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Abstract 

 

Small delays and major disruptions are frequently encountered in rail passenger transport, 

which brings challenges not only to railway timetabling and operations but also to timetable-

based passenger information. This thesis is aimed at identifying the unresolved problem(s) in 

the existing pre-trip timetable information systems and at developing a set of novel 

algorithms and analytical models to enhance the pre-trip timetable information about and the 

understanding of those transfer-involved routes within a national-level railway network. 

Specifically, it tries to answer the following four inter-related questions: i) which transfer-

involved routes are the weaknesses in terms of pre-trip timetable information, among the 

numerous origin-destination pairs; ii) how to develop an effective and easy-to-implement 

approach to coping with these weaknesses; iii) how to quantify and know in advance the 

potential effect of a specific information improvement strategy; and iv) what are the potential 

factors that render some of the transfer-involved routes particularly vulnerable to delays and 

disruptions.  

 

Since the research touches on multiple disciplines, the relevant concepts in railway 

timetabling and operations, journey planning algorithms, statistical analysis, and decision 

theory are firstly introduced. Built on these fundamentals and an introduction to the concepts 

of critical transfers and critical routes, a screening algorithm is developed that is able to 

efficiently identify those transfer-involved rail routes that may be particularly vulnerable to 

delays and disruptions and may need information enhancements. After that, by reviewing the 

pros and cons of existing methods, a novel historical-data-driven algorithm is developed to 

deal with those weaknesses in terms of pre-trip timetable information. In order to obtain a 

more precise estimation of the potential effect of a particular information enhancement 

strategy, an analytical framework is developed that is able to evaluate a specific strategy ex 

ante. The underlying assumptions are presented and the potential limitations are discussed. 

All of the algorithms and models presented in this thesis have been extensively tested by 

exploiting the open data from British railways, the results of which are promising in terms of 

efficiency and effectiveness. Some interesting findings are presented about British railways, 

followed by a discussion of potential directions in future research.  
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Glossary 

 

Note: Only those frequently encountered terminology and symbols are listed here. 

 

Terminology 

AW: is short for actual window, which represents the time window between the actual 

(/recorded) arrival of a feeder train and the actual departure of the corresponding 

connecting train.  

Critical Transfer: an introduced concept which can be roughly described as a highly risky (in 

terms of probability and consequence) transfer plan that is (to be) recommended (by a 

journey planning system). 

Critical Itinerary: an extension of the concept of critical transfer, corresponding to a whole 

journey between a given pair of origin and destination stations.  

Critical Route: involves at least one (generic) transfer, defined mainly in the context of pre-

trip information about recommended itineraries. The list of recommended itineraries 

(generated by a journey planning system) for a critical route is characterised by a high 

percentage of critical itineraries.  

CRF: is short for Critical Routes Finder, which is the developed screening algorithm 

(presented in Chapter 3) for efficiently locating those critical routes within a given 

railway network.  

CSA: is short for Connection Scan Algorithm, which forms the core of the self-developed 

journey planning simulator in this thesis.  

GTFS: is short for General Transit Feed Specification, which is a popular data format for 

exchanging transit information. The timetable data (i.e. the National Rail timetable data) 

adopted in this thesis is in GTFS format. 
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IPS: is short for Itinerary-oriented Performance Statistics, which can be viewed as the 

itinerary-level version of PPM (public performance measure). Moreover, IPS is also the 

name of a proposed algorithm in Chapter 4 (c.f. Algorithm 3 in Section 4.3). 

LAT: is short for latest-tolerable arrival time, which is a concept that is introduced in Section 

5.4 to serve as a boundary condition for determining whether the disutility of a 

particular passenger has been increased.  

MTT: is short for minimum transfer time, also called ‘connection time’ or ‘minimum 

connection time’ in the literature, representing the length of time that must elapse 

between the advertised arrival time of a feeder train and the advertised departure time 

of the connecting train within a railway station. That is, the connection between two 

trains is officially valid only if it satisfies the constraint of the corresponding 

‘minimum connection time’. In realistic railway timetabling and operations, MTT is 

often station-specific and is a heuristic measurement (a rough estimation) of a 

‘typical’ connection within a particular railway station.  

MUI: is short for most uncertain interval, which is network-specific and can be determined 

by analysing the big data about arrival delays within a given railway network. 

NTT: is short for net transfer time, which can be viewed as a connection-specific MTT. NTT 

is coined to emphasise the difference in granularity between MTT and NTT. 

PBPM: is short for Performance-Based Pre-Modification of advertised arrival times, which is 

the core algorithm proposed in Chapter 4. The involved technicalities can be found in 

Chapters 4 and 5. 

PBPM+: is an augmented version of PBPM, which could generate alternative itineraries 

when necessary.  

RPM: is short for Route-oriented Performance Measure, which can be viewed as an extension 

of PPM and IPS. RPM not only can be used to evaluate route-specific punctuality and 

reliability, but also can be used to quantify the impact of modified pre-trip information.  

RUM: is short for Route-oriented Utility Measure, which is devised to incorporate more 

realistic factors in evaluating the effectiveness of the proposed algorithmic solution to 

critical routes.  
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SW: is short for scheduled window, representing the time window between the scheduled 

arrival of a feeder train and the scheduled departure of its corresponding connecting 

train.  

TAL: is short for threshold for arrival lateness, which is an absolute standard that is adopted 

for determining whether an ‘average’ passenger choosing a particular itinerary has 

arrived at his/her destination station on time (based on the advertised arrival time).  

 

 

Abbreviations 

ATOC: is short for Association of Train Operating Companies, being a body that represents 

the 23 train operating companies that provide passenger services on the privatised 

British railway system. ATOC has been renamed Rail Delivery Group since October 

2016. 

BSB: denotes Bournemouth – Southampton Central – Brighton, one of the studied routes in 

Chapter 5. 

ECB: denotes Ebbw Vale Town – Cardiff Central – Birmingham New Street, one of the 

studied routes in Chapter 5. 

HMN: denotes Harwich Town – Manningtree – Norwich, one of the studied routes in Chapter 

5. 

ILM: denotes Ilkley – Leeds – Middlesbrough, one of the studied routes in Chapter 5. 

KWN: denotes Knottingley – Wakefield Kirkgate – Nottingham, one of the studied routes in 

Chapter 5. 

KYS: denotes London Kings Cross – York – Scarborough, one of the studied routes in 

Chapter 5. 

LMD: denotes Liverpool Lime Street – Manchester Piccadilly – Doncaster, one of the studied 

routes in Chapter 5. 

NRE: is short for National Rail Enquiries, which is the official source of customer 

information for all passenger rail services in Great Britain (excluding some of the 

urban rail services within Greater London).  
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P1: denotes observation Period 1 in the evaluations conducted in Chapter 5, corresponding to 

the relevant data records between 12 October 2015 and 4 December 2015. 

P2: denotes observation Period 2 in the evaluations conducted in Chapter 5, corresponding to 

the relevant data records between 25 January 2016 and 18 March 2016. 

P3: denotes observation Period 3 in the evaluations conducted in Chapter 5, corresponding to 

the relevant data records between 13 June 2016 and 5 August 2016. 

P4: denotes observation Period 4 in the evaluations conducted in Chapter 5, corresponding to 

the relevant data records between 3 October 2016 and 25 November 2016. 

P5: denotes observation Period 5 in the evaluations conducted in Chapter 5, corresponding to 

the relevant data records between 16 January 2017 and 10 March 2017. 

PPM: is short for public performance measure, which is the industry standard of British 

railways for measuring the punctuality and reliability of train services.  

RBH: denotes Rugeley Trent Valley – Birmingham New Street – Hereford, one of the studied 

routes in Chapter 5. 

RIL: is short for recommended itinerary list (c.f. Sections 4.3 and 4.4). 

RTT: is short for Realtime Trains, which is the source of those historical train movements 

data adopted in this thesis.  

RVT: is short for Route-View Timetable, which is the major data structure underlying the 

evaluations and analyses in Chapters 4 and 5.  

SML: denotes Sudbury (Suffolk) – Marks Tey – London Liverpool Street, one of the studied 

routes in Chapter 5. 

TOC: is short for train operating companies, representing those private rail operators of 

passenger routes within Britain’s railway network. 

 

 

Symbols 

arrs(·): represents the scheduled arrival time of a particular train service at a particular railway 

station. The two variants of this symbol – arr_s_XX and schr,p,j,k – have the same 

meaning with it. (c.f. Section 4.3, Section 4.5, Section 5.2, and Section 5.4) 
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arrm(·): represents the pre-modified (advertised) arrival time of a particular train service at a 

particular railway station. The two variants of this symbol – arr_m_XX and mdr,p,j,k – 

have the same meaning with it. (c.f. Section 4.3, Section 4.5, Section 5.2, and Section 

5.4) 

arra(·): represents the actual/reconstructed arrival time of a particular train/itinerary at a 

particular railway station. The two variants of this symbol – arr_a_XX and actr,p,j,k – 

have the same meaning with it. (c.f. Section 4.3, Section 4.5, Section 5.2, and Section 

5.4) 

deps(·): represents the scheduled departure time of a particular train/itinerary from a 

particular railway station. The variant of this symbol – dep_s_XX – has the same 

meaning with it. (c.f. Section 4.3, Section 4.5, Section 5.2) 

E(‧): represents the expected value (i.e. average/mean value) of a given variable/statistic (c.f. 

Section 5.3 and Section 5.5).   

jt0(·): represents the average journey time under the scenario in which there are no missed 

transfers (c.f. Section 4.3). 

jt1(·): represents the average journey time under the scenario in which there is exactly one 

missed transfer (c.f. Section 4.3). 

jtm(·): represents the pre-modified (advertised) journey time of a recommended itinerary (c.f. 

Section 4.3). 

δ(·): represents the average delay of the connecting train (of a recommended itinerary) at the 

destination station (c.f. Section 4.3). 

RPMs: represents the calculated RPM for a given observation period assuming that the 

unmodified pre-trip information is adopted about scheduled arrival times (c.f. Section 

5.3). 

RPMp: represents the obtained RPM for a given observation period assuming that the 

modified pre-trip information has been adopted about pre-modified arrival times 

(generated by the PBPM algorithm) (c.f. Section 5.3). 

ΔRPM: = RPMp – RPMs, representing the change (in RPM) the modified pre-trip information 

could have brought (c.f. Section 5.3). 
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tθ : is involved in Section 3.5, can be interpreted as the ‘latest tolerable arrive time’ of a 

feeder train, beyond which the corresponding transfer would be missed. Note that tθ 

should not be confused with the concept of LAT in Section 5.4. tθ is train-oriented, 

while LAT is passenger-oriented.  

Tj : is involved in the proposed algorithms in Chapter 4, representing a particular train service 

in a series of involved train services in a recommended itinerary.  
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Chapter 1 

Introduction 

 

1.1 Motivation 

 

Rail transport has a long history and is accessible to the public in most countries across the 

world. As a traditional sector and a natural monopoly, the rail industry has inevitably built 

itself an image of a relatively closed system lacking efficiency and often follows quite 

different development models in different countries. Rail transport in Britain, like that in 

many other European countries (e.g. Sweden, France, the Netherlands, etc.), takes a model of 

vertical separation of train operators and infrastructure managers to increase on-track 

competition (Kurosaki, 2008; Mizutani et al., 2014). Although this development path could to 

some degree improve on openness and cost efficiency, it increases the complexity of a 

railway system and brings increased difficulty in reconciling the various stakeholders (i.e. 

passengers, train operators, infrastructure managers, public authority, and the general public) 

(Kurosaki, 2008; Martin, 2014).  

 

One of the challenges currently faced by British railway and other intensely utilised European 

railways (e.g. Dutch and Swiss railways) is the prevalence of small delays as well as major 

disruptions (Figures 1.1 and 1.2). On the one hand, the rail demand is steadily increasing and 

the capacity utilisation is reaching its limit at critical parts (Network Rail, 2016a), which 

renders the rail network sensitive to delays and disruptions (i.e. the impact of a 

delay/disruption caused by some endogenous/exogenous factor could easily be spread across 

a large dispatching area). On the other hand, an extensive upgrading/renewal of rail 

infrastructure is expected to be a time-consuming process, following the current development 

path. In such a context, rail researchers in European countries (e.g. Denmark and the 

Netherlands) have been looking for, over the past decade or so, software solutions (e.g. 

advanced timetabling techniques that take into account robustness and stability, optimisation 
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models for capacity utilisation at bottlenecks, etc.) to the problem of delay and disruption 

management.  

 

 

Figure 1.1 Train delays Example One (Source: metro.co.uk, 12 Feb 2016) 

 

 

Figure 1.2 Train delays Example Two (photo shot on 28 Nov 2016, at Southampton Central 
Railway Station) 

 

In reality, however, theoretically optimal plans/schemes could not always be fully 

implemented due to various technical or political limitations. Take the timetabling process for 

example. Railway timetabling is a complicated process that needs to balance between many 

factors (e.g. easy-to-remember departure times at major stations, speed limits at different 

block sections, recovery times along long-distance routes, buffer times between conflicting 

train paths, etc.) and involves the collaboration between different train operators and between 

train operators and the infrastructure manager (Kroon et al., 2014; Network Rail, 2016a). 

Moreover, even if a theoretically optimal plan/scheme could be fully implemented, a globally 
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optimal solution could not guarantee local optimality (Goverde, 2014). That is, train delays 

cannot be thoroughly eradicated in a large railway system, for there will always be certain 

elements of the various operational processes that could not be fully optimised (Yuan and 

Medeossi, 2014). 

   

Observing that an extensive upgrading of rail infrastructure is almost unlikely to happen in 

the foreseeable future and that existing operator-oriented software solutions have their own 

limitations, this thesis tries to tackle the problem of delay and disruption management from a 

different angle and tries to provide a passenger-oriented software solution to deal with those 

blind spots over which current technologies have little control. A catalyst for generating the 

idea of adopting a passenger-oriented methodology is the so-called journey planning systems 

(Figure 1.3) that have been gaining popularity in the developed world over the last decade or 

so. 

 

 

Figure 1.3 National Rail Enquiries – an example of journey planning systems  
(Source: www.nationalrail.co.uk, accessed 29 Dec 2016) 

 

As an important interface between passengers and train operators, a journey planning system 

(e.g. National Rail Enquiries in Britain) usually offers a wide range of online services related 

to rail travel: from timetable-based itinerary planning to live disruption alerts, and from 

online ticketing to promotional information. The core functionality of a journey planning 

system is undoubtedly the itinerary planning part, for live disruption information and 

ticketing services can also be obtained later at railway stations. The demand for computer-

aided itinerary planning is especially significant for those long-distance and/or unfamiliar 

journeys (Farag and Lyons, 2008), and such a journey often involves one or more transfer 

activities en route. Due to the periodicity of the railway timetable, those recommended 
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itineraries (journey plans) are often cyclic and hence can be grouped by route. Compared 

with direct rail routes (lines), those long-distance, transfer-involved rail routes are more prone 

to delays and disruptions due to the additional risk of missed transfers. However, current 

technologies (i.e. algorithms behind those journey planning systems) have little control over 

the quality of the generated results (i.e. those recommended itineraries). The 

recommendations are derived from the underlying (planned) timetables, the quality of which 

is further dependent upon the timetabling techniques adopted. Unfortunately, due to the 

aforementioned reasons, no such perfect timetable design exists in reality that could absorb 

all perturbations in a railway network and is resistant to major disruptions in the network. 

Therefore, those long-distance and transfer-involved rail routes become a potential problem: 

journeys following such routes often need to be pre-planned with the aid of journey planning 

systems, but the quality of the pre-trip information about these journeys is often disregarded 

(i.e. the actual journey times and arrival times often significantly exceed their advertised 

counterparts).  

 

Table 1.1 Rail journeys in Britain: by purpose and frequency (Source: DfT, 2013) 

 

 

Although rail transport can be categorised as a minority mode (Preston, 2015; DfT, 2016a) 

and rail passengers choosing long-distance and transfer-involved routes are theoretically a 

minority group in Britain (DfT, 2016a; DfT, 2016b), these journeys cannot be ignored, for 

they are more likely to be infrequent non-commuting journeys and hence tend to be more 

elastic to the quality of rail services. Table 1.1 above provides a more tangible illustration of 

how British rail journeys are distributed on the dimensions of journey purpose and journey 

frequency, in which we can see that most non-commuting journeys are infrequent. Since 

punctuality/reliability has always been among passengers’ top concerns about rail services 

(Bates et al., 2001; ATOC, 2013; DfT, 2016b) and passengers’ experience of 

punctuality/reliability is increasingly dependent on the quality of information provided before 
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and during delays/disruptions (Lyons et al., 2008; Ben-Elia et al., 2013; van der Hurk, 2015), 

the potential gains (losses) from improving (disregarding) the quality of information about 

this particular group of long-distance and transfer-involved journeys will be non-negligible in 

the long run, considering the overall magnitude of daily rail travel (DfT, 2016b).  

 

 

1.2 Research question and objectives 

 

The main research question/problem of this thesis is as follows. 

 

How to exploit train movements data (train operation records) to develop an efficient and 

effective methodology for practical use to improve the pre-trip information about those 

critical transfer-involved routes within a national-level intercity rail (passenger) transport 

system, taking into account not only the constraint of capacity utilisation but also the 

interplay between the competitiveness (/attractiveness) of and the reliability 

(/punctuality/robustness) of the recommended itineraries? 

 

To answer this question, it is essential to have an in-depth understanding of the characteristics 

of the accessible train movements data (mainly about Britain’s passenger rail system in this 

thesis), to study the state-of-the-art pre-trip information systems/prototypes/algorithms and 

identify the gap between the existing solutions/ideas and a reasonably good solution to the 

research problem, and to develop an effective and practicable solution based on a 

comprehensive grasp of the relevant issues and concepts from a variety of disciplines and 

prove its advantages over the existing ones through quantitative and/or qualitative analyses.  

 

More specifically, this research comprises the following four objectives. 

 

1) Formulate the problem of pre-trip timetable information about those transfer-involved 

routes, and identify those weak points within the existing pre-trip information systems. 

 

2) Review the existing algorithmic solutions/ideas to tackle missed transfers, and 

identify the inadequacies of the existing methodologies and knowledge. 

 



6 

3) Develop an effective and easy-to-implement solution to the research problem, and 

develop an analytical framework that is able to quantify the quality (potential effect) 

of a given information enhancement strategy.  

 

4) Collect, analyse, and exploit real-world train movements data, and evaluate the 

developed solution approaches in terms of efficiency and effectiveness.  

 

 

1.3 Multi-disciplinary research 

 

The main body of this thesis involves/blends the concepts and methods from a number of 

different disciplines, and a thorough understanding of these fragmented but inter-related 

pieces of knowledge is vital to the understanding of the algorithms and models developed and 

presented in this thesis. More specifically, this thesis touches mainly on the following fields: 

 

- Algorithm Engineering: the design and implementation of the algorithms in this thesis 

cannot be achieved without an in-depth understanding of the algorithmic-level 

mechanisms of current journey planning systems, or without a mastery of the various 

programming techniques. 

 

- Probability and Statistics: the information enhancing algorithm and the analytical 

framework are historical-data-driven and involve statistical analyses. Knowing about 

the principles and underlying assumptions of Statistics may facilitate the 

understanding of the technicalities of the relevant models and algorithms.  

 

- Mathematical Optimisation: although not directly involved, the understanding of the 

optimisation techniques behind railway timetabling and journey planning is necessary 

for the understanding of this thesis. 

 

- Railway Engineering: good knowledge of rail-related devices and daily operational 

practices could help better understand the screening algorithm and the statistical 

analyses. 
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- Data Science: the screening algorithm and the analytical framework involve massive 

data processing, which requires advanced programming skills to control the 

computational complexity. 

 

- Decision Theory: the analytical framework introduces a series of assumptions on 

passengers’ choices, and it is necessary to have a good understanding of the basics of 

Decision Theory. 

 

In order to facilitate the understanding of the main body of this thesis, a concentrated 

introduction to the fundamentals of the relevant disciplines is to be presented in Chapter 2.  

 

Engineering problems are often quite complicated. In the remainder of this thesis, the reader 

may find it full of technicalities and pieces of terminology borrowed from different 

disciplines, which renders it not that readable. This is, however, not surprising – a relatively 

straightforward idea does not mean an equally simple implementation in reality. Cross-

disciplinary cooperation is not as easy as imagined – the trend of persistent specialisation1 

seems to be pushing professionals of different fields away from each other. In fact, previous 

studies (e.g. Porter and Rafols, 2009) have shown that inter-disciplinary cooperation 

nowadays is largely limited to neighbouring fields. Therefore, policy makers in the rail sector 

should think about how to design a sustainable mechanism to truly strengthen inter-

disciplinary cooperation between the various departments of the rail sector.  

 

 

1.4 Thesis structure 

 

The main body of this thesis is composed of seven chapters. Following this general 

introduction in Chapter 1, Chapter 2 presents a concentrated introduction to the fundamentals 

of the relevant disciplines.  

 

Chapter 3 formulates the problem of pre-trip timetable information about those transfer-

involved routes by introducing the concepts of Critical Transfers and Critical Routes, and 

                                                             
1 http://undsci.berkeley.edu/article/modern_science 
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presents details about an efficient screening algorithm that has been developed (and tested on 

British timetable data) to identify those Critical Routes within a given railway system.  

 

Chapter 4 contains a review of the existing algorithmic approaches to enhancing pre-trip 

timetable information, and details a historical-data-based algorithmic approach that is tailored 

to tackling Critical Routes. Real-world examples in British railways (e.g. the route 

Bournemouth  Southampton  Brighton) are also presented in this chapter to illustrate 

why the proposed approach is more able (compared with the existing algorithmic approaches) 

to deal with Critical Routes.   

 

Chapter 5 describes an analytical framework that is specially developed to quantify the 

impact of information enhancement strategies and conduct ex-ante analysis of those 

identified Critical Routes. The underlying assumptions are systematically sorted out, 

followed by a small fictitious example that is employed to illustrate the intermediate 

calculations. After that, the results and their implications are presented from a number of case 

studies of the identified Critical Routes in Britain’s passenger rail system. A detailed 

introduction to the data utilised and the considerations in parameter selection are firstly 

presented, followed by the obtained results and the key findings from these case studies. 

 

Chapter 6 concludes this thesis and recommends directions for further research. 
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Chapter 2 

Fundamentals 

 

2.1 Introduction 

 

This chapter is intended to provide a concentrated introduction to the fundamentals of several 

different disciplines, from which the algorithms and models presented in subsequent chapters 

are designed and developed. Instead of ambitiously pursuing rigor and comprehensiveness, 

the writing of this chapter strives for clarity and conciseness. Unlike those encyclopaedic 

textbooks, this chapter tries to deliver just enough information about the most relevant 

concepts to this thesis.  

 

Sections 2.2 and 2.3 belong to the domain of Algorithm Engineering, in which the introduced 

concepts are closely related to the algorithms presented in Chapters 3 and 4. Section 2.4 

explains several key concepts in Probability and Statistics, the applications of which can be 

found in Chapters 3 – 5. Section 2.5 introduces the fundamentals of Railway Timetabling and 

Operations, which are essential to the understanding of Chapters 3 – 5. Section 2.6 elucidates 

several important concepts in Decision Theory, and they are mainly touched on in Chapter 5. 

Section 2.7 summarises this chapter. 

 

 

2.2 Graph Theory and Shortest-paths Problems 

 

This section introduces the relevant concepts in Graph Theory and Shortest-paths Problems, 

which are the theoretical foundation for the various Journey Planning Algorithms (to be 

introduced in the next section). The latter (i.e. the various Journey Planning Algorithms) form 

the core of current journey planning systems. For a more detailed picture of Graph Theory 

and Shortest-paths Problems, it is recommended to refer to Cormen et al. (2009) and Diestel 

(2010).  
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2.2.1 Graphs 

 

In Mathematics, a graph is defined as a 2-tuple (V, E) in which V represents a set of vertices 

(or nodes) and E is a collection of edges (or arcs) defining on set V the pairwise relationships 

between its member vertices. Two vertices u and v from set V are said to be adjacent if an 

edge e = (u, v) exists in E, and the two vertices are called end vertices of edge e. Also, we say 

a vertex v and an edge e is incident with each other if v is an end vertex of e. Two edges from 

collection E are called parallel edges if they have the same end vertices, and an edge e from 

E is called self-loop if its two end vertices are the same. Two non-parallel edges from 

collection E are called adjacent if they share a common end vertex. An edge e = (u, v) from 

collection E is said to be directed if the pair is ordered (u preceding v), otherwise it is 

undirected.  

 

We say a graph G = (V, E) is a directed graph (or digraph) if all edges in E are directed. 

Likewise, a graph with all its edges being undirected is called an undirected graph. A path p 

in a graph G is a sequence of adjacent edges <e1, e2, …,ek> where ei belongs to E for all i in 

the range [1, k]. When there are no parallel edges in G, a path P can also be represented as a 

sequence of adjacent vertices <v1, v2, …,vk, vk+1> where vi is the source vertex of ei for all i in 

the range [1, k] and vk+1 is the target vertex of ek. A graph is said to be weighted if each of its 

edges is associated with a weight, given by a weight function w: E → R (R represents the set 

of real numbers). 

 

2.2.2 Single-source shortest-paths problem 

 

Given a weighted digraph G = (V, E), the path weight of a path p in G is defined as the 

summation of the weights of its component edges. And a shortest path from a source vertex u 

to a target vertex v in G is any feasible path from u to v that has the minimum path weight. 

An important application of graph theory in transportation is a problem set called shortest-

paths problems, all of which aim to find shortest paths between certain pairs of vertices in a 

graph. Generally speaking, there are three categories of shortest-paths problems: single-

source shortest-paths problem, single-pair shortest-path problem, and all-pairs shortest-

paths problem. For different categories of shortest-paths problems, different types of 

algorithms can be applied to solve them. 
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Given a graph G, the single-source shortest-paths problem aims to find a shortest path from a 

certain source vertex s to every vertex reachable from s in G. This category is like a ‘baseline’ 

of all shortest-paths problems. To solve this category of shortestpaths problems, the solutions 

are different for different kinds of graphs. Given an unweighted graph G = (V, E) in which all 

of its edges have unit weights, the breadthfirst-search algorithm can be applied to solve this 

problem. It can be proven that breadth-first search is a linear-time algorithm with a time 

complexity of O(|V| + |E|) if the unweighted graph is implemented using adjacency lists.  

 

2.2.3 Dijkstra’s algorithm 

 

Given a weighted digraph G = (V, E) in which all of its edge weights are nonnegative, 

Dijkstra’s algorithm can work on it to efficiently solve the single-source shortest-paths 

problem. Since in the graph representation of transportation networks edge weights satisfy 

this nonnegative restriction, Dijkstra’s algorithm is frequently used to solve routing problems 

in transportation networks. Dijkstra’s algorithm can be classified as a label setting algorithm, 

which is characterised by scanning each vertex at most once in the execution of the algorithm. 

The runtime of Dijkstra’s is in O(|E| + |V|log|V|) if its constituent priority queue is 

implemented using a Fibonacci heap, and this bound can be further improved in some cases 

using well-designed data structures. 

 

2.2.4 Bellman-Ford algorithm 

 

If there are negative edge weights in a given weighted digraph G = (V, E), Dijkstra’s 

algorithm will no longer guarantee the correctness of the routing results. In this case, 

Bellman-Ford algorithm can be used to complete the task. Bellman-Ford is a label correcting 

algorithm, which means that each vertex may be scanned several times during an execution. 

The worst-case running time of Bellman-Ford is O(|V||E|), slower than Dijkstra’s, but can 

become competitive with Dijkstra’s in certain scenarios. 

 

2.2.5 Other members of the shortest-paths family 

 

The symmetric problem of single-source shortest-paths problem is the so-called single-

destination shortest-paths problem, which can be solved as a single-source shortest-paths 

problem by simply reversing the direction of each edge. 
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The single-pair shortest-path problem is aimed at finding a shortest path from a given source 

vertex s to a given target vertex t within a given graph G. This category of shortest-paths 

problems can be conveniently solved by applying one of the abovementioned algorithms 

designed for single-source shortest-paths problems, and the running time can be at least as 

fast as that of the counterpart in the single-source scenario. 

 

To find a shortest path from one vertex to another for each pair of vertices in a graph is the 

goal of the all-pairs shortest-paths problem. For a given graph G = (V, E), this category of 

shortest-paths problems can be solved either by repeatedly calling one of the algorithms 

designed for single-source shortest-paths problems, or by applying algorithms tailored for this 

category. The Floyd-Warshall algorithm is designed for solving all-pairs shortest-paths 

problems, and the runtime of this algorithm is in Θ(|V|3). It can be proven that for dense 

graphs, Floyd-Warshall runs faster than |V| calls to Dijkstra’s. Johnson’s algorithm is another 

tailored algorithm for all-pairs shortest-paths problems, and for sparse graphs this algorithm 

is asymptotically faster than both Floyd-Warshall and repeated execution of Dijkstra’s.  

 

 

2.3 Journey Planning Problems and Algorithms 

 

The various journey planning systems currently in use are driven by a family of mathematical 

models and algorithms called Journey Planning (or Route Planning) Problems and 

Algorithms, which forms an emerging branch of Algorithm Engineering that has been 

developing over the last decade or so. Although scientific knowledge about these algorithms 

remains rather fragmented, their applications (e.g. Google Maps and the various traveller 

information media) have been gaining popularity around the world due to the boom of 

Information and Communications Technologies (ICT). This section tries to extract from the 

large body of literature in this area the most relevant information about current journey 

planning technologies, and re-organise these pieces of knowledge in an easy-to-understand 

way.  
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2.3.1 The evolution of journey planning 

 

Traditionally, people plan routes/journeys manually using some kind of printed ‘travel 

guides’. These travel guides can take the form of roadmaps for car drivers or timetables for 

public transport riders. Routing manually can be an enjoyable experience if the traveller is 

time-and-cost-insensitive and just enjoys driving or riding. In other cases, this can be a time-

consuming process that relies heavily on the traveller’s past experience and the quantity and 

quality of travel information stored on those guides. Nowadays, with the development of 

information technology and computing techniques, traditional travel information carriers such 

as road maps, timetables, etc. can be digitally stored and integrated. The task of 

routing/journeying can therefore be efficiently performed on these digitalised transportation 

networks by computers equipped with well-designed journey planning algorithms, the core 

component of journey planning systems.  

 

According to Wagner (2015), the history of route planning algorithms in transportation 

networks can be categorised into five phases: I) Theoretical explorations (1959 – 1999); II) 

The emergence of speed-up techniques (1999 – 2005); III) The applications in road networks 

(2005 – 2008); IV) Towards more realistic scenarios in car & public transport (2008 – 2012); 

and V) New challenges on customisability, multimodality, etc. (since 2012). 

 

2.3.2 Modelling transport networks as graphs: road vs. rail 

 

If we model intersections as vertices and road segments as weighted edges, it would be 

convenient to convert a road map into a weighted digraph and hence one of the above-

mentioned shortest-paths algorithms could be applied on the converted digraph to compute 

shortest paths with respect to some chosen criterion (e.g. travel time). In rail networks (and 

other timetable-based public transport networks), in contrast, the application of graph theory 

and shortest-paths algorithms is not that straightforward. This is due to an important 

difference between road and rail networks: in most cases, road segments can be traversed at 

any time during a day, whereas track segments can only be traversed at discrete time points. 

In other words, timetables (corresponding to rail networks) often contain additional temporal 

information than roadmaps (corresponding to road networks) and this additional information 

needs to be taken into account when converting a timetable into a graph. 
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Abstractly, a timetable can be viewed as a 4-tuple (S, Z, C, D), where S is a set of stations, Z 

is a set of trains, C is a set of elementary connections, and D is a set of service dates. In this 

4-tuple, an elementary connection in set C is itself a 5-tuple (Zi, Sd, Sa, td, ta), which can be 

interpreted as follows: a train Zi departs the current stop station Sd at time td and arrives at the 

immediately next stop station Sa at time ta. At a given station Sj, a rail passenger can transfer 

from one train to another if and only if the time window between the arrival of the feeder train 

and the departure of the connecting train is no less than a predefined station-specific 

minimum transfer time τ(Sj).  

 

2.3.3 Time-Expanded Model vs. Time-Dependent Model 

 

Basically, there are two types of graph models in the literature to represent a timetable: time-

expanded model and time-dependent model. While both of them are well-studied in the 

literature, neither of them can be said a perfect representation of a timetable. In practice, they 

have their respective application areas and meanwhile they have their own limitations. 

 

The time-expanded model builds an event graph (or time-expanded graph) for a given 

timetable to ‘unroll’ time (Bast et al., 2015). In the basic version, departure events and arrival 

events are modelled as vertices and the relationships between events are modelled as edges 

(Schulz et al., 2000). In the realistic version, additional transfer vertices are introduced to 

incorporate minimum transfer times (Müller-Hannemann and Schnee, 2007; Pyrga et al., 

2004; Pyrga et al., 2008). An advantage of a time-expanded model lies in its flexibility and 

robustness in the application in multi-criteria optimisation (which will be explained later in 

more detail). A disadvantage of a time-expanded model is that the converted graph for a 

timetable is usually very large and hence consumes more storage space than other models 

such as the time-dependent model (Pyrga et al., 2004). In order to overcome this disadvantage, 

several techniques have been devised to compress the resulting graph (for more details about 

these techniques, please refer to Delling et al. (2009) and Pyrga et al. (2008)). 

 

Unlike time-expanded model, the time-dependent model does not create a vertex for each 

departure and arrival event but represents stations and/or routes as vertices and utilises 

complex edge weights to model timetable information. In the basic version, vertices represent 

stations and edges are associated with travel time functions to ‘encode’ departure and arrival 

times (Brodal and Jacob, 2004). In the realistic version, apart from station vertices, additional 
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route vertices are created to take into account minimum transfer times (Pyrga et al., 2008). 

The number of route vertices in the realistic version can be reduced by merging disconnected 

route vertices at a station into one (more details about this technique can be found in Delling 

et al. (2012)). The advantage of the time-dependent model is its low memory consumption 

compared with its time-expanded counterpart, but time-dependent graphs have a limitation 

that it is not easy to apply speedup techniques on a time-dependent framework in some real-

world applications due to the cumbersome edge weights (Berger et al., 2009). Figures 2.1 – 

2.3 give an illustration of how a timetable can be converted into a realistic time-expanded or 

time-dependent graph. 

 

 

Figure 2.1 An imaginary rail system consisting of only four train services (in which ‘service 
date’ can be thought of as ‘everyday’) 

 

 

Figure 2.2 The time-dependent graph constructed from the timetables in Figure 2.1 (there are 
five station vertices A, B, C, D, and E, and the other seven vertices are route vertices 
corresponding to the three routes A to C via B, B to D, and B to E. The two edges between a 
station vertex and a route vertex are transfer edges in which the solid edge is assigned a 
station-specific minimum transfer time for checking, and the dotted edge has no assigned 
weight and is only used to link vertices. The edge between two route vertices is a route edge 
with which a travel time function is associated. A travel time function maps, for each train 
traversing this edge, the departure time to the travel time.) 
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Figure 2.3 The time-expanded graph built from the timetables in Figure 2.1 [there are three 
kinds of vertices: departure vertices (e.g. Ad@9:30), arrival vertices (e.g. Ba@10:03), and 
transfer vertices (e.g. Bt@10:05). Each of these vertices corresponds to a specific event in the 
rail system. The edges between vertices have no weights and are only used for linking. Each 
departure vertex is associated with a transfer vertex with the same timestamp. While an 
arrival vertex can be directly linked to a departure vertex of the same train, it has to be linked 
to a transfer vertex with the restriction of a predefined minimum transfer time if a transfer 
(between two trains) happens.] 
 

 

It should be noted that Bast and Storandt (2014) have recently proposed a new graph model 

called frequency-based model, which builds on the time-dependent framework and exploits 

the periodicity of public transport systems to compress the resulting graph. This model can be 

viewed as a relatively independent category (Bast et al., 2015).  

 

2.3.4 Array-based models 

 

Although it is natural and convenient to model road (car) networks as graphs, graph models 

(time-expanded/time-dependent) are computationally expensive in dealing with rail 



18 

(timetable) networks, especially when the information provider has limited computing 

resources. In order to reduce computational complexity, a series of array-based models have 

been developed over the past few years, which act as alternatives to graph models. 

Representative algorithms that adopt array-based models are CSA (Connection Scan 

Algorithm) and RAPTOR (Round-bAsed Public Transit Optimized Router), both of which 

explicitly exploit the characteristics of public transport systems and convert expensive graph 

searching into operations on simple arrays. Further details about CSA and RAPTOR can be 

found in Dibbelt et al. (2013) and Delling et al. (2014b).  

 

2.3.5 Earliest Arrival Problem and its solutions 

 

With graph models and array-based models at hand, various journey planning problems in 

timetable networks can be effectively solved by applying the variants of shortest-paths 

algorithms on these models. Journey planning in timetable networks has three problem 

variants: earliest arrival problem, range problem, and multi-criteria problem. 

 

The earliest arrival problem can be regarded as a benchmark. It can be roughly described as 

follows: given a query (s, t, τ) in which s is the source station, t is the target station, and τ is 

the planned departure time, how to find a journey (i.e. a sequence of trips and footpaths in 

chronological order) that departs from s no earlier than τ and arrives at t as early as possible. 

A query like this is often called a time query or earliest arrival query. For time queries, travel 

time is the only optimisation criterion considered. And since travel times between two 

stations are inherently nonnegative, the aforementioned Dijkstra’s algorithm can be 

conveniently applied on a converted graph to answer this kind of queries.  

 

When adopting the time-expanded approach, the corresponding algorithm is called time-

expanded Dijkstra (TED). Likewise, time-dependent Dijkstra (TDD) refers to the underlying 

graph model is of the time-dependent form. Although the application of Dijkstra’s algorithm 

on time-expanded graphs is straightforward, the application on time-dependent graphs needs 

some augmentation and additional requirements on edge weights (i.e. nonnegative and FIFO 

(first in, first out)) should be satisfied (Orda and Rom, 1990; Orda and Rom, 1991). Based on 

the observation that time-expanded graphs are inherently DAGs (Directed Acyclic Graphs), 

the Topological Sort algorithm (see e.g. Cormen et al. (2009) for more details) can be applied 

to answer queries in linear time (its time complexity Θ(|V| + |E|) is faster than Dijkstra’s 
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algorithm) (Mellouli and Suhl, 2006). A larger speedup can be achieved by adopting some 

array-based algorithms such as CSA (Dibbelt et al., 2013). 

 

2.3.6 Range Problem and its solutions 

 

The range problem can be described as follows: given a query (s, t, [τ1, τ2]) in which s is the 

source station, t is the target station, and [τ1, τ2] is the range of planned departure times, how 

to find a set of journeys with minimum travel times that departs from s within the given time 

interval. A query of this form is often called a profile query. Variants of Dijkstra’s algorithm 

can be applied on a time-dependent graph converted from a given timetable to solve this type 

of problems (cf. Dean (1999), Delling et al. (2012), and Nachtigall (1995)). The frequency-

based model (Bast and Storandt, 2014) and CSA (Dibbelt et al., 2013) can also be extended to 

solve range problems. 

 

2.3.7 Multi-Criteria Problem and its solutions 

 

Unlike the earliest arrival problem and the range problem, the multi-criteria problem 

considers additional optimisation criteria (e.g. number of transfers, monetary cost, etc.) 

besides travel time. Given a query (s, t, τ) in which s and t are source and target stations and τ 

is the planned departure time, the multi-criteria problem asks for a Pareto set of mutually 

non-dominated journeys in terms of the chosen optimisation criteria. We say a journey J1 

dominates another journey J2 if and only if J1 is better with respect to at least one criterion and 

no worse with respect to the other criteria. 

 

Although early studies (e.g. Hansen (1979)) have shown that a Pareto set can contain 

exponentially many results even when only two optimisation criteria are considered, the 

number of solutions in a Pareto set is often much smaller in real-world public transport 

journey planning due to the fact that there are often correlations between different 

optimisation criteria (Bast et al., 2015; Dibbelt et al., 2013; MüllerHannemann and Weihe, 

2001). For example, Layered Dijkstra algorithm can be applied on a time-dependent 

timetable graph to convert a bicriteria optimisation (i.e. travel time and number of transfers) 

into a single-criterion (i.e. travel time) optimisation, which exploits the correlation between 

the two optimisation criteria: travel time and number of transfers (Brodal and Jacob, 2004; 

Pyrga et al., 2008).  
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For multi-criteria problems with additional optimisation criteria (apart from travel time 

and number of transfers), Multi-criteria Label-Setting (MLS) algorithms (cf. Demeyer 

(2013), Disser et al. (2008), and Müller-Hannemann and Schnee (2007)) or MultiLabel-

Correcting (MLC) algorithms (cf. Dean (1999) and Delling and Wagner (2009)) can be 

applied on a converted timetable graph to solve them. Apart from MLS and MLC, other 

model-specific algorithms can also be applied to solve the multi-criteria problem. Bast and 

Storandt (2014) extend their query algorithm to incorporate number of transfers as an 

additional optimisation criterion by adopting the proposed frequency-based model. Moreover, 

the basic version of RAPTOR includes travel time and number of transfers as optimisation 

criteria, and additional criteria can be added by adopting the multi-criteria version 

(McRAPTOR) (Delling et al., 2014b). 

 

 

2.4 Related concepts in Probability and Statistics 

 

Probability and Statistics are two interrelated disciplines: the former places more emphasis on 

theory while the latter assigns more weight to applications. Although these two fields have 

long been regarded as an essential part of modern science, there remain important 

controversies within them (de Elia and Laprise, 2005; Hájek, 2012). This section is not aimed 

at providing a comprehensive introduction to these two highly developed fields, but tries to 

focus on an introduction to one of the popular theories in Probability and Statistics that is 

adopted in this thesis.  

 

2.4.1 Classical probability 

 

The concept of probability is one of the essential tools of statistics, which can be traced back 

to the 17th century in the studies of games of chance. Throwing a dice, tossing a coin, and 

drawing a card are examples of games of chance, which are characterised by an uncertain 

outcome in a trial.  

 

Although the outcome of each particular trial is uncertain, it is recognised that there exists a 

predictable long-term outcome. For example, in a large number of trials of tossing an ideal 
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(i.e. well-balanced and symmetrical) coin, heads will turn up in about one half of these trials. 

This estimation/prediction of the percentage of heads in a number of trials/experiments can 

be obtained a priori before these trials have been actually conducted: since only one of the 

two outcomes (a head or a tail) can be obtained in a single toss of a coin, and since the coin is 

unbiased (symmetrical and well-balanced), equal chances would be expected of obtaining a 

head and obtaining a tail. The above reasoning can be formally recapitulated by the following 

classical definition of probability (Mood, 1974): 

 

If there are n possible outcomes resulting from a random experiment and these n 

outcomes are mutually exclusive and equally likely, and if nA of the n possible outcomes have 

an attribute A, then the probability of A is the fraction nA/n.  

 

In this definition, the key words are ‘mutually exclusive’, ‘equally likely’, and ‘random’. 

Although these conditions can be satisfied in such games/experiments as throwing a dice, 

tossing a coin, and drawing a card, they are not applicable in many other situations. The 

classical definition of probability tends to be unable to deal with an infinite number of 

possible outcomes (e.g. what is the probability that a randomly chosen integer be even?) and 

those scenarios in which the concepts of ‘symmetry’, ‘equally likely’, etc., are not applicable 

(e.g. what is the probability that a child born in the United Kingdom will be a girl?). Since 

these scenarios are frequently encountered in reality but their results cannot be obtained 

purely by deductive reasoning, the classical definition of probability needs to be extended to 

accommodate them.  

 

2.4.2 Relative frequency 

 

One solution to the limitations of classical probability is the so-called relative frequency (or 

empirical probability), which is based on actual observations.  

 

The restrictions exerted on classical probability such as equipossible outcomes and symmetry 

are relaxed, and hence relative frequencies can no longer be determined a prior before the 

experiments have been actually conducted. That is, relative frequencies can only be obtained 

a posterior after empirical evidence has been collected. For example, a tossed coin is no 

longer viewed as absolutely symmetrical and balanced from the perspective of relative 

frequency: there always exist uncontrollable flaws in the manufacturing of a coin, and hence 
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a head and a tail are no longer equally likely to happen. In this scenario, a number p can still 

be assigned to the event of a head as its probability, but this value p cannot be determined by 

the classical definition. Only the frequency approach can be applied in such a scenario to 

obtain an estimation/approximation of the value p by a large number of repeated trials and 

observations (Mood, 1974; Papoulis, 1991).  

 

2.4.3 The law of large numbers 

 

An implicit assumption underlying the frequency approach is the law of large numbers 

(LLN). LLN is an important theorem in probability theory and is one of the most important 

principles employed in statistical analysis, which can roughly be described as the law that the 

arithmetic mean of the results obtained from a large number of experiments almost surely 

converges to the expected value as the number of repeated trials approaches infinity (Mood, 

1974; Grinstead and Snell, 1997).  

 

In the context of relative frequency, LLN implies that as long as the sample of observations is 

sufficiently large, the relative frequency of a particular event is approximately equal to the 

probability of the event. Here, ‘sufficiently large’ means the sample is large enough so that 

extreme values cancel each other out. It should be noted that another underlying assumption 

of relative frequency is also important: the experiment from which the observations are 

obtained should be repeatable. That is, the experiment should be able to be repeatedly 

conducted under the same (or quite similar) conditions. The reason why this underlying 

assumption (of the frequency approach) should be carefully taken into account is further 

explained in Chapter 3. 

 

2.4.4 Other interpretations of probability 

 

Although widely applied in engineering and scientific research, the frequency approach is 

only a branch of probability theory: there are many other interpretations of probability that 

cannot be ignored. These include logical probability, subjective probability, and propensity 

(Hájek, 2012).  Although each of these interpretations (including the classical and frequency 

interpretations) seems to be able to capture some crucial insight into the probability concept, 

none of them is flawless. Therefore, it may be more appropriate to treat these different 

interpretations as complementary. 
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Generally speaking, the major controversies between these different interpretations lie in 

whether probabilities ‘live in the world’ or ‘live in the mind’ and to what extent probabilities 

are objective/subjective (Parmigiani and Inoue, 2009). In terms of generality, classical 

probability is the narrowest due to the strict restrictions placed on symmetry and 

equipossibility, subjectivism is the widest, and frequentism lies in between placing moderate 

restrictions on repeatability and randomness (Figure 2.4).  

 

It should be noted that the perspective of frequentism (i.e. the frequency interpretation) is 

adopted throughout this thesis.  

 

 

Figure 2.4 The generality of typical interpretations of probability 

 

 

2.5 Fundamentals of railway timetabling and operations 

 

Railway systems are highly complex systems that require the cooperation of various parties 

(e.g. passengers, train operators, infrastructure managers, public authority, and the general 

public) and involve a large number of interdependent production processes (e.g. line planning, 

timetabling, dispatching, track maintenance, passenger information, etc). This section is not 

aimed at providing a detailed and comprehensive introduction to all aspects of railway 

systems. Instead, it tries to provide an introduction to the key concepts in railway timetabling 

and operations that would help the understanding of the algorithms presented in subsequent 

chapters.  
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2.5.1 The hierarchy of railway planning processes 

 

In order to guarantee smooth daily operations, a railway system needs to be carefully planned 

in advance. Railway planning involves a series of interrelated steps from demand estimation 

to real-time traffic control, and these steps can generally be categorised into three stages: 

strategic planning, tactical planning, and operational planning (see Figure 2.5). These steps 

are, however, not strictly separated and can influence each other. Note that this section is 

focused mainly on passenger transport.  

 

 

Figure 2.5 The hierarchy of railway planning [Source: Author. Based on the relevant 
literature including Goverde (2005), Huisman et al. (2005), Watson (2008), Andersson 

(2014), and D’Ariano et al. (2014)] 
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Strategic planning often happens well before trains are placed on tracks. Large and long-term 

investments are typically involved in this stage to construct new infrastructure, producing 

new rolling stock, hiring new staff, etc. (Goverde, 2005). And the major objective of this 

stage is to determine where and how tracks and lines should be built/designed, based on the 

estimation of market demand (Andersson, 2014).  

 

Tactical planning is mainly concerned with the allocation of railway resources for the 

intermediate planning horizon. One of the major tasks in this stage is timetable construction: 

which trains should be allocated to which tracks during which time slots. This is not an easy 

task: timetable constructors need to simultaneously consider and balance the requests from 

different train operators and the requirements of track maintenance. Meanwhile, efficiently 

allocating rolling stock and scheduling crews are supposed to happen at this stage, both of 

which should also be carefully taken into account in timetable construction.  

 

Operational planning and Very-short-term planning deal with short-term perturbations in a 

railway system. Since railway systems are highly complex, any mistake/malfunction in any 

operational process is likely to interrupt the smooth functioning of the whole system and lead 

to delays and disruptions (Yuan and Medeossi, 2014). Therefore, it is necessary for a railway 

system to have some mechanism to intervene in a disturbed situation and control/reduce the 

impact of the interruption. Existing mechanisms include local dispatching, network-level 

traffic control, shunting, and short-term rescheduling. While the major task of dispatching 

and traffic control is to resolve conflicting train paths during perturbations, shunting and 

rescheduling are mainly for the management of predictable variations in daily operations (e.g. 

peak/off-peak demand, engineering works, etc). For further details about each of these 

mechanisms, it is recommended to refer to Goverde (2005). 

 

It should be noted that the planning stages and steps described above are not strictly in 

chronological order: they together form a feedback loop. For example, some of the problems 

in operational planning (e.g. the railway network is very sensitive to perturbations) would be 

likely to force timetable designers to consider improving the existing timetable, while other 

operational problems (e.g. there is a shortage of rolling stock or crews) would be likely to 

force decision makers to consider increasing investments in rail. 
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2.5.2 Timetabling terminology 

 

A timetable is a rail operator’s promise to its potential passengers about how train services 

are planned. The timetabling (timetable construction) process is often a complicated process 

that involves a trade-off between efficiency, safety, regularity, and conflicting interests.  

 

A master timetable is a long-term timetable that is established for all traffic within a railway 

network during a given time period. European passenger railways usually adopt periodic 

timetables. Based on a periodic timetable, a train line is operated at regular intervals between 

different hours of a day and between different days.  An advantage of periodicity is that it 

makes a timetable easy to memorise (see Figure 2.6).  

 

 

Figure 2.6 An example of periodic timetable (Source: www.nationalrail.co.uk, accessed 18 
Jan 2017) 

 

Due to periodicity, a long-term (i.e. yearly, or six-months in Britain) timetable for a train line 

can be constructed from a basic hour pattern (BHP), which can be visualised by a train path 

diagram (also called time-distance diagram) (see Figure 2.7). Note that a long-term timetable 

is often not strictly periodic and is not constructed by simply copying and concatenating 

BHPs: a BHP needs to be adapted to different time periods taking into account daily and 

hourly fluctuations in traffic demand (Goverde, 2005). Additional modifications to the long-

term timetable might be needed due to maintenance and special events, which results in the 

daily timetable for each day during the timetable period.  
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Figure 2.7 An example of train path diagram (Source: Pachl (2014)) 

 

 

 

Figure 2.8 An illustration of working timetable (Source: www.realtimetrains.co.uk, accessed 
18 Jan 2017): the column under ‘WTT’ is the working timetable and ‘GBTT’ the published 

timetable. 
 

 

Another pair of related concepts that need to be distinguished is published timetables and 

working timetables. In the context of British railways, a published timetable (i.e. the National 

Rail Timetable) is updated on a half-yearly basis, which contains information about all train 

services during a given period. It can be viewed as a promise from British rail industry to 

British rail passengers on the scheduled arrival and departure times, service frequency, 

planned journey times, availability of direct services, and transfer times and number of 
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transfers when direct services are unavailable. By contrast, a working timetable contains more 

detailed information about planned train movements (e.g. train identifiers, freight train 

schedules, passing times at through stations, etc) than the corresponding published timetable, 

which is not for public use and is only circulated among rail industry professionals (Figure 

2.8).  

 

The planned running times (of a train) between consecutive scheduled stops in a 

published/working timetable are based on the corresponding nominal running times, which 

are the physically possible minimum running times. Normally, planned/scheduled running 

times are set slightly larger than the corresponding nominal running times, and the positive 

difference between a nominal running time and its corresponding scheduled running time is 

called running time supplement (also called running time margin or allowance) (Vromans, 

2005). According to UIC (2000), running time supplements can be incorporated into a 

timetable in the following three ways: 1) distance dependent supplements [mins/km], 2) 

running time dependent supplements [%], and 3) fixed-size supplement per station/junction 

[mins]. Dutch railways adopt an industry standard of 7% for all passenger services (Goverde, 

2005; Vromans, 2005). That is, 7% of the nominal running times are added into timetables as 

running time supplements. German railways utilise running time supplements ranging from 

3% to 7%, depending on types of trains and track characteristics (Goverde, 2005). In Britain, 

running time supplements are not explicitly defined but are included in the timetables 

(Vromans, 2005). According to Goverde (2005), the addition of running time supplements 

can serve the following three purposes: 1) allow a slower speed profile under less favourable 

conditions such as bad weather, electrical current fluctuations, drivers behaviour, etc; 2) serve 

as recovery time to reduce the impact of departure delays; and 3) enable more energy-

efficient running by coasting.  

 

Whereas running time supplements are utilised to enable a train to make up small delays, 

buffer times are added into a timetable to prevent delay transmission between different trains 

(Pachl, 2014). Two major types of buffer times can be distinguished: 1) headway buffer times 

(i.e. the scheduled headway between two trains should include extra time to compensate for 

small delays); 2) transfer buffer times (the scheduled transfer time needs to include extra time 

to prevent the transmission of delays during the transfer process of passengers and/or crews).  
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It should be noted that although the exploitation of running time supplements and buffer 

times could to some extent improve the reliability and robustness of a railway system, the 

abuse of them could also lead to increased track and station consumption and hence result in 

unnecessary capacity losses. Hence, there often exists a balance between efficiency and 

robustness in the practical timetabling process (Vromans, 2005). 

 

2.5.3 Rail data collection 

 

Compared with other means of transport, rail transport has its unique characteristics: heavy 

vehicles run on fixed tracks at a considerably high speed, and long braking distances result 

from low friction between rails and wheels (Goverde, 2005).  Therefore, highly reliable safety 

systems should be installed to prevent derailments, collisions between vehicles, and casualties. 

The safety subsystem of a railway system is embodied by the comprehensive signalling 

(sub)system, which is mainly composed of train detection devices, trackside signalling 

(automatic/controlled), and cab signalling (automatic). For more details about the safety and 

signalling systems in European railways, it is recommended to refer to Bailey (1995), 

Goverde (2005), and Pachl (2014). 

 

Signalling devices are not only employed to prevent accidents but also used to record and 

monitor train movements in real time, which facilitates rail data collection and the statistical 

analysis of a railway system. In modern railways (in most European countries), there are 

generally two sources of train movements data: Train Describer and Train Event Recorder.  

The train describer system holds a database receiving and containing plentiful information 

about the real-time position of trains at the signal level, which functions as an important tool 

for traffic management, track supervision, automatic route setting, and passenger information 

(Bailey, 1995). In Britain, the train describer data are managed by the infrastructure manager 

(i.e. Network Rail), and ORDW (2016) provides more details about the format of these data. 

Train event recorders are widely used in European railways, which are analogous to flight 

recorders (commonly known as black boxes). Integrated with other car-borne systems, they 

enable enhanced diagnoses and controls (e.g. automatic warning, emergency braking, etc). 

Although train event recorder data are mainly used for accident analysis and prevention, they 

are also used to monitor train performance (Yuan and Medeossi, 2014). 
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2.5.4 Performance measures 

 

The performance of rail transport can be evaluated from different standpoints of different 

parties (e.g. customer-oriented, operator-oriented, government-oriented, etc) and from a wide 

range of different dimensions (e.g. economy, efficiency, reliability, safety, environment-

friendliness, etc). Clearly, there are no standardised performance measures that apply to all 

parties and situations. But it is widely accepted that punctual, reliable, and fast transport of 

people and goods at minimum cost would help increase the competitiveness of rail transport 

(Martin, 2014). Here (and in subsequent chapters of this thesis), the focus is mainly on 

reliability and punctuality. More specifically, this subsection is mainly aimed at introducing 

the (reliability and) punctuality measures that are currently in use in most European railways.  

 

Reliability and punctuality are a major concern of both rail passengers and rail operators 

(Yuan, 2006; ATOC, 2013). While reliability has a much broader meaning, punctuality is 

generally used to describe how late an average train arrives (Rietveld et al., 2001; Olsson and 

Haugland, 2004; Vromans, 2005; Preston et al., 2009). For the convenience of quantitative 

analysis, European railways often adopt heuristic measurements such as presenting 

punctuality as the percentage of trains that run within a predefined level of acceptable 

deviation (e.g. 5 mins) from the official timetable (Olsson and Haugland, 2004; Preston et al., 

2009). These heuristic measurements, however, tend to omit a lot of realistic issues and hence 

are only rough estimations at the macroscopic level. A lot of information is hidden about 

punctuality at intermediate stops (Olsson and Haugland, 2004; Martin, 2014) due to the 

statistical method employed by rail operators (i.e. punctuality is often measured only at 

terminating or large major stations). And since the performance indicators currently in use by 

operators are mostly train-oriented (supply-oriented), they tend to overestimate the service 

quality experienced by travellers (Harris, 1992; Rietveld, 2005; Weston et al., 2006; Carrasco, 

2012; Harris et al., 2013). Although these heuristic measurements are in themselves 

problematic, they could to some degree help rail operators monitor the overall performance of 

their train services and help public authority formulate performance-related policies: 

underperforming rail operators would be confronted with fines, and rail operators are 

responsible for direct compensation to rail passengers when significant delays/disruptions 

happen (Rietveld, 2005; Preston et al., 2009). 
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2.6 Related concepts in Decision Theory 

 

Decision theory is mainly concerned with decisions. More concretely, it is a theory about 

goal-directed behaviour in the presence of choices/options (Hansson, 1994). Researchers 

from many disciplines (e.g. economics, statistics, sociology, psychology, etc) have 

contributed to the development of decision theory. While the domain of decision theory 

includes a wide range of relevant topics, this section is only aimed at providing a brief 

introduction to several relevant concepts to this thesis. For a more rigorous and 

comprehensive introduction to decision theory, it is recommended to refer to e.g. Parmigiani 

and Inoue (2009) and Bradley (2014). 

 

2.6.1 The classification of decision-making 

 

Decision theory is built upon several basic concepts: alternatives, states of nature, and 

outcomes. A decision maker is assumed to be confronted with a finite set of mutually 

exclusive alternatives, each of which is a course of action that can be taken by the decision 

maker at the time of decision making. While a decision maker might have, in the process of 

decision making, some background information about some of the various extraneous factors 

that are beyond his/her control, there often exist a number of unknown extraneous factors. 

These unknown extraneous factors can be summarised into a number of scenarios, called 

states of nature in the terminology of decision theory. With these two concepts (i.e. 

alternatives and states of nature) at hand, the outcome of a decision can be defined as the 

combined effect of the chosen alternative and the realised state of nature.  

 

 

Figure 2.9 The categories of decision problems (Source: Hansson (1994)) 

 

Dependent upon how much information is available about the states of nature in decision 

making, the various decision problems can generally be categorised into four groups: 

decision making under certainty, decision making under risk, decision making under 
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uncertainty, and decision making under ignorance (the amount of available information is 

decreasing from left to right) (see Figure 2.9). 

 

2.6.2 Expected utility 

 

In order to make decisions (i.e. choose between a set of alternatives), it would be helpful to 

have some value standard (measurement) at hand for determining/evaluating how good the 

outcome of a particular alternative is and then compare alternatives based on this standard. A 

commonly adopted value standard is called utility, which can be defined as units of human 

happiness in the terminology of moral philosophy. Many economic or utilitarian moral 

theories are based on the rule of utility maximisation, meaning that a decision maker chooses 

(one of) the alternative(s) that maximises his/her utility.  

 

Expected utility (EU) is the mainstream approach to decision making under risk (refer to the 

classification of decision problems in the previous section), which assumes that the 

probabilities of all states of nature are known. According to expected utility theory, each 

alternative can be assigned a value representing the weighted average of the utility values 

under different states, and the weights adopted are just the probabilities of these different 

states. The rule of maximisation in expected utility theory is called maximum expected utility 

(MEU), which means that a decision maker chooses (one of) the alternative(s) that maximises 

his/her expected utility. 

 

2.6.3 Principle of indifference 

 

In reality, complete probabilistic knowledge is often unavailable about states of nature and 

decision makers would have to make decisions under uncertainty or under ignorance. In these 

situations, the principle of indifference (also called the principle of insufficient reason) is 

often employed to simplify a decision problem and reduce ignorance/uncertainty to risk.  

 

The principle of indifference (POI) is as old as probability theory that is introduced 

previously in Section 2.4. In fact, the classical definition of probability (in subsection 2.4.1) 

can be viewed as based on POI: for a finite set of N mutually exclusive outcomes, if there is 

no reason to believe that one outcome is more likely than another to occur, then the N 

outcomes should be treated as equipossible, each of which has a probability of 1/N.  
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The limitations of POI lie mainly in two aspects. Firstly, the result obtained from the 

application of POI depends on the partitioning of the alternatives and hence whether the 

structure of the states of nature is symmetrical should be checked before applying POI. 

Secondly, POI is not applicable to decision making under absolute ignorance: neither is the 

probabilistic knowledge about states of nature available, nor is the knowledge about the states 

of nature themselves is available (i.e. whether a particular state exists is unknown).  

 

Although POI is not a perfect solution to decision problems under ignorance, it is widely 

utilised in scientific research and engineering applications. 

 

 

2.7 Summary 

 

This chapter introduces a considerable number of relevant concepts to this thesis that come 

from several different but interrelated academic disciplines. The fields involved include 

Algorithm Engineering, Probability and Statistics, Railway Timetabling and Operations, and 

Decision Theory. Although some of these concepts are not directly touched upon in this 

thesis, a good understanding of them would be helpful to understanding the subsequent 

chapters. Some of the briefly introduced concepts are to be further explained or illustrated in 

subsequent chapters when they are applied to specific scenarios. Moreover, some of the 

concepts in the relevant fields are omitted in this chapter to avoid confusion. But they are to 

be introduced in subsequent chapters with the aid of specific contexts.  
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Chapter 3 

Critical Routes: a weak point of existing journey planning 
systems 

 

 

3.1 Introduction 

 

This chapter is centred on the introduction to the concept of critical routes, which can roughly 

be described as those transfer-involved, long-distance, and delay-sensitive routes within a 

given railway network. The subsequent sections are organised as follows. Section 3.2 gives a 

general introduction to the status quo of passenger information in British railways. Following 

that, Section 3.3 describes the problem that currently exists in the pre-trip information about 

those transfer-involved routes. This section is followed by a detailed algorithmic-level 

explanation of why it is difficult to effectively deal with those transfer-involved routes using 

existing journey planning technologies in Section 3.4. In order to efficiently identify those 

problematic transfer-involved routes within a railway information system, a screening 

algorithm is developed and presented in Sections 3.5 and 3.6: definitions of several 

introduced concepts are presented in Section 3.5, and the algorithm together with its 

explanations can be found in Section 3.6. After that, the applicability of the developed 

screening algorithm is illustrated in Section 3.7 by a case study of the National Rail timetable 

currently in use in Britain’s passenger rail system. Section 3.8 conducts a further 

investigation into the train delay data briefly described in Section 3.7 to gain additional 

knowledge about passenger train delays in British railways: the obtained statistical models 

and their interpretations are presented in this section. Section 3.9 concludes this chapter.  

 

3.2 The status quo of passenger information in British railways 

 

The past decade has seen a boom in the Internet’s popularity. Statistics have shown that three 

billion people around the world (3/7 of the population) are now connected to the Internet 
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(Meeker, 2016) and in Great Britain 23.7 million households (89% of the total) have access 

to the Internet (ONS, 2016). The new wave of Mobile Internet (i.e. fast and stable 

connections to the Internet via smart phones, tablets, and other mobile devices) further 

defines what we can expect from this ‘digital age’(Lyons, 2015; Meeker, 2016; ONS, 2016).  

 

 

Figure 3.1 Snapshots of some of the TOCs’ websites 

 

 

Figure 3.2 TOCs in social media 

 

The impact of Internet-related technologies on traditional industries is remarkable, and the 

rail industry is no exception. In Great Britain, apart from the National Rail Enquiries (NRE) 

website (see Figure 1.3 in Chapter 1), most Train Operating Companies (TOCs) have their 

own versions providing online information and ticketing services (Figure 3.1). Besides, 
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accounts or homepages of rail companies can also be easily found on popular social media 

such as Facebook, Twitter, etc. for marketing and information purposes (Figure 3.2).  

 

Although how much impact these information and communications technologies (ICTs) can 

have on rail demand and patronage remains an open question, it is generally believed that 

providing passengers with timely and reliable travel information plays an important role in 

improving customer experience and stimulate rail use (Chorus et al., 2007; Lyons et al., 2008; 

ATOC, 2013; Ben-Elia and Avineri, 2015; RRUKA, 2015).  

 

The efforts Great Britain’s rail industry has made on passenger information can partly be seen 

from a wealth of open data on train operations available from the Internet (more details can 

be found on Open Rail Data Wiki2), which enables the public to participate in improving rail 

travel information. Several travel information websites (e.g. Open Train Times3 and Realtime 

Trains4) and a number of mobile applications are built on these open data, either directly or 

indirectly.  

 

Basically, the various forms of passenger information can be classified into two broad 

categories: static pre-trip information and dynamic real-time information. The former 

includes printed train timetables and timetable-based journey planning web applications such 

as National Rail Enquiries (NRE) (see Figure 1.3). The latter ranges from in-station displays 

and broadcasts to the diverse officially and unofficially deployed mobile applications such as 

National Rail Travel App, Realtime Trains, etc. In reality, however, the quality of passenger 

information is not always guaranteed, especially in the domain of pre-trip information. And 

there seems to be a lack of a bridge between static pre-trip information and dynamic real-time 

information due to the asynchrony between these two relatively independent domains.  

 

 

3.3 The problem of pre-trip information about transfer-involved routes 

 

Direct rail routes (lines) are often characterised by higher transport demand and more 

frequent train services, which naturally receive more attention from rail operators. After all, if 

                                                             
2 http://nrodwiki.rockshore.net/index.php/Main_Page 
3 http://www.opentraintimes.com/ 
4 http://www.realtimetrains.co.uk/ 
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these direct routes are poorly performed (in terms of punctuality and reliability) and poorly 

serviced (e.g. poor information services), the corresponding rail operators would have to be 

confronted with fines by the public authority and compensation to the passengers.  

 

Transfer-involved rail routes5 receive, however, much less attention from rail operators due to 

various reasons. In Great Britain, the organisational structure of the rail sector is 

characterised by the coexistence of a number of relatively independent Train Operating 

Companies (TOCs): if a route involves several different train lines managed by different 

TOCs, then it is difficult to determine who should take the responsibility for undesirable 

performance and services. On the other hand, even if the coordination of different rail 

operators is not a problem, it is still technically challenging to deal with these transfer-

involved routes due to the limitations of existing planning and information technologies. 

Since the topic of this chapter (and this thesis) is limited to passenger information, only the 

information-related problem of transfer-involved rail routes is described in this section. 

 

The gap between static pre-trip information and dynamic real-time information has been 

mentioned in the previous section (Section 3.2). Although this gap is negligible in many cases, 

it becomes non-negligible when a given (recommended) itinerary involves delay-sensitive 

transfers (interchanges). Figure 3.3 provides an illustrative example of such non-negligible 

problems in current passenger information systems.  

 

 
Figure 3.3 An illustration of a rail journey involving a number of transfers 

 

Suppose one day a rail passenger wants to go from Station A to Station B, and he/she 

provides the pair of A and B as well as an expected departure time to an online journey 

planning system. Then the system returns a recommended itinerary as follows (c.f. Figure 

                                                             
5 the exact meaning of which is to be clarified later in this section. 
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3.3): take Train 1 (denoted as T1) departing from A at 9:30 (a.m.) to arrive at C at 10:00, then 

transfer at C from T1 to T2 (Train 2) departing from C at 10:04 to arrive at…(instructions for 

intermediate transfers are omitted)…and finally take Train k (Tk) to arrive at B at 11:55 

(a.m.).  

 

From this illustrative example, we can catch a glimpse of some key characteristics of pre-trip 

timetable information about rail journeys that involve transfers: when provided a pair of 

origin and target stations and an expected departure time, a computer-based journey planning 

system looks up all the relevant train timetables according to some journey planning 

algorithm (refer to Section 2.3) to generate an ‘optimal’ journey plan in terms of total journey 

time (TJT, not including the access/egress parts) or a set of Pareto-optimal (i.e. non-

dominated) journey plans in terms of TJT, number of transfers (NoT), fare, etc. In practice, 

however, the existence of train delays and cancellations tends to make the pre-trip timetable 

information about the arrival and departure times along the recommended route(s) unreliable 

and the arrival at the target station unpunctual. Rather than deterministic single values (e.g. 

9:30, 10:00, etc. in the example), these arrival/departure times may look more like stochastic 

distributions (see Figure 3.3). 

 

Here, differentiation is made between nominal arrival/departure time and actual 

arrival/departure time. Nominal arrival/departure time (NAT/NDT) refers to some planned 

arrival(departure) time in a long-term timetable that is adopted by a journey planning system 

to process well before a given journey begins. Actual arrival/departure time (AcAT/AcDT) 

means some recorded arrival/departure time for a given train at a given station after the train 

service has finished. The TJT calculated from NATs and NDTs is called nominal journey 

time (NJT, e.g. 2h25m in the above example), and the TJT calculated from AcATs and 

AcDTs is called actual journey time (AcJT).  

 

Based on the following three observations: (1) there is often a significant discrepancy 

between the NJT and AcJT of a transfer-involved rail journey, (2) in reality rail journeys 

involving transfers are more prone to train delays and cancellations than those involving no 

transfers, and (3) some of those transfer-involved rail journeys are much more sensitive to 

train delays and cancellations than the others, the following questions arise: How many 

journeys particularly prone to delays and cancellations exist in a given railway network? How 
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to efficiently identify them? If such journeys do exist, then how to exploit the available 

information tools to reduce the negative effects of unreliability and unpunctuality? 

 

The answers to these questions are not that straightforward, and the solution proposed to the 

problem of pre-trip information about transfer-involved rail routes is to be detailed in 

subsequent sections and chapters. 

 

Before leaving for the next section, a clarification is also needed to make about a set of 

closely related concepts – journey, itinerary, transfer, leg, and route – to avoid 

misunderstandings in subsequent sections and chapters.  

 

In the context of this thesis, the concepts of a journey and an itinerary are largely 

interchangeable, both of which are defined on the dimensions of both time and space and 

correspond to a specific sequence of involved trains (legs) and the corresponding sequence of 

transfer stations. Moreover, the word journey (or itinerary) is in most cases linked with an 

unrealised (not-yet-achieved) plan in this thesis and hence is equivalent to the phrase of 

journey plan (or itinerary plan). Note that two variants of the concept of journey/itinerary (i.e. 

itinerary template and reconstructed itinerary) are to be introduced in Section 4.3. Further 

explanation and clarification is to be made in Section 4.3 with the aid of specific contexts.  

 

Another pair of interrelated concepts is transfer and leg. A transfer is between two 

consecutive legs of a journey/itinerary, while a leg corresponds to a specific train connecting 

two transfer stations. In this description/definition, a ‘transfer station’ can be either intra-

modal or inter-modal. The concrete example in Figure 3.3 may help understand this: the k 

involved trains in the figure can be viewed as legs, linking the (k-1) intra-modal transfer 

(railway) stations and the two inter-modal transfer stations (i.e. the origin station A and the 

destination station B). It can be seen from the above descriptions that the concepts of transfer 

and leg are also time- and space-specific, for they are essentially the components of a 

journey/itinerary. However, it should be noted that these two notions can have more 

generalised meanings in subsequent sections and chapters: in certain contexts (in the 

remaining of this thesis), the word transfer is employed to represent a generic transfer and 

the word leg is utilised to represent a generic leg. A generic transfer/leg is defined only on 

the dimension of space (more precisely, it is also partially defined on the dimension of time: 

see the clarification of the term route in the next paragraph), referring to a set of specific 
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transfers/legs that follow the same pattern (in terms of space) but occur at different hours of 

day and different days of week. Further illustration and clarification can be found later in 

subsequent sections and chapters, with the aid of specific contexts. 

 

The notion of a route need also be clarified. Often, the term route is related to road networks 

and is defined only on the dimension of space. As previously mentioned in Subsection 2.3.2, 

a spatial description/definition of a route is often enough in the context of (private) road 

transport due to the fact that car owners have considerable freedom to choose a desired 

departure time (and also a desired arrival time), without the constraint of vehicle service 

providers and infrastructure managers. In contrast, a rail route is constrained by planned 

timetables detailing the opening and closing times of the relevant train services and tracks, 

which partially incorporates an additional dimension of time. Here, ‘partially’ is used to 

emphasise that although the temporal dimension is introduced a rail route is usually referred 

to in a generic way: it can be viewed as an abstraction of a set of relevant train services 

connecting two given railway stations. Often, the notion of a rail route is related to a direct 

route, the source and target stations of which are connectable by a single line (a railway line 

corresponds to a set of trains that follow a specific (periodic) timetable). In the context of this 

thesis, a novel notion of a transfer-involved rail route is introduced, which can be viewed as 

an extension of the notion of a rail route: if a given target station is reachable from a given 

source station but no direct route exists between them, then the chronologically ordered set of 

the relevant legs and transfers is called a transfer-involved rail route between the two stations.  

 

 

3.4 Existing journey planning algorithms: intelligent or not? 

 

3.4.1 The ‘art’ of criteria and parameters selection 

 

As has been described in Section 2.3, the state-of-the-art journey planning algorithms are all 

highly-developed and well-designed and are much more able than those early versions of 

shortest-paths algorithms to model and deal with realistic journey planning. Despite the 

significant improvements in terms of effectiveness and efficiency (compared with previous 

generations of routing algorithms), the current journey planning algorithms are, after all, built 

on mathematical models with predefined rules, criteria, and parameters. And due to the 
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complexity in transfer-involved journeying and the quite different preferences of different rail 

passengers, the quality of the computed results of a journey planning system is heavily 

dependent upon the criteria and parameters adopted by the system. Here, in this subsection, 

an illustrative example is presented to show the subtleties in the choice of criteria and 

parameters. Note that although the illustrations employed in this section are mainly based on 

National Rail Enquiries (NRE), the phenomena revealed are common in the existing pre-trip 

journey planning systems. Since NRE has been among the most advanced around the world 

(c.f. Table A1 in Appendix A), the relevant technologies underlying NRE can be viewed as a 

reflection of the state-of-the-art journey planning systems in operation.  

 

The example is a query with London Waterloo being the origin station, Exeter St David’s 

being the destination station, and the desired departure time being 10:00 a.m. on Mon 23 Jan 

2017. Two versions of the recommended itinerary list can be obtained, which are shown 

below: Figure 3.4 presents the version of NRE, while Figure 3.5 shows the version computed 

from a self-developed journey planning simulator by the author.  

 

A lot of differences can be seen from these two pieces of information. Comparing between 

the two figures, the first impression may be that the simulator lacks the information about the 

fare and real-time status of services. But this is not the key point (because integrating fare 

information and real-time alerts into the simulator is theoretically not a difficult task, as long 

as detailed fare data and train status feeds are publicly accessible). A more significant 

difference lies in that the result set of the simulator is much larger than that of NRE, and the 

direct train service from London Waterloo to Exeter St David’s with a departure time of 

10:20 is omitted in the simulator (since the criterion of earliest arrival (c.f. Subsection 2.3.5) 

is given a higher priority than number of transfers in the simulator, the 10:20 direct service is 

excluded from the recommended list). This huge difference is, however, not that striking 

from a developer’s perspective: the results for those routes involving transfer activities 

between train lines with different service frequencies are unavoidably sensitive to the 

predefined rules, criteria, and parameters due to the limitations of existing journey planning 

algorithms.  
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Figure 3.4 The version from NRE (accessed 20 Jan 2017) 

 

 

Figure 3.5 The version from a self-developed simulator 

 

More information about those transfer-involved itineraries could be found through a closer 

examination of the two involved legs: the first is a tube (metro) leg from London Waterloo to 

London Paddington, and the second is a direct rail line originating from London Paddington 

(Figure 3.6). Clearly, the train services connecting Paddington and Exeter are faster and more 

frequent than those directly connecting Waterloo and Exeter. And since it is convenient to go 

from Waterloo to Paddington due to the high-frequency tube services, this transfer-involved 

route may be favoured by some of the passengers. Therefore, rather than simply judge which 
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of the two versions is better, it may be more appropriate to explain the discrepancy between 

the two result sets as the difference in travellers preferences (a developer is also very likely to 

be a rail passenger): if higher priority is assigned to direct services and conciseness of the 

result set, then the NRE version is the better representation; in contrast, if earliest-arrival and 

availability of options are the major concerns, then the simulator-generated version is better. 

Some may argue that the existence of these different versions can be resolved by developing 

a fully-customisable journey planning algorithm. In reality, however, there is always a trade-

off between customisability and the complexity of the underlying model. Finding out a 

solution to this dilemma is very challenging based on current technologies.  

 

 

Figure 3.6 The timetable of the connecting leg (Source: NRE, accessed 23 Jan 2017) 

 

3.4.2 The algorithmic-level mechanism of itinerary construction 

 

Continuing the comparison between Figure 3.4 and Figure 3.5, another noticeable difference 

can be seen: while there are multiple itineraries having the same scheduled arrival time 

(13:32 or 14:04) in the simulator-generated version, the projection/relation between 

recommended itineraries and scheduled arrival times is one-to-one in the NRE version (only 

one itinerary corresponds to a scheduled arrival time 13:32, and the same for the scheduled 

arrival time 14:04). Moreover, the two itineraries with scheduled arrival times being 13:32 

and 14:04 in the NRE version seem to have relatively late (compared with the available 

options in the simulator version) scheduled departure times (10:30 and 10:57, respectively). 
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This phenomenon is not just a special case, but is in the generality. Figures 3.7 – 3.10 gives 

another example.  

 

 

Figure 3.7 The recommended itinerary list for a journey from Bournemouth to Brighton 
(Source: NRE, accessed 23 Jan 2017) 

 
 

 

Figure 3.8 The adopted transfer plan by NRE for a route via Southampton Central (Source: 
NRE, accessed 23 Jan 2017) 

 

This is a query about recommended journey plans from Bournemouth to Brighton (on 23 Jan 

2017). There are generally two alternative routes for such a journey: via Southampton Central 

or via Clapham Junction. Due to the periodicity of the timetable, these itineraries can be 

grouped into two patterns (see Figure 3.7): those with a departure time of XX:22, a longer 

journey time, and a more expensive fare are via Clapham Junction, and those with a departure 

time of XX:59, a shorter journey time, and a cheaper fare are via Southampton Central.  
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Take the recommended itinerary departing at 10:59 for example (see Figure 3.8). Such a 

journey could generally be subdivided into three stages: the first stage is a ride from 

Bournemouth to Southampton Central, the second is an interchange (transfer) activity at 

Southampton Central, and the third is a ride from Southampton Central to Brighton. The 

transfer plan adopted by NRE for this itinerary (i.e. take the 10:59 South West Trains service 

for the first stage and take the 11:32 Southern service for the third stage) seems no problem, 

but a question arises if we take a closer look at each part (leg) of this route (see Figures 3.9 

and 3.10): Why it is the 10:59 South West Trains service that is chosen as the feeder train?  

Why the other available options with more reserve for the transfer are not adopted (or at least 

displayed as alternatives)?  

 

 

Figure 3.9 The available services for the feeder leg between Bournemouth and Southampton 
Central (Source: NRE, accessed 23 Jan 2017) 

 

Figure 3.9 tells us that there are approximately four available options (corresponding to four 

different train services) per hour going from Bournemouth to Southampton Central. For 

example, four train services respectively departing at 10:05, 10:22, 10:45, and 10:59 are 

available between 10:00 and 11:00, and all of them are planned to arrive at Southampton 

Central before the scheduled departure time of the 11:32 Southern service that connects 

Southampton Central to Brighton (Figure 3.10). Since the connecting leg has less-frequent 

services (operated on an hourly basis), these four services (i.e. 10:05, 10:22, 10:45, and 10:59) 



47 

can all be viewed as feeder trains to the 11:32 Southern train. However, only the 10:59 South 

West Trains train is chosen and displayed in the recommended itinerary list (see Figure 3.7). 

Apparently, NRE adopts an additional ‘latest departure’ (the 10:59 service is the latest among 

the four available feeder options) rule to earliest arrival (refer to Subsection 2.3.5) to achieve 

the conciseness of the recommended itinerary list. 

 

 

Figure 3.10 The available services for the connecting leg between Southampton Central and 
Brighton (Source: NRE, accessed 23 Jan 2017) 

 

 

Looking back at the Waterloo – Exeter example in the previous subsection, we can see that 

the same rule (i.e. latest departure) applies. That is, in the NRE version (Figure 3.4) the two 

itineraries transferring at Paddington have the latest scheduled departure time(s) among the 

available feeder options. Some may argue that these two (i.e. departing at 10:30 and 10:57, 

respectively) do not follow the latest departure rule: according to the result set in the 

simulator version (Figure 3.5), the latest departure ones should be 10:36 and 11:00, 

respectively. That is, if the latest departure rule is applied to the result set in Figure 3.5, then 

the two itineraries remaining in the list should be the one with the scheduled departure time 

of 10:36 and the one with the scheduled departure time of 11:00, which are not the two 

itineraries adopted in the NRE version. This difference is, however, caused by the difference 

in the choice of parameters. NRE assigns a travel time of 21 minutes from Waterloo to 
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Paddington (see Figure 3.11), whereas the simulator adopts a travel time of 14 minutes from 

Waterloo to Paddington (based on the schedules6 adopted by Transport for London). 

Therefore, the two itineraries respectively departing at 10:30 and 10:57 are just the latest 

departure ones in the context of NRE.  

 

 

Figure 3.11 The parameter choice of NRE for the Waterloo – Paddington – Exeter route 
(Source: NRE, accessed 23 Jan 2017) 

 

In fact, the latest departure rule is widely adopted in practice to ensure the conciseness of the 

computed results (Bast, 2010). This rule is no problem in most cases, but can be problematic 

in certain scenarios. In order to better understand the potential problem resulting from the 

latest departure rule, an explanation of the mechanism of minimum transfer time (refer to 

Subsection 2.3.2) is necessary.  

 

In the terminology adopted by Britain’s rail industry, the term minimum transfer time (MTT) 

is usually called ‘connection time’ or ‘minimum connection time’, representing the length of 

time that must elapse between the advertised arrival time of a feeder train and the advertised 

departure time of the connecting train within a railway station. That is, the connection 

between two trains is officially valid only if it satisfies the constraint of the corresponding 

minimum connection time7. Here, in this thesis, the term minimum transfer time (MTT) is 

adopted to comply with the terminology in Algorithm Engineering. Figure 3.12 gives a more 

concrete example of some of the MTTs adopted by British railways.  

 

                                                             
6 https://tfl.gov.uk/plan-a-journey/ 
7 http://www.brtimes.com/#!info?type=conn 
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Figure 3.12 The connection times assigned to London railway stations (Source: Network 
Rail (2016b)) [NOTE: the middle column lists the corresponding ATOC Code, and the third 

column lists the corresponding connection times in minutes] 
 

From Figure 3.12, we can see that the MTT assigned to Paddington is 15 minutes, and it is 

just the difference between the advertised arrival time of the 10:30 tube service (i.e. 10:51) 

and the advertised departure time of the 11:06 Great Western Railway service in Figure 3.11 

(which confirms the latest departure rule). MTTs are generally station-specific, but 

exceptions exist (although not common) and these exceptions are specially assigned by 

operators (e.g. the MTT required for Southampton Central is 5 minutes, but 4 minutes is 

applied to the Bournemouth – Southampton Central – Brighton route, see Figure 3.8).  

 

The incorporation of MTTs into journey planning algorithms is to better model the reality and 

to ensure that passengers have time to change from one train to another. For dense 

metropolitan areas, inter-stop MTTs are also assigned between pairs of nearby stops. These 

intra- or inter-station MTTs, however, are often a trade-off between robust transferring (with 

generous reserve) and total journey time.  

 

Figure 3.13 gives an illustration of how MTTs work in a journey planning algorithm to 

construct recommended itineraries for a given query.   

 

In Figure 3.13(a), T1 is a feeder train and its scheduled arrival time at the transfer station is 

ta1. T2 and T3 are two potential connecting trains that belong to different lines but both call at 

a given target station (i.e. the railway station at which the traveller transfers to another train 

or another mode of transport, not necessarily the terminating station of a train line), and their 

scheduled departure times from the transfer station are td2 and td3, respectively. The assigned 
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MTT for the transfer station guarantees that any potential connecting train with a scheduled 

departure time less than the earliest-allowable departure time ted (and larger than ta1) could 

not be chosen as a leg of the recommended itinerary. For those connecting trains with 

scheduled departure times larger than ted (e.g. T2 and T3 in this example), however, a journey 

planning algorithm always ‘greedily’ selects the one with the earliest scheduled departure 

time (e.g. T2 in the Figure), regardless of how small the difference between ted and td2 and 

how small the difference between td2 and td3. The similar mechanism holds for the case in 

which a connecting train has a set of candidate feeder trains (see Figure 3.13(b)): the one with 

the latest scheduled arrival time (T2 in the example) is ‘greedily’ chosen (see the previously 

described examples of Waterloo – Exeter and Bournemouth – Brighton to better understand 

the mechanism). 

 

 

Figure 3.13 An illustration of how Minimum Transfer Times (MTTs) function in ‘greedy’ 
journey planning algorithms 

 

 

3.5 Critical Transfers, Critical Itineraries, and Critical Routes 

 

3.5.1 Introduction 

 

Due to the limitations of existing journey planning algorithms (as have been extensively 

illustrated in the previous section), some of those transfer-involved itineraries recommended 

by a journey planning system tend to be sensitive to train delays and cancellations and hence 
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may negatively influence rail passengers’ experience of the quality of train services. More 

specifically, the interplay between MTT, the criterion of earliest arrival, and the mechanism 

of latest departure would result in tight transfers that may be adopted to construct the 

recommended itinerary list for a given transfer-involved route. And if the consequence of 

missed transfers is significant for a particular transfer-involved route, then an improvement of 

the pre-trip information about (i.e. the recommended itinerary list for) this route should be 

considered as an option to improve passengers’ experience of punctuality and reliability. But 

how to determine which of those transfer-involved routes are problematic in terms of pre-trip 

information? How to exploit algorithmic approach to quickly screen out those problematic 

transfer-involved routes? To answer such questions, several novel concepts should firstly be 

introduced to make the problem mathematically operable. 

 

3.5.2 Critical transfers 

 

At first glance, the set of recommended itineraries containing delay-sensitive transfers should 

be quite large due to the fact that there are millions of feasible journeys per day within a 

national-level railway network and small delays are a common phenomenon that every train 

is possible to encounter. 

 

In the domain of pre-trip information, however, recommended itineraries involving delay-

sensitive transfers are not that common due to the mechanism of MTTs. In reality, although 

MTTs can cover most transfer scenarios, they tend to be insufficient for certain scenarios in 

which these insufficiencies together with the ‘greedy’ mechanism of journey planning 

algorithms render the recommended transfers prone to delays and cancellations. Figure 3.14 

illustrates such delay-sensitive transfer scenarios that MTTs cannot cover. 

 

In Figure 3.14, T1 and T2 are a pair of feeder and connecting trains that satisfies the 

constraint of the corresponding MTT and appears in a recommended itinerary. That is, this 

pair of trains simultaneously satisfies the constraint of the corresponding MTT (having been 

omitted in the figure to reduce distraction) and the rule of earliest arrival (or latest departure).  

As illustrated in Figure 3.14(a), this transfer becomes delay-sensitive if the scheduled 

departure time (td2) of T2 lies within the most uncertain interval (MUI). MUI can be 

imagined as the interval of possible small delays (deviations) of the arrival of T1 (e.g. [-1, 5] 

mins). Since small delays are quite common and each value in MUI is highly likely to occur 
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in a given trip, the probability of a missed transfer becomes non-negligible under this 

scenario.  

 

 
Figure 3.14 An illustration of those delay-prone transfer scenarios that current journey 

planning systems cannot cover 
 

For scenarios in which td2 lies outside MUI, the transfer is also likely to be delay-sensitive if 

the net transfer time (NTT) is large and the threshold (i.e. tθ in Figure 3.14) derived from the 

maximum tolerable lateness (MTL) lies within MUI. As illustrated in Figure 3.14, the 

scheduled window (SW) can be decomposed into NTT and MTL: NTT is the physically 

possible minimum time required to walk from T1 to T2 within the station, and MTL is the 

size of the maximum buffer for potential delays of T1.  

 

Please note that NTT and MTT are not the same: NTT pertains to a specific pair of feeder and 

connecting trains, whereas MTT is station-specific and takes into account the NTTs under 

various scenarios within a given station. Normally, the MTT for a given station is no less than 

the maximum of all possible NTTs within the station; meanwhile, it is not significantly larger 

than the maximum of NTTs in case it significantly extends the journey time (reducing the 

attractiveness of the recommended itineraries).  

 

Although in Figure 3.14(b) SW is relatively large and td2 lies outside MUI, the threshold for 

the arrival time of T1 (i.e. tθ) lies within MUI. Combined with the scenario in Figure 3.14(a), 

those recommended transfers with tθ lying within MUI can be said to be delay-sensitive.  
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Although the above transfer scenarios are delay-sensitive and may have a non-negligible risk 

of missed transfers, their impact on passengers’ experience would be limited if, for example, 

there are a number of alternative transfers at the station or the connecting leg has high-

frequency services. Only if the following conditions are simultaneously satisfied, do the 

corresponding transfer scenarios become problematic and worth to be paid attention to: 

 

(1) The transfer is planned to happen within a given railway station. 

(2) The scheduled window (SW) of the transfer is the smallest among all available 

transfer options with SW ≥ MTT. 

(3) tθ lies within MUI (see Figure 3.14). 

(4) The service frequency of the connecting leg is low and the length of the connecting 

leg is long. 

(5) The transfer scenario repeats itself periodically (e.g. every weekday) based on a 

long-term timetable.  

 

Condition (1) reduces the search space to intra-station transfers only. That is, inter-station 

transfers between nearby stations (e.g. transfers between London terminals) are not taken into 

account. Adding this restriction is due to the fact that inter-station transfers often involve 

additional modes of transport (e.g. long-distance walking, bus, underground, etc.) and involve 

road networks, which would render the estimation of the net transfer time (NTT, see Figure 

3.14) between the feeder train and the connecting train difficult.  

 

Condition (2) is to guarantee that it is this (problematic) transfer (rather than others) that is 

adopted (by existing journey planning systems) to construct a recommended itinerary under 

the latest departure rule (see Figure 3.13). After all, if a delay-sensitive transfer has been 

filtered out by journey planning algorithms, there is no need to worry about it in terms of pre-

trip information. 

 

Condition (3) has been explained in previous paragraphs. Generally speaking, if the 

scheduled window (SW) is ‘small enough’ (as Figure 3.14 illustrates), the influence of 

uncertainty on journey planning would become non-negligible and hence providing 

additional information about the potential risk would be meaningful. Conversely, if the 

scheduled time window is ‘large enough’, the impact of uncertainty on the connection would 
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be insignificant and the normal timetable-based information could be seen as reliable under 

most circumstances. But what is the threshold between ‘small’ and ‘large’? The answer is ‘it 

depends’. It depends on the size of MTL (see Figure 3.14). Since SW can be easily calculated 

from the timetable, the estimation of net transfer time (NTT) becomes the key, which is 

further dependent on the distance between the two involved trains within the station, the 

layout of the station, the familiarity of the traveller with the station, etc. (for a detailed study 

of the various factors influencing NTT, it is recommended to refer to Guo (2008)). Further 

details about the considerations in the estimation of NTT (for a given connection) can be 

found later in the introduction to the screening algorithm.  

 

Condition (4) considers the potential consequence of a missed transfer: if the connecting leg 

has low frequency and the two end vertices (stations) are geographically far-apart, the 

potential consequence will be non-negligible and needs to be tackled.  

 

Condition (5) guarantees that the transfer scenario is a long-term existence rather than a 

short-term noise (e.g. short-term timetables during public holidays, engineering works, etc.). 

Since the proposed methodology to deal with those problematic transfer scenarios (to be 

presented in the next chapter) is historical-data-based, the focus is hence not on solving 

temporary problems but on tackling long-term problems. In fact, current technologies of 

timetabling and pre-trip information have been able to effectively deal with those predictable 

short-term perturbations such as public holidays, engineering works, etc. (as has been 

explained in Subsection 2.5.2). And the focus of this thesis is mainly on dealing with those 

small delays and operational cancellations. Further details can be found later in the next 

chapter.  

 

A recommended transfer plan (by a journey planning system) that satisfies all of the above 

five conditions is called a critical transfer. Critical transfers are difficult to resolve in current 

journey planning systems, due to the limitations of existing journey planning algorithms. 

 

3.5.3 Critical itineraries and critical routes 

 

Although critical transfers are problematic in terms of pre-trip information, the negative 

effect of them would be limited if there are direct alternatives (see the Waterloo – Exeter 

example in Figure 3.4) or these critical transfers are sparsely distributed on the dimension of 
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time (i.e. the probability that a passenger adopts exactly the problematic transfer would be 

low). 

 

If all involved transfers in a recommended itinerary are critical transfers, the itinerary is 

called a critical itinerary. If the set of critical itineraries between a given pair of railway 

stations are densely and evenly distributed in a day (and repeat themselves during a long 

period of time such as six months), then the corresponding route is called a critical route. A 

one-transfer critical route is a critical route that contains exactly one transfer (more precisely, 

one generic transfer, c.f. Section 3.3). And a k-transfers critical route is a critical route 

composed of exactly k transfers. 

 

From the above definitions, it can be inferred that a critical route (if it is existent in a studied 

railway system) would be problematic due to the fact that most/all of the itineraries in the 

recommended list would be delay-sensitive. In the next section, an efficient algorithm is 

designed and presented, which is able to determine whether there exist critical routes in a 

given journey planning system and which routes are critical (if they do exist). 

 

Before going to the next section, a clarification needs to be made to distinguish between the 

notion of ‘critical routes’ (proposed here) and the notion of ‘critical points’ in the literature. 

Andersson et al. (2013) proposes a methodology to identify the robustness weaknesses in a 

timetable, and these weak points are named critical points. Despite some similarity in 

terminology, there is fundamental difference: the identification of ‘critical points’ is supposed 

to happen at the timetabling phase (i.e. before the long-term timetable has been created and 

finalised), whilst the identification of ‘critical routes’ is supposed to happen at the operational 

phase (i.e. after the long-term timetable has been published for passenger information). 

 

 

3.6 An efficient algorithm to enumerate all critical routes in a railway 
network 

 

3.6.1 Central idea 

 

The central idea behind the screening algorithm is that instead of scanning the large set of all 

feasible journeys to identify critical routes, the computational burden can be significantly 
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reduced by firstly screening out all critical transfers and the corresponding one-transfer 

critical routes (the building blocks), and then permutating the small set of one-transfer critical 

routes to obtain the list of all critical routes in a given railway network. 

 

Note that the screening algorithm adopts CSA (Connection Scan Algorithm, see Subsection 

2.3.4 for reference) as a sub-procedure to simulate an online journey planning system (note: 

the simulator used in Figure 3.5 is also based on CSA). This choice is, however, not 

compulsory but largely for convenience. Graph-based journey planning algorithms (e.g. 

Time-Dependent Dijkstra and Time-Expanded Dijkstra, refer to Section 2.3) often require a 

great many computational resources to do heavy-preprocessing in order to achieve desirable 

response times; however, graph-based algorithms have better extensibility and can better 

support multi-modal journey planning. By contrast, post-Dijkstra algorithms like CSA or 

RAPTOR (see Subsection 2.3.4 for reference) are array-based and lightweight, which 

consume fewer computing resources but are mainly designed for public transport networks. 

Overall, each kind of journey planning algorithms has its own pros and cons, and the reason 

why CSA is adopted here involves a balance between the consumption of computational 

resources and the requirement for response times. An algorithmic-level explanation of CSA is 

to be presented in the next subsection. After that, the screening algorithm proposed is to be 

detailed.  

 

3.6.2 Connection Scan Algorithm (CSA) 

 

The Connection Scan Algorithm (CSA) is firstly proposed by Dibbelt et al. (2013), and has 

been proven to be one of the most efficient journey planning algorithms (until now) for 

timetable-based public transport systems (e.g. rail) (Bast et al., 2015; Wagner, 2015). To 

better understand the technicalities of the screening algorithm (in the next subsection), it 

would be helpful to give a brief illustration of CSA.  

 

Below is the pseudo code of the basic version of CSA (i.e. an earliest arrival query, see the 

subsection 2.3.5 for reference). Before going to the technical details of this algorithm, it is 

necessary to clarify the meaning of ‘connection’ in the context of CSA. As mentioned 

previously in Section 2.5 and the subsection 3.4.2, the term ‘connection’ is mainly used to 

describe the interaction between two different trains within a station (e.g. passenger transfers, 

crew transfers, etc) in the terminology of railway timetabling and operations. Here, in the 
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context of the algorithm, ‘connection’ is a rather abstract notion and is mainly used to refer to 

a train movement from one station to another. And more precisely, a ‘connection’ in CSA 

represents an ‘elementary connection’ (refer to the subsection 2.3.2) in a given timetable. 

 

Algorithm 1: CSA (Connection Scan Algorithm) 
Input: Stations, Connections, S1, S2, t1 
Output: Itinerary_recommend 
 

1 // initialising auxiliary arrays 
2 for all Si in Stations: 
3       In_connection[Si] = NULL 
4       Earliest_arrival[Si] = ∞ 
5  
6 // main loop 
7 for all Ci in Connections: 
8       if td(Ci) > Earliest_arrival[Sd(Ci)] and ta(Ci) < Earliest_arrival[Sa(Ci)]: 
9             Earliest_arrival[Sa(Ci)] = ta(Ci) 
10             In_connection[Sa(Ci)] = Ci 
11  
12 // constructing the recommended itinerary 
13 Itinerary_recommend = NULL 
14 Ci = In_connection[S2] 
15 while Ci is not NULL: 
16          Itinerary_recommend.append(Ci) 
17          Ci = In_connection[Sd(Ci)] 
18 Itinerary_recommend.reverse() 
19 return Itinerary_recommend 

 

Recall (in the subsection 2.3.2) that a timetable can be abstractly modelled as a 4-tuple (S, Z, 

C, D), where S is a set of stations, Z is a set of trains, C is a set of elementary connections, 

and D is a set of service dates. In this 4-tuple, an elementary connection in set C is itself a 5-

tuple (Zi, Sd, Sa, td, ta), which can be interpreted as follows: a train Zi departs the current stop 

station Sd at time td and arrives at the immediately next (scheduled) stop station Sa at time ta. 

The mechanism of CSA is just built on such an abstraction of a master timetable.  

 

In Algorithm 1 (CSA), a master timetable is firstly reformatted and stored into two arrays: 

Stations (i.e. all active stations in a railway network) and Connections (i.e. all elementary 

connections in the timetable). CSA then receives a time query (S1, S2, t1) (note:S1 is the 

source station, S2 is the target station, and t1 is the desired departure time from S1; refer to the 

subsection 2.3.5) and returns a recommended (earliest arrival) itinerary. In an execution of 

CSA, two auxiliary arrays are firstly initialised (Lines 1 – 4): In_connection stores all the 
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incoming (elementary) connections for each station, and Earliest_arrival stores the earliest 

arrival time for each station. The second stage is the main loop of the algorithm: the array 

Connections is fully scanned to obtain the earliest arrival time at the target station (i.e. S2) 

and mark all the involved stops en route. Then, in the final stage, a post-processing procedure 

is run to construct and return the recommended itinerary. Note that Sd(·), Sa(·), td(·), and ta(·) 

in the above algorithm respectively represent the departure station, the arrival station, the 

(scheduled) departure time, the (scheduled) arrival time of a given (elementary) connection Ci.  

 

3.6.3 Critical Routes Finder (CRF): the screening algorithm 

 

Algorithm 2 below presents the pseudo code of the developed screening algorithm (called 

Critical Routes Finder) for identifying and enumerating all the critical routes (defined as in 

Section 3.5) within a given railway system. The algorithm (i.e. CRF) involves a number of 

sub-procedures (including the aforementioned CSA-based journey planning simulator), a lot 

of data cleaning and processing, and several carefully designed heuristics to accelerate the 

executions. A Python implementation of CRF is presented in Appendix B, the source code of 

which is composed of approximately 1500 lines (of commands). Therefore, rather than being 

viewed as one algorithm, CRF can be more appropriately described as a set of several 

interdependent algorithms.  

 
CRF is generally composed of five major steps. All the notations in italics are one-

dimensional list (array) objects, those in bold are two-dimensional tables, and uppercase 

letters are constant parameters. The only exception is CSA in Step 4, which is short for 

Connection Scan Algorithm (as previously described) and is not a parameter but a procedure.  

  
Algorithm 2: CRF (Critical Routes Finder) 
Input: a long-term timetable that contains information about stations, lines, trips, stop times, 

calendar, and minimum transfer times 
Output: a list of all critical routes in the studied railway system 
  

1 // Step 1: determine the set of all transfer stations in the network 
2 for each in Lines: 
3     record seq and store it into StopSequences 
4 for each pair in StopSequences: 
5     if no shared origin and destination: 
6         if not inverse to each other: 
7             compute intersec 
8             if len(intersec) == 1: 
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9                 store intersec into TransferStations 
10  
11 // Step 2: construct station-view timetables for transfer stations 
12 for each station i in TransferStations: 
13     if MinimumTransferTime(i) > UPPER: 
14         continue 
15     extract from StopTimes the records pertaining to i and store into a separate table 

Table_i 
16     sort Table_i by scheduled arrival time 
17     merge Table_i with Stations, Calendar, etc. to introduce additional columns for 

scanning 
18     store Table_i into StationViewTimetables 
19  
20 // Step 3: scan StationViewTimetables to obtain a candidate list of critical transfers 
21 for each table j in StationViewTimetables: 
22     delete those records with service days < DAYS 
23     flag those records with line headway > HEADWAY and store into Connecting 
24     assign LOWER_j and UPPER_j for scanning 
25     for each record k in table j: 
26         for each record m with dep(m) in [arr(k)+LOWER_j, arr(k)+UPPER_j]: 
27             if line(m) in Connecting and dist(station(j), destination(m)) > DIST: 
28                 if diff(platform(k), platform(m)) > DIFF: 
29                     store (origin(k), station(j), destination(m)) into CandidateList 
30  
31 // Step 4: double-check CandidateList to obtain the list of critical transfers and one-     

//             transfer critical routes 
32 extract from StopTimes the timetable for a normal service day 
33 for each pair of origin and destination in CandidateList: 
34     run a multi-criteria CSA on the timetable to obtain a list of recommended 

itineraries 
35     if the recommended itineraries follow exactly one route with exactly one transfer: 
36         store the recommended route into RecommendedList 
37 intersect CandidateList with RecommendedList to obtain CriticalTransfers 
38 drop duplicates in CriticalTransfers to obtain 1-Transfer-Routes 
39  
40 // Step 5: permute 1-Transfer-Routes to obtain the list of all critical routes 
41 k = 2 
42 while k < K: 
43     enumerate k-permutations of 1-Transfer-Routes and store them into 

CandidateList_k 
44     double-check CandidateList_k to obtain the final list of k-Transfers-Routes (repeat 

Step 4) 
45     store k-Transfers-Routes into CriticalRoutes 
46     k = k+1 
47     if len(k-Transfers-Routes) == 0: 
48         store 1-Transfer-Routes into CriticalRoutes 
49         return CriticalRoutes 
50         terminate 
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Step 1 and Step 2 can be seen as pre-processing steps. These two steps can significantly 

reduce the search space and the computational burden on scanning tables. This is because 

realistic railway systems are often sparse networks in which only a small subset of all railway 

stations are potential transfer stations. Relevant symbols are as follows: 

 

- seq means the stop sequence of a given train line. 

- intersec is the intersection set of two line-specific stop sequences. 

- origin/destination means the originating/terminating station of a given line. 

- UPPER is the upper bound for an insufficient MTT. 

- StopTimes is a table that stores all the scheduled arrival, departure, and passing times 

at all station stops for all lines within a given rail network.  

- Stations is a table that stores station-related information about e.g. name, location, 

special identifier in a given code system, etc. 

- Calendar is a table that specifies the operational and non-operational dates for each 

train line within a given timetable period.  

- StationViewTimetables means a list of (line-specific) timetables grouped by station.  

 

Step 3 and Step 4 are the core part of CRF. While Step 3 is mainly to check Conditions (3), (4) 

and (5) in the four conditions for critical transfers, Step 4 is mainly to check Condition (2). 

Note that Condition (1) has been implicitly taken into account in Steps 1 and 2. Step 3 

involves several network-specific parameters, and the considerations behind parameters 

selection are to be explained later in the application of CRF to the National Rail timetable 

currently used by Britain’s passenger rail system. Relevant symbols are as follows: 

 

- DAYS is the threshold for the number of operating days within a timetable period. 

- HEADWAY is the threshold between low-frequency and high-frequency services. 

- Connecting is the candidate list of connecting legs. 

- LOWER_j and UPPER_j are station-specific parameters that bound the interval [MTT, 

UPPER]. 

- dep(m) and arr(k) are the scheduled departure time of m and the scheduled arrival 

time of k. 

- DIST is the threshold between near and far in terms of geographical distance between 

the transfer station and the destination station (of a given connecting line).  
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- DIFF is the difference between the platform number of the feeder train and that of the 

connecting train. 

 

Step 5 introduces two stopping conditions. One is to stop the algorithm when no new critical 

routes enter the result set (which is very natural). The other is a constraint of maximum 

number of transfers (i.e. the parameter K), which is to accelerate the termination under the 

extreme case in which there are critical routes involving unrealistically large number of 

transfers.  

 

The whole algorithm has been carefully implemented and tested in the analysis of the 

National Rail timetable currently in use in Britain’s passenger rail system, the execution of 

which is proven to be quite efficient (up to 3 mins in total). Since all the involved parameters 

are network- or station-specific, the choice of each parameter is to be detailed in the analysis. 

 

CRF (Critical Routes Finder) has been developed to locate those critical routes (defined in 

Sections 3.4 and 3.5) within a large search space (composed of millions of possible pairs of 

source and target stations). The creation and adoption of this particular approach has been 

mainly based on the consideration that it would be much more efficient than a Brute-Force 

approach (i.e. firstly enumerate all possible routes between all possible pairs of source and 

target stations, and then check all these routes one by one). 

 

 

3.7 An analysis of British National Rail timetable using CRF 

 

3.7.1 Introduction 

 

Britain has one of the busiest railways in Europe with about 22,500 trains running every day 

and 1.7 billion rail journeys made per year (Network Rail, 2016b; ORR, 2016). Since 

passenger rail journeys (in Britain) have more than doubled over the last two decades (ORR, 

2016), the infrastructure capacity utilisation also increases, reaching its limit at critical parts 

(Network Rail, 2016a). A higher capacity utilisation tends to bring more frequent delays 

(Olsson and Haugland, 2004), and train delays and cancellations are currently quite common 

in British railway system.  
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On the other hand, rail passengers in Britain tend to rely increasingly on web-based 

information sources to plan their journeys, especially when planning unfamiliar and/or long-

distance journeys (Farag and Lyons, 2008). In the following, the CRF algorithm presented in 

the previous section is to be applied to the current National Rail timetable (i.e. the published 

long-term timetable) adopted by British railways to identify those weak points (i.e. critical 

routes) in the pre-trip timetable information (i.e. those recommended itineraries by NRE). 

 

3.7.2 Data preparation 

 

In this particular analysis, three sets of relevant data are prepared: the National Rail timetable 

data, the London Underground timetable data, and historical train movements data about 

arrival and departure delays at major stations.  

 

Although generally stable, the long-term (planned) timetable of National Rail is updated 

every six months. In this analysis, the latest version (at the time of writing up this thesis) is 

adopted, which is valid from 11 December 2016 to 20 May 2017. Although different formats 

are available: PDF (Network Rail, 2016b), XML (ATOC, 2016), and GTFS 

(http://www.gbrail.info/ ), a dataset of GTFS format is adopted because GTFS data are well-

organised and easier to process. The GTFS timetable is updated every week to reflect minor 

modifications to rail operations in the following week, and the exact file adopted is the one 

published on 19 November 2016. 

 

The London Underground timetable8 is also involved. Recall that in Steps 4 and 5 in the 

screening algorithm (i.e. CRF), a CSA-based journey planning simulator is run to check the 

candidate list of critical transfers and critical routes. Since many journeys across Britain 

involve inter-station transfers between London Terminals (e.g. Waterloo, Victoria, etc.), 

London Underground is often a good choice to complete these inter-station transfers. 

 

The historical delay data collected are a 12-months dataset that contains information about a 

huge amount of recorded arrival and departure events (logs) at a number of major railway 

stations. The observation period is from 14 Sept 2015 to 13 Sept 2016, which crosses three 

                                                             
8 https://tfl.gov.uk/travel-information/timetables/ 
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timetable periods: 17 May 2015 – 12 Dec 2015, 13 Dec 2015 – 14 May 2016, and 15 May 

2016 – 10 Dec 2016. The records are organised by station: the investigated stations are 

Bournemouth, Southampton Central, Brighton, Exeter St Davids, Cardiff Central, 

Birmingham New Street, Clapham Junction, Leeds, Doncaster, Manchester Piccadilly, 

Edinburgh, Liverpool Lime Street, Sheffield and Preston (14 stations in total). The relevant 

data records have been downloaded and stored into separate files every day (during the 12-

months observation period) from Realtime Trains (RTT). The reason why adopting RTT data 

is that RTT data are generally well-structured and easier to process than those poorly-

structured raw data from Network Rail. Although RTT is not an official source of historical 

rail data, it is a well-known data consumer of Network Rail’s data feeds (rather than a data 

creator). Note that since the database of RTT has limited storage space, the historical data are 

renewed on a weekly basis (i.e. old data are removed to leave space for new data). Hence, 

RTT data needs to be carefully and timely collected, before the relevant records are removed.  

 

3.7.3 Parameters selection 

 

Step 2 (of the screening algorithm CRF) involves an important parameter: the upper bound 

for potentially insufficient minimum transfer time (MTT). Recall that in the introduction to 

critical transfers and critical routes (Section 3.5), the mechanisms of MTT and MUI (most 

uncertain interval) have been respectively explained, but the relationship between them has 

not been clarified. This is because although MTT and MUI are inter-related, both of them are 

network-specific (i.e. may vary among different countries) and their relationship is largely 

indefinite. Here, considerations are explained about how to determine MUI and hence 

determine the threshold for potentially insufficient MTT in the context of British railways.  

 

The statistics shown in Figure 3.15 below are calculated from the 12-months historical data 

(Figure 3.15(a) and (b)) and the National Rail timetable data (Figure 3.15(c)).  

 

Figure 3.15 (a) and (b) respectively present the distribution of arrival and departure delays at 

the 14 studied railway stations in Britain (refer to the previous introduction in Subsection 

3.7.2) during the 12-months observation period. The total number of effective observations 

(i.e. null values and cancelled trains are not included) is 1,405,785 for arrival events, and 

1,439,873 for departure events. The observed arrival delays have 283 distinct values (unit: 

minutes) with the minimum and maximum being -104 and 436, respectively. The observed 
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departure delays have 287 distinct values, with the extreme values being -83 and 781, 

respectively.  

 

 

Figure 3.15 Statistics for arrival delays, departure delays, and minimum transfer times in 
British railways 

 

Generally, the arrival delays have a ‘flatter’ distribution than the departure delays (c.f. Figure 

3.15), indicating that the uncertainty in arrival events tends to be larger than that in departure 

events. We can also see from both distributions that small variations account for the vast 

majority of the total. Although the sample adopted is quite large in terms of the number of 

observations, it only accounts for a small portion of the whole network and not necessarily 

representative: these statistics should not be seen as the exact probabilities (e.g. the size of 

arrival delays may be systematically underestimated using this sample, for rail operators 

usually take measures to improve punctuality at major stations but allow larger delays at 

small stations). But one thing is clear from these statistics: small arrival delays are not that 

rare, and they can result in delay-sensitive transfers if combined with relatively punctual 

departures and insufficient MTTs.  

 

Figure 3.15 (c) presents the distribution of MTTs for all British railway stations. The statistics 

are calculated from the National Rail timetable data (in GTFS format). We can see that 
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among the 2585 stations, around 94% are assigned a MTT no more than 5 minutes. This is 

not surprising because most of the stations in Britain’s passenger rail system are not major 

transfer stations and the net transfer time (NTT, refer to Figure 3.14 in Subsection 3.5.2) 

within a small station is trivial. But there is a possibility that some transfers happen at small 

stations but there are not enough reserves to offset the impact of prevalent small delays. For 

those major transfer stations with large MTT, there is also a possibility that some transfers 

require large NTTs and there are not enough reserves for small delays.  

 

So how to determine the upper bound for MTT? The key is firstly determining an upper 

bound for MUI. Recall that a transfer plan is considered as valid only if the scheduled 

window between the advertised arrival and departure times of two trains is greater than a 

predefined minimum transfer time (i.e. SW ≥ MTT, see Figure 3.13 in Subsection 3.4.2). 

Meanwhile, the scheduled window between two trains can be seen as the sum of the net 

transfer time and the maximum tolerable lateness (i.e. SW = NTT + MTL, see Figure 3.14 in 

Subsection 3.5.2), and the threshold for the arrival of the feeder train should lie within MUI 

(i.e. tθ ≤ t”a1, see Figure 3.14 in Subsection 3.5.2) were it recognised as a critical transfer 

(refer to subsection 3.5.2). Therefore, the upper bound for MTT is dependent upon the upper 

bound for MUI: MTT ≤ SW = NTT + (tθ – ta1) ≤ NTT + t”a1 – ta1.  

 

From Figure 3.15 (a) we can see that the arrival delays in the interval [-5, 10] account for 

about 95% of the total, and hence 10 (mins) can be set as the upper bound for MUI. This 

choice may be questioned because the percentage of 10 is only 0.73%, which seems not that 

uncertain. But considering that these are aggregated statistics without differentiating between 

regional and long-distance trains and the critical routes we aim to find out (if existent, as 

defined in Subsection 3.5.3) often involve long-distance trains, this choice should be 

appropriate. More importantly, since a series of further screenings are to be executed at later 

stages (of CRF), we only need to obtain a rough estimation of a network-level MUI at this 

stage, and adopting a wider MUI could reduce the error of omitting some important (but 

delay-sensitive) transfers. Based on the observation that the majority of intra-station transfers 

in National Rail can be completed within 3 minutes (i.e. the maximum of NTT is around 3 

minutes across the network), the parameter UPPER can hence be set to 12 minutes (the 

maximum MTT no more than (10+3) is 12, see Figure 3.15 (c)).  That is, we need only to 

scan the timetables for those transfer stations with assigned MTTs no more than 12 minutes, 
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and those transfer stations with MTTs larger than 12 are not possible to cause critical 

transfers. 

 

The other parameters (in CRF) to choose are involved in Step 3. The parameter DAYS is to 

filter out those short-term noises: only long-existence transfers are taken into account. Since 

one timetable period is about six months in Britain, this parameter is set to 180 (d) in this 

analysis. The parameter HEADWAY is to identify those low-frequency train lines: it is set to 

30 minutes (i.e. two services per hour), which is in line with most British rail operators’ delay 

compensation policies (e.g. Virgin Trains9). With respect to the two station-specific 

parameters LOWER_j and UPPER_j, the choices are based on the following considerations: 

LOWER_j is always set to MTT_j because only those pairs of trains with SW (scheduled 

window) larger than MTT are likely to enter the set of recommended itineraries; UPPER_j is 

set to 10 (i.e. the upper bound for MUI) if MTT_j < 10, and is set to 12 (i.e. the upper bound 

for MTT) if 10 <= MTT_j <= 12 (see Figure 3.14 for illustration). The parameter DIST is to 

guarantee that the length of a connecting leg is long enough and hence the consequence of a 

missed transfer is difficult to offset by shifting to local public transport (e.g. bus, tram, etc.). 

Considering the specific characteristics of British public transport, this parameter is set to 40 

kilometres in this analysis. The parameter DIFF takes into account the correlation between a 

pair of feeder and connecting trains: the delays of the two involved trains tend to be 

positively correlated if the two trains are allocated to the same platform; the farther apart they 

are, the lower the potential correlation between them and hence the more likely the transfer is 

delay-sensitive. And DIFF is also used to filter out those pairs of trains with small NTTs (net 

transfer time, see Figure 3.14). 

 

Table 3.1 The parameters adopted in this analysis 

UPPER (mins) 12 
DAYS (d) 180 
HEADWAY (mins) 30 

LOWER_j and UPPER_j (mins) 
LOWER_j = MTT_j  & UPPER_j = 10 if MTT_j < 10 
LOWER_j = MTT_j  & UPPER_j = 12 if 10 ≤ MTT_j ≤ 12 

DIST (km) 40 

DIFF 
DIFF ≥ 1 if MTT_j ≤ 5 
DIFF ≥ 2 if 5 < MTT_j < 10 
DIFF ≥ 3 if 10 ≤ MTT_j ≤ 12 

 

                                                             
9 https://www.virgintrains.co.uk/delayrepay 



67 

For the convenience of reference, the assigned values to all the involved parameters in this 

analysis are summarised in Table 3.1. It should be noted that these values are not compulsory: 

they can be adjusted as necessary.  

 

 

3.7.4 The screening results 

 

In the following, the screening results (i.e. critical routes) as well as the intermediate results 

in each step are to be presented. Moreover, the execution time (i.e. computational time) for 

each step is also recorded to enable the knowledge about the screening algorithm’s (i.e. 

CRF’s) performance in terms of efficiency. The code is written in Python 2.7 (refer to 

Appendix B) and run on a machine with Intel® Core™ i7-4700MQ CPU, 2.4 GHz, and 8 GB 

of RAM. 

 

By adopting UPPER = 12, the two pre-processing steps (Step 1 and Step 2) reduce the search 

space from the set of 2585 stations to a small subset of 277 stations. The computational time 

for these two steps is around 34 seconds. 

 

After the execution of Step 3, a candidate list of 379 potential critical transfers across British 

railways is obtained. The computational time for Step 3 is around 75 seconds (based on the 

parameters presented in Table 3.1).  

 

Step 4 is to check each of the transfers in the candidate list to see whether it is realistic. This 

is because those transfers in the candidate list are only critical in theory and there may be 

many unrealistic scenarios such as detours. After filtering out those apparently unrealistic 

transfers (i.e. the distance between origin and target stations less than 20 km), the number of 

transfers in the candidate list is reduced to 248. For those inconspicuous detours, the CSA-

based journey planning simulator (see Appendix B) is employed to complete the filtration 

task. The optimisation criteria adopted are scheduled journey time and number of transfers. 

The timetable adopted is a full-day timetable (including the London Underground timetable) 

for a normal working day during the studied timetable period (here, 25 Jan 2017 is adopted). 

After the check-up of the 248 transfers in the candidate list, a final list of 13 critical transfers 

and their corresponding one-transfer critical routes are identified: 
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Ebbw Vale Town – Cardiff Central – Nottingham;  

Knottingley – Wakefield Kirkgate – Nottingham;  

Liverpool Lime Street – Manchester Piccadilly – Doncaster;  

New Mills Central – Manchester Piccadilly – Scarborough;  

London Kings Cross – York – Scarborough;  

Weymouth – Southampton Central – Brighton;  

Harwich Town – Manningtree – Norwich;  

Sudbury (Suffolk) – Marks Tey – London Liverpool Street;  

Marlow – Maidenhead – Oxford;  

Rugeley Trent Valley – Birmingham New Street – Hereford;  

Hoxton – Clapham Junction – Alton;  

Kirkby (Merseyside) – Manchester Victoria – Huddersfield; 

Oxford – Reading – Gatwick Airport. 

 

The computational time for this step is about 51 seconds. Please note that this step can be 

accelerated by further optimising the implementation of the journey planning simulator: since 

the adopted implementation is in pure Python (normally an order of magnitude slower than a 

C++ counterpart), more efficient implementation can be adopted if the candidate list is large 

(e.g. thousands of transfers).  

 

Step 5 in this analysis converges (terminates) very quickly: no such case exists that the 

ending point of one route is the starting point of another (called 2-permutations in the 

algorithm), let alone k-permutations (k ≥ 2). Therefore, a lot of checking and rechecking is 

saved and the computational time for this step is trivial (< 1s).  

 

Summing up the five steps, the screening of a full list of critical routes in British railways can 

be completed within 3 minutes (about 160s), which is quite efficient considering the large 

search space for the whole network. Please note that this list is based on the planned 

timetable for the period from 11 December 2016 to 20 May 2017, and is subject to the 

changes in the long-term timetable. Note also that critical routes may contain critical sub-

routes. That is, some of the intermediate stops (stations) along a given critical route may 

themselves construct child routes following the same transfer pattern with their parent route 

(i.e. the identified critical route) and the child routes also satisfy the definitions of critical 

transfers and critical routes. Although critical sub-routes are not common in reality due to the 
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mechanism of current journey planning algorithms (e.g. Bournemouth – Southampton Central 

– Brighton and Ebbw Vale Town – Cardiff Central – Birmingham New Street are two 

identified critical sub-routes in the above list), the existence of critical sub-routes makes the 

set of critical itineraries and the number of passengers influenced often larger than the 

estimations based solely on those parent routes.  

 

 

3.8 A further investigation into the train delay data of British railways 

 

3.8.1 Introduction 

 

In the application of the developed screening algorithm (i.e. CRF) to British National Rail 

timetable (in the previous section), a large dataset containing historical train delay 

information during a 12-months period between 14 Sept 2015 and 13 Sept 2016 has been 

briefly described and been exploited to determine a network-specific parameter (i.e. the upper 

bound for insufficient minimum transfer time) for British railways (c.f. Subsection 3.7.3). 

Although the main objective of this chapter (i.e. introducing and explaining the concept of 

critical routes and identifying them in Britain’s passenger rail system) has been achieved up 

to this point, a more detailed analysis of the collected historical delay data may help better 

understand passenger train delays in British railways. In fact, few previous studies have 

utilised big data to investigate train delay distributions in a national-level railway network, 

and scientific knowledge of train delay distributions remains fragmented and limited. Hence, 

this section is mainly aimed at integrating the existing empirical evidence in the literature and 

generating updated knowledge about passenger train delays.  

 

3.8.2 Statistical modelling and the results 

 

Figure 3.15 (i.e. (a) and (b)) has presented some of the delay statistics of the recorded 

1,405,785 arrival events and 1,439,873 departure events happening at the 14 studied railway 

stations (c.f. Subsection 3.7.2) during the 12-months period between 14 Sept 2015 and 13 

Sept 2016. But the whole picture of the observed arrival and departure delays has not been 

shown. Hence, the whole distribution of arrival delays and that of the departure delays are 

firstly displayed in Figure 3.16 and Figure 3.17 below, respectively.  
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Figure 3.16 The distribution of arrival delays in British railways (based on a large sample 
between Sept 2015 and Sept 2016) 

 

Figure 3.17 The distribution of departure delays in British railways (based on a large sample 
between Sept 2015 and Sept 2016) 
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From Figure 3.16 we can see that the overall distribution is asymmetric: those positive delays 

(i.e. those on the right hand side of zero) tend to decay at a slower rate than those negative 

delays (i.e. those on the left hand side of zero), and those positive delays are characterised by 

a quite long tail (up to 436 mins delay, c.f. Figure 3.15(a)).  This asymmetry is even more 

obvious in the distribution of departure delays shown in Figure 3.17: the left tail 

(corresponding to those negative delays) is significantly shorter than the right tail 

(corresponding to those positive delays), and the decay rate of those negative delays are much 

faster than that of those positive delays and also faster than that of those negative delays in 

Figure 3.16.  

 

Based on Figures 3.16 and 3.17 and the empirical results in several previous studies (e.g. 

Yuan, 2006; Briggs and Beck, 2007), it can be inferred that the whole distribution 

(incorporating both negative and non-negative delays) of arrival/departure delays is most 

likely to be a compound/mixed distribution of a number of random variables, which cannot 

be described by a simplistic statistical model. Therefore, a separate investigation may be 

needed. 

 

Since negative delays (i.e. early arrivals or departures) are widely regarded as ‘on time’ in the 

rail industry, previous relevant studies (Yuan, 2006; Briggs and Beck, 2007; Bergström and 

Krüger, 2013) have mainly focused on the modelling of positive delays. To maintain 

consistency and facilitate the analysis, the focus of this section is also placed on those 

positive delays.  

  

Based on the above considerations, four candidate statistical models have been developed 

(the fitted curves are depicted in Figure 3.18 below), which respectively correspond to the 

following four functional forms: q-exponential, power law with exponential cutoff, lognormal, 

and Weibull.  
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Figure 3.18 Four candidate statistical models developed to fit the (positive) arrival delay data 

 

The reason why these four functional forms have been chosen (for comparison) is mainly 

based on the consideration that they have been respectively recommended by previous 

relevant studies. Briggs and Beck (2007) utilised a large British dataset containing over two 

million train departures for the period Sept 2005 – Oct 2006 to model (positive) departure 

delays in British (passenger) railways, and they found that the sample data can be ‘accurately 

described’ by the so-called ‘q-exponential functions’ (which can be viewed as a 

compound/mixed distribution of a number of random variables). Bergström and Krüger (2013) 

adopted a large Swedish dataset containing over three million valid train arrivals for the two-

year period of 2008 and 2009 (1.6 million for each) to model positive arrival delays, the 

results of which indicate that the exponential distribution can be used to describe those 

extreme values in the tail and the power law with an exponential cutoff (i.e. a combination of 

the power law and the exponential distribution) may be used to model the overall distribution 

of positive arrival delays. Yuan (2006) conducted a comprehensive statistical analysis of the 

train traffic data recorded at The Hague HS station in the Netherlands during the whole 

month of September 1999 (approximately 10,000 trains recorded). The empirical results from 

Yuan (2006) generally favour the Weibull distribution and the lognormal distribution as the 

best-fit statistical models of train delays.  
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To compare the capabilities of the four candidate functions in describing the historical train 

delay data adopted in this section, the obtained best-fit models respectively corresponding to 

the four functions (the specific forms and parameters are to be detailed later in Table 3.2) are 

presented (depicted) in Figure 3.18. It can be seen from Figure 3.18 that all of the four 

candidate models can generally fit the (positive) arrival delay data quite well, and their 

performances are indistinguishable on such a scale. But if we ‘magnify’ the granularity of the 

y-axis (i.e. the frequency axis), their differences become identifiable. Figure 3.19 below 

subdivides the range of the observed arrival delays (corresponding to the x-axis in Figure 

3.18) into four sub-intervals (i.e. (0, 15], (15, 60], (60, 120], and (120, 436]), and respectively 

compares the observed delays with the four fitted curves on each sub-interval adopting 

different granularities (corresponding to the y-axes in Figure 3.19) to reflect local details.  

 

Figure 3.19 Comparisons between the four candidate models for (positive) arrival delays 

 

From Figure 3.19 we can see that q-exponential and power law with cutoff can generally 

better fit the data (i.e. smaller deviations from the observations) than Weibull and lognormal 

on the sub-interval of (0, 15]. Moreover, it can also be seen from the figure that with the 



74 

increase of x values (i.e. delay size), q-exponential and power law with cutoff tend to 

systematically underestimate the observed values (i.e. frequency) while Weibull and 

lognormal tend to systematically overestimate the observed. However, these deviations (from 

the observations) should not be over-interpreted (based on the graphical descriptions in the 

figure) due to the fine granularity adopted.  

 

With respect to the overall performance of each model in describing the delay data, it can be 

speculated from the graphical description in Figure 3.19 that q-exponential and power law 

with exponential cutoff tend to be more able (than the other two) to describe the data on the 

whole domain (i.e. from 1 to 436 on the x-axes). To examine this speculation, a quantitative 

index – mean absolute error (MAE) – is respectively calculated for each candidate model. 

Mathematically, MAE is defined by the following equation:  
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In the above equation, yi corresponds to the observed value at the ith position/point on the 

domain, fi corresponds to the predicted/theoretical value (based on a specific model) at the ith 

position/point on the domain, and |ei| represents the absolute error at the ith position/point on 

the domain. The reason why choosing MAE as the index for comparison is mainly based on 

the consideration that it has a generic definition and is not constrained by some specific 

functional form: each of the four candidate models developed is the best-fit one among those 

of the same functional form, and MAE provides a straightforward way to measure goodness 

of fit and make cross-functional comparisons.  

 

Table 3.2 The specific parameters and indices of the four candidate models for (positive) 
arrival delays 

candidate model 
PDF (probability density 

function) 
best-fit parameters 

MAE (mean 
absolute error) 
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Table 3.2 presents the specific functional forms and the obtained parameters of the four 

candidate models that have been depicted in Figures 3.18 and 3.19. All of the relevant 

computations in curve fitting have been conducted using Python 2.7, with the aid of several 

statistical packages/libraries such as NumPy, SciPy, etc. Moreover, the corresponding MAEs 

to the four models are also presented in the rightmost column. The obtained results of MAEs 

in the table confirm our initial speculation from Figure 3.19: q-exponential and power law 

with cutoff generally outperform the other two models in terms of the overall performance in 

describing the data (the specific results are to be further interpreted in the next subsection).  

 

Figure 3.20 Comparisons between the four candidate models for (positive) departure delays 

 

In the above, several candidate statistical models for (positive) arrival delays in British 

railways have been developed and compared. A similar statistical analysis has also been 

conducted of those (positive) departure delays in British railways (c.f. Figure 3.17). The 

graphical descriptions and the specific parameters and indices (MAEs) of the developed 

models are presented in Figure 3.20 and Table 3.3, respectively. Comparing Figure 3.20 and 

Table 3.3 with their counterparts above (i.e. Figure 3.19 and Table 3.2), we can find some 
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similarities: despite the difference in specific parameters and indices, q-exponential and 

power law with cutoff generally better fit the recorded delay data.  

 

Table 3.3 The specific parameters and indices of the four candidate models for (positive) 
departure delays 

candidate model 
PDF (probability density 

function) 
best-fit parameters 

MAE (mean 
absolute error) 
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6.6×10-5 

 

 

3.8.3 Interpretation 

 

In this subsection, the graphical and numerical results presented in the previous subsection 

are to be further interpreted by linking them with operational practices and with previous 

relevant studies. 

 

Firstly, the differences between the overall distribution of arrival delays and that of departure 

delays (c.f. Figure 3.16 and Figure 3.17 in the previous subsection) are not difficult to 

understand. At least the following three underlying forces may have resulted in the 

differences between the two distributions. Firstly, the asymmetry between the recorded 

arrival events and the recorded departure events (in the sample) is an identifiable factor. 

Theoretically, each arrival event would correspond to at least one departure event (and vice 

versa) in the universal set of all arrivals and departures (from the perspective of cause and 

effect).  However, the sample data adopted in this section is only a subset (of all arrivals and 

departures in the studied railway network) containing records of 14 medium-to-large-sized 

stations (c.f. Subsection 3.7.2) despite its large sample size. That is, those departure delays in 

the sample (c.f. Figure 3.17) may not be totally attributable to those arrival delays in the 

sample (c.f. Figure 3.16), and vice versa. Secondly, some operational routines may also have 

resulted in the differences between the arrival and departure delay distributions. For example, 
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those negative delays in departure records are significantly less than those in arrival records 

(c.f. Figures 3.15, 3.16, and 3.17), which may be attributable to an operational practice that 

prohibits early departures (c.f. Goverde, 2005). Thirdly, some timetabling techniques may be 

another influencing factor. For example, running time supplements/allowances (c.f. 

Subsection 2.5.2) are often added in the timetable design process, which may have 

contributed to the relatively large proportion of early arrivals (c.f. Figures 3.15 and 3.16).  

 

With respect to the results presented in Figures 3.18 ~ 3.20 and Tables 3.2 ~ 3.3, they tend to 

indicate that all of the four statistical models built could generally describe the sample data of 

train delays in British railways quite well (with a mean absolute error of a magnitude of 10-4) 

and hence could be utilised to make delay estimations/predictions. Moreover, these results 

generally corroborate some of the findings/claims in previous relevant studies. Both Yuan 

(2006) and Bergström and Krüger (2013) have mentioned that the overall distribution of 

(positive) train delays is likely to be a compound/mixed distribution of a number of random 

variables, which can be largely confirmed by the empirical results presented in this section: 

the two compound distributions (i.e. q-exponential and power law with cutoff) do outperform 

the other two ‘pure’ distributions (i.e. Weibull and lognormal) in terms of goodness of fit. 

And the main finding of Briggs and Beck (2007) – q-exponential functions can ‘accurately’ 

describe the distribution of train delays in British railways – can also be corroborated by the 

results presented in the previous subsection: q-exponential has the least MAE (mean absolute 

error) among the competitors in both Table 3.2 and Table 3.3.  

 

Although some interesting information can be extracted from the analysis of the four 

statistical models presented in the previous subsection, these findings ought to be treated with 

caution. An interesting and relevant question is raised here: how accurate can be regarded as 

‘accurate’ (quoted from Briggs and Beck (2007)) when using statistical models to describe 

train delay distributions? The answer is likely to be ‘it depends’. For those small delays with 

high probabilities (e.g. (0, 15], c.f. Figures 3.19 and 3.20), all of the candidate models may be 

treated as quite accurate in estimating/predicting delay probabilities due to a far lower 

magnitude of errors/deviations (i.e. 10-4) than the corresponding delay probabilities 

themselves (i.e. 10-2 ~ 10-1). In contrast, even the most ‘accurate’ model (i.e. q-exponential) 

may not be regarded as accurate enough for those heavy delays with low probabilities (e.g. > 

60, c.f. Figures 3.19 and 3.20), for the errors/deviations (with a magnitude no less than 10-5) 

would exceed the corresponding delay probabilities themselves (with a magnitude no greater 
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than 10-5). Therefore, it is suggested (based on the empirical results presented in this section) 

that further (separate) analyses of the distribution of those heavy/large delays be conducted in 

future research.  

 

Despite the fact that the statistical analyses conducted in this section are not specific to a 

particular route, station, or season, some interesting findings can still be drawn at the network 

level.  

 

 

Figure 3.21 The best-fit (q-exponential) curve for the departure delay data of British railways 
between Sept 2005 and Oct 2006 (Source: Briggs and Beck, 2007) 

 
As previously mentioned, Briggs and Beck (2007) utilised big data to model train delays in 

British railways and they have built a q-exponential model to fit the collected data on 

departure delays for 23 railway stations10 between September 2005 and October 2006. The 

best-fit parameters have been q = 1.355 ± 8.8 × 10−5 and b = 0.524 ± 2.5 × 10−8 for their 
                                                             
10 These include Bath Spa, Birmingham, Cambridge, Canterbury East, Canterbury West, City Thameslink, 
Colchester, Coventry, Doncaster, Edinburgh, Ely, Ipswich, Leeds, Leicester, Manchester Piccadilly, Newcastle, 
Nottingham, Oxford, Peterborough, Reading, Sheffield, Swindon, and York.  
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developed model. Although the normalisation parameter of c (see Table 3.2 or Table 3.3 for 

the specific functional form of q-exponential) has not been explicitly presented in their paper, 

it can be inferred from the graphical description of their developed model (see Figure 3.21) 

that the parameter c is roughly around 0.12.  

 
Once the best-fit q-exponential for the period September 2005 to October 2006 has been 

restored, we can then investigate the change in the distribution of departure delays in British 

railways over the last decade by comparing the model developed by Briggs and Beck 

(q=1.355, b=0.524, c=0.12) with the q-exponential model developed in this section (q=1.207, 

b=0.558, c=0.227; c.f. Table 3.3).  Figure 3.22 below provides a graphical comparison of the 

two models. Note that the long tails (of the two models) have not been depicted based on the 

consideration that the trend of each of the two fitted distributions can be easily derived from 

the figure (i.e. the decay rate of those triangles is faster than that of those circles). As has 

been shown in this section and in Briggs and Beck (2017), both of the two q-exponential 

models depicted in Figure 3.22 can generate quite accurate estimations of train delays for 

their corresponding observation periods (i.e. Sept 05 to Oct 06 and Sept 15 to Sept 16), 

especially for those small delays at the head part of the distributions.  

 

It can be seen from Figure 3.22 that those small delays (up to 8) have happened more 

frequently between Sept 2015 and Sept 2016 while those medium-to-large-sized delays 

(greater than 8) have happened less frequently between Sept 2015 and Sept 2016. This 

implies that the main focus of rail operators in Britain may have been placed on the 

management of those medium-to-large-sized delays (based on the assumption that both of the 

two q-exponential functions can ‘accurately’ describe those medium-to-large-sized delays), 

which could directly benefit rail operators (e.g. less fines and/or more subsidies) by the 

improvement of those existing performance measures such as PPM (Public Performance 

Measure, c.f. Network Rail, 2017). Setting aside the potentially little attention paid to those 

small delays (by rail operators), a possible reason for the increase in small delays may lie in 

the (rapid) growth in rail usage over the last decade (and the resulting crowdedness in stations 

and trains) (DfT, 2016b and 2017). Although the increase in small delays might not be a 

severe problem for those transfer-free journeys, it may lead to an increasing risk of broken 

connections for those transfer-involved journeys, especially for those Critical Routes (c.f. 

Section 3.5). Hence, apart from those medium-to-large-sized delays, rail operators in Britain 
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should pay additional attention to those small delays to improve the overall quality of rail 

services.  

 

Figure 3.22 The change in the departure delay distribution (for British railways) over the past 
decade 

 

 

 

3.9 Conclusions 

 

Transfer-involved rail routes receive relatively less attention from rail operators compared 

with direct routes, not only in terms of timetable design but also in terms of pre-trip 

passenger information. As an increasingly popular information tool, online journey planning 

systems such as National Rail Enquiries (and its mobile version) in Britain play an important 

role in the pre-planning of transfer-involved routes. However, the quality of the pre-trip 

information about those transfer-involved routes (i.e. the recommended itinerary list) is often 

disregarded, due to the limitations of existing journey planning technologies. At the 

algorithmic level, these limitations are embodied by the interaction between several 

competing forces (i.e. earliest arrival, latest departure, and minimum transfer time). Since 
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these limitations come from within the framework of existing journey planning algorithms 

itself, they are difficult to be overcome unless a breakthrough can be made to jump out of the 

existing framework (which seems an unachievable goal in the foreseeable future). 

 

An alternative solution is to identify those weak points (i.e. problematic transfer-involved 

routes) under the existing algorithmic framework, and then focus on tackling this small subset 

of problematic routes. In order to automatically and efficiently identify those problematic 

routes in terms of pre-trip journey planning, it is necessary to introduce some novel concepts 

to make the screening problem mathematically operable. These introduced concepts are: 

critical transfers, critical itineraries, and critical routes. Roughly speaking, a critical itinerary 

is composed of critical transfers, each of which is delay-sensitive and is associated with high 

consequence if missed. And if the recommended itinerary list (by a journey planning system) 

is full of critical itineraries, the corresponding route would be problematic in terms of 

punctuality and reliability and is called a critical route.  

 

An efficient screening algorithm, named Critical Routes Finder (CRF), is developed and 

implemented to check whether there exist critical routes within a given railway system and to 

find out, if existent, which of those transfer-involved routes are critical. The screening 

algorithm is then applied to analyse the current National Rail timetable adopted by British 

railways to identify those critical routes within Britain’s passenger rail system. The 

performance of the screening algorithm is promising in terms of computational efficiency. 

The screening results show that more attention should be paid to such transfer-involved 

routes as London Kings Cross – York – Scarborough, Weymouth – Southampton Central – 

Brighton, etc to improve the pre-trip information about these routes.  

 

A statistical analysis of a large sample of train delay data has also been conducted for British 

railways for the period September 2015 to September 2016. The empirical results tend to 

indicate that all of the four studied candidate functions (i.e. lognormal, Weibull, power law 

with cutoff, and q-exponential) can generate quite accurate predictions of those small-sized 

delays, but none of them give a desirable performance in fitting those medium-to-large-sized 

delays. Overall, q-exponential outperforms the other three candidate functions in terms of 

goodness-of-fit. Comparing the latest version of q-exponential (derived from the 2015/16 

data) with a previous version of q-exponential (derived from a 2005/06 sample), a non-

negligible increase in small-sized delays has been identified in British railways, which 
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implies that a better management of those small delays may be necessary to alleviate the 

potential problem of transfer-involved journeys.  
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Chapter 4  

Tackling Critical Routes: a historical-data-based approach 

 

4.1 Introduction 

 

The existence of critical routes in a passenger rail system would be problematic in terms of 

pre-trip passenger information. As illustrated in Chapter 3, the recommended itinerary list for 

a critical route would be full of delay-sensitive transfers, resulting in poor-quality pre-trip 

information in terms of punctuality and reliability.  

 

These critical routes should, ideally, be resolved in the timetabling (i.e. timetable design) 

process, which belongs to the tactical planning phase rather than the operational planning 

phase (c.f. Section 2.5). In reality, however, railway timetabling is a complicated process that 

involves a delicate balance of technical feasibility, convenience for passengers, and the 

interests of different operators. For example, if a critical route involves two different rail 

operators sharing no rolling stock or crew, they may lack the incentive to reschedule those 

delay-sensitive transfers if the transferring passengers are a minority group or if the 

rescheduling would increase the operational cost of the other processes.  

 

A more feasible solution to critical routes is improving the quality of the pre-trip information 

(i.e. those recommended itineraries) about these routes. This chapter hence focuses on finding 

information-related strategies to cope with those critical routes within a given railway system. 

Although no previous studies are directly related to or pay special attention to critical routes, 

a review of the existing solutions to some similar problems is firstly presented in Section 4.2 

to help understand the big picture of the state-of-the-art journey planning technologies. After 

that, the central idea and the technicalities of the proposed (historical-data-based) approach 

are explained in Section 4.3. Section 4.4 then presents several illustrative examples in the 

context of British railways to show the potential applications of the proposed approach. 

Section 4.5 points out and illustrates a potential limitation of the proposed (data-driven) 
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solution to critical routes to stimulate further research in the relevant directions. Section 4.6 

concludes this chapter.  

 

 

4.2 Existing information-related approaches to tackling missed transfers 

 

Missed transfers (connections) have long been a weak point in terms of pre-trip passenger 

information, despite the rapid development of journey planning technologies. Missing a 

transfer could be a serious problem, especially for long-distance connections running with 

low frequency. This section is aimed at presenting a brief review of the state of the art of the 

various information technologies that have been developed to mitigate the problem of missed 

transfers. The review covers a variety of sources of references – ranging from mature real-

world applications to immature prototypes in the literature to raw algorithmic ideas. 

 

4.2.1 Frequently updating the underlying timetables 

 

Müller-Hannemann and Schnee (2009), Allulli et al. (2014), Cionini et al. (2014), and 

Delling et al. (2014a) are the advocates of incorporating dynamic (delay) information into 

static timetable information systems. And a number of real-world pre-trip timetable 

information systems (e.g. National Rail Enquiries, DB Bahn, etc) have largely implemented 

this kind of algorithmic solution in recent years.  

 

While Müller-Hannemann and Schnee (2009) and Cionini et al. (2014) are centred on 

enhancing graph-based algorithms (c.f. Subsection 2.3.3) to enable dynamic updating of the 

underlying timetables (efficiency), Allulli et al. (2014) and Delling et al. (2014a) focus on 

investigating to what extent the exploitation of dynamic information (real-time GPS data in 

the context of their studies) can improve the static timetable information (effectiveness).  

 

Although these studies have obtained generally desirable results, this category of approaches 

(i.e. frequently updating the underlying timetables) suffers from the same limitation with 

those real-time delay/disruption alerts (c.f. Sections 3.2 and 3.3) – the accuracy of the 

dynamic information cannot be guaranteed until it is very near to the time of travel. Therefore, 

they contribute little to the pre-planning of transfer-involved journeys.  
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4.2.2 Reliability rating based on simplistic models 

 

Disser et al. (2008) and Schnee (2009) propose an algorithmic approach that computes 

reliable journeys (itineraries) by multi-criteria optimisation (c.f. Subsection 2.3.7). Delling et 

al. (2014b) also adopt this method in their proposed RAPTOR algorithm (c.f. Subsections 

2.3.4. and 2.3.7). The idea is to add into a given journey planning algorithm a predefined 

‘reliability rating model’ to evaluate how ‘reliable’ each individual journey plan is and 

employ ‘reliability rating’ as an additional criterion to optimise (besides journey time and 

number of transfers). More specifically, this method is based on two introduced concepts 

called 'reliability of transfer' and 'reliability rating', respectively. For a given journey plan, a 

measurement of 'reliability of transfer' is firstly calculated for each involved transfer by a 

predefined 'reliability rating function':  , in which x is the buffer 

time at the transfer station (defined as the scheduled time window between the feeder and 

connecting trains minus a predefined station-specific minimum transfer time), and α=8，

θ=0.6，μ=0.99 are predefined parameters obtained from empirical evidence (based on 

German data). Then, after calculating the reliability indices for individual transfers, a 

'reliability rating' can be assigned for the (whole) journey plan by multiplying all these 

reliability indices together.  

 

Two problems arise when looking through this method. First, the reliability indices generated 

by the 'reliability rating function' are not realistic reliability statistics and hence are difficult 

to interpret. Second, for a given railway station, transfer events occurring at different times of 

a day and different days of a week often have the same buffer time (calculated from the 

above definition) due to the periodicity of train schedules. All of these transfer events would 

be assigned to the same 'reliability rating' according to the univariate (i.e. the variable ‘x’ in 

the function) 'reliability rating function', which is counter-intuitive and seems to have omitted 

a lot of other realistic factors (e.g. the characteristics of infrastructure and rolling stock, 

weather, driver behaviour, etc).  

 

4.2.3 Backup information 

 

Goerigk et al. (2013; 2014) transfer some of the notions originating from robust timetabling 

into timetable information, and propose the notion of ‘recoverable robust timetable 
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information’. Their idea is to compute journey plans that maximise the use of ‘safe’ transfers 

robust in all (/most) simulated delay scenarios and provide back-up plans to guarantee the 

arrival at target stations. Dibbelt et al. (2014) takes this one step further: instead of a single 

path, each individual journey plan is represented as a decision graph composed of all ‘good’ 

back-ups at all involved transfer stops (see Figure 4.1 for an illustration). Keyhani (2017) 

employs more complicated but more realistic stochastic methods (than those simplistic ones) 

to evaluate and compare reliability, and proposes its own version of pre-trip backup 

information called complete connections – a complete connection comprises a train 

connection and an associated set of alternative continuations to the destination.  

 

The limitation of Goerigk et al. (2013) and Goerigk et al. (2014) lies mainly in the heavy pre-

processing spent on enumerating a very large set of possible delay scenarios, which impedes 

the method’s applicability in practice. The limitation of Dibbelt et al. (2014) is twofold: on 

the one hand, most single-path itineraries generated by existing journey planning systems 

have been robust enough in most scenarios, and decision graph representations seem too 

complicated to be useful and may be misleading; on the other hand, the ‘delay model’ 

underpinning this method seems too simplistic and suffers from similar limitations of the 

model adopted in Disser et al. (2008) and Schnee (2009). The limitation of Keyhani (2017) is 

mainly embodied by its complicated representation of results and its heavy reliance on the 

Assumption of Independence (which is far from realistic) in conducting the 

addition/multiplication/convolution operations of multiple random variables.  

 

 

Figure 4.1 An illustrative example of what a ‘decision graph’ should look like (Source: 
Dibbelt et al., 2014) Note: a recommended journey plan is no longer a ‘single path’, but 
should be represented as a set of back-up plans according to the idea of Dibbelt et al. (2014). 
 

 

4.2.4 Robust routing based on historical data 

 

Böhmová et al. (2013) and Böhmová et al. (2015) propose a novel algorithm that computes 

journey plans robust under ‘typical’ delay scenarios by learning from historical delay data 
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(Pröger (2016) provides more detailed illustrations and evaluations about this methodology). 

The algorithm introduces a new form of itinerary representation (i.e. only a recommended 

route with a departure time; no intermediate arrival/departure times along the route) and 

computes robust journey plans based on ‘recorded timetables’ that are constructed by realised 

stop times (i.e. arrival/departure times and passing times).  

 

Compared with those simplified ‘delay models’, this method can better reflect the temporal 

and spatial variations inherent in public transport. However, since this method is designed for 

high-frequency urban public transport systems (e.g. bus and tram), most of its notions and the 

associated algorithm cannot be transplanted into intercity or international railway systems 

(the urban public transport system is often dense enough to provide many different (and 

similarly attractive) routes between any pair of source and target nodes, but this characteristic 

is not applicable to the intercity rail system, especially those critical routes within the 

intercity rail system).  

 

4.2.5 Customisable transfers 

 

A recently developed functionality in real-world pre-trip timetable information systems is 

called customisable transfers (see Fiugres 4.2 and 4.3 for illustrations). As the name implies, 

customisable transfers means that a rail passenger now could adjust the parameter of MTT 

(minimum transfer time) and hence directly control the recommended itinerary list. For 

example, suppose there are now two alternative transfer plans (for a given journey) – one 

with a scheduled transfer time of 8 minutes, and the other with a scheduled transfer time of 

11minutes. If a passenger chooses an MTT of 5 minutes, then the one with 8-minutes transfer 

time will be recommended. But if the passenger sets the MTT to 10 minutes, then the one 

with 11-minutes transfer time will be recommended. At the algorithmic level, a modification 

of the parameter of MTT corresponds to an updating of the list/array storing all MTTs for 

different stations and connections, the task of which could be efficiently completed using 

current algorithmic techniques.  

 

Although this functionality could be a practicable way to deal with transfer-related problems, 

it has two potential limitations. Firstly, it implicitly assumes that a transfer plan with more 

scheduled transfer time would be more reliable (robust to the impact of delays/disruptions) 

than another transfer plan with less scheduled transfer time. However, this assumption does 
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not necessarily hold true in some cases, especially when taking into account the diversity and 

heterogeneity that exist in station size, station layout, the characteristics of stairs, lifts, ramps, 

etc. Secondly, the functionality of customisable transfers also implicitly assumes that a rail 

passenger has sufficient experience/knowledge to judge whether a certain MTT can help 

achieve a good balance between reliability and efficiency. Clearly, this does not necessarily 

hold true for those occasional/inexperienced rail users. For example, an infrequent user 

having selected an MTT of x minutes on the basis of poor background knowledge may be 

penalised by not being given information about interchanges designed to be achieved in (x-1) 

minutes, which may become acceptable connections with a time no less than MTT if the 

arriving (feeder) train is early and/or the departing (connecting) train is late. And even if a 

passenger is a frequent user of rail transport, he/she may also have difficulty in selecting an 

‘optimal’ MTT (based solely on train schedules), considering the various factors influencing 

train movements. 

 

 

Figure 4.2 Customisable transfers Example One: Deutsche Bahn (Source: www.bahn.com, 
accessed 25 Jan 2017) 
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Figure 4.3 Customisable transfers Example Two: NS (Source: www.ns.nl/en, accessed 25 
Jan 2017) 

 

 

4.2.6 Increasing transfer buffers 

 

A simpler approach than the other categories of approaches is simply increasing/adding 

buffer times for certain (important) transfers (c.f. Pachl, 2014; Pröger, 2016; Caimi et al., 

2017; Keyhani, 2017).  Such an approach/idea can be implemented in two different ways – 

either by adding more buffer times into the underlying timetables or by increasing MTTs 

(Minimum Transfer Times, c.f. Section 3.4) in pre-trip itinerary computation and 

recommendation.  

 

Adding more buffer times directly into the underlying timetables looks like a radical surgery 

that would eradicate missed transfers. Its price is, however, considerably high so that it is 

seldom considered as a good option – such an implementation would not only have an 

uncontrollable/unpredictable negative impact on capacity utilisation (Figure 4.4 provides an 

illustration) but also result in a non-negligible reduction in the competitiveness 

(/attractiveness) of pre-trip itinerary recommendations (especially in the case of critical routes; 

to be further explained in Subsection 4.2.8). In fact, the study of how to efficiently add and 

wisely allocate buffer times in timetable design and optimisation has been an active research 

direction for a while, but a sufficiently satisfying (i.e. simple but powerful) solution/answer 

has not yet found (c.f. Parbo et al., 2016; Caimi et al., 2017). Considering the limitation of the 

existing timetabling technology and the long-term growth trend of rail demand (c.f. 
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Armstrong and Preston, 2017), such an implementation (i.e. adding more buffer times 

directly into the underlying timetables) would obviously not be a sustainable solution.   

 

Compared with direct operations on the underlying timetables, increasing MTTs in 

computing and recommending transfer-involved itineraries can be said a light implementation. 

Although increasing MTTs would hardly erode capacity, it could bring non-negligible 

reductions in competitiveness (/attractiveness). Empirical evidence in the relevant literature 

(c.f. Pröger, 2016; Keyhani, 2017) has revealed such non-negligible reductions for the 

general case of transfer-involved routes. Subsection 4.2.8 is to present illustrations of such 

non-negligible reductions for the special case of critical routes (which are much more 

significant than the general case). Due to this non-negligible negative effect on 

competitiveness (/attractiveness), such a light implementation (i.e. increasing MTTs in 

computing and recommending transfer-involved itineraries) has seldom been considered as a 

good solution, either.  

 

 
Figure 4.4 An illustration of the potential consequence of adding additional buffer time to a 

critical route 
[Suppose this is a small part of a large railway network and all the irrelevant stations and 

lines are hidden to reduce distraction. Station A is an intermediate stop of both Line l1 and 
Line l2. The transfer from l1 to l2 via A, denoted by <l1, A, l2>, is feasible but critical based on 
the underlying timetable. <l2, B, l3> and <l3, C, l4> are feasible and not critical. Suppose we 

add e.g. an additional 8-minute transfer buffer to <l1, A, l2> by changing the scheduled 
departure time of l2 at A from Schdep(l2, A) to Schdep(l2, A) + 8. Then, the scheduled departure 
time of l2 at B would be postponed and <l2, B, l3> might become critical or even infeasible. 

Then, we have to modify the schedule of l3 to fix this new problem of <l2, B, l3>. If the 
modified schedule of l3 influence the criticality or feasibility of <l3, C, l4>, then we have to 



92 

further modify the schedule of l4 to resolve the problem... The ultimate result of this domino, 
an increase in idle capacity induced by added buffer times, would have to be ‘digested’ by 

reducing the capacity provision at the relevant lines and stations within or outside this part of 
the whole network.] 

 

 

4.2.7 Performance statistics 

 

The use of performance statistics to learn about and control the quality of rail services is not 

unusual among European railways, and punctuality and reliability are one of the major 

concerns of European rail operators (c.f. Subsection 2.5.4). In Britain, the industry standard 

adopted to evaluate and compare punctuality and reliability is called Public Performance 

Measure (PPM) (see Figure 4.5 for an illustration). PPMs are calculated from several 

predefined threshold values and are represented by aggregate statistics indicating the 

network- or subnetwork-level performance in terms of punctuality and reliability. Although 

these performance statistics are useful in helping rail operators and the government supervise 

the overall performance of rail services within a certain area during a certain period of time, 

they tend to be of little help to individual passengers who are more concerned with 

disaggregated statistics about the performance of the particular lines/routes that they (will) 

use.  

 

Computing and disseminating disaggregated statistics is technically impracticable in the past 

due to the limitation of computing resources and the unavailability of detailed data about train 

movements. In recent years, with a significant development of computer hardware and the 

increased availability of detailed and open-source rail data, the computation and 

dissemination of disaggregated statistics is no longer impossible, but a new bottleneck arises 

of how to extract from huge amounts of train movements data as much useful information as 

possible (RRUKA, 2015). In this context, several experimental passenger information 

systems (websites and/or mobile applications) that provide information about disaggregated 

performance statistics have been emerging in Britain in recent years. Some examples are 

Recent Train Times (www.recenttraintimes.co.uk/ ), Fasteroute Delay Explorer 

(delayexplorer.fasteroute.com/#/), and My Train Journey (www.mytrainjourney.co.uk/ ). 

Despite the difference in the representations of disaggregated performance statistics, all of 

them are driven by the open rail data from Britain’s rail industry and their statistics are all 
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oriented toward specific train services. Figures 4.6 and 4.7 illustrate how train-oriented 

performance statistics are presented in these information systems.  

 

 

Figure 4.5 An illustration of aggregated performance statistics: PPM in British railways 
(Source: Network Rail, 2017) 

 

From Figures 4.6 and 4.7, we can catch a glimpse of the major characteristics of these state-

of-the-art performance information tools: the statistics are oriented to specific trains and are 

based on historical train movements data over the last several weeks (i.e. eight weeks in 

Figure 4.6 and four weeks in Figure 4.7); and like those aggregate statistics in Figure 4.5, 

these disaggregated statistics are also calculated from several predefined threshold values or 

industry standards (e.g. 5 mins late, 15 mins late, right time, reliability, etc). Although Figure 

4.6 and Figure 4.7 share several important characteristics, we can also see some differences 

between them. While Figure 4.6 (i.e. Fasteroute Delay Explorer) tends to be generally better 

at visualisation, Figure 4.7 (i.e. My Train Journey) combines the functionality of train-

oriented performance statistics with the functionality of journey planning (i.e. My Train 

Journey could support arbitrary queries about origin-destination pairs, but Fasteroute Delay 

Explorer could only support direct routes). Moreover, Fasteroute Delay Explorer adopts a 

colour scale to reflect/indicate the overall performance of a given train over the last few 

weeks, whereas My Train Journey chooses to directly present a set of selected statistics.  
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Figure 4.6 Train-oriented performance statistics: Fasteroute (Source: 
delayexplorer.fasteroute.com/#/, accessed 27 Jan 2017) 

 
 

 
Figure 4.7 Train-oriented performance statistics: My Train Journey (Source: 

www.mytrainjourney.co.uk/, accessed 27 Jan 2017) 
 

Although these individual-leg-oriented performance statistics could to some degree mitigate 

the negative effect of missed transfers, they have four potential limitations. Firstly, the 

information consumers (passengers) have not been truly set free from the burden of 

computation. Confronted with two or more involved legs, a passenger would still have to 

estimate the overall performance of a given recommended itinerary by himself/herself, 

relying heavily on his/her own mathematical ability. 

 

Secondly, even if every user/passenger is good at mathematics, these separately computed 

statistics tend to hide a lot of key information (e.g. correlation between trains), which 
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impedes passengers’ ability to capture the whole picture. Suppose a given recommended 

itinerary involves two legs with a scheduled transfer time of 5 minutes. And suppose there are 

20 past observations (corresponding to 20 observation dates) for each of the two legs to 

calculate statistics: for the first leg, two of the 20 observations are identified as significant 

lateness (e.g. > 15 mins late) and the other 18 observations are all found to be on time (< 1 

min late); for the second leg, also two are recognised as significant lateness and 18 on time. 

Then a problem arises: if the two unpunctual observations of the first leg coincide with the 

two of the second leg (i.e. they happen on the same dates), then the overall punctuality would 

be 90% (i.e. 18/20); otherwise, the overall punctuality would be 80% (i.e. 16/20). 

 

Thirdly, these individual-leg-oriented performance statistics do not say where a train has lost 

the time which leads to the delay at the end of its journey. For instance, if the Southampton – 

Brighton train always departed on time from Southampton and the arrival delays at Brighton 

were always accumulated en route, a passenger would miss a different number of connections 

from the scenario in which the arrival delays (at Brighton) were 100% attributable to the 

departure delays (at Southampton) and no further delay accumulation en route. Lastly, these 

statistics tend to have limited extensibility and could not provide alternative transfers in the 

scenario in which the recommended transfer (by a journey planning system) is found to be of 

poor performance. That is, these separately computed statistics could not provide feedback to 

a journey planning system to modify the recommended itinerary list when certain of the 

recommended transfer plans are recognised as unreliable. 

 

4.2.8 The inadequacy of the existing approaches/ideas to tackle Critical Routes 

 

Despite the existence of a variety of algorithmic solutions/ideas to deal with missed transfers 

(i.e. increasing, to different degrees, the robustness/reliability of the recommendations), none 

of them could effectively deal with those critical routes (c.f. Sections 3.4 and 3.5) or truly 

resolve the research problem of this thesis (c.f. Section 1.2).  

 

The potential limitations of the existing solutions/ideas to deal with missed transfers in the 

general case (c.f. Subsections 4.2.1 – 4.2.7) would also be applicable to the special case of 

critical routes. Apart from these general limitations/gaps, most of the existing solutions/ideas 

would either lose their efficacy or result in uncompetitive (/unattractive) recommendations 
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(due to insufficient attention paid to the interplay between competitiveness and reliability) in 

the special case of critical routes.  

 

Typical examples of losing efficacy when applied to those critical routes include the method 

of backup information (c.f. Subsection 4.2.3) and the method of robust routing based on 

historical data (c.f. Subsection 4.2.4).  Since these methods implicitly require the existence of 

multiple (similarly attractive) alternative routes between a given pair of source and target 

vertices (see Figure 4.8 for an illustration of the method of robust routing based on historical 

data) but a given critical route would have no such (similarly attractive) alternatives between 

its two end vertices (c.f. the definition of critical routes in Section 3.5), applying these 

methods to a given critical route would hardly change the route and itinerary 

recommendations resulting from current journey planning algorithms (c.f. Sections 3.4 and 

3.5) and hence would hardly improve the reliability (/robustness/punctuality) of the 

recommended itineraries.  

 

 
Figure 4.8 An illustration of the core algorithmic idea of Pröger (2016) and Böhmová et al. 

(2013; 2015) 
[Suppose A, B, C, D, and E are five different bus stops within a given urban public 

transportation network, and a, b, c, d, e, f, u, v, w, x, y, and z are twelve different bus lines. 
The idea can be decomposed into three major steps. In the first step, all feasible routes (with a 
constraint of number of transfers) between a given pair of source and target nodes (e.g. A and 

B) are listed based on the underlying timetable (e.g. <b, C, x>, <e, D, w>, and <f, E, u>). 
Then, in the second step, the robustness/reliability of each route is assessed and compared 
(with each other), based on a specified ‘latest allowed arrival time’ and the analysis of the 

relevant historical data. In the third step, the route (or several routes) with the best 
performance in terms of robustness/reliability is (are) selected, and a ‘reasonable’ departure 

time (i.e. the latest departure time) for each selected route is calculated from the planned 
timetable and recommended with its corresponding route.] 
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Typical examples of resulting in uncompetitive (/unattractive) recommendations when 

applied to those critical routes include the method of backup information (c.f. Subsection 

4.2.3), the method of customisable transfers (c.f. Subsection 4.2.5), and the method of 

increasing transfer buffers (c.f. Subsection 4.2.6).  Since the essence of these methods is 

either maximising/prioritising the use of those ‘safe’ transfers (i.e. robust in all (/most) 

simulated delay scenarios) or making those 'risky' transfers safer (i.e. by adding additional 

buffers), applying these methods to a given critical route would significantly reduce the 

competitiveness (/attractiveness) of the recommended itineraries and such a significant 

reduction in competitiveness (/attractiveness) would render any speculated improvement in 

reliability (/robustness/punctuality) groundless. Figure 4.9 provides an illustration of the 

potential effect of applying the method of increasing Minimum Transfer Times (i.e. a light 

implementation of the method of increasing transfer buffers in Subsection 4.2.6) to a given 

critical route. Appendix C provides two real-world examples (i.e. two critical routes 

Knottingley – Wakefield Kirkgate – Nottingham and Ebbw Vale Town – Cardiff Central – 

Birmingham New Street). 

 
Figure 4.9 An illustration of the potential effect of applying the method of increasing 

Minimum Transfer Times (MTT) to a given critical route 
[Suppose there is a critical route from Station A to Station B via Station C within a given 

railway network (c.f. the upper curve of the two). The scheduled departure time of the feeder 
line at A is the start of each hour (denoted by h:00) and the feeder leg takes 50 mins in the 

corresponding schedule. The scheduled departure time of the connecting line at C is 55 past 
each hour (denoted by h:55) and the connecting leg takes 1h05m in the corresponding 

schedule. That is, the original Minimum Transfer Time (MTT) is no greater than 5 mins for 
this route. If we increase the original MTT by any value that could result in a new MTT 

greater than 5 and less than 66 mins, then the new recommendations would become the lower 
curve of the two. That is, the scheduled journey time would increase from 2h to 3h (a 50% 
increase), and the change in generalised journey time would be even bigger considering the 

significant increase in scheduled waiting at C.] 
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To understand why a significant reduction in competitiveness (/attractiveness) would render 

any speculated improvement in reliability (/robustness/punctuality) groundless, it is necessary 

to firstly get an understanding of the interrelationship between competitiveness 

(/attractiveness) and reliability (/robustness/punctuality).  

 

Ideally, competitiveness and reliability could be simultaneously achieved as long as the 

scheduled travel time (and other relevant aspects e.g. price and out-of-vehicle waiting) of a 

given line/route is attractive (compared with the other transport modes e.g. aeroplanes, 

coaches, private cars, taxis, etc) and the timetable is strictly adhered to (i.e. there exist no 

disturbances or disruptions). Unfortunately, device malfunctions, human errors, and 

uncontrollable accidents and weather conditions are omnipresent in the daily operation of 

trains so that a given timetable can hardly be 100% precisely realised.  

 

The prevalence of delays/variations complicates the interrelationship between 

competitiveness (/attractiveness) and reliability (/robustness/punctuality). In some/many 

cases, an improvement in reliability would to some degree contribute to competitiveness, and 

reliability could be viewed as a component of competitiveness. Such cases correspond to 

those (highly) repeatable scenarios e.g. commuter routes, direct inter-urban routes, etc. The 

number of existing passengers who have sufficient (through repeated trials) experiential 

information about the reliability of those pre-trip itinerary recommendations would be 

considerable in these scenarios, and hence a reliability improvement would more easily be 

transmitted to potential passengers by way of word of mouth to influence the (mode, route, or 

departure time) choices of the potential passengers. In the other cases, the interrelationship 

between competitiveness (/attractiveness) and reliability (/robustness/punctuality) can be 

quite different. For example, an improvement in reliability (of those pre-trip itinerary 

recommendations) in those (highly) repeatable scenarios would have little influence on the 

(mode, route, or departure time) choices of the existing passengers themselves (e.g. for a 

given commuter line), for a frequent user could have already had a most realisable itinerary in 

his/her mind and relies mainly on this self-constructed itinerary (rather than some 

recommended one) to make choice.  

 

The case of those critical routes (i.e. the research focus of the thesis) is another exception. To 

facilitate the exposition, the algorithmic solutions/ideas underlying current journey planning 

systems (i.e. earliest arrival, latest departure, and minimum transfer time, explained in 
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Sections 3.4 and 3.5) are classified/named as CF (Competitiveness-First) solutions/ideas, 

while the method of backup information (c.f. Subsection 4.2.3), the method of customisable 

transfers (c.f. Subsection 4.2.5), and the method of increasing transfer buffers (c.f. Subsection 

4.2.6) are classified/named as RF (Reliability-First) solutions/ideas. Based on such a 

dichotomy, the explanations are as follows. The estimated/predicted reliability improvements 

by the existing RF solutions/ideas would be achievable if and only if the following 

assumption (unstated in the relevant literature) could always hold true – a potential passenger 

who would have otherwise adopted a recommended CF itinerary would also adopt the 

corresponding (recommended) RF itinerary. This assumption, however, can hardly hold when 

applying the existing RF solutions/ideas to those critical routes. Let us use Figure 4.9 to 

facilitate the explanation. If we presume a CF recommendation (c.f. the upper one of the two 

in Figure 4.9) is competitive (compared with other available modes, routes, and departure 

times) and can attract some potential passenger onto the track, we can hardly assume/predict 

with the same confidence that the same person would be attracted onto the track if the 

corresponding RF itinerary (c.f. the lower one of the two in the figure) has been 

recommended (instead of the CF one). Why? Because the RF version has a significantly 

longer estimated (/scheduled/advertised) travel time than the corresponding CF version – 

50% longer w.r.t. scheduled (/advertised) journey time (i.e. (3h-2h)/2h) and more than 50% 

longer w.r.t. generalised journey time (the extra 1h adds to out-of-vehicle waiting). Why 

would the speculated reliability improvements by the existing RF solutions/ideas be 

groundless? Two reasons. On the one hand, if we assume there exists a customer base 

(believed to be much smaller than that for e.g. a commuter line) for a critical route, then a 

speculated improvement in reliability (by adopting the existing RF solutions/ideas) would 

have little influence on the (mode, route, or departure time) choices of either the customer 

base (i.e. frequent users) or the potential passengers – a frequent user could have had 

(through repeated trials) and adopted his/her own self-constructed itinerary (rather than some 

recommended one) and a potential passenger could hardly obtain the experiential information 

about reliability from a frequent user due to the much lower exposure to such information 

(than in the case of e.g. commuter routes, direct inter-urban routes, etc). On the other hand, if 

we assume there exists no customer base but instead exists a group of potential passengers for 

a critical route, then the speculated reliability improvements (by adopting the existing RF 

solutions/ideas) would also be a rubber cheque – if a potential customer could not be firstly 

attracted onto the track, he/she would never have the experiential information about the 

reliability of those pre-trip itinerary recommendations and the speculated reliability 
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improvements would become meaningless. Note that the above analysis of the 

interrelationship between competitiveness (/attractiveness) and reliability 

(/robustness/punctuality) in the context of critical routes (i.e. competitiveness should be given 

a higher priority than reliability in such scenarios) does not mean competitiveness 

(/attractiveness) should be maximally pursued without allowing for the potential impact on 

reliability (/robustness/punctuality) – a highly competitive itinerary recommendation (e.g. 

generated by the existing CF solutions/ideas) may attract many potential passengers onto the 

track but its poor reliability would impede the next cooperation between these passengers and 

the relevant railway companies on the same route or even on the other transfer-involved 

routes. 

 

 

4.3 A historical-data-based approach tailored for tackling Critical Routes 

 

4.3.1 Central idea: less is more 

 

By reviewing the existing information-based approaches to tackling transfer-related problems, 

we can get a glimpse of the design philosophy adopted by these approaches: almost all of 

them are based on ‘presumption of guilt’. That is, every possible transfer plan within a 

timetable-based transport network is treated (by these approaches) as potentially unreliable 

due to the impact of train delays and disruptions, and hence additional information should be 

provided about performance statistics or alternative plans for every transfer plan to enable 

passengers to make better choices. In realistic applications, however, this ‘holistic treatment’ 

of transfer plans not only increases the computational complexity of the underlying 

algorithms but also is likely to result in uneasiness or overreactions of information consumers 

(passengers). Indeed, no transfer plan can be said to be 100% reliable due to the fact that 

there are lots of endogenous and exogenous factors influencing train movements. In reality, 

however, most transfer plans recommended by a journey planning system can be realised 

with a considerably high degree of certainty due to the mechanism of minimum transfer times 

(c.f. Subsection 3.4.2). Therefore, it seems unnecessary or even misleading to provide 

additional information (warning) about those considerably reliable transfer plans. After all, 

low probabilities tend to be overweighted when losses are expected (Kahneman, 2012), 

which may cause inconvenience to information consumers (passengers).  
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Based upon the above considerations, a historical-data-based approach is proposed (see 

Figure 4.10 for an overview), the design philosophy of which is embodied by the following 

four aspects: 

 

- Less consumption of computing resources and less disturbing information: it can be 

seen from Figure 4.10 that the biggest difference between the existing approaches and 

the approach proposed here lies in that the ‘local/precision treatment’ of the identified 

critical routes is adopted here, rather than the ‘holistic treatment’ adopted in the 

existing approaches. This difference is originated from the difference between design 

philosophies: the philosophy of ‘less is more’ is adopted here, based on the 

consideration that every day people are confronted with too many pieces of irrelevant 

and unnecessary information in such an age of information explosion, and providing 

additional information about those low-risk transfer plans would be disturbing. From 

the perspective of energy consumption, an algorithm requiring less computing 

resources would be more eco-friendly than those computationally intensive ones.  

 

- Less reliance on past experience: since the proposed approach is historical-data-based, 

it does not presume that passengers have sufficient experience of train delays or 

disruptions (compared with the approach of ‘customisable transfers’ in Subsection 

4.2.5). In fact, those passengers choosing a critical route tend to be less likely to have 

sufficient experience of the performance of such a route due to the fact that a critical 

route is long-distance and transfer-involved. Therefore, a presumption of 

inexperienced passengers would be more appropriate. 

 

- Less requirement on mathematical ability: as is to be introduced later in Algorithm 3 

and Algorithm 4, the proposed approach is based on performance statistics that are 

oriented toward a whole journey (itinerary) rather than toward individual service legs 

(compared with the approach mentioned in Subsection 4.2.7). Therefore, it would be 

able to set the information consumers (passengers) free from those demanding 

calculations by themselves. 

 

- Less inconvenience for passengers to integrate fragmented information by themselves: 

as is to be illustrated later in this chapter, the proposed approach has great potential to 
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be integrated into the existing journey planning algorithms (and hence the 

corresponding journey planning systems), which would be able to enhance the 

functionality of the existing systems and facilitate the dissemination of this additional 

information about itinerary-level performance. By comparison, the approach of 

individual-leg-oriented performance statistics (c.f. Subsection 4.2.7) has less 

extensibility. That is, those individual-leg-oriented performance statistics are limited 

to providing descriptive information: they could not be utilised by the existing journey 

planning algorithms to provide prescriptive information about alternative plans or 

predicted arrival/journey times due to a lack of itinerary-level performance indicators.  

 

 

 

Figure 4.10 An overview of the proposed algorithmic approach 

 

 

4.3.2 IPS vs. PBPM: two sides of one coin 

 

The previous subsection briefly describes the central idea of the proposed algorithmic 

approach: 1) ‘local treatment’ of the identified critical routes; and 2) itinerary-oriented 

performance evaluation. In the end of the previous subsection (c.f. Figure 4.10), two 
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algorithms are mentioned: Algorithm 3 and Algorithm 4, which comprise the core part of the 

proposed algorithmic approach. This subsection is to present the pseudo code of Algorithm 3 

(IPS) and Algorithm 4 (PBPM). Both IPS and PBPM are historical-data-based and involve 

quite similar data pre-processing steps. However, there is a major difference between the two 

algorithms in terms of the specific statistics adopted and the representation of results. 

Roughly speaking, IPS can be viewed as an augmented version of those individual-leg-

oriented performance statistics (c.f. Subsection 4.2.7 for details about those individual-leg-

oriented performance statistics), whereas PBPM is inspired by the representation of real-time 

delay alerts in the existing real-time information systems (to be detailed later in Subsection 

4.3.8).  

 

Algorithm 3 below presents the pseudo code of Itinerary-oriented Performance Statistics 

(IPS). As its name implies, IPS is designed to calculate and present itinerary-oriented 

performance statistics for each critical itinerary following a given critical route (on a given 

query date). In order to obtain such itinerary-oriented performance statistics, detailed 

historical train movements data should be available and several involved parameters should 

be pre-determined (e.g. NTT, AW, etc). Moreover, data pre-processing and visualisation are 

also important.  

 

Algorithm 3: IPS (Itinerary-oriented Performance Statistics) 
Input: a sufficiently large sample of detailed historical train movements data about a given 

critical route (in recent past) 
Output: a recommended itinerary list (for a particular date in the near future) in which each 

critical itinerary is associated with an itinerary-specific performance statistic 
  

1 // Step 1: construct a route-view timetable (RVT) for the studied route 
2 identify all the involved service legs along the critical route 
3 extract from historical train movements data all the relevant information about each 

service leg (train identifier, run date, station identifier, scheduled arrival/departure 
times, recorded arrival/departure times, platform, cancellation, etc) 

4 merge the data records of the involved service legs into a RVT by concatenating the 
corresponding services running on the same dates and following the scheduled order 

5 sort RVT by date and scheduled departure time 
6  
7 // Step 2: calculate the net transfer time (NTT) and the actual window (AW) of each   

//             involved transfer 
8 for each record i (corresponding to a critical itinerary) in RVT: 
9       for each involved transfer j: 
10             add into RVT two new columns NTTj and AWj 
11             NTTi,j = DISTi,j / SPEEDi,j 
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12             store NTTi,j into NTTj 
13             if cancelled(Tj) == True or cancelled(Tj+1) == True: 
14                   AWi,j = -∞ 
15             else: 
16                   AWi,j = depa(Tj+1) – arra(Tj) 
17             store AWi,j into AWj 
18  
19 // Step 3: calculate itinerary-oriented performance statistics based on some predefined 

//             threshold value 
20 group the records in RVT by scheduled departure time 
21 for each group g in RVT: 
22       for each record i: 
23             flag = 1 
24             for each involved transfer j: 
25                   if AWi,j < NTTi,j : 
26                       flag = 0 
27                       break 
28             if arra(Tk) – arrs(Tk) ≥ TAL: 
29                  flag = 0 
30             if flag = 1: 
31                  success(g) + 1 
32             otherwise: 
33                  failure(g) + 1 
34       IPSg = success(g) / (success(g) + failure(g)) 
35       store IPSg into IPS      
36  
37 // Step 4: construct and display the enhanced itinerary list 
38 construct the recommended itinerary list RILDATE for a given query date DATE (in 

the near future) based on timetable data 
39 calculate IPS from the latest historical data according to Steps 1 – 3 
40 associate each critical itinerary in RILDATE with its corresponding value in IPS 
41 return RILDATE 
42 terminate 

 

Generally, the above algorithm (i.e. IPS) can be subdivided into four steps (see the pseudo 

code in Algorithm 3): Steps 1 – 3 belong to back-end development (i.e. data processing), 

while Step 4 belongs to front-end development (i.e. user interface design). A Python 

implementation of the back end (core part) of IPS (and also PBPM in Algorithm 4) is 

presented in Appendix D, the source code of which comprises approximately 600 lines of 

commands. It should be noted that although front-end development is very important, this 

section is mainly focused on the back end. 

 

Algorithm 4 below presents the pseudo code of Performance-Based Pre-Modification of 

advertised arrival times (PBPM). Unlike IPS, PBPM abandons the representation of pure 

statistics (i.e. probabilities, c.f. Figures 4.6 and 4.7 in Subsection 4.2.7) and adopts a method 



105 

of modifying well in advance the advertised arrival time of each critical itinerary following a 

given critical route (on a given query date). Roughly speaking, PBPM adds to each critical 

itinerary extra allowance (i.e. time supplement) to reduce the impact of delays/disruptions, 

based on the historical performance of each particular itinerary. In order to implement PBPM, 

detailed historical train movements data should be available and several involved parameters 

should be pre-determined (e.g. NTT, AW, etc). Moreover, data pre-processing and several 

heuristics are also involved. 

 

In the pseudo code of IPS and PBPM, all the notations in italics are one-dimensional list 

(array) objects, those in bold are two-dimensional tables, and uppercase letters are constant 

parameters. Each step in the pseudo code is to be explained later in the subsequent 

subsections. The relevant symbols are as follows: 

 

- DISTi,j and SPEEDi,j respectively represent the (horizontal and vertical) distance 

between a pair of feeder and connecting trains <i, j> and the walking speed of an 

average passenger between the feeder train i and the connecting train j.   

- cancelled(·) is an indicator variable to judge whether a given train was cancelled. 

- deps(·), arrs(·), depa(·), arra(·), and arrm(·) respectively represent the scheduled 

departure time of, the scheduled arrival time of, the actual departure time of, the 

actual arrival time of, and the modified arrival time of a given train/itinerary. 

- flag is an indicator variable to control the execution of the relevant for-loops. 

- TAL is short for Threshold for Arrival Lateness. 

- success(·) and failure(·) are counter variables that respectively represent the number 

of successful and unsuccessful realisations of a given itinerary. 

- p0(·) represents the success rate of a given itinerary. 

- δ(·) represents the average delay of a given itinerary at the target/destination station. 

- jt0(·) and jt1(·) respectively represent the average journey time of a given itinerary in 

the scenario in which no missed transfers and the average journey time of a given 

itinerary in the scenario in which there is exactly one missed transfer. 

- RILDATE means the Recommended Itinerary List for a given query date.  

- HEADWAYavg means the average headway of the involved lines in a given itinerary.  
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Algorithm 4: PBPM (Performance-Based Pre-Modification of advertised arrival times) 
Input: a sufficiently large sample of detailed historical train movements data about a given 

critical route (in recent past) 
Output: a recommended itinerary list (for a particular date in the near future) in which the 

advertised arrival time of each critical itinerary is modified well in advance based on 
itinerary-specific performance in history 

  
1 // Step 1: construct a route-view timetable (RVT) for the studied route 
2 identify all the involved service legs along the critical route 
3 extract from historical train movements data all the relevant information about each 

service leg (train identifier, run date, station identifier, scheduled arrival/departure 
times, recorded arrival/departure times, platform, cancellation, etc) 

4 merge the data records of the involved service legs into a RVT by concatenating the 
corresponding services running on the same dates and following the scheduled order 

5 sort RVT by date and scheduled departure time 
6  
7 // Step 2: calculate the net transfer time (NTT) and the actual window (AW) of each   

//             involved transfer 
8 for each record i (corresponding to a critical itinerary) in RVT: 
9       for each involved transfer j: 
10             add into RVT two new columns NTTj and AWj 
11             NTTi,j = DISTi,j / SPEEDi,j 
12             store NTTi,j into NTTj 
13             if cancelled(Tj) == True or cancelled(Tj+1) == True: 
14                   AWi,j = -∞ 
15             else: 
16                   AWi,j = depa(Tj+1) – arra(Tj) 
17             store AWi,j into AWj 
18  
19 // Step 3: calculate the probability of missed transfers for each critical itinerary 
20 group the records in RVT by scheduled departure time 
21 for each group g in RVT: 
22       for each record i: 
23             flag = 1 
24             for each involved transfer j: 
25                   if AWi,j < NTTi,j : 
26                       flag = 0 
27                       break 
28             if flag = 1: 
29                  success(g) + 1 
30             otherwise: 
31                  failure(g) + 1 
32       p0(g) = success(g) / (success(g) + failure(g)) 
33       store p0(g)  into p0     
34  
35 // Step 4: calculate the average lateness at the destination station for the kth involved  

//             leg of each critical itinerary 
36 group the records in RVT by scheduled departure time 
37 for each group g in RVT: 
38       for each record i: 
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39             Δ(Tk) = arra(Tk) – arrs(Tk) 
40             store Δ(Tk) into Δ(g) 
41       δ(g) = Δ(g).average() 
42       store δ(g) into δ 
43  
44 // Step 5: modify the advertised arrival time of each critical itinerary and display 
45 construct the recommended itinerary list RILDATE for a given query date DATE (in 

the near future) based on timetable data 
46 calculate p0 and δ from the latest historical data according to Steps 1 – 4 
47 for each critical itinerary ic in RILDATE: 
48       look up the corresponding p0(ic) and δ(ic) in p0 and δ 
49       jt0(ic) = arrs(Tk) – deps(T1) + δ(ic) 
50       jt1(ic) = arrs(Tk) – deps(T1) + HEADWAYavg + δ(ic) 
51       arrm(ic) = deps(T1) + p0(ic)·jt0(ic) + (1 – p0(ic))· jt1(ic) 
52 return RILDATE 
53 terminate 

 

 

Note that IPS (Algorithm 3) has been created and presented mainly as an introductory 

algorithm to the proposed solution (i.e. PBPM/Algorithm 4) of the core research problem. 

The inclusion of this particular approach into the thesis has been mainly due to the 

consideration that it might help better understand the underlying statistical ideas and 

technicalities of PBPM.  

 

PBPM (Algorithm 4) has been created and adopted to enhance the pre-trip information about 

those critical (transfer-involved) itineraries (corresponding to some identified critical route), 

which has simultaneously taken into account the constraint of capacity utilisation and the 

interplay between the competitiveness (/attractiveness) of and the reliability 

(/punctuality/robustness) of the recommended itineraries (to be further explained in 

Subsection 5.3.12). 

 

4.3.3 Sample size 
 

The input of IPS and PBPM is a ‘sufficiently large’ sample of detailed historical train 

movements data about a given critical route. Here, a question arises: how large is ‘sufficiently 

large’? This is a big topic and is an unavoidable question for any statistical method. 

According to the law of large numbers (c.f. Section 2.4), the sample size should be as large as 

possible. However, there is not a one-size-fits-all answer within the field of probability and 

statistics. And the sample size adopted in realistic applications is often restricted by the 
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availability of the relevant (historical) data. Here, a ‘sufficiently large’ sample can be thought 

of as a collection of several-months historical data, based on the consideration about the 

availability of the relevant data and the treatment adopted in the existing real-world 

applications (c.f. Subsection 4.2.7). Further discussion about the appropriate sample size is to 

be presented later in the next chapter. 

 

4.3.4 Route-View Timetable (RVT) 

 

Step 1 in Algorithm 3 and Algorithm 4 is mainly for data pre-processing. In order to help 

understand this process, Figures 4.11 and 4.12 below are employed to provide an illustration. 

Both of the two illustrative examples are based on historical train movements data collected 

from Realtime Trains (RTT, a real-time passenger information system in Britain, c.f. 

Subsection 3.7.2).  While Figure 4.11 offers a birds-eye view of the data pre-processing in 

Step 1, Figure 4.12 provides a more concrete example of how to obtain a Route-View 

Timetable (RVT).  

 

 

Figure 4.11 A general illustration of Step 1 in Algorithm 3 

 

The raw data (at the top of Figure 4.11) is a set of collected RTT data. These RTT data are 

grouped by station and date. Each file in this set contains information about all the arrival 

and/or departure events that have happened at a given station on a given day (the top of 

Figure 4.12 gives such an illustration). The exact number of files in the RTT data set depends 

on how many stations and how many days are involved in the studied route. Figure 4.12 uses 
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the route Bournemouth-Southampton-Brighton (BSB) as an example and the study period is 

from 12 Oct 2015 to 04 Dec 2015 (8 weeks). If this context is adopted in Figure 4.11, then 

the RTT data set would contain 120 JSON files (40 working days in total and 3 stations 

involved each day).  

 

 

Figure 4.12 A more concrete illustration of Step 1 in Algorithm 3 

 

Through a series of data processing sub-steps, the 120 JSON files in the RTT data set are 

converted into 40 Route-View Timetables (RVTs) (see Figure 4.11 and Figure 4.12). These 

RVTs are grouped by route and date (here only one route is considered, so the RVT set is 

only grouped by date). Each RVT contains all the necessary information about all of the 

studied (critical) itineraries (see Figure 4.12 for example).  

 

There is an illustrative RVT in Figure 4.12, and Table 4.1 below is a magnified version of 

that in Figure 4.12. In this table, each row corresponds to a studied (critical) itinerary and 

each column corresponds to the value of a specific attribute. All of these ten studied 

itineraries belong to the route Bournemouth-Southampton-Brighton, and they all happened on 

15 Oct 2015.  
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Table 4.1 An example of RVT (Route-View Timetable) 

 

 

The two columns ‘lineFeeder’ and ‘lineConnect’ in Table 4.1 tell us which two train lines are 

involved to complete a given itinerary (only one transfer is involved in this example; an RVT 

could also be constructed in a similar way to cover more complex transfer scenarios). In this 

example, all of the ten itineraries have the same feeder line: the Weymouth-London Waterloo 

line operated by South West Trains. Apart from the one having a value of ‘P01078’ under the 

‘serviceC’ column, all of the other nine itineraries have the same connecting line: the 

Southampton-Brighton line run by Southern. The only exception involves the Great Malvern-

Brighton line operated by Great Western Railway. 

 

The two columns ‘serviceF’ and ‘serviceC’ tell us the service id numbers of the two involved 

trains for a given itinerary. A service id number is generally stable and unique across the 

whole network during a given timetable period. For example, the string in the first cell under 

‘serviceF’ (i.e. ‘Y41233’) represents the South West Trains service that runs from Weymouth 

at 09:03 each weekday morning to London Waterloo during the period 05 Oct 2015 – 11 Dec 

2015. 

 

The three columns ‘stationO’, ‘stationT’, and ‘stationD’ store the names of the origin station 

(i.e. BOMO in this example), the transfer station (i.e. SOTON), and the destination station 

(i.e. BRGHTN), respectively.  

 

The four columns ‘dep_s_FO’, ‘arr_s_FT’, ‘dep_s_CT’, and ‘arr_s_CD’ store the values of 

the scheduled (nominal) departure time of the feeder train at the origin station, the scheduled 

arrival time of the feeder train at the transfer station, the scheduled departure time of the 

connecting train at the transfer station, and the scheduled arrival time of the connecting train 

at the destination station, respectively. Note that all the (scheduled and actual) stop times 

have been converted into integers (bounded by [0, 1439]) to enable the calculation of travel 
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times, waiting times, etc. The conversion is based on the following simple algorithm: each 

integer in the interval [0, 1439] corresponds to the difference in minutes between the very 

beginning of the day (i.e. 00:00) and the given stop time (e.g. 595 ↔ 09:55). 

 

The three columns ‘arr_a_FT’, ‘dep_a_CT’, and ‘arr_a_CD’ contain the values of the 

recorded (actual) arrival time of the feeder train at the transfer station, the recorded departure 

time of the connecting train at the transfer station, and the recorded arrival time of the 

connecting train at the destination station, respectively. 

 

The four columns ‘display_FO’, ‘display_FT’, ‘display_CT’, and ‘display_CD’ contain 

information about the status of a given train at a given station. Valid values in these columns 

include CALL, ORIGIN, DESTINATION, STARTS, TERMINATES, and 

CANCELLED_CALL.  ORIGIN and DESTINATION represent the original origin and 

destination of a service, respectively. If STARTS or TERMINATES appear, then this means 

a service has started short or terminated en-route, and meanwhile the original 

origin/destination will show CANCELLED_CALL. This status information is useful in the 

calculation of performance statistics in subsequent steps of Algorithm 3 and Algorithm 4. 

 

The remaining two columns ‘platform_FT’ and ‘platform_CT’ respectively store the 

information about the allocated platform for the feeder train at the transfer station and the 

allocated platform for the connecting train at the transfer station. This piece of information 

about platform allocation is potentially useful in dealing with the impact of platform changes 

on the estimation of NTT (Net Transfer time) in subsequent steps. 

 

The above example is only for one day. It needs to be combined with other daily RVTs to 

form an N-week sample (N = 4, 6, 8, 12, etc). A sample table for this studied route (i.e. BSB) 

normally contains 50N records (10 per day and 5N working days), but in rare cases the 

number of records would be slightly smaller than 50N (e.g. 50N – 1, 50N – 2, etc) due to the 

cancellation of some service(s) on a particular day (i.e. the train movements data are 

completely missing for the service(s)). Further discussion about train cancellations can be 

found later in Subsection 4.3.6.  
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4.3.5 Net transfer time (NTT) 

 

Steps 2 and 3 are responsible for the majority of computations of Algorithm 3, and are an 

indispensable component of Algorithm 4. Three key parameters are involved in these two 

steps: net transfer time (NTT) and actual window (AW) in both Algorithm 3 and Algorithm 4, 

and threshold for arrival lateness (TAL) in Algorithm 3. In the following, the considerations 

are presented about how to determine these parameters based on available information. 

 

Determining the NTT (c.f. Subsection 3.5.2) for each critical transfer that is involved in each 

critical itinerary (following a given critical route) can be a heavy task if taking into account 

the various factors potentially influencing passengers’ transfer activities (e.g. platform 

changes, level of crowdedness in the station, boarding/alighting locations, etc). In reality, 

however, the determination of NTT is not that difficult due to the following four reasons.  

 

Firstly, according to the definition of NTT (c.f. Subsection 3.5.2, ‘physically possible 

minimum time required to walk from T1 to T2 within the station’), a ‘free-flow’ walking 

speed and the shortest walking path can be adopted without the need for considering in-

station congestions. Since a calculated NTT has a precision of one second, it can then be 

converted into minutes (to conform to the granularity of a timetable) by rounding it up to the 

nearest integer, which is equivalent to add to itself allowances to enable an average passenger 

to successfully complete the transfer.  

 

Secondly, due to the periodicity of train schedules (c.f. Subsection 2.5.2), the transfer(s) 

involved in each critical itinerary often follows the same pattern. That is, the platform 

allocation often remains the same between different hours of a day (c.f. the two columns 

‘platform_FT’ and ‘platform_CT’ in Table 4.1), and hence it is often enough to determine a 

route-specific NTT rather than to determine a set of connection-specific NTTs.   

 

Thirdly, the influence of platform changes on the determination of NTTs is also found to be 

limited, based on extensive analysis of historical train movements data from British railways: 

a close examination of the large sample (about 1.4 million valid observations) of 12-months 

train movements data (c.f. Section 3.7) reveals that the probability of a platform change (i.e. 

an incoming train is rerouted within a station) is approximately 5% within Britain’s passenger 

rail system (which can be regarded as low-probability events). In practical applications, the 
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following strategy can be adopted to reduce the impact of platform changes: if a given sample 

is found to contain many platform changes in data pre-processing, then scenario-specific 

NTTs can be assigned to each scenario; otherwise, a route-specific NTT is enough.  

 

Lastly, a reference point can be chosen (for each of the two involved platforms) to simplify 

the estimation of the walking distance (e.g. choosing the midpoint of each platform as the 

reference point).  

 

Based on the above considerations, the determination of an NTT (for a given transfer) is 

reduced to the determination of two parameters: the distance between two platforms and the 

walking speed within the station (c.f. Step 2 in Algorithm 3 and Algorithm 4). Below is an 

illustrative example of how to determine the walking distance and walking speed in the 

context of the route Bournemouth – Southampton – Brighton. 

 

As mentioned previously, in practice it is enough to determine a route-specific NTT when the 

studied critical transfers follow the same transfer pattern. That is, these transfers happen at 

the same station (i.e. Southampton Central in this context) and each of the two involved legs 

stops at the same platform between different hours of a day. From Table 4.1 we can see that 

most of the studied transfers follow the pattern Platform 1 to Platform 3A (the two exceptions 

are to be dealt with later). Therefore, we can either carry out fieldwork to determine the NTT 

between Platform 1 and Platform 3A, or simply exploit the station layout information from 

the Internet to estimate this parameter. 

 

Figures 4.13 and 4.14 below give an example of using NRE to determine this parameter. For 

the example considered here, we can simply use the ‘plan a route’ functionality on the station 

information page of Southampton Central (Figure 4.13) to enquire about the distance between 

the two involved platforms to estimate the route-specific NTT. As shown in Figure 4.13, if 

we choose platform 1a as the origin and platform 3a as the destination, we can get a list of 

recommended routes within the station. And if we choose the shortest one (route A in the 

figure), then the distance between the two platforms can be estimated by the planar distance 

between the two platforms (33.5 metres in this case), plus the steps involved (54 steps in this 

case, see Figure 4.14). Here, if a walking speed of 5 km/h (about 1.39 m/s) is adopted on flat 

ground and 2 steps per second (this approximation of walking on stairs is based on fieldwork 

by the author and the empirical results presented in literature such as Fujiyama and Tyler, 
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2010) is adopted for climbing up and down, then we can obtain an estimated total walking 

time of 51 seconds. And if considering the extra time spent on looking for the information 

about the relevant platforms during the transfer process, we can add another 5 seconds to the 

NTT, which results in an estimation of 56 seconds between Platform 1 and Platform 3A. For 

the two exceptions (i.e. 1 → 2A and 1 → 1), their NTTs are estimated to be no more than the 

NTT between Platform 1 and Platform 3A (see Figure 4.14) but are also impossible to be 0 (a 

transfer will always consume a certain amount of time, no matter how little the exact amount 

is). Therefore, a rough estimation of the NTTs for the two exceptional situations can be 

obtained, which lies between 0 and 56s. Based on the above estimations and the fact that 

historical train movements data (i.e. RTT data in this context) often have a precision of one 

minute (i.e. the granularity of these historical data is one minute), a unified NTT of 1 minute 

can be assigned to this route.  

 

It should be noted that the ‘plan a route’ functionality on NRE’s station information pages 

has been removed at the time of writing this thesis. As an alternative way to estimate the 

planar distance between two platforms within a transfer station, the ‘measure distance’ 

functionality of Google Maps (Figure 4.15) can also be utilised to estimate NTTs, with the 

aid of NRE’s station information about number of steps (Figure 4.14). And if these online 

resources cannot meet the need for precision, fieldwork can be conducted (in fact, previous 

research has shown that small estimation errors in NTTs have a limited impact on the 

obtained results of itinerary-oriented performance statistics; c.f. Guo and Preston, 2016). 

 

 

Figure 4.13 NRE’s station information page: Example One (Source: 
www.nationalrail.co.uk/ , accessed: 25 Oct 2015) 
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Figure 4.14 NRE’s station information page: Example Two (Source: 
www.nationalrail.co.uk/ , accessed: 25 Jan 2017) 

 

 

 

Figure 4.15 Using Google Maps to estimate walking distance within a railway station 

(Source: www.google.co.uk/maps/ , accessed 25 Jan 2017) 

 

4.3.6 Actual window (AW) and threshold for arrival lateness (TAL) 

 

Apart from NTT, AW (actual window) is another important parameter in the determination of 

whether a scheduled transfer is missed (by most of the relevant passengers) on a particular 
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date in the past (c.f. Step 2 in Algorithm 3 and Algorithm 4). Compared with the 

determination of NTTs, the determination of AWs is relatively straightforward: they can be 

calculated directly from the recorded (actual) arrival/departure times in a route-view 

timetable (RVT). For example, if a feeder train is recorded to have arrived at the transfer 

station at 11:05 a.m. on a particular day (in the past) and the corresponding connecting train 

is recorded to have departed from the same station at 11:07 a.m. on the same day, then the 

AW of this pair of feeder and connecting trains is 2 minutes. And suppose the NTT for this 

transfer is 1 minute, and then this particular transfer is regarded as not missed.  

 

Although the determination of AWs is generally straightforward, special attention needs to be 

paid to those scenarios in which train cancellations have been recorded. As previously 

mentioned in the explanation of Route-View Timetable (RVT), train status information can 

also be retrieved from the historical train movements data (i.e. RTT data in this context, c.f. 

Subsection 4.3.4). That is, it can be learned from the available historical data about whether a 

scheduled train arrival/departure event at a particular station is cancelled. Therefore, if a 

feeder/connecting train is recorded as ‘CANCELLED_CALL’ on a particular date in the past 

(i.e. the scheduled arrival/departure event has been cancelled on that day), then the 

corresponding transfer is regarded as invalid/missed. At the algorithmic level, these 

cancellation-involved scenarios can be dealt with by assigning to them some special value (i.e. 

minus infinity in Step2 of Algorithms 3 and 4) to distinguish them from the others.  

 

Apart from NTT and AW, the threshold for arrival lateness (TAL) is another important 

parameter in the calculation of itinerary-oriented performance statistics, which is involved in 

Step 3 of Algorithm 3 (c.f. Subsection 4.3.2). The reason why it is necessary to introduce 

TAL into Algorithm 3 lies in that if such a threshold is not predefined and the algorithm only 

checks whether each involved transfer has been successfully realised, then those calculated 

itinerary-oriented performance statistics would be biased. Figure 4.16 below provides an 

illustration of the importance of introducing TAL into the calculation of itinerary-oriented 

performance statistics.  
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Figure 4.16 An illustration of why it is necessary to predefine a threshold for arrival lateness 

 

In the four scenarios (i.e. S1 – S4) presented in Figure 4.16, the horizontal lines represent the 

time axis, the two solid vertical lines (in each of the four scenarios) represent the net transfer 

time for this studied transfer (NTT = 2 minutes), and the two dotted vertical lines (they are 

masked by the solid vertical lines in S2) represent the actual window (AW) between this pair 

of feeder and connecting trains. If a threshold for arrival lateness is not predefined, then the 

realised connection in S4 would pass the test for a ‘successful realisation’ of the itinerary 

(assuming that this itinerary involves only one transfer). But in fact this realisation is based 

on the significant lateness of the connecting leg and hence should not be counted as a 

‘successful realisation’. 

 

But how to determine an appropriate TAL? Here the consideration is that some industry 

standards can be adopted as the threshold. Recall that Subsection 2.5.4 has introduced the 

operational practice in European railways: heuristic measurements are widely adopted by 

European railways to conduct network-level performance evaluation in terms of punctuality 

and reliability, the mechanism of which is similar to TAL. Also, those individual-leg-oriented 

performance statistics in Figures 4.6 and 4.7 (c.f. Subsection 4.2.7) are based on predefined 

TALs. In fact, it is almost impossible to carry out quantitative analysis or performance 

evaluation/comparison without some preset standard.  

 

After an investigation of the relevant definitions of Network Rail (c.f. Network Rail, 2017), 

four candidate thresholds are identified: 1 minute, 5 minutes, 10 minutes, and 30 minutes. 

According to Network Rail’s statistical method, a train service can be counted as ‘punctual’ if 

its arrival lateness (at the terminating station) is less than 5 minutes for London and South 

East and regional services or 10 minutes for long distance services. A train is counted as 
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‘right-time’ if its arrival lateness (at the terminating station) is less than 1 minute. And a train 

is counted as ‘significantly late’ if its arrival lateness (at the terminating station) is no less 

than 30 minutes. So how to define a ‘successful realisation’ of a given itinerary? A ‘right-

time’ arrival (i.e. less than 1 minute late), or a ‘punctual’ arrival (i.e. less than 5 or 10 minutes 

late), or a ‘not significantly late’ arrival (i.e. less than 30 minutes late)?  

 

Here, in the context of pre-trip information about itinerary-level performance statistics, a ‘not 

significantly late’ measurement is obviously not as good as a ‘right-time’ or ‘punctual’ 

measurement. For example, suppose the scheduled arrival time at the destination station of a 

given critical itinerary is 12:01 p.m. and two itinerary-level performance statistics have been 

calculated: one is 60% based on a 5-minutes threshold and the other is 95% based on a 30-

minutes threshold. And these two pieces of performance information are respectively 

delivered to two different travellers. Which piece of information would be more useful? The 

answer is it is perhaps the statistic calculated from the 5-minutes threshold. This is because 

the 5-minutes statistic provides an information receiver with a considerably small 

‘uncertainty interval’ (i.e. [12:01, 12:05]), which makes the information receiver easy to 

arrange his/her subsequent activities at the destination. By contrast, a wide spectrum of 

possible values (i.e. [12:01, 12:30] based on the 30-minutes statistic) could bring difficulty in 

planning subsequent activities. Therefore, either a single TAL is adopted of 1 minute, 5 

minutes, or 10 minutes, or multiple TALs are adopted (e.g. 1 minute and 5 minutes) and 

respectively computed in the algorithm. 

 

4.3.7 The treatment of train cancellations 

 

Once the involved NTTs, AWs, and TALs are determined, Algorithm 3 can then be executed 

to generate a list of itinerary-oriented performance statistics corresponding to the 

recommended list of critical itineraries that follow a given critical route (see Tables 4.2 and 

4.3 for illustrations). However, there exists a potential controversy over the treatment of 

cancelled trains: should predictable cancellations be taken into account when computing 

itinerary-level performance statistics? Tables 4.2 and 4.3 below provide a realistic example 

that may help better understand this issue.  

 

Table 4.2 and Table 4.3 respectively present a list of itinerary-oriented performance statistics 

(IPSs) differing only in the treatment of predictable cancellations: while Table 4.2 is obtained 
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from a sample including predictable cancellations, Table 4.3 does not take into account those 

predictable cancellations. The studied route is Bournemouth – Southampton Central – 

Brighton, and the observation period is between 20 July 2015 and 13 September 2015 (8 

weeks in total). Moreover, a route-specific NTT (net transfer time) of 1 minute is adopted, 

and the threshold for arrival lateness (TAL) is set to 5 minutes. 

 

Table 4.2 Itinerary-oriented performance statistics Example One:  
predictable cancellations included 

Dep. Arr. Dur. Chg. IPS (%) 
09:55 12:18 2h23m 1 90 
10:59 13:18 2h19m 1 79 
11:59 14:18 2h19m 1 87 
12:59 15:18 2h19m 1 85 
13:59 16:14 2h15m 1 28 
14:59 17:18 2h19m 1 76 
15:59 18:18 2h19m 1 64 
16:59 19:19 2h20m 1 54 
17:59 20:18 2h19m 1 74 
18:59 21:18 2h19m 1 79 

NOTE: Bournemouth → Southampton Central → Brighton, between 20 July 2015 and  
13 September 2015 (8 weeks), NTT = 1 minute, TAL = 5 minutes. 

 

 

Table 4.3 Itinerary-oriented performance statistics Example Two:  
predictable cancellations excluded 

Dep. Arr. Dur. Chg. IPS (%) 
09:55 12:18 2h23m 1 90 
10:59 13:18 2h19m 1 79 
11:59 14:18 2h19m 1 87 
12:59 15:18 2h19m 1 85 
13:59 16:14 2h15m 1 58 
14:59 17:18 2h19m 1 76 
15:59 18:18 2h19m 1 64 
16:59 19:19 2h20m 1 54 
17:59 20:18 2h19m 1 74 
18:59 21:18 2h19m 1 79 

NOTE: Bournemouth → Southampton Central → Brighton, between 20 July 2015 and  
13 September 2015 (8 weeks), NTT = 1 minute, TAL = 5 minutes. 

 

It can be seen from these two tables that the only difference lies in the IPS that corresponds to 

the (recommended) itinerary with a scheduled departure time of 13:59: while the associated 

IPS is 28% in Table 4.2, this value becomes 58% in Table 4.3. At first glance, both of these 

two statistics (i.e. 28% and 58%) seem counter-intuitive: why should an off-peak early-
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afternoon journey have such a poor performance in terms of punctuality and reliability? After 

a close examination of the historical data, it is recognised that this 'anomaly' can largely be 

attributed to a major rail strike by First Great Western11 staff during August 2015. But why 

could this itinerary have two quite different versions of IPS? Which one reflects the reality? 

In order to answer these two questions, it is necessary to have a good understanding of 

railway planning processes (c.f. Section 2.5).  

 

 

Figure 4.17 An illustration of pre-trip information about major engineering works in the long 
planning horizon (Source: www.nationalrail.co.uk/, accessed 25 Jan 2017) 

 

Recall that in the introduction to railway planning processes (in Section 2.5), two relevant 

notions have been briefly mentioned: short-term rescheduling (c.f. Subsection 2.5.1) and 

daily timetable (c.f. Subsection 2.5.2). A daily timetable is designed and constructed well 

before (usually several months before) the scheduled train services of a given railway line are 

put into production on the predetermined date in the tactical planning phase. The introduction 

of daily timetables in European railways is primarily to better adapt to daily variations in 

transport demand and infrastructure conditions. For example, a weekday timetable often 

remains the same for (normal) weekdays during a timetable period (several months or a year), 

but may be quite different from a weekend/holiday timetable in terms of quantity (e.g. more 

services on weekdays) and quality (e.g. shorter scheduled travel times on weekdays) of the 

planned train services. Moreover, major engineering works (see Figure 4.17 for an illustration) 

                                                             
11 Rebranded as Great Western Railway at the time of writing this thesis. 
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can also be reflected in daily timetables well in advance. If some of the train services in a 

weekday timetable are cancelled in a holiday timetable or due to major engineering works (on 

a future date), these cancelled services are usually recognised as planned cancellations (DAB, 

2016) due to the fact that they are fully predictable and are reflected in published timetables 

well in advance (several months or a year before the time of travel). 

 

Although not strictly analogous to the mechanism of daily timetables in the tactical planning 

phase, short-term rescheduling is widely adopted by rail operators to deal with predictable 

changes in the published timetables in the operational planning phase. These predictable 

changes may or may not include those short-term (i.e. a duration of several days or several 

weeks) events such as rail strikes, local infrastructure improvements, crew shortage, etc. If 

some of the train services in a published timetable are, either thoroughly or partly, cancelled 

due to predictable reasons, these cancelled services can be regarded as predictable 

cancellations. Here, the term ‘predictable’ is used to emphasise that although these 

cancellations are planned to happen in the short term, they can still be reflected in a revised 

timetable (and shown in a journey planning system) well in advance (e.g. several days or 

several weeks ahead). In contrast, if a train service is planned to be cancelled in the very short 

term (i.e. several hours ahead), it can hardly be reflected in the published timetable and hence 

is regarded as stochastic/unpredictable. 

 

Different ways of treating predictable cancellations would result in quite different 

performance statistics. Let us look back at the illustrative example in Tables 4.2 and 4.3. 

Close scrutiny of the relevant historical train movements data reveals that the connecting 

train involved in the ‘abnormal’ itinerary (with a scheduled departure time of 13:59) is 

operated by First Great Western (originating from Great Malvern, calling at Southampton 

Central, and terminating at Brighton), and it was rescheduled (terminating instead at Bristol 

Temple Meads and thoroughly cancelled between Bristol and Brighton) between 3 August 

2015 and 31 August 2015 (involving 20 weekdays). That is, this 13:59 itinerary has not been 

successfully realised on each of these 20 weekdays due to the cancellation of the connecting 

leg. Here, a question arises: should these 20 failures be taken into account in the calculation 

of its performance statistic?  

 

Two different perspectives can be distinguished in the treatment of these 20 records: 1) they 

should be taken into account because they could reflect, at least, that the services provided by 
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this operator are not as reliable as those provided by the others; 2) they should not be taken 

into account because these cancellations are predictable and can be reflected in pre-trip 

information well in advance, the impact of which on itinerary planning is very limited. 

Through an inspection of the intermediate results, it is found that there are 11 records in total 

that are recognised as successful realisations (of this studied itinerary). The sample size for 

this studied itinerary would be 39 (8 weeks, 40 weekdays, the Summer Bank Holiday is 

excluded) if the first perspective is adopted, which would result in an IPS (itinerary-oriented 

performance statistic) of 28% (i.e. 11/39, c.f. Table 4.2). By comparison, the sample size 

would be 19 (i.e. 39 – 20, those 20 ‘predictable cancellations’ are excluded) if the second 

perspective is adopted, which would result in an IPS of 58% (i.e. 11/19, c.f. Table 4.3). 

 

So which of the above two perspectives should be adopted?  Here, in the context of 

passenger-oriented itinerary planning, the second perspective is preferred due to the 

following two reasons. Firstly, current journey planning techniques have long been able to 

deal with those predictable cancellations by updating the corresponding published timetables. 

That is, as long as a cancellation can be reflected in the published timetable well before the 

time of travel, the corresponding service will not be adopted (by journey planning systems) 

and hence will not enter the recommended itinerary list for a given query. Therefore, the 

impact of such cancellations on the pre-planning of a given journey would be trivial. 

Secondly, those events that result in such (predictable) cancellations (e.g. major rail strikes in 

the above-mentioned example) are quite rare in reality, and passengers would not encounter 

such events in most cases during a given observation period (e.g. a period of several months). 

In fact, these rare scenarios can be regarded as outliers in the sense of statistical analysis.  

 

4.3.8 Modifying advertised arrival times 

 

In the previous subsections (4.3.3 – 4.3.7), the core part (i.e. Steps 1 – 3) of Algorithm 3 has 

been explained in detail: in the next step, Algorithm 3 can be fully implemented by adding a 

user-friendly interface, as long as there are no further non-technical factors restricting the 

deployment of such a travel information tool. Comparing between Algorithm 3 and 

Algorithm 4 (c.f. Subsection 4.3.2), it can be found that although the first two steps 

(corresponding to data pre-processing) are the same, divergences turn up from Step 3 

onwards. The main objective of this subsection is hence to illustrate/clarify the technicalities 

involved in Steps 3 – 5 of Algorithm 4.  
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In general, Algorithm 3 can be viewed as an augmented version of those individual-leg-

oriented performance statistics (c.f. Subsection 4.2.7), which is designed to enable 

uncertainty-aware journey planning. Compared with those individual-leg-oriented 

performance statistics (see Figures 4.6 and 4.7 in Subsection 4.2.7), the output of Algorithm 3 

(i.e. itinerary-oriented performance statistics, see Table 4.3 for an illustration) does not 

require that a passenger must have sufficient experience in rail travel or must be good at 

mathematics so that he/she could estimate the overall performance of a given itinerary plan 

by integrating fragmented information (about each involved service leg) by themselves. In 

realistic applications, however, itinerary-oriented performance statistics (generated by 

Algorithm 3) may still cause inconvenience to information consumers (passengers), despite 

their advantage over individual-leg-oriented performance statistics. For example, we can 

learn from Table 4.3 that the probability of a successful realisation of the 13:59 itinerary (i.e. 

arriving at Brighton before 16:19 (16:14 + 5)) is 58% during the 8-weeks observation period. 

But this additional performance information may still be insufficient for decision making (i.e. 

whether to choose this itinerary on a future date12): how much delay would be expected in the 

other 42% unrealised situations? For some of the relevant passengers, this additional statistic 

provided (i.e. 58%) may increase their anxiety about being exposed to huge uncertainty, 

rather than helps them make better decisions.  

 

To ameliorate the potential uneasiness resulting from a feeling of being gambling, an 

alternative approach is proposed: performance-based pre-modification of advertised arrival 

times (Algorithm 4, c.f. Subsection 4.3.2). The mechanism of performance-based pre-

modification of advertised arrival times (PBPM) can be roughly described as follows: for a 

given recommended itinerary, its scheduled travel time and scheduled arrival time at its 

destination station are modified well before the time of travel, based on its overall 

performance in the last several weeks.  

 

The general idea of PBPM (Algorithm 4) does not come out of nowhere: it has been inspired 

by the existing functionality of service-specific modification of arrival/departure times in the 

domain of real-time passenger information. Figures 4.18 and 4.19 below provide an 

illustration of real-time delay information about modified (advertised) arrival/departure times.  

                                                             
12 The reference point is 13 September 2015. 
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Figure 4.18 Live information about modified arrival/departure times Example One: NRE 
website (Source: www.nationalrail.co.uk/, accessed 19:20, 22 Jan 2017) 

 

 

 

Figure 4.19 Live information about modified arrival/departure times Example Two: NRE 
mobile app (Source: www.apple.com/itunes/, accessed 15:06, 22 Jan 2017) 

 

It can be seen from Figures 4.18 and 4.19 that the mechanism of these real-time updates is to 

adjust a passenger’s expectation of potential delays before or during his/her trip. Intuitively, 

these real-time updates would be helpful in the sense that they enable passengers to know 
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about and prepare for the oncoming delays and hence may reduce the potential risk 

(consequence) of these delays. However, these real-time delay updates are often not 

accessible until it is very near to the time of travel (see Figures 4.18 and 4.19 for example). In 

such a context, PBPM (Algorithm 4) is proposed, which takes the idea of delay updates one 

step further: the pre-trip information about potential arrival delays (at the destination station 

of a given itinerary) would be accessible well in advance (several days before the time of 

travel) to enable passengers to make better choices by pre-modifying the 

scheduled/advertised arrival times (and hence the scheduled/advertised journey times).  

 

Let us look back at the technicalities in Algorithm 4 (c.f. Subsection 4.3.2). Steps 1 – 2 are 

for data pre-processing and are the same with those in Algorithm 3. That is, a route-view 

timetable (RVT, c.f. Subsection 4.3.4) should firstly be constructed from historical train 

movements data, and itinerary-specific net transfer times (NTTs) and actual windows (AWs) 

should be predetermined.  

 

Once these data pre-processing steps are completed, Step 3 is then executed to calculate the 

probability of no missed transfers (i.e. all the involved transfers are successfully realised) for 

each studied critical itinerary. Note that this step does not require a predefined TAL 

(threshold for arrival lateness, required by Step 3 of Algorithm 3) because these calculated 

probabilities are not used to present heuristic performance measures (c.f. Algorithm 3) but are 

used instead to pre-modify the scheduled/advertised journey times and arrival times.  

 

Table 4.4 An illustration of Steps 3 – 4 of Algorithm 4 

Dep. serviceF seviceC successRate (%) averageLatenessC (mins) 
09:55 Y41233 W83537 90 2.05 
10:59 Y41237 W83538 95 0.75 
11:59 Y41241 W83539 75 0.39 
12:59 Y41245 W83540 85 0.32 
13:59 Y41250 P01078 100 4.60 
14:59 Y41254 W83541 90 3.11 
15:59 Y41259 W83542 85 3.83 
16:59 Y41263 W83543 95 1.53 
17:59 Y41268 W83544 95 3.68 
18:59 Y41274 W83545 85 2.88 

NOTE: Bournemouth → Southampton Central → Brighton, between 12 Oct 2015 and 6 Nov 2015 (4 weeks) 
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Step 4 is to compute the average lateness at the destination station for the kth involved leg of 

each critical itinerary. Here, to ensure generality, it is assumed that there are exactly k trains 

(service legs) involved in each studied itinerary. That is, this step is to take into account the 

scenario in which the probability of no missed transfers (i.e. the output of Step 3) is 100% but 

the final leg involved (i.e. the kth involved leg of a given itinerary) has poor performance in 

terms of punctuality at the destination station. Table 4.4 gives such an illustration.  

 

This illustrative example is based on a 4-weeks sample (12/10/2015 – 06/11/2015) of the 

route Bournemouth – Southampton Central – Brighton. Each studied itinerary is represented, 

for convenience, by its scheduled departure time from Bournemouth (e.g. 09:55 represents 

the itinerary with a scheduled departure time of 09:55). Each string (e.g. Y41233) under 

‘serviceF’ and ‘serviceC’ is the service identifier of a particular train: those under ‘serviceF’ 

represent feeder trains and those under ‘serviceC’ represent connecting trains. The values 

under ‘successRate’ are obtained from Step 3, each of which represents the probability of no 

missed transfers for a particular itinerary. Those values under ‘averageLatenessC’ are 

calculated from Step 4, each of which represents the average lateness at the destination 

station (i.e. Brighton in this example) for the kth involved (i.e. the second) leg of a particular 

itinerary. For example, the value corresponding to the 13:59 itinerary (i.e. 4.60) can be 

interpreted as the average lateness of the connecting leg (identified by ‘P01078’) of this 

itinerary (i.e. ‘P01078’ arrived, on average, 4.6 minutes later than the scheduled arrival time 

at Brighton during this 4-weeks observation period). Meanwhile, we can see from this 

example (i.e. the 13:59 itinerary) that although the transfer involved performed very well (i.e. 

100% successful realisation) during this period, the connecting leg (i.e. ‘P01078’) had poor 

performance in terms of punctuality at Brighton.  

 

Step 5 is the final step of Algorithm 4, which is to modify the advertised arrival time (and 

also the advertised journey time) of each studied itinerary based on the historical performance 

information obtained from Steps 3 – 4. Firstly, it is necessary to explain the relevant 

notations/symbols in this step: jt0(·) represents the average journey time without missed 

transfers (during a given observation period); jt1(·) represents the average journey time with 

exactly one missed transfer (among the k-1 involved transfers, based on an assumption of k 

legs); arrs(·) means scheduled arrival time (of a particular train); deps(·) means scheduled 

departure time; arrm(·) means modified arrival time; p0(·) and δ(·) represent the statistics 

obtained from Steps 3 – 4 (c.f. ‘successRate’ and ‘averageLatenessC’ in Table 4.4); 
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HEADWAYavg means the average headway of all the involved connecting legs. Note that the 

equations in Lines 49 – 51 of Algorithm 4 (c.f. Subsection 4.3.2) are actually a simplification 

of the following equation (Eq. (1)): 

11221100)1()(   kkscm jtpjtpjtpjtpTdepiarr                 Eq. (1) 

That is, the modified journey time (i.e. Σpi∙jti) should be the summation of all scenarios of 

missed transfers. In reality, however, the number of involved transfers along a critical route is 

often not that large (c.f. the list of critical routes identified in British railways in Section 3.7), 

and those items behind p1∙jt1 can often be neglected. Therefore, the equations in Lines 49 – 

51 in Algorithm 4 can be used as an approximation to Equation (1) when the number of 

involved transfers is small.  

 

In order to help better understand the mechanism of those computations in Step 5, an 

explanation of the underlying data structure is presented below, followed by several 

numerical examples using realistic data.  

 

Firstly, it is necessary to differentiate between three interrelated concepts: itinerary template, 

itinerary, and reconstructed itinerary. Figure 4.20 below provides an illustration of their 

relationships. The two rows I1 and I2 in Figure 4.20(a) are templates for the two itineraries i1 

and i2 in Figure 4.20(b). The origin, transfer, and destination stations and the scheduled stop 

times at the corresponding stations (i.e. t1 ~ t8, in which t1 < t5, t2 < t6, t3 < t7, t4 < t8 and t1 

< t2 < t3 < t4, t5 < t6 < t7 < t8) are the same, but there is one major difference between the 

two: i1 and i2 are expected to happen on a specific day (e.g. 30/08/16), whereas I1 and I2 are 

not constrained by a specific date and can be thought of as an abstraction of a collection of 

repeated itineraries during a considerably long period (e.g. several months or even several 

years). The symbols f1, c1, f2, c2 respectively represent a specific feeder/connecting train, 

while F1, C1, F2, C2 respectively represent a specific collection of feeder/connecting trains 

that follow the same daily schedule during a given period of time. Note that I1 and I2 are 

‘adjacent’ (and so do i1 and i2 and i1’ and i2’), which means the interval between t4 and t8 is 

exactly the headway of C. Here, the set F (and the set C) can be thought of as a higher level 

of abstraction that contains F1 and F2 (C1 and C2). Take Table 4.4 as an example: F = the 

Weymouth to London Waterloo line, C = the Southampton Central to Brighton line 

(‘P01078’ is an exception, which belongs to the Great Malvern to Brighton line); if F1 = 

‘Y41233’, then C1 = ‘W83537’, F2 = ‘Y41237’, C2 = ‘W83538’. 
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Figure 4.20 An illustration of the relationship between (a) itinerary template, (b) itinerary, 
and (c) reconstructed itinerary 

 

Figure 4.20(b) and Figure 4.20(c) also have similarities and differences. The origin, transfer, 

and destination stations are the same; and the corresponding feeder and connecting trains 

satisfy the following relationships: f1 and f1’ belong to F1, c1 and c1’ belong to C1, f2 and 

f2’ belong to F2, and c2 and c2’ belong to C2. The major difference is that Figure 4.20(b) is a 

piece of pre-trip information about unrealised journeys, but i1’ and i2’ in Figure 4.20(c) are 

reconstructed itineraries that are obtained from splicing the recorded/actual stop times of the 

corresponding feeder and connecting trains (i.e. f1’ + c1’, f2’ + c2’) long after their run date. 

That is, the run date of the involved trains in Figure 4.20(c) can be thought of as some date 

before the run date of the involved trains in Figure 4.20(b). Here, the term ‘reconstructed’ is 

used to emphasise that the recorded/actual stop times (i.e. t1’, t2’, … , t8’) are not necessarily 

equal to their counterpart in a planned daily timetable (i.e. t1, t2, … , t8), and that some of the 
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constraints placed on i1 and i2 (e.g. t2 < t3, t6 < t7) do not necessarily hold and the values of 

t1’, t2’, … , t8’ in i1’ and i2’ are possible to be invalid (due to train cancellations, c.f. 

Subsection 4.3.6).  

 

Based on the above Figure 4.20 and Table 4.4, the following equation (i.e. Eq. (2)) can be 

applied to calculate the modified arrival time (arrm) for a given itinerary (here, i1 in Figure 

4.20(b) is used for illustration): 
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Most of the symbols in Eq. (2) have been explained earlier in this subsection. Some possibly 

confusing symbols are those involving ‘I1’ (e.g. arrm(I1), jtm(I1), etc). The purpose of 

introducing these template-specific symbols is to explain that the algorithm does not 

differentiate between different weekdays. Here, I1 can be imagined as an abstraction that 

applies to each weekday during a studied week, and i1 can be imagined as a projection of I1 

onto a specific day during the week (i.e. Wednesday). p0(I1) is the success rate of a realised 

transfer for I1 during the last several weeks (the reference point is the studied week) and it 

applies to every ‘copy’ of I1 (e.g. i1) on every weekday during the studied week. jtm(I1) is the 

modified journey time for I1 during the studied week. The calculation of jtm(I1) takes into 

account not only the risk of a missed transfer but also the average delay(s) at the destination 

station (i.e. δ(C1) and δ(C2)). The reason why it is necessary to take into account the average 

delay(s) at the destination station can be found later in the numerical examples. Note that the 

calculation of jtm(I1) only considers at most one missed transfer and has ignored those 

scenarios under more than one missed transfer (c.f. Eq. (2)). This simplification, however, is 

unproblematic in the context of British railways because more-than-one-missed-transfer 

scenarios are very rare (have not been found in the analysis of the current National Rail 

timetable, c.f. Section 3.7) and can be ignored without loss of precision. 
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Due to the consideration of δ(C1) and δ(C2), the obtained arrm(I1) is likely to be smaller than 

the schedule arrival time arrs(i1). Under this scenario, the modified arrival time arrm(i1) is no 

longer arrm(I1) but is set equal to arrs(i1) (i.e. no modification under this scenario). This 

treatment is based mainly on the following two considerations. On the one hand, the ultimate 

goal of pre-modifying advertised arrival times is to reduce the impact of arrival delays. 

However, if arrm(i1) is allowed to be smaller than arrs(i1), the pre-modification made would 

increase (rather than reduce) the risk (impact) of arrival delays: an early arrival on average 

(during a given observation period) may result from the biases from within the adopted 

sample (e.g. insufficient sample size, seasonal factors, etc). On the other hand, even if the 

sample adopted is representative (i.e. early arrivals are typical for a studied itinerary during a 

considerably long period of time), arrm(i1) should still not be set smaller than arrs(i1). A 

slightly earlier arrival (on average) than scheduled may result from the operator’s timetabling 

strategy: running time supplements and/or buffer times may have been incorporated into the 

published timetables of some routes to offset the impact of potential delays in the tactical 

planning phase (c.f. Section 2.5 and several real-world examples in the next chapter). 

 

To better understand how Eq. (2) works, three specific calculation examples in Figure 4.21 

below are presented. Examples <a> and <b> are based on the real-world data about the route 

Bournemouth – Southampton Central – Brighton, while Example <c> is based on the real-

world data about the route Ilkley – Leeds – Middlesbrough (Note: this route does not belong 

to the list of identified critical routes in Subsection 3.7.4, but was found to be critical in 

previous screenings).  

 

 

Figure 4.21 Calculation examples of arrm using real-world data 
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Compared with Table 4.1 (i.e. the example for Route-View Timetable), only the most 

relevant columns are extracted to reduce distraction (i.e. the first five columns in the above 

calculation examples). Columns 6 – 11 (i.e. from ‘late_C’ to ‘jt_m’) are auxiliary columns 

introduced to calculate the last column (arr_m). Here, the first three columns (‘runDate’, 

‘serviceF’, ‘serviceC’) are used to uniquely identify a specific itinerary. The two rows 

(excluding the header row) in Example <a> can be thought of as the two itineraries i1 and i2 

in Figure 4.20(b), in which t1 = 959, t4 = 1098, t5 = 1019, t8 = 1159. The values under 

Columns 6 – 11 correspond to the symbols in the above Equation (2): δ(C1) = 3.83, δ(C2) = 

1.53, p0(I1) = 0.85. The other intermediate results can be directly derived from these values. 

And the obtained result arr_m(i1) = arr_m(I1) = 1111 (since 1111 > 1098(arr_s(i1)), arr_m(i1) 

= arr_m(I1) = 1111, c.f. Equ. (2)). 

 

Example <b> contains only one row (and so does Example <c>). This is because arr_m(i1) 

can be calculated without a second row under this scenario (i.e. p0(I1) = 1). The reason why 

this scenario has been separated from the typical scenario in Example <a> is that it can be 

used to illustrate the necessity of taking into account the average delay (of the connecting 

train) at the destination station (i.e. δ(C1) and δ(C2) in Equation (2)). As shown in the 

example, although the transfer can always be successfully realised during the observation 

period, a punctual arrival at the destination station can still not be expected because the 

connecting train arrives on average 4.6 mins (rounded up to 5 mins) later than scheduled at 

the destination station during the observation period. This kind of arrival lateness is also non-

negligible (apart from those caused by missed transfers) and ignoring it would affect a correct 

evaluation of the performance of a studied itinerary.  

 

Example <c> shows how to determine arr_m(i1) in the scenario in which arr_m(I1) < 

arr_s(i1). Due to the fact that p0(I1) = 1 and δ(C1) = -1.55 (c.f. Example <c> in Figure 4.21), 

the modified journey time jt_m(I1) = 120.45 ≈ 120 mins and hence the obtained arr_m(I1) = 

t1 + jt_m(I1) = 730 + 120 = 850, which is less than the scheduled arrival time (arr_s(i1)) of 

852. Under this scenario, arr_m(i1) should be set equal to arr_s(i1) (i.e. 852) according to 

Equation (2).  
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4.4 Integrating historical performance information into journey planning 
systems 

 

4.4.1 Presenting independently from journey planning systems 

 

The previous section (i.e. Section 4.3) presents the technical details about the core part of two 

alternative algorithms that utilise historical train movements data to enhance the pre-trip 

information about critical routes. Those technicalities are, however, limited to the back end, 

which is mainly focused on extracting useful information from massive poorly-organised raw 

data. This subsection and the subsequent subsections are mainly concerned with the front end: 

how to effectively and efficiently disseminate this additional information about historical 

performance using existing techniques? Note that since the front end development often 

requires relatively large capital investments, this section is mainly aimed at presenting the 

considerations at the technical level, with the aid of an illustrative prototype.  

 

So how to present the additional historical information obtained about the recommended 

itineraries of a given critical route? A relatively straightforward idea is to refer to the existing 

‘models’ in realistic applications. In the context of Britain’s passenger rail system, the most 

relevant ‘models’ are perhaps those travel information websites (some of them also have an 

mobile version) such as Fasteroute Delay Explorer (delayexplorer.fasteroute.com/#/), and My 

Train Journey (www.mytrainjourney.co.uk/ ), which are characterised by operating 

independently from the official information source (i.e. National Rail Enquiries 

(www.nationalrail.co.uk/ ) in the context of British railways).  

 

In the context of Algorithms 3 and 4 described in the previous section, this (i.e. mimicking 

the existing models) means that those itinerary-oriented performance statistics obtained by 

executing Algorithm 3 (c.f. Table 4.3 for an example) or pre-modified arrival and journey 

times by executing Algorithm 4 (c.f. Subsection 4.3.8) could be independently published on a 

self-developed website or mobile application, without interacting with an official journey 

planning system (e.g. National Rail Enquiries). Although this model (i.e. independently 

disseminating additional information) could be chosen as the reference point, it suffers from 

the following three limitations: 
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- It has quite limited coverage: compared with those long-established travel information 

sources (e.g. NRE), much less attention would be paid to such newly developed and 

independently operated travel information sources. That is, most passengers would 

not utilise (and benefit from) such independent information sources, for it is difficult 

to make them aware of the existence of such websites (mobile applications). 

- Even if passengers are aware of such new information sources, they would still have 

to integrate different pieces of travel information (from different sources) by 

themselves. This would cause inconvenience to passengers and push them away from 

these independent information sources.  

- Last but not least, even if the above two potential limitations are set aside, only 

disseminating (rather than integrating into journey planning algorithms) this 

additional performance information extracted from historical data could not provide 

further information about alternative itineraries (journey plans) in the scenario in 

which poor performance is identified.  

 

The subsequent subsections are to present an alternative approach to disseminating the 

additional information generated from Algorithm 4 (Note: also applicable to Algorithm 3, but 

Algorithm 4 is preferred and adopted here, c.f. Subsection 4.3.8 for explanation), with the aid 

of an illustrative prototype. 

 

4.4.2 Descriptive information (DI) vs. prescriptive information (PI) 

 

A key reason why the benefit is limited of disseminating additional performance information 

independently from journey planning systems is that these pieces of performance information 

are largely descriptive rather than prescriptive. According to Ben-Elia et al. (2013), compared 

with descriptive information (e.g. the average estimated travel times for each route in the 

context of Ben-Elia et al. (2013)) and post-choice experiential information, prescriptive 

information about the suggested route has the largest impact on route choice. In the context of 

presenting the results obtained from Algorithm 4 (and Algorithm 3), this implies that it might 

be more helpful to provide passengers with additional information about alternative 

itineraries (to those (already) recommended critical itineraries) than to provide only 

descriptive information about modified arrival/journey times (or performance statistics).  
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To help better understand the subtleties of passenger information, Figures 4.22 – 4.25 below 

provide an illustrative example of the difference between descriptive information and 

prescriptive information in the context of Algorithm 4 (PBPM, Performance-Based Pre-

Modification of advertised arrival times). 

 

 

Figure 4.22 A user interface that enables the choice between different underlying algorithms 

 

Figure 4.22 above presents the user interface of the illustrative prototype. It can be seen from 

the figure that there is no significant difference between this interface and the user interface 

of those existing journey planning systems (c.f. Sections 4.2 and 4.3). This is not surprising 

because the input is the same of existing journey planning systems (i.e. a pair of origin and 

destination stations and the planned departure/arrival date and time), and this prototype is 

largely an extension/augmentation of existing journey planning algorithms (i.e. it is also built 

upon existing journey planning algorithms). However, two small distinctions are noteworthy: 

firstly, an additional functionality is provided to facilitate the transition and comparison 

between three different modes corresponding to different underlying algorithms (i.e. standard, 

PBPM, and PBPM+ : further explanation is to be presented later in this subsection). Secondly, 

it should be noted that although the current date in the figure (i.e. 10 June 2016) is several 

days away from the planned departure date (i.e. 15 June 2016), the two proposed algorithms 

PBPM and PBPM+ (to be detailed later in the next subsection) are able to pre-modify the 
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advertised arrival/journey times based on historical performance information, which 

illustrates their advantage over the existing algorithmic approaches.  

 

 

Figure 4.23 DI vs. PI Example One: standard journey planning 

 

Figure 4.23 above displays the result page that corresponds to the ‘standard’ mode. Here, the 

term ‘standard’ is used to emphasise that the recommended itineraries are calculated purely 

from the underlying (planned) timetables and historical performance information is not 

involved. That is, any existing journey planning system would generate the same list of 

recommended itineraries, as long as the underlying timetables adopted and the relevant 

parameters chosen (e.g. MTTs, earliest-arrival, etc. c.f. Section 3.4) are the same. Note that 

the recommended itinerary list in Figure 4.23 is different from the version of National Rail 

Enquiries (in which additional itineraries transferring at Clapham Junction are also 

recommended. c.f. Figure 3.7). This difference is due to the difference in the post-processing 

of the result set (i.e. the recommended itinerary list). An additional filtration rule is added 

here in the journey planning simulator: in the scenario in which two itineraries I1 and I2 in 

the result set are non-comparable in the sense of Pareto optimality (c.f. Subsection 2.3.7), if 

the scheduled travel time of I1 is at least 30 minutes longer than that of I2, then I1 is filtered 

out. Therefore, those itineraries transferring at Clapham Junction are excluded from the 

recommended list in Figure 4.23. 
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From the perspective of information classifications, the recommended itinerary list in Figure 

4.23 can be seen as having both the characteristics of descriptive information (DI) and the 

characteristics of prescriptive information (PI): if a passenger has a relatively flexible 

schedule (in terms of departure and arrival times), then this piece of information (i.e. the 

recommended list) would be largely descriptive and he/she would make a choice between the 

alternative itineraries based on his/her own preferences; conversely, if a passenger has a 

relatively fixed schedule, then this piece of information would be largely prescriptive because 

he/she would have no alternative choices. For example, if a passenger has the following 

flexible schedule: departing no earlier than 14:30 and arriving no later than 18:40, then the 

recommended itinerary list in Figure 4.20 can be categorised into descriptive information 

(DI): the passenger can choose between the first itinerary (departing at 14:59) and the second 

itinerary (departing at 15:59). That is, this piece of information itself could not tell this 

passenger which itinerary is the best option under this scenario of a flexible schedule. In 

contrast, if another passenger has the following tighter schedule: departing no earlier than 

14:30 and arriving no later than 17:30, then this recommended itinerary list can be 

categorised into prescriptive information (PI): the passenger would have no alternative choice 

but the first recommended itinerary (departing at 14:59). That is, this piece of information 

itself can tell this passenger which itinerary is the best option under such a scenario. 

 

 

Figure 4.24 DI vs. PI Example Two: additional descriptive information 
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Figure 4.24 corresponds to the ‘PBPM’ mode in Figure 4.22. ‘PBPM’ is short for 

‘Performance-Based Pre-Modification of advertised arrival times’, representing the 

algorithmic approach described in Algorithm 4 (c.f. Subsection 4.3.2). Comparing Figure 

4.24 with Figure 4.23, we can find that the two columns under ‘Arr.’ and ‘Dur.’ are modified: 

the advertised arrival times of the three recommended itineraries are postponed and the 

corresponding (advertised) journey times are prolonged, the modifications of which are based 

on the performance evaluation of the corresponding train services in the previous observation 

period (c.f. Subsections 4.3.2 and 4.3.8). That is, PBPM (Algorithm 4) exploits both 

timetable information and historical performance information to enhance the recommended 

itinerary list obtained from timetable information only (c.f. Figure 4.23).  

 

With respect to information type, the recommended itinerary list in Figure 4.24 inherits from 

that in Figure 4.23 the characteristics of both DI and PI, and provides those passengers 

having a relatively tight schedule with additional descriptive information. For example, if a 

passenger has the following schedule: departing no earlier than 14:30 and arriving no later 

than 17:20, then this piece of modified information (Figure 4.24) could tell him/her that if 

he/she chooses the first recommended itinerary, he/she will arrive 10 minutes late on average. 

By comparison, the timetable information in Figure 4.23 (i.e. the scheduled arrival time of the 

first recommended itinerary is 17:18) could not make him/her aware of this potential lateness. 

However, although these pre-modified (recommended) itineraries could make those time-

sensitive passengers aware of the potential problems (i.e. delays), they could not provide 

solutions and hence can be categorised into descriptive information. It is conceivable that the 

passenger in the above example (in this paragraph) would have no choice but to reschedule 

the relevant activities (at the origin and/or the destination) or even shift to other modes of 

transport, which may not be the best result that could have been achieved: on the one hand, 

although the passenger may benefit from this additional information about potential delays, 

he/she would still have to take extra time and effort to manually search for alternative plans 

by himself/herself; on the other hand, although the rail industry may also benefit from this 

additional information by earning a good reputation for reliable information, certain of its 

available train services (i.e. capacity) would still be wasted due to the limitations of existing 

journey planning techniques: a considerable number of available train services between two 

stations would be filtered out by the underlying algorithms and hence could not be utilised to 

construct alternative itineraries as necessary (c.f. Section 3.4).  
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Figure 4.25 DI vs. PI Example Three: additional prescriptive information 

 

A potential solution to the lack of alternative itineraries when necessary is PBPM+ (see 

Figure 4.25 in the above). PBPM+ can be viewed as an augmented version of PBPM: it not 

only generates additional descriptive information about potential delays of those 

(recommended) critical itineraries, but also generates additional prescriptive information 

about alternative itineraries (to those critical itineraries). That is, PBPM+ tends to be able to 

cover the most scenarios among the three modes in Figure 4.22 (i.e. standard, PBPM, and 

PBPM+). Continue the example of the passenger in the previous paragraph (i.e. departing no 

earlier than 14:30 and arriving no later than 17:20): he/she could adopt an alternative itinerary 

(to the one departing at 14:59 in Figure 4.24) by departing a little earlier at 14:45 and arriving 

at 17:18 (i.e. the first itinerary in the recommended list in Figure 4.25). Further details about 

PBPM+ at the algorithmic level can be found later in the next subsection. 

 

4.4.3 Additional prescriptive information: algorithmic-level considerations 

 

The previous subsection has provided a series of illustrative examples of what an augmented 

journey planning system would/should be able to do by combining timetable information 

with historical performance information. Specifically, two proposed algorithmic approaches 

have been mentioned: PBPM (Performance-Based Pre-Modification of advertised arrival 

times) and PBPM+. The pseudo code of PBPM has been presented in Subsection 4.3.2, the 
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mechanism of which has been extensively explained in the previous section (i.e. Section 4.3). 

But the algorithmic-level mechanism of PBPM+ has not been explained. This subsection is to 

present the algorithmic-level considerations about how to achieve the desired effect in Figure 

4.25 in the previous subsection. 

 

Firstly, an explanation of the difference between PBPM and PBPM+ is necessary. By 

comparing Figure 4.24 with Figure 4.25 (in the previous subsection), we can see that the 

effect of PBPM+ (c.f. Figure 4.25) is to add into the recommended list (obtained from 

executing PBPM, c.f. Figure 4.24) additional itineraries. The reason for this difference at the 

technical level is that PBPM is aimed only at refining each critical itinerary in the 

recommended list by a journey planning system, whereas PBPM+ is aimed at reconstructing 

the recommended list itself. More specifically, PBPM can be viewed as a data mining module 

functioning independently of a specific journey planning algorithm, but PBPM+ is a 

combination of PBPM and existing journey planning algorithms. Algorithm 5 below presents 

the pseudo code for PBPM+. 

 

Algorithm 5: PBPM+  
Input: timetable data about a given railway network and historical train movements data 

about a given critical route  
Output: a recommended itinerary list (for the origin-destination pair of the given critical 

route) in which critical itineraries are refined and alternative itineraries are added 
  

1 //Step 1: generate a list of refined critical itineraries 
2 run a specific journey planning algorithm (e.g. TDD, TED, RAPTOR, CSA, etc) on 

the timetable data to generate a recommended itinerary list RIL1 for the critical route 
3 run PBPM on RIL1 to obtain a refined itinerary list RIL2 
4  
5 //Step 2: generate a list of alternative itineraries (to those critical itineraries) 
6 increase the MTT for the transfer station(s) by δ (≥ 1) minutes to obtain a modified 

MTTm (= MTT + δ) 
7 rerun the adopted journey planning algorithm on the timetable data adopting MTTm to 

generate a recommended itinerary list RIL3 for the origin-destination pair of the 
critical route 

8  
9 //Step 3: merge the two lists and refine the resulting list for recommendation 
10 combine RIL2 with RIL3 to obtain RIL4 
11 refine RIL4 by filtering out those dominated itineraries in the sense of Pareto 

optimality 
12 return RIL4 
13 terminate 
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PBPM+ is generally composed of three major steps. All the notations in bold are two-

dimensional tables, and uppercase letters are abbreviations representing either the name of a 

particular algorithm (e.g. CSA, PBPM, etc) or a constant parameter (e.g. MTT).  

 

PBPM+ consumes both timetable data and historical train movements data of a particular 

critical route, and yields a recommended itinerary list containing both refined critical 

itineraries and alternative itineraries to those critical itineraries (see Figure 4.25 in the 

previous subsection for an illustration).  

 

PBPM+ is created and proposed as an augmented version of PBPM, providing additional pre-

trip information about similarly attractive alternatives to those modified critical itineraries (by 

applying PBPM) as long as such alternatives exist for a given critical route. 

 

The major task of Step 1 is to generate/compute a list of refined critical itineraries. This step 

can be decomposed into two sub-steps. Firstly, the recommended list of critical itineraries 

(denoted by RIL1) needs to be generated by applying a chosen journey planning algorithm 

(e.g. TDD, TED, RAPTOR, CSA, etc)13 onto the timetable data. This sub-step can be thought 

of as the functionality of the ‘standard’ mode in Figure 4.22 in the previous subsection. 

Secondly, once RIL1 is obtained, PBPM (Algorithm 4 in Subsection 4.3.2) can then be 

applied to refine the critical itineraries in RIL1 exploiting historical train movements data, the 

output of which is denoted by RIL2. This sub-step can be thought of as the functionality of 

the ‘PBPM’ mode in Figure 4.22. 

 

Step 2 is mainly aimed at generating/computing a recommended list of alternative itineraries 

to those recommended critical itineraries. This goal can be achieved by increasing the MTT 

(minimum transfer time, c.f. Chapter 3) for the station(s)14 where critical transfers happen, 

and then (re)running the adopted journey planning algorithm on the timetable data (adopting 

the modified MTT) to obtain a recommended list of alternative itineraries (denoted by RIL3). 

Recall that in the introduction to the existing journey planning algorithms (c.f. Sections 3.4 

                                                             
13 TDD = Time-Dependent Dijkstra, TED = Time-Expanded Dijkstra, RAPTOR = Round-bAsed Public Transit 
Optimized Router, CSA = Connection Scan Algorithm. Details about these journey planning algorithms can be 
found in the previous chapters such as Section 2.3 and Section 3.6. 
14 A critical route may consist of more than one critical transfer, but in the context of this thesis, all the 
identified critical routes in Britain’s passenger rail system involve exactly one critical transfer.  
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and 3.5), MTTs play an important part in computing a recommended itinerary (for a given 

query): an MTT is often assigned to each railway station to allow the changeover between 

different train services. However, due to the impact of delays and disruptions on daily 

operations, a station-specific MTT tends to be insufficient in the scenario where critical 

transfers are involved (c.f. Section 3.5). A critical transfer is often associated with a small 

scheduled window (between the pair of feeder and connecting trains) that barely exceeds the 

corresponding MTT. For example, the scheduled window for the route London Kings Cross – 

York – Scarborough is 8 minutes, which is equal to the station-specific MTT for York. And 

the scheduled window for the route Bournemouth – Southampton Central – Brighton is 4 

minutes, which is even less than the station-specific MTT for Southampton Central (i.e. 5 

minutes). Note that the route Bournemouth – Southampton Central – Brighton is a special 

case in which the station-specific MTT (i.e. 5 minutes for Southampton Central) is overlaid 

with an operator-specific MTT (i.e. 4 minutes between South West Trains and Southern 

services).  

 

Therefore, by slightly increasing the MTT for the transfer station (and also the operator-

specific MTT as necessary) and rerunning the journey planning algorithm, a recommended 

list (denoted by RIL3) of alternative itineraries could then be generated (Lines 6 – 7 in 

Algorithm 5). Here, the obtained alternative itineraries would be the best (apart from those 

critical itineraries) in the sense of Pareto optimality (in terms of earliest-arrival, number of 

transfers, journey time, etc). Note that dependent upon the specific parameters adopted (for 

defining Pareto optimality), the alternative itineraries generated may vary slightly. Continue 

the example of the route Bournemouth – Southampton Central – Brighton. Both those 

itineraries transferring at Clapham Junction and those itineraries transferring at Southampton 

Central and departing (from Bournemouth) at XX:45 (i.e. hourly services at the same time 

point) would enter the recommended list, if the following rule is added to the definition of 

Pareto optimality: in the scenario in which two itineraries I1 and I2 in the result set are non-

comparable in the sense of Pareto optimality, if the scheduled travel time of I1 is at least 30 

minutes longer than that of I2, then filter out I1; otherwise, keep both.  

 

Step 3 is to merge the list of refined critical itineraries (obtained from Step 1) and the list of 

alternative itineraries (obtained from Step 2) and to refine the combined list. In this step, the 

operation of merging/combination itself is trivial, involving only some additional sorting of 

itineraries by scheduled departure time (which is also trivial). Here, the trick lies mainly in 
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the filtration process, which involves a delicate balance between availability of options and 

conciseness of the result set. Continue the example in the above paragraph. If the same rule is 

applied to the newly constructed list (i.e. the combined list denoted by RIL4), the obtained 

result set would become a little ‘crowded’: each critical itinerary would be associated with 

two alternative itineraries (i.e. one transferring at Clapham Junction, and the other 

transferring at Southampton Central). Since those (alternative) itineraries transferring at 

Clapham Junction have a scheduled travel time of around 2 hours and 55 minutes (c.f. Figure 

3.7 in Section 3.4), it might be better to filter out these less efficient and more expensive 

options to deliver a more concise result set containing only those refined critical itineraries 

and those XX:45 itineraries (c.f. Figure 4.25 in the previous subsection).  

 

Once the combined list in Step 3 (i.e. RIL4) has been refined, it can then be disseminated for 

passenger information. Before finishing the explanation of PBPM+ (i.e. Algorithm 5), the 

following two points should also be noted. 

 

Firstly, like PBPM (c.f. Algorithm 4 in Subsection 4.3.2), PBPM+ seems computationally 

intensive but actually is lightweight and would not introduce much extra complexity. The 

reason for this lies in the following two aspects. On the one hand, either PBPM or PBPM+ 

can be viewed as a ‘local treatment’ for critical routes only. Recall that the design philosophy 

of the algorithmic approaches proposed has been described as ‘less is more’: no intervention 

unless intervention is really necessary (c.f. Subsection 4.3.1). Since only the small set of 

critical routes (rather than the huge set of all possible routes within a railway network, c.f. 

Section 3.7) needs to be tackled, the extra computations induced would be trivial. On the 

other hand, both PBPM and PBPM+ are not truly dynamic: unlike those algorithms designed 

to be ‘always on-line’ (i.e. constantly update the results; e.g. Müller-Hannemann and Schnee 

(2009) and Delling et al. (2014a)), PBPM and PBPM+ are designed to be ‘sometimes on-

line’ (i.e. update the results on a daily/weekly basis), which significantly reduces the 

consumption of computing resources.  

 

Secondly, like the limitations of presenting performance-based information independently 

from journey planning systems (as described previously in Subsection 4.4.1), to what extent 

PBPM+ would take effect depends on whether it could be adopted and integrated into the 

official source(s) for rail passenger information. In the context of Britain’s passenger rail 

system, such an official source is National Rail Enquiries (www.nationalrail.co.uk ) operated 
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by Rail Delivery Group15. That is, its coverage would be very limited if implemented as an 

independent travel information website or application. In order to reach a wide audience, it 

(i.e. PBPM+) need/should be incorporated into some official information source (e.g. 

National Rail Enquiries).  

 

 

4.5 Potential limitation 

 

The specific technicalities with illustrations presented in this chapter have shown us how to 

make full use of those train movements data (available from Britain’s rail industry) to 

generate new information and help enhance the pre-planning of those transfer-involved rail 

journeys. Despite their considerable potential for practical uses, those publicly accessible rail 

data about historical train movements should be utilised with caution in scenarios requiring 

high precision (e.g. microscopic operations analyses). The currently adopted industry 

standard for data reporting (about train movements) is relatively low, with a precision 

tolerance of 1 minute (ORDW, 2016b; Network Rail, 2017). Although this level of precision 

is sufficient in many cases (e.g. real-time delay alerts), it may result in non-negligible errors 

in more detailed analyses/evaluations requiring high precision. 

 

Figure 4.26 below provides a more concrete context to facilitate the explanation of the 

relevant issues. This context is a piece of historical data about a recommended itinerary that 

follows the route Bournemouth – Southampton Central – Brighton, which is extracted from 

the corresponding Route-View Timetable (c.f. Subsection 4.3.4). The two columns ‘serviceF’ 

and ‘serviceC’ respectively correspond to the service identifiers of the two involved trains for 

this recommended itinerary, and this pair of train services has happened on 23 Nov 2015 (c.f. 

the column ‘runDate’). The three columns ‘stationO’, ‘stationT’, and ‘stationD’ store the 

names of the origin station (i.e. BOMO in this example), the transfer station (i.e. SOTON), 

and the destination station (i.e. BRGHTN), respectively. The three columns ‘arr_s_FT’, 

‘dep_s_CT’, and ‘arr_s_CD’ store the values of the scheduled arrival time of the feeder train 

at the transfer station, the scheduled departure time of the connecting train at the transfer 

station, and the scheduled arrival time of the connecting train at the destination station, 

respectively. The three columns ‘arr_a_FT’, ‘dep_a_CT’, and ‘arr_a_CD’ correspond to the 

                                                             
15 http://www.raildeliverygroup.com/about-us/governance.html, accessed 25 Jan 2017. 
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recorded (actual) arrival time of the feeder train at the transfer station, the recorded departure 

time of the connecting train at the transfer station, and the recorded arrival time of the 

connecting train at the destination station, respectively. Note that those arrival/departure 

times in the figure have been converted into integers between 0 and 1440 minutes (e.g. 626 = 

10:26 a.m.). The four columns ‘display_FO’, ‘display_FT’, ‘display_CT’, and ‘display_CD’ 

contain information about the status of a given train at a given station, indicating whether 

(unplanned) cancellations have happened en route (c.f. Subsection 4.3.4 for more details). 

 

 

Figure 4.26 An illustrative example of precision-related issues 

 

From Figure 4.26 we can see that there were no cancellations happening en route (i.e. no 

status information about ‘CANCELLED_CALL’, c.f. Subsection 4.3.4). Hence, if a net 

transfer time (NTT) of 1 minute (c.f. Subsection 4.3.5) and a threshold (for arrival lateness, 

TAL) of 5 minutes are adopted to calculate those itinerary-oriented performance statistics 

(IPS, c.f. Section 4.3), then the only remaining parameter to determine is the actual window 

(AW, c.f. Section 4.3) between the feeder train and the connecting train. Since the actual 

window of this recommended itinerary can be easily calculated (AW = 635 – 635 = 0 minute), 

this data record will be counted as a failure in calculating a specific IPS.  

 

This level of precision (i.e. integer minutes) can be regarded as acceptable in the context of 

this thesis because IPS (Itinerary-oriented Performance Measure, c.f. Section 4.3) can be 

viewed as an extension of PPM (Public Performance Measure, c.f. Network Rail, 2017), 

which is in essence a heuristic performance measure and represents a rough estimation of an 

average passenger (c.f. Sections 2.5, 4.3, and 5.2). That is, it would be meaningless to pursue 

a higher precision of the parameter NTT (e.g. integer seconds) unless the precision of the 

sample data adopted about historical train movements themselves has been improved.  

 

Consider this particular example of Figure 4.26: it makes no difference whether adopting an 

NTT (net transfer time) of 56 seconds (c.f. Subsection 4.3.5) or adopting an NTT of 1 minute, 

because the obtained statistics would be the same unless the precision of the other involved 

parameter AW (actual window) had been increased (to integer seconds). But suppose that we 

could get a good estimation of the parameter NTT with a precision of one second (by, for 
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example, long-term field survey) and that the precision of those train movements data had 

been improved accordingly, then a non-negligible difference would be expected between the 

statistics calculated under a precision of one minute and their counterparts calculated under a 

precision of one second. Continue the example of Figure 4.26: this record is counted as a 

failure (without doubt) under a granularity of one minute, but may be counted as a success 

under a granularity of one second (e.g. ‘arr_a_FT’ = 10:34:31, ‘dep_a_CT’ = 10:35:29, AW 

= 58 s > NTT = 56 s), which may contribute in the opposite direction to the relevant statistics.  

 

 

4.6 Conclusions 

 

The pre-trip information about critical routes (if existent) within a railway network would be 

a potential problem in terms of punctuality and reliability: the recommended itinerary list for 

a critical route would be full of delay-sensitive transfers, due to the mechanism of existing 

journey planning algorithms. Theoretically, this problem had better be resolved in the process 

of timetable design at the tactical planning stage, for the problem could, in essence, be 

attributed to the underlying timetables (adopted by a journey planning system). In reality, 

however, timetabling is a complicated process that takes time and is subject to technical 

feasibility (e.g. the constraint of infrastructure capacity available) and the mediation of the 

interests of different parties.  

 

A more operable and easier-to-implement approach to improving the pre-trip information (i.e. 

those recommended itineraries) about critical routes is finding solutions from within the 

domain of information technology itself to deal with critical routes at the operational 

planning stage. By reviewing the relevant prototypes in the literature and the relevant 

applications in the real world, it is recognised that the existing information-related 

approaches have not truly touched upon the problem of critical routes, either in theory or in 

practice. But these existing approaches can be utilised as building blocks to develop a 

solution to the problem of critical routes.  

 

Inspired by some existing travel information technologies, a historical-data-based approach is 

developed, containing a series of easy-to-implement algorithms. The design philosophy 

behind the algorithmic approach presented in this chapter is a ‘local treatment’ of those 
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identified critical routes (rather than a ‘holistic treatment’ of all possible routes within a 

railway network), which differs from the various existing approaches. This different 

treatment could significantly reduce computational complexity and meanwhile avoids 

distracting information about those non-critical routes.  

 

Three interrelated algorithms are presented and detailed in this chapter, which are named IPS, 

PBPM, and PBPM+, respectively. IPS (Itinerary-oriented Performance Statistics) has been 

inspired by those individual-leg-oriented performance statistics accessible from some existing 

travel information websites. Roughly speaking, IPS can be viewed as an augmented version 

of those individual-leg-oriented performance statistics: it is designed to compute and present 

performance statistics that are oriented toward a whole journey (itinerary) rather than toward 

individual service legs, which would be able to set the information consumers (i.e. rail 

passengers) free from reprocessing the fragmented information (about individual legs) by 

themselves.  

 

Despite their advantage over individual-leg-oriented performance statistics, itinerary-oriented 

performance statistics may still make information consumers feel like they are gambling and 

hence cause unnecessary inconvenience/uneasiness to them. Based on such a consideration, 

PBPM (Performance-Based Pre-Modification of advertised arrival times) is developed. 

PBPM has been inspired by the relevant technologies in real-time delay information: it 

deserts the use of performance statistics as the ‘final products’; instead, it consumes 

performance statistics as intermediate results to compute the final results (i.e. pre-modified 

arrival times and journey times) well before the time of travel. Roughly speaking, a pre-

modified (advertised) arrival time of a given critical itinerary reflects the ‘average lateness’ 

of this itinerary over the last several weeks, incorporating both the risk of missed transfers 

(reliability) and the average delay at the destination station (punctuality).   

 

Although the final results of PBPM can be readily delivered to end users (passengers) for 

enhanced pre-trip information, these results (i.e. pre-modified arrival and journey times) are 

still largely descriptive: for those passengers having a relatively tight schedule, they would 

still have no alternative choices when the available options (i.e. recommended itineraries) are 

found to be undesirable. Based on such a consideration, PBPM+ is developed, the purpose of 

which is to further extend the functionality of PBPM to generate additional prescriptive 

information about alternative itineraries when necessary. Roughly speaking, PBPM+ 
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incorporates the results obtain from PBPM into existing journey planning algorithms to 

influence journey planning results. More specifically, this can be achieved by modifying the 

relevant parameters of a journey planning algorithm and adding to the algorithm additional 

post-processing procedures.  

 

In the explanation of the three algorithms, open data from Britain’s rail industry (i.e. 

timetable data and historical train movements data) have been extensively exploited to 

illustrate the data structures adopted, the specific methods employed to determine a series of 

key parameters (e.g. net transfer time, threshold for arrival lateness, etc), and the 

considerations about how to present the obtained results. These illustrations can be viewed as 

a preliminary step in the investigation into the massive and highly detailed rail data available 

from the Internet. Moreover, the detailed explanation of several introduced 

concepts/parameters (e.g. net transfer time, predictable cancellation, etc) provides a reference 

for further refinement of existing journey planning algorithms.  
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Chapter 5 

Quantifying the effect of modified pre-trip information using 
route-level measures 
 

 

5.1 Introduction 

 

Chapters 3 and 4 have provided a detailed description of what Critical Routes are, how to 

efficiently find them out in a given railway network, and how to deal with them using 

information-related approaches. Two natural questions then arise: Is a piece of modified pre-

trip information (resulting from the algorithmic approaches proposed in Chapter 4) really 

better than its unmodified counterpart (i.e. the version obtained from timetable information 

only)? If it is, then how much better would be expected? The answer to these two questions 

may vary if no specific criterion is adopted. This chapter hence tries to answer the above two 

questions by developing two novel route-oriented measures/criteria.  

 

The main body of this chapter is organised as follows. Firstly, Section 5.2 introduces an 

absolute measure named Route-oriented Performance Measure (RPM), which can be viewed 

as an extension of Public Performance Measure (PPM, c.f. Network Rail (2017)). RPM could 

not only enable a decision maker (operator/manager) to know about route-specific 

performance in terms of punctuality and reliability during a given observation period, but also 

enable the comparison of two different pieces of pre-trip information. Adopting RPM, 

Section 5.3 then presents the evaluation results obtained from the analyses of a number of 

critical routes in Britain’s passenger rail system. After that, a different route-level measure is 

introduced in Section 5.4, which is a relative measure and is named Route-oriented Utility 

Measure (RUM). RUM requires the underlying (planned) timetable be a reference point, and 

takes into account additional factors (apart from punctuality and reliability) such as trip 

efficiency. Exploiting RUM, analyses of the critical routes in British railways are conducted 

in Section 5.5. Based on the empirical results of Sections 5.3 and 5.5, Section 5.6 presents 
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more potential applications of RPM and RUM in the field of railway timetabling and 

operations. Following that, Section 5.7 points out a potential limitation of the proposed 

measures and the corresponding analytical methods (i.e. the RPM-based method and the 

RUM-based method), and proposes with illustrations a conceivable solution to the identified 

limitation in future research. Section 5.8 concludes this chapter.  

 

 

5.2 Using Route-oriented Performance Measure (RPM) to quantify the 
effect of modified pre-trip information 

 

5.2.1 Central idea 

 

Since the potential problem of critical routes is mainly embodied in punctuality and reliability 

(c.f. Chapters 3 and 4), it is natural to consider adapting/extending some existing measure of 

punctuality and reliability to develop an appropriate standard/criterion for evaluating and 

comparing two different pieces of pre-trip information about a given critical route. In the 

context of Britain’s passenger rail system, a natural reference point is PPM (Public 

Performance Measure, c.f. Network Rail (2017)), which is a network-level heuristic 

measurement widely adopted by European railways and is often presented as the percentage 

of trains that run within a predefined level of acceptable deviation (e.g. 5 mins) from the 

officially published timetable (c.f. Network Rail, 2017).  

 

In the introduction to the algorithm of IPS (Itinerary-oriented Performance Statistics) in 

Section 4.3, PPM has been adapted to generate itinerary-level performance statistics (in terms 

of punctuality and reliability, c.f. Subsections 4.3.5 – 4.3.7). Those itinerary-level statistics 

are, however, only meaningful in the context of personal journey planning, and may be of 

little value in an overall evaluation of a proposed methodology (i.e. modified pre-trip 

information). Route-level performance indices may be of more interest to rail operators or 

investors: How a given critical route performs on the whole (in terms of punctuality and 

reliability) by adopting the existing (unmodified) pre-trip information? What difference can 

be made by adopting the proposed methodology?  

 

Based on the above considerations, a route-level performance measure named RPM (Route-

oriented Performance Measure) is developed, by extending PPM and IPS. The underlying 
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assumptions employed and the relevant technicalities are to be detailed in subsequent 

subsections.  

 

5.2.2 Definitions and major assumptions 

 

Definition 5.1 RPM is the percentage of recommended itineraries (for a given critical route) 

that have been successfully realised. 

 

Definition 5.2 A successfully-realised recommended itinerary corresponds to an average 

passenger who has arrived at the destination station within a predefined level of acceptable 

deviation (e.g. 5 mins) from the advertised arrival time. 

 

The above two interrelated definitions provide a general explanation of the proposed route-

level performance measure (i.e. RPM). Despite simple descriptions, several assumptions are 

implicitly adopted in the above definitions. In the following, the major assumptions employed 

and the differences and similarities between RPM, PPM, and IPS are to be detailed. 

 

Assumption 5.1 Each of those identified critical routes is ‘active’: a given critical route 

(recommended by a journey planning system) would be utilised daily by a number of 

passengers; and even if the number is not large, it is greater than zero. 

 

Assumption 5.2 Each recommended itinerary (for a given critical route) is treated as equally 

important in the computation of a specific RPM.  

 

Assumption 5.3 Each recommended itinerary (for a given critical route) can be represented 

by an average (typical) passenger among those having adopted this recommended itinerary. 

 

Assumption 5.4 The advertised arrival time of a given recommended itinerary is not 

necessarily equal to the scheduled arrival time in the timetable: it could be pre-modified by 

adopting, for example, the algorithmic approaches proposed in Chapter 4.  

 

The above four assumptions are the major assumptions that are implicitly involved in the 

definition of RPM. Assumption 5.1 is the most basic assumption and is employed to 

emphasise that any evaluation or comparison would become meaningless if there exists no 
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transport demand between a given pair of origin and destination stations. Assumption 5.2 is 

to emphasise that equal weights should be assigned to the recommended itineraries (for a 

given critical route) unless sufficient knowledge about the exact distribution of passenger 

flows is obtained, which can be viewed as an application of the principle of indifference (POI, 

c.f. Section 2.6). It should be noted that the introduction of Assumptions 5.1 and 5.2 is largely 

due to the unavailability of detailed information (data) about passenger counts and 

distributions for transfer-involved routes. Note also that Assumptions 5.1 and 5.2 are also 

implicitly employed in the definition of PPM (c.f. Network Rail, 2017), and Assumption 5.1 

is also implicitly included in the calculation of IPS (c.f. Algorithm 3 in Subsection 4.3.2). 

 

Built on Assumptions 5.1 and 5.2, Assumption 5.3 plays a key role in defining/computing 

RPM. Comparing the definition of PPM (Network Rail, 2017) with that of RPM, we can see 

that the most significant difference lies in that the computation of a specific PPM involves 

only one train per count, whereas computing a specific RPM involves more than one train per 

count. Therefore, the basic unit of RPM becomes an (recommended) itinerary (rather than a 

train), which increases the difficulty in determining whether a piece/record of sample data 

should be counted as ‘success’ or ‘failure’: since the characteristics of passengers vary from 

person to person, some of the passengers adopting a particular recommended itinerary may 

have successfully realised the itinerary but the others may have been heavily delayed due to, 

for example, missed transfer(s). In such a context, an ‘average’ or ‘typical’ passenger needs 

to be introduced to serve as the standard/reference point for evaluation. A subsequent 

question then arises: how to define an ‘average’ passenger? A general answer to this question 

is it can be reasonably parameterised by an in-depth investigation into the available real-

world data. The technicalities of determining the relevant parameters are to be explained in 

subsequent subsections.  

 

Assumption 5.4 should not, strictly speaking, be regarded as an assumption: existing 

technologies have been able to modify the advertised arrival times when it is near to the time 

of travel (c.f. Figures 4.15 and 4.16 in Section 4.3). Here, it (Assumption 5.4) is used to 

emphasise that the advertised arrival times are changeable and a specific RPM can have 

several different versions when adopting different versions of advertised arrival times. This 

sets RPM free from the implicit assumption underlying PPM and IPS that the reference point 

adopted for performance evaluation is fixed and has only one version (i.e. the scheduled 

arrival times), and enables the comparison between the evaluation results of two different 
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pieces of pre-trip information. To help better understand Assumption 5.4, Figure 5.1 below 

provides an illustrative example.  

 

 

Figure 5.1 An illustration of the different life cycles of arrs, arrm, and arra. (DT1 = the earliest 
DateTime the information about arrs becomes accessible. DT2 = the earliest DateTime the 
information about arrm becomes accessible. DT3 = the DateTime the studied journey starts. 
DT4 = the DateTime the studied journey ends and meanwhile the information about arra 
becomes available. DT5 = the DateTime the evaluation occurs on the condition that arrs, arrm 
and arra have been recorded/reconstructed. The three solid dots for arrs, arrm, and arra and the 
two solid lines on the right hand side of arrs and arrm respectively represent the duration of a 
specific piece of information.) 
 

 

From Figure 5.1 above we can see that if the algorithmic approach proposed in Chapter 4 (i.e. 

Algorithm 4 or 5 in Section 4.3) is adopted, there would be at least two versions of the 

advertised arrival time of a studied journey (itinerary) in the past: one is the scheduled arrival 

time in the long-term timetable (denoted by arrs) that could have been accessible several 

months before the journey started; the other is the pre-modified (advertised) arrival time 

(denoted by arrm) that could have been accessible several days before the journey started. 

Moreover, additional versions may exist if those real-time updates (not annotated in Figure 

5.1, embodied by the dotted part of the two solid lines (corresponding to arrs and arrm) 

between DT2 and DT3) are taken into consideration.  

 

Since real-time updates are transient and are often not recorded in the available historical 

train movements data, these versions can be ignored in performance evaluation. If we further 

assume that an average passenger would plan a long-distance and transfer-involved journey 

(corresponding to a given critical route) several days before the time of travel (i.e. neither too 

early nor too late), then two versions of RPM could be obtained for a given critical route 

during a given observation period: one is calculated from a sample set in which each studied 
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itinerary adopts the scheduled (unmodified) arrival time (i.e. arrs); the other is based on a 

sample set in which each studied itinerary adopts the pre-modified (advertised) arrival time 

(i.e. arrm). Once these two versions of RPM are available, they can then be utilised to conduct 

quantitative analysis of the effect of modified pre-trip information (about the studied route).  

 

Looking back at Figure 5.1, the only remaining trick lies in the determination/reconstruction 

of the actual arrival time (denoted by arra) of each studied journey (itinerary) in a sample, the 

technicalities of which are to be explained later in Subsection 5.2.5.  

 

5.2.3 NTT, AW, and TAL 

 

Analogous to the computation of IPS (Itinerary-oriented Performance Statistics, c.f. Section 

4.3), three relevant parameters are involved in the computation of RPM:  NTT (net transfer 

time), AW (the actual window between a pair of feeder and connection trains), and TAL 

(threshold for arrival lateness). Since the technicalities of how to determine these three 

parameters have been explained in Section 4.3, only several key points to which special 

attention should be paid are presented here: 

 

- The computation of IPS is oriented to each specific itinerary, whereas the calculation 

of RPM does not distinguish between different hours of a day: based on Assumption 

5.2, all recommended itineraries for a given critical route would be taken into account 

when calculating a specific RPM during a given observation period. 

- Each specific IPS for a given itinerary has only one version, while each specific RPM 

for a given route can have several different versions (during a given observation 

period): as has been illustrated in the previous subsection, the available historical train 

movements data enable us to generate different versions of RPM for a given critical 

route by adopting different versions of advertised arrival times.  

- A specific NTT adopted in an evaluation can be viewed as the amount of time an 

average passenger needs to complete the transfer, rather than ‘the physically possible 

minimum time required’ to walk from the feeder train to the connecting train (c.f. 

Section 3.5): as has been explained previously in Subsection 4.3.5, allowances have 

been implicitly included into each adopted NTT in the rounding process. 

- The AW(s) for the transfer(s) involved in a sample itinerary can be calculated directly 

from historical train movements data: as has been illustrated in Subsections 4.3.4 and 
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4.3.6, the information is available in an RVT (Route-View Timetable) about the 

actual/recorded arrival time of a feeder train at a transfer station and the 

actual/recorded departure time of the corresponding connecting train at the same 

station. Note that train cancellations also influence the determination of an AW, 

which should also be taken into account (c.f. Subsections 4.3.2 and 4.3.6). 

- TAL(s) can be determined by referring to the industry standard: as mentioned earlier 

in Section 4.3, the industry standard is 5 minutes for commuter or regional services, 

or 10 minutes for long distance services in British railways. In the analyses of several 

identified critical routes in Britain’s passenger rail system using RPM (to be presented 

later in Section 5.3), RPMs under 5-minutes TAL and 10-minutes TAL are separately 

calculated for comparison.  

- The influence of predictable cancellations on the evaluation results needs to be taken 

into consideration: the reason has been explained by an illustrative example in 

Subsection 4.3.7. Here, in the calculation of RPMs for the identified critical routes in 

British railways (c.f. Section 5.3), predictable cancellations have been excluded from 

the adopted sample data.  

 

5.2.4 Sampling issues 

 

Similar to PPM (c.f. Network Rail, 2017) or IPS (c.f. Section 4.3), RPM (Route-oriented 

Performance Measure) is in essence a statistical concept, the calculation of which is heavily 

dependent upon the specific sampling method adopted. In previous chapters (specifically, 

Section 2.4 and Section 4.3), some general sampling-related issues (e.g. sample size) have 

been touched upon. In this subsection, the considerations about more specific sampling issues 

are to be presented.  

 

Firstly, the determination of an appropriate sample size is always an unavoidable question. 

Here, in the context of using RPM to quantify the effect of modified pre-trip information, the 

issue of determining sample size is twofold: on the one hand, the sample size for calculating 

an RPM itself should be determined; on the other hand, the sample size for generating the 

arrm (pre-modified (advertised) arrival time, c.f. Figure 5.1) of each sample itinerary should 

also be determined.  
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As to the calculation of RPMs themselves, a 4-weeks sample size is adopted in the analyses 

of critical routes in British railways (c.f. Section 5.3), which is based on the following 

considerations: on the one hand, demand fluctuations (between different months of a year) 

and seasonal factors (e.g. temperature, humidity, etc) may exert influence on the performance 

of a studied route and hence need to be controlled; on the other hand, the industry standard in 

British railways (i.e. PPM, c.f. Network Rail, 2017) also adopts a 4-weeks sample size, which 

can be viewed as a reference point. Moreover, from the perspective of the number of 

observations, a 4-weeks sample set of a studied route (in the next section) normally contains 

more than 100 effective records, which can be regarded as generally sufficient to make those 

undetected outliers cancel each other out.  

 

As to the computation of the intermediate results (i.e. the arrm of each involved itinerary), a 

sample size of 4 weeks is also adopted. At first glance, a 4-weeks sample size seems not large 

enough in this context: for a specific recommended itinerary, a 4-weeks sample would 

contain only around 20 records (i.e. 4 weeks, 5 weekdays per week), which is relatively small 

in the statistical sense. In order to understand why a sample size of 4 weeks is adopted here, it 

would be helpful to firstly know about the mechanism of arrm.  

 

According to the algorithm of PBPM (Performance-Based Pre-Modification of advertised 

arrival times, c.f. Subsection 4.3.2) or PBPM+ (c.f. Subsection 4.4.3), a pre-modified 

(advertised) arrival time (i.e. arrm) would be accessible well before (several days before, c.f. 

Figure 5.1) the time of travel to enable the relevant passengers to have sufficient time to 

prepare for the potential delays. That is, arrm can be viewed as an estimation/prediction of the 

actual/realised arrival time. In order to obtain a good estimation, an assumption of ‘the nearer, 

the more similar’ is implicitly involved in the calculation of those pre-modified arrival times, 

which is adopted in the analyses in the subsequent section. Roughly speaking, the sample 

data are updated weekly to generate estimations (i.e. those pre-modified arrival times) for the 

following week. Figure 5.2 below gives an illustration of the sampling method adopted.  
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Figure 5.2 An illustration of the sampling method adopted to calculate arrm(s) 

 

Suppose there are 8-weeks historical (train movements) data numbered 1, 2, ... ,8 in 

chronological order (see Figure 5.2 above). In order to generate/restore the modified pre-trip 

information (i.e. arrm(s)) on a particular date during this 8-weeks period, those historical data 

recorded before this date could be utilised as a sample. If a sample size of 4 weeks is adopted, 

then the 8-weeks historical data can be subdivided into two sets: a test set containing data 

from Week 5 to Week 8, and a ‘dynamic’ sample set. That is, some of the data in the test set 

also serve as a part of the sample set to guarantee that those pre-modified arrival times are 

always calculated from the most recent 4-weeks sample, the strategy of which is called ‘the 

nearer, the more similar’. Note that the specific technicalities in calculating pre-modified 

arrival times can be found in the previous chapter (specifically, c.f. Figure 4.17 and Eq. (2) in 

Subsection 4.3.8).  

 

The sampling method adopted in generating arrm(s) could also be explained from within the 

theory of probability and statistics. In the algorithm developed to calculate arrm(s) (i.e. PBPM, 

c.f. Subsection 4.3.2), the intermediate result about the ‘success rate’ of a particular itinerary 

(i.e. p0(ic) in Step 5 of PBPM) can be viewed as the empirical probability (or relative 

frequency, c.f. Section 2.4) of a successful realisation of the involved transfer between a pair 

of feeder and connecting trains. Recall that in the introduction to the fundamentals of 

probability and statistics (c.f. Section 2.4), the application of relative frequency is 

simultaneously constrained by the law of large numbers (LLN) and repeatability (c.f. 

Subsection 2.4.3). Here, the sampling method adopted of ‘the most recent four weeks 

historical data’ can hence be viewed as a balance between the law of large numbers, the 

conditions of the trials, and the computational complexity. According to LLN, the sample 

size should be as large as possible to guarantee the reliability and stability of the empirical 

probability (i.e. relative frequency). However, a pre-requisite is implicitly involved in the 
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application of LLN: the experiment/trial needs to be repeatedly conducted under the same (or 

similar enough) conditions. In reality (especially in the context of calculating those pre-

modified arrival times), a trial (checking whether a specific itinerary is successful on a 

particular day) is sensitive to a number of external factors such as temperature, humidity, 

brightness, the characteristics of drivers and equipments, engineering works, seasonal factor 

(Christmas/Easter/Summer Vacation/School Terms), etc. Therefore, an implicit assumption 

of ‘the nearer, the more similar’ is adopted to control the experimental conditions. Note that 

this assumption is only a general principle behind the sampling method and does not apply to 

specific data cleanups: any outlier data should be removed from the sample set even if they 

are temporally near enough to the test data. Further information about the relevant theories of 

Probability and Statistics can be found in Mood (1974) and Papoulis (1991). 

 

5.2.5 The technicalities in generating reconstructed itineraries 

 

Recall that in Figure 4.17 in Subsection 4.3.8 the difference between three interrelated 

concepts – itinerary template, itinerary, and reconstructed itinerary – has been briefly 

explained. However, the technicalities of how to obtain reconstructed itineraries have not 

been explained. In this subsection, the specific technicalities used in generating reconstructed 

itineraries are to be illustrated using realistic rail data to help better understand Figure 4.17 

and Figure 5.1. 

 

 

Figure 5.3 An illustrative reconstructed itinerary 

 

Figure 5.3 above is just a copy of Figure 4.17(c): i1’ and i2’ are two reconstructed itineraries 

in which f1’ and f2’ are the feeder trains and c1’ and c2’ are the corresponding connecting 

trains; t1’ ~ t8’ respectively represent the actual/recorded departure time or arrival time at the 

origin station (denoted by Ori), the transfer station (Trans), or the destination station (Dest). 



159 

Moreover, i1’ and i2’ are ‘adjacent’, which means that the interval between t4’ and t8’ is 

approximately the headway of the connecting leg. Generally speaking, a reconstructed 

itinerary is obtained from splicing the recorded/actual stop times of the corresponding feeder 

and connecting trains (e.g. f1’ + c1’) long after the travel date. The term ‘reconstructed’ is 

used to emphasise that the recorded/actual stop times (i.e. t1’, t2’, … , t8’) are not necessarily 

equal to their counterpart in a planned daily timetable (i.e. t1, t2, … , t8), and that some of the 

constraints placed on a planned itinerary (e.g. t2 < t3, t6 < t7) do not necessarily hold and the 

values of t1’, t2’, … , t8’ in i1’ and i2’ are possible to be invalid (due to, for example, train 

cancellations).  

 

The value of a reconstructed itinerary is mainly embodied by its arrival time arra (c.f. Figure 

5.1), which plays an important role in the evaluation of modified pre-trip information. 

Therefore, the major task involved in reconstructing a particular itinerary lies in the 

reconstruction of the actual arrival time arra. In the following, the considerations about how 

to reconstruct arra and several calculation examples are to be presented. 

 

Firstly, it should be noted that the principle adopted of determining arra for each specific 

itinerary is to maximally simulate/restore how an average passenger would action under a 

given scenario. With this in mind, the specific technicalities used in reconstructing arra(s) are 

summarised in the decision table (Table 5.1) below. 

 

Table 5.1 The decision table adopted for reconstructing arra 

Scenario f1'O f1'T c1'T c1'D c2'T c2'D AW>NTT? arr_a (i1') 

1 √ √ √ √   √ t4' 

2 √ √ √ √ √ √ × t8' 

3 √ √ √ √ √ × × invalid 

4 √ √ √ √ × √ × invalid 

5 √ √ √ × √ √  t8' 

6 √ √ √ × √ ×  invalid 

7 √ √ √ × ×   invalid 

8 √ √ ×  √ √  t8' 

9 √ √ ×  √ ×  invalid 

10 √ √ ×  ×   invalid 

11  ×      invalid 

12 ×       invalid 
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Following the symbols in Figure 5.3, the actual/reconstructed arrival time of i1’ (denoted by 

arr_a (i1') in Table 5.1 above) is determined by seven variables: the status of the feeder train 

f1’ at the origin station (denoted by f1’O:  × if ‘CANCELLED_CALL’, √ otherwise), the 

status of the feeder train f1’ at the transfer station (denoted by f1’T:  × if 

‘CANCELLED_CALL’, √ otherwise), the status of the connecting train c1’ at the transfer 

station (denoted by c1’T:  × if ‘CANCELLED_CALL’, √ otherwise), the status of the 

connecting train c1’ at the destination station (denoted by c1’D:  × if 

‘CANCELLED_CALL’, √ otherwise), the status of the connecting train c2’ at the transfer 

station (denoted by c2’T:  × if ‘CANCELLED_CALL’, √ otherwise), the status of the 

connecting train c2’ at the destination station (denoted by c2’D:  × if 

‘CANCELLED_CALL’, √ otherwise), and the indicator of whether the actual window (AW 

= t3’- t2’) is larger than the net transfer time NTT (√= yes, ×= no).  

 

The status information about f1’O ~ c2’D can be directly found in those ‘display_XX’ 

columns in a Route-View Timetable (c.f. Table 4.1 in Subsection 4.3.4), and the information 

about the actual window (AW) between a pair of feeder and connecting trains can be derived 

from the relevant columns and be stored in an auxiliary column (i.e. the ‘window_a’ column 

in Figure 5.4, to be explained later). Note that a blank cell in Table 5.1 denotes that the status 

of the corresponding variable does not affect the determination of the corresponding arr_a.  

 

The logic behind all the 12 scenarios in Table 5.1 is simple: once a passenger finds that the 

expected waiting time (either at the origin station or at the transfer station) becomes 

intolerable or that the expected arrival time at the destination station becomes 

unreasonable/unacceptable, he/she will abandon the currently chosen itinerary (e.g. shift to 

another transport mode, shift to another itinerary, or cancel the whole journey); otherwise, 

he/she will continue the current journey and arrive at the destination station at a reasonable 

time. This logic is based on the observation that a passenger can always get updated 

information before boarding (from in-station displays/broadcasting or from mobile Internet) 

about whether there will be a cancelled call at a given station (e.g. the 

origin/transfer/destination station). And the passenger can hence utilise this piece of real-time 

information to update his/her pre-trip knowledge and hence actions based on this information.  
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Take Scenario 1 and Scenario 12 for example. Why t4’ is adopted as the arra under Scenario 

1? This is based on the consideration that an average passenger would continue using the 

services of f1’ and c1’ (c.f. Figure 5.3) as long as there had been no informed cancellations 

and no missed transfer. Why the arra cannot be reconstructed under Scenario 12? This is 

based on the consideration that passengers could have relatively more flexibility before 

starting a journey: if a cancellation happened before a given journey started, then the relevant 

passengers would be able to make quite different choices (e.g. shift to another transport mode, 

shift to another itinerary, or cancel the whole journey), which renders the assumption of an 

average passenger (c.f. Assumption 5.3 in Subsection 5.2.2) unreasonable.  

 

To make Table 5.1 more tangible, the figure below (i.e. Figure 5.4) provides several 

numerical examples. Similar to Figure 4.18 in Subsection 4.3.8, these calculation examples 

contain only the most relevant columns to the calculation of arr_a to reduce distraction. Here, 

Example <a> is based on the real-world data about the route Harwich Town – Manningtree – 

Norwich; Examples <b> and <c> are based on the real-world data about the route London 

Kings Cross – York – Scarborough; and Example <d> is based on the real-world data about 

the route Ilkley – Leeds – Middlesbrough. 

 

 

Figure 5.4 Numerical examples of how to determine arra using real-world data 

 

In Example <a>, f1’O ~ c2’D = √ √ √ × √ √ (corresponds to Scenario 5 in Table 5.1). 

Therefore, the actual arrival time of the first row (excluding the header row) is 1095 (i.e. 

arr_a(i1’) = t8’). In Example <b>, f1’O ~ c2’D = √ √ × × × × (corresponds to Scenario 
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10 in Table 5.1). Therefore, the actual arrival time of the first row is invalid and this row 

should be removed from the evaluation table. In Example <c>, f1’O ~ c1’D = √ √ √ √ 

and AW > NTT (12 > 2). Therefore, the actual arrival time of the first row is 752 (t4’). In 

Example <d>, f1’O = × and f1’T = × (corresponds to Scenario 11 or Scenario 12 in Table 

5.1). Therefore, the actual arrival time of the first row is invalid and this row should be 

removed from the evaluation table. 

 

Note that not every scenario in Table 5.1 can be encountered in a relatively small set of real-

world data. And note also that although arr_a cannot be determined (i.e. those invalid values) 

under most scenarios in Table 5.1, these scenarios are the minority in reality. The majority of 

the data records belong to the four scenarios under which arr_a can be determined (either is 

t4’ or t8’). 

 

 

5.3 Analyses of several identified critical routes using RPM 

 

5.3.1 Data preparation 

 

In this section, a number of identified critical routes in Britain’s passenger rail system are to 

be analysed using RPM (Route-oriented Performance Measure) proposed in the previous 

section (i.e. Section 5.2). The aim of these analyses is twofold: on the one hand, they would 

enable the relevant rail operators or the infrastructure manager to know about the 

performance of these critical routes in terms of punctuality and reliability; on the other hand, 

they would enable the relevant stakeholders to know about the effect of the algorithmic 

approaches proposed (in Chapter 4) on these critical routes (in terms of punctuality and 

reliability) through tangible results.  

 

The data adopted to conduct these analyses are a large collection of historical train 

movements data that have been collected from Realtime Trains (RTT): train movements data 

about the relevant critical routes have been downloaded every day and stored into separate 

files during a 18-months period between September 2015 and March 2017. As mentioned 

previously in Section 3.7, RTT data are derived from Network Rail’s TRUST system16 and 

                                                             
16 https://en.wikipedia.org/wiki/TRUST 
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are generally well-structured and easier to process than those poorly-structured raw data 

(from TRUST). Moreover, the database of RTT has relatively limited storage space and is 

renewed every seven days. Therefore, RTT data needs to be timely collected before the 

relevant records disappear.  

 

A total of nine routes are analysed, each of which has been identified as critical during the 

18-months period. Specifically, these studied critical routes include: 

 

Bournemouth – Southampton Central – Brighton (denoted by BSB) 

Ebbw Vale Town – Cardiff Central – Birmingham New Street (denoted by ECB) 

Liverpool Lime Street – Manchester Piccadilly – Doncaster (denoted by LMD) 

Rugeley Trent Valley – Birmingham New Street – Hereford (denoted by RBH) 

Ilkley – Leeds – Middlesbrough (denoted by ILM) 

London Kings Cross – York – Scarborough (denoted by KYS) 

Harwich Town – Manningtree – Norwich (denoted by HMN) 

Knottingley – Wakefield Kirkgate – Nottingham (denoted by KWN) 

Sudbury (Suffolk) – Marks Tey – London Liverpool Street (denoted by SML) 

 

Comparing these nine studied routes with the results listed in Section 3.7, several differences 

can be found. The reason lies mainly in the following two aspects. Firstly, two of the studied 

routes here (i.e. Bournemouth – Southampton Central – Brighton, Ebbw Vale Town – Cardiff 

Central – Birmingham New Street) can be viewed as the child routes of the corresponding 

critical routes listed in Section 3.7 (i.e. Weymouth – Southampton Central – Brighton, Ebbw 

Vale Town – Cardiff Central – Nottingham), which also satisfy the definition of a critical 

route (c.f. Section 3.5). Secondly, several critical routes listed in Section 3.7 are not studied 

here but the route Ilkley – Leeds – Middlesbrough (not listed in Section 3.7) is studied here. 

This is mainly due to the periodic changes (i.e. half-yearly in Britain) in the underlying 

timetables: some critical routes listed in Section 3.7 (e.g. the route Oxford – Reading – 

Gatwick Airport) are newly identified based on the latest version of the planned timetable 

(for the period from 11 December 2016 to 20 May 2017) and hence no historical data have 

been collect about these routes; in contrast, the route Ilkley – Leeds – Middlesbrough was 

identified as a critical route in previous screenings (using the CRF algorithm presented in 

Section 3.6) during the 18-months period but is no longer critical under the latest version of 

planned timetables. Despite the changes in the list of identified critical routes, the historical 
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data collected about the route Ilkley – Leeds – Middlesbrough can also be utilised to conduct 

analyses for the past observation periods.  

 

Five observation periods are selected to conduct the analyses of these nine routes, each of 

which contains 2-months (8-weeks) historical data (c.f. Subsection 5.2.4): Period 1 (P1) is 

between 12 October 2015 and 4 December 2015, Period 2 (P2) is between 25 January 2016 

and 18 March 2016, Period 3 (P3) is from 13 June 2016 to 5 August 2016, Period 4 (P4) is 

from 3 October 2016 to 25 November 2016, and Period 5 (P5) is from 16 January 2017 to 10 

March 2017. The choice of these five observation periods is based on the following 

considerations. On the one hand, although it would be enough to adopt a 4-weeks sample (c.f. 

Subsection 5.2.4) to calculate an RPM to evaluate the performance of a given route (during 

the 4-weeks observation period), a comparative analysis between modified and unmodified 

pre-trip information would require an 8-weeks sample in which the data of the first four 

weeks are needed for generating/restoring the modified pre-trip information (i.e. those pre-

modified arrival times, c.f. Figure 5.2 in Subsection 5.2.4). On the other hand, those trans-

period samples (e.g. a sample of December and January or a sample of May and June) should 

be avoided: since the list of identified critical routes is subject to changes in the planned 

timetable and the planned timetable is updated every six months (in Britain), a route entering 

the list during a particular timetable period would be likely to be excluded from the list 

during the subsequent timetable period (e.g. the aforementioned route Ilkley – Leeds – 

Middlesbrough). Moreover, the choice of these five observation periods also controls the 

factor of public holidays (e.g. Christmas and Easter): the number of effective observations 

would be reduced if an 8-weeks period involving public holidays were adopted, due to the 

fact that a weekday timetable is often different from a holiday timetable.  

 

For a given observation period (i.e. one of the above-mentioned four observation periods), the 

historical data about a given route (i.e. one of the aforementioned nine studied routes) are 

subdivided into a test set and a sample set (c.f. Figure 5.2 in Subsection 5.2.4 for an 

illustration). The test set is used to calculate two different versions of RPM: one is under the 

assumption of unmodified pre-trip information (denoted by RPMs in the analyses presented in 

the subsequent subsections), and the other is under the assumption of modified pre-trip 

information (denoted by RPMp in the analyses presented in the subsequent subsections). The 

sample set is employed to simulate/restore the modified pre-trip information (i.e. those pre-

modified advertised arrival times obtained by applying the algorithm of PBPM or PBPM+ 
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presented in Chapter 4 to the sample set). With respect to the technicalities used in sampling, 

the method presented in Subsection 5.2.4 is adopted. Roughly speaking, the test set is ‘static’ 

while the sample set is ‘semi-dynamic’: the test set contains data about the second half of a 

given 8-weeks observation period (i.e. from Week 5 to Week 8, c.f. Figure 5.2 in Subsection 

5.2.4), but the sample set is different for each of the four test weeks (i.e. Week 5, Week 6, 

Week 7, and Week 8) to guarantee that those pre-modified arrival times are always calculated 

from a sample containing data of the most recent four weeks (relative to a given test week).  

 

5.3.2 Route 1: Bournemouth – Southampton Central – Brighton 

 

The route Bournemouth – Southampton Central – Brighton (denoted by BSB) has been 

identified as critical for a long time (dating back to May 2015). Historical train movements 

data about this route have been collected since the beginning of September 2015. Several 

major characteristics of this route can be seen from those illustrative examples in Section 3.4 

and Section 4.3: the list of recommended itineraries (by National Rail Enquiries) for this 

route is full of delay-sensitive transfers, and the connecting leg (i.e. from Southampton 

Central to Brighton) has relatively low-frequency services (i.e. hourly). Moreover, the 

determination of the parameter of net transfer time (NTT) has been detailed in Subsection 

4.3.5, and a route-specific NTT of 1 minute (i.e. applicable to each studied critical itinerary) 

is adopted here in this analysis.  

 

In the analysis/evaluation of this route, 10 critical itineraries are studied with scheduled 

departure times being 09:55, 10:59, 11:59, 12:59, 13:59, 14:59, 15:59, 16:59, 17:59, and 

18:59, respectively. The observation periods adopted (see Table 5.2) are Period 1 (12 October 

2015 – 4 December 2015), Period 2 (25 January 2016 – 18 March 2016), and Period 5 (16 

January 2017 – 10 March 2017). For each of the three adopted observation periods, around 

200 records/observations (i.e. 20 weekdays per period and 10 studied itineraries per day) are 

analysed. The reason why Period 3 (13 June 2016 – 5 August 2016) and Period 4 (3 October 

2016 – 25 November 2016) are not analysed is mainly due to planned/predictable 

cancellations (of the connecting leg, c.f. Subsection 4.3.7) resulting from major rail strikes 

(by Southern Railway) during these two periods: Figures 5.5 and 5.6 below provide an 

illustration of the relevant issues.  
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Figure 5.5 An illustration of planned cancellations for Southern services during Period 3 
(Source: www.nationalrail.co.uk, accessed 25 Sept 2016) 

 

 

 

Figure 5.6 An illustration of planned cancellations for Southern services during Period 4 
(Source: www.nationalrail.co.uk, accessed 04 Nov 2016) 
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As has been explained in Subsection 4.3.7, those planned or predictable cancellations should 

be excluded in evaluating the effect of pre-trip information: they could be reflected in a 

revised timetable well in advance (i.e. at least several days before the time of travel) and 

would not be shown in the recommended itineraries by a journey planning system.  

 

Based on the technicalities explained above, the evaluation results for this route (using Route-

oriented Performance Measure, c.f. Section 5.2) are presented in Table 5.2 below. In Table 

5.2, RPMs represents the calculated RPM (Route-oriented Performance Measure) for a given 

observation period assuming that the unmodified pre-trip information is adopted about 

scheduled arrival times; RPMp represents the obtained RPM for a given observation period 

assuming that the modified pre-trip information about pre-modified arrival times; ΔRPM = 

RPMp – RPMs, representing the change (in RPM) the modified pre-trip information could 

have brought. Moreover, the parameter of TAL represents the threshold for arrival lateness 

adopted. The algorithm employed to generate/restore the modified pre-trip information is 

PBPM in Subsection 4.3.2. The sampling method explained in Subsection 5.2.4 is adopted in 

calculating RPMs, RPMp, and those pre-modified arrival times. The relevant technicalities 

used in the reconstruction of the actual arrival times can be found in Subsection 5.2.5. 

 

Table 5.2 The evaluation results for BSB using RPM 

 Period 1  Period 2  Period 5  
 TAL=5 TAL=10  TAL=5 TAL=10  TAL=5 TAL=10  

RPMs (%) 72.1 83.7  74.2 84.8  75.3 81.2  
RPMp (%) 85.3 87.9  86.4 87.9  84.9 86.6  
ΔRPM (%) 13.2 4.2  12.1 3.0  9.7 5.4  

 

 

From Table 5.2 above, we can see that the performance (in terms of punctuality and 

reliability) of this route is generally good during the three observation periods and is 

generally stable between different periods (see the row starting with ‘RPMs (%)’). Moreover, 

a non-negligible improvement in RPM would be expected if the modified pre-trip 

information (generated from the proposed algorithm of PBPM) were adopted (see the row 

starting with ‘ΔRPM (%)’).  
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5.3.3 Route 2: Ebbw Vale Town – Cardiff Central – Birmingham New Street 

 

The route Ebbw Vale Town – Cardiff Central – Birmingham New Street (denoted by ECB) 

has also been identified as critical for a long time: historical train movements data about this 

route have been collected since the beginning of September 2015. The feeder leg of this route 

is an hourly Arriva Trains Wales service from Ebbw Vale Town to Cardiff Central, and the 

connecting leg is an hourly CrossCountry service from Cardiff Central to Birmingham New 

Street (terminating at Nottingham). A route-specific NTT (net transfer time) of 2 minutes is 

adopted in this analysis, based on an in-depth investigation into the layout of the transfer 

station (i.e. Cardiff Central) and the platform allocation of the involved feeder and connecting 

trains (at the transfer station).  

 

In the analysis/evaluation of this route, 10 critical itineraries are studied with scheduled 

departure times being 09:38, 10:37, 11:37, 12:37, 13:37, 14:37, 15:37, 16:37, 17:37, and 

18:37, respectively. The observation periods adopted are Period 1 (12 October 2015 – 4 

December 2015), Period 2 (25 January 2016 – 18 March 2016), Period 3 (13 June 2016 – 5 

August 2016), Period 4 (3 October 2016 – 25 November 2016), and Period 5 (16 January 

2017 – 10 March 2017). For each of the five observation periods, around 200 

records/observations (i.e. 20 weekdays per period and 10 studied itineraries per day) are 

analysed.  

 

Based on the data and parameters introduced above, the evaluation results for this route are 

presented in Table 5.3 below. The notations involved have the same meanings with those in 

Table 5.2: TAL is the threshold for arrival lateness adopted; RPMs denotes the performance 

measure calculated based on the unmodified pre-trip information; RPMp represents the 

performance measure calculated based on the modified pre-trip information; and ΔRPM 

indicates the effect of modified pre-trip information on RPM.  

 

From Table 5.3 we can see that the performance of this route is generally good during 

Periods 1, 2, 3, and 5, but is relatively poor during Period 4 (see the row starting with ‘RPMs 

(%)’). Moreover, a non-negligible improvement in RPM could have been obtained for 

Periods 1, 2, 3, and 5, and a significant improvement in RPM could have been obtained for 

Period 4, if the modified pre-trip information (generated from the proposed algorithm of 

PBPM) were adopted (see the row starting with ‘ΔRPM (%)’). 
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Table 5.3 The evaluation results for ECB using RPM 

 

 

5.3.4 Route 3: Liverpool Lime Street – Manchester Piccadilly – Doncaster 

 

The route Liverpool Lime Street – Manchester Piccadilly – Doncaster (denoted by LMD) has 

long been identified as a critical route: historical train movements data about this route have 

been collected since the beginning of September 2015. The feeder leg of this route is an 

hourly TransPennine Express service from Liverpool Lime Street to Manchester Piccadilly 

(terminating at Scarborough), and the connecting leg is an hourly TransPennine Express 

service from Manchester Piccadilly to Doncaster (originating from Manchester Airport and 

terminating at Cleethorpes). A route-specific NTT (net transfer time) of 3 minutes is adopted 

in this analysis, based on an inspection of the layout of the transfer station (i.e. Manchester 

Piccadilly) and the platform allocation of the involved feeder and connecting trains (at the 

transfer station).  

 

In the analysis of this route, six critical itineraries are studied with scheduled departure times 

being 09:22, 10:22, 11:22, 12:22, 13:22, and 14:22, respectively. The observation periods 

adopted are Period 1 (12 October 2015 – 4 December 2015), Period 2 (25 January 2016 – 18 

March 2016), Period 3 (13 June 2016 – 5 August 2016), Period 4 (3 October 2016 – 25 

November 2016), and Period 5 (16 January 2017 – 10 March 2017). For each of the five 

observation periods, around 120 records/observations (i.e. 20 weekdays per period and 6 

studied itineraries per day) are analysed.  

 

Based on the data and parameters introduced above, the evaluation results for this route are 

presented in Table 5.4 below. The notations involved have the same meanings with those in 

the previous subsection: TAL is the threshold for arrival lateness adopted; RPMs denotes the 

 Period 1  Period 2  Period 3  Period 4  Period 5 
 TAL=5 TAL=10  TAL=5 TAL=10  TAL=5 TAL=10  TAL=5 TAL=10  TAL=5 TAL=10 

RPMs 
(%) 

72.0 82.8  75.0 88.3  71.1 84.0  54.9 75.1  83.7 92.6 

RPMp 
(%) 

89.2 92.5  90.3 94.4  87.1 90.7  85.5 88.1  96.3 97.4 

ΔRPM 
(%) 

17.2 9.7  15.3 6.1  16.0 6.7  30.6 13.0  12.6 4.7 
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performance measure calculated based on the unmodified pre-trip information; RPMp 

represents the performance measure calculated based on the modified pre-trip information; 

and ΔRPM indicates the effect of modified pre-trip information on RPM.  

 

From Table 5.4 we can see that the performance (in terms of punctuality and reliability) of 

this route is generally undesirable (Period 5 is an exception) compared with the other studied 

routes (see the row starting with ‘RPMs (%)’). Moreover, a significant improvement in RPM 

could have been obtained for the five adopted observation periods if the modified pre-trip 

information (generated from the proposed algorithm of PBPM) were adopted (see the row 

starting with ‘ΔRPM (%)’). 

 

Table 5.4 The evaluation results for LMD using RPM 

 

 

5.3.5 Route 4: Rugeley Trent Valley – Birmingham New Street – Hereford 

 

The route Rugeley Trent Valley – Birmingham New Street – Hereford (denoted by RBH) has 

long been recognised as a critical route: historical train movements data about this route have 

been collected since the beginning of September 2015. The feeder leg of this route is an 

hourly London Midland service from Rugeley Trent Valley to Birmingham New Street, and 

the connecting leg is an hourly London Midland service from Birmingham New Street to 

Hereford. A route-specific NTT (net transfer time) of 3 minutes is adopted in this analysis, by 

inspecting the layout of the transfer station (i.e. Birmingham New Street) and the platform 

allocation of the involved feeder and connecting trains (at the transfer station).  

 

In the analysis of this route, nine critical itineraries are studied with scheduled departure 

times being 08:41, 09:43, 10:41, 11:41, 12:41, 13:41, 14:41, 15:41, and16:41, respectively. 

The observation periods adopted are Period 1 (12 October 2015 – 4 December 2015), Period 

 Period 1  Period 2  Period 3  Period 4  Period 5 
 TAL=5 TAL=10  TAL=5 TAL=10  TAL=5 TAL=10  TAL=5 TAL=10  TAL=5 TAL=10 

RPMs 
(%) 

58.5 76.4  75.0 84.8  55.9 78.0  66.1 83.0  81.2 90.6 

RPMp 
(%) 

86.8 88.7  88.4 92.9  87.3 91.5  84.8 86.6  92.9 94.1 

ΔRPM 
(%) 

28.3 12.3  13.4 8.0  31.3 13.6  18.8 3.6  11.8 3.5 
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2 (25 January 2016 – 18 March 2016), and Period 5 (16 January 2017 – 10 March 2017). 

Period 3 (13 June 2016 – 5 August 2016) and Period 4 (3 October 2016 – 25 November 2016) 

are not analysed due to the lost data about these two periods in the process of data storage and 

transfer. For each of the three adopted observation periods (i.e. Periods 1, 2, and 5), around 

180 records/observations (i.e. 20 weekdays per period and 9 studied itineraries per day) are 

analysed.  

 

Based on the data and parameters introduced above, the evaluation results for this route are 

presented in Table 5.5 below. The notations involved have the same meanings with those in 

the previous subsection: TAL is the threshold for arrival lateness adopted; RPMs denotes the 

performance measure calculated based on the unmodified pre-trip information; RPMp 

represents the performance measure calculated based on the modified pre-trip information; 

and ΔRPM indicates the effect of modified pre-trip information on RPM.  

 

From Table 5.5 we can see that the performance of this route is generally good during the 

three observation periods (see the row starting with ‘RPMs (%)’). Moreover, a small 

improvement in RPM could have been obtained for Period 1 if the modified pre-trip 

information (generated from the proposed algorithm of PBPM) were adopted (see the row 

starting with ‘ΔRPM (%)’). However, no/little change in RPM is observed for Period 2 and 

Period 5, the reason of which is to be explained later in Subsection 5.3.12 by close scrutiny of 

the sample data.   

 

Table 5.5 The evaluation results for RBH using RPM 

 Period 1  Period 2  Period 5 
 TAL=5 TAL=10  TAL=5 TAL=10  TAL=5 TAL=10 

RPMs (%) 79.2 83.2  91.6 92.1  93.7 94.3 
RPMp (%) 83.8 87.3  91.6 92.1  93.7 95.4 
ΔRPM (%) 4.6 4.0  0 0  0 1.1 

 

 

5.3.6 Route 5: Ilkley – Leeds – Middlesbrough 

 

The route Ilkley – Leeds – Middlesbrough (denoted by ILM) was recognised as a critical 

route by applying CRF (Critical Route Finder, c.f. Algorithm 2 in Section 3.6) to the two 

previous versions of the National Rail Timetable during 2016, but does not enter the list of 
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critical routes in the screening (using CRF) of the latest version of the National Rail 

Timetable (which is valid from 11 December 2016 to 20 May 2017, c.f. Section 3.7). 

Historical train movements data about this route have been collected between January 2016 

and September 2016. The feeder leg of this route is a half-hourly Northern service from 

Ilkley to Leeds, and the connecting leg is an hourly TransPennine Express service from Leeds 

to Middlesbrough (originating from Manchester Airport). A route-specific NTT (net transfer 

time) of 3 minutes is adopted in this analysis, based on an in-depth investigation into the 

layout of the transfer station (i.e. Leeds) and the platform allocation of the involved feeder 

and connecting trains (at the transfer station).  

 

In the analysis of this route, five critical itineraries are studied with scheduled departure times 

being 10:10, 11:10, 12:10, 13:10, and 14:10, respectively. The observation periods adopted 

are Period 2 (25 January 2016 – 18 March 2016) and Period 3 (13 June 2016 – 5 August 

2016). For each of the two adopted observation periods (i.e. Period 2 and Period 3), around 

100 records/observations (i.e. 20 weekdays per period and 5 studied itineraries per day) are 

analysed.  

 

Based on the data and parameters introduced above, the evaluation results for this route are 

presented in Table 5.6 below. The notations involved have the same meanings with those in 

the previous subsection: TAL is the threshold for arrival lateness adopted; RPMs denotes the 

performance measure calculated based on the unmodified pre-trip information; RPMp 

represents the performance measure calculated based on the modified pre-trip information; 

and ΔRPM indicates the effect of modified pre-trip information on RPM (Route-oriented 

Performance Measure).  

 

Table 5.6 The evaluation results for ILM using RPM 

 Period 2  Period 3  
 TAL=5 TAL=10  TAL=5 TAL=10  

RPMs (%) 88.9 90.9  84.5 89.7  
RPMp (%) 90.9 92.9  89.7 93.8  
ΔRPM (%) 2.0 2.0  5.2 4.1  

 

From Table 5.6 we can see that the performance of this route is generally good during the two 

observation periods (see the row starting with ‘RPMs (%)’). Moreover, a small improvement 

in RPM could have been obtained for both periods if the modified pre-trip information 
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(generated from the proposed algorithm of PBPM) were adopted (see the row starting with 

‘ΔRPM (%)’).  

 

5.3.7 Route 6: London Kings Cross – York – Scarborough 

 

The route London Kings Cross – York – Scarborough (denoted by KYS) has been identified 

as critical since May 2016: historical train movements data about this route have been 

collected since then. The feeder leg of this route is a half-hourly Virgin Trains East Coast 

service from London Kings Cross to York (terminating at Edinburgh, Newcastle, etc), and the 

connecting leg is an hourly TransPennine Express service from York to Scarborough 

(originating from Liverpool Lime Street). A route-specific NTT (net transfer time) of 1 

minute is adopted in this analysis, by scrutinising the layout of the transfer station (i.e. York) 

and the platform allocation of the involved feeder and connecting trains (at the transfer 

station).  

 

In the analysis of this route, eight critical itineraries are studied with scheduled departure 

times being 08:30, 09:30, 10:30, 11:30, 12:30, 13:30, 14:30, and 15:30, respectively. The 

observation periods adopted are Period 3 (13 June 2016 – 5 August 2016), Period 4 (3 

October 2016 – 25 November 2016), and Period 5 (16 January 2017 – 10 March 2017). For 

each of the three adopted observation periods, around 160 records/observations (i.e. 20 

weekdays per period and 8 studied itineraries per day) are analysed.  

 

Based on the data and parameters introduced above, the evaluation results for this route are 

presented in Table 5.7 below. The notations involved have the same meanings with those in 

the previous subsection: TAL is the threshold for arrival lateness adopted; RPMs denotes the 

performance measure calculated based on the unmodified pre-trip information; RPMp 

represents the performance measure calculated based on the modified pre-trip information; 

and ΔRPM indicates the effect of modified pre-trip information on RPM (Route-oriented 

Performance Measure).  

 

From Table 5.7 we can see that the performance (in terms of punctuality and reliability) of 

this route is relatively good during Period 3 and Period 5, but is relatively poor during Period 

4 (see the row starting with ‘RPMs (%)’). Moreover, a significant improvement in RPM could 

have been obtained for Periods 3 and 4 if the modified pre-trip information (generated from 
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the proposed algorithm of PBPM) were adopted, although this improvement in RPM would 

be relatively small for Period 5 (see the row starting with ‘ΔRPM (%)’).  

 

Table 5.7 The evaluation results for KYS using RPM 

 Period 3  Period 4  Period 5 
 TAL=5 TAL=10  TAL=5 TAL=10  TAL=5 TAL=10 

RPMs (%) 73.7 82.7  58.2 69.9  84.2 89.0 
RPMp (%) 85.9 87.8  78.4 79.1  87.7 91.1 
ΔRPM (%) 12.2 5.1  20.3 9.2  3.4 2.1 

 

 

5.3.8 Route 7: Harwich Town – Manningtree – Norwich 

 

The route Harwich Town – Manningtree – Norwich (denoted by HMN) has been identified as 

a critical route since May 2016: historical train movements data about this route have been 

collected since then. The feeder leg of this route is an hourly Greater Anglia service from 

Harwich Town to Manningtree, and the connecting leg is a half-hourly Greater Anglia service 

from Manningtree to Norwich (originating from London Liverpool Street). A route-specific 

NTT (net transfer time) of 1 minute is adopted in this analysis, by inspecting the layout of the 

transfer station (i.e. Manningtree) and the platform allocation of the involved feeder and 

connecting trains (at the transfer station).  

 

In the analysis of this route, nine critical itineraries are studied with scheduled departure 

times being 08:28, 09:28, 10:28, 11:28, 12:28, 13:28, 14:28, 15:28, and 16:28, respectively. 

The observation periods adopted are Period 3 (13 June 2016 – 5 August 2016), Period 4 (3 

October 2016 – 25 November 2016), and Period 5 (16 January 2017 – 10 March 2017). For 

each of the three adopted observation periods, around 180 records/observations (i.e. 20 

weekdays per period and 9 studied itineraries per day) are analysed.  

 

Based on the data and parameters introduced above, the evaluation results for this route are 

presented in Table 5.8 below. The notations involved have the same meanings with those in 

the previous subsection: TAL is the threshold for arrival lateness adopted; RPMs denotes the 

performance measure calculated based on the unmodified pre-trip information; RPMp 

represents the performance measure calculated based on the modified pre-trip information; 



175 

and ΔRPM indicates the effect of modified pre-trip information on RPM (Route-oriented 

Performance Measure).  

 

From Table 5.8 we can see that the performance of this route is generally undesirable during 

Period 3 and Period 4 (see the row starting with ‘RPMs (%)’). Moreover, a significant 

improvement in RPM could have been obtained for the three observation periods if the 

modified pre-trip information (generated from the proposed algorithm of PBPM) were 

adopted (see the row starting with ‘ΔRPM (%)’).  

 

Table 5.8 The evaluation results for HMN using RPM 

 Period 3  Period 4  Period 5 
 TAL=5 TAL=10  TAL=5 TAL=10  TAL=5 TAL=10 

RPMs (%) 55.3 73.2  57.9 79.2  72.9 86.4 
RPMp (%) 82.1 87.2  81.5 87.1  87.0 89.8 
ΔRPM (%) 26.8 14.0  23.6 7.9  14.1 3.4 

 

 

5.3.9 Route 8: Knottingley – Wakefield Kirkgate – Nottingham 

 

The route Knottingley – Wakefield Kirkgate – Nottingham (denoted by KWN) has been 

screened out as a critical route since September 2016: historical train movements data about 

this route have been collected since then. The feeder leg of this route is an hourly Northern 

service from Knottingley to Wakefield Kirkgate, and the connecting leg is an hourly Northern 

service from Wakefield Kirkgate to Nottingham (originating from Leeds). A route-specific 

NTT (net transfer time) of 1 minute is adopted in this analysis, based on an examination of 

the layout of the transfer station (i.e. Wakefield Kirkgate) and the platform allocation of the 

involved feeder and connecting trains (at the transfer station).  

 

In the analysis of this route, nine critical itineraries are studied with scheduled departure 

times being 08:53, 09:53, 10:53, 11:53, 12:53, 13:53, 14:53, 15:53, and 16:53, respectively. 

The observation periods adopted are Period 4 (3 October 2016 – 25 November 2016) and 

Period 5 (16 January 2017 – 10 March 2017). For each of the two adopted observation 

periods, around 180 records/observations (i.e. 20 weekdays and 9 studied itineraries per day) 

are analysed. 
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Based on the data and parameters introduced above, the evaluation results for this route are 

presented in Table 5.9 below. The notations involved have the same meanings with those in 

the previous subsection: TAL is the threshold for arrival lateness adopted; RPMs denotes the 

performance measure calculated based on the unmodified pre-trip information; RPMp 

represents the performance measure calculated based on the modified pre-trip information; 

and ΔRPM indicates the effect of modified pre-trip information on RPM (Route-oriented 

Performance Measure).  

 

From Table 5.9 we can see that the performance (in terms of punctuality and reliability) of 

this route is generally good during the two observation periods (see the row starting with 

‘RPMs (%)’). Moreover, a moderate improvement in RPM could have been obtained for 

these two observation periods if the modified pre-trip information (generated from the 

proposed algorithm of PBPM) were adopted (see the row starting with ‘ΔRPM (%)’).  

 

Table 5.9 The evaluation results for KWN using RPM 

 Period 4  Period 5 
 TAL=5 TAL=10  TAL=5 TAL=10 

RPMs (%) 80.6 87.4  89.9 94.9 
RPMp (%) 86.9 90.3  90.4 96.1 
ΔRPM (%) 6.3 2.9  0.6 1.1 

 

 

5.3.10 Route 9: Sudbury (Suffolk) – Marks Tey – London Liverpool Street 

 

The route Sudbury (Suffolk) – Marks Tey – London Liverpool Street (denoted by SML) has 

been recognised as critical since September 2016: historical train movements data about this 

route have been collected since then. The feeder leg of this route is an hourly Greater Anglia 

service from Sudbury (Suffolk) to Marks Tey, and the connecting leg is a half-hourly Greater 

Anglia service from Marks Tey to London Liverpool Street (originating from Colchester 

Town/Ipswich). A route-specific NTT (net transfer time) of 1 minute is adopted in this 

analysis, based on an investigation into the layout of the transfer station (i.e. Marks Tey) and 

the platform allocation of the involved feeder and connecting trains (at the transfer station).  

 

In the analysis of this route, seven critical itineraries are studied with scheduled departure 

times being 09:33, 10:26, 11:26, 12:26, 13:26, 14:26, and 15:26, respectively. The 
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observation periods adopted are Period 4 (3 October 2016 – 25 November 2016) and Period 5 

(16 January 2017 – 10 March 2017). For each of these two observation periods, around 140 

records/observations (i.e. 20 weekdays and 7 studied itineraries per day) are analysed.  

 

Based on the data and parameters introduced above, the evaluation results for this route are 

presented in Table 5.10 below. The notations involved have the same meanings with those in 

the previous subsection: TAL is the threshold for arrival lateness adopted; RPMs denotes the 

performance measure calculated based on the unmodified pre-trip information; RPMp 

represents the performance measure calculated based on the modified pre-trip information; 

and ΔRPM indicates the effect of modified pre-trip information on RPM (Route-oriented 

Performance Measure).  

 

Table 5.10 The evaluation results for SML using RPM 

 Period 4  Period 5 
 TAL=5 TAL=10  TAL=5 TAL=10 

RPMs (%) 71.3 82.4  85.6 90.6 
RPMp (%) 83.1 88.2  92.1 93.5 
ΔRPM (%) 11.8 5.9  6.5 2.9 

 

From Table 5.10 we can see that the performance of this route is generally good during these 

two periods (see the row starting with ‘RPMs (%)’). Moreover, a non-negligible improvement 

in RPM could have been obtained for both periods if the modified pre-trip information 

(generated from the proposed algorithm of PBPM) were adopted (see the row starting with 

‘ΔRPM (%)’).  

 

5.3.11 A summary of the results with interpretation 

 

Subsections 5.3.2 ~ 5.3.10 have respectively presented the evaluation results for each studied 

route using RPM. Apart from these route-specific performance statistics, we can also 

synthesise the relevant statistics to obtain some overall performance statistics (analogous to 

the calculation of PPM, see Network Rail (2017)). However, compared with those specific 

performance statistics (based on the planned timetable), we are more interested in the changes 

the modified pre-trip information could bring to the corresponding RPMs (i.e. ΔRPMs). 

Hence, the relevant ΔRPMs (presented in the result tables in Subsections 5.3.2 ~ 5.3.10) are 
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summarised in Table 5.11 below to help understand the overall effect of the modified pre-trip 

information on the nine studied critical routes (in terms of RPM).   

 

Table 5.11 Summary based on a pre-defined ‘selection rule’ (unit: %) 

 P1 P2 P3 P4 P5 E(P) NOTE 
BSB 4.2 3.0   5.4 4.2 d = 96 miles, TAL = 10 mins 
ECB 9.7 6.1 6.7 13.0 4.7 8.0 d = 98 miles, TAL = 10 mins 
LMD 12.3 8.0 13.6 3.6 3.5 8.2 d = 100 miles, TAL = 10 mins 
ILM  2.0 5.2   3.6 d = 67 miles, TAL = 5 mins 
RBH 4.6 0.0   0.0 1.5 d = 79 miles, TAL = 5 mins 
KYS   5.1 9.2 2.1 5.5 d = 238 miles, TAL = 10 mins 
HMN   26.8 23.6 14.1 21.5 d = 74 miles, TAL = 5 mins 
KWN    6.3 0.6 3.5 d = 62 miles, TAL = 5 mins 
SML    11.8 6.5 9.2 d = 68 miles, TAL = 5 mins 

      7.2  
 

In Table 5.11 above, those three-letter abbreviations in the first (i.e. leftmost) column (e.g. 

BSB and ECB) denote the studied routes (c.f. Glossary at the beginning of this thesis or 

Subsection 5.3.1). The column titles P1 ~ P5 in the first row respectively represent the five 

observation periods (c.f. Glossary or Subsection 5.3.1). The values under P1 ~ P5 

respectively represent the ΔRPM (in percentage) for a specific route during a specific 

observation period (c.f. Subsections 5.3.2 ~ 5.3.10). Since two versions of ΔRPMs have been 

calculated for each studied route for each relevant observation period (one under TAL = 5 

mins and the other under TAL = 10 mins, see Subsections 5.3.2 ~ 5.3.10; TAL is short for 

Threshold for Arrival Lateness), one of the two versions is adopted in Table 5.11 for each 

route for each relevant period (according to some pre-defined ‘selection rule’) to calculate the 

temporal averages (presented in Column E(P)). In the explanation of PPM (c.f. Network Rail, 

2017), only a general ‘selection rule’ is adopted (without specific definitions): TAL = 5 mins 

for ‘London and South East or regional services’, and TAL = 10 mins for ‘long distance 

services’. Here, for the convenience of calculation, a ‘selection rule’ (for choosing between 

the two versions of ΔRPM for each route for each period) based on the spatial distance 

between the origin and destination stations of each specific route is adopted: the version 

under TAL = 5 is adopted if the distance is less than 90 miles, and the version under TAL = 

10 is adopted if the distance is larger than 90 miles. The rightmost column NOTE details the 

information about each route: the distances have been obtained by searching Google Maps, 

the values of which have been derived from the shortest paths within the road networks. 

Under this specific ‘selection rule’, an average gain of 7.2 % in RPM (c.f. the bottom cell in 
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the table) can be expected for the nine studied critical routes by adopting the proposed 

algorithmic approach in Chapter 4. 

 

From the above explanation of Table 5.11, we can see that a PPM-style summary tends to be 

heavily dependent on the pre-defined ‘selection rule’, which might introduce an unnecessary 

extra increase in subjectivity. An alternative and less subjective way to report a synthesised 

index (i.e. the 7.2% calculated from Table 5.11) is to firstly determine its lower and upper 

bounds and then report an interval bounded by the two calculated extremes. In the context of 

the nine studied routes in the previous subsections, the upper bound of the average gain in 

RPM (brought by modifying pre-trip information according to the proposed algorithmic 

approach) can be obtained by summarising all those ΔRPMs (c.f. Subsections 5.3.2 ~ 5.3.10) 

under TAL = 5 mins, and the lower bound can be obtained by summarising all those ΔRPMs 

(c.f. Subsections 5.3.2 ~ 5.3.10) under TAL = 10 mins. That is, instead of locking ourselves 

in an endless debate about which routes should be categorised into which group (i.e. TAL = 5 

or TAL = 10), we can avoid the introduction of a subjective ‘selection rule’ by reporting an 

interval bounded by two definite limits.  

 

Tables 5.12 and 5.13 below respectively summarise the route-specific results under the two 

‘extreme cases’ (i.e. all TALs are set to 5 mins and all TALs are set to 10 mins). It can be 

seen from the two tables that the average gain (in RPM) for the nine studied routes lies 

between 5.0 % and 11.3%.  

 

Table 5.12 Summary based on TAL = 5 mins (unit: %) 

 P1 P2 P3 P4 P5 E(P) 
BSB 13.2 12.1   9.7 11.7 
ECB 17.2 15.3 16.0 30.6 12.6 18.3 
LMD 28.3 13.4 31.3 18.8 11.8 20.7 
ILM  2.0 5.2   3.6 
RBH 4.6 0.0   0.0 1.5 
KYS   12.2 20.3 3.4 12.0 
HMN   26.8 23.6 14.1 21.5 
KWN    6.3 0.6 3.5 
SML    11.8 6.5 9.2 

      11.3 
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Table 5.13 Summary based on TAL = 10 mins (unit: %) 

 P1 P2 P3 P4 P5 E(P) 
BSB 4.2 3.0   5.4 4.2 
ECB 9.7 6.1 6.7 13.0 4.7 8.0 
LMD 12.3 8.0 13.6 3.6 3.5 8.2 
ILM  2.0 4.1   3.1 
RBH 4.0 0.0   0.0 1.3 
KYS   5.1 9.2 2.1 5.5 
HMN   14.0 7.9 3.4 8.4 
KWN    2.9 1.1 2.0 
SML    5.9 2.9 4.4 

      5.0 
 

Generally, the obtained results (in previous subsections) make sense, for the modified pre-trip 

information should to some degree improve punctuality and reliability: as explained in 

Subsection 4.3.2, the mechanism of the modified pre-trip information (generated from the 

proposed algorithmic approach) is to add to each critical itinerary extra allowance (i.e. time 

supplement) to reduce the impact of delays/disruptions, based on the historical performance 

of each particular itinerary. However, two questions arise when confronted with those 

specific results: Why would some of the studied routes expect more significant improvement 

in RPM than the others, by adopting the modified pre-trip information? What do those zero 

values (c.f. Table 5.5) mean? In order to answer these questions, it would be helpful to have a 

closer look at the relevant sample data that have been adopted in the corresponding analyses.  

 

Figure 5.7 below presents the descriptive statistics of the sample data about the route RBH 

(Rugeley Trent Valley – Birmingham New Street – Hereford) during Period 2 (25 January 

2016 – 18 March 2016). It has been shown in Table 5.5 (c.f. Subsection 5.3.5) that the 

modified pre-trip information (generated from the proposed algorithm of PBPM) could not 

bring improvement in RPM for this route during Period 2. In Figure 5.7 below, two 

distributions are presented to describe the underlying sample data, corresponding to the 

distribution of arrival delays under the assumption of unmodified pre-trip information (a), 

and the distribution of arrival delays under the assumption of modified pre-trip information 

(b), respectively.  
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Figure 5.7 Distributions of arrival delays for RBH during Period 2  
(NOTE: AD1 = arra – arrs, representing the arrival delay calculated from the unmodified pre-

trip information; AD2 = arra – arrm, representing the arrival delay calculated from the 
modified pre-trip information) 

 

It can be seen from Figure 5.7 that an apparent reason for the zero values under both 

scenarios (i.e. TAL = 5 and TAL = 10) is that the performance statistics are already quite 

good under unmodified pre-trip information. Specifically, an RPMs (under TAL = 5) of 

91.6% is already quite good for a transfer-involved rail route (c.f. Figure 5.7(a) and Table 

5.5), and an RPMs (under TAL = 10) of 92.1% is also among the best in the context of the 

nine studied routes. That is, the space left for improvement itself is limited in these two 

scenarios. However, good performance itself could not thoroughly explain these zero values. 

For example, the route ILM (Ilkley – Leeds – Middlesbrough) also has good performance 

under unmodified pre-trip information (c.f. Table 5.6) but improvements could still be 

expected. That is, there must be other factors exerting influence on the results. By further 

examining the two distributions in Figure 5.7, it is recognised that the modified pre-trip 
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information (c.f. Figure 5.7(b)) does not truly change the distribution of arrival delays (c.f. 

Figure 5.7(a)). To help better understand the relevant issues, Figure 5.8 below is needed.  

 

 

 

Figure 5.8 Distributions of arrival delays for LMD during Period 1 
(NOTE: AD1 = arra – arrs, representing the arrival delay calculated from the unmodified pre-

trip information; AD2 = arra – arrm, representing the arrival delay calculated from the 
modified pre-trip information) 

 

Figure 5.8 above presents the descriptive statistics of the sample data about the route LMD 

(Liverpool Lime Street – Manchester Piccadilly – Doncaster) during Period 1 (12 October 
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2015 – 4 December 2015). Unlike the evaluation results (i.e. no improvements in RPM) for 

Figure 5.7, a significant improvement (in RPM) is observed for this route during this period 

(i.e. Period 1, c.f. Table 5.4 in Subsection 5.3.4).  

 

To compare and identify the difference between Figure 5.7 and Figure 5.8, each of the four 

involved distributions (i.e. Figure 5.7(a), Figure 5.7(b), Figure 5.8(a), and Figure 5.8(b)) 

needs to be viewed as a combination of two parts, the cut-off point of which is the TAL 

(threshold for arrival lateness) adopted in the calculation of an RPM. For example, if we 

adopt a TAL of 5 minutes, then each of the four distributions in the two figures can be 

subdivided into two parts: those smaller-than-five observations (denoted by S5) and those 

larger-than-five observations (denoted by L5). Since each distribution has been sorted (by 

delay value) in ascending order, the S5 part corresponds to the upper end and the L5 part 

corresponds to the lower end.  

 

By comparing Figure 5.7(a) with Figure 5.7(b), it can be seen that the modified pre-trip 

information (corresponding to Figure 5.7(b)) only changes the distribution of observations 

within each of the S5 group and the L5 group, but does not change the balance of power 

between S5 and L5. By contrast, if we compare Figure 5.8(a) with Figure 5.8(b), we can see 

that the modified pre-trip information (corresponding to Figure 5.8(b)) not only changes the 

distribution of observations within each of the S5 group and the L5 group, but also changes 

the balance of power between S5 and L5 (i.e. S5 goes up from 58.5% to 86.8%, c.f. Figure 

5.8 and Table 5.4 in Subsection 5.3.4).  

 

Based on the above investigations, it is recognised that the size of improvement (in RPM) the 

modified pre-trip information (generated from the proposed algorithmic approach) could 

bring depends, at least, on the following two factors. Firstly, it depends on the percentage of 

medium-sized (e.g. 5 ~ 30 mins) arrival delays that have occurred for a studied route during a 

given observation period. Secondly, it depends on whether the allowances added (by the 

proposed algorithmic approach) are sufficient to absorb those medium-sized arrival delays. 

Continue the examples of Figure 5.7 and Figure 5.8. It can be seen from Figure 5.7(a) that the 

percentage of medium-sized delays is relatively small (about 4% between 5 and 30), but in 

Figure 5.8(a) this percentage is relatively large (about 32% between 5 and 30). On the other 

hand, the allowances added for RBH during Period 2 (c.f. Figure 5.7(b)) are relatively small 

and could not change the balance of power between S5 and L5; in contrast, the allowances 
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added for LMD during Period 1 (c.f. Figure 5.8(b)) are generally large and could ‘push’ some 

of the observations in L5 into S5.  

 

In fact, it is the mechanism of the modified pre-trip information (generated by the proposed 

algorithmic approach) that results in that those added allowances are mainly used for coping 

with medium-sized delays. Recall that the specific calculation method adopted to generate 

modified pre-trip information has been detailed in previous sections (c.f. Subsection 4.3.2 and 

Subsection 4.3.8). Hence, a rough estimation of the general size of the allowances added (to a 

recommended list of critical itineraries) can be made with the aid of the real-world rail routes 

studied in this section. Suppose that the ‘success rate’ for a planned transfer is, on average, 

80% for a given critical route (in the context of British railways) during a given observation 

period, and that the headway of the connecting leg is one hour (i.e. 60 mins, c.f. the nine 

studied routes in this section), then the allowance added to compensate for the risk of a 

missed transfer would be 12 minutes (i.e. 0.2 × 60) according to Step 5 of Algorithm 4 (c.f. 

Subsection 4.3.2). Meanwhile, if the average lateness of the connecting leg is +3 minutes for 

the same route during the same observation period, then an extra 3 minutes would be added 

to the allowance according to the algorithm proposed. That is, an average allowance of 15 

minutes would be added to the unmodified pre-trip information about an ‘ordinary’ route 

described above, which would absorb those medium-sized arrival delays between 5 and 20 

mins if a TAL of 5 minutes is adopted and would absorb those medium-sized arrival delays 

between 10 and 25 mins if a TAL of 10 minutes is adopted. Thereby, the size of improvement 

(in RPM) the modified pre-trip information (i.e. those added allowances) could bring depends, 

in the context of this illustrative example, on the percentage of arrival delays between 5 and 

25 mins. 

 

Until now, the answer to the two questions raised at the beginning of this subsection has been 

found out, with the aid of an explanation of the mechanism of the modified pre-trip 

information (generated by the proposed algorithmic approach). Looking back at those 

specific evaluation results of the nine studied routes, potential limitations of the proposed 

measure (i.e. RPM) itself have also been recognised in the investigation into the underlying 

sample data.  

 

Figure 5.9 below provides such an illustrative example. This example is based on the 

evaluation results for the route ILM (Ilkley – Leeds – Middlesbrough) during Period 2 (25 
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January 2016 – 18 March 2016) and Period 3 (13 June 2016 – 5 August 2016). Here, the 

focus is no longer on same-period comparison between different versions of RPM, but is 

focused on same-indicator comparison between different observation periods. Specifically, 

the performance indicator adopted in Figure 5.9 is RPMs under TAL = 5 (c.f. Table 5.6 in 

Subsection 5.3.6). Comparing the two values for the two periods (i.e. 88.9% and 84.5%), the 

adopted performance indicator tells us that this route performs better during Period 2 

(corresponding to the value of 88.9%). However, when taking a closer look at the specific 

distributions of the sample data, we can find that although the percentage of ‘successful 

realisations’ is higher for Period 2, some key information is hidden about distribution of the 

sample data: the size of those ‘failures’ is also larger for Period 2. This inability to reflect the 

whole picture of the underlying sample data is a potential limitation in real-world 

applications of RPM and PPM (c.f. Network Rail, 2017), which indirectly explains why 

several auxiliary performance indicators such as CaSL (Cancellation and Significant Lateness) 

are also utilised by Britain’s rail industry (c.f. Network Rail, 2017). 

 

 

 

Figure 5.9 Distributions of arrival delays for ILM  
[NOTE: AD1 = arra – arrs, representing the arrival delay calculated from the unmodified pre-

trip information; (a) corresponds to Period 2; (b) corresponds to Period 3] 
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5.3.12 Further analyses and Why would the proposed solution be better than the 
existing ones in tackling Critical Routes? 

 

Although Tables 5.12 and 5.13 in the previous subsection have shown us the average gain (in 

RPM) that can be expected from applying PBPM to the nine studied (critical) routes, they 

cannot help learn more about the base case (i.e. unmodified pre-trip information based on the 

original schedules) and the treated case (i.e. modified pre-trip information based on PBPM). 

To address this gap, further analyses/evaluations have been conducted and Tables 5.14 and 

5.15 below present the obtained results.  

 

Table 5.14 Evaluation results based on RPMs (TAL = 5 mins) (unit: %) 

 
P1 P2 P3 P4 P5 E(P) 

BSB 72.1 74.2 
  

75.3 73.9 
ECB 72 75 71.1 54.9 83.7 71.3 
LMD 58.5 75 55.9 66.1 81.2 67.3 
ILM 

 
88.9 84.5 

  
86.7 

RBH 79.2 91.6 
  

93.7 88.2 
KYS 

  
73.7 58.2 84.2 72.0 

HMN 
  

55.3 57.9 72.9 62.0 
KWN 

   
80.6 89.9 85.3 

SML 
   

71.3 85.6 78.5 

      
76.1 

NOTE: the meanings of the involved abbreviations/symbols can be found in Subsection 5.3.1 or Glossary 

 
 

Table 5.15 Evaluation results based on RPMp (TAL = 5 mins) (unit: %) 

 
P1 P2 P3 P4 P5 E(P) 

BSB 85.3 86.4 
  

84.9 85.5 
ECB 89.2 90.3 87.1 85.5 96.3 89.7 
LMD 86.8 88.4 87.3 84.8 92.9 88.0 
ILM 

 
90.9 89.7 

  
90.3 

RBH 83.8 91.6 
  

93.7 89.7 
KYS 

  
85.9 78.4 87.7 84.0 

HMN 
  

82.1 81.5 87 83.5 
KWN 

   
86.9 90.4 88.7 

SML 
   

83.1 92.1 87.6 

      
87.4 

NOTE: the meanings of the involved abbreviations/symbols can be found in Subsection 5.3.1 or Glossary 

 
 

Both of the two tables adopt a TAL (threshold for arrival lateness) of 5 mins, corresponding 

to the relevant values presented in Table 5.12. The results in Table 5.14 are based on 

unmodified pre-trip information about scheduled arrival times, while the results in Table 5.15 

are based on modified pre-trip information generated by PBPM.  Comparing Tables 5.14 and 
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5.15, we can find that the 11.3% average gain (in RPM) that could have been obtained from 

applying PBPM to the nine studied routes (c.f. Table 5.12 in the previous subsection) actually 

corresponds to an increase from 76.1% (i.e. the average RPM in the base case) to 87.4% (i.e. 

the average RPM in the treated case).  

 
Despite a few explanations made in Subsection 5.2.1, Subsection 5.2.2, and Subsection 5.3.11, 

the choice of delay thresholds (i.e. 5 and 10 minutes) throughout the evaluations in this 

section (i.e. Section 5.3) may still be questioned. After all, such a choice may have a direct 

influence on the obtained evaluation results. Admittedly, the adoption of the industry 

standards of British rail (i.e. 5 and 10 minutes) may still be classified as a (largely) subjective 

choice, for different railways in different countries may have different industry standards and 

even the industry standard for the same railway in the same country may itself change over 

time. The major consideration underlying the choice of delay thresholds in these RPM-based 

evaluations has been that adopting a consistent delay threshold (with the existing industry 

standard) would largely facilitate the comparison of the obtained route-level results with the 

existing network-level indices (e.g. PPM, c.f. Subsection 5.3.11 and Network Rail, 2017). 

Moreover, such a choice would to some degree facilitate international comparisons in future 

research as long as the relevant train operation records of railways outside the UK become 

legally accessible. Although different railways across the world adopt different delay 

thresholds (e.g. Dutch railways adopt 3 minutes as the industry standard), 5 and 10 minutes 

have a relatively large audience in European railways. 

 

To help see the whole picture of the performances of PBPM under a series of different delay 

thresholds and meanwhile to some degree reduce the potential subjectivity in the choice of 

delay thresholds, a (quasi-) sensitivity analysis has been conducted and the obtained 

evaluation results are presented in Table 5.16. 

 

Table 5.16 The evaluation results for RPMs, RPMp, and ΔRPM under different TALs 
TAL 

(mins) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RPMs 

(%) 
50.9 59.9 67.3 72.7 76.1 78.9 81.2 82.8 84.0 85.3 86.5 87.5 88.4 89.2 89.8 

RPMp 

(%) 
82.1 84.0 85.3 86.7 87.4 88.3 89.0 89.6 90.0 90.3 90.9 91.3 91.7 92.0 92.2 

ΔRPM 
(%) 

31.2 24.2 18.0 13.9 11.3 9.5 7.8 6.8 6.0 5.0 4.4 3.8 3.3 2.8 2.4 

NOTE: the meanings of the involved abbreviations/symbols can be found in Subsection 5.3.1 or Glossary 
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From Table 5.16 we can see that the two columns under 5 (mins) and 10 (mins) have exactly 

the same values as those average values in Tables 5.12, 5.13, 5.14, and 5.15. If a delay 

threshold no greater than 5 mins was adopted, a two-digit increase in RPM would be 

expected, corresponding to a significant improvement in punctuality and reliability of the 

studied routes. If a delay threshold no less than 10 mins was adopted, a relatively small 

increase in RPM would be expected, corresponding to a modest improvement in punctuality 

and reliability of the studied routes. Overall, the size of the expected improvement gradually 

diminishes as the delay threshold adopted gradually increases. An incremental change to the 

delay threshold within the interval [0, 15] would not result in unexpected fluctuations in the 

obtained results. And even the least improvement (corresponding to a 15-minute delay 

threshold) is above zero. 

 

After the above analyses of the gain side, let us conduct an analysis of the loss side. Since the 

essence of PBPM is the local treatment of those critical transfer-involved journeys by adding 

a floating extra allowance to the advertised arrival time of each of them based on its 

performance in the recent past, an identified potential loss/price of applying PBPM to those 

critical routes is an extension of the estimated journey times of the corresponding routes and 

a concomitant reduction/loss of competitiveness (/attractiveness) of the relevant 

recommendations. To help learn about the size of such a potential loss of competitiveness 

(/attractiveness), the relevant statistics have been computed and are presented in Tables 5.17 

and 5.18.  

 

Table 5.17 A summary of the relevant attributes of the studied critical routes 

Route Periods Itineraries (denoted by scheduled departure times) 
Journey time 

(nominal;mins) 
N/Period 

BSB P1, P2, P5 09:55, 10:59, 11:59, 12:59, 13:59, 14:59, 15:59, 16:59, 17:59, 18:59 139 200 
ECB P1 – P5 09:38, 10:37, 11:37, 12:37, 13:37, 14:37, 15:37, 16:37, 17:37, 18:37 189 200 
LMD P1 – P5 09:22, 10:22, 11:22, 12:22, 13:22, 14:22 133 120 
ILM P2, P3 10:10, 11:10, 12:10, 13:10, 14:10 122 100 
RBH P1, P2, P5 08:41, 09:43, 10:41, 11:41, 12:41, 13:41, 14:41, 15:41, 16:41 158 180 
KYS P3 – P5 08:30, 09:30, 10:30, 11:30, 12:30, 13:30, 14:30, 15:30 179 160 
HMN P3 – P5 08:28, 09:28, 10:28, 11:28, 12:28, 13:28, 14:28, 15:28, 16:28 82 180 
KWN P4, P5 08:53, 09:53, 10:53, 11:53, 12:53, 13:53, 14:53, 15:53, 16:53 127 180 
SML P4, P5 09:33, 10:26, 11:26, 12:26, 13:26, 14:26, 15:26 79 140 

   134.3  
NOTE: the meanings of the involved abbreviations/symbols can be found in Subsection 5.3.1 or Glossary 
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Table 5.18 Average increase of advertised journey time (unit: mins) 

 
P1 P2 P3 P4 P5 E(P) 

BSB 10.8 16.2     12.8 13.3 
ECB 11.4 8.4 6.9 11.3 7.8 9.2 
LMD 18.4 7.9 9.2 7.2 6.3 9.8 
ILM   2.3 3.8     3.0 
RBH 6.8 1.7     1.2 3.2 
KYS     12.5 11.6 7.1 10.4 
HMN     10.1 8.5 6.2 8.3 
KWN       4.4 1.6 3.0 
SML       8.3 4.4 6.3 

     
 7.4 

NOTE: the meanings of the involved abbreviations/symbols can be found in Subsection 5.3.1 or Glossary 

 
 

It can be seen from Table 5.17 that the average nominal (/scheduled/advertised) journey time 

of these nine studied routes has been 134.3 mins. Meanwhile, we can learn from Table 5.18 

that the allowance (contingency buffer) added by PBPM (for the nine studied routes for the 

five observation periods) has been on average 7.4 mins. That is, an average increase of 5.5% 

(7.4/134.3) in the nominal (/scheduled/advertised) journey time could have been expected. 

Such an increase in nominal (/scheduled/advertised) journey time would to some degree 

reduce the competitiveness (/attractiveness) of the relevant recommendations, which can be 

viewed as the 'price' of the proposed reliability (/robustness/punctuality) enhancing strategy 

(i.e. PBPM and PBPM+). However, although the proposed solution may not be the perfect to 

deal with those critical routes, it would at least be a (much) better solution than the existing 

ones in tackling critical routes. Why? Reasons are as follows. 

 

Recall that the existing solutions/ideas have been generally categorised into two broad 

categories in Subsection 4.2.8 – CF (Competitiveness-First) ones and RF (Reliability-First) 

ones. Compared with those CF ones, the proposed solution could bring a noticeable 

improvement in reliability and punctuality (c.f. Tables 5.14 – 5.16 in this subsection) and 

meanwhile roughly/approximately maintain the competitiveness (/attractiveness) of the 

recommended itineraries (c.f. Tables 5.17 and 5.18 in this subsection), which means that the 

proposed solution may to some degree help increase the customer stickiness17 of the relevant 

routes (c.f. Subsection 4.2.8 for explanations). Compared with those RF ones, the proposed 

solution could avoid significant reductions in competitiveness (/attractiveness) resulting from 

applying the existing RF solutions/ideas to critical routes (c.f. Subsection 4.2.8 for 

                                                             
17 http://kwhs.wharton.upenn.edu/term/customer-stickiness/ 



190 

illustrations), and hence the obtained estimations of reliability improvements (c.f. Tables 5.14 

– 5.16 in this subsection) would be much more realistic and realisable than those derived 

from the existing RF solutions/ideas (in fact, the speculated improvements in 

reliability/robustness would be a rubber cheque in the case of critical routes; c.f. Subsection 

4.2.8 for a detailed explanation of this issue).  

 

 

5.4 Using Route-oriented Utility Measure (RUM) to quantify the effect of 
modified pre-trip information 

 

5.4.1 Central idea 

 

In the previous section, a route-level measure called RPM (Route-oriented Performance 

Measure) has been proposed that is able to evaluate the performance of a given transfer-

involved (critical) route in terms of punctuality and reliability during a given observation 

period, and is easy to be extended to quantify the effect of modified pre-trip information. 

Although generally straightforward and easy to implement, the measure of RPM and the 

RPM-based analytical method have their limitations. Firstly, RPM is, in essence, a train-

oriented performance indicator (rather than a passenger-oriented measurement). Recall that 

the concept of RPM is built upon an assumption of a representative passenger and an 

assumption of the existence of an absolute standard (i.e. a chosen threshold for arrival 

lateness (TAL, e.g. 5 mins and 10 mins) for determining whether a representative passenger 

is delayed. In reality, however, these underlying assumptions do not hold in many cases: a 

passenger inside a punctual train is still delayed if he/she has missed the previous connection; 

a passenger trip can still be punctual when taking a delayed train (Landex, 2008; Martin, 

2014). That is, RPM (and RPM-based analyses) does not take into account the heterogeneity 

among the relevant passengers. Secondly, in a broader sense, the RPM-based analytical 

method is focused only on a single criterion of punctuality and reliability, and does not take 

into account other influencing factors on mode/itinerary choice such as the concomitant 

increase in advertised journey time (with a pre-modified arrival time). That is, although 

adding allowances to those critical itineraries could generally improve punctuality and 

reliability (c.f. the empirical results presented in the previous section), the overuse of 

allowances (resulting from uncontrollable errors within those performance statistics 
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themselves) is likely to reduce the attractiveness and competitiveness of rail transport for a 

given route.  

 

Based on the above considerations, a utility-based measure (analytical method) named RUM 

(Route-oriented Utility Measure) is proposed in this section to try to capture more realistic 

factors. Roughly speaking, RUM does not adopt an absolute standard (e.g. TAL in the 

calculation of RPM) for performance evaluation, but is a relative measure of how much 

difference a piece of modified pre-trip information could bring to a given transfer-involved 

(critical) route in terms of the overall utility of the relevant passengers. Technically, the 

RUM-based analytical method (to be presented later in this section) not only takes into 

account the inconvenience that may be caused by medium- to large-sized delays (as RPM 

does), but also takes into account the inconvenience that may be caused by small delays (e.g. 

those between 0 and 5 minutes) and early arrivals (i.e. those less than 0 mins). Before going 

to the specific technicalities, it should be noted that the RUM-based analytical method is 

largely experimental and is more like a thought experiment (compared with the RPM-based 

method) that is based on several ‘bold’ assumptions. However, this method could be 

employed as a convenient tool for quantifying the effect of modified pre-trip information 

when detailed data about train movements are available but detailed data about passenger 

activities are not available. Or at the very least, it could be a reference point for those 

interested researchers to refine the relevant theories. 

 

5.4.2 Major assumptions 

 

Assumption 5.1 (i.e. Assumption 5.1 in Subsection 5.2.2) Each of those identified critical 

routes is ‘active’: a given critical route (recommended by a journey planning system) would 

be utilised daily by a number of passengers; and even if the number is not large, it is greater 

than zero. 

 

Assumption 5.4 (i.e. Assumption 5.4 in Subsection 5.2.2) The advertised arrival time of a 

given recommended itinerary is not necessarily equal to the scheduled arrival time in the 

timetable: it could be pre-modified by adopting, for example, the algorithmic approaches 

proposed in Chapter 4.  
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Assumption 5.5 Each recommended itinerary (for a given critical route) is treated as equally 

important in the computation of a specific RUM.  

 

Assumption 5.6 There have been n (n > 0) passengers choosing a given studied itinerary.  

 

Assumption 5.7 Each passenger choosing a particular itinerary (of a studied route) is 

associated with a latest-tolerable arrival time (LAT), which derives from his/her preferred 

arrival time (PAT) and the constraint of subsequent activities. And the 

(financial/reputational/psychological/physical) disutility beyond LAT is greater than the 

inconvenience caused by rescheduling (well in advance) the relevant activities.  

 

Assumption 5.8 A passenger would minimise his/her expected disutility (i.e. maximise 

expected utility) when choosing among a list of recommended itineraries. 

 

Assumption 5.9 There always exist a small group of ‘unwary’ passengers whose LATs are 

‘at the margin’ (i.e. very close to the scheduled arrival time of a chosen itinerary). 

 

The proposed measure of RUM (defined in the next subsection) is mainly built on the above 

six assumptions. Assumptions 5.1, 5.4, and 5.5 above are also the underlying assumptions of 

RPM (c.f. Subsection 5.2.2), in which Assumptions 5.1 and 5.4 are just a copy from 

Subsection 5.2.2 and Assumption 5.5 is a slightly modified version of Assumption 5.2 in 

Subsection 5.2.2. That is, four additional assumptions (i.e. Assumptions 5.6 – 5.9) are 

involved in the calculation of RUM.  

 

Assumption 5.1 is the most basic assumption and is employed to emphasise that any 

evaluation or comparison would become meaningless if there exists no transport demand 

between a given pair of origin and destination stations. Assumption 5.5 (i.e. Assumption 5.2 

in Subsection 5.2.2) is to emphasise that equal weights should be assigned to the 

recommended itineraries (for a given critical route) unless sufficient knowledge about the 

exact distribution of passenger flows is obtained, which can be viewed as an application of 

the principle of indifference (POI, c.f. Section 2.6). And similar to the role Assumption 5.4 

plays in the calculation of RPM, this assumption is employed here to enable the comparison 

between the modified and unmodified pre-trip information to quantify the effect of modified 

pre-trip information.  
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Assumption 5.6 can be viewed as a relaxed version of Assumption 5.3 in Subsection 5.2.2. 

Recall that Assumption 5.3 plays an important part in the calculation of RPM: an ‘average’ or 

‘typical’ passenger needs to be introduced to serve as the standard/reference point for 

evaluation. An implicit assumption is actually included in the description of Assumption 5.3: 

the number of passengers who have adopted a given recommended itinerary is nonzero (i.e. a 

positive integer). This is just what Assumption 5.6 says, but Assumption 5.6 does not further 

require the existence of an ‘average’ passenger.  

 

Assumption 5.7 plays a key role in the calculation of RUM (to be presented later in the next 

subsection). It seems to be a bold assumption due to the fact that some of the relevant issues 

(i.e. LAT-related issues) have not been touched upon in previous transport studies. Despite 

disregarded in the literature, this does not mean that the relevant issues are unimportant. The 

concepts of PAT (c.f. Bates et al., 2001; Noland and Polak, 2002) and LAT (c.f. Senbil and 

Kitamura, 2004) have been mentioned mainly in the context of (macroscopic) economic 

studies with a focus implicitly placed on direct routes, whereas the focus of this section is 

placed on individual passengers (i.e. taking into account the heterogeneity among passengers 

on a microscopic level) and on transfer-involved rail routes. If an individual passenger’s 

standpoint is adopted, there would be a diverse set of possible scenarios for a long-distance, 

transfer-involved rail journey (e.g. those identified critical routes in British railways), which 

renders a simple demarcation of journey purpose (i.e. commuting/leisure/business, c.f. Table 

1.1 in Chapter 1) inappropriate. Here, in Assumption 5.7, the emphasis is placed on the 

possible existence of time-critical scenarios in inter-city rail travel. For example, a young 

man going from one city to another to attend a job interview, a journey to a major airport 

located in another city, a journey to watching a sports game in another city, etc. Although 

these scenarios may be regarded as ‘untypical’, they should not be ruled out in an analytical 

model as long as there is not sufficient evidence to refute these possibilities.  
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Figure 5.10 An illustrative example of Assumption 5.7 and Assumption 5.8 
(NOTE: LAT = the latest-tolerable arrival time of a given passenger; DU = disutility; t2 = the 
scheduled arrival time of the chosen itinerary; t1 = the scheduled arrival time of the previous 
itinerary in the recommended list; A, B, C = the identifiers for the corresponding intervals) 

 

 

Assumption 5.8 is a supplement to Assumption 5.7, which can be regarded as an application 

of the relevant concepts in Decision Theory (c.f. Section 2.6). Figure 5.10 (see above) gives a 

more tangible illustration of Assumptions 5.7 and 5.8: if a passenger arrived at the right hand 

side of his/her LAT (i.e. within Interval C), the disutility caused would be higher than if 

he/she had arrived within Interval A or Interval B; meanwhile, arriving within Interval B 

would cause the least disutility (compared with Interval A or C) based on Assumption 5.8 

that a passenger would minimise his/her (expected) disutility (i.e. maximise (expected) utility, 

c.f. Subsection 2.6.2) when making a choice. Note that Figure 5.10 is only one of the 

possibilities (of rescheduling) to avoid DU(C): the figure is employed only for the 

convenience of illustration. That is, a passenger can always have a set of alternative options 

to avoid DU(C): 1) shift to another (intra-modal) recommended itinerary with a higher 

expected utility (e.g. Figure 5.10); 2) shift to another mode of transport and itinerary with a 

higher expected utility; 3) reschedule, well ahead of time, the subsequent activities at the 

destination; and 4) cancel the whole journey. In a word, DU(C) > DU(A) in the figure is not 

compulsory, and this further assumption underlying Figure 5.10 is only employed to make 

the relevant concepts more tangible. Moreover, it would be helpful for better understanding 

these two assumptions by comparing them with the relevant assumptions underlying previous 

studies such as Small (1982), Mahmassani and Chang (1986), and Bates et al. (2001). Firstly, 

Intervals A, B, and C in Figure 5.10 can be viewed as an extension of the concept of 

‘indifference band’ in Mahmassani and Chang (1986), which are no longer narrowly defined 

in the context of urban car commuters. Secondly, in line with Small (1982) and Bates et al. 

(2001), Figure 5.10 also implicitly assumes the existence of ‘schedule disutility’. However, 

Figure 5.10 here does not make further assumptions on linearity in schedule disutility and on 

linearity in the overall disutility (i.e. a linear combination of journey time disutility, fare 

disutility, schedule disutility, etc) and only slightly involves ordinal (partially cardinal) 
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utilities (i.e. DU(C) > DU(B) and DU(A) > DU(B) in Figure 5.10), which avoids extra 

unnecessary assumptions (according to Occam’s razor) and avoids the potential problem of 

interpersonal utility comparisons (to be further explained in Section 5.5). Thirdly, the 

introduction of Assumption 5.7 is based mainly on the following two observations in reality. 

On the one hand, every person has exactly 24 hours per day and 7 days per week: excluding 

those daily routines such as sleeping, eating, and working, the available time for trips is 

inherently limited and hence the existence of LATs is natural. On the other hand, an implicit 

assumption that schedule disutility can play a predominant role in affecting itinerary choice is 

based on the observation that the other factors such as fare and journey time are often the 

same (or quite similar) in British railways in most cases, for a given direct route (or each part 

of a given transfer-involved route) is in most cases operated by a single rail operator in 

Britain’s passenger rail system.  

 

Assumption 5.9 is employed to reflect the heterogeneity in passengers’ perception of 

potential delays. It should be noted that these ‘unwary’ passengers may be very wary in daily 

life, but becomes ‘unwary’ when making an itinerary choice due to various reasons. For 

example, an overoptimistic estimation of the reliability of a recommended itinerary due to a 

lack of experiential information. Figure 5.11 below provides an illustrative example of 

Assumption 5.9.  

 

 

Figure 5.11 An illustration of Assumption 5.9 
(Suppose the scheduled arrival time of the chosen itinerary is 16:00, a passenger with an LAT 

of 16:02 or 16:04 is said to be ‘unwary’) 
 

 

5.4.3 The analytical model 

 

Based on the assumptions presented in the previous subsection, RUM (Route-oriented Utility 

Measure) can be defined and calculated by the following analytical model (i.e. Eq. (3) and Eq. 

(4)), which can be easily extended to quantify the effect of modified pre-trip information. 
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In Equations (3) and (4) above, the meanings of the involved notations are listed in the 

following: 

 

- Those subscripts r, p, j, k respectively represent route identifier, period identifier, date 

identifier, and itinerary identifier. 

- The three symbols schr,p,j,k, mdr,p,j,k, and actr,p,j,k  respectively correspond to the 

scheduled arrival time of a given itinerary, the pre-modified arrival time of the (same) 

itinerary, and the actual arrival time of the (same) itinerary. (c.f. arrs, arrm, and arra in 

Figure 5.1 in Subsection 5.2.2) 

- The meanings of Δ1, Δ2, and Δ3 have been explained in Eq. (3), and the meaning of Δ 

is to be explained later in a further explanation of the analytical model (in this 

subsection). 

- The symbol f(actr,p,j,k) is an evaluation function for measuring the percentage of 

passengers who could have gained in utility of a given (studied) itinerary, the specific 

form of which depends on the position of actr,p,j,k on the time axis relative to schr,p,j,k 

and/or mdr,p,j,k. 

- RUM is short for Route-oriented Utility Measure, which is the proposed utility 

measure to quantify the effect of modified pre-trip information. 

- The two capital letters J and K respectively represent the number of days during a 

given observation period and the number of studied (critical) itineraries per day.  
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Although the involved notations have been briefly explained (see above), the mechanism of 

those equations has not been explained and how to determine several key parameters (e.g. 

schr,p,j,k, mdr,p,j,k, and actr,p,j,k) remains unclear. In the following, a more detailed explanation is 

to be presented about the key parameters involved and the mechanism of the analytical model 

as a whole. 

 

Firstly, it should be noted that the three involved parameters in Eq. (3) – schr,p,j,k, mdr,p,j,k, and 

actr,p,j,k – have the same meaning of the three symbols arrs, arrm, and arra in previous sections 

(c.f. Figure 5.1 in Subsection 5.2.2 and Eq. (2) in Subsection 4.3.8). The reason for the 

change of notations is mainly due to the consideration that the previous illustrations have 

been oriented to a given (studied) itinerary, whereas the emphasis here is placed on that each 

studied itinerary is a member of a given sample set. Since the meanings are the same, the 

methods adopted in the determination of arrs, arrm, and arra are also applicable to the 

determination of schr,p,j,k, mdr,p,j,k, and actr,p,j,k. More specifically, the scheduled arrival times 

(denoted by schr,p,j,k here) can be easily determined from the timetable data; the pre-modified 

(advertised) arrival times (denoted by mdr,p,j,k) can also be generated from the proposed 

algorithmic approach in Chapter 4 (c.f. Algorithm 4 in Section 4.3); and the (reconstructed) 

actual arrival times (denoted by actr,p,j,k) can also be determined by adopting the method 

presented in Subsection 5.2.5. Here, special attention should be paid to the determination of 

actr,p,j,k: despite different assumptions adopted in RPM-based analytical method (in the 

previous section) and RUM-based analytical method (in this section), the method proposed in 

Subsection 5.2.5 (i.e. Table 5.1) also applies to the determination of actr,p,j,k here in the RUM-

based model. However, the interpretation of Table 5.1 (in Subsection 5.2.5) needs to be 

changed: it is no longer oriented to an ‘average’ passenger, but is oriented toward each 

individual passenger; and the reconstructed (actual) arrival time of a studied itinerary can be 

interpreted as the most likely arrival time for most of the relevant passengers (i.e. those who 

have chosen this itinerary).  

 

Once the three involved parameters (i.e. schr,p,j,k, mdr,p,j,k, and actr,p,j,k) are determined for each 

studied itinerary (during an adopted observation period), Eq. (3) can then be applied to 

conduct itinerary-level analysis. Since the three intermediate parameters – Δ1, Δ2, and Δ3 – 

can be easily derived from schr,p,j,k, mdr,p,j,k, and actr,p,j,k, the only remaining parameter to 

determine is Δ. In fact, Δ as the denominator is based on an implicit assumption made on the 
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distribution of the LATs (latest-tolerable arrival times) of the relevant passengers (who have 

chosen a particular itinerary): since little is known about the distribution of their LATs, a 

uniform distribution is introduced (based on the principle of indifference, c.f. Section 2.6), 

bounded by the scheduled arrival time of the chosen itinerary and an unknown but finite 

upper bound.  

 

Figure 5.12 below provides an illustration of how to determine Δ. Δ represents the length of 

the interval between the scheduled arrival time (schr,p,j,k = 16:00) of this itinerary and a finite 

upper bound denoted by LAT_max. Adopting the scheduled arrival time (16:00 in this 

illustrative example) as the lower bound of the distribution of LATs is mainly based on 

Assumption 5.9 in the previous subsection: the existence of ‘unwary’ passengers should not 

be ruled out unless there is sufficient evidence to refute this assumption. The upper bound 

LAT_max is unknown but should be finite: in reality, a passenger’s daily activities would 

unavoidably be constrained by basic physical and psychological needs. In realistic 

applications (of Eq. (3)), scenario-based values could be assigned to LAT_max to facilitate 

the specific calculations. As soon as the lower and upper bounds of the distribution of LATs 

are determined, the parameter Δ (i.e. the length of the interval/domain) can be determined and 

hence be used to solve Eq. (3).  

 

 

Figure 5.12 An illustration of the distribution of LATs of the passengers having chosen a 
studied itinerary (NOTE: the scheduled arrival time of this particular itinerary is 16:00; Δ is 
the length of the interval between 16:00 and LAT_max, which could be e.g. 1h, 2h, or even 
3h, considering there might be some passengers having a considerably flexible schedule.) 

 

 

Based on the introduction to the relevant parameters (in the above), each of those fractions 

(i.e. Δ1/Δ, (Δ2 – Δ3)/Δ and -Δ1/Δ) in Eq. (3) can then be interpreted as follows: 

 

- If the actual arrival time is no less than the pre-modified arrival time (i.e. actr,p,j,k ≥ 

mdr,p,j,k), then those passengers whose LATs lying between the scheduled arrival time 
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and the pre-modified arrival time would be better off if the pre-modified version has 

been adopted, either by shifting to the previous itinerary or by rescheduling the 

subsequent activities. 

- If the actual arrival time lies between the scheduled arrival time and the pre-modified 

arrival time (i.e. schr,p,j,k < actr,p,j,k < mdr,p,j,k), then those whose LATs lying between 

the scheduled arrival time and the actual arrival time would be better off, but those 

whose LATs lying between the actual arrival time and the pre-modified arrival time 

would be worse off. 

- If the actual arrival time is no larger than the scheduled arrival time (i.e. actr,p,j,k ≤  

schr,p,j,k), then those whose LATs lying between the scheduled arrival time and the 

pre-modified arrival time would be worse off.  

 

Once the utility change in each studied itinerary is calculated, Eq. (2) can then be used to 

synthesise the results of all itineraries for a studied route during an adopted observation 

period. Here, equal weights are assigned to all involved itineraries based on the principle of 

indifference (c.f. Section 2.6 and Assumption 5.5 in Subsection 5.4.2). 

 

5.4.4 A small numerical example 

 

In order to help better understand the mechanism of the RUM-based analytical model 

(presented in the previous subsection), a small numerical example is employed in this 

subsection to illustrate the specific calculations.  

 

Table 5.19 below depicts an imaginary route containing three studied itineraries (denoted by 

i1, i2, and i3) per day and the observation period adopted is a particular day. The three 

parameters arr_s, arr_m, and arr_a (i.e. schr,p,j,k, mdr,p,j,k, and actr,p,j,k) have all been 

determined for each of the three studied itineraries and are listed in Table 5.19. From the 

table (Table 5.19) we can see that the three studied itineraries respectively correspond to the 

three scenarios in Eq. (3) in the previous subsection.  
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Table 5.19 A fictitious critical route containing three studied itineraries 

I arr_s arr_m arr_a 
i1 15:00 15:12 15:15 
i2 16:00 16:15 16:09 
i3 17:00 17:05 16:58 

 

 

Figure 5.13 below adopts the values of arr_s, arr_m, and arr_a in Table 5.19 to illustrate how 

to calculate the RUM for this example route. To help better understand some abstractions, a 

physical interpretation is adopted here in this figure. Suppose each of the three itineraries in 

Table 5.19 corresponds to a set of N passengers (the three Ns in Figure 5.13 are treated as 

indistinguishable based on Assumption 5.5 in Subsection 5.4.2), and the LATs (latest-

tolerable arrival times) of the N passengers are evenly distributed on the interval between two 

adjacent arrival times (e.g. [15:00, 16:00]) if the headway of this example route (i.e. 60 mins) 

is adopted as the parameter of Δ in Eq. (3). Then, we can apply Eq. (3) (presented in the 

previous subsection) to each of these three itineraries to calculate the itinerary-level utility 

change (i.e. f(actr,p,j,k)).  

 

 

Figure 5.13 An illustration of how to calculate the RUM for the example in Table 5.19 
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For Itinerary 1 (i.e. i1 in Table 5.19), arr_a(i1) (= 15:15) is greater than arr_m(i1) (= 15:12). 

The evaluation function under this scenario is f(arr_a(i1)) = ∆1/∆ = 12/60 (see Figure 5.13). 

What does this obtained result mean? It means that approximately 20 percent of the N 

passengers choosing this itinerary could have benefited if replacing arr_s(i1) (= 15:00) with 

arr_m(i1) (= 15:12). Alternatively, the result can be interpreted as the probability that a 

passenger choosing this itinerary could have gained in utility is approximately 0.2 if 

providing arr_m(i1) instead of arr_s(i1). Here, ‘approximately’ is used to emphasise that the 

result is only an estimation based on the available data and the relevant assumptions, and it is 

subject to uncontrollable errors from within the adopted data and assumptions themselves. 

Why could this (i.e. increase in utility) happen? This is because the information about 

arr_m(i1) (= 15:12) could alert those passengers lying between arr_s(i1) and arr_m(i1) (i.e. 

[15:00, 15:12]) to take actions (at an early stage) to avoid/reduce the disutility caused by 

being late (i.e. arriving later than their LATs), and the other passengers (i.e. those lying 

between [15:13, 16:00]) would be neither better off nor worse off. That is, those between 

[15:13, 15:15] would remain being late and those between [15:16, 16:00] would remain being 

on time, no matter whether arr_m(i1) (= 15:12) were informed.  

 

Having obtained an understanding of the logic behind the analysis of Itinerary 1, the analyses 

of Itinerary 2 (i2) and Itinerary 3 (i3) can be understood in a similar way. Under the scenario 

of Itinerary 2 (i.e. arr_s < arr_a < arr_m), those between arr_s(i2) and arr_a(i2) (i.e. [16:00, 

16:09]) would be better off while those between arr_a(i2) and arr_m(i2) (i.e. [16:09, 16:15]) 

would be worse off if the pre-trip information about arr_m(i2) (rather than that about 

arr_s(i2)) had been disseminated. Analogous to the analysis of Itinerary 1, the information 

about arr_m(i2) (= 16:15) could benefit those between arr_s(i2) and arr_a(i2) (i.e. [16:00, 

16:09]) by enabling them to have sufficient time to take actions to avoid/reduce the disutility 

of being late. However, this piece of modified pre-trip information (about arr_m(i2)) would 

meanwhile increase the disutility of those between arr_a(i2) and arr_m(i2) (i.e. [16:09, 16:15]) 

by, for example, pushing them away from the most advantageous option to adopt a less 

advantageous option (e.g. shifting from the current itinerary (corresponding to Interval B in 

Figure 5.10 in Subsection 5.4.2) to the previous itinerary (corresponding to Interval A in 

Figure 5.10)). Here the key to understanding the increased disutility for those between 

arr_a(i2) and arr_m(i2) are Assumptions 5.6 and 5.8 in Subsection 5.4.2: since it is assumed 

that a number of passengers have adopted this itinerary (and rail transport) under the 

unmodified pre-trip information (Assumption 5.6), and that each passenger would minimise 
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his/her expected disutility when making the itinerary choice (Assumption 5.8), a change of 

option (mode and itinerary) would to some degree increase the disutility of a passenger 

whose LAT lies between arr_a(i2) and arr_m(i2): although the passenger would be able to 

arrive at the destination station before his/her LAT by either adopting the most advantageous 

option (i.e. i2) or adopting a ‘disutility-reduction’ option (resulting from the pre-modified 

arrival time arr_m(i2)), the ‘disutility-reduction’ option would not be as advantageous as i2.  

 

Based on the above considerations, the percentage of passengers who could have gained in 

utility is 3/60 for i2 (i.e. f(arr_a(i2)) = (∆2 - ∆3)/∆ = 9/60 – 6/60 = 3/60) if the modified pre-

trip information about arr_m(i2) (rather than that about arr_s(i2)) had been disseminated. The 

same logic applies to Itinerary 3: since arr_a(i3) (= 16:58) < arr_s(i3) (= 17:00), the pre-trip 

information about arr_m(i3) (= 17:05) would shift a passenger whose LAT is between 17:00 

and 17:05 from the most advantageous option (i.e. i3) to a ‘disutility-reduction’ option, which 

would bring extra disutility to the passenger. Therefore, the percentage of passengers who 

could have gained in utility is -5/60 for i3 (i.e. f(arr_a(i3)) = -∆1/∆ = - 5/60) if the unmodified 

pre-trip information about arr_s(i3) had been replaced with the modified pre-trip information 

about arr_m(i3). 

 

Averaging the three obtained itinerary-specific indices, a route-level measure of RUM can 

then be calculated (i.e. 5.6% in Figure 5.13). That is, the modified pre-trip information (about 

pre-modified arrival times) could have enabled approximately 5.6% passengers to gain in 

utility for the studied route during the studied period. Note that here the example is fictitious, 

but those results obtained from the analyses of the identified critical routes in British railways 

(to be presented in the next section) are all based on large samples (containing hundreds of 

records) of real-world data. 

 

 

5.5 Analyses of several identified critical routes using RUM 

 

5.5.1 Data preparation 

 

In this section, a number of identified critical routes in Britain’s passenger rail system are to 

be analysed using RUM (Route-oriented Utility Measure) proposed in the previous section 
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(i.e. Section 5.4). The aim of these analyses is twofold: on the one hand, they are utilised to 

quantify the effect of the modified pre-trip information (generated from the proposed 

algorithmic approach in Chapter 4) on the studied routes from a different perspective (with 

the RPM-based analytical method presented in Section 5.2); on the other hand, they are 

employed to enrich the understanding of these identified critical routes in British railways.  

 

The data adopted to conduct these analyses are the same with those adopted in Section 5.3: 

historical train movements data about the relevant critical routes have been collected from 

Realtime Trains (RTT) during a 18-months period between September 2015 and March 2017. 

 

The same list of nine studied routes (with that in Section 5.3) is adopted here, in which each 

route has been identified as critical during the 18-months period: 

 

Bournemouth – Southampton Central – Brighton 

Ebbw Vale Town – Cardiff Central – Birmingham New Street 

Liverpool Lime Street – Manchester Piccadilly – Doncaster 

Rugeley Trent Valley – Birmingham New Street – Hereford 

Ilkley – Leeds – Middlesbrough 

London Kings Cross – York – Scarborough 

Harwich Town – Manningtree – Norwich 

Knottingley – Wakefield Kirkgate – Nottingham 

Sudbury (Suffolk) – Marks Tey – London Liverpool Street 

 

Four observation periods (again, the same with those in Section 5.3) are selected to conduct 

the analyses of these nine routes, each of which contains 2-months (8-weeks) historical data 

(c.f. Subsection 5.2.4): Period 1 (P1) is between 12 October 2015 and 4 December 2015, 

Period 2 (P2) is between 25 January 2016 and 18 March 2016, Period 3 (P3) is from 13 June 

2016 to 5 August 2016, Period 4 (P4) is from 3 October 2016 to 25 November 2016, and 

Period 5 (P5) is from 16 January 2017 to 10 March 2017.  

 

The sampling method adopted in generating the modified pre-trip information is a semi-

dynamic method based on an assumption of ‘the nearer, the more similar’ (c.f. Subsection 

5.2.4). The sample size adopted for calculating RUMs is 4 weeks (c.f. Subsection 5.2.4). 
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Moreover, the specific technicalities used in reconstructing the actual arrival times can be 

found in Subsection 5.2.5. 

 

5.5.2 The results 

 

Based on the analytical model, the available data, and the relevant technicalities, the results 

from RUM-based analyses of the nine studied critical routes have been obtained and are 

presented in Table 5.20 below. The meanings of the involved notations are listed in the 

following: 

 

- P1, P2, P3, P4, and P5 respectively correspond to Period 1 (12 October 2015 ~ 4 

December 2015), Period 2 (25 January 2016 ~ 18 March 2016), Period 3 (13 June 

2016 ~ 5 August 2016), Period 4 (3 October 2016 ~ 25 November 2016), and Period 5 

(16 January 2017 ~ 10 March 2017). 

- E(P) represents the average over the five observation periods (i.e. P1 ~ P5). 

- N per P means the number of analysed itineraries during each of the five observation 

periods (i.e. P1 ~ P5). 

- All the real numbers in Columns P1 ~ P5 and Column E(P) represent percentages (e.g. 

0.61 means 0.61%). 

- BSB represents the route Bournemouth – Southampton Central – Brighton. 

- ECB represents the route Ebbw Vale Town – Cardiff Central – Birmingham New 

Street. 

- LMD represents the route Liverpool Lime Street – Manchester Piccadilly – Doncaster. 

- ILM represents the route Ilkley – Leeds – Middlesbrough. 

- RBH represents the route Rugeley Trent Valley – Birmingham New Street – Hereford. 

- KYS represents the route London Kings Cross – York – Scarborough. 

- HMN represents the route Harwich Town – Manningtree – Norwich. 

- KWN represents the route Knottingley – Wakefield Kirkgate – Nottingham. 

- SML represents the route Sudbury (Suffolk) – Marks Tey – London Liverpool Street. 

- The value (i.e. 2.8) in the bottom cell of Column E(P) is the average of the six 

positive values in the column.  

 

 

 



205 

Table 5.20 The evaluation results for the nine studied critical routes using RUM (unit: %) 

 P1 P2 P3 P4 P5 E(P) N per P 

BSB 0.61 5.76   0.45 2.3 200 
ECB -3.63 -2.97 -3.07 -8.31 -4.58 -4.5 200 
LMD -11.19 3.47 -1.02 -2.51 2.41 -1.8 120 
ILM  2.71 2.92   2.8 100 
RBH 4.34 1.95   1.66 2.7 180 
KYS   5.15 1.12 6.05 4.1 160 
HMN   -2.53 -1.2 1.39 -0.8 180 
KWN    2.31 2.03 2.2 180 
SML    2.54 2.19 2.4 140 

      2.8  
 

 

Note that the parameter Δ in the analytical model (c.f. Eq. (3) in Subsection 5.4.3) has been 

set to 60 minutes (i.e. the headway of these studied routes) in the analyses. Moreover, it 

should be noted that those blank cells in the above table (Table 5.20) are either due to 

planned/predictable cancellations (e.g. BSB, c.f. Subsections 4.3.7 and 5.3.2) or due to the 

changes in the list of identified critical routes (e.g. KWN did not enter the list during P1 – P3, 

c.f. Subsection 5.3.9). 

 

When looking at those specific evaluation results in Table 5.20, the first reaction may be a 

shock: Why could several of these routes (i.e. ECB, LMD, and HMN) be associated with 

negative values? Why do those RPM-based counterparts of these negative results (c.f. 

Subsections 5.3.3, 5.3.4, and 5.3.8) reveal a totally different effect of the modified pre-trip 

information about these routes (i.e. ECB, LMD, and HMN)? In order to get a better 

understanding of these ‘abnormal’ results, an in-depth investigation into the sample data 

about and the characteristics of the relevant routes has been conducted, the findings of which 

are to be presented in the next subsection.  

 

Moreover, the gains in RUM brought by the proposed algorithmic approach (corresponding 

to those positive decimals in Table 5.20) seem to be relatively small: What do these modest 

gains in RUM mean? Are they worth pursuing? Such questions are to be answered in the next 

subsection, with the aid of illustrative examples.  
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5.5.3 Interpretation 

 

As mentioned in the previous subsection, some of the evaluation results in Table 5.20 seem to 

be ‘abnormal’, indicating that the effect of the modified pre-trip information (generated from 

the proposed algorithmic approach) is negative on the corresponding routes (i.e. ECB, LMD, 

and HMN) in terms of RUM (Route-oriented Utility Measure). More strangely still, the 

counterparts of these negative results in the RPM-based analyses (c.f. Subsections 5.3.3, 5.3.4, 

and 5.3.8) reveal that significant improvements could be expected in terms of RPM (Route-

oriented Performance Measure).  

 

After a comprehensive examination of the relevant data and the technicalities involved in the 

proposed analytical models, the following four aspects have been recognised as the most 

possible reasons for those ‘abnormal’ (negative) results in Table 5.20. 

 

Firstly, those ‘abnormal’ results may be attributed to the difference between the mechanism 

of the RPM-based method and that of the RUM-based method. Recall that the RPM-based 

analytical method (c.f. Sections 5.2 and 5.3) is mainly built on an assumption of an ‘average’ 

passenger and an assumption of an absolute standard/threshold (e.g. 5 mins lateness) for 

determining whether an ‘average’ passenger has been delayed. That is, those small delays 

(e.g. < 5 mins) and early arrivals (i.e. negative values of delays) are regarded as ‘successful 

realisations’ in the context of RPM-based method. By contrast, under the analytical 

framework of RUM, those small delays and early arrivals would also be likely to increase the 

overall disutility associated with a studied route, considering the heterogeneity in passengers’ 

perception of delays. Moreover, as illustrated in Subsection 5.3.12, those significant 

improvements in RPM the modified pre-trip information could bring to certain routes (e.g. 

LMD) can largely be attributed to a combination of a relatively high percentage of medium-

sized delays and relatively generous allowances added (c.f. the empirical results presented in 

Subsection 5.3.12). In the RUM-based analytical model, however, a combination of medium-

sized delays and generous allowances would be likely to introduce a lot of negative items (c.f. 

Eq. (3) in Subsection 5.4.3) and hence would be likely to lead to a decrease in the overall 

utility.  

 

Secondly, those ‘abnormal’ results may have been caused by the inherent imperfections in the 

RUM-based model itself. As has been emphasised in Section 5.4, the RUM-based analytical 
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model is largely experimental and is built on several ‘bold’ assumptions. More specifically, 

several applications of the principle of indifference (POI, c.f. Section 2.6) would be likely to 

lead to systematic errors in the evaluation results. For example, in the synthesis of itinerary-

level indices in Eq. (4) (c.f. Subsection 5.4.3), equal weights are assigned to all involved 

itineraries (based on Assumption 5.5), which may lead to a biased result in the scenario that 

some of the involved itineraries correspond to significantly more passengers than the others 

during a given observation period.   

 

Thirdly, the timetable design (at the tactical planning phase, c.f. Section 2.5) of the relevant 

routes may have resulted in those ‘abnormal’ values. Here, the two routes of ECB (Ebbw 

Vale Town – Cardiff Central – Birmingham New Street) and HMN (Harwich Town – 

Manningtree – Norwich) are employed to serve as illustrative examples (see Figures 5.14 ~ 

5.17). Recall that in the introduction to the fundamentals of railway timetabling and 

operations (c.f. Section 2.5), two seemingly unrelated concepts have been respectively 

explained: working timetable and running time supplement. Roughly speaking, a working 

timetable is the counterpart of a published passenger timetable, which contains more 

technical details and is targeted at rail industry professionals. And running time supplements 

are added to the published passenger timetables for certain (direct) train lines to increase their 

robustness under small delays. Recall also that in the introduction to the concept of running 

time supplement (in Section 2.5) the operational practice in British railways has also been 

briefly mentioned: in Britain, running time supplements are not explicitly defined but are 

included in the timetables. After an in-depth investigation into the relevant published 

timetables and working timetables of the nine studied routes in this section, it is recognised 

that running time supplements have been implicitly included in the published timetables for 

several involved train lines. Figures 5.14 ~ 5.17 provide some illustrative examples of these 

implicitly added running time supplements, in which Figures 5.14 and 5.15 correspond to the 

feeder leg of ECB and Figures 5.16 and 5.17 correspond to the connecting leg of HMN.  
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Figure 5.14 Running time supplements Example One (Source: www.realtimetrains.co.uk, 
accessed 15 Jan 2017): the column under ‘WTT’ is the working timetable and ‘GBTT’ 
corresponds to the published timetable; Figures 5.15~5.17 below have the same format.  

 

 

 

Figure 5.15 Running time supplements Example Two (Source: www.realtimetrains.co.uk, 
accessed 21 Feb 2017) 

 

From Figures 5.14 and 5.15, it can be seen that a 3-minutes time supplement is added to 

Cardiff Central (the transfer station) for this feeder line, which means that the scheduled 

window between the feeder line and the connecting line is implicitly increased by 3 minutes. 

A conceivable effect of these implicitly included time supplements is a reduced risk of 
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missed transfers, and hence a reduced percentage of large arrival delays and reduced extra 

allowances added by the proposed algorithmic approach in Chapter 4, which might introduce 

a lot of negative items (c.f. Eq. (3) in Subsection 5.4.3) and hence would lead to a decrease in 

the overall utility.  

 

 

Figure 5.16 Running time supplements Example Three (Source: www.realtimetrains.co.uk, 
accessed 15 Jan 2017) 

 

 

 

Figure 5.17 Running time supplements Example Four (Source: www.realtimetrains.co.uk, 
accessed 21 Feb 2017) 
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From Figures 5.16 and 5.17, it can be seen that discrepancies between the published timetable 

and the working timetable exist not only at the transfer station (i.e. Manningtree) but also at 

the destination station (i.e. Norwich). At Manningtree, the scheduled departure time (of the 

connecting leg of HMN) in the working timetable is 1.5 minutes later than its counterpart in 

the published passenger timetable, indicating that the scheduled window between the feeder 

leg and the connecting leg for this route has been implicitly increased by 1.5 minutes. 

Meanwhile, a 2-minutes time supplement has been implicitly added to the destination station 

(i.e. Norwich). It is conceivable that these implicitly included time supplements have reduced 

to some degree the overall magnitude of arrival delays at Norwich, and hence might 

introduce a lot of negative items (c.f. Eq. (3) in Subsection 5.4.3) leading to a decrease in the 

overall utility.   

 

Lastly, but not least, other external factors may have led to those ‘abnormal’ results. As 

mentioned in Subsection 5.2.4, there are various external factors that may influence train 

movements. Although a lot of effort has been put into the analyses of the nine studied routes 

(either using RPM or using RUM): the choice of the five observation periods (i.e. P1 ~ P5) 

has carefully controlled several external factors such as public holidays and half-yearly 

changes in the long-term timetable, and the impact of planned/predictable cancellations has 

also been controlled in the sampling process, there may still exist some undetectable or 

uncontrollable factors that exert influence on the evaluation results.  

 

In the above, potential factors resulting in those negative values have been systematically 

sorted out. Now let us shift our focus from those negative values to those positive values. At 

the end of the previous subsection, two relevant questions about those positive decimals in 

Table 5.20 have also been raised: What do these modest gains in RUM mean? Are they worth 

pursuing? In the following, the Author tries to answer these short but tricky questions by re-

examining the relevant theories and their underlying assumptions. 

 

Firstly, it should be emphasised that each positive/negative decimal in Table 5.20 represents 

the percentage of passengers who could expect a utility increase/decrease, rather than the 

percentage increase/decrease in the overall utility. For example, the decimal 2.8 in the bottom 

cell of Table 5.20 means that on average 2.8% of the passengers choosing the six routes that 

are associated with positive values (in Table 5.20) would expect a utility increase if the 
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proposed algorithmic approach is adopted, and meanwhile the other 97.2% passengers would 

neither gain or lose in utility. A fundamental difference between ‘the percentage of 

passengers who could expect a utility increase/decrease’ and ‘the percentage 

increase/decrease in the overall utility’ lies in that the former does not involve interpersonal 

utility comparisons but the latter does. According to Briggs (2017), the expected utility 

theory itself is far from perfect and one of its potential limitations is the so-called problem of 

interpersonal utility comparisons: Mike’s utilities are constituted by Mike’s preferences; 

Cathy’s utilities are constituted by Cathy’s preferences; Mike’s utility 10 is not necessarily 

equal to Cathy’s utility 10. Although a number of potential solutions to this problem have 

been put forward in the literature such as the concepts of ‘extended preferences’ and 

‘extended utility functions’ proposed by Harsanyi (1997) and Adler (2014) and several other 

theoretical frameworks in welfare economics (c.f. Adler and Fleurbaey, 2016), these concepts 

and theories remain immature and have not been widely accepted. Since the RUM-based 

method is built upon the expected utility theory, it also suffers from this limitation: the 

obtained results cannot precisely tell ‘the percentage increase/decrease in the overall utility’ 

but can instead tell ‘the percentage of passengers who could expect a utility 

increase/decrease’. To better understand the subtleties and complexities, let us do the 

following thought experiment. Note that the involved cardinal utilities (as advocated by Ng 

(1997)) in the following experiment are merely employed for explanation, and the RUM 

model itself does not require cardinal utilities (c.f. Section 5.4).  

 

Let us firstly make a bold assumption that there exists an absolutely impartial judge who has 

experienced all the pleasures and sufferings of a wide range of different groups of people so 

that he/she/it can precisely assign to each relevant passenger an objective utility measured by 

standardised/normalised/universal utils (the units of a person’s utility is called utils; here the 

terminology standardised utils means they are interpersonally comparable). Now suppose 

there are 100 passengers choosing the six routes (with gains in RUM) during a given period 

of time (e.g. a week), each of which has the following utility function: DU(A) = -20, DU(B) 

= -10, and DU(C) = -30 (based on Figure 5.10 in Subsection 5.4.2; all measured by 

standardised utils). Based on the results in Table 5.20, we know that three (2.8 ≈ 3) out of the 

100 passengers could obtain utility gains, while the other 97 would stay unaffected. That is, 

three out of the 100 could benefit from the modified pre-trip information by shifting from the 

worst-case outcome (i.e. Interval C in Figure 5.10) to a not-too-bad outcome (i.e. Interval A 

in Figure 5.10), while 97 out of the 100 would neither gain or lose in utility (i.e. staying in 
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Interval B or Interval C or the interval between B and C). To simplify the estimation, let us 

further assume that the average (dis-)utility of the 97 unaffected passengers is -20 (derived 

from a mixture of -30 ~ -10). Then, we can calculate the percentage increase in the overall 

utility by the following equation: ΔU = 3×[(-20) – (-30)] / |[3×(-30) + 97×(-20)]| = 1.5%. 

That is, only 1.5% increase in the overall utility of the 100 passengers can be obtained if we 

assume that all of them have the (same) following utility function: DU(A) = -20, DU(B) = -

10, and DU(C) = -30.  

 

Now let us make a slight modification to the above numerical example by assuming the 97 

still have the aforementioned utility function (i.e. DU(A) = -20, DU(B) = -10, and DU(C) = -

30) but the three have the following: DU(A) = -20, DU(B) = -10, and DU(C) = -100. In this 

new context, although only three out of the 100 can gain in utility, the percentage increase in 

the overall utility becomes non-negligible: ΔU = 3×[(-20) – (-100)] / |[3×(-100) + 97×(-20)]| 

= 10.7%. By comparing the above two numerical examples (thought experiments), we can 

see that although an average gain of 2.8% in RUM may be regarded as insignificant, this does 

not mean that the percentage increase in the overall utility would not be likely to be 

significant. Hence, the potential benefit of the 2.8% gain in RUM should neither be 

overestimated nor be underestimated.  

 

If the Reader finds the above thought experiments too ridiculous, there is also a non-

utilitarian argument for supporting the minority (i.e. the 2.8%): all too often, policy makers 

tend to ignore the ‘minority’ and favour the ‘majority’ either by relying on their own limited 

knowledge and experience or by telling ‘each individual to imagine the probability of his 

being in various positions, rather than having him identify with the individuals who will 

actually occupy various positions’ (quoted from Kamm (1998), and this phenomenon is 

called ‘a veil of ignorance’). Of course, in the context of transport studies, we do not need to 

care too much about those serious life-and-death issues discussed in Kamm (1998). Are these 

‘modest’ improvements worth pursuing? Well, the answer may be ‘it depends’. It depends on 

how to define ‘worthiness’ (‘man is an animal suspended in webs of significance he himself 

has spun’18). If defined from the perspective of cost efficiency, the answer may be ‘Yes’: all 

the infrastructure manager (information provider) needs to do is just import those source 

codes in the appendices of this thesis into a spare computer and make the computer spend 

                                                             
18 A quote from Clifford Geertz. 
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several seconds per week to help some of the rail passengers arrive at their destinations on 

time (without discounting the others’ interests). That is, whether to pursue these ‘modest’ 

improvements does not involve win-lose situations but is more like a choice between getting 

some bonus and getting nothing.  

 

 

5.6 Exploiting RPM and RUM to do more 

 

In the previous sections of this chapter, two novel route-level measures have been developed 

and applied to analyse several identified critical routes in British railways. In general, the 

results presented in previous sections (c.f. Sections 5.3 and 5.5) provide empirical evidence to 

demonstrate the effectiveness of the algorithmic approach proposed in Chapter 4. Moreover, 

based on these results, conclusions/findings can also be drawn for each specific route in these 

RPM- or RUM-based analyses.  

 

Apart from these basic applications, RPM- and RUM-based analytical methods can also be 

utilised in more potential applications in railway timetabling and operations. Three readily 

conceivable applications are to be briefly described in this section, which act as a spur to 

further exploration and argumentation in future research.  

 

The first conceivable application is to use RPM (Route-oriented Performance Measure, c.f. 

Section 5.2) to conduct more detailed assessments of rail operations. Existing performance 

measures widely adopted in the industry such as PPM (Public Performance Measure, c.f. 

Network Rail, 2017) are largely aggregate indices, which would hide a lot of information 

about local operations. If rail operators would like to know details about the performance of 

specific routes (lines), then RPM would be a potentially useful indicator.  

 

The second conceivable application is to employ RUM (Route-oriented Utility Measure, c.f. 

Section 5.4) as an additional optimisation criterion to assess and compare a set of candidate 

timetables in the timetabling phase (c.f. Section 2.5). As explained in the relevant literature 

(e.g. Goverde, 2005; Vromans, 2005; and Andersson, 2014), several candidate timetables 

would often be firstly generated for assessment and comparison before one of them could be 

chosen as the published version (i.e. the optimal among the candidates in terms of some pre-
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defined criteria such as robustness, stability, etc). Since the RUM-based method is devised to 

compare two timetables that have very similar scheduled departure and arrival times (c.f. 

Sections 5.4 and 5.5), it can also be extended to conduct pair-wise comparisons among 

several candidate timetables to determine which version is the optimal in terms of the overall 

utility of the relevant passengers. It should be noted that both RUM and RPM (c.f. the 

previous paragraph) are not limited to the assessment of transfer-involved routes (as shown in 

the Sections 5.2~5.5), they can be readily exploited to evaluate the large set of direct routes 

(lines) within a given railway network.  

 

 

Figure 5.18 An augmented version of the algorithmic approach proposed in Chapter 4 
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The third conceivable application is to use RUM and RPM to augment the algorithmic 

approach proposed in Chapter 4. Figure 5.18 above provides an illustration of the augmented 

algorithm, which can be seen as a minor modification19of Figure 4.10 in Subsection 4.3.1. 

The major difference between this augmented version (Figure 5.18) and the original version 

(Figure 4.10) is that an additional conditional expression to check RUM and RPM has been 

introduced. To better understand the mechanism of this modified algorithmic approach (in 

Figure 5.18), let us look back at those technicalities and empirical results presented in the 

previous sections of this chapter.  

 

Table 5.21 A summary of several key parameters of the nine studied routes  
in British railways 

 SW NTT MTL Supp1* Supp2* fType stopNum 
ECB 8.2* 2 9** 3 0 regional 7 
HMN 5 1 5** 1~1.5 2 regional 4 
LMD 11 3 8 0 0 long-distance 4 
ILM 10 3 7 0 0 regional 5 
KYS 8.1* 1 7.1 0 2 long-distance 3 
KWN 6* 1 6** 1~1.5 0 regional 4 
SML 4 1 3 0 0 regional 2 
BSB 4.4* 1 3.4 0 0 long-distance 1 
RBH 12 3 10** 1 3~6 regional 8 

NOTE: SW = scheduled window; NTT = net transfer time; MTL = maximum tolerable lateness; Supp1 = the 
time supplement at the transfer station; Supp2 = the time supplement at the destination station; fType = the type 
of the feeder line; stopNum =  the number of intermediate stops between the departure station and the transfer 
station; * = the corresponding value is a rough range or the average of different hours of a day; ** = the 
corresponding value has been adjusted by incorporating the corresponding time supplement; the meanings of the 
nine acronyms in the leftmost column can be found in Subsection 5.5.2. 
 

Table 5.21 summarises a number of key parameters of the nine studied (critical) routes in 

British railways, which are assumed to be the potential factors that may exert influence on 

RPM and RUM. Comparing this table with those evaluation results presented in Table 5.12 

and Table 5.13 (c.f. Subsection 5.3.11), we can firstly see that the reason why the proposed 

algorithmic approach (i.e. PBPM) would not bring significant gains (in terms of RPM) to the 

route RBH (Rugeley Trent Valley – Birmingham New Street – Hereford, c.f. Subsection 

5.3.5) may be due to a combination of a relatively large MTL (Maximum Tolerable Lateness, 

c.f. Subsection 3.5.2) and a quite generous supplement/allowance at the destination station 

(i.e. Supp2 = 3~6): this combination would be likely to lead to a low percentage of medium-

sized delays (due to the generous allowances that have been included in the timetable) and 

small extra allowances (generated from PBPM) added to the destination station (due to the 

                                                             
19 Since PBPM (i.e. Algorithm 4: Performance-Based Pre-Modification) is the advocated, Algorithm 3 (Itinerary-
oriented Performance Statistics) is omitted here.  
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low risk of missed connections resulting from a large MTL), which further elucidates the 

interpretations presented in Subsection 5.3.12.  

 

With respect to those evaluation results in RUM-based analyses (c.f. Table 5.20 in Subsection 

5.5.2), no clear patterns can be extracted from this table (i.e. Table 5.21): there are not 

significant differences between the three ‘abnormal’ routes (i.e. ECB, HMN, and LMD) 

corresponding to negative RUMs (listed at the upper rows of the table) and the other six in 

terms of these listed parameters. However, these values corroborate a previous observation 

that the distribution of train delays is influenced by many factors. Recall that it has been 

observed from the analyses of big data (c.f. Section 3.8) that the distribution of train delays 

(in British railways) is better modelled by those compound distributions (rather than those 

‘pure’ distributions) such as q-exponential functions incorporating a number of different 

random variables (i.e. a number of different influencing factors). The specific parameters 

shown here in Table 5.21 (and those evaluation results about RPM and RUM presented in 

Sections 5.3 and 5.5) corroborate this finding: the impact of train delays on the nine studied 

transfer-involved routes cannot be simply explained by these listed parameters, implying that 

there must be other explanatory variables (i.e. influencing factors). Two conceivable 

additional factors are the percentage of unplanned cancellations and the level of crowdedness 

at stops en route. Since these two potential factors are difficult to measure without detailed 

relevant data, in-depth investigations of them are recommended for future research.  

 

 

Figure 5.19 An illustration of several representative scenarios of the RUM model: (A) a 
collection of ‘good-case’ scenarios; (B) a collection of ‘bad-case’ scenarios. [NOTE: s = the 

scheduled arrival time, m = the pre-modified arrival time, and a = the actual arrival time] 
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Although it is difficult to exactly enumerate all the factors influencing the sign and magnitude 

of RUM, we can still identify some rough pattern by analysing the RUM model itself (i.e. 

Equations (3) and (4) presented in Subsection 5.4.3). Recall that in Equation (3) three classes 

of scenarios are differentiated by the relative positioning of the scheduled arrival time, the 

pre-modified arrival time, and the actual arrival time (of a given recommended itinerary), and 

that Equation (4) is just a synthesis of individual evaluations. To further investigate the RUM 

model, specific representative scenarios need to be firstly analysed. Figure 5.19 presents 

several fairly-good-case scenarios (illustrated in Collection A) and several fairly-bad-case 

scenarios (illustrated in Collection B).  

 

In Figure 5.19 above, the three scenarios in Collection A (i.e. S1~S3) and the three in 

Collection B (i.e. S1’~S3’) exactly correspond to the three classes of scenarios in Equation (3) 

(c.f. Subsection 5.4.3), respectively. And the relationship between the scenarios in Collection 

A and those in Collection B is one-on-one: S1 corresponds to S1’, S2 corresponds to S2’, and 

S3 corresponds to S3’.  The only difference between the two collections lies in the size of 

|ma| (i.e. the absolute difference of m and a): S1~S3 in Collection A have a significantly 

smaller |ma| than their counterparts in Collection B (i.e. S1’~S3’), which could result in 

different signs (i.e. positive vs. negative) of the corresponding RUMs. Suppose there is a 

sample containing N=300 studied itineraries (of a studied route), among which exactly 100 

itineraries belong to each of the three scenarios in Equation (3) (c.f. Subsection 5.4.3). Then, 

Collection A in Figure 5.19 can be derived by asking the following what-if question: what 

would the average scenario of each of the three classes in Equation (3) look like, if the 

calculated RUM (for this particular sample) turned out to be a large positive number? 

Similarly, Collection B can be derived by asking: what would the average scenario of each of 

the three classes in Equation (3) look like, if the calculated RUM (for this particular sample) 

turned out to be a large negative number? On the whole, Collection A guarantees that those 

positive items in Equation (3) have the upper hand, while Collection B enables those negative 

items in Equation (3) to predominate.  

 

Although Collections A and B in Figure 5.19 can only be seen as special cases (i.e. each of 

the six scenarios in the figure could randomly occur in a sample), the six scenarios shown in 

the figure (i.e. S1~S3’) are representative and can be further generalised: at least one of the 

two scenarios of S1 and S2 must predominate in a sample associated with a large positive 

RUM, while at least one of the two scenarios of S2’ and S3’ must predominate in a sample 
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associated with a large negative RUM. That is, the sign and magnitude of RUM can generally 

reflect the degree of predictability of the actual arrival times of a studied route (by using the 

algorithmic approach proposed in Chapter 4): the pre-modified (advertised) arrival time (m) 

is close to the actual/recorded arrival time (a) in S1 and S2 (implying a high degree of 

predictability), whereas the pre-modified arrival time is significantly different from the actual 

arrival time in S2’ and S3’ (implying a low degree of predictability).  

 

Based on the further analyses of the RUM model in the previous paragraphs, Figure 5.18 (i.e. 

the third conceivable application) can then be interpreted as follows. Rather than a one-off 

screening solely by executing CRF (Critical Routes Finder, c.f. Section 3.6), an additional 

second-round screening is introduced in the augmented framework (presented in Figure 5.18) 

to check if gains in RPM and RUM could be brought by the historical-data-based algorithmic 

approach (i.e. PBPM in Chapter 4) to an identified critical route (by CRF in the first round) in 

the previous observation periods (assuming detailed historical train movements data about the 

route are accessible). This additional screening step simultaneously takes into account the 

operator-oriented index (i.e. RPM) and the passenger-oriented index (i.e. RUM), and is 

mainly aimed at double-checking if there are other uncapturable factors (e.g. unquantifiable 

or undetectable factors) that may have a strong influence on the effectiveness of the proposed 

algorithmic approach (for a particular route): if there are not, then gains in RPM and RUM 

can be expected and hence the historical-data-based algorithmic approach can be readily 

adopted to improve the pre-trip information about this studied route; if there are, then losses 

in RUM can be expected and the historical-data-based approach cannot generate desirable 

predictions of arrival delays for this studied route, indicating either keeping the 

corresponding train schedules unchanged or devising other methods to improve the pre-trip 

information about this studied route. Note that since the proposed (historical-data-based) 

algorithmic approach would never result in losses in RPM (as illustrated and explained in 

Section 5.3), the sign and size of RUM becomes the decisive factor. In the specific context of 

the nine studied critical routes in British railways (c.f. Section 5.5), this means the proposed 

algorithmic approach may not be a good therapy for the three routes associated with negative 

RUMs (i.e. ECB, LMD, and HMN), indicating either no changes made to their original 

schedules or considering other approaches to dealing with them. 
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5.7 The limitation of the proposed measures and a potential solution 

 

The limitation of the proposed measures in this chapter (i.e. RPM and RUM) lies mainly in 

several simplifying assumptions placed on passenger itinerary choice (e.g. resorting to an 

'average' passenger to reconstruct/deduct the actual arrival time of a given itinerary), which 

can be further attributed to the unavailability of detailed data about passenger counts and 

passenger flows. That is, the quality of the obtained results from the proposed analytical 

methods in this chapter (i.e. the RPM-based method and the RUM-based method) is limited 

by the availability of detailed data about passenger counts and passenger flows. In fact, 

collecting passenger-related data has long been a challenging task in transport-related studies. 

However, this situation has been changing in recent years thanks to the development of the 

relevant devices.  

 

A good example is the application of smart card data in a large number of relevant studies of 

urban public transport in the last decade or so (see e.g. Pelletier et al., 2011; Gordon et al., 

2014). And van der Hurk (2015) even presents an application of smart card data in the 

context of Dutch railways. All of these previous studies could be adopted as a reference point 

for Britain’s rail industry. Good news is a number of train operating companies (TOCs) in 

Britain have recently been rolling out smart card services: Figure 5.20 below provides an 

illustration of South West Trains, others having participated in this scheme include ScotRail, 

Southeastern, Southern, Thameslink and Great Northern, Greater Anglia, and c2c.  

 

 

Figure 5.20 The Smartcard advertisements of South West Trains 
(Source: www.southwesttrains.co.uk/tickets-explained/smartcard/, accessed 22 Feb 2017) 
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Despite the considerable potential underlying these newly adopted technologies, it may take 

some time to build an integrated and truly useful database that enables the relevant rail 

research. Observing the potential applications of the relevant technologies in the context of 

Britain’s passenger rail system, here depicts a ‘blueprint’ of how to reconstruct/deduct 

passengers trajectories for those transfer-involved rail routes in future research (see Figure 

5.21 below). The general idea is to make use of both the smart card data and those recorded 

by NRE (National Rail Enquiries).  

 

 

Figure 5.21 An outlook for future passenger-oriented rail research 

 

The central idea of Figure 5.21 can be briefly explained as follows. Firstly, two databases 

(denoted by DB1 and DB2 in the figure) need to be set up: one (i.e. DB1) is used to store 

information about the click events corresponding to pre-planned/recommended itineraries; 

and the other (i.e. DB2) is used to store information about transaction events corresponding to 

fare payments at railway stations. Then, a sufficiently large sample needs to be extracted 
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from each of the two databases to make comparisons and analyses according to some 

predefined filtration rules to deduct itinerary-specific passenger flows.  

 

To implement the above ‘blueprint’ for more detailed and passenger-perspective studies, two 

potential obstacles should firstly be overcome. The first potential obstacle lies in technical 

feasibility: to accurately identify and record each effective click would be a challenging task, 

considering the huge daily traffic of NRE20.  The other obstacle lies mainly in the 

coordination of different rail operators: since the Smartcard scheme is still at an early stage, 

only part of the train operating companies in Britain have participated in this scheme and a 

particular smart card is largely restricted to operator-specific routes and stations, which is far 

from able to cover those long-distance and transfer-involved routes at the time of writing this 

thesis.  

 

In a word, the development of software solutions and that of hardware solutions are 

interdependent: the potential of software solutions can be fully realised only if the relevant 

hardware technology could ‘catch up’, and vice versa.   

 

 

5.8 Conclusions 

 

This chapter has been mainly focused on the description of two novel route-level measures 

developed to quantify the effect of modified pre-trip information. Generally speaking, the 

introduction of the two route-level measures and the corresponding analytical methods can 

serve the following three purposes: 1) enables empirical analyses of those identified critical 

routes (presented in Chapter 3) using detailed data about historical train movements; 2) 

provides a way to evaluate the effectiveness of the proposed algorithmic approach (presented 

in Chapter 4) in coping with those identified critical routes; and 3) provides a reference point 

for more detailed microscopic analyses of those transfer-involved rail routes.  

 

More specifically, RPM (Route-oriented Performance Measure) is developed to evaluate the 

overall performance of a given transfer-involved rail route in terms of punctuality and 

reliability during a given observation period. The RPM-based analytical method is mainly 

                                                             
20 http://www.nationalrail.co.uk/46383.aspx 
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built on an assumption of an ‘average’ passenger and an assumption of an absolute 

standard/threshold for determining whether an ‘average’ passenger has been delayed, which 

can be viewed as an extension of PPM (Public Performance Measure), the industry standard 

adopted in British railways. Based on a detailed explanation of the underlying sample data 

and the specific technicalities used, RPM-based analyses of nine identified critical routes in 

Britain’s passenger rail system have been conducted.  The obtained evaluation results reveal 

that the modified pre-trip information generated from the algorithmic approach proposed in 

Chapter 4 could, clearly, bring improvements in punctuality and reliability to these identified 

critical routes. The potential limitations of RPM and the algorithmic approach proposed in 

Chapter 4 have also been recognised by an in-depth investigation into the sample data about 

several representative routes: like PPM, RPM tends to be unable to reflect the whole picture 

of the underlying sample data, indicating the necessity of auxiliary performance indicators 

such as CaSL (Cancellation and Significant Lateness); the modified pre-trip information 

generated from the algorithmic approach proposed in Chapter 4 mainly covers those medium-

sized delays but has little effect on those significant delays.  

 

As an exploration of a more comprehensive measurement incorporating more realistic 

scenarios in route and itinerary choice, another route-level measure is developed called RUM 

(Route-oriented Utility Measure). RUM deserts the assumptions of an ‘average’ passenger 

and an absolute standard for distinguishing between lateness and punctuality. Instead, it takes 

into account the heterogeneity among rail passengers and measures the change the modified 

pre-trip information could have brought in the overall utility of the relevant passengers 

choosing a particular route (during a given observation period). In order to implement an 

RUM-based analysis, several ‘bold’ assumptions need to be introduced such as an 

assumption of the existence of ‘latest-tolerable arrival times’ (LATs) and an assumption of 

the existence of ‘unwary’ passengers. Moreover, the principle of indifference (POI) is 

implicitly included in the RUM-based analytical model due to a lack of detailed data about 

passenger flows along these transfer-involved rail routes. Based on a detailed explanation of 

the underlying sample data and the specific technicalities used, RUM-based analyses of nine 

identified critical routes in Britain’s passenger rail system have been conducted. The possible 

reasons for several ‘abnormal’ results have been analysed by a close examination of the 

underlying sample data and the mechanism of the proposed analytical models. Generally, 

these evaluation results have enriched our understanding of these identified critical routes. 

Although the RUM-based analytical method is largely experimental, it could easily be 
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extended to conduct more realistic microscopic analyses of those transfer-involved rail routes, 

as long as detailed data about passenger flows and passenger activities become available.  
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Chapter 6 

Conclusions 

 

6.1 Brief summary 

 

Passenger rail transport is one of the major alternatives to car transport in many European 

countries such as Britain. However, the national railway network in Britain is becoming more 

and more crowded and prone to small delays and major disruptions, due to an ever-increasing 

demand for passenger rail transport over the last two decades. One of the negative effects of a 

delay-prone railway network is on those transfer-involved rail journeys, due to increased 

exposure to missed transfers. Conventional solutions to a delay-prone railway network are 

either costly and time-consuming (e.g. an extensive upgrading of rail infrastructure), or 

unable to allow for the diverse realistic scenarios in passenger rail transport (e.g. timetable 

design at the tactical planning phase). Observing that advanced passenger information 

systems (e.g. passenger information websites/mobile apps, departure boards within stations, 

etc) have been playing an increasingly important role in passengers’ experience of rail 

services in the developed world, this thesis tries to develop an information-based solution to 

the problem of delay and disruption management to deal with those blind spots over which 

existing solutions have little control.  

 

Of particular interest to this thesis are those transfer-involved rail routes, which have received 

relatively less attention from rail operators compared with direct routes, not only in terms of 

timetable design but also in terms of pre-trip passenger information. In order to formulate the 

problem of pre-trip information about those transfer-involved routes, three novel concepts – 

critical transfers, critical itineraries, and critical routes – are introduced. Roughly speaking, a 

critical itinerary is composed of critical transfers, each of which is delay-sensitive and is 

associated with high consequence if missed. And if the recommended itinerary list (by a 

journey planning system) is full of critical itineraries, the corresponding route would be 

problematic in terms of punctuality and reliability and is called a critical route.  
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An efficient screening algorithm, named Critical Routes Finder (CRF), is developed and 

implemented to check whether there exist critical routes within a given railway system and to 

find out, if existent, which of those transfer-involved routes are critical. The screening 

algorithm is then applied to analyse the current National Rail timetable (valid between 11 

December 2016 and 20 May 2017) adopted by British railways to identify those critical 

routes within Britain’s passenger rail system. The performance of the screening algorithm is 

promising in terms of computational efficiency. The screening results show that more 

attention should be paid to such transfer-involved routes as London Kings Cross – York – 

Scarborough, Bournemouth – Southampton Central – Brighton, etc to improve the pre-trip 

information about these routes. 

 

In order to find, from within the domain of information technology itself, a solution to the 

problem of pre-trip information about those identified critical routes, a brief review of the 

relevant prototypes in the literature and the relevant applications in the real world has been 

conducted: it is recognised that the existing information-related approaches have not truly 

touched upon the problem of critical routes, either in theory or in practice. But these existing 

approaches can be utilised as building blocks to develop a solution to the problem of critical 

routes. 

 

Inspired by some existing travel information technologies, a historical-data-based approach is 

developed, containing a series of easy-to-implement algorithms. The design philosophy 

behind the algorithmic approach proposed is a ‘local treatment’ of those identified critical 

routes (rather than a ‘holistic treatment’ of all possible routes within a railway network), 

which differs from the various existing approaches. This different treatment could 

significantly reduce computational complexity and meanwhile avoids disturbing information 

about those non-critical routes.  

 

Three interrelated algorithms are proposed and detailed, which are named IPS, PBPM, and 

PBPM+, respectively. IPS (Itinerary-oriented Performance Statistics) has been inspired by 

those individual-leg-oriented performance statistics accessible from some existing travel 

information websites. Roughly speaking, IPS can be viewed as an augmented version of 

those individual-leg-oriented performance statistics: it is designed to compute and present 

performance statistics that are oriented toward a whole journey (itinerary) rather than toward 
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individual service legs, which would be able to set the information consumers (passengers) 

free from reprocessing the fragmented information (about individual legs) by themselves.  

 

Despite their advantage over individual-leg-oriented performance statistics, itinerary-oriented 

performance statistics may still make information consumers (passengers) feel like they are 

gambling and hence cause inconvenience/uneasiness to them. Based on such a consideration, 

PBPM (Performance-Based Pre-Modification of advertised arrival times) is developed. 

PBPM has been inspired by the relevant technologies in real-time delay information: it 

abandons the output of performance statistics; instead, it consumes performance statistics as 

intermediate results to compute the final results – pre-modified (advertised) arrival times – 

well before the time of travel. Roughly speaking, a pre-modified (advertised) arrival time of a 

given critical itinerary reflects the ‘average lateness’ of this itinerary over the last several 

weeks, incorporating both the risk of missed transfers (reliability) and the average delay at 

the destination station (punctuality).   

 

Although the final results of PBPM can be readily delivered to end users (passengers) for 

enhanced pre-trip information, these results (i.e. pre-modified arrival and journey times) are 

still largely descriptive: for those passengers having a relatively tight schedule, they would 

still have no alternative choices when the available options (i.e. recommended itineraries) are 

found to be undesirable. Based on such a consideration, PBPM+ is developed, the purpose of 

which is to further extend the functionality of PBPM to generate additional prescriptive 

information about alternative itineraries when necessary. Roughly speaking, PBPM+ 

incorporates the results obtain from PBPM into existing journey planning algorithms to 

influence journey planning results. More specifically, this can be achieved by modifying the 

relevant parameters of a journey planning algorithm and adding to the algorithm additional 

post-processing procedures.  

 

In order to evaluate the effectiveness of the information-based solution to the problem of 

critical routes, two novel route-level measures are developed and detailed. Generally 

speaking, the introduction of the two route-level measures and the corresponding analytical 

methods can serve the following three purposes: 1) enables empirical analyses of those 

identified critical routes presented in Chapter 3 using detailed data about historical train 

movements; 2) provides a way to evaluate the effectiveness of the proposed algorithmic 

approach presented in Chapter 4 in coping with those identified critical routes; and 3) 
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provides a reference point for more detailed microscopic analyses of those transfer-involved 

rail routes.  

 

More specifically, RPM (Route-oriented Performance Measure) is developed to evaluate the 

overall performance of a given transfer-involved rail route in terms of punctuality and 

reliability during a given observation period. The RPM-based analytical method is mainly 

built on an assumption of an ‘average’ passenger and an assumption of an absolute 

standard/threshold for determining whether an ‘average’ passenger has been delayed, which 

can be viewed as an extension of PPM (Public Performance Measure), the industry standard 

adopted in British railways. Based on a detailed explanation of the underlying sample data 

and the specific technicalities used, RPM-based analyses of nine identified critical routes in 

Britain’s passenger rail system have been conducted.  The obtained evaluation results reveal 

that the modified pre-trip information generated from the approach proposed in Chapter 4 

could clearly bring improvements in punctuality and reliability to these identified critical 

routes. The potential limitations of RPM and the algorithmic approach proposed have also 

been recognised by an in-depth investigation into the sample data about several representative 

routes: like PPM, RPM tends to be unable to reflect the whole picture of the underlying 

sample data, indicating the necessity of auxiliary performance indicators such as CaSL 

(Cancellation and Significant Lateness); and the modified pre-trip information generated 

from the approach proposed in Chapter 4 mainly covers those medium-sized delays but has 

little effect on those significant delays.  

 

As an exploration of a more comprehensive measurement incorporating more realistic 

scenarios in route and itinerary choice, another route-level measure is developed, named 

RUM (Route-oriented Utility Measure). RUM abandons the assumptions of an ‘average’ 

passenger and an absolute standard for determining whether an ‘average’ passenger has been 

delayed. Instead, it takes into account the heterogeneity among rail passengers and measures 

the change the modified pre-trip information could have brought in the overall utility of the 

relevant passengers choosing a particular route (during a given observation period). In order 

to implement an RUM-based analysis, several ‘bold’ assumptions need to be introduced such 

as an assumption of the existence of ‘latest-tolerable arrival times’ (LATs) and an assumption 

of the existence of ‘unwary’ passengers. Moreover, the principle of indifference (POI) is 

implicitly included in the RUM-based analytical model due to a lack of detailed data about 

passenger flows on these transfer-involved rail routes. Based on a detailed explanation of the 
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underlying sample data and the specific technicalities used, RUM-based analyses of nine 

identified critical routes in Britain’s passenger rail system have been conducted. The possible 

reasons for several ‘abnormal’ results have been analysed by a close examination of the 

underlying sample data and the mechanism of the proposed analytical models. Generally, 

these evaluation results have enriched our understanding of these identified critical routes. 

Although the RUM-based analytical method is largely experimental, it could easily be 

extended to conduct more realistic microscopic analyses of those transfer-involved rail routes, 

as long as detailed data about passenger flows and passenger activities become available.  

 

 

6.2 Main findings 

 

By reviewing the existing theories and applications in railway planning and passenger 

information in Chapters 2 and 3, it is recognised that the pre-trip information about those 

transfer-involved rail routes may be a potential problem: due to the inherent defects in 

railway timetabling and journey planning technologies, the quality of the pre-trip information 

about those transfer-involved rail routes cannot always be guaranteed. 

 

In Chapter 3, an in-depth analysis is conducted of a quite large sample of train movements 

data. It is found that train delays in British railways can be better modelled by those 

compound distributions (than those ‘pure’ distributions), among which q-exponential models 

tend to be the most promising candidate in terms of the overall goodness of fit. Moreover, by 

comparing the best-fit q-exponential model of the latest train delay data with that of the 

2005/06 data, a noticeable increase in small-sized delays (from one to eight minutes) has 

been identified in British railways over the past decade. 

 

From the detailed descriptions and explanations of the proposed algorithms and analytical 

methods in Chapters 4 and 5, it can be seen that open data available from Britain’s rail 

industry contain a lot of details about daily train movements, which can be exploited to 

conduct some microscopic analyses of those transfer-involved rail routes. 

 

The empirical results presented in Chapter 5 reveal that the algorithmic approach of using 

historical train movements data to pre-modify recommended itineraries can largely resolve 
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the problem of the pre-trip information about those transfer-involved rail routes, although its 

effectiveness cannot be guaranteed in all cases. Specifically, the proposed algorithmic 

approach can bring an average gain of 5.0% ~ 11.3% in terms of a train-oriented performance 

measure (named RPM) to the nine studied critical routes in British railways, and can bring an 

average gain of 2.8% in terms of a passenger-oriented utility measure (named RUM) to six of 

the nine studied critical routes. Three of the nine studied routes cannot gain in RUM, 

although they can gain in RPM.  

 

 

6.3 Methodological contributions 

 

A relatively comprehensive survey is conducted of the state-of-the-art theories and 

technologies of several different disciplines (c.f. Chapters 2 – 4), potentially facilitating the 

interested researchers to make more contributions to the solution of the relevant issues. 

 

A screening algorithm (i.e. CRF in Chapter 3) is developed to efficiently locate those weak 

points (i.e. critical routes) within a national-level railway system, which provides an 

additional tool/option for timetable design and analysis.  

 

A set of three interrelated information enhancing algorithms (i.e. IPS, PBPM, and PBPM+) 

are developed to cope with those weak points (i.e. critical routes) within a national-level 

railway system, among which the central idea of PBPM – floating (variable/adjustable) 

allowances – provides a potentially useful (additional) tool for delay management in railway 

timetabling and operations. 

 

A route-level performance measure (i.e. RPM) is developed by augmenting the current 

industry standard (i.e. PPM), which can be utilised to conduct route-level evaluations and 

comparisons for those transfer-involved rail routes (in terms of punctuality and reliability). 

Apart from the ability to quantify the effect of a specific information enhancing strategy in 

the context of this thesis, RPM may also be readily employed to evaluate and compare the 

performances of those direct rail routes (lines).  
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A route-level utility measure (i.e. RUM) is developed that takes into account passenger 

delays. Similar to RPM, RUM’s applicability is not limited to those quantitative analyses in 

the specific context of this thesis: it has broader applicability in a variety of potential 

applications such as employing RUM as an additional optimisation criterion in the 

timetabling phase to reflect passenger interests, using RUM to check whether the allocation 

of allowances (time supplements) is effective enough, and integrating RUM into the 

historical-data-based algorithmic approach proposed in this thesis to augment the original 

version (c.f. Section 5.6).  

 

Figure 6.1 below provides a graphical description of the potential contributions of this thesis 

to railway timetabling and operations: the relevant algorithms and analytical methods 

described in this thesis can not only be integrated into one framework to improve the pre-trip 

information about those transfer-involved rail routes, but also be applied separately to 

different processes in railway timetabling and operations to achieve different goals.  

 

 

Figure 6.1 An illustration of the potential contributions of this thesis to railway timetabling 
and operations 
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6.4 Contributions to knowledge 

 

The explanations, illustrations, and abstractions of critical routes, mainly embodied by 

Sections 3.4 and 3.5, could be viewed as an original contribution to knowledge – an 

unresolved problem existing in current pre-trip timetable information systems has been 

revealed. 

 

The statistical results and stochastic models obtained based on real-world train operation 

records, embodied by Sections 3.7 and 3.8, could help better understand and update the 

knowledge of the macro-level delay distributions within Britain’s passenger rail system. 

 

The categorisation of the various existing systems, prototypes, and algorithmic ideas, 

embodied by Section 4.2, could also be regarded as an original contribution to knowledge, for 

there exists no such categorisation in the large body of relevant literature. 

 

Those route-level analyses and assessments conducted based on real-world train operation 

records, embodied by Section 5.3 and Section 5.5, would help any interested reader learn, on 

a variety of dimensions, about those critical routes within Britain’s passenger rail system. 

 

 

6.5 Limitations and future research 

 

Several identified (potential) limitations of the proposed algorithmic solutions and analytical 

methods have been analysed/explained in Section 4.5 and Section 5.7 of this thesis. In short, 

the relatively large granularity (i.e. precision tolerance) of the available train movements data 

and the lack of detailed data about passenger counts and passenger flows may to some degree 

restrict the precision and deepness of the relevant evaluations and analyses.  

 

Based on the identified limitations and imperfections in this thesis, four conceivable 

directions for further research are recommended below.  
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Firstly, further improve the information enhancing algorithmic approach proposed in this 

thesis. From Chapter 5, it can be seen that although the proposed (historical-data-based) 

algorithmic approach can largely improve the pre-trip information about those critical routes, 

it is not perfect: empirical results indicate that there exist some (if not many) exceptions. A 

typical exception in the analyses presented in Chapter 5 is the route Ebbw Vale Town – 

Cardiff Central – Birmingham New Street (i.e. ECB): its arrival delays seem to be largely 

unpredictable by straightforward statistics (i.e. the proposed algorithmic approach) and hence 

effective solutions to these exceptions may be needed. Machine learning is a conceivable path 

towards dealing with these ‘exceptions’, but empirical evidence is needed to prove or 

disprove its effectiveness.  

 

Secondly, devise more realistic quality measure(s): the results presented in Chapter 5 have 

partly shown the potential limitations of the currently adopted industry standard (i.e. PPM). 

Generally speaking, the current standard is largely train-oriented (rather than passenger-

oriented) and does not take into account a number of realistic factors (e.g. passenger flows, 

the heterogeneity in perceptions of delays, etc). In the future, more realistic measure(s) can be 

introduced as long as the relevant data become available.  

 

Thirdly, use big data to gain more knowledge about the mechanism of train delays in British 

railways. In Section 3.8 of this thesis, statistical analyses of the train delays in British 

railways have been conducted using a relatively large sample (about 1.4 million records) of 

historical train movements data. However, the obtained results are largely synthetic/aggregate, 

from which only general conclusions can be drawn. Several important questions remain 

unanswered such as what the underlying mechanism is of those extremely large delays and 

how train delays in British railways are distributed on the dimensions of time and space. The 

reason why these questions have not been touched upon is mainly due to the fact that the 

adopted sample is still a small and potentially biased sample (corresponding only to 14 

stations for 12 months) and its representativeness remains dubious. In the future, these 

unanswered questions may be able to be confidently answered, once a truly large and 

representative sample becomes available.  

 

Fourthly, stated preference (SP) studies (c.f. Kroes and Sheldon, 1988) can be conducted in 

the future to monetise the relevant utility indices. Although this thesis does not involve 

monetised utilities and SP methods themselves have been questioned in the literature (e.g. 
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Diamond and Hausman, 1994), monetised utilities are still useful tools for strategic railway 

planning in the foreseeable future.  
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Appendix A 

A survey of current pre-trip journey planning systems 

 

Table A1 A survey of current pre-trip journey planning systems 
(Surveyed in early April, 2018) 

Country  
(A to Z) 

Main 
information 
provider 

Line 
schedules 
(static) 

Transfer-
involved journey 
planning (static) 

Customisable 
transfer 
times 

Frequently 
updating the 
underlying 
timetables 

Argentina SOFSE Y N N N 
Australia regional 

operators e.g. 
NSW 
TrainLink and 
V/Line 

Y Y N N 

Austria ÖBB Y Y Y Y 
Bangladesh Bangladesh 

Railway 
Y N N N 

Belarus Belarusian 
Railway 
(BCh) 

Y Y N N 

Belgium NMBS/SNCB Y Y Y Y 
Brazil commuter rail 

operators e.g. 
CPTM and 
SuperVia 

Y Y N N 

Canada VIA Rail and 
several 
commuter rail 
operators 

Y Y N N 

China CR Y N N N 
Croatia HŽPP Y Y N N 
Czech 
Republic 

ČD Y Y Y Y 

Denmark DSB Y Y N N 
Egypt ENR Y N N N 
Finland VR Y Y N N 
France SNCF Y Y N N 
Germany DB Bahn Y Y Y Y 
Hungary MÁV Y Y Y Y 
India IR Y N N N 
Indonesia Persero Y N N N 
Iran RAI Y N N N 
Israel Israel 

Railways 
Y Y N N 

Italy Trenitalia and 
Italo NTV 

Y Y N N 

Japan JR Group Y Y N N 
Kazakhstan KTZ Y N N N 
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Luxemburg CFL Y Y N N 
Malaysia KTMB Y N N N 
Morocco ONCF Y N N N 
Netherlands NS Y Y Y Y 
Norway NSB Y Y N N 
Pakistan PR Y N N N 
Poland PKP Group Y Y N N 
Portugal CP and 

several 
commuter rail 
operators 

Y Y N N 

Romania CFR Y Y N N 
Russia OAO Y Y N N 
South Africa Shosholoza 

Meyl 
Y N N N 

South Korea Korail Y Y N N 
Spain Renfe Y Y N N 
Sweden SJ Y Y N N 
Switzerland SBB, BLS, 

etc. 
Y Y Y Y 

Taiwan THSR Y N N N 
Thailand SRT Y N N N 
Turkey TCDD Y N N N 
Ukraine Ukrainian 

Railways 
Y Y N N 

United 
Kingdom 

RDG/National 
Rail 

Y Y Y Y 

United States Amtrack and 
various 
commuter rail 
operators 

Y Y N N 
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Appendix B 

A Python implementation of CRF 

 

Note: the original source codes are a large collection of many functionally independent sub-
procedures, each of which is separately composed and stored (in separate files). Here, in 
order to avoid messiness, these sub-procedures are grouped (by general functionality) into 
three files named data-preprocessing.py, screening-1.py, and screening-2.py, respectively. 
Generally, the file named data-preprocessing.py can be thought of as the implementation of 
Steps 1 and 2 in CRF, screening-1.py the implementation of Step 3, and screening-2.py the 
implementation of Steps 4 and 5. Within each file, however, the sub-procedures are not 
necessarily organised in the same order with the pseudo code presented in Subsection 3.6.3. 
This is because there exists no particular priority between certain sub-procedures, and it 
makes no difference to execute one before another.  

 
(1) data-preprocessing.py 
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(2) screening-1.py 
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(3) screening-2.py 
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Appendix C 
 
Real-world examples of the potential effect of applying the method of 
increasing MTT to critical routes 
 
 
[Note: MTT = Minimum Transfer Time. ECB = Ebbw Vale Town – Cardiff Central – 
Birmingham New Street. KWN = Knottingley – Wakefield Kirkgate – Nottingham.] 
 

 
 

 
Figure C1  KWN – recommendations based on the default MTT (4 mins) 

 
 

 
Figure C2  KWN – recommendations based on an increased MTT (>7 and <=67 mins) 

 



275 

 
 

 
Figure C3  KWN – estimated journey time by car 

 
 
 

 
Figure C4  ECB – recommendations based on the default MTT (7 mins) 
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Figure C5  ECB – recommendations based on an increased MTT (>8 and <=68 mins) 

 
 
 

 
Figure C6  ECB – estimated journey time by car 
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Appendix D 
 
A Python implementation of the back end of IPS and PBPM 
 
 
Note: the source codes are grouped (by general functionality) into three files named ips-
pbpm-1.py, ips-23.py, and pbpm-234.py, respectively. Generally, the file named ips-pbpm-
1.py can be thought of as the implementation of Step 1 in IPS and PBPM (c.f. Subsection 
4.3.2), ips-23.py the implementation of Steps 2 – 3 in IPS, and pbpm-234.py the 
implementation of Steps 2 – 4 in PBPM. Three parameters – sample size, net transfer time, 
and threshold for arrival lateness – have been set as variables to facilitate the comparison 
between different choices of parameters. The example route in this implementation is 
Liverpool Lime Street – Manchester Piccadilly – Doncaster. Only minor modifications 
needed to apply the codes to other critical routes.  

 

(1) ips-pbpm-1.py 
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(2) ips-23.py 
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(3) pbpm-234.py 
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