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We experimentally investigate the temporal decay of homogeneous anisotropic turbu-
lence, monitoring the evolution of velocity fluctuations, dissipation and turbulent length
scales over time. We employ an apparatus in which two facing random jet arrays of
water pumps generate turbulence with negligible mean flow and shear over a volume
that is much larger than the initial characteristic turbulent large scale of the flow. The
Reynolds number based on the Taylor microscale for forced turbulence is Reλ ≈ 580 and
the axial-to-radial ratio of the root mean square velocity fluctuations is 1.22. Two velocity
components are measured by particle image velocimetry at the symmetry plane of the
water tank. Measurements are taken for both ‘stationary’ forced turbulence and natural
decaying turbulence. For decaying turbulence, power-law fits to the decay of turbulent
kinetic energy reveal two regions over time; in the near-field region (t/tL < 10, tL is
the integral time scale of the forced turbulence) a decay exponent m ≈ −2.3 is found
whereas for the far-field region (t/tL > 10) the value of the decay exponent was found to
be affected by turbulence saturation. The near-field exhibits features of non-equilibrium
turbulence with constant L/λ and varying Cε (dissipation constant). We found a decay
exponent m ≈ −1.4 for the unsaturated regime and m ≈ −1.8 for the saturated regime,
in good agreement with previous numerical and experimental studies. We also observe a
fast evolution towards isotropy at small scales, whereas anisotropy at large scales remains
in the flow over more than 100 tL. Direct estimates of dissipation are obtained and the
decay exponent agrees well with the prediction mε = m−1 throughout the decay process.

1. Introduction

Considering how turbulence interacts with objects immersed in the fluid in one way
(modifying the transport of the objects) and two way (how the objects modify the
turbulence) has wide application. Both small (D < η) and large (D > η) are relevant, as
well is considering whether the objects are deformable or not. Elghobashi (2018) provides
a review of computational methods for these problems and notes in his conclusion that
“the experimental data needed to validate the DNS results are virtually nonexistent”.
A key reason for this is the difficulty of obtaining a large enough volume of near HIT
turbulence in a stationary frame within which the 3D motion of particles can be studied.
We believe the facility presented in here could also be used to understand the dispersion
of inertial solid particles under background turbulence in a controlled environment,
extending the recent work on the settling dynamics of large irregular particles in quiescent
flow in Esteban et al. (2018a) and Esteban et al. (2018b) among others.

Turbulent flows encountered in nature and in engineering problems are usually not
isotropic. In the absence of turbulence production, this type of turbulence decays over

† Email address for correspondence: g.bharath@soton.ac.uk

Page 1 of 28



2 L.B. Esteban, J.S. Shrimpton and B. Ganapathisubramani

space and time. Therefore, the study of generation and decay of homogeneous anisotropic
turbulence is of paramount importance in furthering the understanding of the physics of
these flows. Despite being a ‘simple’ flow, the generation of homogeneous turbulence
in the laboratory has been a matter of investigation over the past several decades.
Most studies have attempted to generate homogeneous isotropic turbulence (HIT). Mean
velocity gradients are generally needed for the production of turbulent kinetic energy
(TKE) and they usually remain in the flow, introducing a certain degree of anisotropy.
Various studies have attempted to reach the high Reynolds numbers that are desired so
that the inertial and dissipation range of scales are sufficiently separated. Finally, most
experiments and numerical simulations have been carried out for cases where the largest
scales of the flow are smaller than the size of the facility (or the DNS box), and therefore
confinement does not affect turbulence evolution.

In this study, we present experimental results on the decay of homogeneous anisotropic
turbulence. We monitor the evolution of velocity fluctuations, dissipation and different
length scales during the decaying process. We report changes in the decay power laws
as the turbulence length scale starts to get affected by the size of the facility. To our
knowledge, this is the first experimental study that presents these details in a temporally
decaying spatially stationary flow. In the following sections, we present a review of the
previous studies on generation and decay of homogeneous turbulence and identify the
gaps that can be addressed through the present study.

1.1. Generation of homogeneous turbulence

The most common manner of generating turbulence in laboratories is by means
of a steady flow passing through a grid or mesh. These flows can achieve relatively
high Reynolds numbers when using active grids ((Makita 1991), (Mydlarski & Warhaft
1996), (Mydlarski & Warhaft 1998), (Larssen & Devenport 2011), (Kang et al. 2003))
or low-viscosity-fluids ((Kistler & Vrebalovich 1966), (Bodenschatz et al. 2014)). In
these scenarios, turbulence moves with the flow and is homogeneous and isotropic in
planes parallel to the grid. However, turbulence generated with these methods exhibits
anisotropy in the streamwise velocity component. To overcome this limitation, stationary
turbulence has been widely investigated by using stirring devices during the last few
decades. These methods use oscillating grids ((McDougall 1979), (De Silva & Fernando
1994), (McKenna & McGillis 2004)) or counter/contra-rotating disks separated by certain
distance ((Marie & Daviaud. 2004), (Volk et al. 2006), (Blum et al. 2011)). Although these
methods have been improved with optimal mesh sizes, strokes and frequencies of the grid
oscillation, the turbulence generated still suffers from large mean flows with Ū ≈ 0.25u′.
Furthermore, a mechanical system driven by a motor is needed for the grid motion. This
makes it more difficult to build a large experimental setup where high Reynolds numbers
are desired.
Another interesting approach to generate HIT is the usage of loudspeakers symmetrically
arranged in a three dimensional volume pointing towards the center of the chamber
((Hwang & Eaton 2004), (Webster et al. 2004), (Warnaars et al. 2006), (Lu et al. 2008),
(Goepfert et al. 2010), (Chang et al. 2012)). The activation of the loudspeakers generate
synthetic jets and induce vortex rings that encounter each other in the center of the
chamber. The quality of the turbulence reported using this approach is better than using
oscillating grids, but the region of interest covers a small volume (for example, a 5 cm
radius in Chang et al. (2012)). Similarly, loudspeakers can be substituted by propellers
as in Zimmermann et al. (2010) and Dou et al. (2016), but the volume of interest remains
a limitation for these systems.

A random jet array (RJA) is a relatively new approach to generate Quasi-HIT with
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zero mean flow ((Variano et al. 2004), (Lavertu et al. 2006), (Variano & Cowen 2008),
(Delbos et al. 2009), (Khorsandi et al. 2013)). This device consist of a planar configuration
of jets that are turned on and off, randomly and independently, to produce turbulence.
The use of a single RJA creates a nearly homogeneous flow with turbulence decay in
the direction normal to the plane of jets with negligible mean flow, Ū ≈ 0.1u′, (Variano
& Cowen 2008). Additionally, the turbulence generated with this device is reported to
have isotropy values of the same order of magnitude that in grid-generated wind tunnel
turbulence (u′1/u

′
2 ≈ 0.8 − 0.66) and relatively high Reynolds numbers (Reλ ≈ 314)

(Variano & Cowen 2008).
Recently, in Bellani & Variano (2013) two RJA were separated by a distance of 162 cm,

and faced each other. They used the same firing algorithm as proposed for the case of a
single RJA (Variano & Cowen 2008), resulting in a nearly HIT with a negligible mean
flow at the middle region of the tank. At the same time, the isotropy was improved and
was reported to be in the range of 0.95−0.99. They also obtained high Reynolds numbers
(Reλ ≈ 334) and a large region of HIT of approximately 0.4× 0.4× 0.2 m3.

Following a similar approach as in Bellani & Variano (2013), Carter et al. (2016)
presented a facility in air consisting of two planar arrays of quasi-synthetic jets (256 in
total) creating the largest region of homogeneous turbulence to date. Contrary to what
was found in Bellani & Variano (2013), they observed anisotropy at large scales for all
configurations tested.

1.2. Decay of homogeneous turbulence

Together with the generation of turbulence, the study of its natural decay has been a
matter of debate. Von Karman & Howarth (1938) derived the transport equation that
connects the double and triple streamwise velocity correlation functions for temporally
decaying HIT:
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where, t is time, r is the radial distance from a given point, ν is the kinematic viscosity,
Buu is the double correlation and Buuu is the triple correlation of the u velocity
fluctuation.

Under certain assumptions, this transport equation can predict the decay of turbulence.
The most common approach to solve this equation is to look for solutions for which the
correlation functions remain self-preserving during the decay. Thus, double and triple
correlation functions collapse when they are normalized using a single length scale and
a single velocity scale. Dryden (1943), Batchelor (1948) and Korneyev & Sedov (1976)
among others, investigated these type of solutions, leading to the commonly accepted
power law decay for the turbulent kinetic energy over time, which has the form:

q2 ∼ (t− t0)m (1.2)

where q2 = u′21 + u′22 + u′23 is twice the turbulent kinetic energy, m is the power-law
exponent and t0 the temporal virtual origin. Early values of m obtained experimentally
in Compte-Bellot & Corrsin (1966) led to the present consensus that m 6 −1. From later
experimental studies, as in Uberoi & Wallis (1967), Ling & Wang (1972) or el Hak &
Corrsin (1974), other m values were obtained, ranging from −1 to −1.75.

Wind tunnels equipped with conventional passive grids, fractal passive grids and
active grids have been extensively used to investigate the decay of quasi-homogeneous
turbulence along stream-wise direction of the wind tunnel test section. However, in
all these experiments, the temporal decay of turbulence is modelled as a function of
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downstream distance invoking Taylor’s hypothesis (Taylor 1938). Lavoie et al. (2007)
investigated whether the initial conditions can affect the decay exponent m of approx-
imately homogeneous isotropic turbulence. They carried wind tunnel experiments with
four different conventional passive grids and two test sections and did not find any
significant effect of initial conditions on the decay exponent m. However, experimental
results obtained from multi-scale grids in Krogstad & Davidson (2011) and further
analysed in Valente & Vassilicos (2012) showed that the decay of approximately ho-
mogeneous turbulence remains dependent on the inflow conditions far downstream from
its generation. Therefore, the decay exponent m becomes non-universal and changes when
the turbulence-generating grid is modified (1.15−1.25), (Valente & Vassilicos 2012). They
believe that multi-scale wake interactions in the near-field of the turbulence-generating
grid remain in the flow very far downstream and are responsible for the change in the
decay exponent. Similarly, Hearst & Lavoie (2014) performed wind tunnel experiments
with a square-fractal element grid at farther downstream locations than previous studies
and showed that a classical power-law decay region exists with exponents m = −1.37
and m = −1.39 for Reynolds number based on the integral length scale ReL = 65000 and
ReL = 57000 respectively. The decay in the near-field region (x/L < 20) also followed
a power-law evolution but with much higher decay exponents m ≈ −2.79, being in
accordance with results obtained in Valente & Vassilicos (2011) for multi-scale grids.

Direct numerical simulations (DNS) of periodic three-dimensional box turbulence
have been carried out to investigate the temporal decay of HIT. As in the experiments
detailed above, DNS results also give a broad spread of m values for homogeneous
isotropic turbulence, as in Huang & Leonard (1994), de Bruyn Kops & Riley (1998),
Wray (1998), Antonia & Orlandi (2004) or Burattini et al. (2006). More recently, Goto
& Vassilicos (2016) carried direct numerical simulations of decaying three-dimensional
Navier-Stokes turbulence in a periodic box with values of Taylor length-based Reynolds
number (Reλ = u′λ/ν, where λ is the Taylor micro scale) up to 300. They combined these
results with grid-generated turbulence with Reλ ≈ 350 to reveal the ‘Non-equilibrium
dissipation law’ for near-field regions. Among the features discovered, they found a
critical time when the scaling of the turbulence dissipation changes from the one recently
discovered in DNS’ of forced unsteady turbulence and in wind tunnel experiments (for
near-field) to the classical scaling proposed by Taylor (1935) and Kolmogorov (1941)
(for far-field).

Similarly, Meldi (2016) performed numerical calculations based on the eddy damped
quasinormal Markovian (EDQNM) model to investigate the signature of production
mechanisms in isotropic turbulence. They showed that an exponential decay law can
be observed if the intensity of the forcing is sufficiently strong to drive the turbulence
dynamics and then the decay is followed by a classical power-law decay. These results
are also in good agreement with Hurst & Vassilicos (2007), Mazellier & Vassilicos (2010)
and Meldi et al. (2014) who also observed the near-exponential turbulence decay. As
exposed in Meldi (2016), “while a power-law evolution of HIT statistical quantities is
eventually reached for all the classes of turbulence decay investigated, exponential decay
law can be initially observed” since this is governed by the forcing time evolution. An
interesting point is also revealed by Meldi (2016) concerning the time-lasting effects of
production mechanisms. They suggest that these effects can be significantly larger than
the observation time in grid experiments. Therefore, other facilities for which Taylor’s
hypothesis is not invoked, and data can be taken at latter decay times, are of interest to
investigate these phenomena.
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1.3. Confinement effects on decay of homogeneous turbulence

Although many numerical calculations (DNS, EDQNM) investigate the evolution of
HIT decay over time, most studies do not continue simulations when the box-size becomes
comparable to the integral length scale of the flow. This is because these studies want
to avoid non-physical effects that result from meeting this condition in the presence of
periodic boundary conditions. Thus, confinement effects due to wall interactions still
represent a great challenge in the study of turbulence decay. This aspect is generally
referred as saturation and is very relevant for the analysis of the test case of HIT. When
the turbulent flow is unbounded, the exponent leading the evolution of the turbulent
kinetic energy, the energy dissipation rate, the integral length scale and the Reynolds
number is determined by the turbulence production mechanisms / initial conditions.
However, as the integral scale grows to the size of the box that contains the flow
(simulation box-size or facility cross-section) an increase of the decay exponent for the
TKE and dissipation rate (ε) is expected (m = −2 and mε = −3), as introduced in
Skrbek & Stalp (2000) and further discussed in Touil et al. (2002).

Works based on a spectral space approach connect the decay exponent with the energy
distribution at very large scales; i.e. they express the decay exponent of the turbulent
kinetic energy as a function of the slope (σ) of the energy spectrum at very small
wavenumber (k) . The most studied values are σ = 2 and σ = 4, since they are related to
the general conservation principles and historically used invariant quantities. The former
is related to conservation of linear moment and the Birkhoff-Saffman invariant and is
referred to as the Saffman turbulence. The latter is associated with the conservation
of angular momentum and the Loitsyansky invariant and is referred to as Batchelor
turbulence. In Touil et al. (2002), they compared results from DNS, LES and the EDQNM
model on the decay of isotropic turbulence on a finite domain. In order to do so, they
introduced a low-wavenumber cut-off into the energy spectrum. They used a pseudo-
spectral technique with the low-wavenumber cut-off imposed at k = 2π/d (d being the
size of the box) but otherwise behaving as k4 (σ = 4) at small k. An initial power-law
decay was observed for all models tested with an exponent m ≈ −1.42 in agreement with
the analytical expression for the model spectrum introduced. Then, the decay exponent
increased as the scales of the flow grew during the decay and once the flow was fully
saturated a decay exponent m = −2 was observed.

On the other hand, most numerical investigations only explore the decay of HIT; yet
the initial conditions in wind tunnel experiments are neither homogeneous nor isotropic,
and they only become quasi-isotropic some distance downstream from the grid (i.e.
far-field of the grid). In Biferale et al. (2003), they carried out a numerical investigation
for the decay of three-dimensional anisotropic turbulence. They found that both large
and small scales begin to ‘isotropize’ after roughly one eddy turnover time (tL) and
become fully isotropic (within statistical fluctuations) for t > 100tL. However, small
scales showed a much higher degree of isotropy than large scales.

To our best knowledge, the study of Hwang & Eaton (2004) is the only experimental
study where a zero-mean flow facility has been used to investigate the effect of natural
decaying turbulence. They generated stationary turbulence by using eight synthetic jet
actuators on the corners of a cubic chamber. The integral length scale of the flow for forced
turbulence was L = 56 mm, which corresponded to ≈ 1/7 of the size of the chamber. The
relative size of the integral length scale in this setup is in fact considered ‘too big’ for
unbounded flows in classical DNS with a periodic box domain. Unsurprisingly, they found
a power-law decay for the TKE in time with an exponent of m = −1.86. They suggested
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a possible weak isotropy during the decay and the initial conditions to be responsible
for the high value of m. However, we believe the saturation effect might have played a
crucial role during the decay.

1.4. Objectives of this study

In here, we present an experimental setup that can directly observe the temporal decay
of turbulence without invoking Taylor’s hypothesis. This consists of a modified version of
the RJA proposed in Bellani & Variano (2013). This allows us to generate homogeneous
but anisotropic (to a certain degree) turbulence and examine how the characteristics of
this type of turbulence evolves over time as it decays. Moreover, as the turbulence decays,
the scales of the flow grow and the integral length scale could become comparable to
the facility size. Thus, our aim is twofold: first investigate the evolution of anisotropic
turbulence and second determine if spatial confinement affects the decay as previously
found in DNS studies.

In section 2 we describe the apparatus and techniques. In section 3 we investigate
the quality of the turbulence generated for the ‘stationary’ state and report the main
turbulent quantities estimated. In section 4 we investigate the evolution of anisotropic
turbulence and report on the saturation effects and we conclude in section 5.

2. Experimental setup and measurement technique

2.1. Facility Description and firing protocol

The experimental facility is an open glass (bottom and walls) and steel-framed tank
of dimensions 200 × 85 × 100 cm3. The origin of the coordinate system is at the center
of the tank, x1 is oriented along the horizontal dimension of the tank (200 cm length),
x2 along the vertical dimension of the tank (85 cm length) and x3 along the span-wise
direction (100 cm length).
The structure holding the water tank is designed so that the center region of the tank
(100× 90 cm) is optically accessible from the bottom. The instantaneous velocity vector
Ũ(x1, x2) is defined to be aligned with the x1 and x2 axes at the center of the span-wise
dimension. The tank is filled with tap water and is continuously filtered to 5 microns
when experiments are not undertaken.
Turbulence is generated by two facing planes of randomly actuated jet arrays, in the
same fashion as in Bellani & Variano (2013). Each plane of jets contain 48 bilge pumps
(Rule 24, 360 GPH) arranged in a 8 × 6 array as shown in figure 1. The pumps take in
water radially at their base and discharge it axially via a cylindrical nozzle with 1.8 cm
inner diameter. Each pump acts as a synthetic jet, in the sense that they only inject
momentum to the system, since the pump intake and nozzle are contained within the
same volume of fluid. The nozzle outlets are aligned so that they form a Cartesian grid
with center-to-center distance (M , as the mesh length of a wind tunnel grid) of 10 cm in
both horizontal and vertical directions. The temperature of water while the facility is in
operation was monitored and found to change marginally during the experimental runs.
Each plane of bilge pumps (48 units) is connected to a solid state relay rack SSR-RACK48
equipped with quad-core relays SSR-4-ODC-05. Each relay closes a circuit that supplies
12 V and up to 3 A to any specific pump. The relays are triggered by TTL signals from
a Measurement Computing 96 channel digital output card (PCI-DIO96H) controlled
by MATLAB. The firing algorithm we employ to force turbulence is the ‘Sunbathing
algorithm’ originally proposed in Variano & Cowen (2008), and latter investigated in
Bellani & Variano (2013) and Carter et al. (2016) among others. This forcing algorithm

Page 6 of 28



Temporal decay of homogeneous anisotropic turbulence 7

Relay rack with 
Solid State Relays

Bilge pump array

PC with 
PCI-DIO96

12 V

5 V

Power 
Supply

12 V

Figure 1: Sketch of a bilge pump array (RJA) connection to the SSR-RACK48, PCI-
DIO96H and power supply.

pertains to the family of stochastic forcing in both space and time. The time durations
for each pump to be active or inactive are picked from Gaussian distributions with a
characteristic mean and standard deviation for the ‘on’ and ‘off’ times. The normal
distribution parameters are (µon,σon) = (3, 1) s, and (µoff ,σoff ) = (21, 7) s, which
results in an average of φ = 12.5% of the pumps being ‘on’ at any given time. This
algorithm was identified in the literature to provide the best turbulence quality in terms
of homogeneity and isotropy. The average time for which the tank is operated under the
same conditions (τf = φµon) is smaller than the elapse time between subsequent image
samples (2 s) and therefore these are uncorrelated in time with the forcing scheme.

2.2. Particle Image Velocimetry (PIV) measurements

All measurements are performed along the x1 − x2 symmetry plane, whose origin is
at the center of the water tank. The flow is seeded with 50µm polycrystalline particles.
The seeding is mixed in the water tank prior to the experimental run while the jets are
randomly actuated to assure an even mixture. The imaging system consist of a dual-pulse
Nd:YAG laser (Bernouilli, 532 nm wavelength, 100 mJ/pulse) synchronized with a CCD
camera (Imperx 6600× 4400 px, 5.5µmpx size). The laser beam is shaped into a 3−mm
sheet (with 1.5 mm of full width at half maximum) via a combination of two spherical
and one cylindrical lenses and directed vertically through the glass bottom of the tank.
We use a Sigma lens of 110 mm, leading to a magnification factor of ≈ 38 px/mm and a
field of view of 110× 160 mm on the x1 − x2 symmetry plane. An external synchronizer
that allows variable pulse separation (dt) is used to trigger the laser and camera system.
The pulse separation time is chosen such that the average particle displacement is limited
to 4 − 6 px. This low particle displacement is necessary to reduce out-of-plane loss of
particles. The velocity fields are obtained using DaVis, with a sliding minimum intensity
background subtracted from every image prior to the velocity processing. The image
processing is done by using an iterative cross-correlation algorithm with one refinement
and three passes (32× 32 px first pass and 24× 24 px second and third pass) with a 75%
overlap. A Gaussian fitting function is used to determine sub-pixel displacement. The
sampling frequency is 0.5 Hz, and we acquire 1250 pair of images for stationary forced
turbulence.
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Figure 2: Sketch of the water tank equipped with a co-planar arrangement of RJA’s and
the PIV setup.

Vector validation is based on signal-to-noise ratio and deviation from the median of
the neighbouring vectors. Non-valid vectors are less than 4 % and are later interpolated
from neighbouring vectors.
The random error on the statistics associated with the finite number of samples is smaller
than 3% for the mean and for the root mean square velocity fluctuations, based on a 95%
confidence level. We choose the sampling frequency of 0.5 Hz to guarantee full statistical
independence of the realizations, given that the typical large eddy turnover time is tL ≈
1.5 s. In the presentation of the results, the velocity measured Ũi is decomposed into
the spatial averaged velocity Ui and velocity fluctuations ui, such that Ũi = Ui + ui.
The prime symbol stands for root mean square of the velocity fluctuations, defined as

u′i =

√
〈u2i 〉; and the operators ·̄ and 〈·〉 indicate ensemble average and spatial average,

respectively. The sub-index 1 and 2 stand for the velocity components along the horizontal
and vertical direction, respectively.

3. Results for Stationary Turbulence

3.1. Single-point statistics and flow quality

The statistics of the ‘Sunbathing algorithm’ for stationary turbulence are investigated
using 2D PIV data, as aforementioned. Figure 3 a) shows a snapshot of the turbulent flow
at the center of the water tank, visualized by means of out-of-plane vorticity. Besides,
the probability density function of the horizontal and vertical velocity fluctuations (ui)
are shown in figure 3 b) (1250 pairs of images). The ensemble average of the in-plane
mean velocity yields a value of (Ū1, Ū2)=(3.6, 1.5) mm/s. This is one order of magnitude
smaller than the velocity fluctuations and consistent with other results in the literature;
(Bellani & Variano 2013), (Carter et al. 2016).

These two quantities, mean and velocity fluctuations, are characterized by having an
homogeneous distribution that spans to all the region investigated in here.
The homogeneity deviation is used to evaluate the spatial variation of the rms velocity
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Figure 3: Instantaneous realization of out-of-plane vorticity a). Distribution of horizontal
and vertical velocity fluctuations represented with circles and squares respectively. The
solid lines represent the best fitted normal distribution b).

fluctuation as

HD =
2σu
u′

(3.1)

where σu is the spatial standard deviation of the ensemble average of the velocity

fluctuations (

√
u2i ), whereas the factor 2 warrants a 95 % confidence interval. HD is

less than 0.1, showing good flow homogeneity in the domain investigated.
Similarly, the mean flow factor is used to show the strength of the mean flow in relation
to the velocity fluctuations;

MFF =
|U |
u′

(3.2)

This flow factor is 0.012 showing the low relative strength of the mean flow in relation
to the velocity fluctuations.
The strain-rate factor compares the strain within the ensemble average of the velocity
fluctuations with the strain in the fluctuating velocity field as:

MSRF =

〈
∂u1

∂x1√
s211

〉
(3.3)

where s11 is the longitudinal component of the fluctuating strain-rate tensor

sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. The velocity gradient ∂u1/∂x1 is verified to be the largest

among the measured components of the ensemble average velocity gradient tensor.
Therefore, the value of MSRF = 0.043 confirms the low level of mean flow strain
compared with its fluctuating counterpart.

3.2. Multi-point statistics and flow scales

Two-point correlation functions are used to investigate turbulent integral length scales
(Lij) and Taylor length scales (λ1,λ2). The normalized correlation function is defined as:

ρii(r) = 〈ui(x+ r)ui(x)〉/〈u2i (x)〉 (3.4)

Page 9 of 28



10 L.B. Esteban, J.S. Shrimpton and B. Ganapathisubramani

0 0.1 0.2 0.3 0.4 0.5 0.6

X[mm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
ii
(r

j
)

ρ11(r1)
ρ22(r2)
ρ11(r2)
ρ22(r1)

Figure 4: Longitudinal and transverse two-point correlation for the ‘Sunbathing
algorithm’ firing scheme, where the vertical broken line shows the start of the
extrapolation.

being independent of the position vector x for homogeneous turbulence. The integral
length scale that characterizes the velocity fluctuations ui over separations aligned with
the position vector xj is obtained as:

Lij =

∫ r0

0

ρii(rj)dr (3.5)

where rj represents the separation in the direction xj and r0 is the first zero-crossing of the
correlation function. The experimental data allows us the integration up to a distance of
16 cm. We extrapolate the tail of the correlation function using an exponential fit up to a
value of ρii(rj) = 0.005 and found an integral length scale L11 ≈ 9.1 cm for the horizontal
velocity fluctuation along the longitudinal direction. This result show that the correlation
function from the experimental data only resolves the flow to distances r1 < 2L11 and
therefore, this magnitude should be taken as an estimate. Figure 4 shows the correlation
function of the horizontal and vertical component of the velocity fluctuations along the
longitudinal and transverse direction, with the vertical broken line marking the start of
the extrapolation region.

Table 1 shows that large scales have significant anisotropy, with an integral scale ratio
L11/L22 ≈ 1.6. There are several differences between the setup presented in here and
the one in Bellani & Variano (2013) that introduce large scale anisotropy. The bilge
pumps in Bellani & Variano (2013) are mounted horizontally with a 90o elbow attached
to the original cylindrical nozzle of the pump. This increases the size of the orifice from
18 to 21.9 mm and also modifies the components of the momentum introduced in the
system, introducing strong secondary flows as detailed in Hellström et al. (2013). The
size of the water tank in Bellani & Variano (2013) is larger than the one presented in
here, they use mesh grids in front of the RJA and the working distance between RJA is
slightly larger. Similarly, we observed that the turbulence generated in their facility shows
a relatively small mean velocity fluctuation and therefore Reynolds number compared
with the one presented in here. It is also interesting to note that the water pump flow rate
is proportional to the current supplied and therefore, small differences in power supplies
can lead to differences in the flow generated. In here, the power supplied to the water
pumps was verified to give the maximum flow rate.

On the other hand, in the thorough study of Carter et al. (2016), they observed similar
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HD MFF MSRF u′1[×10−2ms−1] u′2[×10−2ms−1] L11[cm] L22[cm] λ1[mm] λ2[mm] Reλ1

0.049 0.012 0.043 5.36 4.42 9.1 5.6 11 9.6 587

Table 1: Main turbulence statistics for the ‘Sunbathing algorithm’.

values of large scale anisotropy as in here and suggested that an excess of momentum on
the horizontal direction was carried by their pressurized nozzles. They investigated the
spacing between arrays of jets, the effect of passive grids and the spacing between working
jets (M) and found that the large-scale anisotropy was almost unaffected. Therefore, we
believe the excess of horizontal momentum is also the cause of the large-scale imbalance
in our facility.

The Taylor length scale is obtained by fitting a parabola to the three first uncorrelated
points of the correlation function (excluding the origin). Then, the crossing point of the
parabola with the x−axis defines the length of this turbulent scale, whereas the crossing
of the parabola with the y−axis defines the ‘true’ rms velocity and also gives a measure
of the random noise introduced during the PIV processing (Adrian & Westerweel 2011),
of ≈ 5% in here.

To calculate the Kolmogorov scales of the flow, a reliable estimation of the turbulent
kinetic energy dissipation rate is needed. To do so, first we evaluate the flow isotropy at
small scales by comparing the velocity gradients of the 2D PIV data after applying
a Gaussian smoothing of 3η as proposed in Ganapathisubramani et al. (2007); i.e.
2∂ui∂xi

= ∂ui
∂xj

for isotropic turbulence. We observe that for forced stationary turbulence, the

ratio of longitudinal to transverse velocity derivatives does not correspond to isotropic
turbulence. In contrast, we observe an average ratio of 1.3∂ui∂xi

≈ ∂ui
∂xj

for both velocity

components; i.e. i 6= j. Therefore, based on this result and the axisymmetric nature of
the jet forcing around the x-axis reported in previous studies (Variano & Cowen 2008;
Bellani & Variano 2013; Carter et al. 2016; Alvarado et al. 2016), we estimate the TKE
dissipation rate following the equation derived in George & Hussein (1991) for local
axisymmetric turbulence,

ε = ν
[
−〈s211〉+ 2〈s212〉+ 2〈s221〉+ 8〈s222〉

]
(3.6)

where sij is the fluctuating strain rate. The presence of noise in high-resolution PIV
data rapidly increases the error in the dissipation rate leading to an overestimation of
this parameter, as demonstrated by Saarenrinne & Piirto (2000). The PIV data we use
resolve all spatial scales of the flow, with a vector spacing ∆x ≈ 0.9η. However, the
strong out-of-plane motion inherent of this facility increases the error associated with
random experimental noise and consequently, dissipation rate for which the velocity
gradients are calculated will be affected, as investigated in Tanaka & Eaton (2007) for
sub-Kolmogorov PIV resolution and in de Jong et al. (2009) or Buxton et al. (2011) for
∆x > η. To reduce the effect of noise in the direct estimation of the TKE dissipation
rate, we apply a Gaussian filter to the velocity field with a kernel size 3η. This filter size
in space -introduced in Ganapathisubramani et al. (2007)- is equivalent to a frequency
filter of 1.75fη for point measurement techniques, identified in Antonia et al. (1982) as
the optimum setting to capture velocity gradients accurately. The dissipation estimate
can be also based on the scaling argument ε = Cεu

′3/L11, where Cε is a constant of order
unity (Sreenivasan 1984). Later results from DNS simulations of forced homogeneous
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12 L.B. Esteban, J.S. Shrimpton and B. Ganapathisubramani

ε = Cεu
′3/L11 ε (Unfiltered) ε (3η filter) SFT

0.86 2.09 1.48 1.42-1.36

Table 2: Dissipation rate estimates. The direct estimate of ε from the unfiltered and
filtered data comes from eq. 3.6; SFT stands for Structure Function Fit. Dissipation rate
in [m2s−3 × 10−3]

ε (3η filter) [m2s−3 × 10−3] η [mm] τη [ms] uη [mms−1]

1.48 0.1615 26 6.2

Table 3: Dissipation rate estimate and Kolmogorov scales, η refers to length scale, τη to
time scale, and uη to velocity scale.

isotropic turbulence in Sreenivasan (1998) and Burattini et al. (2005) found the value
for Cε (in their paper, it is represented as A) to be ≈ 0.5 for Reλ > 200. Here, we
use Cε = 0.5 to estimate the dissipation rate in table 2, although this approach seems
to underestimate TKE dissipation rate severely. The results obtained from the scaling
argument and direct measure of the TKE dissipation rate are compared against the value
obtained from the structure function fitting method. This is based on the relationship
between the velocity structure functions and the dissipation rate invoking Kolmogorov’s
second similarity hypothesis (Kolmogorov 1941) in the inertial sub-range. In here, we use
compensated second-order structure functions, as detailed in Appendix A. The measure
of dissipation rate with this method was considered in de Jong et al. (2009) as the most
robust indirect method and has been extensively used in zero-mean flow facilities, (Bellani
& Variano 2013), (Carter et al. 2016).

The TKE dissipation rate estimates obtained from the longitudinal structure functions
from both velocity components (fig. 15 in Appendix A) agree within a few percent,
giving a TKE dissipation rate of ε ≈ 1.4 × 10−3 m2s−3. Furthermore, this value is in
good agreement with the dissipation estimate obtained from eq. 3.6 after applying a
Gaussian spatial filter to the velocity fields of ≈ 3η kernel size, which gives a value of
ε = 1.48×10−3 m2s−3. As discussed in de Jong et al. (2009), the effect of the interrogation
window size or the spatial filtering of the velocity field for the structure function fitting
method is not as severe as in the direct methods. Velocity differences in the structure
function are calculated over much larger separation distances and therefore, the noise
effect is attenuated. It is important to note that the effective laser sheet thickness
corresponds to approximately 10η. However, the agreement between the methods used
gives us confidence on the results and shows that there is not a perceptible bias associated
with the width of the light source. In view of the good agreement between the direct
measure of turbulence and the structure function method, we favour the direct measure,
from which Kolmogorov scales are obtained and included in table 3.

4. Results for decaying turbulence

The water tank was actively stirred using the ‘Sunbathing algorithm’ for both RJA’s
for a period of 5 minutes until the turbulence level reached a ‘stationary’ state. Then,
all pumps were turned off simultaneously with the start of the 2D PIV system. This
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Figure 5: Variations of the exponent of the decay m with various tmin for a set of virtual
origins t0. These results correspond to the far-field data for q2u′

2
. The black thick line

indicates the algorithm’s chosen solution.

procedure was repeated so that seventy five data runs were ensemble averaged to obtain
statistics for data sets of 40 image pairs each. The first data point is taken right after
the actuators were turned off, corresponding to forced turbulence. The remaining data
points were taken at intervals of 2 s for the first 20 image pairs (up to t = 40 s) and
then at logarithmic spaced intervals from t = 40 s to t = 400 s. The pulse separation (dt)
for the first pair of images was 2 ms and logarithmically increased up to 36 ms for the
last image pair to maintain maximum displacements of 4−6 px. as the turbulence decayed.

Time evolution of turbulence statistics were investigated and time was made non-
dimensional (t∗) with the characteristic eddy turnover time (tL = L11/u

′) of the ‘sta-
tionary’ case. It is common to use a least-squares method to fit the experimental data
of q2 to equation 1.2. However, rather than treating t0 as a free parameter, Hearst &
Lavoie (2014) proposed to insert a range of values for the virtual origin t0 into the
power-law to latter determine m. There is also significant ambiguities associated with
identifying the appropriate tmin that marks the beginning of the power-law decay range.
It is generally accepted that in wind tunnel experiments, a distance of 30L11 downstream
of the mesh is sufficient to be in the ‘far-field’ of the decay regime where turbulence has
fully developed. However, in this turbulent flow it is not clear the time that must elapse
before the turbulence fully develops. In here, we used the technique described in Hearst
& Lavoie (2014) to overcome the ambiguity associated with this unknown, and it is as
follows:
• A linear fit using a least-square regression algorithm is applied to equation 1.2 for

virtual origins over a range of −2 < t0 < 2 in increments of 0.5. At the same time, for
each t0, the power-law is estimated for various tmin. Doing so, a matrix of m values is
generated where one dimension represents the dependence of m on t0 and the other on
tmin.
• The virtual origin t0 is selected by choosing the value that gives the lowest standard

deviation of m relative to its mean for all choices of tmin, indicating that the power-law
is constant over the largest period of time.
• The root-mean-square deviation is then calculated between the data and the power-

law fit for each possible choice of tmin. Then, tmin is chosen such that this parameter is
minimized.
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Figure 6: Time evolution of non-dimensional turbulent kinetic energy during the decay;
q2/q2t=0. The dashed-dotted line represents the near-field and the dashed line the far-
field. Details about the fitting procedure are in included in this section and the fitted
parameters are shown in table 4.

Quantity Decay Range Decay type m t0

q2 t∗ < 10 Near-Field −2.3 −5
q2 t∗ > 8 Far-Field −1.55 0.5

Table 4: Fitted constants for the power-law decay of q2. Near-field and far-field fits are
made for data at t∗ < 10 and t∗ > 8, respectively.

The above technique was applied to the experimental data of q2, q2u′
1

and q2u′
2
. Figure 5

shows the variation of m with tmin for different values of t0 for q2u′
2
. The uncertainties

on the power-law parameters are ∆t0± 0.5 and ∆m± 0.01 and table 5 shows the results
of the power-law fitting process. Fits are made to the near-field (t∗ < 10) and far-field
(t∗ > 8) with a region of overlap of about two eddy turnover times. An additional fit
is made for the decay on the saturation regime; t∗ > 40 for q2u′

1
. We also evaluate the

uncertainty of the decay coefficients due to the statistical convergence of the 75 runs. We
investigate the decay coefficient of ensemble averages of 45 and 60 randomly picked cases
using a pseudo-random algorithm implemented in Matlab. We find that the deviation
of the decay coefficient m for the ensemble averages of 45 cases is within 5% of the
complete set and it reduces to 3% for ensemble averages of 60 cases. Thus, we propose
to use the deviation in the ensemble average of 60 cases as the maximum uncertainty in
the determination of m for the 75 cases.

First, we investigate the decay of q2 under the assumption of axisymmetric turbulence;
q2 = u′1

2
+ 2u′2

2
. In figure 6 one can see that the near- and far-field fit clearly differ.

The decay exponent found for the near-field (m ≈ −2.3) is similar to the values
obtained in fractal-element grids for regions close to the grid where turbulence has not
fully developed; m ≈ −2.5 in (Valente & Vassilicos 2011) or m ≈ −2.8 in Hearst &
Lavoie (2014) among others. In contrast, the far-field decay shows a decay exponent
(m = −1.55) slightly higher that previous wind tunnel experiments (m ≈ −1.39 in
Hearst & Lavoie (2014) or m = [−1.15,−1.25] in Valente & Vassilicos (2012)) and DNS
studies (m = [−1.19,−1.39] in Burattini et al. (2006)).
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Figure 7: Time evolution of the non-dimensional turbulent kinetic energy from vertical
velocity fluctuations (q2u′

2
/q2t=0) during the natural decay. The dashed-dotted line

represents the near-field, the dashed line the far-field and the dotted line the far-field
fit of q2 for comparison. Fitted parameters are shown in table 5.
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Figure 8: Time evolution of the non-dimensional turbulent kinetic energy from horizontal
velocity fluctuations (q2u′

1
/q2t=0) during the natural decay. The dashed-dotted line

represents the near-field, the dashed line the ‘first’ far-field, the green dotted line the
‘saturated’ far-field and the black dotted line the far-field fit of q2 for comparison. Fitted
parameters are shown in table 5.

We hypothesise that the value of the decay exponent might be affected by the confine-
ment of turbulence. Therefore, to investigate this phenomena we compare the evolution
of each velocity component separately, i.e. q2u′

1
= u′1

2
and q2u′

2
= u′2

2
. These magnitudes

are made non-dimensional with q2t=0.

Figure 7 shows that both the near-field and far-field of the q2u′
2

decay can be well

captured using their corresponding virtual origins and decay rates. We believe the near-
field region is dominated by the turbulence production mechanism and therefore might
be strongly facility-dependent. The decay exponent found for the near-field (m ≈ −2.3)
is consistent with the result from q2 presented before. In contrast, the decay exponent
found in the far-field regime (m ≈ −1.4) is closer to the results previously exposed from
wind tunnel experiments. This result also agrees with numerical calculation studies for
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Figure 9: Time evolution of the turbulent quantities during the natural decay; q2u′
1
/q2t=0

and q2u′
2
/q2t=0 a), Taylor length scales (λi) b) and Integral length scales (Lii) c).Circles and

squares correspond to experimental data obtained from horizontal and vertical velocity
fluctuations respectively. The dashed-dotted line represents the start of the saturation
effects for the horizontal velocity fluctuations and the broken line the start of the large
scale isotropy regime.

which values of m ≈ −1.4 have been obtained for Batchelor turbulence; (Meldi & Sagaut
2017).

In figure 8, the evolution of q2u′
1

shows a near-field decay as in q2u′
2
. However, the far-

field decay shows two different decay trends; far-field without saturation (t∗ < 40) and
far-field with saturation (t∗ > 40). We find that when saturation is not present (t∗ < 40),
the decay rate is m = −1.41 and this is consistent with the result found for q2u′

2
. However,

the decay rate increases in the t∗ > 40 region due to saturation, leading to an exponent
of m = −1.8. The enhancement of the decay rate due to saturation effects is therefore
the reason why the overall decay rate of q2 shown in table 4 is higher than what it would
be expected for natural decaying turbulence. We hypothesise that the final period of
the decay is dominated by turbulence saturation and this will be further discussed in
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the current section. In fact, the magnitude of the decay rate is very close to the results
obtained in Hwang & Eaton (2004) for the decay of isotropic turbulence in a confined
domain. Also, in Meldi & Sagaut (2017) they studied the sensitivity of the decay exponent
to saturation effects and showed that for a intermediate configuration between the fully
unbounded case and the completely saturated case, the decay exponent increased to
m ≈ −1.7, being in good agreement with the results found in here.

The aforementioned large-scale anisotropy can be clearly observed when both com-
ponents are compared, as in figure 9 a). In fact, q2u′

1
appear to be about 60% stronger

than the vertical counterpart (q2u′
2
) for forced turbulence and small values of t∗. However,

this difference becomes less prominent as turbulence decays, and after t∗ ≈ 150 both
quantities collapse into a single curve, as observed in fig. 9 a).

As turbulence decays in time, the integral length scale grows in size and therefore the
extrapolated region in the correlation function obtained from the PIV data also does so.
We find that the results of the integral length scale are very sensitive to the shape of the
last region of the correlation function. To overcome this issue we propose to look at a
magnitude proportional to the integral length scale (L̃ii), that is the direct measure of
the area under the correlation function without accounting for the region that should be
extrapolated to obtain the true magnitude. We integrate the area under the correlation
function for a square region of 4400 px to account for the original rectangular shape of
the image sensor. In figure 9 b) we observe that L̃ii of the velocity fluctuations in the
vertical direction grows logarithmically during all the decay region recorded. In contrast,
its horizontal counterpart grows rapidly during the initial period of the decay and then
reaches a plateau at about t∗ = 40 . This plateau corresponds to the approximate critical
time when q2u′

1
experience a faster decay over time, as seen in figure 9 a). Therefore,

we believe that the sudden change in the decay rate of q2u′
1

is dominated by turbulence

saturation. This would also explain why the vertical counterpart q2u′
2
, characterised by a

smaller integral length scale, maintain the same decay rate during the experiments.

On the other hand, the evolution of the Taylor length scale (λ) is found to grow
logarithmically in time along both directions; x1 and x2, as shown in figure 9 c). However,
the rate of growth differs from one to another and at large decay times both quantities
have a similar length. This trend suggests that while turbulence saturation restricts
the growth of large scales, small scales keep growing in time and therefore the inertial
range L(t)/η(t) shrinks monotonically during the decay, as discussed in Biferale et al.
(2003). To evaluate the evolution of the small scale anisotropy during the decay we also
compute the longitudinal and transverse velocity gradients, as in section 3. The small
scale anisotropy is then evaluated by computing the following ratios; M1 = 〈∂u1

∂x1
/∂u2

∂x2
〉,

M2 = 〈∂u1

∂x1
/∂u1

∂x2
〉 and M3 = 〈∂u2

∂x2
/∂u2

∂x1
〉, and these are shown in figure 10. We observe

that the longitudinal velocity ratio (M1) fluctuates about unity whereas the longitudinal
to transverse ratios (M2, M3) quickly approach the relation 2〈∂ui∂xi

〉 ≈ 〈 ∂ui∂uj
〉 as one

would expect for homogeneous isotropic turbulence. Further assessment of the turbulence
natural decay can be made by estimating the skewness Sui , where

Sui ≡
(∂ui∂xi

)3

[(∂ui∂xi
)2]3/2

(4.1)

For the case of HIT, the velocity skewness corresponds to the rate of production of
vorticity through vortex stretching, as shown in Taylor (1938). Due to its significance,
predictions of S as a function of the turbulence Reynolds number Reλ have been
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extensively investigated in the past, see Sreenivasan & Antonia (1997), and the recent
work of Burattini et al. (2008) and Antonia et al. (2015) among others.

Figure 11 shows that −Su1
and −Su2

are near zero at the start of the decay when
turbulence might be affected by the forcing scheme, but these quantities increase during
the decay to reach a value of −S ≈ 0.5. This value is in good agreement with the
experimental and numerical results on the literature (−S ≈ 0.53 in Antonia et al. (2015)).
However, the skewness evolution appears to be very fluctuating during the decay and we
believe that this effect might come from the increase in size of the turbulent structures,
leading to fewer independent eddies per velocity field recorded causing a lack of statistical
convergence. Also, the uncertainty in the velocity derivative skewness from PIV noise
might be influencing the spread of this parameter.

Similarly, the evolution in time of the TKE dissipation rate is also investigated. We
estimate it as detailed in sec. 3. However, as time elapses and turbulence decays, the
turbulent scales of the flow grow in time and therefore the size of the Gaussian filter (3η)
becomes time dependent. To find the appropriate filter size we follow an iterative process
for each data set in time that is as follows: First we filter the PIV velocity field with a
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Quantity Decay Range Decay type m t0

q2u′
2

t∗ < 10 Near-Field −2.3 −5

q2u′
2

t∗ > 8 Far-Field −1.41 0.5

q2u′
1

t∗ < 10 Near-Field −2.3 −4

q2u′
1

t∗ > 8 Far-Field −1.41 0.5

q2u′
1

t∗ > 40 Saturation −1.8 0.5

εG t∗ < 10 Near-Field −4 −3
εG t∗ > 8 Far-Field −2.55 2

Table 5: Fitted constants for the power-law decay of turbulent quantities. Near-field and
far-field fits are made for data at t∗ < 10 and t∗ > 8 respectively.

Gaussian filter corresponding to 3η (estimated from the ‘stationary’ forced turbulence),
we use the filtered velocity field to estimate the TKE dissipation rate and make a first
estimation of the Kolmogorov length scale ηt. This value of ηt is used to filter again the
original PIV velocity field and to make a second estimation of the TKE dissipation rate
and Kolmogorov length scale. This process is repeated until the estimation of the TKE
dissipation rate obtained from the filtered data is within 1% of the previous iteration.
The results obtained from this method are shown in figure 12 a).

In addition to this direct method, we also compute the TKE dissipation rate using the
method introduced by Tanaka & Eaton (2007) for sub-Kolmogorov resolution, detailed
in Appendix A. This method was reported to give accurate results for a range of vector
spacing (∆x) to Kolmogorov length scale (η) ratio of 0.7 > ∆x/η > 0.2. According to
our estimates, this range only includes a small region of the decay, detailed in figure
16 (Appendix A). The results obtained from the method proposed by Tanaka & Eaton
(2007) appear to underestimate dissipation for ∆x/η > 0.5 and starts to overestimate
dissipation for 0.2 < ∆x/η. This agrees well with the results obtained from the iterative
filtered data and give us confidence on the iterative filtering method. The results from
this method are now used to calculate the evolution of the Kolmogorov length scale over
time. As observed for the Taylor length scale, the evolution of the Kolmogorov length
scale appears to be unaffected by the saturation of the large scales, as shown in fig. 12
b).

Also, the results of the TKE dissipation rate from the iterative filtering method are
fitted to a power-law equation following the same technique as for q2. Again, the evolution
of the TKE dissipation rate over time can be divided in two regimes. The near-field
regime can be fitted to a power-law function with m = −4 and t0 = −3, whereas the
fit for the far-field regime gives m = −2.55 and t0 = 2. This result agrees well with the
relation obtained from the energy budget for isotropic homogeneous turbulence naturally
decaying in absence of production terms; i.e. mε = m− 1, and give us confidence on the
accuracy on the method used.

Finally, in figure 14, we investigate the evolution of the Reynolds number based on
the Taylor length scale (Reλ), the value of Cε and the evolution of the integral length
scale to Taylor length scale (L/λ) during the decay. We observe the Reynolds number
(Reλ) for t∗ = 0 to be slightly higher than the value obtained for ‘stationary’ turbulence.
However, this might be due to the finite number of runs computed (75 for the decay) and
not a physical phenomena, as occurs in regions very close to the turbulence-generating
grid in wind tunnel experiments, as reviewed in Vassilicos (2015). Then, as turbulence
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Figure 12: Time evolution of TKE dissipation rate (ε), Kolmogorov length scale (η) and
Taylor length scale (λ) during the natural decay. M stands for the center-to-center nozzle
distance and D for the nozzle internal diameter.

decays the Reynolds number decreases logarithmically with time. The decay exponent
of the Reynolds number (mReλ ≈ −0.57) agrees very well with previously reported
values in Compte-Bellot & Corrsin (1966) and revisited by Meldi & Sagaut (2014), where
mReλ = −0.5 for complete saturation. The value of Cε during the first stage of the
decay is unsual if compared with most of decaying grid-generated turbulence (Hearst &
Lavoie (2014), Valente & Vassilicos (2012)). However, the trend on the evolution of Cε
agrees very well with the results from grid generated turbulence in Djenidi et al. (2017),
where the authors showed a decaying value of Cε for the near-field decay region. This
suggests that the near-field decay of the turbulence generated does not comply with
the self-preservation requirement that would, in turn, return a constant value for Cε.
However, Cε becomes stable once the turbulence has fully developed and the influence of
the forcing mechanism becomes negligible. It is also interesting to note that Cε remains
nearly constant for 200 > Reλ > 20 where the flow suffers from confinements effects. On
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Figure 13: Time evolution of TKE dissipation rate estimate (εG) during the natural
decay. The dashed-dotted line represents the near-field and the dashed line the far-field.
Fitted parameters are shown in table 5.

the other hand, the ratio L/λ fluctuates about a value of ≈ 12 for the near-field decay,
but for t∗ > 40 it decreases logarithmically in time with a decay exponent mL/λ ≈ −0.35.
Again, the decay region in the L/λ ratio corresponds to the saturated regime, where large
scales are constrained by the facility but small and intermediate scales are still growing.

5. Conclusion

We investigated the evolution of anisotropic turbulence at large scales during natural
decay in an experiment with Taylor-based initial Reynolds numbers Reλ ≈ 580 over
more than two decades in time. In contrast with wind tunnel experiments where Taylor’s
hypothesis is invoked to convert downstream distance x (generally made dimensionless
as x/L0) into time, we directly observe the evolution of turbulence over time and use the
eddy turnover time (tL) of the ‘stationary’ forced turbulence to make it dimensionless. As
turbulence decays and the large scales of the flow start to grow in size, these become large
enough to feel the boundaries of the facility that contains them, leading to turbulence
saturation. Then, the sensitivity of free decaying anisotropic turbulence to saturation
effect was investigated.

Ninety-six water-pump driven jets pointed towards the center of the rectangular water
tank from opposite sides and were driven randomly following the ‘Sunbathing algorithm’
introduced in Variano & Cowen (2008) to produce anisotropic turbulence, instead of the
HIT obtained in previous studies with a similar facility, (Bellani & Variano 2013). This
forcing scheme for the facility presented produced a central volume of turbulence that
had negligible shear, mean flow and was homogeneous. When the tank is in operation we
observe a turbulent flow for which the ratio of horizontal to vertical velocity fluctuations
are u′1/u

′
2 ≈ 1.22, with a ratio of integral length scales of L11/L22 ≈ 1.6.

The two RJA were turned off after 5 minutes of active forcing and 40 pairs of images
were acquired with variable dt to limit the particle pixel displacement to 4 − 6 px. and
reduce out-of-plane motion. This process was repeated 75 times and results were ensemble
averaged.

The natural decay of the flow was investigated for individual components of the velocity
fluctuation. We observed that the large-scale anisotropy that exists at the start of the
decay is progressively reduced and becomes statistically negligible for t∗ > 150. We
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Figure 14: Time evolution of the Reynolds number based on the Taylor length scale
(Reλ) a), of Cε = εL11/u

′3 b) and the integral length scale to Taylor length scale (L/λ)
c) during the natural decay.

believe this process have been enhanced by the saturation effect over the large scales of
the flow, since the integral scales in the horizontal direction started to be affected by the
boundaries of the facility much sooner than their vertical counterpart, driving the fast
return to isotropy. Power-law fits were obtained for q2, q2u′

1
and q2u′

2
and ε following the

method proposed in Hearst & Lavoie (2014). We observed a very similar behaviour of
q2u′

1
and q2u′

2
over time as compared with wind tunnel experiments equipped with multi-

fractal passive and active grids ((Krogstad & Davidson 2011), (Valente & Vassilicos
2011), (Valente & Vassilicos 2012), (Hearst & Lavoie 2014)); and numerical simulations
((Perot 2011), (Meldi et al. 2011)) for Batchelor turbulence. Two different regimes are
observed for free decaying turbulence. First, we observe a fast decay of the TKE for
t∗ < 10. This region is present in wind tunnel experiments for a few integral length
scales downstream of the grid and is referred as ‘near-field’ decay. This regime is believed
to be strongly affected by the turbulence production mechanism as discussed in Meldi
(2016) and therefore to be ‘facility dependent’. Then, we observe a second region of
logarithmically decaying TKE for t∗ > 8. This region is also present in wind tunnel
experiments after a distance of about 20L11 downstream of the grid and is referred as
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‘far-field’ decay. The decay exponent of this region, either in time in numerical studies
or in space in wind tunnel experiments, has been a matter of debate during the past
several decades. Wind tunnel experiments have shown that this decay region is non-
universal and that different turbulence generators lead to changes in the decay rate. In
here, we found the exponent of this region for the unsaturated case to be m ≈ 1.41
and this is within the range of values observed for the ‘far-field’ decay on wind tunnel
experiments and numerical results. Besides these two regimes, we found the turbulent
kinetic energy to decay faster once large scales ‘feel’ the confinement effect, i.e. the integral
length scale stops growing over time. The decay exponent during the saturation regime
becomesm ≈ −1.8 and therefore approaches the value obtained from analytical results for
complete saturation in Skrbek & Stalp (2000), that is m = −2. The decay exponent of the
saturation regime is also in good agreement with the decay exponent observed in Hwang
& Eaton (2004) where, we believe, confinement effects were present. The anisotropy
evolution of the small scales is investigated by comparing velocity gradients; i.e. M1, M2

and M3. We found that after t∗ = 10 the relation between velocity gradients approaches
the isotropic relation and this is consistent with the DNS study in Biferale et al. (2003)
where they found small scales to ‘isotropize’ much quicker than large scales. Also, the
dissipation rate of the TKE is estimated from direct measurements following an iterative
filtering process. The goal of this process is to obtain the ‘true’ Kolmogorov length scale
to filter the data using a Gaussian filter size of 3η as in Ganapathisubramani et al. (2007).
The results from this estimate agrees well with other direct and indirect methods, giving
us confidence over the chosen approach. Also, the decay rate for the dissipation rate is
found to be mε ≈ −2.55 and agrees well with the theoretical prediction of mε = m − 1
for free decaying turbulence.
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Appendix A. Spatial gradients in PIV

A.1. Dissipation estimate from Structure Function

Second-order structure functions are defined as

Dii = 〈[ui(x+ r)− ui(x)]2〉 (A 1)

For homogeneous isotropic turbulence and separation values ri within the inertial range
and aligned with the velocity component ui, Kolmogorov’s theory states:

Dii(ri) = C2(εri)
2/3 (A 2)

where C2 = 2.12 as in Sreenivasan (1995). Thus, the compensated longitudinal second-
order structure function in eq. A 2 can be used to find the magnitude of the TKE
dissipation rate. This is obtained by looking at the plateau value reached in the inertial
range.

A.2. Direct dissipation estimate from Sub-Kolmogorov PIV resolution

This method was introduced in Tanaka & Eaton (2007) as a direct method to esti-
mate TKE dissipation rate from PIV data with sub-Kolmogorov resolution and it was
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formulated as

ε ∼=
4εD|2∆x − εD|∆x

3
(A 3)

where the subscript, D denotes a quantity obtained from 2D PIV data. εD|∆x is the TKE
dissipation rate using second-order central difference approximation and εD|2∆x is the
dissipation rate at double grid spacing.

According to our estimates this range only includes a small region of the decay (limited
with dashed lines) in figure 16. For vector spacing ratios smaller than the working range,
TKE dissipation rate is underestimated, whereas for larger vector spacing ratios it is
overestimated, (Tanaka & Eaton 2007). This trend is consistent with the results presented
in here, as observed in figure 16. In Fig. 16 the two direct estimates of dissipation are
plotted together with the indirect estimate (D11(r1)). Both longitudinal second order
compensated structured functions (D11(r1), D22(r2)) give dissipation estimates that
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the estimates based on a velocity Gaussian smoothing of 3η as in Ganapathisubramani
et al. (2007)

are within 30% and therefore only D11(r1) is plotted for clarity. Despite the difference
between the two direct methods for small decay times, these become less pronounced as
turbulence decays and then maintain a very similar decay rate. In contrast, the estimate
from the structure function agrees very well with the direct estimate from the data with
a Gaussian spatial filter of 3η kernel size for the initial period of the decay, whereas
the direct estimate from the correction method seems to underestimate dissipation. For
longer decay times, the decay rate from the structure functions gets more pronounced
and therefore closer to the estimate from the correction method. Both direct estimates
of the TKE dissipation rate for the last section of the decay appear to overestimate the
dissipation rate. This result is in agreement with Tanaka & Eaton (2007), where they
showed that their correction method underestimates dissipation for ∆x/η > 0.5 and
starts to overestimate dissipation for 0.2 < ∆x/η. Fig. 17 shows the time evolution of
the dissipation ratios together with an estimate of the PIV spatial resolution in time as
∆x/η.
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