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Abstract

The aim of this work is to present mathematical models and a heuristic
solution strategy to solve the heterogeneous fleet-sizing problem of platform
supply vessels (PSVs) that support the offshore oil and gas exploration and
production (E&P) activities. The problem considered in this research takes
into account a novel characteristic related to the berth allocation problem
of the supply base, which must be considered together with the decisions of
selecting the departure days and the routes. The adopted solution strategy
consists of sequentially solving models that capture different aspects of the
problem, by starting with models that are simpler to solve. The solution
found in one step provides a lower bound to the next step. This procedure
was devised in order to reduce the search space and to speed up convergence.
The proposed solution strategy was applied to real instances in Brazil, which
has up to 79 offshore units grouped into clusters, with fair/acceptable results.
The procedure allowed for assessing the impact of the number of berths on
the fleet composition.
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1. Introduction

Oil and gas offshore exploration and production (E&P) has been facing
the challenge of coping with the oil price crisis that has affected the entire
segment worldwide since 2015. Particularly in the offshore support vessel
market, the declining oil prices appear to be having a negative and worrying
impact. Support vessels’ service providers have not only to deal with the
lower freight rates for the time charter and spot markets, but also with
the segment over-capacity. Fortunately, the existing offshore oilfields have
maintained their operating levels, and the demand for support vessels in
ongoing operations has not suffered major impacts.

Irrespective of the crisis and its impact on the offshore support ves-
sels’ market, E&P operators face continuous pressure to reduce costs. Even
though operational expenditure (OPEX) is not as high when compared to
capital expenditure (CAPEX) for offshore E&P, there is always room for
the pursuit of reductions in operational costs. In the upstream segment of
the oil and gas supply chain, apart from the costs related to operations and
interventions in wells and subsea systems, the main operational cost is as-
sociated with the platform supply vessels (Halvorsen-Weare and Fagerholt,
2017). These vessels play an important role in an oilfield development as they
are present throughout the whole of the offshore E&P life cycle (exploration,
production and demobilization). The impact of reducing their costs seems to
be quite relevant when considering that fields some distance from shore have
relatively high density in terms of number of offshore units to be serviced.

The role of the platform supply vessels (PSV) in the logistics of the off-
shore oil industry is described in Aas et al. (2009); it consists of delivering
goods from an onshore supply base to one or more offshore units, and re-
turning items from these units to the onshore base. A PSV usually has the
capacity to carry both bulk cargo and deck cargo. While the former - con-
sisting of water, diesel and special fluids - is stored in tanks under the main
deck, the latter consists of general cargo that is stored in offshore contain-
ers which are lifted by cranes from the vessels’ main decks. In most cases
the E&P operators charter the fleet of PSVs rather than owning them. The
hiring rates are highly dependent on the contract duration - long term (time
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charter) or short term (spot) - and on the deck area capacity, as described
in Døsen and Langeland (2015).

From the E&P operators’ perspective, or even from the perspective of
offshore logistics providers, cost savings could be achieved through a better
planning of the PSV fleet. In the problem considered in this paper, the fleet
planning must also take into consideration the berth capacity constraints in
a 24x7 continuous operation, being the berth time dependent on the amount
of cargo loaded rather than being a fixed time. This paper proposes a math-
ematical model for the fleet composition and periodic routing problem of
platform supply vessels integrated with the berth allocation problem. We
also propose a solution strategy to solve the mathematical model in steps,
which was devised to reduce the processing time. Lastly, real instances from
a Brazilian oil and gas company are solved. This article has the following
structure: problem description, literature review, mathematical model, solu-
tion strategy and the case study with the computational results, followed by
the concluding remarks and suggestions for future work.

2. Problem Description

In order to properly introduce the problem, the most important charac-
teristics are presented first: i) Regular weekly schedules must be established
to serve the offshore units. This is the current praxis and brings the required
discipline for all agents involved in the process - suppliers, supply base oper-
ators, cargo planners and clients. The schedules are reviewed from time to
time mostly due to location changes of mobile units or due to special oper-
ations (e.g., installation campaigns, decommissioning campaigns, or planned
maintenance). Figure 1 shows an example of the routes servicing 15 offshore
units. As in the work of Kisialiou et al. (2018), the one-week period is called
‘the planning horizon of the installations’. As for the vessels, their schedule
must fit a two-week period, known as ‘the planning horizon of the vessels’.
By considering a longer planning horizon for the vessels, trips may begin by
the end of the first week, giving more flexibility to the route-planning process.
Therefore, one vessel might not repeat the same route in the next evaluation
period. If the planning horizon for the vessels was limited to one period, the
routes that starts in the first period and finish in the second period would
never be feasible, as exemplified by the black route that departs on day 6 in
Figure 2. ii) The frequency of visits requested by an offshore unit within a
week is known and depends on several factors. Usually the production units
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have a more stable demand with lower fluctuations and, as a consequence,
the demand is more predictable. In this case, a lower frequency is required.
On the other hand, demand is more unpredictable for drilling rigs due to
unforeseen problems that often occur. Therefore, for drilling rigs and for
some special units that work in campaigns, e.g., maintenance units, higher
frequencies of visit are imposed. iii) The vessels’ departure days to serve an
offshore unit should be evenly spread as much as possible. This approach
is the same used in the works of Halvorsen-Weare and Fagerholt (2017) and
Halvorsen-Weare et al. (2012). An example of departure patterns from the
supply base for frequencies of one-, two- and three-weekly visits can be seen
in Figure 3. iv) Offshore units are grouped into clusters. A cluster consists
of a group of nearby platforms that are served together, as a separate entity
from the others. They belong to the same oilfield and are operated by the
same onshore base. This segregation is observed in the Brazilian offshore
E&P, and allows a better management of the logistics process, including
cargo prioritization and solving disputes more easily. Figure 4 presents a set
of 79 offshore units grouped into nine clusters. Each cluster is indicated by
a different color and each dot represents an offshore unit. Even though plat-
forms are grouped into clusters, the frequency of visits is defined individually
for each platform.

Figure 1: Example of departures routes per day for 15 offshore units.

The problem is also characterized by the following: v) The PSV fleet is
categorized by the vessels’ deck capacity. In this research three classes of
PSV are being considered. The first one is PSV4500 with deck capacity of
up to 900m2, the second one is PSV3000 with deck capacity of up to 600m2,
and the third is PSV1500 with deck capacity of up to 300m2. vi) The PSVs
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Figure 2: Example of vessels’ allocation per day for 15 offshore units.

Figure 3: Departure patterns for frequencies of one-, two- and three-weekly visits.

Figure 4: Supply base and offshore installations.

are assigned to routes that depart from and return to a given onshore supply
base. The operational focus is the delivery of general cargo. The pickup
cargo, also known as backload, is usually less than the delivery cargo and it
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is assumed that the return cargo can be placed on the deck without violating
its capacity. vii) The demand is expressed by the area occupied by each
cargo as found in Halvorsen-Weare and Fagerholt (2017), Halvorsen-Weare
et al. (2012) and Fagerholt and Lindstad (2000). Usually, a free area is left
on the deck in order to allow for any cargo handling that may be necessary.
Detailed information on this subject can be found in Seixas et al. (2016).
viii) No opening hours are considered for either the onshore base or the
offshore unit. Offshore units are open 24 hours a day, except when performing
operations that restrict cargo transfer (e.g., diving or helicopter operations)
and special cases may be treated by reversing the route-visiting sequence or
by changing the sequence of a few visits, resulting in a minor impact on the
overall performance. Moreover, both the onshore base and the offshore units
operate seven days a week, without any interruption. ix) The maximum
number of offshore units that can be visited in the same route is limited by
each vessel’s capacity, and must not exceed eight units, as longer voyages
are more sensitive to delays and to adverse weather conditions. Assigning
up to eight units to a route causes the routes’ duration to vary by between
one day and four days approximately. Therefore, all routes’ duration are less
than one evaluation period or a week. x) Vessels are not linked to routes and
thus may not repeat the past voyages on subsequent weeks. Rather, vessels
are considered as a common resource to be used whenever requested, and
this is expected to produce good overall fleet allocation. xi) The port time
at the supply base is calculated by considering a fixed setup time (vessel
berthing time) added to the loading time, which is given by the amount of
cargo to be loaded divided by an average loading rate. Given that routes
cover different numbers of offshore units, the loading time is not considered
fixed but, rather, dependent on the total amount of cargo to be transported.
xii) Based on the actual loading rates and on the historical average amount
of cargo transported, the maximum number of departures from each berth
on each day is limited to two. Each departure from each berth position is
nominated as a departing position. xiii) The vessel may begin loading at
any time during the day. Consequently, there is a risk of not attending the
imposed departing day if the loading process begins late in a day. However,
in order to give flexibility to the berth planning process, a tolerance of up to
12 hours is considered. For example, the departure day of a given vessel may
be considered as belonging to day l even if the vessel leaves the port by 12
pm of the following day l+1. xiv) All parameters are known in advance. No
stochastic data are used, and the weather impact on the voyage duration is
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not considered.

3. Literature Review

The planning of supply operations has been addressed by several authors.
In Aas et al. (2009) a general overview of the supply vessel role in the oil
industry is presented. Aas et al. (2007) studied the pickup and delivery prob-
lem in the offshore oil industry involving one single vessel, and considered
limited storage capacity at the platforms and on the vessel. A mathemati-
cal model was proposed taking into consideration that any platform may be
visited twice in order to have its demand fulfilled, given the limited storage
capacity. Gribkovskaia et al. (2008) tackled the same problem, and proposed
a tabu search procedure to solve larger instances. The route-planning prob-
lem with the purpose of assessing the cost impact of not being able to serve
some offshore units during the night is addressed by Fagerholt and Lindstad
(2000). Candidate routes were generated by considering the night closures
and a set partition model was proposed including the fixed cost of using a
vessel in the planning horizon.

A more complete version of the same problem is considered in Halvorsen-
Weare et al. (2012) by incorporating the periodicity in their model. Different
from the previous contribution, in this paper the authors included the depart-
ing day in the route selection decision variable, which allowed the interval
between consecutive voyages to be controlled, in accordance with a list of
candidate departure patterns. A more sophisticated set partition model was
proposed, based on a voyage generator, and instances with up to 14 offshore
units were reported. This problem was also solved by a large neighbour-
hood search in Shyshou et al. (2012), and reports on solving larger instances
were given. The same problem was later studied by Halvorsen-Weare and
Fagerholt (2017) who proposed a new formulation based on arc-flow vari-
ables. Kisialiou et al. (2018) extended the work of Halvorsen-Weare et al.
(2012) by allowing flexible departure times from the onshore base, instead
of considering a fixed departure time for all voyages. The authors also dealt
with the ’end of week effect’, by which a vessel that started a trip by the end
of a week may not be able to repeat the routes performed in the beginning of
the previous week. The authors proposed an ALNS heuristic and the results
were compared to a voyage-based model solved by CPLEX.

A single vessel pickup and delivery problem in the offshore industry is
addressed by Cuesta et al. (2017). The problem considers that it is not
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mandatory to attend to the whole demand; however, in such cases, a cost
penalty is introduced to consider the losses due to unattended demand. A
mathematical model was proposed to select the sets of cargo to be trans-
ported, followed by the vessel routing. Another situation was considered,
where transportation of all cargo was compulsory, even if additional vessels
were incorporated into the fleet. The problem was solved by an adaptive
large neighborhood search.

In the oil industry, besides the aforementioned references such as Halvorsen-
Weare et al. (2012) and Halvorsen-Weare and Fagerholt (2017), other con-
tributions related to fleet sizing include Shyshou et al. (2010) who proposed
a discrete event simulation model in an anchor-handling operational con-
text. Maisiuk and Gribkovskaia (2014) studied a platform supply vessels’
fleet-sizing problem under uncertainty by combining optimization and dis-
crete event simulation. Eskandari et al. (2016) proposed a multi-objective
discrete event simulation model for a supply vessel fleet-sizing problem, and
St̊alhane et al. (2016) developed a two-stage stochastic optimization model
in a fleet-sizing problem related to maintenance activities.

The period routing problem is an important variation of the classical
vehicle routing problem as many practical applications impose multiple visits
to the customers during the planning period, as in Christofides and Beasley
(1984) and Baptista et al. (2002). A general overview of existing models,
solution approaches and applications is given in Francis et al. (2008). The
integration of periodic routing with fleet sizing is also found in another class
of problems known as the periodic location routing problems, which extends
the period routing and fleet-sizing problem by considering location decisions.
Prodon (2011), Hemmelmayr (2015) and Koç (2016) offer a general overview
of existing models and solution approaches.

Berth allocation problems have been mostly investigated in the container
industry, under different configurations. For example, Lim (1998) considered
the problem with the continuous quayside, while Imai et al. (1997) studied
the discrete quayside. Imai et al. (2001) considered that the ships arrive
dynamically and in Cordeau et al. (2005) time windows for berthing the
ships are imposed. In Agra and Oliveira (2018) a more complex version of
the problem was considered by integrating berth planning with the planning
of cranes. For a comprehensive overview, one can refer to Bierwirth and
Meisel (2015). Applications in other types of terminals can be found, for
example, in Ribeiro et al. (2016) and in Pratap et al. (2017).
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4. Mathematical Model

This section presents a mathematical model for the fleet composition and
periodic routing problem with berth allocation decisions. As the model uses
route selection variables based on a set of externally generated routes, a
general overview of the route generation process is first given.

4.1. Route Generation Algorithm

The route generation process consists of enumerating all combinations of
up to eight offshore units and discarding the infeasible combinations with
respect to vessel capacity. In our problem, however, the units belong to
predefined clusters, and no route visits offshore units belonging to different
clusters. The route total demand is calculated by summing the weekly total
demand of each unit present in the route divided by the week frequency of
the visit to the corresponding offshore units. For each vessel class, the route
is considered feasible if the calculated total demand is less than or equal to
the vessel capacity. As the offshore units operate uninterrupted during the
night, one may solve the inherent TSP problem to determine the optimal
route sequence, and the corresponding cost and duration. Figure 5 gives a
general overview of the generation process.

Figure 5: Route generation procedure.
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As a periodic routing problem is being solved, if the routes depart in an
evenly spread configuration from the supply base then it is not expected that
the offshore units are serviced by two different routes at the same time. In
case this condition occurs, it is always possible to eliminate the collision by
reversing the visit sequence of one of the routes.

4.2. Sets, Indices, Parameters and Decision Variables

The following sets and indices are used in the mathematical model: V - set
of vessel classes (index v); J - set of offshore units (index j); R - set of routes
(index r); Rv - subset of routes that vessels of class v can sail (Rv ⊂ R); S -
set of departure patterns (i.e. departure days) from the supply base (index
s); Sj - subset of departure patterns compatible with the frequency of visits
imposed by offshore unit j (Sj ⊂ S); T - planning horizon of the vessels
(indices l and t, t:1..14); L - planning horizon of the offshore units (L ⊂ T ,
index l, l:1..7); B - set of berths (index b); P - set of departures per day
for each berth (index p). For the sake of simplicity, as each vessel is always
assigned to a pair (berth, departing position) at the onshore base, a berth
position (b,p) notation is used.

Parameters: FVv - fixed cost of vessels belonging to class v; CRvr - route
r cost of vessels belonging to class v; Dj - offshore unit j demand (m2) given
by the mean plus two times the standard deviation of the weekly demand
divided by the imposed frequency of visits (in order to cover possible demand
variations); A0

rj - binary parameter that is 1 if route r visits offshore unit j,
and 0 otherwise; A1

sl - binary parameter that is 1 if the departure pattern s
has a departure on day l, and 0 otherwise; STrv - route r sailing time of vessels
belonging to class v; PB - productivity factor (days/m2) for cargo handling
at the onshore base; POj - productivity factor (days/m2) for cargo handling
at offshore unit j; SB - berth set up time (average time for approaching
and mooring); LLlb - lower time limit for starting loading of a vessel on
berth b and day l; and LUlb - upper time limit for finishing the loading of a
vessel on berth b and day l. These parameters (LLlb and LUlb) allow for the
modeling of the tolerance in the departure time of a vessel being loaded at
berth position (b,p). For example, LLlb for day 5 is equal to 4.0 and LUlb is
set to 5.5, thus allowing a vessel to depart up to 12 pm of day 6.

Decision variables: nv - number of utilized vessels of class v; bsj - binary
variable that is 1 if departure pattern s is chosen for offshore unit j, and 0
otherwise (refer to Figure 3 for the list of departure patterns); xvbprl - binary
variable that is 1 if a vessel of class v departs from the berth position (b,p)
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on day l to execute route r, and 0 otherwise; cvbpt1t2 - binary variable that is
1 if a vessel of class v departing from the berth position (b,p) on day t1 is still
operating its route by day t2, and 0 otherwise; slbpl - loading time spent on
berth position (b,p) on day l; sbpl - instant of time that the loading operation
of the berth position (b,p) on day l is concluded and the vessel starts the
voyage; and tbpl - round trip voyage duration of the vessel that occupies the
berth position (b,p) on day l.

4.3. Mathematical Model

The mathematical model is defined as:

minZ =
∑
v∈V

FVvnv +
∑
v∈V

∑
b∈B

∑
p∈P

∑
r∈Rv

∑
l∈L

CRvrxvbprl (1)

subject to: ∑
s∈Sj

bsj = 1 j ∈ J (2)

∑
v∈V

∑
b∈B

∑
p∈P

∑
r∈Rv

xvbprlA
0
rj ≥

∑
s∈Sj

bsjA
1
sl l ∈ L, j ∈ J (3)

∑
v∈V

∑
r∈Rv

xvbprl ≤ 1 l ∈ L, b ∈ B, p ∈ P (4)

∑
v∈V

∑
r∈Rv

xvb2rl ≤
∑
v∈V

∑
r∈Rv

xvb1rl l ∈ L, b ∈ B (5)

sb11 ≥ slb11 b ∈ B (6)

sb2l ≥ sb1l + slb2l b ∈ B, l ∈ L (7)

sb1(l+1) ≥ sb2l + slb1(l+1) b ∈ B, l ∈ L, l ≥ 2 (8)

LLlb + slbpl ≤ sbpl ≤ LUlb l ∈ L, b ∈ B, p ∈ P (9)

slbpl ≥
∑
v∈V

xvbprl(SB +
∑

j∈J : A0
rj=1

DjPB)

l ∈ L, r ∈ R, b ∈ B, p ∈ P

(10)
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tbpl ≥
∑
v∈V

xvbprl(STrv +
∑

j∈J : A0
rj=1

DjPOj)

l ∈ L, r ∈ R, b ∈ B, p ∈ P

(11)

|T |∑
t2=l

cvbplt2 ≥ sbpl + tbpl − l − (1− cvbpll)|T |

v ∈ V , b ∈ B, p ∈ P , l ∈ L

(12)

cvbpll ≥ xvbprl

l ∈ L, v ∈ V , r ∈ R, b ∈ B, p ∈ P
(13)

cvbpt1t2 = 0

v ∈ V , b ∈ B, p ∈ P , t1 ∈ L, t2 ∈ L, t2 < t1
(14)

cvbpt1(t2+1) − cvbpt1t2 ≤ 0

v ∈ V , b ∈ B, p ∈ P , t1 ∈ L, t2 ∈ T, t2 ≥ t1
(15)

cvbp(t1+|L|)(t2+|L|) = cvbpt1t2
v ∈ V , b ∈ B, p ∈ P , t1 ∈ L, t2 ∈ L

(16)

nv ≥
∑
t1∈T

∑
b∈B

∑
p∈P

cvbpt1t2 v ∈ V , t2 ∈ T (17)

nv ∈ Z+, bsj ∈ {0, 1} , xvbprl ∈ {0, 1} , cvbpt1t2 ∈ {0, 1} ,

sbpl ∈ R+, slbpl ∈ R+, tbpl ∈ R+.
(18)

The objective function (1) minimizes the vessels’ fixed costs and the rout-
ing costs. Constraint (2) ensures that one departure pattern is assigned to
each offshore unit. Constraint (3) ensures that there is at least one vessel de-
parting on each day belonging to the selected departure days of each offshore
unit. Constraint (4) limits to at most one the number of routes departing
per day for each berth position. Constraint (5) forces that berth position
two is only assigned if position one was used. Constraint (6) initializes the
berth’s departure time based on the berth’s loading time of the first day.
Constraint (7) ensures that the departure time for position two of any berth
depends on the position one departure time added to the position two load-
ing time. Constraint (8) ensures that the departure time for berth position
1 is greater than the instant in which the loading operation of the previous
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day was concluded, for l ≥ 2. Constraint (9) indicates that the departure
time for any berth position is within the time window defined by LLlb and
LUlb. Constraint (10) ensures that the operating time of any berth position
must be greater than the sum of the vessel’s set up time and the loading
time. Constraint (11) ensures that the vessel’s round trip duration must be
greater than the sum of the vessel’s sailing time and the cargo handling time
at each visited offshore unit. Constraint (12) ensures that a binary counter
is activated (i.e. equal to 1), for the time period that a vessel is in use.
Constraint (13) associates the binary counter with the xvbprl variable. Con-
straint (14) ensures that the binary counter is not activated in any period
t2 prior to a candidate’s departing day t1. Constraint (15) links the counter
variable of one day to its previous day. Constraint (16) replicates a vessel
class assignment for the subsequent period. Constraint (17) calculates the
number of vessels per class as the maximum number of vessels in use at the
same time. Constraint (18) define the variables’ domain. Constraints (12)
to (17) ensure that voyages of the same vessel should not overlap in time.

An example of the calculation of variable cvbpt1t2 in terms of the departure
day t1 (rows) and the respective days that the vessel is in use t2 (columns)
is given in Table 1. The example is based in a case where a vessel of class
1 is assigned to perform a route that departs on day 5 from berth 1 and
position 1. Besides, it is assumed that the vessel should be in use for 3.6
days, according to (12). Therefore, the minimum number of vessels for each
class nv must be equal to the maximum number of vessels for the respective
class in use at any time t2 (the columns in Table 1), as indicated in (17).

In order to illustrate the use of parameters LLlb and LUlb consider, for
instance, a loading operation that takes place on day 5, where LLlb = 4.0
and LUlb = 5.5. If two vessels are assigned to berth 2 with loading times of
0.5 and 0.6 (for positions 1 and 2 respectively), and assuming that there is no
loading on berth 2 on the previous day then, according to (10): sl215 ≥ 0.5
and sl225 ≥ 0.6. Constraint (9) defines the interval for departure of each
position as 4.0 + 0.5 ≤ s215 ≤ 5.5 and 4.0 + 0.6 ≤ s225 ≤ 5.5. Constraint (7)
ensures that position 2 only starts after position 1, s225 ≥ s215 + sl215 and, if
we use the minimum values, the constrain is s225 ≥ 4.5+0.6. This means that
any vessel assigned for berth position 2 starts loading on day 4.5 (or after)
and departs from the harbor on day 5.1 (or after). According to constraint
(8) the departure for the next day (day 6) for berth 2 should consider that the
loading in position 1 starts after vessel from position 2 on the previous day
has departed: s216 ≥ 5.1 + sl216. By the use of the upper limit extended to
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Table 1: Example of the calculation of variable cvbpt1t2 .

v = 1 cvbpt1t2
b = 1 t2
p = 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 1 1 1 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

the next day it is possible to accommodate better berth allocation, without
compromising the evenly spread departures from the harbor. This is a very
important relaxation in the case of a busy harbor.

5. Solution Strategy

The model proposed for the fleet-sizing and periodic routing problem with
berth allocation decisions is difficult to solve, due to its combinatorial nature.
In order to achieve a good-quality solution or even the optimal solution, the
problem is solved in four steps. The initial steps simplify many important
constraints, which are progressively incorporated. The idea is that the so-
lution of any given step provides a lower bound to the following step and,
in the case of the fourth step, a bound is provided for the complete model.
Although the complexity increases with each step, the informed bounds are
meant to reduce the processing time. In the following, each step is detailed.

Step 1 - The berth allocation constraints are relaxed and a limit on the
maximum number of departures (i.e. routes) per day is imposed as two times
the number of berths, as no more than two departures per berth are expected
to occur in each day. The routing costs are also eliminated from the objective
function. Lastly, instead of calculating the number of vessels as proposed by
constraint (17), the vessels’ operating time (in days) are summed, for each
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class, and divided by seven (one week). This is an approximation that is
refined in Step 2, taking into account the vessels’ temporal distribution.

Step 2 - The difference from Step 1 is the refinement in the fleet-sizing
process. The fleet is now defined by the maximum number of vessels in use in
each day, for each class, as in constraint (17). The fleet cost of Step 2 cannot
be inferior to the Step 1 fleet cost, and this is represented by a constraint.

Step 3 - The routes selected in Step 2 are not necessarily optimal if the
routing costs are considered, despite being able to yield the lowest fleet cost,
which was accurately calculated in Step 2. In Step 3, the same model pro-
posed for Step 2 is considered except that the routing costs are incorporated
in the objective function. As in the previous case, the fleet cost of Step 3
cannot be inferior to the fleet cost of Step 2, and a constraint is added to the
model in this respect.

Step 4 - The problem solved in Step 3 is complete except for the berth
allocation decisions, which are considered in this step. The routes from the
Step 3 solution are used as input to Step 4.

5.1. Step 1 Mathematical Model

In order to solve Step 1, new decision variables are introduced to allow
working with the simplified model, wvrl - binary variable that is 1 if a vessel
of class v executes route r on day l, and 0 otherwise; and tcvrl - integer
variable that registers the cycle time for a vessel of class v when executing
route r on day l. The cycle time is the time span between the beginning of
the vessel loading at the harbour until its return to the onshore base, after
performing a route. Z1 is the value of the objective function, and Z1 is the
lower-bound value obtained with the model processing. The model can be
stated as follows:

min Z1 =
∑
v∈V

FVvnv (19)

subject to: ∑
s∈Sj

bsj = 1 j ∈ J (20)

∑
v∈V

∑
r∈Rv

wvrlA
0
rj ≥

∑
s∈Sj

bsjA
1
sl l ∈ L, j ∈ J (21)

∑
v∈V

∑
r∈Rv

wvrl ≤ |B| |P | l ∈ L (22)
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tcvrl ≥ wvrl

SB + STrv +
∑

j∈J : A0
rj=1

(PB + POj)Dj


l ∈ L, v ∈ V , r ∈ Rv

(23)

nv ≥
∑
l∈L

∑
r∈Rv

tcvrl / |L| v ∈ V (24)

nv ∈ Z+, tcvrl ∈ Z+, bsj ∈ {0, 1} , wvrl ∈ {0, 1} . (25)

The objective function (19) minimizes vessels’ fixed costs based on their
average use during the planning period. Constraint (20) ensures that one
departure pattern is assigned for each offshore unit. Constraint (21) ensures
that there is at least one vessel departing on each day belonging to the se-
lected departure pattern of each offshore unit. Constraint (22) limits the
number of departures per day based on the number of available berth posi-
tions. Constraint (23) determines the cycle time for a vessel of class v when
assigned to route r on day l. Constraint (24) calculates the number of ves-
sels per class, based on the average utilization in the considered period (one
week). Constraint (25) defines the variables’ domain.

5.2. Step 2 Mathematical Model

In order to solve Step 2, the following variable is needed: yvrt1t2 - binary
variable that is 1 if a vessel of class v departing on day t1 is still operating
on route r by day t2, and 0 otherwise. This variable plays a similar role
as cvbpt1t2 in the complete model, and allows for computing the maximum
number of class v vessels in use. Z2 is the value of the objective function,
and Z2 is the lower-bound value obtained with the model processing. The
model can be stated as:

min Z2 =
∑
v∈V

FVvnv (26)

subject to: ∑
s∈Sj

bsj = 1 j ∈ J (27)

∑
v∈V

∑
r∈Rv

wvrlA
0
rj ≥

∑
s∈Sj

bsjA
1
sl l ∈ L, j ∈ J (28)
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∑
v∈V

∑
r∈Rv

wvrl ≤ |B| |P | l ∈ L (29)

|T |∑
t2=t1

yvrt1t2 ≥ wvrl

SB + STrv +
∑

j∈J : A0
rj=1

(PB + POj)Dj


l ∈ L, t1 ∈ L, t2 ∈ T , v ∈ V , r ∈ R

(30)

yvrll ≥ wvrl l ∈ L, v ∈ V , r ∈ Rv (31)

yvrt1t2 = 0 t1 ∈ L, t2 ∈ L, v ∈ V , r ∈ Rv, t2 < t1 (32)

yvrt1(t2+1) − yvrt1t2 ≤ 0 t1 ∈ L, t2 ∈ T , v ∈ V , r ∈ R, t2 ≥ t1 (33)

yvr(t1+|L|)(t2+|L|) = yvrt1t2 t1 ∈ L, t2 ∈ L, v ∈ V , r ∈ R (34)

nv ≥
∑
t1∈T

∑
r∈R

yvrt1t2 v ∈ V , t2 ∈ T (35)

∑
v∈V

FVvnv ≥ Z1 (36)

nv ∈ Z+, bsj ∈ {0, 1} , wvrl ∈ {0, 1} , yvrt1t2 ∈ {0, 1} . (37)

The objective function (26) minimizes the vessels’ fixed costs based on
the maximum number of vessels that is required for each vessel class in the
planning period. Constraints (27) to (29) have the same purposes as stated
in the previous model. Constraint (30) ensures that a binary counter is acti-
vated (i.e. equal to 1), for the time period that a vessel of class v is executing
route r. Constraint (31) forces variable yvrt1t2 to be 1 if a vessel of class v
departs from the port on day t1 to execute route r. Constraint (32) ensures
that the binary counter is not activated in any period t2 prior to a candi-
date departing day t1. Constraint (33) links the counter variable of one day
to its previous day. Constraint (34) replicates a vessel class assignment for
the subsequent period. Constraint (35) calculates the number of vessels per
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class, as the maximum number of vessels in use at the same time. Constraint
(36) imposes a lower-bound value on the fleet cost, based on the Step 1 lower
bound. Constraint (37) defines the variables’ domain.

5.3. Mathematical Model for Step 3

In Step 3, the same model from Step 2 is solved except that the objective
function incorporates the routing costs. The solution found in Step 2 is
used as an initial solution, and also provides a lower bound to the objective
function. Z3 is the value of the objective function, and Z3 is the lower-bound
value obtained with the model processing. The model is stated as:

min Z3 =
∑
v∈V

FVvnv +
∑
v∈V

∑
r∈Rv

∑
l∈L

CRvrwvrl (38)

subject to:
(27) to (35), (37) ∑

v∈V

FVvnv ≥ Z2. (39)

The objective function (38) minimizes the vessels’ fixed costs and the
routing costs, and constraint (39) is the lower bound.

5.4. Step 4 Mathematical Model

In Step 4, the berth allocation decisions are made based on input from
the set of routes that were selected in Step 3. These routes are represented
by the subset R3 ⊂ R. In Step 4, the complete model is complemented by the
indicated route selection constraints and the lower-bound constraints. Z4 is
the value of the objective function, and Z4 is the lower-bound value obtained
with the model processing. The model can be stated as:

min Z4 =
∑
v∈V

FVvnv +
∑
v∈V

∑
b∈B

∑
p∈P

∑
r∈Rv

∑
l∈L

CRvrxvbprl (40)

subject to:
(2) to (18) ∑

v∈V

∑
b∈B

∑
p∈P

∑
l∈L

xvbprl = 1 r ∈ R3 (41)
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∑
v∈V

∑
b∈B

∑
p∈P

∑
l∈L

xvbprl = 0 r ∈ R \R3 (42)

∑
v∈V

FVvnv ≥ Z2 (43)

∑
v∈V

FVvnv +
∑
v∈V

∑
b∈B

∑
p∈P

∑
r∈Rv

∑
l∈L

CRvrxvbprl ≥ Z3 (44)

The objective function (40) minimizes the fleet’s fixed costs and the rout-
ing costs. Constraints (41) and (42) assign the routes obtained in Step 3 and
discard all the others. Constraint (43) defines that the fleet cost must be
greater than or equal to the Step 2 lower bound, and constraint (44) defines
that the objective function must be greater than or equal to the Step 3 lower
bound.

In the problem description, it was considered that a vessel meant to depart
on day l could be delayed up to 12 hours, thus leaving the port any time
before 12 pm of day l+1. This could happen in situations where a vessel was
not able to start loading earlier on day l, due to limited berth capacity. The
berth scheduling process therefore focuses on how to accommodate all the
vessels in such a way that all departures fit in a one-week period. The berth
scheduling may have a direct impact on the fleet size as well. The cvbpt1t2
binary decision variable is equal to 1 each day that a vessel of class v is in
use, after leaving the port. However, according to constraint (12), the sum
of the cvbpt1t2 variables is influenced by the departure time, which is given by
sbpl. For example, if the route duration is 2.3 days and the departure time
is 0.5, then the assigned vessel is in use until instant 2.8, and three cvbpt1t2
variables are set to 1; but, if the departure takes place in instant 0.9, the
assigned vessel is in use until instant 3.2, and therefore four cvbpt1t2 variables
are set to 1. In this case, the maximum number of vessels in use, which is
assessed by constraint (17), may indicate a different fleet.

If the solution found in Step 3 indicates a number of departures per day
that are inferior or equal to the number of available berths, then the Step
4 solution is the same as for Step 3. However, as this may not be the case,
in Step 4, the complete model is processed with the following simplifications
in order to make the model processing more tractable: the routes that were
generated in Step 3 are retained, and the decisions regarding the departure
pattern (i.e. the departing days for each offshore unit) and the vessel class
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that is assigned to each route are released. This means that the routes
selected in Step 3 can be sailed by a vessel from a different class and on
a different day other than the ones established in that previous step, thus
giving more flexibility to the solution procedure. Although this procedure
may not lead to the optimal solution, good-quality solutions are expected
to be obtained which would not be otherwise possible if one was to resort
to solving the complete model. Finally, the objective function of Step 3 is
a natural lower bound on the objective function of Step 4, and the Step 4
solution provides an upper bound to the complete model.

6. Case Study

The model applicability is demonstrated by real-based cases obtained
from a Brazilian oil company, from its operations at Campos Basin (Figure
4). Four cases are presented: these are cases C10, C15, C41 and C79, having
10, 15, 41 and 79 offshore units, respectively. In cases C10 and C15, routes
are generated considering all possible combinations for all units. In cases
C41 and C79, routes are generated considering all possible combinations of
the units belonging to their clusters (i.e. groups of offshore units).

In the offshore E&P one finds permanent units such as the production
platforms that remain fixed in their positions for as long as 25 years, and
mobile units, related to drilling rigs and maintenance platforms, that are
constantly moved from one oilfield to another. Those mobile units usually
require a different service level in terms of frequency of visits and different
types of cargo when compared to the permanent units. Therefore, an oil
company may consider grouping near-by permanent units and near-by mobile
units in order to form clusters. Another policy is to group near-by units
irrespective of their type (permanent or mobile). Instances were generated
to compare these two policies. Those with the suffix S indicate that the
mobile units are segregated from the permanent units.

Table 2 presents some key features regarding each instance. The columns
indicate the following data: OU - number of offshore units to be served;
Routes - number of generated routes to be used as input data in the math-
ematical model; Clusters - number of clusters (groups of platforms to be
serviced together and apart from the others) for each instance; OUmax -
maximum number of offshore units served in a cluster; OUmin - minimum
number of offshore units served in a cluster; Rmax - maximum number of
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generated routes in a cluster; and Rmin - minimum number of generated
routes considered in a cluster.

Table 2: Instances
Case OU Routes Clusters OUmax OUmin Rmax Rmin
C10 10 912 1 10 10 912 912
C15 15 10,021 1 15 15 10,021 10,021
C41 41 1,372 5 11 6 822 47
C41S 41 438 7 8 4 199 14
C79 79 2,168 9 12 6 882 47
C79S 79 1,107 12 10 4 315 14

Case C10 is the easiest to solve and is used to verify the effectiveness
of the step solution strategy performance, when compared to the use of the
complete model. Case C15 allows us to demonstrate the difficulty of solving
an instance with a high overall number of routes. Cases C41 and C79 are
intermediate and hard-to-solve instances, respectively, and allow for assessing
the proposed solution strategy. Not only the overall number of routes defines
hard-to-solve instances. A large number of offshore units divided into clusters
might produce hard-to-solve instances, even with a limited number of routes
in each cluster. This is clearly demonstrated in the results obtained for cases
C79.

For all cases, four berths were considered available with a maximum of
two departures per berth each day. A tolerance of half a day was allowed for
the vessel departure time, to allow better berth utilization.

All models were implemented in C++ and solved by Gurobi. The results
were obtained using a 2.27 GHz Intel(R) Xeon(R) E5520, with 16 cores,
48 GB RAM, and solved by GUROBI 7.0.2. The routes were previously
generated in a Excel spreadsheet using VBA. The processing time for route
generation varies from 30 to 2,100 seconds depending on the instance. The
code for the route generation has not been developed for optimal performance
and its processing time has been disregarded from the computational study.
The maximum time limit of 99,000 seconds has been set for each run, in order
to verify how far it was possible to go with the proposed solution strategy.

In the tables used to present the main results, the lines represent the
following: OF - objective function value; VC - vessels’ costs; RC - routing
costs; V0 - number of PSV4500 vessels; V1 - number of PSV3000 vessels;
V2 - number of PSV1500 vessels; NR - total number of sailed routes; ND
- maximum number of departures at any day; B - number of berths; GAP
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- percentage difference from the upper and lower bounds given by Gurobi;
Time - processing time in seconds; and CTime - cumulative processing time
in seconds for the steps in the proposed solution strategy, and the processing
time in seconds in case of the complete model. As for the columns, they are
organized according to each step proposed in the solution strategy: S1 refers
to Step 1, S2 refers to Step 2, and so on. In some cases, Step 4 is tested for
a number of berths other than four, indicated in line B. Column CM refers
to the complete model, defined in 4.3.

6.1. Results for Cases C10 and C15

The results for cases C10 and C15 are provided in Table 3. It can be
noticed that case C10 presented no variation in the number of vessels, with
each solution step. The maximum number of departures on the same day
decreased significantly from Step 1 to Step 2 because of the vessel usage
consideration. However, a considerable difference can be noticed for the
processing time. The complete model took 84,340 seconds to process, while
the total processing time for the solution strategy was 115 seconds.

In case C15 the fleet varied with each step, except for the last one. In Step
1, two vessels were needed to perform five routes. However, when the fleet
was calculated more accurately, three small vessels were chosen to perform
11 routes. In Step 3, as the routing costs were computed, two large vessels
were selected to perform four routes. The fleet cost increased from 75 to 76,
but this was compensated for by a reduction in the routing costs. In Step 2,
the routing costs, which are not shown in Table 3, were 8.04, and in Step 3,
the routing costs were 4.37, yielding an overall cost reduction of 2.67. As for
the complete model, an out-of-memory error interrupted the processing at
instant 21,289 seconds, with a 57.90% gap. The proposed solution strategy
thus proved to be efficient and an optimal solution could be found in 6,812
seconds. For both cases C10 and C15, given that optimal solutions were
attained at Steps 1 to 3, and that there were enough berths to accommodate
all the departures generated in Step 3, the Step 4 solutions are also optimal
to the complete model.

6.2. Results for Cases C41 and C41S

Table 4 presents the results for cases C41 and C41S, without and with
segregation regarding servicing mobile units apart from the permanent units,
respectively. Different from cases C10 and C15, these cases were also tested
for two and three berths. It can be noticed that in case C41, the number
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Table 3: Results for cases C10 and C15
C10 S1 S2 S3 S4 CM
OF 50 50 53.77 53.77 53.77
VC 50 50 50 50 50
RC - - 3.77 3.77 3.77
V0 0 0 0 0 0
V1 0 0 0 0 0
V2 2 2 2 2 2
NR 6 7 6 6 6
ND 3 1 1 2 1
B 4 4 4 4 4
Gap 0 0 0 0 0
Time 4 11 16 84 84,340
CTime 4 15 31 115 84,340

C15 S1 S2 S3 S4 CM
OF 71 75 80.37 80.37 89.43†

VC 71 75 76 76 83
RC - - 4.37 4.37 6.43
V0 1 0 2 2 0
V1 1 0 0 0 1
V2 0 3 0 0 2
NR 5 11 4 4 9
ND 1 2 1 1 2
B 4 4 4 4 4
Gap 0 0 0 0 57.90%
Time 1,862 4,448 496 6 21,289
CTime 1,862 6,310 6,806 6,812 21,289
†Objective function value not proven to be optimal.

of vessels remained the same, except for the case with two available berths.
The maximum number of departures were four and three, for cases C41 and
C41S, respectively, and Steps 1 to 3 were optimally solved. Therefore, as
with cases C10 and C15, the Step 4 solutions are also optimal. In order to
test if the solution would change in the case that fewer berths were available,
the Step 4 model was run considering three and two berths, and the results
are presented in Table 4 in columns S4(3B) and S4(2B), respectively.

In case C41S, the results for three berths were omitted, as the maximum
number of departures in Step 3, with four available berths, was three and,
therefore, the solution would not change. Also, when only two berths were
available, the solution remained the same. As for the complete model pro-
cessed with four berths, solutions with poor lower bounds were obtained,
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Table 4: Results for cases C41 and C41S
C41 S1 S2 S3 S4 S4(3B) S4(2B) CM
OF 243 243 256.59 256.59 256.59 270.20† 289.23†

VC 243 243 243 243 243 256 276
RC - - 13.59 13.59 13.59 14.20 13.23
V0 4 4 4 4 4 5 4
V1 2 2 2 2 2 2 3
V2 1 1 1 1 1 0 1
NR 19 19 19 19 19 19 18
ND 4 4 4 4 4 3 4
B 4 4 4 4 3 2 4
Gap 0 0 0 0 0 3.1% 62.6%
Time 21 41 77 348 173 99,000 99,000
CTime 21 62 139 487 312 99,139 99,000

C41S S1 S2 S3 S4 S4(3B) S4(2B) CM
OF 248 248 261.99 261.99 - 261.99 305.00†

VC 248 248 248 248 - 248 291
RC - - 13.99 13.99 - 13.99 14.00
V0 5 5 5 5 - 5 7
V1 1 1 1 1 - 1 0
V2 1 1 1 1 - 1 1
NR 18 18 17 17 - 17 17
ND 4 4 3 3 3 3 4
B 4 4 4 4 - 3 4
Gap 0 0 0 0 - 0 60.46%
Time 10 170 81 6 - 61 99,000
CTime 10 180 261 267 - 322 99,000

†
Objective function value not proven to be optimal.

despite their long processing times, and the computational efficiency of the
proposed solution strategy could thus be verified once again. While the total
processing times for considering all steps were 1,234 seconds and 267 seconds,
for cases C41 and C41S, respectively, the complete model was run for 99,000
seconds for both cases, and gaps exceeding 60% were obtained. The servicing
policies can be compared. If four berths are available, the option to service
the mobile units and permanent units together is better than segregating
them. The costs would be 2.1% lower in this case. This analysis is valid for
the instances presented and might diverge in other cases.

Berth allocation for case C41 can be seen in Figure 6. On the left, the
berth number (B) and the departing position number (P) are indicated. On
the top, each column represents one day, and the solutions with four, three
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and two berths are compared. The numbers indicated in the colored spaces
are the route number for each berth-position and day. The color indicates
the type of vessel that was used: red for large size, yellow for mid-size and
black for small size.

Figure 6: Berth allocation for case C41.

In case C41, the results for three berths were the same as for four berths
both in terms of fleet composition and in terms of routing costs. Given
that the maximum number of departures is four and the number of available
berths is three, the routes could be rearranged on different departing days, as
indicated in the middle section of Figure 6. When instance C41 was processed
with two berths, a different fleet composition was obtained. The positive gap
of 3.1% indicates a lower bound equal to 261.82, which is greater than the
objective function value of S4 with three or four berths. Thus, a greater fleet
is necessary to allow more departures throughout the planning horizon.

The departure times for case C41 can be seen in Figure 7. The importance
of allowing flexibility regarding the departure times (i.e. to allow a departure
to take place by 12 pm of the following day) was noticed in the case C41.
This actually happened on 4B day 1, 3B day 6, and 2B day 3. In case 3B,
for example, there is a departure scheduled to take place on day 6 which
actually happens at instant 6.2 (day 7). If no tolerance in the departure
time is allowed, one extra large vessel would be needed in place of a mid-size
vessel, incurring a cost increase of 2% (around 5 MM USD). This reinforces
that finding a feasible berth allocation with the minimum fleet configuration
was made possible due to such a tolerance in the departure time.

When a vessel is assigned to a route, it can begin loading at the very
beginning of the scheduled departure day; or it may have to wait for a vessel
from a previous day to release the berth; or it may happen that a vessel
is the second to occupy a berth on a given day. The waiting time before
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Figure 7: Departure instants for each berth-position for case C41.

starting to load a vessel, added to the loading time and to the time at sea,
indicates the vessel cycle time. The rounded value of the cycle time to its
upper integer value indicates the number of cvbpl1l2 binary variables set to 1,
which allows for computing the maximum number of vessels in use - refer to
constraints (12) to (17). Figure 8 indicates the cycle time for all departures
for case C41. For example, for 3B day 6, route 39 starts loading at instant
5.33, which is the time the previous vessel left the berth (see Figure 7). The
loading time is 0.87, and the sailing time added to the trans-shipment time
at sea is 2.29. The cycle time is given by 0.33 + 0.87 + 2.29 = 3.49, thus
requiring the vessel to be in use for four days.

Figure 8: Cycle times for each berth-position for case C41.

According to Table 4, in case C41 the fleet is composed of seven vessels.
Figures 9 to 11 present possible arrangements for the vessels’ assignments
depending on the number of berths. In the figures, the number of berths
is indicated in the first line, and the days are indicated in the second line.
Then, each additional line corresponds to a vessel, indicated by its class and
its number. For each vessel, the rectangles are as large as the cycle time
of each route, whose number is indicated inside the rectangle. The colors
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indicate the vessel classes: red for large size, yellow for mid-size and black
for small size. The light and dark colors are meant to highlight the routes’
assignments over each week. As one may notice, the routes selected for the
large-size vessels cannot be repeated for the same vessel in two consecutive
weeks. If the vessels were required to perform the same routes from one
period to the other the proposed solution would not be feasible. However,
by considering the vessels as belonging to a pool of available resources, more
sophisticated and cost-effective solutions can be built.

Figure 9: Vessels’ allocation for case C41 (four berths).

Figure 10: Vessels’ allocation for case C41 (three berths).
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Figure 11: Vessels’ allocation for case C41 (two berths).

6.3. Results for Cases C79 and C79S

Cases C79 and C79S were also tested and the results are presented in
Table 5. In case C79 with four berths, Steps 1 to 3 did not present any
variation related to the fleet composition. However, in Step 4, the solution
from Step 3 could not be confirmed, and a mid-sized vessel was added to the
fleet. The gap was 5.58% with no progress of the lower bound throughout
the whole processing time. Step 4 was also tested for five and six berths (5B
and 6B) and only with six berths the Step 3 solution could be scheduled with
the same fleet. In case C79S with four berths, the model processing in Step
1 and in Step 2 were not able to close the gap, which was 0.56% after 99,000
seconds. The Step 1 solution was obtained after 1,549 seconds, and the gap
was 2.04%. Then it took almost 97,500 seconds to reduce the gap to 0.56%.
In Step 2, the final solution was generated at instant 5,160 with a gap equal
to 0.56%. The Step 3 model was interrupted after 61,180 seconds due to an
out-of-memory error without having generated any primal solution.

We also tested how Steps 2, 3 and 4 would perform if the upper bound
of a previous solution step was informed in constraints (36), (39), (43) and
(44) instead of the lower bound. This is different from the previous cases,
where the initial steps always produced optimal solutions, and thus the lower
bounds and the upper bounds were the same. These new tests are registered
in the columns marked with an asterisk. It was observed that this procedure
produced rapid convergence in the model and very good-quality solutions
could be achieved, although we cannot claim to have obtained the optimal
solution. It was possible to find a solution serving 79 offshore units using
only four berths and the solution obtained in Step 4 has a gap of only 0.56%
(the same as in the Step 1 solution). Therefore, we consider this alternative
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Table 5: Results for cases C79 and C79S
C79 S1 S2 S3 S4 S4(5B) S4(6B) CM
OF 527 527 558.55 591.55† 591.55† 558.55 -
VC 527 527 527 560 560 527 -
RC - - 31.55 31.55 31.55 31.55 -
V0 8 8 8 8 8 8 -
V1 6 6 6 7 7 6 -
V2 1 1 1 1 1 1 -
NR 38 38 38 38 38 38 -
ND 8 8 8 7 6 7 -
B 4 4 4 4 5 6 4
Gap 0 0 0 5.58% 5.58% 0 -
Time 3,274 5,755 36,270 99,000 99,000 64,803 99,000
CTime 3,274 9,029 45,299 144,299 144,299 110,102 99,000

C79S S1 S2 S3 S2∗ S3∗ S4(4B)∗ CM
OF 540† 540† 570.46† 540 570.37 570.37 -
VC 540 540 - 540 540 540 -
RC - - - - 30.37 30.37 -
V0 9 9 - 9 9 9 -
V1 6 6 - 6 6 6 -
V2 0 0 - 0 0 0 -
NR 36 35 - 35 34 34 -
ND 8 6 - 6 6 6 -
B 4 4 4 4 4 4 4
Gap 0.56% 0.56% 0.49% 0 0 0 -
Time 99,000 99,000 61,180 161 1,771 8,653 99,000
CTime 99,000 198,000 259,180 99,161 100,932 109,585 99,000
†Objective function value not proven to be optimal.
∗Upper bound of a previous solution step informed instead of the lower bound.

as a valid and useful solution strategy that could be used in practice. The
complete model was tested for both cases to assess the effectiveness of the
proposed methodology. In both cases, no feasible solution was obtained after
99,000 seconds.

6.4. Proposed Solution Strategy Performance

The comparison between complete mathematical model (CM) with the
proposed solution strategy (PSS) considering the overall results from Step 1
to Step 4 is presented in Table 6. Based on the presented results, one may
conclude that the proposed methodology is capable of significantly reducing
the computational time and to provide an optimum solution for most of the
cases considered. For case C10 both PSS and CM achieved the optimum
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solution and the PSS processing time is significantly lower than the CM
processing time. For cases C15, C41 and C41S the PSS was able to achieve
the optimum solution and the CM could not. As one might notice, the PPS
spent a significant reduced amount of time to generate optimal solution. For
the cases with 79 offshore units, in C79 a good solution has been found by
the PPS but no solution has been found by the CM. For case C79S both PPS
and the CM struggle to find a feasible solution. A large processing time is
obtained for a few cases, particularity for cases C79 and C79S. For this kind
of problem, a large processing time of thousands of seconds is not an issue,
once it has to be solved around every quarter of a year or more.

Table 6: Comparison between the proposed solution strategy and the complete model
C10 PSS CM C15 PSS CM
OF 53.77 53.77 OF 80.37 89.43†

Gap 0 0 Gap 0 57.90%
Time 115 84,340 Time 6,812 21,289

C41 PSS CM C41S PSS CM
OF 256.59 289.23† OF 261.99 305.00†

Gap 0 62.60% Gap 0 60.46%
Time 487 99,000 Time 267 99,000

C79 PPS CM C79S PPS CM
OF 591.55† - OF - -
Gap 5.58% - Gap - -
Time 144,299 99,000 Time - -

†Objective function value not proven to be optimal.

An assessment to further investigate the effectiveness of breaking down
the complete model into steps has been performed for cases C15, C41 and
C79. The results are presented in Table 7 and the following denomination
has been used in the columns: i) S1-3 is the consolidated result for steps
1 to 3; ii) S3’ is the result for the Step 3 model without the lower-bound
constraint (39) and without using the Step 2 solution as an initial solution;
iii) S3” is the result for Step 3 without the use of the Step 2 solution as an
initial solution; iv) S3 is the result for Step 3 (previously calculated); v) S4”
is the result of Step 4 without the use of the Step 3 solution as a constraint,
i.e. without considering constraints (41) and (42); vi) S4 is the result for
Step 4 (previously calculated).

If one compares S1-3 to S3’ it is possible to verify the effectiveness of
breaking down the Step 3 model in Step 1 and Step 2. For cases C41 and
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Table 7: Performance assessment of Step 3 and Step 4
C15 S1-3 S3’ S3” S3 S4” S4
Time 6,806 3,251 438 496 13,006 6
OF 80.37 80.37 80.37 80.37 80.37 80.37
GAP 0 0 0 0 0 0

C41 S1-3 S3’ S3” S3 S4” S4
Time 140 394 122 77 99,000 348
OF 256.59 256.59 256.59 256.59 294.95† 256.59
GAP 0 0 0 0 13.00% 0

C79 S1-3 S3’ S3” S3 S4” S4
Time 42,685 95,192 99,000 36,270 99,000 99,000
OF 558.55 558.55 558.55† 558.55 705.24† 591.55†

GAP 0 0 0.02% 0 20.80% 5.58%
†Objective function value not proven to be optimal.

C79, the reduction on the processing time is clearly demonstrated. However,
as one might notice in case C15 it is more efficient to run Step 3 without Step
1 and 2, and the use of the lower bound and of the initial solution has not
been demonstrated as advantageous for Step 3 model. If one compares S3”
to S3 it is possible to verify the effectiveness of using the Step 2 solution in
Step 3, as for cases C41 and C79 the processing time has been significantly
reduced. For case C15, the processing time remains almost the same. If
one compares S4” to S4 it is possible to verify the effectiveness of using the
routes obtained in Step 3 as constraints (41) and (42). For cases C15 and
C41, there was a significant reduction in the processing time (by a thousand
times less). For case C79, neither S4 nor S4” has closed the gap to zero;
however a better solution could be provided by using the Step 3 solution as
an input to Step 4.

This assessment demonstrates that the effectiveness of breaking down
the model into steps (1 to 3) is not always the most efficient manner to solve
the problem, although it was efficient for some cases. This assessment also
demonstrates the effectiveness of using Step 3 routes as the initial solution
to Step 4 for all evaluated instances. The overall evaluation of the method
presented in Table 6 demonstrates the overall effectiveness of breaking down
the model into steps for all instances.
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7. Concluding Remarks

In this paper we have investigated the integration of berth allocation
decisions to the fleet composition and periodic routing problem. This is a real
complex and hard-to-solve problem found in some oil and gas industries, such
as in the Brazilian case, where the supply operation is uninterrupted, both at
the onshore base and the offshore units. The integration of berth allocation
decisions extends previous contributions on the planning of platform supply
vessels, where the number of vessels that can be loaded on each day was
limited by the number of available berths. In our case, the berth scheduling
problem is considered together with the periodic routing problem. Also, in
order to model the fleet size, a pool of vessels was considered, one for each
class, and this modeling strategy seemed to be effective.

In this paper we presented a solution strategy scheme to solve real in-
stances, as the complete mathematical model is hard to solve due to its
combinatorial nature and many constraints. This strategy consists of se-
quentially solving relaxed versions of the problem, adding more complexity
with each step. The proposed strategy consisted of forcing the routes ob-
tained in Step 3 to be scheduled in the fourth step, which could not be
feasible from the berth-scheduling perspective. To deal with this issue, the
Step 4 model allowed the modification of the departing days, by selecting
any valid departure pattern, by considering the use of vessels from different
classes, and by allowing late departures up to given tolerance. Although this
solution approach may hinder the achieving of the optimal solution, from the
practical point of view, good-quality solutions were obtained. Instances were
solved based on a real case from a Brazilian oil and gas company, including
a case with up to 79 offshore units grouped into clusters.

Future research topics include the development of heuristic methods, and
the consideration of stochastic demand and stochastic travel times.
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