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Abstract

Small delays and major disruptions are frequently encountered in rail passenger transport,
which brings challenges not only to railway timetabling and operations but also to timetable-
based passenger information. This thesis is aimed at identifying the unresolved problem(s) in
the existing pre-trip timetable information systems and at developing a set of novel
algorithms and analytical models to enhance the pre-trip timetable information about and the
understanding of those transfer-involved routes within a national-level railway network.
Specifically, it tries to answer the following four inter-related questions: i) which transfer-
involved routes are the weaknesses in terms of pre-trip timetable information, among the
numerous origin-destination pairs; ii) how to develop an effective and easy-to-implement
approach to coping with these weaknesses; iii) how to quantify and know in advance the
potential effect of a specific information improvement strategy; and iv) what are the potential
factors that render some of the transfer-involved routes particularly vulnerable to delays and

disruptions.

Since the research touches on multiple disciplines, the relevant concepts in railway
timetabling and operations, journey planning algorithms, statistical analysis, and decision
theory are firstly introduced. Built on these fundamentals and an introduction to the concepts
of critical transfers and critical routes, a screening algorithm is developed that is able to
efficiently identify those transfer-involved rail routes that may be particularly vulnerable to
delays and disruptions and may need information enhancements. After that, by reviewing the
pros and cons of existing methods, a novel historical-data-driven algorithm is developed to
deal with those weaknesses in terms of pre-trip timetable information. In order to obtain a
more precise estimation of the potential effect of a particular information enhancement
strategy, an analytical framework is developed that is able to evaluate a specific strategy ex
ante. The underlying assumptions are presented and the potential limitations are discussed.
All of the algorithms and models presented in this thesis have been extensively tested by
exploiting the open data from British railways, the results of which are promising in terms of
efficiency and effectiveness. Some interesting findings are presented about British railways,

followed by a discussion of potential directions in future research.
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Glossary

Note: Only those frequently encountered terminology and symbols are listed here.

Terminology

AW: is short for actual window, which represents the time window between the actual
(/recorded) arrival of a feeder train and the actual departure of the corresponding

connecting train.

Critical Transfer: an introduced concept which can be roughly described as a highly risky (in
terms of probability and consequence) transfer plan that is (to be) recommended (by a

journey planning system).

Critical Itinerary: an extension of the concept of critical transfer, corresponding to a whole

journey between a given pair of origin and destination stations.

Critical Route: involves at least one (generic) transfer, defined mainly in the context of pre-
trip information about recommended itineraries. The list of recommended itineraries
(generated by a journey planning system) for a critical route is characterised by a high

percentage of critical itineraries.

CREF: is short for Critical Routes Finder, which is the developed screening algorithm
(presented in Chapter 3) for efficiently locating those critical routes within a given

railway network.

CSA: is short for Connection Scan Algorithm, which forms the core of the self-developed

journey planning simulator in this thesis.

GTEFS: is short for General Transit Feed Specification, which is a popular data format for
exchanging transit information. The timetable data (i.e. the National Rail timetable data)

adopted in this thesis is in GTFS format.
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IPS: is short for Itinerary-oriented Performance Statistics, which can be viewed as the
itinerary-level version of PPM (public performance measure). Moreover, IPS is also the

name of a proposed algorithm in Chapter 4 (c.f. Algorithm 3 in Section 4.3).

LAT: is short for latest-tolerable arrival time, which is a concept that is introduced in Section
5.4 to serve as a boundary condition for determining whether the disutility of a

particular passenger has been increased.

MTT: is short for minimum transfer time, also called ‘connection time’ or ‘minimum
connection time’ in the literature, representing the length of time that must elapse
between the advertised arrival time of a feeder train and the advertised departure time
of the connecting train within a railway station. That is, the connection between two
trains is officially valid only if it satisfies the constraint of the corresponding
‘minimum connection time’. In realistic railway timetabling and operations, MTT is
often station-specific and is a heuristic measurement (a rough estimation) of a

‘typical’ connection within a particular railway station.

MUI: is short for most uncertain interval, which is network-specific and can be determined

by analysing the big data about arrival delays within a given railway network.

NTT: is short for net transfer time, which can be viewed as a connection-specific MTT. NTT

is coined to emphasise the difference in granularity between MTT and NTT.

PBPM: is short for Performance-Based Pre-Modification of advertised arrival times, which is
the core algorithm proposed in Chapter 4. The involved technicalities can be found in

Chapters 4 and 5.

PBPM+: is an augmented version of PBPM, which could generate alternative itineraries

when necessary.

RPM: is short for Route-oriented Performance Measure, which can be viewed as an extension
of PPM and IPS. RPM not only can be used to evaluate route-specific punctuality and

reliability, but also can be used to quantify the impact of modified pre-trip information.

RUM: is short for Route-oriented Utility Measure, which is devised to incorporate more
realistic factors in evaluating the effectiveness of the proposed algorithmic solution to

critical routes.
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SW: is short for scheduled window, representing the time window between the scheduled
arrival of a feeder train and the scheduled departure of its corresponding connecting

train.

TAL.: is short for threshold for arrival lateness, which is an absolute standard that is adopted
for determining whether an ‘average’ passenger choosing a particular itinerary has

arrived at his/her destination station on time (based on the advertised arrival time).

Abbreviations

ATOC: is short for Association of Train Operating Companies, being a body that represents
the 23 train operating companies that provide passenger services on the privatised
British railway system. ATOC has been renamed Rail Delivery Group since October
2016.

BSB: denotes Bournemouth — Southampton Central — Brighton, one of the studied routes in

Chapter 5.

ECB: denotes Ebbw Vale Town — Cardiff Central — Birmingham New Street, one of the

studied routes in Chapter 5.

HMN: denotes Harwich Town — Manningtree — Norwich, one of the studied routes in Chapter

5.
ILM: denotes Ilkley — Leeds — Middlesbrough, one of the studied routes in Chapter 5.

KWN: denotes Knottingley — Wakefield Kirkgate — Nottingham, one of the studied routes in
Chapter 5.

KYS: denotes London Kings Cross — York — Scarborough, one of the studied routes in
Chapter 5.

LMD: denotes Liverpool Lime Street — Manchester Piccadilly — Doncaster, one of the studied

routes in Chapter 5.

NRE: is short for National Rail Enquiries, which is the official source of customer
information for all passenger rail services in Great Britain (excluding some of the

urban rail services within Greater London).

XX



P1: denotes observation Period 1 in the evaluations conducted in Chapter 5, corresponding to

the relevant data records between 12 October 2015 and 4 December 2015.

P2: denotes observation Period 2 in the evaluations conducted in Chapter 5, corresponding to

the relevant data records between 25 January 2016 and 18 March 2016.

P3: denotes observation Period 3 in the evaluations conducted in Chapter 5, corresponding to

the relevant data records between 13 June 2016 and 5 August 2016.

P4: denotes observation Period 4 in the evaluations conducted in Chapter 5, corresponding to

the relevant data records between 3 October 2016 and 25 November 2016.

P5: denotes observation Period 5 in the evaluations conducted in Chapter 5, corresponding to

the relevant data records between 16 January 2017 and 10 March 2017.

PPM: is short for public performance measure, which is the industry standard of British

railways for measuring the punctuality and reliability of train services.

RBH: denotes Rugeley Trent Valley — Birmingham New Street — Hereford, one of the studied

routes in Chapter 5.
RIL: is short for recommended itinerary list (c.f. Sections 4.3 and 4.4).

RTT: is short for Realtime Trains, which is the source of those historical train movements

data adopted in this thesis.

RVT: is short for Route-View Timetable, which is the major data structure underlying the

evaluations and analyses in Chapters 4 and 5.

SML: denotes Sudbury (Suffolk) — Marks Tey — London Liverpool Street, one of the studied

routes in Chapter 5.

TOC: is short for train operating companies, representing those private rail operators of

passenger routes within Britain’s railway network.

Symbols

arrs(+): represents the scheduled arrival time of a particular train service at a particular railway
station. The two variants of this symbol — arr s XX and sch;pjk — have the same

meaning with it. (c.f. Section 4.3, Section 4.5, Section 5.2, and Section 5.4)
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arrm(+): represents the pre-modified (advertised) arrival time of a particular train service at a
particular railway station. The two variants of this symbol —arr m XX and md;pjx —
have the same meaning with it. (c.f. Section 4.3, Section 4.5, Section 5.2, and Section

5.4)

arra(-): represents the actual/reconstructed arrival time of a particular train/itinerary at a
particular railway station. The two variants of this symbol —arr a XX and act;pjk —
have the same meaning with it. (c.f. Section 4.3, Section 4.5, Section 5.2, and Section

5.4)

deps(-): represents the scheduled departure time of a particular train/itinerary from a
particular railway station. The variant of this symbol — dep s XX — has the same

meaning with it. (c.f. Section 4.3, Section 4.5, Section 5.2)

E(-): represents the expected value (i.e. average/mean value) of a given variable/statistic (c.f.

Section 5.3 and Section 5.5).

Jjto(+): represents the average journey time under the scenario in which there are no missed

transfers (c.f. Section 4.3).

jti(+): represents the average journey time under the scenario in which there is exactly one

missed transfer (c.f. Section 4.3).

Jjtm(+): represents the pre-modified (advertised) journey time of a recommended itinerary (c.f.

Section 4.3).

0(): represents the average delay of the connecting train (of a recommended itinerary) at the

destination station (c.f. Section 4.3).

RPM;: represents the calculated RPM for a given observation period assuming that the
unmodified pre-trip information is adopted about scheduled arrival times (c.f. Section

5.3).

RPM;,;: represents the obtained RPM for a given observation period assuming that the
modified pre-trip information has been adopted about pre-modified arrival times

(generated by the PBPM algorithm) (c.f. Section 5.3).

ARPM: = RPM; — RPM;, representing the change (in RPM) the modified pre-trip information
could have brought (c.f. Section 5.3).
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to : is involved in Section 3.5, can be interpreted as the ‘latest tolerable arrive time’ of a
feeder train, beyond which the corresponding transfer would be missed. Note that tg
should not be confused with the concept of LAT in Section 5.4. t is train-oriented,

while LAT is passenger-oriented.

T; : is involved in the proposed algorithms in Chapter 4, representing a particular train service

in a series of involved train services in a recommended itinerary.
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Chapter 1

Introduction

1.1 Motivation

Rail transport has a long history and is accessible to the public in most countries across the
world. As a traditional sector and a natural monopoly, the rail industry has inevitably built
itself an image of a relatively closed system lacking efficiency and often follows quite
different development models in different countries. Rail transport in Britain, like that in
many other European countries (e.g. Sweden, France, the Netherlands, etc.), takes a model of
vertical separation of train operators and infrastructure managers to increase on-track
competition (Kurosaki, 2008; Mizutani et al., 2014). Although this development path could to
some degree improve on openness and cost efficiency, it increases the complexity of a
railway system and brings increased difficulty in reconciling the various stakeholders (i.e.
passengers, train operators, infrastructure managers, public authority, and the general public)

(Kurosaki, 2008; Martin, 2014).

One of the challenges currently faced by British railway and other intensely utilised European
railways (e.g. Dutch and Swiss railways) is the prevalence of small delays as well as major
disruptions (Figures 1.1 and 1.2). On the one hand, the rail demand is steadily increasing and
the capacity utilisation is reaching its limit at critical parts (Network Rail, 2016a), which
renders the rail network sensitive to delays and disruptions (i.e. the impact of a
delay/disruption caused by some endogenous/exogenous factor could easily be spread across
a large dispatching area). On the other hand, an extensive upgrading/renewal of rail
infrastructure is expected to be a time-consuming process, following the current development
path. In such a context, rail researchers in European countries (e.g. Denmark and the
Netherlands) have been looking for, over the past decade or so, software solutions (e.g.

advanced timetabling techniques that take into account robustness and stability, optimisation



models for capacity utilisation at bottlenecks, etc.) to the problem of delay and disruption
management.
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Figure 1.1 Train delays Example One (Source: metro.co.uk, 12 Feb 2016)
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Figure 1.2 Train delays Example Two (photo shot on 28 Nov 2016, at Southampton Central
Railway Station)

In reality, however, theoretically optimal plans/schemes could not always be fully
implemented due to various technical or political limitations. Take the timetabling process for
example. Railway timetabling is a complicated process that needs to balance between many
factors (e.g. easy-to-remember departure times at major stations, speed limits at different
block sections, recovery times along long-distance routes, buffer times between conflicting
train paths, etc.) and involves the collaboration between different train operators and between
train operators and the infrastructure manager (Kroon et al., 2014; Network Rail, 2016a).

Moreover, even if a theoretically optimal plan/scheme could be fully implemented, a globally

2



optimal solution could not guarantee local optimality (Goverde, 2014). That is, train delays
cannot be thoroughly eradicated in a large railway system, for there will always be certain

elements of the various operational processes that could not be fully optimised (Yuan and
Medeossi, 2014).

Observing that an extensive upgrading of rail infrastructure is almost unlikely to happen in
the foreseeable future and that existing operator-oriented software solutions have their own
limitations, this thesis tries to tackle the problem of delay and disruption management from a
different angle and tries to provide a passenger-oriented software solution to deal with those
blind spots over which current technologies have little control. A catalyst for generating the
idea of adopting a passenger-oriented methodology is the so-called journey planning systems

(Figure 1.3) that have been gaining popularity in the developed world over the last decade or
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Figure 1.3 National Rail Enquiries — an example of journey planning systems
(Source: www.nationalrail.co.uk, accessed 29 Dec 2016)

As an important interface between passengers and train operators, a journey planning system
(e.g. National Rail Enquiries in Britain) usually offers a wide range of online services related
to rail travel: from timetable-based itinerary planning to live disruption alerts, and from
online ticketing to promotional information. The core functionality of a journey planning
system is undoubtedly the itinerary planning part, for live disruption information and
ticketing services can also be obtained later at railway stations. The demand for computer-
aided itinerary planning is especially significant for those long-distance and/or unfamiliar
journeys (Farag and Lyons, 2008), and such a journey often involves one or more transfer

activities en route. Due to the periodicity of the railway timetable, those recommended



itineraries (journey plans) are often cyclic and hence can be grouped by route. Compared
with direct rail routes (lines), those long-distance, transfer-involved rail routes are more prone
to delays and disruptions due to the additional risk of missed transfers. However, current
technologies (i.e. algorithms behind those journey planning systems) have little control over
the quality of the generated results (i.e. those recommended itineraries). The
recommendations are derived from the underlying (planned) timetables, the quality of which
is further dependent upon the timetabling techniques adopted. Unfortunately, due to the
aforementioned reasons, no such perfect timetable design exists in reality that could absorb
all perturbations in a railway network and is resistant to major disruptions in the network.
Therefore, those long-distance and transfer-involved rail routes become a potential problem:
journeys following such routes often need to be pre-planned with the aid of journey planning
systems, but the quality of the pre-trip information about these journeys is often disregarded
(i.e. the actual journey times and arrival times often significantly exceed their advertised

counterparts).

Table 1.1 Rail journeys in Britain: by purpose and frequency (Source: DfT, 2013)

Percentages

Commuting Business Leisure Total

5 or more days a week T 12 8 52
2-4 days a week 17 14 1 15
Once a week 3 10 11 6
1-3 times a month 2 18 18 8
Less than once a month 1 23 28 10
First time have made this journey 1 23 24 9
Total 100 100 100 100

Although rail transport can be categorised as a minority mode (Preston, 2015; DT, 2016a)
and rail passengers choosing long-distance and transfer-involved routes are theoretically a
minority group in Britain (DfT, 2016a; DfT, 2016b), these journeys cannot be ignored, for
they are more likely to be infrequent non-commuting journeys and hence tend to be more
elastic to the quality of rail services. Table 1.1 above provides a more tangible illustration of
how British rail journeys are distributed on the dimensions of journey purpose and journey
frequency, in which we can see that most non-commuting journeys are infrequent. Since
punctuality/reliability has always been among passengers’ top concerns about rail services
(Bates et al., 2001; ATOC, 2013; DT, 2016b) and passengers’ experience of

punctuality/reliability is increasingly dependent on the quality of information provided before



and during delays/disruptions (Lyons et al., 2008; Ben-Elia et al., 2013; van der Hurk, 2015),
the potential gains (losses) from improving (disregarding) the quality of information about
this particular group of long-distance and transfer-involved journeys will be non-negligible in

the long run, considering the overall magnitude of daily rail travel (DfT, 2016b).

1.2 Research question and objectives

The main research question/problem of this thesis is as follows.

How to exploit train movements data (train operation records) to develop an efficient and
effective methodology for practical use to improve the pre-trip information about those
critical transfer-involved routes within a national-level intercity rail (passenger) transport
system, taking into account not only the constraint of capacity utilisation but also the
interplay between the competitiveness (/attractiveness) of and the reliability

(/punctuality/robustness) of the recommended itineraries?

To answer this question, it is essential to have an in-depth understanding of the characteristics
of the accessible train movements data (mainly about Britain’s passenger rail system in this
thesis), to study the state-of-the-art pre-trip information systems/prototypes/algorithms and
identify the gap between the existing solutions/ideas and a reasonably good solution to the
research problem, and to develop an effective and practicable solution based on a
comprehensive grasp of the relevant issues and concepts from a variety of disciplines and

prove its advantages over the existing ones through quantitative and/or qualitative analyses.

More specifically, this research comprises the following four objectives.

1) Formulate the problem of pre-trip timetable information about those transfer-involved

routes, and identify those weak points within the existing pre-trip information systems.

2) Review the existing algorithmic solutions/ideas to tackle missed transfers, and

identify the inadequacies of the existing methodologies and knowledge.



3) Develop an effective and easy-to-implement solution to the research problem, and
develop an analytical framework that is able to quantify the quality (potential effect)

of a given information enhancement strategy.

4) Collect, analyse, and exploit real-world train movements data, and evaluate the

developed solution approaches in terms of efficiency and effectiveness.

1.3 Multi-disciplinary research

The main body of this thesis involves/blends the concepts and methods from a number of
different disciplines, and a thorough understanding of these fragmented but inter-related
pieces of knowledge is vital to the understanding of the algorithms and models developed and

presented in this thesis. More specifically, this thesis touches mainly on the following fields:

- Algorithm Engineering: the design and implementation of the algorithms in this thesis
cannot be achieved without an in-depth understanding of the algorithmic-level
mechanisms of current journey planning systems, or without a mastery of the various

programming techniques.

- Probability and Statistics: the information enhancing algorithm and the analytical
framework are historical-data-driven and involve statistical analyses. Knowing about
the principles and underlying assumptions of Statistics may facilitate the

understanding of the technicalities of the relevant models and algorithms.

- Mathematical Optimisation: although not directly involved, the understanding of the
optimisation techniques behind railway timetabling and journey planning is necessary

for the understanding of this thesis.

- Railway Engineering: good knowledge of rail-related devices and daily operational
practices could help better understand the screening algorithm and the statistical

analyses.



- Data Science: the screening algorithm and the analytical framework involve massive
data processing, which requires advanced programming skills to control the

computational complexity.

- Decision Theory: the analytical framework introduces a series of assumptions on
passengers’ choices, and it is necessary to have a good understanding of the basics of

Decision Theory.

In order to facilitate the understanding of the main body of this thesis, a concentrated

introduction to the fundamentals of the relevant disciplines is to be presented in Chapter 2.

Engineering problems are often quite complicated. In the remainder of this thesis, the reader
may find it full of technicalities and pieces of terminology borrowed from different
disciplines, which renders it not that readable. This is, however, not surprising — a relatively
straightforward idea does not mean an equally simple implementation in reality. Cross-
disciplinary cooperation is not as easy as imagined — the trend of persistent specialisation'
seems to be pushing professionals of different fields away from each other. In fact, previous
studies (e.g. Porter and Rafols, 2009) have shown that inter-disciplinary cooperation
nowadays is largely limited to neighbouring fields. Therefore, policy makers in the rail sector
should think about how to design a sustainable mechanism to truly strengthen inter-

disciplinary cooperation between the various departments of the rail sector.

1.4 Thesis structure

The main body of this thesis is composed of seven chapters. Following this general
introduction in Chapter 1, Chapter 2 presents a concentrated introduction to the fundamentals

of the relevant disciplines.

Chapter 3 formulates the problem of pre-trip timetable information about those transfer-

involved routes by introducing the concepts of Critical Transfers and Critical Routes, and

L http://undsci.berkeley.edu/article/modern_science



presents details about an efficient screening algorithm that has been developed (and tested on

British timetable data) to identify those Critical Routes within a given railway system.

Chapter 4 contains a review of the existing algorithmic approaches to enhancing pre-trip
timetable information, and details a historical-data-based algorithmic approach that is tailored
to tackling Critical Routes. Real-world examples in British railways (e.g. the route
Bournemouth = Southampton = Brighton) are also presented in this chapter to illustrate
why the proposed approach is more able (compared with the existing algorithmic approaches)

to deal with Critical Routes.

Chapter 5 describes an analytical framework that is specially developed to quantify the
impact of information enhancement strategies and conduct ex-ante analysis of those
identified Critical Routes. The underlying assumptions are systematically sorted out,
followed by a small fictitious example that is employed to illustrate the intermediate
calculations. After that, the results and their implications are presented from a number of case
studies of the identified Critical Routes in Britain’s passenger rail system. A detailed
introduction to the data utilised and the considerations in parameter selection are firstly

presented, followed by the obtained results and the key findings from these case studies.

Chapter 6 concludes this thesis and recommends directions for further research.






Chapter 2

Fundamentals

2.1 Introduction

This chapter is intended to provide a concentrated introduction to the fundamentals of several
different disciplines, from which the algorithms and models presented in subsequent chapters
are designed and developed. Instead of ambitiously pursuing rigor and comprehensiveness,
the writing of this chapter strives for clarity and conciseness. Unlike those encyclopaedic
textbooks, this chapter tries to deliver just enough information about the most relevant

concepts to this thesis.

Sections 2.2 and 2.3 belong to the domain of Algorithm Engineering, in which the introduced
concepts are closely related to the algorithms presented in Chapters 3 and 4. Section 2.4
explains several key concepts in Probability and Statistics, the applications of which can be
found in Chapters 3 — 5. Section 2.5 introduces the fundamentals of Railway Timetabling and
Operations, which are essential to the understanding of Chapters 3 — 5. Section 2.6 elucidates
several important concepts in Decision Theory, and they are mainly touched on in Chapter 5.

Section 2.7 summarises this chapter.

2.2 Graph Theory and Shortest-paths Problems

This section introduces the relevant concepts in Graph Theory and Shortest-paths Problems,
which are the theoretical foundation for the various Journey Planning Algorithms (to be
introduced in the next section). The latter (i.e. the various Journey Planning Algorithms) form
the core of current journey planning systems. For a more detailed picture of Graph Theory
and Shortest-paths Problems, it is recommended to refer to Cormen et al. (2009) and Diestel

(2010).
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2.2.1 Graphs

In Mathematics, a graph is defined as a 2-tuple (V, E) in which V represents a set of vertices
(or nodes) and E is a collection of edges (or arcs) defining on set V the pairwise relationships
between its member vertices. Two vertices u and v from set V are said to be adjacent if an
edge e = (u, v) exists in E, and the two vertices are called end vertices of edge e. Also, we say
a vertex v and an edge e is incident with each other if v is an end vertex of e. Two edges from
collection E are called parallel edges if they have the same end vertices, and an edge e from
E is called self-loop if its two end vertices are the same. Two non-parallel edges from
collection E are called adjacent if they share a common end vertex. An edge e = (u, v) from
collection E is said to be directed if the pair is ordered (u preceding v), otherwise it is

undirected.

We say a graph G = (V, E) is a directed graph (or digraph) if all edges in E are directed.
Likewise, a graph with all its edges being undirected is called an undirected graph. A path p
in a graph G is a sequence of adjacent edges <e1, e2, ...,ex> where eibelongs to E for all i in
the range [1, k]. When there are no parallel edges in G, a path P can also be represented as a
sequence of adjacent vertices <vi, v2, ...,Vk, Vk+1> where vi is the source vertex of ei for all i in
the range [1, k] and vk+1is the target vertex of ek. A graph is said to be weighted if each of its
edges is associated with a weight, given by a weight function w: E — R (R represents the set

of real numbers).

2.2.2 Single-source shortest-paths problem

Given a weighted digraph G = (V, E), the path weight of a path p in G is defined as the
summation of the weights of its component edges. And a shortest path from a source vertex u
to a target vertex v in G is any feasible path from u to v that has the minimum path weight.
An important application of graph theory in transportation is a problem set called shortest-
paths problems, all of which aim to find shortest paths between certain pairs of vertices in a
graph. Generally speaking, there are three categories of shortest-paths problems: single-
source shortest-paths problem, single-pair shortest-path problem, and all-pairs shortest-
paths problem. For different categories of shortest-paths problems, different types of

algorithms can be applied to solve them.
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Given a graph G, the single-source shortest-paths problem aims to find a shortest path from a
certain source vertex s to every vertex reachable from s in G. This category is like a ‘baseline’
of all shortest-paths problems. To solve this category of shortestpaths problems, the solutions
are different for different kinds of graphs. Given an unweighted graph G = (V, E) in which all
of its edges have unit weights, the breadthfirst-search algorithm can be applied to solve this
problem. It can be proven that breadth-first search is a linear-time algorithm with a time

complexity of O(|V| + |E|) if the unweighted graph is implemented using adjacency lists.

2.2.3 Dijkstra’s algorithm

Given a weighted digraph G = (V, E) in which all of its edge weights are nonnegative,
Dijkstra’s algorithm can work on it to efficiently solve the single-source shortest-paths
problem. Since in the graph representation of transportation networks edge weights satisfy
this nonnegative restriction, Dijkstra’s algorithm is frequently used to solve routing problems
in transportation networks. Dijkstra’s algorithm can be classified as a label setting algorithm,
which is characterised by scanning each vertex at most once in the execution of the algorithm.
The runtime of Dijkstra’s is in O(|E| + |V|log|V]) if its constituent priority queue is
implemented using a Fibonacci heap, and this bound can be further improved in some cases

using well-designed data structures.

2.2.4 Bellman-Ford algorithm

If there are negative edge weights in a given weighted digraph G = (V, E), Dijkstra’s
algorithm will no longer guarantee the correctness of the routing results. In this case,
Bellman-Ford algorithm can be used to complete the task. Bellman-Ford is a label correcting
algorithm, which means that each vertex may be scanned several times during an execution.
The worst-case running time of Bellman-Ford is O(|V||E|), slower than Dijkstra’s, but can

become competitive with Dijkstra’s in certain scenarios.

2.2.5 Other members of the shortest-paths family

The symmetric problem of single-source shortest-paths problem is the so-called single-
destination shortest-paths problem, which can be solved as a single-source shortest-paths

problem by simply reversing the direction of each edge.
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The single-pair shortest-path problem is aimed at finding a shortest path from a given source
vertex s to a given target vertex t within a given graph G. This category of shortest-paths
problems can be conveniently solved by applying one of the abovementioned algorithms
designed for single-source shortest-paths problems, and the running time can be at least as

fast as that of the counterpart in the single-source scenario.

To find a shortest path from one vertex to another for each pair of vertices in a graph is the
goal of the all-pairs shortest-paths problem. For a given graph G = (V, E), this category of
shortest-paths problems can be solved either by repeatedly calling one of the algorithms
designed for single-source shortest-paths problems, or by applying algorithms tailored for this
category. The Floyd-Warshall algorithm is designed for solving all-pairs shortest-paths
problems, and the runtime of this algorithm is in @(|V}?). It can be proven that for dense
graphs, Floyd-Warshall runs faster than |V| calls to Dijkstra’s. Johnson’s algorithm is another
tailored algorithm for all-pairs shortest-paths problems, and for sparse graphs this algorithm

is asymptotically faster than both Floyd-Warshall and repeated execution of Dijkstra’s.

2.3 Journey Planning Problems and Algorithms

The various journey planning systems currently in use are driven by a family of mathematical
models and algorithms called Journey Planning (or Route Planning) Problems and
Algorithms, which forms an emerging branch of Algorithm Engineering that has been
developing over the last decade or so. Although scientific knowledge about these algorithms
remains rather fragmented, their applications (e.g. Google Maps and the various traveller
information media) have been gaining popularity around the world due to the boom of
Information and Communications Technologies (ICT). This section tries to extract from the
large body of literature in this area the most relevant information about current journey
planning technologies, and re-organise these pieces of knowledge in an easy-to-understand

way.
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2.3.1 The evolution of journey planning

Traditionally, people plan routes/journeys manually using some kind of printed ‘travel
guides’. These travel guides can take the form of roadmaps for car drivers or timetables for
public transport riders. Routing manually can be an enjoyable experience if the traveller is
time-and-cost-insensitive and just enjoys driving or riding. In other cases, this can be a time-
consuming process that relies heavily on the traveller’s past experience and the quantity and
quality of travel information stored on those guides. Nowadays, with the development of
information technology and computing techniques, traditional travel information carriers such
as road maps, timetables, etc. can be digitally stored and integrated. The task of
routing/journeying can therefore be efficiently performed on these digitalised transportation
networks by computers equipped with well-designed journey planning algorithms, the core

component of journey planning systems.

According to Wagner (2015), the history of route planning algorithms in transportation
networks can be categorised into five phases: I) Theoretical explorations (1959 — 1999); 1)
The emergence of speed-up techniques (1999 — 2005); I11) The applications in road networks
(2005 —2008); IV) Towards more realistic scenarios in car & public transport (2008 —2012);

and V) New challenges on customisability, multimodality, etc. (since 2012).

2.3.2 Modelling transport networks as graphs: road vs. rail

If we model intersections as vertices and road segments as weighted edges, it would be
convenient to convert a road map into a weighted digraph and hence one of the above-
mentioned shortest-paths algorithms could be applied on the converted digraph to compute
shortest paths with respect to some chosen criterion (e.g. travel time). In rail networks (and
other timetable-based public transport networks), in contrast, the application of graph theory
and shortest-paths algorithms is not that straightforward. This is due to an important
difference between road and rail networks: in most cases, road segments can be traversed at
any time during a day, whereas track segments can only be traversed at discrete time points.
In other words, timetables (corresponding to rail networks) often contain additional temporal
information than roadmaps (corresponding to road networks) and this additional information

needs to be taken into account when converting a timetable into a graph.
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Abstractly, a timetable can be viewed as a 4-tuple (S, Z, C, D), where S is a set of stations, Z
is a set of trains, C is a set of elementary connections, and D is a set of service dates. In this
4-tuple, an elementary connection in set C is itself a 5-tuple (Zi, Sd, Sa, td, ta), which can be
interpreted as follows: a train Zi departs the current stop station Sd at time ta and arrives at the
immediately next stop station Saat time ta. At a given station Sj, a rail passenger can transfer
from one train to another if and only if the time window between the arrival of the feeder train
and the departure of the connecting train is no less than a predefined station-specific

minimum transfer time 1(S;).

2.3.3 Time-Expanded Model vs. Time-Dependent Model

Basically, there are two types of graph models in the literature to represent a timetable: time-
expanded model and time-dependent model. While both of them are well-studied in the
literature, neither of them can be said a perfect representation of a timetable. In practice, they

have their respective application areas and meanwhile they have their own limitations.

The time-expanded model builds an event graph (or time-expanded graph) for a given
timetable to “unroll’ time (Bast et al., 2015). In the basic version, departure events and arrival
events are modelled as vertices and the relationships between events are modelled as edges
(Schulz et al., 2000). In the realistic version, additional transfer vertices are introduced to
incorporate minimum transfer times (Miiller-Hannemann and Schnee, 2007; Pyrga et al.,
2004; Pyrga et al., 2008). An advantage of a time-expanded model lies in its flexibility and
robustness in the application in multi-criteria optimisation (which will be explained later in
more detail). A disadvantage of a time-expanded model is that the converted graph for a
timetable is usually very large and hence consumes more storage space than other models
such as the time-dependent model (Pyrga et al., 2004). In order to overcome this disadvantage,
several techniques have been devised to compress the resulting graph (for more details about

these techniques, please refer to Delling et al. (2009) and Pyrga et al. (2008)).

Unlike time-expanded model, the time-dependent model does not create a vertex for each
departure and arrival event but represents stations and/or routes as vertices and utilises
complex edge weights to model timetable information. In the basic version, vertices represent
stations and edges are associated with travel time functions to ‘encode’ departure and arrival

times (Brodal and Jacob, 2004). In the realistic version, apart from station vertices, additional
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route vertices are created to take into account minimum transfer times (Pyrga et al., 2008).
The number of route vertices in the realistic version can be reduced by merging disconnected
route vertices at a station into one (more details about this technique can be found in Delling
et al. (2012)). The advantage of the time-dependent model is its low memory consumption
compared with its time-expanded counterpart, but time-dependent graphs have a limitation
that it is not easy to apply speedup techniques on a time-dependent framework in some real-
world applications due to the cumbersome edge weights (Berger et al., 2009). Figures 2.1 —
2.3 give an illustration of how a timetable can be converted into a realistic time-expanded or

time-dependent graph.

train 1 train 2 train 3 train 4
stations times stations times stations times stations times
A dep | 9:30 B dep | 10:10 B dep | 10:15 B dep | 10:40
arr | 10:03 D arr | 10:50 I arr | 10:50 D arr | 11:20
B -
dep | 10:05
C arr | 11:00

Figure 2.1 An imaginary rail system consisting of only four train services (in which ‘service
date’ can be thought of as ‘everyday’)

33E : SSE :
9:30

Car) 10:05
o Br, ~

Figure 2.2 The time-dependent graph constructed from the timetables in Figure 2.1 (there are
five station vertices A, B, C, D, and E, and the other seven vertices are route vertices
corresponding to the three routes A to C via B, B to D, and B to E. The two edges between a
station vertex and a route vertex are transfer edges in which the solid edge is assigned a
station-specific minimum transfer time for checking, and the dotted edge has no assigned
weight and is only used to link vertices. The edge between two route vertices is a route edge
with which a travel time function is associated. A travel time function maps, for each train
traversing this edge, the departure time to the travel time.)

16



Ba@
10:03

=

Figure 2.3 The time-expanded graph built from the timetables in Figure 2.1 [there are three
kinds of vertices: departure vertices (e.g. Ad@9:30), arrival vertices (e.g. Ba@10:03), and
transfer vertices (e.g. Bt@10:05). Each of these vertices corresponds to a specific event in the
rail system. The edges between vertices have no weights and are only used for linking. Each
departure vertex is associated with a transfer vertex with the same timestamp. While an
arrival vertex can be directly linked to a departure vertex of the same train, it has to be linked
to a transfer vertex with the restriction of a predefined minimum transfer time if a transfer
(between two trains) happens.]

It should be noted that Bast and Storandt (2014) have recently proposed a new graph model
called frequency-based model, which builds on the time-dependent framework and exploits
the periodicity of public transport systems to compress the resulting graph. This model can be

viewed as a relatively independent category (Bast et al., 2015).

2.3.4 Array-based models

Although it is natural and convenient to model road (car) networks as graphs, graph models

(time-expanded/time-dependent) are computationally expensive in dealing with rail
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(timetable) networks, especially when the information provider has limited computing
resources. In order to reduce computational complexity, a series of array-based models have
been developed over the past few years, which act as alternatives to graph models.
Representative algorithms that adopt array-based models are CS4 (Connection Scan
Algorithm) and RAPTOR (Round-bAsed Public Transit Optimized Router), both of which
explicitly exploit the characteristics of public transport systems and convert expensive graph
searching into operations on simple arrays. Further details about CSA and RAPTOR can be
found in Dibbelt et al. (2013) and Delling et al. (2014Db).

2.3.5 Earliest Arrival Problem and its solutions

With graph models and array-based models at hand, various journey planning problems in
timetable networks can be effectively solved by applying the variants of shortest-paths
algorithms on these models. Journey planning in timetable networks has three problem

variants: earliest arrival problem, range problem, and multi-criteria problem.

The earliest arrival problem can be regarded as a benchmark. It can be roughly described as
follows: given a query (s, t, ) in which s is the source station, t is the target station, and 7 is
the planned departure time, how to find a journey (i.e. a sequence of trips and footpaths in
chronological order) that departs from s no earlier than T and arrives at t as early as possible.
A query like this is often called a time query or earliest arrival query. For time queries, travel
time is the only optimisation criterion considered. And since travel times between two
stations are inherently nonnegative, the aforementioned Dijkstra’s algorithm can be

conveniently applied on a converted graph to answer this kind of queries.

When adopting the time-expanded approach, the corresponding algorithm is called time-
expanded Dijkstra (TED). Likewise, time-dependent Dijkstra (TDD) refers to the underlying
graph model is of the time-dependent form. Although the application of Dijkstra’s algorithm
on time-expanded graphs is straightforward, the application on time-dependent graphs needs
some augmentation and additional requirements on edge weights (i.e. nonnegative and FIFO
(first in, first out)) should be satisfied (Orda and Rom, 1990; Orda and Rom, 1991). Based on
the observation that time-expanded graphs are inherently DAGs (Directed Acyclic Graphs),
the Topological Sort algorithm (see e.g. Cormen et al. (2009) for more details) can be applied

to answer queries in linear time (its time complexity O(|V| + |E|) is faster than Dijkstra’s
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algorithm) (Mellouli and Suhl, 2006). A larger speedup can be achieved by adopting some
array-based algorithms such as CSA (Dibbelt et al., 2013).

2.3.6 Range Problem and its solutions

The range problem can be described as follows: given a query (s, t, [t1, T2]) in which s is the
source station, t is the target station, and [t1, 12] is the range of planned departure times, how
to find a set of journeys with minimum travel times that departs from s within the given time
interval. A query of this form is often called a profile query. Variants of Dijkstra’s algorithm
can be applied on a time-dependent graph converted from a given timetable to solve this type
of problems (cf. Dean (1999), Delling et al. (2012), and Nachtigall (1995)). The frequency-
based model (Bast and Storandt, 2014) and CSA (Dibbelt et al., 2013) can also be extended to

solve range problems.

2.3.7 Multi-Criteria Problem and its solutions

Unlike the earliest arrival problem and the range problem, the multi-criteria problem
considers additional optimisation criteria (e.g. number of transfers, monetary cost, etc.)
besides travel time. Given a query (s, t, T) in which s and t are source and target stations and t
is the planned departure time, the multi-criteria problem asks for a Pareto set of mutually
non-dominated journeys in terms of the chosen optimisation criteria. We say a journey Ji
dominates another journey J2 if and only if J1 is better with respect to at least one criterion and

no worse with respect to the other criteria.

Although early studies (e.g. Hansen (1979)) have shown that a Pareto set can contain
exponentially many results even when only two optimisation criteria are considered, the
number of solutions in a Pareto set is often much smaller in real-world public transport
journey planning due to the fact that there are often correlations between different
optimisation criteria (Bast et al., 2015; Dibbelt et al., 2013; MiillerHannemann and Weihe,
2001). For example, Layered Dijkstra algorithm can be applied on a time-dependent
timetable graph to convert a bicriteria optimisation (i.e. travel time and number of transfers)
into a single-criterion (i.e. travel time) optimisation, which exploits the correlation between
the two optimisation criteria: travel time and number of transfers (Brodal and Jacob, 2004;

Pyrga et al., 2008).
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For multi-criteria problems with additional optimisation criteria (apart from travel time

and number of transfers), Multi-criteria Label-Setting (MLS) algorithms (cf. Demeyer
(2013), Disser et al. (2008), and Miiller-Hannemann and Schnee (2007)) or MultiLabel-
Correcting (MLC) algorithms (cf. Dean (1999) and Delling and Wagner (2009)) can be
applied on a converted timetable graph to solve them. Apart from MLS and MLC, other
model-specific algorithms can also be applied to solve the multi-criteria problem. Bast and
Storandt (2014) extend their query algorithm to incorporate number of transfers as an
additional optimisation criterion by adopting the proposed frequency-based model. Moreover,
the basic version of RAPTOR includes travel time and number of transfers as optimisation
criteria, and additional criteria can be added by adopting the multi-criteria version

(McRAPTOR) (Delling et al., 2014b).

2.4 Related concepts in Probability and Statistics

Probability and Statistics are two interrelated disciplines: the former places more emphasis on
theory while the latter assigns more weight to applications. Although these two fields have
long been regarded as an essential part of modern science, there remain important
controversies within them (de Elia and Laprise, 2005; Hajek, 2012). This section is not aimed
at providing a comprehensive introduction to these two highly developed fields, but tries to
focus on an introduction to one of the popular theories in Probability and Statistics that is

adopted in this thesis.

2.4.1 Classical probability

The concept of probability is one of the essential tools of statistics, which can be traced back
to the 17" century in the studies of games of chance. Throwing a dice, tossing a coin, and
drawing a card are examples of games of chance, which are characterised by an uncertain

outcome in a trial.

Although the outcome of each particular trial is uncertain, it is recognised that there exists a

predictable long-term outcome. For example, in a large number of trials of tossing an ideal
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(i.e. well-balanced and symmetrical) coin, heads will turn up in about one half of these trials.
This estimation/prediction of the percentage of heads in a number of trials/experiments can
be obtained a priori before these trials have been actually conducted: since only one of the
two outcomes (a head or a tail) can be obtained in a single toss of a coin, and since the coin is
unbiased (symmetrical and well-balanced), equal chances would be expected of obtaining a
head and obtaining a tail. The above reasoning can be formally recapitulated by the following

classical definition of probability (Mood, 1974):

If there are n possible outcomes resulting from a random experiment and these n
outcomes are mutually exclusive and equally likely, and if 74 of the n possible outcomes have

an attribute A, then the probability of 4 is the fraction n4/n.

In this definition, the key words are ‘mutually exclusive’, ‘equally likely’, and ‘random’.
Although these conditions can be satisfied in such games/experiments as throwing a dice,
tossing a coin, and drawing a card, they are not applicable in many other situations. The
classical definition of probability tends to be unable to deal with an infinite number of
possible outcomes (e.g. what is the probability that a randomly chosen integer be even?) and
those scenarios in which the concepts of ‘symmetry’, ‘equally likely’, etc., are not applicable
(e.g. what is the probability that a child born in the United Kingdom will be a girl?). Since
these scenarios are frequently encountered in reality but their results cannot be obtained
purely by deductive reasoning, the classical definition of probability needs to be extended to

accommodate them.

2.4.2 Relative frequency

One solution to the limitations of classical probability is the so-called relative frequency (or

empirical probability), which is based on actual observations.

The restrictions exerted on classical probability such as equipossible outcomes and symmetry
are relaxed, and hence relative frequencies can no longer be determined a prior before the
experiments have been actually conducted. That is, relative frequencies can only be obtained
a posterior after empirical evidence has been collected. For example, a tossed coin is no
longer viewed as absolutely symmetrical and balanced from the perspective of relative

frequency: there always exist uncontrollable flaws in the manufacturing of a coin, and hence
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a head and a tail are no longer equally likely to happen. In this scenario, a number p can still
be assigned to the event of a head as its probability, but this value p cannot be determined by
the classical definition. Only the frequency approach can be applied in such a scenario to
obtain an estimation/approximation of the value p by a large number of repeated trials and

observations (Mood, 1974; Papoulis, 1991).

2.4.3 The law of large numbers

An implicit assumption underlying the frequency approach is the law of large numbers
(LLN). LLN is an important theorem in probability theory and is one of the most important
principles employed in statistical analysis, which can roughly be described as the law that the
arithmetic mean of the results obtained from a large number of experiments almost surely
converges to the expected value as the number of repeated trials approaches infinity (Mood,

1974; Grinstead and Snell, 1997).

In the context of relative frequency, LLN implies that as long as the sample of observations is
sufficiently large, the relative frequency of a particular event is approximately equal to the
probability of the event. Here, ‘sufficiently large’ means the sample is large enough so that
extreme values cancel each other out. It should be noted that another underlying assumption
of relative frequency is also important: the experiment from which the observations are
obtained should be repeatable. That is, the experiment should be able to be repeatedly
conducted under the same (or quite similar) conditions. The reason why this underlying
assumption (of the frequency approach) should be carefully taken into account is further

explained in Chapter 3.

2.4.4 Other interpretations of probability

Although widely applied in engineering and scientific research, the frequency approach is
only a branch of probability theory: there are many other interpretations of probability that
cannot be ignored. These include logical probability, subjective probability, and propensity
(Hajek, 2012). Although each of these interpretations (including the classical and frequency
interpretations) seems to be able to capture some crucial insight into the probability concept,
none of them is flawless. Therefore, it may be more appropriate to treat these different

interpretations as complementary.
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Generally speaking, the major controversies between these different interpretations lie in
whether probabilities ‘live in the world’ or ‘live in the mind’ and to what extent probabilities
are objective/subjective (Parmigiani and Inoue, 2009). In terms of generality, classical
probability is the narrowest due to the strict restrictions placed on symmetry and
equipossibility, subjectivism is the widest, and frequentism lies in between placing moderate

restrictions on repeatability and randomness (Figure 2.4).

It should be noted that the perspective of frequentism (i.e. the frequency interpretation) is

adopted throughout this thesis.

Classical probability

Relative frequency
Subjective probability

Figure 2.4 The generality of typical interpretations of probability

2.5 Fundamentals of railway timetabling and operations

Railway systems are highly complex systems that require the cooperation of various parties
(e.g. passengers, train operators, infrastructure managers, public authority, and the general
public) and involve a large number of interdependent production processes (e.g. line planning,
timetabling, dispatching, track maintenance, passenger information, etc). This section is not
aimed at providing a detailed and comprehensive introduction to all aspects of railway
systems. Instead, it tries to provide an introduction to the key concepts in railway timetabling
and operations that would help the understanding of the algorithms presented in subsequent

chapters.
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2.5.1 The hierarchy of railway planning processes

In order to guarantee smooth daily operations, a railway system needs to be carefully planned
in advance. Railway planning involves a series of interrelated steps from demand estimation
to real-time traffic control, and these steps can generally be categorised into three stages:
strategic planning, tactical planning, and operational planning (see Figure 2.5). These steps

are, however, not strictly separated and can influence each other. Note that this section is

focused mainly on passenger transport.

Strategic

Transport demand
Network design
Line planning
Vehicle design

Personnel recruitment

Tactical

Timetabling
Rolling stock scheduling
Crew scheduling

Operational

Elaborating or adjusting the
schedules of trains, rolling
stock, and crew

Very-short-term

Figure 2.5 The hierarchy of railway planning [Source: Author. Based on the relevant
literature including Goverde (2005), Huisman et al. (2005), Watson (2008), Andersson

Traffic prediction and control
Disruption management

(2014), and D’ Ariano et al. (2014)]
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Strategic planning often happens well before trains are placed on tracks. Large and long-term
investments are typically involved in this stage to construct new infrastructure, producing
new rolling stock, hiring new staff, etc. (Goverde, 2005). And the major objective of this
stage is to determine where and how tracks and lines should be built/designed, based on the

estimation of market demand (Andersson, 2014).

Tactical planning is mainly concerned with the allocation of railway resources for the
intermediate planning horizon. One of the major tasks in this stage is timetable construction:
which trains should be allocated to which tracks during which time slots. This is not an easy
task: timetable constructors need to simultaneously consider and balance the requests from
different train operators and the requirements of track maintenance. Meanwhile, efficiently
allocating rolling stock and scheduling crews are supposed to happen at this stage, both of

which should also be carefully taken into account in timetable construction.

Operational planning and Very-short-term planning deal with short-term perturbations in a
railway system. Since railway systems are highly complex, any mistake/malfunction in any
operational process is likely to interrupt the smooth functioning of the whole system and lead
to delays and disruptions (Yuan and Medeossi, 2014). Therefore, it is necessary for a railway
system to have some mechanism to intervene in a disturbed situation and control/reduce the
impact of the interruption. Existing mechanisms include local dispatching, network-level
traffic control, shunting, and short-term rescheduling. While the major task of dispatching
and traffic control is to resolve conflicting train paths during perturbations, shunting and
rescheduling are mainly for the management of predictable variations in daily operations (e.g.
peak/oft-peak demand, engineering works, etc). For further details about each of these

mechanisms, it is recommended to refer to Goverde (2005).

It should be noted that the planning stages and steps described above are not strictly in
chronological order: they together form a feedback loop. For example, some of the problems
in operational planning (e.g. the railway network is very sensitive to perturbations) would be
likely to force timetable designers to consider improving the existing timetable, while other
operational problems (e.g. there is a shortage of rolling stock or crews) would be likely to

force decision makers to consider increasing investments in rail.
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2.5.2 Timetabling terminology

A timetable is a rail operator’s promise to its potential passengers about how train services
are planned. The timetabling (timetable construction) process is often a complicated process

that involves a trade-off between efficiency, safety, regularity, and conflicting interests.

A master timetable is a long-term timetable that is established for all traffic within a railway
network during a given time period. European passenger railways usually adopt periodic
timetables. Based on a periodic timetable, a train line is operated at regular intervals between
different hours of a day and between different days. An advantage of periodicity is that it

makes a timetable easy to memorise (see Figure 2.6).

Signin Create Account m {67k “ Share ~ Q) search

Outward Fri 20 Jan

g Earlier trains Long journey? Why not upgrade to First Class from £41.20 Single from £63.40
Dep. From To Arr. Dur. Chg. Status Based on 1 adult ‘
12:03 Weymouth [WEY] London Waterloo 14:49 2h46m 0 Details v CHEAPEST FARE
Platiorm 3 [WAT] i "
Platform 10 ontime  £63.40  BuyNow | < |
Anytime Other tickets «
e Other services you can travel on
12:20 Weymouth [WEY] London Waterloo 15:20 3h 00m 0 Details -
Platform 2 [WAT] M £63.40 Buy Now) 6l
Platform 8 on time )
Anytime Other tickets +
[ Other services you can travel on
13:03 Weymouth [WEY] London Waterloo 15:49  2h 46m 0 Details =7
Platform 3 [WAT] s £63.40 =RALED “
Platiorm 9 aRtme )
Anytime Other tickets «
[ Other services you can travel on
13:20 Weymouth [WEY] London Waterloo 16:20 3h 00m 0 Details
Platform 2 [WAT] o £63.40  |BuyNow a
Platform 8 on time .
Anytime Other tickets +
B Other services you can travel on
14:03 Weymouth [WEY] London Waterloo 16:49 2h 46m 0 Details v o812 AN P, |

Figure 2.6 An example of periodic timetable (Source: www.nationalrail.co.uk, accessed 18
Jan 2017)

Due to periodicity, a long-term (i.e. yearly, or six-months in Britain) timetable for a train line
can be constructed from a basic hour pattern (BHP), which can be visualised by a train path
diagram (also called time-distance diagram) (see Figure 2.7). Note that a long-term timetable
is often not strictly periodic and is not constructed by simply copying and concatenating
BHPs: a BHP needs to be adapted to different time periods taking into account daily and
hourly fluctuations in traffic demand (Goverde, 2005). Additional modifications to the long-
term timetable might be needed due to maintenance and special events, which results in the

daily timetable for each day during the timetable period.
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Figure 2.7 An example of train path diagram (Source: Pachl (2014))

1W58 1120 Weymouth to London Waterloo

South West Trains service departing on 17th January 2017

Schedule Information Operational Information Passenger Information Realtime Status
« WTT schedule UID W35039, identity 1W58 « Schedule from ITPS « Retail Service ID SW9242 « TRUST ID 861W58MI17
« Runs SSuX between 12/12/2016 to 25/08/2017 + Timed for 100mph max « Seating: first & standard « Running as 1W58
« Service code 24620204, headcode 9242 « Electric Multiple Unit « Reservations available « Activated 17/01/2017 10:20
« Express Passenger « Trolley service from Bournemouth
Mileage WTT GBTT Realtime Route Allowances
M Ch Location Pl Arr Dep Arr Dep Armr Dep Dly Line Path Eng Pth Prf
0 0 Weymouth [WEY] 2 1120 120 1119%: RT
0 28 Weymouth Jn pass 1121 pass 1120% RT
2 33 Upwey [UPW] 1 124 1124: 1124 1124 1123% 1124% RT
6 49 Dorchester Jn pass 1130 pass 1130 RT
6 74 Dorchester South [DCH] 1 131 133 1131 1133 1130% 11322 RT e
12 40 Moreton (Dorset) [MTN] 1 139 1139%: 1139 1139 1138%: N/R RT
16 75 Wool [WOO] 1 1144%: 11457 1145 1145 1145 1146 RT
20 67 WorgretJn pass 1150 No report
21 74 Wareham [WRM] 1 151% 11583 1152 1153 1151 1152 1E

Figure 2.8 An illustration of working timetable (Source: www.realtimetrains.co.uk, accessed
18 Jan 2017): the column under “WTT” is the working timetable and ‘GBTT’ the published
timetable.

Another pair of related concepts that need to be distinguished is published timetables and
working timetables. In the context of British railways, a published timetable (i.e. the National
Rail Timetable) is updated on a half-yearly basis, which contains information about all train
services during a given period. It can be viewed as a promise from British rail industry to
British rail passengers on the scheduled arrival and departure times, service frequency,

planned journey times, availability of direct services, and transfer times and number of
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transfers when direct services are unavailable. By contrast, a working timetable contains more
detailed information about planned train movements (e.g. train identifiers, freight train
schedules, passing times at through stations, etc) than the corresponding published timetable,
which is not for public use and is only circulated among rail industry professionals (Figure

2.8).

The planned running times (of a train) between consecutive scheduled stops in a
published/working timetable are based on the corresponding nominal running times, which
are the physically possible minimum running times. Normally, planned/scheduled running
times are set slightly larger than the corresponding nominal running times, and the positive
difference between a nominal running time and its corresponding scheduled running time is
called running time supplement (also called running time margin or allowance) (Vromans,
2005). According to UIC (2000), running time supplements can be incorporated into a
timetable in the following three ways: 1) distance dependent supplements [mins/km], 2)
running time dependent supplements [%], and 3) fixed-size supplement per station/junction
[mins]. Dutch railways adopt an industry standard of 7% for all passenger services (Goverde,
2005; Vromans, 2005). That is, 7% of the nominal running times are added into timetables as
running time supplements. German railways utilise running time supplements ranging from
3% to 7%, depending on types of trains and track characteristics (Goverde, 2005). In Britain,
running time supplements are not explicitly defined but are included in the timetables
(Vromans, 2005). According to Goverde (2005), the addition of running time supplements
can serve the following three purposes: 1) allow a slower speed profile under less favourable
conditions such as bad weather, electrical current fluctuations, drivers behaviour, etc; 2) serve
as recovery time to reduce the impact of departure delays; and 3) enable more energy-

efficient running by coasting.

Whereas running time supplements are utilised to enable a train to make up small delays,
buffer times are added into a timetable to prevent delay transmission between different trains
(Pachl, 2014). Two major types of buffer times can be distinguished: 1) headway buffer times
(i.e. the scheduled headway between two trains should include extra time to compensate for
small delays); 2) transfer buffer times (the scheduled transfer time needs to include extra time

to prevent the transmission of delays during the transfer process of passengers and/or crews).
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It should be noted that although the exploitation of running time supplements and buffer
times could to some extent improve the reliability and robustness of a railway system, the
abuse of them could also lead to increased track and station consumption and hence result in
unnecessary capacity losses. Hence, there often exists a balance between efficiency and

robustness in the practical timetabling process (Vromans, 2005).

2.5.3 Rail data collection

Compared with other means of transport, rail transport has its unique characteristics: heavy
vehicles run on fixed tracks at a considerably high speed, and long braking distances result
from low friction between rails and wheels (Goverde, 2005). Therefore, highly reliable safety
systems should be installed to prevent derailments, collisions between vehicles, and casualties.
The safety subsystem of a railway system is embodied by the comprehensive signalling
(sub)system, which is mainly composed of train detection devices, trackside signalling
(automatic/controlled), and cab signalling (automatic). For more details about the safety and
signalling systems in European railways, it is recommended to refer to Bailey (1995),

Goverde (2005), and Pachl (2014).

Signalling devices are not only employed to prevent accidents but also used to record and
monitor train movements in real time, which facilitates rail data collection and the statistical
analysis of a railway system. In modern railways (in most European countries), there are
generally two sources of train movements data: Train Describer and Train Event Recorder.
The train describer system holds a database receiving and containing plentiful information
about the real-time position of trains at the signal level, which functions as an important tool
for traffic management, track supervision, automatic route setting, and passenger information
(Bailey, 1995). In Britain, the train describer data are managed by the infrastructure manager
(i.e. Network Rail), and ORDW (2016) provides more details about the format of these data.
Train event recorders are widely used in European railways, which are analogous to flight
recorders (commonly known as black boxes). Integrated with other car-borne systems, they
enable enhanced diagnoses and controls (e.g. automatic warning, emergency braking, etc).
Although train event recorder data are mainly used for accident analysis and prevention, they

are also used to monitor train performance (Yuan and Medeossi, 2014).
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2.5.4 Performance measures

The performance of rail transport can be evaluated from different standpoints of different
parties (e.g. customer-oriented, operator-oriented, government-oriented, etc) and from a wide
range of different dimensions (e.g. economy, efficiency, reliability, safety, environment-
friendliness, etc). Clearly, there are no standardised performance measures that apply to all
parties and situations. But it is widely accepted that punctual, reliable, and fast transport of
people and goods at minimum cost would help increase the competitiveness of rail transport
(Martin, 2014). Here (and in subsequent chapters of this thesis), the focus is mainly on
reliability and punctuality. More specifically, this subsection is mainly aimed at introducing

the (reliability and) punctuality measures that are currently in use in most European railways.

Reliability and punctuality are a major concern of both rail passengers and rail operators
(Yuan, 2006; ATOC, 2013). While reliability has a much broader meaning, punctuality is
generally used to describe how late an average train arrives (Rietveld et al., 2001; Olsson and
Haugland, 2004; Vromans, 2005; Preston et al., 2009). For the convenience of quantitative
analysis, European railways often adopt heuristic measurements such as presenting
punctuality as the percentage of trains that run within a predefined level of acceptable
deviation (e.g. 5 mins) from the official timetable (Olsson and Haugland, 2004; Preston et al.,
2009). These heuristic measurements, however, tend to omit a lot of realistic issues and hence
are only rough estimations at the macroscopic level. A lot of information is hidden about
punctuality at intermediate stops (Olsson and Haugland, 2004; Martin, 2014) due to the
statistical method employed by rail operators (i.e. punctuality is often measured only at
terminating or large major stations). And since the performance indicators currently in use by
operators are mostly train-oriented (supply-oriented), they tend to overestimate the service
quality experienced by travellers (Harris, 1992; Rietveld, 2005; Weston et al., 2006; Carrasco,
2012; Harris et al., 2013). Although these heuristic measurements are in themselves
problematic, they could to some degree help rail operators monitor the overall performance of
their train services and help public authority formulate performance-related policies:
underperforming rail operators would be confronted with fines, and rail operators are
responsible for direct compensation to rail passengers when significant delays/disruptions

happen (Rietveld, 2005; Preston et al., 2009).
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2.6 Related concepts in Decision Theory

Decision theory is mainly concerned with decisions. More concretely, it is a theory about
goal-directed behaviour in the presence of choices/options (Hansson, 1994). Researchers
from many disciplines (e.g. economics, statistics, sociology, psychology, etc) have
contributed to the development of decision theory. While the domain of decision theory
includes a wide range of relevant topics, this section is only aimed at providing a brief
introduction to several relevant concepts to this thesis. For a more rigorous and
comprehensive introduction to decision theory, it is recommended to refer to e.g. Parmigiani

and Inoue (2009) and Bradley (2014).

2.6.1 The classification of decision-making

Decision theory is built upon several basic concepts: alternatives, states of nature, and
outcomes. A decision maker is assumed to be confronted with a finite set of mutually
exclusive alternatives, each of which is a course of action that can be taken by the decision
maker at the time of decision making. While a decision maker might have, in the process of
decision making, some background information about some of the various extraneous factors
that are beyond his/her control, there often exist a number of unknown extraneous factors.
These unknown extraneous factors can be summarised into a number of scenarios, called
states of nature in the terminology of decision theory. With these two concepts (i.e.
alternatives and states of nature) at hand, the outcome of a decision can be defined as the

combined effect of the chosen alternative and the realised state of nature.

certainty deterministic knowledge

risk complete probabilistic knowledge
uncertainty partial probabilistic knowledge
ignorance no probabilistic knowledge

Figure 2.9 The categories of decision problems (Source: Hansson (1994))
Dependent upon how much information is available about the states of nature in decision

making, the various decision problems can generally be categorised into four groups:

decision making under certainty, decision making under risk, decision making under
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uncertainty, and decision making under ignorance (the amount of available information is

decreasing from left to right) (see Figure 2.9).

2.6.2 Expected utility

In order to make decisions (i.e. choose between a set of alternatives), it would be helpful to
have some value standard (measurement) at hand for determining/evaluating how good the
outcome of a particular alternative is and then compare alternatives based on this standard. A
commonly adopted value standard is called utility, which can be defined as units of human
happiness in the terminology of moral philosophy. Many economic or utilitarian moral
theories are based on the rule of utility maximisation, meaning that a decision maker chooses

(one of) the alternative(s) that maximises his/her utility.

Expected utility (EU) is the mainstream approach to decision making under risk (refer to the
classification of decision problems in the previous section), which assumes that the
probabilities of all states of nature are known. According to expected utility theory, each
alternative can be assigned a value representing the weighted average of the utility values
under different states, and the weights adopted are just the probabilities of these different
states. The rule of maximisation in expected utility theory is called maximum expected utility
(MEU), which means that a decision maker chooses (one of) the alternative(s) that maximises

his/her expected utility.

2.6.3 Principle of indifference

In reality, complete probabilistic knowledge is often unavailable about states of nature and
decision makers would have to make decisions under uncertainty or under ignorance. In these
situations, the principle of indifference (also called the principle of insufficient reason) is

often employed to simplify a decision problem and reduce ignorance/uncertainty to risk.

The principle of indifference (POI) is as old as probability theory that is introduced
previously in Section 2.4. In fact, the classical definition of probability (in subsection 2.4.1)
can be viewed as based on POI: for a finite set of N mutually exclusive outcomes, if there is
no reason to believe that one outcome is more likely than another to occur, then the N

outcomes should be treated as equipossible, each of which has a probability of 1/N.
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The limitations of POI lie mainly in two aspects. Firstly, the result obtained from the
application of POI depends on the partitioning of the alternatives and hence whether the
structure of the states of nature is symmetrical should be checked before applying POI.
Secondly, POI is not applicable to decision making under absolute ignorance: neither is the
probabilistic knowledge about states of nature available, nor is the knowledge about the states

of nature themselves is available (i.e. whether a particular state exists is unknown).

Although POI is not a perfect solution to decision problems under ignorance, it is widely

utilised in scientific research and engineering applications.

2.7 Summary

This chapter introduces a considerable number of relevant concepts to this thesis that come
from several different but interrelated academic disciplines. The fields involved include
Algorithm Engineering, Probability and Statistics, Railway Timetabling and Operations, and
Decision Theory. Although some of these concepts are not directly touched upon in this
thesis, a good understanding of them would be helpful to understanding the subsequent
chapters. Some of the briefly introduced concepts are to be further explained or illustrated in
subsequent chapters when they are applied to specific scenarios. Moreover, some of the
concepts in the relevant fields are omitted in this chapter to avoid confusion. But they are to

be introduced in subsequent chapters with the aid of specific contexts.
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Chapter 3

Critical Routes: a weak point of existing journey planning
systems

3.1 Introduction

This chapter is centred on the introduction to the concept of critical routes, which can roughly
be described as those transfer-involved, long-distance, and delay-sensitive routes within a
given railway network. The subsequent sections are organised as follows. Section 3.2 gives a
general introduction to the status quo of passenger information in British railways. Following
that, Section 3.3 describes the problem that currently exists in the pre-trip information about
those transfer-involved routes. This section is followed by a detailed algorithmic-level
explanation of why it is difficult to effectively deal with those transfer-involved routes using
existing journey planning technologies in Section 3.4. In order to efficiently identify those
problematic transfer-involved routes within a railway information system, a screening
algorithm is developed and presented in Sections 3.5 and 3.6: definitions of several
introduced concepts are presented in Section 3.5, and the algorithm together with its
explanations can be found in Section 3.6. After that, the applicability of the developed
screening algorithm is illustrated in Section 3.7 by a case study of the National Rail timetable
currently in use in Britain’s passenger rail system. Section 3.8 conducts a further
investigation into the train delay data briefly described in Section 3.7 to gain additional
knowledge about passenger train delays in British railways: the obtained statistical models

and their interpretations are presented in this section. Section 3.9 concludes this chapter.

3.2 The status quo of passenger information in British railways

The past decade has seen a boom in the Internet’s popularity. Statistics have shown that three

billion people around the world (3/7 of the population) are now connected to the Internet
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(Meeker, 2016) and in Great Britain 23.7 million households (89% of the total) have access
to the Internet (ONS, 2016). The new wave of Mobile Internet (i.e. fast and stable

connections to the Internet via smart phones, tablets, and other mobile devices) further

defines what we can expect from this ‘digital age’(Lyons, 2015; Meeker, 2016; ONS, 2016).
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Figure 3.2 TOCs in social media

The impact of Internet-related technologies on traditional industries is remarkable, and the
rail industry is no exception. In Great Britain, apart from the National Rail Enquiries (NRE)
website (see Figure 1.3 in Chapter 1), most Train Operating Companies (TOCs) have their

own versions providing online information and ticketing services (Figure 3.1). Besides,
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accounts or homepages of rail companies can also be easily found on popular social media

such as Facebook, Twitter, etc. for marketing and information purposes (Figure 3.2).

Although how much impact these information and communications technologies (ICTs) can
have on rail demand and patronage remains an open question, it is generally believed that
providing passengers with timely and reliable travel information plays an important role in
improving customer experience and stimulate rail use (Chorus et al., 2007; Lyons et al., 2008;

ATOC, 2013; Ben-Elia and Avineri, 2015; RRUKA, 2015).

The efforts Great Britain’s rail industry has made on passenger information can partly be seen
from a wealth of open data on train operations available from the Internet (more details can
be found on Open Rail Data Wiki?), which enables the public to participate in improving rail
travel information. Several travel information websites (e.g. Open Train Times? and Realtime
Trains*) and a number of mobile applications are built on these open data, either directly or

indirectly.

Basically, the various forms of passenger information can be classified into two broad
categories: static pre-trip information and dynamic real-time information. The former
includes printed train timetables and timetable-based journey planning web applications such
as National Rail Enquiries (NRE) (see Figure 1.3). The latter ranges from in-station displays
and broadcasts to the diverse officially and unofficially deployed mobile applications such as

National Rail Travel App, Realtime Trains, etc. In reality, however, the quality of passenger

information is not always guaranteed, especially in the domain of pre-trip information. And
there seems to be a lack of a bridge between static pre-trip information and dynamic real-time

information due to the asynchrony between these two relatively independent domains.

3.3 The problem of pre-trip information about transfer-involved routes

Direct rail routes (lines) are often characterised by higher transport demand and more

frequent train services, which naturally receive more attention from rail operators. After all, if

2 http://nrodwiki.rockshore.net/index.php/Main_Page
3 http://www.opentraintimes.com/
4 http://www.realtimetrains.co.uk/
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these direct routes are poorly performed (in terms of punctuality and reliability) and poorly
serviced (e.g. poor information services), the corresponding rail operators would have to be

confronted with fines by the public authority and compensation to the passengers.

Transfer-involved rail routes® receive, however, much less attention from rail operators due to
various reasons. In Great Britain, the organisational structure of the rail sector is
characterised by the coexistence of a number of relatively independent Train Operating
Companies (TOCs): if a route involves several different train lines managed by different
TOC:s, then it is difficult to determine who should take the responsibility for undesirable
performance and services. On the other hand, even if the coordination of different rail
operators is not a problem, it is still technically challenging to deal with these transfer-
involved routes due to the limitations of existing planning and information technologies.
Since the topic of this chapter (and this thesis) is limited to passenger information, only the

information-related problem of transfer-involved rail routes is described in this section.

The gap between static pre-trip information and dynamic real-time information has been
mentioned in the previous section (Section 3.2). Although this gap is negligible in many cases,
it becomes non-negligible when a given (recommended) itinerary involves delay-sensitive
transfers (interchanges). Figure 3.3 provides an illustrative example of such non-negligible

problems in current passenger information systems.

C |

e Transfers

R N

-
9:30 10:00  10:04 11:55

Figure 3.3 An illustration of a rail journey involving a number of transfers

Suppose one day a rail passenger wants to go from Station A to Station B, and he/she
provides the pair of A and B as well as an expected departure time to an online journey

planning system. Then the system returns a recommended itinerary as follows (c.f. Figure

5 the exact meaning of which is to be clarified later in this section.
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3.3): take Train 1 (denoted as T1) departing from A at 9:30 (a.m.) to arrive at C at 10:00, then
transfer at C from T1 to T2 (Train 2) departing from C at 10:04 to arrive at...(instructions for
intermediate transfers are omitted)...and finally take Train k (Tx) to arrive at B at 11:55

(a.m.).

From this illustrative example, we can catch a glimpse of some key characteristics of pre-trip
timetable information about rail journeys that involve transfers: when provided a pair of
origin and target stations and an expected departure time, a computer-based journey planning
system looks up all the relevant train timetables according to some journey planning
algorithm (refer to Section 2.3) to generate an ‘optimal’ journey plan in terms of total journey
time (TJT, not including the access/egress parts) or a set of Pareto-optimal (i.e. non-
dominated) journey plans in terms of TJT, number of transfers (NoT), fare, etc. In practice,
however, the existence of train delays and cancellations tends to make the pre-trip timetable
information about the arrival and departure times along the recommended route(s) unreliable
and the arrival at the target station unpunctual. Rather than deterministic single values (e.g.
9:30, 10:00, etc. in the example), these arrival/departure times may look more like stochastic

distributions (see Figure 3.3).

Here, differentiation is made between nominal arrival/departure time and actual
arrival/departure time. Nominal arrival/departure time (NAT/NDT) refers to some planned
arrival(departure) time in a long-term timetable that is adopted by a journey planning system
to process well before a given journey begins. Actual arrival/departure time (AcAT/AcDT)
means some recorded arrival/departure time for a given train at a given station after the train
service has finished. The TIT calculated from NATs and NDTs is called nominal journey
time (NJT, e.g. 2h25m in the above example), and the TJT calculated from AcATs and
AcDTs is called actual journey time (AcJT).

Based on the following three observations: (1) there is often a significant discrepancy
between the NJT and AcJT of a transfer-involved rail journey, (2) in reality rail journeys
involving transfers are more prone to train delays and cancellations than those involving no
transfers, and (3) some of those transfer-involved rail journeys are much more sensitive to
train delays and cancellations than the others, the following questions arise: How many

journeys particularly prone to delays and cancellations exist in a given railway network? How
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to efficiently identify them? If such journeys do exist, then how to exploit the available

information tools to reduce the negative effects of unreliability and unpunctuality?

The answers to these questions are not that straightforward, and the solution proposed to the
problem of pre-trip information about transfer-involved rail routes is to be detailed in

subsequent sections and chapters.

Before leaving for the next section, a clarification is also needed to make about a set of
closely related concepts — journey, itinerary, transfer, leg, and route — to avoid

misunderstandings in subsequent sections and chapters.

In the context of this thesis, the concepts of a journey and an itinerary are largely
interchangeable, both of which are defined on the dimensions of both time and space and
correspond to a specific sequence of involved trains (legs) and the corresponding sequence of
transfer stations. Moreover, the word journey (or itinerary) is in most cases linked with an
unrealised (not-yet-achieved) plan in this thesis and hence is equivalent to the phrase of
journey plan (or itinerary plan). Note that two variants of the concept of journey/itinerary (i.e.
itinerary template and reconstructed itinerary) are to be introduced in Section 4.3. Further

explanation and clarification is to be made in Section 4.3 with the aid of specific contexts.

Another pair of interrelated concepts is transfer and leg. A transfer is between two
consecutive legs of a journey/itinerary, while a /eg corresponds to a specific train connecting
two transfer stations. In this description/definition, a ‘transfer station’ can be either intra-
modal or inter-modal. The concrete example in Figure 3.3 may help understand this: the k
involved trains in the figure can be viewed as legs, linking the (k-1) intra-modal transfer
(railway) stations and the two inter-modal transfer stations (i.e. the origin station A and the
destination station B). It can be seen from the above descriptions that the concepts of transfer
and /eg are also time- and space-specific, for they are essentially the components of a
journey/itinerary. However, it should be noted that these two notions can have more
generalised meanings in subsequent sections and chapters: in certain contexts (in the
remaining of this thesis), the word transfer is employed to represent a generic transfer and
the word leg is utilised to represent a generic leg. A generic transfer/leg is defined only on
the dimension of space (more precisely, it is also partially defined on the dimension of time:

see the clarification of the term route in the next paragraph), referring to a set of specific
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transfers/legs that follow the same pattern (in terms of space) but occur at different hours of
day and different days of week. Further illustration and clarification can be found later in

subsequent sections and chapters, with the aid of specific contexts.

The notion of a route need also be clarified. Often, the term route is related to road networks
and is defined only on the dimension of space. As previously mentioned in Subsection 2.3.2,
a spatial description/definition of a route is often enough in the context of (private) road
transport due to the fact that car owners have considerable freedom to choose a desired
departure time (and also a desired arrival time), without the constraint of vehicle service
providers and infrastructure managers. In contrast, a rail route is constrained by planned
timetables detailing the opening and closing times of the relevant train services and tracks,
which partially incorporates an additional dimension of time. Here, ‘partially’ is used to
emphasise that although the temporal dimension is introduced a rail route is usually referred
to in a generic way: it can be viewed as an abstraction of a set of relevant train services
connecting two given railway stations. Often, the notion of a rail route is related to a direct
route, the source and target stations of which are connectable by a single /ine (a railway line
corresponds to a set of trains that follow a specific (periodic) timetable). In the context of this
thesis, a novel notion of a transfer-involved rail route is introduced, which can be viewed as
an extension of the notion of a rail route: if a given target station is reachable from a given
source station but no direct route exists between them, then the chronologically ordered set of

the relevant legs and transfers is called a transfer-involved rail route between the two stations.

3.4 Existing journey planning algorithms: intelligent or not?

3.4.1 The ‘art’ of criteria and parameters selection

As has been described in Section 2.3, the state-of-the-art journey planning algorithms are all
highly-developed and well-designed and are much more able than those early versions of
shortest-paths algorithms to model and deal with realistic journey planning. Despite the
significant improvements in terms of effectiveness and efficiency (compared with previous
generations of routing algorithms), the current journey planning algorithms are, after all, built

on mathematical models with predefined rules, criteria, and parameters. And due to the

41



complexity in transfer-involved journeying and the quite different preferences of different rail
passengers, the quality of the computed results of a journey planning system is heavily
dependent upon the criteria and parameters adopted by the system. Here, in this subsection,
an illustrative example is presented to show the subtleties in the choice of criteria and
parameters. Note that although the illustrations employed in this section are mainly based on
National Rail Enquiries (NRE), the phenomena revealed are common in the existing pre-trip
journey planning systems. Since NRE has been among the most advanced around the world
(c.f. Table Al in Appendix A), the relevant technologies underlying NRE can be viewed as a

reflection of the state-of-the-art journey planning systems in operation.

The example is a query with London Waterloo being the origin station, Exeter St David’s
being the destination station, and the desired departure time being 10:00 a.m. on Mon 23 Jan
2017. Two versions of the recommended itinerary list can be obtained, which are shown
below: Figure 3.4 presents the version of NRE, while Figure 3.5 shows the version computed

from a self-developed journey planning simulator by the author.

A lot of differences can be seen from these two pieces of information. Comparing between
the two figures, the first impression may be that the simulator lacks the information about the
fare and real-time status of services. But this is not the key point (because integrating fare
information and real-time alerts into the simulator is theoretically not a difficult task, as long
as detailed fare data and train status feeds are publicly accessible). A more significant
difference lies in that the result set of the simulator is much larger than that of NRE, and the
direct train service from London Waterloo to Exeter St David’s with a departure time of
10:20 is omitted in the simulator (since the criterion of earliest arrival (c.f. Subsection 2.3.5)
is given a higher priority than number of transfers in the simulator, the 10:20 direct service is
excluded from the recommended list). This huge difference is, however, not that striking
from a developer’s perspective: the results for those routes involving transfer activities
between train lines with different service frequencies are unavoidably sensitive to the
predefined rules, criteria, and parameters due to the limitations of existing journey planning

algorithms.
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Outward Mon 23 Jan

() Earlier trains
Dep. From

10:20 London Waterloo [WAT]

10:30 London Waterloo [WAT]

10:57 London Waterloo [WAT]

11:20 London Waterloo [WAT]

Long journey? Why not upgrade to First Class from £68.20

To

Exeter St David's
[EXD]

Exeter St David's
[EXD]

Exeter St David's
[EXD]

Exeter St David's
[EXD]

Arr. Dur. Chg.

13:43  3h 23m 0

13:32  3h 02m 1

14:04 3h07m 1

14:43 3h 23m 0

Details

Details

Details

Details

Status

!
on time

v

on time

v

on time

]
on time

Other cheap fares

Single from £51.40

Based on 1 adult

£72.50

Off-Peak

Buy Now u

Other tickets

H Other services you can travel on

CHEAPEST FARE
£51.40 BuyNow) K
Off-Peak Other tickets ~

b Other services you can travel on

£51.40

Off-Peak

Buy Now u

Other tickets +
Q Other services you can travel on

£72.50

Off-Peak

Buy Now u

Other tickets «

Figure 3.4 The version from NRE (accessed 20 Jan 2017)

and Destination

E
E
E
Exe
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E>
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Figure 3.5 The version from a self-developed simulator
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More information about those transfer-involved itineraries could be found through a closer
examination of the two involved legs: the first is a tube (metro) leg from London Waterloo to
London Paddington, and the second is a direct rail line originating from London Paddington
(Figure 3.6). Clearly, the train services connecting Paddington and Exeter are faster and more
frequent than those directly connecting Waterloo and Exeter. And since it is convenient to go
from Waterloo to Paddington due to the high-frequency tube services, this transfer-involved

route may be favoured by some of the passengers. Therefore, rather than simply judge which



of the two versions is better, it may be more appropriate to explain the discrepancy between
the two result sets as the difference in travellers preferences (a developer is also very likely to
be a rail passenger): if higher priority is assigned to direct services and conciseness of the
result set, then the NRE version is the better representation; in contrast, if earliest-arrival and
availability of options are the major concerns, then the simulator-generated version is better.
Some may argue that the existence of these different versions can be resolved by developing
a fully-customisable journey planning algorithm. In reality, however, there is always a trade-
off between customisability and the complexity of the underlying model. Finding out a

solution to this dilemma is very challenging based on current technologies.

signin  Create Account md‘ssk: Ei share ~ Q) search ~
Platform 4 T
atform Off-Peak Other tickets v
10:06 London Paddington [PAD] :EEx;[t)e]r St David's 12:06 2h00m 0 Details v £65.40 Buy now m
Platform 4 oniime
Off-Peak Other tickets «
11:06 London Paddington [PAD] Exeter St David's 13:32 2h26m 0 Details v CHEAPEST FARE
[EXD] ; :
Praiom 4 ontime  £48.40  |Buynow L)
Oft-Peak Other tickets v
11:33 London Paddington [PAD] :EEx;[t)e]r St David's 14:04 2h31m 0 Details v £48.40 Buy now g
Platform 6 onime
Off-Peak Other tickets v
12:05 London Paddington [PAD] Exeter St David's 14:06 2h01m 0 Details
Platform 10 [EXD] un'time £48'40 m g
Platform 4
atform Off-Peak Other tickets «
13:05 London Paddington [PAD] [EEx;:ge]r St David's 15:16  2h 11m 0 Details v £48.40 Buy now “
Platform 4 onme
Off-Peak Other tickets «

Figure 3.6 The timetable of the connecting leg (Source: NRE, accessed 23 Jan 2017)

3.4.2 The algorithmic-level mechanism of itinerary construction

Continuing the comparison between Figure 3.4 and Figure 3.5, another noticeable difference
can be seen: while there are multiple itineraries having the same scheduled arrival time
(13:32 or 14:04) in the simulator-generated version, the projection/relation between
recommended itineraries and scheduled arrival times is one-to-one in the NRE version (only
one itinerary corresponds to a scheduled arrival time 13:32, and the same for the scheduled
arrival time 14:04). Moreover, the two itineraries with scheduled arrival times being 13:32
and 14:04 in the NRE version seem to have relatively late (compared with the available

options in the simulator version) scheduled departure times (10:30 and 10:57, respectively).
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This phenomenon is not just a special case, but is in the generality. Figures 3.7 — 3.10 gives

another example.

@ Earlier trains Long journey? Why not upgrade to First Class from £10.60 T Single from £20.90 ’_
Dep. From To Arr. Dur. Chg. Status | Based on 1 adult |
10:22 Boumemouth [BMH] Brighton [BTN] 13:16 2h 54m 1 Details 1 £41.30 Buy Now

e
Anytime Other tickets ~

Q Other services you can travel on

10:58 Boumemouth [BMH] Brighton [BTN] 13:18 2h19m 1 Details 1 CHEARES T TARE
Buy Now
£20.90 uy E
Off-Peak Other tickets v

R Other services you can travel on

11:22 Bournemouth [BMH] Brighton [BTN] 14:17 2n55m 1 Details ' ca130 NG
30 G S
Anytime Other tickets

R Other services you can travel on

11:59 Boumnemouth [BMH] Brighton [BTN] 14:18 2h 19m 1 Details ] £20.90 Buy Now
Off-Peak Other tickets +

Q Other services you can travel on

12:22 Bournemouth [BMH] Brighton [BTN] 15:16  2h 54m 1 Details ! Buy N =r
£41.30  BuyNow

Figure 3.7 The recommended itinerary list for a journey from Bournemouth to Brighton
(Source: NRE, accessed 23 Jan 2017)

Travel by Leaving From Platform To Arriving Platform Duration Additional info
. Southampton Central : 9 P3|
: Bournemouth [BMH] [sou] : o
=] 10:50  Bournemouth [BMH o 11:28 onzom YelPobEH

South West Trains service from Weymouth to London Waterloo 4 show calling points

: Southampton Central . : ry
= 1:32 Sggbham e Brighton [BTN] 13:18 haem Y d

Southern service from Southampton Central to Brighton <+ show calling points

> Routes, availability and fares are subject to these provisions

Figure 3.8 The adopted transfer plan by NRE for a route via Southampton Central (Source:
NRE, accessed 23 Jan 2017)

This is a query about recommended journey plans from Bournemouth to Brighton (on 23 Jan
2017). There are generally two alternative routes for such a journey: via Southampton Central
or via Clapham Junction. Due to the periodicity of the timetable, these itineraries can be
grouped into two patterns (see Figure 3.7): those with a departure time of XX:22, a longer
journey time, and a more expensive fare are via Clapham Junction, and those with a departure

time of XX:59, a shorter journey time, and a cheaper fare are via Southampton Central.
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Take the recommended itinerary departing at 10:59 for example (see Figure 3.8). Such a
journey could generally be subdivided into three stages: the first stage is a ride from
Bournemouth to Southampton Central, the second is an interchange (transfer) activity at
Southampton Central, and the third is a ride from Southampton Central to Brighton. The
transfer plan adopted by NRE for this itinerary (i.e. take the 10:59 South West Trains service
for the first stage and take the 11:32 Southern service for the third stage) seems no problem,
but a question arises if we take a closer look at each part (leg) of this route (see Figures 3.9
and 3.10): Why it is the 10:59 South West Trains service that is chosen as the feeder train?
Why the other available options with more reserve for the transfer are not adopted (or at least

displayed as alternatives)?

Signin Create Account m"ﬁsk n Share '3'»», Search ~
10:05 Bournemouth [BMH] Southampton Central 10:53 0Oh 48m 0  Details v Binznow!
s £13.50  [Buynew [
Anytime Other tickets v
Q Other services you can fravel on
10:22 Bournemouth [BMH] Southampton Central 10:58 0h 36m 0  Details v Buyinow!
i £13.50  [Buynow [
Anytime Other tickets v
ﬂ Other services you can fravel on
10:45 Bournemouth [BMH] Southampton Central 11:13 0h28m 0 Details Vv CHEAPEST FARE

el £7.70 Buy now ﬂ

Advance Other tickets ~

Q Ticket valid for this service only

10:59 Bournemouth [BMH] Southampton Central 11:28 0Oh 29m 0 Details v B e
[sou) £13.50 uy now |4
Anytime Other tickets

Q Other services you can travel on

11:05 Bournemouth [BMH] Southampton Central 11:53 Oh 48m 0 Details v B —r
[S0U) £13.50 uy now |4
Anytime Other tickets »

g Other services yeu can travel on
11:22 Bournemouth [BMH] Southampton Central 11:58 0Oh 36m 0 Details v £42 5n Buunowl 94

Figure 3.9 The available services for the feeder leg between Bournemouth and Southampton
Central (Source: NRE, accessed 23 Jan 2017)

Figure 3.9 tells us that there are approximately four available options (corresponding to four
different train services) per hour going from Bournemouth to Southampton Central. For
example, four train services respectively departing at 10:05, 10:22, 10:45, and 10:59 are
available between 10:00 and 11:00, and all of them are planned to arrive at Southampton
Central before the scheduled departure time of the 11:32 Southern service that connects
Southampton Central to Brighton (Figure 3.10). Since the connecting leg has less-frequent
services (operated on an hourly basis), these four services (i.e. 10:05, 10:22, 10:45, and 10:59)
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can all be viewed as feeder trains to the 11:32 Southern train. However, only the 10:59 South
West Trains train is chosen and displayed in the recommended itinerary list (see Figure 3.7).
Apparently, NRE adopts an additional ‘latest departure’ (the 10:59 service is the latest among
the four available feeder options) rule to earliest arrival (refer to Subsection 2.3.5) to achieve

the conciseness of the recommended itinerary list.

Signin Create Account m 68k' n Share ~ (;_ Search ~
g\ Earlier trains Long journey? Why not upgrade to First Class from £7.90 ‘ single from £15.50 ‘
Dep. From To Arr. Dur. Chg. Status | Based on 1 adult ‘
11:32 Southampton Central Brighton [BTN] 13:18 1h46m 0 Details 1 CHEAPEST FARE
Sou
=oul £1550  Bunow ()
Off-Peak Other tickets v
Q Other services you can travel on
12:32 Southampton Central Brighton [BTN] 14:18 1h46m 0  Details 1 Buy N —
[50U) £15.50 uy Now “
Qff-Peak Other tickets
Q Other services you can travel on
13:32 Southampton Central Brighton [BTN] 15118 1h46m 0  Details ] Buy Now/| K=
P £1550  |ewnow )
Off-Peak Other tickets
g Other services you can travel on
14:34 Southampton Central Brighton [BTN] 16:14 1h 40m 0 Details
Platform 2 M £1 5'50 Buy Now, [y
(508 on time D—
Platform 1 Off-Peak Other tickets v
9 Other services you can travel on
15:32 Southampton Central Brighton [BTN] 17:18 1h 46m 0 Details 1 T r
[s0U] £15.50 y m

Figure 3.10 The available services for the connecting leg between Southampton Central and
Brighton (Source: NRE, accessed 23 Jan 2017)

Looking back at the Waterloo — Exeter example in the previous subsection, we can see that
the same rule (i.e. latest departure) applies. That is, in the NRE version (Figure 3.4) the two
itineraries transferring at Paddington have the latest scheduled departure time(s) among the
available feeder options. Some may argue that these two (i.e. departing at 10:30 and 10:57,
respectively) do not follow the latest departure rule: according to the result set in the
simulator version (Figure 3.5), the latest departure ones should be 10:36 and 11:00,
respectively. That is, if the latest departure rule is applied to the result set in Figure 3.5, then
the two itineraries remaining in the list should be the one with the scheduled departure time
of 10:36 and the one with the scheduled departure time of 11:00, which are not the two
itineraries adopted in the NRE version. This difference is, however, caused by the difference

in the choice of parameters. NRE assigns a travel time of 21 minutes from Waterloo to
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Paddington (see Figure 3.11), whereas the simulator adopts a travel time of 14 minutes from
Waterloo to Paddington (based on the schedules® adopted by Transport for London).
Therefore, the two itineraries respectively departing at 10:30 and 10:57 are just the latest

departure ones in the context of NRE.

Travel by Leaving From Platform To Arriving  Platform  Duration  Additional info
) London Waterloo London Paddinagton .
— 10:30 A A 10:51 on2tm b

From London Waterloo take the Line (Northbound, Platform 3) which is a direct service to
Paddington Underground Station.

Check for live travel updates

i 11-06 L::Som Paddington Eé(;éer St David's 13:32 2h 26m h“f&)

Great Western Railway service from London Paddington to Plymouth 4 show calling points

> Routes, availability and fares are subject to these provisions

Figure 3.11 The parameter choice of NRE for the Waterloo — Paddington — Exeter route
(Source: NRE, accessed 23 Jan 2017)

In fact, the latest departure rule is widely adopted in practice to ensure the conciseness of the
computed results (Bast, 2010). This rule is no problem in most cases, but can be problematic
in certain scenarios. In order to better understand the potential problem resulting from the
latest departure rule, an explanation of the mechanism of minimum transfer time (refer to

Subsection 2.3.2) is necessary.

In the terminology adopted by Britain’s rail industry, the term minimum transfer time (MTT)
is usually called ‘connection time’ or ‘minimum connection time’, representing the length of
time that must elapse between the advertised arrival time of a feeder train and the advertised
departure time of the connecting train within a railway station. That is, the connection
between two trains is officially valid only if it satisfies the constraint of the corresponding
minimum connection time’. Here, in this thesis, the term minimum transfer time (MTT) is
adopted to comply with the terminology in Algorithm Engineering. Figure 3.12 gives a more

concrete example of some of the MTTs adopted by British railways.

6 https://tfl.gov.uk/plan-a-journey/
7 http://www.brtimes.com/#!info?type=conn
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London

Blackfriars TL 3
Cannon Street NR 4
Charing Cross NR 4

City Thameslink TL 3
Euston NR 15
Farringdon LT 3
Fenchurch Street NR 7
Kings Cross NR 15
Liverpool Street NR 15
London Bridge NR 4
Marylebone CH 10
Moorgate LT
Paddington NR 15
St Pancras International NR 15
Victoria NR 15
Waterloo NR 15
Waterloo East SE 4

Figure 3.12 The connection times assigned to London railway stations (Source: Network
Rail (2016b)) [NOTE: the middle column lists the corresponding ATOC Code, and the third
column lists the corresponding connection times in minutes]

From Figure 3.12, we can see that the MTT assigned to Paddington is 15 minutes, and it is
just the difference between the advertised arrival time of the 10:30 tube service (i.e. 10:51)
and the advertised departure time of the 11:06 Great Western Railway service in Figure 3.11
(which confirms the latest departure rule). MTTs are generally station-specific, but
exceptions exist (although not common) and these exceptions are specially assigned by
operators (e.g. the MTT required for Southampton Central is 5 minutes, but 4 minutes is

applied to the Bournemouth — Southampton Central — Brighton route, see Figure 3.8).

The incorporation of MTTs into journey planning algorithms is to better model the reality and
to ensure that passengers have time to change from one train to another. For dense
metropolitan areas, inter-stop MTTs are also assigned between pairs of nearby stops. These
intra- or inter-station MTTs, however, are often a trade-off between robust transferring (with

generous reserve) and total journey time.

Figure 3.13 gives an illustration of how MTTs work in a journey planning algorithm to

construct recommended itineraries for a given query.

In Figure 3.13(a), T1 is a feeder train and its scheduled arrival time at the transfer station is
ta1. T2 and T3 are two potential connecting trains that belong to different lines but both call at
a given target station (i.e. the railway station at which the traveller transfers to another train
or another mode of transport, not necessarily the terminating station of a train line), and their

scheduled departure times from the transfer station are tq> and tq3, respectively. The assigned
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MTT for the transfer station guarantees that any potential connecting train with a scheduled
departure time less than the earliest-allowable departure time teq (and larger than ta1) could
not be chosen as a leg of the recommended itinerary. For those connecting trains with
scheduled departure times larger than teq (e.g. T2 and T3 in this example), however, a journey
planning algorithm always ‘greedily’ selects the one with the earliest scheduled departure
time (e.g. T2 in the Figure), regardless of how small the difference between teq and ta> and
how small the difference between tq> and tg3. The similar mechanism holds for the case in
which a connecting train has a set of candidate feeder trains (see Figure 3.13(b)): the one with
the latest scheduled arrival time (T2 in the example) is ‘greedily’ chosen (see the previously
described examples of Waterloo — Exeter and Bournemouth — Brighton to better understand

the mechanism).
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Figure 3.13 An illustration of how Minimum Transfer Times (MTTs) function in ‘greedy’
journey planning algorithms

3.5 Critical Transfers, Critical Itineraries, and Critical Routes

3.5.1 Introduction

Due to the limitations of existing journey planning algorithms (as have been extensively
illustrated in the previous section), some of those transfer-involved itineraries recommended

by a journey planning system tend to be sensitive to train delays and cancellations and hence
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may negatively influence rail passengers’ experience of the quality of train services. More
specifically, the interplay between MTT, the criterion of earliest arrival, and the mechanism
of latest departure would result in tight transfers that may be adopted to construct the
recommended itinerary list for a given transfer-involved route. And if the consequence of
missed transfers is significant for a particular transfer-involved route, then an improvement of
the pre-trip information about (i.e. the recommended itinerary list for) this route should be
considered as an option to improve passengers’ experience of punctuality and reliability. But
how to determine which of those transfer-involved routes are problematic in terms of pre-trip
information? How to exploit algorithmic approach to quickly screen out those problematic
transfer-involved routes? To answer such questions, several novel concepts should firstly be

introduced to make the problem mathematically operable.

3.5.2 Critical transfers

At first glance, the set of recommended itineraries containing delay-sensitive transfers should
be quite large due to the fact that there are millions of feasible journeys per day within a
national-level railway network and small delays are a common phenomenon that every train

is possible to encounter.

In the domain of pre-trip information, however, recommended itineraries involving delay-
sensitive transfers are not that common due to the mechanism of MTTs. In reality, although
MTTs can cover most transfer scenarios, they tend to be insufficient for certain scenarios in
which these insufficiencies together with the ‘greedy’ mechanism of journey planning
algorithms render the recommended transfers prone to delays and cancellations. Figure 3.14

illustrates such delay-sensitive transfer scenarios that MTTs cannot cover.

In Figure 3.14, T1 and T2 are a pair of feeder and connecting trains that satisfies the
constraint of the corresponding MTT and appears in a recommended itinerary. That is, this
pair of trains simultaneously satisfies the constraint of the corresponding MTT (having been
omitted in the figure to reduce distraction) and the rule of earliest arrival (or latest departure).
As illustrated in Figure 3.14(a), this transfer becomes delay-sensitive if the scheduled
departure time (tq2) of T2 lies within the most uncertain interval (MUI). MUI can be
imagined as the interval of possible small delays (deviations) of the arrival of T1 (e.g. [-1, 5]

mins). Since small delays are quite common and each value in MUI is highly likely to occur
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in a given trip, the probability of a missed transfer becomes non-negligible under this

scenario.

! MUI !
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Figure 3.14 An illustration of those delay-prone transfer scenarios that current journey
planning systems cannot cover

For scenarios in which ta lies outside MUI, the transfer is also likely to be delay-sensitive if
the net transfer time (NTT) is large and the threshold (i.e. to in Figure 3.14) derived from the
maximum tolerable lateness (MTL) lies within MUI. As illustrated in Figure 3.14, the
scheduled window (SW) can be decomposed into NTT and MTL: NTT is the physically
possible minimum time required to walk from T1 to T2 within the station, and MTL is the

size of the maximum buffer for potential delays of T1.

Please note that NTT and MTT are not the same: NTT pertains to a specific pair of feeder and
connecting trains, whereas MTT is station-specific and takes into account the NTTs under
various scenarios within a given station. Normally, the MTT for a given station is no less than
the maximum of all possible NTTs within the station; meanwhile, it is not significantly larger
than the maximum of NTTs in case it significantly extends the journey time (reducing the

attractiveness of the recommended itineraries).

Although in Figure 3.14(b) SW is relatively large and tq; lies outside MUI, the threshold for
the arrival time of T1 (i.e. te) lies within MUI. Combined with the scenario in Figure 3.14(a),

those recommended transfers with tg lying within MUI can be said to be delay-sensitive.
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Although the above transfer scenarios are delay-sensitive and may have a non-negligible risk
of missed transfers, their impact on passengers’ experience would be limited if, for example,
there are a number of alternative transfers at the station or the connecting leg has high-
frequency services. Only if the following conditions are simultaneously satisfied, do the

corresponding transfer scenarios become problematic and worth to be paid attention to:

(1) The transfer is planned to happen within a given railway station.

(2) The scheduled window (SW) of the transfer is the smallest among all available
transfer options with SW > MTT.

(3) to lies within MUI (see Figure 3.14).

(4) The service frequency of the connecting leg is low and the length of the connecting
leg is long.

(5) The transfer scenario repeats itself periodically (e.g. every weekday) based on a

long-term timetable.

Condition (1) reduces the search space to intra-station transfers only. That is, inter-station
transfers between nearby stations (e.g. transfers between London terminals) are not taken into
account. Adding this restriction is due to the fact that inter-station transfers often involve
additional modes of transport (e.g. long-distance walking, bus, underground, etc.) and involve
road networks, which would render the estimation of the net transfer time (NTT, see Figure

3.14) between the feeder train and the connecting train difficult.

Condition (2) is to guarantee that it is this (problematic) transfer (rather than others) that is
adopted (by existing journey planning systems) to construct a recommended itinerary under
the latest departure rule (see Figure 3.13). After all, if a delay-sensitive transfer has been
filtered out by journey planning algorithms, there is no need to worry about it in terms of pre-

trip information.

Condition (3) has been explained in previous paragraphs. Generally speaking, if the
scheduled window (SW) is ‘small enough’ (as Figure 3.14 illustrates), the influence of
uncertainty on journey planning would become non-negligible and hence providing
additional information about the potential risk would be meaningful. Conversely, if the

scheduled time window is ‘large enough’, the impact of uncertainty on the connection would
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be insignificant and the normal timetable-based information could be seen as reliable under
most circumstances. But what is the threshold between ‘small’ and ‘large’? The answer is ‘it
depends’. It depends on the size of MTL (see Figure 3.14). Since SW can be easily calculated
from the timetable, the estimation of net transfer time (NTT) becomes the key, which is
further dependent on the distance between the two involved trains within the station, the
layout of the station, the familiarity of the traveller with the station, etc. (for a detailed study
of the various factors influencing NTT, it is recommended to refer to Guo (2008)). Further
details about the considerations in the estimation of NTT (for a given connection) can be

found later in the introduction to the screening algorithm.

Condition (4) considers the potential consequence of a missed transfer: if the connecting leg
has low frequency and the two end vertices (stations) are geographically far-apart, the

potential consequence will be non-negligible and needs to be tackled.

Condition (5) guarantees that the transfer scenario is a long-term existence rather than a
short-term noise (e.g. short-term timetables during public holidays, engineering works, etc.).
Since the proposed methodology to deal with those problematic transfer scenarios (to be
presented in the next chapter) is historical-data-based, the focus is hence not on solving
temporary problems but on tackling long-term problems. In fact, current technologies of
timetabling and pre-trip information have been able to effectively deal with those predictable
short-term perturbations such as public holidays, engineering works, etc. (as has been
explained in Subsection 2.5.2). And the focus of this thesis is mainly on dealing with those
small delays and operational cancellations. Further details can be found later in the next

chapter.

A recommended transfer plan (by a journey planning system) that satisfies all of the above
five conditions is called a critical transfer. Critical transfers are difficult to resolve in current

journey planning systems, due to the limitations of existing journey planning algorithms.

3.5.3 Critical itineraries and critical routes

Although critical transfers are problematic in terms of pre-trip information, the negative
effect of them would be limited if there are direct alternatives (see the Waterloo — Exeter

example in Figure 3.4) or these critical transfers are sparsely distributed on the dimension of
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time (i.e. the probability that a passenger adopts exactly the problematic transfer would be

low).

If all involved transfers in a recommended itinerary are critical transfers, the itinerary is
called a critical itinerary. If the set of critical itineraries between a given pair of railway
stations are densely and evenly distributed in a day (and repeat themselves during a long
period of time such as six months), then the corresponding route is called a critical route. A
one-transfer critical route is a critical route that contains exactly one transfer (more precisely,
one generic transfer, c.f. Section 3.3). And a k-transfers critical route is a critical route

composed of exactly k transfers.

From the above definitions, it can be inferred that a critical route (if it is existent in a studied
railway system) would be problematic due to the fact that most/all of the itineraries in the
recommended list would be delay-sensitive. In the next section, an efficient algorithm is
designed and presented, which is able to determine whether there exist critical routes in a

given journey planning system and which routes are critical (if they do exist).

Before going to the next section, a clarification needs to be made to distinguish between the
notion of ‘critical routes’ (proposed here) and the notion of “critical points’ in the literature.
Andersson et al. (2013) proposes a methodology to identify the robustness weaknesses in a
timetable, and these weak points are named critical points. Despite some similarity in
terminology, there is fundamental difference: the identification of ‘critical points’ is supposed
to happen at the timetabling phase (i.e. before the long-term timetable has been created and
finalised), whilst the identification of ‘critical routes’ is supposed to happen at the operational

phase (i.e. after the long-term timetable has been published for passenger information).

3.6 An efficient algorithm to enumerate all critical routes in a railway
network

3.6.1 Central idea

The central idea behind the screening algorithm is that instead of scanning the large set of all

feasible journeys to identify critical routes, the computational burden can be significantly
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reduced by firstly screening out all critical transfers and the corresponding one-transfer
critical routes (the building blocks), and then permutating the small set of one-transfer critical

routes to obtain the list of all critical routes in a given railway network.

Note that the screening algorithm adopts CSA (Connection Scan Algorithm, see Subsection
2.3.4 for reference) as a sub-procedure to simulate an online journey planning system (note:
the simulator used in Figure 3.5 is also based on CSA). This choice is, however, not
compulsory but largely for convenience. Graph-based journey planning algorithms (e.g.
Time-Dependent Dijkstra and Time-Expanded Dijkstra, refer to Section 2.3) often require a
great many computational resources to do heavy-preprocessing in order to achieve desirable
response times; however, graph-based algorithms have better extensibility and can better
support multi-modal journey planning. By contrast, post-Dijkstra algorithms like CSA or
RAPTOR (see Subsection 2.3.4 for reference) are array-based and lightweight, which
consume fewer computing resources but are mainly designed for public transport networks.
Overall, each kind of journey planning algorithms has its own pros and cons, and the reason
why CSA is adopted here involves a balance between the consumption of computational
resources and the requirement for response times. An algorithmic-level explanation of CSA is
to be presented in the next subsection. After that, the screening algorithm proposed is to be

detailed.

3.6.2 Connection Scan Algorithm (CSA)

The Connection Scan Algorithm (CSA) is firstly proposed by Dibbelt et al. (2013), and has
been proven to be one of the most efficient journey planning algorithms (until now) for
timetable-based public transport systems (e.g. rail) (Bast et al., 2015; Wagner, 2015). To
better understand the technicalities of the screening algorithm (in the next subsection), it

would be helpful to give a brief illustration of CSA.

Below is the pseudo code of the basic version of CSA (i.e. an earliest arrival query, see the
subsection 2.3.5 for reference). Before going to the technical details of this algorithm, it is
necessary to clarify the meaning of ‘connection’ in the context of CSA. As mentioned

previously in Section 2.5 and the subsection 3.4.2, the term ‘connection’ is mainly used to
describe the interaction between two different trains within a station (e.g. passenger transfers,

crew transfers, etc) in the terminology of railway timetabling and operations. Here, in the
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context of the algorithm, ‘connection’ is a rather abstract notion and is mainly used to refer to
a train movement from one station to another. And more precisely, a ‘connection’ in CSA

represents an ‘elementary connection’ (refer to the subsection 2.3.2) in a given timetable.

Algorithm 1: CSA (Connection Scan Algorithm)

Input: Stations, Connections, Si1, Sz, ti
Output: ltinerary recommend

// initialising auxiliary arrays

for all S; in Stations:
In_connection[S;] = NULL
Earliest_arrival[S;] = ©

// main loop
for all C; in Connections:
if ta(Ci) > Earliest_arrival[Sq(Ci)] and ta(Ci) < Earliest_arrival[Sa(Ci)]:
Earliest_arrival[Sa(Ci)] = ta(Ci)
10 In_connection[Si(Ci)] = C;
11
12 // constructing the recommended itinerary
13 [tinerary recommend = NULL
14 Ci=In_connection[S;]
15 while C; is not NULL:
16 Itinerary recommend.append(C;)
17 Ci = In_connection[Sa(Ci)]
18 Itinerary recommend.reverse()
19 return ltinerary recommend

01N N kAW~

el

Recall (in the subsection 2.3.2) that a timetable can be abstractly modelled as a 4-tuple (S, Z,
C, D), where S is a set of stations, Z is a set of trains, C is a set of elementary connections,
and D is a set of service dates. In this 4-tuple, an elementary connection in set C is itself a 5-
tuple (Zi, Sd, Sa, td, ta), which can be interpreted as follows: a train Zi departs the current stop
station Sd at time td and arrives at the immediately next (scheduled) stop station Saat time ta.

The mechanism of CSA is just built on such an abstraction of a master timetable.

In Algorithm 1 (CSA), a master timetable is firstly reformatted and stored into two arrays:
Stations (i.e. all active stations in a railway network) and Connections (i.e. all elementary
connections in the timetable). CSA then receives a time query (S1, Sz, t1) (note:S; is the
source station, Sy is the target station, and t; is the desired departure time from Si; refer to the
subsection 2.3.5) and returns a recommended (earliest arrival) itinerary. In an execution of

CSA, two auxiliary arrays are firstly initialised (Lines 1 —4): In_connection stores all the
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incoming (elementary) connections for each station, and Earliest _arrival stores the earliest
arrival time for each station. The second stage is the main loop of the algorithm: the array
Connections is fully scanned to obtain the earliest arrival time at the target station (i.e. S2)
and mark all the involved stops en route. Then, in the final stage, a post-processing procedure
is run to construct and return the recommended itinerary. Note that Sq(-), Sa(*), ta(*), and ta(*)
in the above algorithm respectively represent the departure station, the arrival station, the

(scheduled) departure time, the (scheduled) arrival time of a given (elementary) connection C;.

3.6.3 Critical Routes Finder (CRF): the screening algorithm

Algorithm 2 below presents the pseudo code of the developed screening algorithm (called
Critical Routes Finder) for identifying and enumerating all the critical routes (defined as in
Section 3.5) within a given railway system. The algorithm (i.e. CRF) involves a number of
sub-procedures (including the aforementioned CSA-based journey planning simulator), a lot
of data cleaning and processing, and several carefully designed heuristics to accelerate the
executions. A Python implementation of CRF is presented in Appendix B, the source code of
which is composed of approximately 1500 lines (of commands). Therefore, rather than being
viewed as one algorithm, CRF can be more appropriately described as a set of several

interdependent algorithms.

CRF is generally composed of five major steps. All the notations in italics are one-
dimensional list (array) objects, those in bold are two-dimensional tables, and uppercase
letters are constant parameters. The only exception is CSA in Step 4, which is short for

Connection Scan Algorithm (as previously described) and is not a parameter but a procedure.

Algorithm 2: CRF (Critical Routes Finder)

Input: a long-term timetable that contains information about stations, lines, trips, stop times,
calendar, and minimum transfer times
Output: a list of all critical routes in the studied railway system

1 // Step 1: determine the set of all transfer stations in the network
2 for each in Lines:

3 record seq and store it into StopSequences

4 for each pair in StopSequences:

5 if no shared origin and destination:

6 if not inverse to each other:

7 compute intersec

8 if len(intersec) == 1:
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35
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44

45
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49
50

store intersec into TransferStations

// Step 2: construct station-view timetables for transfer stations
for each station i in TransferStations:
if MinimumTransferTime(i) > UPPER:
continue
extract from StopTimes the records pertaining to i and store into a separate table
Table_i
sort Table_i by scheduled arrival time
merge Table i with Stations, Calendar, etc. to introduce additional columns for
scanning
store Table i into StationViewTimetables

// Step 3: scan StationViewTimetables to obtain a candidate list of critical transfers
for each table j in StationViewTimetables:

delete those records with service days < DAYS

flag those records with line headway > HEADWAY and store into Connecting

assign LOWER j and UPPER j for scanning

for each record k in table j:

for each record m with dep(m) in [arr(k)+*LOWER j, arr(k)*UPPER j]:
if line(m) in Connecting and dist(station(j), destination(m)) > DIST:
if diff(platform(k), platform(m)) > DIFF:
store (origin(k), station(j), destination(m)) into CandidateList

// Step 4: double-check CandidateList to obtain the list of critical transfers and one-
/l transfer critical routes
extract from StopTimes the timetable for a normal service day
for each pair of origin and destination in CandidateList:
run a multi-criteria CSA on the timetable to obtain a list of recommended
itineraries
if the recommended itineraries follow exactly one route with exactly one transfer:
store the recommended route into RecommendedList
intersect CandidateList with RecommendedList to obtain CriticalTransfers
drop duplicates in CriticalTransfers to obtain I-Transfer-Routes

/I Step 5: permute /-Transfer-Routes to obtain the list of all critical routes
k=2
while k <K:
enumerate k-permutations of /-Transfer-Routes and store them into
CandidateList k
double-check CandidateList k to obtain the final list of k-Transfers-Routes (repeat
Step 4)
store k-Transfers-Routes into CriticalRoutes
k=k+1
if len(k-Transfers-Routes) == 0:
store /-Transfer-Routes into CriticalRoutes
return CriticalRoutes
terminate
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Step 1 and Step 2 can be seen as pre-processing steps. These two steps can significantly
reduce the search space and the computational burden on scanning tables. This is because
realistic railway systems are often sparse networks in which only a small subset of all railway

stations are potential transfer stations. Relevant symbols are as follows:

- seq means the stop sequence of a given train line.

- intersec is the intersection set of two line-specific stop sequences.

- origin/destination means the originating/terminating station of a given line.

- UPPER is the upper bound for an insufficient MTT.

- StopTimes is a table that stores all the scheduled arrival, departure, and passing times
at all station stops for all lines within a given rail network.

- Stations is a table that stores station-related information about e.g. name, location,
special identifier in a given code system, etc.

- Calendar is a table that specifies the operational and non-operational dates for each
train line within a given timetable period.

- StationViewTimetables means a list of (line-specific) timetables grouped by station.

Step 3 and Step 4 are the core part of CRF. While Step 3 is mainly to check Conditions (3), (4)
and (5) in the four conditions for critical transfers, Step 4 is mainly to check Condition (2).
Note that Condition (1) has been implicitly taken into account in Steps 1 and 2. Step 3
involves several network-specific parameters, and the considerations behind parameters
selection are to be explained later in the application of CRF to the National Rail timetable

currently used by Britain’s passenger rail system. Relevant symbols are as follows:

- DAYS is the threshold for the number of operating days within a timetable period.

- HEADWAY is the threshold between low-frequency and high-frequency services.

- Connecting is the candidate list of connecting legs.

- LOWER jand UPPER j are station-specific parameters that bound the interval [MTT,
UPPER].

- dep(m) and arr(k) are the scheduled departure time of m and the scheduled arrival
time of k.

- DIST is the threshold between near and far in terms of geographical distance between

the transfer station and the destination station (of a given connecting line).
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- DIFF is the difference between the platform number of the feeder train and that of the

connecting train.

Step 5 introduces two stopping conditions. One is to stop the algorithm when no new critical
routes enter the result set (which is very natural). The other is a constraint of maximum
number of transfers (i.e. the parameter K), which is to accelerate the termination under the
extreme case in which there are critical routes involving unrealistically large number of

transfers.

The whole algorithm has been carefully implemented and tested in the analysis of the
National Rail timetable currently in use in Britain’s passenger rail system, the execution of
which is proven to be quite efficient (up to 3 mins in total). Since all the involved parameters

are network- or station-specific, the choice of each parameter is to be detailed in the analysis.

CREF (Critical Routes Finder) has been developed to locate those critical routes (defined in
Sections 3.4 and 3.5) within a large search space (composed of millions of possible pairs of
source and target stations). The creation and adoption of this particular approach has been
mainly based on the consideration that it would be much more efficient than a Brute-Force
approach (i.e. firstly enumerate all possible routes between all possible pairs of source and

target stations, and then check all these routes one by one).

3.7 An analysis of British National Rail timetable using CRF

3.7.1 Introduction

Britain has one of the busiest railways in Europe with about 22,500 trains running every day
and 1.7 billion rail journeys made per year (Network Rail, 2016b; ORR, 2016). Since
passenger rail journeys (in Britain) have more than doubled over the last two decades (ORR,
2016), the infrastructure capacity utilisation also increases, reaching its limit at critical parts
(Network Rail, 2016a). A higher capacity utilisation tends to bring more frequent delays
(Olsson and Haugland, 2004), and train delays and cancellations are currently quite common

in British railway system.
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On the other hand, rail passengers in Britain tend to rely increasingly on web-based
information sources to plan their journeys, especially when planning unfamiliar and/or long-
distance journeys (Farag and Lyons, 2008). In the following, the CRF algorithm presented in
the previous section is to be applied to the current National Rail timetable (i.e. the published
long-term timetable) adopted by British railways to identify those weak points (i.e. critical

routes) in the pre-trip timetable information (i.e. those recommended itineraries by NRE).

3.7.2 Data preparation

In this particular analysis, three sets of relevant data are prepared: the National Rail timetable
data, the London Underground timetable data, and historical train movements data about

arrival and departure delays at major stations.

Although generally stable, the long-term (planned) timetable of National Rail is updated
every six months. In this analysis, the latest version (at the time of writing up this thesis) is
adopted, which is valid from 11 December 2016 to 20 May 2017. Although different formats
are available: PDF (Network Rail, 2016b), XML (ATOC, 2016), and GTFS
(http://www.gbrail.info/ ), a dataset of GTFS format is adopted because GTFS data are well-

organised and easier to process. The GTFS timetable is updated every week to reflect minor
modifications to rail operations in the following week, and the exact file adopted is the one

published on 19 November 2016.

The London Underground timetable?® is also involved. Recall that in Steps 4 and 5 in the
screening algorithm (i.e. CRF), a CSA-based journey planning simulator is run to check the
candidate list of critical transfers and critical routes. Since many journeys across Britain
involve inter-station transfers between London Terminals (e.g. Waterloo, Victoria, etc.),

London Underground is often a good choice to complete these inter-station transfers.

The historical delay data collected are a 12-months dataset that contains information about a
huge amount of recorded arrival and departure events (logs) at a number of major railway

stations. The observation period is from 14 Sept 2015 to 13 Sept 2016, which crosses three

8 https://tfl.gov.uk/travel-information/timetables/
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timetable periods: 17 May 2015 — 12 Dec 2015, 13 Dec 2015 — 14 May 2016, and 15 May
2016 — 10 Dec 2016. The records are organised by station: the investigated stations are
Bournemouth, Southampton Central, Brighton, Exeter St Davids, Cardiff Central,
Birmingham New Street, Clapham Junction, Leeds, Doncaster, Manchester Piccadilly,
Edinburgh, Liverpool Lime Street, Sheftield and Preston (14 stations in total). The relevant
data records have been downloaded and stored into separate files every day (during the 12-

months observation period) from Realtime Trains (RTT). The reason why adopting RTT data

is that RTT data are generally well-structured and easier to process than those poorly-
structured raw data from Network Rail. Although RTT is not an official source of historical
rail data, it is a well-known data consumer of Network Rail’s data feeds (rather than a data
creator). Note that since the database of RTT has limited storage space, the historical data are
renewed on a weekly basis (i.e. old data are removed to leave space for new data). Hence,

RTT data needs to be carefully and timely collected, before the relevant records are removed.

3.7.3 Parameters selection

Step 2 (of the screening algorithm CRF) involves an important parameter: the upper bound
for potentially insufficient minimum transfer time (MTT). Recall that in the introduction to
critical transfers and critical routes (Section 3.5), the mechanisms of MTT and MUI (most
uncertain interval) have been respectively explained, but the relationship between them has
not been clarified. This is because although MTT and MUI are inter-related, both of them are
network-specific (i.e. may vary among different countries) and their relationship is largely
indefinite. Here, considerations are explained about how to determine MUI and hence

determine the threshold for potentially insufficient MTT in the context of British railways.

The statistics shown in Figure 3.15 below are calculated from the 12-months historical data

(Figure 3.15(a) and (b)) and the National Rail timetable data (Figure 3.15(c)).

Figure 3.15 (a) and (b) respectively present the distribution of arrival and departure delays at
the 14 studied railway stations in Britain (refer to the previous introduction in Subsection
3.7.2) during the 12-months observation period. The total number of effective observations
(i.e. null values and cancelled trains are not included) is 1,405,785 for arrival events, and
1,439,873 for departure events. The observed arrival delays have 283 distinct values (unit:

minutes) with the minimum and maximum being -104 and 436, respectively. The observed
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departure delays have 287 distinct values, with the extreme values being -83 and 781,

respectively.
Aarr percentage

0 19.55

-1 16.79

1 13.53
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Figure 3.15 Statistics for arrival delays, departure delays, and minimum transfer times in
British railways

Generally, the arrival delays have a “flatter’ distribution than the departure delays (c.f. Figure
3.15), indicating that the uncertainty in arrival events tends to be larger than that in departure
events. We can also see from both distributions that small variations account for the vast
majority of the total. Although the sample adopted is quite large in terms of the number of
observations, it only accounts for a small portion of the whole network and not necessarily
representative: these statistics should not be seen as the exact probabilities (e.g. the size of
arrival delays may be systematically underestimated using this sample, for rail operators
usually take measures to improve punctuality at major stations but allow larger delays at
small stations). But one thing is clear from these statistics: small arrival delays are not that
rare, and they can result in delay-sensitive transfers if combined with relatively punctual

departures and insufficient MTTs.

Figure 3.15 (c) presents the distribution of MTTs for all British railway stations. The statistics

are calculated from the National Rail timetable data (in GTFS format). We can see that
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among the 2585 stations, around 94% are assigned a MTT no more than 5 minutes. This is
not surprising because most of the stations in Britain’s passenger rail system are not major
transfer stations and the net transfer time (NTT, refer to Figure 3.14 in Subsection 3.5.2)
within a small station is trivial. But there is a possibility that some transfers happen at small
stations but there are not enough reserves to offset the impact of prevalent small delays. For
those major transfer stations with large MTT, there is also a possibility that some transfers

require large NTTs and there are not enough reserves for small delays.

So how to determine the upper bound for MTT? The key is firstly determining an upper
bound for MUI. Recall that a transfer plan is considered as valid only if the scheduled
window between the advertised arrival and departure times of two trains is greater than a
predefined minimum transfer time (i.e. SW > MTT, see Figure 3.13 in Subsection 3.4.2).
Meanwhile, the scheduled window between two trains can be seen as the sum of the net
transfer time and the maximum tolerable lateness (i.e. SW = NTT + MTL, see Figure 3.14 in
Subsection 3.5.2), and the threshold for the arrival of the feeder train should lie within MUI
(i.e. to < t”a1, see Figure 3.14 in Subsection 3.5.2) were it recognised as a critical transfer
(refer to subsection 3.5.2). Therefore, the upper bound for MTT is dependent upon the upper
bound for MUI: MTT < SW = NTT + (to — ta1) SNTT + t”a1 — tar.

From Figure 3.15 (a) we can see that the arrival delays in the interval [-5, 10] account for
about 95% of the total, and hence 10 (mins) can be set as the upper bound for MUI. This
choice may be questioned because the percentage of 10 is only 0.73%, which seems not that
uncertain. But considering that these are aggregated statistics without differentiating between
regional and long-distance trains and the critical routes we aim to find out (if existent, as
defined in Subsection 3.5.3) often involve long-distance trains, this choice should be
appropriate. More importantly, since a series of further screenings are to be executed at later
stages (of CRF), we only need to obtain a rough estimation of a network-level MUI at this
stage, and adopting a wider MUI could reduce the error of omitting some important (but
delay-sensitive) transfers. Based on the observation that the majority of intra-station transfers
in National Rail can be completed within 3 minutes (i.e. the maximum of NTT is around 3
minutes across the network), the parameter UPPER can hence be set to 12 minutes (the
maximum MTT no more than (10+3) is 12, see Figure 3.15 (c)). That is, we need only to

scan the timetables for those transfer stations with assigned MTTs no more than 12 minutes,
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and those transfer stations with MTTs larger than 12 are not possible to cause critical

transfers.

The other parameters (in CRF) to choose are involved in Step 3. The parameter DAYS is to
filter out those short-term noises: only long-existence transfers are taken into account. Since
one timetable period is about six months in Britain, this parameter is set to 180 (d) in this
analysis. The parameter HEADWAY is to identify those low-frequency train lines: it is set to
30 minutes (i.e. two services per hour), which is in line with most British rail operators’ delay
compensation policies (e.g. Virgin Trains’). With respect to the two station-specific
parameters LOWER j and UPPER j, the choices are based on the following considerations:
LOWER j is always set to MTT _j because only those pairs of trains with SW (scheduled
window) larger than MTT are likely to enter the set of recommended itineraries; UPPER j is
set to 10 (i.e. the upper bound for MUI) if MTT j < 10, and is set to 12 (i.e. the upper bound
for MTT) if 10 <= MTT _j <= 12 (see Figure 3.14 for illustration). The parameter DIST is to
guarantee that the length of a connecting leg is long enough and hence the consequence of a
missed transfer is difficult to offset by shifting to local public transport (e.g. bus, tram, etc.).
Considering the specific characteristics of British public transport, this parameter is set to 40
kilometres in this analysis. The parameter DIFF takes into account the correlation between a
pair of feeder and connecting trains: the delays of the two involved trains tend to be
positively correlated if the two trains are allocated to the same platform; the farther apart they
are, the lower the potential correlation between them and hence the more likely the transfer is
delay-sensitive. And DIFF is also used to filter out those pairs of trains with small NTTs (net

transfer time, see Figure 3.14).

Table 3.1 The parameters adopted in this analysis

UPPER (mins) 12
DAYS (d) 180
HEADWAY (mins) 30

. - LOWER ] = MTT j & UPPER j =10 if MTT j < 10
LOWER_j and UPPER_j (mins) LOWER:JJ' - MTTj & UPPERj 1210 < MTT <12
DIST (km) 40

DIFF > [ if MTT | <5

DIFF DIFF > 2 if 5 < MTT_j < 10

DIFF >3 if 10 < MTT j<12

° https://www.virgintrains.co.uk/delayrepay
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For the convenience of reference, the assigned values to all the involved parameters in this
analysis are summarised in Table 3.1. It should be noted that these values are not compulsory:

they can be adjusted as necessary.

3.7.4 The screening results

In the following, the screening results (i.e. critical routes) as well as the intermediate results
in each step are to be presented. Moreover, the execution time (i.e. computational time) for
each step is also recorded to enable the knowledge about the screening algorithm’s (i.e.
CREF’s) performance in terms of efficiency. The code is written in Python 2.7 (refer to
Appendix B) and run on a machine with Intel® Core™ i7-4700MQ CPU, 2.4 GHz, and 8 GB
of RAM.

By adopting UPPER = 12, the two pre-processing steps (Step 1 and Step 2) reduce the search
space from the set of 2585 stations to a small subset of 277 stations. The computational time

for these two steps is around 34 seconds.

After the execution of Step 3, a candidate list of 379 potential critical transfers across British
railways is obtained. The computational time for Step 3 is around 75 seconds (based on the

parameters presented in Table 3.1).

Step 4 is to check each of the transfers in the candidate list to see whether it is realistic. This
is because those transfers in the candidate list are only critical in theory and there may be
many unrealistic scenarios such as detours. After filtering out those apparently unrealistic
transfers (i.e. the distance between origin and target stations less than 20 km), the number of
transfers in the candidate list is reduced to 248. For those inconspicuous detours, the CSA-
based journey planning simulator (see Appendix B) is employed to complete the filtration
task. The optimisation criteria adopted are scheduled journey time and number of transfers.
The timetable adopted is a full-day timetable (including the London Underground timetable)
for a normal working day during the studied timetable period (here, 25 Jan 2017 is adopted).
After the check-up of the 248 transfers in the candidate list, a final list of 13 critical transfers

and their corresponding one-transfer critical routes are identified:
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Ebbw Vale Town — Cardiff Central — Nottingham;
Knottingley — Wakefield Kirkgate — Nottingham;

Liverpool Lime Street — Manchester Piccadilly — Doncaster;
New Mills Central — Manchester Piccadilly — Scarborough;
London Kings Cross — York — Scarborough;

Weymouth — Southampton Central — Brighton;

Harwich Town — Manningtree — Norwich;

Sudbury (Suffolk) — Marks Tey — London Liverpool Street;
Marlow — Maidenhead — Oxford;

Rugeley Trent Valley — Birmingham New Street — Hereford;
Hoxton — Clapham Junction — Alton;

Kirkby (Merseyside) — Manchester Victoria — Huddersfield;
Oxford — Reading — Gatwick Airport.

The computational time for this step is about 51 seconds. Please note that this step can be
accelerated by further optimising the implementation of the journey planning simulator: since
the adopted implementation is in pure Python (normally an order of magnitude slower than a
C++ counterpart), more efficient implementation can be adopted if the candidate list is large

(e.g. thousands of transfers).

Step 5 in this analysis converges (terminates) very quickly: no such case exists that the
ending point of one route is the starting point of another (called 2-permutations in the
algorithm), let alone k-permutations (k > 2). Therefore, a lot of checking and rechecking is

saved and the computational time for this step is trivial (< Is).

Summing up the five steps, the screening of a full list of critical routes in British railways can
be completed within 3 minutes (about 160s), which is quite efficient considering the large
search space for the whole network. Please note that this list is based on the planned
timetable for the period from 11 December 2016 to 20 May 2017, and is subject to the
changes in the long-term timetable. Note also that critical routes may contain critical sub-
routes. That is, some of the intermediate stops (stations) along a given critical route may
themselves construct child routes following the same transfer pattern with their parent route
(i.e. the identified critical route) and the child routes also satisfy the definitions of critical

transfers and critical routes. Although critical sub-routes are not common in reality due to the
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mechanism of current journey planning algorithms (e.g. Bournemouth — Southampton Central
— Brighton and Ebbw Vale Town — Cardiff Central — Birmingham New Street are two
identified critical sub-routes in the above list), the existence of critical sub-routes makes the
set of critical itineraries and the number of passengers influenced often larger than the

estimations based solely on those parent routes.

3.8 A further investigation into the train delay data of British railways

3.8.1 Introduction

In the application of the developed screening algorithm (i.e. CRF) to British National Rail
timetable (in the previous section), a large dataset containing historical train delay
information during a 12-months period between 14 Sept 2015 and 13 Sept 2016 has been
briefly described and been exploited to determine a network-specific parameter (i.e. the upper
bound for insufficient minimum transfer time) for British railways (c.f. Subsection 3.7.3).
Although the main objective of this chapter (i.e. introducing and explaining the concept of
critical routes and identifying them in Britain’s passenger rail system) has been achieved up
to this point, a more detailed analysis of the collected historical delay data may help better
understand passenger train delays in British railways. In fact, few previous studies have
utilised big data to investigate train delay distributions in a national-level railway network,
and scientific knowledge of train delay distributions remains fragmented and limited. Hence,
this section is mainly aimed at integrating the existing empirical evidence in the literature and

generating updated knowledge about passenger train delays.

3.8.2 Statistical modelling and the results

Figure 3.15 (i.e. (a) and (b)) has presented some of the delay statistics of the recorded
1,405,785 arrival events and 1,439,873 departure events happening at the 14 studied railway
stations (c.f. Subsection 3.7.2) during the 12-months period between 14 Sept 2015 and 13
Sept 2016. But the whole picture of the observed arrival and departure delays has not been
shown. Hence, the whole distribution of arrival delays and that of the departure delays are

firstly displayed in Figure 3.16 and Figure 3.17 below, respectively.
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Figure 3.16 The distribution of arrival delays in British railways (based on a large sample
between Sept 2015 and Sept 2016)
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Figure 3.17 The distribution of departure delays in British railways (based on a large sample
between Sept 2015 and Sept 2016)
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From Figure 3.16 we can see that the overall distribution is asymmetric: those positive delays
(i.e. those on the right hand side of zero) tend to decay at a slower rate than those negative
delays (i.e. those on the left hand side of zero), and those positive delays are characterised by
a quite long tail (up to 436 mins delay, c.f. Figure 3.15(a)). This asymmetry is even more
obvious in the distribution of departure delays shown in Figure 3.17: the left tail
(corresponding to those negative delays) is significantly shorter than the right tail
(corresponding to those positive delays), and the decay rate of those negative delays are much
faster than that of those positive delays and also faster than that of those negative delays in

Figure 3.16.

Based on Figures 3.16 and 3.17 and the empirical results in several previous studies (e.g.
Yuan, 2006; Briggs and Beck, 2007), it can be inferred that the whole distribution
(incorporating both negative and non-negative delays) of arrival/departure delays is most
likely to be a compound/mixed distribution of a number of random variables, which cannot
be described by a simplistic statistical model. Therefore, a separate investigation may be

needed.

Since negative delays (i.e. early arrivals or departures) are widely regarded as ‘on time’ in the
rail industry, previous relevant studies (Yuan, 2006; Briggs and Beck, 2007; Bergstrom and
Kriiger, 2013) have mainly focused on the modelling of positive delays. To maintain
consistency and facilitate the analysis, the focus of this section is also placed on those

positive delays.

Based on the above considerations, four candidate statistical models have been developed
(the fitted curves are depicted in Figure 3.18 below), which respectively correspond to the

following four functional forms: g-exponential, power law with exponential cutoff, lognormal,

and Weibull.
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Figure 3.18 Four candidate statistical models developed to fit the (positive) arrival delay data

The reason why these four functional forms have been chosen (for comparison) is mainly
based on the consideration that they have been respectively recommended by previous
relevant studies. Briggs and Beck (2007) utilised a large British dataset containing over two
million train departures for the period Sept 2005 — Oct 2006 to model (positive) departure
delays in British (passenger) railways, and they found that the sample data can be ‘accurately
described’ by the so-called ‘g-exponential functions’ (which can be viewed as a
compound/mixed distribution of a number of random variables). Bergstrom and Kriiger (2013)
adopted a large Swedish dataset containing over three million valid train arrivals for the two-
year period of 2008 and 2009 (1.6 million for each) to model positive arrival delays, the
results of which indicate that the exponential distribution can be used to describe those
extreme values in the tail and the power law with an exponential cutoff (i.e. a combination of
the power law and the exponential distribution) may be used to model the overall distribution
of positive arrival delays. Yuan (2006) conducted a comprehensive statistical analysis of the
train traffic data recorded at The Hague HS station in the Netherlands during the whole
month of September 1999 (approximately 10,000 trains recorded). The empirical results from
Yuan (2006) generally favour the Weibull distribution and the lognormal distribution as the

best-fit statistical models of train delays.
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To compare the capabilities of the four candidate functions in describing the historical train
delay data adopted in this section, the obtained best-fit models respectively corresponding to
the four functions (the specific forms and parameters are to be detailed later in Table 3.2) are
presented (depicted) in Figure 3.18. It can be seen from Figure 3.18 that all of the four
candidate models can generally fit the (positive) arrival delay data quite well, and their
performances are indistinguishable on such a scale. But if we ‘magnify’ the granularity of the
y-axis (i.e. the frequency axis), their differences become identifiable. Figure 3.19 below
subdivides the range of the observed arrival delays (corresponding to the x-axis in Figure
3.18) into four sub-intervals (i.e. (0, 15], (15, 60], (60, 120], and (120, 436]), and respectively
compares the observed delays with the four fitted curves on each sub-interval adopting

different granularities (corresponding to the y-axes in Figure 3.19) to reflect local details.
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Figure 3.19 Comparisons between the four candidate models for (positive) arrival delays

From Figure 3.19 we can see that q-exponential and power law with cutoff can generally
better fit the data (i.e. smaller deviations from the observations) than Weibull and lognormal

on the sub-interval of (0, 15]. Moreover, it can also be seen from the figure that with the
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increase of x values (i.e. delay size), g-exponential and power law with cutoff tend to
systematically underestimate the observed values (i.e. frequency) while Weibull and
lognormal tend to systematically overestimate the observed. However, these deviations (from
the observations) should not be over-interpreted (based on the graphical descriptions in the

figure) due to the fine granularity adopted.

With respect to the overall performance of each model in describing the delay data, it can be
speculated from the graphical description in Figure 3.19 that q-exponential and power law
with exponential cutoff tend to be more able (than the other two) to describe the data on the
whole domain (i.e. from 1 to 436 on the x-axes). To examine this speculation, a quantitative
index — mean absolute error (MAE) — is respectively calculated for each candidate model.
Mathematically, MAE is defined by the following equation:
MAE==3| /-y, 1=- e
7 &= Eq. (0)
In the above equation, y; corresponds to the observed value at the i position/point on the
domain, fi corresponds to the predicted/theoretical value (based on a specific model) at the i
position/point on the domain, and |ei| represents the absolute error at the i position/point on
the domain. The reason why choosing MAE as the index for comparison is mainly based on
the consideration that it has a generic definition and is not constrained by some specific
functional form: each of the four candidate models developed is the best-fit one among those
of the same functional form, and MAE provides a straightforward way to measure goodness

of fit and make cross-functional comparisons.

Table 3.2 The specific parameters and indices of the four candidate models for (positive)
arrival delays

candidate model PDF (probab}llty density best-fit parameters MAE (mean
function) absolute error)
L1 | (nx=p)

log-normal o2 p 2072 p=1.048, 6=2.212 6.6x10*

il x k-1

k
Weibull —| =] WP k=0.436, A=2.400 7.8x10"
A\
power law with o —Ix a=0.116, A=0.304, 4
cutoff cx e ¢—0.184 1.6x10

. 1/(1-¢) q=1.132,b=0.413, ]
g-exponential c(l+b(g—1x)"1 =0.203 1.1x10*
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Table 3.2 presents the specific functional forms and the obtained parameters of the four
candidate models that have been depicted in Figures 3.18 and 3.19. All of the relevant
computations in curve fitting have been conducted using Python 2.7, with the aid of several
statistical packages/libraries such as NumPy, SciPy, etc. Moreover, the corresponding MAEs
to the four models are also presented in the rightmost column. The obtained results of MAEs
in the table confirm our initial speculation from Figure 3.19: g-exponential and power law
with cutoff generally outperform the other two models in terms of the overall performance in

describing the data (the specific results are to be further interpreted in the next subsection).
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Figure 3.20 Comparisons between the four candidate models for (positive) departure delays

In the above, several candidate statistical models for (positive) arrival delays in British
railways have been developed and compared. A similar statistical analysis has also been
conducted of those (positive) departure delays in British railways (c.f. Figure 3.17). The
graphical descriptions and the specific parameters and indices (MAEs) of the developed
models are presented in Figure 3.20 and Table 3.3, respectively. Comparing Figure 3.20 and
Table 3.3 with their counterparts above (i.e. Figure 3.19 and Table 3.2), we can find some
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similarities: despite the difference in specific parameters and indices, g-exponential and

power law with cutoff generally better fit the recorded delay data.

Table 3.3 The specific parameters and indices of the four candidate models for (positive)
departure delays

candidate model PDF (probab}llty density best-fit parameters MAE (mean
function) absolute error)
1 exp| (1n x— ,u)2
log-normal xoN 271 P 20" u=0.588, 6=2.690 5.3x10™
k x k-1
k
Weibull A I k=0.392, 1=1.279 4.7x10°*
A\
power law with o —x a=0.266, A=0.304, 4
cutoff cx e ¢=0.181 1.3x10
. 1(1=¢) q=1.207, b=0.558, B
g-exponential c(l+b(g—Dx)"1 c=0.227 6.6x10°

3.8.3 Interpretation

In this subsection, the graphical and numerical results presented in the previous subsection
are to be further interpreted by linking them with operational practices and with previous

relevant studies.

Firstly, the differences between the overall distribution of arrival delays and that of departure
delays (c.f. Figure 3.16 and Figure 3.17 in the previous subsection) are not difficult to
understand. At least the following three underlying forces may have resulted in the
differences between the two distributions. Firstly, the asymmetry between the recorded
arrival events and the recorded departure events (in the sample) is an identifiable factor.
Theoretically, each arrival event would correspond to at least one departure event (and vice
versa) in the universal set of all arrivals and departures (from the perspective of cause and
effect). However, the sample data adopted in this section is only a subset (of all arrivals and
departures in the studied railway network) containing records of 14 medium-to-large-sized
stations (c.f. Subsection 3.7.2) despite its large sample size. That is, those departure delays in
the sample (c.f. Figure 3.17) may not be totally attributable to those arrival delays in the
sample (c.f. Figure 3.16), and vice versa. Secondly, some operational routines may also have

resulted in the differences between the arrival and departure delay distributions. For example,
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those negative delays in departure records are significantly less than those in arrival records
(c.f. Figures 3.15, 3.16, and 3.17), which may be attributable to an operational practice that
prohibits early departures (c.f. Goverde, 2005). Thirdly, some timetabling techniques may be
another influencing factor. For example, running time supplements/allowances (c.f.
Subsection 2.5.2) are often added in the timetable design process, which may have

contributed to the relatively large proportion of early arrivals (c.f. Figures 3.15 and 3.16).

With respect to the results presented in Figures 3.18 ~ 3.20 and Tables 3.2 ~ 3.3, they tend to
indicate that all of the four statistical models built could generally describe the sample data of
train delays in British railways quite well (with a mean absolute error of a magnitude of 10-#)
and hence could be utilised to make delay estimations/predictions. Moreover, these results
generally corroborate some of the findings/claims in previous relevant studies. Both Yuan
(2006) and Bergstrom and Kriiger (2013) have mentioned that the overall distribution of
(positive) train delays is likely to be a compound/mixed distribution of a number of random
variables, which can be largely confirmed by the empirical results presented in this section:
the two compound distributions (i.e. g-exponential and power law with cutoff) do outperform
the other two “pure’ distributions (i.e. Weibull and lognormal) in terms of goodness of fit.
And the main finding of Briggs and Beck (2007) — g-exponential functions can ‘accurately’
describe the distribution of train delays in British railways — can also be corroborated by the
results presented in the previous subsection: g-exponential has the least MAE (mean absolute

error) among the competitors in both Table 3.2 and Table 3.3.

Although some interesting information can be extracted from the analysis of the four
statistical models presented in the previous subsection, these findings ought to be treated with
caution. An interesting and relevant question is raised here: how accurate can be regarded as
‘accurate’ (quoted from Briggs and Beck (2007)) when using statistical models to describe
train delay distributions? The answer is likely to be ‘it depends’. For those small delays with
high probabilities (e.g. (0, 15], c.f. Figures 3.19 and 3.20), all of the candidate models may be
treated as quite accurate in estimating/predicting delay probabilities due to a far lower
magnitude of errors/deviations (i.e. 104) than the corresponding delay probabilities
themselves (i.e. 102 ~ 107"). In contrast, even the most ‘accurate’ model (i.e. q-exponential)
may not be regarded as accurate enough for those heavy delays with low probabilities (e.g. >
60, c.f. Figures 3.19 and 3.20), for the errors/deviations (with a magnitude no less than 107)

would exceed the corresponding delay probabilities themselves (with a magnitude no greater
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than 107). Therefore, it is suggested (based on the empirical results presented in this section)
that further (separate) analyses of the distribution of those heavy/large delays be conducted in

future research.

Despite the fact that the statistical analyses conducted in this section are not specific to a
particular route, station, or season, some interesting findings can still be drawn at the network

level.

frequency

delay/minutes

Figure 3.21 The best-fit (q-exponential) curve for the departure delay data of British railways
between Sept 2005 and Oct 2006 (Source: Briggs and Beck, 2007)

As previously mentioned, Briggs and Beck (2007) utilised big data to model train delays in

British railways and they have built a g-exponential model to fit the collected data on

departure delays for 23 railway stations!? between September 2005 and October 2006. The

best-fit parameters have been q =1.355 + 8.8 x 1073 and b = 0.524 + 2.5 x 10°? for their

0 These include Bath Spa, Birmingham, Cambridge, Canterbury East, Canterbury West, City Thameslink,
Colchester, Coventry, Doncaster, Edinburgh, Ely, Ipswich, Leeds, Leicester, Manchester Piccadilly, Newcastle,
Nottingham, Oxford, Peterborough, Reading, Sheffield, Swindon, and York.

78



developed model. Although the normalisation parameter of ¢ (see Table 3.2 or Table 3.3 for
the specific functional form of g-exponential) has not been explicitly presented in their paper,
it can be inferred from the graphical description of their developed model (see Figure 3.21)

that the parameter c is roughly around 0.12.

Once the best-fit g-exponential for the period September 2005 to October 2006 has been
restored, we can then investigate the change in the distribution of departure delays in British
railways over the last decade by comparing the model developed by Briggs and Beck
(q=1.355, b=0.524, ¢=0.12) with the g-exponential model developed in this section (q=1.207,
b=0.558, c=0.227; c.f. Table 3.3). Figure 3.22 below provides a graphical comparison of the
two models. Note that the long tails (of the two models) have not been depicted based on the
consideration that the trend of each of the two fitted distributions can be easily derived from
the figure (i.e. the decay rate of those triangles is faster than that of those circles). As has
been shown in this section and in Briggs and Beck (2017), both of the two g-exponential
models depicted in Figure 3.22 can generate quite accurate estimations of train delays for
their corresponding observation periods (i.e. Sept 05 to Oct 06 and Sept 15 to Sept 16),
especially for those small delays at the head part of the distributions.

It can be seen from Figure 3.22 that those small delays (up to 8) have happened more
frequently between Sept 2015 and Sept 2016 while those medium-to-large-sized delays
(greater than 8) have happened less frequently between Sept 2015 and Sept 2016. This
implies that the main focus of rail operators in Britain may have been placed on the
management of those medium-to-large-sized delays (based on the assumption that both of the
two g-exponential functions can ‘accurately’ describe those medium-to-large-sized delays),
which could directly benefit rail operators (e.g. less fines and/or more subsidies) by the
improvement of those existing performance measures such as PPM (Public Performance
Measure, c.f. Network Rail, 2017). Setting aside the potentially little attention paid to those
small delays (by rail operators), a possible reason for the increase in small delays may lie in
the (rapid) growth in rail usage over the last decade (and the resulting crowdedness in stations
and trains) (DfT, 2016b and 2017). Although the increase in small delays might not be a
severe problem for those transfer-free journeys, it may lead to an increasing risk of broken
connections for those transfer-involved journeys, especially for those Critical Routes (c.f.

Section 3.5). Hence, apart from those medium-to-large-sized delays, rail operators in Britain
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should pay additional attention to those small delays to improve the overall quality of rail

services.
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Figure 3.22 The change in the departure delay distribution (for British railways) over the past
decade

3.9 Conclusions

Transfer-involved rail routes receive relatively less attention from rail operators compared
with direct routes, not only in terms of timetable design but also in terms of pre-trip
passenger information. As an increasingly popular information tool, online journey planning
systems such as National Rail Enquiries (and its mobile version) in Britain play an important
role in the pre-planning of transfer-involved routes. However, the quality of the pre-trip
information about those transfer-involved routes (i.e. the recommended itinerary list) is often
disregarded, due to the limitations of existing journey planning technologies. At the
algorithmic level, these limitations are embodied by the interaction between several

competing forces (i.e. earliest arrival, latest departure, and minimum transfer time). Since
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these limitations come from within the framework of existing journey planning algorithms
itself, they are difficult to be overcome unless a breakthrough can be made to jump out of the

existing framework (which seems an unachievable goal in the foreseeable future).

An alternative solution is to identify those weak points (i.e. problematic transfer-involved
routes) under the existing algorithmic framework, and then focus on tackling this small subset
of problematic routes. In order to automatically and efficiently identify those problematic
routes in terms of pre-trip journey planning, it is necessary to introduce some novel concepts
to make the screening problem mathematically operable. These introduced concepts are:
critical transfers, critical itineraries, and critical routes. Roughly speaking, a critical itinerary
is composed of critical transfers, each of which is delay-sensitive and is associated with high
consequence if missed. And if the recommended itinerary list (by a journey planning system)
is full of critical itineraries, the corresponding route would be problematic in terms of

punctuality and reliability and is called a critical route.

An efficient screening algorithm, named Critical Routes Finder (CRF), is developed and
implemented to check whether there exist critical routes within a given railway system and to
find out, if existent, which of those transfer-involved routes are critical. The screening
algorithm is then applied to analyse the current National Rail timetable adopted by British
railways to identify those critical routes within Britain’s passenger rail system. The
performance of the screening algorithm is promising in terms of computational efficiency.
The screening results show that more attention should be paid to such transfer-involved
routes as London Kings Cross — York — Scarborough, Weymouth — Southampton Central —

Brighton, etc to improve the pre-trip information about these routes.

A statistical analysis of a large sample of train delay data has also been conducted for British
railways for the period September 2015 to September 2016. The empirical results tend to
indicate that all of the four studied candidate functions (i.e. lognormal, Weibull, power law
with cutoff, and g-exponential) can generate quite accurate predictions of those small-sized
delays, but none of them give a desirable performance in fitting those medium-to-large-sized
delays. Overall, g-exponential outperforms the other three candidate functions in terms of
goodness-of-fit. Comparing the latest version of g-exponential (derived from the 2015/16
data) with a previous version of g-exponential (derived from a 2005/06 sample), a non-

negligible increase in small-sized delays has been identified in British railways, which
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implies that a better management of those small delays may be necessary to alleviate the

potential problem of transfer-involved journeys.
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Chapter 4

Tackling Critical Routes: a historical-data-based approach

4.1 Introduction

The existence of critical routes in a passenger rail system would be problematic in terms of
pre-trip passenger information. As illustrated in Chapter 3, the recommended itinerary list for
a critical route would be full of delay-sensitive transfers, resulting in poor-quality pre-trip

information in terms of punctuality and reliability.

These critical routes should, ideally, be resolved in the timetabling (i.e. timetable design)
process, which belongs to the tactical planning phase rather than the operational planning
phase (c.f. Section 2.5). In reality, however, railway timetabling is a complicated process that
involves a delicate balance of technical feasibility, convenience for passengers, and the
interests of different operators. For example, if a critical route involves two different rail
operators sharing no rolling stock or crew, they may lack the incentive to reschedule those
delay-sensitive transfers if the transferring passengers are a minority group or if the

rescheduling would increase the operational cost of the other processes.

A more feasible solution to critical routes is improving the quality of the pre-trip information
(i.e. those recommended itineraries) about these routes. This chapter hence focuses on finding
information-related strategies to cope with those critical routes within a given railway system.
Although no previous studies are directly related to or pay special attention to critical routes,
a review of the existing solutions to some similar problems is firstly presented in Section 4.2
to help understand the big picture of the state-of-the-art journey planning technologies. After
that, the central idea and the technicalities of the proposed (historical-data-based) approach
are explained in Section 4.3. Section 4.4 then presents several illustrative examples in the
context of British railways to show the potential applications of the proposed approach.

Section 4.5 points out and illustrates a potential limitation of the proposed (data-driven)
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solution to critical routes to stimulate further research in the relevant directions. Section 4.6

concludes this chapter.

4.2 Existing information-related approaches to tackling missed transfers

Missed transfers (connections) have long been a weak point in terms of pre-trip passenger
information, despite the rapid development of journey planning technologies. Missing a
transfer could be a serious problem, especially for long-distance connections running with
low frequency. This section is aimed at presenting a brief review of the state of the art of the
various information technologies that have been developed to mitigate the problem of missed
transfers. The review covers a variety of sources of references — ranging from mature real-

world applications to immature prototypes in the literature to raw algorithmic ideas.

4.2.1 Frequently updating the underlying timetables

Miiller-Hannemann and Schnee (2009), Allulli et al. (2014), Cionini et al. (2014), and
Delling et al. (2014a) are the advocates of incorporating dynamic (delay) information into
static timetable information systems. And a number of real-world pre-trip timetable
information systems (e.g. National Rail Enquiries, DB Bahn, etc) have largely implemented

this kind of algorithmic solution in recent years.

While Miiller-Hannemann and Schnee (2009) and Cionini et al. (2014) are centred on
enhancing graph-based algorithms (c.f. Subsection 2.3.3) to enable dynamic updating of the
underlying timetables (efficiency), Allulli et al. (2014) and Delling et al. (2014a) focus on
investigating to what extent the exploitation of dynamic information (real-time GPS data in

the context of their studies) can improve the static timetable information (effectiveness).

Although these studies have obtained generally desirable results, this category of approaches
(i.e. frequently updating the underlying timetables) suffers from the same limitation with
those real-time delay/disruption alerts (c.f. Sections 3.2 and 3.3) — the accuracy of the
dynamic information cannot be guaranteed until it is very near to the time of travel. Therefore,

they contribute little to the pre-planning of transfer-involved journeys.
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4.2.2 Reliability rating based on simplistic models

Disser et al. (2008) and Schnee (2009) propose an algorithmic approach that computes
reliable journeys (itineraries) by multi-criteria optimisation (c.f. Subsection 2.3.7). Delling et
al. (2014b) also adopt this method in their proposed RAPTOR algorithm (c.f. Subsections
2.3.4. and 2.3.7). The idea is to add into a given journey planning algorithm a predefined
‘reliability rating model’ to evaluate how ‘reliable’ each individual journey plan is and
employ ‘reliability rating’ as an additional criterion to optimise (besides journey time and
number of transfers). More specifically, this method is based on two introduced concepts
called 'reliability of transfer' and 'reliability rating', respectively. For a given journey plan, a

measurement of 'reliability of transfer' is firstly calculated for each involved transfer by a

ln[u—e'}—ix
predefined 'reliability rating function": rel(x) =p—e ~ % in which x is the buffer

time at the transfer station (defined as the scheduled time window between the feeder and
connecting trains minus a predefined station-specific minimum transfer time), and a=8,
0=0.6, p=0.99 are predefined parameters obtained from empirical evidence (based on
German data). Then, after calculating the reliability indices for individual transfers, a
'reliability rating' can be assigned for the (whole) journey plan by multiplying all these

reliability indices together.

Two problems arise when looking through this method. First, the reliability indices generated
by the 'reliability rating function' are not realistic reliability statistics and hence are difficult
to interpret. Second, for a given railway station, transfer events occurring at different times of
a day and different days of a week often have the same buffer time (calculated from the
above definition) due to the periodicity of train schedules. All of these transfer events would
be assigned to the same 'reliability rating' according to the univariate (i.e. the variable ‘x’ in
the function) 'reliability rating function', which is counter-intuitive and seems to have omitted
a lot of other realistic factors (e.g. the characteristics of infrastructure and rolling stock,

weather, driver behaviour, etc).
4.2.3 Backup information

Goerigk et al. (2013; 2014) transfer some of the notions originating from robust timetabling

into timetable information, and propose the notion of ‘recoverable robust timetable
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information’. Their idea is to compute journey plans that maximise the use of ‘safe’ transfers
robust in all (/most) simulated delay scenarios and provide back-up plans to guarantee the
arrival at target stations. Dibbelt et al. (2014) takes this one step further: instead of a single
path, each individual journey plan is represented as a decision graph composed of all ‘good’
back-ups at all involved transfer stops (see Figure 4.1 for an illustration). Keyhani (2017)
employs more complicated but more realistic stochastic methods (than those simplistic ones)
to evaluate and compare reliability, and proposes its own version of pre-trip backup
information called complete connections — a complete connection comprises a train

connection and an associated set of alternative continuations to the destination.

The limitation of Goerigk et al. (2013) and Goerigk et al. (2014) lies mainly in the heavy pre-
processing spent on enumerating a very large set of possible delay scenarios, which impedes
the method’s applicability in practice. The limitation of Dibbelt et al. (2014) is twofold: on
the one hand, most single-path itineraries generated by existing journey planning systems
have been robust enough in most scenarios, and decision graph representations seem too
complicated to be useful and may be misleading; on the other hand, the ‘delay model’
underpinning this method seems too simplistic and suffers from similar limitations of the
model adopted in Disser et al. (2008) and Schnee (2009). The limitation of Keyhani (2017) is
mainly embodied by its complicated representation of results and its heavy reliance on the
Assumption of Independence (which is far from realistic) in conducting the

addition/multiplication/convolution operations of multiple random variables.

Karlsruhe| [Mannheim] — Berlin Karlsruhe | sMannheim
9:01 9:24 Hannover 14:16 9:01 9:31
9:31 @ 13:17 | l§:07 L 10:06 |
10:06 %i%il’) % 15:53 > Hannover
: 13:31-14:0
(a) Expanded (b) Compact

Figure 4.1 An illustrative example of what a ‘decision graph’ should look like (Source:
Dibbelt et al., 2014) Note: a recommended journey plan is no longer a ‘single path’, but
should be represented as a set of back-up plans according to the idea of Dibbelt et al. (2014).

4.2.4 Robust routing based on historical data

Bohmova et al. (2013) and Bohmova et al. (2015) propose a novel algorithm that computes

journey plans robust under ‘typical’ delay scenarios by learning from historical delay data
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(Proger (2016) provides more detailed illustrations and evaluations about this methodology).
The algorithm introduces a new form of itinerary representation (i.e. only a recommended
route with a departure time; no intermediate arrival/departure times along the route) and
computes robust journey plans based on ‘recorded timetables’ that are constructed by realised

stop times (i.e. arrival/departure times and passing times).

Compared with those simplified ‘delay models’, this method can better reflect the temporal
and spatial variations inherent in public transport. However, since this method is designed for
high-frequency urban public transport systems (e.g. bus and tram), most of its notions and the
associated algorithm cannot be transplanted into intercity or international railway systems
(the urban public transport system is often dense enough to provide many different (and
similarly attractive) routes between any pair of source and target nodes, but this characteristic
is not applicable to the intercity rail system, especially those critical routes within the

intercity rail system).

4.2.5 Customisable transfers

A recently developed functionality in real-world pre-trip timetable information systems is
called customisable transfers (see Fiugres 4.2 and 4.3 for illustrations). As the name implies,
customisable transfers means that a rail passenger now could adjust the parameter of MTT
(minimum transfer time) and hence directly control the recommended itinerary list. For
example, suppose there are now two alternative transfer plans (for a given journey) — one
with a scheduled transfer time of 8 minutes, and the other with a scheduled transfer time of

1 Iminutes. If a passenger chooses an MTT of 5 minutes, then the one with 8-minutes transfer
time will be recommended. But if the passenger sets the MTT to 10 minutes, then the one
with 11-minutes transfer time will be recommended. At the algorithmic level, a modification
of the parameter of MTT corresponds to an updating of the list/array storing all MTTs for
different stations and connections, the task of which could be efficiently completed using

current algorithmic techniques.

Although this functionality could be a practicable way to deal with transfer-related problems,
it has two potential limitations. Firstly, it implicitly assumes that a transfer plan with more
scheduled transfer time would be more reliable (robust to the impact of delays/disruptions)

than another transfer plan with less scheduled transfer time. However, this assumption does
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not necessarily hold true in some cases, especially when taking into account the diversity and
heterogeneity that exist in station size, station layout, the characteristics of stairs, lifts, ramps,
etc. Secondly, the functionality of customisable transfers also implicitly assumes that a rail
passenger has sufficient experience/knowledge to judge whether a certain MTT can help
achieve a good balance between reliability and efficiency. Clearly, this does not necessarily
hold true for those occasional/inexperienced rail users. For example, an infrequent user
having selected an MTT of x minutes on the basis of poor background knowledge may be
penalised by not being given information about interchanges designed to be achieved in (x-1)
minutes, which may become acceptable connections with a time no less than MTT if the
arriving (feeder) train is early and/or the departing (connecting) train is late. And even if a
passenger is a frequent user of rail transport, he/she may also have difficulty in selecting an
‘optimal” MTT (based solely on train schedules), considering the various factors influencing

train movements.

TravelService

‘ fromBERLIN ‘ ‘ to Miinchen Hbf ‘

Outward journey

Arr ‘
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Return journey

Stopover > Add intermediate stops

Connections > More means of transport

\\/‘ prefer fast connections L only local transport

Duration of transfer | at least 10 minutes ‘

Figure 4.2 Customisable transfers Example One: Deutsche Bahn (Source: www.bahn.com,
accessed 25 Jan 2017)
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Figure 4.3 Customisable transfers Example Two: NS (Source: www.ns.nl/en, accessed 25
Jan 2017)

4.2.6 Increasing transfer buffers

A simpler approach than the other categories of approaches is simply increasing/adding
buffer times for certain (important) transfers (c.f. Pachl, 2014; Proger, 2016; Caimi et al.,
2017; Keyhani, 2017). Such an approach/idea can be implemented in two different ways —
either by adding more buffer times into the underlying timetables or by increasing MTTs
(Minimum Transfer Times, c.f. Section 3.4) in pre-trip itinerary computation and

recommendation.

Adding more buffer times directly into the underlying timetables looks like a radical surgery
that would eradicate missed transfers. Its price is, however, considerably high so that it is
seldom considered as a good option — such an implementation would not only have an
uncontrollable/unpredictable negative impact on capacity utilisation (Figure 4.4 provides an
illustration) but also result in a non-negligible reduction in the competitiveness
(/attractiveness) of pre-trip itinerary recommendations (especially in the case of critical routes;
to be further explained in Subsection 4.2.8). In fact, the study of how to efficiently add and
wisely allocate buffer times in timetable design and optimisation has been an active research
direction for a while, but a sufficiently satisfying (i.e. simple but powerful) solution/answer
has not yet found (c.f. Parbo et al., 2016; Caimi et al., 2017). Considering the limitation of the

existing timetabling technology and the long-term growth trend of rail demand (c.f.
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Armstrong and Preston, 2017), such an implementation (i.e. adding more buffer times

directly into the underlying timetables) would obviously not be a sustainable solution.

Compared with direct operations on the underlying timetables, increasing MTTs in

computing and recommending transfer-involved itineraries can be said a light implementation.
Although increasing MTTs would hardly erode capacity, it could bring non-negligible
reductions in competitiveness (/attractiveness). Empirical evidence in the relevant literature
(c.f. Proger, 2016; Keyhani, 2017) has revealed such non-negligible reductions for the

general case of transfer-involved routes. Subsection 4.2.8 is to present illustrations of such
non-negligible reductions for the special case of critical routes (which are much more
significant than the general case). Due to this non-negligible negative effect on
competitiveness (/attractiveness), such a light implementation (i.e. increasing MTTs in
computing and recommending transfer-involved itineraries) has seldom been considered as a

good solution, either.

I

I; B

Figure 4.4 An illustration of the potential consequence of adding additional buffer time to a
critical route
[Suppose this is a small part of a large railway network and all the irrelevant stations and
lines are hidden to reduce distraction. Station A is an intermediate stop of both Line /; and
Line /2. The transfer from /; to /> via A, denoted by </;, A, [>, is feasible but critical based on
the underlying timetable. <[>, B, /5> and </3, C, /,> are feasible and not critical. Suppose we
add e.g. an additional 8-minute transfer buffer to </;, A, [>> by changing the scheduled
departure time of /> at A from Schaep(l2, A) to Schaep(l2, A) + 8. Then, the scheduled departure
time of /> at B would be postponed and </2, B, /5> might become critical or even infeasible.
Then, we have to modify the schedule of /3 to fix this new problem of </, B, I5>. If the
modified schedule of /3 influence the criticality or feasibility of </3, C, />, then we have to
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further modify the schedule of /4 to resolve the problem... The ultimate result of this domino,
an increase in idle capacity induced by added buffer times, would have to be ‘digested’ by
reducing the capacity provision at the relevant lines and stations within or outside this part of
the whole network. ]

4.2.7 Performance statistics

The use of performance statistics to learn about and control the quality of rail services is not
unusual among European railways, and punctuality and reliability are one of the major
concerns of European rail operators (c.f. Subsection 2.5.4). In Britain, the industry standard
adopted to evaluate and compare punctuality and reliability is called Public Performance
Measure (PPM) (see Figure 4.5 for an illustration). PPMs are calculated from several
predefined threshold values and are represented by aggregate statistics indicating the
network- or subnetwork-level performance in terms of punctuality and reliability. Although
these performance statistics are useful in helping rail operators and the government supervise
the overall performance of rail services within a certain area during a certain period of time,
they tend to be of little help to individual passengers who are more concerned with
disaggregated statistics about the performance of the particular lines/routes that they (will)

use.

Computing and disseminating disaggregated statistics is technically impracticable in the past
due to the limitation of computing resources and the unavailability of detailed data about train
movements. In recent years, with a significant development of computer hardware and the
increased availability of detailed and open-source rail data, the computation and
dissemination of disaggregated statistics is no longer impossible, but a new bottleneck arises
of how to extract from huge amounts of train movements data as much useful information as
possible (RRUKA, 2015). In this context, several experimental passenger information
systems (websites and/or mobile applications) that provide information about disaggregated
performance statistics have been emerging in Britain in recent years. Some examples are

Recent Train Times (www.recenttraintimes.co.uk/ ), Fasteroute Delay Explorer

(delayexplorer.fasteroute.com/#/), and My Train Journey (www.mytrainjourney.co.uk/ ).

Despite the difference in the representations of disaggregated performance statistics, all of

them are driven by the open rail data from Britain’s rail industry and their statistics are all

92



oriented toward specific train services. Figures 4.6 and 4.7 illustrate how train-oriented

performance statistics are presented in these information systems.

Performance by train operator

Train Operating Company PPM % period 10, 2015/16 PPM % period 10, 2016/17 PPM Moving annual average (MAA)

Abellio Greater Anglia 90.3 90.0 88.9

Arriva Trains Wales 89.9 88.3 215
c2c Rail 95.1 96.1 94.7
Caledonian Sleeper 741 87.2 87.8
Chiltern 9249 9315 934
Crosscountry 88.8 88.9 89.6
East Midlands Trains 94.5 96.2 91.8
First Hull Trains 76.8 80.6 82.8
Transpennine Express 82.8 87.6 88.5

Govia Thameslink Railway 76.0 723 74.6

Figure 4.5 An illustration of aggregated performance statistics: PPM in British railways
(Source: Network Rail, 2017)

From Figures 4.6 and 4.7, we can catch a glimpse of the major characteristics of these state-
of-the-art performance information tools: the statistics are oriented to specific trains and are
based on historical train movements data over the last several weeks (i.e. eight weeks in
Figure 4.6 and four weeks in Figure 4.7); and like those aggregate statistics in Figure 4.5,
these disaggregated statistics are also calculated from several predefined threshold values or
industry standards (e.g. 5 mins late, 15 mins late, right time, reliability, etc). Although Figure
4.6 and Figure 4.7 share several important characteristics, we can also see some differences
between them. While Figure 4.6 (i.e. Fasteroute Delay Explorer) tends to be generally better
at visualisation, Figure 4.7 (i.e. My Train Journey) combines the functionality of train-
oriented performance statistics with the functionality of journey planning (i.e. My Train
Journey could support arbitrary queries about origin-destination pairs, but Fasteroute Delay
Explorer could only support direct routes). Moreover, Fasteroute Delay Explorer adopts a
colour scale to reflect/indicate the overall performance of a given train over the last few

weeks, whereas My Train Journey chooses to directly present a set of selected statistics.
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Figure 4.6 Train-oriented performance statistics: Fasteroute (Source:
delayexplorer.fasteroute.com/#/, accessed 27 Jan 2017)

Departure Arrival

Bournemouth [BMH] > Southampton Central [SOU] 09:55 > 1026

Arrived within 1 min 13 / 19 trains

Right Time Reliability

Arrived within 15 mins 18 / 19 trains

68% 95%
Arrived within 60 mins 19 / 19 trains
Southampton Central [SOU] > Brighton (East Sussex) [BTN] 1032 » 1218
|
Arrived within 1 min 10 / 19 trains
I Right Time Reliability
Arrived within 15 mins 17 / 19 trains

53% 89%

Figure 4.7 Train-oriented performance statistics: My Train Journey (Source:
www.mytrainjourney.co.uk/, accessed 27 Jan 2017)

Although these individual-leg-oriented performance statistics could to some degree mitigate

the negative effect of missed transfers, they have four potential limitations. Firstly, the

information consumers (passengers) have not been truly set free from the burden of

computation. Confronted with two or more involved legs, a passenger would still have to

estimate the overall performance of a given recommended itinerary by himself/herself,

relying heavily on his/her own mathematical ability.

Secondly, even if every user/passenger is good at mathematics, these separately computed

statistics tend to hide a lot of key information (e.g. correlation between trains), which
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impedes passengers’ ability to capture the whole picture. Suppose a given recommended
itinerary involves two legs with a scheduled transfer time of 5 minutes. And suppose there are
20 past observations (corresponding to 20 observation dates) for each of the two legs to
calculate statistics: for the first leg, two of the 20 observations are identified as significant
lateness (e.g. > 15 mins late) and the other 18 observations are all found to be on time (< 1
min late); for the second leg, also two are recognised as significant lateness and 18 on time.
Then a problem arises: if the two unpunctual observations of the first leg coincide with the
two of the second leg (i.e. they happen on the same dates), then the overall punctuality would
be 90% (i.e. 18/20); otherwise, the overall punctuality would be 80% (i.e. 16/20).

Thirdly, these individual-leg-oriented performance statistics do not say where a train has lost
the time which leads to the delay at the end of its journey. For instance, if the Southampton —
Brighton train always departed on time from Southampton and the arrival delays at Brighton
were always accumulated en route, a passenger would miss a different number of connections
from the scenario in which the arrival delays (at Brighton) were 100% attributable to the
departure delays (at Southampton) and no further delay accumulation en route. Lastly, these
statistics tend to have limited extensibility and could not provide alternative transfers in the
scenario in which the recommended transfer (by a journey planning system) is found to be of
poor performance. That is, these separately computed statistics could not provide feedback to
a journey planning system to modify the recommended itinerary list when certain of the

recommended transfer plans are recognised as unreliable.

4.2.8 The inadequacy of the existing approaches/ideas to tackle Critical Routes

Despite the existence of a variety of algorithmic solutions/ideas to deal with missed transfers
(i.e. increasing, to different degrees, the robustness/reliability of the recommendations), none
of them could effectively deal with those critical routes (c.f. Sections 3.4 and 3.5) or truly

resolve the research problem of this thesis (c.f. Section 1.2).

The potential limitations of the existing solutions/ideas to deal with missed transfers in the
general case (c.f. Subsections 4.2.1 — 4.2.7) would also be applicable to the special case of
critical routes. Apart from these general limitations/gaps, most of the existing solutions/ideas

would either lose their efficacy or result in uncompetitive (/unattractive) recommendations
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(due to insufficient attention paid to the interplay between competitiveness and reliability) in

the special case of critical routes.

Typical examples of losing efficacy when applied to those critical routes include the method
of backup information (c.f. Subsection 4.2.3) and the method of robust routing based on
historical data (c.f. Subsection 4.2.4). Since these methods implicitly require the existence of
multiple (similarly attractive) alternative routes between a given pair of source and target
vertices (see Figure 4.8 for an illustration of the method of robust routing based on historical
data) but a given critical route would have no such (similarly attractive) alternatives between
its two end vertices (c.f. the definition of critical routes in Section 3.5), applying these
methods to a given critical route would hardly change the route and itinerary
recommendations resulting from current journey planning algorithms (c.f. Sections 3.4 and
3.5) and hence would hardly improve the reliability (/robustness/punctuality) of the

recommended itineraries.

Figure 4.8 An illustration of the core algorithmic idea of Préger (2016) and Bohmova et al.
(2013; 2015)

[Suppose A, B, C, D, and E are five different bus stops within a given urban public
transportation network, and a, b, ¢, d, e, f, u, v, w, x, y, and z are twelve different bus lines.
The idea can be decomposed into three major steps. In the first step, all feasible routes (with a
constraint of number of transfers) between a given pair of source and target nodes (e.g. A and
B) are listed based on the underlying timetable (e.g. <b, C, x>, <e, D, w>, and <f, E, u>).
Then, in the second step, the robustness/reliability of each route is assessed and compared
(with each other), based on a specified ‘latest allowed arrival time’ and the analysis of the
relevant historical data. In the third step, the route (or several routes) with the best
performance in terms of robustness/reliability is (are) selected, and a ‘reasonable’ departure
time (i.e. the latest departure time) for each selected route is calculated from the planned
timetable and recommended with its corresponding route. |
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Typical examples of resulting in uncompetitive (/unattractive) recommendations when
applied to those critical routes include the method of backup information (c.f. Subsection
4.2.3), the method of customisable transfers (c.f. Subsection 4.2.5), and the method of
increasing transfer buffers (c.f. Subsection 4.2.6). Since the essence of these methods is
either maximising/prioritising the use of those ‘safe’ transfers (i.e. robust in all (/most)
simulated delay scenarios) or making those 'risky' transfers safer (i.e. by adding additional
buffers), applying these methods to a given critical route would significantly reduce the
competitiveness (/attractiveness) of the recommended itineraries and such a significant
reduction in competitiveness (/attractiveness) would render any speculated improvement in
reliability (/robustness/punctuality) groundless. Figure 4.9 provides an illustration of the
potential effect of applying the method of increasing Minimum Transfer Times (i.e. a light
implementation of the method of increasing transfer buffers in Subsection 4.2.6) to a given
critical route. Appendix C provides two real-world examples (i.e. two critical routes
Knottingley — Wakefield Kirkgate — Nottingham and Ebbw Vale Town — Cardiff Central —
Birmingham New Street).

A (h:00

h:50 i prre=s 155

A Oh:00 B() (h+2):00

h:50 (i) (h+1):55

c c
B() (h+3):00

Figure 4.9 An illustration of the potential effect of applying the method of increasing
Minimum Transfer Times (MTT) to a given critical route
[Suppose there is a critical route from Station A to Station B via Station C within a given
railway network (c.f. the upper curve of the two). The scheduled departure time of the feeder
line at A is the start of each hour (denoted by /:00) and the feeder leg takes 50 mins in the
corresponding schedule. The scheduled departure time of the connecting line at C is 55 past
each hour (denoted by /4:55) and the connecting leg takes 1h05m in the corresponding
schedule. That is, the original Minimum Transfer Time (MTT) is no greater than 5 mins for
this route. If we increase the original MTT by any value that could result in a new MTT
greater than 5 and less than 66 mins, then the new recommendations would become the lower
curve of the two. That is, the scheduled journey time would increase from 2h to 3h (a 50%
increase), and the change in generalised journey time would be even bigger considering the
significant increase in scheduled waiting at C.]
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To understand why a significant reduction in competitiveness (/attractiveness) would render
any speculated improvement in reliability (/robustness/punctuality) groundless, it is necessary
to firstly get an understanding of the interrelationship between competitiveness

(/attractiveness) and reliability (/robustness/punctuality).

Ideally, competitiveness and reliability could be simultaneously achieved as long as the
scheduled travel time (and other relevant aspects e.g. price and out-of-vehicle waiting) of a
given line/route is attractive (compared with the other transport modes e.g. aeroplanes,
coaches, private cars, taxis, etc) and the timetable is strictly adhered to (i.e. there exist no
disturbances or disruptions). Unfortunately, device malfunctions, human errors, and
uncontrollable accidents and weather conditions are omnipresent in the daily operation of

trains so that a given timetable can hardly be 100% precisely realised.

The prevalence of delays/variations complicates the interrelationship between
competitiveness (/attractiveness) and reliability (/robustness/punctuality). In some/many
cases, an improvement in reliability would to some degree contribute to competitiveness, and
reliability could be viewed as a component of competitiveness. Such cases correspond to
those (highly) repeatable scenarios e.g. commuter routes, direct inter-urban routes, etc. The
number of existing passengers who have sufficient (through repeated trials) experiential
information about the reliability of those pre-trip itinerary recommendations would be
considerable in these scenarios, and hence a reliability improvement would more easily be
transmitted to potential passengers by way of word of mouth to influence the (mode, route, or
departure time) choices of the potential passengers. In the other cases, the interrelationship
between competitiveness (/attractiveness) and reliability (/robustness/punctuality) can be
quite different. For example, an improvement in reliability (of those pre-trip itinerary
recommendations) in those (highly) repeatable scenarios would have little influence on the
(mode, route, or departure time) choices of the existing passengers themselves (e.g. for a
given commuter line), for a frequent user could have already had a most realisable itinerary in
his/her mind and relies mainly on this self-constructed itinerary (rather than some

recommended one) to make choice.

The case of those critical routes (i.e. the research focus of the thesis) is another exception. To
facilitate the exposition, the algorithmic solutions/ideas underlying current journey planning

systems (i.e. earliest arrival, latest departure, and minimum transfer time, explained in
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Sections 3.4 and 3.5) are classified/named as CF (Competitiveness-First) solutions/ideas,
while the method of backup information (c.f. Subsection 4.2.3), the method of customisable
transfers (c.f. Subsection 4.2.5), and the method of increasing transfer buffers (c.f. Subsection
4.2.6) are classified/named as RF (Reliability-First) solutions/ideas. Based on such a
dichotomy, the explanations are as follows. The estimated/predicted reliability improvements
by the existing RF solutions/ideas would be achievable if and only if the following
assumption (unstated in the relevant literature) could always hold true — a potential passenger
who would have otherwise adopted a recommended CF itinerary would also adopt the
corresponding (recommended) RF itinerary. This assumption, however, can hardly hold when
applying the existing RF solutions/ideas to those critical routes. Let us use Figure 4.9 to
facilitate the explanation. If we presume a CF recommendation (c.f. the upper one of the two
in Figure 4.9) is competitive (compared with other available modes, routes, and departure
times) and can attract some potential passenger onto the track, we can hardly assume/predict
with the same confidence that the same person would be attracted onto the track if the
corresponding RF itinerary (c.f. the lower one of the two in the figure) has been
recommended (instead of the CF one). Why? Because the RF version has a significantly
longer estimated (/scheduled/advertised) travel time than the corresponding CF version —
50% longer w.r.t. scheduled (/advertised) journey time (i.e. (3h-2h)/2h) and more than 50%
longer w.r.t. generalised journey time (the extra 1h adds to out-of-vehicle waiting). Why
would the speculated reliability improvements by the existing RF solutions/ideas be
groundless? Two reasons. On the one hand, if we assume there exists a customer base
(believed to be much smaller than that for e.g. a commuter line) for a critical route, then a
speculated improvement in reliability (by adopting the existing RF solutions/ideas) would
have little influence on the (mode, route, or departure time) choices of either the customer
base (i.e. frequent users) or the potential passengers — a frequent user could have had
(through repeated trials) and adopted his/her own self-constructed itinerary (rather than some
recommended one) and a potential passenger could hardly obtain the experiential information
about reliability from a frequent user due to the much lower exposure to such information
(than in the case of e.g. commuter routes, direct inter-urban routes, etc). On the other hand, if
we assume there exists no customer base but instead exists a group of potential passengers for
a critical route, then the speculated reliability improvements (by adopting the existing RF
solutions/ideas) would also be a rubber cheque — if a potential customer could not be firstly
attracted onto the track, he/she would never have the experiential information about the

reliability of those pre-trip itinerary recommendations and the speculated reliability

99



improvements would become meaningless. Note that the above analysis of the
interrelationship between competitiveness (/attractiveness) and reliability
(/robustness/punctuality) in the context of critical routes (i.e. competitiveness should be given
a higher priority than reliability in such scenarios) does not mean competitiveness
(/attractiveness) should be maximally pursued without allowing for the potential impact on
reliability (/robustness/punctuality) — a highly competitive itinerary recommendation (e.g.
generated by the existing CF solutions/ideas) may attract many potential passengers onto the
track but its poor reliability would impede the next cooperation between these passengers and
the relevant railway companies on the same route or even on the other transfer-involved

routes.

4.3 A historical-data-based approach tailored for tackling Critical Routes

4.3.1 Central idea: less is more

By reviewing the existing information-based approaches to tackling transfer-related problems,
we can get a glimpse of the design philosophy adopted by these approaches: almost all of
them are based on ‘presumption of guilt’. That is, every possible transfer plan within a
timetable-based transport network is treated (by these approaches) as potentially unreliable
due to the impact of train delays and disruptions, and hence additional information should be
provided about performance statistics or alternative plans for every transfer plan to enable
passengers to make better choices. In realistic applications, however, this ‘holistic treatment’
of transfer plans not only increases the computational complexity of the underlying
algorithms but also is likely to result in uneasiness or overreactions of information consumers
(passengers). Indeed, no transfer plan can be said to be 100% reliable due to the fact that
there are lots of endogenous and exogenous factors influencing train movements. In reality,
however, most transfer plans recommended by a journey planning system can be realised
with a considerably high degree of certainty due to the mechanism of minimum transfer times
(c.f. Subsection 3.4.2). Therefore, it seems unnecessary or even misleading to provide
additional information (warning) about those considerably reliable transfer plans. After all,
low probabilities tend to be overweighted when losses are expected (Kahneman, 2012),

which may cause inconvenience to information consumers (passengers).
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Based upon the above considerations, a historical-data-based approach is proposed (see
Figure 4.10 for an overview), the design philosophy of which is embodied by the following

four aspects:

- Less consumption of computing resources and less disturbing information: it can be
seen from Figure 4.10 that the biggest difference between the existing approaches and
the approach proposed here lies in that the ‘local/precision treatment’ of the identified
critical routes is adopted here, rather than the ‘holistic treatment’ adopted in the
existing approaches. This difference is originated from the difference between design
philosophies: the philosophy of ‘less is more’ is adopted here, based on the
consideration that every day people are confronted with too many pieces of irrelevant
and unnecessary information in such an age of information explosion, and providing
additional information about those low-risk transfer plans would be disturbing. From
the perspective of energy consumption, an algorithm requiring less computing

resources would be more eco-friendly than those computationally intensive ones.

- Less reliance on past experience: since the proposed approach is historical-data-based,
it does not presume that passengers have sufficient experience of train delays or
disruptions (compared with the approach of ‘customisable transfers’ in Subsection
4.2.5). In fact, those passengers choosing a critical route tend to be less likely to have
sufficient experience of the performance of such a route due to the fact that a critical
route is long-distance and transfer-involved. Therefore, a presumption of

inexperienced passengers would be more appropriate.

- Less requirement on mathematical ability: as is to be introduced later in Algorithm 3
and Algorithm 4, the proposed approach is based on performance statistics that are
oriented toward a whole journey (itinerary) rather than toward individual service legs
(compared with the approach mentioned in Subsection 4.2.7). Therefore, it would be
able to set the information consumers (passengers) free from those demanding

calculations by themselves.

- Less inconvenience for passengers to integrate fragmented information by themselves:

as is to be illustrated later in this chapter, the proposed approach has great potential to
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be integrated into the existing journey planning algorithms (and hence the
corresponding journey planning systems), which would be able to enhance the
functionality of the existing systems and facilitate the dissemination of this additional
information about itinerary-level performance. By comparison, the approach of
individual-leg-oriented performance statistics (c.f. Subsection 4.2.7) has less
extensibility. That is, those individual-leg-oriented performance statistics are limited
to providing descriptive information: they could not be utilised by the existing journey
planning algorithms to provide prescriptive information about alternative plans or

predicted arrival/journey times due to a lack of itinerary-level performance indicators.

A given route

Critical route ?

Critical
itineraries?

4

Enhance the pre-trip ) )
information about these No intervention
itineraries according to

Algorithm 3 or Algorithm 4

Figure 4.10 An overview of the proposed algorithmic approach

4.3.2 IPS vs. PBPM: two sides of one coin

The previous subsection briefly describes the central idea of the proposed algorithmic

approach: 1) ‘local treatment’ of the identified critical routes; and 2) itinerary-oriented

performance evaluation. In the end of the previous subsection (c.f. Figure 4.10), two
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algorithms are mentioned: Algorithm 3 and Algorithm 4, which comprise the core part of the
proposed algorithmic approach. This subsection is to present the pseudo code of Algorithm 3
(IPS) and Algorithm 4 (PBPM). Both IPS and PBPM are historical-data-based and involve
quite similar data pre-processing steps. However, there is a major difference between the two
algorithms in terms of the specific statistics adopted and the representation of results.
Roughly speaking, IPS can be viewed as an augmented version of those individual-leg-
oriented performance statistics (c.f. Subsection 4.2.7 for details about those individual-leg-
oriented performance statistics), whereas PBPM is inspired by the representation of real-time

delay alerts in the existing real-time information systems (to be detailed later in Subsection

43.8).

Algorithm 3 below presents the pseudo code of Itinerary-oriented Performance Statistics
(IPS). As its name implies, IPS is designed to calculate and present itinerary-oriented
performance statistics for each critical itinerary following a given critical route (on a given
query date). In order to obtain such itinerary-oriented performance statistics, detailed
historical train movements data should be available and several involved parameters should
be pre-determined (e.g. NTT, AW, etc). Moreover, data pre-processing and visualisation are

also important.

Algorithm 3: IPS (Itinerary-oriented Performance Statistics)

Input: a sufficiently large sample of detailed historical train movements data about a given
critical route (in recent past)
Output: a recommended itinerary list (for a particular date in the near future) in which each
critical itinerary is associated with an itinerary-specific performance statistic

1 // Step 1: construct a route-view timetable (RVT) for the studied route
2 identify all the involved service legs along the critical route
3 extract from historical train movements data all the relevant information about each

service leg (train identifier, run date, station identifier, scheduled arrival/departure
times, recorded arrival/departure times, platform, cancellation, etc)

4 merge the data records of the involved service legs into a RVT by concatenating the
corresponding services running on the same dates and following the scheduled order

5 sort RVT by date and scheduled departure time

6

7 // Step 2: calculate the net transfer time (NTT) and the actual window (AW) of each
/! involved transfer

8 for each record i (corresponding to a critical itinerary) in RVT:

9 for each involved transfer j:

10 add into RVT two new columns N77;and AW;

11 NTTij= DIST;;/ SPEED;;
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12 store NTT;jinto NT7;

13 if cancelled(Tj) == True or cancelled(Tj+1) == True:

14 AWjj= -0

15 else:

16 AW; ;= depa(Tj+1) — arra(T;)

17 store AWj;into AW;

18

19 // Step 3: calculate itinerary-oriented performance statistics based on some predefined
/ threshold value

20 group the records in RVT by scheduled departure time
21 for each group g in RVT:

22 for each record i:

23 flag=1

24 for each involved transfer j:
25 if AWij <NTTj; :

26 flag=0

27 break

28 if arra(Tx) — arrs(Tx) > TAL:
29 flag=0

30 if flag = 1:

31 success(g) + 1

32 otherwise:

33 failure(g) + 1

34 IPS; = success(g) / (success(g) + failure(g))

35 store IPS; into IPS

36

37 // Step 4: construct and display the enhanced itinerary list

38 construct the recommended itinerary list RILpatk for a given query date DATE (in
the near future) based on timetable data

39 calculate /PS from the latest historical data according to Steps 1 — 3

40 associate each critical itinerary in RILpate with its corresponding value in /PS

41 return RILpaTE

42 terminate

Generally, the above algorithm (i.e. IPS) can be subdivided into four steps (see the pseudo
code in Algorithm 3): Steps 1 — 3 belong to back-end development (i.e. data processing),
while Step 4 belongs to front-end development (i.e. user interface design). A Python
implementation of the back end (core part) of IPS (and also PBPM in Algorithm 4) is
presented in Appendix D, the source code of which comprises approximately 600 lines of
commands. It should be noted that although front-end development is very important, this

section is mainly focused on the back end.

Algorithm 4 below presents the pseudo code of Performance-Based Pre-Modification of
advertised arrival times (PBPM). Unlike IPS, PBPM abandons the representation of pure
statistics (i.e. probabilities, c.f. Figures 4.6 and 4.7 in Subsection 4.2.7) and adopts a method
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of modifying well in advance the advertised arrival time of each critical itinerary following a
given critical route (on a given query date). Roughly speaking, PBPM adds to each critical
itinerary extra allowance (i.e. time supplement) to reduce the impact of delays/disruptions,
based on the historical performance of each particular itinerary. In order to implement PBPM,
detailed historical train movements data should be available and several involved parameters
should be pre-determined (e.g. NTT, AW, etc). Moreover, data pre-processing and several

heuristics are also involved.

In the pseudo code of IPS and PBPM, all the notations in italics are one-dimensional list
(array) objects, those in bold are two-dimensional tables, and uppercase letters are constant
parameters. Each step in the pseudo code is to be explained later in the subsequent

subsections. The relevant symbols are as follows:

- DIST;jand SPEED;; respectively represent the (horizontal and vertical) distance
between a pair of feeder and connecting trains <i, j> and the walking speed of an
average passenger between the feeder train i and the connecting train j.

- cancelled(-) is an indicator variable to judge whether a given train was cancelled.

- deps(+), arrs(+), depa(+), arra(-), and arrm(-) respectively represent the scheduled
departure time of, the scheduled arrival time of, the actual departure time of, the
actual arrival time of, and the modified arrival time of a given train/itinerary.

- flag is an indicator variable to control the execution of the relevant for-loops.

- TAL is short for Threshold for Arrival Lateness.

- success(*) and failure(-) are counter variables that respectively represent the number
of successful and unsuccessful realisations of a given itinerary.

- po(-) represents the success rate of a given itinerary.

- O(-) represents the average delay of a given itinerary at the target/destination station.
- jto(+) and jti() respectively represent the average journey time of a given itinerary in
the scenario in which no missed transfers and the average journey time of a given

itinerary in the scenario in which there is exactly one missed transfer.

- RILpatE means the Recommended Itinerary List for a given query date.

- HEADWAY.,; means the average headway of the involved lines in a given itinerary.
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Algorithm 4: PBPM (Performance-Based Pre-Modification of advertised arrival times)

Input: a sufficiently large sample of detailed historical train movements data about a given
critical route (in recent past)
Output: a recommended itinerary list (for a particular date in the near future) in which the
advertised arrival time of each critical itinerary is modified well in advance based on
itinerary-specific performance in history

1 // Step 1: construct a route-view timetable (RVT) for the studied route
2 identify all the involved service legs along the critical route
3 extract from historical train movements data all the relevant information about each

service leg (train identifier, run date, station identifier, scheduled arrival/departure
times, recorded arrival/departure times, platform, cancellation, etc)

4 merge the data records of the involved service legs into a RVT by concatenating the
corresponding services running on the same dates and following the scheduled order

5 sort RVT by date and scheduled departure time

6

7 // Step 2: calculate the net transfer time (NTT) and the actual window (AW) of each
/l involved transfer

8 for each record i (corresponding to a critical itinerary) in RVT:

9 for each involved transfer j:

10 add into RVT two new columns N77;and AW;

11 NTTi;= DIST;;/ SPEED;;

12 store NTT;jinto NT7;

13 if cancelled(T;) == True or cancelled(Tj+1) == True:

14 AWj;= -0

15 else:

16 AW ;= depa(Tj+1) — arra(T;)

17 store AWijinto AW,

18

19 // Step 3: calculate the probability of missed transfers for each critical itinerary
20 group the records in RVT by scheduled departure time

21 for each group g in RVT:

22 for each record i:

23 flag=1

24 for each involved transfer j:
25 if AW;; <NTTj; :

26 flag=0

27 break

28 if flag = 1:

29 success(g) + 1

30 otherwise:

31 failure(g) + 1

32 po(g) = success(g) / (success(g) + failure(g))

33 store po(g) into po

34

35 // Step 4: calculate the average lateness at the destination station for the k™ involved
/ leg of each critical itinerary

36 group the records in RVT by scheduled departure time

37 for each group g in RVT:

38 for each record i:
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39 A(Tx) = arra(Tx) — arrs(Tx)

40 store A(Tx) into 4(g)

41 d(g) = 4(g).average()

42 store 6(g) into o

43

44 // Step 5: modify the advertised arrival time of each critical itinerary and display

45 construct the recommended itinerary list RILpate for a given query date DATE (in
the near future) based on timetable data

46 calculate p0 and ¢ from the latest historical data according to Steps 1 — 4

47 for each critical itinerary ic in RILDATE:

48 look up the corresponding po(ic) and 8(ic) in po and o

49 ]tO(lc) = aITs(Tk) - deps(Tl) + 6(1(:)

50 ]tl(lc) = aITs(Tk) - deps(Tl) + HEADWAYavg + 6(1(:)

51 arrm(ic) = deps(T1) + po(ic)-jto(ic) + (1 — po(ic))- jti(ic)

52 return RILpATE

53 terminate

Note that IPS (Algorithm 3) has been created and presented mainly as an introductory
algorithm to the proposed solution (i.e. PBPM/Algorithm 4) of the core research problem.
The inclusion of this particular approach into the thesis has been mainly due to the
consideration that it might help better understand the underlying statistical ideas and

technicalities of PBPM.

PBPM (Algorithm 4) has been created and adopted to enhance the pre-trip information about
those critical (transfer-involved) itineraries (corresponding to some identified critical route),
which has simultaneously taken into account the constraint of capacity utilisation and the
interplay between the competitiveness (/attractiveness) of and the reliability
(/punctuality/robustness) of the recommended itineraries (to be further explained in

Subsection 5.3.12).

4.3.3 Sample size

The input of IPS and PBPM is a ‘sufficiently large’ sample of detailed historical train
movements data about a given critical route. Here, a question arises: how large is ‘sufficiently
large’? This is a big topic and is an unavoidable question for any statistical method.
According to the law of large numbers (c.f. Section 2.4), the sample size should be as large as
possible. However, there is not a one-size-fits-all answer within the field of probability and

statistics. And the sample size adopted in realistic applications is often restricted by the
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availability of the relevant (historical) data. Here, a ‘sufficiently large’ sample can be thought
of as a collection of several-months historical data, based on the consideration about the
availability of the relevant data and the treatment adopted in the existing real-world
applications (c.f. Subsection 4.2.7). Further discussion about the appropriate sample size is to

be presented later in the next chapter.

4.3.4 Route-View Timetable (RVT)

Step 1 in Algorithm 3 and Algorithm 4 is mainly for data pre-processing. In order to help
understand this process, Figures 4.11 and 4.12 below are employed to provide an illustration.
Both of the two illustrative examples are based on historical train movements data collected

from Realtime Trains (RTT, a real-time passenger information system in Britain, c.f.

Subsection 3.7.2). While Figure 4.11 offers a birds-eye view of the data pre-processing in
Step 1, Figure 4.12 provides a more concrete example of how to obtain a Route-View

Timetable (RVT).

RTT data in
JSON format,
grouped by
station and date

extract, merge, concatenate, re-organise, *+++**

RVTs(Route-
View Tables)
n CSV format,
grouped by
route and date

Figure 4.11 A general illustration of Step 1 in Algorithm 3

The raw data (at the top of Figure 4.11) is a set of collected RTT data. These RTT data are
grouped by station and date. Each file in this set contains information about all the arrival
and/or departure events that have happened at a given station on a given day (the top of
Figure 4.12 gives such an illustration). The exact number of files in the RTT data set depends

on how many stations and how many days are involved in the studied route. Figure 4.12 uses
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the route Bournemouth-Southampton-Brighton (BSB) as an example and the study period is
from 12 Oct 2015 to 04 Dec 2015 (8 weeks). If this context is adopted in Figure 4.11, then
the RTT data set would contain 120 JSON files (40 working days in total and 3 stations

involved each day).
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¥a1259 | SOU-BTN | W83542 | BOMO | 959 CALL | SOTON | o988 | 988 CALL 1 993 993 ORIGIN 3A BRGHTN | 1008
15/10/2015 WeY - Ya1263 | SOU-BTN | W83543 | BOMO | 1019 CALL | SOTON | 1048 | 1048 CALL 1 1053 | 1053 ORIGIN 3A BRGHTN| 1159 | 1158 |DESTINATIO
15/10/2015] Wi Ya1268 | SOU-BTN | W83544 | BOMO | 1079 CALL | SOTON | 1108 | 1108 CALL 1 113 | 112 ORIGIN 3A BRGHTN| 1218 | 1219
WEY-WAT | v41274 | SOU_BIN | W83545 | BOMO | 1139 CALL SOTON | 1168 1169 CALL 1 1173 1173 ORIGIN 3A BRGHTN | 1278 1277

Figure 4.12 A more concrete illustration of Step 1 in Algorithm 3

Through a series of data processing sub-steps, the 120 JSON files in the RTT data set are
converted into 40 Route-View Timetables (RVTs) (see Figure 4.11 and Figure 4.12). These
RVTs are grouped by route and date (here only one route is considered, so the RVT set is
only grouped by date). Each RVT contains all the necessary information about all of the

studied (critical) itineraries (see Figure 4.12 for example).

There is an illustrative RVT in Figure 4.12, and Table 4.1 below is a magnified version of
that in Figure 4.12. In this table, each row corresponds to a studied (critical) itinerary and
each column corresponds to the value of a specific attribute. All of these ten studied
itineraries belong to the route Bournemouth-Southampton-Brighton, and they all happened on

15 Oct 2015.
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Table 4.1 An example of RVT (Route-View Timetable)

runDate | lineFeeder | servicesF | lineConnect | servicesC | stationO |dep_s_FQ| display_FO | stationT | arr_s_FT | arr_a_FT | display_FT | platform_FT |dep_s_CT|dep_a_CT| display_CT platform_CT | stationD | arr_s_CD |arr_a_CD| display_CD
15/10/2015| WEY - WAT | ¥41233 SOU -BTN | wW83537 | BOMO 595 CALL SOTON 626 627 CALL 1 633 633 ORIGIN 2A BRGHTN 738 739 [DESTINATION
15/10/2015| WEY - WAT | Y41237 SOU-BTN | W83538 | BOMO 659 CALL SOTON 688 688 CALL al 693 692 ORIGIN 3A BRGHTN 798 797  [DESTINATION
15/10/2015| WEY - WAT | Y41241 SOU-BTN | W83539 | BOMO 719 CALL SOTON 748 747 CALL 1 753 752 ORIGIN 3A BRGHTN 858 857 [DESTINATION
15/10/2015| WEY - WAT | Y41245 SOU-BTN | W83540 | BOMO 779 CALL SOTON 808 807 CALL il 813 812 ORIGIN 3A BRGHTN 918 917  [DESTINATION
15/10/2015| WEY - WAT | Y41250 [ GMV-BTN | P01078 | BOMO 839 CALL SOTON 868 869 CALL 1 874 874 CALL a BRGHTN 974 977  [DESTINATION
15/10/2015| WEY - WAT | v41254 [ SOU-BTN [ w83541 [ BOMO 899 CALL SOTON 928 929 CALL 1 933 933 |CANCELLED CALL| 3A BRGHTN | 1038 1038 [DESTINATION
15/10/2015| WEY - WAT | Y41259 SOU-BTN | W83542 | BOMO 959 CALL SOTON 988 988 CALL gl 993 993 ORIGIN 3A BRGHTN | 1098 1104 [DESTINATION
15/10/2015| WEY - WAT | Y41263 SOU-BTN | W83543 | BOMO 1019 CALL SOTON 1048 1048 CALL al 1053 1053 ORIGIN 3A BRGHTN | 1159 1158 [DESTINATION
15/10/2015| WEY - WAT | Y41268 SOU-BTN | W83544 | BOMO 1079 CALL SOTON 1108 1108 CALL 1 1113 1112 ORIGIN 3A BRGHTN | 1218 1219 [DESTINATION
15/10/2015| WEY - WAT | Y41274 | SOU-BTN | W83545 | BOMO 1139 CALL SOTON 1168 1169 CALL il 1173 1173 ORIGIN 3A BRGHTN | 1278 1277 [DESTINATION

The two columns ‘lineFeeder’ and ‘lineConnect’ in Table 4.1 tell us which two train lines are
involved to complete a given itinerary (only one transfer is involved in this example; an RVT
could also be constructed in a similar way to cover more complex transfer scenarios). In this
example, all of the ten itineraries have the same feeder line: the Weymouth-London Waterloo
line operated by South West Trains. Apart from the one having a value of ‘P01078’ under the
‘serviceC’ column, all of the other nine itineraries have the same connecting line: the
Southampton-Brighton line run by Southern. The only exception involves the Great Malvern-

Brighton line operated by Great Western Railway.

The two columns ‘serviceF’ and ‘serviceC’ tell us the service id numbers of the two involved
trains for a given itinerary. A service id number is generally stable and unique across the
whole network during a given timetable period. For example, the string in the first cell under
‘serviceF’ (i.e. “Y41233’) represents the South West Trains service that runs from Weymouth
at 09:03 each weekday morning to London Waterloo during the period 05 Oct 2015 — 11 Dec
2015.

The three columns ‘stationO’, ‘stationT’, and ‘stationD’ store the names of the origin station
(i.e. BOMO in this example), the transfer station (i.e. SOTON), and the destination station
(i.e. BRGHTN), respectively.

The four columns ‘dep s FO’, ‘arr s FT’, ‘dep s CT’, and ‘arr_s CD’ store the values of
the scheduled (nominal) departure time of the feeder train at the origin station, the scheduled
arrival time of the feeder train at the transfer station, the scheduled departure time of the
connecting train at the transfer station, and the scheduled arrival time of the connecting train
at the destination station, respectively. Note that all the (scheduled and actual) stop times

have been converted into integers (bounded by [0, 1439]) to enable the calculation of travel
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times, waiting times, etc. The conversion is based on the following simple algorithm: each
integer in the interval [0, 1439] corresponds to the difference in minutes between the very

beginning of the day (i.e. 00:00) and the given stop time (e.g. 595 <> 09:55).

The three columns ‘arr a FT’, ‘dep_a CT’, and ‘arr_a_CD’ contain the values of the
recorded (actual) arrival time of the feeder train at the transfer station, the recorded departure
time of the connecting train at the transfer station, and the recorded arrival time of the

connecting train at the destination station, respectively.

The four columns ‘display FO’, ‘display FT’, ‘display CT’, and ‘display CD’ contain
information about the status of a given train at a given station. Valid values in these columns
include CALL, ORIGIN, DESTINATION, STARTS, TERMINATES, and
CANCELLED_CALL. ORIGIN and DESTINATION represent the original origin and
destination of a service, respectively. If STARTS or TERMINATES appear, then this means
a service has started short or terminated en-route, and meanwhile the original
origin/destination will show CANCELLED_ CALL. This status information is useful in the

calculation of performance statistics in subsequent steps of Algorithm 3 and Algorithm 4.

The remaining two columns ‘platform FT’ and ‘platform_CT’ respectively store the
information about the allocated platform for the feeder train at the transfer station and the
allocated platform for the connecting train at the transfer station. This piece of information
about platform allocation is potentially useful in dealing with the impact of platform changes

on the estimation of NTT (Net Transfer time) in subsequent steps.

The above example is only for one day. It needs to be combined with other daily RVTs to
form an N-week sample (N =4, 6, 8, 12, etc). A sample table for this studied route (i.e. BSB)
normally contains SON records (10 per day and SN working days), but in rare cases the
number of records would be slightly smaller than SON (e.g. SON — 1, 50N — 2, etc) due to the
cancellation of some service(s) on a particular day (i.e. the train movements data are
completely missing for the service(s)). Further discussion about train cancellations can be

found later in Subsection 4.3.6.
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4.3.5 Net transfer time (NTT)

Steps 2 and 3 are responsible for the majority of computations of Algorithm 3, and are an
indispensable component of Algorithm 4. Three key parameters are involved in these two
steps: net transfer time (NTT) and actual window (AW) in both Algorithm 3 and Algorithm 4,
and threshold for arrival lateness (TAL) in Algorithm 3. In the following, the considerations

are presented about how to determine these parameters based on available information.

Determining the NTT (c.f. Subsection 3.5.2) for each critical transfer that is involved in each
critical itinerary (following a given critical route) can be a heavy task if taking into account
the various factors potentially influencing passengers’ transfer activities (e.g. platform
changes, level of crowdedness in the station, boarding/alighting locations, etc). In reality,

however, the determination of NTT is not that difficult due to the following four reasons.

Firstly, according to the definition of NTT (c.f. Subsection 3.5.2, ‘physically possible
minimum time required to walk from T1 to T2 within the station’), a ‘free-flow’ walking
speed and the shortest walking path can be adopted without the need for considering in-
station congestions. Since a calculated NTT has a precision of one second, it can then be
converted into minutes (to conform to the granularity of a timetable) by rounding it up to the
nearest integer, which is equivalent to add to itself allowances to enable an average passenger

to successfully complete the transfer.

Secondly, due to the periodicity of train schedules (c.f. Subsection 2.5.2), the transfer(s)
involved in each critical itinerary often follows the same pattern. That is, the platform
allocation often remains the same between different hours of a day (c.f. the two columns
‘platform_FT’ and ‘platform CT’ in Table 4.1), and hence it is often enough to determine a

route-specific NTT rather than to determine a set of connection-specific NTTs.

Thirdly, the influence of platform changes on the determination of NTTs is also found to be
limited, based on extensive analysis of historical train movements data from British railways:
a close examination of the large sample (about 1.4 million valid observations) of 12-months
train movements data (c.f. Section 3.7) reveals that the probability of a platform change (i.e.
an incoming train is rerouted within a station) is approximately 5% within Britain’s passenger

rail system (which can be regarded as low-probability events). In practical applications, the
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following strategy can be adopted to reduce the impact of platform changes: if a given sample
is found to contain many platform changes in data pre-processing, then scenario-specific

NTTs can be assigned to each scenario; otherwise, a route-specific NTT is enough.

Lastly, a reference point can be chosen (for each of the two involved platforms) to simplify
the estimation of the walking distance (e.g. choosing the midpoint of each platform as the

reference point).

Based on the above considerations, the determination of an NTT (for a given transfer) is
reduced to the determination of two parameters: the distance between two platforms and the
walking speed within the station (c.f. Step 2 in Algorithm 3 and Algorithm 4). Below is an
illustrative example of how to determine the walking distance and walking speed in the

context of the route Bournemouth — Southampton — Brighton.

As mentioned previously, in practice it is enough to determine a route-specific NTT when the
studied critical transfers follow the same transfer pattern. That is, these transfers happen at
the same station (i.e. Southampton Central in this context) and each of the two involved legs
stops at the same platform between different hours of a day. From Table 4.1 we can see that
most of the studied transfers follow the pattern Platform 1 to Platform 3 A (the two exceptions
are to be dealt with later). Therefore, we can either carry out fieldwork to determine the NTT
between Platform 1 and Platform 3 A, or simply exploit the station layout information from

the Internet to estimate this parameter.

Figures 4.13 and 4.14 below give an example of using NRE to determine this parameter. For
the example considered here, we can simply use the ‘plan a route’ functionality on the station
information page of Southampton Central (Figure 4.13) to enquire about the distance between
the two involved platforms to estimate the route-specific NTT. As shown in Figure 4.13, if
we choose platform la as the origin and platform 3a as the destination, we can get a list of
recommended routes within the station. And if we choose the shortest one (route A in the
figure), then the distance between the two platforms can be estimated by the planar distance
between the two platforms (33.5 metres in this case), plus the steps involved (54 steps in this
case, see Figure 4.14). Here, if a walking speed of 5 km/h (about 1.39 m/s) is adopted on flat
ground and 2 steps per second (this approximation of walking on stairs is based on fieldwork

by the author and the empirical results presented in literature such as Fujiyama and Tyler,
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2010) is adopted for climbing up and down, then we can obtain an estimated total walking
time of 51 seconds. And if considering the extra time spent on looking for the information
about the relevant platforms during the transfer process, we can add another 5 seconds to the
NTT, which results in an estimation of 56 seconds between Platform 1 and Platform 3A. For
the two exceptions (i.e. 1 — 2A and 1 — 1), their NTTs are estimated to be no more than the
NTT between Platform 1 and Platform 3A (see Figure 4.14) but are also impossible to be 0 (a
transfer will always consume a certain amount of time, no matter how little the exact amount
is). Therefore, a rough estimation of the NTTs for the two exceptional situations can be
obtained, which lies between 0 and 56s. Based on the above estimations and the fact that
historical train movements data (i.e. RTT data in this context) often have a precision of one
minute (i.e. the granularity of these historical data is one minute), a unified NTT of 1 minute

can be assigned to this route.

It should be noted that the ‘plan a route’ functionality on NRE’s station information pages
has been removed at the time of writing this thesis. As an alternative way to estimate the
planar distance between two platforms within a transfer station, the ‘measure distance’
functionality of Google Maps (Figure 4.15) can also be utilised to estimate NTTs, with the
aid of NRE’s station information about number of steps (Figure 4.14). And if these online
resources cannot meet the need for precision, fieldwork can be conducted (in fact, previous
research has shown that small estimation errors in NTTs have a limited impact on the

obtained results of itinerary-oriented performance statistics; c.f. Guo and Preston, 2016).

Southampton Central (SOU)

Possible routes

There are too many routes which match your selected options, first 3 are shown

You searched for routes between Platform 14 to Platform 32, There are 3 possible routes which
match your selected options.

Change route oplions

Search different location

Possible routes Go to top

Route Distance (metres) Using Status Restrictions
A 335 steps Shown helow

B 3648 steps Wiew route

[ 40.0 liits, steps Wiew route

Figure 4.13 NRE’s station information page: Example One (Source:
www.nationalrail.co.uk/ , accessed: 25 Oct 2015)
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Figure 4.14 NRE’s station information page: Example Two (Source:

www.nationalrail.co.uk/ , accessed: 25 Jan 2017)
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Figure 4.15 Using Google Maps to estimate walking distance within a railway station

(Source: www.google.co.uk/maps/ , accessed 25 Jan 2017)
4.3.6 Actual window (AW) and threshold for arrival lateness (TAL)

Apart from NTT, AW (actual window) is another important parameter in the determination of

whether a scheduled transfer is missed (by most of the relevant passengers) on a particular
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date in the past (c.f. Step 2 in Algorithm 3 and Algorithm 4). Compared with the
determination of NTTs, the determination of AWs is relatively straightforward: they can be
calculated directly from the recorded (actual) arrival/departure times in a route-view
timetable (RVT). For example, if a feeder train is recorded to have arrived at the transfer
station at 11:05 a.m. on a particular day (in the past) and the corresponding connecting train
is recorded to have departed from the same station at 11:07 a.m. on the same day, then the
AW of this pair of feeder and connecting trains is 2 minutes. And suppose the NTT for this

transfer is 1 minute, and then this particular transfer is regarded as not missed.

Although the determination of AWs is generally straightforward, special attention needs to be
paid to those scenarios in which train cancellations have been recorded. As previously
mentioned in the explanation of Route-View Timetable (RVT), train status information can
also be retrieved from the historical train movements data (i.e. RTT data in this context, c.f.
Subsection 4.3.4). That is, it can be learned from the available historical data about whether a
scheduled train arrival/departure event at a particular station is cancelled. Therefore, if a
feeder/connecting train is recorded as ‘CANCELLED CALL’ on a particular date in the past
(i.e. the scheduled arrival/departure event has been cancelled on that day), then the
corresponding transfer is regarded as invalid/missed. At the algorithmic level, these
cancellation-involved scenarios can be dealt with by assigning to them some special value (i.e.

minus infinity in Step2 of Algorithms 3 and 4) to distinguish them from the others.

Apart from NTT and AW, the threshold for arrival lateness (TAL) is another important
parameter in the calculation of itinerary-oriented performance statistics, which is involved in
Step 3 of Algorithm 3 (c.f. Subsection 4.3.2). The reason why it is necessary to introduce
TAL into Algorithm 3 lies in that if such a threshold is not predefined and the algorithm only
checks whether each involved transfer has been successfully realised, then those calculated
itinerary-oriented performance statistics would be biased. Figure 4.16 below provides an
illustration of the importance of introducing TAL into the calculation of itinerary-oriented

performance statistics.
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Figure 4.16 An illustration of why it is necessary to predefine a threshold for arrival lateness

In the four scenarios (i.e. S1 — S4) presented in Figure 4.16, the horizontal lines represent the
time axis, the two solid vertical lines (in each of the four scenarios) represent the net transfer
time for this studied transfer (NTT = 2 minutes), and the two dotted vertical lines (they are
masked by the solid vertical lines in S2) represent the actual window (AW) between this pair
of feeder and connecting trains. If a threshold for arrival lateness is not predefined, then the
realised connection in S4 would pass the test for a ‘successful realisation’ of the itinerary
(assuming that this itinerary involves only one transfer). But in fact this realisation is based
on the significant lateness of the connecting leg and hence should not be counted as a

‘successful realisation’.

But how to determine an appropriate TAL? Here the consideration is that some industry
standards can be adopted as the threshold. Recall that Subsection 2.5.4 has introduced the
operational practice in European railways: heuristic measurements are widely adopted by
European railways to conduct network-level performance evaluation in terms of punctuality
and reliability, the mechanism of which is similar to TAL. Also, those individual-leg-oriented
performance statistics in Figures 4.6 and 4.7 (c.f. Subsection 4.2.7) are based on predefined
TALs. In fact, it is almost impossible to carry out quantitative analysis or performance

evaluation/comparison without some preset standard.

After an investigation of the relevant definitions of Network Rail (c.f. Network Rail, 2017),
four candidate thresholds are identified: 1 minute, 5 minutes, 10 minutes, and 30 minutes.
According to Network Rail’s statistical method, a train service can be counted as ‘punctual’ if
its arrival lateness (at the terminating station) is less than 5 minutes for London and South

East and regional services or 10 minutes for long distance services. A train is counted as
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‘right-time’ if its arrival lateness (at the terminating station) is less than 1 minute. And a train
is counted as ‘significantly late’ if its arrival lateness (at the terminating station) is no less
than 30 minutes. So how to define a ‘successful realisation’ of a given itinerary? A ‘right-
time’ arrival (i.e. less than 1 minute late), or a “punctual’ arrival (i.e. less than 5 or 10 minutes

late), or a ‘not significantly late’ arrival (i.e. less than 30 minutes late)?

Here, in the context of pre-trip information about itinerary-level performance statistics, a ‘not
significantly late’ measurement is obviously not as good as a ‘right-time’ or ‘punctual’
measurement. For example, suppose the scheduled arrival time at the destination station of a
given critical itinerary is 12:01 p.m. and two itinerary-level performance statistics have been
calculated: one is 60% based on a 5-minutes threshold and the other is 95% based on a 30-
minutes threshold. And these two pieces of performance information are respectively
delivered to two different travellers. Which piece of information would be more useful? The
answer is it is perhaps the statistic calculated from the 5-minutes threshold. This is because
the 5-minutes statistic provides an information receiver with a considerably small
‘uncertainty interval’ (i.e. [12:01, 12:05]), which makes the information receiver easy to
arrange his/her subsequent activities at the destination. By contrast, a wide spectrum of
possible values (i.e. [12:01, 12:30] based on the 30-minutes statistic) could bring difficulty in
planning subsequent activities. Therefore, either a single TAL is adopted of 1 minute, 5
minutes, or 10 minutes, or multiple TALs are adopted (e.g. 1 minute and 5 minutes) and

respectively computed in the algorithm.

4.3.7 The treatment of train cancellations

Once the involved NTTs, AWs, and TALs are determined, Algorithm 3 can then be executed
to generate a list of itinerary-oriented performance statistics corresponding to the
recommended list of critical itineraries that follow a given critical route (see Tables 4.2 and
4.3 for illustrations). However, there exists a potential controversy over the treatment of
cancelled trains: should predictable cancellations be taken into account when computing
itinerary-level performance statistics? Tables 4.2 and 4.3 below provide a realistic example

that may help better understand this issue.

Table 4.2 and Table 4.3 respectively present a list of itinerary-oriented performance statistics

(IPSs) differing only in the treatment of predictable cancellations: while Table 4.2 is obtained
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from a sample including predictable cancellations, Table 4.3 does not take into account those
predictable cancellations. The studied route is Bournemouth — Southampton Central —
Brighton, and the observation period is between 20 July 2015 and 13 September 2015 (8
weeks in total). Moreover, a route-specific NTT (net transfer time) of 1 minute is adopted,

and the threshold for arrival lateness (TAL) is set to 5 minutes.

Table 4.2 Itinerary-oriented performance statistics Example One:
predictable cancellations included

Dep. Arr. Dur. Chg. IPS (%)
09:55 12:18 2h23m 1 90
10:59 13:18 2h19m 1 79
11:59 14:18 2h19m 1 87
12:59 15:18 2h19m 1 85
13:59 16:14 2h15m 1 28
14:59 17:18 2h19m 1 76
15:59 18:18 2h19m 1 64
16:59 19:19 2h20m 1 54
17:59 20:18 2h19m 1 74
18:59 21:18 2h19m 1 79

NOTE: Bournemouth — Southampton Central — Brighton, between 20 July 2015 and
13 September 2015 (8 weeks), NTT = 1 minute, TAL = 5 minutes.

Table 4.3 Itinerary-oriented performance statistics Example Two:
predictable cancellations excluded

Dep. Arr. Dur. Chg. IPS (%)
09:55 12:18 2h23m 1 90
10:59 13:18 2h19m 1 79
11:59 14:18 2h19m 1 87
12:59 15:18 2h19m 1 85
13:59 16:14 2h15m 1 58
14:59 17:18 2h19m 1 76
15:59 18:18 2h19m 1 64
16:59 19:19 2h20m 1 54
17:59 20:18 2h19m 1 74
18:59 21:18 2h19m 1 79

NOTE: Bournemouth — Southampton Central — Brighton, between 20 July 2015 and
13 September 2015 (8 weeks), NTT = 1 minute, TAL = 5 minutes.

It can be seen from these two tables that the only difference lies in the IPS that corresponds to
the (recommended) itinerary with a scheduled departure time of 13:59: while the associated
IPS is 28% in Table 4.2, this value becomes 58% in Table 4.3. At first glance, both of these

two statistics (i.e. 28% and 58%) seem counter-intuitive: why should an off-peak early-
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afternoon journey have such a poor performance in terms of punctuality and reliability? After
a close examination of the historical data, it is recognised that this 'anomaly' can largely be
attributed to a major rail strike by First Great Western!! staff during August 2015. But why
could this itinerary have two quite different versions of IPS? Which one reflects the reality?
In order to answer these two questions, it is necessary to have a good understanding of

railway planning processes (c.f. Section 2.5).

Signin  Create Account [ ¢cex| EAEdshare v~ Q search v
Major engineering work at London Bridge until January 2018 @ A
Start date 05/01/2015
End date 31/01/2018
Route affected All routes via London Bridge N
Train operator affected  Southeastern 7
Description As part of the government sponsored Thameslink Programme, Network Rail is rebuilding London Bridge

mainline rail station to provide more space, improved connections to more destinations and more reliable
services. The rail and tube station will remain open during the work

Long term changes

Significant work affecting London stations will take place over the August 2017 bank holiday and the four working
days after (26 August - 2 September), as well as over Christmas and New Year 2017/8

Trains will be severely impacted over this time and you will need to change your journey so we ask you to keep
this in mind when booking holidays and planning ahead

More information will be released when available, including travel advice.
Further information
= Details about this project can be found on the Network Rail website.

= Time lapse videos on this project are available on YouTube.
* You can also see photos of the work being carried out on the Network Rail website.

Travelling at the weekend

Throughout the programme, different services will be impacted on some weekends and bank holidays, for the

Figure 4.17 An illustration of pre-trip information about major engineering works in the long
planning horizon (Source: www.nationalrail.co.uk/, accessed 25 Jan 2017)

Recall that in the introduction to railway planning processes (in Section 2.5), two relevant
notions have been briefly mentioned: short-term rescheduling (c.f. Subsection 2.5.1) and
daily timetable (c.f. Subsection 2.5.2). A daily timetable is designed and constructed well
before (usually several months before) the scheduled train services of a given railway line are
put into production on the predetermined date in the tactical planning phase. The introduction
of daily timetables in European railways is primarily to better adapt to daily variations in
transport demand and infrastructure conditions. For example, a weekday timetable often
remains the same for (normal) weekdays during a timetable period (several months or a year),
but may be quite different from a weekend/holiday timetable in terms of quantity (e.g. more
services on weekdays) and quality (e.g. shorter scheduled travel times on weekdays) of the

planned train services. Moreover, major engineering works (see Figure 4.17 for an illustration)

1 Rebranded as Great Western Railway at the time of writing this thesis.
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can also be reflected in daily timetables well in advance. If some of the train services in a
weekday timetable are cancelled in a holiday timetable or due to major engineering works (on
a future date), these cancelled services are usually recognised as planned cancellations (DAB,
2016) due to the fact that they are fully predictable and are reflected in published timetables

well in advance (several months or a year before the time of travel).

Although not strictly analogous to the mechanism of daily timetables in the tactical planning
phase, short-term rescheduling is widely adopted by rail operators to deal with predictable
changes in the published timetables in the operational planning phase. These predictable
changes may or may not include those short-term (i.e. a duration of several days or several
weeks) events such as rail strikes, local infrastructure improvements, crew shortage, etc. If
some of the train services in a published timetable are, either thoroughly or partly, cancelled
due to predictable reasons, these cancelled services can be regarded as predictable
cancellations. Here, the term ‘predictable’ is used to emphasise that although these
cancellations are planned to happen in the short term, they can still be reflected in a revised
timetable (and shown in a journey planning system) well in advance (e.g. several days or
several weeks ahead). In contrast, if a train service is planned to be cancelled in the very short
term (i.e. several hours ahead), it can hardly be reflected in the published timetable and hence

is regarded as stochastic/unpredictable.

Different ways of treating predictable cancellations would result in quite different
performance statistics. Let us look back at the illustrative example in Tables 4.2 and 4.3.
Close scrutiny of the relevant historical train movements data reveals that the connecting
train involved in the ‘abnormal’ itinerary (with a scheduled departure time of 13:59) is
operated by First Great Western (originating from Great Malvern, calling at Southampton
Central, and terminating at Brighton), and it was rescheduled (terminating instead at Bristol
Temple Meads and thoroughly cancelled between Bristol and Brighton) between 3 August
2015 and 31 August 2015 (involving 20 weekdays). That is, this 13:59 itinerary has not been
successfully realised on each of these 20 weekdays due to the cancellation of the connecting
leg. Here, a question arises: should these 20 failures be taken into account in the calculation

of its performance statistic?

Two different perspectives can be distinguished in the treatment of these 20 records: 1) they

should be taken into account because they could reflect, at least, that the services provided by
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this operator are not as reliable as those provided by the others; 2) they should not be taken
into account because these cancellations are predictable and can be reflected in pre-trip
information well in advance, the impact of which on itinerary planning is very limited.
Through an inspection of the intermediate results, it is found that there are 11 records in total
that are recognised as successful realisations (of this studied itinerary). The sample size for
this studied itinerary would be 39 (8 weeks, 40 weekdays, the Summer Bank Holiday is
excluded) if the first perspective is adopted, which would result in an IPS (itinerary-oriented
performance statistic) of 28% (i.e. 11/39, c.f. Table 4.2). By comparison, the sample size
would be 19 (i.e. 39 — 20, those 20 ‘predictable cancellations’ are excluded) if the second
perspective is adopted, which would result in an IPS of 58% (i.e. 11/19, c.f. Table 4.3).

So which of the above two perspectives should be adopted? Here, in the context of
passenger-oriented itinerary planning, the second perspective is preferred due to the
following two reasons. Firstly, current journey planning techniques have long been able to
deal with those predictable cancellations by updating the corresponding published timetables.
That is, as long as a cancellation can be reflected in the published timetable well before the
time of travel, the corresponding service will not be adopted (by journey planning systems)
and hence will not enter the recommended itinerary list for a given query. Therefore, the
impact of such cancellations on the pre-planning of a given journey would be trivial.
Secondly, those events that result in such (predictable) cancellations (e.g. major rail strikes in
the above-mentioned example) are quite rare in reality, and passengers would not encounter
such events in most cases during a given observation period (e.g. a period of several months).

In fact, these rare scenarios can be regarded as outliers in the sense of statistical analysis.

4.3.8 Modifying advertised arrival times

In the previous subsections (4.3.3 — 4.3.7), the core part (i.e. Steps 1 — 3) of Algorithm 3 has
been explained in detail: in the next step, Algorithm 3 can be fully implemented by adding a
user-friendly interface, as long as there are no further non-technical factors restricting the
deployment of such a travel information tool. Comparing between Algorithm 3 and
Algorithm 4 (c.f. Subsection 4.3.2), it can be found that although the first two steps
(corresponding to data pre-processing) are the same, divergences turn up from Step 3
onwards. The main objective of this subsection is hence to illustrate/clarify the technicalities

involved in Steps 3 — 5 of Algorithm 4.
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In general, Algorithm 3 can be viewed as an augmented version of those individual-leg-
oriented performance statistics (c.f. Subsection 4.2.7), which is designed to enable
uncertainty-aware journey planning. Compared with those individual-leg-oriented
performance statistics (see Figures 4.6 and 4.7 in Subsection 4.2.7), the output of Algorithm 3
(i.e. itinerary-oriented performance statistics, see Table 4.3 for an illustration) does not
require that a passenger must have sufficient experience in rail travel or must be good at
mathematics so that he/she could estimate the overall performance of a given itinerary plan
by integrating fragmented information (about each involved service leg) by themselves. In
realistic applications, however, itinerary-oriented performance statistics (generated by
Algorithm 3) may still cause inconvenience to information consumers (passengers), despite
their advantage over individual-leg-oriented performance statistics. For example, we can
learn from Table 4.3 that the probability of a successful realisation of the 13:59 itinerary (i.e.
arriving at Brighton before 16:19 (16:14 + 5)) is 58% during the 8-weeks observation period.
But this additional performance information may still be insufficient for decision making (i.e.
whether to choose this itinerary on a future date'?): how much delay would be expected in the
other 42% unrealised situations? For some of the relevant passengers, this additional statistic
provided (i.e. 58%) may increase their anxiety about being exposed to huge uncertainty,

rather than helps them make better decisions.

To ameliorate the potential uneasiness resulting from a feeling of being gambling, an
alternative approach is proposed: performance-based pre-modification of advertised arrival
times (Algorithm 4, c.f. Subsection 4.3.2). The mechanism of performance-based pre-
modification of advertised arrival times (PBPM) can be roughly described as follows: for a
given recommended itinerary, its scheduled travel time and scheduled arrival time at its
destination station are modified well before the time of travel, based on its overall

performance in the last several weeks.

The general idea of PBPM (Algorithm 4) does not come out of nowhere: it has been inspired
by the existing functionality of service-specific modification of arrival/departure times in the
domain of real-time passenger information. Figures 4.18 and 4.19 below provide an

illustration of real-time delay information about modified (advertised) arrival/departure times.

2 The reference point is 13 September 2015.
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Travel by Leaving From Platform To Arriving  Platform  Duration Additional info

&l 199:,2229 Woking [WOK] 4 Portsmouth Harbour [PMH] ~ 21:20 5 1h 58m h&’%

Calling points Arrives Departs

Farnborough (Main) [FNB! 49:3219:38 49:33 19:39
Basingstoke [BSK 40:46 19:52 49:48 19:53
Micheldever [MIC’ 40:58 20:03 49:58 20:03
Winchester [WIN. 20:67 20:11 20:68 20:12
Shawford [SHW] 2042 20:16 2042 20017
Eastleigh [ESL 2048 20:22 20:26 20227
Hedge End [HDE 20:32 20:32 20:33
Botley [BOE 20:35 20:36 20:37
Fareham [FRM 20:43 20:44 20:45
Portchester [PTC] 20:49 20:49 20:50

Figure 4.18 Live information about modified arrival/departure times Example One: NRE
website (Source: www.nationalrail.co.uk/, accessed 19:20, 22 Jan 2017)

Journey

15:25 Southampton Central
London Waterloo
22nd January Dur: 1h 53m

Set alert

! This train has been delayed by a fault with the
signalling system

Updated: 15:06

Southampton Central
15:25 15:40 Plat. 1

Southampton Airport

Parkway
15:33 15:47 Plat. 1

Winchester
15:42 15:56 Plat. 1

Basingstoke
16:00 16:13 Plat. 3

Woking
16:20 16:31 Plat. 2

2 0O m

My travel Live trains Planner

Figure 4.19 Live information about modified arrival/departure times Example Two: NRE
mobile app (Source: www.apple.com/itunes/, accessed 15:06, 22 Jan 2017)

It can be seen from Figures 4.18 and 4.19 that the mechanism of these real-time updates is to
adjust a passenger’s expectation of potential delays before or during his/her trip. Intuitively,

these real-time updates would be helpful in the sense that they enable passengers to know
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about and prepare for the oncoming delays and hence may reduce the potential risk
(consequence) of these delays. However, these real-time delay updates are often not
accessible until it is very near to the time of travel (see Figures 4.18 and 4.19 for example). In
such a context, PBPM (Algorithm 4) is proposed, which takes the idea of delay updates one
step further: the pre-trip information about potential arrival delays (at the destination station
of a given itinerary) would be accessible well in advance (several days before the time of
travel) to enable passengers to make better choices by pre-modifying the

scheduled/advertised arrival times (and hence the scheduled/advertised journey times).

Let us look back at the technicalities in Algorithm 4 (c.f. Subsection 4.3.2). Steps 1 — 2 are
for data pre-processing and are the same with those in Algorithm 3. That is, a route-view
timetable (RVT, c.f. Subsection 4.3.4) should firstly be constructed from historical train
movements data, and itinerary-specific net transfer times (NTTs) and actual windows (AWs)

should be predetermined.

Once these data pre-processing steps are completed, Step 3 is then executed to calculate the
probability of no missed transfers (i.e. all the involved transfers are successfully realised) for
each studied critical itinerary. Note that this step does not require a predefined TAL
(threshold for arrival lateness, required by Step 3 of Algorithm 3) because these calculated
probabilities are not used to present heuristic performance measures (c.f. Algorithm 3) but are

used instead to pre-modify the scheduled/advertised journey times and arrival times.

Table 4.4 An illustration of Steps 3 — 4 of Algorithm 4

Dep. serviceF seviceC successRate (%) averageLatenessC (mins)

09:55 Y41233 W8&3537 90 2.05
10:59 Y41237 W83538 95 0.75
11:59 Y41241 W83539 75 0.39
12:59 Y41245 W83540 85 0.32
13:59 Y41250 PO1078 100 4.60
14:59 Y41254 W83541 90 3.11
15:59 Y41259 W83542 85 3.83
16:59 Y41263 W83543 95 1.53
17:59 Y41268 W83544 95 3.68
18:59 Y41274 W83545 85 2.88

NOTE: Bournemouth — Southampton Central — Brighton, between 12 Oct 2015 and 6 Nov 2015 (4 weeks)
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Step 4 is to compute the average lateness at the destination station for the k™ involved leg of
each critical itinerary. Here, to ensure generality, it is assumed that there are exactly k trains
(service legs) involved in each studied itinerary. That is, this step is to take into account the
scenario in which the probability of no missed transfers (i.e. the output of Step 3) is 100% but
the final leg involved (i.e. the k™ involved leg of a given itinerary) has poor performance in

terms of punctuality at the destination station. Table 4.4 gives such an illustration.

This illustrative example is based on a 4-weeks sample (12/10/2015 — 06/11/2015) of the
route Bournemouth — Southampton Central — Brighton. Each studied itinerary is represented,
for convenience, by its scheduled departure time from Bournemouth (e.g. 09:55 represents
the itinerary with a scheduled departure time of 09:55). Each string (e.g. Y41233) under
‘serviceF’ and ‘serviceC’ is the service identifier of a particular train: those under ‘serviceF’
represent feeder trains and those under ‘serviceC’ represent connecting trains. The values
under ‘successRate’ are obtained from Step 3, each of which represents the probability of no
missed transfers for a particular itinerary. Those values under ‘averageLatenessC’ are
calculated from Step 4, each of which represents the average lateness at the destination
station (i.e. Brighton in this example) for the k™ involved (i.e. the second) leg of a particular
itinerary. For example, the value corresponding to the 13:59 itinerary (i.e. 4.60) can be
interpreted as the average lateness of the connecting leg (identified by ‘P01078”) of this
itinerary (i.e. ‘P01078’ arrived, on average, 4.6 minutes later than the scheduled arrival time
at Brighton during this 4-weeks observation period). Meanwhile, we can see from this
example (i.e. the 13:59 itinerary) that although the transfer involved performed very well (i.e.
100% successful realisation) during this period, the connecting leg (i.e. ‘P01078’) had poor

performance in terms of punctuality at Brighton.

Step 5 is the final step of Algorithm 4, which is to modify the advertised arrival time (and
also the advertised journey time) of each studied itinerary based on the historical performance
information obtained from Steps 3 — 4. Firstly, it is necessary to explain the relevant
notations/symbols in this step: jto(-) represents the average journey time without missed
transfers (during a given observation period); jti(-) represents the average journey time with
exactly one missed transfer (among the k-1 involved transfers, based on an assumption of k
legs); arrs(-) means scheduled arrival time (of a particular train); deps(-) means scheduled
departure time; arry(-) means modified arrival time; po(-) and d(+) represent the statistics

obtained from Steps 3 —4 (c.f. “successRate’ and ‘averageLatenessC’ in Table 4.4);
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HEADWAY .., means the average headway of all the involved connecting legs. Note that the
equations in Lines 49 — 51 of Algorithm 4 (c.f. Subsection 4.3.2) are actually a simplification
of the following equation (Eq. (1)):

arr,(i.)=dep (T)+ p,- jto+p,- jt, +py-jt, ++ D jt Eq. (1)
That is, the modified journey time (i.e. Xp;-jt;) should be the summation of all scenarios of
missed transfers. In reality, however, the number of involved transfers along a critical route is
often not that large (c.f. the list of critical routes identified in British railways in Section 3.7),
and those items behind pi-jt; can often be neglected. Therefore, the equations in Lines 49 —

51 in Algorithm 4 can be used as an approximation to Equation (1) when the number of

involved transfers is small.

In order to help better understand the mechanism of those computations in Step 5, an
explanation of the underlying data structure is presented below, followed by several

numerical examples using realistic data.

Firstly, it is necessary to differentiate between three interrelated concepts: itinerary template,
itinerary, and reconstructed itinerary. Figure 4.20 below provides an illustration of their
relationships. The two rows I1 and 12 in Figure 4.20(a) are templates for the two itineraries il
and i2 in Figure 4.20(b). The origin, transfer, and destination stations and the scheduled stop
times at the corresponding stations (i.e. t1 ~ t8, in which t1 <t5, t2 <t6, t3 <t7, t4 <t8 and tl
<12 <t3 <t4,t5 <t6 <t7 <t8) are the same, but there is one major difference between the
two: il and i2 are expected to happen on a specific day (e.g. 30/08/16), whereas 11 and 12 are
not constrained by a specific date and can be thought of as an abstraction of a collection of
repeated itineraries during a considerably long period (e.g. several months or even several
years). The symbols f1, cl, 2, c2 respectively represent a specific feeder/connecting train,
while F1, C1, F2, C2 respectively represent a specific collection of feeder/connecting trains
that follow the same daily schedule during a given period of time. Note that I1 and 12 are
‘adjacent’ (and so do il and i2 and i1 and i2’), which means the interval between t4 and t8 is
exactly the headway of C. Here, the set F (and the set C) can be thought of as a higher level
of abstraction that contains F1 and F2 (C1 and C2). Take Table 4.4 as an example: F = the
Weymouth to London Waterloo line, C = the Southampton Central to Brighton line
(‘P0O1078’ is an exception, which belongs to the Great Malvern to Brighton line); if F1 =
‘Y41233’, then C1 = ‘“W83537°, F2 = “Y41237°, C2 = “W83538".
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Figure 4.20 An illustration of the relationship between (a) itinerary template, (b) itinerary,
and (c¢) reconstructed itinerary

Figure 4.20(b) and Figure 4.20(c) also have similarities and differences. The origin, transfer,
and destination stations are the same; and the corresponding feeder and connecting trains
satisfy the following relationships: f1 and f1° belong to F1, ¢l and c1’ belong to C1, {2 and
2’ belong to F2, and c2 and c¢2’ belong to C2. The major difference is that Figure 4.20(b) is a
piece of pre-trip information about unrealised journeys, but i1’ and i2” in Figure 4.20(c) are
reconstructed itineraries that are obtained from splicing the recorded/actual stop times of the
corresponding feeder and connecting trains (i.e. f1” +c1’, 2’ + ¢2”) long after their run date.
That is, the run date of the involved trains in Figure 4.20(c) can be thought of as some date
before the run date of the involved trains in Figure 4.20(b). Here, the term ‘reconstructed’ is
used to emphasise that the recorded/actual stop times (i.e. t1’, t2°, ... , t8’) are not necessarily

equal to their counterpart in a planned daily timetable (i.e. t1, t2, ..., t8), and that some of the

128



constraints placed on il and i2 (e.g. t2 <t3, t6 <t7) do not necessarily hold and the values of
t1’,t2°, ..., t8” in i1’ and i2’ are possible to be invalid (due to train cancellations, c.f.

Subsection 4.3.6).

Based on the above Figure 4.20 and Table 4.4, the following equation (i.e. Eq. (2)) can be
applied to calculate the modified arrival time (arrm) for a given itinerary (here, il in Figure
4.20(b) is used for illustration):

arr, (11),arr, (11) 2 arr,(il)
arr,(il),arr, (I11) < arr,(il)

arrm(il) = {
where:
arr,(il) = arr,(I1) =t4

arr, (1) =11+ jt, (11)

Jt, (D)= py(1D)- jt, (I + (1= p,(ID)- jt,(11)

Jt,(I) =t4—-11+6(C1)

JtU)=18—-114+6(C2)

O(Cl)y=E@4'-t4)=E(4')—-t4

0(C2)=E(8-t8)=E(t8')—1t8 Eq. 2)

Most of the symbols in Eq. (2) have been explained earlier in this subsection. Some possibly
confusing symbols are those involving ‘11’ (e.g. arrm(I1), jtm(I1), etc). The purpose of
introducing these template-specific symbols is to explain that the algorithm does not
differentiate between different weekdays. Here, I1 can be imagined as an abstraction that
applies to each weekday during a studied week, and il can be imagined as a projection of I1
onto a specific day during the week (i.e. Wednesday). po(I1) is the success rate of a realised
transfer for I1 during the last several weeks (the reference point is the studied week) and it
applies to every ‘copy’ of I1 (e.g. i1) on every weekday during the studied week. jtm(I1) is the
modified journey time for I1 during the studied week. The calculation of jtm(I1) takes into
account not only the risk of a missed transfer but also the average delay(s) at the destination
station (i.e. 6(C1) and 5(C2)). The reason why it is necessary to take into account the average
delay(s) at the destination station can be found later in the numerical examples. Note that the
calculation of jtm(I1) only considers at most one missed transfer and has ignored those
scenarios under more than one missed transfer (c.f. Eq. (2)). This simplification, however, is
unproblematic in the context of British railways because more-than-one-missed-transfer
scenarios are very rare (have not been found in the analysis of the current National Rail

timetable, c.f. Section 3.7) and can be ignored without loss of precision.
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Due to the consideration of 6(C1) and 5(C2), the obtained arrm(I1) is likely to be smaller than
the schedule arrival time arrs(il). Under this scenario, the modified arrival time arrm(il) is no
longer arrm(I1) but is set equal to arrs(il) (i.e. no modification under this scenario). This
treatment is based mainly on the following two considerations. On the one hand, the ultimate
goal of pre-modifying advertised arrival times is to reduce the impact of arrival delays.
However, if arr(il) is allowed to be smaller than arrs(il), the pre-modification made would
increase (rather than reduce) the risk (impact) of arrival delays: an early arrival on average
(during a given observation period) may result from the biases from within the adopted
sample (e.g. insufficient sample size, seasonal factors, etc). On the other hand, even if the
sample adopted is representative (i.e. early arrivals are typical for a studied itinerary during a
considerably long period of time), arrm(il) should still not be set smaller than arrs(il). A
slightly earlier arrival (on average) than scheduled may result from the operator’s timetabling
strategy: running time supplements and/or buffer times may have been incorporated into the
published timetables of some routes to offset the impact of potential delays in the tactical

planning phase (c.f. Section 2.5 and several real-world examples in the next chapter).

To better understand how Eq. (2) works, three specific calculation examples in Figure 4.21
below are presented. Examples <a> and <b> are based on the real-world data about the route
Bournemouth — Southampton Central — Brighton, while Example <c> is based on the real-
world data about the route Ilkley — Leeds — Middlesbrough (Note: this route does not belong
to the list of identified critical routes in Subsection 3.7.4, but was found to be critical in

previous screenings).

runDate | serviceF | serviceC |dep_s_FO| arr_s_CD | late_C | suc_rate | suc_time | fail_rate fail_time | jt_m |arr_m
09/11/15 | Y41259 W83542 959 1098 3.83 0.85 142.83 0.15 201.53 152 1112

09/11/15| Y41263 | W83543 1019 1159 1.53 0.95 141.53 0.05 202.68 145
<a>

runDate | serviceF | serviceC |dep_s_FO| arr_s_CD | late_C | suc_rate | suc_time | fail_rate | fail_time | jt_m |arr_m

09/11/15 | Y41250 P01078 839 974 4.60 1 139.60 0 202.11 140 979
<h>

runDate | serviceF | serviceC |dep_s_FO| arr_s_CD | late_C | suc_rate | suc_time | fail_rate fail_time | jt_m |arr_m
11/07/16 | Y15134 | Y70644 730 852 -1.55 1 120.45 0 180.78 120 | 852
<c>

Figure 4.21 Calculation examples of arry, using real-world data
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Compared with Table 4.1 (i.e. the example for Route-View Timetable), only the most
relevant columns are extracted to reduce distraction (i.e. the first five columns in the above
calculation examples). Columns 6 — 11 (i.e. from ‘late_C’ to ‘jt m’) are auxiliary columns
introduced to calculate the last column (arr_m). Here, the first three columns (‘runDate’,
‘serviceF”’, ‘serviceC’) are used to uniquely identify a specific itinerary. The two rows
(excluding the header row) in Example <a> can be thought of as the two itineraries il and i2
in Figure 4.20(b), in which t1 =959, t4 = 1098, t5 = 1019, t8 = 1159. The values under
Columns 6 — 11 correspond to the symbols in the above Equation (2): 6(C1) = 3.83, 5(C2) =
1.53, po(I1) = 0.85. The other intermediate results can be directly derived from these values.
And the obtained result arr m(il) = arr m(I1) = 1111 (since 1111 > 1098(arr_s(il)), arr_m(il)
=arr m(I1)=1111, c.f. Equ. (2)).

Example <b> contains only one row (and so does Example <c>). This is because arr m(il)
can be calculated without a second row under this scenario (i.e. po(I1) = 1). The reason why
this scenario has been separated from the typical scenario in Example <a> is that it can be
used to illustrate the necessity of taking into account the average delay (of the connecting
train) at the destination station (i.e. 5(C1) and 6(C2) in Equation (2)). As shown in the
example, although the transfer can always be successfully realised during the observation
period, a punctual arrival at the destination station can still not be expected because the
connecting train arrives on average 4.6 mins (rounded up to 5 mins) later than scheduled at
the destination station during the observation period. This kind of arrival lateness is also non-
negligible (apart from those caused by missed transfers) and ignoring it would affect a correct

evaluation of the performance of a studied itinerary.

Example <c> shows how to determine arr_m(il) in the scenario in which arr m(I1) <
arr_s(il). Due to the fact that po(I1) = 1 and 8(C1) = -1.55 (c.f. Example <c> in Figure 4.21),
the modified journey time jt m(I1) = 120.45 = 120 mins and hence the obtained arr m(I1) =
tl +jt m(I1) =730 + 120 = 850, which is less than the scheduled arrival time (arr_s(il)) of
852. Under this scenario, arr_m(il) should be set equal to arr_s(il) (i.e. 852) according to

Equation (2).
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4.4 Integrating historical performance information into journey planning
systems

4.4.1 Presenting independently from journey planning systems

The previous section (i.e. Section 4.3) presents the technical details about the core part of two
alternative algorithms that utilise historical train movements data to enhance the pre-trip
information about critical routes. Those technicalities are, however, limited to the back end,
which is mainly focused on extracting useful information from massive poorly-organised raw
data. This subsection and the subsequent subsections are mainly concerned with the front end:
how to effectively and efficiently disseminate this additional information about historical
performance using existing techniques? Note that since the front end development often
requires relatively large capital investments, this section is mainly aimed at presenting the

considerations at the technical level, with the aid of an illustrative prototype.

So how to present the additional historical information obtained about the recommended
itineraries of a given critical route? A relatively straightforward idea is to refer to the existing
‘models’ in realistic applications. In the context of Britain’s passenger rail system, the most
relevant ‘models’ are perhaps those travel information websites (some of them also have an

mobile version) such as Fasteroute Delay Explorer (delayexplorer.fasteroute.com/#/), and My

Train Journey (www.mytrainjourney.co.uk/ ), which are characterised by operating

independently from the official information source (i.e. National Rail Enquiries

(www.nationalrail.co.uk/ ) in the context of British railways).

In the context of Algorithms 3 and 4 described in the previous section, this (i.e. mimicking
the existing models) means that those itinerary-oriented performance statistics obtained by
executing Algorithm 3 (c.f. Table 4.3 for an example) or pre-modified arrival and journey
times by executing Algorithm 4 (c.f. Subsection 4.3.8) could be independently published on a
self-developed website or mobile application, without interacting with an official journey
planning system (e.g. National Rail Enquiries). Although this model (i.e. independently
disseminating additional information) could be chosen as the reference point, it suffers from

the following three limitations:
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- It has quite limited coverage: compared with those long-established travel information
sources (e.g. NRE), much less attention would be paid to such newly developed and
independently operated travel information sources. That is, most passengers would
not utilise (and benefit from) such independent information sources, for it is difficult
to make them aware of the existence of such websites (mobile applications).

- Even if passengers are aware of such new information sources, they would still have
to integrate different pieces of travel information (from different sources) by
themselves. This would cause inconvenience to passengers and push them away from
these independent information sources.

- Last but not least, even if the above two potential limitations are set aside, only
disseminating (rather than integrating into journey planning algorithms) this
additional performance information extracted from historical data could not provide
further information about alternative itineraries (journey plans) in the scenario in

which poor performance is identified.

The subsequent subsections are to present an alternative approach to disseminating the
additional information generated from Algorithm 4 (Note: also applicable to Algorithm 3, but
Algorithm 4 is preferred and adopted here, c.f. Subsection 4.3.8 for explanation), with the aid

of an illustrative prototype.

4.4.2 Descriptive information (DI) vs. prescriptive information (PI)

A key reason why the benefit is limited of disseminating additional performance information
independently from journey planning systems is that these pieces of performance information
are largely descriptive rather than prescriptive. According to Ben-Elia et al. (2013), compared
with descriptive information (e.g. the average estimated travel times for each route in the
context of Ben-Elia et al. (2013)) and post-choice experiential information, prescriptive
information about the suggested route has the largest impact on route choice. In the context of
presenting the results obtained from Algorithm 4 (and Algorithm 3), this implies that it might
be more helpful to provide passengers with additional information about alternative

itineraries (to those (already) recommended critical itineraries) than to provide only

descriptive information about modified arrival/journey times (or performance statistics).
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To help better understand the subtleties of passenger information, Figures 4.22 — 4.25 below
provide an illustrative example of the difference between descriptive information and

prescriptive information in the context of Algorithm 4 (PBPM, Performance-Based Pre-

Modification of advertised arrival times).

Journey Planning
Simvulator vI.0

A A A starting point of

Hour\jourweg
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Plan a journey
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e Departure  Arrival
Date: |15/06/2016 Time: 15:00

¢ Standard =+ PBPM  PBPM+

© 2016-2017, Journey Planning Simulator v1.0

Figure 4.22 A user interface that enables the choice between different underlying algorithms

Figure 4.22 above presents the user interface of the illustrative prototype. It can be seen from
the figure that there is no significant difference between this interface and the user interface
of those existing journey planning systems (c.f. Sections 4.2 and 4.3). This is not surprising
because the input is the same of existing journey planning systems (i.e. a pair of origin and
destination stations and the planned departure/arrival date and time), and this prototype is
largely an extension/augmentation of existing journey planning algorithms (i.e. it is also built
upon existing journey planning algorithms). However, two small distinctions are noteworthy:
firstly, an additional functionality is provided to facilitate the transition and comparison
between three different modes corresponding to different underlying algorithms (i.e. standard,
PBPM, and PBPM+ : further explanation is to be presented later in this subsection). Secondly,
it should be noted that although the current date in the figure (i.e. 10 June 2016) is several
days away from the planned departure date (i.e. 15 June 2016), the two proposed algorithms
PBPM and PBPM+ (to be detailed later in the next subsection) are able to pre-modify the
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advertised arrival/journey times based on historical performance information, which

illustrates their advantage over the existing algorithmic approaches.
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Figure 4.23 DI vs. PI Example One: standard journey planning

Figure 4.23 above displays the result page that corresponds to the ‘standard’ mode. Here, the
term ‘standard’ is used to emphasise that the recommended itineraries are calculated purely
from the underlying (planned) timetables and historical performance information is not
involved. That is, any existing journey planning system would generate the same list of
recommended itineraries, as long as the underlying timetables adopted and the relevant
parameters chosen (e.g. MTTs, earliest-arrival, etc. c.f. Section 3.4) are the same. Note that
the recommended itinerary list in Figure 4.23 is different from the version of National Rail
Enquiries (in which additional itineraries transferring at Clapham Junction are also
recommended. c.f. Figure 3.7). This difference is due to the difference in the post-processing
of the result set (i.e. the recommended itinerary list). An additional filtration rule is added
here in the journey planning simulator: in the scenario in which two itineraries I1 and 12 in
the result set are non-comparable in the sense of Pareto optimality (c.f. Subsection 2.3.7), if
the scheduled travel time of I1 is at least 30 minutes longer than that of 12, then I1 is filtered
out. Therefore, those itineraries transferring at Clapham Junction are excluded from the

recommended list in Figure 4.23.
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From the perspective of information classifications, the recommended itinerary list in Figure
4.23 can be seen as having both the characteristics of descriptive information (DI) and the
characteristics of prescriptive information (PI): if a passenger has a relatively flexible
schedule (in terms of departure and arrival times), then this piece of information (i.e. the
recommended list) would be largely descriptive and he/she would make a choice between the
alternative itineraries based on his/her own preferences; conversely, if a passenger has a
relatively fixed schedule, then this piece of information would be largely prescriptive because
he/she would have no alternative choices. For example, if a passenger has the following
flexible schedule: departing no earlier than 14:30 and arriving no later than 18:40, then the
recommended itinerary list in Figure 4.20 can be categorised into descriptive information
(DD): the passenger can choose between the first itinerary (departing at 14:59) and the second
itinerary (departing at 15:59). That is, this piece of information itself could not tell this
passenger which itinerary is the best option under this scenario of a flexible schedule. In
contrast, if another passenger has the following tighter schedule: departing no earlier than
14:30 and arriving no later than 17:30, then this recommended itinerary list can be
categorised into prescriptive information (PI): the passenger would have no alternative choice
but the first recommended itinerary (departing at 14:59). That is, this piece of information

itself can tell this passenger which itinerary is the best option under such a scenario.
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Figure 4.24 DI vs. PI Example Two: additional descriptive information
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Figure 4.24 corresponds to the ‘PBPM’ mode in Figure 4.22. ‘PBPM"’ is short for
‘Performance-Based Pre-Modification of advertised arrival times’, representing the
algorithmic approach described in Algorithm 4 (c.f. Subsection 4.3.2). Comparing Figure
4.24 with Figure 4.23, we can find that the two columns under ‘Arr.” and ‘Dur.” are modified:
the advertised arrival times of the three recommended itineraries are postponed and the
corresponding (advertised) journey times are prolonged, the modifications of which are based
on the performance evaluation of the corresponding train services in the previous observation
period (c.f. Subsections 4.3.2 and 4.3.8). That is, PBPM (Algorithm 4) exploits both
timetable information and historical performance information to enhance the recommended

itinerary list obtained from timetable information only (c.f. Figure 4.23).

With respect to information type, the recommended itinerary list in Figure 4.24 inherits from
that in Figure 4.23 the characteristics of both DI and PI, and provides those passengers
having a relatively tight schedule with additional descriptive information. For example, if a
passenger has the following schedule: departing no earlier than 14:30 and arriving no later
than 17:20, then this piece of modified information (Figure 4.24) could tell him/her that if
he/she chooses the first recommended itinerary, he/she will arrive 10 minutes late on average.
By comparison, the timetable information in Figure 4.23 (i.e. the scheduled arrival time of the
first recommended itinerary is 17:18) could not make him/her aware of this potential lateness.
However, although these pre-modified (recommended) itineraries could make those time-
sensitive passengers aware of the potential problems (i.e. delays), they could not provide
solutions and hence can be categorised into descriptive information. It is conceivable that the
passenger in the above example (in this paragraph) would have no choice but to reschedule
the relevant activities (at the origin and/or the destination) or even shift to other modes of
transport, which may not be the best result that could have been achieved: on the one hand,
although the passenger may benefit from this additional information about potential delays,
he/she would still have to take extra time and effort to manually search for alternative plans
by himself/herself; on the other hand, although the rail industry may also benefit from this
additional information by earning a good reputation for reliable information, certain of its
available train services (i.e. capacity) would still be wasted due to the limitations of existing
journey planning techniques: a considerable number of available train services between two
stations would be filtered out by the underlying algorithms and hence could not be utilised to

construct alternative itineraries as necessary (c.f. Section 3.4).
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Figure 4.25 DI vs. PI Example Three: additional prescriptive information

A potential solution to the lack of alternative itineraries when necessary is PBPM+ (see
Figure 4.25 in the above). PBPM+ can be viewed as an augmented version of PBPM: it not
only generates additional descriptive information about potential delays of those
(recommended) critical itineraries, but also generates additional prescriptive information
about alternative itineraries (to those critical itineraries). That is, PBPM+ tends to be able to
cover the most scenarios among the three modes in Figure 4.22 (i.e. standard, PBPM, and
PBPM+). Continue the example of the passenger in the previous paragraph (i.e. departing no
earlier than 14:30 and arriving no later than 17:20): he/she could adopt an alternative itinerary
(to the one departing at 14:59 in Figure 4.24) by departing a little earlier at 14:45 and arriving
at 17:18 (i.e. the first itinerary in the recommended list in Figure 4.25). Further details about

PBPM+ at the algorithmic level can be found later in the next subsection.

4.4.3 Additional prescriptive information: algorithmic-level considerations

The previous subsection has provided a series of illustrative examples of what an augmented
journey planning system would/should be able to do by combining timetable information
with historical performance information. Specifically, two proposed algorithmic approaches
have been mentioned: PBPM (Performance-Based Pre-Modification of advertised arrival

times) and PBPM+. The pseudo code of PBPM has been presented in Subsection 4.3.2, the
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mechanism of which has been extensively explained in the previous section (i.e. Section 4.3).
But the algorithmic-level mechanism of PBPM+ has not been explained. This subsection is to
present the algorithmic-level considerations about how to achieve the desired effect in Figure

4.25 in the previous subsection.

Firstly, an explanation of the difference between PBPM and PBPM+ is necessary. By
comparing Figure 4.24 with Figure 4.25 (in the previous subsection), we can see that the
effect of PBPM+ (c.f. Figure 4.25) is to add into the recommended list (obtained from
executing PBPM, c.f. Figure 4.24) additional itineraries. The reason for this difference at the
technical level is that PBPM is aimed only at refining each critical itinerary in the
recommended list by a journey planning system, whereas PBPM+ is aimed at reconstructing
the recommended list itself. More specifically, PBPM can be viewed as a data mining module
functioning independently of a specific journey planning algorithm, but PBPM+ is a
combination of PBPM and existing journey planning algorithms. Algorithm 5 below presents

the pseudo code for PBPM+.

Algorithm 5: PBPM+

Input: timetable data about a given railway network and historical train movements data
about a given critical route
Output: a recommended itinerary list (for the origin-destination pair of the given critical
route) in which critical itineraries are refined and alternative itineraries are added

—

//Step 1: generate a list of refined critical itineraries

run a specific journey planning algorithm (e.g. TDD, TED, RAPTOR, CSA, etc) on
the timetable data to generate a recommended itinerary list RIL1 for the critical route
run PBPM on RILi1 to obtain a refined itinerary list RIL2

\®)

//Step 2: generate a list of alternative itineraries (to those critical itineraries)

increase the MTT for the transfer station(s) by 6 (> 1) minutes to obtain a modified
MTTm (=MTT +9)

7 rerun the adopted journey planning algorithm on the timetable data adopting MT T, to
generate a recommended itinerary list RIL3 for the origin-destination pair of the
critical route

[ )RV, N SN OS]

9 //Step 3: merge the two lists and refine the resulting list for recommendation

10 combine RIL2 with RIL3 to obtain RIL4

11 refine RIL4 by filtering out those dominated itineraries in the sense of Pareto
optimality

12 return RIL4

13 terminate
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PBPM+ is generally composed of three major steps. All the notations in bold are two-
dimensional tables, and uppercase letters are abbreviations representing either the name of a

particular algorithm (e.g. CSA, PBPM, etc) or a constant parameter (e.g. MTT).

PBPM-+ consumes both timetable data and historical train movements data of a particular
critical route, and yields a recommended itinerary list containing both refined critical
itineraries and alternative itineraries to those critical itineraries (see Figure 4.25 in the

previous subsection for an illustration).

PBPM+ is created and proposed as an augmented version of PBPM, providing additional pre-
trip information about similarly attractive alternatives to those modified critical itineraries (by

applying PBPM) as long as such alternatives exist for a given critical route.

The major task of Step 1 is to generate/compute a list of refined critical itineraries. This step
can be decomposed into two sub-steps. Firstly, the recommended list of critical itineraries
(denoted by RIL) needs to be generated by applying a chosen journey planning algorithm
(e.g. TDD, TED, RAPTOR, CSA, etc)'3 onto the timetable data. This sub-step can be thought
of as the functionality of the ‘standard” mode in Figure 4.22 in the previous subsection.
Secondly, once RIL; is obtained, PBPM (Algorithm 4 in Subsection 4.3.2) can then be
applied to refine the critical itineraries in RIL; exploiting historical train movements data, the
output of which is denoted by RIL,. This sub-step can be thought of as the functionality of
the ‘PBPM’ mode in Figure 4.22.

Step 2 is mainly aimed at generating/computing a recommended list of alternative itineraries
to those recommended critical itineraries. This goal can be achieved by increasing the MTT
(minimum transfer time, c.f. Chapter 3) for the station(s)'* where critical transfers happen,
and then (re)running the adopted journey planning algorithm on the timetable data (adopting
the modified MTT) to obtain a recommended list of alternative itineraries (denoted by RIL3).

Recall that in the introduction to the existing journey planning algorithms (c.f. Sections 3.4

13 TDD = Time-Dependent Dijkstra, TED = Time-Expanded Dijkstra, RAPTOR = Round-bAsed Public Transit
Optimized Router, CSA = Connection Scan Algorithm. Details about these journey planning algorithms can be
found in the previous chapters such as Section 2.3 and Section 3.6.

14 A critical route may consist of more than one critical transfer, but in the context of this thesis, all the
identified critical routes in Britain’s passenger rail system involve exactly one critical transfer.
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and 3.5), MTTs play an important part in computing a recommended itinerary (for a given
query): an MTT is often assigned to each railway station to allow the changeover between
different train services. However, due to the impact of delays and disruptions on daily
operations, a station-specific MTT tends to be insufficient in the scenario where critical
transfers are involved (c.f. Section 3.5). A critical transfer is often associated with a small
scheduled window (between the pair of feeder and connecting trains) that barely exceeds the
corresponding MTT. For example, the scheduled window for the route London Kings Cross —
York — Scarborough is 8 minutes, which is equal to the station-specific MTT for York. And
the scheduled window for the route Bournemouth — Southampton Central — Brighton is 4
minutes, which is even less than the station-specific MTT for Southampton Central (i.e. 5
minutes). Note that the route Bournemouth — Southampton Central — Brighton is a special
case in which the station-specific MTT (i.e. 5 minutes for Southampton Central) is overlaid
with an operator-specific MTT (i.e. 4 minutes between South West Trains and Southern

services).

Therefore, by slightly increasing the MTT for the transfer station (and also the operator-
specific MTT as necessary) and rerunning the journey planning algorithm, a recommended
list (denoted by RIL3) of alternative itineraries could then be generated (Lines 6 — 7 in
Algorithm 5). Here, the obtained alternative itineraries would be the best (apart from those
critical itineraries) in the sense of Pareto optimality (in terms of earliest-arrival, number of
transfers, journey time, etc). Note that dependent upon the specific parameters adopted (for
defining Pareto optimality), the alternative itineraries generated may vary slightly. Continue
the example of the route Bournemouth — Southampton Central — Brighton. Both those
itineraries transferring at Clapham Junction and those itineraries transferring at Southampton
Central and departing (from Bournemouth) at XX:45 (i.e. hourly services at the same time
point) would enter the recommended list, if the following rule is added to the definition of
Pareto optimality: in the scenario in which two itineraries I1 and 12 in the result set are non-
comparable in the sense of Pareto optimality, if the scheduled travel time of 11 is at least 30

minutes longer than that of 12, then filter out I1; otherwise, keep both.

Step 3 is to merge the list of refined critical itineraries (obtained from Step 1) and the list of
alternative itineraries (obtained from Step 2) and to refine the combined list. In this step, the
operation of merging/combination itself is trivial, involving only some additional sorting of

itineraries by scheduled departure time (which is also trivial). Here, the trick lies mainly in
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the filtration process, which involves a delicate balance between availability of options and
conciseness of the result set. Continue the example in the above paragraph. If the same rule is
applied to the newly constructed list (i.e. the combined list denoted by RIL4), the obtained
result set would become a little ‘crowded’: each critical itinerary would be associated with
two alternative itineraries (i.e. one transferring at Clapham Junction, and the other
transferring at Southampton Central). Since those (alternative) itineraries transferring at
Clapham Junction have a scheduled travel time of around 2 hours and 55 minutes (c.f. Figure
3.7 in Section 3.4), it might be better to filter out these less efficient and more expensive
options to deliver a more concise result set containing only those refined critical itineraries

and those XX:45 itineraries (c.f. Figure 4.25 in the previous subsection).

Once the combined list in Step 3 (i.e. RIL4) has been refined, it can then be disseminated for
passenger information. Before finishing the explanation of PBPM+ (i.e. Algorithm 5), the

following two points should also be noted.

Firstly, like PBPM (c.f. Algorithm 4 in Subsection 4.3.2), PBPM+ seems computationally
intensive but actually is lightweight and would not introduce much extra complexity. The
reason for this lies in the following two aspects. On the one hand, either PBPM or PBPM+
can be viewed as a ‘local treatment’ for critical routes only. Recall that the design philosophy
of the algorithmic approaches proposed has been described as ‘less is more’: no intervention
unless intervention is really necessary (c.f. Subsection 4.3.1). Since only the small set of
critical routes (rather than the huge set of all possible routes within a railway network, c.f.
Section 3.7) needs to be tackled, the extra computations induced would be trivial. On the
other hand, both PBPM and PBPM+ are not truly dynamic: unlike those algorithms designed
to be ‘always on-line’ (i.e. constantly update the results; e.g. Miiller-Hannemann and Schnee
(2009) and Delling et al. (2014a)), PBPM and PBPM+ are designed to be ‘sometimes on-
line’ (i.e. update the results on a daily/weekly basis), which significantly reduces the

consumption of computing resources.

Secondly, like the limitations of presenting performance-based information independently
from journey planning systems (as described previously in Subsection 4.4.1), to what extent
PBPM+ would take effect depends on whether it could be adopted and integrated into the
official source(s) for rail passenger information. In the context of Britain’s passenger rail

system, such an official source is National Rail Enquiries (www.nationalrail.co.uk ) operated
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by Rail Delivery Group'>. That is, its coverage would be very limited if implemented as an
independent travel information website or application. In order to reach a wide audience, it
(i.e. PBPM+) need/should be incorporated into some official information source (e.g.

National Rail Enquiries).

4.5 Potential limitation

The specific technicalities with illustrations presented in this chapter have shown us how to
make full use of those train movements data (available from Britain’s rail industry) to
generate new information and help enhance the pre-planning of those transfer-involved rail
journeys. Despite their considerable potential for practical uses, those publicly accessible rail
data about historical train movements should be utilised with caution in scenarios requiring
high precision (e.g. microscopic operations analyses). The currently adopted industry
standard for data reporting (about train movements) is relatively low, with a precision
tolerance of 1 minute (ORDW, 2016b; Network Rail, 2017). Although this level of precision
is sufficient in many cases (e.g. real-time delay alerts), it may result in non-negligible errors

in more detailed analyses/evaluations requiring high precision.

Figure 4.26 below provides a more concrete context to facilitate the explanation of the
relevant issues. This context is a piece of historical data about a recommended itinerary that
follows the route Bournemouth — Southampton Central — Brighton, which is extracted from
the corresponding Route-View Timetable (c.f. Subsection 4.3.4). The two columns ‘serviceF’
and ‘serviceC’ respectively correspond to the service identifiers of the two involved trains for
this recommended itinerary, and this pair of train services has happened on 23 Nov 2015 (c.f.
the column ‘runDate’). The three columns ‘stationO’, ‘stationT’, and ‘stationD’ store the
names of the origin station (i.e. BOMO in this example), the transfer station (i.e. SOTON),
and the destination station (i.e. BRGHTN), respectively. The three columns ‘arr s FT’,
‘dep s CT’, and ‘arr_s CD’ store the values of the scheduled arrival time of the feeder train
at the transfer station, the scheduled departure time of the connecting train at the transfer
station, and the scheduled arrival time of the connecting train at the destination station,

respectively. The three columns ‘arr a FT’, ‘dep_a CT’, and ‘arr_a_CD’ correspond to the

15 http://www.raildeliverygroup.com/about-us/governance.html, accessed 25 Jan 2017.

143



recorded (actual) arrival time of the feeder train at the transfer station, the recorded departure

time of the connecting train at the transfer station, and the recorded arrival time of the

connecting train at the destination station, respectively. Note that those arrival/departure

times in the figure have been converted into integers between 0 and 1440 minutes (e.g. 626 =

10:26 a.m.). The four columns ‘display FO’, ‘display FT’, ‘display CT’, and ‘display CD’

contain information about the status of a given train at a given station, indicating whether

(unplanned) cancellations have happened en route (c.f. Subsection 4.3.4 for more details).
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Figure 4.26 An illustrative example of precision-related issues

From Figure 4.26 we can see that there were no cancellations happening en route (i.e. no

status information about ‘CANCELLED CALL’, c.f. Subsection 4.3.4). Hence, if a net

transfer time (NTT) of 1 minute (c.f. Subsection 4.3.5) and a threshold (for arrival lateness,

TAL) of 5 minutes are adopted to calculate those itinerary-oriented performance statistics

(IPS, c.f. Section 4.3), then the only remaining parameter to determine is the actual window

(AW, c.f. Section 4.3) between the feeder train and the connecting train. Since the actual

window of this recommended itinerary can be easily calculated (AW = 635 — 635 = 0 minute),

this data record will be counted as a failure in calculating a specific IPS.

This level of precision (i.e. integer minutes) can be regarded as acceptable in the context of

this thesis because IPS (Itinerary-oriented Performance Measure, c.f. Section 4.3) can be

viewed as an extension of PPM (Public Performance Measure, c.f. Network Rail, 2017),

which is in essence a heuristic performance measure and represents a rough estimation of an

average passenger (c.f. Sections 2.5, 4.3, and 5.2). That is, it would be meaningless to pursue

a higher precision of the parameter NTT (e.g. integer seconds) unless the precision of the

sample data adopted about historical train movements themselves has been improved.

Consider this particular example of Figure 4.26: it makes no difference whether adopting an

NTT (net transfer time) of 56 seconds (c.f. Subsection 4.3.5) or adopting an NTT of 1 minute,

because the obtained statistics would be the same unless the precision of the other involved

parameter AW (actual window) had been increased (to integer seconds). But suppose that we

could get a good estimation of the parameter NTT with a precision of one second (by, for
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example, long-term field survey) and that the precision of those train movements data had
been improved accordingly, then a non-negligible difference would be expected between the
statistics calculated under a precision of one minute and their counterparts calculated under a
precision of one second. Continue the example of Figure 4.26: this record is counted as a
failure (without doubt) under a granularity of one minute, but may be counted as a success
under a granularity of one second (e.g. ‘arr a FT’ =10:34:31, ‘dep_a CT’=10:35:29, AW

=58 s > NTT = 56 s), which may contribute in the opposite direction to the relevant statistics.

4.6 Conclusions

The pre-trip information about critical routes (if existent) within a railway network would be
a potential problem in terms of punctuality and reliability: the recommended itinerary list for
a critical route would be full of delay-sensitive transfers, due to the mechanism of existing
journey planning algorithms. Theoretically, this problem had better be resolved in the process
of timetable design at the tactical planning stage, for the problem could, in essence, be
attributed to the underlying timetables (adopted by a journey planning system). In reality,
however, timetabling is a complicated process that takes time and is subject to technical
feasibility (e.g. the constraint of infrastructure capacity available) and the mediation of the

interests of different parties.

A more operable and easier-to-implement approach to improving the pre-trip information (i.e.
those recommended itineraries) about critical routes is finding solutions from within the
domain of information technology itself to deal with critical routes at the operational
planning stage. By reviewing the relevant prototypes in the literature and the relevant
applications in the real world, it is recognised that the existing information-related
approaches have not truly touched upon the problem of critical routes, either in theory or in
practice. But these existing approaches can be utilised as building blocks to develop a

solution to the problem of critical routes.
Inspired by some existing travel information technologies, a historical-data-based approach is
developed, containing a series of easy-to-implement algorithms. The design philosophy

behind the algorithmic approach presented in this chapter is a ‘local treatment’ of those
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identified critical routes (rather than a ‘holistic treatment’ of all possible routes within a
railway network), which differs from the various existing approaches. This different
treatment could significantly reduce computational complexity and meanwhile avoids

distracting information about those non-critical routes.

Three interrelated algorithms are presented and detailed in this chapter, which are named IPS,
PBPM, and PBPM+, respectively. IPS (Itinerary-oriented Performance Statistics) has been
inspired by those individual-leg-oriented performance statistics accessible from some existing
travel information websites. Roughly speaking, IPS can be viewed as an augmented version
of those individual-leg-oriented performance statistics: it is designed to compute and present
performance statistics that are oriented toward a whole journey (itinerary) rather than toward
individual service legs, which would be able to set the information consumers (i.e. rail
passengers) free from reprocessing the fragmented information (about individual legs) by

themselves.

Despite their advantage over individual-leg-oriented performance statistics, itinerary-oriented
performance statistics may still make information consumers feel like they are gambling and
hence cause unnecessary inconvenience/uneasiness to them. Based on such a consideration,
PBPM (Performance-Based Pre-Modification of advertised arrival times) is developed.
PBPM has been inspired by the relevant technologies in real-time delay information: it
deserts the use of performance statistics as the ‘final products’; instead, it consumes
performance statistics as intermediate results to compute the final results (i.e. pre-modified
arrival times and journey times) well before the time of travel. Roughly speaking, a pre-
modified (advertised) arrival time of a given critical itinerary reflects the ‘average lateness’
of this itinerary over the last several weeks, incorporating both the risk of missed transfers

(reliability) and the average delay at the destination station (punctuality).

Although the final results of PBPM can be readily delivered to end users (passengers) for
enhanced pre-trip information, these results (i.e. pre-modified arrival and journey times) are
still largely descriptive: for those passengers having a relatively tight schedule, they would
still have no alternative choices when the available options (i.e. recommended itineraries) are
found to be undesirable. Based on such a consideration, PBPM+ is developed, the purpose of
which is to further extend the functionality of PBPM to generate additional prescriptive

information about alternative itineraries when necessary. Roughly speaking, PBPM+
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incorporates the results obtain from PBPM into existing journey planning algorithms to
influence journey planning results. More specifically, this can be achieved by modifying the
relevant parameters of a journey planning algorithm and adding to the algorithm additional

post-processing procedures.

In the explanation of the three algorithms, open data from Britain’s rail industry (i.e.
timetable data and historical train movements data) have been extensively exploited to
illustrate the data structures adopted, the specific methods employed to determine a series of
key parameters (e.g. net transfer time, threshold for arrival lateness, etc), and the
considerations about how to present the obtained results. These illustrations can be viewed as
a preliminary step in the investigation into the massive and highly detailed rail data available
from the Internet. Moreover, the detailed explanation of several introduced
concepts/parameters (e.g. net transfer time, predictable cancellation, etc) provides a reference

for further refinement of existing journey planning algorithms.
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Chapter 5

Quantifying the effect of modified pre-trip information using
route-level measures

5.1 Introduction

Chapters 3 and 4 have provided a detailed description of what Critical Routes are, how to
efficiently find them out in a given railway network, and how to deal with them using
information-related approaches. Two natural questions then arise: Is a piece of modified pre-
trip information (resulting from the algorithmic approaches proposed in Chapter 4) really
better than its unmodified counterpart (i.e. the version obtained from timetable information
only)? If it is, then how much better would be expected? The answer to these two questions
may vary if no specific criterion is adopted. This chapter hence tries to answer the above two

questions by developing two novel route-oriented measures/criteria.

The main body of this chapter is organised as follows. Firstly, Section 5.2 introduces an
absolute measure named Route-oriented Performance Measure (RPM), which can be viewed
as an extension of Public Performance Measure (PPM, c.f. Network Rail (2017)). RPM could
not only enable a decision maker (operator/manager) to know about route-specific
performance in terms of punctuality and reliability during a given observation period, but also
enable the comparison of two different pieces of pre-trip information. Adopting RPM,
Section 5.3 then presents the evaluation results obtained from the analyses of a number of
critical routes in Britain’s passenger rail system. After that, a different route-level measure is
introduced in Section 5.4, which is a relative measure and is named Route-oriented Utility
Measure (RUM). RUM requires the underlying (planned) timetable be a reference point, and
takes into account additional factors (apart from punctuality and reliability) such as trip
efficiency. Exploiting RUM, analyses of the critical routes in British railways are conducted

in Section 5.5. Based on the empirical results of Sections 5.3 and 5.5, Section 5.6 presents
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more potential applications of RPM and RUM in the field of railway timetabling and
operations. Following that, Section 5.7 points out a potential limitation of the proposed
measures and the corresponding analytical methods (i.e. the RPM-based method and the
RUM-based method), and proposes with illustrations a conceivable solution to the identified

limitation in future research. Section 5.8 concludes this chapter.

5.2 Using Route-oriented Performance Measure (RPM) to quantify the
effect of modified pre-trip information

5.2.1 Central idea

Since the potential problem of critical routes is mainly embodied in punctuality and reliability
(c.f. Chapters 3 and 4), it is natural to consider adapting/extending some existing measure of
punctuality and reliability to develop an appropriate standard/criterion for evaluating and
comparing two different pieces of pre-trip information about a given critical route. In the
context of Britain’s passenger rail system, a natural reference point is PPM (Public
Performance Measure, c.f. Network Rail (2017)), which is a network-level heuristic
measurement widely adopted by European railways and is often presented as the percentage
of trains that run within a predefined level of acceptable deviation (e.g. 5 mins) from the

officially published timetable (c.f. Network Rail, 2017).

In the introduction to the algorithm of IPS (Itinerary-oriented Performance Statistics) in
Section 4.3, PPM has been adapted to generate itinerary-level performance statistics (in terms
of punctuality and reliability, c.f. Subsections 4.3.5 —4.3.7). Those itinerary-level statistics
are, however, only meaningful in the context of personal journey planning, and may be of
little value in an overall evaluation of a proposed methodology (i.e. modified pre-trip
information). Route-level performance indices may be of more interest to rail operators or
investors: How a given critical route performs on the whole (in terms of punctuality and
reliability) by adopting the existing (unmodified) pre-trip information? What difference can
be made by adopting the proposed methodology?

Based on the above considerations, a route-level performance measure named RPM (Route-

oriented Performance Measure) is developed, by extending PPM and IPS. The underlying
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assumptions employed and the relevant technicalities are to be detailed in subsequent

subsections.

5.2.2 Definitions and major assumptions

Definition 5.1 RPM is the percentage of recommended itineraries (for a given critical route)

that have been successfully realised.

Definition 5.2 A successfully-realised recommended itinerary corresponds to an average
passenger who has arrived at the destination station within a predefined level of acceptable

deviation (e.g. 5 mins) from the advertised arrival time.

The above two interrelated definitions provide a general explanation of the proposed route-
level performance measure (i.e. RPM). Despite simple descriptions, several assumptions are
implicitly adopted in the above definitions. In the following, the major assumptions employed

and the differences and similarities between RPM, PPM, and IPS are to be detailed.

Assumption 5.1 Each of those identified critical routes is ‘active’: a given critical route
(recommended by a journey planning system) would be utilised daily by a number of

passengers; and even if the number is not large, it is greater than zero.

Assumption 5.2 Each recommended itinerary (for a given critical route) is treated as equally

important in the computation of a specific RPM.

Assumption 5.3 Each recommended itinerary (for a given critical route) can be represented

by an average (typical) passenger among those having adopted this recommended itinerary.

Assumption 5.4 The advertised arrival time of a given recommended itinerary is not
necessarily equal to the scheduled arrival time in the timetable: it could be pre-modified by

adopting, for example, the algorithmic approaches proposed in Chapter 4.

The above four assumptions are the major assumptions that are implicitly involved in the
definition of RPM. Assumption 5.1 is the most basic assumption and is employed to

emphasise that any evaluation or comparison would become meaningless if there exists no
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transport demand between a given pair of origin and destination stations. Assumption 5.2 is

to emphasise that equal weights should be assigned to the recommended itineraries (for a
given critical route) unless sufficient knowledge about the exact distribution of passenger
flows is obtained, which can be viewed as an application of the principle of indifference (POI,
c.f. Section 2.6). It should be noted that the introduction of Assumptions 5.1 and 5.2 is largely
due to the unavailability of detailed information (data) about passenger counts and
distributions for transfer-involved routes. Note also that Assumptions 5.1 and 5.2 are also
implicitly employed in the definition of PPM (c.f. Network Rail, 2017), and Assumption 5.1

is also implicitly included in the calculation of IPS (c.f. Algorithm 3 in Subsection 4.3.2).

Built on Assumptions 5.1 and 5.2, Assumption 5.3 plays a key role in defining/computing
RPM. Comparing the definition of PPM (Network Rail, 2017) with that of RPM, we can see
that the most significant difference lies in that the computation of a specific PPM involves
only one train per count, whereas computing a specific RPM involves more than one train per
count. Therefore, the basic unit of RPM becomes an (recommended) itinerary (rather than a
train), which increases the difficulty in determining whether a piece/record of sample data
should be counted as ‘success’ or ‘failure’: since the characteristics of passengers vary from
person to person, some of the passengers adopting a particular recommended itinerary may
have successfully realised the itinerary but the others may have been heavily delayed due to,
for example, missed transfer(s). In such a context, an ‘average’ or ‘typical’ passenger needs
to be introduced to serve as the standard/reference point for evaluation. A subsequent
question then arises: how to define an ‘average’ passenger? A general answer to this question
is it can be reasonably parameterised by an in-depth investigation into the available real-
world data. The technicalities of determining the relevant parameters are to be explained in

subsequent subsections.

Assumption 5.4 should not, strictly speaking, be regarded as an assumption: existing
technologies have been able to modify the advertised arrival times when it is near to the time
of travel (c.f. Figures 4.15 and 4.16 in Section 4.3). Here, it (Assumption 5.4) is used to
emphasise that the advertised arrival times are changeable and a specific RPM can have
several different versions when adopting different versions of advertised arrival times. This
sets RPM free from the implicit assumption underlying PPM and IPS that the reference point
adopted for performance evaluation is fixed and has only one version (i.e. the scheduled

arrival times), and enables the comparison between the evaluation results of two different
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pieces of pre-trip information. To help better understand Assumption 5.4, Figure 5.1 below

provides an illustrative example.

several months

A
arry R bbbt bbbt ary
arry, ¢ 4-——-d-———--———————————— art,,
A —
several days Ao — - — — ———_________ art,
DateTime
DTI DT2 DT3  DT4 DTS5
hd AN Y
pre-trip en-route post-trip

Figure 5.1 An illustration of the different life cycles of arrs, arrm, and arra. (DT1 = the earliest
DateTime the information about arrs becomes accessible. DT2 = the earliest DateTime the
information about arrm becomes accessible. DT3 = the DateTime the studied journey starts.
DT4 = the DateTime the studied journey ends and meanwhile the information about arra
becomes available. DT5 = the DateTime the evaluation occurs on the condition that arrs, arrm
and arr, have been recorded/reconstructed. The three solid dots for arrs, arrm, and arr, and the
two solid lines on the right hand side of arrs and arry, respectively represent the duration of a
specific piece of information.)

From Figure 5.1 above we can see that if the algorithmic approach proposed in Chapter 4 (i.e.
Algorithm 4 or 5 in Section 4.3) is adopted, there would be at least two versions of the
advertised arrival time of a studied journey (itinerary) in the past: one is the scheduled arrival
time in the long-term timetable (denoted by arrs) that could have been accessible several
months before the journey started; the other is the pre-modified (advertised) arrival time
(denoted by arry) that could have been accessible several days before the journey started.
Moreover, additional versions may exist if those real-time updates (not annotated in Figure
5.1, embodied by the dotted part of the two solid lines (corresponding to arrs and arr)

between DT2 and DT3) are taken into consideration.

Since real-time updates are transient and are often not recorded in the available historical
train movements data, these versions can be ignored in performance evaluation. If we further
assume that an average passenger would plan a long-distance and transfer-involved journey
(corresponding to a given critical route) several days before the time of travel (i.e. neither too
early nor too late), then two versions of RPM could be obtained for a given critical route

during a given observation period: one is calculated from a sample set in which each studied
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itinerary adopts the scheduled (unmodified) arrival time (i.e. arrs); the other is based on a
sample set in which each studied itinerary adopts the pre-modified (advertised) arrival time
(i.e. arrm). Once these two versions of RPM are available, they can then be utilised to conduct

quantitative analysis of the effect of modified pre-trip information (about the studied route).

Looking back at Figure 5.1, the only remaining trick lies in the determination/reconstruction
of the actual arrival time (denoted by arr,) of each studied journey (itinerary) in a sample, the

technicalities of which are to be explained later in Subsection 5.2.5.

5.2.3 NTT, AW, and TAL

Analogous to the computation of IPS (Itinerary-oriented Performance Statistics, c.f. Section
4.3), three relevant parameters are involved in the computation of RPM: NTT (net transfer
time), AW (the actual window between a pair of feeder and connection trains), and TAL
(threshold for arrival lateness). Since the technicalities of how to determine these three
parameters have been explained in Section 4.3, only several key points to which special

attention should be paid are presented here:

- The computation of IPS is oriented to each specific itinerary, whereas the calculation
of RPM does not distinguish between different hours of a day: based on Assumption
5.2, all recommended itineraries for a given critical route would be taken into account
when calculating a specific RPM during a given observation period.

- Each specific IPS for a given itinerary has only one version, while each specific RPM
for a given route can have several different versions (during a given observation
period): as has been illustrated in the previous subsection, the available historical train
movements data enable us to generate different versions of RPM for a given critical
route by adopting different versions of advertised arrival times.

- A specific NTT adopted in an evaluation can be viewed as the amount of time an
average passenger needs to complete the transfer, rather than ‘the physically possible
minimum time required’ to walk from the feeder train to the connecting train (c.f.
Section 3.5): as has been explained previously in Subsection 4.3.5, allowances have
been implicitly included into each adopted NTT in the rounding process.

- The AWC(s) for the transfer(s) involved in a sample itinerary can be calculated directly

from historical train movements data: as has been illustrated in Subsections 4.3.4 and
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4.3.6, the information is available in an RVT (Route-View Timetable) about the
actual/recorded arrival time of a feeder train at a transfer station and the
actual/recorded departure time of the corresponding connecting train at the same
station. Note that train cancellations also influence the determination of an AW,
which should also be taken into account (c.f. Subsections 4.3.2 and 4.3.6).

- TAL(s) can be determined by referring to the industry standard: as mentioned earlier
in Section 4.3, the industry standard is 5 minutes for commuter or regional services,
or 10 minutes for long distance services in British railways. In the analyses of several
identified critical routes in Britain’s passenger rail system using RPM (to be presented
later in Section 5.3), RPMs under 5-minutes TAL and 10-minutes TAL are separately
calculated for comparison.

- The influence of predictable cancellations on the evaluation results needs to be taken
into consideration: the reason has been explained by an illustrative example in
Subsection 4.3.7. Here, in the calculation of RPMs for the identified critical routes in
British railways (c.f. Section 5.3), predictable cancellations have been excluded from

the adopted sample data.

5.2.4 Sampling issues

Similar to PPM (c.f. Network Rail, 2017) or IPS (c.f. Section 4.3), RPM (Route-oriented
Performance Measure) is in essence a statistical concept, the calculation of which is heavily
dependent upon the specific sampling method adopted. In previous chapters (specifically,
Section 2.4 and Section 4.3), some general sampling-related issues (e.g. sample size) have
been touched upon. In this subsection, the considerations about more specific sampling issues

are to be presented.

Firstly, the determination of an appropriate sample size is always an unavoidable question.
Here, in the context of using RPM to quantify the effect of modified pre-trip information, the
issue of determining sample size is twofold: on the one hand, the sample size for calculating
an RPM itself should be determined; on the other hand, the sample size for generating the
arrm (pre-modified (advertised) arrival time, c.f. Figure 5.1) of each sample itinerary should

also be determined.
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As to the calculation of RPMs themselves, a 4-weeks sample size is adopted in the analyses
of critical routes in British railways (c.f. Section 5.3), which is based on the following
considerations: on the one hand, demand fluctuations (between different months of a year)
and seasonal factors (e.g. temperature, humidity, etc) may exert influence on the performance
of a studied route and hence need to be controlled; on the other hand, the industry standard in
British railways (i.e. PPM, c.f. Network Rail, 2017) also adopts a 4-weeks sample size, which
can be viewed as a reference point. Moreover, from the perspective of the number of
observations, a 4-weeks sample set of a studied route (in the next section) normally contains
more than 100 effective records, which can be regarded as generally sufficient to make those

undetected outliers cancel each other out.

As to the computation of the intermediate results (i.e. the arrm of each involved itinerary), a
sample size of 4 weeks is also adopted. At first glance, a 4-weeks sample size seems not large
enough in this context: for a specific recommended itinerary, a 4-weeks sample would
contain only around 20 records (i.e. 4 weeks, 5 weekdays per week), which is relatively small
in the statistical sense. In order to understand why a sample size of 4 weeks is adopted here, it

would be helpful to firstly know about the mechanism of arrm.

According to the algorithm of PBPM (Performance-Based Pre-Modification of advertised
arrival times, c.f. Subsection 4.3.2) or PBPM+ (c.f. Subsection 4.4.3), a pre-modified
(advertised) arrival time (i.e. arrm) would be accessible well before (several days before, c.f.
Figure 5.1) the time of travel to enable the relevant passengers to have sufficient time to
prepare for the potential delays. That is, arrm can be viewed as an estimation/prediction of the
actual/realised arrival time. In order to obtain a good estimation, an assumption of ‘the nearer,
the more similar’ is implicitly involved in the calculation of those pre-modified arrival times,
which is adopted in the analyses in the subsequent section. Roughly speaking, the sample

data are updated weekly to generate estimations (i.e. those pre-modified arrival times) for the

following week. Figure 5.2 below gives an illustration of the sampling method adopted.
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Figure 5.2 An illustration of the sampling method adopted to calculate arrm(s)

Suppose there are 8-weeks historical (train movements) data numbered 1, 2, ... ,8 in
chronological order (see Figure 5.2 above). In order to generate/restore the modified pre-trip
information (i.e. arrm(s)) on a particular date during this 8-weeks period, those historical data
recorded before this date could be utilised as a sample. If a sample size of 4 weeks is adopted,
then the 8-weeks historical data can be subdivided into two sets: a test set containing data
from Week 5 to Week 8, and a ‘dynamic’ sample set. That is, some of the data in the test set
also serve as a part of the sample set to guarantee that those pre-modified arrival times are
always calculated from the most recent 4-weeks sample, the strategy of which is called ‘the
nearer, the more similar’. Note that the specific technicalities in calculating pre-modified
arrival times can be found in the previous chapter (specifically, c.f. Figure 4.17 and Eq. (2) in
Subsection 4.3.8).

The sampling method adopted in generating arrm(s) could also be explained from within the
theory of probability and statistics. In the algorithm developed to calculate arrm(s) (i.e. PBPM,
c.f. Subsection 4.3.2), the intermediate result about the ‘success rate’ of a particular itinerary
(i-e. po(ic) in Step 5 of PBPM) can be viewed as the empirical probability (or relative
frequency, c.f. Section 2.4) of a successful realisation of the involved transfer between a pair
of feeder and connecting trains. Recall that in the introduction to the fundamentals of
probability and statistics (c.f. Section 2.4), the application of relative frequency is
simultaneously constrained by the law of large numbers (LLN) and repeatability (c.f.
Subsection 2.4.3). Here, the sampling method adopted of ‘the most recent four weeks
historical data’ can hence be viewed as a balance between the law of large numbers, the
conditions of the trials, and the computational complexity. According to LLN, the sample
size should be as large as possible to guarantee the reliability and stability of the empirical

probability (i.e. relative frequency). However, a pre-requisite is implicitly involved in the
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application of LLN: the experiment/trial needs to be repeatedly conducted under the same (or
similar enough) conditions. In reality (especially in the context of calculating those pre-
modified arrival times), a trial (checking whether a specific itinerary is successful on a
particular day) is sensitive to a number of external factors such as temperature, humidity,
brightness, the characteristics of drivers and equipments, engineering works, seasonal factor
(Christmas/Easter/Summer Vacation/School Terms), etc. Therefore, an implicit assumption
of ‘the nearer, the more similar’ is adopted to control the experimental conditions. Note that
this assumption is only a general principle behind the sampling method and does not apply to
specific data cleanups: any outlier data should be removed from the sample set even if they
are temporally near enough to the test data. Further information about the relevant theories of

Probability and Statistics can be found in Mood (1974) and Papoulis (1991).

5.2.5 The technicalities in generating reconstructed itineraries

Recall that in Figure 4.17 in Subsection 4.3.8 the difference between three interrelated
concepts — itinerary template, itinerary, and reconstructed itinerary — has been briefly
explained. However, the technicalities of how to obtain reconstructed itineraries have not
been explained. In this subsection, the specific technicalities used in generating reconstructed
itineraries are to be illustrated using realistic rail data to help better understand Figure 4.17

and Figure 5.1.
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Figure 5.3 An illustrative reconstructed itinerary

Figure 5.3 above is just a copy of Figure 4.17(c): i1’ and i2” are two reconstructed itineraries
in which f1” and 2’ are the feeder trains and c1’ and ¢2’ are the corresponding connecting
trains; t1” ~ t8’ respectively represent the actual/recorded departure time or arrival time at the

origin station (denoted by Ori), the transfer station (Trans), or the destination station (Dest).
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Moreover, i1’ and i2” are ‘adjacent’, which means that the interval between t4” and t8’ is
approximately the headway of the connecting leg. Generally speaking, a reconstructed
itinerary is obtained from splicing the recorded/actual stop times of the corresponding feeder
and connecting trains (e.g. f1° + c1’) long after the travel date. The term ‘reconstructed’ is
used to emphasise that the recorded/actual stop times (i.e. t1’, t2°, ..., t8”) are not necessarily
equal to their counterpart in a planned daily timetable (i.e. t1, t2, ... , t8), and that some of the
constraints placed on a planned itinerary (e.g. t2 < t3, t6 <t7) do not necessarily hold and the
values of t1°,t2°, ..., t8” in i1 and 12’ are possible to be invalid (due to, for example, train

cancellations).

The value of a reconstructed itinerary is mainly embodied by its arrival time arra (c.f. Figure
5.1), which plays an important role in the evaluation of modified pre-trip information.
Therefore, the major task involved in reconstructing a particular itinerary lies in the
reconstruction of the actual arrival time arra. In the following, the considerations about how

to reconstruct arr, and several calculation examples are to be presented.

Firstly, it should be noted that the principle adopted of determining arra. for each specific
itinerary is to maximally simulate/restore how an average passenger would action under a
given scenario. With this in mind, the specific technicalities used in reconstructing arra(s) are

summarised in the decision table (Table 5.1) below.

Table 5.1 The decision table adopted for reconstructing arr,

Scenario | f1'O | f1'T | c1'T | c1'D | ¢2'T | ¢2'D | AW>NTT? | arr_a(il")
1 N N N N N t4'
2 N, N N N, N, N X t8'
3 J ~ N N J X X invalid
4 N, N N N X N X invalid
5 J N N X N N t8'
6 N, N N X N X invalid
7 N N N X X invalid
8 N, N X N, N t8'
9 N N X N, X invalid
10 N, N X X invalid
11 X invalid
12 X invalid
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Following the symbols in Figure 5.3, the actual/reconstructed arrival time of i1’ (denoted by
arr_a (il') in Table 5.1 above) is determined by seven variables: the status of the feeder train

f1” at the origin station (denoted by f1°0O: X if ‘CANCELLED CALL’, v otherwise), the
status of the feeder train f1’ at the transfer station (denoted by f1°T: X if
‘CANCELLED_CALL’, ¥ otherwise), the status of the connecting train c1’ at the transfer
station (denoted by c1’T: X if ‘CANCELLED CALL’, v otherwise), the status of the
connecting train c1’ at the destination station (denoted by c1’D: X if
‘CANCELLED_CALL’, ¥ otherwise), the status of the connecting train c2’ at the transfer
station (denoted by c¢2’T: X if ‘CANCELLED CALL’, v otherwise), the status of the
connecting train c¢2’ at the destination station (denoted by c2’D: X if

‘CANCELLED _CALL’, ¥ otherwise), and the indicator of whether the actual window (AW

= 13- 12°) is larger than the net transfer time NTT ( ¥ = yes, X=no).

The status information about f1°O ~ ¢2’D can be directly found in those ‘display XX’

columns in a Route-View Timetable (c.f. Table 4.1 in Subsection 4.3.4), and the information
about the actual window (AW) between a pair of feeder and connecting trains can be derived
from the relevant columns and be stored in an auxiliary column (i.e. the ‘window_a’ column
in Figure 5.4, to be explained later). Note that a blank cell in Table 5.1 denotes that the status

of the corresponding variable does not affect the determination of the corresponding arr_a.

The logic behind all the 12 scenarios in Table 5.1 is simple: once a passenger finds that the
expected waiting time (either at the origin station or at the transfer station) becomes
intolerable or that the expected arrival time at the destination station becomes
unreasonable/unacceptable, he/she will abandon the currently chosen itinerary (e.g. shift to
another transport mode, shift to another itinerary, or cancel the whole journey); otherwise,
he/she will continue the current journey and arrive at the destination station at a reasonable
time. This logic is based on the observation that a passenger can always get updated
information before boarding (from in-station displays/broadcasting or from mobile Internet)
about whether there will be a cancelled call at a given station (e.g. the
origin/transfer/destination station). And the passenger can hence utilise this piece of real-time

information to update his/her pre-trip knowledge and hence actions based on this information.
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Take Scenario 1 and Scenario 12 for example. Why t4’ is adopted as the arr, under Scenario
1? This is based on the consideration that an average passenger would continue using the
services of f1” and c1’ (c.f. Figure 5.3) as long as there had been no informed cancellations
and no missed transfer. Why the arr, cannot be reconstructed under Scenario 12? This is
based on the consideration that passengers could have relatively more flexibility before
starting a journey: if a cancellation happened before a given journey started, then the relevant
passengers would be able to make quite different choices (e.g. shift to another transport mode,
shift to another itinerary, or cancel the whole journey), which renders the assumption of an

average passenger (c.f. Assumption 5.3 in Subsection 5.2.2) unreasonable.

To make Table 5.1 more tangible, the figure below (i.e. Figure 5.4) provides several
numerical examples. Similar to Figure 4.18 in Subsection 4.3.8, these calculation examples
contain only the most relevant columns to the calculation of arr_a to reduce distraction. Here,
Example <a> is based on the real-world data about the route Harwich Town — Manningtree —
Norwich; Examples <b> and <c> are based on the real-world data about the route London
Kings Cross — York — Scarborough; and Example <d> is based on the real-world data about

the route Ilkley — Leeds — Middlesbrough.

runDate | serviceF | serviceC |dep_s_FO display_FO arr_a_FT display_FT dep_a_CT display_CT arr_a_CD display_CD window_a

arr_a

25/07/16 | L26378 L26095 928 ORIGIN 950 DESTINATION 953 CALL 1007 CANCELLED_CALL 5

1095

25/07/16 | 126381 126105 988 ORIGIN 1009 DESTINATION 1019 CALL 1095 DESTINATION 10

<a>

runDate | serviceF | serviceC |dep_s_FO display_FO arr_a_FT display_FT dep_a_CT display_CT arr_a_CD display_CD window_a

arr_a

13/07/16 | Y71674 | Y70219 870 ORIGIN 1034 CALL 1022 | CANCELLED_CALL 1056 | CANCELLED_CALL £12 invalid
13/07/16 | Y71749 Y70222 930 ORIGIN 1061 CALL 1069 CANCELLED_CALL 1106 CANCELLED_CALL 8
<b>
runDate | serviceF | serviceC |dep_s_FO display_FO arr_a_FT display_FT dep_a_CT display_CT arr_a_CD display_CD window_a| arr_a
01/08/16 | Y71716 Y70205 570 ORIGIN 693 CALL 705 CALL 752 DESTINATION 12 752
<c>
runDate | serviceF | serviceC |dep_s_FO display_FO arr_a_FT display_FT dep_a_CT display_CT arr_a_CD display_CD window_a| arr_a
27/07/16 | Y15126 | Y70624 610 CANCELLED_CALL 637 CANCELLED_CALL 651 CALL 730 DESTINATION 14 invalid

<d>

Figure 5.4 Numerical examples of how to determine arr, using real-world data

In Example <a>, f1’O ~c2’D= v v + X 4 + (corresponds to Scenario 5 in Table 5.1).
Therefore, the actual arrival time of the first row (excluding the header row) is 1095 (i.e.

arr_a(il’) =t8”). In Example <b>, f1’0O ~c2’D= v < X X X X (corresponds to Scenario
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10 in Table 5.1). Therefore, the actual arrival time of the first row is invalid and this row
should be removed from the evaluation table. In Example <c¢>, f1’O~cl’D= v Vv + ¥
and AW > NTT (12 > 2). Therefore, the actual arrival time of the first row is 752 (t4°). In
Example <d>, 1’0 = X and f1’T = X (corresponds to Scenario 11 or Scenario 12 in Table
5.1). Therefore, the actual arrival time of the first row is invalid and this row should be

removed from the evaluation table.

Note that not every scenario in Table 5.1 can be encountered in a relatively small set of real-
world data. And note also that although arr_a cannot be determined (i.e. those invalid values)
under most scenarios in Table 5.1, these scenarios are the minority in reality. The majority of
the data records belong to the four scenarios under which arr_a can be determined (either is

t4’ or t8’).

5.3 Analyses of several identified critical routes using RPM

5.3.1 Data preparation

In this section, a number of identified critical routes in Britain’s passenger rail system are to
be analysed using RPM (Route-oriented Performance Measure) proposed in the previous
section (i.e. Section 5.2). The aim of these analyses is twofold: on the one hand, they would
enable the relevant rail operators or the infrastructure manager to know about the
performance of these critical routes in terms of punctuality and reliability; on the other hand,
they would enable the relevant stakeholders to know about the effect of the algorithmic
approaches proposed (in Chapter 4) on these critical routes (in terms of punctuality and

reliability) through tangible results.

The data adopted to conduct these analyses are a large collection of historical train

movements data that have been collected from Realtime Trains (RTT): train movements data

about the relevant critical routes have been downloaded every day and stored into separate
files during a 18-months period between September 2015 and March 2017. As mentioned
previously in Section 3.7, RTT data are derived from Network Rail’s TRUST system'® and

16 https://en.wikipedia.org/wiki/TRUST
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are generally well-structured and easier to process than those poorly-structured raw data
(from TRUST). Moreover, the database of RTT has relatively limited storage space and is
renewed every seven days. Therefore, RTT data needs to be timely collected before the

relevant records disappear.

A total of nine routes are analysed, each of which has been identified as critical during the

18-months period. Specifically, these studied critical routes include:

Bournemouth — Southampton Central — Brighton (denoted by BSB)

Ebbw Vale Town — Cardiff Central — Birmingham New Street (denoted by ECB)
Liverpool Lime Street — Manchester Piccadilly — Doncaster (denoted by LMD)
Rugeley Trent Valley — Birmingham New Street — Hereford (denoted by RBH)
Ilkley — Leeds — Middlesbrough (denoted by ILM)

London Kings Cross — York — Scarborough (denoted by KYS)

Harwich Town — Manningtree — Norwich (denoted by HMN)

Knottingley — Wakefield Kirkgate — Nottingham (denoted by KWN)

Sudbury (Suffolk) — Marks Tey — London Liverpool Street (denoted by SML)

Comparing these nine studied routes with the results listed in Section 3.7, several differences
can be found. The reason lies mainly in the following two aspects. Firstly, two of the studied
routes here (i.e. Bournemouth — Southampton Central — Brighton, Ebbw Vale Town — Cardiff
Central — Birmingham New Street) can be viewed as the child routes of the corresponding
critical routes listed in Section 3.7 (i.e. Weymouth — Southampton Central — Brighton, Ebbw
Vale Town — Cardiff Central — Nottingham), which also satisfy the definition of a critical
route (c.f. Section 3.5). Secondly, several critical routes listed in Section 3.7 are not studied
here but the route Ilkley — Leeds — Middlesbrough (not listed in Section 3.7) is studied here.
This is mainly due to the periodic changes (i.e. half-yearly in Britain) in the underlying
timetables: some critical routes listed in Section 3.7 (e.g. the route Oxford — Reading —
Gatwick Airport) are newly identified based on the latest version of the planned timetable
(for the period from 11 December 2016 to 20 May 2017) and hence no historical data have
been collect about these routes; in contrast, the route Ilkley — Leeds — Middlesbrough was
identified as a critical route in previous screenings (using the CRF algorithm presented in
Section 3.6) during the 18-months period but is no longer critical under the latest version of

planned timetables. Despite the changes in the list of identified critical routes, the historical
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data collected about the route Ilkley — Leeds — Middlesbrough can also be utilised to conduct

analyses for the past observation periods.

Five observation periods are selected to conduct the analyses of these nine routes, each of
which contains 2-months (8-weeks) historical data (c.f. Subsection 5.2.4): Period 1 (P1) is
between 12 October 2015 and 4 December 2015, Period 2 (P2) is between 25 January 2016
and 18 March 2016, Period 3 (P3) is from 13 June 2016 to 5 August 2016, Period 4 (P4) is
from 3 October 2016 to 25 November 2016, and Period 5 (P5) is from 16 January 2017 to 10
March 2017. The choice of these five observation periods is based on the following
considerations. On the one hand, although it would be enough to adopt a 4-weeks sample (c.f.
Subsection 5.2.4) to calculate an RPM to evaluate the performance of a given route (during
the 4-weeks observation period), a comparative analysis between modified and unmodified
pre-trip information would require an 8-weeks sample in which the data of the first four
weeks are needed for generating/restoring the modified pre-trip information (i.e. those pre-
modified arrival times, c.f. Figure 5.2 in Subsection 5.2.4). On the other hand, those trans-
period samples (e.g. a sample of December and January or a sample of May and June) should
be avoided: since the list of identified critical routes is subject to changes in the planned
timetable and the planned timetable is updated every six months (in Britain), a route entering
the list during a particular timetable period would be likely to be excluded from the list
during the subsequent timetable period (e.g. the aforementioned route Ilkley — Leeds —
Middlesbrough). Moreover, the choice of these five observation periods also controls the
factor of public holidays (e.g. Christmas and Easter): the number of effective observations
would be reduced if an 8-weeks period involving public holidays were adopted, due to the

fact that a weekday timetable is often different from a holiday timetable.

For a given observation period (i.e. one of the above-mentioned four observation periods), the
historical data about a given route (i.e. one of the aforementioned nine studied routes) are
subdivided into a test set and a sample set (c.f. Figure 5.2 in Subsection 5.2.4 for an
illustration). The test set is used to calculate two different versions of RPM: one is under the
assumption of unmodified pre-trip information (denoted by RPM; in the analyses presented in
the subsequent subsections), and the other is under the assumption of modified pre-trip
information (denoted by RPM,, in the analyses presented in the subsequent subsections). The
sample set is employed to simulate/restore the modified pre-trip information (i.e. those pre-

modified advertised arrival times obtained by applying the algorithm of PBPM or PBPM+
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presented in Chapter 4 to the sample set). With respect to the technicalities used in sampling,
the method presented in Subsection 5.2.4 is adopted. Roughly speaking, the test set is ‘static’
while the sample set is ‘semi-dynamic’: the test set contains data about the second half of a
given 8-weeks observation period (i.e. from Week 5 to Week 8, c.f. Figure 5.2 in Subsection
5.2.4), but the sample set is different for each of the four test weeks (i.e. Week 5, Week 6,
Week 7, and Week 8) to guarantee that those pre-modified arrival times are always calculated

from a sample containing data of the most recent four weeks (relative to a given test week).

5.3.2 Route 1: Bournemouth — Southampton Central — Brighton

The route Bournemouth — Southampton Central — Brighton (denoted by BSB) has been
identified as critical for a long time (dating back to May 2015). Historical train movements
data about this route have been collected since the beginning of September 2015. Several
major characteristics of this route can be seen from those illustrative examples in Section 3.4
and Section 4.3: the list of recommended itineraries (by National Rail Enquiries) for this
route is full of delay-sensitive transfers, and the connecting leg (i.e. from Southampton
Central to Brighton) has relatively low-frequency services (i.e. hourly). Moreover, the
determination of the parameter of net transfer time (NTT) has been detailed in Subsection
4.3.5, and a route-specific NTT of 1 minute (i.e. applicable to each studied critical itinerary)

is adopted here in this analysis.

In the analysis/evaluation of this route, 10 critical itineraries are studied with scheduled
departure times being 09:55, 10:59, 11:59, 12:59, 13:59, 14:59, 15:59, 16:59, 17:59, and
18:59, respectively. The observation periods adopted (see Table 5.2) are Period 1 (12 October
2015 — 4 December 2015), Period 2 (25 January 2016 — 18 March 2016), and Period 5 (16
January 2017 — 10 March 2017). For each of the three adopted observation periods, around
200 records/observations (i.e. 20 weekdays per period and 10 studied itineraries per day) are
analysed. The reason why Period 3 (13 June 2016 — 5 August 2016) and Period 4 (3 October
2016 — 25 November 2016) are not analysed is mainly due to planned/predictable
cancellations (of the connecting leg, c.f. Subsection 4.3.7) resulting from major rail strikes
(by Southern Railway) during these two periods: Figures 5.5 and 5.6 below provide an

illustration of the relevant issues.
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nationalrail.co.uk

Amended weekday Southern and Gatwick Express
services until further notice

Last updated: 04:34 25/09/2016

Incident created: 05/07/2016 10:18

Route affected
Some Southern routes and Gatwick Express

Map of affected area

Train operator affected

Southern

Gatwick Express

Description

In order to give you more certainty for your journey and
enable you to better plan, Southern and Gatwick Express

have implemented an amended timetable on Mondays to
Fridays.

Until train crew availability returns to normal, a revised
timetable will be running on the following routes:

Gatwick Express - some trains will not run

Brighton - Southampton Central - most trains will not
run. Journeys can be made between these stations,
but a change of trains will be required

Hastings - Ashford International - some peak time
services will be replaced by buses

East Croydon / Clapham Junction - Milton Keynes
Central - a reduced service will run

From Monday 26 September, the Brighton - Seaford
route will be reinstated with a full service.

Figure 5.5 An illustration of planned cancellations for Southern services during Period 3
(Source: www.nationalrail.co.uk, accessed 25 Sept 2016)

nationalrail.co.uk

Changes to train times
Industrial action affecting Southern services

Last updated: 05:27 04/11/2016

Incident created: 29/10/2016 13:31

Route affected
Various Southern routes

Map of affected area
Train operator affected
Southern

Description

The members of the RMT Union are planning to take
strike action on various dates in the upcoming months.
These include:

e Friday 4 November and Saturday 5 November
Tuesday 22 November and Wednesday 23
November

Tuesday 6 December to Thursday 8 December
Thursday 22 December to Saturday 24 December
Saturday 31 December to Monday 2 January

Customer Advice:

Details of the Southern service that will be running on the
strike days, including the proposed train and bus
timetables, is available here.

Local bus operators that provide a service on the
affected routes and details of those that are able to
accept vour tickets are shown here. On other routes with

Figure 5.6 An illustration of planned cancellations for Southern services during Period 4
(Source: www.nationalrail.co.uk, accessed 04 Nov 2016)
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As has been explained in Subsection 4.3.7, those planned or predictable cancellations should
be excluded in evaluating the effect of pre-trip information: they could be reflected in a
revised timetable well in advance (i.e. at least several days before the time of travel) and

would not be shown in the recommended itineraries by a journey planning system.

Based on the technicalities explained above, the evaluation results for this route (using Route-
oriented Performance Measure, c.f. Section 5.2) are presented in Table 5.2 below. In Table
5.2, RPM; represents the calculated RPM (Route-oriented Performance Measure) for a given
observation period assuming that the unmodified pre-trip information is adopted about
scheduled arrival times; RPM,, represents the obtained RPM for a given observation period
assuming that the modified pre-trip information about pre-modified arrival times; ARPM =
RPM,;, — RPMg, representing the change (in RPM) the modified pre-trip information could
have brought. Moreover, the parameter of TAL represents the threshold for arrival lateness
adopted. The algorithm employed to generate/restore the modified pre-trip information is
PBPM in Subsection 4.3.2. The sampling method explained in Subsection 5.2.4 is adopted in
calculating RPM;, RPM,, and those pre-modified arrival times. The relevant technicalities

used in the reconstruction of the actual arrival times can be found in Subsection 5.2.5.

Table 5.2 The evaluation results for BSB using RPM

Period 1 Period 2 Period 5
TAL=5 TAL=10 TAL=5 TAL=10 TAL=5 TAL=10
RPMs (%) 72.1 83.7 74.2 84.8 75.3 81.2
RPM, (%) 85.3 87.9 86.4 87.9 84.9 86.6
ARPM (%) 13.2 4.2 12.1 3.0 9.7 5.4

From Table 5.2 above, we can see that the performance (in terms of punctuality and
reliability) of this route is generally good during the three observation periods and is
generally stable between different periods (see the row starting with ‘RPM;s (%)’). Moreover,
a non-negligible improvement in RPM would be expected if the modified pre-trip
information (generated from the proposed algorithm of PBPM) were adopted (see the row

starting with ‘ARPM (%)").
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5.3.3 Route 2: Ebbw Vale Town — Cardiff Central — Birmingham New Street

The route Ebbw Vale Town — Cardiff Central — Birmingham New Street (denoted by ECB)
has also been identified as critical for a long time: historical train movements data about this
route have been collected since the beginning of September 2015. The feeder leg of this route
is an hourly Arriva Trains Wales service from Ebbw Vale Town to Cardiff Central, and the
connecting leg is an hourly CrossCountry service from Cardiff Central to Birmingham New
Street (terminating at Nottingham). A route-specific NTT (net transfer time) of 2 minutes is
adopted in this analysis, based on an in-depth investigation into the layout of the transfer
station (i.e. Cardiff Central) and the platform allocation of the involved feeder and connecting

trains (at the transfer station).

In the analysis/evaluation of this route, 10 critical itineraries are studied with scheduled
departure times being 09:38, 10:37, 11:37, 12:37, 13:37, 14:37, 15:37, 16:37, 17:37, and
18:37, respectively. The observation periods adopted are Period 1 (12 October 2015 — 4
December 2015), Period 2 (25 January 2016 — 18 March 2016), Period 3 (13 June 2016 — 5
August 2016), Period 4 (3 October 2016 — 25 November 2016), and Period 5 (16 January
2017 — 10 March 2017). For each of the five observation periods, around 200
records/observations (i.e. 20 weekdays per period and 10 studied itineraries per day) are

analysed.

Based on the data and parameters introduced above, the evaluation results for this route are
presented in Table 5.3 below. The notations involved have the same meanings with those in
Table 5.2: TAL is the threshold for arrival lateness adopted; RPM; denotes the performance
measure calculated based on the unmodified pre-trip information; RPM,, represents the
performance measure calculated based on the modified pre-trip information; and ARPM

indicates the effect of modified pre-trip information on RPM.

From Table 5.3 we can see that the performance of this route is generally good during
Periods 1, 2, 3, and 5, but is relatively poor during Period 4 (see the row starting with ‘RPMs
(%)’). Moreover, a non-negligible improvement in RPM could have been obtained for
Periods 1, 2, 3, and 5, and a significant improvement in RPM could have been obtained for
Period 4, if the modified pre-trip information (generated from the proposed algorithm of

PBPM) were adopted (see the row starting with ‘ARPM (%)’).
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Table 5.3 The evaluation results for ECB using RPM

Period 1 Period 2 Period 3 Period 4 Period 5
TAL=5 TAL=10 TAL=5 TAL=10 TAL=5 TAL=10 TAL=5 TAL=10 TAL=5 TAL=10
R(r;/l:;ls 72.0 82.8 75.0 88.3 71.1 84.0 54.9 75.1 83.7 92.6
R(I:/l:;lp 89.2 92.5 90.3 94.4 87.1 90.7 85.5 88.1 96.3 97.4
A?j:)M 17.2 9.7 15.3 6.1 16.0 6.7 30.6 13.0 12.6 4.7

5.3.4 Route 3: Liverpool Lime Street — Manchester Piccadilly — Doncaster

The route Liverpool Lime Street — Manchester Piccadilly — Doncaster (denoted by LMD) has
long been identified as a critical route: historical train movements data about this route have
been collected since the beginning of September 2015. The feeder leg of this route is an
hourly TransPennine Express service from Liverpool Lime Street to Manchester Piccadilly
(terminating at Scarborough), and the connecting leg is an hourly TransPennine Express
service from Manchester Piccadilly to Doncaster (originating from Manchester Airport and
terminating at Cleethorpes). A route-specific NTT (net transfer time) of 3 minutes is adopted
in this analysis, based on an inspection of the layout of the transfer station (i.e. Manchester
Piccadilly) and the platform allocation of the involved feeder and connecting trains (at the

transfer station).

In the analysis of this route, six critical itineraries are studied with scheduled departure times
being 09:22, 10:22, 11:22, 12:22, 13:22, and 14:22, respectively. The observation periods
adopted are Period 1 (12 October 2015 — 4 December 2015), Period 2 (25 January 2016 — 18
March 2016), Period 3 (13 June 2016 — 5 August 2016), Period 4 (3 October 2016 — 25
November 2016), and Period 5 (16 January 2017 — 10 March 2017). For each of the five
observation periods, around 120 records/observations (i.e. 20 weekdays per period and 6

studied itineraries per day) are analysed.

Based on the data and parameters introduced above, the evaluation results for this route are
presented in Table 5.4 below. The notations involved have the same meanings with those in

the previous subsection: TAL is the threshold for arrival lateness adopted; RPM; denotes the
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performance measure calculated based on the unmodified pre-trip information; RPM,
represents the performance measure calculated based on the modified pre-trip information;

and ARPM indicates the effect of modified pre-trip information on RPM.

From Table 5.4 we can see that the performance (in terms of punctuality and reliability) of
this route is generally undesirable (Period 5 is an exception) compared with the other studied
routes (see the row starting with ‘RPM;s (%)’). Moreover, a significant improvement in RPM
could have been obtained for the five adopted observation periods if the modified pre-trip
information (generated from the proposed algorithm of PBPM) were adopted (see the row

starting with ‘ARPM (%)’).

Table 5.4 The evaluation results for LMD using RPM

Period 1 Period 2 Period 3 Period 4 Period 5
TAL=5 TAL=10 TAL=5 TAL=10 TAL=5 TAL=10 TAL=5 TAL=10 TAL=5 TAL=10
R(l;l:;[s 58.5 76.4 75.0 84.8 559 78.0 66.1 83.0 81.2 90.6
R(I:/l(:;[p 86.8 88.7 88.4 92.9 87.3 91.5 84.8 86.6 92.9 94.1
A?j:)M 28.3 12.3 13.4 8.0 31.3 13.6 18.8 3.6 11.8 3.5

5.3.5 Route 4: Rugeley Trent Valley — Birmingham New Street — Hereford

The route Rugeley Trent Valley — Birmingham New Street — Hereford (denoted by RBH) has
long been recognised as a critical route: historical train movements data about this route have
been collected since the beginning of September 2015. The feeder leg of this route is an
hourly London Midland service from Rugeley Trent Valley to Birmingham New Street, and
the connecting leg is an hourly London Midland service from Birmingham New Street to
Hereford. A route-specific NTT (net transfer time) of 3 minutes is adopted in this analysis, by
inspecting the layout of the transfer station (i.e. Birmingham New Street) and the platform

allocation of the involved feeder and connecting trains (at the transfer station).

In the analysis of this route, nine critical itineraries are studied with scheduled departure
times being 08:41, 09:43, 10:41, 11:41, 12:41, 13:41, 14:41, 15:41, and16:41, respectively.
The observation periods adopted are Period 1 (12 October 2015 — 4 December 2015), Period
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2 (25 January 2016 — 18 March 2016), and Period 5 (16 January 2017 — 10 March 2017).
Period 3 (13 June 2016 — 5 August 2016) and Period 4 (3 October 2016 — 25 November 2016)
are not analysed due to the lost data about these two periods in the process of data storage and
transfer. For each of the three adopted observation periods (i.e. Periods 1, 2, and 5), around
180 records/observations (i.e. 20 weekdays per period and 9 studied itineraries per day) are

analysed.

Based on the data and parameters introduced above, the evaluation results for this route are
presented in Table 5.5 below. The notations involved have the same meanings with those in
the previous subsection: TAL is the threshold for arrival lateness adopted; RPM; denotes the
performance measure calculated based on the unmodified pre-trip information; RPM,
represents the performance measure calculated based on the modified pre-trip information;

and ARPM indicates the effect of modified pre-trip information on RPM.

From Table 5.5 we can see that the performance of this route is generally good during the
three observation periods (see the row starting with ‘RPM; (%)’). Moreover, a small
improvement in RPM could have been obtained for Period 1 if the modified pre-trip
information (generated from the proposed algorithm of PBPM) were adopted (see the row
starting with ‘ARPM (%)’). However, no/little change in RPM is observed for Period 2 and
Period 5, the reason of which is to be explained later in Subsection 5.3.12 by close scrutiny of

the sample data.

Table 5.5 The evaluation results for RBH using RPM

Period 1 Period 2 Period 5
TAL=5 TAL=10 TAL=5 TAL=10 TAL=5 TAL=10
RPM;s (%) 79.2 83.2 91.6 92.1 93.7 94.3
RPM;, (%) 83.8 87.3 91.6 92.1 93.7 95.4
ARPM (%) 4.6 4.0 0 0 0 1.1

5.3.6 Route 5: Ilkley — Leeds — Middlesbrough

The route Ilkley — Leeds — Middlesbrough (denoted by ILM) was recognised as a critical
route by applying CRF (Critical Route Finder, c.f. Algorithm 2 in Section 3.6) to the two

previous versions of the National Rail Timetable during 2016, but does not enter the list of
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critical routes in the screening (using CRF) of the latest version of the National Rail
Timetable (which is valid from 11 December 2016 to 20 May 2017, c.f. Section 3.7).
Historical train movements data about this route have been collected between January 2016
and September 2016. The feeder leg of this route is a half-hourly Northern service from
Ilkley to Leeds, and the connecting leg is an hourly TransPennine Express service from Leeds
to Middlesbrough (originating from Manchester Airport). A route-specific NTT (net transfer
time) of 3 minutes is adopted in this analysis, based on an in-depth investigation into the
layout of the transfer station (i.e. Leeds) and the platform allocation of the involved feeder

and connecting trains (at the transfer station).

In the analysis of this route, five critical itineraries are studied with scheduled departure times
being 10:10, 11:10, 12:10, 13:10, and 14:10, respectively. The observation periods adopted
are Period 2 (25 January 2016 — 18 March 2016) and Period 3 (13 June 2016 — 5 August
2016). For each of the two adopted observation periods (i.e. Period 2 and Period 3), around
100 records/observations (i.e. 20 weekdays per period and 5 studied itineraries per day) are

analysed.

Based on the data and parameters introduced above, the evaluation results for this route are
presented in Table 5.6 below. The notations involved have the same meanings with those in
the previous subsection: TAL is the threshold for arrival lateness adopted; RPM;s denotes the
performance measure calculated based on the unmodified pre-trip information; RPM,,
represents the performance measure calculated based on the modified pre-trip information;
and ARPM indicates the effect of modified pre-trip information on RPM (Route-oriented

Performance Measure).

Table 5.6 The evaluation results for ILM using RPM

Period 2 Period 3
TAL=5 TAL=10 TAL=5 TAL=10
RPM; (%) 88.9 90.9 84.5 89.7
RPM; (%) 90.9 92.9 89.7 93.8
ARPM (%) 2.0 2.0 5.2 4.1

From Table 5.6 we can see that the performance of this route is generally good during the two
observation periods (see the row starting with ‘RPM;s (%)’). Moreover, a small improvement

in RPM could have been obtained for both periods if the modified pre-trip information
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(generated from the proposed algorithm of PBPM) were adopted (see the row starting with
‘ARPM (%)’).

5.3.7 Route 6: London Kings Cross — York — Scarborough

The route London Kings Cross — York — Scarborough (denoted by KYS) has been identified
as critical since May 2016: historical train movements data about this route have been
collected since then. The feeder leg of this route is a half-hourly Virgin Trains East Coast
service from London Kings Cross to York (terminating at Edinburgh, Newcastle, etc), and the
connecting leg is an hourly TransPennine Express service from York to Scarborough
(originating from Liverpool Lime Street). A route-specific NTT (net transfer time) of 1
minute is adopted in this analysis, by scrutinising the layout of the transfer station (i.e. York)
and the platform allocation of the involved feeder and connecting trains (at the transfer

station).

In the analysis of this route, eight critical itineraries are studied with scheduled departure
times being 08:30, 09:30, 10:30, 11:30, 12:30, 13:30, 14:30, and 15:30, respectively. The
observation periods adopted are Period 3 (13 June 2016 — 5 August 2016), Period 4 (3
October 2016 — 25 November 2016), and Period 5 (16 January 2017 — 10 March 2017). For
each of the three adopted observation periods, around 160 records/observations (i.e. 20

weekdays per period and 8 studied itineraries per day) are analysed.

Based on the data and parameters introduced above, the evaluation results for this route are
presented in Table 5.7 below. The notations involved have the same meanings with those in
the previous subsection: TAL is the threshold for arrival lateness adopted; RPM; denotes the
performance measure calculated based on the unmodified pre-trip information; RPM,
represents the performance measure calculated based on the modified pre-trip information;
and ARPM indicates the effect of modified pre-trip information on RPM (Route-oriented

Performance Measure).

From Table 5.7 we can see that the performance (in terms of punctuality and reliability) of
this route is relatively good during Period 3 and Period 5, but is relatively poor during Period
4 (see the row starting with ‘RPMs (%)’). Moreover, a significant improvement in RPM could

have been obtained for Periods 3 and 4 if the modified pre-trip information (generated from
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the proposed algorithm of PBPM) were adopted, although this improvement in RPM would
be relatively small for Period 5 (see the row starting with ‘ARPM (%)’).

Table 5.7 The evaluation results for KY'S using RPM

Period 3 Period 4 Period 5
TAL=5 TAL=10 TAL=5 TAL=10 TAL=5 TAL=10
RPM;s (%) 73.7 82.7 58.2 69.9 84.2 89.0
RPM,;, (%) 85.9 87.8 78.4 79.1 87.7 91.1
ARPM (%) 12.2 5.1 20.3 9.2 3.4 2.1

5.3.8 Route 7: Harwich Town — Manningtree — Norwich

The route Harwich Town — Manningtree — Norwich (denoted by HMN) has been identified as
a critical route since May 2016: historical train movements data about this route have been
collected since then. The feeder leg of this route is an hourly Greater Anglia service from
Harwich Town to Manningtree, and the connecting leg is a half-hourly Greater Anglia service
from Manningtree to Norwich (originating from London Liverpool Street). A route-specific
NTT (net transfer time) of 1 minute is adopted in this analysis, by inspecting the layout of the
transfer station (i.e. Manningtree) and the platform allocation of the involved feeder and

connecting trains (at the transfer station).

In the analysis of this route, nine critical itineraries are studied with scheduled departure
times being 08:28, 09:28, 10:28, 11:28, 12:28, 13:28, 14:28, 15:28, and 16:28, respectively.
The observation periods adopted are Period 3 (13 June 2016 — 5 August 2016), Period 4 (3
October 2016 — 25 November 2016), and Period 5 (16 January 2017 — 10 March 2017). For
each of the three adopted observation periods, around 180 records/observations (i.e. 20

weekdays per period and 9 studied itineraries per day) are analysed.

Based on the data and parameters introduced above, the evaluation results for this route are
presented in Table 5.8 below. The notations involved have the same meanings with those in
the previous subsection: TAL is the threshold for arrival lateness adopted; RPM; denotes the
performance measure calculated based on the unmodified pre-trip information; RPM,,

represents the performance measure calculated based on the modified pre-trip information;
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and ARPM indicates the effect of modified pre-trip information on RPM (Route-oriented

Performance Measure).

From Table 5.8 we can see that the performance of this route is generally undesirable during
Period 3 and Period 4 (see the row starting with ‘RPMjs (%)’). Moreover, a significant
improvement in RPM could have been obtained for the three observation periods if the
modified pre-trip information (generated from the proposed algorithm of PBPM) were

adopted (see the row starting with ‘ARPM (%)’).

Table 5.8 The evaluation results for HMN using RPM

Period 3 Period 4 Period 5
TAL=5 TAL=10 TAL=5 TAL=10 TAL=5 TAL=10
RPM; (%) 55.3 73.2 57.9 79.2 72.9 86.4
RPM,;, (%) 82.1 87.2 81.5 87.1 87.0 89.8
ARPM (%)  26.8 14.0 23.6 7.9 14.1 3.4

5.3.9 Route 8: Knottingley — Wakefield Kirkgate — Nottingham

The route Knottingley — Wakefield Kirkgate — Nottingham (denoted by KWN) has been
screened out as a critical route since September 2016: historical train movements data about
this route have been collected since then. The feeder leg of this route is an hourly Northern
service from Knottingley to Wakefield Kirkgate, and the connecting leg is an hourly Northern
service from Wakefield Kirkgate to Nottingham (originating from Leeds). A route-specific
NTT (net transfer time) of 1 minute is adopted in this analysis, based on an examination of
the layout of the transfer station (i.e. Wakefield Kirkgate) and the platform allocation of the

involved feeder and connecting trains (at the transfer station).

In the analysis of this route, nine critical itineraries are studied with scheduled departure
times being 08:53, 09:53, 10:53, 11:53, 12:53, 13:53, 14:53, 15:53, and 16:53, respectively.
The observation periods adopted are Period 4 (3 October 2016 — 25 November 2016) and
Period 5 (16 January 2017 — 10 March 2017). For each of the two adopted observation
periods, around 180 records/observations (i.e. 20 weekdays and 9 studied itineraries per day)

are analysed.
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Based on the data and parameters introduced above, the evaluation results for this route are
presented in Table 5.9 below. The notations involved have the same meanings with those in
the previous subsection: TAL is the threshold for arrival lateness adopted; RPM; denotes the
performance measure calculated based on the unmodified pre-trip information; RPM,
represents the performance measure calculated based on the modified pre-trip information;
and ARPM indicates the effect of modified pre-trip information on RPM (Route-oriented

Performance Measure).

From Table 5.9 we can see that the performance (in terms of punctuality and reliability) of
this route is generally good during the two observation periods (see the row starting with
‘RPM; (%)’). Moreover, a moderate improvement in RPM could have been obtained for
these two observation periods if the modified pre-trip information (generated from the

proposed algorithm of PBPM) were adopted (see the row starting with ‘ARPM (%)’).

Table 5.9 The evaluation results for KWN using RPM

Period 4 Period 5
TAL=5 TAL=10 TAL=5 TAL=10
RPM; (%) 80.6 87.4 89.9 94.9
RPM,; (%) 86.9 90.3 90.4 96.1
ARPM (%) 6.3 2.9 0.6 1.1

5.3.10 Route 9: Sudbury (Suffolk) — Marks Tey — London Liverpool Street

The route Sudbury (Suffolk) — Marks Tey — London Liverpool Street (denoted by SML) has
been recognised as critical since September 2016: historical train movements data about this
route have been collected since then. The feeder leg of this route is an hourly Greater Anglia
service from Sudbury (Suffolk) to Marks Tey, and the connecting leg is a half-hourly Greater
Anglia service from Marks Tey to London Liverpool Street (originating from Colchester
Town/Ipswich). A route-specific NTT (net transfer time) of 1 minute is adopted in this
analysis, based on an investigation into the layout of the transfer station (i.e. Marks Tey) and

the platform allocation of the involved feeder and connecting trains (at the transfer station).

In the analysis of this route, seven critical itineraries are studied with scheduled departure

times being 09:33, 10:26, 11:26, 12:26, 13:26, 14:26, and 15:26, respectively. The
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observation periods adopted are Period 4 (3 October 2016 — 25 November 2016) and Period 5
(16 January 2017 — 10 March 2017). For each of these two observation periods, around 140

records/observations (i.e. 20 weekdays and 7 studied itineraries per day) are analysed.

Based on the data and parameters introduced above, the evaluation results for this route are
presented in Table 5.10 below. The notations involved have the same meanings with those in
the previous subsection: TAL is the threshold for arrival lateness adopted; RPM; denotes the
performance measure calculated based on the unmodified pre-trip information; RPM,,
represents the performance measure calculated based on the modified pre-trip information;
and ARPM indicates the effect of modified pre-trip information on RPM (Route-oriented

Performance Measure).

Table 5.10 The evaluation results for SML using RPM

Period 4 Period 5
TAL=5 TAL=10 TAL=5 TAL=10
RPM; (%) 71.3 82.4 85.6 90.6
RPM; (%) 83.1 88.2 92.1 93.5
ARPM (%) 11.8 5.9 6.5 2.9

From Table 5.10 we can see that the performance of this route is generally good during these
two periods (see the row starting with ‘RPM; (%)’). Moreover, a non-negligible improvement
in RPM could have been obtained for both periods if the modified pre-trip information
(generated from the proposed algorithm of PBPM) were adopted (see the row starting with
‘ARPM (%)’).

5.3.11 A summary of the results with interpretation

Subsections 5.3.2 ~ 5.3.10 have respectively presented the evaluation results for each studied
route using RPM. Apart from these route-specific performance statistics, we can also
synthesise the relevant statistics to obtain some overall performance statistics (analogous to
the calculation of PPM, see Network Rail (2017)). However, compared with those specific
performance statistics (based on the planned timetable), we are more interested in the changes
the modified pre-trip information could bring to the corresponding RPMs (i.e. ARPMs).
Hence, the relevant ARPMs (presented in the result tables in Subsections 5.3.2 ~ 5.3.10) are
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summarised in Table 5.11 below to help understand the overall effect of the modified pre-trip

information on the nine studied critical routes (in terms of RPM).

Table 5.11 Summary based on a pre-defined ‘selection rule’ (unit: %)

Pl | P2 | P3 | P4 | P5 | E(P) NOTE

BSB | 42 | 3.0 5.4 4.2 d =96 miles, TAL = 10 mins
ECB | 9.7 |6.1| 6.7 |13.0| 4.7 8.0 | d=98 miles, TAL = 10 mins
IMD | 123 |80 | 13.6| 3.6 | 3.5 8.2 | d =100 miles, TAL = 10 mins

ILM 20 52 3.6 d = 67 miles, TAL = 5 mins

RBH | 4.6 | 0.0 0.0 1.5 d =79 miles, TAL = 5 mins

KYS 51 |92 | 2.1 5.5 | d=238 miles, TAL = 10 mins

HMN 26.8 |23.6 | 14.1 | 215 d =74 miles, TAL = 5 mins

KWN 6.3 | 0.6 3.5 d =62 miles, TAL = 5 mins

SML 118 6.5 | 92 | d=68miles, TAL = 5 mins
7.2

___________

In Table 5.11 above, those three-letter abbreviations in the first (i.e. leftmost) column (e.g.
BSB and ECB) denote the studied routes (c.f. Glossary at the beginning of this thesis or
Subsection 5.3.1). The column titles P1 ~ P5 in the first row respectively represent the five
observation periods (c.f. Glossary or Subsection 5.3.1). The values under P1 ~ P5
respectively represent the ARPM (in percentage) for a specific route during a specific
observation period (c.f. Subsections 5.3.2 ~ 5.3.10). Since two versions of ARPMs have been
calculated for each studied route for each relevant observation period (one under TAL =5
mins and the other under TAL = 10 mins, see Subsections 5.3.2 ~ 5.3.10; TAL is short for
Threshold for Arrival Lateness), one of the two versions is adopted in Table 5.11 for each
route for each relevant period (according to some pre-defined ‘selection rule’) to calculate the
temporal averages (presented in Column E(P)). In the explanation of PPM (c.f. Network Rail,
2017), only a general ‘selection rule’ is adopted (without specific definitions): TAL = 5 mins
for ‘London and South East or regional services’, and TAL = 10 mins for ‘long distance
services’. Here, for the convenience of calculation, a ‘selection rule’ (for choosing between
the two versions of ARPM for each route for each period) based on the spatial distance
between the origin and destination stations of each specific route is adopted: the version
under TAL =5 is adopted if the distance is less than 90 miles, and the version under TAL =
10 is adopted if the distance is larger than 90 miles. The rightmost column NOTE details the
information about each route: the distances have been obtained by searching Google Maps,
the values of which have been derived from the shortest paths within the road networks.

Under this specific ‘selection rule’, an average gain of 7.2 % in RPM (c.f. the bottom cell in
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the table) can be expected for the nine studied critical routes by adopting the proposed

algorithmic approach in Chapter 4.

From the above explanation of Table 5.11, we can see that a PPM-style summary tends to be
heavily dependent on the pre-defined ‘selection rule’, which might introduce an unnecessary
extra increase in subjectivity. An alternative and less subjective way to report a synthesised
index (i.e. the 7.2% calculated from Table 5.11) is to firstly determine its lower and upper
bounds and then report an interval bounded by the two calculated extremes. In the context of
the nine studied routes in the previous subsections, the upper bound of the average gain in
RPM (brought by modifying pre-trip information according to the proposed algorithmic
approach) can be obtained by summarising all those ARPMs (c.f. Subsections 5.3.2 ~ 5.3.10)
under TAL = 5 mins, and the lower bound can be obtained by summarising all those ARPMs
(c.f. Subsections 5.3.2 ~5.3.10) under TAL = 10 mins. That is, instead of locking ourselves
in an endless debate about which routes should be categorised into which group (i.e. TAL =5
or TAL = 10), we can avoid the introduction of a subjective ‘selection rule’ by reporting an

interval bounded by two definite limits.

Tables 5.12 and 5.13 below respectively summarise the route-specific results under the two
‘extreme cases’ (i.e. all TALs are set to 5 mins and all TALs are set to 10 mins). It can be
seen from the two tables that the average gain (in RPM) for the nine studied routes lies

between 5.0 % and 11.3%.

Table 5.12 Summary based on TAL = 5 mins (unit: %)

Pl | P2 | P3 | P4 | P5 | E(P)
BSB | 13.2| 12.1 9.7 | 11.7
ECB | 17.2| 153 | 16.0 | 30.6 | 12.6 | 18.3
LMD | 283|134 |31.3| 188 | 11.8|20.7

ILM 20 | 52 3.6
RBH | 4.6 | 0.0 0.0 [ 1.5
KYS 122203 ] 3.4 [ 120
HMN 26.8 | 23.6 | 14.1| 21.5
KWN 63 ] 0.6 | 3.5
SML 11.8] 65 ] 92

11.3

179



Table 5.13 Summary based on TAL = 10 mins (unit: %)

Pl | P2 | P3 | P4 | P5 | E(P)
BSB | 42 | 3.0 541 42
ECB | 97 |6.1]| 6.7 | 13.0]|4.7| 80
LMD | 123 | 80| 13.6 | 3.6 |3.5| 82

ILM 20 4.1 3.1
RBH | 4.0 | 0.0 0.0 13
KYS 50 [92[21] 55
HMN 140 79 |34 84
KWN 29 [1.1] 20
SML 59 [29] 44 |
5.0 |

Generally, the obtained results (in previous subsections) make sense, for the modified pre-trip
information should to some degree improve punctuality and reliability: as explained in
Subsection 4.3.2, the mechanism of the modified pre-trip information (generated from the
proposed algorithmic approach) is to add to each critical itinerary extra allowance (i.e. time
supplement) to reduce the impact of delays/disruptions, based on the historical performance
of each particular itinerary. However, two questions arise when confronted with those
specific results: Why would some of the studied routes expect more significant improvement
in RPM than the others, by adopting the modified pre-trip information? What do those zero
values (c.f. Table 5.5) mean? In order to answer these questions, it would be helpful to have a

closer look at the relevant sample data that have been adopted in the corresponding analyses.

Figure 5.7 below presents the descriptive statistics of the sample data about the route RBH
(Rugeley Trent Valley — Birmingham New Street — Hereford) during Period 2 (25 January
2016 — 18 March 2016). It has been shown in Table 5.5 (c.f. Subsection 5.3.5) that the
modified pre-trip information (generated from the proposed algorithm of PBPM) could not
bring improvement in RPM for this route during Period 2. In Figure 5.7 below, two
distributions are presented to describe the underlying sample data, corresponding to the
distribution of arrival delays under the assumption of unmodified pre-trip information (a),
and the distribution of arrival delays under the assumption of modified pre-trip information

(b), respectively.
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Figure 5.7 Distributions of arrival delays for RBH during Period 2
(NOTE: ADI1 = arr, — arts, representing the arrival delay calculated from the unmodified pre-
trip information; AD2 = arr. — arrm, representing the arrival delay calculated from the
modified pre-trip information)

It can be seen from Figure 5.7 that an apparent reason for the zero values under both
scenarios (i.e. TAL =5 and TAL = 10) is that the performance statistics are already quite
good under unmodified pre-trip information. Specifically, an RPM; (under TAL = 5) of
91.6% 1is already quite good for a transfer-involved rail route (c.f. Figure 5.7(a) and Table
5.5), and an RPM; (under TAL = 10) of 92.1% is also among the best in the context of the
nine studied routes. That is, the space left for improvement itself is limited in these two
scenarios. However, good performance itself could not thoroughly explain these zero values.
For example, the route ILM (Ilkley — Leeds — Middlesbrough) also has good performance
under unmodified pre-trip information (c.f. Table 5.6) but improvements could still be
expected. That is, there must be other factors exerting influence on the results. By further

examining the two distributions in Figure 5.7, it is recognised that the modified pre-trip
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information (c.f. Figure 5.7(b)) does not truly change the distribution of arrival delays (c.f.
Figure 5.7(a)). To help better understand the relevant issues, Figure 5.8 below is needed.
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Figure 5.8 Distributions of arrival delays for LMD during Period 1
(NOTE: AD1 = arr, — arrs, representing the arrival delay calculated from the unmodified pre-
trip information; AD2 = arr. — arrm, representing the arrival delay calculated from the
modified pre-trip information)

Figure 5.8 above presents the descriptive statistics of the sample data about the route LMD

(Liverpool Lime Street — Manchester Piccadilly — Doncaster) during Period 1 (12 October
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2015 — 4 December 2015). Unlike the evaluation results (i.e. no improvements in RPM) for
Figure 5.7, a significant improvement (in RPM) is observed for this route during this period

(i.e. Period 1, c.f. Table 5.4 in Subsection 5.3.4).

To compare and identify the difference between Figure 5.7 and Figure 5.8, each of the four
involved distributions (i.e. Figure 5.7(a), Figure 5.7(b), Figure 5.8(a), and Figure 5.8(b))
needs to be viewed as a combination of two parts, the cut-off point of which is the TAL
(threshold for arrival lateness) adopted in the calculation of an RPM. For example, if we
adopt a TAL of 5 minutes, then each of the four distributions in the two figures can be
subdivided into two parts: those smaller-than-five observations (denoted by S5) and those
larger-than-five observations (denoted by L5). Since each distribution has been sorted (by
delay value) in ascending order, the S5 part corresponds to the upper end and the L5 part

corresponds to the lower end.

By comparing Figure 5.7(a) with Figure 5.7(b), it can be seen that the modified pre-trip
information (corresponding to Figure 5.7(b)) only changes the distribution of observations
within each of the S5 group and the L5 group, but does not change the balance of power
between S5 and LS. By contrast, if we compare Figure 5.8(a) with Figure 5.8(b), we can see
that the modified pre-trip information (corresponding to Figure 5.8(b)) not only changes the
distribution of observations within each of the S5 group and the L5 group, but also changes
the balance of power between S5 and L5 (i.e. S5 goes up from 58.5% to 86.8%, c.f. Figure
5.8 and Table 5.4 in Subsection 5.3.4).

Based on the above investigations, it is recognised that the size of improvement (in RPM) the
modified pre-trip information (generated from the proposed algorithmic approach) could
bring depends, at least, on the following two factors. Firstly, it depends on the percentage of
medium-sized (e.g. 5 ~ 30 mins) arrival delays that have occurred for a studied route during a
given observation period. Secondly, it depends on whether the allowances added (by the
proposed algorithmic approach) are sufficient to absorb those medium-sized arrival delays.
Continue the examples of Figure 5.7 and Figure 5.8. It can be seen from Figure 5.7(a) that the
percentage of medium-sized delays is relatively small (about 4% between 5 and 30), but in
Figure 5.8(a) this percentage is relatively large (about 32% between 5 and 30). On the other
hand, the allowances added for RBH during Period 2 (c.f. Figure 5.7(b)) are relatively small

and could not change the balance of power between S5 and LS5; in contrast, the allowances
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added for LMD during Period 1 (c.f. Figure 5.8(b)) are generally large and could ‘push’ some

of the observations in L5 into S5.

In fact, it is the mechanism of the modified pre-trip information (generated by the proposed
algorithmic approach) that results in that those added allowances are mainly used for coping
with medium-sized delays. Recall that the specific calculation method adopted to generate
modified pre-trip information has been detailed in previous sections (c.f. Subsection 4.3.2 and
Subsection 4.3.8). Hence, a rough estimation of the general size of the allowances added (to a
recommended list of critical itineraries) can be made with the aid of the real-world rail routes
studied in this section. Suppose that the ‘success rate’ for a planned transfer is, on average,
80% for a given critical route (in the context of British railways) during a given observation
period, and that the headway of the connecting leg is one hour (i.e. 60 mins, c.f. the nine
studied routes in this section), then the allowance added to compensate for the risk of a
missed transfer would be 12 minutes (i.e. 0.2 x 60) according to Step 5 of Algorithm 4 (c.f.
Subsection 4.3.2). Meanwhile, if the average lateness of the connecting leg is +3 minutes for
the same route during the same observation period, then an extra 3 minutes would be added
to the allowance according to the algorithm proposed. That is, an average allowance of 15
minutes would be added to the unmodified pre-trip information about an ‘ordinary’ route
described above, which would absorb those medium-sized arrival delays between 5 and 20
mins if a TAL of 5 minutes is adopted and would absorb those medium-sized arrival delays
between 10 and 25 mins if a TAL of 10 minutes is adopted. Thereby, the size of improvement
(in RPM) the modified pre-trip information (i.e. those added allowances) could bring depends,
in the context of this illustrative example, on the percentage of arrival delays between 5 and

25 mins.

Until now, the answer to the two questions raised at the beginning of this subsection has been
found out, with the aid of an explanation of the mechanism of the modified pre-trip
information (generated by the proposed algorithmic approach). Looking back at those
specific evaluation results of the nine studied routes, potential limitations of the proposed
measure (i.e. RPM) itself have also been recognised in the investigation into the underlying

sample data.

Figure 5.9 below provides such an illustrative example. This example is based on the

evaluation results for the route ILM (Ilkley — Leeds — Middlesbrough) during Period 2 (25
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January 2016 — 18 March 2016) and Period 3 (13 June 2016 — 5 August 2016). Here, the
focus is no longer on same-period comparison between different versions of RPM, but is
focused on same-indicator comparison between different observation periods. Specifically,
the performance indicator adopted in Figure 5.9 is RPM; under TAL = 5 (c.f. Table 5.6 in
Subsection 5.3.6). Comparing the two values for the two periods (i.e. 88.9% and 84.5%), the
adopted performance indicator tells us that this route performs better during Period 2
(corresponding to the value of 88.9%). However, when taking a closer look at the specific
distributions of the sample data, we can find that although the percentage of ‘successful
realisations’ is higher for Period 2, some key information is hidden about distribution of the
sample data: the size of those ‘failures’ is also larger for Period 2. This inability to reflect the
whole picture of the underlying sample data is a potential limitation in real-world

applications of RPM and PPM (c.f. Network Rail, 2017), which indirectly explains why

several auxiliary performance indicators such as CaSL (Cancellation and Significant Lateness)

are also utilised by Britain’s rail industry (c.f. Network Rail, 2017).
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Figure 5.9 Distributions of arrival delays for [LM
[NOTE: AD1 = arr, — arrs, representing the arrival delay calculated from the unmodified pre-
trip information; (a) corresponds to Period 2; (b) corresponds to Period 3]
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5.3.12 Further analyses and Why would the proposed solution be better than the
existing ones in tackling Critical Routes?

Although Tables 5.12 and 5.13 in the previous subsection have shown us the average gain (in
RPM) that can be expected from applying PBPM to the nine studied (critical) routes, they
cannot help learn more about the base case (i.e. unmodified pre-trip information based on the
original schedules) and the treated case (i.e. modified pre-trip information based on PBPM).
To address this gap, further analyses/evaluations have been conducted and Tables 5.14 and

5.15 below present the obtained results.

Table 5.14 Evaluation results based on RPM; (TAL = 5 mins) (unit: %)
Pl |P2 |[P3 |P4 |P5 |EMP)
BSB | 72.1 | 74.2 75.3173.9
ECB | 72 | 75 | 71.1 549 |83.7]71.3
LMD |58.5] 75 |55.9]66.1]|81.2]67.3

ILM 88.9 | 84.5 86.7
RBH | 79.2 | 91.6 93.7 | 88.2
KYS 73.71582 8421720
HMN 553579729620
KWN 80.6 | 89.9 | 85.3
SML 71.3 185.6 | 78.5

76.1

NOTE: the meanings of the involved abbreviations/symbols can be found in Subsection 5.3.1 or Glossary

Table 5.15 Evaluation results based on RPM,, (TAL = 5 mins) (unit: %)
Pl |P2 |P3 |P4 |P5 |EMP)
BSB | 85.3 | 86.4 84.9 | 85.5
ECB [89.2190.3 |87.1[855]96.3]|89.7
LMD | 86.8 | 88.4 | 87.3 | 84.8 | 92.9 | 88.0

ILM 90.9 | 89.7 90.3
RBH | 83.8 |91.6 93.7189.7
KYS 85.9 |1 78.4 | 87.7| 84.0
HMN 82.1 | 81.5| 87 |83.5
KWN 86.9 1 90.4 | 88.7
SML 83.192.1]87.6

| 87.4

NOTE: the meanings of the involved abbreviations/symbols can be found in Subsection 5.3.1 or Glossary

Both of the two tables adopt a TAL (threshold for arrival lateness) of 5 mins, corresponding
to the relevant values presented in Table 5.12. The results in Table 5.14 are based on
unmodified pre-trip information about scheduled arrival times, while the results in Table 5.15

are based on modified pre-trip information generated by PBPM. Comparing Tables 5.14 and
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5.15, we can find that the 11.3% average gain (in RPM) that could have been obtained from
applying PBPM to the nine studied routes (c.f. Table 5.12 in the previous subsection) actually
corresponds to an increase from 76.1% (i.e. the average RPM in the base case) to 87.4% (i.e.

the average RPM in the treated case).

Despite a few explanations made in Subsection 5.2.1, Subsection 5.2.2, and Subsection 5.3.11,
the choice of delay thresholds (i.e. 5 and 10 minutes) throughout the evaluations in this
section (i.e. Section 5.3) may still be questioned. After all, such a choice may have a direct
influence on the obtained evaluation results. Admittedly, the adoption of the industry
standards of British rail (i.e. 5 and 10 minutes) may still be classified as a (largely) subjective
choice, for different railways in different countries may have different industry standards and
even the industry standard for the same railway in the same country may itself change over
time. The major consideration underlying the choice of delay thresholds in these RPM-based
evaluations has been that adopting a consistent delay threshold (with the existing industry
standard) would largely facilitate the comparison of the obtained route-level results with the
existing network-level indices (e.g. PPM, c.f. Subsection 5.3.11 and Network Rail, 2017).
Moreover, such a choice would to some degree facilitate international comparisons in future
research as long as the relevant train operation records of railways outside the UK become
legally accessible. Although different railways across the world adopt different delay
thresholds (e.g. Dutch railways adopt 3 minutes as the industry standard), 5 and 10 minutes

have a relatively large audience in European railways.

To help see the whole picture of the performances of PBPM under a series of different delay
thresholds and meanwhile to some degree reduce the potential subjectivity in the choice of
delay thresholds, a (quasi-) sensitivity analysis has been conducted and the obtained

evaluation results are presented in Table 5.16.

Table 5.16 The evaluation results for RPM;, RPM,,, and ARPM under different TALs

TALA b s b al s e | 71 8| 91011 |12|13]14]15
(mins)
RPM.
oy | 509|599 673 | 72.7 | 761 | 789 | 812 828 | 840 | 853 | 865 | 87.5 | 884 | 892 | 80.8
R(%IP 82.1 | 84.0 | 853 | 86.7 | 87.4 | 88.3 | 89.0 | 89.6 | 90.0 | 90.3 [ 90.9 | 91.3 | 91.7 | 92.0 | 92.2
Aﬁz\/l 312|242 180139113 ] 95 | 78 | 68 | 60 | 50 | 44 | 38 | 33 | 28 | 24

NOTE: the meanings of the involved abbreviations/symbols can be found in Subsection 5.3.1 or Glossary
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From Table 5.16 we can see that the two columns under 5 (mins) and 10 (mins) have exactly

the same values as those average values in Tables 5.12, 5.13, 5.14, and 5.15. If a delay

threshold no greater than 5 mins was adopted, a two-digit increase in RPM would be

expected, corresponding to a significant improvement in punctuality and reliability of the

studied routes. If a delay threshold no less than 10 mins was adopted, a relatively small

increase in RPM would be expected, corresponding to a modest improvement in punctuality

and reliability of the studied routes. Overall, the size of the expected improvement gradually

diminishes as the delay threshold adopted gradually increases. An incremental change to the

delay threshold within the interval [0, 15] would not result in unexpected fluctuations in the

obtained results. And even the least improvement (corresponding to a 15-minute delay

threshold) is above zero.

After the above analyses of the gain side, let us conduct an analysis of the loss side. Since the

essence of PBPM is the local treatment of those critical transfer-involved journeys by adding

a floating extra allowance to the advertised arrival time of each of them based on its

performance in the recent past, an identified potential loss/price of applying PBPM to those

critical routes is an extension of the estimated journey times of the corresponding routes and

a concomitant reduction/loss of competitiveness (/attractiveness) of the relevant

recommendations. To help learn about the size of such a potential loss of competitiveness

(/attractiveness), the relevant statistics have been computed and are presented in Tables 5.17

and 5.18.

Table 5.17 A summary of the relevant attributes of the studied critical routes

Journey time

Route | Periods Itineraries (denoted by scheduled departure times) L N/Period
(nominal;mins)
BSB | P1,P2,P5 | 09:55,10:59, 11:59, 12:59, 13:59, 14:59, 15:59, 16:59, 17:59, 18:59 139 200
ECB P1-P5 | 09:38,10:37, 11:37, 12:37, 13:37, 14:37, 15:37, 16:37, 17:37, 18:37 189 200
LMD | P1-P5 09:22, 10:22, 11:22, 12:22, 13:22, 14:22 133 120
ILM P2, P3 10:10, 11:10, 12:10, 13:10, 14:10 122 100
RBH | P1,P2,P5 08:41,09:43, 10:41, 11:41, 12:41, 13:41, 14:41, 15:41, 16:41 158 180
KYS P3 —P5 08:30, 09:30, 10:30, 11:30, 12:30, 13:30, 14:30, 15:30 179 160
HMN P3-P5 08:28, 09:28, 10:28, 11:28, 12:28, 13:28, 14:28, 15:28, 16:28 82 180
KWN P4, P5 08:53, 09:53, 10:53, 11:53, 12:53, 13:53, 14:53, 15:53, 16:53 127 180
SML P4, P5 09:33, 10:26, 11:26, 12:26, 13:26, 14:26, 15:26 79 140
134.3

NOTE: the meanings of the involved abbreviations/symbols can be found in Subsection 5.3.1 or Glossary
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Table 5.18 Average increase of advertised journey time (unit: mins)
Pl | P2 | P3 | P4 | P5 |E(P)
BSB | 10.8 | 16.2 12.8 | 13.3
ECB | 114 ] 84 | 69 |113| 7.8 | 9.2
LMD | 184 | 79 | 9.2 | 7.2 | 63 | 9.8

ILM 23 | 3.8 3.0
RBH | 6.8 | 1.7 1.2 | 3.2
KYS 125]11.6 | 7.1 | 104
HMN 10.1 | 85 | 6.2 | 83
KWN 44 116 | 3.0
SML 83 144 | 63
7.4 |

_________

NOTE: the meanings of the involved abbreviations/symbols can be found in Subsection 5.3.1 or Glossary

It can be seen from Table 5.17 that the average nominal (/scheduled/advertised) journey time
of these nine studied routes has been 134.3 mins. Meanwhile, we can learn from Table 5.18
that the allowance (contingency buffer) added by PBPM (for the nine studied routes for the
five observation periods) has been on average 7.4 mins. That is, an average increase of 5.5%
(7.4/134.3) in the nominal (/scheduled/advertised) journey time could have been expected.
Such an increase in nominal (/scheduled/advertised) journey time would to some degree
reduce the competitiveness (/attractiveness) of the relevant recommendations, which can be
viewed as the 'price’ of the proposed reliability (/robustness/punctuality) enhancing strategy
(i.e. PBPM and PBPM+). However, although the proposed solution may not be the perfect to
deal with those critical routes, it would at least be a (much) better solution than the existing

ones in tackling critical routes. Why? Reasons are as follows.

Recall that the existing solutions/ideas have been generally categorised into two broad
categories in Subsection 4.2.8 — CF (Competitiveness-First) ones and RF (Reliability-First)
ones. Compared with those CF ones, the proposed solution could bring a noticeable
improvement in reliability and punctuality (c.f. Tables 5.14 — 5.16 in this subsection) and
meanwhile roughly/approximately maintain the competitiveness (/attractiveness) of the
recommended itineraries (c.f. Tables 5.17 and 5.18 in this subsection), which means that the
proposed solution may to some degree help increase the customer stickiness'” of the relevant
routes (c.f. Subsection 4.2.8 for explanations). Compared with those RF ones, the proposed
solution could avoid significant reductions in competitiveness (/attractiveness) resulting from

applying the existing RF solutions/ideas to critical routes (c.f. Subsection 4.2.8 for

7 http://kwhs.wharton.upenn.edu/term/customer-stickiness/
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illustrations), and hence the obtained estimations of reliability improvements (c.f. Tables 5.14
— 5.16 in this subsection) would be much more realistic and realisable than those derived
from the existing RF solutions/ideas (in fact, the speculated improvements in
reliability/robustness would be a rubber cheque in the case of critical routes; c.f. Subsection

4.2.8 for a detailed explanation of this issue).

5.4 Using Route-oriented Utility Measure (RUM) to quantify the effect of
modified pre-trip information

5.4.1 Central idea

In the previous section, a route-level measure called RPM (Route-oriented Performance
Measure) has been proposed that is able to evaluate the performance of a given transfer-
involved (critical) route in terms of punctuality and reliability during a given observation
period, and is easy to be extended to quantify the effect of modified pre-trip information.
Although generally straightforward and easy to implement, the measure of RPM and the
RPM-based analytical method have their limitations. Firstly, RPM is, in essence, a train-
oriented performance indicator (rather than a passenger-oriented measurement). Recall that
the concept of RPM is built upon an assumption of a representative passenger and an
assumption of the existence of an absolute standard (i.e. a chosen threshold for arrival
lateness (TAL, e.g. 5 mins and 10 mins) for determining whether a representative passenger
is delayed. In reality, however, these underlying assumptions do not hold in many cases: a
passenger inside a punctual train is still delayed if he/she has missed the previous connection;
a passenger trip can still be punctual when taking a delayed train (Landex, 2008; Martin,
2014). That is, RPM (and RPM-based analyses) does not take into account the heterogeneity
among the relevant passengers. Secondly, in a broader sense, the RPM-based analytical
method is focused only on a single criterion of punctuality and reliability, and does not take
into account other influencing factors on mode/itinerary choice such as the concomitant
increase in advertised journey time (with a pre-modified arrival time). That is, although
adding allowances to those critical itineraries could generally improve punctuality and
reliability (c.f. the empirical results presented in the previous section), the overuse of

allowances (resulting from uncontrollable errors within those performance statistics
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themselves) is likely to reduce the attractiveness and competitiveness of rail transport for a

given route.

Based on the above considerations, a utility-based measure (analytical method) named RUM
(Route-oriented Utility Measure) is proposed in this section to try to capture more realistic
factors. Roughly speaking, RUM does not adopt an absolute standard (e.g. TAL in the
calculation of RPM) for performance evaluation, but is a relative measure of how much
difference a piece of modified pre-trip information could bring to a given transfer-involved
(critical) route in terms of the overall utility of the relevant passengers. Technically, the
RUM-based analytical method (to be presented later in this section) not only takes into
account the inconvenience that may be caused by medium- to large-sized delays (as RPM
does), but also takes into account the inconvenience that may be caused by small delays (e.g.
those between 0 and 5 minutes) and early arrivals (i.e. those less than 0 mins). Before going
to the specific technicalities, it should be noted that the RUM-based analytical method is
largely experimental and is more like a thought experiment (compared with the RPM-based
method) that is based on several ‘bold’ assumptions. However, this method could be
employed as a convenient tool for quantifying the effect of modified pre-trip information
when detailed data about train movements are available but detailed data about passenger
activities are not available. Or at the very least, it could be a reference point for those

interested researchers to refine the relevant theories.

5.4.2 Major assumptions

Assumption 5.1 (i.e. Assumption 5.1 in Subsection 5.2.2) Each of those identified critical
routes is ‘active’: a given critical route (recommended by a journey planning system) would
be utilised daily by a number of passengers; and even if the number is not large, it is greater

than zero.

Assumption 5.4 (i.e. Assumption 5.4 in Subsection 5.2.2) The advertised arrival time of a
given recommended itinerary is not necessarily equal to the scheduled arrival time in the
timetable: it could be pre-modified by adopting, for example, the algorithmic approaches

proposed in Chapter 4.
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Assumption 5.5 Each recommended itinerary (for a given critical route) is treated as equally

important in the computation of a specific RUM.

Assumption 5.6 There have been n (n > 0) passengers choosing a given studied itinerary.

Assumption 5.7 Each passenger choosing a particular itinerary (of a studied route) is
associated with a latest-tolerable arrival time (LAT), which derives from his/her preferred
arrival time (PAT) and the constraint of subsequent activities. And the
(financial/reputational/psychological/physical) disutility beyond LAT is greater than the

inconvenience caused by rescheduling (well in advance) the relevant activities.

Assumption 5.8 A passenger would minimise his/her expected disutility (i.e. maximise

expected utility) when choosing among a list of recommended itineraries.

Assumption 5.9 There always exist a small group of ‘unwary’ passengers whose LATs are

‘at the margin’ (i.e. very close to the scheduled arrival time of a chosen itinerary).

The proposed measure of RUM (defined in the next subsection) is mainly built on the above
six assumptions. Assumptions 5.1, 5.4, and 5.5 above are also the underlying assumptions of
RPM (c.f. Subsection 5.2.2), in which Assumptions 5.1 and 5.4 are just a copy from
Subsection 5.2.2 and Assumption 5.5 is a slightly modified version of Assumption 5.2 in
Subsection 5.2.2. That is, four additional assumptions (i.e. Assumptions 5.6 — 5.9) are

involved in the calculation of RUM.

Assumption 5.1 is the most basic assumption and is employed to emphasise that any
evaluation or comparison would become meaningless if there exists no transport demand
between a given pair of origin and destination stations. Assumption 5.5 (i.e. Assumption 5.2
in Subsection 5.2.2) is to emphasise that equal weights should be assigned to the
recommended itineraries (for a given critical route) unless sufficient knowledge about the
exact distribution of passenger flows is obtained, which can be viewed as an application of
the principle of indifference (POI, c.f. Section 2.6). And similar to the role Assumption 5.4
plays in the calculation of RPM, this assumption is employed here to enable the comparison
between the modified and unmodified pre-trip information to quantify the effect of modified

pre-trip information.
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Assumption 5.6 can be viewed as a relaxed version of Assumption 5.3 in Subsection 5.2.2.
Recall that Assumption 5.3 plays an important part in the calculation of RPM: an ‘average’ or
‘typical’ passenger needs to be introduced to serve as the standard/reference point for
evaluation. An implicit assumption is actually included in the description of Assumption 5.3:
the number of passengers who have adopted a given recommended itinerary is nonzero (i.e. a
positive integer). This is just what Assumption 5.6 says, but Assumption 5.6 does not further

require the existence of an ‘average’ passenger.

Assumption 5.7 plays a key role in the calculation of RUM (to be presented later in the next
subsection). It seems to be a bold assumption due to the fact that some of the relevant issues
(i.e. LAT-related issues) have not been touched upon in previous transport studies. Despite
disregarded in the literature, this does not mean that the relevant issues are unimportant. The
concepts of PAT (c.f. Bates et al., 2001; Noland and Polak, 2002) and LAT (c.f. Senbil and
Kitamura, 2004) have been mentioned mainly in the context of (macroscopic) economic
studies with a focus implicitly placed on direct routes, whereas the focus of this section is
placed on individual passengers (i.e. taking into account the heterogeneity among passengers
on a microscopic level) and on transfer-involved rail routes. If an individual passenger’s
standpoint is adopted, there would be a diverse set of possible scenarios for a long-distance,
transfer-involved rail journey (e.g. those identified critical routes in British railways), which
renders a simple demarcation of journey purpose (i.e. commuting/leisure/business, c.f. Table
1.1 in Chapter 1) inappropriate. Here, in Assumption 5.7, the emphasis is placed on the
possible existence of time-critical scenarios in inter-city rail travel. For example, a young
man going from one city to another to attend a job interview, a journey to a major airport
located in another city, a journey to watching a sports game in another city, etc. Although
these scenarios may be regarded as ‘untypical’, they should not be ruled out in an analytical

model as long as there is not sufficient evidence to refute these possibilities.
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DU(C) > DU(A) > DU(B)

Fg% e e

AT t

Figure 5.10 An illustrative example of Assumption 5.7 and Assumption 5.8
(NOTE: LAT = the latest-tolerable arrival time of a given passenger; DU = disutility; t2 = the
scheduled arrival time of the chosen itinerary; t1 = the scheduled arrival time of the previous
itinerary in the recommended list; A, B, C = the identifiers for the corresponding intervals)

Assumption 5.8 is a supplement to Assumption 5.7, which can be regarded as an application
of the relevant concepts in Decision Theory (c.f. Section 2.6). Figure 5.10 (see above) gives a
more tangible illustration of Assumptions 5.7 and 5.8: if a passenger arrived at the right hand
side of his/her LAT (i.e. within Interval C), the disutility caused would be higher than if
he/she had arrived within Interval A or Interval B; meanwhile, arriving within Interval B
would cause the least disutility (compared with Interval A or C) based on Assumption 5.8
that a passenger would minimise his/her (expected) disutility (i.e. maximise (expected) utility,
c.f. Subsection 2.6.2) when making a choice. Note that Figure 5.10 is only one of the
possibilities (of rescheduling) to avoid DU(C): the figure is employed only for the
convenience of illustration. That is, a passenger can always have a set of alternative options
to avoid DU(C): 1) shift to another (intra-modal) recommended itinerary with a higher
expected utility (e.g. Figure 5.10); 2) shift to another mode of transport and itinerary with a
higher expected utility; 3) reschedule, well ahead of time, the subsequent activities at the
destination; and 4) cancel the whole journey. In a word, DU(C) > DU(A) in the figure is not
compulsory, and this further assumption underlying Figure 5.10 is only employed to make
the relevant concepts more tangible. Moreover, it would be helpful for better understanding
these two assumptions by comparing them with the relevant assumptions underlying previous
studies such as Small (1982), Mahmassani and Chang (1986), and Bates et al. (2001). Firstly,
Intervals A, B, and C in Figure 5.10 can be viewed as an extension of the concept of
‘indifference band’ in Mahmassani and Chang (1986), which are no longer narrowly defined
in the context of urban car commuters. Secondly, in line with Small (1982) and Bates et al.
(2001), Figure 5.10 also implicitly assumes the existence of ‘schedule disutility’. However,
Figure 5.10 here does not make further assumptions on linearity in schedule disutility and on
linearity in the overall disutility (i.e. a linear combination of journey time disutility, fare

disutility, schedule disutility, etc) and only slightly involves ordinal (partially cardinal)
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utilities (i.e. DU(C) > DU(B) and DU(A) > DU(B) in Figure 5.10), which avoids extra
unnecessary assumptions (according to Occam’s razor) and avoids the potential problem of
interpersonal utility comparisons (to be further explained in Section 5.5). Thirdly, the
introduction of Assumption 5.7 is based mainly on the following two observations in reality.
On the one hand, every person has exactly 24 hours per day and 7 days per week: excluding
those daily routines such as sleeping, eating, and working, the available time for trips is
inherently limited and hence the existence of LATs is natural. On the other hand, an implicit
assumption that schedule disutility can play a predominant role in affecting itinerary choice is
based on the observation that the other factors such as fare and journey time are often the
same (or quite similar) in British railways in most cases, for a given direct route (or each part
of a given transfer-involved route) is in most cases operated by a single rail operator in

Britain’s passenger rail system.

Assumption 5.9 is employed to reflect the heterogeneity in passengers’ perception of
potential delays. It should be noted that these ‘unwary’ passengers may be very wary in daily
life, but becomes ‘unwary’ when making an itinerary choice due to various reasons. For
example, an overoptimistic estimation of the reliability of a recommended itinerary due to a
lack of experiential information. Figure 5.11 below provides an illustrative example of

Assumption 5.9.

16:04
|| | |

16:0016:02 16:22 16:30

A J

Figure 5.11 An illustration of Assumption 5.9
(Suppose the scheduled arrival time of the chosen itinerary is 16:00, a passenger with an LAT
of 16:02 or 16:04 is said to be ‘unwary’)

5.4.3 The analytical model
Based on the assumptions presented in the previous subsection, RUM (Route-oriented Utility

Measure) can be defined and calculated by the following analytical model (i.e. Eq. (3) and Eq.

(4)), which can be easily extended to quantify the effect of modified pre-trip information.
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In Equations (3) and (4) above, the meanings of the involved notations are listed in the

following:

- Those subscripts 1, p, j, k respectively represent route identifier, period identifier, date
identifier, and itinerary identifier.

- The three symbols schypjk, mdrpjk, and act:pjk respectively correspond to the
scheduled arrival time of a given itinerary, the pre-modified arrival time of the (same)
itinerary, and the actual arrival time of the (same) itinerary. (c.f. arrs, arrm, and arr, in
Figure 5.1 in Subsection 5.2.2)

- The meanings of A1, A2, and Az have been explained in Eq. (3), and the meaning of A
is to be explained later in a further explanation of the analytical model (in this
subsection).

- The symbol f(act:p,jx) is an evaluation function for measuring the percentage of
passengers who could have gained in utility of a given (studied) itinerary, the specific
form of which depends on the position of act;pjk on the time axis relative to schypk
and/or mdyp k.

- RUM is short for Route-oriented Utility Measure, which is the proposed utility
measure to quantify the effect of modified pre-trip information.

- The two capital letters J and K respectively represent the number of days during a

given observation period and the number of studied (critical) itineraries per day.
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Although the involved notations have been briefly explained (see above), the mechanism of
those equations has not been explained and how to determine several key parameters (e.g.
schepjk, Mmdrpjk, and act:p k) remains unclear. In the following, a more detailed explanation is
to be presented about the key parameters involved and the mechanism of the analytical model

as a whole.

Firstly, it should be noted that the three involved parameters in Eq. (3) — schrpjk, md:p,jk, and
actrp,jk — have the same meaning of the three symbols arrs, arrm, and arr. in previous sections
(c.f. Figure 5.1 in Subsection 5.2.2 and Eq. (2) in Subsection 4.3.8). The reason for the
change of notations is mainly due to the consideration that the previous illustrations have
been oriented to a given (studied) itinerary, whereas the emphasis here is placed on that each
studied itinerary is a member of a given sample set. Since the meanings are the same, the
methods adopted in the determination of arrs, arrm, and arr. are also applicable to the
determination of schypjx, mdrpjk, and act:pjk. More specifically, the scheduled arrival times
(denoted by schy ik here) can be easily determined from the timetable data; the pre-modified
(advertised) arrival times (denoted by md:pjk) can also be generated from the proposed
algorithmic approach in Chapter 4 (c.f. Algorithm 4 in Section 4.3); and the (reconstructed)
actual arrival times (denoted by act;p k) can also be determined by adopting the method
presented in Subsection 5.2.5. Here, special attention should be paid to the determination of
act:pjk: despite different assumptions adopted in RPM-based analytical method (in the
previous section) and RUM-based analytical method (in this section), the method proposed in
Subsection 5.2.5 (i.e. Table 5.1) also applies to the determination of act;px here in the RUM-
based model. However, the interpretation of Table 5.1 (in Subsection 5.2.5) needs to be
changed: it is no longer oriented to an ‘average’ passenger, but is oriented toward each
individual passenger; and the reconstructed (actual) arrival time of a studied itinerary can be
interpreted as the most likely arrival time for most of the relevant passengers (i.e. those who

have chosen this itinerary).

Once the three involved parameters (i.e. schrpjk, md:pjk, and act.pjx) are determined for each
studied itinerary (during an adopted observation period), Eq. (3) can then be applied to
conduct itinerary-level analysis. Since the three intermediate parameters — A1, A, and Az —
can be easily derived from schypjk, md:pjk, and actpk, the only remaining parameter to

determine is A. In fact, A as the denominator is based on an implicit assumption made on the
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distribution of the LATs (latest-tolerable arrival times) of the relevant passengers (who have
chosen a particular itinerary): since little is known about the distribution of their LATs, a
uniform distribution is introduced (based on the principle of indifference, c.f. Section 2.6),
bounded by the scheduled arrival time of the chosen itinerary and an unknown but finite

upper bound.

Figure 5.12 below provides an illustration of how to determine A. A represents the length of
the interval between the scheduled arrival time (schypjk = 16:00) of this itinerary and a finite
upper bound denoted by LAT max. Adopting the scheduled arrival time (16:00 in this
illustrative example) as the lower bound of the distribution of LATs is mainly based on
Assumption 5.9 in the previous subsection: the existence of ‘unwary’ passengers should not
be ruled out unless there is sufficient evidence to refute this assumption. The upper bound
LAT max is unknown but should be finite: in reality, a passenger’s daily activities would
unavoidably be constrained by basic physical and psychological needs. In realistic
applications (of Eq. (3)), scenario-based values could be assigned to LAT max to facilitate
the specific calculations. As soon as the lower and upper bounds of the distribution of LATs
are determined, the parameter A (i.e. the length of the interval/domain) can be determined and

hence be used to solve Eq. (3).

probability

luﬁ |
I
|

16:00 LAT max ¢

Figure 5.12 An illustration of the distribution of LATs of the passengers having chosen a
studied itinerary (NOTE: the scheduled arrival time of this particular itinerary is 16:00; A is
the length of the interval between 16:00 and LAT max, which could be e.g. 1h, 2h, or even

3h, considering there might be some passengers having a considerably flexible schedule.)

Based on the introduction to the relevant parameters (in the above), each of those fractions

(i.e. AI/A, (A2 — A3)/A and -A1/A) in Eq. (3) can then be interpreted as follows:

- If the actual arrival time is no less than the pre-modified arrival time (i.e. actrpjx >

md;pjk), then those passengers whose LATs lying between the scheduled arrival time
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and the pre-modified arrival time would be better off if the pre-modified version has
been adopted, either by shifting to the previous itinerary or by rescheduling the
subsequent activities.

- Ifthe actual arrival time lies between the scheduled arrival time and the pre-modified
arrival time (i.e. schypjk < actrpjk < md:pjk), then those whose LATs lying between
the scheduled arrival time and the actual arrival time would be better off, but those
whose LATs lying between the actual arrival time and the pre-modified arrival time
would be worse off.

- If the actual arrival time is no larger than the scheduled arrival time (i.e. actrpjx <
schyp k), then those whose LATs lying between the scheduled arrival time and the

pre-modified arrival time would be worse off.

Once the utility change in each studied itinerary is calculated, Eq. (2) can then be used to
synthesise the results of all itineraries for a studied route during an adopted observation
period. Here, equal weights are assigned to all involved itineraries based on the principle of

indifference (c.f. Section 2.6 and Assumption 5.5 in Subsection 5.4.2).

5.4.4 A small numerical example

In order to help better understand the mechanism of the RUM-based analytical model
(presented in the previous subsection), a small numerical example is employed in this

subsection to illustrate the specific calculations.

Table 5.19 below depicts an imaginary route containing three studied itineraries (denoted by
il, 12, and 13) per day and the observation period adopted is a particular day. The three
parameters arr_s, arr_m, and arr_a (i.e. schypjx, mdrpk, and act.pjk) have all been
determined for each of the three studied itineraries and are listed in Table 5.19. From the
table (Table 5.19) we can see that the three studied itineraries respectively correspond to the

three scenarios in Eq. (3) in the previous subsection.
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Table 5.19 A fictitious critical route containing three studied itineraries

I arr s | arr m | arr a
il 15:00 15:12 15:15
2 16:00 16:15 16:09
i3 17:00 17:05 16:58

Figure 5.13 below adopts the values of arr_s, arr m, and arr_a in Table 5.19 to illustrate how
to calculate the RUM for this example route. To help better understand some abstractions, a
physical interpretation is adopted here in this figure. Suppose each of the three itineraries in
Table 5.19 corresponds to a set of N passengers (the three Ns in Figure 5.13 are treated as
indistinguishable based on Assumption 5.5 in Subsection 5.4.2), and the LATs (latest-
tolerable arrival times) of the N passengers are evenly distributed on the interval between two
adjacent arrival times (e.g. [15:00, 16:00]) if the headway of this example route (i.e. 60 mins)
is adopted as the parameter of A in Eq. (3). Then, we can apply Eq. (3) (presented in the

previous subsection) to each of these three itineraries to calculate the itinerary-level utility

change (i.e. f(actipx)).

A=H=60
RUM = f(arr _a)=1/18=5.6%

15:05 15:20 A 12
A KIXN %XN 12
arr  a(il))=—= = =
/( —a) A N N 60
A -A AKXN—A;xN %XN—%XN 3
. i2Y)) = 2 3 _ — S
flarr_a(i2)) A N N 60
A —%XN -%XN 5
arr _a(i3))=-—1= = =
Jarr_a(i3)) A N N 60

Figure 5.13 An illustration of how to calculate the RUM for the example in Table 5.19
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For Itinerary 1 (i.e. il in Table 5.19), arr_a(il) (= 15:15) is greater than arr m(il) (= 15:12).
The evaluation function under this scenario is f(arr_a(il)) = Ai/A = 12/60 (see Figure 5.13).
What does this obtained result mean? It means that approximately 20 percent of the N
passengers choosing this itinerary could have benefited if replacing arr_s(il) (= 15:00) with
arr_ m(il) (= 15:12). Alternatively, the result can be interpreted as the probability that a
passenger choosing this itinerary could have gained in utility is approximately 0.2 if
providing arr_m(il) instead of arr_s(il). Here, ‘approximately’ is used to emphasise that the
result is only an estimation based on the available data and the relevant assumptions, and it is
subject to uncontrollable errors from within the adopted data and assumptions themselves.
Why could this (i.e. increase in utility) happen? This is because the information about
arr_m(il) (= 15:12) could alert those passengers lying between arr_s(il) and arr_ m(il) (i.e.
[15:00, 15:12]) to take actions (at an early stage) to avoid/reduce the disutility caused by
being late (i.e. arriving later than their LATs), and the other passengers (i.e. those lying
between [15:13, 16:00]) would be neither better off nor worse off. That is, those between
[15:13, 15:15] would remain being late and those between [15:16, 16:00] would remain being

on time, no matter whether arr m(il) (= 15:12) were informed.

Having obtained an understanding of the logic behind the analysis of Itinerary 1, the analyses
of Itinerary 2 (i2) and Itinerary 3 (i3) can be understood in a similar way. Under the scenario
of Itinerary 2 (i.e. arr_s <arr_a <arr_m), those between arr_s(i2) and arr_a(i2) (i.e. [16:00,
16:09]) would be better off while those between arr_a(i2) and arr m(i2) (i.e. [16:09, 16:15])
would be worse off if the pre-trip information about arr m(i2) (rather than that about
arr_s(i2)) had been disseminated. Analogous to the analysis of Itinerary 1, the information
about arr m(i2) (= 16:15) could benefit those between arr_s(i2) and arr_a(i2) (i.e. [16:00,
16:09]) by enabling them to have sufficient time to take actions to avoid/reduce the disutility
of being late. However, this piece of modified pre-trip information (about arr m(i2)) would
meanwhile increase the disutility of those between arr_a(i2) and arr_ m(i2) (i.e. [16:09, 16:15])
by, for example, pushing them away from the most advantageous option to adopt a less
advantageous option (e.g. shifting from the current itinerary (corresponding to Interval B in
Figure 5.10 in Subsection 5.4.2) to the previous itinerary (corresponding to Interval A in
Figure 5.10)). Here the key to understanding the increased disutility for those between
arr_a(i2) and arr_ m(i2) are Assumptions 5.6 and 5.8 in Subsection 5.4.2: since it is assumed
that a number of passengers have adopted this itinerary (and rail transport) under the

unmodified pre-trip information (Assumption 5.6), and that each passenger would minimise
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his/her expected disutility when making the itinerary choice (Assumption 5.8), a change of
option (mode and itinerary) would to some degree increase the disutility of a passenger
whose LAT lies between arr_a(i2) and arr_m(i2): although the passenger would be able to
arrive at the destination station before his/her LAT by either adopting the most advantageous
option (i.e. i2) or adopting a ‘disutility-reduction’ option (resulting from the pre-modified

arrival time arr_m(i2)), the ‘disutility-reduction’ option would not be as advantageous as i2.

Based on the above considerations, the percentage of passengers who could have gained in
utility is 3/60 for i2 (i.e. f(arr_a(i2)) = (A2 - A3)/A = 9/60 — 6/60 = 3/60) if the modified pre-
trip information about arr_m(i2) (rather than that about arr_s(i2)) had been disseminated. The
same logic applies to Itinerary 3: since arr_a(i3) (= 16:58) <arr_s(i3) (= 17:00), the pre-trip
information about arr_ m(i3) (= 17:05) would shift a passenger whose LAT is between 17:00
and 17:05 from the most advantageous option (i.e. i3) to a ‘disutility-reduction’ option, which
would bring extra disutility to the passenger. Therefore, the percentage of passengers who
could have gained in utility is -5/60 for i3 (i.e. f(arr_a(i3)) = -A1/A = - 5/60) if the unmodified
pre-trip information about arr_s(i3) had been replaced with the modified pre-trip information

about arr m(i3).

Averaging the three obtained itinerary-specific indices, a route-level measure of RUM can
then be calculated (i.e. 5.6% in Figure 5.13). That is, the modified pre-trip information (about
pre-modified arrival times) could have enabled approximately 5.6% passengers to gain in
utility for the studied route during the studied period. Note that here the example is fictitious,
but those results obtained from the analyses of the identified critical routes in British railways
(to be presented in the next section) are all based on large samples (containing hundreds of

records) of real-world data.

5.5 Analyses of several identified critical routes using RUM

5.5.1 Data preparation

In this section, a number of identified critical routes in Britain’s passenger rail system are to

be analysed using RUM (Route-oriented Utility Measure) proposed in the previous section
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(i.e. Section 5.4). The aim of these analyses is twofold: on the one hand, they are utilised to
quantify the effect of the modified pre-trip information (generated from the proposed
algorithmic approach in Chapter 4) on the studied routes from a different perspective (with
the RPM-based analytical method presented in Section 5.2); on the other hand, they are

employed to enrich the understanding of these identified critical routes in British railways.

The data adopted to conduct these analyses are the same with those adopted in Section 5.3:
historical train movements data about the relevant critical routes have been collected from

Realtime Trains (RTT) during a 18-months period between September 2015 and March 2017.

The same list of nine studied routes (with that in Section 5.3) is adopted here, in which each

route has been identified as critical during the 18-months period:

Bournemouth — Southampton Central — Brighton

Ebbw Vale Town — Cardiff Central — Birmingham New Street
Liverpool Lime Street — Manchester Piccadilly — Doncaster
Rugeley Trent Valley — Birmingham New Street — Hereford
Ilkley — Leeds — Middlesbrough

London Kings Cross — York — Scarborough

Harwich Town — Manningtree — Norwich

Knottingley — Wakefield Kirkgate — Nottingham

Sudbury (Suffolk) — Marks Tey — London Liverpool Street

Four observation periods (again, the same with those in Section 5.3) are selected to conduct
the analyses of these nine routes, each of which contains 2-months (8-weeks) historical data
(c.f. Subsection 5.2.4): Period 1 (P1) is between 12 October 2015 and 4 December 2015,
Period 2 (P2) is between 25 January 2016 and 18 March 2016, Period 3 (P3) is from 13 June
2016 to 5 August 2016, Period 4 (P4) is from 3 October 2016 to 25 November 2016, and
Period 5 (P5) is from 16 January 2017 to 10 March 2017.

The sampling method adopted in generating the modified pre-trip information is a semi-

dynamic method based on an assumption of ‘the nearer, the more similar’ (c.f. Subsection

5.2.4). The sample size adopted for calculating RUMs is 4 weeks (c.f. Subsection 5.2.4).
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Moreover, the specific technicalities used in reconstructing the actual arrival times can be

found in Subsection 5.2.5.

5.5.2 The results

Based on the analytical model, the available data, and the relevant technicalities, the results
from RUM-based analyses of the nine studied critical routes have been obtained and are
presented in Table 5.20 below. The meanings of the involved notations are listed in the

following:

- P1, P2, P3, P4, and PS5 respectively correspond to Period 1 (12 October 2015 ~ 4
December 2015), Period 2 (25 January 2016 ~ 18 March 2016), Period 3 (13 June
2016 ~ 5 August 2016), Period 4 (3 October 2016 ~ 25 November 2016), and Period 5
(16 January 2017 ~ 10 March 2017).

- E(P) represents the average over the five observation periods (i.e. P1 ~ P5).

- N per P means the number of analysed itineraries during each of the five observation
periods (i.e. P1 ~ P5).

- All the real numbers in Columns P1 ~ P5 and Column E(P) represent percentages (e.g.
0.61 means 0.61%)).

- BSB represents the route Bournemouth — Southampton Central — Brighton.

- ECB represents the route Ebbw Vale Town — Cardiff Central — Birmingham New
Street.

- LMD represents the route Liverpool Lime Street — Manchester Piccadilly — Doncaster.

- ILM represents the route Ilkley — Leeds — Middlesbrough.

- RBH represents the route Rugeley Trent Valley — Birmingham New Street — Hereford.

- KYS represents the route London Kings Cross — York — Scarborough.

- HMN represents the route Harwich Town — Manningtree — Norwich.

- KWN represents the route Knottingley — Wakefield Kirkgate — Nottingham.

- SML represents the route Sudbury (Suffolk) — Marks Tey — London Liverpool Street.

- The value (i.e. 2.8) in the bottom cell of Column E(P) is the average of the six

positive values in the column.
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Table 5.20 The evaluation results for the nine studied critical routes using RUM (unit: %)

Pl | P2 | P3 | P4 | PS5 |E®P)|NperP

BSB | 0.61 | 5.76 045 | 2.3 200
ECB | -3.63 | -2.97|-3.07 | -8.31 | -4.58 | -4.5 200
LMD | -11.19 | 3.47 | -1.02 | -2.51 | 2.41 | -1.8 120

ILM 2.71 | 2.92 2.8 100

RBH | 4.34 | 1.95 1.66 | 2.7 180

KYS 5.15 | 1.12 | 6.05 | 4.1 160

HMN 253 | -1.2 | 1.39 | -0.8 180

KWN 231|203 | 2.2 180

SML 254 1219 | 24 140
P 2.8

Note that the parameter A in the analytical model (c.f. Eq. (3) in Subsection 5.4.3) has been
set to 60 minutes (i.e. the headway of these studied routes) in the analyses. Moreover, it
should be noted that those blank cells in the above table (Table 5.20) are either due to
planned/predictable cancellations (e.g. BSB, c.f. Subsections 4.3.7 and 5.3.2) or due to the
changes in the list of identified critical routes (e.g. KWN did not enter the list during P1 — P3,
c.f. Subsection 5.3.9).

When looking at those specific evaluation results in Table 5.20, the first reaction may be a
shock: Why could several of these routes (i.e. ECB, LMD, and HMN) be associated with
negative values? Why do those RPM-based counterparts of these negative results (c.f.
Subsections 5.3.3, 5.3.4, and 5.3.8) reveal a totally different effect of the modified pre-trip
information about these routes (i.e. ECB, LMD, and HMN)? In order to get a better
understanding of these ‘abnormal’ results, an in-depth investigation into the sample data
about and the characteristics of the relevant routes has been conducted, the findings of which

are to be presented in the next subsection.

Moreover, the gains in RUM brought by the proposed algorithmic approach (corresponding
to those positive decimals in Table 5.20) seem to be relatively small: What do these modest
gains in RUM mean? Are they worth pursuing? Such questions are to be answered in the next

subsection, with the aid of illustrative examples.
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5.5.3 Interpretation

As mentioned in the previous subsection, some of the evaluation results in Table 5.20 seem to
be ‘abnormal’, indicating that the effect of the modified pre-trip information (generated from
the proposed algorithmic approach) is negative on the corresponding routes (i.e. ECB, LMD,
and HMN) in terms of RUM (Route-oriented Utility Measure). More strangely still, the
counterparts of these negative results in the RPM-based analyses (c.f. Subsections 5.3.3, 5.3.4,
and 5.3.8) reveal that significant improvements could be expected in terms of RPM (Route-

oriented Performance Measure).

After a comprehensive examination of the relevant data and the technicalities involved in the
proposed analytical models, the following four aspects have been recognised as the most

possible reasons for those ‘abnormal’ (negative) results in Table 5.20.

Firstly, those ‘abnormal’ results may be attributed to the difference between the mechanism
of the RPM-based method and that of the RUM-based method. Recall that the RPM-based
analytical method (c.f. Sections 5.2 and 5.3) is mainly built on an assumption of an ‘average’
passenger and an assumption of an absolute standard/threshold (e.g. 5 mins lateness) for
determining whether an ‘average’ passenger has been delayed. That is, those small delays
(e.g. <5 mins) and early arrivals (i.e. negative values of delays) are regarded as ‘successful
realisations’ in the context of RPM-based method. By contrast, under the analytical
framework of RUM, those small delays and early arrivals would also be likely to increase the
overall disutility associated with a studied route, considering the heterogeneity in passengers’
perception of delays. Moreover, as illustrated in Subsection 5.3.12, those significant
improvements in RPM the modified pre-trip information could bring to certain routes (e.g.
LMD) can largely be attributed to a combination of a relatively high percentage of medium-
sized delays and relatively generous allowances added (c.f. the empirical results presented in
Subsection 5.3.12). In the RUM-based analytical model, however, a combination of medium-
sized delays and generous allowances would be likely to introduce a lot of negative items (c.f.
Eq. (3) in Subsection 5.4.3) and hence would be likely to lead to a decrease in the overall

utility.

Secondly, those ‘abnormal’ results may have been caused by the inherent imperfections in the

RUM-based model itself. As has been emphasised in Section 5.4, the RUM-based analytical

206



model is largely experimental and is built on several ‘bold’ assumptions. More specifically,
several applications of the principle of indifference (POI, c.f. Section 2.6) would be likely to
lead to systematic errors in the evaluation results. For example, in the synthesis of itinerary-
level indices in Eq. (4) (c.f. Subsection 5.4.3), equal weights are assigned to all involved
itineraries (based on Assumption 5.5), which may lead to a biased result in the scenario that
some of the involved itineraries correspond to significantly more passengers than the others

during a given observation period.

Thirdly, the timetable design (at the tactical planning phase, c.f. Section 2.5) of the relevant
routes may have resulted in those ‘abnormal’ values. Here, the two routes of ECB (Ebbw
Vale Town — Cardiff Central — Birmingham New Street) and HMN (Harwich Town —
Manningtree — Norwich) are employed to serve as illustrative examples (see Figures 5.14 ~
5.17). Recall that in the introduction to the fundamentals of railway timetabling and
operations (c.f. Section 2.5), two seemingly unrelated concepts have been respectively
explained: working timetable and running time supplement. Roughly speaking, a working
timetable is the counterpart of a published passenger timetable, which contains more
technical details and is targeted at rail industry professionals. And running time supplements
are added to the published passenger timetables for certain (direct) train lines to increase their
robustness under small delays. Recall also that in the introduction to the concept of running
time supplement (in Section 2.5) the operational practice in British railways has also been
briefly mentioned: in Britain, running time supplements are not explicitly defined but are
included in the timetables. After an in-depth investigation into the relevant published
timetables and working timetables of the nine studied routes in this section, it is recognised
that running time supplements have been implicitly included in the published timetables for
several involved train lines. Figures 5.14 ~ 5.17 provide some illustrative examples of these
implicitly added running time supplements, in which Figures 5.14 and 5.15 correspond to the

feeder leg of ECB and Figures 5.16 and 5.17 correspond to the connecting leg of HMN.
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C O ©® www.realtimetrains.co.uk/train/P7

Mileage WTT GBTT Realtime Route Allowances
M Ch Location Pl Amr Dep Arr Dep Arr Dep Dly Line Path Eng Pth Prf
0 0 Ebbw Vale Town [EBB] where this service forms from 2N07 from Bridgend 0938 0938 0938 RT
1 32 Ebbw Vale Parkway [EBV] 0940%: 0941 0941 0941 No report
6 38 Llanhilleth [LTH] 0949 0949%: 0949 0949 No report
9 22 Newbridge [NBE] 0955 0955%: 0955 0955 No report
12 61 Crosskeys [CKY] 1002": 1003%: 1003 1003 No report
14 55 Risca & Pontymister [RCA] 1008 1008%: 1008 1008 No report
16 6 Rogerstone [ROR] 1011%2 1012%: 1012 1012 No report
17 46 Pye Corner [PYE] 10152 1016 1016 1016 No report

29 70 Cardiff Central [CDF] where this service forms 5N13 to Cardiff Central 0 1035 1038 1041 6L

Figure 5.14 Running time supplements Example One (Source: www.realtimetrains.co.uk,

accessed 15 Jan 2017): the column under ‘WTT’ is the working timetable and ‘GBTT’
corresponds to the published timetable; Figures 5.15~5.17 below have the same format.

C 00 ©® www.realtimetrains.co.uk/train/P7

Mileage WTT GBTT Realtime Route Allowances
M Ch Location Pl Armr Dep Arr Dep Arr Dep Dly Line Path Eng Pth Prf
0 0 Ebbw Vale Town [EBB] where this service forms from 2N21 from Cardiff Central 1637 1637 1637 RT

1 32 Ebbw Vale Parkway [EBV] 1639%: 1640 1640 1640 No report

6 38 Llanhilleth [LTH] 1648 1648 1648 1648 No report

9 22 Newbridge [NBE] 1654 1654': 1654 1654 No report

12 61 Crosskeys [CKY] 1701% 1702%: 1702 1702 No report

14 55 Risca & Pontymister [RCA] 1707 1707°2 1707 1707 No report

16 6 Rogerstone [ROR] 1710%: 1711%: 1711 1711 No report

17 46 Pye Corner [PYE] 17142 1715 1715 1715 No report
29 70 Cardiff Central [CDF] where this service forms 5B69 to Cardiff Central 4B 1734 1737 1738 4L

Figure 5.15 Running time supplements Example Two (Source: www.realtimetrains.co.uk,
accessed 21 Feb 2017)

From Figures 5.14 and 5.15, it can be seen that a 3-minutes time supplement is added to
Cardiff Central (the transfer station) for this feeder line, which means that the scheduled
window between the feeder line and the connecting line is implicitly increased by 3 minutes.

A conceivable effect of these implicitly included time supplements is a reduced risk of
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missed transfers, and hence a reduced percentage of large arrival delays and reduced extra
allowances added by the proposed algorithmic approach in Chapter 4, which might introduce
a lot of negative items (c.f. Eq. (3) in Subsection 5.4.3) and hence would lead to a decrease in

the overall utility.

C (0@ ® wwwe.realtimetrains.co.uk/train/G

51 52 Colchester [COL] 2 0946 0948 0946 0947 0946 0948% RT
59 35 Manningtree [MNG] 3 0955% 0956%: 0955 0955 0956%: 0958 1L 1
68 59 Ipswich [IPS] 3 1006%: 1008%: 1007 1008 1007% 1010 1L
94 43 Diss [DIS] 1 1028 1029 1028 1029 1031 1032% 3L 2
114 40 Norwich [NRW] 1 1048 1050 1050 2L

Figure 5.16 Running time supplements Example Three (Source: www.realtimetrains.co.uk,
accessed 15 Jan 2017)

C (@ © www.realtimetrains.co.uk/train/G

51 52 Colchester [COL] 2 1246 1248 1246 1247 1246": 1248, RT
59 35 Manningtree [MNG] 3 1255Y: 1256%: 1255 1255 1255Y. 1256% RT 1
68 59 Ipswich [IPS] 3 1306% 1308%. 1307 1308 1307 1309% RT
94 43 Diss [DIS] 1 1328 1329 1328 1329 1328% 1329% RT 2
114 40 Norwich [NRW] 1 1348 1350 1346% 1E

Figure 5.17 Running time supplements Example Four (Source: www.realtimetrains.co.uk,
accessed 21 Feb 2017)
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From Figures 5.16 and 5.17, it can be seen that discrepancies between the published timetable
and the working timetable exist not only at the transfer station (i.e. Manningtree) but also at
the destination station (i.e. Norwich). At Manningtree, the scheduled departure time (of the
connecting leg of HMN) in the working timetable is 1.5 minutes later than its counterpart in
the published passenger timetable, indicating that the scheduled window between the feeder
leg and the connecting leg for this route has been implicitly increased by 1.5 minutes.
Meanwhile, a 2-minutes time supplement has been implicitly added to the destination station
(i.e. Norwich). It is conceivable that these implicitly included time supplements have reduced
to some degree the overall magnitude of arrival delays at Norwich, and hence might
introduce a lot of negative items (c.f. Eq. (3) in Subsection 5.4.3) leading to a decrease in the

overall utility.

Lastly, but not least, other external factors may have led to those ‘abnormal’ results. As
mentioned in Subsection 5.2.4, there are various external factors that may influence train
movements. Although a lot of effort has been put into the analyses of the nine studied routes
(either using RPM or using RUM): the choice of the five observation periods (i.e. P1 ~ P5)
has carefully controlled several external factors such as public holidays and half-yearly
changes in the long-term timetable, and the impact of planned/predictable cancellations has
also been controlled in the sampling process, there may still exist some undetectable or

uncontrollable factors that exert influence on the evaluation results.

In the above, potential factors resulting in those negative values have been systematically
sorted out. Now let us shift our focus from those negative values to those positive values. At
the end of the previous subsection, two relevant questions about those positive decimals in
Table 5.20 have also been raised: What do these modest gains in RUM mean? Are they worth
pursuing? In the following, the Author tries to answer these short but tricky questions by re-

examining the relevant theories and their underlying assumptions.

Firstly, it should be emphasised that each positive/negative decimal in Table 5.20 represents
the percentage of passengers who could expect a utility increase/decrease, rather than the
percentage increase/decrease in the overall utility. For example, the decimal 2.8 in the bottom
cell of Table 5.20 means that on average 2.8% of the passengers choosing the six routes that

are associated with positive values (in Table 5.20) would expect a utility increase if the

210



proposed algorithmic approach is adopted, and meanwhile the other 97.2% passengers would
neither gain or lose in utility. A fundamental difference between ‘the percentage of
passengers who could expect a utility increase/decrease’ and ‘the percentage
increase/decrease in the overall utility’ lies in that the former does not involve inferpersonal
utility comparisons but the latter does. According to Briggs (2017), the expected utility
theory itself is far from perfect and one of its potential limitations is the so-called problem of
interpersonal utility comparisons: Mike’s utilities are constituted by Mike’s preferences;
Cathy’s utilities are constituted by Cathy’s preferences; Mike’s utility 10 is not necessarily
equal to Cathy’s utility 10. Although a number of potential solutions to this problem have
been put forward in the literature such as the concepts of ‘extended preferences’ and
‘extended utility functions’ proposed by Harsanyi (1997) and Adler (2014) and several other
theoretical frameworks in welfare economics (c.f. Adler and Fleurbaey, 2016), these concepts
and theories remain immature and have not been widely accepted. Since the RUM-based
method is built upon the expected utility theory, it also suffers from this limitation: the
obtained results cannot precisely tell ‘the percentage increase/decrease in the overall utility’
but can instead tell ‘the percentage of passengers who could expect a utility
increase/decrease’. To better understand the subtleties and complexities, let us do the
following thought experiment. Note that the involved cardinal utilities (as advocated by Ng
(1997)) in the following experiment are merely employed for explanation, and the RUM

model itself does not require cardinal utilities (c.f. Section 5.4).

Let us firstly make a bold assumption that there exists an absolutely impartial judge who has
experienced all the pleasures and sufferings of a wide range of different groups of people so
that he/she/it can precisely assign to each relevant passenger an objective utility measured by
standardised/normalised/universal utils (the units of a person’s utility is called utils; here the
terminology standardised utils means they are interpersonally comparable). Now suppose
there are 100 passengers choosing the six routes (with gains in RUM) during a given period
of time (e.g. a week), each of which has the following utility function: DU(A) = -20, DU(B)
=-10, and DU(C) = -30 (based on Figure 5.10 in Subsection 5.4.2; all measured by
standardised utils). Based on the results in Table 5.20, we know that three (2.8 = 3) out of the
100 passengers could obtain utility gains, while the other 97 would stay unaffected. That is,
three out of the 100 could benefit from the modified pre-trip information by shifting from the
worst-case outcome (i.e. Interval C in Figure 5.10) to a not-too-bad outcome (i.e. Interval A

in Figure 5.10), while 97 out of the 100 would neither gain or lose in utility (i.e. staying in
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Interval B or Interval C or the interval between B and C). To simplify the estimation, let us
further assume that the average (dis-)utility of the 97 unaffected passengers is -20 (derived
from a mixture of -30 ~ -10). Then, we can calculate the percentage increase in the overall
utility by the following equation: AU = 3x[(-20) — (-30)] / [[3%(-30) + 97x(-20)]| = 1.5%.
That is, only 1.5% increase in the overall utility of the 100 passengers can be obtained if we
assume that all of them have the (same) following utility function: DU(A) = -20, DU(B) = -
10, and DU(C) = -30.

Now let us make a slight modification to the above numerical example by assuming the 97
still have the aforementioned utility function (i.e. DU(A) = -20, DU(B) =-10, and DU(C) = -
30) but the three have the following: DU(A) = -20, DU(B) =-10, and DU(C) = -100. In this
new context, although only three out of the 100 can gain in utility, the percentage increase in
the overall utility becomes non-negligible: AU = 3x[(-20) — (-100)] / [[3%(-100) + 97%(-20)]|
= 10.7%. By comparing the above two numerical examples (thought experiments), we can
see that although an average gain of 2.8% in RUM may be regarded as insignificant, this does
not mean that the percentage increase in the overall utility would not be likely to be
significant. Hence, the potential benefit of the 2.8% gain in RUM should neither be

overestimated nor be underestimated.

If the Reader finds the above thought experiments too ridiculous, there is also a non-
utilitarian argument for supporting the minority (i.e. the 2.8%): all too often, policy makers
tend to ignore the ‘minority’ and favour the ‘majority’ either by relying on their own limited
knowledge and experience or by telling ‘each individual to imagine the probability of his
being in various positions, rather than having him identify with the individuals who will
actually occupy various positions’ (quoted from Kamm (1998), and this phenomenon is
called ‘a veil of ignorance’). Of course, in the context of transport studies, we do not need to
care too much about those serious life-and-death issues discussed in Kamm (1998). Are these
‘modest’ improvements worth pursuing? Well, the answer may be ‘it depends’. It depends on
how to define ‘worthiness’ (‘man is an animal suspended in webs of significance he himself
has spun’'®). If defined from the perspective of cost efficiency, the answer may be “Yes’: all
the infrastructure manager (information provider) needs to do is just import those source

codes in the appendices of this thesis into a spare computer and make the computer spend

8 A quote from Clifford Geertz.
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several seconds per week to help some of the rail passengers arrive at their destinations on
time (without discounting the others’ interests). That is, whether to pursue these ‘modest’
improvements does not involve win-lose situations but is more like a choice between getting

some bonus and getting nothing.

5.6 Exploiting RPM and RUM to do more

In the previous sections of this chapter, two novel route-level measures have been developed
and applied to analyse several identified critical routes in British railways. In general, the
results presented in previous sections (c.f. Sections 5.3 and 5.5) provide empirical evidence to
demonstrate the effectiveness of the algorithmic approach proposed in Chapter 4. Moreover,
based on these results, conclusions/findings can also be drawn for each specific route in these

RPM- or RUM-based analyses.

Apart from these basic applications, RPM- and RUM-based analytical methods can also be
utilised in more potential applications in railway timetabling and operations. Three readily
conceivable applications are to be briefly described in this section, which act as a spur to

further exploration and argumentation in future research.

The first conceivable application is to use RPM (Route-oriented Performance Measure, c.f.
Section 5.2) to conduct more detailed assessments of rail operations. Existing performance
measures widely adopted in the industry such as PPM (Public Performance Measure, c.f.
Network Rail, 2017) are largely aggregate indices, which would hide a lot of information
about local operations. If rail operators would like to know details about the performance of

specific routes (lines), then RPM would be a potentially useful indicator.

The second conceivable application is to employ RUM (Route-oriented Utility Measure, c.f.
Section 5.4) as an additional optimisation criterion to assess and compare a set of candidate
timetables in the timetabling phase (c.f. Section 2.5). As explained in the relevant literature
(e.g. Goverde, 2005; Vromans, 2005; and Andersson, 2014), several candidate timetables
would often be firstly generated for assessment and comparison before one of them could be

chosen as the published version (i.e. the optimal among the candidates in terms of some pre-
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defined criteria such as robustness, stability, etc). Since the RUM-based method is devised to
compare two timetables that have very similar scheduled departure and arrival times (c.f.
Sections 5.4 and 5.5), it can also be extended to conduct pair-wise comparisons among
several candidate timetables to determine which version is the optimal in terms of the overall
utility of the relevant passengers. It should be noted that both RUM and RPM (c.f. the
previous paragraph) are not limited to the assessment of transfer-involved routes (as shown in
the Sections 5.2~5.5), they can be readily exploited to evaluate the large set of direct routes

(lines) within a given railway network.

A given route

Critical route? NO
YES
/// \\\
S Sy
_-”"Gains in RPM and ™~ NO
>~ RUM in previous .~
N pcrinds?//’
\\‘\ ///
Critical NO
itineraries?
y
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information about No intervention
these itineraries

according to PBPM

Figure 5.18 An augmented version of the algorithmic approach proposed in Chapter 4
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The third conceivable application is to use RUM and RPM to augment the algorithmic
approach proposed in Chapter 4. Figure 5.18 above provides an illustration of the augmented
algorithm, which can be seen as a minor modification'?of Figure 4.10 in Subsection 4.3.1.
The major difference between this augmented version (Figure 5.18) and the original version
(Figure 4.10) is that an additional conditional expression to check RUM and RPM has been
introduced. To better understand the mechanism of this modified algorithmic approach (in
Figure 5.18), let us look back at those technicalities and empirical results presented in the

previous sections of this chapter.

Table 5.21 A summary of several key parameters of the nine studied routes
in British railways

SW | NTT | MTL | Suppl* | Supp2* fType stopNum
ECB | 82* | 2 Q** 3 0 regional 7
HMN | 5 1 Sk* 1~1.5 2 regional 4
LMD | 11 3 8 0 0 long-distance 4
ILM | 10 3 7 0 0 regional 5
KYS | 8.1* 1 7.1 0 2 long-distance 3
KWN | 6* 1 6** | 1~1.5 0 regional 4
SML | 4 1 3 0 0 regional 2
BSB | 4.4* 1 34 0 0 long-distance 1
RBH | 12 3 10%* 1 3~6 regional 8

NOTE: SW = scheduled window; NTT = net transfer time; MTL = maximum tolerable lateness; Suppl = the
time supplement at the transfer station; Supp2 = the time supplement at the destination station; fType = the type
of the feeder line; stopNum = the number of intermediate stops between the departure station and the transfer
station; * = the corresponding value is a rough range or the average of different hours of a day; ** = the
corresponding value has been adjusted by incorporating the corresponding time supplement; the meanings of the
nine acronyms in the leftmost column can be found in Subsection 5.5.2.

Table 5.21 summarises a number of key parameters of the nine studied (critical) routes in
British railways, which are assumed to be the potential factors that may exert influence on
RPM and RUM. Comparing this table with those evaluation results presented in Table 5.12
and Table 5.13 (c.f. Subsection 5.3.11), we can firstly see that the reason why the proposed
algorithmic approach (i.e. PBPM) would not bring significant gains (in terms of RPM) to the
route RBH (Rugeley Trent Valley — Birmingham New Street — Hereford, c.f. Subsection
5.3.5) may be due to a combination of a relatively large MTL (Maximum Tolerable Lateness,
c.f. Subsection 3.5.2) and a quite generous supplement/allowance at the destination station
(i.e. Supp2 = 3~6): this combination would be likely to lead to a low percentage of medium-
sized delays (due to the generous allowances that have been included in the timetable) and

small extra allowances (generated from PBPM) added to the destination station (due to the

1% Since PBPM (i.e. Algorithm 4: Performance-Based Pre-Modification) is the advocated, Algorithm 3 (ltinerary-
oriented Performance Statistics) is omitted here.
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low risk of missed connections resulting from a large MTL), which further elucidates the

interpretations presented in Subsection 5.3.12.

With respect to those evaluation results in RUM-based analyses (c.f. Table 5.20 in Subsection
5.5.2), no clear patterns can be extracted from this table (i.e. Table 5.21): there are not
significant differences between the three ‘abnormal’ routes (i.e. ECB, HMN, and LMD)
corresponding to negative RUMs (listed at the upper rows of the table) and the other six in
terms of these listed parameters. However, these values corroborate a previous observation
that the distribution of train delays is influenced by many factors. Recall that it has been
observed from the analyses of big data (c.f. Section 3.8) that the distribution of train delays
(in British railways) is better modelled by those compound distributions (rather than those
‘pure’ distributions) such as g-exponential functions incorporating a number of different
random variables (i.e. a number of different influencing factors). The specific parameters
shown here in Table 5.21 (and those evaluation results about RPM and RUM presented in
Sections 5.3 and 5.5) corroborate this finding: the impact of train delays on the nine studied
transfer-involved routes cannot be simply explained by these listed parameters, implying that
there must be other explanatory variables (i.e. influencing factors). Two conceivable
additional factors are the percentage of unplanned cancellations and the level of crowdedness
at stops en route. Since these two potential factors are difficult to measure without detailed

relevant data, in-depth investigations of them are recommended for future research.

Sl1: S ma | o|s1m g m a

S2: . & S2": -4 4
S3: ¢ ¢ X S3:_¢ ¢ e
(A) (B)

Figure 5.19 An illustration of several representative scenarios of the RUM model: (A) a
collection of ‘good-case’ scenarios; (B) a collection of ‘bad-case’ scenarios. [NOTE: s = the
scheduled arrival time, m = the pre-modified arrival time, and a = the actual arrival time]
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Although it is difficult to exactly enumerate all the factors influencing the sign and magnitude
of RUM, we can still identify some rough pattern by analysing the RUM model itself (i.e.
Equations (3) and (4) presented in Subsection 5.4.3). Recall that in Equation (3) three classes
of scenarios are differentiated by the relative positioning of the scheduled arrival time, the
pre-modified arrival time, and the actual arrival time (of a given recommended itinerary), and
that Equation (4) is just a synthesis of individual evaluations. To further investigate the RUM
model, specific representative scenarios need to be firstly analysed. Figure 5.19 presents
several fairly-good-case scenarios (illustrated in Collection A) and several fairly-bad-case

scenarios (illustrated in Collection B).

In Figure 5.19 above, the three scenarios in Collection A (i.e. S1~S3) and the three in
Collection B (i.e. S1°~S3”) exactly correspond to the three classes of scenarios in Equation (3)
(c.f. Subsection 5.4.3), respectively. And the relationship between the scenarios in Collection
A and those in Collection B is one-on-one: S1 corresponds to S1°, S2 corresponds to S2°, and
S3 corresponds to S3°. The only difference between the two collections lies in the size of
|ma| (i.e. the absolute difference of m and a): S1~S3 in Collection A have a significantly
smaller |ma| than their counterparts in Collection B (i.e. S1°~S3”), which could result in
different signs (i.e. positive vs. negative) of the corresponding RUMSs. Suppose there is a
sample containing N=300 studied itineraries (of a studied route), among which exactly 100
itineraries belong to each of the three scenarios in Equation (3) (c.f. Subsection 5.4.3). Then,
Collection A in Figure 5.19 can be derived by asking the following what-if question: what
would the average scenario of each of the three classes in Equation (3) look like, if the
calculated RUM (for this particular sample) turned out to be a large positive number?
Similarly, Collection B can be derived by asking: what would the average scenario of each of
the three classes in Equation (3) look like, if the calculated RUM (for this particular sample)
turned out to be a large negative number? On the whole, Collection A guarantees that those
positive items in Equation (3) have the upper hand, while Collection B enables those negative

items in Equation (3) to predominate.

Although Collections A and B in Figure 5.19 can only be seen as special cases (i.e. each of
the six scenarios in the figure could randomly occur in a sample), the six scenarios shown in
the figure (i.e. S1~S3’) are representative and can be further generalised: at least one of the
two scenarios of S1 and S2 must predominate in a sample associated with a large positive

RUM, while at least one of the two scenarios of S2” and S3” must predominate in a sample
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associated with a large negative RUM. That is, the sign and magnitude of RUM can generally
reflect the degree of predictability of the actual arrival times of a studied route (by using the
algorithmic approach proposed in Chapter 4): the pre-modified (advertised) arrival time (m)
is close to the actual/recorded arrival time (@) in S1 and S2 (implying a high degree of
predictability), whereas the pre-modified arrival time is significantly different from the actual

arrival time in S2” and S3” (implying a low degree of predictability).

Based on the further analyses of the RUM model in the previous paragraphs, Figure 5.18 (i.e.
the third conceivable application) can then be interpreted as follows. Rather than a one-off
screening solely by executing CRF (Critical Routes Finder, c.f. Section 3.6), an additional
second-round screening is introduced in the augmented framework (presented in Figure 5.18)
to check if gains in RPM and RUM could be brought by the historical-data-based algorithmic
approach (i.e. PBPM in Chapter 4) to an identified critical route (by CRF in the first round) in
the previous observation periods (assuming detailed historical train movements data about the
route are accessible). This additional screening step simultaneously takes into account the
operator-oriented index (i.e. RPM) and the passenger-oriented index (i.e. RUM), and is
mainly aimed at double-checking if there are other uncapturable factors (e.g. unquantifiable
or undetectable factors) that may have a strong influence on the effectiveness of the proposed
algorithmic approach (for a particular route): if there are not, then gains in RPM and RUM
can be expected and hence the historical-data-based algorithmic approach can be readily
adopted to improve the pre-trip information about this studied route; if there are, then losses
in RUM can be expected and the historical-data-based approach cannot generate desirable
predictions of arrival delays for this studied route, indicating either keeping the
corresponding train schedules unchanged or devising other methods to improve the pre-trip
information about this studied route. Note that since the proposed (historical-data-based)
algorithmic approach would never result in losses in RPM (as illustrated and explained in
Section 5.3), the sign and size of RUM becomes the decisive factor. In the specific context of
the nine studied critical routes in British railways (c.f. Section 5.5), this means the proposed
algorithmic approach may not be a good therapy for the three routes associated with negative
RUMs (i.e. ECB, LMD, and HMN), indicating either no changes made to their original

schedules or considering other approaches to dealing with them.
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5.7 The limitation of the proposed measures and a potential solution

The limitation of the proposed measures in this chapter (i.e. RPM and RUM) lies mainly in
several simplifying assumptions placed on passenger itinerary choice (e.g. resorting to an
'average' passenger to reconstruct/deduct the actual arrival time of a given itinerary), which
can be further attributed to the unavailability of detailed data about passenger counts and
passenger flows. That is, the quality of the obtained results from the proposed analytical
methods in this chapter (i.e. the RPM-based method and the RUM-based method) is limited
by the availability of detailed data about passenger counts and passenger flows. In fact,
collecting passenger-related data has long been a challenging task in transport-related studies.
However, this situation has been changing in recent years thanks to the development of the

relevant devices.

A good example is the application of smart card data in a large number of relevant studies of
urban public transport in the last decade or so (see e.g. Pelletier et al., 2011; Gordon et al.,
2014). And van der Hurk (2015) even presents an application of smart card data in the
context of Dutch railways. All of these previous studies could be adopted as a reference point
for Britain’s rail industry. Good news is a number of train operating companies (TOCs) in
Britain have recently been rolling out smart card services: Figure 5.20 below provides an
illustration of South West Trains, others having participated in this scheme include ScotRail,

Southeastern, Southern, Thameslink and Great Northern, Greater Anglia, and c2c.

SOUTH WEST TRAINS SMART

A smarter way to travel

Home P Tickets explained » South West Trains Smart

Figure 5.20 The Smartcard advertisements of South West Trains
(Source: www.southwesttrains.co.uk/tickets-explained/smartcard/, accessed 22 Feb 2017)
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Despite the considerable potential underlying these newly adopted technologies, it may take
some time to build an integrated and truly useful database that enables the relevant rail
research. Observing the potential applications of the relevant technologies in the context of
Britain’s passenger rail system, here depicts a ‘blueprint’ of how to reconstruct/deduct
passengers trajectories for those transfer-involved rail routes in future research (see Figure
5.21 below). The general idea is to make use of both the smart card data and those recorded

by NRE (National Rail Enquiries).
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SOUTH WEST TRAINS SMART

A smarter way to travel

Figure 5.21 An outlook for future passenger-oriented rail research

The central idea of Figure 5.21 can be briefly explained as follows. Firstly, two databases
(denoted by DB1 and DB2 in the figure) need to be set up: one (i.e. DB1) is used to store
information about the click events corresponding to pre-planned/recommended itineraries;
and the other (i.e. DB2) is used to store information about transaction events corresponding to

fare payments at railway stations. Then, a sufficiently large sample needs to be extracted
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from each of the two databases to make comparisons and analyses according to some

predefined filtration rules to deduct itinerary-specific passenger flows.

To implement the above ‘blueprint’ for more detailed and passenger-perspective studies, two
potential obstacles should firstly be overcome. The first potential obstacle lies in technical
feasibility: to accurately identify and record each effective click would be a challenging task,
considering the huge daily traffic of NRE??. The other obstacle lies mainly in the
coordination of different rail operators: since the Smartcard scheme is still at an early stage,
only part of the train operating companies in Britain have participated in this scheme and a
particular smart card is largely restricted to operator-specific routes and stations, which is far
from able to cover those long-distance and transfer-involved routes at the time of writing this

thesis.

In a word, the development of software solutions and that of hardware solutions are
interdependent: the potential of software solutions can be fully realised only if the relevant

hardware technology could ‘catch up’, and vice versa.

5.8 Conclusions

This chapter has been mainly focused on the description of two novel route-level measures
developed to quantify the effect of modified pre-trip information. Generally speaking, the
introduction of the two route-level measures and the corresponding analytical methods can
serve the following three purposes: 1) enables empirical analyses of those identified critical
routes (presented in Chapter 3) using detailed data about historical train movements; 2)
provides a way to evaluate the effectiveness of the proposed algorithmic approach (presented
in Chapter 4) in coping with those identified critical routes; and 3) provides a reference point

for more detailed microscopic analyses of those transfer-involved rail routes.

More specifically, RPM (Route-oriented Performance Measure) is developed to evaluate the
overall performance of a given transfer-involved rail route in terms of punctuality and

reliability during a given observation period. The RPM-based analytical method is mainly

20 http://www.nationalrail.co.uk/46383.aspx
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built on an assumption of an ‘average’ passenger and an assumption of an absolute
standard/threshold for determining whether an ‘average’ passenger has been delayed, which
can be viewed as an extension of PPM (Public Performance Measure), the industry standard
adopted in British railways. Based on a detailed explanation of the underlying sample data
and the specific technicalities used, RPM-based analyses of nine identified critical routes in
Britain’s passenger rail system have been conducted. The obtained evaluation results reveal
that the modified pre-trip information generated from the algorithmic approach proposed in
Chapter 4 could, clearly, bring improvements in punctuality and reliability to these identified
critical routes. The potential limitations of RPM and the algorithmic approach proposed in
Chapter 4 have also been recognised by an in-depth investigation into the sample data about
several representative routes: like PPM, RPM tends to be unable to reflect the whole picture
of the underlying sample data, indicating the necessity of auxiliary performance indicators
such as CaSL (Cancellation and Significant Lateness); the modified pre-trip information
generated from the algorithmic approach proposed in Chapter 4 mainly covers those medium-

sized delays but has little effect on those significant delays.

As an exploration of a more comprehensive measurement incorporating more realistic
scenarios in route and itinerary choice, another route-level measure is developed called RUM
(Route-oriented Utility Measure). RUM deserts the assumptions of an ‘average’ passenger
and an absolute standard for distinguishing between lateness and punctuality. Instead, it takes
into account the heterogeneity among rail passengers and measures the change the modified
pre-trip information could have brought in the overall utility of the relevant passengers
choosing a particular route (during a given observation period). In order to implement an
RUM-based analysis, several ‘bold’ assumptions need to be introduced such as an
assumption of the existence of ‘latest-tolerable arrival times’ (LATs) and an assumption of
the existence of “‘unwary’ passengers. Moreover, the principle of indifference (POI) is
implicitly included in the RUM-based analytical model due to a lack of detailed data about
passenger flows along these transfer-involved rail routes. Based on a detailed explanation of
the underlying sample data and the specific technicalities used, RUM-based analyses of nine
identified critical routes in Britain’s passenger rail system have been conducted. The possible
reasons for several ‘abnormal’ results have been analysed by a close examination of the
underlying sample data and the mechanism of the proposed analytical models. Generally,
these evaluation results have enriched our understanding of these identified critical routes.

Although the RUM-based analytical method is largely experimental, it could easily be
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extended to conduct more realistic microscopic analyses of those transfer-involved rail routes,

as long as detailed data about passenger flows and passenger activities become available.
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Chapter 6

Conclusions

6.1 Brief summary

Passenger rail transport is one of the major alternatives to car transport in many European
countries such as Britain. However, the national railway network in Britain is becoming more
and more crowded and prone to small delays and major disruptions, due to an ever-increasing
demand for passenger rail transport over the last two decades. One of the negative effects of a
delay-prone railway network is on those transfer-involved rail journeys, due to increased
exposure to missed transfers. Conventional solutions to a delay-prone railway network are
either costly and time-consuming (e.g. an extensive upgrading of rail infrastructure), or
unable to allow for the diverse realistic scenarios in passenger rail transport (e.g. timetable
design at the tactical planning phase). Observing that advanced passenger information
systems (e.g. passenger information websites/mobile apps, departure boards within stations,
etc) have been playing an increasingly important role in passengers’ experience of rail
services in the developed world, this thesis tries to develop an information-based solution to
the problem of delay and disruption management to deal with those blind spots over which

existing solutions have little control.

Of particular interest to this thesis are those transfer-involved rail routes, which have received
relatively less attention from rail operators compared with direct routes, not only in terms of
timetable design but also in terms of pre-trip passenger information. In order to formulate the
problem of pre-trip information about those transfer-involved routes, three novel concepts —
critical transfers, critical itineraries, and critical routes — are introduced. Roughly speaking, a
critical itinerary is composed of critical transfers, each of which is delay-sensitive and is
associated with high consequence if missed. And if the recommended itinerary list (by a
journey planning system) is full of critical itineraries, the corresponding route would be

problematic in terms of punctuality and reliability and is called a critical route.
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An efficient screening algorithm, named Critical Routes Finder (CRF), is developed and
implemented to check whether there exist critical routes within a given railway system and to
find out, if existent, which of those transfer-involved routes are critical. The screening
algorithm is then applied to analyse the current National Rail timetable (valid between 11
December 2016 and 20 May 2017) adopted by British railways to identify those critical
routes within Britain’s passenger rail system. The performance of the screening algorithm is
promising in terms of computational efficiency. The screening results show that more
attention should be paid to such transfer-involved routes as London Kings Cross — York —
Scarborough, Bournemouth — Southampton Central — Brighton, etc to improve the pre-trip

information about these routes.

In order to find, from within the domain of information technology itself, a solution to the
problem of pre-trip information about those identified critical routes, a brief review of the
relevant prototypes in the literature and the relevant applications in the real world has been
conducted: it is recognised that the existing information-related approaches have not truly
touched upon the problem of critical routes, either in theory or in practice. But these existing
approaches can be utilised as building blocks to develop a solution to the problem of critical

routes.

Inspired by some existing travel information technologies, a historical-data-based approach is
developed, containing a series of easy-to-implement algorithms. The design philosophy
behind the algorithmic approach proposed is a ‘local treatment’ of those identified critical
routes (rather than a ‘holistic treatment’ of all possible routes within a railway network),
which differs from the various existing approaches. This different treatment could
significantly reduce computational complexity and meanwhile avoids disturbing information

about those non-critical routes.

Three interrelated algorithms are proposed and detailed, which are named IPS, PBPM, and
PBPMH, respectively. IPS (Itinerary-oriented Performance Statistics) has been inspired by
those individual-leg-oriented performance statistics accessible from some existing travel
information websites. Roughly speaking, IPS can be viewed as an augmented version of
those individual-leg-oriented performance statistics: it is designed to compute and present

performance statistics that are oriented toward a whole journey (itinerary) rather than toward
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individual service legs, which would be able to set the information consumers (passengers)

free from reprocessing the fragmented information (about individual legs) by themselves.

Despite their advantage over individual-leg-oriented performance statistics, itinerary-oriented
performance statistics may still make information consumers (passengers) feel like they are
gambling and hence cause inconvenience/uneasiness to them. Based on such a consideration,
PBPM (Performance-Based Pre-Modification of advertised arrival times) is developed.
PBPM has been inspired by the relevant technologies in real-time delay information: it
abandons the output of performance statistics; instead, it consumes performance statistics as
intermediate results to compute the final results — pre-modified (advertised) arrival times —
well before the time of travel. Roughly speaking, a pre-modified (advertised) arrival time of a
given critical itinerary reflects the ‘average lateness’ of this itinerary over the last several
weeks, incorporating both the risk of missed transfers (reliability) and the average delay at

the destination station (punctuality).

Although the final results of PBPM can be readily delivered to end users (passengers) for
enhanced pre-trip information, these results (i.e. pre-modified arrival and journey times) are
still largely descriptive: for those passengers having a relatively tight schedule, they would
still have no alternative choices when the available options (i.e. recommended itineraries) are
found to be undesirable. Based on such a consideration, PBPM+ is developed, the purpose of
which is to further extend the functionality of PBPM to generate additional prescriptive
information about alternative itineraries when necessary. Roughly speaking, PBPM+
incorporates the results obtain from PBPM into existing journey planning algorithms to
influence journey planning results. More specifically, this can be achieved by modifying the
relevant parameters of a journey planning algorithm and adding to the algorithm additional

post-processing procedures.

In order to evaluate the effectiveness of the information-based solution to the problem of
critical routes, two novel route-level measures are developed and detailed. Generally
speaking, the introduction of the two route-level measures and the corresponding analytical
methods can serve the following three purposes: 1) enables empirical analyses of those
identified critical routes presented in Chapter 3 using detailed data about historical train
movements; 2) provides a way to evaluate the effectiveness of the proposed algorithmic

approach presented in Chapter 4 in coping with those identified critical routes; and 3)
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provides a reference point for more detailed microscopic analyses of those transfer-involved

rail routes.

More specifically, RPM (Route-oriented Performance Measure) is developed to evaluate the
overall performance of a given transfer-involved rail route in terms of punctuality and
reliability during a given observation period. The RPM-based analytical method is mainly
built on an assumption of an ‘average’ passenger and an assumption of an absolute
standard/threshold for determining whether an ‘average’ passenger has been delayed, which
can be viewed as an extension of PPM (Public Performance Measure), the industry standard
adopted in British railways. Based on a detailed explanation of the underlying sample data
and the specific technicalities used, RPM-based analyses of nine identified critical routes in
Britain’s passenger rail system have been conducted. The obtained evaluation results reveal
that the modified pre-trip information generated from the approach proposed in Chapter 4
could clearly bring improvements in punctuality and reliability to these identified critical
routes. The potential limitations of RPM and the algorithmic approach proposed have also
been recognised by an in-depth investigation into the sample data about several representative
routes: like PPM, RPM tends to be unable to reflect the whole picture of the underlying
sample data, indicating the necessity of auxiliary performance indicators such as CaSL
(Cancellation and Significant Lateness); and the modified pre-trip information generated
from the approach proposed in Chapter 4 mainly covers those medium-sized delays but has

little effect on those significant delays.

As an exploration of a more comprehensive measurement incorporating more realistic
scenarios in route and itinerary choice, another route-level measure is developed, named
RUM (Route-oriented Utility Measure). RUM abandons the assumptions of an ‘average’
passenger and an absolute standard for determining whether an ‘average’ passenger has been
delayed. Instead, it takes into account the heterogeneity among rail passengers and measures
the change the modified pre-trip information could have brought in the overall utility of the
relevant passengers choosing a particular route (during a given observation period). In order
to implement an RUM-based analysis, several ‘bold’ assumptions need to be introduced such
as an assumption of the existence of ‘latest-tolerable arrival times’ (LATs) and an assumption
of the existence of ‘unwary’ passengers. Moreover, the principle of indifference (POI) is
implicitly included in the RUM-based analytical model due to a lack of detailed data about

passenger flows on these transfer-involved rail routes. Based on a detailed explanation of the
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underlying sample data and the specific technicalities used, RUM-based analyses of nine
identified critical routes in Britain’s passenger rail system have been conducted. The possible
reasons for several ‘abnormal’ results have been analysed by a close examination of the
underlying sample data and the mechanism of the proposed analytical models. Generally,
these evaluation results have enriched our understanding of these identified critical routes.
Although the RUM-based analytical method is largely experimental, it could easily be
extended to conduct more realistic microscopic analyses of those transfer-involved rail routes,

as long as detailed data about passenger flows and passenger activities become available.

6.2 Main findings

By reviewing the existing theories and applications in railway planning and passenger
information in Chapters 2 and 3, it is recognised that the pre-trip information about those
transfer-involved rail routes may be a potential problem: due to the inherent defects in
railway timetabling and journey planning technologies, the quality of the pre-trip information

about those transfer-involved rail routes cannot always be guaranteed.

In Chapter 3, an in-depth analysis is conducted of a quite large sample of train movements
data. It is found that train delays in British railways can be better modelled by those
compound distributions (than those ‘pure’ distributions), among which g-exponential models
tend to be the most promising candidate in terms of the overall goodness of fit. Moreover, by
comparing the best-fit g-exponential model of the latest train delay data with that of the
2005/06 data, a noticeable increase in small-sized delays (from one to eight minutes) has

been identified in British railways over the past decade.

From the detailed descriptions and explanations of the proposed algorithms and analytical
methods in Chapters 4 and 5, it can be seen that open data available from Britain’s rail
industry contain a lot of details about daily train movements, which can be exploited to

conduct some microscopic analyses of those transfer-involved rail routes.

The empirical results presented in Chapter 5 reveal that the algorithmic approach of using

historical train movements data to pre-modify recommended itineraries can largely resolve
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the problem of the pre-trip information about those transfer-involved rail routes, although its
effectiveness cannot be guaranteed in all cases. Specifically, the proposed algorithmic
approach can bring an average gain of 5.0% ~ 11.3% in terms of a train-oriented performance
measure (named RPM) to the nine studied critical routes in British railways, and can bring an
average gain of 2.8% in terms of a passenger-oriented utility measure (named RUM) to six of
the nine studied critical routes. Three of the nine studied routes cannot gain in RUM,

although they can gain in RPM.

6.3 Methodological contributions

A relatively comprehensive survey is conducted of the state-of-the-art theories and
technologies of several different disciplines (c.f. Chapters 2 — 4), potentially facilitating the

interested researchers to make more contributions to the solution of the relevant issues.

A screening algorithm (i.e. CRF in Chapter 3) is developed to efficiently locate those weak
points (i.e. critical routes) within a national-level railway system, which provides an

additional tool/option for timetable design and analysis.

A set of three interrelated information enhancing algorithms (i.e. IPS, PBPM, and PBPM+)
are developed to cope with those weak points (i.e. critical routes) within a national-level
railway system, among which the central idea of PBPM — floating (variable/adjustable)
allowances — provides a potentially useful (additional) tool for delay management in railway

timetabling and operations.

A route-level performance measure (i.e. RPM) is developed by augmenting the current
industry standard (i.e. PPM), which can be utilised to conduct route-level evaluations and
comparisons for those transfer-involved rail routes (in terms of punctuality and reliability).
Apart from the ability to quantify the effect of a specific information enhancing strategy in
the context of this thesis, RPM may also be readily employed to evaluate and compare the

performances of those direct rail routes (lines).

230



A route-level utility measure (i.e. RUM) is developed that takes into account passenger
delays. Similar to RPM, RUM’s applicability is not limited to those quantitative analyses in
the specific context of this thesis: it has broader applicability in a variety of potential
applications such as employing RUM as an additional optimisation criterion in the
timetabling phase to reflect passenger interests, using RUM to check whether the allocation
of allowances (time supplements) is effective enough, and integrating RUM into the
historical-data-based algorithmic approach proposed in this thesis to augment the original

version (c.f. Section 5.6).

Figure 6.1 below provides a graphical description of the potential contributions of this thesis
to railway timetabling and operations: the relevant algorithms and analytical methods
described in this thesis can not only be integrated into one framework to improve the pre-trip
information about those transfer-involved rail routes, but also be applied separately to

different processes in railway timetabling and operations to achieve different goals.

Transport demand
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Figure 6.1 An illustration of the potential contributions of this thesis to railway timetabling
and operations
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6.4 Contributions to knowledge

The explanations, illustrations, and abstractions of critical routes, mainly embodied by
Sections 3.4 and 3.5, could be viewed as an original contribution to knowledge — an
unresolved problem existing in current pre-trip timetable information systems has been

revealed.

The statistical results and stochastic models obtained based on real-world train operation
records, embodied by Sections 3.7 and 3.8, could help better understand and update the

knowledge of the macro-level delay distributions within Britain’s passenger rail system.

The categorisation of the various existing systems, prototypes, and algorithmic ideas,
embodied by Section 4.2, could also be regarded as an original contribution to knowledge, for

there exists no such categorisation in the large body of relevant literature.

Those route-level analyses and assessments conducted based on real-world train operation
records, embodied by Section 5.3 and Section 5.5, would help any interested reader learn, on

a variety of dimensions, about those critical routes within Britain’s passenger rail system.

6.5 Limitations and future research

Several identified (potential) limitations of the proposed algorithmic solutions and analytical
methods have been analysed/explained in Section 4.5 and Section 5.7 of this thesis. In short,
the relatively large granularity (i.e. precision tolerance) of the available train movements data
and the lack of detailed data about passenger counts and passenger flows may to some degree

restrict the precision and deepness of the relevant evaluations and analyses.

Based on the identified limitations and imperfections in this thesis, four conceivable

directions for further research are recommended below.
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Firstly, further improve the information enhancing algorithmic approach proposed in this
thesis. From Chapter 5, it can be seen that although the proposed (historical-data-based)
algorithmic approach can largely improve the pre-trip information about those critical routes,
it is not perfect: empirical results indicate that there exist some (if not many) exceptions. A
typical exception in the analyses presented in Chapter 5 is the route Ebbw Vale Town —
Cardiff Central — Birmingham New Street (i.e. ECB): its arrival delays seem to be largely
unpredictable by straightforward statistics (i.e. the proposed algorithmic approach) and hence
effective solutions to these exceptions may be needed. Machine learning is a conceivable path
towards dealing with these ‘exceptions’, but empirical evidence is needed to prove or

disprove its effectiveness.

Secondly, devise more realistic quality measure(s): the results presented in Chapter 5 have
partly shown the potential limitations of the currently adopted industry standard (i.e. PPM).
Generally speaking, the current standard is largely train-oriented (rather than passenger-
oriented) and does not take into account a number of realistic factors (e.g. passenger flows,
the heterogeneity in perceptions of delays, etc). In the future, more realistic measure(s) can be

introduced as long as the relevant data become available.

Thirdly, use big data to gain more knowledge about the mechanism of train delays in British
railways. In Section 3.8 of this thesis, statistical analyses of the train delays in British
railways have been conducted using a relatively large sample (about 1.4 million records) of
historical train movements data. However, the obtained results are largely synthetic/aggregate,
from which only general conclusions can be drawn. Several important questions remain
unanswered such as what the underlying mechanism is of those extremely large delays and
how train delays in British railways are distributed on the dimensions of time and space. The
reason why these questions have not been touched upon is mainly due to the fact that the
adopted sample is still a small and potentially biased sample (corresponding only to 14
stations for 12 months) and its representativeness remains dubious. In the future, these
unanswered questions may be able to be confidently answered, once a truly large and

representative sample becomes available.

Fourthly, stated preference (SP) studies (c.f. Kroes and Sheldon, 1988) can be conducted in
the future to monetise the relevant utility indices. Although this thesis does not involve

monetised utilities and SP methods themselves have been questioned in the literature (e.g.
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Diamond and Hausman, 1994), monetised utilities are still useful tools for strategic railway

planning in the foreseeable future.
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Appendix A

A survey of current pre-trip journey planning systems

(Surveyed in early April, 2018)

Table A1 A survey of current pre-trip journey planning systems

Country Main Line Transfer- Customisable | Frequently
(AtoZ) information schedules | involved journey | transfer updating the
provider (static) planning (static) | times underlying
timetables
Argentina SOFSE Y N N N
Australia regional Y Y N N
operators e.g.
NSW
TrainLink and
V/Line
Austria OBB Y Y Y Y
Bangladesh Bangladesh Y N N N
Railway
Belarus Belarusian Y Y N N
Railway
(BCh)
Belgium NMBS/SNCB | Y Y Y Y
Brazil commuter rail | Y Y N N
operators e.g.
CPTM and
SuperVia
Canada VIA Railand |Y Y N N
several
commuter rail
operators
China CR Y N N N
Croatia HZPP Y Y N N
Czech CD Y Y Y Y
Republic
Denmark DSB Y Y N N
Egypt ENR Y N N N
Finland VR Y Y N N
France SNCF Y Y N N
Germany DB Bahn Y Y Y Y
Hungary MAV Y Y Y Y
India IR Y N N N
Indonesia Persero Y N N N
Iran RAI Y N N N
Israel Israel Y Y N N
Railways
Italy Trenitaliaand | Y Y N N
Italo NTV
Japan JR Group Y Y N N
Kazakhstan KTZ Y N N N
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Luxemburg CFL Y Y N N
Malaysia KTMB Y N N N
Morocco ONCF Y N N N
Netherlands NS Y Y Y Y
Norway NSB Y Y N N
Pakistan PR Y N N N
Poland PKP Group Y Y N N
Portugal CP and Y Y N N
several
commuter rail
operators
Romania CFR Y Y N N
Russia 0OAO Y Y N N
South Africa | Shosholoza Y N N N
Meyl
South Korea Korail Y Y N N
Spain Renfe Y Y N N
Sweden SJ Y Y N N
Switzerland SBB, BLS, Y Y Y Y
etc.
Taiwan THSR Y N N N
Thailand SRT Y N N N
Turkey TCDD Y N N N
Ukraine Ukrainian Y Y N N
Railways
United RDG/National | Y Y Y Y
Kingdom Rail
United States | Amtrack and Y Y N N

various
commuter rail
operators
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Appendix B

A Python implementation of CRF

Note: the original source codes are a large collection of many functionally independent sub-
procedures, each of which is separately composed and stored (in separate files). Here, in
order to avoid messiness, these sub-procedures are grouped (by general functionality) into
three files named data-preprocessing.py, screening-1.py, and screening-2.py, respectively.
Generally, the file named data-preprocessing.py can be thought of as the implementation of
Steps 1 and 2 in CRF, screening-1.py the implementation of Step 3, and screening-2.py the
implementation of Steps 4 and 5. Within each file, however, the sub-procedures are not
necessarily organised in the same order with the pseudo code presented in Subsection 3.6.3.
This is because there exists no particular priority between certain sub-procedures, and it
makes no difference to execute one before another.

(1) data-preprocessing.py
import pandas as pd
from datetime import datetime
import re
from ord_set import OrderedSet
from time import time
from math import sin, cos, sgrt, atan?, radians

## author: Yiwei Guo 02/05/2016 Esoton
regex = re.compile( o\s+| \s+\ ([A- ALy
data = pd.read csv{ outes.txt')

temp = list{data['route_long_ "].values)
L1 = [regex.split({each) fer each in temp]

L2 = [each[0] for each in L1]

L1 = [each[l] for each in L1]

data['ori'] = L2

data['des'] = L1

#data = data[data['route_type'] == 2]

data.to_csv({'route-Z.csv', index=False)

datal = pd.read csv({'stop-3.csv', usecols = ['sto ame', 'stop 1 , 'stop lon']l)
data = pd.merge(data, datal, left on='des',6 right on='stop name')

#data = data.sort_values(by='route_id')

data.to_csv('route-3.csv', index=False)

data = pd.read csv{'stop-2.txt', usecols = ['stop name', ' rent = tion', 'sto lat',
data = data.drop duplicates(['stop name'])

data.to_csv('stop-3.csv', index=False)

data = pd.read_csv( slendar. txt')

delta = datetime.strptime('23:59', '$H:3M').time()

start_date = [str(x) for x in data[’ art_date']]

end_date = [str(x) for x in data['end date']]

start_date = [datetime.strptime(x, '"$¥%m%#d') for x in start_date]
end date = [datetime.strptime(x, '%Y%n%d').date({) for x in end date]
end_date = [datetime.combine(x, delta) for x in end date]

dataf[’' start_date

o'l =
data['e_date'] = end_date
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67
68
69
70
71
12
73
T4
75
76
77
18

738
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131

data = data.assign(diff = lambda x: x['e_date'] - x['s_date'])

datal = data['diff'].astype('timedeltacd[D]")

data['diff2'] = datal

del data['start date']
del data['end date']
del data['diff']

#data = data.reindex(columns = ['service_id’,

"dif£2'])

data.to_csv('calendar-2.csv', index=False)

1

data = pd.read csv({'calendar-2.csv')

1 = pd.to_datetime (data['s_date'])
s2 = pd.to_datetime (data['e_date'])

data['sd'] = sl
data['ed'] = =2

'saturday', 'sunday', 's_date', 'e date’,

dep day = datetime.strptime(raw_input('Departure Date (DD/MM/YY): '), '%d/%m/%y")
#25/01/17

day of week = datetime.strftime (dep day,

datal = data[data[day of week] == 1]

data = datal[ (datal['sd'] <=

L1
#data.to_csv('query-calendar.

data = pd.read esv('trips.t=xt',

= list (data['service_id']

"$A') .lower ()

dep_day) & (datal['ed'] >= dep_day)]

.values)

csv', index=False)

usecels=["trip id',

'service id', 'route id'])

#datal = pd.read csv('query-calendar.csv', usecols=['service_id'])

mask = data['service_id'].isin(L1)

data = data[mask]

del data['service_id']

data.to csv('trip-5.csv', index=False)

Ll = list(data['trip id'].values)

data = pd.read csv({'stimes-2.csv', usecols=['trip id', 'parent_ statien',
'stop_sequence'])

mask = data['trip id'].isin(L1)

data = data[mask]

data = data.sort values(by=['trip id’,

data.to csv('query=-sch=1l.csv', index=False)
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datal = pd.read csv('trip-5.csv’)

data = pd.read csv('incoming-l.csv', header=None)
Ll = list(data[0].values)

L2 = []
for each in L1:
data3 = datal[datal['route_id']==each]
ind = data3.index
temp = ind[len(data3)/Z]
L2 .append{data3.at[temp, 'trip_id'])

data = pd.read csv('cutgoing-l.csv', header=Nona)
Ll = list(data[0].values)

L3 =[]

for each in L1:
data3 = datal[datal['route i
ind = data3.index
temp = ind([len(data3)/2]
L3.append{data3.at[temp, 'trip_id'])

]==each]

data = pd.read csv('guery-sch-l.csv', usecols=['parent station', 'trip_ id'l])

L4 =[]

for each in L2:
data3 = datal[data['tri
temp = tuple(data3['par
L4.append(temp)

L5 = []

for each in L3:
data3 = data[data['t:
temp = tuple(data3['pa
L5.append{temp)

ee = [OrderedSet(each) for each in L4]
dd = [OrderedSet(each) for each im L5]

L4 = pd.Series (L4)
L4.to_csv('incoming-stops.csv', index=False)

L5 = pd.Series (L5)
L5.to_csv('o

joing-stops.csv', index=False)

ff = OrderedSet ()

startl = time()
for each in ee:
for every in dd:
if each[0] == every[-1] and each[-1] == every[(0]:
continue
if each[-1] == every[-1] er each[0] == every[0]:
continue
temp3 = each & every
if len(temp3) == 1:
ff.add (temp3[0])

endl = time()
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199 print round(endl-startl, &)
200 ee = pd.Series(list(ff))
201 ee.to_csv('transtations.csv', index=False)

202

203

204

205 LG

2086 data = pd.read csv('stop times.txt', usecols = ['trip id', 'stop id', 'stop sequence’',
‘arrival time', ‘'departure time', 'platform'])

207 L =

208 arrival time = list (data['arrival time'].wvalues)

209 departure time = list (data('departure time'].values)

210 arrival =_[] =

211 departure = []

212

213 for each in arrival time:

214 hour = i

215 i te = int (each[3:5])

216 erted = hour*60 + minute

217 arrival.append (converted)

218

219 for each in departure_time:

220 hour = int(each[:2])

221 m e =

222 C erted = hour*60 + minute

223 departure.append (converted)

224

225 data['arrival'] = arrival

226 data['departure'] = departure

227

228 datal = pd.read csv('stop-2.txt',usecols=['stop id', 'parent station'])

229 data = pd.merge (data, datal, on='stop_ id'})

230

231 #data.to csv('stimes-1l.csv', index=False)

232

233 del data['arrival time']

234 del data|['departure_time']

235 del data['stop id']

236

237 data = data.reindex(columns=['trip id', 'parent station', 'stop sequence', 'platform',
‘arrival', 'departure'])

238 data.to csv('stimes=2.csv', index=False)

239 L5

240

241

242

243 startl = time()

244

245 Ll = [line.strip() for line in open('transtations.csv')]

246 L1 = set(L1)

247 L2 = {'BFR', 'CST', 'CTK', 'CHX', 'EUS', 'FST', 'KGX', 'KPA', 'LST', 'LBG', 'MYB',
'PAD', 'STP', 'VIC', 'WAT'}

248

248 L1 = list(Ll - L2)

250

251 data = pd.read csv('stimes-2.csv', dtype={'platform':object})
252

253 data = data[(data['arrival'] > 479) & (data['departure'] < 1021)]

254

255 L2 = data['parent station'].isin(Ll)

256

257  data = data[L2]

258

259 datal = pd.read csv('trips.txt', usecols = ['trip id', 'route_id', 'service_id'])

260 data? = pd.read csv('route-3.csv', usecols = ['route id', 'route type', ‘ori', ‘des’',
'stop lat', 'stop lon'])

26l data3 = pd.read_c;v{'stop-B‘csv', usecols = ['parent station', 'stop lat', 'stop_lon'])
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data = pd.merge(data,datal,how="'inner',on="trip_id")
data = pd.merge(data,data3,how='inner',on='parent station')
data = pd.merge(data,data?,how="inner’',on='route

data = data[data['route_type']==2]

#del data['des']

t#data.to csv['Entermediate~l.csv', index=False)
R = 6371.0

al = data['stop_la
bl = data['stop_
a2 = data['stop
b2 = data['stop_lo

del data['stop_lat x']
del data['stop_lat_vy']
del data['stop_lon_x']
dal data['stop_lon_y']

11 = data.index
dist = []

for i in 11:
latl = radians(al[i])}
lonl = radians(bl[i]}

lat2 = radians(a2[i])

lon2 = radians(b2[i])

dlon = lon2 - lonl

dlat = lat2 - latl

dlon = (sin(dlat/Z))**2 + cos(latl) * cos(lat2) * (sin(dlon/f2))**z
dlat = 2 * atan2?(sqgrt(dlon), sgrt{l=-dlon))

dlon = R * dlat
dist.append(dlon)

data['dist'] = dist

data? = pd.read csv('calendar-Z.csv', usecols = ['service_id', 'saturday',

dif

N

data = pd.merge(data,data2,on='service_id')
data = data[data.diff2 > 53]

data = data.sort values(by='arrival')

endl = time()
print round(endl-startl, &)

data? = data[(data.saturday != 1) & (data.sunday != 1})]

data2.to_csv('stimes-wday.csv', index=False)

data? = data[data.saturday == 1]
data2.to csv('stimes-sat.csv', index=False)
data = data[data.sunday == 1]

data.to_csv('stimes-sun.csv', index=Falsa)
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328
329
330
331
33z
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
71
372
373
374
375
376
377
378

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

data = pd.read csv('trip-5.csv')

datal = pd.read csv('larthan%0days.csv', header=None)
Ll = list(datal[0].values)

mask = data['route_id'].isin(L1)

datal = data[mask]

datal = datal['route_id'].drop_duplicates()
datal.to_csv('incoming-1l.csv', index=False)

datal = pd.read csv('conn-routes.csv', header=None)
Ll = list(datal[0].values)

mask = data['route_id'].isin(L1)

datal = data[mask]

datal = datal['route id'].drop duplicates ()

datal.to_csv('outgoing-1l.csv', index=False)

data = pd.read csv('routes.txt', use:o;s=[‘ro:te_id', 'route_long name'])
regex = re.compile('\s+tol\s+|\s+\([A-Z]{2}\) ")
temp = list{data('route_long name'].values)

Ll = [regex.split (each)

for each in temp]

L2 = [each[0] for each in L1]

Ll = [each[l] for each in Li]
data['ori'] = L2
datal['des'] = L1
datal = pd.read csv('stop-3.csv', usecols = ['stop name', 'stop lat', 'stop lon'])
= datal.rename(columns={'stop name':'ori', 'stop lat':'lat 1', 'step leon':'lemn 1'},
inplace=True)
data = pd.merge (data, datal, on='ori'
_ = datal.rename{columns={'ori':'des’, 'lat 1':'lat 2', 'lon 1':;'lon 2'}, inplace=True)

data = pd.merge (data, datal, on='des')

data.to csv('route 4.csv', index=False)

for i in range(len(data)):
latl = radians(data.at[i, 'lat_l']]
lonl = radians{data.at[i, 'lon 1'])
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394
395
396
397
398
399
400
401
402
103
404
405
106
407
408
409
410
411
412

13
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
147
448
449
450
451
452
453
454
455
456
457
458
459
460

461
462
463
464
465
466
467
468
469
470
471
472
473

lat2
lon2
dlon
dlat
dlon
dlat
dlon
dist

radians (data.at[i, 'lat 2'])

radians {data.at[i, '105:2'J]

lon2 - lonl

lat2 = lagfl

{sin{dlat/2))**2 + cos(latl) * cos(lat2) * (sin(dlon/2))**2
2 * atan2(sqgrt(dlen), sqrt(l-dlon))

R

data['dist']

dlat

.append (dlon)

dist

data.to_csv('route 5.csv', index=False)

data = data[data|'dist']>39]
data['route_id'].to_csv('larthan40.csv', index=False
Ll = list{data['route id'].values)

data = pd.read csv('calendar-2.csv

data = data[data|'di

E£21)>00]

;, usecolg=['service id', "'diff2'])

datal = pd.read csv('trips.txt', useccls=['rcute id', 'service id', 'trip id'])

datal = pd.merge(datal,

data,

on='service id')

datal['trip id'].to_csv('trip-6.csv', index=True)

L2 = datal['route id'].drop duplicates()

L2.to_csv('larthan90days.csv', index=False)

L2 = list(L2.values)

Ll = pd.Series(L1)

mask = Ll.isin(L2)

Ll = L1[mask]

Ll.to csv({'conn-routes.csv',

i

ndex=False)

data = pd.read csv('transfers.txt', usecols=['from stop id',

data = data.a

ign(ch2 = 1

x: x['min transfer time']/60)

data['ch2'] = data['ch2'].astype('int32')

del data['min transfer time']

data.to_csv('transfers-sou.csv', index=Falsa)

#data = pd.read csv('transfers-sou.csv')

high = []

for each in data['ch2']:
if each <= 5:

high.append(each + 4)

elif 5 < each < 8:

high.append(each + 2)

else:

high.append(each + 1)

data['high'] = high

data.to_csv('scan-bounds.csv', index=Falsae)
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(2) screening-1.py

oo

oo

39
40
41
42
43

S N Y
o

import pandas as pd

import os

from time import time

from bisect import bisect_left

## author: Yiwei Guo 02/05/2016 @soton

bounds = pd.read csv('scan .cev', index col='fr
os.chdir('20161122"})
#os.chdir('temp')

cdir = os.getcwd()

L1 = gg.listdir{cdir)
candidate = []

startl = time()

for fname in Ll:
data = pd.read csv(fname, dtype={'platform':object})
[lo, hi] = [bounds.loc[fname[0:3], 'ch
if lo> 1l1:
continue

r list data['route_id'].drop_duplicates()
r_list list{r_list.values)
list conn = []

for each in r list:
datal = data[data[':
Ll = len(datal) - 1
diffl = []
for i in range (L1):
diff = datal.iat[i+l1,4] - datal.iat[i,4
diffl.append(diff)
if diffl 1= []:
if max({diffl)>e0:
list_conn.append(each)

if len(list conn) == 0:
continue

datal = data[datal'=t

if datal.empty:
continue

r_list = datal['route_id'].drop_duplicates()

list_fdr = list(r_list.values)

result = []
Ll = len({data) - 1

for i in range(Ll):
if data.iat[i,5] in list_fdr:

flag = data.iat[i,3]

flagl data.iat[i,5]

datal data[ (datal['d

+ hi)]

if datal.empty:
continue

datal = datal[datal['c

if datal.empty:
continue

datal = datal[datal['ro

if datal.empty:
continue

flag = datal['route_

datal = datal[flag]

= flagl]

d'].isin(list_conn)
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67 if datal.empty:

68 continue

69 flagl = len(datal)

70 for j in range(flagl):

71 flag = [data.iat[0,0], data.iat[i,3], datal.iat[j,4], data.iat[i,2],

datal.iat[j,2], data.iat[i,5], datal.iat[j,5], data.iat[i,6],
datal.iat[j,6], data.iat[i,7], data.iat[i,8], datal.iat[j,7],
datal.iat[j,8], datal.iat[§,9]]

candidate.append (flag)

endl = time()
print round(endl-startl, &)

if len({candidate) == 0:

print 'No Critical Connections found! Empty candidate list!'

79 else:

EO candidate = pd.DataFrame (candidate, columns=['tr i ¥
'pl ¢', 'ru £', 'ruc¢', 'serv f', "serv ¢', 'ori f', ' o
'c_dist'])

Bl

B2 candidate = candidate[candidate['serv_f']==candidate['s "'l

B3 flag = (candidate['ocri f']!=candidate['ori c']) &

{(candidate['de ]'=candidate[ ' d: ']} & (candidate['ori f']!=candidate['de
& (candidate['ori_f']!=candidate['c £'1) & {Candidate['a;i_c']!=candidate['

B4 candidate = candidate[flag]

85

86 if candidate.empt

87 print 'No Cri Connections found! Ne service dates 1 routes zatisfied!

88 else:

89 candidate = candidate[candidate['pl f']!=candidate['pl_c']]

90 if candidate.empty

51 print 'No Cri 1l Connections found! No platforms satisfied!'

92 else:

93 candidate = candidate.assign(r con = lambda x: x['cri f'] + x['trans'] +

x['des_c'])

94 hi = candidate['r_con'].value_counts()

95 flagl = list (hi.index)

95 lo = list(hi.values)

97 hi = pd.DataFrame({'r_con':flagl, 'p_counts':lo})

98 candidate = pd.merge (candidate, hi, on='r_con')

99 candidate = candidate.drop duplicates{['r_con'])

100 candidate = candidate[(candidate['p counts'] >= 4) & (candidate['p counts']
<= 9)]
101 candidate.to_csv('crit , lndex=False)
2
3

conns = [line.strip().sgplit(",") £for line in open('sch-lar-2.csv') if not
line.startswith('sd'} ]

conns = [int (each[2]) for each in conns]
Ll = range(l, 1440)
L2 = [bisect_left(conns, each) for each in L1]

L2 = pd.Series (L2)

L2.to_csv('begin-points , index=True)
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datal = pd.read csv('sch-lar.csv')
data3 = datal.copy()

datal = data3.drop duplicates(['t

data3 = data3[['sd', 'dt', 'tpid']]

_ = data3.rename {(columns={'Sd':'ors', 'dt':'odt'}, inplace=Truae)

data3 = data3.reindex(columns=['tpid
datal = pd.merge(datal, data3, on='tpid')
datal = datal.sort_wvalues(by='dt"')
datal.to_csv('sch-lar-Z.csv', index=Falsa)
datal = pd.read csv('sch-2Z.csv')
data3 = datal.copy()

data3 = data3.drop_duplicates(['t

datal = data3[['sd', 'dt', 'tpid']]
_ = data3.rename (columns={'Sd':'ors', 'dt':'edt'}, inplace=Trua)

data3 = data3.reindex(columns=['t , lors', 'odt'l)

datal = pd.merge(datal, data3, on='tpid')

datal = datal.sort_values(by='dt')

datal.to_csv({'sch-22.c , index=False)

datal = pd.read csv({'trip-5.csv')

ch-1l.csv', usecels=['tpid', 'ruid'])

data2 = pd.read csv('lul-
data2 = data2.drop _duplicates(['tpid'])

data? = data2.reindex(columns=['ruid', 'tpid'])

_ = data2.rename (columns={'ruid':'route_id', 'tpid':'trip id'}, inplace=True)
datal = pd.concat([datal, data?])

datal.to_csv('trip-lar.csv', index=Falsa)

data = pd.read csv('stop-3.csv')

data = data.drop_duplicates(['parent_station'])

data? = pd.read csv('stop-dicts.txt', usecols=['parent station', 's num'])
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191
192

193
194

L2 = data[data['stop_lat'] > 52.06]

L2 = pd.merge(L2, data2, how='inner

L2 = L2[['parent_station

i

's_num']]

on='parent_station')

L2.to_csv('northen-stops.csv', index=False)

ml
m2
m3

md

data

data

data

data

data['stop lat'] < 51.283
{data['st 1
(data['stop

n

ml | m2 | m3

= data[m4]

o < =0.512) & (data['s
lon'] > 0.332) & (data['sto

at'] < 51.69)
£'] < 51.69)

= pd.merge(data, data?, how='inner', on='parent station')

= data[['parent station', 's_num']]

.to_csv('socuthern-stops.csv', index=Falsa)

datal = pd.read csv('sch-Z.csv')

data? = pd.read csv('lul-sch-1l.c

_ = data2.rename (columns={'5d2":

datal = pd.concat([datal, data2])

LA

5d

datal = datal.sort values(by='dt')

']

usecols=['sdz', 'sa2', 'dt’',

'SaZ':'5a'}, inplace=Truea)

datal.to_csv('sch-lar.csv', index=False)

L3 = []

for x in range (1440):
if x < L1[0]):

L3.append(0)

elif x >= L1[=-1]:

L3.append(L2[-1])

else:
for i in range(len(L1l)=-1):
if L1[i] <= x < L1[i+1]:

L3.append (L2 [i])

L3 = pd.Series(L3)

data = pd.read csv('stop-crs.csv', usecols=['stop_id',

temp = range(len(data))

datal'stop num'] = temp

= data.rename(columns={'stop_id':'parent_ station', 'stop_name'
stop num':'s num'}, inplace=Trua)

data.to_csv('stop-dicts.txt', index=Falsa)
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251
258
259
260
261
262
263
264
265
266
267
268
269
270

289
280

datal = pd.read csv('trip-5.csv')

data2 = pd.read csv('trips.txt', usecols=['trip id', 'atoc_code'])
datal = pd.merge(datal,data2,on="trip id'})
datal.to_csv('trip-7.csv', index=Falsa)

datal = pd.read csv({'stimes-2. ', usecols=['trip id
'stop_sequence', arrival', ‘'departure']}

‘parent station’,

data2 = pd.read csv('t 7.csv')

data2 = data2[data2['atoc_code']!='LT"]

#mask = data2?['atoc code'].isin(['LT', 'LO', 'XR'])
#mask? = -mask ¥

#data? = dataZ[maskZ]

datal = pd.merge (datal, data2, how='inner', on='trip id')

data3 = pd.read csv('stop-dicts.

', usecols=['parent_ station', 's_num'])
datal = pd.merge(datal, data3, how='inner', on='parent station')

del datal['atoc_code']

dal datal['parent station']

datal = datal.sort values{by=['trip id', 'stop segquence'])

datal.to_csv('sch-1.csv', index=False)

datal = pd.read csv({'sch-l.csv')
result = []

for i in range(len{datal)-1}):
if datal.iat[i, 1] >»= datal.iat[i+l, 1]:
continue
else:
hit = [datal.iat[i, 5], datal.iat[i+l, 5], datal.iat[i, 3], datal.iat[i+l,
datal.iat[i, 0], datal.iat[i, 4]]
result.append(hit)

result = pd.DataFrame (result, columns=['3d4', 'Sa', 'dt', 'at', 'tpid', 'ruid'])
result = result.sort_wvalues(by = 'dt')

result.to csv('sch-2Z.c

', index=Falsa)

datal = pd.read csv('lul-1l.cs
data?2 = pd.read csv('lul-21.csv
idxs =
['BFR','CST','CTK','CHX','EUS','FST', 'KGX','KBA',"'
']

idxs2 = {id:v for id,v in enumerate(idxs)}

_ = datal.rename (index=idxs2, inplace=True)
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_ = data2.rename (index=idxs2, inplace=True)
11 =[]
for i in idxs:

for j in idxs:
if datal.at[i,j] != 0:

if data?.at[i,j] == 'Walking' er data2.at[i,j] == 'Walk':
temp = [i, j, datal.at[i,j], data2.at[i,]], 1]
else:
temp = [i, j, datal.at[i,j], data2.at[i,]], 3]
Ll.append (temp)
# 51 = [each[0] for each in L1]
# 52 = [each[l] for each in L1}
# T1 = [int(each[2]) for each in L1]
# D1 = [str(each[3]) for each in L1]
# F1 = [int(each[4]) for each in Ll1]

d#data = {"from'; 31, °'to': 82, 'time'; T1, 'lines': D1, 'freq': Fl1}
340 11 = pd.DataFrame (L1, columnsg=['from', 'to', 'time', 'lines', 'f
341 Ll.to_csv('lul-41.csv', index=False)

344 data = pd.read csv('lul-41.c
345 trip_id = 700000
346 L1l = []

')

348 for i im range(len{(data}):
3 sl = data.iloc[i][0]
32 = data.iloc[i][1]
tl = data.iloc[i][2]

for j in range(360,1410,data.iloc[i]l[4]):
temp = [sl, s2, j, j+t1, trip id]
L1.append(temp)

trip id +=1

359 Ll = pd.DataFrame (L1, columns=['Sd',6 'Sa’, 'dt', 'at’ ‘tpid'])
360 Ll.to_csv('lul-sch-0.csv', index=False)

365 data = pd.read csv('lul-sch-0.csv')

.txt', usecols=['parent station', 's num'])

_ = data2.rename (columns={'parent_:

RN L "

5dZ'}, inplace=True)

data = pd.merge(data, data2, on='3d')

_ = data2.rename (columns={" ':'3a2'}, inplace=True)
data = pd.merge(data, data2, on='3a')

del data['sd']
del data['sa']

data['ruid'] = 0
data['r_name'] = 'London Underground’'

data = data.reindex(celumns=['sSd2', 'sSa2’',

'ruid', 'r name'])

data.to_csv('lul-sch-l.csv', index=Falsa)
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data2 = pd.read csv('scan-bounds.csv', usecols=['from stop_id', 'low'])

= dataZ.rename (columns={'from stop id':'parent station', 'low':'chl'}, inplace=True)

datal = pd.merge(datal, data2, how='inner', on='parent station')

(3) screening-2.py

import pandas as pd

from math import sin, cos, sqrt, atan2, radians
from array import array

from time import time

from ord set import OrderedSet

#from random import sample

## author: Yiwei Guo 02/05/2016 @soton

[*

data = pd.read csv({'crit
Log ol g L

dtype={'pl £

csv', usecols=['t

¢ 'ori

2 ugje:t})
data2 = pd.read csv('stop-3.csv', usecols=['stop_name', 'stop_lat', 'stop_len'])

_ = data2.rename{columns={'stop_name':'o
'stop_lon':'lon_of'}, inplace=Trua)

data = pd.merge(data, data2, on='c

_ = data2.rename (columns={'
inplace=Trua)

at_dec', 'lon_of':'l

data = pd.merge(data, data2, on='des

data2 = pd.read csv{'stop-3.csv
'trans'], usecols=['trans', 'lat

header=0, names=['stops', "lat df', 'lon df',
£', "lon _d£'])

data = pd.merge(data, data2, on='trans')
R = 6371.0

al = datal
bl = data[
aZ = data['l
b2 = data['l

del data['lat_d
del data[’
del data['lat
del datal'lon_of'

11 = data.index
dist = []

for i in 11:
latl = radians(al[i])
lonl = radians{bi[i])

1at? = radians(a2fi])
lon2 = radians(b2[i])

dlon = lon2 = lonl

dlat = lat2 = latl

dlon = (sin(dlat/2))**2 + cos(latl) * cos(lat2) * (sin(dlon/2))**2

dlat = 2 * atan2(sgrt{dlon), sqrt{l-dlon))
dlon = R * dlat
dist.append (dlon)

data['r_dist'] = dist
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63 del data['lat_df']
bd del data['lon_df']
65

66 dist = []

67
68
69
70
71 radians{a2[i])

72 radians (b2 [i])

13 dlon = lon2 - lonl

T4 dlat = lat2 - latl

5 ni{dlat/2))**2 + cos{latl) * cos{lat2) * (sim{dlon/2))**2
16 atan2 (sqrt (dlon), =sgrt(l-dlon)

17
18
79
BO data['f dist'] = dist ''!'

81

B2 data = data[data[’'r_dist'] >= 40]
83

84

85 |

86
87
B8 al = (data['r_dist'] >= data['c dist']) & (data['r_dist'] >= data['f dist'])
89

90 a2z = (data['r

2 at
R * dla
pend (dlon)

csv('intermediate.csv', index=False)

'f dizt"']l) & I[datal'r dist'] < datal['e dist']l) &

(data['f di data['c_dist'] <= 2*data('r_dist

91

92 bl = (data['r di ] & > data['c dist']) &
{data['f_dist'] + data ist <= 1.4*data['r_dist']

data[b2]
_ = data.fillna({'pl £':'0', 'pl c':'0'}, inplace=Trua)

a2 = []
for each in data['pl £']:
if len(each) == 1:
a2 .append(int (each))
elif len(each) == 3:
a?.append(int (each[0:=1]))
elif crd(each[-1]) > 64:
a?.append(int (each[0:=1]))
else:
a2.append(int (each))

b2 = []
for each in data['pl c']:
if len(each) == 1:
b2 .append(int (each))
elif len(each) == 3:
b2 .append(int (each[0:-1]))
elif ord(each[-1]) > 64:
b2 .append(int (each[0:-1]))
else:
b2 .append(int (each))

datal'p £'] = a2
data['p c'] = b2

del data['pl ']
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del data['pl_c']

data = data.assign(pl diff=lambda x: abs(x['p_c']-x['p_£']))

data? = pd.read csv{'scan
usecols=["t LS e Yt B |

, header=0, names=[':

#data? = pd.read csv('scan-bounds.csv', usecols=['from stop id', 'low'])

data = pd.merge(data, data2, on='tr

al = (data['lo'] <= 5) & (data['pl_diff'] > 0)

bl = (data['lo'] > 5) & (data['lo'] <= 7) & (data['pl diff'] > 1)
a2 = (data['lo'] > 7) & (data['pl diff'] > 2)

b2 =al | bl | a2

data = data[b2]

#data.to_csv('critical-routes-2.csv', index=False)
data.to_csv('critical-routes-3.csv', index=False)

#0945
#0.526673

MAX STATIONS = 2650
156 MAX INT = 1000000
157 MAX INTZ = 3000

class Connection:
def init (self, line):

tckens = line.split(",")
self.departure station = int(tokens[0])
self.arrival station = int(tokens[1])
self.departure_timestamp = int (tokens[2])
self.arrival timestamp = int(tokens[3])
self.trip id = int(tokens[4])
self.route_id = int(tokens[5])
self.ori station = int (tokens[&])
self.ori_dt = int(tokens[7])

class Timetable:

def  init_(self, filename):
self.connections = [Connection(line.strip()) for line in open(filename) if not
line.startswith('sd'})]

class CSA:
def init  (self):

self.timetablel = Timetable('sch-
self.timetablel = Timetable('sch-2
self.in connection = array('I')
self.earliest arrival = array('H')
self.trip flag = {}
#self.counters = 0
self.results = []
temp = [line.strip().split(',') for line in open('t
line.startswith('from s _id"

189 self.ch time = [int(each[1]) for each in temp]

190 temp = [line.strip().split(',') for line in cpen('trip-lar.csv') if not

line.startswith('route_id')]

v') if not

sfers-sou.c
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self.trips = [int(each[l]) for each in temp]

temp = [line.strip().split(',') for line in open('begin-points-lar.
self.bpl = array('I', [int(each[l]) for each in temp])

temp = [line.strip().split(',') for line in open('begin-poin
self.bps = array('I', [int(each[l]) for each in temp])
temp = [line.strip().split(',') for line in open('nort
line.startswith('parent_station'}]

self.norths = [int(each[l]) for each in temp]

temp = [line.strip().split(',') for line in open('south
line.startswith('parent_station'}]

self.souths = [int(each[l]) for each in temp]

ftemp = [line.strip().split(',') for line in open('stop-dicts.txt') if not
line. rtswith('parent staticn')]
#self.dict3 = {each[0):int(each[2]) for each in temp}

def main_ loop({self, conns, arrival station}:
earliest = MAX INT

for i, c in enumerate({conns):
if c.departure_ timestamp > earliest:
break
if self.trip flaglc.trip_id] == 1:
if c.departure timestamp »= self.earliest arrival [c.departure station]
and c.arrival timestamp < self.earliest_arrival[c.arrival_station]:
self.earliest arrival[c.arrival station] = c.arrival timestamp
self.in connection[c.arrival station] = i
if c.arrival station == arriwval station:
earliest = min(earliest, c.arrival_ timestamp)
else:
if c.departure_timestamp »= self.earliest arrival [c.departure_station]
+ self.ch time[c.departure_station] and c.arrival timestamp <
self.earliest arrival[c.arrival station]:
self.earliest_arrival[c.arrival_ station] = c.arrival_timestamp
self.in connection[c.arrival station] = i
self.trip flag[c.trip_id] =1

if self.in_connection[arrival station] == MAX INT:
return -1

else:
route = []

last connection index = self.in connectiocon[arrival station]

while last connection_index != MAX INT:
connection = conns[last connection index]
route.append (connection)
last connection_index = self.in connection[connection.departure_station]

return route[::-1]

def cmpr(self, routes):
r_lst = []
for r in routes:
route2 = []
temp = r[0]
for ¢ in r[i:]:
if c.trip_id != temp.trip_id:
routel.append(c.departure station)
temp = ¢

if len(route2) ==

time delta = r[-1].arrival timestamp - r[0].departure_ timestamp
r_lst.append((time_delta, 0, -1, r[0].route_id, r[-1].route_ id,
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r[0] .departure station, r[-1].arrival station))
elif r[-l].ori_stagion -— r[ﬂ].departure_gtation:
time delta = r[-1].arrival timestamp - r[-1].ori dt
r_lsEAappend((time_delta, 6, =1, r[0].route id, E[-L]Aroute_id,
r[-1].ori_station, r[-1].arrival station))
else:
time_delta = r[-1].arrival timestamp - r[0].departure_timestamp
temp = r[-1].ori station
if temp in route2:
if routeZ[-1]'=temp:
for k in range(len(route2)):
if route2[k] == temp:
dps = k
break

route?2 = route2[0:dps]
route2.append(r[-1].ori station)

r_lst.append((time_delta, len(route2), route2[0], r[0].route_id,
r[-1].route_id, r[0].departure station, r[-1].arrival station})

#print r_lst
pareto = OrderedSet ()
pareto.add((r 1lst[0][0], r 1lst[0]1[1]))

for each in r lst:
dom_list = []
for every in pareto:
temp = each[0] - every[0]
temp2 = each[l] - every[l]

ind = 0

if temp > 31 and temp2 >= 0:
ind = 1
break

if temp < =31 and temp2 <= 0:
dom_list.append(every)
if len(r_lst) > 2:
if =11 < temp < 32 and temp2 > 0:
ind = 1
break
if -32 < temp < 11 and temp2 < O:
dom_list.append(every)

if ind == 0:
if len(dom_list) > O0:
for k in dom list:
pareto.discard (k)

pareto.add((each[0], each[1]))
dom list = OrderedSet ()
for each in r 1st:
for every in pareto:
if each[0] == every[(0] and each[l] == every[l]:
dom_list.add(each[1:])

for each in dom list:
self.results.append(each)

#print dom list

def compute(self, departure station, arrival station):
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scan_points = range (600, 6%0, 10)

if departure station in self.souths and arrival station in self.norths:
status0 = 1

elif departure station in self.norths and arrival station in self.souths:
status0 = 1 3

elif departure station in self.norths and arrival station in self.norths:
status0 = 2

else:
status0 = 0

#start_time = time()

if status0 == 0:
route_list = []
for dt in scan points:
if len(route_list) > 0:
if dt <= route_list[-1][0].departure timestamp:
continue

self.in connection = array('I', [MAX_INT for _ in range(MAX STATIONS)])
self.earliest arrival = array('H', [MAX INT2 for _ in

range (MAX STATIONS)])

self.trip flag = {k:0 for k in self.trips}

self.earliest_arrival [departure_ station] = dt =
self.ch_time[departure_station]

b p = self.bpl[dt-3]

bb = self.main loop(self.timetable0.connections[b p:], arrival station)
if bb = =-1:
route list.append(bb)

if statusQ == 2:
route_list = []
for dt in scan_points:
if len(route list) > 0:
if dt <= route_list[-1][0].departure timestamp:
continue

self.in connection = array('I', [MAX INT for in range (MAX STATIONS)])
self earliest_arrival = array('H', [MA¥ INT2 for _ in

range (MAX_STATIONS)])

self.trip flag = {k:0 for k in self.trips}

self.earliest_arrival [departure_ station] = dt -

self.ch time[departure_station]

b p = self.bps[dt-3]
bb = self.main lcop(self.timetablel.connections[b p:], arriwval station)

if bh Yw -1;
route list.append(bb)

if statusQ == 1:
route_ list = []
for dt in scan_points:
if len(route_list) > 0:
if dt <= route list[-1]1[0].departure timestamp:
continue

self.in connection = array('I', [MAX INT for in range (MAX STATIONS)])
self.earliest arrival = array('H', [MAX INTZ2 for in

range (MAX_STATIONS)]) - -

self.trip flag = {k:0 for k in self.trips}

self.earliest arrival [departure station] = dt -
selfAch_time[aeparture_station]_

o
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b p = self.bpl[dt-3]

bb = self.main loop(self.timetablel.connections[b_p:], arrival_ station)
if bb 1= -1:
route_list.append(bb)

route list2 = []
for dt in scan_points:
if len(route list2) > 0O:
if dt <= route list2[-1][0].departure timestamp:
continue

self.in connection = array('I', [MAX INT for in range (MAX STATIONS)])
self.earliest_arrival = array('H', [MAX INT2 for _ in

range (MAX_STATIONS)])

self.trip flag = {k:0 for k in self.trips}
self.earliest_arrival [departure station] = dt -

self.ch time[departure_station]

b p = self.bps[dt-3]

bb = self.main_loop(self.timetablel.connections[b p:], arrival station)
if bb 1= -1:
route_list2.append(bb)

route_list.extend({route_ list2)

#end time = time()
§start time = round(end time - start time,7)

if len(route_ list) > 0:
self.cmpr (route list)
#self.counters += 1

#print stristart_time) + 's \n'

#def get counts(self):
#print self.counters
def combi(self):
return self.results

main():
csa = CSA()

temp = [line.strip(}.split(','} for line in open('cr csv') if not
line.startswith({'tr "}1
od pair = [(int{each[6]), int(each[7])}) for each in temp]
start time = time()
for y in od _pair:
csa.compute(y[0], y[1]1)

end time = time()
start_time = round(end time - start time,7)

results = csa.combi ()

results = pd.DataFrame (results, columns=['ch num',
'des_2'])

results.to csv('shortest-paths.csv', index=False)
print str(start time) + 's '
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440
441
442 each in sss:

443 csa.compute (each[0], each[l])
444
445
446
447
448
449
450
451
452 } i
453
454
455
456
457 break
458 elif len(tt)
459 print '\n less than 3 parameters provided. Enter again... \n'
460
461
462
463
464
465
466
467
468
469
470

471 if npame == ' main_':
472 main()

473

474

475

476 data = pd.read csv('critical-routes-3.csv', usecols=['trans’', 'ru f£', 'ru c',

‘des c'])

= time ()

{end time - start time) /1000
start_time, 7)

1 a
1 and tt[0].strip() ==
'\n No parameter provided. Program has stopped. \n

nd Destination <CRS,CRS> : ').split(',')

5]

sa.compute(tt[0], tt[l])

ori f',
4717

478 data2 = pd.read csv('stop-dicts.txt')

479

480 = data2.rename (columns={'parent statien':'trans', 's num':'ts 2'}, inplace=Trua)

481

482 data3 = dataZ[['trans', 'ts 2']]

483

484 data = pd.merge(data, data3, how='inner', on='trans'})

485

486 = dataZ.rename (columns={'s name':
487

488 data3 = dataZ[['ori f', 'ori 2']]
489

490 data = pd.merge(data, data3, how='inner', on='ori_ f')

491

492 _ = data2.rename(columns={'ori_f':'des c', 'ori_2':;'des_2'}, inplace=True)
493

494 data3 = data2[['des c', 'des_2']]

4985

496 data = pd.merge(data, data3, how='inner',6 on='des c')

487

498 data.to_csv({'cr-3.csv', index=Falsa)

499

500

501

502 data = pd.read csv('cr-3.csv')

503

504 data = data.assign(ods=lambda x: x['ori_ 2']*10000 + x['des_2'])

505

ori £', "ts 2':'ori 2"}, inplace=Trua)
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555
556

557
558
559
560
561
562
563
564
565
566
56.."
568
569
570

templ = data['cds'].value counts ()

temp2 = list (templ.index)

temp3 = list (templ.values)

templ = pd.DataFrame ({'ocds':temp2, 'counts':temp3})
data = pd.merge(data, templ, on='ods')

data.to csv('intermediate-20.csv', index=Falsa)

data = dataldatal'counts']==1]

data.to_csv('cr-20.csv', index=False)

data = pd.read csv('shortest-paths.csv')

data = data.drop duplicates()

data = data.assign(ods=lambda x: x['ori_2']*10000 + x['des_2'])
templ = data['cds'].value counts()

temp2 = list (templ.index)

temp3 = list (templ.values)

templ = pd.DataFrame ({'ocds':temp2, 'counts':temp3})

data = pd.merge(data, templ, on='ods')
#data.to_csv('intermediate-22.csv', index=False)

data = datal[data['ch_num']==1]

#data = data.drop duplicates(['ods'])
dal data['ch_num']

data.to csv({'shortest-paths-2.csv', index=False)

datal = pd.read csv({'shortest-paths-2.csv')

data = pd.read csv('cr-30.csv
'ts 2', 'ori 2', 'des 2'])

usecols=['trans', 'ru f', 'ru c

data = data.reindex(columns=['trans',
'ori 2', 'des_2'])

ori f',

data = pd.merge(data, datal, on=['ts_2', 'ru f', 'ru c', 'ori_2',

data.to_csv('cr-4.csv', index=False)

data = pd.read csv{'critical-routes-3.csv', usecols=['trans', 'ru f',

datal = pd.read csv({'cr-5.csv', usecols=['trans', 'ori_f', 'des_c

data = pd.merge(data, datal, how='inner', on=['trans', 'ru f', 'ru

data = data.reindex{columns=['trans', 'ru f', 'ru c', 'serv f', '
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588
589
590

data.to_csv('intermediate-5. ;, index=False)

Ll = len(data)
L2 = []

for i in range (L1=-1):
for j in range(i+1,L1):
if data.iloc[i,0]==data.iloc[j,0]:
continue
#if data.iloc[i,3]!=data.iloc[j,3]:
#continue
tl = (data.iloc[i,2]==data.iloc[j,1]) & (data.iloc[i,l]'=data.iloc[j,2])
t2 = (data.iloc[i,2]'=data.iloc[j,1]) & (data.iloc[i,l]==data.iloc[j,2])
if il
temp = [data.ilec[i,1], data.iloec[i,2], data.ilec[i,3], data.ileoc[i,0],
data.iloc[i, 4], data.iloc[i,5], data.iloclj,1], data.iloc[j,2]1,
data.iloc[j,3]1, data.iloc[j.01, data.iloc[j,511]
L2.append (temp)
if t2;
temp = [data.ilec[j,1], data.iloe[j,2], data.ilec[]j,3], data.ileoc[j,0],
data.iloc[j,4], data.iloc[],5], data.iloc[i,1], data.iloc[i,2],
data.iloc[i,3], data.ileoc[i,0], data.iloc[i,5]]
L2 .append (temp)

if len(L2)==0:
print 'No Critical Routes with more than one tr
else:
L2 = pd.DataFrame (L2, columns=['r
oo 0 A LR i R L i

L2.to_csv( sv', index=False)

)

data = pd.read csv('intermediate-5.cs

. usecols=['service id', 's_date', 'e_date',

data? = pd.read csv('calendar-2.csv
"dif

_ = data2.rename (columns={'serv 'serv_f'}, inplace=Trua)

data = pd.merge(data, data2, on='ser:

data.to csv('cr-6.csv', index=False)
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Appendix C

Real-world examples of the potential effect of applying the method of
increasing MTT to critical routes

[Note: MTT = Minimum Transfer Time. ECB = Ebbw Vale Town — Cardiff Central —
Birmingham New Street. KWN = Knottingley — Wakefield Kirkgate — Nottingham.]

& Journey Planner - Trains | X

& C O | © ojp.nationalrail.co.uk/service/timesandfares/KNO/NOT/100518/0830/dep
Signin  Create Account [ §]

L
Pep.

08:53

09:53

10:53

11:53

12:53

Outward Thu 10 May

Earlier trains
From

Knottingley [KNO]
Platform 1

Knottingley [KNO]
Platform 1

Knottingley [KNO]
Platform 1

Knottingley [KNO]
Platform 1
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Appendix D

A Python implementation of the back end of IPS and PBPM

Note: the source codes are grouped (by general functionality) into three files named ips-
pbpm-1.py, ips-23.py, and pbpm-234.py, respectively. Generally, the file named ips-pbpm-
1.py can be thought of as the implementation of Step 1 in IPS and PBPM (c.f. Subsection
4.3.2), ips-23.py the implementation of Steps 2 — 3 in IPS, and pbpm-234.py the
implementation of Steps 2 — 4 in PBPM. Three parameters — sample size, net transfer time,
and threshold for arrival lateness — have been set as variables to facilitate the comparison
between different choices of parameters. The example route in this implementation is
Liverpool Lime Street — Manchester Piccadilly — Doncaster. Only minor modifications
needed to apply the codes to other critical routes.

(1) ips-pbpm-1.py

from pandas import DataFrame, Series
import pandas as pd

import json

from datetime import datetime
import numpy as np

import os

## author: Yiwei Guo 30/07/2016 @soton

L2 =[]
cdir = os.getcwd()
ttt=os.walk({cdir)

for root, dirs, files in ttt:
for d in dirs:
path = os.path.join(root, d)
L2.append(path)

for each in L2:
os.chdir (each)
cdir = os.getcwd ()
ttt = os.listdir (cdir)

for file im ttt:
data = json.lcad(open(file))
data = data["services"]
L = len(data)

keys = ["serviceUid", imDate", o
info = DataFrame (data,columns=keys)
rundate = infe.iat[L/2, 1]
listl = []
for i in range(L):
datal = data[i]["locationDetail"]
listl.append(datal)
keys = ["ti oc", bttBoocke rrival"™, " ttBookedDe, rture”,
datal = DataFrame(listl,columns=keys)
tiploc = datal.iat[0,0]
tiplec = str(tiploc)

rundate = str(rundate)
rundate = datetime.strptime(rundate, '%Y-%m-%d')
rundate = rundate.strftime('-%a=-%d-%m=%Y"')
if 'arr' in file:
file = E-' + tiploc + rundate + '
else:

file = tiploc + rundate + '

info = pd.concat([info, datal], axis=1)
info.to_csv{file,index=False)

cdir = os.getcwd ()
ttt = os.listdir (cdir)

for file im ttt:
if file.endswith('.csv'):
if file.startswith ('MNCRE H
data = pd.read_csv(file)
name = file
elif file.startswith('LVRPL'):
infol = pd.read _csv(file)
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else:
info2 = pd.read csv(file)

'¥00252"]
. '¥002027]

Ll = ['
L2 = ['

flag = infol['serviceUid'].isin(L1)
infol = infol[flag]
infol = infol[['se

flag = info2['servicelUid'].isin(L2)
info2 = info2[flag]

data = data[(data['gbtt

BookedDeparture']>=630) & (data['gbttBookedDep ure']<=2230)]

servicelid = list(data['s
B4 runDate = list({data['ru
8BS atocode = list (datal
Be tiploc = list(datal’

rvicelid'].values)
te'].values)
ode'].values)
].values)

B7 display = list(data["disg ="] .values)
88 plt = list(data["platfo ].values)

B9 rtarr = data["realtimed al"].values

90 rtarr = rtarr.astype(np.string_ )

91 pubarr = data["gbttBookedArrival"].values
92 pubarr = pubarr.astype(np.string )

rtdep = data["realtimeDeparture"].values
rtdep = rtdep. astype{np strlng )

pubdep = datal["
pubdep = pubdep. astype(np strlng )

"].values

rtarrival = []
for every in rtarr:
if every=='[' or every==']':
continue
elif every=='nan':
rtarrival.append (None)
elif every.endswith('.0'):
every = datetime.strptime(every, '$HM.0')
every = every.strftime('%H:%M')
rtarrival.append(every)
else:
every = datetime.strptime(every,
every = every.strftime('#H:%M')
rtarrival.append{every)

rtarr_cov = []
for each in rtarrival:
if each is None:
rtarr_cov.append(np.nan)
else:
hour = int({each[:2])
minute = int {each[3:])
converted = hour*sl + minute
rtarr_ cov.append(converted)

rtdepature = []
for every in rtdep:
if every=='[' or every==']':
continue
elif every=='nan':
rtdepature.append (None)
elif every.endswith('.0'):
every = datetime.strptime(every,'
every = every.strftime('%H:%M')
rtdepature.append(every)
else:

1$M.0')
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every = datetime.strptime(every, 't
every = every.strftime(' M)
rtdepature.append (every)

rtdep_cov = []
for each in rtdepature:
if each is None:
rtdep cov.append(np.nan})
else:
hour = int{each[:2])
minute = int (each[3:])
converted = hour*&0 + minute
rtdep cov.append(converted)

pubarrival = []
for every in pubarr:
if every=='[' or every==']':
continue
elif every=='n
pubarrival .append (Nona)
elif every.endswith('.0'):
every = datetime.strptime(every, '$H%M.0')
every = every.strftime('$H:%M')
pubarrival .append (every)
else:
every = datetime.strptime(every,'$H%M')
every = every.strftime('3H:5M")
pubarrival .append (every)

pubarr_cov = []
for each in pubarrival:
if each is None:
pubarr_cov.append(np.nan)
elsa:
hour = int{each[:2])
minute = int (each[3:])
converted = hour*&l + minute
pubarr_cov.append (converted)

pubdepature = []
for every in pubdep:
if every=='[' or every==']':
continue
elif every=='nan':
pubdepature.append (None)
elif every.endswith('.0'):
every = datetime.strptime(every, '$H%M.0')
every = every.strftime('$H:%M')
pubdepature.append (every)
elsa:
every = datetime.strptime(every, '$H%M')
every = every.strftime (' $M')
pubdepature.append (every)

pubdep_cov = []
for each in pubdepature:
if each is None:
pubdep_cov.append (np.nan)
else:
hour = int (each[:2])
minute = int (each[3:])
converted = hour*&l + minute
pubdep_cov.append (converted)

arr lateness = []
count = 0
while count < len(rtarr_cov):
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239
240
241
242

flag = rtarr_cov[count] - pubarr_ cov[count]
arr_lateness.append(flag)
count = count +

dep_lateness = []

count = 0

while count < len(rtdep cov):
flag = rtdep_cov[count] - pubdep_cov[count]
dep_lateness.append(flag)
count = count + 1

data =
DataFrame({'serviceUid':serviceuid,
' ;display, 'platform' ;plt,

2 irtarr_cov,'r p_cov':rtdep_cov,'a
ep lateness},columns=['se id', 'runD
pubarr cov', 'pubdep cov', cowtzy
name = name.replace ('MNCRF . "Routel')

datal = data['servicel 1] .isin (L1}
datal = data[datall]
datal = pd.merge(datal, infol, how='outer',on='ser

datal.to_csv(name,index=Falsa)

servicelUid = list(info2['serviceUid'].values)
tiploc = list({info2['tiploc'].values)
display = list{info2[’ "]1.values)
rtarr = info2["realtim 1"].values
rtarr = rtarr.astype(np.string )

pubarr = info2["gbttRBockedArrival”].values
pubarr = pubarr.astype(np.string )

rtarrival = []
for every in rtarr:
if every=='[' or every==']"':
continue
elif every=='nan':
rtarrival.append (Nonae)
elif every.endswith('.0"):
every = datetime.strptime(every,'3$H:M.0')
every = every.strftime('3%H:%M')
rtarrival.append{every)
else:
every = datetime.strptime (every,'
every = every.strftime('%H:%M')
rtarrival.append(every)

rtarr_cov = []
for each in rtarrival:
if each is None:
rtarr_cov.append(np.nan)
else:
hour = int(each[:2])
minute = int {each[3:])
converted = hour*&0 + minute
rtarr_cov.append(converted)

pubarrival = []
for every in pubarr:
if every=='|' or every==']"':
continue
elif every=='nan':
pubarrival .append (None)
elif every.endswith('.0"):
every = datetime.strptime{every,'$H%}
every = every.strftime('%H:%M")

281



pubarrival .append (every)

else:
every = datetime.strptime(every,'$H%M")
every = every.strftime('%H:%M')
pubarrival .append (every)

pubarr_cov = []
for each in pubarrival:
if each is None:
pubarr_cov.append(np.nan)
elsa:
hour = int{each[:2])
minute = int {each[3:])
converted = hour*&l + minute
pubarr_cov.append(converted)

arr lateness = []

count = 0

while count < len(rtarr_cov):
flag = rtarr cov[count] - pubarr cov[count]
arr_lateness.append(flag)
count = count + 1

info2 =
DataFrame({'=serviceUid':serviceUid
rarr lateness},columns=['zserviceUi
name = name.replace('Routel', 'Rout
datal = data['serviceUid'].isin(L2)
datal = data[datall]

datal = pd.merge(datal, info2, how=
datal.to_csv(name, index=False)

lateness'

iceUid"'}

outer',on="serv
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(2) ips-23.py

-

h

o wom

from pandas import Series,DataFrame
import pandas as pd
import os

## author: Yiwei Guo 30/07/2016

#group + trim + count-canc
cdir = os.getcwd()

fnames os.listdir{cdir)
routel [1

route2 = []

for file in fnames:
if file.startswith('Routel'):
routel.append (file)
if file.startswith('Route2'):
route2.append (file)

framesl = []
frames2 = []

countl =
count2

.

0
:0

.

countl = Series(countl)
count? = Series (countl)

for each in routel:
data = pd.read csv(each)
Listl = countl.index
Listl = Series(Listl)
if len(data['serviceUi
List2 = data['=e
List2 = list(List2)
mask = Listl.isin{List2)
mask? = mask[mask==False]
mask = maskZ.index
List2 = Listl[mask]
for every im List2:
countl [every] += 1

1) < len({countl):
ellid'] .wvalues

mask2 = data[({dataf
' CANCELLE ALL')]
mask = maskZ2.index
Listl = Listl[mask]
for every in Listl:
countl [every] += 1

mask = data[(data['displayAs x'] !'= 'CANCELLED CALL') & {data['dis
CANC ALL')]
framesl.append (mask)

I

data = pd.concat(framesl)
data.to_csv('re ' yindex=False)
countl.to_csv({'canc-l.csv', index=True)

for each in route2:
data = pd.read csv(each)
Listl = count2.index
Listl = Series(Listl)
if len(data['serviceUid']) < len{count2):

List? = data['servicelUid'].values

Ligt2 = ligt (List2)

mask = Listl.isin{List2)

mask2 = mask[mask==False]
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66
67
68
69
70
1

mask = maskZ.index

List2 = Listl[mask]

for every inm List2:
count? [every] += 1

mask2 = data[({data['displayhis ='] ==
'CANCELLED L')1]
mask = mask2.index
Ligtl = Listl[mask]
for every in Listl:
count2 [every] += 1

CALL') | (datal['displ

mask = data[(data['displayas x'] != 'CANCELL
'CANCELLED CALL'})]
frames2.append (mask)

CRLL') & (data['displa

data = pd.concat (frames2)
data.to_csv('resultZ.csv',index=False)
count?.to csv({'canc-2Z.csv', index=Truae)

tmerge

framesl = pd.read csv ('
‘runDate','tiploc x','p
frames2 = pd.read:csv(’
‘runDate’','tiploc x','pl

v', usecols = ['serv
pubarr cov','r
v', usecols = [
pubdep cov','rtdep c

rr c

sSer

~iploc y','arr lateness
data = pd.merge(framesl, frames2 how='inner',on="'tiploc_x')

data.to_csv('merged.csv',index=False)

#filter uncorr + filter corr

data = data.assign(window = lambda x: x['pubdep_cov'] - x['pubarr cov'])
data = data[data.window < 13]

data = data[data.window > 7]

data.to_csv('filter uncorr. ,index=False)

data = data[data['runDate x']==data['runDate_y']]
data.to_csv({'filter corr.csv',index=Falsa)

#stats:TS=m

n = raw_input{'The number of weeks to calculate: ')
n = int{n)

m = raw input('Net transfer t to: ')

m = int{m)

k = raw_input{'Maximum at destination: ')
k = int(k)

data = pd.read csv('filter corr.csv')
datal = data[['serviceUid x','serviceUid y']]
datal = datal.drop_duplicates()

routel = list(datal['serviceUid x'].values)
route2 = list{datal['serviceUid y'].values)
h: = ]

for trip in routel:
data2 = data[data['serviceUi
a = countl[trip]
b = data2?['serviceUid_y'].drop_duplicates(}
b = list(b.values)
b = count2[b[0]]
a = max(a,b)
count all = len(data2) + a
data? = data?.assign(window2 = lambda x: x['rtdep _cov'] - x['rtarr_cov'])
data2 = dataZ2[(data2.window2 >= m) & (data2.arr lateness_y < k)]

®']==trip]
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count_suc = len(data2)

rel = float(Eount_suc)fcount_all
rel = round(rel*100)
rb.append(rel)

datal =
DataFrame ({'routel':routel, 'routel':route?,'rel-corr':rb},columng=["'routel’, 'route2’, 'rel
=corr'])

datal.to_csv('rel-correlated

,index=Falsa)

data = pd.read csv('filter uncorr
datal = data[['serviceUid x','ser
datal = datal.drop_duplicates ()

routel = list({datal[’
route2 = list{datal[’
h = []

Uid x'].values)
id_y'].values)

for trip in routel:
data? = data[data['servicelUi
a = countl[trip]
b = data2['servicelUi
b = list(b.values)
b = count2[b[0]]
count all = len(data2) + (a + b)*n*5 = (a*b)
data? = data2?.assign(window2 = lambda x: x['rtdep cov'] - x['rtarr cov'])
data? = data2[(data2.window2? >= m) & (data2.arr lateness y < k)]
count suc = len(data2)
rel = float(count_suc)fcount_all
rel = round(rel*100)
rb.append(rel)

<! ]==trip]

y']l.drop_duplicates()

datal =
DataFrame ({'routel’:routel, 'route?’':route2, 'rel-
el-uncorr'])

datal.to_csv('rel

ncorr':rb},columns=['routel’, ‘route2','r

corr.csv',index=False)

datal = pd.read csv('rel-corr
data2 = pd.read csv('rel-unc

result = pd.merge(datal,data2)

result = result.assign(rel mean = lambda x: (x['rel-
rel linear = lambda x: 0.2%*x['rel-corr']+0.8*x['rel-
169 result.to csv({'rel-table-ma ;index=False)

orr']+x['rel-uncorr'])/2,
zorr' 1)
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(3) pbpm-234.py

1 from pandas import Series,DataFrame

2 import pandas as pd

3 import os

4

5

6 ## author: Yiwei Guo 30/07/2016 @soton

8

9 #group 4+ trim 4 count-canc

10

13 n = raw input({'The number of weeks to calculate: ')

12 n = int({n)*s

14 cdir = os.getcwd()

15 fnames = os.listdir(cdir)

16 routel = []

17 route2 = []

18

19 for file in fnames:

20 if file.startswith('Routel’'):
24 routel.append (file)

22 if file.startswith('Route2'):
23 route2.append(file)

24

25 framesl = []

26 frames2 = []

27

28 countl = {'¥70205":n,'Y70208"':n,*Y80803":n,"'¥Y701
29

30 #count2 =
{'WB3537':0,'W83538':0, 'W83539':0, '"W83540':0, 'WB3541':0, '"W83542':0, "W83543':0, 'W83544':0,
'W83545':0, 'PO1078':0}

countl = Series(countl)
#count? = Series(count2)

for each in routel:
data = pd.read csv(each)
framesl.append (data)
data = pd.concat(framesl)
Ll = data['serviceUid'].drop_duplicates()
Ll = list(Ll.values)

for every im L1:
data2 = datal[data['serviceUid']==every]

47 temp = len(data2)

48 if temp < n:

419 datal = data2[data2['d y 1! CALL']

50 if datal.empty == False:

51 temp -= len(datal)

52 countl [every] = temp

53

54

1L data = data[(data['disp s'] != 'CANCELLED CALL') & {data['display_1'] !=
' LED CALL'}]

56 data.to csv({'rc t ' yindex=False)
57 countl.to csv({'count ', index=True)
58 i

59 for each in routel:

60 data = pd.read csv(each)

61 frames2.append (data)

62

63 data = pd.concat(frames2)
64 data = data[(data['displ

As'] != 'CANCELLED CALL') & (data['displa
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6
6
6
6

8
9
0

LLED_CALL')]

data.to_csv('result2.c ,index=False)

#merge

framesl = pd.read csv('resultl.csv')

frames2 = pd.read csv('result2.csv')

data = pd.merge(framesl,frames2,on=["'tiploc'])

data.to csv('merged.csv',index=False)

#filter uncorr + filter corr

data = data.assign{window = lambda x: x['gbttBookedDeparture'] = x['gbttBockedArrival'])

data = data[data.window < 12]
data = data[data.window > B8]

data = data[data['runDate x']==data['runDate y']]
data = data.sort_values(by=['runDate_x=', 'gbttBoockedArrival'])

m = raw input('Net transfer time is set to: ')

m = int {m)

¥ k= raw_input('Maximum lateness at destination: ')
# k = int (k)

#data = pd.read_csv('filter corr.csv')

data = data.assign(window2 = lambda x: x['realti
data = data.assign(arrlate 3 = lambda x: =x['rt:

eparture'] = x['re
3']1 = x['pubarr

data.to_csv('filter_ corr.csv',index=False)

11

datal = data[['serviceUid x','serviceUid
datal = datal.drop_duplicates()

routel = list(datal['se
route? = list({datall'ser
rh = []

framesl = []

frames2 = []

elUid_x'].values)
iceUid_y'].values)

for trip in routel:
data? = data[data['servicelUid x']==trip]
a = countl[trip]

count_all = a

#data2 = dataZ?.assign(window2 = lambda x: x['rtdep cov'] - x['rtarr cov'])
data? = data?[data?.window? »= m] - -
count_suc = len(data2)

rel = float(count_ suc)/count_all

rel = round(rel*100)

framesl.append (count suc)

frames2.append (count_all)

rb.append(rel)

' :rb, 'count-suc':framesl,
count=-suc', 'count-all'])

datal = DataFrame({'rcutel':routel,’'route2':route2,'rel-
‘count=-all':frames2},columns=['routel','route2’', 'rel-corr
datal.to csv('rel-correlated.csv',index=Falsa)
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framesl = {}

for each in route2:
data2 = data[data['s
rb = data2['arrlate_3'].mean()
framesl [each] = rb

framesl = Series(framesl)

framesl.to_csv('mean-late.c

, index=True)
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