromone
updating. In addition, when the iteration process of each
subpopulation ends, a pheromone interaction step between
these two subpopulations is then added. The pseudo code for
PEACO is given in Algorithm 1.

Algorithm 1 Parallel Elite Ant Colony Optimization
1: procedure PEACO
2: Divide the ant colony into two subpopulation
3: for each subpopulation do
4: initialize number of ants m, maximum iteration

number Nmax, weights α, β, ρ, start S, goal E
5: calculate heuristic information τj
6: for N = 1 to Nmax do
7: Put all ants into S
8: while ant k is not in E do
9: ψ ← the set of reachable grids for k

10: choose the next grid by (2)
11: end while
12: if all ants have arrived E then
13: Lk ← length of ant k’s path
14: L← the best path in all iterations
15: select the best ant b
16: while Lb < L do
17: q ← enhancement factor by (1)
18: τb = q · τb
19: L = Lb
20: end while
21: update the pheromone by (4), (5), (6), (7)
22: end if
23: end for
24: end for
25: output the best path
26: end procedure

A. Enhancement function
In foraging, as soon as an ant finds the food source, it

starts the return trip and deposits pheromones on the path that
they have passed to guide the following ants. This forms a
positive feedback loop that all the ants in the colony ultimately
follow the optimal path to the food source. Meanwhile, the
pheromone intensity reduces over the time which is called the
pheromone evaporation, it raises the possibility that ants can
find a better path instead of insisting on the existing path.

However, when a large number of ants run on the same
route, the accumulation rate of pheromone will be much higher
than the evaporation rate. This results in high pheromone
concentrate on the existing path. Under this circumstance, even
though an ant finds a new path, the pheromone that it releases
on this new path is still far less than these on the existing path.
Thus, we propose an enhancement factor as following:

q =

{
e
t−1
n − 1, if Lb < L

0, otherwise
(1)

TABLE I
VARIABLES OF PEACO.

Variable Description

m Number of ants

Nmax Maximum number of iterations

α Weight of pheromone

β Weight of heuristic information

ρ Pheromone evaporation ratio

q Enhancement factor

τij Pheromone on the path between i and j

ηj Heuristic information on j

where t is the current iteration number, n is a constant that
depends on the maximum iteration number to ensure that q
is not overly large. Such that q is approximately 0 in early
iterations, and the optimal solution in early iterations will not
be strengthened. Lb is the length of the best path in the current
iteration while L is the optimal solution up to the last iteration.
That is, we enhance it only if a new optimal solution appears.

B. Process of PEACO

PEACO is comprised of three steps: initialization, selection
and pheromone update. Each of these steps is discussed below:

1) Initialization: At this step, ant colony is divided into two
subpopulations. Several parameters in each subpopulation
are initialized and all of them are explained in Table I. The
value of these weights should be assigned via experiments.
Besides, the start S and the goal E are decided and all ants
are located in the start grid. Two subpopulations carry out
each iteration independently.

2) Selection: During their tour, ants use the roulette wheel
selection to choose the next grid. The transition probability
P kij for ant k moving from grid i to grid j is calculated as

P kij =
ταijη

β
j∑

l∈ψ τ
α
ilη

β
l

, l ∈ ψ. (2)

(a) (b) (c)

Fig. 3. Path generated by PEACO. (a) 5 iterations. (b) 15 iterations. (c)
30 iterations.
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While ψ is the set of reachable grids, ηj is the heuristic
information:

ηj =
1

dje
, (3)

where dje is the distance between grid j and goal grid E.
In addition, if an ant has passed the predefined maximum
number of grids but still does not reach the goal, we let
the ant drop.

3) Pheromone update: This step starts after all ants reach the
goal. The best ant in two subpopulations called ant b is
selected and two operations are conducted at the same time,
pheromone reinforcement and pheromone evaporation. The
rule is given by

τij(t+ 1) = (1− ρ)τij(t) + ρ ·∆τij(t) + q ·∆τ bij(t),
(4)

and

∆τij(t) =

m∑
k=1

∆τkij(t), (5)

where ∆τkij(t) is the quantity of pheromone deposited by
ant k on the path between i and j at time t. ∆τ bij is the
quantity of the extra pheromone deposited by ant b, ∆τkij(t)
is given by

∆τkij(t) =

{
Q
Lk
, if ant k passes grid i and j

0, otherwise
, (6)

where Q is a constant. Lk is the total length of the path
that ant k travels as

Lk =

n−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2, (7)

where x, y are the coordinates.

When the iteration number reaches the predefined Nmax,
the best path in two subpopulations will be chosen and
outputted. Fig. 3 depicts the optimization results after different
iterations in PEACO.

C. Sensitivity Analysis

In this subsection, we conduct a sensitivity analysis of α
and β, which may affect the performance of our algorithm.
We keep one parameter fixed, change another and record the
changes in path length. The map in Fig. 3 is used for testing.
Fig. 4 depicts the results. It can be seen that our algorithm
performs good when α ∈ (1, 3), β = 5, and α = 1 ,β ∈
(2, 5). To sum up, when β is 2 to 5 times α, our algorithm
can provide a good solution, and the solution quality is stable
when the parameters are in this certain range. However, when
the parameters are out of range, the solution quality will be
affected.

IV. TRAJECTORY OPTIMIZATION

This section aims to improving the initial path generated
by PEACO, not only optimize the path itself, but also reduce
the difficulty that robot steering to follow the predetermined
path. The Turning Point Optimization Algorithm (TPOA) is
presented to reduce the number of turns and shorten the overall
path length, while the piecewise B-spline path smoother is
for smoothing the path around the turns. These two steps are
conducted successively.

A. Turning Point Optimization Algorithm
As shown in Fig. 5, S → I1 → A → B → I2 → E is a

feasible path from start to goal. It is obviously that this path is
not the best one. For instance, an ant on S can go straight to
A without passing through I1, similarly B to E without I2. If
we remove I1 and I2, the path S → A → B → E is shorter
in length, as well as it has less turns. These points I1, I2 are
defined as unnecessary turning points. For a complicated route
with numerous turns, removing these unnecessary turning
points can effectively improve it in terms of length and
smoothness. Hence the Turning Point Optimization Algorithm
is proposed as follows.

For the initial path, the set of nodes are comprised of the
start, the goal and all turning points as

T = {S, T1, T2, ..., Tn, E} . (8)

In view of the orientation of the route, ants are only allowed
to travel in a single direction. Thus, when an ant reaches node
Ti, the set of following nodes is

T (i) = {Ti+1, Ti+2, ..., Tn, E} . (9)

We add an extra step that judges whether the ant on one node
can reach another directly. If the straight line between node
Ta and Tb does not pass through any obstacle grids T o, we
believe that the ant on Ta can go straight to Tb. As following

con(Ta, Tb) =

{
1, if Ta can go straight to Tb
0, otherwise

, (10)

where Ta and Tb are any two nodes on the path, To sum up,
the set of reachable nodes Tr(i) of an ant on node Ti is defined
as

Tr(i) = {T |T ∈ T (i) ∩ con(Ti, T ) = 1}. (11)

(a) (b)

Fig. 4. Sensitivity Analysis of α and β. (a) α is variable, β = 5. (b)
α = 1, β is variable.
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S

A B

EI2

I1

Fig. 5. The original collision-free path and the refined one on which the
unnecessary turning points are removed.

Algorithm 2 Turning Point Optimization Algorithm
1: procedure TPOA
2: input the coordinates of nodes T
3: n← number of nodes on the path
4: initialize parameters
5: for a = 1 to n− 1 do
6: for b = i+ 1 to n do
7: calculate con(a, b) by (10)
8: end for
9: end for

10: for N = 1 to Nmax do
11: put all ants into S
12: while ant k is on node Ti do
13: select the set of reachable nodes Tr(i) by (11)
14: choose the next grid by (12)
15: end while
16: if all ants have arrived E then
17: update the pheromone by (14), (15)
18: end if
19: end for
20: select and output the best path
21: end procedure

The probability that an ant in node Ta goes to node Tb is given
by

P kab =
ταabη

β
ab∑

l∈Tr(i) τ
α
alη

β
al

, l ∈ Tr(i), (12)

where τab is the pheromone concentration, ηab is the heuristic
information which is given by

ηab = dab, (13)

where dab is the distance between Ta and Tb. In the pheromone
updating, we consider four parameters to evaluate a path in-
cluding path length, number of turning points, path smoothness
and path safety as

τab(t+ 1) = (1− ρ)τab(t) + ρ ·
m∑
k=1

τkab(t), (14)

Fig. 6. Illustration of Ti−1 → Ti → Ti+1 smoothed by piecewise B-
spline curve.

Fig. 7. Illustration of the same path smoothed by conventional B-spline
curve and piecewise B-spline curve separately.

∆τkab(t) =
Q

Lk + n+ smk + sfk
, (15)

where n is the number of turning points, Lk is the length of
the path. sfk is the number of high-risk area grids the ant has
passed. smk is the path smoothness:

smk =

n−1∑
i=2

abs(θi+1 − θi) ∗ 180/pi, (16)

with

θi+1 = atan [(yi+1 − yi) /(xi+1 − xi)] , (17)

θi = atan [(yi − yi−1) /(xi − xi−1)] . (18)

The pseudo code for TPOA is given in Algorithm 2.

B. Piecewise B-spline Path Smoother

This subsection aims to smooth the path around the turning
points. B-spline curve has been the most commonly used in
the smoothness of polyline. However, in some cases (e.g. high
steering angle), the path smoothed by B-spline does not fit the
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Fig. 8. The best path generated by DL-ACO, APACA and MO-FA.

original path very well. Under this circumstance, the risk of
collision will increase. Thus, we propose a piecewise B-spline
path smoother to achieve higher degree of fitting.

A B-spline curve is defined by n + 1 control points Bi and
a knot vector u, the formula is given by

C(u) =

n+1∑
i=1

Ni,k(u)Bi, (19)

where Ni,k(u) is the B-spline based function defined by the
following DeBoor-Cox recursion formulas

Ni,1(u) =

{
1, xi ≤ u < xi+1

0, otherwise
, (20)

Ni,k(u) =
(u− xi)Ni,k−1(u)

xi+k−1 − xi
+

(xi+k − u)Ni+1,k−1(u)

xi+k − xi+1
,

(21)

where xi is called knot values.
Different from conventional B-spline, the piecewise B-

spline smooths the path around each corner respectively. As
shown in Fig. 6, Ti−1 → Ti → Ti+1 is the original path, Ti is
the turning point and path around it should be smoothed. We
add P1, P2 in Ti−1Ti, P3, P4 on TiTi+1, and their locations
are calculated as:

P1Ti = P4Ti = Xsafe
θi
π
, (22)

P2Ti
P1Ti

=
P3Ti
P4Ti

= 0.5, (23)

where Xsafe is the safe distance which is calculated according
to the security requirements. Then the B-spline curve is defined
by P1, P3, P2, P4 using Eq.(19)-(21). For a complicated route

TABLE II
DESCRIPTION OF SIMULATION ENVIRONMENT

Map NO. Map name Start position End position

1 Complex1 (8,35) (40,33)

2 Double U-shape (12,10) (46,6)

3 Complex2 (7,43) (35,9)

4 Spiral (25,25) (41,2)

5 X-shape (25,19) (25,31)

6 Z-type (19,7) (30,43)

7 clasps (7,15) (46,20)

8 Corridor (5,17) (46,33)

with many turns, we do this at each corner such that the whole
path will be smoothed.

Fig. 7 displays the same path smoothed by conventional
B-spline and piecewise B-spline respectively. Obviously the
path smoothed by piecewise B-spline curve is more fitted with
the original path than that smoothed by conventional B-spline
curve. The overall advantages of the piecewise B-spline can
be summarized as:

1) The smoothed path is tangent to the original path, namely
that the robot does not have to swerve during the tracking
of the path.

2) Only the two lines around the corner have an effect on the
curve, any other paths can be changed without transforming
the smoothed path.

3) When the steering angle is large, the fitting between the
original path and the smoothed path will still be high.
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TABLE III
SIMULATION RESULTS OF DL-ACO, APACA AND MO-FA

Name Map NO. Length Smoothness Rateg

DL-ACO

1 58.72 4.52 1.00

2 91.06 2.96 1.00

3 89.22 7.17 1.00

4 110.54 13.61 0.98

5 67.82 5.60 1.00

6 145.32 18.92 0.99

7 45.67 1.37 1.00

8 96.54 19.74 0.98

APACA

1 60.43 9.42 0.75

2 94.39 7.85 0.63

3 104.00 19.63 0.70

4 133.93 16.50 0.35

5 79.91 14.13 0.95

6 153.32 30.24 0.42

7 46.87 2.35 0.90

8 117.74 27.48 0.46

MO-FA

1 63.30 5.51 0.86

2 93.33 4.05 0.99

3 92.70 9.74 0.95

4 113.48 15.41 0.74

5 69.92 8.01 1.00

6 153.85 23.93 0.81

7 45.84 1.37 1.00

8 107.40 22.04 0.78

V. EXPERIMENT AND DISCUSSION

In this section, two experiments are conducted to illustrate
the feasibility and merit of the proposed algorithm. In the first
experiment, simulations under different maps are performed
and the results are compared to that of other path planning
algorithms. While in the second experiment we apply this
algorithm on a robot for navigation in real environments.

A. Simulation and Comparison
To verify the adaptability of our algorithm in different

environments, eight maps are chosen for simulation, which
are all a square area within the size of 50× 50 and different
in terms of number of obstacles, shape of obstacles and width
of roads. Start and goal positions are randomly positioned and
their locations are depicted in Table II. Parameters of PEACO
are set as the following: n = 100, m = 20, α = 1, β = 3,
ρ = 0.03, Nmax = 100. Parameters of TPOA are set as:
m = 10, α = 0.3, β = 0.8, ρ = 0.1, Nmax = 100. The safe
distance Xsafe = 1.

Two other algorithms are selected for comparison: the
adaptive polymorphic ant colony algorithm (APACA) [33] and
the multi-objective firefly algorithm (MO-FA) [34]. APACA is
also a path planning algorithm based on ant algorithm, which
uses the adaptive strategy to guarantee the relative importance
of pheromone intensity and desirability. Besides, the direction

TABLE IV
PERCENTAGE OF IMPROVEMENT

Map NO.
APACA MO-FA

Leni Smi Rategi Leni Smi Rategi
1 0.03 0.52 0.25 0.07 0.18 0.14

2 0.04 0.37 0.37 0.02 0.27 0.01

3 0.14 0.63 0.30 0.04 0.26 0.05

4 0.17 0.18 0.63 0.03 0.12 0.24

5 0.15 0.60 0.05 0.03 0.30 0.00

6 0.05 0.37 0.57 0.06 0.21 0.18

7 0.02 0.41 0.10 0.01 0.00 0.00

8 0.18 0.28 0.52 0.10 0.10 0.20

Avg. 0.10 0.42 0.34 0.05 0.18 0.10

determining method is employed to accelerate convergence.
MO-FA is a swarm intelligence algorithm for multi-objective
path planning, which has a new evolutionary operator to
obtain accurate and effective paths. For parameters of APACA,
information heuristic factor is 1, desired heuristic factor is 5,
pheromone evaporation coefficient is 0.9, ant number is 120
and cycle number is 200. Parameters of MO-FA are set as:
the population size is 50, the generations is 150. Each method
runs 100 times in a map.

Fig. 8 displays the best path generated by each method.
Clearly that the path produced by our algorithm has less
number of turns and shorter length. For instance, our algorithm
can avoid U-type traps efficiently, while the APACA always
falls into the trap (see Map 3 and 5), and the difference of path
quality is more obvious in complex environments (see Map 3,
4 and 8). Besides, it is also revealed that the piecewise B-
spline smooths the path around the corner effectively without
affecting the safety.

Table III and Fig. 9 summarizes the qualitative comparison
between the features of our algorithm and other two algo-
rithms, including length, smoothness and rate of good solution
(Rateg). Length is calculated by Eq.(7), the smoothness of a
path is the sum of the angles between line segments for all
inside points on the path and is calculated by Eq.(16). Rateg is
an indicator denotes the stability of an algorithm, which is the
probability of finding the nearly optimal solution. We define
the quality of a route as

Rq = L+ 5× sm. (24)

The lowest Rq represents the best solution, and other solutions
whose Rq is less than 5% difference comparing with the best
solution are considered as nearly optimal solution. According
to the results of length and smoothness, our algorithm pro-
duces the shortest and smoothest route in all maps. The path
generated by APACA has large differences from our method,
especially in the presence of traps. This is because of the
heuristic information makes the ants go straight to the end
point, and the ants do not change their direction until they
face the obstacle. MO-FA provides better results. However,
due to the particles are randomly positioned, paths around
the corner often has some twists and turns, which affects the
quality of the route. With regard to (Rateg), our algorithm can
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Fig. 9. Algorithm performance by maps.

Fig. 10. The experimental Rikirobot.

produce a nearly optimal solution almost every time. MO-FA
can keep stable in simple environments (see Map 2, 5 and
7) while APACA has poor stability. The superiority of our
method is more obvious in complex maps. Table IV depicts
the percentage of improvement in all maps.

In conclusion, although the APACA can generate a feasible
path, its ability of avoiding traps is poor, which affects its
solution quality and stability. Even if the MO-FA can provide
similar solutions some time, its stability in complex maps
decreases quickly. These results can be interpreted to that our
proposed algorithm can generate a better and more robust route
consistently in terms of length, smoothness and safety.

B. Path Planning under Real Environment
In this subsection, real experiments are conducted to further

validate the effectiveness in practical applications of our
algorithm. As shown in Fig. 10, we use a Rikirobot for the
experiment, which is driven by a Raspberry Pi and uses the
laser radar Rplidar A1 to detect obstacles. One indoor and six
outdoor environments are selected as the experimental area.
Fig. 11 depicts the process of path generation, first the free
space area is extracted from the real map, and then the real
map is modelled into a 2-D grid-based map and input into
the Raspberry Pi. After the route is generated, the motion
instructions will be transmitted to the robot and let it to move
along the route until reaching the goal. The motion control

(a) (b)

(c) (d)

Fig. 11. Illustration of map modelling and path generation. (a) The
original map. (b) Extract the free space. (c) The grid-based map. (d)
Generate the path.

Fig. 12. Experimental results indoor.

laws that we used are in [35], [36]. Parameters of DL-ACO
are the same as that in computer simulations.

Fig. 12 displays the experimental results indoor. Respec-
tively are the running pictures and the corresponding trajecto-
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Fig. 13. Trajectory in outdoor environments. (Star) Start position.
(Triangle) goal position.

ries. The real environment is modelled into a 10× 10 square.
It is clear that the robot successfully avoids and maintains
a certain distance with obstacles. Besides, the robot passes
through five high-risk grids during the whole navigation,
which demonstrates that our algorithm can effectively take the
tradeoff between the path length and the safety. Trajectories
in outdoor environments are shown in Fig. 13. The robot
runs 5 times in each map and the trajectories are almost
identical. Paths around the corner are also well smoothed.
These results prove the effectiveness in practical applications
of the proposed algorithm.

Furthermore, we find that the runtime is directly related to
the resolution of the grid map. For instance, the runtime is less
than 0.5s under the 10× 10 indoor map, while we model the
outdoor map into 20×25, the runtime rises to 3s. Nevertheless,
high resolution can improve the accuracy of path planning.
Hence we need to keep a balance between the runtime and
the path quality in practical applications.

VI. CONCLUSION

In this paper, we have proposed a path planning approach
for autonomous mobile robot, i.e. DL-ACO, which utilizes
the concept of ACO. The goals are to benefit from its strong
searching ability and overcome its weakness. By using the
double-layer computing structure, our algorithm has good
stability showing that it can provide a good feasible solution
every time. Another advantage is that, when robots track on the
smoothed path, it can avoid jerky motion and simplify control
activity. Simulations show that DL-ACO is superior to other
algorithms in generating a shorter and smoother path with
good stability, as well as adapting to different maps. Real ex-

periments also verify its effectiveness for challenging practical
applications. However, our algorithm has a high requirement
in the accuracy of a map, which results in limited scenarios
for application. Future work will be directed towards multi-
robot path planning and trajectory optimization in unknown
dynamic environments.
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