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ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
INSTITUTE OF SOUND AND VIBRATION RESEARCIH

Doctor of Philosophyv

THE ESTIMATION OF BUBBLE POPULATIONS IN TI{E SURF-ZONE
BY INVERSION OF ACOUSTIC PROPAGATION

by Steven Douglas Meers

For several decades the propagation characteristics of acoustic pulses (at-
tenuation and sound speed) have been inverted in attempts to measure the
size distributions of gas bubbles in liquids. Primarily this has been attempted
in the ocean for defence and environmental purposes. however there are a
growing number of biomedical and industrial applications. In order to sim-
plify the inversion, previous investigators have assumed that that the bubbles
arc undergoing linear. steady-state monochromatic pulsations in a free fietd.
without interacting. These assuinptions are always contravened to some ex-
tent. This study examines the validity of the assiunptions and identifics the
need for a new time-dependent nonlinear method of determining a bubble’s
extinction cross section. Such a model is developed and emploved in an ex-
periment to estimate the bubble population in the surf-zone. an important
but seldom measured region of the ocean. where large populations of bub-
bles are generated by breaking waves. The necessary theoretical fraimework
to exploit this new model (based on the current state-of-the-art technique) is
developed and employs a new method of determining the optimal regularisa-
tion parameter for use in the inversion process. A series of laboratory tests
and surf-zone sea trials are described that result in a set of bubble popula-

tions calculated using linear and, for the first time. nonlinear techniques.
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Chapter 1
Introduction

The study of acoustic propagation in the ocecan is a field which has been the
subject of a large amount of research over many years. It has spawned a huge
range of applications as diverse as measuring the speed of sound in the ocean
in order to investigate global warming [1]. the estimation of fish stocks [2]
and the location of stranded air-men in the Atlantic Ocean [3].

Bubbles are an important physical phenomena in the occan. It has been
estimated [4] that the flux of atmospheric carbon between atmosphere and
ocean exceeds 1000 million tonnes per annum. This estimate makes no ac-
count of bubble activity which could dramatically increase this figure. FHence
the estimation of bubble populations is potentially of benefit to climate mod-
elling and the understanding of global warming. as well as being of interest
to physical oceanographers. In addition. the presence of bubbles has a sig-
nificant impact on the propagation of sound in the ocean owing to the high
efficiency of bubbles as acoustic scatterers [5]. Understanding of propagation
i1 bubbly environments is of kev importance in a number of defence and
commercial applications [3] and is dependent upon the size distribution of
the bubbles in the medium.

As a result of the scattering efficiency of a bubble, techniques based upon
acoustics have proven the most successful at determining bubble populations

in an oceanic environment. Of these techniques, the most widely used is
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inversion of acoustic propagation characteristics and this is the subject con-
sidered herein. Given the long history of this technique it is surprising the
assuniptions inherent within it are still extensive and. providing the technique
produces a plausible solution. the temptation is to accept that solution with-
out exaniining the extent to which the assnmptions have been contravened.
This is especially true when making measurements in the surf-zone. an im-
portant region in which few measurements [6 9] have been macde. This study
attempts to estimate bubble populations in the surf-zone and will examine
the validity of the assumptions inherent in that estimate.

This chapter serves as an introduction to the field and reviews landmark
papers in the development of bubble estimation via inversion of acoustic
propagation. Because of their key importance to such estimates. a brief
review of the different models available for describing the response of the
bubbles will be presented.

Chapter 2 discusses two alternative niodels (complex sound speed and
extinction cross section) upon which an inversion could be based and their
results are shown to converge in the low void (raction. lincar regime. One
of these models is then used to describe the implementation of both the for-
ward problem (prediction of the acoustic propagation characteristics through
a known population) and the inverse problem (estimation of a bubble popula-
tion from propagation characteristics measured within it). The assumptions
inherent in the model are considered with specific reference to measurements
made in the surf-zone and the need for a new nonlinear model is discussed.

Chapter 3 details the theoretical development of such a model. An at-
tenmpt is made to describe a nonlinear complex sound speed and. while the
linearisation of this expression vields the standard result. errors are shown to
exist in the nonlinear regime. Discussion of the reasons for these errors results
in development of an expression for the nonlinear extinction cross section.
Comparison is made of standard theoryv and low and high amplitude nonlin-
ear theory. Techniques for numerically implementing the new expression are

discussed.
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Chapter 4 describes the development of a svstem suitable for making
measurements in the surf-zone. Consideration is given to the design of the
acoustic signal used. and to the accurate measurement of acoustic propaga-
tion from that signal. In addition the development of a suitable sound source
is described. Experimental setups are described for signal generation and ac-
(uisition and finally a complete svstem test is performed in the laboratory.

Chapter 3 documents the acquisition of sea trial data. Development of a
rig suitable for deplovment of apparatus in the harsh environment encoun-
tered in the surf-zone proved verv challenging. and the evolution of such a rig
is described. The experimental setup used. and the environmental conditions
encountered, are documented and an initial review of the data is discussed.

Chapter 6 goes on to perform detailed analysis of the data collected during
the sea trials. Comparison is made of results processed using standard linear
theory and the new nonlinear theory. Chapter 7 summarizes the work. draws

conclusions and provides recommendations for future work.

1.1 Inversion of acoustic propagation: a lit-

erature review of landmark papers

As discussed in the previous section, acoustical techniques have proven par-
ticularly successful at the estimation of bubble size distributions. This is
partlv owing to the efficiency of bubbles as acoustical scatters, which. when
combined with theoretical models of the extent of this effect, allows estima-
tion of bubbles numbers. An equally important factor. though, is the relation
between a bubble’s resonant frequency and its radius. It was Minnaert [10]

who first calculated the relation.

1 [3vpo
= — 1.1
RO Pu ( )

where wp 1s the bubble’s angular resonance frequency. Ry is the equilibrium

Wi

radius of the bubble, v is the ratio of specific heat at constant pressure to
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that at constant volume. pg is the static pressure in the fluid outside the
bubble wall and p,. is the density of the liquid surrounding the bubble. This
equation. and others. will be discussed in more detail in section 1.2. which
will review different models of bubble response. These two phenomena allow
the number of bubbles to be estimated as a function of their radius. This

estimate is the objective of the papers described in this section.

1.1.1 A review of the paper by Medwin, 1970 [11]

Medwin pioneered the estimation of bubble population via inversion of acous-
tic propagation. Previous investigators, for example Blanchard & Wood-
cock [12], had used optical methods of bubble estimation. a techuique which
suffers from a lack of discrimination between bubbles and suspended particu-
lates. and in which it is difficult to establish a well-defined sampling volume.

Medwin used the concept of the extinction cross section () of a bubble
in order to estimate the number and size distribution of bubbles excited by
an acoustic plane wave. The extinction cross section is the ratio of the time
averaged power subtracted from a wave by the presence of a bubble to the
intensity of that wave. It can be considered as the sum of two further cross

sections, the scattering cross section €23 and the absorption cross section

abs.
(ot

QE"H _ <L[/> _ Qscat 7,_Qabs (]_9)
b i b b

where (W) is time averaged power lost from an incident wave of intensity, /.
Using this concept the change of intensity (due to bubbles) with distance ., of
a plane wave propagating through a cloud of bubbles with a total extinction
cross section per unit volume of Q¢ is given by

df ;

— =10 (1.3)

dr
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Integrating with respect to r gives

[ = [e's (1.4)

where [y is the intensity at r = 0. The attenuation' per unit distance

(caused by the presence of bubbles). /1. is therefore given by

A = 10log ( ) Jr = 100" log g0 = 4.3107"! (1.5)

Medwin used a form of the extinction cross section that assumes a bubble.
driven by a plane wave, that oscillates linearlv in a free field (derived from
the work of Foldy [13,14])

dior

(Oscat __ dtOl 47‘—[{2
drad b drad ((W.O/L"‘) - 1 dtot‘—uo/“j )

where w is the angular excitation frequency. wy is the bubble’s angular reso-

Ot = (1.6)

nant frequency, d;, is the dimensionless total bubble damping constant and
draq 15 the dimensionless radiation damping constant. In order to calculate
the cross section presented by a spectrum of bubbles the cross section must

be integrated across all radii

0t = / O n( Ry)d Ry (1.7)
0

where n(Ry) dRy represents the number of bubbles per m? between Ry and
Ry + dRy. Medwin performs this integration by making a number of simpli-
fving assumptions. These are: (1) that the damping is constant across all
radii i.e. dior = d40r. the damping constant at resonance: (2) that, within one
radius increment. dfRg. the bubble population is constant and equal to the
number of resonant bubbles n(Ry) = n(R,..): and (3) that only resonant bub-
bles significantly contribute to the attenuation of propagating sound. These

assumptions allow a closed form analytical solution to be calculated relating

LAttenuation is defined as ‘the reduction in acoustic intensity of a sound field, where
acoustic intensity is the average rate of flow of energy through a unit area normal the the

direction of propagation’ | 7].
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attenuation at a frequency. f. to the number of bubbles at the corresponding

resonant bubble radii

8.68T2Rin(Ryws)

A(f) = 4.34057 =
Orad

(1.8)

[t is then trivial to invert this equation to find n(R,.;). The kev assump-
tion (which was later criticised by Commander & McDonald. as described
section 1.1.3) in Medwin's formulation is that in a distributed population
of bubble radii. only resonant bubbles significantly contribute to the atten-
uation of propagating sound. At the time this assumption was justified by
the observation that resonant bubbles have a scattering cross section that is
several orders of magnitude greater than the corresponding geometric cross
section (the cross sectional area presented by the a rigid sphere of equal ra-
dius to the bubble). While this observation was correct. it failed to take into
account the fact that larger bubbles may present a geometric cross-section
of greater magnitude than the scattering cross section. Figure 1.1 illustrates
this by plotting the scattering cross section of a bubble excited at 100 kHz
against the geometric cross section as a function of radius.

Medwin fielded the technique using an experimental systent based upon
transcducer mounted approximately 0.76 m from a reflective plate. The trans-
ducer acted as both source and receiver and operated from 20-200 kl1z. The
attenuation was calculated by comparing the amplitudes of successive pulses.
In order to distinguish between attenuation caused by the presence of bub-
bles and that caused by other effects. for example divergence and reflection
losses. the system was calibrated in degassed water prior to deployment. The
experimental work detailed was carried out in two locations. one in 60 feet
of water. I mile offshore and another in 27 feet of water 300 vards offshore.
Medwin's work estimated bubble numbers of approximately 1000/m? in 1
pm bands for bubble radii < 60 um in sea states one and two. Following
this landmark paper the author published further papers [13.16] describing
measurements made employing the same theoretical techniques but making

refinements to the experimental method and investigation of the affect of var-



CHAPTER 1 7
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Figure 1.1: Scattering cross section (solid) of a bubble excited at 100 kHz
plotted against the corresponding geometric cross section (dashed) as a func-
tion of bubble radius. Note that the two curves do not converge as the scatter-
ing cross section is related to the surface area of the bubble and not its cross

sectional area.

ious oceanographic features. These papers showed that the original estimate
of the population was an undercount and reported populations exceeding 10°

bubbles per m3 in a 1 um radius bin.

1.1.2 A review of the paper by Commander & Moritz,
1989 [17]

This paper investigated discrepancies at small bubble radii (< 50 pum) that
had been noted between bubble size spectra that had been estimated acous-
tically (using Medwin’s technique) and those estimated optically. Crucially,
as described above, the acoustical techniques assumed that in a broad spec-
trum of bubble radii, only bubbles at resonance contribute to the scattering
of a propagating sound wave. The flaw in this assumption can be shown by

examination of figure 1.1. Medwin’s observation that, at resonance, the scat-



CHAPTER 1 8

e

-
(=]
¢

Number of bubbles /m® fum

L ! L L
50 100 150 200 250
Bubble Radius (um)

Figure 1.2: Commander & Mortiz’s key result shows the original Gaussian
population (solid line) and the result of Medwin’s technique (dashed line) for
estimating bubble numbers from an attenuation calculated using equation 1.5.
The effect of the neglect of off-resonant scatters is shown as an error in the

estimation of small bubble numbers.

tering cross section of a bubble is several orders of magnitude greater than
its geometric cross section is correct. However, it fails to take into account
the fact that larger bubbles may have a geometric cross section greater than
the resonant cross section.

Commander & Moritz investigated the affect of this assumption by calcu-
lating the attenuation for a synthetic, Gaussian, bubble distribution. This at-
tenuation was calculated including the effect of off-resonant scatterers. Then,
using this attenuation as an input, they attempted to recover the original
population by use of the relation shown in equation 1.8. Figure 1.2 shows
the result, which exhibits a large error in the calculated numbers at small
radii.

In conclusion Commander & Moritz proposed a corrected form of equation

1.7 that requires the extinction cross section of each bubble to be evaluated
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at all bubble radii. hence removing Medwin's assumptions one and three.

WWFAQWHWMM% (1.9)

where Q°*(f) is the total extinction cross section presented by a cloud of
bubbles and Q;*'(f. Rq) is the extinction cross section of a single bubble of
radius Rfy. at driven at frequency f. This equation (a Fredholm integral
of the first kind) is a significantly more challenging equation to solve than

equation 1.7 and this is the subject of the final paper in this review.

1.1.3 A review of the paper by Commander & McDon-
ald, 1991 [18]

Comunander & McDonald [18] propose a finite-element method of estimating
the bubble population that incorporates scattering from off-resonant bubbles.
This was shown to be important in inverse methods of bubble determination
by Commander & Moritz [17]. Equation 1.9 describes the total extinction
cross section of a cloud of bubbles and incorporates off-resonant scattering.
[n order to solve this equation the bubble distribution is approximated using

linear splines as shown in ecquation 1.10

H

n(Ry) = Z nnBr(Ro) (1.10)

h=1
. . 9 .
where B, represents a linear B-spline® and ny, the value of n at the h* radius

value. Substituting 1.10 into 1.9 presents the following system of equations.

H
Q! (fo) = Y Konna (1.11)
h=1

where the elements in the matrix A'g, are given by

2The linear b-spline linearly interpolates across a radius bin and is zero for all values

outside that bin.
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Romax
1\’gh - / f?g“(fg. I?O)BhdRo (112)
Ra

Equation 1.12 is a particularly useful result since it describes the total
behaviour of a bubble cloud. It is also flexible in that the “kernel” function,
R gn. can be changed from the extinction cross section to some other model
of bubble response.

As discussed in section 1.1.2 the extinction cross section of a hubble only
contains a local maximuin at resonance and the scattering from geometrical
scattering above resonance can be significantly greater. This renders the in-
verse solution of equation 1.12 “ill-conditioned . meaning that sinall changes

in the input vector, Q¢

. can cause very large changes in the output. n. In or-
der to obtain a meaningful answer from this inversion, a method of stabilizing
this solution must be emploved. This process is referred to as reqularisation.
There are many different regularisation techniques which may be employed
and Commander & McDonald [18] recommend a method of regularisation
imposing a ‘smoothness’ constraint upon the solution. Commander & Me-
Donald demonstrate their technique by recreating series of svnthetic distri-
butions from their calculated attenuation. However no experimental data is
presented to validate the work.

Subsequent authors have proposed minor refinements and have experi-
wmentally verified the technique. Duraiswami et al. [19] outlines a method
that uses phase speed as well as attenuation as the input to the system of
equations. They find similar results to those achieved using optical esti-
mates on a laboratory bubble cloud generated using electrolvsis. Terrill and
Melville [20] detail an experimental technique using broadband signals rather
than the more usual pulse train of narrowband pulses. Experimental results
are reported, firstly from a 30 metre wave channel and secondly from a site
approximately 150m awayv from the surf-zone at Scripps pier in California.

The formulation proposed by Commander & McDonald represents the
current ‘state-of-the-art’ in the estimation of bubble populations via inversion

of acoustic propagation. Despite a significant amount of following work no
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fundamental advance in the underlyving theory has been proposed and the

benefits of some of the reinements made are still to be proven.

1.2 Models of bubble dynamics: a literature

review of landmark papers

The modelling of bubble oscillations is a formidable task that has been the
subject of very many papers over 70 vears or more. As such this section
will not attempt to derive the different models from first principles but will
provide an insight into the underlying phyvsics of the models employed later in
this work and the assumptions made within cach of those. For a more detailed

treatment of the subject a number of authoritative texts are available [3,21].

1.2.1 A review of the paper by Minneart, 1933 [10]

The simplest ‘model’ of bubble dynamics was developed by Minnaert [10] and
related a bubble’s resonant frequency to its equilibriuun radius. Minnaert’s
formulation assumed a spherical gas bubble in a liquid undergoing low am-
plitude simple harmonic motion. The gas inside the bubble is assumed to
behave adiabatically and the product of the wave number (kA = w/c,. where
¢y 1s the ambient sound speed in the bubble-free liquid), and the equilib-
rium bubble radius is assumed to be much less than one (ARy < 1). Such
an assumption is common in many mocels of bubble dvnamics and is made
throughout this study. Minnaert equates the maximum kinetic energyv in the
liquid to the maximum potential energy within the gas (neglecting damping

due to surface tension and viscosity). This vields the result

_ L [3po
RO Pu

In the case of air bubbles in water at one atmosphere hydrostatic pressure

(1.13)

&o

equation 1.13 can be approximated by
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27woRy = 3Hz.m (1.14)

However such approximations are undesirable when attempting to deter-
mine an accurate bubble size distribution. Minnaert's formulation for bubble
resonant frequency can be adjusted to include heat conduction by assuming
that the heat transfer is neither adiabatic nor isothermal but. as will really be
the case, some intermediate rate of transfer. This is achieved by substitution
of a polytropic index ~ (which can vary from unity, the isothermal case, to

7, the adiabatic case) into equation 1.13.

3K g

(1.15)

Wy =

RO P

Leighton [5]§4.4.2 cites the following expression for x

30— 1) <sinh(Ro/zo> — sin(Ro /Lp) H T

v =(1+3d5)7" |14
r=(1+0y) { " Re/lp \cosh(Ry/lp) — cos(Ro/lp)

where [p = \/m represents the thickness of the thermal boundary layer
(Dy is the thermal diffusivity of the gas within the bubble) and d;, is the
thermal damping constant and is discussed in more detail in section 1.2.4.
Equation 1.15 neglects terms due to surface tension. viscosity and the vapour

pressure within the bubble. Adding these terms gives ( [5] §4.2.1(c))

20
% 3K +— vl = —=— +p. — 5 1.17
0 Ro\//)_m\/ po Ry b > Ry b Pu-R(') ( )

where ¢ is the surface tension co-efficient. p, is the vapour pressure within
the bubble and p the shear viscosity co-efficient. Throughout this work this

equation is used to calculate bubble resonant frequencies.
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1.2.2 A review of the paper by Commander & Pros-
peretti, 1989 [22]

Commander & Prosperetti’s paper derives an expression for the effective
complex wavenumber of a plane wave propagating through a bubbly liquid.
This quantity can be related to the phase speed of the wave as well as the
attenuation experienced by it. This. in a similar fashion to the extinction
cross section described above. makes it a suitable model for use in inverse
niethods of bubble estimation. As a result the paper has been cited in excess
of 100 times since publication. The expression for the complex wavenum-
ber is derived by making a first order approximation (hence linearising the
expression) to the Herring-Keller equation (see section 1.2.3). A more intu-
itive derivation is based upon the concept of the compressibility of a cloud
of bubbles, K. and its reciprocal. the bulk modulus. B,.. given by

[,_1_ Lodie 1

“TB. T VidPa pad

where V. 1s the volume of a cloud of bubbles and £, is the total pressure

(1.18)

(i.c. the ambient pressure plus the acoustic pressure). Consider a medium
containing n identical bubbles per unit volume. The compressibility of the
bubbly medium A, is equal to the sum of the compressibility of the bubble-
free liquid, A, and all the gas forming the bubbles within it A}, (which is

complex).

K.=K,+ Ay (1.19)

The wavenumber of a plane wave propagating through the bubbly liquid,

ke (which can be thought of as a spatial frequency [24]) is given by

9/ o
ke =L = = /0K, (1.20)

A Ce

where A is the wavelength of the plane wave and ¢, is the sound speed in the

bubbly liquid. Substitution of 1.19 into 1.20 and the approximation that the
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density of the cloud is approximately equal to the density of the bubble-free

liquid vields

2
L

;l\',: = 5 /)u-u"‘z[\’bub (121)
Co

Each bubble has a volume. V. which will change in time in response to an
applied pressure. If we assume that there are N, bubbles in the cloud all
with the same radius then. when the whole population experiences such a
change the compressibility of all the bubbles in the medium. AQ,. is given

by

) ) AV
[\bub = _A\'tot A—P

where P is the applied acoustic pressure, in this case proportional to a simple

(1.22)

harmonic plane wave varving with time, P = P,e* By assuming that the
bubble responds with small amplitude linear oscillations away from equilib-
rinm and remains spherical at all times, the volume of the bubble may be

approximate to first order as

4, 4 R\® 4 R
V==nR'= 2R 1+ =~ aR}|1+3= 1.23
37r 3 0( Ro) 37 ° Ry ( )

where R, is the amplitude of the oscillations away from equilibrium. Noting

that AV = 47 R3 R, some simple algebra (combining equations 1.21. 1.22 and
1.23) vields

\—UQ preRg*Vtot ;
ke = & —dmwi—7—F7— 1.24
TV AP (124)

The value of R, mayv be derived by modelling the bubble as a forced.
damped linear oscillator. The equation of motion is given (in the radius-

force frame?) by

3for discussion of the different frames of reference that may be used in models of bubble

response see [5] §3.2.1.
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m;{zgf?( - bt,g;;-R( - A.RFRg = Foej'd (125)

where the ‘mass’ of the bubble m7¢ comes from the surrounding liquid into

which the bubble radiates (see [5] §2.3.1(c)). the resistive term leading to
damping is given by %% and the stiffness of the bubble is given by kgp.

[miplicit in this equation are several kev assumptions:
1. that the bubble remains spherical at all times.

2. that the bubble’s radius is much smaller than the wavelength of the

exciting force.
3. that the bubble exists in an infinite mediumni.
4. that the bubble radiates into a free field.

3. that the bubble is driven at small-amplitucde by a monochromatic plane

wave.

Equation 1.25 is solved by setting wo = \/kgr/m72d and bigt = 2m7ads,,,
before dividing by m/&d. If the steady-state response (¢t — oo) of the bubble
is consiclered (thus taking the particular integral and neglecting the comple-
mentary function) and it is assumed that R, o &!, then the following result
1s yielded

Fo

rad
Mepr

(wg —w? +323w) Re = el (1.26)

Equating the force experienced across the bubble wall to the amplitude
of the driving sound field (Fy = — P47 R3. where the minus sign indicates
that an increase in pressure causes a decrease in radius) and the ‘mass’ of
the bubble to the mass of the displaced liquid (m¥g = p. 47 R3) allows the

following expression of R, to be derived

P_\ejwt 1
prO ‘;“‘8 —w? + j2/3to(w

R, = (1.27)
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This result is the same as that derived in [3] (equation 4.43). Substituting
1.27 into 1.24 and noting that AP = P~ vields

w.‘l R -\'(o
ke = |2 = dpa? it (1.28)

2 2 2 g .
Ccr. Ly T _‘&.]Z‘jl‘()tv"

[f a distributed population of bubble radii exists and n now represents
the number of bubbles with radius between Ry and Ry + dRg. equation 1.28

may be re-expressed as an integral across all radii

w? - Ron(F
b = f+4~w2/ . onlf) gy (1.29)
V] A

W= 320w

This is the expression for the complex wavenumber derived by Comman-
der & Prosperetti. However, several restrictive assumptions have been during
its derivation, for instance small-amplitude oscillations. Subsequent investi-
gators have attempted to derive models withont recourse to such assump-

tions.

1.2.3 A discussion of nonlinear models

Many investigators have attempted to derive nonlinear models of bubble
oscillations in order to describe more fully the motion of bubbles. especially
when driven to large-oscillations. While such models are not directly the
subject of this work they can be useful as the basis for estimating the bubble’s
affect on acoustic propagation. As such. two of the most commonly used
moclels will be briefly reviewed here.

The first of the two models emplovs the Ravleigh-Plesset equation. so
called because the form of the equation has been formulated by a number of
contributors [25 28] who have expanded upon the original work of Ravleigh
29]. The equation assumes a spherically symmetric bubble initially at rest
in an incompressible liquid. When the bubble is excited by a pressure P(t)
it will change its radius to a new value. R. During this change of radius the

liquid surrounding the bubble will acquire kinetic energy. If this energy is
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equated to the work done by the bubble as it expands the follow equation is
derived (Leighton [5] §4.2.1(a))

R
/ (pr — p= )47 RMR = 27 R R¥p,, (1.30)
Ry

where p; represents the pressure in the liquid outside the bubble wall. p is
the pressure remote from the bubble and the dot represents the first derivative

with respect to time. Differentiation of equation 1.30 vields

PrL — P 31
Pus 2
By substituting an expression for p; derived from equality of pressure across

~ RR (1.31)

the bubble wall (assuming polytropic behaviour of the gas and a quasi-static
expansion i.e. spatially uniform econditions exist within the bubble) and
setting p.. = po + P(¢) au initial form of the Rayleigh-Plesset equation is

vielded

3R? L] 20 R\ 20
= = — | (po+ "5 —p, | | = L= —py — P(t
5 + RR o <po+ B pt> <R> i (¢)

(1.32)
where ¢ is the surface tension of the liquid and p, is the vapour pressure
inside the liquid. A viscous term (see [3] §4.2.1(b)) may be added [28] to
equation 1.32 by consideration of the rates of strain within the bubble wall.

This yields the most commonly used form of the Rayleigh-Plesset equation

332 ; 1 99 R\ 2%  4nR
T+RR=—<<P0+—R“_PU) <§0> P = =~ bo PO

(1.33)
While assumptions similar to those made in the expression derived by

Commander & Prosperetti* no assumption of linearity has been made. How-

*{e. that the bubble remains spherical; is small in comparison to the wavelength of

the driving Geld; that it exists in an infinite medium: that it radiates into a free field and

that it is driven by a plane wave.



CHAPTER 1 18

ever the Ravleigh-Plesset equation does make the restrictive assumption of
liquid incompressibilitv. This precludes the inclusion of damping due to the
re-radiation of sound by the bubble into the medium. Also. while the treat-
ment of the gas as polvtropic simulates heat flow during the expansion and
contraction cvcle. it does not allow for any net loss of energy due to thermal
damping. Thus. two of the three main damping mechanisms in the syvstem
are neglected in the Ravleigh-Plesset equation. In order to address this short-
coming subsequent investigators [30.31] have attempted to derive an equation
of motion that treats the surrounding liquid as compressible. However, the
most commonly used equation (which assumes a time-invariant finite sound

speed in the liquid) is the Herring-Keller equation [32.33] given by

3R? R . R
——l1-—|4+RR|1-=]=
2 3Cw Cu
R\ 1 R R
1+ — —(pa—po—P<t+—>>+ S (1.34)
Cw w Coe PuCu dt

In equation 1.34 the final term allows the storage of energy in the medium
surrounding the bubble. In the limit ¢,. — oc equation 1.34 reduces to equa-
tion 1.33. Crucial to the evaluation of equation 1.34 is p,. the pressure in the
liquid surrounding the bubble. This is tvpically obtained from the behaviour
of the gas. and hence the internal pressure. p,. within the bubble. This can
be calculated by applving the perfect gas law to the spatially averaged pres-
sure within the bubble [34 36]. Such a solution is non-trivial and typically
requires numerical techniques for solution®. Equation 1.34 is used through-
ont this work (see especially chapter 3) to model the nonlinear behaviour of
bubbles.

SAATLABTM code for solving equation 1.34 was provided by Mr. H. A. Dumbrell of

the Defence Science and Technology Laboratory. This cocde enables the radius-time history
of a bubble to be determiined for an arbitrary pulse. The author gratefully acknowledges

use of this code.



CHAPTER 1 19

1.2.4 A discussion of linear damping constants

A number of different conventions for representing bubble damping are used
in different models. and. in some cases. different investigators use different
terms for the same model. As such. some clarification and discussion of the
different terms may be beneficial. Total damping is the expression used to
describe all the energy lost from the bubble by various different mechanisins.
There are three primary means by which energy is lost from the bubble:
viscous damping. where work is done against the viscosity of the surrounding
fluid: thermal damping. where thermal couduction across the bubble wall
takes place and radiation damping where energy is lost as the bubble radiates
acoustically. Other damping mechanisms may exist although these three are
usually considered to dominate.

Total damping (in the radius-force {rame [5] §3.2.1(a)) is expressed in
cquation 1.25 by the co-efficient %%, This equation can be made independent
of the frame of reference by dividing by the radiation mass of the bubble
expressed in that same frame of reference. This yields J,,. an equivalent

1

damping constant. with units of time™", that is independent of the frame of

reference:

it
310[ = Iy, rad (13‘3)
_JTLRF

By dividing the bubble’s frame-dependent radiation damping by its stiff-
ness, the damping of the bubble can represented as a dimensionless damping

constant

whiol 2.3y,
dtol = BE = ‘4)1 t (136)

krr «p

Expressions for these dimensionless damping constants are given by Eller
[37] as

3(~ — 1)(y2(sinh v + sin o) — 2(cosh p — cos )
w2 (cosh o — cos ) + 3(~ — 1)(sinh ¢ + sin )

dlh. = (137)
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Dimensionles damping constant
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107 107
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Figure 1.3: Dimensionless damping constants calculated using Eller’s [37]
expressions (equations 1.37 to 1.39) for a range of bubble radii driven at 20
kHz. As can be seen the total damping (solid) experienced by the bubble is
a sum of three damping mechanisms: thermal (dashed), viscous (dotted) and
radiation (dash-dot). Different mechanisms dominate in different parts of the

bubble size spectrum.

where ¢ represents the ratio of bubble radius to the thickness of the thermal
boundary layer in the bubble, Ry/ip = Ry/+/D,/2w, and D, is the thermal
diffusivity of the gas contained in the bubble.

Pw (ROW)B
drgg = o T .
¢ 3Kpy Cw (1.38)
4
dysy = 2 (1.39)
3o

where k is the polytropic index of the gas contained within the bubble, pq is
the hydrostatic pressure in the liquid outside the bubble and 7 is the shear
viscosity of that liquid. Figure 1.3 shows Eller’'s damping constants for a
range of bubble radii driven by a fixed frequency of 20 kHz. As can be seen
in the figure, different damping mechanisms dominate at different bubble
radii, and hence all three of these primary mechanisms should be evaluated

in order to ensure that the system is fully described. A final special case is d;,;
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which corresponds to the total dimensionless damping constant evaluated at
resonance. Incorporation of damping into nonlinear models is less straight-

forward and the interested reader is referred to Propseretti et al. [33].

1.3 Summary

This chapter has sought to introduce the reader to some of the theoretical
concepts. techniques and equations that will be used later in this work. As
such it has performed reviews of kev papers in the fields of inversion estima-
tion of bubble estimation and different methods of modelling the behaviour of
bubbles. The appreciation gained in this chapter lavs down the basis for the
development of a system for estimating bubble populations in the surf-zone.
The next chapter will discuss the development of a theoretical framework for

such a system.
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Theoretical development of an
inverse technique for estimating

bubble populations

The estimation of bubble population by inversion of acoustic propagation
has been the subject of stucdy and research for over thirty vears (see section
1.1). However the principles and techniques which must be applied in order
to obtain a meaningful answer are demanding. aud there is a danger of not
fully considering all the implications of the different assumptions that must
be made. This chapter aims to develop a theoretical framework upon which
to base a system for estimating bubble populations. [nitiallv this will use
the current state-of-the-art methods but will scek to explore and expand the
regions where benefit might be found [rom a more rigorous approach. The
eventual ain is a system suitable for measuring oceanic bubble populations.
especially those within the surf-zone. The system will be rigorously designed
taking into account all the assumptions and considerations necessary for an
accurate assessment of the bubble population. While the theory and tech-
niques are developed with oceanic populations in mind. the principles could
easily be translated into equivalent ficlds providing that the same rigour is

applied to the consideration of any assumptions made.

[S]
8]
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2.1 The forward problem

Solving the forward problem (i.e. predicting the propagation characteristics
of a acoustic wave traveling in a known bubble population) is considerably
more straight-forward than the inverse problem. and hence will be studied
first. The ability to solve the forward problem will be vital in many elements
of the system design and will also provide a useful method of checking the
accuracy of any results obtained (the population predicted by the inversion
should. providing the estimate is accurate. allow reconstruction of the original
measured propagation characteristics).

The general form of the problem to be solved is

/ system(A. Q) X input dQ = output (2.1)
0

The forward problem predicts the output of a system using a mathemat-
ical description of it combined with a known input. The inverse problem
focuses on determination of either the input or the svstem given the output.
The ability to estimate the system function is one which can be overlooked
and there may be applications in the study of bubbles where this would be
a useful technique. An example of this might be the validation of bubble
models, but this is outsice the scope of this study and will not be considered
further.

When applying ecuation 2.1 to the problem under eonsideration. the sys-
tem is some model of bubble response. the input represents the bubble pop-
ulation being measured. and the output is the propagation characteristics.
The crux of the technique is to relate bubble population to a physically mea-
surable parameter. The mathematical model used to formulate the svstem is
important to the accurate solution of either the forwarcd ov the inverse prob-
lemms. It the model is inaccurate. or if any of its inherent assumptions are
compromised, then the reliability of any results will be questionable. Hence
an mmportant aspect of any solution to either the forward or the inverse

problem is accurate modelling.
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For the initial stage of this study the model used will assume linear,
steady-state oscillation of a bubble in a free ficld. being driven by a plane
wave. The validity of these assumptions will be examined later in the chapter.
Review of the open source literature [18 20.38 43.72] has shown that this
‘class” of model is used in all the current state-of-the-art bubble estimation
svstenis that employ inversion of acoustic propagation. The two models that
will be considered here concern the complex sound speed in the bubbly liquid

and the bubble’s extinction cross section (sce section 1.1.1).

2.1.1 The linear complex sound speed

The most commonly cited linear formulation of the complex wavenumber is

that given by Commander & Prosperetti [22] (see section 1.2.2).

k.= u}‘; -~ ’Trwz/ . ROOHV(R.O)/ dR, (2.2)
c? 0 Wi —w T i230w

The ratio of the speed of sound in pure water. ¢,. to that in the bubbly

water. ¢, is therefore given by

Cw _ 144@3/ 5 on(fo) dR, (2.3)
C Jo Wi

c - w'Z + j?atotw

Commander & Prosperetti present an alternative set of expressions for the
frame-independent damping constant derived from the work of Prosperetti

et al. [33)].

, 2n Yo Ry
. = 3. . 4 — + 'C\( 2‘/
dtot jus + dth jrad /’uRé 2/)wWR[)Z ‘5( D) + 2(:,1. ( 4)
where &(P) represents the imaginary component of ®, given by
3";
i) (2.3)

= 1= 30— Ui G0 (/0T coth (/)07 — 1)
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(a)
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Imaginary part of sound speed ratio
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Figure 2.1: Real and imaginary parts of the complex ratio of sound speeds
(equation 2.3) plotted as a function of bubble radius at four different frequen-
cies. In both cases the frequency curves are (from left to right) 200, 100, 50 &
25 kHz (a) Real part of sound speed ratio minus one (R (%f) — 1) (to enable
logarithmic plotting the negative portion of this graph is shown dashed). This
quantity is related to the phase speed variation in the medium (see equations
2.10 and 2.12). (b) Imaginary part (& (%’f)) This quantity is related to the

attenuation in the medium (equation 2.13).

where

D,
S 2.6
ng (2.:6)

Figure 2.1 shows plots of the real and imaginary parts of the complex

X

ratio of sound speeds (equation 2.3) for a range of bubble radii (assuming a
uniform distribution) insonified at four different frequencies. As can be seen
the real part, which is related to the phase speed in the medium (as described
by equations equations 2.10 and 2.12), goes from negative to positive at the
bubble resonance. The imaginary part, which is related to the attenuation

(equation 2.13), goes through a peak at resonance and then increases in
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value as geometrical scattering becomes dominant (provided ARy < 1). If
it is assumed that n([Ry) is sufficiently small that the fractional term in
equation 2.3 is less than one (a valid assumption at low void fractions. for
further discussion see section 2.3.2) the square root can be expanded using a

binomial expansion:

ele—1) , ele—1)(e—2) 4 i
TC +—3—!L +... for || <1 (

o
=1

(1+0)°=1+eC+ )

This yields the following expression

w 2

x
Cu Ron(Ry)
=142 / 5 T, — Al (2.8)
0 Lu'o — Ww" _1_123[0{\4/'

In order to simplify the expression. equation 2.8 can be re-expressed as
the deviation of the complex sound speed from ambient sound speed in the

licuid

, * R
U zrcfu/ _ ‘T(R,") dR, (2.9)
0 ]

wi —w? + 25w

Equation 2.9 linearly relates the variation in complex sound speed in the
bubbly medium to the number of bubbles in that medium. If equation 2.9 is
split into real and imaginary parts it can be shown that thev correspond to
the phase speed and attenuation respectively. This can be shown as follows:
ﬁ—1:u—ju (2.10)

Ce

It is assumed that a plane wave is traveling through the medium in a positive

direction, with time, ¢ and distance, x. This can be expressed as

exp (it — ko)) = exp (—”“—x) exp (.w (t - —)) 211)



CHAPTER 2

O]
-1

From this it can be seen that the phase speed ¢,y of the sound wave is given
bv

Cy
Cph = —
P u

—~
[§]
—
1§

~—

and that the attenuation coefficient. A (in dB/m) is given by

A =20 <W—l> logo(e) (2.13)

Co

Equations 2.12 and 2.13 show the relation between the complex sound
speed in the bubbly medium and physical parameters that are more easily
measured. Since the complex sound speed is dependent upon the bubble size
distribution, then measurement of such parameters may form the basis of an

inverse technique for estimation of the bubble size distribution.

2.1.2 The linear extinction cross section

An alternative model that could be used to relate bubble numbers to a mea-
surable acoustic property is the extinction cross section. This was used in
the pioneering works of Medwin (section 1.1.1) and Commander & McDon-
ald (section 1.1.3). Leighton [5] (equation 1.27) shows that the extinction
cross section of bubble when driven into small amplitude lincar pulsations

by a plane wave is given by

dtot O,;Cag _ dmt 477[{5
b drzld ((;“)0/“")2 - 1)2 - ((Zl‘otwé/“"g)g

where Q.. is the scattering cross section of the bubble {the ratio of the sound

ert __
Qb

drad

(2.14)

re-radiatecd by the bubble to the incident intensity) and d,, and d,.q are the
bubble’s total and radiation dimensionless damping constants respectively.
Calculation of the appropriate damping terms in equation 2.14 vields the
linear extinction cross section of a bubble. Figure 2.2 shows the calculated
extinction cross section for a range of bubble racii driven at 25. 50 100 and
200 kHz. The extinction cross section is related to attenuation as discussed

in sections 1.1.1 and 1.1.2. A plot of the extinction cross-section (figure
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Extinction cross section (mz)
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Figure 2.2: The linear extinction cross section calculated using equation 2.14
for a range of bubble radii driven at 25. 50. 100 & 200 kllz from left to right

on the graph.

2.2) at a number of fixed frequencies as a function of bubble radius shows
qualitative similarities to the imaginary part of the extinction cross-section
(figure 2.1(b)), for example the position of the peaks.

These two sections have shown three different methods of obtaining the
attenuation of a plane wave propagating in a bubbly medium: (1) deter-
mination of the ratio of sound speeds in the medium (equation 2.3): (2) the
binomial approximation to the ratio of sound speeds in the medium (equation
2.9); and (3) determination of the bubble extinction cross section (equation
2.14). The following sections will solve the forward problem using each of
these methods. first using synthetic data and then for real oceanic data as

collected by previous investigators.
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2.1.3 Numerical evaluation of integral equations

The numerical evaluation of equations 2.3. 2.9 and 2.14 requires that the
bubble population is expressed as a discrete series of radius "bins’. i.e. the
number of bubbles per unit volume between radius Ry and Ry ~ dRy. This
leads to the following matrix formulation (bold svmbols denote matrix or

vector quiantities)

a=Kn (2.13)

where . a column vector, represents the acoustic propagation characteristics
(either the complex ratio of sound speeds or extinction cross section, as ap-
propriate); K. a matrix. represents the response of the bubbles as described
by cither equation 2.3, 2.9 or 2.14; and n is a column vector representing
the number of bubbles per cubic metre within each radius bin. In matrix

notation equation 2.15 can be expressed as

awr) K(wi. Ro,) K(w1. Ro,) ... K(wy, Ro,) n(Ro,)
Lk(w‘g) 1\'(;@,}?01) [((LA)Q.ROQ) . [,(LAJQ.ROH) 71(302)
a(w';;) = A’(LA)-&. Rol) K(w;;. Ro._,) - [\’(w‘;g, R(),,) TL(ROJ)
alwe) K(we. Ro,) Klwe. Ro,) ... K(we. Ro,,) n(Ro,)
(2.16)

While &G does not necessarily equal H. it is normal for the selected fre-
quencies to correspond to the resonant radii of each bubble radius bin hence
K is typically square. The individual elements of the matrix in equation 2.16
represent the summation of the affect on the propagation of all the bubble
radii within a particular radius bin. The value of each element depends upon
the model used. If the full complex sound speed (equation 2.3) is used the

matrix values are given by

&ﬁ:/ % BydR, (2.17)
0

C
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(where By represents a linear B-spline see section 1.1.3) and the a values are
given by
Cu | .Cu A
Q= — (2.18)
’ * 20log;o(e
Cph « 20logyo(e)
If the binomially expanded complex sound speed (equation 2.9) is used

the a values are given by cquation 2.18 and the matrix values are given by

["g‘h = /“ Cu Brd Ry (219)
0

Coin
where ¢, represents the binomial expansion of the complex sound speed.

The matrix values when using the extinction cross section (equation 2.14)

are
Kgp = / QCH BLd Ry (2.20)
Jo
and the o values are
A
= 2.21
Y9 10logge ( )

In equations 2.17, 2.19 and 2.20 B represents the A" linear B spline.
This basis function is defined as zero outside the region of the radius bin and
lincarly interpolates the function within it. Figure 2.3 shows a visualization of
this matrix calculated using the complex ratio of sound speeds. It is plotted
for a range of bubble radii from 1 pum to 1 mm and, for clarity, on both linear
and logarithmic scales. Since the real part of the A atrix is negative above
the bubble’s resonance. the logarithmic plot of the real part is the absolute
value. A similar visualization of a matrix of extinction cross-sections would,
obviously. contain no imaginary part.

The interpretation of the elements contributing to this matrix is as fol-

lows:

e Elements lying along the leading diagonal correspond to the scattering

caused by bubbles being driven at their resonance frequency;
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Figure 2.3: Elements of KX Matrix plotted for bubble radii ranging from 1
um to 1 mm. (a) Real part of K matrix (linear scale) (b) Absolute value of
real part of K matrix (log scale) (c) Imaginary part of K matrix (linear scale)

(d) Imaginary part of K matrix (log scale).

o Elements in the lower left portion of the matrix correspond to small

bubbles when driven at low frequencies;

e Elements in the upper right portion of the matrix correspond to large

bubbles when driven at high frequencies.

Once this matrix is calculated it is a simple process to calculate the prop-
agation characteristics for a given bubble population. The next two sections
will solve the forward problem for both artificial and measured bubble pop-

ulations.
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Figure 2.4: Synthetic bubble populations (a) Uniform (b) Gaussian (c¢) Ex-

ponential (d) Power Law.

2.1.4 Solution of forward problem: Synthetic data

In order to demonstrate the methods described in the previous section, the
forward problem will be solved for four synthetic bubble populations. The
attenuation will be calculated using the complex ratio of sound speeds, its
binomial expansion and the extinction cross section while the phase speed
will only be calculated using the complex ratio of sound speed and the bino-
mial expansion. The synthetic populations were taken from Commander &
McDonald [18] and the results compared to those shown in the paper. The
trial populations used are shown in figure 2.4. The attenuations and phase
speeds calculated using the different methods are shown in figures 2.5 and
2.6 respectively.

The results from all three methods match exactly those presented by
Commander and McDonald. This gives confidence for the prediction of the
likely propagation characteristics of oceanic bubble populations based upon

previous data, which is the subject of the next section.
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Figure 2.7: Oceanic bubble population obtained using the combination fre-
quency technique [45] in open water. The extrapolated curve has a gradient

of R~3 and the calculated void fraction is 1.7 x 1078.

2.1.5 Solution of forward problem: Oceanic data

Knowledge of the likely propagation characteristics in realistic oceanic environ-
ments is vital for rigorous development of a technique for measuring oceanic
bubble populations. A number of previous investigators [6,20,43-46] have
made measurements of oceanic bubble populations, primarily in open ocean.
A representative open ocean bubble population is that taken by Phelps
& Leighton [45]. It was obtained using a combination frequency technique
at 10 bubble radii equally space between 16 pm and 192 pm in water depths
ranging from 17 to 22 m and wind speed gusting up to 16 ms™!. Figure 2.7
shows the measured population and an extrapolation of the data to larger
bubble sizes for the estimation of void fraction. The extrapolation is taken
up to 1 mm. Bubbles above this radius will be very few in number due to
their large buoyancy and can be expected to make minimal contribution to
the total void fraction. The void fraction of a population described by H

radius bins is calculated by
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H
Vi = gﬁRéhnh (

h=1

o
o
o
R

Using the population measured by Phelps & Leighton as an input into the
forward problem. an estimate can be made of the likely agreement between
the three different models developed above at oceanic void fractions. Figure
2.8(a) shows the phase speed predicted by two techniques (the complex sound
speed and the binomial expansion) and figure 2.8(b) shows the attennation
predicted by all three of the techniques. As can be seen from the figure the
two curves based upon the ratio of complex sound speeds overlay each other
and disagree slightly at high frequency with the extinction cross section. The
maximum extent of the disagreement occurs at 150 ktlz and is 0.72 m/s in
the phase speed and 0.21 dB in the attenuation. This could be explained
by differences in the two damping models used. However at a tvpical open
ocean vold fraction, the complex sound speed and the binomial expansion
agree well.

The open water bubble population gives rise to an attenuation as high
as 30 dB/m. The high attenuation experienced in bubbly liquids can make
measurement of acoustic propagation demanding. especially in the surf-zone
where void fractions are expected to be higher than those encountered in
open ocean. Only two of these investigations mentioned above [6.44] have
mace measurements directly in the surf-zone and only one [6] made measure-
ments at bubble radii < 100pum. However this measurement was at a small
number of bubble radii and was taken during stormy conditions directly un-
der breaking waves. Figure 2.9 shows the estimated population. Again, the
void fraction has been estimated bv extrapolating the data. However in this
case only four data points exist which cover a limited radius range (35 pum
to 150 pm). Therefore the validity of the extrapolated curve is questionable
but does give an indication of the order of magnitude to be expected.

Figure 2.10 shows the phase speed and attenuation predicted by the for-
ward models for that population. It should be emphasized that figure 2.10

has been calculated using a linear model, and many of the assumptions in-



CHAPTER 2 36

(a) (b)
1500 - r - 30 :
149071 w ﬂ
L 25+
1480 1
< 147071 1 <201
2 E
= 1460+ 8
é §15] ]
o 14507 1 s
n c
g 2
o 1440f : < 10r
143071
5 -
1420r
1410 ‘ : : 0 ' : :
0 50 100 150 200 0 50 100 150 200
Frequency (kHz) Frequency (kHz)

Figure 2.8: Acoustic propagation characteristics in a typical open water
oceanic bubble population (a) phase speed calculated using two different tech-
niques: the ratio of complex sound speeds (solid) and the binomial expansion
(dashed) (b) attenuation calculated using three different technicques: the ra-
tio of complex sound speeds (solid). the binomial expansion (dashed) and the
extinction cross section (dotted). The maximum disagreenient in attenuation

between the three models is 0.21 dB/m.
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Figure 2.9: Surf-zone bubble population obtained using the combination

frequency technique [6] in stormy conditions directly under breaking waves.

Notice the different y-scale from figure 2.7. The population is extrapolated

with a gradient of R™! at the small radii and R~

15 at the large radii. The

calculated void fraction is 0.0241 but is based upon an extrapolation from a

very limited data set.
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Figure 2.10: Acoustic propagation characteristics in a stormy surf-zone bub-
ble population directly under a breaking wave (a) phase speed calculated using
two different techniques: the ratio of complex sound speeds (solid) and the bi-
nomial expansion (dashed) (b) attenuation calculated using three different
techniques: the ratio of complex sound speeds (solid). the binomial expansion
(dashed) and the extinction cross section (dotted). The dashed and dotted
curves almost overlay one another. Ouwing to the small number of radiv at
which the measurement was made, predictions only exist at four frequencies.
The line connecting these points is for clarity only and does not imply mea-
surements at intermediate frequencies. These results are for indication only

and are likely to be in error due to the assumptions made in the model.
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herent in that model may be invalid for this dense population. The results
are likely to be in error but are shown in order to indicate the magnitude of
effects that could be experienced in extreme surf-zone conditions. The level
of agreement between the models is surprising. especially in the predictions of
attenuation. The extinction cross-section and the binomial expansion agree
particularly well with a maximum difference of 2.6 dB (less than one percent
of the total). The discrepancy between those two and the full ratio of sound
speeds s greater with a maximum difference of 25 dB (approximately 8 per-
cent). When considering the phase speed the discrepancy ranges between 1.8
and 70 m/s.

As can be seen in figure 2.10 the attenuation experienced in the surf-
zone could be expected to be in excess of 100 dB/m. This illustrates the
difficulty of making measurements in this extremely challenging environment,
especially, as will be seen later, as the receiver should be positioned in the
far field of the source. When considering that a receiver may have to be
O(1m) away from the source to satisty the far-field condition, it can be
seen that surf-zone measurements are very challenging indeed. However, the
population modelled represents very extreme conditions. and it may be that
in more moderate conditions, not directly underneath the bhreaking waves

surf-zone. measurements may become practical.

2.1.6 Summary of forward solution

The first section of this chapter has developed a method of predicting the
acoustic propagation characteristics in a known cloud. The supporting theory
was outlined using three different expressions. The complex ratio of sound
speeds and its binomial expansion were used to determine phase speed and
attenuation while the extinction cross section was used to determine atten-
uation only. The three models were shown to agree within the range of ex-
pected oceanic bubble populations with small discrepancies entering at very
high void fractions in the surf-zone. A range of svnthetic populations were

tested and compared to the results of other investigators. Finally the propa-
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gation characteristics were calculated based on measured oceanic data both
in open ocean and in the surf-zone. The surf-zone population indicated very
high attenuation. but the measurements were taken in very stormy conditions
directly under breaking waves. This served to illustrate the challenges that
will be encountered in making surf-zone bubble population measurements.
While this section has laid down a formulation of the problem. relating bub-
ble number to acoustic propagation characteristics. the inverse solution is

more problematic and is the subject of the next section in this chapter.

2.2 The inverse problem

Initial consideration of the inverse problem based upon a knowledge of the
forward problem would indicate a relatively straightforward process. In order
to estimate the bubble population the vector of propagation characteristics,

a 1s multiplied by the inverse of the matrix of bubble responses

n=K'a (2.23)

However, owing to the fact that geometrical scattering causes K to have
significant off-diagonal elements (as discussed in sections 1.1.2 and 2.1} the
matrix becomes poorlv conditioned and is therefore the solution becomes
very sensitive to noise. Take. for example, the open ocean population for
which the forward problem was solved in section 2.1.5 (figure 2.7). Using
standard Gaussian elimination as the method for inverting the matrix K
produces an accurate answer when no noise is added. However. when Gaus-
sian noise of just one thousandth of one percent on the mean value is added
the solution becomes wildly unstable and meaningless. Figure 2.11 shows the
two solutions. Since real measurements will suffer from much greater levels
of noise. this method of inversion is of little or no use for experimental work.
Therefore a more robust method of inverting * K™ must be developed and this

is the topic of the next section.
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Figure 2.11: Inverted solution (using Gaussian elimination) for acoustic
propagation characteristics shown in figure 2.8 with and without Gaussian

noise added (a) No noise added (b) 0.001% Gaussian noise added.

2.2.1 Regularisation techniques

The material in this subsection was developed with assistance from Prof. P.

A. Nelson and his input is acknowledged.

A widely used technique for inverting ill-conditioned matrices, such as
the ‘K’ matrix, is Tikhonov regularisation [47]. This technique relies upon
adding a matrix (usually the identity matrix), scaled by £, a regularisation
parameter, to the matrix to be inverted. This has the effect of stabilizing the
inverse of the matrix. Where possible the techniques will be discussed based
on both real and complex values in order that inverse solutions are possible
for all the models discussed in section 2.1.

If & represents the modelled input values to the system and o the mea-
sured input values then modelling the measured signal as the modelled signal

plus a noise vector gives
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& = Kn
The solution to find an optimal value of n varies depending on whether
real values (such as attenuation or phase speed) or complex values (both

attenuation and phase speed) are used in the vector & and the matrix K.

In both cases, m, the vector of bubble numbers. is, of course. real.

(a) Real values

The function to be minimized is given bv equation 2.25 and represents a
compromise between the sum of the squared errors and a weighted sum of

the squared solutions.

U=ele+n'n (2.25)

The superscript T denotes the transpose of the vector/matrix. Since

e=a—-Kn (2.26)

U = (a-Kn) (a—Kn)+3n'n
= ala-n"TK'a-a"Kn+n'K"Kn + 3n'n

= nT(KTK+3I)n—- (n"K'a+a"Kn)+aTa  (227)

Since n? KTa and a” K'n are both scalars equation 2.27 can be rewritten

U=nT(KTK +3I)n —2a"Kn + a"« (2.28)

In order to find the optimal solution. it is necessary to find the minimum
of W. This is done by differentiating and setting the result equal to zero.
The differentiation is performed by exploiting two standard identities given

in equations 2.29 and 2.30.
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T
0“’0:“’ = (A~ ANz (2.29)
ATz
= A (2.30)

These identities allow calculation of the derivative.

ov

o = (K'TK + 3I) + (K"K + 3I)")n - 2K«
n

= (K"K + 3I)n - K'a) (2.31)

Setting % = 0 and rearranging for n gives
Nopt = (KTK + 3I) {(K ) (2.32)

(b) Complex values

The function to be minimized in the complex case is similar to equation

2.25 and is given by equation 2.33 where the superscript H represents the

hermatian of the vector/matrix i.e. its transposed conjugate (X*)7.

U =el’e+Bn'n (2.33)

Similar simple algebra to that outlined above yields the following result.

Nept = (K"K + KTK™ +23I) (K" ) + (K" a)) (2.34)

Since KK and KT K™ are complex conjugates. equation 2.34 could be

re-written in a form analogous to equation 2.32.

nopt:%{(KHK+3I)_1(KHa)} (2.33)

In both the real and complex cases the success of the inversion is deter-

mined by the value of 3. When f is large, the matrix being inverted will



CHAPTER 2 44

tend towards a scaled vector. K a. and where 3 is small the instabilities
caused by the ill-conditioned matrix will cause large errors in the solution.
The key to successful inversion using this technique is choosing the correct
value of 3. There are many different methods of achieving this which will be

discussed in the next sub-section.

2.2.2 Determination of the regularisation parameter

Previous investigators have perforined the inversion of the ill-conditioned
matrix K by imposing physical constraints upon the solution [18.19] (for
example upon the smoothness of the solution). owever such methods merely
rencler the solution stable rather than svstematically determining the amount
of regularisation to add.

A commonly used systematic method of determining the optimal amount
of regularisation to add to ill-conditioned matrices is the L-curve method. first
developed by Hansen [48,49]. It plots the Euclidian norm of the regularised
solution ||Lnlj, (where L is the additional matrix used for regularisation,
in this case the identity matrix) against the corresponding residual norm
|Kn — |y (which can also be written e[|, for a given value of 3). This,
when plotted on a logarithmiec scale. forms a well characterized "L™ shaped
curve. the corner of which represents a compromise solution between an over
and an under regularised solution.

Figure 2.12 shows the curve plotted when attempting to invert propaga-
tion characteristics calculated using the forward technique (section 2.1) with
1% noise added to the phase speed and attenuation. The population used
was the open ocean population measured by Phelps & Leighton [45] (section
2.1.5). As can be seen when J is small the value of [|n]|; is large and [|e]l, is
small. indicating a good agreement between measured and modelled values
of o but an unstable solution (see figure 2.11(b)) of n. When J is large ||n||2
is small and ||e]|, is large, indicating a more stable value of n but a larger
error between measured and modelled values of a.

Numerically the corner of the "L’ corresponds to the maximum curvature
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Figure 2.12: A typical L-curve used during inversion to determine the op-
timal value of 3. Curve calculated with 1% noise added to the inputs. The

optimal solution lies at the corner of the ‘L’

of the curve given by

|2l
Cly) = (1 + 2/ 2)3/2 (2.36)
where z, = ||nlj; and y = ||e||]> and the primes refer to first and second

derivatives with respect to y.

2.2.3 Solution of inverse problem: Synthetic data

This section will aim to recoustruct four synthetic bubble populations: uni-
form. Gaussian. exponential and power law using the L-curve technique for
determining the matrix regularisation parameter. The acoustic propagation
characteristics! calculated using equation 2.9 (figures 2.5 and 2.6) were used
as an input to the inverse problem in an attempt to recover the original

populations (figure 2.4).

At this stage both phase speed and attenuation are used.
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Figure 2.13 shows the populations estimated via inversion for each of the
different bubble populations with 0.001% Gaussian noise added to the input.
This quantity of noise rendered the solution unstable when using standard
Gaussian eliniination to invert the matrix. As can be seen. the technique has
generally been successful at reconstructing the populations but at very low
nunibers of large bubbles begins to diverge from the original population.

Figure 2.14 shows the population estimated with a greater amount of noise
added (1%). As can be seen significant inaccuracies are beginning to occur at
different parts of the radius spectrum. For example the uniform distribution
significantly under-estimates the population below 100 ymi. This is due to the
scattering by large off-resonant bubbles. [However. while these estimation of
these synthetic populations is a useful exercise in testing and understanding
the performance of the regularisation algorithm they bear little resemblance
to real oceanic populations. A more valid test would use historical oceanic

data. This will be the subject of the next section.

2.2.4 Solution of inverse problem: Oceanic data

This section will estimate the population from the propagation characteristics
solved using the forward problem in section 2.1.5 with Gaussian noise added
to the characteristics to simulate the effect of measurement noise. Figures 2.7
and 2.8 show the populations and their predicted propagation characteristics.
The L-curve technique will be used to regularise the solution. Figure 2.15
shows both the original input population and the result estimated when
0.001% measurement noise is added. This small value of noise rendered
the inversion unstable using standard Gaussian Elimination owing to the
ill-conditioning [47] of the matrix being inverted. As can been seen the
regularised solution is now in good agreement with the original population.

Figure 2.16 shows the estimation based upon the same oceanic population
but this time adding 1% Gaussian noise to the input. While the solution is

accurate for the small bubble radii. where the number of bubbles is large, it

is less accurate for the large radii where the bubble numbers are smaller.
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Figure 2.13: Synthetic bubble populations estimated from propagation char-
acteristics predicted using forward problem with 0.001% Gaussian noise added.
The continuous line represents the input population and the crosses (4) the
estimated population. (a) Uniformn distribution (b) Gaussian distribution (c)
Expouential distribution (d) Power law distribution. The inversion was per-
formed using the L-curve method and was based upon a complex kernel (equa-

tion 2.9). The bin size used was 1 pni.
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Figure 2.14: Inverted data for the four synthetic bubble populations with
1% Gaussian noise added to the input propagation characteristics. The con-
tinuous line represents the input population and the crosses (+) the estimated

population.
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Figure 2.15: Population estimated via L-curve technique with 0.001% noise.
The continuous line represents the input population and the crosses (+) the
estimated population. N.B. With no regularisation the addition of noise ren-

dered the solution unstable (see figure 2.11).
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Figure 2.16: Population estimated via L-curve technique with 1% noise.
The continuous line represents the input population and the crosses (+) the

estimated population.

The error in the inverted solution may be minimized by increasing the
bin size used to evaluate the bubble population. Practically speaking, it is
likely that be bubble population will be measured using a coarse bin size and
the results scaled to be quoted per um. Figure 2.17 shows the estimation
performed using 2, 3, 5 and 10 um radius bins. The amount of Gaussian
noise added is kept constant at 1% throughout.

As can be seen in figure 2.17, increasing the size of the radius bins im-
proves the accuracy of the estimate. This is because the condition num-
ber [47] (which is the ratio of the largest to the smallest singular value of
the matrix being inverted) becomes smaller as the radius bins become larger.
A matrix with a low condition number is less prone to instabilities than
one with a high condition number [49]. Table 2.1 shows how matrix size
and condition number varies as a function of radius bin size for the oceanic
population under consideration.

However, increasing the size of the radius bins has the affect of ‘smearing’
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Figure 2.17: The effect of radius bin size upon inverse estimation (a) 2 pym
bin (b) 3 pm bin (¢) 5 um bin (d) 10 pm bin. The amount of noise is kept

constant at 1%.

Bin Size (pm) | Matrix Size | Condition Number
1 177 x 177 3.1 x 10%°
2 89 x 89 3.2 x 107
3 59 x 59 7.4 x 104
5 36 x 36 1.3 x 10*
10 18 x 18 5.5 x 10°

Table 2.1: Matrix size and condition number as a function of bin radius.
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the distribution because the magnitude of the bin represents the integral of
all the bubble radii falling within the boundary of the bin. It should be
noted in figure 2.17 that the largest bin size. (d). obscures the peak in the
distribution. therefore it is desirable to keep the size of the radius bins low

in order to adequatelyv resolve the characteristics of the population.

2.2.5 Summary of inverse solution

A demonstration was made of the inherent problems encountered when at-
tempting to make an estimate of bubble populations using inverse meth-
ods. A technique was then outlined to overcome such difficulties which made
use of a least squares fit solution via Tikhonov regularisation. This solu-
tion was then implemented on a variety ol svunthetie populations and real
oceanographic measurements. This showed that. while accurate estimates
can be made with low noise levels, the inaccuracy becomes intolerable for
large amounts of noise. It was then shown how reducing the number of radii
under consideration helps de-sensitize the solution to noise. However reduc-
ing the number of radii was shown to “smear’ the estimated population, and
hence it is beneficial to make measurements with as little noise as possi-
ble. All the inverse results presented in this chapter have been based upon
complex kernels. However exactly the same techniques apply to real kernels
(whether based on complex sound speed or extinction cross section).

The discussion up until this point has mainly focused upon the formu-
lation of the problem and methods of solution without consideration of the
inherent acoustics. It is important that these considerations are made and
their implications appreciated when making any estimates as contravening
the assumptions will effect the validity of the estimate. This discussion will

form the subject of the next section.
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2.3 Consideration of inherent assumptions

In order to assess the validity of anv given estimate of bubble population. it
1s necessary to appreciate the theoretical assumptions that have been made
in obtaining that estimate. The two mocdels used in section 2.1 (the ratio of
complex sound speeds and the extinction cross section) are widely emploved
in existing techniques and make similar assumptions about the response of
the bubble and the field driving it. The validity of these assumptions must
be assessed when considering the reliabilitv of a given estimate of bubble

population obtained using them. The kev assumptions are
1. that the acoustic propagation in the bubbly medium is planar:

2. that the bubble oscillates in a free held;

3. that the bubble oscillations are monochromatic (i.e. single frequency

which implies linearity).

The following sections will address each of these assumptions in turn
specifically considering the case of high amplitude propagation in the surf-
zone. This is one of the most challenging of oceanographic environments and

also one for which there is the least amount of measured data.

2.3.1 Plane wave propagation

There are two different cases that must be considered when assessing the
planarity of a wave: the direct radiation from the source and the arrival of
indirect radiation. The former of these two cases refers to the geometry of
the field radiated on a direct path from the source. The latter case refers to
waves which have traveled an indirect path most commonly by reflection from
ocean surface or the ocean floor. The two cases are considered separately.
First consider the direct case: given that the source is radiating into a
free field

tion is experienced? Any sound source may be modelled as a collection of

what conditions must be met in order that plane wave propaga-

)
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Figure 2.18: A distributed line array of point sources. When .r becomes
large the path difference is negligible and hence the phase difference between
the radiated waveforms is close to zero. When r, is small the phase ditference

1s significant.

point sources, which are considered to radiate spherical acoustic waveform
independently of one another. The resultant wavelorm can be calculated by
the summation of the radiated pressures. Consider a line array, length a. of
such point sources all radiating in phase with one another where a; and a,
represent the point sources at each end of the line array (see figure 2.18).

If z, is the perpendicular distance from the source. it can be seen that as
7, tends to infinity the difference between the path lengths from a, and a,
compared to the wavelength of the sound being racdiated becomes negligible.
This tmplies that the phase difference of the waveforms radiated from a, and
as at point z, is also negligible. From this it can be inferred that plane wave
propagation is occurring. This region is referred to as the far-field of the
transducer.

[f r, is small. and hence the path differences are significant compared
to the wavelength, the phase relationship becomes nnportant and the sum-
mation of the waveforms from each point source must include their phase
relationship. This can lead to complicated spatial pressure patterns being
formed. This region of the pressure field emitted by a transducer is referred
to as the near-field of the transducer.

In order to determine the value of z, for which far-field effects become
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dominant, it is necessaryv to consider the relationship between the length of
the arrav of point sources, a. and the wavelength of the acoustic ficld being
radiated. A. Using standard trigonometry it can be seen from figure 2.18
that the path difference. d. between the radiated waveforms from a; and a;
is
9
d=asinf~atanf = — (2.37)

Ip

(small angle approzimation)

From this it can be seen that when «, > ?/\ the the path difference
will be less than a wavelength which acts as a first approximation for the
boundary of the near-field. Any measurements that are made assuming a
plane wave should therefore be made at a distance greater than a?/\.

The second of the two cases mentioned above refers to sound radiation
from the source arriving at the measurement point by an indirect route, most
commonly by reflection from the ocean floor/surface. The problem of multi-
path reflections can be overcome by windowing the received waveform in
such a way that data received after the time of arrival of the first reflection
is ignored. This effectively puts a limit on the duration of the acoustic pulse
that can be used to insonify the bubble cloud. Simple geometry shows that
the difference in arrival times of the direct and indirect pulse. £,. for a source
and receiver separated by distance r. with a perpendicular distance of x, to

the nearest reflecting surface is

(2.38)

where the sound speed in the medium is assumed to be the sound speed in
pure water, ¢, {in bubbly mixtures this may vary slightlv). For example, in
water two metres deep with a source positioned at a depth of one metre and
a distance between that source and a receiver of two metres (to account for

being in the far field) ¢, would be ~560 ps.
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Figure 2.19: Beam pattern for a directional transducer at 200 kHz. The main
beam width for this transducer is approximately 8 degrees and side lobes are

30-35 dB less than the main lobe. Acknowledgement: H. A. Dumbrell, Dstl
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An alternative would be to emplov a directional transducer with a fo-
cused beam-pattern in order that the reflections were minimized. Figure
2.19 shows a beam-pattern for a directional transducer taken at 200 kHz
as an illustration. Use of such a transducer would not impose a restriction
on the pulse duration of the driving signal providing it could be assumed
that the transducer radiated negligible sound power outside the angle 0 of
its main beam and that the main beam was sufficiently narrow that reflected
paths did not intersect with the receiver. Iowever for a physically realisable
transducer it is inevitable that there will be some radiation of sound from
outside the transducer’s main beam and the level of this side-radiation should
be assessed. Also this assumes that the radiated acoustic waveformns travel
upon straight paths. In a medium where the sound speed varies with depth,
as will be the case in near surface bubble clouds. refraction of these paths
will take place [50]. However due to the proximity of the source and receiver

such refraction is unlikely to be significant.

2.3.2 Free field conditions

The assumption that the bubble oscillates in a free field is currently the topic
of considerable discussion [53 59] in the ficld of bubble acoustics. When radi-
ating into non-free field conditions many of the characteristics of the bubble
will change, for example its resonant frequency [51] or damping constants [52].
Typically this assumption can be contravened either by proximity to a surface
or by interaction with neighbouring bubbles. I oceanic conditions bubbles
are likely to be multiple wavelengths away from any adjacent surfaces. be
they the sea bed or the sca surface. and are much more likely to be affected
by interaction with neighbouring bubbles. This is particularly likely to be
true in surf-zone environments where high void fractions can be expected.
Even in very simple coufigurations. fullv describing the interactions be-
tween bubbles is a difficult problem [60.61]. In the highly complicated. real
conditions that oceanic inverse measurements are likely to be taken under

(where the bubbles are moving relative to each other in unknown geometries
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at unknown rates) incorporating the precise effect of interactions in the in-
verse solution is likelv to be an intractable problem. As such this section
will review the existing literature and attempt identify a means by which the
magnitude of the effect could be estimated rather than attempt to account
for such interactions in the inversion itself.

[nitial review of the available literature reveals that while considerable ef-
fort has been expended in understanding the magnitude of the forces between
the bubbles. for example [39.60]. less work exists on quantifving the affect of
these interactions on acoustic propagation. Most investigators overcome the
problems associated with the precise geometry of the bubble cloud by consid-
ering average quantities and their influence upon the effective wavenumber
in the medium.

The effective medium approach uses the same basic premise originally
outlined by Foldy [13,14] upon which the models already outlined are based:
that the bubbly medium can be considered to be a homogeneous medium
with uniform acoustic properties. While models using this premise have
traditionally assumed bubble interactions to be negligible, recent work by
several investigators has begun to propose corrections to the effective medium
equations that incorporate higher orders of multiple scattering.

A recent paper by Kargl [62] builds on the recent work of other investiga-
tors [63.64] and describes an alternative expression of the complex wavenum-
ber (equation 2.2). This new expression corrects for multiple scattering by
using damping constants that relate to the effective medium rather than to

the bubbles themselves. The proposed expression is

K2 = k2 4 A /““ _ Ron(f)
Joo wg =« =10 + Fie + )

where &, is the new effective wavenumber. 3., represents the effective viscous

damping. 3., the effective thermal damping and J,... the effective acoustic
radiation damping. Comparison with equation 2.2 shows that a 2. term
is missing from the damping. but this is simply factorised into the terms

themselves. Of these three damping terms only the radiation losses are likely
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to be significantly affected by the multiple interactions. Hence 3., = J.is and
B3 = . The acoustic radiation damping is a function of the wavenumber

and can be determined iteratively

e = Ry (2.40)
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Figure 2.20: Comparison of standard linear theory (solid) and the niodi-
fied theory accounting for bubble interactions (clashed) for a mono-disperse
bubble population with Ry = 2.68mim and V7 = 0.01. (a) Phase speed (b)

Attenuation.

Comparison of the acoustic propagation characteristics calculated using
the linear formulation of Commander & Prosperetti (equation 2.2) and the
new formulation for a mono-disperse population shows significant differences.
especially in the phase speed (figure 2.20). However comparison of the two
expressions for a realistic multi-disperse population for example the oceanic
population measured by Phelps & Leighton [43]. shows small differences when
scaled to a higher void fraction that might be expected in the surf-zone (figurc

2.21). The fact that interaction effects are most severe in the mono-disperse
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Figure 2.21: Comparison of phase speed and attenuation calculated using
standard linear theory (solid) and the modified theory accounting for bubble
interactions (dashed) for an oceanic bubble population scaled to a void fraction

of 107* (a) Phase Speed (b) Attenuation.

case is physically reasonable. Interactions when all the bubbles are of the
same radius can be expected to be significant because the coupling between
the bubbles will be greatest when they share the same resonant frequency.
However. in the case where the void fraction is composed of a broad spectrum
of bubble radii there are correspondingly fewer bubbles at anv one radii and
hence the cffeet of interactions will be smaller. Use of equation 2.39 requires
knowledge of the bubble population and hence cannot be included in the
inverse method laid out in section 2.2. Instead it will be used to assess the
magnitude of the effect of bubble interactions by solving the forward problem

using measured populations as the input (see chapter 6).
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Figure 2.22: Nuwerical calculation of radial displacement using Herring-
Keller formulation for a 100 yrrn bubble insonified at 500 Pa close to resonance.

Notice the bubble response appears monochromatic for ¢ > 2 ms.

2.3.3 Monochromatic bubble oscillations

The final assumption inherent in the wavenwumnber formulation is that of
monochromatic (i.e. single frequency) bubble oscillations. In order to achieve
such oscillations it is necessary for the bubble to be driven for a long period
of time. This is in order that the trausient effects caused by the response of
the bubble to the broadband nature of the driving signal close to its onset

make no contribution to the bubble response. This transient effect is often

Driving the bubble for a long period of time is impractical as this would
contradict the plane wave asstunptions owing to the arrival of multi-paths.
However a monochromatic response could be approximated by assuming that
the transient effect can be neglected after a certain period. For example
visual inspection of figure 2.22 shows that the initial transient effects have

become small after approximately 2 ms leaving a close approximation to a
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Figure 2.23: The normalised power spectral density of a bubble of radius 115
pm driven by a semi-infinite wave close to its resonant frequency at (a) 100 Pa
and (b) 50 kPa. Higher harmonics are excited when the bubble is driven with
a high pressure amplitude. The effect of these higher harmonics is ignored in

the linear theory.

monochromatic bubble response. However measurements of oceanic bubble
populations must be within the top 10 metres of the ocean since this is
the greatest depth to which bubbles are known to penetrate [11] and often
the region of interest is the top 1-2 metres of the ocean where the higher
void fractions can be found. This precludes the use of long pulses owing to
the arrival of the first multi-path as discussed in section 2.3.1. Indeed for
measurements in the top 2 metres of the ocean with a receiver 2 metres away
the duration of the pulse must be less than 1.6 ms. Therefore a limitation
of 1.6 ms on the driving pulse would mean that bubbles of size greater than

approximately 100 pm?

could not be driven sufficiently long to ensure a
monochromatic response.

Also worthy of consideration is the effect of high amplitude excitation on

2Since the duration of the pulse required to drive a resonant bubble to a steady-state

increases with the bubble’s radius.
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Also worthy of consideration is the effect of high amplitude excitation on
the response of the bubble. In the surf zones. where high driving pressures
are required. a portion of the bubble cloud will be exposed to high driving
pressures. potentially causing a nonlinear response in the behaviour of the
bubble. Figure 2.23 shows the normalised power spectral density of a bubble
of radius 115 gm driven by a semi-infinite wave close to its resonant frequency
at 100 Pa and at 50 kPa. As can be seen in the high aniplitude case a number
of high harmonics of the bubble’s natural frequency are excited. The effect
of these harmonics is not taken into account in the existing linear theory.

In order to correctly model the response of the bubbles to short pulses of
high amplitude, a requirement especially likely in the surf-zone. an advance
in the existing theory is required in order to predict the propagation charac-
teristics of time-dependent bubble clouds to high amplitude excitation. Such
a model would be of interest. not only in an oceanographic context. but also

in other fields for example biomedical ultrasound.

2.4 Summary

This chapter has formulated a method of predicting the effect on acoustic
propagation of a known bubble population which compares well with the
results of similar techniques already published for synthetic data. The tech-
nique was then used with measurements of oceanic bubble populations made
by previous investigators to predict the propagation characteristics which are
likelv to be found in an oceanic environment. This showed that attenuations
in excess of 100 dB/m might be expected in the surf-zone. The problem
of inversely determining a bubble population from measurements made of
acoustic propagation characteristics was then investigated. This was shown
to be ill-conditioned and hence required consideration of optimal methods
of estimating the population. A solution was developed which involved the
systematic determination of an optimal regularisation parameter. This tech-

nique was used to reconstruct both synthetic and oceanic populations from
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the propagation characteristics predicted by the forward problem. The ac-
curacy of these estimations was found to degrade when Gaussian noise of
greater than a few percent was added to the input parameters but it was
also shown how the size of the radius bins used improved the conditioning of
the matrix and hence the accuracy of the solution.

Having developed a technique capable of estimating bubble populations.
the validity of the model used was considered for the case of measurements in
the surf-zone. Each of the key assumptions used in the model was examined.
[t was found that the time taken for larger bubbles to ring-up to a steady-
state response is greater than the arrival time of the first. indirect acoustic
path. This creates a contradiction between the assumptions of monochro-
matic bubble response and plane wave excitation. [t was also shown how
under the high driving pressures necessarv in the surf-zone the nonlinear re-
sponse of the bubble contravenes the assumption of monochromaticity. This
demonstrated a need for an advance in the existing theory in order to predict
the acoustic propagation characteristics through a nonlinear time-dependent

cloud of bubbles. Such a model will be the subject of the next chapter.



Chapter 3

Development of a nonlinear,
time-dependent model of

acoustic propagation in bubbly

liquids

Chapter 2 outlined the need for a model of acoustic propagation in bubbly
liquids that does not include the assumptions of linearity, monochromaticity
and steady-state that are inherent in the current theory [18]. Such a model
will be of use when high driving pressures are incident on the bubble popula-
tion being measured, causing a nonlinear response or when the excitation is
sufficiently short that not all the bubbles are oscillating in steadyv state. This
chapter will derive the model and discuss its application to the problem of
inversion of acoustic propagation characteristics. As this thesis is primarily
concerned with oceanic bubble populations. it will be assumed that the bub-
bles referred to are air bubbles trapped in water. However the theory could

equally be applied to any similar gas-liquid combination.
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3.1 Model of acoustic propagation through a

cloud of nonlinearly responding bubbles

The material in this section was developed in collaboration with Prof. T. G.

Leighton. The text follows that of reference [65].

The initial approach taken to derive a model of acoustic propagation
through a cloud of nonlinearly responding bubbles is analogous to that at-
tempted by previous investigators [5.22] (sce chapter 1). namelyv to derive an
expression for the complex sound speed in the medinm. This approach. as
will be shown below, is lawed in the nonlinear regime. However the reasons
for this are illuminating, and their appreciation highlights potential sources
of error in existing models. as well suggesting an alternative approach. There-
fore the derivation of the complex sound speed is presentec here in full. and
forms the first section of this chapter [65].

Assume throughout that each bubble radius is much smaller than the
acoustic wavelength. A cloud of bubbly water. having volume V, and bulk
modulus B,, is made up of a volume V}, of bubble-free water (having sound
speed ¢, and bulk modulus B,) and a volume V; of free gas (having sound

speed ¢, and bulk modulus B,) distributed in a population of bubbles. Hence

V=V, +V, (3.1)

Mass conservation is simply expressed by multiplication of the volumes
with the respective densities (of the cloud. p.. bubble-free water, p, and gas,

py ), le.

pVe = puVi + p,Vy (3.2)

Under the assumption that each of the three media separately conserve
mass. the differential of equation 3.2 with respect to the applied pressure P
is, of course, zero. In a infinite body of either water or gas that contains no

dissipation, sound speeds (¢, and ¢, respectively) may be defined:
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2 B = {w} (s =uw.g) (3.3)

P op
where S is the entropv and the subscript = can refer to application to water
(w) or gas (g). Similarly. differentiation of equation 3.1 with respect to the
applied pressure gives. with equation 3.3. the relationship between the bulk

moduli !

T R T
S e 3.4
B. V.B, 1.B, (34)

Let us define a function &, equal to the root of the ratio of the bulk

modulus of the bubbly cloud to its density:

B. v v, U BV, () 2
.= = = 7C>/< - "/>xcw<1+7g()>
Pe PV + pgVy VeB,  VeB, VeBy(t)
(3.3)

where the final approximation is valid assuming the void fraction is not ex-

tremely high. Specifically it is assumed that the density and volume of the
cloud are approximately equal to those of its bubble-free water component.
[f the bubbly cloud were not dissipative, then this would equal the sound
speed in the cloud, but (as will be shown). such an identity is not rigorous
in lossy bubble clouds.

Evaluation of equation 3.5 requires calculation of the bulk modulus of
the gas. as it is distributed through a (presumably) numerous population
of bubbles pulsating with a broad range of amplitudes, phases, frequency
content. damping and start times. The inhomogeneous bubbly water must
be divided into volume elements which are sufficiently small to ensure that
all the bubbles in that clement are subjected to the same pressure change
dP(t) simultaneously. This would allow calculation of a value for &, for each

volume element. since from equation 3.3 the bulk modulus By, of the gas

It should be noted that this expression is the same as that given by Terrill & Melville
[20] in terms of the relationships of compressibilities. A and void fraction, Vp K, = VeK,+
(1 - Vp)K,.
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within the [** element is related to the volume changes dV; of the I bubbles

in that volume element:
1 & dv;
= - (3.6)
Bgl "/gl LZ (

where P, denotes the pressure in the [** volume element. Consider one such

volume element V7, of a cloud which has total volume

L
=)V (3.7)

=1
Substituting equation 3.6 into equation 3.5 gives &,. the time history of

& within the volume element V,

W ~1/2

c

£, = Cy ( Vc Z lP[) (3.8)
[

To evaluate equation 3.8, the bubble population of the volume element

is classified into j discrete bins according to bubble size (as previously de-

scribed). Every individual bubble in the j

bin is replaced by another bubble
which oscillates with radius R,(¢) and volume V;(¢) (about equilibrium val-
ues of Ry, and V4 ), such that the total number of bubbles N and total
volume gas N;V;(¢) in the bin remain unchanged by the replacement. If the
bin width increment is sufficiently small (1 g is normally chosen). the time
history of every bubble in that bin should closely resemble V;(¢) = V(Rg . t)

(the sensitivity being greatest around resonance). Hence the total volume of

gas in the ['® volume element of bubbly water is

~

Z N( (8) = L,{an Vi(t) (3.9)

j=1

Here n;( Ry, . t) = N;(Ro,.t)/V,, is the number of bubbles per unit volume
of bubbly water within the j** bin. It will vary more slowly than the acous-
tically driven pulsation V;(¢), and so the approximation is made that it is

stationary over the duration of the measurement. This in practice can be in
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the range 0.001-1 s: smaller volume elements and more dynamic oceans would
sensibly suggest finer time resolution. Expressing equation 3.8 in terms of

this bin scheme gives [65]

J . -1/2

, di’ (¢
gr‘l = Cy ]' - /)u'(‘u' ; nJ[«[{OJ ) (].[-)[(t)

~—

(3.10)

This form is suitable for numerical solution and is not limited by small
amplitude, steady state. monochromatic or linear assumptions. Also note
that the bubbles have not been assumed to be spherically syinmetric. The
multi-layer aspect of this model can be incorporated into the forward prob-
lem described in chapter 2 by dividing the mediun into { layers, as described
above, assigning a bubble population to each laver {the entirety of the cloud
can either be considered homogencous or inhomogencous). The forward prob-
lem is then solved for each layer of the cloud in turn, using the propagation
characteristics calculated in the previous laver to determine the appropriate
driving pressure for the subsequent layer. In this manner the propagation
undertaken by a plane wave traveling throngh such a medium can be calcu-

lated.

3.1.1 Linear expansion

A first order check upon equation 3.10 is that when low amplitude, linear
constraints are imposed the solution reduces to that of Commander & Pros-
peretti [22]. While this will not expose any inaccuracies in the nonlinear
aspect of the model (since these will be set to zero in by the process of lin-
earisation) it will add some validity to the expression. Assuming that the

bubble wall oscillations are of small amplitude then

dv dR\\* dR dR\? dR\?
=1 —_ —1=3—1]=3[—] == 3.11
7 ( +<Ho>> (R(J) <Ho> (Ro) (311

(assumes spherical symmetry)
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Truncating after the first term in the expausion is a valid linear assump-
tion. and with this dV/dP = 47 R}(dR/dP). Substitution of this limitation
into equation 3.10 when the bubble population is re-expressed as a continuous

integral gives:

2 5 [ dV
g ~ 1- /)wCu,/O nd—PdRO
s [ JdR
~ 1- 4Trpwcfr/0 nRail—PdHo (3.12)

where the subscript [ has been dropped because the bubble cloud is con-
sidered to be homogeneous. If it is further assumed that the linear bubble
pulsations are the steady state and monochromatic response to a constant-
amplitude (P,) monochromatic driving field of the form P(¢) = P4sin(wt) ,

then from equation 1.27

dR 1
dP B Ropw((w?} - WQ) + j28tot‘”y)

(3.13)

(assumes linear steady state (monochromatic) spherical pulsations in

response to monochromatic driving sound field)

where 3, is the frame-independent damping constant having dimensions

of time™!

, derived assuming monochromatic conditions, which accounts for
the bubble damping by viscous. thermal and acoustic radiation mechanisms
(see section 1.2.4).

Substitution of 3.13 into 3.12, and multiplication by the square of the
angular frequency w gives the complex wavenumber k. within the hubbly

medium, as derived by Commander & Prosperetti [22]

‘ W\’ . [~ Fon
= =] + 47&;“/ 5 . - dR, 3.14
‘ (Cw) o (Wi —w?) +i230w ’ ( )
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3.1.2 Discussion

Equation 3.10 is related to the sound speed in the medium. Indeed in the
linear. lossless case &, does indeed equal c,. the sound speed within the {**
element of the cloud. In order to understand the reasoning behind this. con-
sider a plot of pressure versus volume for an undamped bubble oscillating
linearlv within a driving pressure field. Because the bubble is linear and
undamped during its expansion phase it will travel upon a line of constant
gradient (dV;/dF;). Similarly. because the svstenn is lossless. during its con-
traction phase it will traverse back along exactly the same line. Therefore
over many pulsations the bubble will map out a straight line within the
pressure-volume plane. This means that the sound speed calculated using
equation 3.8 does not fAuctuate within one cvele of the bubble response: the
gradient of that line can be used to correctly determine the sound speed in
the medium.

Next, consider a nonlinear but lossless bubble response. In this case
the pressure-volume plot will be a curve between two points corresponding
to the minimum and maximum excursion of the bubble wall. The path
taken between these points will be the same during both the expansion and
the contraction phase. The exact route of the path will depend upon the
nonlinear dvnamics of the driven bubble. However. the fact that the gradient
of the curve is no longer constant within one bubble cvele means that the
speed that the wave propagates at in the medium will vary within the cycle.
Hence the propagation is nonlinear making the concept of a single sound
speed in the medium invalid.

Finallv. consider a nonlinear bubble that loses energyv through various
damping mechanisms such as viscous and thermal dissipation. Here the path
mapped out between the maxinmum and minimum excursion points will be
different during the expansion and contraction phases owing to the effect
of damping on the system. This will result in two curves that no longer
overlay each other, and hence it will map out a loop over a given cycle of

bubble oscillation. A similar argument to that presented above means that
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the concept of sound speed in such a medium is no longer valid.

However. the sound speed in nonlinear. dissipative media may be approx-
imated by considering derivative term in equation 3.10 to be the best straight
line fit connecting the two extremities of the loop. which can be thought of
as the “spine” of the loop. For svstems with low dissipation. awav from res-
onance this is a valid assumption. [f we assume that this is the case we can
equate the nonlinear propagation factor & with the sound speed ¢, in the
bubbly medium.

As discussed in chapter 4. measurements of phase speed (as opposed
to group speed) are experimentally difficult 1o achieve. aund the inversion
techniques described so far have been based upon attenuation. Therefore it
is desirable to investigate whether the attennation experienced by the wave
propagating in the bubbly medium can be inferred from equation 3.10. As
discussed in chapter 2, the attenuation is related to the imaginary part of the
complex speed of sound. This imaginary part can be recovered from equation
3.10 (which is purely real) by use of the [lilbert transform.

The Hilbert transform [66] is a signal processing technique that exploits
de Moivre’s theorem to calculate the imaginary part of a complex number
from the real part. The imaginary part of the complex number is formed by
adding a 90° phase shift to the real data. hence converting cosines to sines
and visa versa.

Figure 3.1 shows the real and imaginary parts of & (caleulated making use
of the Hilbert transform) for a 71 gm bubble driven by a semi-infinite pulse
at a frequency of 35.1 kllz and an amplitude of 7.95 kPa. Note the transient
period a* the onset of the driving signal caused by the impulse response of
the bubble. This transient behaviour settles down to steadyv state oscillation
approximately 200 us after the onset of the driving pressure. The period
required for the bubble to achieve steady state will varv as a function of
bubble radius, frequency and the driving pressure.

The approached used by Commander & Prosperetti [22] is to use the

complex sound speed (c. = u — ju) to describe the pressure field resulting
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Figure 3.1: (a) (R(&,) — cw) and (b) T(&, ). based respectively on the real
and imaginary parts of equation 3.10 as constructed through use of a Hilbert
transform for a single 71 pm bubble insonificd by a 35.1 kHz semi-infinite pulse
starting at ¢=0 with an amplitude of 7.95 kPa. There is an unstable period
lasting approximately 200 ps caused by the transient response of the bubble

before a steady state oscillation is achieved.

from a plane wave propagating in the —+x direction. The formulation is

expressed in the form of a complex wavenumber (k. = w/c,)

P(l‘, t) o ej(;uf—kr,:r) — Cj(w’f~ﬁl‘)e-—fir (315)

From this phase speed and attenuation can be calculated as described in
equations 2.12 and 2.13. However in the nonlinear case this complex repre-
sentation is no longer valid. Consider a harmonic pressure field described in

real notation as follows

P =Picoswt (3.16)

or in complex notation as

P =R {P} (3.17)
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If a bubble with equilibrium volume V4 has a nonlinear dependence on

that pressure ficld then

V=1p+aP+bP?~cP?+ . (3.18)
Now let us consider the quadratic component of that response. in real
notation we have

2 9 bP:
Voo (1) = bP? = bP3% cos® wt = T“(l + cos 2uwt) (3.19)

whereas the complex notation gives

Voo (t) = R {bP3e*'} = bP cos 2wt (3.20)

As can be seen by comparing equations 3.19 and 3.20 the complex nota-
tion does not have the DC component included in the real formulation. The
third harmonic component exacerbates the problem introducing a missing

cosine term

: . . P3
Vi (t) = cP? = cP3 cos® wt = %(COS 3wt + 3coswt) (3.21)
Vau(t) = R {cPie¥'} = cP} cos 3wt (3.22)

The reason for these difference is that nonlinear systems transfer energy
between frequency components, a fact that the complex representation fails
to take into account. In the linear case these effects will not be seen since
b.c.... — 0. However the extent to which this affects any solution in the
nonlinear regime will increase with amplitude.

As has been seen two features of propagation through bubbly liquids make
application of equation 3.10 incorrect. and both of these require invalid as-
sumptions to be made in order to apply that equation in the nonlinear regime.
The first feature. as discussed above, is that the transference of energy be-
tween [requencies in the nonlinear regime introduces errors into the complex

sound speed representation proposed by Commander and Prosperetti [22].
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The second effect. also discussed above. is that finite dissipation means that
the locus of points in the pressure-volume plane map out a finite area over
the oscillatory cvele. However it is this very feature which provides the so-
lution by which the measured propagation characteristics can be inverted to

obtain the size distribution of bubbles that are behaving nonlinearly.

3.2 Formulation of the nonlinear extinction

Cross section

The material in this section was developed in collaboration with Profs. T.

G. Leighton & C. L. Morfey. The text follows that of reference [65].

As stated in chapter 1 the extinction cross section is defined as the ratio
of the time averaged power subtracted from an incident plane wave due to
the presence of a bubble, to the intensity of the incident acoustic beam [3].

err <MW >

The power subtracted from the acoustic beam by the presence of the
bubble can be established by consideration of the thermodynamic properties
of the system. Consider a plot of the volume of a (perfect) gas against
applied pressure for a bubble driven by a semi-infinite pulse. The plot initially
consists of a single point while the bubble is at rest. With the application of
a driving pressure the bubble begins to respond and the plot begins to map
out loops, the precise path of these loops depends upon the dvnamices of the
bubble. To begin with these loops may well be erratic owing to the initial
transient response of the bubble. However the bubble will eventually settle
into a steady state oscillation. whereupon the locus will repeatedly map out
the same loop. This can be more formally described by consideration of the
Ist Law of Thermodynamics which describes the relationship between the
internal energy, U, of a gas and the heat and work transfer to and from that

gas.
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dU =dQ +duw = dQ — PdV’ (3.24)

where both the incremental heat supplied to the bubble. (d@Q). and the work
done on the bubble. (dw). are not exact differentials. while dC is. This is
because the internal energyv of the gas is a property of state. a fact that
can be scen by considering that while for a given change in energy. dU'. the
corresponding points i a pressure-volume plot. &y and (4. are fixed. the
path taken between these points can vary.

Equation 3.24 requires careful consideration to determine whether the
pressure used to calculate the work done by the acoustic field on the bub-
ble should be the acoustic pressure applied to the bubble or the internal
pressure within the bubble. This can be seen by considering the form of
the bubble dynamics equation. All bubble dynamics equations (such as the
Rayleigh-Plesset or the Herring-Keller equations described in chapter 1) can
be considered to express the equality between the pressure difference, Ap.
that is uniform across the entire bubble wall and a summation of other terms.
These terms are p; (the pressure within the bubble due to the gas. (p,) and
vapour, (p,). pressures), p,, the pressure due to surface tension and pg,, a
collection of terms resulting from the motion of the liquid when the bub-
ble wall is displaced. The signs of the various terms in equation 3.25 can
be deduced from consideration of the balance of pressures across the bubble

wall.

AP =Di = Po — Pdyn (325)
Comnsidering each term in equation 3.25 it can be seen that the work done

on the bubble and hence the energy subtracted from the sound field per cycle

of the insonifying pulse is

Eloop = - %pid"" -+ %pdyn(lL/ + fpa‘(l‘l/ (326)

Equation 3.26 can be simplified by noting that Ap equals the spatial

average over the bubble wall of the blocked pressure <pblocked> (the pressure
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seen if the bubble was replaced by a rigid sphere of equal radius). In the long
wavelength limit the blocked pressure equals the applied acoustic pressure
P(t) that would be present at the bubble centre were the bubble not present.
The equation can therefore be re-written to show that the arca mapped in
a loop of in the pressure-volume plane is the energy subtracted from the

acoustic wave in the time interval corresponding to that loop:

Etoop = ~ ja{ ApdV = — }’{ <pb,w.k”1>(lV ~ - f PAV (kR 1) (3.27)

Therefore the rate at which the acoustic field does work on the bubble can
be found by integrating the area in the pressure-volume plane enclosed by
the loops formed by the intersections described above. and dividing energy
so obtained by the time interval taken to map out that loop Tjep. This, in
theory, allows calculation of the rate of work done by the acoustic field on
the bubble Irrespective of the state of the bubble response. In practice the
integration will be more problematic close to the onset of the driving field
due to the initial response of the bubble and precise loops may be difficult to
define. However once steady state is achieved a well defined loop can easily
be found. Figure 3.2 illustrates this by showing the P-V loop for a 100 umn
bubble driven at 38 kHz.

The rate of work done on the bubble by the acoustic field can be used
with equation 3.23 to calculate the extinction cross section presented by that
bubble. Assuming that the bubble is driven by plane wave oscillation the

acoustic intensity, I, of the incident pressure is given by [67]

(3.28)
PuCu

where P4 is the amplitude of the incident pressure wave. By combining
equations 3.23, 3.27 and 3.28 the extinction cross section can he expressed

as

<SW > Bioop/Tioop _puCu $ PAV

Qezt — — — e
b I Pj/pwcw R:iTloop

(kR< 1)  (3.29)
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Figure 3.2: A 100 g bubble driven bv a scmi-infinite pulse at 38 kHz
with a pressure amplitude of 100 Pa {a) Volume vs time. the bubble initial
respornds at its natural frequency before adopting a steady state (b) Pressure
vs voluine, the locus consists of a single point until the onset of the driving
pressure whereupou it describes erratic loops before settling into a steady state
as seen by the dense section of the curve where to locus repeatedly describes

the same path.

Attenuation can now be calculated from the calculated extinction cross
section using the same method as shown in chapter 1 (equations 1.3 to 1.5)

l.e. attenuation (in dB/m) is given by

A = 100 1ogyge ~ 1.34290°" (3.30)

This formulation thercfore presents the theorv upon which an inversion
could be based which so far has made no assumptions of linearity. steadyv
state or monochromaticity. The remainder of this chapter will implement
this theory and discuss its implications and how its use can improve our un-

derstanding of some fundamental properties of propagation in bubbly media.
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3.3 Numerical calculation of nonlinear extinc-

tion cross section

The numerical code (and supporting theory) for solution of the bubble
dynamics equation referred to in this section was developed by Mr. 1. A.

Dumbrell and Prof. T. G. Leighton.

In order to calculate a nonlinear. time dependent extinction cross section
it is necessary to model the response of the bubble to a driving pressure (in
order to obtain a volume-pressure map). There are a number of models that
are suitable for this, but it is mportant to choose a nmodel that does not
impose assumptions that may be violated during the measurement process.
This is because any solution will. at best. ouly be as accurate as the model
used to obtain it. The model used in the work is the Herring-Keller equation,
a form of which is given by Keller and Miksis [33]. This model is discussed
in chapter 1. At low amplitude the model produces the same results as
the existing linear theory but is also capable of modelling high amplitude,
nonlinear behaviour. It has the advantage of assuming a finite, time invariant
sound speed in the liquid and hence is able to model radiation damping.
Dumbrell and Leighton [23] have incorporated thermal damping into the
solution of the Herring-Keller equation by applving the perfect gas law to
the spatially averaged pressure in the bubble as proposed by Nigmatulin et
al. [34]. Prosperetti et al. [35] and Prosperetti and [ao [36]. Because of these
features, this model was judged to impose the fewest restrictions upon the
solution. and hence will be used in the following sections to calculate the
nonlinear extinction cross sectiot.

M-files for MATLAB™ which solve the Herring-Keller equation [33] using
the technique of separation of variables were provided by Mr. Hugh Dumbrell
of Dstl, UK. In order to illustrate the use of this code figure 3.3 shows the
response of a 100 pum air bubble when driven below. close to and above its
resonance frequency semi-infinite plane wave with a driving pressure of 10

kPa. The bubble is assumed to be at a depth of 1 m in a fluid with properties
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Figure 3.3: Bubble wall radius for a 100 gm bubble driven by a semi-infinite
plane wave with a frequency of (a) 10 kHz (below resonance) (b) 32.8 ktlz

(close to resonance) and (c) 100 kHz (above resonance).

typical of sea water?.

As can be seen from figure 3.3 the bubble’s behaviour varies as a function
of the driving frequency. When driven by a semi-infinite pulse the bubble
will initiallv respond at its natural frequency owing to the broadband nature
of the pulse close to the discontinuity. As time increases the bandwidth of
the driving pulse will narrow, forcing the bubble to respond at the driving
frequency and thereby settling into a steady state oscillation. This effect is
most noticeable close to and above resonance.

In order to calculate the bubble volume from the radius time history. it
is necessary to assume that the bubble is spherically svmmetric at all times.
Having made this assumption the conversion between radius and volume
is trivial (V' = 47R*/3). It should be noted that this limitation is due

to the fact that the solution of the Herring-Keller equation is expressed in

2A surface tension of 7.28 x 1072 N/m was assumed
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terms of bubble radius. and not a limitation of this method of calculating
the extinction cross section. Were a model available that directly computed
bubble volume, this would enable the extinction cross section to be calculated
for higher order oscillations of the bubble wall.

Having ascertained the pressure-volume curve. calculation of the contour
integral in equation 3.27 is non-trivial. and an algorithm had to be developed
within MATLAB™ in order to accomplish this. The problem is complicated
by the fact that equation 3.27 does not necessarily describe a straight-forward
loop. It may be the case that the “loop™ contains one or more crossings
forming a ‘figure-of-eight’ shape. In this case the sections of the loop that
proceed in an anti-clockwise direction with respect to time were subtracted
from those proceeding in a clockwise direction. This was confirmed by the
fact that the cross section should. in most cases. be positive 3.

A disadvantage of this new technique is the amouut of computation re-
quired to form the extinction cross section. The majority of the computation
is involved in the numerical solution of the Herring-Keller equation and the
calculation of the thermal damping terms. Caleulation of the value of the
extinction cross section for a single bubble at a single frequency took up to
30 minutes on a 1 GHz Pentuim IV with 512 MB of RAM. For a square
K-matrix the computation time is proportional to the square of the number
of bubble radius bins and hence the computation time for a single 10 by 10
matrix could be up to 50 hours. In order to make the computation time prac-
tical, all the bubble populations in this thesis are henceforth modelled using
a single layer. This is not however an inherent limitation of the model. and
more powerful computing facilities or more cfficient computation algorithms

may make multi-laver nonlinear forward models a practical proposition.

3While it would seem reasonable that the extinction cross section of a bubble should be
positive. it was considered that there may be special cases. e.g. bubble-bubble interactions
where this may not be the case. Therefore it was not considered sufficiently robust that

the modulus of the answer be taken to calculate the extinction cross section.
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3.4 Low amplitude nonlinear extinction cross

section

As a check upon the validity of the above method of determining the ex-
tinction cross section of a bubble a low amplitude nonlinear extinction cross
section was compared with an analvtical expression of the linear extinction
cross section. \While this will not expose any errors due to high amplitude
effects. it will create a first-order confidence in the technique. Figure 3.4
shows the extinction eross section for a 100 yum bubble driven between 1 and
100 kilz. The cross section is plotted using equation 2.14 and the new non-
linear formulation assuming an amplitude of 100 Pa. As can be seen the two
lines are in excellent agreement. overlaying each other almost perfectly with
maximum disagreement of less than 1% at resonance which can be attributed

to differences in the damping models used.

3.5 High amplitude nonlinear extinction cross

section

As a further check upon the validity of the new technique, a high amplitude
nonlinear cross section was calculated. Unlike the low amplitude case there is
no analytical expression that can be used as an independent check upon the
validity of the model. However it is expected that the nonlinear response of
the bubble will result in the spread of energyv to other frequencies, for example
to the second harmonic. It is expected that the resonance frequency of the
bubble will shift down slightly due to the different dvnamic properties of the
bubble. Also the magnitude of the cross section at resonance should be lower
than the linear cross section owing to the shift of energyv to other frequencies.
These qualitative observations will also add a degree of confidence in the
validity of the technique.

The high amplitude extinction cross section is shown in figure 3.5. In

order to provide a point of reference, it is compared against the same linear
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Figure 3.4: The extinction cross section of a 100 zzm bubble driven between 1
and 100 kHz. The extinction cross section is calculated using a linear analytical
expression (dotted line) and the new nonlinear forinulation assuming a zero-
to-peak driving pressure of 100 Pa (solid line). As can be seen the two curves
overlay each other almost perfectly with any slight discrepancy attributable

to differences in the damping values.

cross section as the previous section. The same driving signal is used. How-
ever the amplitude of the signal is now increased to 50 kPa. As can be seen
from the graph the high amplitude nonlinear cross section does indeed in-
clude peaks at frequencies other that the resonance frequency of the bubble.
Several subharmonic frequencies are present as well as the expected second
harmonic. Also, as expected. the main resonance frequency of the bubble

has also shifted down in frequency and is lower in amplitude than the linear

Cross section.
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Figure 3.5: The extinction cross section of a 100 z#m bubble driven between 1
and 100 kHz. The extinction cross section is calculated (for comparison) using
a linear analytical expression (dotted line) and the new nonlinear formulation
assuming a zero-to-peak driving pressure of 50 kPa (solid line). The nonlinear
cross section contains several subharmonic peaks and also a peak at the second
harmonic frequency. Also note that the main resonant peak has shifted down

in frequency and is of lower amplitude than the corresponding linear peak.
3.6 Discussion

The plot of applied pressure versus the volume of the bubble contains a
number of items of interest that highlight the behaviour of the bubble as
well as giving an effective demonstration of the advantages of the use of the
Herring-Keller equation [33] when compared to the linear solution given by
Commander & Prosperetti [22].

Figure 3.6 shows a range of different responses for a 49 um bubble excited
by a semi-infinite pulse with an amplitude of 7.95 kPa at three different
frequencies, above, close to and below resonance. The driving frequency is
fixed in each of the three columns in the figure. In the left column, which

corresponds to the bubble being driven above resonance, the bubble initially
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Figure 3.6: Bubble responses for a 45 pin bubble insonified by a semi-infinite
pulse starting at t=0 with an amplitude of 7.95 kPa at (a) 84.2 kHz (b) 65.7
kHz and (c) 31.5 kHz. The top graph in each case shows the volume time his-
tory calculated using the Herring-Keller equation {with damping after Pros-
peretti et al. 1988). The middle row shows the correspouding pressure-voluine
curve starting at the onset of the driving pressure. The darker area shows the
steady state regime, where the successive loci overlap each other. Nonlinear
components will cause crossovers in a loop (a second- or sub-harmonic caus-
ing a figure-cight to appear. for example). as shown in figure 4(c). such that
the integration of equation 3.27 causes the areas of the clockwise loops to be
subtracted from those of the anticlockwise. The bottomn row superimposes the
steady-state loops of the middle row (thin line) with the corresponding linear
solution using the steadyv-state formulation Commander & Prosperetti (thick

line).
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responds at its natural frequency before settling down to a steady state (in
a similar fashion to that discussed in relation to figure 3.3). The steady
state region appears as a constant loop with a thick black line caused by
the continual overlapping of the locus. The corresponding pressure-volume
plot describes erratic loops that directly relate to this ring-up” period. The
extinction cross scction of the bubble during ring-up could be calculated if a
method of approximating the area of these erratic loops was developed. This
would be an important development in bubble acoustics and is recommended
as an area of future research. The middle colimn. where the bubble is driven
close to resonance. shows a smooth ring-up period which achieves steady state
approximately 200 ps alter the onsct of the driving pressure. The pressure-
volume curve prescribes a series of ellipses before achieving a steady state
condition that approximates a circle. It should be noted that the volume axis
in this plot is a to different order of magnitude O(107'?) than those either
side of it O(10 ™). This is because of the larger excursion of the bubble wall
and the peak in the extinction cross section at resonance. The final column,
with the bubble driven below resonance, exhibits a ‘cross-over’ in the P-V
curve. This cross-over may be caused by the excitation of a harmonic in the
response of the bubble.

The bottom row of figure 3.6 is of special interest and shows the steady
state portion of the P-V curve for the bubble excited at each of the three
frequencies. These are compared to the P-V curve calculated using the linear
formulation of Commander & Prosperetti [22] (calculated assuming that the
bubble is spherical, R = Ry(1 + R.) and using equation 1.27). This com-
parison is of interest because it compares the new technique to the model
used in all current state-of-the-art bubble inversion techniques. It should be
noted that Commander & Prosperetti’s formulation is a linearization of the
same Herring-Keller equation which is used in its full nonlinear form in the
new technique. Commander & Prosperetti note in their paper that “In the
presence of resonance effects the accuracy of the model is severely impaired'.

Therefore any improvement that can be gained in this region will be valu-
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able. especially considering that estimates of bubble populations resulting
from inverse techniques will be stronglv influenced by the modelled response
of the bubble around resonance.

As can be seen from the first graph (column (a)) in the bottom row of
figure 3.3. above resonance the curve predicted by the new nonlinear method
agrees well with that predicted by the linear formulation. In this region the
amount of energyv dissipation is small. as indicated by the small area enclosed
by the loop in comparison to the resonance condition (note the difference in
orders of magnitude of the x axes between the three graphs).

In the case close to resonance (column (b)). the amount of dissipation
is much larger and identification of a spine corresponding to a single sound
speed within one cycle of the is no longer valid as discussed in section 3.1.2.
It may be the case that this increase in dissipation is causing the inaccuracies
of the method close to resonance. It is also of interest to note the different
resonance frequencies of the linear and nonlinear bubbles causing a shift in
the gradient of the spine of the loop.

Finally the third graph (column (c)) shows the case below resonance. As
discussed above the P-V curve contains a ‘cross-over’” that may be caused
by a second harmonic in the response of the bubble. This ‘cross-over’ is
entirely lacking from the linear case and is due to the monochromaticity in

the linearly modelled response of the bubble.

3.7 Summary

This chapter has developed a method of calculating the nonlinear extinction
cross section of a bubble. The initial approach taken. while shown to reduce
the same solution as the linear case. was ultimately shown to be inaccurate
at high amplitudes. This was because of the failure of the complex sound
speed model to take into account the transferral of energy between frequen-
cies and the variation of the sound speed within a oscillatory cycle. However

appreciation of these facts revealed an alternative approach based upon cal-
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culation of the energy dissipated by the bubble from an incident plane wave.
This parameter can he calculated from the area enclosed by a plot of incident
pressure against bubble volume. Examination of these plots also reveals some
understanding of the dyvnamic response of the bubbles. Comparing them to
existing state-of-the-art linear theorv exposed a possible explanation for the
inaccuracies of that theory around bubble resonance.

The chapter then goes on to describe the algorithm developed for obtain-
ing the extinction cross section of a bubble making use of the Ierring-IKeller
equation to obtain a bubble radius time history. Owing to the intensive com-
putational nature of the solution of this second order differential equation.
the calculation was restricted to a single laver. As an example of the use of
this code and a means of validating the model munerical solutions were found
using the new nonlinear model for a 100 pm bubble driven between 1 and
100 kllIz at both low amplitude (zero-peak pressure of 100 Pa) and high am-
plitude (zero-peak pressure of 50 kPa). The solutions were then compared to
an analytical expression for the linear extinction cross section. As expected
the nonlinear solution agreed with the linear solution at low amplitude but
at high amplitude energv was spread into other frequencies which could not
be represented by the current linear model.

This chapter has addressed the need expressed in chapter 2 for a model
of acoustic propagation in bubbly liquids that does not include the assump-
tions of lincarity. monochromaticity and steady-state inherent in the current
theory. While the model has not made any of these assumptions it has been
necessary to impose the assumptions of steady state and cloud homogeneity
because of computational considerations. It was also necessarv to assume
a spherically svmmetric bubble response. that the wavelength of the insoni-
fying wave was large compared to the bubble radius and that the bubble
void fraction is low . The following chapters will describe an experiment to
nmeasure the bubble population in the surf-zone, a region where use of this

new theory may be potentially beneficial.



Chapter 4

Development of an
experimental system for
estimating oceanic bubble

populations

Previous chapters have outlined the theoretical development of a nonlinear,
inverse method of estimating bubble populations. This chapter will describe
the development of the systems and techniques necessary to realize an exper-
imental system capable of the estimation of ambient bubble populations in
an oceanic surf-zone environment. This will require development or selection
of suitable acoustic transducers (both for transmit and receive) and devel-
opment of the associated apparatus necessary for generating high amplitude
waveforms and making accurate received level measurements. It will also be
necessary to design appropriate driviug signals with which to insonifv the
bubble cloud and also to develop suitable techniques for extracting the prop-
agation characteristics from the time histories. The chapter will conclude by
describing and presenting the results from a set of trials characterizing an

artificially generated bubble cloud in a laboratory environment.

89
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4.1 Design of acoustic insonification signal

The signal used to drive the bubble cloud is of primary importance in the
estimation of that cloud’s population. This is because it determines the re-
sponse of the bubbles and hence the extent to which the model that is used
as part of the inversion proecess is valid. Factors that must be considered
include the frequency content of the driving pulse. the pulse duration. its
amplitude and the overall duration of any measurement. Two alternative
schemes exist for the driving sigual. The first, used by the majority of inves-
tigators [6.19.10.43], is based upon narrowband pulses. and the second [20]
is based upon broadband pulses. As the focus of this svstem is the surf-zone,
the former of these two options was chosen as it was expected that this would
provide a superior signal-to-noise ratio, a factor likelyv to be critical in the

surf-zone.

Signal (arbitrary units)

f g

|
3
: . L . ;
0 o0t 02 03 04 05 06 07 08 09 1
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Figure 4.1: Illustration of the construction of a concatenated ‘pulse train’ of

narrowband short duration pulses.

The narrowband signal was constructed using short pulses (of duration

dictated by the arrival of the first multi-path reflection) of varying frequency
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followed by an un-driven period to allow any reverberation to die awayv. Ten
of these pulses were concatenated together to give a "pulse train’ covering the
frequency range of interest. Figure 4.1 illustrates the construction of such a
signal. The duration of the signal would be G x (£, + to77) seconds (where
G is the total number of frequencies used). An implicit assumption is that

the bubble population remains stationaryv during this period.

4.1.1 Frequency content

Each tone within the pulse train is designed to cause bubbles at the centre of
a radius bin to respond at their resonant frequency. As discussed in section
1.2, there are a number of different models of bubble dyvnamics and a number
of different formulations for the resonant frequency of a bubble. The equa-
tion of motion used throughout this work (in both its linear and nonlinear
forms) is the Herring-Keller equation [33]. Ilowever, no simple expression
for the natural frequency of a bubble is vielded from this equation. In order
to achieve a natural frequency close to that inherent in the Herring-Keller
equation the Rayleigh-Plesset equation is used. with the natural frequency
determined using equation 1.17.

In order to keep the number of elements in the matrix K small' the
number of frequencies was constrained to ten (the number of elements to be
calculated is the square of the number of frequencies used). As will be seen
later, the system used through the laboratory and sea trials evaluates bubbles
with an equilibrium radius between 16 jaun and 115 jan. The resonant bubble

radii and frequencies used are shown in table 4.1.

! This is especially important when considering the computation time involved in cal-

culating the nonlinear extinction cross section as discussed in chapter 3.



CHAPTER 4 92

Bubble radius (um) | Frequency (kHz)
16 197.540
27 118.959
38 85.302
49 66.561
60 54.604
71 16.306
82 40.207
93 32.335
104 31.839
115 28.842

Table 4.1: Resonant bubble radii and driving frequencies used throughout

the laboratory and sea trials. Assuming an air bubble enclosed by seawater.

4.1.2 Pulse duration

The desired pulse duration is influenced by clifferent factors. However, as
discussed in section 2.3.1, unless the source in use is sufficiently directional
that only direct propagation is significant. the pulse duration must be deter-
mined by the distance to the nearest boundarv. For most sources such an
assumption cannot be safely made. and hence the pulse duration used during
these trials was determined with reference to equation 2.38. Assuming that
the measurement takes place in water 2 m deep and that the measurements
are macle in the centre of the water column, the maximum pulse duration
that would exclude multi-path propagation would be 500 ys. The number of
cycles at each frequency was restricted to an integer value such the the pulse
duration was less than the this value.

Having determined the maximum pulse duration. radius time histories
were generated in order to assess the response of the bubbles to such a pulse.
In order to give an indication of the likely range of responses, four cases were

examined, that of the smallest and largest bubbles excited by both the highest
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and lowest frequencies used in the proposed experiment. Figure 4.2 shows
these responses. In order to show the steady state region of the response the
modelled pulse is semi-infinite. Examining the worst case (figure 4.2(d)) it
can be seen that the amplitude does not deviate from the steady state values

by more that 15 % after 500 us.
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Figure 4.2: Four bubble responses calculated at both the smallest and largest
radii as well as the lowest and highest frequencies used in the proposed exper-
iment. (a) 16 san bubble driven at 197.5 kHz (b) 115 pm bubble driven at
197.5 kHz (c) 16 pm bubble driven at 28.8 kHz and (d) 115 pm bubble driven
at 28.8 kHz.

4.1.3 Pulse amplitude

Section 2.1.5 solved the forward problem for oceanic bubble populations.
The open water population measured by Phelps & Leighton [43] gave a peak
attenuation of 28 dB/m at 25.4 kHz. Bubble populations (and hence atten-

uation) in the surf-zone are expected to be considerably greater than those
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encountered in open ocean although experimental measurements in such re-
gions are scarce. Solution of the forward problem for an existing data set [6]
(albeit at only four bubble radii and in extremely high void fractions) suggest
an attenuation as great as 300 dB/m at 39 klHz. Measurements in the far
field of a directional source in such an environment are obviously extremely
difficult. although in more moderate surf-zone conditions a lower attenua-
tion could be expected. For the purposes of system design an attenuation
of approximately 100 dB/m was assumed. therefore implyving the need for
a source capable of source levels in the region of 200 dB re 1 pPa @ Im
in order to assure high signal to noise ratio at the receiver. At the time of
thesystem design the extent of nonlincarity of response that such a driving

pressure would cause in the bubble oscillations was unknown.

4.1.4 Overall duration of pulse

Given that a narrowband ‘pulse train” was to be used. the separation between
the pulses was important. It could be argued that such a separation is not
necessary since consecutive pulses have different frequency content, and hence
reverberation from one is unlikely to effect another. However the resonant
frequencies of the larger bubbles can be similar and additionally it is also
desirable (for modelling purposes) to assume that all the bubbles have fully
rung down before the onset of the next driving pulse. For these reasons it
was decided to include a delay between the driving pulses.

In order to determine an upper bound on this separation a 30 kHz pulse
with a pulse duration of 100 ps was emitted at depth of 1.5 metres in a
test tank. The tank was 8 metres bv 8 metres by 5 metres deep and was
concrete-walled. The signal was received by a Bruel & Kjaer hvdrophone
type 8103 position on-axis with the source at a distauce of 1.5m. The out-
put of the hydrophone was charge amplified by a Bruel & Kjaer tvpe 2635
charge amplifier and then recorded using a National Instruments 6110E Data
Acquisition Card. For more details of the source used see section 4.3. See

figure 4.3 for a diagram of this experimental setup.
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Figure 4.3: Experimental set-up for pulse separation tests. A 100 us, 30 kHz

pulse was generated and received at 1.5 m on-axis distance.

It is anticipated that this environment will be much more reverberant than
any likely oceanic measurement. This is due to the fact that a concrete walled
boundary will have a much higher reflection co-efficient than a sandy ocean
bed. In addition the volume absorption will be much lower in a bubble-free
environment than in a bubbly environment such as the oceanic surf-zone. All
these factors will serve to reduce the reverberation time of the environment.

Figure 4.4 shows the time history for the short pulse emission. The re-
flections are small compared to the direct path pulse. Examination of the
data reveals reflections occurring at ¢ = 2 ms and ¢ = 6 ms which, from the
geometry shown in figure 4.3 can be identified as surface and wall reflections
respectively. All reverberant cffects drop beneath the measurement noise
floor for ¢t > 10 ms. In order to ensure no interference occurs, this figure was
doubled to 20 ms when designing the pulses. Modelling of bubble responses
reveals that the longest period expected for ring down of a bubble is less
than 1 ms. Hence the bubbles can be assumed to be at rest at the onset of
the driving signal.

Ideally the bubble distribution should be considered stationary over the
time-frame of the measurement. In any measurement using the techniques

described above, the turbidity of the environment being measured will deter-
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Figure 4.4: Received time history at 1.5 metres from the source. Notice the

signal has dropped beneath the noise floor for ¢ > 10 ms.

mine the overall duration of the pulse. The system discussed here is intended
to measure the ambient bubble population generated in the surf-zone. While
this environment is expected to be more turbulent than an open ocean envi-
ronment, it will be significantly less turbulent than the environment directly
beneath the breaking waves. For such measurements it would be necessary
to use a short pulse separation (perhaps interleaving different frequencies to
ensure good frequency separation) or to use broadband pulses to excite the
bubble cloud. Figure 4.5 illustrates the difference between a measurement
directly beneath a breaking wave and a measurement of the ambient bubble
cloud in the surf-zone following the passage of the breaker. As can be clearly
seen the velocity of the bubble field is considerably lower in the latter case .

For t,, = 500us, t,;y = 20 ms and G = 10 (where G is the total number
of frequencies) the whole signal would take 205 ms to elapse. Given that the
separation of the hydrophones is 0.15 m the maximum average velocity of the
cloud should be less than 0.7 m/s for this pulse duration. While this velocity

would certainly be exceeded directly within a breaking wave (or indeed as the
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Figure 4.5: (a) Example of a breaking wave bubble population (b) Example
of an ambient surf-zone bubble population. Measurement of (a) would require
different pulse characteristics and may be invalidated by the high void fraction

within the wave.

breaking wave travels toward the beach) the velocity of the bubbles within
the ambient cloud is likely to be low. Hence, stationarity will be assumed
for overall pulse durations O(0.1) seconds provided measurement relates to
the ambient bubble cloud left behind the breaking waves rather than the

breaking waves themselves.

4.2 Extraction of propagation characteristics

from time histories

The method of extraction propagation characteristics from recorded time
series data needs to be considered. Accurate determination of these terms is
important because of the sensitivity of the inversion to noise (see section 2.2).
The measurement is made more difficult still because the path lengths over
which attenuation must be measured will be short (owing to the fact that the
bubble population must be considered homogeneous between measurement
positions). Any errors in measurement of the value over a short path length

will be scaled when quoting the value per metre. The following section will
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detail how these parameters may be measured for narrowband signals.

A system calibration undertaken prior to any bubble measurements being
taken would improve the accuracy any measurements. This would require
measuring the propagation characteristics in a bubble-free medium using the
same set of transducers. driving signals and associated electronics. These
nieasurements could then be compared to those taken in bubbly water and
the excess attenuation calculated. It could be assumed that anv excess at-
tenuation was indueced by bubbles. This process has the effect of removing
any systematic errors from the measurement including hyvdrophone response,
losses due to geometric spreading and attenuation due to absorption in the

water (although this factor is likely to be very small over a short path length).

4.2.1 Attenuation

As discussed in chapter 1. attenuation is defined as the reduction in acoustic
intensity of a sound field. The instantaneous acoustic intensity of a plane
wave 1s proportional to the square of the instantancous acoustic pressure
(equation 3.28). Intensity is commonly expressed as a value in decibels cal-
culated using a reference intensity. i.e. 10l0g19(///.cs). and hence the change

in intensity levels. or the attenuation, can be expressed as

Iy
A = 10logyo <’> (4.1)
[bf

However, in practice. since the ratio will remain the same. the attenuation
may be determined from the incident pressure upon the hvdrophone. which
squared, 1s proportional to the intensity. Therefore the total bubble-induced

th

excess attenuation at the i** hvdrophone in dB, A;(f). can be calculated as

a function of frequency:

HY(fy)
H(f,)
where H?(f) and H (f) are the amplitudes of the Fourier transforms at the

Ai(fg) = 20logro (4.2)

measurement frequency in the bubbly and bubble-free environments respec-
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tively at the i'* measurement position. The attenuation per unit length, A,
between two measurement positions can then be simply calculated using z,.
the distance between the two measurement positions.
fl +1 A‘ll
A= (4.3)

Tq

4.2.2 Phase Speed

Previous investigators [19.20] discuss methods of measuring the phase speed
in the medium using cross-correlation to determine the arrival times of the
signal traveling between two measurement positions. While this does measure
the travel time and hence, with knowledge of the distance. speed of sound
this is. in fact, not a measure of the phase speed but a measure of the group
speed. The distinction between the two is not crucial unless the medium in
which the wave is propagating is dispersive. as is the case in bubbly media. In
a non-dispersive medium all frequencies travel at the same speed whereas in a
dispersive medium the propagation speed will vary as a function of frequency.
The group speed. which is the speed at which the centre of the wave packet
will travel is given by dw/0k where as the phase speed is given by «/k [3].
Review of the literature yielded no suitable technique for measuring the
phase speed that could be based upon a series of pulses. The only system
found that is capable of true oceanic phase speed measurements makes use
of a resonant cavity [39]. The disadvantage of this technique is that the
plates that form the cavity are intrusive and their presence may well alfect
the measurement. As no clear benefit was found in basing inversion data on
both phase speed and attenuation [19] it was decided to measure attenuation

only in the oceanic system.
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4.3 Choice of Appropriate Acoustic Source

The transducer design discussed in this section was carried out in

collaboration with Mr. P. Doust of Thorn Marine Systems.

Measurement of bubble populations in a surf-zone environment places a
demanding sct of requirements upon the acoustic source and as such care
must be taken when selecting such a source. The source must have sufficient
power to penetrate the bubbly niedium and still be received with a high
signal to noise ratio at the receiver, the beam-width must be narrow so as
not to cause multi-path reflections and well defined in order that a sensing
volume can be established. Each of these parameters will be discussed in the
following sub-sections.

A transducer able to fulfill these criteria was developed in collaboration
with Alba Ultrasound and Thorn Marine Systems. In order to achicve a wide
bandwidth, flat frequency response. high power transducer it was necessary to
emiploy a three element array and to exploit broadband matching techniques
[69]. Figure 4.6 shows the dimensions and construction of the array.

Each element in the array was manufactured to a different dimension
in order to maintain a constant near-field/far-field interaction. The near-
field/far-field interaction d was calculated by considering each clement to be
a line array of length s, where s is the largest dimension of the piezo-ceramic
crystal. The resonant frequencies, broadband frequency ranges. dimensions
and near-field extents of each of the three elements which make up the array
are shown in table 4.2.

Broadband matching was used to extend the frequency response of the
transducer. This was necessary because an unmatched electro-acoustic trans-
ducer is essentially a narrowband device and is only efficient around its own
natural frequency. In order to extend the bandwidth, a network of inductors,
transformers and capacitors can be combined with the transducer to create

a band-pass filter of significantly greater bandwidth [69 71].
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Figure 4.6: Engineering drawing of three-element acoustic array.

edgement: Alba Ultrasound

Jres (kHz) | fiow (kH2) | frign (kHz) | s (mm) | d (1)
50 30 80 138 1.33
160 30 270 91.3 1.30
400 270 800 53 1.49

Table 4.2: Operating Parameters of Broadband Transducer. Note that the

high frequency element of the transducer was not used during the experiments

described here.
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4.3.1 Frequency Response

There are several reasons why the frequency response of the acoustic source
is of importance in the estimation of bubble population. The first of these
is that the transducer bandwidth determines the range of bubble radii that
can be excited at their resonant frequency. Therefore in order to evaluate
the population across a wide spectrum it is desirable to emplov a broadband
transducer. Secondly the transducer’s amplitude frequency response should
reasonably flat. this is for two reasons. The first is that pulses of an even and
repeatable amplitude are obtainable without digital correction. For example.
a transducer with an uneven frequency response may require a large voltage
input to achieve a lixed pressure output at one frequency but at a different
frequency much smaller voltage may be required to achieve the same pressure.
While this would nominally re-create a Hat frequency response, any instability
in the input voltage (or some change in the source characteristics e.g. surface
loading pressure) would greatly affect the output of the transducer and would
invalidate any system calibration that had taken place. The second effect
is that by achieving a flat spectral response from the transducer the full
dynamic range of an analog-to-digital converter can be utilized on the receiver
input. thus adding to the accuracy of the measurements.

Figure 4.7 shows the frequency response of the mid-frequency range ele-
ment in the array calculated using equivalent circuit theoryv with and with-
out broadband matching. Such a response is tvpical of all three elements
in the source. As can be seen. without broadband matching the response
of the matched element is essentiallv narrowband. centred on the resonant
frequency of the active elemnent. However when broadband matching [69] is
used the resultant frequency response is flat over a large frequency range.
All three elements comprising the source were matched to give a radiated
pressure level of 195 dB re 1pPa at 1 metre. Such a source level will provide
a high signal to noise measurement even in relatively dense surf-zone bubble
clouds provided the range is kept small. The —3 dB points at either end of

the middle element’s frequency range were overlapped with the —3 dB point
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Figure 4.7: Frequency Response of mid-frequency element in array with and
without matching. Theoretically calculated using equivalent circuit theory.
Dashed line shows unmatched response and solid line shows matched response.
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of the adjacent element in order to give a smooth [requency variation across
the entire frequency range of the source. The actual frequency response of the
source was not measured but is not critical since all measurements are based
upon the ratio of bubbly to bubble-free measurements. For the purposes of
these experiments the transducer was only used up to 200 kHz (as this was
the highest frequency for which a calibrated receiver was available). A con-
sequence of this was that it was not possible to use the third element of the
transducer however the high frequency element of the source was intended

for use in another project investigating high frequency sediment acoustics.

4.3.2 Directivity

As discussed in section 2.3 it is desirable to have a highlv directional trans-
ducer with a strong main beam and weak side lobes in order to nmiinimize any
multi-path reflections that may impinge on the receiver.

Theoretical calculation made by Alba Ultrasound on the directivity of the
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| Biow | Bhigh
Element 1 (30 kHz-80 kHz) | 16° | 5.4°
Element 2 (80 kHz-270 kHz) i 9.3° | 3.1°
Element 3 (270 kHz-800 kliz) | 5.3° | 1.8°

Table 4.3: Theoretically calculated beam-widths of Transducer. The
beamwidth is defined as the angle between the axis of the source and the

—3 dB point of the directivity pattern.

3 element array show it to be highly directional and shading techniques used
by Alba Ultrasound in the design of the source mean side lobes are expected
to be small. The predicted beam-widths for cach clement at its upper and
lower frequency bounds are shown in table 4.3. The actual directivity pattern
of the transducer was not measured owing to time constraints within the
study and such a measurement is recommended for future work. In place of a
measured directivity pattern a linear interpolation between the theoretically
predicted values has been assumed. A radial svinmetry will be also assumed

when calculating the sampling volume froni these values.

4.4 FExperimental Apparatus

Development of apparatus suitable for measuring bubble populations in shal-
low water or in the surf-zone is a challenging task in its own right. The range
of bubble radii under consideration and the attenuating nature of the medium
necessitate a high amplitude. high frequency driving signal. The apparatus
either has to be driven and powered from the shore {or from a boat) and con-
nected via an umbilical cable carrving the signals: or must be autonomous
and self-sufficient either sending its data back to shore wirelessly; or be de-
signed for retrieval and download of data after a set period. Owing to the
limited equipment, facilities. time and funds available. it was decided to focus

on a set of apparatus that could be deployed by hand in the surf-zone envi-
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ronment and operated on shore via an umbilical. The rig would be retrieved
within a short time scale (several hours or dayvs) and constantlv monitored
over this period. This section aims to describe the transducers. electronics.
software and associated apparatus that was developed for use in a surf-zone
oceanic environment. While there was an inevitable amount of re-design and
improvement between trials. this section will onlyv discuss the final svstem
used. variations from this svstem will be discussed on a trial-by-trial basis in

chapters 5 and 6.

4.4.1 Signal Generation

Two methods of signal generation were employed in parallel. One that relied
upon equipnient readily available that had been used for similar work previ-
ously, and the other which offered great benefits over the existing apparatus.

The first of these two systems emploved a Sonv Tektronix 2010 Arbitrary
Waveform Generator (AWG) in order to create the waveforms. This device
is capable of outputting the contents of a buffer at a maximmun rate of 250
MIlz on two channels simultaneously. The maximun buffer size is 262,144
points. I order to generate the “pulse train’ (as discussed in section 4.1) the
clock frequency was set to 100 MIlz and waveforms generated corresponding
to one cvele. These waveforms were then queued in a sequence file which
generated the appropriate number of cvcles dependent upon the frequency
being emitted. The two channels were used to drive element one and element
two of the transducer independently and the sequence hles were concatenated
in such a way that appropriate signals were sent concurrently to each element.
The frecuencies were selected by calculation of the resonant frequencies of
ten bubble radii equally spaced in the radius domain (as shown in section
4.1). Figure 4.8 shows the signals generated for a ten tone pulse with a pulse
length of 500 us.

Each waveform was then loaded onto the AWG using a GPIB interface.
After signal generation each channel was then amplified by an ENI 240L

power amplifict. This power amplifier has an output of 100 watts and a
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Figure 4.8: Signals generated by arbitrary waveform generator for 10 tone
tests at 500 us pulse lengths. (a) Signal sent to element 1 (30 kHz to 80 kHz)
(b) Signal sent to element 2 (80 kHz to 270 kHz).

frequency range of 10 kHz to 10 MHz which will easily cover the operating
frequency range of the transducer. The output of the power amplifiers is
then transmitted via 2 twisted pairs in a 200 metre long. 18 screened twisted
pair armoured cable. This cable is used to senc and receive signals from the
measurement site to shore. Figure 4.9 illustrates the experimental set-up for
signal generation.

The second svstem of signal generation was used as a backup syvstem
and replaces the AWG with a National Instruments 6110E Data Acquisition
(DAQ) card. This is a PC based PCI card having two analog outputs capable
of outputting at 4MS/s (one channel) or 2.5 MS/s (both channels) with a 16
bit accuracy. This card can be simply controlled from within Matlab using
the Data Acquisition Toolbox allowing anyv vector generated within Matlab
to be output as a driving signal. This is desirable as it greatly improves
the flexibility of the system. reduces setup times, removes the need for extra

instruments and also eliminates the slow GPIB interface. Also the card holds
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Figure 4.9: Diagram of apparatus ou signal generation.

4 analog input channels which can be used for signal acquisition. This further
reduced the need for external apparatus and allowed all signal generation and
acquisition to be simply controlled using one standard PC within a Matlab

environment. This is discussed further in section 4.4.2.

4.4.2 Signal Acquisition

Signal acquisition was performed using an array of Bruel & Kjaer type 8103
hydrophones. The calibrated frequency range of the 8103 hydrophone is
0.1 Hz to 200 kllz. This precluded use of the element 3 (270 kiz - 800
kHz) of the acoustic source (sce section 4.3.1) but this will be emploved in
other experiments not reported here. The output from each hvdrophone was
amplified using a charge amplifier, to generate a voltage proportional to the
pressure incident on the hydrophone. This voltage was then amplified by a
gain factor determined via a voltage transmitted on a single channel from

shore (due to limitations on the number of channels, the hydrophone gain
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factors were set on groups of two i.e. hvdrophones 1 and 2 had the sanie gain
factor). This allowed the operator to adjust the sensitivity of the hvdrophones
in order to optimise signal to noise. The acoustic data was transmitted using
a twisted pair in the 200 m armoured cable using a "push-pull” system. This
essentially divides the signal received at the shore end on one of the twisted
pairs bv a reference signal on the sccond twisted pair. Anyv inducted currents
such as cross-talk will be picked up by both channels and hence can be divided
out when received. The remaining channels in the 36 channel cable were used
to carryv the driving signals, to supply power to the electronics and for other
experiments being run using the same apparatus. The printed-circuit boards
(PCBs) were securely mounted on aluminum plates both to provide a robust
mounting for the circuitry and also to act as a heat-sink for any excess heat
that may be generated by the operational amplifiers mounted on the boards.
For niore details of the design of the rig see chapter 5. Figure 4.10 shows
a photograph of the electronics used to received the signal and to transmit
down the cable. Prior to each trial the gain factors in the internal electronic
were adjusted with a Bruel & Kjaer type 4229 hvdrophone calibrator driving
the hvdrophone. Each channel was adjusted to give 1 mV/Pa output. While
not strictly necessary because the attenuation is calculated via a comparison
with bubble-free water, it helped ensured that a high signal to noise ratio
would be received and provided a secondary level of confidence in the received
data.

In order to receive the signals on shore a signal “break-out™ box was con-
structed with terminals for the send and received signals. This not only
provided an interface to the cable but contained the shore based DC power
supply. with which the canister mounted electronics would be powered. This
also incorporated a number of fail-safe shutdown devices and the gain con-
trols for the hvdrophones.

The received signals were acquired using a Lecroy 93441 4 chaunel digital
storage oscilloscope sampling at 1 MS/s and using 8 bit quantization. As the

highest frequency contained with the signal is 200 kHz (with the hydrophone
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and transmit.
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Figure 4.11: Diagram of one hydrophone channel apparatus on signal receive.

effectively acting as a low pass filter) this sampling rate is well in excess of
the Nvquist frequency and hence when combined with a suitable low-pass
filter should prevent aliasing. After each acquisition the waveforms were
downloaded using a GPIB interface onto a PC and stored on the local hard
drive for subsequent analysis. This process was slow however due to the
number of channels being used, the high sampling rate and the slow speed of
the GPIB link meaning downloading all channels took in excess of 1 minute.
Figure 1.11 illustrates the experimental set-up for one hydrophone channel.

The National Instruments DAQ card was used as a backup means of
acquiring data. This card is capable of acquiring up to 3 MS/s/ch simulta-
neously on 4 channels using 12 bit quantization and writing the data simul-
taneously to hard disc. Because the transfer of data from the card to the
hard disc drive utilizes the PC's PCI bus and IDE interface. the data can be
recorded in real tiine. When operating at the highest sampling frequency on
all 4 channels the IDE interface to the hard drive mav not support the data
rate which is 2 bytes/sample x 3 MS/s x 4 channels = 40 MB/s. In order
to overcome this two hard discs were configured as a Redundant Array of
Independent Discs (RAID) using a FastTrack TX2 RAID controller giving a

hard drive capable of a sustained transfer rate of 45 MB/s with a capacity
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Figure 4.12: Experimental setup for characterization of electrolyvsis bubble

cloud.

of 40 GB, enough for 15 minutes of continuous acquisition at the maximum

sampling rate or 75 minutes at the 1 MHz rate used in these experiments.

4.5 Laboratory Tests

In order to test the system in a laboratory environment an artificial bubble
cloud was generated using electrolysis. To do this a 14 amp current was
passed through a submerged copper plate which formed an anode and a
horizontal parallel copper plate positioned approximately 3 cm above the
current-carrving plate which formed a cathode. Oxyvgen bubble formed on
the underside of the cathode which, in order to disperse the bubbles, was
rotated at 30 rpm. [vdrogen bubbles were formed on the upper face of the
anode over which was placed filter paper In an attempt to trap and dissolve
these bubbles before thev could rise with the main cloud. This separation
was felt necessary as the hvdrogen bubbles will have different properties from
those formed by oxygen.

The bubble generator was placed at the bottom of a 8 metre by 8 metre by

5 metre deep concrete walled tank filled with fresh water. Visual inspection
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Figure 4.13: Measured attenuation from bubble cloud generated by electrol-
ysis. The attenuation was determined using equation 4.3. The different colour
lines correspond to different attenuation measurements taken approximately
every 5-10 seconds (due to limitations of the available colour palette some
colours are repeated). The two hydrophones were separated by 45 c¢m in order
to maximize the homogeneity of the measured bubble population. The system

was calibrated in bubble-free water prior to the measurement thus accounting

for any losses due to geometrical spreading.

(by reflection of light from bubbles as they break the water surface) showed
the bubble cloud generated to be circular with an approximate diameter of
5 metres and a roughly homogeneous spread of bubbles across this diameter.
Two 8103 Bruel & Kjaer hydrophones were placed at a depth of 1.75 metres
0.45 metres apart and were centered on the cloud of rising bubbles. Figure
4.12 shows a diagram of this experimental layout.

Attenuation measurements were taken using the system described above
with pulse trains consisting of 10 frequencies corresponding to equally spaced
radii between 16 pm and 115 pm. The pulse duration used was 500 us

ensuring that there was no interference from multi-path reflections. The
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Figure 4.14: Estimated bubble populations from a cloud generated by elec-
trolysis. The coloured lines correspond to the attenuation shown in figure
4.13. The estimated populations are calculated using linear theory only (due
to limitations of the available colour palette some colours are repeated). The
water in the tank is supplied from the mains water supply and is constantly

filtered. Measurements were taken approximately every 5-10 seconds.

pulse separation used was 20 ms meaning that the whole signal took slightly
over 200 ms to elapse. Figure 4.13 shows the attenuation as a function of
frequency for each of the separate measurements. The attenuation at each
measurement position was calculated by taking the magnitude of the Fast
Fourier transform of each pulse. The ratio of this magnitude in bubble-
free water to that in bubbly water was then taken in order to calculate the
attenuation at each frequency (equation 4.2).

These attenuation measurements were used as the input into the inver-
sion algorithm developed in section 2.2. At the time of the laboratory tests
the nonlinear theory was not sufficiently advanced to attempt a nonlinear
inversion and hence the results were calculated using linear theory. This

was deemed sufficient as the laboratory tests were mainly intended to test
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the system prior to a sea trial. The regularisation parameter. J. was chosen
using the L-curve technique. Each population radius bin was scaled by the
estimate of the sampling volume as described in section 4.3.2. The estimated
populations are shown in figure 4.14.

As can be seen in figures 4.13 and 4.14 there is a considerable amount
of inter-measurement variability. especiallv at the smaller bubble radii. This
can be attributed to the stability of the bubble cloud as a function of time.
which may be caused by fluctuations in the current drawn or inconsistent
rates of bubble release from the clectrode plates. While the estimated pop-
ulations seem reasonable there is no independent measurement of the popu-

lation against which to verify theni.

4.6 Summary

This section has described the implementation of a system capable of mak-
ing the measurements necessary to measure the ambient bubble cloud in
the surf-zone. Discussion was made of techniques for extracting the nec-
essary propagation characteristics from the recorded time histories. This
highlighted an error in the methods used by previous investigators to mea-
sure phase speed. However, no practical method of measuring phase speed
was found and hence it was decided to base the system upon attenuation
only. Transducer designs and techniques for signal generation/acquisition
were developed. Finally laboratory tests were undertaken to characterize an
artificial bubble cloud generated by electrolysis and perform a test of the
system prior to deployment. The next two chapter describe the deployment
of an experimental rig in the surf-zone and the analysis of the data acquired

respectivelv.



Chapter 5
Acquisition of sea trial data

Two multi-disciplinary sea trials [65, 72] were undertaken during the course
of this study involving (at different times) five postgraduate students, four
undergracduate students, three members of staff and seven technicians from
two different departments at the University of Southampton. The aim of
these trials was to simultancously characterize the surf-zone bubble popula-

tion using multiple techniques. Four different technicques were fielded

1. Passive bubble sizing [73] 2. Combination frequency [6]

3. Acousto-electrochemical [74] 4. Inversion of acoustic propagation

The first trial in November 2000 suffered from very stormy conditions
and resulted in the experimental apparatus becoming damaged. However.
experience gained during this trial enabled a considerable more successful
trial to take place a year later. This chapter will describe the experimental
setups used during both trials. the environmental conditions encountered
and an initial quality check of the data. Chapter 6 will go on to describe the

detailed analysis of the data acquired during these trials.
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Figure 5.1: Photograph of the beach at Hurst Spit where the field trials
were carried out. The beach has a steep shingle profile which was observed to

change rapidly during poor weather.

5.1 Trials site

The site used for both the field trials was just at the base of Hurst Spit which
is a man-made spit on the south coast of the UK (50° 42.48'N, 1° 35.01'W).
As it is situated near the westerly mouth of the Solent, the site has a ‘double-
tide’ and also can suffer from large waves due to the long fetch of the waves
entering the English Channel from the Atlantic Ocean.

The site is a steeply sloping shingle beach turning to a sandy bed around
the low water mark. There is a cluster of very large rocks on the eastern
side of the beach which form the start of Hurst Spit. Figure 5.1 shows a
photograph of the beach and figure 5.2 shows the transition of the bed from
shingle to sand at the low water mark. It is assumed that the ocean bed at
the measurement site, which is approximately 10-20 m from the low water
mark, is sandy. The profile of the beach was found to change considerably
during bad weather and 20 cm vertical bed movement was observed in one

hour.
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Figure 5.2: Photograph of transition between shingle and sandy bed. The

bed at the measurement site is assumed to be sandy.

Two surveys of the site were available (figure 5.3). Each consists of a
topographical land-based measurement taken as far out into the surf-zone
as practical and a hydrographical ship-based sounding coming toward the
beach. The two measurements approximately converge, however in one case
an uncharted area of approximately 100 m exists. The two surveys show
changes in vertical depth of up to 5 m over a four year period indicating the
dynamic nature of the site. However the cut-out, which shows the surf-zone
region is more constant with a slope of approximately 1 in 9. The figure
also shows the position of the measurement rig. In both cases the rig was
placed just beyond a small shelf in the surf-zone. This enabled the rig to be

deployed safely in the maximum possible water depth.

5.2 First sea trial: Hurst Spit 2000

The first sea trial took place at Hurst Spit between 5th and the 15th Novem-

ber 2000. Tidal predictions showed a tidal range of 1.8 m which was antic-
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Figure 5.3: Topographical profile of the measurement site. The results

of four surveys are shown: topographical surveys carried out on 01/09/1997

and 01/05/2001 and hydrographical surveys carried out on 01/12/1998 and

19/06/2001. Changes of up to 3 m in bed height between surveys are indica-

tive of the dynaimic nature of the site. The insert at the top right of the figure

shows the topographical data in close-up and indicates the position of the

nieasurement rig. Heights in metres corrected from Ordnance Datum Newlyn

using tidal data at 16:00 GMT on 24-11-2001 to give height relative to sea

level. Data supplied by C. Eastwick & A. Bradbury.
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ipated to be enough to submerge the rig at high tide. The instrumentation
used in this deplovment was different to that described in chapter 4 and while
it essentiallv performed the same function it cousisted primarily of standard
bench-top equipment rather than custom designed electronics. This meant
that the apparatus required considerably more volume and hence two large
water-tight canisters were used to house the wet-end electronics. The two
cvlinders were 35 cm in diameter and 1.5 m in length. The water displaced
by such a large bodies was considerable and while both cvlinders were packed
with electronics, the buovancy associated with cach was very great. This,
combined with the surface area that was presented to the breaking waves,
made managing these objects in the surf-zone very difficult.

During the trial a wide range of weather conditions were experienced
with wind speeds varying from 0.5 m/s to over 25 m/s. This resulted in
very large waves, sometimes over two metres in height. Because of this,
deplovment of the experimental apparatus in the surf-zone was very difficult
and threc separate rig designs were used before successful measurements were
made. Detailed description of the experimental setup will only be made where

successful measurements were taken.

5.2.1 First deployment

The first deplovment employed a rig that was designed to be built in shallow
water (<1 m) at low tide with measurements being taken at high tide. when
the rig was submerged. The rig was designed using scaftolding bars and
clamps since it was anticipated that this would provide a strong but relatively
light structure that also presentecd a minimal surface area to the wave motion.
The design was cubic. measuring roughly 2.5 m on each side and 1.0 m high
as the main structure to which the canisters and transducer arravs could
be attached. At the base of each vertical element a large steel plate was
welded. These plates would be buried in the sand and would counteract the
buoyvancy due to the air trapped with the water-tight canisters. Figure 3.4

shows a schematic of this design.
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Figure 5.4: Schematic of rig design for the Hurst Spit 2000 [72,75] sea trial,
first deployment. The rig was designed to be constructed at the measurement

site at low tide and to be submerged by the incoming tide at high tide when

measurements would be taken.

Figure 5.5: Two photographs, taken a fraction of a second apart in November
2000, showing (a) two postgraduate students (Meers and Simpson) attempting
to bolt sensors to a scaffolding rig just deployed at sea; (b) Mr Simpson’s feet
(Mr Meers is completely buried by the wave).
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However. construction of the rig in shallow water proved to be extremelv
difficult in even mild sea states due to the action of the breaking waves as
illustrated in figure 5.5. The deplovment of this rig was dulv abandoned as

unsafe and an alternative design considered.

5.2.2 Second deployment

A second deplovment was then attempted using a rig that was entirelv con-
structed prior to deplovment and was then maneuvered to the measurement
site. Four buovs were inflated and positioned on an axle at the front of the
rig. The rig was then lifted and wheeled to the measurement position on
these buoys. Over 125 kgs of extra weight was attached to the rig in order
to counteract the buoyancy. Figure 5.6 shows a photograph of this rig.
This rig was deployed at low tide in shallow water and a tether attached
in order to facilitate recovery at a subsequent low tide. However soon after
deploviient an unexpected storm formed with wind speeds in excess of 25
m/s and wave heights of several metres. Despite the rig having a total mass
of over 500 kgs and being embedded in the sea-bed the energy within the
waves was sufficient sufficient to lift the rig from the measurement site and
deposit it upside down on the beach. As can be seen in figure 5.7 extremely
heavy damage was sustained to the rig preventing any further data from

being collected using this set of apparatus.

5.2.3 Third deployment

Having sustained damage to the main set of apparatus. an alternative exper-
iment was undertaken. This made use of a secondary acoustic source that
was available on loan from DERA Bincleaves. The transducer is a mono-
static (i.e. source and recciver are co-located) sonar array with a calibrated
frequency range of 200 kHz to 340 kHz with a beamwidth of between 4.7°
and 15.4° depending on frequency.

Owing to the bandwidth of the acoustic source the range of resonant bub-
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Figure 5.6: Photograph of the second rig designed for Hurst Spit 2000 sea
trial. The rig was assembled on the beach and then wheeled to the measure-

ment position using the inflated buoys as wheels.

Figure 5.7: Damage sustained to the second rig. Obviously the damage to
the rig was so severe that no further measurements could be taken using this

set of apparatus.
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ble radii was restricted to 8.5-15.0 pm. This part of the spectrum of bubble
radii has been seldom measured yet is close to the peak in the size distribu-
tion (at ~ 20m) as measured by previous investigators [43,45]. Narrowband
pulses at the appropriate frequencies (as described in section 4.1.1) were used
to assess the bubble cloud in 0.5 um radius bins over the above radius range.

In order to make an assessment of bubble numbers the backscatter from
a target was measured, in this case the target was an inflated buoy mounted
on a scaffolding pole. The buoy was positioned 0.5 m from the ocean bed
and at high tide was submerged by approximately 1.0 m. The horizontal
distance between the source and receiver was 2.35 m making a 4.7 m total
path length. Figure 5.8 shows a schematic of this setup.
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Figure 5.8: Schematic of rig design for first sea trial, deployment three. A
mono-static sonar source was used to measure the back-scatter from an air

filled buoy positioned 2.35 m away.

A schematic diagram of the apparatus used in the third deployment is
shown in figure 5.9. The same system that was to be used in deployments
one and two was used to generate the signals and to acquire the measured
waveforms but the source and receiver were replaced by the borrowed mono-
static system. The system had many similar characteristics to that described
in section 4.4 including push-pull amplifiers to transmit and receive the sig-
nal down a 100 m armoured cable. The entire system had been calibrated

both for transmit and receive so its sensitivity was known, although these
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parameters were not strictly necessaryv since the attenuation was calculated

as a ratio with respect to a nominally bubble-free condition.
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Figure 5.9: Schematic diagram of experimental apparatus used in the first
sea trial, deployment three. Owing to damage sustained to the original set of
experimental apparatus (similar to that described in chapter 4 an alternative

setup was used.

Figure 5.10 shows the voltage time series acquired during one typical
experiment. Each pulse consists of 20 cycles ranging between 200 and 340
kHz. The initial transmission in each case is followed approximately 3 ms
later by the backscattered return from the buoy. The results from these data

are prescnted in chapter 6.

5.3 Second sea trial: Hurst Spit 2001

The second sea trial also took place at Hurst Spit on 23rd-24th November
2001. Experience gained during the first sea trial enabled an improved design
to be implemented for deployment of the apparatus. An entire trial could be
carried out in under eight hours. In the event two trials on consecutive days
were necessary, because on the first day the sea was very calm with minimal
wave breaking activity. The second dayv brought a moderate S\ breeze and
stronger breaking waves (wave heights up to 1 m). During this trial no dam-

age was sustained to the rig partly owing to the improved design and partly
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Figure 5.10: Typical voltage time history acquired during the third de-
ployment at the Hurst Spit 2000 sea trial. The initial transmission from the
nono-static sonar set is closely followed by the backscatter from the buoy

position 2.35 m away.

because of the less hostile weather. This meant that the system described in
section 4.4 could be used, enabling a broader range of bubble radii (16-115
pm) to be evaluated. The system used was a bi-static system where mea-
surements are mace over the direct path between source and receiver rather

than from the back-scatter from a target (as in the previous trial).

5.3.1 Rig design

The primaryv change in the design or the rig was the miniaturization of the
electronics contained within the water-tight canister. During the first trial
the wet-end electronics consisted primarily of bench-top equipment and one
of the major difficulties encountered was the buovancy presented by the large
canister necessary to contain this equipment. Therefore printed circuit board

solutions (as described in section 4.4.2) were developed to replace this equip-
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ment and reduce the volume required inside the water-tight canister. Be-
fore miniaturization two canisters of 35 cm diameter and 1.5 m length were
required. After miniaturization one canister of 33 cm diameter and 30 cm
length contained all the necessary electronics. This greatly reduced the buoy-
ancy that had to be counteracted and also reduced the overall mass of the
rig. making handling easier.

The issue of deplovinent and retrieval of the rig was also addressed. The
dependence on the tide times in the first trial was partly responsible for the
damage that occurred to the rig since it could not he safely retrieved when
the storm begun. Therefore a rig was designed which could be deploved
and retrieved irrespective of the tide time and sea state. The design made
use of a tall ‘mast’ over 3.5 m long which could be used to push the rig
out i1t a horizontal configuration. Once the rig was in position the mast was
pushed vertical thereby ‘flipping’ the whole rig through 90°. This enabled the
experimenters deploying the rig to stand in shallower water than the eventual
measurenernt site. Once deployed the rig was held in position by sonie short
lengths of scaffolding that dug into the sand and acted as anchors holding the
rig stationary during measurements. The mast acted as a convenient position
for a marker buoy and also was used to gauge the approximate depth of the
transducers. During the measurements made for this trial it was estimated
that the rig was in water approximately 3.5 m deep.

Upon retrieval a shore based winch was used to pull on a rope attached
to the top of the mast. This provided a large amount of leverage sufficient to
break anyv scaffolding bars out of the sand in which thev had becomne buried.
The winch would then tip the rig horizontal again and the rig would roll out
of the surf without any need for anv experimenters to enter the water and
hence could be safely undertaken at any time. irrespective of the tide. The
marker buov on top of the mast was used to prevent the top of the mast
digging into the sand during retrieval. Figure 5.11 illustrates the design of

the rig and its positions during deplovment/retrieval and measurement.
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Figure 5.11: Schematic of rig design for the second sea trial [65]. The rig was
wheeled down the beach in a horizontal configuration and into the water to a

depth of approximately 2 m where it was flipped into a vertical configuration.

5.3.2 Experimental setup

Several different sets of apparatus for evaluating bubble population were
fielded on the rig in an attempt to characterize the bubble population us-
ing multiple techniques. One passive technique and two active techniques
were employed. The acoustic source (described in section 4.3) was securely
mounted in front of the mast. The direct acoustic path between source and
receiver was kept clear of any obstruction and the ri{é was designed in such a
manner so as to ensure that the presence of the rig would cause minimal bias
to the estimated bubble population. The signal transmitted by the source
was a ten frequency pulse train using a pulse length of 500 us (as described
in section 4.1). The source level used was approximately 195 dB (re 1 uPa
Q@ 1m).

A set of seven Bruel & Kjaer type 8103 hydrophones were positioned in
a ‘T’ shaped array at a distance of 1.65 m from the source. Five of these
were positioned along a straight line in order to take inversion data (although
owing to software problems experienced during the trial only 4 hydrophone
signals were acquired) and were spaced at 0.15 m intervals. The spacing was

determined by the typical size of oceanic bubble formations which is O(10)
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Figure 5.12: Photograph of the hydrophone array used in the second sea
trial. One of the experimenters (Mr. Yim) makes final adjustments to the rig
prior to deployment. Note the wire gauze around each hydrophone to protect
it from impact with wave-borne stones. Also to the right of the image the edge
of the acoustic source and water-tight canister can be seen. In the background

the 200m (blue) umbilical cable has been paid out ready for deployment.
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cm [21]. The frst of these hydrophones was positioned on-axis at 1.65 m
from the face of the acoustic source. This distance was assessed to be in the
far field of the source (sce section 4.3). hence plane wave propagation could
be assumed.

The final two hvdrophones were positioned off-axis for use in the trian-
gulation of bubble positions from passive emission data. The cables for all
the hyvdrophones were run inside the scaffolding tubes to protect them from
any damage before passing into the instrumentation canisters via water-tight
glands. The signals from the hydrophones were then passed up a 200 wm ar-
moured cable (as described in section 4.4.2) for acquisition.

Since the beach at Hurst Spit is composed of shingle it was deemed nec-
essary to protect the hvdrophones from impact with anv wave-borne stones.
To this end cach hydrophone was protected by a wire mesh. The mesh chosen
had a thin gauge and gaps of approximately one centimetre (sce figure 5.12).
While it was accepted that this would have somne impact on the performance
of the hydrophones it was deemed necessary rather than risk damage to these
delicate instruments.

The effect of the gauze was investigated in bubble-free water in the labo-
ratorv by measuring the attenuation across the array with and without the
gauze in place. Figure 5.13 shows ten measurements of the excess attenua-
tion caused by the presence of the gauze. As can be scen the measurement
was extremely repeatable with all ten curves overlving each other. A peak
in the attenuation exists around 70 kHz. where the wave length corresponds
to the dimension of the gauze wrapped around the hvdrophone. At higher
frequencies the attenuation increases as the wavelength shortens. However.
the artenuation measured in this trial is the ercess attenuation caused by
the presence of bubbles. Since this was calculated from the ratio of bubbly
to bubble-free measurements. the effect of the gauze i1s accounted for as the
bubble-free calibration was performed with the gauze in place. Therefore anv
increase in attenuation can be attributed to the presence of bubbles.

Finally a 1 MHz receiver and emitter were placed with their beam-
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Figure 5.13: Attenuation caused by the presence of the wire gauze around
the hydrophones. Ten measurements were taken over a path length of 45 c¢m
and proved extremely repeatable (all ten measurement overlay one another).
Since the bubble-free calibration was performed with the gauze in place. its

effect is accounted for in any measured attenuation.
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patterns overlapping the main lobe of the acoustic source with which to
collect combination frequency data. Unfortunatelv no populations have been
estimated from the passive and combination frequency techniques therefore
no comparison with any inversion result is possible. The electronics. signal
generation and data acquisition used for the inversion measurement were as
given in chapter 4. The configuration of the acoustic transducers is shown in

figure 5.14.
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Figure 5.14: Schematic diagram of experimental apparatus used in the sec-
ond sea trial. Multiple methods were used in an attempt to characterize the

bubble population using multiple acoustic methods.

5.3.3 Initial data check

Initial data analvsis revealed that cross-talk between the driving and the
received signal had affected the data. This was because the 200 m umbilical
cable was carrving both the driving and received signals and the driving
signal was being amplified on shore before being transmitted to the rig. This
high power signal induced a signal in neighbouring chanunels despite the use
of screened twisted pair channels and the push-pull amplifiers described in
section 4.4.2. [However. this did not prevent analvsis of the data because the
interference only occurred while the driving signal was being transmitted.

Because of the separation of the source and receivers, the acoustic pulse did
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not arrive at the first receiver until approximately 1 ms after the transmission
of the pulse. Therefore the received signal (500 us pulse length) used in
these experiments was un-corrupted. However some other experiments taken
during this trial used pulse lengths greater then 1 ms and hence the cross-
talk and received signal interfered. This is illustrated in figure 5.15 which
firstly shows a 500 s pulse length (as used in these inversion experiments)
where the effect is easily removed by siniple windowing and secondlv with
a longer pulse (as used in other experiments) where cross-talk and received
signal interferc. Since the cross-talk and the received signal will have pre-
dominantly the same frequency content it is expected to be extremely difficult

to separate these two phenomena.
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Figure 5.15: Illustration of received cross-talk interference between transmit
and received channels (a) Pulse duration = 300 us, here the pulse duration
was less than the travel time to the first receiver therefore cross-talk could
simmply be windowed out (b) Pulse duration = 5 ms, here cross-talk interferes
with received signal making analysis difficult or impossible. Data suffering

from cross-talk was not used in this study.
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5.4 Summary

Making scientific measurements in an environinent as hostile as the surf-zone
is a challenge in itself. This chapter has outlined two trials and showed the
line of development of apparatus suitable for use in such an environment. The
first sea trial was undertaken in extremely difficult conditions and collection
of any data at all can be viewed as a success in such a harsh environment.
The second trial learned many lessons from the first and consequently met
with considerably more success. The chapter has outlined the experimental
setups used in bhoth trials and the environmental conditions encounter. The
analysis of the data collected during these trials is presented in the next

chapter.
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Analysis of sea trial data and

discussion

This chapter analyses and discusses the data collected during the two sea
trials described in chapter 5. The results from the first sea trial are only
analysed using linear methods (see chapter 2) as the sound pressure used was
not expected to be sufficient to excite any nonlinear behaviour. The second
trial is analysed using both linear and nonlinear (chapter 3) methods and the
results obtained are compared and discussed. In all cases the inversions are

based upon either the linear or non-linear extinction cross section.

6.1 First sea trial: Hurst Spit 2000

During the successful third deplovment of the first sea trial (see section 5.2.3)
attenuation was measured by the backscatter from an air-filled buoyv posi-
tioned 2.35 m away from a mono-static acoustic source. Owing to the band-
width of the source. measurements were confined to small bubble radii (8.5
- 16.5 jan). However. this is a region of high interest since it is close to a
previously reported peak in the oceanic bubble size distribution [20,39.45].
Sixteen sets of measurements were made, each consisting of ten individual

measurements of the bubble population. During the trial extremely calm

134
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conditions (wind speed < 0.5 m/s) were initially experienced and it was not
until the final six sets of measurements that the wind speed increased (up to
7 m/s) causing significant bubble populations to be measured.

The extended period of calm conditions was used to perform a mea-
surement of the attenuation experienced in a nominallv bubble-free environ-
ment. The average of ten measurements taken in these conditions was then
subtracted from all following measurements and to account for geometric
spreading and other ~svstematic” effects. Anyv excess attenuation was then
attributed to the presence of bubbles. This assumption could be compro-
mised by the fact that the more turbulent conditions that will accompany
bubble activity in the surf-zone is likelv to cause a greater quantity of sus-
pended sediment to be present in the water column. However. the sediment
is acoustically less active than the bubbles when both are found in concen-
trations that could be expected in the surf zone [76]. The sediment can be
expected to make a negligible contribution to the attenuation over the short
measurement distance used. This can be seen by calculating the attenuation
imparted by a suspension of sand particles (the seabed tvpe at the measure-
nment position, see figure 5.2) over the frequency range of interest, using the
technique described in [77]. Modelling the suspension as a Gaussian par-
ticle size distribution with a mean diameter of 70 microns and a standard
deviation of 10 microns (with minimum of 10 microns and maximum of 120
microns) gives the normalised attenuation shown in figure 6.1. This shows
that a concentration of suspended sediment in excess of 30 kg/m? would
be required to give a peak attenuation of 1 dB/m. Estimates of sediment
concentrations are typically less than 1 kg/m® [78] but could be expected to
peak at 10 kg/m? [79] in the surf zone.

Figure 6.2 shows the average attenuation measured during three of the
final sets of ten measurements. As the wind speed increases so does the
attenuation. The wind speed rose from 0.5 m/s to 7 m/s through the course
of the tests. It is of interest to note the large increase in attenuation at 7

m/s. This is around the speed observed by Thorpe and others [50,80] where
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Figure 6.1: Normalised attenuation resulting from a Gaussian size distribu-
tion with properties similar to that of sand. Acknowledgement: Dr. Simon
Richards, QinetiQ) Ltd.

bubbles are generated in large quantities in the open ocean.

Figure 6.3 shows three single populations taken from each of the three sets
of measurements described above. The data has been scaled to adjust the
bin size in which the bubbles are reported to the standard 1 pm. During the
measurements the height of the breaking waves varied from approximately
10 ¢m to in excess of 1 m. The air temperature varied between 8°C and
14°C and the water temperature was constant at 11°C. Measurements were
taken at random times throughout the wave breaking cvele. It is of interest
to note that no peak is apparent in the bubble size cdistributions shown
in figure 6.3. Previous investigators [43.453] have noted a peak the bubble
population at approximately 20 pm. Ilowever both of these measurements
were made in open ocean rather than the surf-zone and it may be the case
that the different dynamics experience by the bubbles in the surf-zone alter
the balance between buoyancy and dissolution that is thought to contribute

to the peak in the open ocean data.
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Figure 6.2: Average attenuation measured during three sets of ten measure-
ments. Measurements taken on the 15th November 2000 at 1350h - wind speed
5.5 m/s (solid), 1510h - wind speed 6 m/s (dashed) and 1610h - windspeed 7
m/s (dotted).
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Figure 6.3: Computed bubble size distributions in the range 8.5 to 15.5 pm.

The solid, dashed and dotted lines correspond to single measurements taken

during the three sets of measurements described in the caption to figure 6.2.

Figure 6.4 plots the average population measured during the trial (with
errorbars showing the minimum and maximum values measured in each ra-
dius bin) plot alongside other historical populations. Two other surf zone
measurements are shown. Phelps et al. [6] used an acoustical technique ex-
ploiting combination frequencies to make measurements at four radii between
37 and 150 pum. This measurement was made on the North Yorkshire coast in
water approximately 3 m deep with wind speeds of 11 m/s and wave heights
of in excess of 2 m. Deane & Stokes [44] deployed an optical technique at
Scripps Pier in California. They made measurements at larger bubble radii
than the other (acoustical) techniques shown. The open ocean population
measured by Johnson & Cooke [46] was obtained using optical methods in
water of 20-30 m depth with wind speeds of 11-13 m/s. It is of interest to
note that this population shows a lower number of bubbles at small radii
compared to the other measurements. This may be caused by larger bubble

obscuring smaller bubbles. The population measured by Farmer & Vagle was
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Figure 6.4: Average bubble populations estimated during the first sea trial
compared to historical data. The data collected during the first sea trial
(circles) is plotted along with errorbars to indicate minimum and maximum
values. The data is compared to historical data including: surf-zone data
collected by Phelps et al. [6] with errorbars indicating uncertainty due to the
sampling volume (squares). Deane & Stokes [44] (dots) and open ocean data
collected by Farmer & Vagle [43] (plus signs). Breitz & Medin [38] (triangles).
Johnson & Cooke [46] (diamonds) and Phelps & Leighton [43] (crosses).
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in extremely deep water (4 km) and used a upward looking sonar to mea-
sure backscatter from surface bubble plumes. The wind speed during this
measurement was 12-14 m/s. Finally Breitz & Medwin [38] used a resonator
svstem to make measurements in water 120 m deep with wind speeds of 12-15
m/s. It should be noted that the absolute number and the gradient of the
new surf-zone measurements are similar to the open ocean measuremnents.
However. the data shown here should be treated with caution. since the
bandwidth of the acoustic source meant that the bubble size distribution
could only be estimated over a small portion of the full spectrum. Thercfore
the measurement may be affected by the presence of bubbles outside this
range which are not accounted for in the estimate. The next section will

analyse the data collected during the second, more successful. sea trial.

6.2 Second sea trial: Hurst Spit 2001

As discussed in section 5.3 the second sea trial was considerably more suc-
cessful than the first. A wideband (30 - 200 kHz). high amplitude (195 dB
re 1 pPa @ 1m) transducer was emploved along with an improved rig de-
sign that allowed simple deployment and retrieval of the apparatus. This
allowed successful measurements to be made across a broader spectrum of
bubble radii at an amplitude that might excite bubble nonlinearities. Signals
were received using seven Bruel & Kjaer 8103 hvdrophones. Unfortunately,
technical difficulties experienced with the LeCroy oscilloscopes during the
trial meant that a backup system (a National Instruments 6110E DAQ card.
see figure 4.11) had to be used to acquire the data. This limited the data
acquisition to the four hydrophones closest to the source. These difficultics
prevented data being taken through the majority of the single day trial but
once they had been resolved data was successfully collected between 1500h
and 1600h before retrieval of the rig.

Prior to the sea trial the apparatus was calibrated in an 8 m by 8 m by 3

m deep concrete walled tank containing bubble-free water (see section 4.2).
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Figure 6.5: The signal received from the four hydrophones as a single pulse
(part of the ten pulse ‘train’) propagates over them. Note the arrival times of
the pulses at each of the individual hydrophones and the period of cross-talk

proceeding the pulse.
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As discussed above anyv increase in attenuation in the oceanic environment
was then attributed to the presence of bubbles. Figure 6.5 shows the signal
received from the four hvdrophones as a single pulse from the “train® of ten
pulses propagates past thenm. It should be noted that because of the elec-
tronics required to transmit the signal along the 200 m umbilical cable. the
sensitivities used to convert voltage to pressure are not absolute and hence
caution should be exercised when comparing the amplitudes of the signals.
Attenuation is calculated by using equations 4.2 and 4.3 and which circum-
vents the need for an absolute calibration. Figure 6.6 shows a sample of
the attenuation measurements made during the trial. As can be seen. due
to the relatively calin conditions experienced. the attenuations measured are
comparatively small, less than 15 dB/m. Attempting to accurately measure
these values over the small path length between the individual hydrophones
was considered impractical because of the low signal to noise of the measure-
ment. In order to overcome this the attenuation was measured between the
first and fourth hydrophones. This gave a total path length of 0.45 m, thus
improving the signal-to-noise of the measurement.

Figure 6.7 shows the bubble populations estimated using the current
state-of-the-art techniques outlined in chapter 2. Again the data has been
scaled to adjust the bin size to the conventional 1 gm. During the mea-
surements the rig was estimated to be in water of approximately 3.5 metres
depth. The location of the rig was similar to the previous vear (as marked on
figure 5.3) and was slightly behind the breaking waves. The average air and
water temperatures were 11°C and 8°C respectivelv. Average wind speed was
4 m/s from a SW direction. Samples of water were taken in sterile bottles
for chemical analysis. This revealed that the electrical conductivity was 49.5
mS/cm. the pH was 8.07 and the salinity was 34.1 ppt. The void fraction of
the bubble populations shown in figure 6.7 was calculated by linearly extrap-
olating the population in log space (omitting the largest three radii) from 10
pum to 300 um. The average void fraction was approximately 5 x 1078,

Figure 6.8 adds the data collected during the second sea trial to the his-
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Figure 6.6: Measurements of attenuation made between the first and fourth
hydrophones during the second sea trial. Each colour represents an individ-
ual measurement made between 15:20 and 16:00 GMT on 24-11-2001 (due to

limitations of the available colour palette some colours are repeated).
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Figure 6.7: Linear estimates of the number of bubbles per cubic metre of
sea water, per um increment in radius made using the current state-of-the-
art linear inversion. The colours correspond to the attenuation measurements
shown in figure 6.6. The average wind speed during these measurements was
4 m s™! from a south-westerly direction, the water temperature was 8°C and
the air temperature was 11°C. The electrical conductivity was 49.5 mS cm !,

the pH was 8.07 and the salinity was 34.1 ppt.

torical data plotted in figure 6.4. As can be seen in the figure the number of
bubbles is slightly greater than the open water populations but considerably
less than the surf-zone population measured by Phelps & Leighton [45]. This
is in keeping with the relatively calm conditions experienced during the sec-
ond sea trial. Several features in the data are apparent. Firstly the position
of the peak in the distribution. Previous open ocean measurements [43,45]
have reported a peak in the distribution around 20 um. In the new, surf-zone
measurement the peak in the data is at 27 pm. However, the radius bin size
used during the experiment was 11 pm and hence the true peak in the distri-
bution lies in the range 21.5 um to 32.5 pm. In any case it is not surprising

that in the surf-zone the peak in the size distribution lies at a different radius.
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Figure 6.8: Average bubble populations estimated during the first sea trial

compared to historical data.

The data is plotted as in figure 6.8 with the

addition of the mean estimate of the bubble population from the second sea

trial (horizontal bars). The error bars indicate the minima and maxima of the

neasurements.
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The position of the peak is determined by the balance between the rate at
which bubbles are removed from the water column by dissolution of gas and
buovancy. In the surf-zone the turbulent forces caused by breaking waves
must also be considered in this balance and hence may shift the position of
the peak. The presence of a peak in the data was not apparent in the data
collected during the first sea trial. Two possible explanations may exist for
this: 1) the peak existed during the first sea trial but was at a radius outside
the range of bubble radii assessed or 2) the peak existed within the measured
radil but was obscured during the inversion process due to the small radius
range of the measurement.

Secondly the small peak in the distribution at 60 ;n and the rise in
the bubble numbers above 93 jun. Examination of figure 6.6 reveals similar
trends in the raw attenuation data at the corresponding frequencies. This
indicates that these features are not products of the inversion process but
are either related to systematic errors in the measurement system or are
representative of the actual population. It should be noted that while no
other population displays a similar peak at 60 ;zm. a secondary peak is shown
in the population measured by Phelps & Leighton [45] at 119 pm. Finally
the wide errorbars on the new data (which show the maxima and minima of
the measured data) can be attributed by the randomization of measurements

within the wave-breaking cvcle.

6.3 Nonlinear analysis

Having performed the current state-of-the-art (linear) analysis on the data
collected during the second sea trial. a comparison will now be made be-
tween the results already achieved and those obtained using the nonlinear
techniques outlined in chapter 3. The matrix of bubble responses was re-
calculated using the nonlinear extinction cross section based upon pressure-
volume loops as described in section 3.2. This calculation was extremely

computationally intensive since a numerical solution to the Herring-Keller
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Figure 6.9: A spectogram plot of power spectral density (arbitrary reference)
calculated for the radius time history of a 106 um bubble being driven at 30987
Hz and 7.95 kPa. Significant energy is present at higher harmonics, indicating
a departure from the monochromatic, linear regime. The drive frequency,
which is close to the bubble fundamental during steady-state (200-500 us), is
lower than the bubble pulsation natural frequency, which can be seen both

during ring-down (>500 us) and the transient period.

equation (equation 1.34) had to be found for each element of the matrix.
Because of this two simplifying assumptions were made. These were, that
the all the bubbles were driven by the same pressure amplitude i.e. the
medium was modelling using a single layer, and that the bubbles responded
at steady-state. Despite these simplifications a small (ten-by-ten) matrix still
took over 24 hours to calculate using a 1 GHz Pentium IV PC with 512 MB
of RAM. Neither of the assumptions made are inherent in the technique.
Figure 6.9 shows the frequency response of a 106 pm bubble driven close
to resonance by the peak sound pressure level used during the trial (7.95
kPa). As can be seen the response is non-monochromatic and therefore some
difference between linear and nonlinear estimates of the bubble population

might be expected. Despite this violation of the assumption of monochro-
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Figure 6.10: Linear and nonlinear estimates of the number of bubbles per
cubic metre of sea water, per um increment in radius. Each colour corresponds
to the appropriate attenuation measurement in figure 6.6 (for clarity a subset
of the data is shown). For a given colour, the dotted curves show the bubble
population obtained by applying the state-of-the-art inversion to the acoustic
data. The solid curve of the same colour show the population obtained when
the same acoustic data is inverted using the new theory. Hence the solid
curves present, for the first time, bubble populations obtained by an inversion
which does not assume linear monochromatic conditions. The void fractions

are around 5 x 1078,

matic linearity, the bubble populations estimated using both linear and non-
linear methods show little difference (see figure 6.10). This indicates that
the driving pressure used (7.95 kPa zero-to-peak) was insufficient to cause a
significant difference between the two estimates of bubble population.

The effects of increasing the amplitude of the driving signal are illumi-
nating and illustrate the potential benefit that can be gained by including
bubble nonlinearity in an estimate of bubble population. A single bubble

population, calculated using the linear kernel, was used as the basis for the
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Figure 6.11: Steady-state attenuation calculated using a single bubble pop-
ulation taken from figure 6.7 as a basis. The calculation is performed using
the linear formulation of Commander & Prosperetti (solid line) as well as the
new nonlinear formulation assuming different driving pressures; 100 Pa (dot-
ted), 20 kPa (dashed) and 50 kPa (dash-dot). The 100 Pa nonlinear solution
(dotted) almost overlies the linear solution (solid). Note that the lines do not
imply data across a continuum of frequencies: the calculation is performed at
the ten specific pump frequencies used in the experiment (indicated by arrows
at the top of the figurc). Since these frequencies were chosen to give even

point spacing in radii, the spacing of points is sparse at high frequencies.

calculation of attenuation. This linearly calculated attenuation was then
compared with attenuations calculated using the new. nonlinear kernel. mak-
ing the assumption that the driving pressures were 100 Pa. 20 kPa and 50
kPa (zero-to-peak). Linear mathematics would predict that the attenuation
is independent of the driving amplitude. Figure 6.11 shows that the low
amplitude, nonlinear solution is indistinguishable from the linear solution.
However, as the driving amplitude increases the attenuation experienced by

the pressure wave decreases. These higher amplitudes are easily achievable
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Figure 6.12: A sixty micron bubble driven by a semi-infinite pressure wave.
(a) The approximation to the contour integral shortly after the onset of oscilla-

tion and (b) evaluation of the contour integral during steady-state oscillations.

by many commercial and military ocean acoustic systems [3]. Examination
of the figure shows that nonlinear effects begin to become significant with
driving pressures in excess of 10 kPa and it is at these pressures that the
calculation of the nonlinear effects becomes increasingly important. If higher
driving pressures tend to produce lower-than-expected attenuations, the bub-
ble population inferred by a purely linear system may be an underestimate.

In addition to the amplitude dependency shown above, the new technique
is also capable of indicating time dependent effects. A similar process to
that described above was used, whereby a single bubble population taken
from figure 6.7 was used as the input into a forward problem which was
then solved using the nonlinear technique. In order to incorporate the time
dependent element, the bubble cloud (again treated as a single layer) was
exposed to a semi-infinite driving pulse. The contour integral formed by
each consecutive pressure-volume loop was summed before dividing by the

number of loops undertaken in order to determine the average extinction
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Figure 6.13: Averaged attenuation per cycle calculated for different pulse
lengths and amplitudes. Each graph shows the effect of increasing pulse length
for a fixed driving amplitude. Note that as the pulse length increases the
attenuation tends toward the steady state solution of figure 6.11 (black line).
The driving amplitudes used are (a) 100 Pa (b) 20 kPa and (c) 50 kPa. As
with figure 6.11 the data are plotted at ten discrete frequencies corresponding
to a linear spacing of bubble radii and hence there are few data points at high

frequency.

cross section per cycle as a function of the number of cycles. Shortly after
the onset of oscillation, where, due to the erratic behaviour of the bubble,
closed loops are not formed, the contour integral was approximated by closing
the loop with a straight line (see figure 6.12(a)). Such approximations are
minimized during the steady state period of oscillation (figure 6.12(b)).

In order to explore fully the behaviour both as a function of time and
amplitude the time-dependent forward problem was solved for three driving
pressures used above, at a range of pulse durations. The results are shown
in figure 6.13 and shows, as expected, that as the number of cycles increases

the attenuation tends towards the steady state solution shown in figure 6.11.



CHAPTER 6 1

(9}
o

More detailed examination of the data indicates some interesting effects. The
attenuation experienced by a 1 or 2 cycle pulse is low and is largely unaffected
by the amplitude of the pulse. The low amplitude (100 Pa) data shows a
steadily increasing attenuation from the very short pulses to the steady state
solution. Qualitative examination of the 20 kPa data seems similar to the
100 Pa data. however it should be noted that the solution converges to the
steady state in a fewer number of cveles. The behaviour of the 50 kPa data
is more complex. and shows less dependence upon number of cycles. The
maximun attenuation is experienced by a five cycle pulse and. in this case,
the steady state solution shows the least attenuation at many frequencies.
Such investigations are of interest in a number of applications and have been
the subject of previous investigation [81 83]. However. as no data has been
collected to support such pulse length calculations they are included here
primarily to illustrate how time dependence mayv be included in the new
technique.

As discussed in section 2.3.2, in bubble clouds with high void fraction (a
scenario in which high amplitude pulses might be used) interactions between
bubbles can become important. In order to assess the magnitude of this
effect in bubble clouds of sufficiently high void fraction to necessitate the use
of high amplitude pulses, one of the populations from figure 6.7 has again
been selected for further analvsis. In this case. the population has been
scaled from its original void fraction of 5x 107% to void fractions of 1 x 1073,
1 x 10 * and 1 x 107, Figure 6.14 shows the attenuation calculated from
these scaled populations using both the standard linear formulation (equation
2.3) and Kargl's effective medium equation (equation 2.39). As can be seen
in the figure increasing the void fraction in excess of 1 x 107* would make
meastrements over path lengths O(1)m untenable. In this instance a short
path length (O(0.1)m) between source and receiver would have to be used
in conjunction with a high amplitude transducer with a short near/far field
interaction to ensure plane wave propagation.

Consider a cloud of bubbles with a size distribution that imparts the at-
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Figure 6.14: Attenuation predicted using both standard linear theory (solid)
and Kargl’s theory (dashed) that accounts for bubble-bubble interactions. A
typical bubble population from figure 6.7 is scaled up to void fractions of 1072,
107* and 1073, and compared to the attennation caused by the original void

fraction (5 x 107°).
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frequency | Difference due Difterence due
(kHz) to bubble to bubble
nonlinearity (dB) | interactions (dB)
28.5 3.3 8.4
31.5 1.4 1.5
35.1 0.1 0.3
39.7 1.3 0.2
45.7 2.2 0.2
53.9 4.5 6.4
63.7 1.3 0.6
84.2 4.1 2.2
117.4 6.8 6.6
195.0 0.5 0.1

Table 6.1: The difference in attenuation due to bubble interactions and
bubble nonlinearity for a cloud with a void fraction of 1 x 10™* driven by a 50

kPa plane wave.

tenuation shown by the 1 x 107* curve in figure 6.14. Let us assume that
the bubble cloud is excited by a plane wave with amplitude 50 kPa and
that the attenuation through the cloud is calculated using the standard lin-
ear formulation. The relative importance of bubble interactions and bubble
nonlinearity can be assessed by the difference between that attenuation and
either the attenuation calculated using the Kargl's equation or the new non-
linear formulation respectively. As can be seen in table 6.1. at this driving
pressure the magnitudes of the two effects are similar. However, for the
surf zone data presented earlier in the chapter. both the void fraction and
the driving pressure were below the threshold where such effects begin to
become significant and thus these terms can safely be neglected.

Kargl's formulation of the effective wavenuinber suggests, for the first

time, a means of including the effect of bubble-bubble interactions in an



CHAPTER 6 155

inverse estimate of the bubble population. The iterative approach used by
Kargl requires knowledge of the bubble population in order that the radia-
tion damping term may incorporate the effect of interactions. Therefore an
iterative approach to the inversion could also be adopted with respect to the
inverse estimate. The first pass would compute a population using the stan-
dard formulation of Comunander & Prosperetti (equation 2.3). Subsequent
passes would use the size distribution estimated during the previous pass as
an input into Kargl's equation (equation 2.39). The itcration process would
continue until the solution converged withiu an acceptable tolerance. Kargl’s
equation tvpically converges in less than ten iterations. Development of such
a scheme is recommended as an arca of future work.

It should not be thought that the use of bubble nonlinearity is only of
benefit in cases of high bubble void fraction. The ability to excite and exploit
time dependent nonlinear effects can be a valuable diagnostic tool in a wide
range of fields, not just the estimation of oceanographic bubble populations.
Other applications might included the enhancenent of signals from biomedi-
cal ultrasonic contrast agents or the detection of solid targets (such as mines)

in the surf-zone.

6.4 Summary

This chapter has presented the data from two sea trials carried out during
the course of this study. Analysis of data collected during the first sea trial
yielded the first ever estimate of the bubble size distribution at small radii in
the surf-zone. This data was compared with other historical measurements.
However. owing to the limited spectrum of bubble radii measured the re-
sult should be treated with caution. The second. more successful. sea trial
yielded more estimates of the bubble population in the surf-zone across a
much wider spectrum of radii. This initial analvsis was all performed using

the standard linear formulation described in previous chapters. The data

was then re-analysed using the new nonlinear technique developed in chap-
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ter 3. Unfortunately. the driving pressure (7.95 kPa) used during the trial
was insufficient to cause a significant change in the estimated bubble popu-
lation. The chapter then went on to demonstrate the changes in measured
attenuation that would be expected for higher driving pressures and showed
that the threshold where nonlinear effects begin to become important is 10
kPa. A demonstration of the capability of the new nonlinear technique to
model time dependent effects was performed. However no supporting data
was available to verify the results of the model. The relative importance
of bubble nonlinearity and bubble interactions in verv dense bubble clouds
(where high amplitude pulses might be used) was assessed and it was shown
that the magnitude of the two effects is similar in such circumstances. A
scheme was suggested that would enable the inclusion of bubble interactions
in a linear inversion based upon Kargl’s equation. This is recommended as
an area of further study. The chapter concludes by emphasizing that dense
clouds are not the only reason for modelling bubble nonlinearity and briefly
discussing some other techniques that may benefit from application of the

principles described within this work.



Chapter 7
Conclusions and discussion

This study has successfully made measurements of tlie bubble population in
the surf-zone. The measurements made herc add to the very sparse set of
measurements in this high-interest region. Of the other studies that have
attempted to make surf-zone measurements [7.20.44.45.84] only Phelps &
Leighton [43] and Deane & Stokes [44] have made measurements at distances
of less than 100 m from the water-line (the active region in which these
measurements were also made). Such measurements are of importance in
areas such physical oceanography and underwater acoustics. For example
knowledge of likely bubble populations is crucial in the design of systems to
detect solid targets in the surf-zone.

As part of the process of designing a system suitable for surf-zone mea-
surements. the key assumptions made in the current state-of-the-art theory
were examined. This highlighted the need for a new. time dependent, non-
linear model. Initially an attempt to derive an expression for the nonlinear
complex wavenumber was made. however this was shown to be flawed for
a number of reasons. Further consideration of the problem gave rise to an
expression of the nonlinear extinction cross section of a bubble in terms of
the loci mapped out by pressure-volume curves. The new model makes no
restrictive assumptions of steady state or linear oscillations and hence is ex-

pected to be suitable for use in a variety of problems. In the low amplitude
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limit the nonlinear extinction cross section was shown to converge with its
linear counterpart while high amplitude modelling exhibited the presence of
higher harmonics which are unaccounted for in conventional techniques. One
difficulty presented by the new technique is that it can be computationally
intensive. as the nonlinear equations of motion involved typically require nu-
nierical solution. In this study the Herring-Keller equation was chosen as it
imposes the fewest assumptions upon any solution. Even small keruels (10
by 10) took long periods to calculate. During this study it was decided to
model the bubble cloud as a single laver with the consequence that all the
bubbles in the cloud were assumed to be driven by the same pressure. This
neglected the effect of "layering” the bubble cloud and this is recommended
as an area for future study. Such an approach would allow the impact of
inhomogeneous bubble clouds to be assessed.

However, as computing power increases and more numerically efficient
methods of solving the nonlinear equations are found. the problem of long
computation tinmes will decrease. A particular strength of the technique
is that it 1s not specific to a particular equation to describe the response
of the bubble. Therefore the most appropriate equation for a particular
problem may be substituted in place of the Herring-Keller equation. An
example might be in the use of echo-contrast agents in biomedical ultrasound
[65]. If an equation of motion could be formulated for the volume of an
oscillating bubble passing through a capillary vein (a situation in which free
field conditions would certainly not apply) then that equation could be used
as the basis for the extinction cross section. As can be seen. while the new
model was formulated for the specific problen of measuring surf-zone bubble
populations. it can be applied to a wide range of problems.

Unfortunately the new model was formulated in the midst of the prepa-
rations for the second sea trial (described in chapters 5 and 6). This meant
that the necessary tools for evaluating the onset of the nonlinear response
were not available when designing the acoustic source. As a consequence the

driving pressures used in the trial were below the threshold where nonlinear
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effects have been shown to become important. Laboratory work to experi-
mentally verify the effects predicted by the model is recommended for future
work. Such work should investigate the amplitude and time dependence of
the attenuation through an artificial bubble cloud (as predicted in figures
6.11 and 6.13).

The effect of bubble interactions was assessed and was shown to become
important at void fractions of around 1 x 107*. This corresponds with atten-
uations of O(100) dB and hence is a situation in which high driving pressures
are likely to be required. Assuming a driving pressure of 30 kPa, the mag-
nitudes of errors resulting from the neglect of bubble nonlinearity or bubble
interactions were shown to be similar. A method of incorporating bubble
interactions in a linear inversion was suggested and again is a recommended
area of further study. Other areas of related research that may be of interest

but have not been discussed in great detail include:

o The effect of over-determining the svstem of equations. In this study
the kernel matrix has been square i.e. the number of frequencies was
equal to the number of bubble radii under consideration. This is not
a requirement for solution of the inverse problem and there may be

benefit in basing the inversion upon a rectangular matrix.

e Singular value analysis of matrices of bubble response. Performing sin-
gular value decomposition upon the matrix of bubble responses enables
the eigenvalues and eigenvectors of the matrix to be determined. Anal-
vsis of these values may provide valuable insights into the structure of

the matrix and allow improved results to be inverted using it.

e A suitable method of measuring phase speed. No such method was
found during the course of this studv but might vield superior results
to an attenuation based inversion due to improved resilience to noise.
In addition the concept of complex valued kernels could be further

investigated.
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An expanded set of surf-zone measurements across a broader range of
bubble radii in a variety of surf-zone conditions would be a valuable

addition to the sparse data from this important region.

Further work on the use of broadband pulses. expanding on the work
of Terrill & Melville [20]. would be of benefit and may help investigate

formation of bubble clouds.

Consideration of the nonlinear, time-dependent response of a bubble
may vield enhancements in the penetration of bubble clouds using ac-

tive sonar. This would be of benefit in a number of applications.

The use of nonlinear. time-dependent pulses may assist in distinguish-
ing solid targets in the surf-zone from bubbles. Proposals for such

exploitation of nonlinear effects have been made by Leighton [83].

The ultimate aim of both of the trials conducted during this study
was to attempt to characterize the surf-zone bubble population using a
number of different techniques. This would provide independent verifi-
cation of the measured size distribution and. since diffcrent techniques
employ different assumptions, would allow the extent to which any of
these assumptions have been violated to be assessed. Unfortunately in
both instances only the inverse measurements detailed here were suc-
cessful and hence no such checks could be performed. A fully successful

experiment of this nature would be of significant interest.

This study has yielded a number of results that might be considered an

advancement of the field. These include

o

. A new nonlinear forinulation of a bubble’s extinction cross section.

The estimation of bubble populations in the surf-zone.

. Application of a systematic method [49] of determining the optimal reg-

ularisation parameter to the inversion of matrices of bubble responses.
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4. Assessment of the relative importance of bubble nonlinearity and bub-

ble interactions.

5. An indication regarding the pressure threshold at which the affect of

bubble nonlinearity becomes significant.

6. Some observations regarding effective deplovment of apparatus in the
o O v

extremely hostile conditions presented by the surf zone.

Such advances contribute to our knowledge and understanding of the esti-
mation of the size distributions in bubbly environments and the propagation
of sound through those environments. The primary motivator for these stud-
ies has been to enhance the understanding of oceanographic processes and
also to provide the necessary science to enable the advancement of both mil-
itary and commercial sonar systems. It is hoped, however, that the science
laid down here may find many other applications in the increasingly diverse

field of bubble acoustics.
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