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Abstract

We examine the interrelationships in the global base metal markets over a 22 year period 1994-2016 using a va-
riety of econometric methods. The results demonstrate the high intensity of both return and volatility spillovers
across the selected markets. Furthermore, the degree of co-movements varies among time and frequencies. The
study also contributes to the contagion literature since the results revealed the increase in co-movements after
the financial crisis. Aluminium is found to be the driving force, with significant influence across all method-
ologies. The findings show that the behavior of the non-ferrous metals is similar to other conventional asset
classes, like equities and bonds, justifying the position that metals have become an investment class.
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1. Introduction

Despite the importance of industrial metals, both from an industrial and a financial perspective,

relatively little has been written regarding their behaviour as a (possible) asset class. As with other

commodities, non-ferrous metals may be of interest to investors for asset allocation and diversification

benefits. However, the question whether commodities as a whole are an asset class is still under

debate. We hypothesise that in order to be considered as a separate asset class non-ferrous metals

should demonstrate a high level of integration, and also respond to the common shocks in a similar

manner. To this extent, the return and volatility transmission across those markets should demonstrate

similar patterns (see Erb and Harvey (2006); Gorton and Rouwenhorst (2006)). For the most part the

unspoken assumption is that base or non-ferrous metals can be seen as an asset class. The purpose

of this note is to examine, from one set of perspectives, that of spillovers, whether this is in fact

warranted.

Within existing research on non-ferrous metals research the bulk of the analysis has focused on

futures markets. Marshall et al. (2013) examined liquidity commonality in commodity futures markets

using data from energy, industrial and precious metals, as well as livestock commodities, and found

no evidence of a consitent link between stock and commodity liquidity. Demirer et al. (2015) analysed

the herd behaviour in commodities futures markets, including energy, livestock, grains and metals,

found no significant effect of the stock market on herd behaviour in the commodity futures market

rejecting the commodity financialization hypothesis. Fernandez (2010) has examined long memory
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and Belousova and Dorfleitner (2012) has shown their usefulness in portfolio formation. In addition

research has been also been conducted on non-ferrous metals.

Chinn and Coibion (2014) analysed whether futures prices are accurate and unbiased predictors of

subsequent prices, and demonstrated that base metals are poor predictors. Dooley and Lenihan (2005)

employed forecasting experiments to predict future lead and zinc prices highlighting the difficulties of

the price forecasting. Gil-Alana and Tripathy (2014) analysed volatility persistence and asymmetry

in non-ferrous metals markets in India. The results show a high degree of volatility persistence

and evidence of asymmetry in the majority of series. Cummins et al. (2015) analysed behavioural

influences on on-ferrous metal markets. The findings suggest that non-ferrous metals markets are not

immune to trader biases influencing the setting of prices. For example, lead, zinc and aluminium alloy

demonstrated anomalous price reaction around psychologically important price points, particularly

following a breach of $1000 point (Cummins et al. (2015)). Analysis of realised volatility spillovers

in non-ferrous metals markets by Todorova et al. (2014) reports significant interrelationship between

markets.1

Fernandez (2016) examined spot-futures prices relationships in six base metals traded on the

London Metal Exchange (LME). Stronger linkages between futures and spot returns are found during

the periods of high shocks. Furthermore, Fernandez (2016) demonstrated the associations between

interest-adjusted basis and the business cycles of consumption/production of the aluminium, copper,

lead, nickel, tin and zinc, as well as the business cycle of industrial production of various countries

(e.g. US, G7, OECD, Russia and China). Omura et al. (2018) provided evidence of linkages between

the convenience yield and the realised volatility using the intraday LME spot and futures prices of

non-ferrous metals.

Nonetheless, the extent of research on the financial, as opposed to the economic, aspects of non-

ferrous metals, is relatively small. Moreover, as noted in Todorova et al. (2014) this is surprising, given

the reasonable amount of knowledge we have regarding how returns and levels of non industrial metal

prices spillovers and interrelationships. Nonetheless the issue of return and volatility transmission is

under explored in the literature and requires further attention.

This paper contributes to existing knowledge in several ways. First, we present novel empirical

evidence on return and volatility transmission across seven non-ferrous markets offered on the London

Metal Exchange. The London Metal Exchange, LME, is the leading global centre for non-precious

metal trading and thus represents a useful starting point to examine non-ferrous metal interactions.

Using the Diebold and Yilmaz (2012) methodology we show the dynamics and intensity of spillover

over a 22 years period, i.e. from 12 January 1994 -19 October 2016, providing a conclusion as to which

markets are net-recipients and net-contributors of spillovers. Second, this paper employs two volatility

measures, Squared Volatility and Parkinson range volatility, contributing better to the debate around

which volatility estimators are the most appropriate to use in spillovers studies. Third, we further

augment the existing literature by providing the analysis of co-movement between selected markets

using the wavelet coherence framework. The wavelet power spectrum provides a useful information on

1Another literature strand has focused on precious metals futures (see as examples Batten et al. (2010); Sensoy (2013);

Bosch and Pradkhan (2015), to name but a few. See O’Connor et al. (2015) for a comprehensive review of research on

gold)
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synchronisation between each pairs of metals in different time-frequency domains, while the results of

wavelet multi-scale phase analysis allows to understand the positive/negative nature of these relation-

ships. Finally, We also use the Hatemi-J (2012) approach to surface asymmetric causality amongst

these metals.

Our findings are helpful for portfolio managers who are interested in analysis of the behaviour on

metals markets to design optimal investment portfolio and to diversify risks. The analyses of com-

modities in general, and particularly the analysis that is presented in our paper, can also perhaps help

financial analysts to provide comprehensive recommendations on investment opportunities available

for investors apart from more traditional assets like stock, bonds, and derivatives markets. These

findings can be also interesting for managers of exchanged-traded commodities and exchange-traded

funds. To the extent that these markets move together or not, they can be seen as an asset class.

Identification of the interrelationships between the components allows greater flexibility in investment

or investment product design.

The remainder of the paper is organized as follows. Section 2 reviews literature on the metal market

integration, Section 3 describes the dataset and the methodology used in our empirical analysis, while

Section 4 reports and discusses the empirical results. Finally, Section 5 concludes the paper.

2. Previous research on integration of the global metal markets

The economic importance of metals to the world economy cannot be overstated. A solid analysis

of the economic impact is Arezki et al. (2015). LME offers opportunities to invest in a number of

non-ferrous metals, such as aluminium, aluminium alloy, copper, lead, tin and zinc. All these metals

have a high industrial importance, and therefore the volatility on these metal markets has attracted

attention within the industry. Besides, the increased interest in non-ferrous markets has recently been

shown by investors and speculators. Thus, as major financial commodities, industrial metals have

attracted research on their pricing. Examples include papers such as Liu et al. (2014), Beckmann and

Czudaj (2013), and Geman and Scheiber (2014).

A number of researchers have noted the importance of industrial metals for the general financial

sector. Jacobsen et al. (2016) suggests that industrial metals can act as important signals of general

financial conditions, especially for equity market returns. Looking at commodity hedging and their

safe haven status. This is congruent with findings in Delatte and Lopez (2013). Agyei-Ampomah

et al. (2014) finds safe haven properties in industrial metals, in particular copper, against sovereign

bond adverse events. Although metals markets are often considered as a safe haven during periods

of financial turmoil, and non-ferrous metals similarly often viewed as a hedging products, the in-

creased activity in metals consequently increased the volatility on these markets (see Watkins and

McAleer (2006);Watkins and McAleer (2008)) limiting opportunities for risk reduction. In addition

to speculative demand, the prices are also driven by changes in industrial production which makes

the analysis of the dynamics of volatility a challenging task. From the earlier papers by Brunetti

and Gilbert (1995), Davutyan and Roberts (1994), McMillan and Speight (2001), that analysed the

volatility of non-ferrous metals traded on the LME over the period from 1972-1995, it becomes evident

that: (i) the volatility has been increased due to the intensified speculative interest in metals from

1993 to 1995; (ii) the prices have demonstrated some degree of cyclicality; (iii) the metals volatility
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should be decomposed to both long-run and short-run components since they are affected by different

broad factors, i.e. speculative pressure and fundamental influence. The subsequent literature further

augmented these findings.

For example, the study by Roberts (2009) expanded the analysis of the cyclicality of metal prices

using monthly prices for 14 metals from January 1947 till December 2007. The results reject the

position that metals prices follow random walk demonstrating some regularity and cyclicality, however,

the Roberts further claim that cycles are not fully predictable. Watkins and McAleer (2008) forecast

the volatility process for daily returns on the metal futures prices using the AR(1)-GARCH (1,1)

model using data from 1 October 1982 to 24 July 2006 and from 5 January 1976 to 24 July 2006 for

aluminium and copper respectively. While the results confirm the time-varying nature of volatility,

the forecasting performance is found to be weaken during the crisis shocks like October 1987 market

crash. The study by Lien and Yang (2008) investigated different hedging strategies on aluminium and

copper focusing on futures traded at Shanghai Futures Exchange. The results show that the basis

has asymmetric effects, i.e. the markets behave differently when the basis is positive or negative.

The research by Todorova (2015) analysed the dynamics of realised volatility in the LME non-ferrous

metals over the period from January 2004 to September 2012 highlighted an increasing importance

of short-term volatility components and superior forecasting ability of a simple HAR model over its

augmented versions.

The increased investment interest in commodities in general, and specifically in metals, make

these markets highly relevant for theoretical investigation of spillover effect, contagion phenomenon,

and portfolio formation. There is some existing, limited research on return or level spillovers. Thus,

both Li and Zhang (2013)), Hua and Chen (2007) examine copper and aluminum markets, finding

significant bivariate linkages between the Shanghai Futures Exchange and the LME, but with the

LME greatly dominant. Li and Zhang (2013)) find that while the LME is still dominant this is slowly

fading. Within a category, copper and brass (which has copper as a major component), Aruga and

Managi (2011) finds that there is surprisingly little linkage. Sensoy et al. (2015) suggests coordination

and convergence in base (and precious) metals while Singhal and Ghosh (2016) also suggests limited

feedback from these metals to Indian equity indices.

When we commence looking at spillovers in volatility there is a dearth of research. As discussed in

Chevallier and Ielpo (2013) and Todorova et al. (2014) there is a large literature on volatility spillovers

in agricultural commodities, energy and precious metals but much less on industrial metals. Using

the methods of Diebold and Yilmaz (2009, 2012) they find little evidence of spillovers, examining high

frequency spillovers between aluminium, copper, lead, nickel, and zinc futures on the LME. Todorova

et al. (2014) find that there is multidirection aluminium spillover from cash to futures volatility and

within metals from one to another. Nonetheless there is surprisingly little research as yet in this area.

In this paper we examine cash prices from the LME, for aluminum, aluminum alloy, copper, lead,

nickel, and zinc, over the 1994-2016 period. By contrast with Todorova et al. (2014) who examined

the 2006-2012 period this allows us a much longer run perspective.
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3. Methodology

3.1. Data

We collect closing cash (spot) data on non-ferrous metal contracts offered by the London metal

Exchange. We examine data for aluminium, aluminium alloy, copper, lead, nickel, tin and zinc. These

metals represent the most important non-ferrous metals in industrial use, where aluminium is the

mostly used one, while the second and the third highest usages are for copper and zinc (Boulamanti

and Moya (2016b)). We collected daily data for the period from 12 January 1994 to 19 October 2016.

For return spillovers analysis we estimate weekly returns as Rt = ln(P1/P0) where P1 is price at the

end of the trading week, while P0 is the closing price on the first trading day of this week,which gives

1189 observations in total. For volatility spillovers analysis we use two different volatility measures,

i.e. squared volatility measure and Parkinson range volatility estimator, that specified by Eqs. 1 and

2 below:

σ2SQ = ln(
c

o
)2 (1)

σ2P =
1

4ln2
(h− l)2 (2)

Where o, h, l, and c are normalised opening, high, low, and closing prices respectively. The advantages

of the range volatility estimators in analysis of the volatility spillovers are discussed in Yarovaya et al.

(2016b). Summary statistics for returns and volatilities is shown in Table 1. Table 1 reports that

the mean, median, maximum, minimums and standard deviation are higher for Parkinson volatility

than squared volatility. However, in comparison to Parkinson, squared volatility estimates have higher

values of both skewness and kurtosis. Particularly, nickel and tin have the highest positive skewness

and kurtosis in the sample, which indicate the large number of extreme values in squared volatility

series, which can potentially cause overestimation of intensity of volatility spillovers using this volatility

measure.

3.2. Spillover Index

This study employs the Diebold and Yilmaz (2012) (DY) framework to measure the dynamics and

the intensity of information transmission across prices on global metal markets. The DY framework

is based on a generalized vector autoregressive (VAR) model and has been actively employed in the

finance literature to investigate spillover effects across various financial markets (Diebold and Yilmaz

(2009) Batten et al. (2014); Yarovaya et al. (2016a)). However, to the best of our knowledge this

methodology has not yet been applied to metal data or to analysis of metal markets.

The spillover index approach allows presenting the empirical results in the forms of spillover tables

and spillover plots, visualizing the channels and the dynamics of information transmission across mar-

kets. Furthermore, the DY framework provides clear evidence on net-contributors and net-recipients

of information on non-ferrous metals markets. The DY framework can be described as follows.

Consider a covariance stationary N-variable VAR (p), Xt =
∑p

i=1 = ΨiXt−i + εt, where Ψi is a

parameter matrix, and ε ∼ (0; Σ) is a vector of independently and identically distributed disturbances.

The VAR model can be transformed into a moving average (MA) representation, Xt =
∑∞

i=oAiεt−i,

where Ai is ans N ×N identity matrix Ai = Ψ1Ai−1 + Ψ2Ai−2 + ...ΨpAi−p beign an N ×N identity
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matrix and with Ai = 0 for i < 0. The DY framework relies on the N-variable VAR variance decompo-

sitions and allows for each variable Xi to be added to the shares of its H-step-ahead error forecasting

variance, associated with shocks in relevance to variable Xj (where ∀i 6= j for each observation). This

methodology provides the evidence of information spillovers from one market to another. Besides

detecting of cross variance shares, the DY framework defines own variance shares as the fraction of

the H-step ahead error variance in predicting Xi due to shocks in Xi. Following Diebold and Yilmaz

(2012) the methodological framework employed in this paper relies on KPPS H-step-ahead forecast

errors, which are invariant to the ordering of the variables in comparison to the alternative identi-

fication schemes like that based on Cholesky factorization (Diebold and Yilmaz (2009)) and can be

defined for H = [1, 2...+∞), as:

ϑgij(H) =
σ−1jj

∑H−1
h=0 (e

′
iAhΩej)

2∑H−1
h−0 (e

′
jAhΩA

′
hei)

(3)

where Ω is the variance matrix for the error vector ε; σjj is the standard deviation of the error term

for the jth equation; ei is the selection vector, with one as the ith element and zero otherwise. The

sum of the elements in each row of the variance decomposition
∑N

j=1 ϑ
g
ij(H) is not equal to 1. The

normalization of each entry of the variance decomposition matrix by the row sum can be defined as:

ϑ̃gij(H) =
ϑgij(H)∑N
j=1 ϑ

g
ij(H)

(4)

where
∑N

j=1 ϑ̃
g
ij(H) = 1 and

∑N
i,j=1 ϑ̃

g
ij(H) = N .

The total volatility contributions from KPPS variance decompositions are used to calculate the

Total Spillover Index (TSI):

TSI(H) =

∑N
i,j=1,i 6=j ϑ̃

g
ij(H)∑N

i,j=1 ϑ̃
g
ij(H)

× 100 =

∑N
i,j=1,i 6=j ϑ̃

g
ij(H)

N
× 100 (5)

We also estimate Directional Spillover Indices (DSI) to measure spillovers from market i to all

markets j, as well as the reverse direction of transmission from all markets j to market i, using

equations (4) and (5), respectively:

DSIj←i(H) =

∑N
i,j=1,i 6=j ϑ̃

g
ji(H)∑N

i,j=1 ϑ̃
g
ij(H)

× 100 (6)

DSIi←j(H) =

∑N
i,j=1,i 6=j ϑ̃

g
ij(H)∑N

i,j=1 ϑ̃
g
ij(H)

× 100 (7)

Finally, we explore who are the net-contributors and net-recipients of information on international

non-ferrous metals market, using the Net Spillover Index (NSI) calculated as the difference between

total shocks transmitted from market i to all markets j and those transmitted to market i from all

markets j:

NSIij(H) =

∑N
i,j=1,i 6=j ϑ̃

g
ji(H)∑N

i,j=1 ϑ̃
g
ij(H)

−
∑N

i,j=1,i 6=j ϑ̃
g
ij(H)∑N

i,j=1 ϑ̃
g
ij(H)

× 100 (8)
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3.3. Asymmetric causality

The asymmetry in causal linkages between international prices is assessed using the asymmetric

causality test by Hatemi-J (2012) suggested bootstrap simulation technique for calculating of critical

values. The approach to transform the data into both cumulative positive and negative innovations

was introduced by Granger and Yoon (2002) to test time-series for cointegration. In effect we examine

whether or not a series negative or positive innovations show greater causal impact on other series

negative or positive innovations.

Assume that two integrated variables y1t and y2t are described by the following random walk

processes:

y1t = y1t−1 + θ1t = y1,0 +

t∑
i=1

θ+1i +

t∑
i=1

θ−1i, (9)

and similarly

y2t = y2t−1 + θ2t = y2,0 +

t∑
i=1

θ+2i +

t∑
i=1

θ−2i, (10)

The cumulative sums of positive and negative shocks of each underlying variables can be defined

as follows:

y+1t =
t∑
i=1

θ+1i, y
−
1t =

t∑
i=1

θ−1i, y
+
2t =

t∑
i=1

θ+2i, y
−
2t =

t∑
i=1

θ−2i, (11)

where positive and negative shocks are defined as: θ+1t = max(∆θ1i, 0); θ+2t = max(∆θ2i, 0); θ−1t =

min(∆θ1i, 0); θ−2t = min(∆θ2i, 0).

To test the causalities between these components vector autoregressive model of order p, VAR (p)

is used:

y+t = v +A1y
+
t−1 + ...+Apy

+
t−1 + u+t , (12)

where y+t = (y1t
+, y2t

+) is the 2 × 1 vector of the variables, v is the 2 × 1 vector of intercepts, and

u+t is a 2× 1 vector of error terms (corresponding to each of the variables representing the cumulative

sum of positive shocks); Aj is a 2×1 matrix of parameters for lag order γ(γ = 1, , p). The information

criterion (HJC) suggested by Hatemi-J (2003) is used to select the optimal order (p):

HJC = ln(|Ω̂j |) + j(
n2 lnT + 2n2 ln(lnT )

2T
), (13)

where j = 0, ..., p; |Ω̂j | is the determinant of the estimated variance-covariance matrix of the error

terms in the VAR model based on the lag order j, n is the number of equations in the VAR model

and T is the number of observations.

This information criterion was tested by Hatemi-J (2008). The simulation experiments confirmed

the robustness of this criterion to ARCH effect, which is important for this paper due to the existence

of heteroskedasticity in the data. The next step of the analysis is to test the Null Hypothesis that kth

element of y+t does not Granger-cause the ωth element of y+t using the Wald test methodology.
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3.4. Wavelet Coherence

In this paper we also employ the wavelet coherence method to further unveil the investors’ be-

haviour in non-ferrous markets. Both a generalised VAR and asymmetric causality test are unable

to detect the difference in co-movements at low and high frequencies, the wavelet coherence frame-

work allow us to describe co-movements in time-frequency domain. The wavelets is a powerful tool

to explore the behaviour of investors with short-, medium- and long-term investment strategies. This

method has been employed by Hkiri et al. (2018) in analysis of interconnections between U.S. financial

CDS spread and major global factors including the US stock market volatility, Libor, Treasury bill

rates, and oil price. Vacha and Barunik (2012) applied wavelet approach to commodity market data

including crude oil, gasoline, heating oil, and natural gas. Cai et al. (2017) also used the wavelet

coherence analysis to examine interdependence between oil and East Asian stock markets, while Pal

and Mitra (2018) employed wavelet coherence framework to analyse oil price and automobile stock

return co-movement. However, just a few paper to date employed the wavelet coherence framework

for non-ferrous markets research. For example, Kriechbaumer et al. (2014) assessed the usefulness

of an improved combined wavelet-autoregressive integrated moving average approach for forecasting

monthly prices of aluminium, copper, lead and zinc. To our best knowledge, our study is the first

empirical study that employed wavelet coherence framework to assess the interconnectedness between

the non-ferrous metals markets.

Wavelet multi-resolution analysis decomposes a time series through application of a wavelet ψ(t)

which is a function of a time parameter t. The wavelet function provides a balance between localization

of time and scale. Given a time series f(t) expressed over the interval [−α < t < α], the set of wavelet

coefficients W (τ, ε) is given by

W (τ, ε) =
N∑
t=1

f (t)ψ∗
[
t− τ
ε

]
(14)

where [ε > o;−α < τ < α], and the scale associated with the transformation and location of the

window are defined by ε and τ respectively. ψ∗ and 1
ε refer to the complex conjugate of the wavelet

and the normalization factor respectively. In our application, we choose the Morlet wavelet, due to

its strong localization properties.2 The Morlet wavelet is the product of a sine curve with a Gaussian

and given by

ψ(t) = π
1
4

(
eiω0t − e−

ω2
0
2

)
e
−t2

2 (15)

where ω0 is the wavenumber. For an appropriate choice of the wavenumber ω0 the Morlet wavelet

reduces to

ψ(t) = π
1
4 eiω0te

−t2

2 (16)

We now define a number of metrics which assist a time-scale (horizon) understanding of financial

and economic time series, and which are based upon the wavelet transform. The wavelet power

spectrum allows characterisation of the spectral energy (variance) of a time series across both time

and scale (frequency).3 This results in a two dimensional distribution, giving localised information

2Alternative wavelet forms were additionally tested, but resulted in no qualitative changes to findings.
3The literature on wavelets equivalently refers to the scale, period and horizon associated with the decomposition,

each of which may be interpreted as the wavelength. The inverse of the wavelength is the frequency, measuring the
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pertaining to the variance of the signal for a particular scale at a given point in time. The wavelet

power spectrum for a series f(t) is simply the square of the wavelet coefficient at a given scale and

point in time, |W 2
λ,τ (x)|. The statistical significance of wavelet power may be measured versus the

null hypothesis of an AR(0) (white noise) or AR(1) (red noise) process Torrence and Compo (1998).

The corresponding distribution for the wavelet power spectrum is the chi-squared distribution Aguiar-

Conraria et al. (2008). The area corresponding to wavelet coefficients influenced by border effects is

known as the ‘cone of influence’, and is shown by a light black line in plots.

The cross-wavelet power spectrum is the product of the wavelet coefficients calculated using

Wε,τ (f, g) = Wε,τ (f) ∗ Wε,τ (g), where ∗ is defined as a complex conjugate. In common with the

conventional, non-spectral measure of covariance, the magnitude of the cross-wavelet power can also

be influenced by the variance of each series. In order to ensure a spectral measure of comovement

which is comparable across time series, many studies (e.g., Kriechbaumer et al. (2014); Aloui et al.

(2016)) use the wavelet coherence framework, calculated as the smoothed cross-wavelet spectrum,

normalized by the smoothed wavelet power spectra,

ρ2ε,τ =
|Q
(
ε−1Wε,τ (f, g)

)
|2

Q (|ε−1Wε,τ (f)) |2Q (|ε−1Wε,τ (g)) |2
(17)

where Q refers to a smoothing operator in both time and scale (Torrence and Compo (1998)). Wavelet

coherency is analogous to squared correlation, measuring the co-variation between two series divided

by their variation at different scales and points in time. The value of the squared coherency ρ2ε,τ

is between zero (low level of synchronization or zero co-movement) and one (strong synchronization

or perfect co-movement). With this approach, the graphical presentation of the wavelet squared

coherence enables us to identify the “region” of co-movement between inflation and gold returns in

the time-scale space. The theoretical distribution of wavelet coherency is not known and Monte-Carlo

methods are invoked to determine statistical significance (Aguiar-Conraria et al. (2008)).

The level of wavelet coherence provides information relating to the synchronization between two

time series but does not indicate whether this relationship is positive or negative. To understand the

form of synchronization between two time series, the wavelet multi-scale phase is employed. For two

time series f(t) and g(t) this is given by

θε,τ (f, g) = tan−1

(
={Q

(
ε−1Wε,τ (f, g)

)
}

<{Q (ε−1Wε,τ (f, g))}

)
(18)

where = and < refer to the imaginary and real parts of the wavelet coefficients respectively and Q is

the smoothing parameter.

4. Empirical Results

4.1. Market integration indices

Table 2 reports input-output decompositions of spillovers indices for the seven non-ferrous metals

selected for this study.4 Table 3 and Table 4 demonstrate the results of volatility spillovers analysis

number of cycles per period.
4The ijth entry is the estimated spillover contribution to the forecast error variance of market i from shocks emanating

from market j. The results in the row Contribution to others demonstrate the returns on which of the metals is the most
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for Parkinson volatility and square volatility respectively. There are several observations that can be

made based on the results reported in the spillovers tables.

First, similarly to the previous studies which have used the Diebold and Yilmaz (2012) approach,

we find that the value of TSI is higher for returns as compared to volatility, which is evident for

both volatility measures used. Particularly, TSI for returns equal 60% (cumulative contributions from

others/cumulative contributions to others), while for the Parkinson volatility estimator the value of

TSI is 43.9% and for the squared volatility estimator it is 49.1%. Comparing the findings obtained for

two different volatility measures used in this study we can see a lack of consistency in the results for

all net, pairwise and directional spillovers indices. However, apart from the values of TSI other results

do not provide evidence that the squared volatility measure leads to an overestimation of intensity of

volatility spillovers. Indeed, in many cases the findings suggest a reverse conclusion.

Second, the results indicate that the main sources of return spillovers are aluminium, copper

and zinc since they have the highest values of contribution to others 77.04%, 74.12% and 73.76%.

Furthermore, these metals have positive values of NSI, i.e. the difference between contribution to and

from equal 11.07%, 9.11%, and 8.58% for aluminium, copper and zinc respectively, Therefore, the

conclusion can be drawn that aluminium, copper and zinc are the net-transmitter/net-contributors of

return spillovers. Alternatively, alloy, lead, nickel, and tin are found to be a net-recipients, with values

NSI equal -7.17%, -4.35%, -7.21% and -10.04% respectively. In respect of volatility transmission,

the results are highly sensitive to the choice of volatility estimator. For example, for the Parkinson

volatility measure the spillover analysis indicate the net-contributors are aluminium, copper, lead and

zinc, but for Squared volatility the results suggest an alternative conclusion the net-contributors are

alloy, copper and zinc, which do not allow to robustly argue who are the net-transmitter/recipients of

volatility across selected metals.

Overall, the results reported in all Tables confirm the role of copper and zinc are the main stress-

transmitters. Alternatively the spillover analysis indicate that nickel and tin have the highest values

of DSI from others and also NSI, which makes these metals the net-recipients of both returns and

volatility spillovers.

Figure 2 plots the total spillovers across non-ferrous metals using rolling window approach for the

whole estimation period for returns (a), Parkinson (b) and Squared (b) volatility measures. Figure

2 shows several similar patterns, i.e. upward/downward trends in total spillovers, during the period

from 12 January 1994 to 19 October 2016. There are three downward trends identified: (i) Q4 1995-Q4

1998; (ii) Q4 2002-Q2 2007; (iii) Q1 2014-Q4 2016. Besides, we can see 2 periods of increase in to total

return spillovers, i.e. upward trends: (i) Q1 1999-Q3 2002; (ii) Q3 2007-Q4 2013. Similar patterns

are identified for volatility spillovers, however, the final downward trend in volatility spillovers has

started earlier in comparison to returns, i.e. from Q2 2012 - Q4 2016. It appears that connectedness

across markets increases during times of recessions, most prominently the Great Recession of 2007-

influencial in the sample, while the column From others shows the metals who are the-most affected by the information

transmitted from other markets in the sample. In order to further highlight the net-contributors and net-recipient of

return spillover we follow Yarovaya et al. (2016a) and expand the DY (2009, 2012) spillover tables by adding the column

Net which include the values of the Net Spillover Indices (see Eq. 8). A conclusion is provided in the final column

Conclusion. A similar approach is used for Table 3 and Table 4 design.
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2009, and then, connectedness decreases during the following recovery periods. While a more articulate

explanation of this phenomenon would require a separate and thorough analysis, we believe one reason

we observe this pattern could be related to the fact that similar traders take positions in stock and

commodity markets. As discussed by Kyle and Xiong (2011) and Buyuksahin and Robe (2011),

among others, in recessions stock markets tend to be in bear markets, traders in equity markets face

borrowing constraints and sundry pressures to liquidate risky positions. This likely causes them to

exit from secondary (or satellite) markets such as commodities at the same time. Since investors tend

to act similarly in all commodity markets together, this increases information flows and hence, causes

upward movements in connectedness between these markets that we observe in our study. Figure 3, 4

and 5 further explain the dynamics of the directional spillovers across selected non-ferrous metals over

the estimation period for three measures. Findings are consistent for returns, Parkinson and squared

volatility measures.

4.2. Wavelet Coherence

The wavelet method is a suitable method to analyse the interlinkages between time series across

different frequencies and time-scales. The cross wavelet power reveals the areas in the time scale

when two time series have high level of co-movements. Thus, we use the wavelet coherence to provide

further evidence on co-movements between non-ferrous metal markets, measuring the local correlation

in time and scale. Apart from the high power areas, the wavelet coherence plots display areas where a

selected pair of metals also co-moves, but do not demonstrate high power, i.e. these regions indicate

contagion effect. Therefore, by employing this technique, we can also enrich the evidence on pairwise

spillovers across selected metal markets, with a help of the phase arrows.5

Shown in Fig 6 - 10 are wavelet coherence plots (WCP) for each metal against each other. In

the WCP the horizontal axes refer to time intervals, while the vertical axes refer to frequency bands.

The red colours of WCP indicate the areas of high power, i.e. high degree of co-movements between

markets. Thus, a general observation that can be made from Fig 6 - 10 is that the strength of

relationships is generally stronger at high frequency bands, since these red areas are appeared at the

bottom of the coherence plots. However, the presence of coloured areas at the top of the WCP suggest

the existence of co-movements in lower frequencies too. Therefore, in general all market-pairs are

characterised by high degree of co-movements.

More specifically, Figure 6 presents the WCP for pairs of aluminium with other markets. We can see

that aluminium aluminium alloy (Fig. 6a) and aluminium copper (Fig 6b) demonstrate the highest

degree of co-movement at all frequencies and during whole timespan. However, in comparison with

other pairs (Fig. 6c-f), we can see that Fig. 6 a and Fig. 6b show especially strong co-movements at

high-frequencies, i.e. 64-256, over the whole sample. The impact of the crisis periods, that identified in

previous section by DY spillover plots, is not visible in the WCPs for these two market pairs, however,

5The phase arrows indicate the direction of co-movement among the investigated series pairwise. East (west) facing

arrows represent in- (out-of-) phase, while north (south) facing arrows indicate that time series two leads (lags) time

series one. A north-east (south-east) facing arrow symbolizes that the series are in-phase but that time series two (time

series one) leads time series one (time series two). A north-west (south-west) facing arrow signifies that the series are

out-of-phase but that time series one (time series two) leads time series two (time series one).
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it rather pronounced for aluminium lead, aluminium - nickel, aluminium - tin and aluminium zinc

pairs (Fig. 6c-f). For example, for aluminium tin pair the WCP show the increased in co-movements

after the global financial crisis (Fig. 6e).

Similar findings are presented in Fig. 7-10 for other combinations of the selected non-ferrous

metals. The higher power-regions reside in the middle of the sample period at high frequencies, and

at the end of the period at both low and high frequencies. This indicate that co-movements between

metals markets has increased over time. For many pairs (e.g. alloy-copper, alum. alloy -zinc, copper

lead, lead-zinc) we can argue that the linkages between markets are intensified after the global financial

crisis which indicate the presence of contagion effect across these markets.

The phase arrows show that these markets have erratic behaviour, since the direction of the

arrow varies across time-frequency bands. However, a general observation about lead-lag relationships

between markets that can be made from Fig. 6 that at higher frequencies the arrows are south-east

facing, i.e. aluminium leads the other markets, however, at lower frequencies the arrows are north-east

facing, i.e. the price of aluminium is driven by the changes in prices on other metals. The results

previously reported in the spillover tables demonstrated that aluminium is one of the main contributors

of both return and volatility spillovers to other markets. Therefore, based on the wavelets analysis,

we can further argue that the role of aluminium as net-transmitter of shocks is mainly due to the high

degree of co-movements at high-frequencies with other markets during the overall time span.

The other metals that are found to be net-contributors in previous section are copper and zinc. The

application of wavelets methodology to all combinations for copper and zinc supports these findings

- Figures 6-10 support this but not however, in all time-frequencies bands. Thus, copper is found to

lead aluminium, tin and lead at lower frequencies after the global financial crisis, while alloy, nickel,

and zinc at higher frequencies during the whole estimation period. Similar patterns are identified for

zinc; thus, for zinc-aluminium, zinc-lead, zinc -tin and zinc-copper, zinc is a leading market at lower

frequencies after the crisis period, while for zinc-alloy, and zinc-nickel pairs, zinc is leading at higher

frequencies throughout the whole observation period. Again, alloy, lead, nickel and tin are found to be

recipients of the information by the results of spillover analysis performed in previous section. There

is some evidence supporting these results provided by the WCP in Fig. 6-10 since, however, as has

been mentioned earlier, the direction of the relationships varies among time and frequencies.

5. NARDL Results

The results of a Granger Causality test as described above is provided in Table 5. For brevity we

report only the significant results. Lead and tin provide little asymmetric causality, with the majority

of influences coming from aluminium and aluminium alloy. The NARDL estimation provides context

to the findings elsewhere, as they allow any influences to be decomposed into positive and negative

influences. As might be expected positive and negative shocks in both alum. alloy and aluminium

granger cause each other, as does lead and zinc, However, it is also clear that in general both alum.

alloy and aluminium are the drivers in terms of causality. Aluminium positive shocks are the single

largest driver of causality, in eleven cases. Nickel and zinc in contrast are the most open to influence,

both being caused by 11 others. Despite contributing little, only two instances, lead (mainly negative)

is open to seven causal relationships (five to negative and two to positive).
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We believe the leadership role that we detect for aluminium is driven by two primary factors.

Firstly, as Watkins and McAleer (2008) state, changes in aluminium are much more closely aligned with

global industrial production than the other commodities in our sample (save for copper). Aluminium

is widely used in automobile, construction and aerospace industries. Boulamanti and Moya (2016a)

also claim that aluminium is the mostly used metal, while the second and the third highest usages are

for copper and zinc. Secondly, as a market micro-structure factor, aluminium is most widely traded

contract on the LME. The finance literature states that trading volume is correlated with information

flow; hence, this factor also attributes a leadership role to aluminium. Todorova and Clements (2018)

analysed the volume-volatility relationships for the five LME futures on aluminium, copper, nickel,

lead and zinc, and found that positive shocks in trading volume and negative shocks in the trading

frequency are the dominant factors of the volatility-volume relationships. Besides, according to Wu

and Hu (2016) aluminium market is more susceptible to external shocks, and the return of aluminium

is the most overvalued, therefore during the recession time when co-movement between markets is

increasing, aluminium plays role of the transmitter of volatility to other non-ferrous metals.

6. Conclusion

The co-movement analysis between LME metal markets is highly important for asset allocation

decision and diversification of the risk. This paper considers the interconnectedness of seven industrial

metal prices, i.e. aluminium, aluminium alloy, copper, nickel, lead, tin and zinc, for the period

from 1994-2016, using spillover analysis and wavelet coherence framework. This paper provides the

supporting evidence to the position that the non-ferrous metals can be considered as a separate

investment class, due to the high degree of financial integration between these markets. This study

reveals several important observations contributing to the growing field of literature on behavior of

the non-ferrous markets.

The results of spillover analysis show the higher degree of spillovers across markets. The identified

dynamics of return and volatility transmission revealed the increase in total spillovers across markets

during the financial crises. Therefore, we can conclude that the behaviour of the non-ferrous metals

is similar to other more conventional asset classes, like equities and bonds, justifying the position

that metals have become an investment asset. In this paper, we analysed not only return spillovers,

but also volatility spillovers, providing the novel evidence from two volatility estimators (Parkinson

range volatility estimator, and squared volatility measure). We found that square volatility measure is

demonstrated higher value of kurtosis, that can cause overestimation of intensity of volatility spillovers,

while the range volatility estimator provide the results that more consistent with the returns spillovers

in respect to intensity, direction and dynamics of spillovers. This contributes to Yarovaya et al. (2016b)

who discussed the advantages of the range volatility estimates in spillovers studies. Based on the return

and volatility spillover analysis we conclude that aluminium, copper, and zinc are net-transmitters of

spillovers, while alloy, nickel, lead and tin are net-recipients.

The results are further verified by using the wavelet coherence approach. The findings suggest

the strong degree of co-movements between all non-ferrous markets, however, this co-variation is

highly depended on the time and frequency band. Thus, the co-movements between markets are

unstable. Furthermore, the lead-lag relationships between pairs of metals show erratic behaviour,
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since they found to be susceptible to time and frequencies. The WCP show highly changing patterns

of co-movements, however, for some pairs there are higher co-movements at higher frequencies than at

lower-frequencies, for other reverse. These results can be interesting for investors with various investors

horizons, with short-term and long-term investments strategies. Besides, the application of the wavelet

approach revealed that the high-power regions of wavelet coherence are corresponding to the real-

world events, such as the global financial crisis. Thus, we confirm the findings of spillover analysis,

that the crisis has increased the degree of co-movements between selected LMEs non-ferrous metals,

contributing to contagion literature. For investors seeking to diversify in to alternative investments

such as these assets it is vital to recall the real world linkages - these industrial metals are intimately

linked to the global economy. It is also important to note that these are not monetary metals- their

store of value element is low. This however positions them nicely against metals such as silver and

gold. These findings further support the argument that metals have not only industrial role, but also

is an investment asset.
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Figure 1: Price Evolution
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Figure 2: Spillover Plots

(a) Total Return Spillovers

(b) Total Volatility Spillovers

(c) TotAl Squared Volatility Spillovers
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Figure 3: directional Spillovers - Returns

(a) REturn Spillovers Given

(b) Return Spillovers Received
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Figure 4: directional Spillovers - Volatility

(a) Volatility Spillovers Given

(b) Volatility Spillovers Received
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Figure 5: directional Spillovers - Squared Volatility

(a) Squared Volatility Spillovers Given

(b) Squared Volatility Spillovers Received
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Figure 6: Aluminium Wavelet Coherence Plots

(a) fig 1 (b) fig 2

(c) fig 3 (d) fig 4

(e) fig 5 (f) fig 6
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Figure 7: Aluminium Alum. alloy Wavelet Coherence Plots

(a) fig 1 (b) fig 2

(c) fig 3 (d) fig 4

(e) fig 5
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Figure 8: Copper Wavelet Coherence Plots

(a) fig 1 (b) fig 2

(c) fig 3 (d) fig 4

26



Figure 9: Lead Wavelet Coherence Plots

(a) fig 1 (b) fig 2

(c) fig 3
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Figure 10: Nickel and Zinc Wavelet Coherence Plots

(a) fig 1 (b) fig 2

(c) fig 3
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Table 1: Descriptive Data

Aluminium Alum. alloy Copper Lead Nickel Tin Zinc

Returns

Mean 0.000 0.000 0.001 0.001 0.001 0.001 0.001

Median 0.000 0.000 0.001 0.001 0.002 0.001 0.001

Maximum 0.145 0.130 0.139 0.232 0.316 0.280 0.161

Minimum -0.127 -0.124 -0.182 -0.206 -0.200 -0.191 -0.194

Std. Dev. 0.028 0.024 0.035 0.043 0.048 0.035 0.037

Skewness 0.088 0.007 -0.222 -0.150 0.171 -0.162 -0.394

Kurtosis 4.808 6.600 5.611 5.953 6.626 9.273 6.250

Observations 1189 1189 1189 1189 1189 1189 1189

Volatility

Mean 1.018 0.892 1.100 1.219 1.302 1.055 1.138

Median 0.976 0.850 1.044 1.155 1.255 1.007 1.080

Maximum 2.294 2.171 2.737 2.911 3.733 3.190 2.787

Minimum 0.370 0.109 0.409 0.436 0.379 0.000 0.439

Std. Dev. 0.284 0.306 0.338 0.390 0.393 0.384 0.363

Skewness 0.726 0.801 0.997 0.840 1.041 0.878 0.872

Kurtosis 3.847 4.149 4.552 3.957 5.448 4.504 4.105

Observations 1189 1189 1189 1189 1189 1189 1189

Squared Volatility

Mean 0.001 0.001 0.001 0.002 0.002 0.001 0.001

Median 0.000 0.000 0.000 0.001 0.001 0.000 0.000

Maximum 0.021 0.017 0.033 0.054 0.100 0.078 0.038

Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Std. Dev. 0.002 0.001 0.003 0.004 0.006 0.004 0.003

Skewness 5.836 6.380 5.429 5.837 8.132 11.808 6.322

Kurtosis 54.741 58.457 44.248 51.148 107.013 217.376 56.799

Observations 1189 1189 1189 1189 1189 1189 1189

29



Table 2: Return Spillovers

From/To Aluminium Alum. alloy Copper Lead Nickel Tin Zinc From Others Net Conclusion

Aluminium 34.04 17.35 13.67 7.63 8.44 6.24 12.63 65.96 11.07 Net-contributor

Alum. alloy 21.24 41.67 11.32 5.42 5.74 4.85 9.77 58.33 -7.17 Net-recipient

Copper 14.01 9.27 35.00 9.86 10.31 7.44 14.12 65.00 9.11 Net-contributor

Lead 9.27 5.23 11.55 41.38 7.34 8.22 17.02 58.62 -4.35 Net-recipient

Nickel 10.90 5.87 13.23 7.92 43.15 8.49 10.44 56.85 -7.21 Net-recipient

Tin 8.67 5.43 10.03 9.19 9.41 47.49 9.79 52.51 -10.04 Net-recipient

Zinc 12.94 8.01 14.32 14.25 8.41 7.24 34.82 65.18 8.58 Net-contributor

Contrib. to others 77.04 51.16 74.12 54.27 49.64 42.48 73.76 422.45

Contrib. inc own 111.08 92.83 109.11 95.65 92.79 89.96 108.58 60%

Table 3: Volatility Spillovers

From/To Aluminium Alum. alloy Copper Lead Nickel Tin Zinc From Others Net Conclusion

Aluminium 49.59 16.23 9.71 4.66 4.49 3.80 11.51 50.41 1.85 Net-contributor

Alum. alloy 19.28 63.40 5.87 2.87 2.20 1.69 4.69 36.60 -2.66 Net-recipient

Copper 8.31 5.46 56.16 9.17 6.07 4.36 10.47 43.84 6.54 Net-contributor

Lead 5.27 3.02 8.26 56.77 5.11 7.09 14.48 43.23 2.45 Net-contributor

Nickel 4.94 2.73 9.94 7.23 59.42 4.87 10.87 40.58 -10.96 Net-recipient

Tin 5.30 2.30 6.67 9.05 5.76 62.15 8.77 37.85 -9.86 Net-recipient

Zinc 9.15 4.20 9.93 12.70 6.00 6.17 51.85 48.15 12.64 Net-contributor

Contrib. to others 52.26 33.95 50.38 45.68 29.62 27.99 60.79 300.66

Contrib. inc own 101.85 97.34 106.54 102.45 89.04 90.14 112.64 43.0%
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Table 4: Squared Volatility Spillovers

From/To Aluminium Alum. alloy Copper Lead Nickel Tin Zinc From Others Net Conclusion

Aluminium 48.46 20.13 9.19 3.96 6.75 1.82 9.69 51.54 -2.41 Net-recipient

Alum. alloy 19.93 55.52 9.80 3.25 3.01 1.06 7.43 44.48 18.97 Net-contributor

Copper 6.07 10.53 53.07 6.61 7.38 3.80 12.55 46.93 20.57 Net-contributor

Lead 4.50 8.11 11.08 49.86 6.51 7.93 12.00 50.14 -6.53 Net-recipient

Nickel 6.83 8.34 12.99 6.99 48.27 8.25 8.33 51.73 -13.23 Net-recipient

Tin 2.12 8.33 11.36 11.87 8.81 51.68 5.83 48.32 -22.44 Net-recipient

Zinc 9.69 8.00 13.07 10.93 6.04 3.02 49.24 50.76 5.07 Net-contributor

Contrib. to others 49.13 63.45 67.49 43.61 38.50 25.87 55.83 343.89

Contrib. inc own 97.59 118.97 120.57 93.47 86.77 77.56 105.08 49.1%
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Table 5: NARLD Causality Results

Direction Caused by Direction Caused by Direction Caused by Direction Caused by

Alum. alloy - Aluminum + Copper - Alum. alloy - Tin - Aluminum + Nickel - Alum. alloy +

Alum. alloy - Aluminum - Copper - Aluminum - Tin - Aluminum - Nickel - Aluminum +

Alum. alloy - Zinc + Copper - Aluminum + Tin - Nickel - Nickel - Alum. alloy -

Alum. alloy - Lead + Copper + Aluminum + Tin - Copper - Nickel - Zinc -

Alum. alloy + Tin + Copper + Copper - Tin - Tin + Nickel - Zinc +

Alum. alloy + Aluminum + Copper + Alum. alloy + Tin + Lead - Nickel - Aluminum -

Alum. alloy + Zinc + Copper + Zinc + Tin + Tin - Nickel + Zinc +

Alum. alloy + Copper - Copper + Nickel + Zinc - Zinc + Nickel + Aluminum +

Aluminum - Aluminum + Copper + Zinc - Zinc - Nickel - Nickel + Nickel -

Aluminum - Alum. alloy - Lead - Aluminum - Zinc - Alum. alloy - Nickel + Copper -

Aluminum - Copper - Lead - Nickel - Zinc - Alum. alloy + Nickel + Alum. alloy +

Aluminum - Alum. alloy + Lead - Nickel + Zinc - Copper +

Aluminum - Copper + Lead - Aluminum + Zinc - Aluminum -

Aluminum - Tin - Lead - Alum. alloy + Zinc - Copper -

Aluminum + Zinc + Lead + Aluminum + Zinc + Aluminum +

Aluminum + Alum. alloy - Lead + Copper - Zinc + Tin -

Aluminum + Aluminum - Zinc + Alum. alloy +

Aluminum + alloy + Zinc + Nickel -
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