

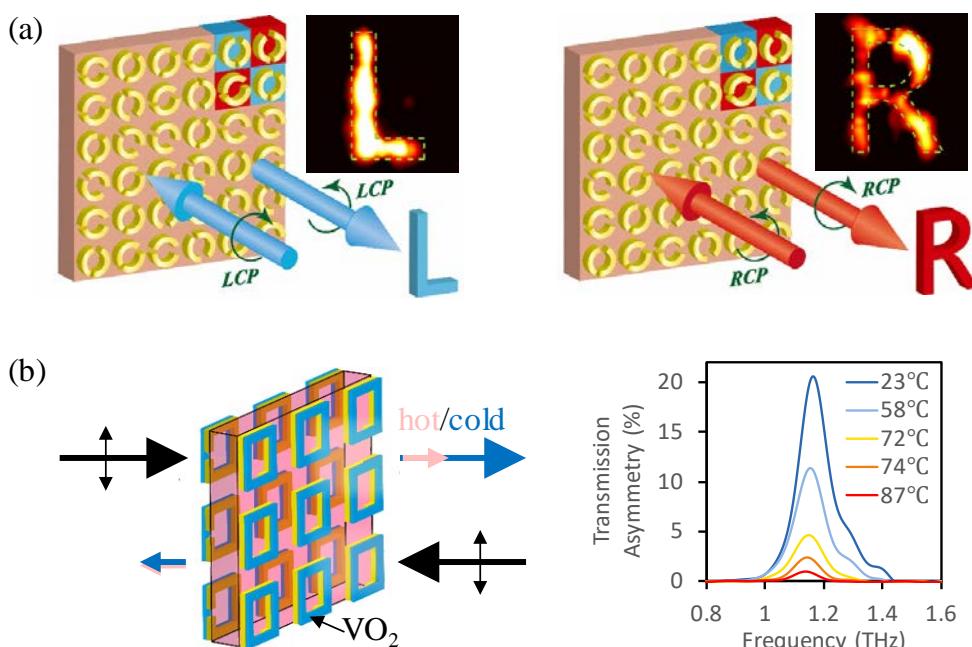
Multifunctional chiral metamaterials: Multiplexing holograms and switching chirality

Eric Plum¹, Meng Liu², Qiu Wang², Caihong Zhang³, Jiaguang Han²

1. Optoelectronics Research Centre and Centre for Photonic Metamaterials, Zepler Institute,
University of Southampton, Southampton, SO17 1BJ, UK

2. Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China

3. Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China


Abstract: We use chirality to realize metamaterials with multiple independent functionalities, including independent holograms for circularly polarized waves of opposite handedness, switching directionally asymmetric transmission and chirality on/off, and normal mirror to chiral mirror transformation.

Chirality and phase transitions provide opportunities to realize a broad range of multifunctional metamaterials. For example, independent functionalities for left- and right-handed circularly polarized waves can be achieved by combining chiral resonators of opposite handedness. Furthermore, metamaterials can exhibit different symmetries at different temperatures (e.g. chiral/achiral) by engaging the insulator-to-metal phase transition of vanadium dioxide, allowing associated polarization effects to be controlled and even switched on/off.

Fig. 1(a) shows multiplexed holograms for circularly polarized THz waves. The metamaterial hologram is assembled from chiral resonators that only reflect either left-handed or right-handed THz waves, allowing the holographic images for circularly polarized waves of opposite handedness to be controlled independently, with negligible cross-talk. The concept is broadly applicable, e.g. for polarization-selective redirection, focusing, diffraction and detection of circularly polarized waves.

Fig. 1(b) illustrates chirality switching based on the insulator-to-metal phase transition of vanadium dioxide. The metamaterial is chiral at room temperature and consists of mutually twisted split rings in parallel planes. Upon heating to 87°C, the structure becomes achiral as vanadium dioxide short-circuits the split ring gaps with increasing temperature. This chiral-to-achiral transition results in dynamic control of asymmetric transmission of linearly polarized THz waves. The transmission asymmetry is 21% at room temperature and drops to 1% at 87°C.

We will give an overview over such metamaterials with multiplexed functionalities and switchable chirality. Examples will include holograms, switching of chiral polarization effects and switchable chiral mirrors.

Fig. 1 Multifunctional chiral metamaterials. (a) Independent holograms for left-handed and right-handed THz waves (LCP/RCP) controlled by chiral resonators of opposite handedness (blue/red). Insets show detected holograms at 0.6 THz. (b) Switching a chiral polarization effect on/off. The insulator-to-metal transition of vanadium dioxide (blue) transforms the resonant structure from chiral at room temperature to achiral at 87°C. This causes the measured transmission asymmetry for linearly polarized THz waves to drop from 21% to 1%.