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Abstract. With the increasing amount of structured data on the web
the need to understand and support search over this emerging data space
is growing. Adding semantics to structured data can help address existing
challenges in data discovery, as it facilitates understanding the values
in their context. While there are approaches on how to lift structured
data to semantic web formats to enrich it and facilitate discovery, most
work to date focuses on textual fields rather than numerical data. In
this paper, we propose a two level (row and column based) approach
to add semantic meaning to numerical values in tables, called NUMER.
We evaluate our approach using a benchmark (NumDB) generated for
the purpose of this work. We show the influence of the different levels of
analysis on the success of assigning semantic labels to numerical values in
tables. Our approach outperforms the state of the art and is less affected
by data structure and quality issues such as a small number of entities
or deviations in the data.
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1 Introduction

Data is being generated on the web at an ever-increasing speed. Yet, most of
this data is published in formats that are not machine-processable, hampering
our ability to gain value from it. Whereas the Semantic Web has gained trac-
tion as a way to provide semantics and interoperability to data, its coverage is
still limited: looking at Open Government Data, in 2016 only ∼ 2% of datasets
were published as linked data in the UK [1]. Most data is still published in
non-semantic formats, especially in tables. In Open Data portals the majority
of datasets are collected and published as CSV or Excel files, accompanied by
metadata from vocabularies such as DCAT4 or Schema.org5. Integrating tables

4 https://www.w3.org/TR/vocab-dcat/, consulted on 1 May 2018.
5 http://schema.org/, consulted on 1 May 2018.
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in the Web of Data is useful for enriching structured knowledge bases (KB), im-
proving search over data, or to enable question-answering systems to use larger
corpora of information. Motivated by this, solutions to lift tabular data into the
Semantic Web have been proposed. These solutions aim at solving the following
scientific problem: given a table and a target knowledge base KB, return a map-
ping of columns to classes or properties in KB. However, in spite of numerical
columns being the most popular column type in open governmental datasets [2],
existing approaches focus mostly on mapping textual data [3–8]. This is also re-
flected in the benchmarks available for the problem. For instance, one of the most
commonly used benchmarks, T2D [9, 10], contains only 12 of 1748 tables with
numerical columns disambiguated to DBpedia properties. Previous efforts [11,
12] compare distributions of numerical values in columns with the distribution
of literal values in a KB, matching (within a given certainty) columns to the nu-
merical properties with the most similar distribution. However, these approaches
use information surrounding the numerical column to assign a semantic label.

Inspired by Venetis et al. [6], who reported increased accuracy if a main (sub-
ject) column was identified, we introduce NUMER—an approach which uses the
context of numerical columns to assign semantic labels to them. We leverage
existing approaches for identifying the subject column of a table by matching
textual columns to entities in a knowledge base. We propose using the subject
column of the table to pick potential labels which are then matched against
the numerical column. Each cell in a subject column is disambiguated to a con-
cept (entity) in the target KB. The numerical values associated with the subject
columns are subsequently examined following a composite approach: (i.) a col-
umn level analysis, which looks at their distribution in a column; (ii.) a row
level analysis, which compares each of them to the values associated to the dis-
ambiguated entities in the target KB. As a result, we generate a ranked list of
properties for each numerical column. By selecting a table-specific set of possible
semantic labels based on the subject column we were able to narrow down the
possible values in a KB to those that are likely related to the context of the
table. The preselected semantic labels are than ranked according to their fit to
data in a column. This reduces memory requirements (as only data related to
those values needs to be processed), and may make it more suitable in cases
where KB are large, diverse, or rapidly changing such as DBpedia or Wikidata.

To evaluate our approach, we created the benchmark NumDB [13]. This
consists of tables with numerical values constructed from types and numerical
properties from DBpedia. NumDB introduces two dimensions of benchmarking:
first, it includes deviations in the values drawn from DBpedia to test the sensi-
tivity of approaches to values that are not exactly the same as the ones in the
target KB. Second, it considers versions of the same table with different number
of entities, to test the accuracy of approaches when facing smaller versus larger
tables. Our evaluation suggests that our approach, which includes both row and
column levels of analysis, outperforms the state of the art in terms of sensitivity
to value deviation and effectiveness on smaller tables. NUMER shows itself more
adaptable for use in a real world scenario in terms of time and memory consump-
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tion, as it does not require to generate the background knowledge necessary for
approach proposed by Neumaier et al. [11].

The paper is structured as follows: Section 2 introduces the semantic la-
belling problem. Section 3 presents related work in assigning semantic labels to
tables. Section 4 presents our approach. In Section 5 we provide details about
the experiment, specifically about benchmark, set-up, and evaluation. Finally,
sections 6 and 7 discuss our findings and outline future work.

2 Problem Statement

In this section, we introduce definitions of the concepts used, define the prob-
lem statement of assigning semantic labels to numerical columns in tables, and
introduce a running example.

Definitions: We define a table T as a collection of related data on a specific
topic. A table consists of m rows and n columns represented by a m×n matrix.
Each row in a table has the same structure and can be seen as a single record of
related data. Columns in a table are of specific type depending on their content;
possible column types are Numerical and Textual Columns. A numerical
column is a column where more than 50% of cells contain at least one digit. We
chose this definition to not rule out cells that contain units of measure (e.g.,
2 Kilometers) or dates. A column that is not numerical is considered textual.
One column per table is a Subject Column. That is, a textual column which
represents the main subject of the table and connects the other columns se-
mantically through binary relations [6, 7, 10]. Those connections are represented
through properties from a KB. The process of determination of subject columns
is detailed in Section 3.

Problem Statement: Given a table T and a target knowledge base KB, for
each numerical column in T , return the list of properties in KB that most likely
correspond to the numerical columns, ordered by likelihood score.

COUNTRY CITY POPULATION POP. DENSITY

France

Japan

... ... ... ...

Warsaw

Paris

Tokio

37.95

66.9

127

123

116

336

Poland

...

POP. DENSITY

123

116

336

populationDensity

totalArea

elevation

width

semantic labelling 

approach 

(e.g. NUMER)

POPULATION

37.95

116

...

336

population

totalArea

elevation

width

Ranked 

result list:

OUTPUT

Ranked 

result list:

Sample table

Fig. 1. Running example. A table with two textual and two numerical columns, with
DBpedia as target KB.
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Running example: Figure 1 shows an excerpt of a table from the T2D bench-
mark [14] with four columns: two textual (Country and City), and two numerical
(Population and Population Density). The goal of the process is to produce
a ranked list of labels for each numerical column based on the information gen-
erated from the subject column.

In this work we aim to disambiguate columns with numerical vales with
use of the information from subject column in the table. We distinguish a list
of scenarios that can be encountered when solving this problem. We look at
the scenarios when the subject column is known and if the selection of subject
column was not successful with existing approaches:

1. When the information on which textual column in the table is a subject
column is known:
(a) Full match of numerical properties values in the KB with numerical values

in a table. This scenario is the most trivial and could be solved with basic
matching techniques.

(b) Numerical values in the numerical column could deviate from the values
in the KB. Some values could be more distinct than others, some could
be missing in the KB entirely. Our approach includes mechanisms to
make the influence of the following problems negligible: the Column Level
Analysis (presented in Section 4) compares the distribution of values in
the numerical column against that of values from numerical properties,
which helps when values are missing. We also take into account numerical
properties connected to entities of each type that were recognised in the
subject column, which helps minimise the influence of partially correct
disambiguation of the cells in the subject column.

(c) Subject column cells can be disambiguated to a range of types which could
indicate a lack of consistency within the table or incorrect disambiguation
of the cell value. Analysing tables per row allows us to compensate for
the latter and detect the property the values of which are the closest to
the values in the KB (Section 4 Row Level Analysis).

(d) Numerical columns can be properties of types different from the types of
entities found in the subject column. They can be properties of other
textual columns (that are not the subject column) or not connected to
any other column (their meaning could be identified from the context).
This scenario is out of the scope of this work and for such cases alternative
approaches could be used (e.g. Neumaier et al. [11]) which do not rely on
additional information provided with the numerical column.

(e) A property describing a numerical column could not be represented in
the KB, in which case the approach will fail as the correct result of the
disambiguation process is impossible to achieve.

2. Approaches for the detection of a subject column could fail, in which case
the scenario is similar to the one described in 1.(d).

From these scenarios we can see that the knowledge of the subject column
can be used as a basis for improving the accuracy and efficiency of labelling of
numerical columns. We present the details of our approach in Section 4.
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3 Related Work

Several approaches have been proposed to assign semantic labels to structured
data. Some of them focus on tables embedded in web pages (in HTML <table>

elements [7, 9]; others analyse any type of structured data with a specific focus
on tabular or comma-separated data [4, 5, 8, 15]. Humans can be involved in the
process to achieve better results [16]. Many approaches make use of content
descriptions associated with the table (e.g., information in an HTML page [6,
17, 18], headers within tables [7, 17]) or rely on data in textual columns within
the table to assign semantic labels [10]. Others match table rows to KB entities,
leaving out of the scope matching the table columns to KB properties [19, 20].
It is important to point out that only a few of the existing approaches propose
solutions specifically targeted towards numerical values in structured data.

Numerical Values present different challenges than textual information when
assigning semantic labels to columns in tables. An approach targeting specifi-
cally the problem of labelling numerical values in structured data was first shown
by Ramnandan et al. [21]. They propose an algorithm that learns a semantic la-
belling function. The authors introduce a list of features, differentiated between
those targeted at numerical and at textual values in structured data. They pro-
pose testing the distributions of numerical values corresponding to semantic la-
bels based on the idea that the distributions of values for each semantic label are
expected to be different (e.g., the distribution of population of cities will be differ-
ent from the distribution of population density). They used three different tests:
the Welch’s t-test, the Mann-Whitney U test, and the Kolmogorov-Smirnov test
(KS test). Their results show that the latter achieved the best results. Neumaier
et al. [11] and Pham et al. [12] used similar metrics. The solution proposed by
Neumaier et al. [11] focuses exclusively on numerical values, and it is based on
building a background knowledge graph from properties in DBpedia. They use
DBpedia types and property-value pairs to structure their background knowl-
edge with bags of numerical values which are later compared to numerical values
from a data source using the KS test. However, creating and keeping the back-
ground knowledge is memory intensive. Pham et al. [12] introduce a number of
additional features for different column types in their semantic labelling func-
tion. In addition to the KS test, they propose using metrics such as a modified
Jaccard similarity for numeric data where the ranges of values are compared and
measures which affect both textual and numerical values in a data source.

Our approach builds upon these by analysing numerical columns in two ways:
first, in terms of the similarity (measured in terms of the KS test) of distribution
of values with respect to those of properties in a target KB; second, by calculating
the relative difference between numerical values in a column and numerical values
of properties associated to entities of the type identified from the column that
holds the main entities of the table. The main observation is that tables often
include a column that identifies the entities described by the table (called the
subject column), while the rest of the columns hold values of properties linked to
those entities (or objects). Venetis et al. [6] reported 75% of the tables in their
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corpus of web tables had a single main subject column, and that the accuracy
of semantic labelling increases when first determining a subject column.

Subject Column Identification To determine which of the columns in a table
is a subject column, Venetis et al. [6] suggest two methods: taking the left-most
column that is not a number or date column, or treating it as a binary clas-
sification problem. They propose learning a classifier for subject columns with
features that are dependent on the name and type of the column and the values
in different cells of the column. Wang et al. [7] and Ermilov et al. [10] proposed
similar characteristics of the column: (1) the connectivity of a column (i.e., how
it is connected with other columns of the table by means of properties mapped
to the KB) and (2) support of the column (i.e., ratio of cells disambiguated to
KB entities in the column). A combination of both connectivity and support
is then used to determine which of textual column is the most likely the sub-
ject column. In this work we focus on labelling columns with numerical data,
assuming a subject column has been previously identified.

Semantic Labelling Benchmarks The benchmark dataset created by Limaye
et al. [3] comprises 400 tables mapped to DBpedia and YAGO at instance– and
schema-level. Efthymiou et al. [19] introduce a benchmark including 485K tables
from Wikipedia, which were mapped to DBpedia by leveraging the links in their
label column. Neither of these two benchmarks was suitable for our experiment,
which aims to map columns to properties. Instead, the dataset in [3] contains
cell-to-entity mappings, while that in [19] row-to-entity. T2D [9] is a set of 1,748
tables6 with schema and instance-level mappings to DBpedia. However, it does
not contain a sufficient number of numeric columns to be suitable for our case
(the large majority of disambiguated column were textual columns). Therefore,
we decided to create a new benchmark, that we detail in Section 5.1.

4 Approach

Our approach comprises four stages, described below. We assume the availability
of a tool that enables the match of textual cells to entities in the target KB, and
of a tool that allows the identification of a subject column.

Preprocessing We preprocess the input table as follows: (1) Partition columns
into numerical and textual columns. Following the definition in Section 2, we
define a numerical column as a column that has ≥ 50% numerical values. (2)
From the subset of textual columns, select one subject column. This may be
done following any the approaches described in Section 3. (3) Match each cell in
the subject column to an entity in the target KB. (4) In numerical columns, we
strip out cells containing non-numerical characters (e.g., “2Km”), leaving only
numerical values (e.g., “2”).

Figure 2 shows the output of preprocessing our running example. Columns
Country and City were classified as textual, Country was identified as the subject

6 http://webdatacommons.org/webtables/goldstandard.html#toc0
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COUNTRY CITY POPULATION POP. DENSITY

France

Japan

... ... ... ...

Warsaw

Paris

Tokio

37.95

66.9

127

123

116

336

Polanddbr:Poland

dbr:France

dbr:Japan

textual columns numerical columns

subject column

Fig. 2. Information resulting from performing preprocessing steps a table.

column. All values in the subject column were disambiguated to a DBpedia
entity. Columns Population and Population Density were classified as numerical.

COUNTRY POPULATION

Japan

37.95

127

Poland1

COUNTRY POPULATION

France

Japan

... ...

37.95

66.9

127

Poland

n

subject column numerical column

numerical columnsubject column

Row level analysis

Column level analysis

Ranked Results

Row 1: 

 population

 totalArea

 width

Row n:

 totalArea

 population

Ranked Results

population

elevation

height

Final Column

Results List

population

totalArea

elevation

numerical 

semantifier

Fig. 3. An overview of the analysis stages in the semantification process.

Column Level Analysis Similarly to [11] and [12], we compare the distribu-
tion of values in numerical columns with bags of values from the target KB.
However, instead of comparing to all bags of values in the target KB, we con-
sider only the properties that have a semantic relation with the types of the
entities identified by the subject column, hence reducing both number of com-
parisons and memory requirements. From the entities identified in the subject
column in the preprocessing stage, we query the target KB for the list of all
types associated to them. In our running example, a sample list of types could
be: [dbo:CapitalCity, dbo:Country, dbo:PopulatedPlace]. Next, for each type, we
generate a list of all its instances in the target KB. Then, for each entity, we
select properties of rdf:type owl:DatatypeProperty associated to it. In our exam-
ple, Poland, dbo:PopulatedPlace has the properties population, area, existsFrom,
and dbo:Country has population, area, populationDensity. For each property, we
select its associated values and compare them to those in the numerical columns
using the two-sample KolmogorovSmirnov test [21], as shown in Equation 1.

Dn,m = sup
x
|F1,n(x)− F2,m(x)| (1)

The output of the comparison is a list of properties for each numerical column,
ordered by the probability given by the KS test. The output for the population
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column in our running example is [(populationTotal, 0.98),

(populationDensity, 0.44), (elevation, 0.14), (area, 0.08)].

Row Level Analysis Comparing value distributions does not necessarily result
in meaningful matches. The size of a numerical column in a dataset and popular-
ity of a specific property in the KB influences the accuracy of the results when
comparing the distributions. To improve accuracy, we also analyse numerical
values based on the context provided by the row they are in.

In this level of analysis, we perform the following steps for each row in the
table: (1) From the entity disambiguated in the subject column at preprocessing
stage, we query all properties of rdf:type owl:DatatypeProperty associated
to it, together with their values. (2) Next, we compute the relative difference
(Equation 2) between the value of the cell in the numerical column and the
value of each of the properties collected in step 1. The intuition is that the
property with the smallest relative difference is the right match for the value.

Rel diff(val1, val2) =

∣∣∣∣ val1 − val2
max(|val1|, |val2|)

∣∣∣∣ (2)

In our running example (Figure 3), for the cell Poland 37.95 in the column
Population we compute the relative difference with each of the values of the 33
numerical properties and the value in numerical column (here 37.95). Producing
a ranking of candidate labels per row ordered by decreasing relative difference.

(3) Finally, we generate a final ranking of candidate labels from the rankings
generated in step 2. This is done by selecting all properties that appear in any
of the lists. For each unique property we also assign its best relative difference
value, intuitively giving more importance to a property that was able to exactly
match one row. In case of a tie, we break it by computing the average position
between all intermediate lists.

Numerical Semantifier In the last step, we create the final ranking by com-
bining the outputs from the row level analysis (relative distance and average
position) and the column level analysis (probability). Concerning the column
level results list, a higher score represents a higher rank. As regards the row
level analysis, a lower score means a higher rank. In order to merge the two
analyses we order all outputs based on the closeness of the predictions to the
highest ranking, independently of whether these represent outputs of row or col-
umn analysis (distance and probability). In case of a tie we prioritize the row
level analysis labels over the column level analysis, as we identified in our eval-
uation row level analysis performs better than column level analysis on average.

Our final results list consists from predictions of semantic labels for a numer-
ical column with their confidence score. We call the overall approach NUMerical
SemantifiER (NUMER).

5 Evaluation

We evaluated our approach under two aspects: resource consumption (Ev1.)
and accuracy in matching the correct property (Ev2.). For both, we compared
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against the approach developed by Neumaier et al. [11] as a baseline—which we
refer to as MultiLevelLabelling (MLL). We generated a new benchmark for the
purpose of our evaluation, which is described in the following section. All code
used and results of the evaluation are available in a Github repository7.

5.1 Benchmark

To evaluate our approach we needed a set of tables containing at least one textual
subject column (i.e., the column to which the values in the other columns refer)
and one numerical column. We generated a benchmark by extracting tables from
DBpedia. Each table has three columns: the first is the subject textual column;
the second contains the DBpedia URIs corresponding to the entities listed in the
first column (ignored by our algorithm); and the third numerical column.

SELECT ?s ?o WHERE {

?s a dbo:Country .

?s rdfs:label ?label .

?s dbo:areaTotal ?o .

}

dbr:France dbo:areaTotal 547030France

dbr:UK dbo:areaTotal 244820UK

dbr:... dbo:areaTotal ......

dbr:Japan dbo:areaTotal 377835Japan

dbr:Poland dbo:areaTotal 312679Poland

rdf:Type dbo:Country

Query

Results

Tables

15% sample

1% sample

NumDB

?o?s ?label

COUNTRY AREA (km2)

France

UK

Japan

312,679

547,030

244,820

377,835

... ...

Poland

URI

dbr:France

dbr:UK

dbr:Japan

dbr:...

dbr:Poland

5% sample

COUNTRY AREA (km2)

France

312,679

547,030

Poland

URI

dbr:France

dbr:Poland

COUNTRY AREA (km2)

312,679Poland

URI

dbr:Poland

-5% < e < 5%

COUNTRY AREA (km2)

311,259Poland

URI

dbr:Poland

-10% < e < 10%

COUNTRY AREA (km2)

322,686Poland

URI

dbr:Poland

-15% < e < 15%

COUNTRY AREA (km2)

340,272Poland

URI

dbr:Poland

10% sample

COUNTRY AREA (km2)

France

UK

312,679

547,030

244,820

Poland

URI

dbr:France

dbr:UK

dbr:Poland

COUNTRY AREA (km2)

France

UK

Japan

312,679

547,030

244,820

377,835

Poland

URI

dbr:France

dbr:UK

dbr:Japan

dbr:Poland

...

...

...

Fig. 4. Tables in the benchmark were created by extracting data from DBpedia and
transposing it into tables. The figure represents the whole pipeline.

We extracted the tables according to the following process: first, we took a set
of properties that could be mapped to numerical columns, namely those identi-
fied in [11]. These included the 46 most popular numerical DBpedia properties8.
Second, we extracted the type of information (i.e., the classes) of all subject
entities for each property pi in the property set and the number of entities of
each type. For each property, we left out all classes whose entities comprised

7 https://github.com/chabrowa/semantification
8 50 most popular properties excluding those linking to DBpedia internal ids.
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less than 0.1% of all the property subjects, in order to exclude possible erro-
neous triples, and selected a number of random classes above this threshold, 10
when available, less otherwise. Subsequently, for each subset of classes we took
all triples pi(i, o) for the corresponding property, where type(i, Cj) for Cj in the
class subset. Labels were collected for all entities and properties. All these steps
were performed by querying the live DBpedia endpoint9. We transposed all the
resulting triples into tables (see Figure 4). This produced a total of 389 tables,
which we used to generate our benchmark. We created tables with different levels
of sampling and introduced varying degrees of errors, with respect to the data
subsequently used to disambiguate them, to also allow conclusions around the
robustness of our approach in respect to inaccuracies in the data. We used four
different sample sizes (Very Small :1% of all entities; Small :5%; Medium:10%;
Large:15%). A statistical description of each sample can be seen in Table 1. For
each sample size we generated three additional tables, to which a degree of error
e of −5% < e < 5%, −10% < e < 10%, or −15% < e < 15% to each value
v was introduced. The total number of tables created was 3952, 247 for each
combination of sample size and error degree. The dataset is available at [13].

5.2 Evaluation Results

For both resource consumption and accuracy we compared the performance of
NUMER and MLL for each table size and degree of error in the NumDB bench-
mark. The resource consumption evaluation (Ev1.) included processing time
and memory consumption. The accuracy evaluation (Ev2.) examined the per-
centage of correctly disambiguated columns, examining both the top 1 and the
top 3 semantic labels on the ranked results list. Moreover, we generated scores
for each level of analysis (i.e., row and column) separately and compared it
against the overall score, in order to gain a better overview of the influence of
different levels of analysis on the results. Finally, we applied ANOVA to test for
statistical significance between table sizes and between various degrees of error.
We believe that this range of experiments was able to provide a better picture
of the performance of our approach and to detect directions for further research.

Experiment Setup We deployed a SPARQL endpoint for DBpedia v.2016-4
using Virtuoso and AWS services10. We run the evaluation on a virtual machine
with 6 cores and 66 GB of memory running Ubuntu Linux. MLL was evaluated
using code provided by authors on an associated Github account11.

Resource consumption We tested the overall performance of NUMER and
MLL by measuring the processing time and RAM consumption to assign
semantic labels to NumDB datasets without deviation. It is important to notice
that both approaches differ significantly in their implementation. MLL requires
to build a background knowledge, which in our experiment environment took
01:02:22 and 16.48GB of memory. Keeping a large amount of data in the memory

9 https://dbpedia.org/sparql
10 https://aws.amazon.com/marketplace/pp/B012DSCFEK
11 https://github.com/sebneu/number_labelling
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allowed the MLL approach to analyse the tables with an average of 3 seconds per
file. However, in the current set-up we used, following [11]’s evaluation, only 46
DBpedia properties. The resources required to build the background knowledge
will grow with the number of properties used. As all the necessary information
is selected based on the subject column, NUMER does not require prior set-up,
resulting in a significantly lower memory consumption. However, requesting all
of the information from the DBpedia endpoint at run time resulted in an average
processing time of 13 seconds per table. Table 1 the processing times per set.

Table 1. Set statistics and processing time for NUMER and MLL (V.S - very small,
S - small; M - medium; L - large set; Avg - average; S.dev - standard deviation).

Set
Statistics MLL NUMER

#rows Median Avg S.dev. ∆ Total Avg ∆ Total Avg ∆

V.S 11,456 79.5 137.69 127.76 - 555 2.256 - 2168 8.815 -

S 56,604 390 682.75 633.08 3.94 630 2.561 0.45 3147 12.793 0.14

M 113,054 808.5 1366.58 1265.55 1.00 816 3.317 0.14 3564 14.486 0.30

L 169,484 1255.5 2069.16 1899.65 0.50 936 3.915 0.11 3973 16.152 0.18

NUMER – Levels of analysis The row level analysis achieved better scores
compared to the column level (Table 2). On the other hand, the combination of
both levels was often more accurate of to the best performing scores of each level
of analysis alone. We found varying levels of accuracy, the row level analysis
performed consistently well compared to the column level analysis. The differ-
ence between accuracy scores by table size was not statistically significant, in
contrast to a comparison by error deviation. The performance of the column
level analysis differed significantly by table size but not by error deviation.
The column level analysis used the KS test to assign semantic labels to bags of
numerical values. The lower levels of accuracy of the column level analysis sug-
gest a higher dependency on the deviation of the numerical values in a specific
column than the row level analysis. Concerning NUMER, which integrated row
and column level analysis, it was able to assign semantic labels with a higher
degree of precision than the two approaches it is based on, selecting the correct
semantic label in over 80% of cases regardless of sampling size or error rate.

Comparative evaluation We compared the performance of NUMER and
MLL for all tables sizes and error degrees within the NumDB benchmark. NU-
MER consistently outperforms the latter, across all the dimensions in which the
datasets change (Table 3). NUMER was not affected by variations in table sizes,
whereas it was sensible to different degrees of error in the data. Accuracy for top
1 results drops 10.5% on average when introducing any error in the original data
from DBpedia. On the other hand, MLL’s performance significantly decreased
according to both table size and error degree. Overall, the behaviour of MLL
appears to be similar to that of our column level analysis, to which it had similar,
yet higher, scores. Nevertheless, whereas MLL’s performance rises as table size
increase, column level analysis’ scores are roughly constant for small, medium,
and large table sizes, dropping only for very small tables.
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Table 2. Percentage of correctly assigned labels within top 1 and top 3 results in a
results list for NUMER approach split by level of analysis (V.S - very small set, S -
small set; M - medium set; L- large set).

Set top k
Row Level Column Level NUMER

V.S S M L V.S S M L V.S S M L

0% dev
1 75.61 77.24 73.98 77.64 28.46 34.96 36.18 34.15 90.65 93.50 91.87 93.09

3 93.50 95.93 93.50 95.53 40.65 55.28 56.10 54.88 93.50 96.34 93.90 95.93

5% dev
1 75.20 77.24 76.83 78.46 23.58 30.89 30.89 28.05 80.49 84.15 78.86 81.30

3 93.50 95.53 92.68 95.53 35.77 50.00 52.03 48.78 93.50 95.53 93.09 95.93

10% dev
1 75.61 73.98 71.14 77.64 22.76 28.05 28.05 28.86 78.05 78.86 75.61 80.89

3 93.09 95.12 93.09 93.90 37.40 48.37 48.78 47.56 93.09 98.37 93.50 94.31

15% dev
1 75.20 73.58 69.11 76.83 23.58 26.02 26.83 26.02 78.46 76.02 73.98 78.05

3 93.09 93.90 92.28 94.31 36.59 46.75 47.15 45.12 93.09 94.72 93.90 94.72

Table 3. Percentage of correctly assigned labels within top 1 and top 3 results in a
results list for NUMER and MLL. For MLL, we show results generated with average
distance and majority vote (in brackets) (V.S - very small set, S - small set; M - medium
set; L - large set).

Set top k
NUMER MLL

V.S S M L V.S Sm M L

0%
1 90.65 93.50 91.87 93.09 40.65(34.96) 53.66(40.24) 55.28(40.24) 58.13(40.65)

3 93.50 96.34 93.90 95.93 60.16(62.20) 73.98(73.98) 78.86(76.42) 77.24(75.20)

5%
1 80.49 84.15 78.86 81.30 39.43(30.89) 48.37(33.74) 50.41(34.15) 49.59(32.52)

3 93.50 95.53 93.09 95.93 53.25(52.44) 64.63(63.01) 66.67(66.26) 65.45(64.23)

10%
1 78.05 78.86 75.61 80.89 39.02(30.89) 47.56(30.08) 47.15(31.30) 48.78(30.49)

3 93.09 98.37 93.50 94.31 52.85(52.44) 62.20(59.35) 63.01(60.57) 62.60(60.98)

15%
1 78.46 76.02 73.98 78.05 38.21(30.89) 42.28(28.86) 45.12(27.64) 43.90(28.86)

3 93.09 94.72 93.90 94.72 52.85(52.85) 58.94(56.91) 59.76(57.32) 59.76(59.35)

6 Discussion and Limitations

The experiments used to evaluate NUMER enabled us to gain a number of in-
sights about its performance, which indicate directions for future research. NU-
MER was highly accurate in predicting semantic labels for numerical columns,
outperforming the state of the art. MLL, the approach used as a baseline,
achieves better scores over the column level analysis aspect of NUMER; however,
comparing the combination or row and column level analysis, NUMER outper-
forms MLL consistently. In most cases, the row level analysis is responsible for
most of the accuracy of the whole approach. Only when there is no deviation the
integration of the column level analysis yields a significant increase in accuracy.

The results in Table 3 show a large difference in terms of performance between
top 1 and the top 3 results. Additional scoring factors could be introduced based
on other columns or additional textual information available together with the
table besides the subject column, in order to improve the top 1 result. The correct
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semantic labels could be listed after the top 3 (e.g., as a 4th semantic label in a
result list), to provide users with a set of potentially valid semantic properties
from which they could choose the correct one. This type of interaction may be
applied to several contexts, e.g., when generating a summary, or to create dataset
to train a more sophisticated machine learning model to assign properties.

When comparing both approaches according to their time and memory con-
sumption, NUMER requires longer time (13s) to analyse a single NumDB table
than MLL (∼ 3s). However, it does not need to generate the background knowl-
edge which, in the case of MLL, carries a cost in memory consumption and
initialization time. We believe that this makes NUMER more suitable for use in
a real-world scenario, dealing better with memory limitations and KB evolution.

Neumaier et al. [11] deliberately excluded any additional textual information
in MLL. Conversely, NUMER requires textual information in the table to detect
potential correct semantic properties. This makes our approach more dependent
on textual content in the data: the lack of a subject column or multiple subject
columns would likely have a negative impact on the results. A possible solution
to that could be to combine NUMER and MLL depending on the presence of
the subject column in the table. Moreover, we used textual information in the
tables only to disambiguate subject columns to DBpedia entity types. In the
future, methods to extract further semantic information from text should be
explored, e.g., finding relations between the extracted entities, in order to better
understand how different elements in a table relate to each other which could
further inform the task of assigning semantic labels to numerical values.

Limitations As with most approaches there are some limitations connected to
this approach. First, a subject column might not be present, or several columns
may be considered as subjects. Those scenarios present an additional layer of
complexity which would require approaches that are independent of a subject
column or other, more tailored solutions. Second, we evaluated our approach by
using a set of synthetic tables extracted from DBpedia. Although we processed
our tables to test our approach under different conditions, an evaluation in a real
world scenario, i.e., with tables found on web pages, should be carried out in
the future to provide more solid indications about the applicability of NUMER.

7 Conclusion and Future Work

We presented NUMER—an approach to derive semantic representations of nu-
merical values in tables. Approaches to add semantic meaning to numerical val-
ues are particularly valuable, as these represent the most popular column type
in open governmental datasets [2]. We applied a column level analysis—based
on the types of entities found in the subject column of the table and the related
values in a KB—matched to the column values in the table. We further applied
a row level analysis in which we matched the individual values in a row to the
corresponding entity in the KB and approximate the closest numerical values
linked to this specific entity. This enabled us to create a table-specific ranked
list of potential semantic labels for numerical columns. Automatically inferring
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the meaning of numerical values found in tables has the potential to significantly
improve the discovery of structured data as it can add context to otherwise ob-
scure values. We evaluated our approach using a benchmark (NumDB), created
by us, and investigate the influence of the number of rows (percentage of enti-
ties of specific type in the KB) and the influence of (intentionally introduced)
deviation in the data. We can see that both levels of analysis have a positive
influence on the final score in our approach, outperforming the state of the art
under the given conditions.
Existing benchmarks have shown not to be useful when the focus of evaluation
in the task of assigning semantic labels is mainly on numerical columns. For
instance, in T2D [9, 10], only 11 of 1748 tables contain numerical columns dis-
ambiguated to DBpedia properties. This indicates a need for new reliable bench-
marks to test approaches such as MLL and NUMER, preferably in a real world
scenario, without the bias of automatically generated tables. NumDB, although
automatically generated, can be seen as a step in that direction. We believe NU-
MER can provide important context to numerical values in tables. This can, for
instance, support search over tables on the web and make numerical columns
discoverable even if their meaning is not explicitly available in a textual format
[22]. We further see the potential of our approach to be used in recommendation
systems for datasets by finding similar or semantically connected tables [23].

In future work we plan to extend this work by integrating multiple knowledge
bases. We aim to further improve this approach by using additional information
from the numerical columns such as currencies or units of measurements (e.g.,
kilometre, million, percentage) that might be attached to the values for disam-
biguation. Correlating numerical columns to other, non-numerical columns, or
column headers could further improve the results. This strategy would take ad-
vantage of instances in which, for example, one column is the percentage value
of another column, or witch longitude and latitude in two separate columns.
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Recovering semantics of tables on the web, Proc. VLDB Endow. 4 (9) (2011) 528–
538. doi:10.14778/2002938.2002939.

7. J. Wang, H. Wang, Z. Wang, K. Q. Zhu, Understanding Tables on the Web, in:
Conceptual Modeling - 31st International Conference ER 2012, Florence, Italy,
October 15-18, 2012. Proceedings.

8. M. Taheriyan, C. A. Knoblock, P. Szekely, J. L. Ambite, A scalable approach to
learn semantic models of structured sources, in: Proceedings of the International
Conference on Semantic Computing.

9. D. Ritze, O. Lehmberg, C. Bizer, Matching HTML Tables to DBpedia, in: Proceed-
ings of the International Conference on Web Intelligence, Mining and Semantics,
2015, pp. 10:1–10:6.

10. I. Ermilov, A.-C. N. Ngomo, TAIPAN: Automatic Property Mapping for Tabular
Data, in: Proceedings of the 20th International Conference on Knowledge Engi-
neering and Knowledge Management, 2016, pp. 163–179.

11. S. Neumaier, J. Umbrich, J. X. Parreira, A. Polleres, Multi-level semantic labelling
of numerical values, in: International Semantic Web Conference, Springer, 2016.

12. M. Pham, S. Alse, C. A. Knoblock, P. Szekely, Semantic labeling: a domain-
independent approach, in: International Semantic Web Conference, Springer, 2016.

13. A. Piscopo, E. Kacprzak, Numdb (2018). doi:10.6084/m9.figshare.6205814.v4.
URL https://figshare.com/articles/numdb\_0105\_zip/6205814/4

14. D. Ritze, O. Lehmberg, Y. Oulabi, C. Bizer, Profiling the potential of web tables for
augmenting cross-domain knowledge bases, in: WWW, ACM, 2016, pp. 251–261.

15. C. A. Knoblock, P. Szekely, J. L. Ambite, A. Goel, S. Gupta, K. Lerman,
M. Muslea, M. Taheriyan, P. Mallick, Semi-automatically mapping structured
sources into the semantic web, in: The Semantic Web: Research and Applications,
ESWC 2012, pp. 375–390.

16. I. Ermilov, S. Auer, C. Stadler, User-driven semantic mapping of tabular data, in:
Proceedings of the 9th International Conference on Semantic Systems, ACM, New
York, NY, USA, 2013, pp. 105–112. doi:10.1145/2506182.2506196.

17. M. D. Adelfio, H. Samet, Schema extraction for tabular data on the web, Proc.
VLDB Endow. 6 (6) (2013) 421–432. doi:10.14778/2536336.2536343.

18. D. Wienand, H. Paulheim, Detecting incorrect numerical data in dbpedia, in:
V. Presutti, C. d’Amato, F. Gandon, M. d’Aquin, S. Staab, A. Tordai (Eds.), The
Semantic Web: Trends and Challenges, Springer International Publishing, 2014.

19. V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro, V. Christophides, Matching
web tables with knowledge base entities: From entity lookups to entity embeddings,
in: International Semantic Web Conference, Springer, 2017, pp. 260–277.

20. C. S. Bhagavatula, T. Noraset, D. Downey, Tabel: Entity linking in web tables, in:
Proceedings of the 14th International Semantic Web Conference ISWC, 2015, pp.
425–441. doi:10.1007/978331925007625.

21. S. K. Ramnandan, A. Mittal, C. A. Knoblock, P. A. Szekely, Assigning semantic
labels to data sources, in: The Semantic Web. Latest Advances and New Domains -
12th European Semantic Web Conference, ESWC Proceedings, 2015, pp. 403–417.

22. L. M. Koesten, E. Kacprzak, J. F. A. Tennison, E. Simperl, The trials and tribula-
tions of working with structured data: -a study on information seeking behaviour,
in: Proceedings of the CHI Conference on Human Factors in Computing Systems,
2017, pp. 1277–1289. doi:10.1145/3025453.3025838.

23. A. Goel, C. A. Knoblock, K. Lerman, Exploiting Structure within Data for Ac-
curate Labeling Using Conditional Random Fields, in: Proceedings of the 14th
International Conference on Artificial Intelligence (ICAI), 2012.


