The University of Southampton
University of Southampton Institutional Repository

Inorganic nanoparticle-oligonucleotide conjugates for bio-sensing and therapeutics

Inorganic nanoparticle-oligonucleotide conjugates for bio-sensing and therapeutics
Inorganic nanoparticle-oligonucleotide conjugates for bio-sensing and therapeutics
In recent years, advances in conjugation techniques have allowed for the development of a vast range of hybrid materials nanomaterials with biomolecules. The use of hybrid nanomaterials has improved the imaging, treatment and diagnostics of specific biological processes. In this project, the main aim was to explore the uses of nanoparticle-oligonucleotide conjugates for biomedical applications.

Gold nanoparticle-DNA probes for the intracellular detection of Vimentin mRNA were synthesized. These probes showed great target specificity and biocompatibility. Additionally, by means of light sheet microscopy, the three-dimensional visualization of Vimentin mRNA expression in tissue was performed in order to allow a deeper understanding of spatial and temporal expression events in wounded tissue.

Furthermore, gold nanoparticles were also conjugated with siRNA sequences for the knockdown of SMAD3 gene in order to reduce the overproduction of TGF-β. This hybrid material showed efficient delivery of siRNA duplexes into both human and mice cells, with minimal toxicity. Upon applying the gold nanoparticle-siRNA silencing probes in in vivo murine models, preliminary results via photography and histological analysis pointed to a reduction of scar tissue formation.

Finally, the conjugation of lanthanide upconversion nanoparticles and oligonucleotide sequences was performed for the successful development of a FRET type of sensor. This sensor was aimed for the detection of mRNA biomarkers of prostate cancer and Alzheimer’s disease. Using graphene oxide as an electron acceptor, the nanoparticle-DNA conjugates specifically detected the presence of the target mRNA biomarker in low concentrations, both in blood plasma and cell lysate solutions.
University of Southampton
Vilela, Patrick
fd15dd30-ae72-40b8-8aac-546fa2bf54f5
Vilela, Patrick
fd15dd30-ae72-40b8-8aac-546fa2bf54f5
Kanaras, Antonios
667ecfdc-7647-4bd8-be03-a47bf32504c7

Vilela, Patrick (2017) Inorganic nanoparticle-oligonucleotide conjugates for bio-sensing and therapeutics. University of Southampton, Doctoral Thesis, 354pp.

Record type: Thesis (Doctoral)

Abstract

In recent years, advances in conjugation techniques have allowed for the development of a vast range of hybrid materials nanomaterials with biomolecules. The use of hybrid nanomaterials has improved the imaging, treatment and diagnostics of specific biological processes. In this project, the main aim was to explore the uses of nanoparticle-oligonucleotide conjugates for biomedical applications.

Gold nanoparticle-DNA probes for the intracellular detection of Vimentin mRNA were synthesized. These probes showed great target specificity and biocompatibility. Additionally, by means of light sheet microscopy, the three-dimensional visualization of Vimentin mRNA expression in tissue was performed in order to allow a deeper understanding of spatial and temporal expression events in wounded tissue.

Furthermore, gold nanoparticles were also conjugated with siRNA sequences for the knockdown of SMAD3 gene in order to reduce the overproduction of TGF-β. This hybrid material showed efficient delivery of siRNA duplexes into both human and mice cells, with minimal toxicity. Upon applying the gold nanoparticle-siRNA silencing probes in in vivo murine models, preliminary results via photography and histological analysis pointed to a reduction of scar tissue formation.

Finally, the conjugation of lanthanide upconversion nanoparticles and oligonucleotide sequences was performed for the successful development of a FRET type of sensor. This sensor was aimed for the detection of mRNA biomarkers of prostate cancer and Alzheimer’s disease. Using graphene oxide as an electron acceptor, the nanoparticle-DNA conjugates specifically detected the presence of the target mRNA biomarker in low concentrations, both in blood plasma and cell lysate solutions.

Text
Final Thesis - Version of Record
Available under License University of Southampton Thesis Licence.
Download (10MB)

More information

Published date: August 2017

Identifiers

Local EPrints ID: 426884
URI: http://eprints.soton.ac.uk/id/eprint/426884
PURE UUID: 094a8136-43b3-427b-9096-95545a90f24e
ORCID for Antonios Kanaras: ORCID iD orcid.org/0000-0002-9847-6706

Catalogue record

Date deposited: 14 Dec 2018 17:30
Last modified: 14 Mar 2019 01:39

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×