
Positive cerium anomaly in the Doushantuo cap carbonates from Yangtze 1 

platform, South China: Implication for intermediate manganous conditions in 2 

the water column in the aftermath of Marinoan glaciation 3 

He-Pin Wua, Shao-Yong Jianga,b,*, Martin Palmerc, Haizhen Weia, Jing-Hong Yanga 4 

aState Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing 5 

University, Nanjing 210023, China 6 

bState Key Laboratory of Geological Processes and Mineral Resources, Collaborative 7 

Innovation Center for Exploration of Strategic Mineral Resources, Faculty of Earth Resources, 8 

China University of Geosciences, Wuhan 43074, China 9 

cNational Oceanography Centre, School of Ocean and Earth Science, University of 10 

Southampton, Southampton SO14 3ZH, UK 11 

 12 

*Corresponding authors: shyjiang@cug.edu.cn (S.-Y. Jiang)  13 

 14 

ABSTRACT 15 

Oxygenation exerts an important control on the emergence and diversification of metazoans in 16 

the aftermath of Marinoan glaciation. However, the relationship between oceanic dissolved O2 17 

(DO) level and early metazoan evolution remains equivocal. In order to provide a precise 18 

temporal and spatial reconstruction of the redox conditions for this critical time period, we 19 



studied cap carbonates across a shelf to basin transect in three localities in the Three Gorges area, 20 

Yangtze platform, South China. Trace and rare earth elements are determined by sequential 21 

extraction of carbonate fraction to present pristine temporal seawater signal. The dolomites in the 22 

Member II of Doushantuo Formation just above the cap carbonates show negative Ce anomaly. 23 

In contrast, no Ce anomalies are observed in the lower units of cap carbonates. A compelling 24 

positive Ce anomaly (Ce/Ce*>1.3) has been observed in the demise of cap carbonate deposition 25 

in all studied sections. These positive Ce anomalies accompany with high Mn/Fe ratios and 26 

insignificant MREE anomalies, suggesting a Fe-Mn-(oxyhydro) oxide co-participation during 27 

cap carbonate deposition. It is suggested that positive Ce anomalies may result from the reductive 28 

dissolution of Ce enriched Mn-(oxyhydro) oxides across a Mn(IV)/Mn(II) redoxcline, in a 29 

distinct manganous wedge sandwiched between well oxygenated and anoxic ferruginous deep 30 

water column. The highlighted wedge may represent a low oxygen condition with roughly 10 µM 31 

DO in comparison with the >90 µM DO of the oxic setting, as well as 0 µM DO of the anoxic 32 

condition. The presence of positive Ce anomalies in the uppermost part of cap carbonates may 33 

provide a novel insight for indicating intermediate manganous conditions in the water column, 34 

and further constraining the redox structure of terminal Ediacaran cap carbonate deposition. 35 

Early Ediacaran metazoans were likely restricted to fully oxygenated conditions, and were absent 36 

where conditions were manganous or ferruginous. 37 
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1. Introduction 40 

    After the Marinoan meltdown, the Ediacaran period witnesses dramatic diversification of 41 

multicellular life as well as a remarkable change of global climate and geochemical cycle 42 

(Kirschvink, 1992; Hoffman et al., 1998; Higgins and Schrag, 2003; Caxito et al., 2012). The 43 

occurrence of widespread carbonate deposition that immediately overlie above the diamictites, 44 

known as cap carbonate, commonly preserve striking features of the climate and environment 45 

shifts at the termination of the glaciation (Hoffman et al., 1998; Shields, 2005; Bechstädt et al., 46 

2018; Caxito et al., 2018). The cap carbonates usually exhibit negative δ13C anomaly (Jiang et 47 

al., 2003; Rose and Maloof, 2010; Zhu et al., 2013) and unique sedimentary structures and 48 

textures, such as the pseudo-tepees, tube structures, and aragonite fans (Kennedy et al., 1998; 49 

James et al., 2001; Lorentz et al., 2004). The depositional time interval of several meters thick 50 

cap carbonates is not exceeding than 1 Ma (Hyde et al., 2000; Higgins and Schrag, 2003; Font 51 

et al., 2010), thus the high-rate depositional water property may thus provide a vital insight into 52 

revealing palaeoceangraphic environmental evolution. 53 

The distribution patterns of rare earth elements and yttrium (REYs) are 54 

frequently used as proxies for ancient seawater chemistry. Studies on various 55 

well-preserved sedimentary rocks precipitated in paleo seawater have been 56 

previously carried out, including biogenic apatite (conodonts, fish scales and 57 

otoliths, and vertebrate bones) (Arslan and Paulson, 2003; Lécuyer et al., 2003; 58 

Song et al., 2012; Chen et al., 2015), skeletal carbonate (Webb and Kamber, 2000; 59 

Nothdurft et al., 2004; Wyndham et al., 2004) and hydrogenous sediments (chert, 60 



phosphorite and carbonate) (Murray et al., 1991; Mazumdar et al., 2003; Shields 61 

and Webb, 2004; Ling et al., 2013; Xin et al., 2015). In the aspect of carbonate 62 

chemistry, REYs can substitute for the calcium ion into the lattice structure of 63 

authigenic phases without fractionation during diagenesis, including even 64 

dolomitization and dissolution and re-adsorption processes (Reynard et al., 1999; 65 

Webb et al., 2009; Guido et al., 2011; Sarangia et al., 2017). Recently, studies 66 

on cap carbonates have been conducted to reflect temporal seawater signals (Font 67 

et al., 2006; Huang et al., 2009; Zhao et al., 2009; Yan et al., 2010; Huang et 68 

al., 2011; Meyer et al., 2012; Tian et al., 2014; Wang et al., 2014; Hu et al., 69 

2016; Caxito et al., 2018). Previous workers draw their attention to various 70 

deposition fluids and material sources with REY analysis. For example, Huang et 71 

al. (2011) outlined a hydrothermal origin of redox-sensitive trace elements for 72 

the cap carbonates. Zhao et al. (2018) also indentified different contribution 73 

of high-temperature hydrothermal fluids to the cap carbonates from South China. 74 

Several studies also claimed that local deglacial meltwater interfused with seawater as 75 

precipitation water for the cap carbonates that deposited in a weak oxic condition (Zhao et al., 76 

2009; Yan et al., 2010; Caxito et al., 2018). 77 

The behavior of cerium in sweater has been widely interpreted regarding water mass 78 

redox conditions for marine sediments. It is noteworthy that positive Ce anomaly was 79 

previously reported in some of the cap carbonate samples (Ling et al., 2013; Wang et al., 2014; 80 

Hu et al., 2016). However, these authors did not give a meaningful interpretation for the 81 



positive Ce anomaly. This paper here devotes to account for the reason of positive Ce anomalies 82 

found in the top of cap carbonates in several sections from deep to shallow water on the Yangtze 83 

platform, and further decodes the variation of redoxcline interfaces and the 84 

palaeoenvironmental implications. 85 

 86 

2. Geological setting  87 

Doushantuo Formation is one of the world’s best-preserved Neoproterozoic Ediacaran 88 

carbonate sequences that deposited on the passive marginal sea basin of the Yangtze platform 89 

and developed in the aftermath of the Marinoan glaciation (e.g., Wang and Li, 2003; Jiang et al., 90 

2006; Vernhet et al., 2006) (Fig.1a, b). The Doushantuo Formation has been well defined 91 

stratigraphically and ecologically (Zhu et al., 2003; Yuan et al., 2011; Zhu et al., 2013), it is 92 

typically divided into four lithological members and hosting abundant three-dimensionally 93 

preserved eukaryotes. The cap carbonate member (which usually just several meters in 94 

thickness) in the base of Doushantuo Formation rests disconformably overlain by the Nantuo 95 

diamictite Formation. 96 

The age of the onset of cap carbonate deposition has been constrained from zircon U-Pb 97 

methods, including an age of 628.3±5.8 Ma (Yin et al., 2005) or 621±7 Ma (Zhang et al., 2005) 98 

obtained from the volcanic ash layers within the upper cap carbonates. Condon et al. (2005) has 99 

constrained the age to 635.2±0.6 Ma from the cap carbonates of the Doushantuo Formation in 100 

Wuhe-Gaojiaxi section in the Three Gorges area. These results are in consistent with the age of 101 

635.5±0.5 Ma reported for the Ghaub Formation in Namibia (Hoffmann et al., 2004). Therefore, 102 



the beginning of cap carbonate precipitation is considered at ca. 635 Ma, as the termination of 103 

Marinoan glaciation.  104 

Three sections of cap carbonates (Huajipo, Wuhe and Jiulongwan) were examined in this 105 

study, which cover a range of paleo-facies from the shallow intra-shelf to the inner basin (Fig. 1c). 106 

Both Huajipo section (30˚46′55.6″N, 111˚01′08.2″E) and Wuhe section (30˚46′54.57″N, 107 

111˚02′03.49″E) represent deposition in the shallow inner basin facies, whereas the Jiulongwan 108 

section (30˚48′14.5″N, 111˚03′20.1″E) represents an intra-shelf facies. They are all located at the 109 

southern limb of the Huangling Granite Anticline near the Sandouping Village and within the 110 

distance of no more than 5 km. The three sections deposited in a locally restricted palaeooceanic 111 

setting and show thickness of several meters with three lithological units of CA1, CA2 and CA3 112 

(Jiang et al., 2003) (Fig. 2). The basal CA1 unit consists of microcrystalline dolomite that is 113 

commonly brecciated and contains cavities lined by multiple generations of fringing cement. 114 

The middle layer (CA2) is characterized by laminated dolomicrites with “tepee-like” structures 115 

that disrupt laminations at its base. The upper layer (CA3) consists of thinly laminated, silty, 116 

limestones and dolomicrites. 117 

 118 

3. Samples and analytical methods 119 

In this study, we selected 63 samples for trace and rare earth elements and carbon-oxygen 120 

isotope measurements from the three cap carbonates sections. 121 

A critical issue in using trace and rare earth elements of carbonate rocks for indicating 122 

water mass redox conditions is the potential overprinting of the pristine seawater signal via 123 



alteration. To obtain high-quality samples in which original rare earth elements signals are well 124 

preserved, we firstly screened macroscopically in the field to choose samples without weathered 125 

surfaces, and then examined microscopically to avoid from feldspar-quartz veins and miarolitic 126 

structures. Fresh carbonate samples were then pulverized to powder by diamond tipped 127 

micro-drill (Proxxon, Germany) and further ground to 200 mesh with agata-pestle type grinding 128 

machine (Retsch, Germany).  129 

Twenty milligramms of powder from each sample were used for δ13C and δ18O analysis. 130 

Dolomite samples were reacted with 100% H3PO4 at 50℃ for more than 24h in the laboratory 131 

of the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences. Prepared 132 

gas samples were analyzed for δ13C and δ18O using the Chinese national standard, an 133 

Ordovician carbonate from a site near Beijing (reference number GBW 04405: δ13C = 0.57 ± 134 

0.03 ‰ VPDB; δ18O = −8.49 ± 0.13 ‰ VPDB). The analysis was carried out using a Finnegan 135 

MAT 253 mass spectrometer in the State Key Laboratory for Mineral Deposits Research, 136 

Nanjing University. The δ13C precision was better than 0.15‰, and that of δ18O was better than 137 

0.1‰. 138 

Previous methods applied for carbonate dissolution in trace and rare earth elements use 139 

varying acid types (Tessier et al., 1979; Shields et al., 1997; Nothdurft et al., 2004; Zhao et al., 140 

2009) or varying acid strengths under different reaction temperature and dissolution of time 141 

(Bodin et al., 2007). The dissolution leaching procedures are carried out with single-step or 142 

partial dissolution methods (Zhao et al., 2009; Meyer et al., 2012; Zhang et al., 2015). Tostevin 143 

et al. (2016a) and Zhang et al. (2015) have systematically investigated the proposed dissolution 144 



methods with acetic acid in sequential leaching. They suggested that the REY patterns show 145 

similar trends with different acid strength during the second step, and the non-carbonate minerals 146 

such as terrestrial particulate matter, Fe-Mn-(oxyhydr) oxides, phosphates and organic matters 147 

that affect REY distribution patterns will be dissolved when excess acid is added. Dolomite 148 

samples do not need sequential leaching step due to the dissolving products show similar REE 149 

patterns as the first step do. Besides, nitric acid acts as an oxidizing acid will dissolve the organic 150 

matters in samples, to some extent. Therefore, considering the non-carbonate phases absorbed on 151 

the cap carbonates, we chose the 10% acetic acid (GR) to dissolve the dolomite phase to represent 152 

the palaeo seawater signature. The trace elements and REE analyses were undertaken at 153 

National Oceanography Centre (NOC), University of Southampton, United Kingdom. About 154 

100 mg samples were leached in sealed polypropylene centrifuge tubes using 2 mL of 10% 155 

acetic acid (HAC). The partial solutions that completely reacted with acetic acid over 24 hours 156 

were ultrasonic stirred and centrifuged. The supernatant then transferred to clean Teflon bottles, 157 

and the residue were washed three times with Mill-Q water, centrifuged and transferred to the 158 

Teflon bottles. Then we added 6M HCl to the dried samples and diluted with Mill-Q to 10 mL as 159 

mother solutions. 0.5 mL mother solutions were then evaporated to dryness and added 3% 160 

HNO3 with 5 ppb In and Re and 200 ppb Be to yield a 1,000-fold diluted solution. Analyses 161 

were carried out on an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (Thermo 162 

Finnigan, Bremen, Germany) with multi-standard elements calibration solution. For trace 163 

element analysis, spectral interferences from major elements Fe, Al, Ca, Mg were monitored 164 

and corrected as necessary using single-element standards. The analytical error was 0.5 to 3% 165 



and the accuracy was 5%. The REE data are presented as Post-Archean Average Shale 166 

(PAAS)-normalized (McLennan, 1989; Pourmand et al., 2012) plots, and the Eu/Eu*, Ce/Ce* 167 

and MREE/MREE* are calculated from the PAAS-normalized values with published formulae 168 

(Lawrence et al., 2006; Ling et al., 2013; Chen et al., 2015):  169 

    (1) 170 

                                           (2) 171 

                                       (3) 172 

These calculations will avoid the artificial exaggeration of La anomaly to Ce anomaly. 173 

 174 

4. Results 175 

4.1. Major and trace elements 176 

The major and trace elemental data of carbonate samples from all studied sections are listed 177 

in Table 1. The CaCO3 percentages of cap carbonates entirely are excess than 20%, and that of 178 

basin samples (Huajipo and Wuhe sections) is about 10% lower than intra-shelf ones (Jiulongwan 179 

section) (Table 1). Mg (wt.%) data present the relative lower data in intra-shelf samples 180 

(0.03-2.53%) than the basin samples (0.4-9.5%). Most carbonate components have low Al 181 

concentrations (<0.6 wt.%). Mn and Fe concentrations are relative high with thousands ppm. Ba 182 

concentrations show lower values in CA2 units (<100 ppm) compared with the basal and top units 183 



of cap carbonate, in where the values can reach to hundreds ppm. Strontium concentration display 184 

the similar rule as Ba does, ranging from 44 to 247 ppm. The basin samples have similar values of 185 

Pb and Cu concentrations and they all are below to 12 ppm. All studied sections have similar Sc 186 

and Co concentrations with several ppm in most.    187 

4.2. Oxygen and carbon isotopic compositions 188 

The δ18O values of the cap carbonates are relatively invariant higher than -10‰. In contrast, 189 

the carbon isotope values (δ13C) of the cap carbonates are highly variable ranging from 0.4 to 190 

-22.5 ‰. The δ13C data are in good agreement with literature data (Jiang et al., 2007; McFadden 191 

et al., 2008; Wang et al., 2008), showing a stage of constant δ13C values around -5‰ before the 192 

extremely negative δ13C values obtained from the end of cap carbonates, and return toward to 193 

above 3‰ in the overlying member II sediments (Table 1). 194 

4.3. Rare earth elements and REY patterns 195 

The rare earth element data and relative ratios from all studied sections are listed in Table 196 

2. Detrital siliciclastic influenced samples may exhibit high ΣREE more than hundreds ppm. 197 

However, our ΣREE data all below 60 ppm, indicating a dominant hydrogenous sourced REE. 198 

The Y/Ho ratio shows a range from 36 to 53, which is similar to the seawater value (Fig. 2). 199 

Broadly speaking, Ce/Ce* ratios of carbonates exhibit similar range from basin samples 200 

(0.90-1.64) to intra-shelf samples (0.86-1.34). No distinct Ce anomalies (Ce/Ce* around 1.0) are 201 

detected during the CA1 and CA2 units of the three sections. The Member II of Jiulongwan and 202 

Huajipo section present negative Ce anomalies with ratios around 0.9. The most intriguing 203 



observation to emerge from the data is the positive Ce anomalies found in the top of CA3 units in 204 

all three sections (Fig. 2).  205 

REY patterns of the three studied sections can be categorized as three lithological units 206 

(Fig. 3). In CA1 unit, the REY patterns of Jiulongwan and Huajipo sections are characterized by 207 

relative flat patterns but the Wuhe section shows a LREE-depleted pattern (Fig. 3a, d, g). The 208 

REY patterns in CA2 units display slight MREE-bulge pattern, samples in lower parts have 209 

obvious seawater signals with LREE-depleted and positive Y anomalies (Fig. 3b, e, h). The 210 

LREE-enriched REY patterns together with positive Y and La anomalies are shown for CA3 211 

units (Fig. 3c, f, i). The positive Eu anomalies mixed with LREE-depleted patterns (PrN/YbN<1.0) 212 

may be considered as syn-hydrothermal fluids incorporated with seawater (Fig. 3).  213 

 214 

5. Discussion 215 

5.1. Fidelity of trace and rare earth elements 216 

Deducing the properties of the precipitating waters and depositional environment using 217 

trace elements data needs firstly to confirm these elements originated from authigenic sediments 218 

as a prerequisite. There are generally four critical sources of contamination, including (1) 219 

detrital components effect, (2) diagenetic alteration effect, (3) submarine hydrothermal 220 

alteration and (4) instrumental measurement error (Tribovillard et al., 2006; Sarangia et al., 221 

2017).  222 

In the authigenic marine sediments, the existence of small amounts of detrital silicate 223 

minerals such as clay minerals, quartz and feldspar may affect the REEs signature of paleo 224 



seawater that recorded in the authigenic minerals. In this study, we use a 10% acetic acid 225 

dissolution protocol to avoid attack of the detrital silicate minerals in the samples. High field 226 

strength elements (e.g. Sc, Zr, Ti) are mainly derived from terrestrial products, so they are 227 

suitable to monitor the extent of terrestrial particulate matters contamination (Calvert and 228 

Pedersen, 1993; Böning et al., 2004; Schröder and Grotzinger, 2007). Using the acetic acid 229 

dissolution method, the mass percentage of CaCO3, Sc/Ca and Al/Ca ratios in our studied cap 230 

carbonate samples show no correlation with Ce anomaly, indicating a negligible detrital 231 

contribution. To maximum exclude the detrital effects, criteria that Al/Ca < 8 ppm and CaCO3 > 232 

20% are followed to examine the carbonate Ce/Ce* values (Fig. 4a-c). In order to evaluate the 233 

contamination from sulfides and oxides, the elements Pb and Cu can be used together with 234 

Y/Ho ratios (Wang et al., 2014). Our samples also show no correlations between Y/Ho and 235 

Pb/Ca or Cu/Ca, indicating the contamination by sulfides and oxides can be excluded (Fig. 4d,e). 236 

In spite of similar ionic radius, valence state and geochemical behaviors, Ho is scavenged from 237 

seawater twice as fast as Y because of differences in surface complexation ability (Liu and 238 

Byrne, 1995; Nozaki et al., 1997). Fractionation between Y and Ho during weathering and 239 

fluvial transport to the ocean appears to slightly affect the Y/Ho ratio of seawater, and the Ho 240 

reflects changes in near/far shore environments of deposition due to its property of tracking the 241 

connectivity of a water column to the open ocean (Johannesson et al., 2006; Nozaki et al., 1997). 242 

Y/Ho ratio thus can be considered as a good indicator to distinguish marine and non-marine 243 

deposition (Nothdurft et al., 2004). Modern seawater exhibits distinct positive Y anomaly, with 244 

values of 40-80 for open marine setting and 33-40 for near-shore or restricted basin setting 245 



(Nozaki and Zhang, 1995; Bau et al., 1997). Therefore, in this study, we only use those samples 246 

with Y/Ho>36 as unaltered seawater REY signatures following the suggestion by Tostevin et al. 247 

(2016a) (Fig.4f). 248 

The REY patterns of marine carbonates can also be modified by diagenetic alteration. 249 

Diagenetic fluids, such as burial fluids, meteoric fluids, hydrothermal fluids and/or 250 

dolomitization fluids, may all slightly affect REY signatures of sedimentary carbonates (Guido 251 

et al., 2011). Several previous works on Devonian limestones and Carboniferous marine 252 

limestones suggested that these samples still preserved their original REY signatures without 253 

contamination by mineralizing fluids or dolomitization events (Parekh et al., 1977; Banner et al., 254 

1988; Nothdurft et al., 2004). To maximum eliminate the effect caused by diagenetic fluids, 255 

criteria including δ18O<-10‰, Mn/Sr> 2 and high Mn content are usually recognized as good 256 

indicators to avoid those carbonate samples with diagenetic alteration (Derry et al., 1994; 257 

Jacobsen and Kaufman, 1999). The δ18O values of most cap carbonates samples are mostly 258 

ranged from -10‰ to 0‰ except some scatters pointed less than -10‰ (Fig. 5a, b). These 259 

scattered samples are mainly from the basal cap carbonates and the top layers above the cap 260 

carbonates. One alterative explanation for the low δ18O values in the base cap carbonates may 261 

be attributed to their participation from glacial melting water mass (Zhao and Zheng, 2010), so 262 

these authors suggested that the isotopic values within the CA1 unit can be regarded as 263 

unaltered. Previously reported Mn/Sr ratios of early Cryogenian and Neoproterozoic cap 264 

carbonates are commonly high, and this has been attributed as the unusual coeval seawater 265 

chemistry in anoxic or suboxic depositional environments by many researchers (Yoshioka et al., 266 



2003; Font et al., 2006; Hurtgen et al., 2006). Therefore, in this study we apply a Mn/Sr ratio of 267 

<62 as the cutoff value to exclude the samples with diagenetic alteration (Fig. 5b, c). Of note, 268 

there exists no correlation between the Ca normalization Mn and Fe concentrations and Ce 269 

anomaly (Fig. 5d, e), which also indicates a negligible diagenetic effect. A strong covariation 270 

would appear between Ce/Ce* and Eu/Eu*or DyN/SmN if the REY patterns of the cap carbonates 271 

experienced diverse degrees of diagenetic effect (Shields and Stille, 2001), but no obvious 272 

positive correlation between Ce/Ce* and Eu/Eu* or DyN/SmN occurs in the our studied samples 273 

from the three sections (Fig. 5f, h), which again suggest that the REY of the cap carbonates are 274 

unaffected by diagenetic alteration and therefore these data can be used as representations for 275 

original REY compositions that record the paleo seawater signatures.  276 

The submarine hydrothermal process can also influence the trace and rare earth elements 277 

contents of marine sediments. Normally the hydrothermal fluids can provide abundant Ba, Sr, 278 

Pb, Zn and Mn to the sediments (Pujol et al., 2006). Moreover, the addition of abundant Fe and 279 

Mn from hydrothermal fluids may cause a partial change of redox state, resulting to some 280 

redox-sensitive element enrichments (Morford et al., 2001). The most prominent characteristics 281 

of submarine hydrothermal fluids are remarkable positive Eu anomaly and LREE enrichment 282 

(Michard and Albarede, 1986; Campbell et al., 1988; James et al., 1995). The Eu3+/Eu2+ redox 283 

potential in waters mainly depends on temperature, pH and REE speciation (Bau, 1991). Some 284 

samples in the studied sections are excluded because of their abnormally high LaN/YbN (2.4) and 285 

GdN/YbN (2.57) ratios (Fig. 5i). Most samples display positive Eu anomaly, which may indicate 286 

an effect from syn-depositional hydrothermal fluids.  287 



In the Eu measurement with ICP-MS, high content of Ba would influence Eu values, 288 

making false positive Eu anomalies (Jiang et al., 2007). In order to exclude this analytical effect, 289 

the crossplot of Eu/Eu* vs Ba/Nd is examined, and our studied samples show no correlation 290 

between them (R2=0.063) (Fig. 5g), that is to say the positive Eu anomaly in the samples are not 291 

artificial but genuine result. 292 

In summary, in this study we use the following criteria, including δ18O < -10 ‰, Al/Ca < 8 293 

ppm, CaCO3 > 20%, Y/Ho > 36, Ba/Nd < 100 and Eu/Eu* < 2 to select the genuine data for the 294 

cap carbonate samples that may record the pristine paleo seawater signature. In Table 1 and 2, 295 

the asterisk-labeled samples are excluded as they may have affected by overprinting of various 296 

factors as we discussed above.  297 

5.2. Positive Ce anomaly  298 

A positive Ce anomaly represents enrichment in Ce above that expected based on the 299 

concentration of neighbouring REY. Ce is controlled by the adsorption/desorption processes 300 

into the surface of metal-oxide coatings of particles (Liu et al., 1988). The oxidized Ce4+ is less 301 

soluble and more readily adsorbed onto the surface of Fe-Mn oxides particles than Ce3+. This 302 

would leave residual seawater depleted in Ce relative to other trivalent REEs, therefore the 303 

negative Ce anomaly indicates the oxygenation of the water mass (Alibo and Nozaki, 1999). The 304 

term “negative Ce anomaly” is widely acceptable as Ce/Ce*<0.9, but there is still uncertainty on 305 

accurately defining the positive Ce anomaly. Due to the fluctuations in Pr and Nd 306 

concentrations measured and the precision of ICP-MS analysis (accuracy within 5%), the Ce 307 

anomaly calculation may reach up to 1.2. To determine the true Ce enrichments, we make a 308 



statistics and find most data of Ce anomaly set within the threshold of 1.1 except four data 309 

exceed than 1.3. Therefore, the threshold is selected of 1.3 as the genuine positive Ce anomalies. 310 

When evaluating Ce anomaly data of the studied three sections, diagenetic and detrital effects 311 

have been excluded as discussed in section 4.1. The positive Ce anomalies show no correlation 312 

with Mn/Ca, Fe/Ca and Al/Ca, indicating minimal contamination from clay or Fe-Mn (oxyhydr) 313 

oxide phases (Fig. 4, 5). Positive Ce anomaly has been reported in some modern manganous 314 

waters (De Baar et al., 1988; De Carlo and Green, 2002) and also in some Proterozoic 315 

manganous deposits and carbonates (Mazumdar et al., 2003; Yu et al., 2016). As Wallace et al. 316 

(2017) indicated, positive Ce anomaly has been observed in the Sturtian and Marinoan glaciation 317 

termination. Hu et al. (2016), Ling et al., (2013) and Wang et al. (2014) reported positive Ce 318 

anomaly in cap carbonates of Jiulongwan section (Fig. 6). Meyer et al. (2012) also found the 319 

pink cap carbonates of post-Sturtian glaciation sharing the same positive Ce anomaly. All these 320 

data concur well with our results and convincingly support the genuine existence of positive Ce 321 

anomaly in cap carbonates. 322 

    The positive Ce anomaly and their causes thus provide us a unique opportunity to improve 323 

our understanding for the changes of the water mass redox conditions associated with the 324 

extreme post-Marinoan climatic changes. Factors that may influence the Ce mobility in the 325 

precipitation consist of the depositional ages (German and Elderfield, 1990), the pH values of 326 

water (Brookins, 1989; Stille et al., 1999; Tricca et al., 1999), the water depth (Wright et al., 327 

1987; Piepgras and Jacobsen, 1992), the microbial mediation (Moffett, 1990), as well as the 328 

organic matters (Pourret et al., 2008) and Fe-Mn (oxyhydr) oixdes reductive dissolution 329 



(Tostevin et al., 2016b). In the following, we will discuss these controlling factors in details:  330 

(i) Changes induced by ages and precipitation depth  331 

    It has been identified that Ce seems to undergo progressive oxidative removal from the 332 

deep oceans during the ageing of individual water mass (German and Elderfield, 1990). 333 

Diffusion and bathymetry effects may contribute to REE heterogeneity within the same ocean 334 

basin. Ce anomaly would be affected by restricted stratified ocean and variation of depth and 335 

position. It is noted that transgression is occurred in the terminal Marinoan glaciation, whereas 336 

the studied three isochronous sections either present decreasing trend or steady curve (Fig. 2), in 337 

contradiction with the opinion that Ce/Ce* ratios show a stepwise increasing trend with 338 

precipitation water depth during transgression (Ling et al., 2013).     339 

(ii) Changes induced by alkalinity and organic matters 340 

    Positive Ce anomaly may be exhibited in organic-poor alkaline waters and alkaline lake 341 

waters due to preferential stabilization of carbonato-Ce(IV)-complexes by dissolved carbonates 342 

(Möller and Bau, 1993; Johannesson and Lyons, 1994; Davranche et al., 2005; Pourret et al., 343 

2008). Deposition of cap carbonate is a response to a sudden increase in shallow-seawater 344 

alkalinity (Myrow and Kaufman, 1999; Shields, 2005). Independent evidence from boron 345 

isotope data of Xiaofenghe section in the Three Gorges area has been proposed that cap 346 

carbonate deposition experienced maximum ocean acidification event in the CA3 unit, and then 347 

returned to normalcy (Ohnemueller et al., 2014). Due to the total alkalinity (TA) would increase 348 

when pH rises, the pH and total alkalinity of the Doushantuo Member II should be higher than 349 

those of CA3 unit, and positive Ce anomaly should present, but such a shift is not supported by 350 



the Ce anomaly data in Doushantuo Member II samples. On the other hand, the bulk TOC data 351 

from Jiulongwan section show slightly decreasing trend during cap carbonates and fluctuate in 352 

Doushantuo Member II (McFadden et al., 2008), indicating lower organic matter content in the 353 

CA3 unit of cap carbonate in comparison with other units and Member II. As previous 354 

experiment ruled out, positive Ce anomaly may be developed in the organic-rich phases 355 

(Pourret et al., 2008), our data appear to object to the organic matter participating.   356 

(iii) Changes induced by terrestrial input and diffusion effect 357 

    The observed positive Ce anomaly or no Ce anomaly in the shallow water of modern oxic 358 

ocean might be interpreted as resulting from terrestrial input (De Baar et al., 1985), due to the 359 

REY patterns from rivers or wind blown dust generally carry a flat REY signature, with LREE 360 

enriched and no fractionation between Ce and nearby REEs. However, Ce outlier of the Huajipo 361 

section presents an REY pattern with the depleted LREE relative to HREE (La/Yb<1) (Fig. 3c, f, 362 

i). If terrestrial inputs are anomalous mixed with seawater, the total REE content of carbonates 363 

would be higher (e.g., up to hundreds of ppm) and co-correlated higher Sc/Ca, which are absent 364 

in our studied samples. Moreover, if positive Ce anomaly results from excess continental input 365 

or inshore reducing sediments, the diffusion effect may affect Ce mobilization, and we would 366 

expect Ce enrichment to be most prevalent in alongshore section such as the Jiulongwan section. 367 

Although limited Ce enrichments are recorded in these sections, their values are more 368 

pronounced in offshore sections like Huajipo and Wuhe sections. Additionally, Le Hir et al. 369 

(2009) has deduced that the maximum dissolved elements from continental weathering into the 370 

ocean do not supply enough to be responsible for the elevated greenhouse in the period of cap 371 



carbonate deposition during the snowball melting. As fewer cations rushed into the ocean in the 372 

demise of cap carbonate deposition, then the positive Ce anomaly observed might not be the 373 

consequence of continental weathering input.      374 

(iv) Changes induced by microbiological activity 375 

    Surface catalysis and biomineralization will affect the Ce behavior in the carbonatogenesis 376 

processes. The microbial oxidation that preferential scavenging of Ce(IV) could be a result of 377 

the negative Ce anomaly and little apparent Ce anomaly may occur in areas of high particle flux 378 

regions (Moffett, 1990). Recently, substantial fractionation of the REEs has been observed 379 

between the currently forming lacustrine stromatolites and the ambient waters, and the presence 380 

of putative microbialites exhibit HREE enrichments whereas the ambient waters are 381 

substantially HREE-depleted (Johannesson et al., 2014). However, based on the assumption that 382 

the REE of abiotic carbonate uptake from ambient waters without fractionation (Guido et al., 383 

2011), if micro-biomineralization participated the cap carbonate deposition, the REE patterns of 384 

micrites and micritic dolomites should display HREE enriched pattern, but such REY patterns 385 

are not observed in our studied samples (La/Yb>1 and Gd/Yb>1 in JLW-18, HJP-18 and 386 

WH-16) (Fig. 3c, f, i). In addition, the presence of Fe-chelating siderophores, such as biogenic 387 

siderophore desferrioxamin-B (DFOB), can enhance the solubility of Ce(IV) and produce 388 

solutions with a positive Ce anomaly by partial dissolving volcanic ash particles and taking 389 

excess flux of dissolved REE into the ambient waters during the weathering of igneous rocks 390 

(Bau et al., 2013; Kraemer et al., 2015). The process may affect the input of REE into the ocean 391 

from continental weathering, but we find no anomalous Ce behavior in continental input (Fig. 392 



4b, c). Further, the presence of biogenic chelators such as DFOB results in enriched Ce 393 

alongside La-depleted concave downward LREY pattern (Kraemer, 2004; Kraemer et al., 2015), 394 

which is in marked contrast to the positive La anomalies observed in the three sections (Fig. 3). 395 

(v) Changes induced by release from Ce(IV) reduction 396 

    Positive Ce anomaly may be controlled by excess reductive Ce that releases from the oxide 397 

surface. The Ce(IV) forms separated solid oxide phase beneath the Ce redoxcline under oxic 398 

setting and independent of either Fe or Mn redox cycles (Haley et al., 2004). In this case, excess 399 

Ce(IV) would reduce to Ce(III), apart from the surface of oxide particles and release into 400 

ambient water, along with unfractionation of other REYs, including Y. However, Y/Ho ratios 401 

and positive Ce anomaly show a coupling increasing trend (Fig. 2), thus this speculation could 402 

be excluded.  403 

(vi) Changes induced by dissolution of Fe-Mn-(oxyhydr) oxides 404 

Excess Ce accumulation may also be attributed to reductive dissolution of Fe-Mn-(oxyhydr) 405 

oxides and release of all oxide bound REY. Detailed discussion will be demonstrated in below 406 

section. 407 

 408 

5.3. Reductive dissolution of Mn- (oxyhydr) oxides 409 

During the early diagenesis, REY released from reductive dissolution of Fe- or Mn- 410 

(oxyhydr) oxides in anoxic pore waters could be a potential mechanism for anomalous Ce 411 

behavior (Bau and Dulski, 1996; Haley et al., 2004). Fe-Mn (oxyhydr) oxides precipitated in 412 

seawater with initially colloidal particles as two major forms: hydrogenetic crusts and nodules. 413 



The former usually are crustose shaped and develop above tholeiite and alkali basalt rocks, 414 

while the latter are concretions on the sea bed and accrete around a nucleus. The hydrogenetic 415 

crusts and nodules exist themselves in the seawater and are enriched in Co, a unique metal 416 

element that differs from hydrothermal and diagenetic fluids. So the observed higher Co/Ca 417 

ratios in CA3 units can be attributed to the accumulation process along with the dissolution of 418 

hydrogenetic Fe-Mn precipitates (Table 1). As proposed by Bau et al. (2014), the large data set 419 

point out that both hydrogenetic crusts and nodules show positive Ce anomaly, negative Y 420 

anomaly and high Nd concentration of >100 ppm. The positive Ce anomaly outliers drop on the 421 

seawater-hydrogenetic Fe-Mn nodules mixing curve (Fig. 7a, b), roughly 1%-8% hydrogenetic 422 

Fe-Mn nodules affect Nd concentration and 70% of those affect Y anomaly, suggesting a 423 

mixed-type hydrogenetic-seawater origin. Depleted HREE with positive Eu anomaly is 424 

indicative of hydrothermal influence, the entire samples are characterized by slight positive Eu 425 

anomalies (Fig. 3), this may indicate that the precipitation process is partly influenced by 426 

hydrothermal mixing. However, this process is incapable of the main positive Ce anomaly 427 

producer, because neither high-T hydrothermal fluid nor hydrothermal deposit could provide 428 

excess Ce and show positive Ce anomaly.  429 

Mn-(oxyhydr) oxides may be considered as more important for controlling the redox 430 

cycling of Ce than Fe-(oxyhydr) oxides. Since the reduction potential of Ce(IV) (+1.6°V) is 431 

closer to Mn(IV) (+1.23°V) than Fe(III) (+0.77°V) (Randle and Kuhn, 1986; Lovley, 1991), 432 

Ce(III) adsorption and desorption tend to occur on Mn(II)/Mn(IV) transformation surface, 433 

rather than that of Fe(II)/Fe(III). The MREE-bulge patterns possibly result from preferential 434 



adsorption LREEs to Mn-(oxyhydr) oxides, as well as HREEs to Fe-(oxyhydr) oxides. The 435 

Fe-(oxyhydr) oxides often characterized by distinct MREE enrichment, high absolute Fe 436 

concentration and negative Y anomaly (Bau, 1999), while the dissolution of Mn-(oxyhydr) 437 

oxides may result in positive Ce anomaly alongside superchondritic Y anomaly, due to 438 

preferential adsorption of LREEs by Mn-(oxyhydr) oxides, and preferential scavenge MREEs 439 

by Fe-(oxyhydr) oxides, respectively (Gutjahr et al., 2007). Nevertheless, Fe-(oxyhydr) oxides 440 

may not be the primary carrier of Ce, as most evidence prove that the REY are scavenged onto 441 

Fe-(oxyhydr) oxides (Sholkovitz et al., 1994; De Carlo et al., 2000; Planavsky et al., 2010), 442 

without preferentially accumulating Ce. The Ce fractionation can only occur on the surface of 443 

Mn-(oxyhydr) oxides (Bau et al., 2014). Enriched MREEs and absolute high Fe concentration 444 

would occur in the water mass when encountered Fe(III)/Fe(II) dissolution. However, low 445 

Fe/Ca ratios, positive Y anomalies and normal MREE/MREE* are observed in JLW-18, HJP-18 446 

and WH-16 (Fig. 3, Fig. 5e, Fig. 7c), in contrast to the reductive dissolution process of 447 

Fe-(oxyhydr) oxides. An alternative candidate may be the participating of Mn-(oxyhydr) oxides, 448 

whom can separately exist in a stable manganous zone on a dm-scale. Excess Ce may 449 

accumulate by reductive dissolution of Mn-(oxyhydr) oxides and release of all oxide bound 450 

REY in the form of LnOH2+. The REY patterns of three outliers display positive Ce, La, Y, Eu 451 

anomalies alongside enriched HREE and no MREE anomalies (Fig. 3c, f, i), indicating a 452 

combination of seawater patterns via incorporating hydrogenetic Mn oxides REY across the 453 

Mn(IV/II) redoxcline, in agreement with the data from modern manganous zones with positive 454 

La, Y and Ce anomalies (De Carlo and Green, 2002). Additionally, elevated Mn/Fe ratios 455 



coupled with positive Ce anomalies (Fig. 7d) imply that Mn(II) together with redundant Ce 456 

exfoliate from the Mn-(oxyhydr) oxides that fallen from the shallow oxygenated surface water, 457 

further confirming the critical role of Mn-(oxyhydr) oxides in Ce cycling. 458 

 459 

5.4. Redox model and palaeo environmental implications 460 

The presence of Mn oxides is controlled by the oxidation state of the fluid, providing the link 461 

between oxygenation and Ce depletion. At the start of cap carbonate deposition, the flat or 462 

LREE-depleted REY patterns of CA1 and CA2 units present a seawater-glacial melting water 463 

mixing origin (Fig. 3). Normal Ce/Ce* values are coupled with Fe speciation data (FeHR/FeT > 464 

0.38, Fepy/FeHR < 0.7) (Li et al., 2010) from Jiulongwan cap carbonates (Fig. 6). As defined by 465 

Tostevin et al. (2016), these data may indicate that the ocean initially was dominated anoxic 466 

ferruginous. Original Mn-(oxyhydr) oxides form in the shallow oxic waters with a positive Ce 467 

anomaly, leaving seawater with a negative anomaly, as the negative Ce anomalies (Ce/Ce*<0.9) 468 

shown in Member II of Doushantuo carbonates. After the quickly initial surface complexation 469 

of Ce(III) on hydrogenetic Mn oxides, Ce is partially oxidized from Ce(III) to insoluble Ce(IV) 470 

with the catalyst of Mn(IV) at the metal (oxyhydr) oxide surface. The tetravalent Ce no longer 471 

participates once the exchange equilibrium between REY surface-complexes and REY 472 

solution-complexes reached. This equilibrium process is attained within several days (Ohta and 473 

Kawabe, 2001). Sequentially, a fraction of the scavenged Ce remains as Ce(IV) on the particles’ 474 

surface. With time, Mn-(oxyhydr) oxides preferentially accumulate Ce over the other REY. 475 

Accompanying with the Mn-(oxyhydr) oxides across the Mn(IV)/Mn(II) redoxcline, excess Ce 476 



and dissolved Mn(II) release to the ambient water, which eventually results in the positive Ce 477 

anomaly observed in the CA3 unit of cap carbonates. Despite the absence of Fe speciation data 478 

from Huajipo and Wuhe cap carbonates, there is an equivocal discrimination area about the 479 

exact redox condition, we still deduce an existence of partial manganous zone from the positive 480 

Ce anomalies and relative REY signatures. Hence, the wedge that undergo Mn-(oxyhydr) 481 

oxides reductive dissolution sandwiches between well oxygenated and anoxic ferruginous water 482 

mass, indicating an intermediate manganous condition (Fig. 8), and in accordance with the 483 

positive Ce anomaly exhibited beneath Mn(IV)/Mn(II) redoxcline in modern manganous water 484 

(Bau et al., 1997; De Carlo and Green, 2002).  485 

Eukaryote, especially large skeletal metazoan, mostly require oxygen to go aerobic 486 

respiration and collagen combination (Berkner and Marshall, 1965; Towe, 1970), for instance, 487 

modern skeletons and large animals sustain their survival function at the minimum DO 488 

constraint of 13 µM and 45 µM, respectively (Savrda and Bottjer, 1991; Levin et al., 2000). 489 

However, some metazoan, without complex motility and structure and owing coelom and 490 

circulatory system in small body size, can still survive under dysoxic or even anoxic 491 

environment. For instance, benthic sessile filter feeding demosponge, Halichondria panacea, 492 

could survive in the DO level of 2 µM to 16 µM (Mills et al., 2014). Nevertheless, typical case 493 

cannot blind the truths that massive mortality of meiofauna during the severe dysoxic condition 494 

(DO: 22.5~45 µM) (Diaz and Rosenberg, 1995), not to mention the mortality occurrence of 495 

Ediacaran soft-bodied biota or Cambrian large skeletal animals below DO with 90 µM 496 

(Canfield et al., 2007; Vaquer-Sunyer and Duarte, 2008; Zhang and Cui, 2016). In this case, 497 



well-oxygenated water provides essential habitat for these large metazoans (Penny et al., 2014). 498 

Mn reductive dissolution can steadily exist within the oceanic dissolved O2 (DO) ranges from 499 

10 µM to 100 µM (Klinkhammer and Bender, 1980; Johnson, 1992), so redox condition of 500 

extreme dysoxic to dysoxic is favored by the DO threshold to proceed Mn(IV)/Mn(II) reductive 501 

transformation (Tyson and Pearson, 1991). Ce is preferentially reduced than Mn due to the 502 

higher reduction potential of Ce and so excess Ce(III) can be released within the minimum DO 503 

threshold as 10 µM. Therefore, a transitive manganous wedge represents very limited O2 504 

concentration in comparison with the surface water (oxic, 210 µM DO at 25 ℃ and 35‰ 505 

salinity) and deep ferruginous water (anoxic, 0 µM DO). Assuming 10 µM as the maximum O2 506 

for Mn and Ce reduction, the manganous wedge thus explains the absence of high-oxygen 507 

needed biota and insufficient ability to meet habitable space for early animals.  508 

Marinoan cap carbonate marks the first stage of rebuilding oxygen level and ecological 509 

environment in the aftermath of the Snowball Earth. If very limited evidence supports the 510 

appearance of possible biomarker like demosponge in the initial ocean (Love et al., 2009), then 511 

the found earliest fossil records large acanthomorphic acritarchs at the lower Member II of 512 

Doushantuo Formation (Yin et al., 2007), as is inferred as early cleavage embryos of large 513 

animals (Cohen et al., 2009; Willman, 2009). Of note, independently Zn isotope data show an 514 

elevated trend from the middle unit of cap carbonates and reveal the recovery of primary 515 

production and nutrients supply in this time interval (Kunzmann et al., 2013). Additionally, 516 

evidence from Se and Mo isotopes decode the increased ocean oxidation in the upper 517 

Doushantuo Formation, in consistent with the stepwise oxygenation for rehabilitation of skeletal 518 



animals and complex ecologies (Chen et al., 2015; Pogge von Strandmann et al., 2015). 519 

Consequently, the transitive manganous wedge in the demise of cap carbonate deposition, acts 520 

as O2 recovery channel, implying the redox condition from anoxic ferruginous transforming to 521 

dysoxic phase and thus restricting the habitat space for early Ediacaran biota. 522 

 523 

6. Conclusions 524 

Our integrated shelf-basin wide chemostratigraphic correlations of the Ediacaran cap 525 

carbonates based on time-series Ce anomaly and REY proxies present compelling positive Ce 526 

anomalies (Ce/Ce*>1.3) in the demise of cap carbonate deposition. This finding suggests that a 527 

surplus of Ce released to ambient water along with the reductive dissolution of Mn-(oxyhydr) 528 

oxides in the low-oxygen manganous wedge (DO ~10 µM), whom sandwiched between well 529 

oxygenated water and anoxic ferruginous deep water. In the demise of Marinoan cap carbonate 530 

deposition, the intermediate manganous zone acts as O2 recovery channel, implying the redox 531 

condition from anoxic ferruginous transforming to dysoxic phase and thus restricting the habitat 532 

space for early Ediacaran biota. Future work is recommended to optimize the high-precision Fe 533 

species and redox- sensitive Mo isotope measurement of cap carbonates, so as to further 534 

synthesizing the certain redox condition. In spite of the limitation mentioned above, our study 535 

provides a novel springboard to better understanding the relationship between oceanic dissolved 536 

O2 constraint and early metazoan appearance.  537 

 538 
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Table captions 941 

Table 1 942 

Concentrations of major and trace elements and relevant calculated ratios in the three cap 943 

carboante section from Three Gorges area, South China. (a) Jiulongwan section; (b) Huajipo 944 

section; (c) Wuhe section. Grey asterisk labeled samples represent excluded points that may 945 

suffer diagenetic effects. 946 

Table 2 947 

Concentrations of REE and Y (ppm) and relevant calculated results in the three cap carbonate 948 

sections from Three Gorges area, South China. (a) Jiulongwan section; (b) Huajipo section; (c) 949 

Wuhe section. Grey asterisk labeled samples represent excluded points that may suffer diagenetic 950 

effect. 951 

 952 

Figure captions  953 

Fig. 1.  954 



Simplified geological map of South China with the locations of the studied sections in both the 955 

Yangtze Platform and the basin, and a simplified shelf-to-basin transect from north to south in 956 

the Three Gorges area. (a) Generalized palaeogeographical reconstruction map of Chinese 957 

Ediacaran Yangtze Platform including the Three Gorges area. (b) Geological sketch map of the 958 

Three Gorges area in Hubei Province and the sampling sites. The study sections are marked 959 

with pentagrams. Modified after (Lu et al., 2013; Tian et al., 2014). (c) A conceptural transect 960 

across the Yangtze Block showing the stratigraphic occurrence of the Doushantuo cap carbonates. 961 

Modified after Jiang et al. (2003). Age data are cited from Condon et al. (2005) and Zhang et al. 962 

(2008). 963 

Fig. 2. 964 

PAAS-normalized Ce/Ce*, total REE and Y/Ho ratios values of the three cap carbonate sections 965 

from Three Gorges area in South China. Red dashed lines represent Ce/Ce*>1.3 (positive Ce 966 

anomalies), grey dashed lines display Ce/Ce*=1.0, while black dashed lines present Ce/Ce*<0.9 967 

(negative Ce anomalies). 968 

 969 

Fig. 3.   970 

PAAS-normalized REE+Y patterns of unaltered cap carbonates in the three studied sections. 971 

(a-c) Samples from Jiulongwan cap carbonates. CA1 unit (below 1.25 m), CA2 unit 972 

(1.25-4.25m), CA3 unit (4.35-6.35m); (d-f) Samples from Huajipo cap carbonates. CA1 unit 973 

(below1.05m), CA2 unit (1.05-2.65m), CA3 unit (2.65-4.35m); (h-i) Samples from Wuhe cap 974 

carbonates. CA1 unit (below 1.20m), CA2 unit (1.20-2.2m), CA3 unit (2.20-4.8m). 975 



 976 

Fig. 4.  977 

Ce anomalies against trace element and major element influenced by terrestrial matters for 978 

assessing data quality. Key threshold values are highlighted by dashed lines. Threshold of Al/Ca< 979 

8 is indicative of samples without terrestrial matters influence. Threshold of Y/Ho> 36 represents 980 

sample with seawater signature.  981 

 982 

Fig. 5.  983 

Plots of δ18O, δ13C versus Mn/Sr to excluding diagenetic effects, together with Ce anomalies 984 

against trace elements and major elements influenced by hydrothermal and diagenetic processes 985 

for assessing data quality. Key threshold values are highlighted by dashed lines. Threshold of 986 

δ18O>-10‰ and Mn/Sr< 62 represent samples without diagenetic alteration, while bars of 987 

Eu/Eu*>2 along with Ba/Nd> 100 may indicate the samples suffer later hydrothermal fluids 988 

alteration. 989 

 990 

Fig. 6.  991 

Comparison diagram of Ce anomalies in cap carbonates from previous work (Ling et al., 2013; 992 

Wang et al., 2014; Hu et al., 2016) and our study, and previous Fe species data from Jiulongwan 993 

cap carbonate section cited from Li et al. (2010). 994 



 995 

Fig.7.  996 

(a) Marine Fe-Mn (oxyhydr) oxide precipitates in plot of Ce/Ce* vs Nd concentration. (b) 997 

Marine Fe-Mn (oxyhydr) oxide precipitates in plot of Ce/Ce* vs Y/Y*values. The mean values 998 

of end-members are cited from (Alibo and Nozaki, 1999; Bau et al., 2014). Black bars represent 999 

mixing percentage between seawater and hydrogenetic Fe-Mn nodules. (c) Bivariate diagram of 1000 

Ce/Ce* versus MREE/MREE* values in cap carbonate sections. Positive Ce anomalies outliers 1001 

show unconpicuous MREE/MREE* ratios. (d) Bivariate diagram of Ce/Ce* versus Mn/Fe ratios 1002 

in cap carbonate sections. Positive Ce anomalies outliers display distinct higher Mn/Fe ratios 1003 

relative to other data points. 1004 

 1005 

Fig. 8.  1006 

Schematic representation of redox zones and geochemical signals for the deposition of cap 1007 

carbonates in the Three Gorges area. Modified after (Tostevin et al., 2016b; Yu et al., 2016). An 1008 

anoxic ferruginous deep water mass is prevalent, while there is a sandwiched manganous wedge 1009 

that represents extreme dysoxic condition with lower oxygen concentrations. Positive Ce 1010 

anomalies form when Mn-(oxyhydr) oxides reductive dissolve in the manganous zone, excess 1011 

oxide bound REY as LnOH2+ release to ambient water simultaneously. The cap carbonates 1012 

precipitate with freshwater joined that was melting from ice sheet under ultragreen house effect. 1013 

Negative Ce anomalies display in well oxygenated zone. Submarine hydrothermal sources may 1014 

supply numerous Fe and Mn ions and result in the positive Eu anomalies in REY patterns of cap 1015 



carbonates. Category of redox condition associated with oceanic dissolved O2 (DO) corresponds 1016 

to early metazoan evolution. The mortality of benthic animals starts at DO below 45µM and 1017 

massive mortality occurs at DO below 22.5µM (Tyson and Pearson, 1991; Diaz and Rosenberg, 1018 

1995).  1019 

 1020 

 1021 



















 

(a) Jiulongwan section, the Three Gorges area, South China 

Samples Member Depth Ca Mg Mn Fe Al Ba Pb Cu Sc Co Sr δ13CPDB δ18OPDB CaCO3  Mn/Fe Mn/Sr Co/Ca 

    (m) (wt%) (wt%) (wt%) (wt%) (wt%) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (‰) (‰)  (%)     (10-6) 

JLW-1 CA1 0.15 35.50 0.03 0.06 0.01 0.04 35.8 16.47 0.75 1.50 0.69 70.94 0.40 -8.73 83.38 6.40 9.09 1.94 

JLW-2* CA1 0.35 31.40 1.20 0.23 0.07 0.01 102.78 0.46 0.97 0.27 0.26 227.31 -3.33 -14.13 83.27 3.51 10.15 0.83 

JLW-3 CA1 0.55 28.50 0.95 0.15 0.04 0.02 27.28 1.40 1.02 0.41 0.25 216.15 -4.14 -13.84 88.02 3.42 7.03 0.89 

JLW-4 CA1 0.75 25.20 0.98 0.13 0.08 0.02 57.25 0.63 0.70 0.39 0.22 132.47 -6.95 -11.09 61.42 1.69 9.75 0.87 

JLW-5* CA1 0.95 30.90 0.53 0.12 0.02 0.05 60.11 2.28 1.23 0.82 0.60 320.37 -3.41 -11.64 83.27 5.14 3.76 1.95 

JLW-6 CA1 1.15 15.60 1.91 0.02 0.02 0.03 20.07 2.28 2.38 0.60 1.07 62.17 -2.14 -5.81 56.24 1.25 3.87 6.87 

JLW-7 CA2 1.55 19.40 1.31 0.02 0.01 0.06 3.77 0.69 1.95 1.53 0.76 102.4 -3.41 -9.47 64.43 1.88 2.31 3.92 

JLW-8* CA2 1.90 21.20 1.84 0.04 0.03 0.05 3.61 1.63 3.38 1.09 1.22 71.77 -3.66 -10.86 54.00 1.42 5.53 5.75 

JLW-9* CA2 2.25 18.60 1.95 0.08 0.05 0.04 7.51 1.94 3.20 1.08 1.14 62.56 -3.54 -10.67 55.78 1.45 12.59 6.13 

JLW-10 CA2 2.60 21.10 1.86 0.07 0.05 0.05 4.61 1.82 3.63 1.21 1.35 68.49 -3.40 -7.66 52.74 1.41 10.13 6.42 

JLW-11 CA2 2.95 22.30 1.91 0.03 0.02 0.07 2.99 1.03 2.71 1.06 1.06 56.86 -3.46 -7.95 46.56 1.16 4.89 4.75 

JLW-12 CA2 3.30 21.60 2.53 0.05 0.04 0.05 3.01 0.86 1.69 1.08 1.08 70.13 -3.54 -8.43 52.9 1.32 6.95 5.01 

JLW-13 CA2 3.65 25.80 2.07 0.04 0.03 0.05 2.73 1.02 1.91 1.37 1.49 70.76 -3.45 -7.35 48.52 1.34 5.48 5.79 

JLW-14 CA2 3.95 22.50 2.45 0.02 0.02 0.04 2.47 1.06 1.87 1.12 1.04 64.13 -3.81 -9.90 39.06 1.00 3.41 4.63 

JLW-15* CA3 4.35 33.30 2.20 0.09 0.06 0.02 52.67 1.31 9.4 0.89 1.22 144.24 -3.79 -10.46 77.25 1.44 6.23 3.66 

JLW-16* CA3 4.80 55.00 0.09 0.00 0.02 0.02 37.51 1.33 4.05 1.66 0.83 232.43 -4.55 -11.93 62.97 0.07 0.07 1.51 

JLW-17* CA3 5.25 35.20 1.53 0.09 0.05 0.02 32.2 2.20 3.54 0.70 1.05 185.36 -14.00 -10.22 71.17 1.91 4.95 2.97 

JLW-18 CA3 5.70 33.30 0.58 0.12 0.03 0.04 52.85 11.2 0.39 1.92 1.89 247.59 -13.00 -9.75 78.54 4.16 5.04 5.66 

JLW-19 CA3 6.15 33.40 0.65 0.17 0.01 0.04 24.36 4.08 0.47 1.19 1.95 115.02 -16.54 -8.92 88.83 12.30 14.95 5.84 

JLW-24 Mem2 11.60 12.20 4.70 0.18 0.14 0.18 28.63 1.23 1.01 0.18 0.38 130.90 -3.12 -7.87 30.61 1.29 13.90 3.11 

JLW-25 Mem2 13.60 12.20 7.80 0.19 0.24 0.35 91.57 1.12 2.33 0.28 0.68 347.52 0.71 -5.05 30.43 0.83 5.61 5.57 



JLW-27 Mem2 15.10 9.30 4.30 0.04 0.13 0.04 81.92 0.39 0.22 2.34 0.82 306.62 3.20 -3.60 23.15 0.27 1.16 8.82 

JLW-31 Mem2 18.20 9.10 4.00 0.04 0.14 0.06 55.79 0.29 0.19 2.76 0.70 277.91 4.30 -2.90 22.64 0.25 1.28 7.69 

JLW-33 Mem2 25.50 11.10 5.00 0.03 0.10 0.03 359.77 0.23 0.29 1.89 0.61 591.92 5.50 -2.60 27.69 0.29 0.49 5.50 

JLW-35 Mem2 29.10 8.90 4.60 0.02 0.19 0.05 301.52 0.22 1.42 2.76 1.81 636.37 5.10 -3.50 22.27 0.12 0.35 20.34 

                                        

(b) Huajipo section, the Three Gorges area, South China 

Samples Member Depth Ca Mg Mn Fe Al Ba Pb Cu Sc Co Sr δ13CPDB δ18OPDB CaCO3  Mn/Fe Mn/Sr Co/Ca 

    (m) (wt%) (wt%) (wt%) (wt%) (wt%) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (‰) (‰)  (%)     (10-6) 

HJP-1* CA1 0.25 24.20 0.40 0.97 0.24 0.14 88.73 6.18 0.84 3.02 1.55 261.86 -6.00 -14.20 19.08 4.10 36.86 6.41 

HJP-2 CA1 0.50 25.60 2.90 0.62 0.08 0.05 95.5 1.29 2.00 0.59 1.00 208.23 -4.70 -10.20 17.98 8.13 29.85 3.90 

HJP-3* CA1 0.75 26.40 1.90 0.28 0.05 0.06 18.45 0.74 1.75 0.77 0.51 207.72 -3.50 -12.30 17.90 5.06 13.30 1.92 

HJP-4* CA1 1.00 34.40 1.00 0.61 0.07 0.05 63.08 1.13 2.00 0.84 1.02 209.76 -4.00 -13.50 20.80 8.99 28.86 2.96 

HJP-5 CA2 1.15 14.20 6.20 0.13 0.08 0.05 64.67 0.94 3.52 0.95 1.12 72.78 -3.10 -7.20 77.64 1.64 17.96 7.89 

HJP-6 CA2 1.30 16.00 6.70 0.10 0.06 0.05 23.53 0.76 4.20 0.87 0.72 81.86 -3.10 -7.80 60.99 1.72 11.87 4.50 

HJP-7 CA2 1.45 13.90 5.90 0.12 0.06 0.09 19.86 0.65 2.38 0.76 0.79 61.43 -3.20 -7.20 40.71 1.89 18.91 5.72 

HJP-8 CA2 1.60 11.90 5.60 0.26 0.13 0.07 8.91 0.96 1.25 0.65 0.89 44.28 -3.50 -6.80 33.87 1.93 58.81 7.44 

HJP-9* CA2 1.90 14.70 6.60 0.11 0.08 0.07 129.15 0.78 2.09 0.95 0.96 75.49 -3.20 -7.40 57.19 1.49 14.86 6.52 

HJP-10* CA2 1.95 11.60 6.70 0.06 0.06 0.11 164.76 0.77 1.41 0.84 1.03 59.99 -3.00 -5.80 42.60 1.06 9.82 8.91 

HJP-11* CA2 2.05 15.00 7.80 0.10 0.07 0.06 59.66 0.68 1.51 0.93 0.74 59.31 -3.20 -6.40 37.57 1.37 16.90 4.92 

HJP-12* CA2 2.25 17.00 6.00 0.29 0.13 0.03 147.28 0.67 1.40 0.88 0.67 110.44 -4.10 -9.10 29.01 2.26 26.70 3.92 

HJP-13* CA3 3.05 22.90 2.70 0.25 0.06 0.06 4.21 0.51 0.66 1.14 0.37 115.85 -4.40 -12.60 36.67 4.22 22.00 1.62 

HJP-14 CA3 3.30 13.50 6.50 0.24 0.11 0.06 17.22 0.97 1.68 0.45 0.50 72.96 -4.00 -7.60 29.75 2.16 33.35 3.71 

HJP-15 CA3 3.60 16.30 6.20 0.29 0.14 0.04 33.48 1.16 2.17 0.98 0.92 84.42 -4.20 -8.00 34.66 2.08 34.65 5.62 

HJP-16* CA3 4.20 24.40 1.40 0.36 0.06 0.05 89.88 18.81 1.61 0.80 7.00 121.29 -7.10 -11.80 40.00 6.35 29.27 28.71 

HJP-18 CA3 4.35 31.10 1.10 0.54 0.04 0.01 62.06 3.63 0.57 0.57 1.64 116.00 -22.10 7.60 35.61 14.95 46.67 5.28 



HJP-20 Mem.2 4.75 8.30 4.40 0.01 0.20 0.02 199.82 0.07 0.83 1.04 0.44 351.41 -20.10 -9.00 85.92 0.07 0.40 5.33 

HJP-22 Mem.2 6.25 7.20 3.80 0.01 0.14 0.02 218.72 0.12 0.94 0.86 0.47 386.48 3.10 -6.30 66.08 0.07 0.24 6.58 

HJP-24 Mem.2 8.25 7.20 4.00 0.01 0.11 0.02 129.09 0.06 0.74 1.18 0.07 366.63 3.40 -1.30 64.06 0.11 0.33 1.00 

HJP-26 Mem.2 10.25 7.60 4.50 0.01 0.10 0.03 166.41 0.11 1.03 1.37 1.96 381.35 3.80 -4.20 60.48 0.13 0.33 25.74 

                                        

(c) Wuhe section, the Three Gorges area, South China 

Samples Member Depth Ca Mg Mn Fe Al Ba Pb Cu Sc Co Sr δ13CPDB δ18OPDB CaCO3  Mn/Fe Mn/Sr Co/Ca 

    (m) (wt%) (wt%) (wt%) (wt%) (wt%) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (‰) (‰)  (%)     (10-6) 

WH-1* CA1 0.10 31.50 0.50 0.57 0.11 0.04 93.68 2.10 0.96 1.18 0.79 347.08 -4.55 -14.93 37.76 5.44 16.54 2.52 

WH-2 CA1 0.60 21.30 3.90 0.24 0.09 0.02 12.69 1.59 6.63 0.79 0.79 207.97 -3.09 -12.27 77.30 2.62 11.63 3.70 

WH-3 CA1 0.90 17.00 9.20 0.10 0.08 0.09 9.50 1.86 6.87 0.75 4.64 68.18 -2.96 -6.22 80.83 1.25 14.22 27.21 

WH-4* CA1 1.10 15.00 8.30 0.19 0.17 0.19 64.03 1.28 2.51 1.13 119.91 54.40 -2.98 -6.44 35.79 1.14 34.79 800.79 

WH-5 CA2 1.30 19.90 7.00 0.19 0.09 0.10 10.03 0.69 0.91 1.02 1.82 92.72 -3.18 -6.58 41.38 2.17 20.10 9.17 

WH-6* CA2 1.70 16.00 8.40 0.39 0.23 0.10 31.12 1.57 1.37 1.09 7.83 60.18 -3.53 -6.91 57.52 1.70 64.45 49.06 

WH-7 CA2 1.90 12.20 5.90 0.10 0.08 0.03 33.55 1.46 2.77 0.83 0.88 72.18 -3.15 -6.26 37.87 1.25 14.47 7.21 

WH-8* CA3 2.20 12.50 5.90 0.51 0.23 0.03 106.78 0.54 0.84 0.84 0.64 62.57 -3.73 -8.31 40.34 2.21 82.29 5.10 

WH-9* CA3 2.40 16.90 9.50 0.06 0.07 0.09 18.72 1.82 2.04 0.95 2.07 64.67 -3.17 -6.03 42.26 0.85 9.73 12.25 

WH-10 CA3 2.90 16.10 8.40 0.20 0.09 0.07 29.07 0.91 5.76 0.68 0.99 53.46 -2.28 -2.20 31.26 2.20 37.90 6.14 

WH-11* CA3 3.20 15.10 7.90 0.31 0.11 0.06 14.95 0.70 5.25 0.56 1.07 37.92 -3.91 -6.63 30.38 2.72 81.82 7.10 

WH-12* CA3 3.50 23.00 4.80 0.27 0.11 0.10 14.52 1.57 0.53 1.47 1.20 154.36 -4.34 -10.00 39.88 2.61 17.80 5.22 

WH-13 CA3 3.80 16.60 8.40 0.08 0.08 0.06 25.43 2.22 10.26 0.61 2.78 110.78 -4.00 -6.06 49.65 1.02 7.38 16.80 

WH-14 CA3 4.20 14.30 7.30 0.32 0.20 0.07 33.05 2.46 1.43 1.25 1.90 115.02 -3.49 -8.89 37.43 1.59 28.01 13.26 

WH-15* CA3 4.40 32.30 0.40 0.52 0.04 0.03 616.64 2.45 0.51 0.51 12.07 428.55 -14.58 -11.64 42.6 12.52 12.05 37.33 

WH-16 CA3 4.60 30.90 1.30 0.64 0.04 0.03 111.98 2.33 0.33 0.71 5.68 215.09 -13.25 -9.70 53.23 14.33 29.79 18.37 

WH-17* CA3 4.80 15.10 7.30 0.09 0.12 0.13 15.62 2.92 0.30 1.67 4.17 77.49 -1.13 -10.07 78.79 0.75 11.46 27.62 



 

 



 

(a) Jiulongwan section, the Three Gorges area, South China 

Samples Member Depth La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu ∑REE Ce/Ce* Eu/Eu* Y/Ho Y* Dy n /Smn Ba/Nd La n /Yb n MREE/MREE* 

    (m) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)                  

JLW-1 CA1 0.15 5.82 9.90 1.43 5.71 1.19 0.27 1.30 0.18 1.06 9.69 0.20 0.56 0.07 0.45 0.06 28.21 0.86 1.22 48.15 1.86 1.15 6.27 0.88 1.29 

JLW-2* CA1 0.35 2.56 4.38 0.51 1.96 0.38 0.16 0.39 0.05 0.26 2.11 0.05 0.12 0.02 0.10 0.02 10.93 1.04 2.38 45.7 1.62 0.88 52.4 1.72 1.21 

JLW-3 CA1 0.55 2.39 3.95 0.46 1.79 0.34 0.11 0.36 0.05 0.30 2.78 0.06 0.18 0.02 0.16 0.02 10.19 1.04 1.76 46.29 1.78 1.12 15.21 1.03 1.06 

JLW-4 CA1 0.75 1.69 2.88 0.36 1.43 0.29 0.08 0.32 0.04 0.28 2.80 0.06 0.18 0.02 0.17 0.03 7.83 0.98 1.53 47.95 1.79 1.25 40.03 0.69 1.04 

JLW-5* CA1 0.95 4.00 7.12 0.82 3.24 0.64 0.24 0.68 0.08 0.41 2.77 0.07 0.17 0.02 0.12 0.02 17.63 1.06 2.13 40.16 1.52 0.83 18.54 2.17 1.37 

JLW-6 CA1 1.15 1.47 2.93 0.35 1.35 0.28 0.07 0.28 0.04 0.24 1.68 0.04 0.13 0.02 0.10 0.01 7.33 1.01 1.27 37.64 1.61 1.10 14.81 0.95 1.23 

JLW-7 CA2 1.55 2.67 5.78 0.67 2.56 0.52 0.12 0.49 0.07 0.38 2.66 0.07 0.18 0.02 0.16 0.02 13.71 1.04 1.28 39.58 1.46 0.93 1.47 1.15 1.24 

JLW-8* CA2 1.90 2.62 4.76 0.67 2.71 0.61 0.16 0.67 0.10 0.62 5.09 0.12 0.38 0.05 0.37 0.06 13.88 0.90 1.36 41.05 1.63 1.31 1.33 0.48 1.13 

JLW-9* CA2 2.25 2.16 3.98 0.57 2.38 0.54 0.13 0.62 0.09 0.6 4.91 0.12 0.38 0.05 0.36 0.05 12.03 0.91 1.23 40.12 1.57 1.43 3.16 0.41 1.13 

JLW-10 CA2 2.60 2.80 4.67 0.68 2.81 0.65 0.15 0.76 0.11 0.75 6.34 0.15 0.48 0.07 0.46 0.07 14.61 0.90 1.22 41.17 1.63 1.49 1.64 0.41 1.11 

JLW-11 CA2 2.95 1.78 3.53 0.44 1.76 0.37 0.08 0.4 0.06 0.37 2.73 0.07 0.2 0.03 0.18 0.03 9.30 0.99 1.23 38.71 1.50 1.29 1.70 0.66 1.19 

JLW-12 CA2 3.30 1.65 3.21 0.38 1.46 0.31 0.08 0.33 0.05 0.29 2.21 0.06 0.16 0.02 0.14 0.02 8.16 1.03 1.37 38.44 1.42 1.23 2.05 0.78 1.18 

JLW-13 CA2 3.65 2.05 4.05 0.48 1.87 0.38 0.09 0.4 0.06 0.35 2.64 0.07 0.19 0.03 0.16 0.02 10.21 1.03 1.30 38.79 1.45 1.18 1.47 0.86 1.20 

JLW-14 CA2 3.95 1.36 2.64 0.32 1.24 0.27 0.06 0.29 0.04 0.27 2.11 0.05 0.16 0.02 0.14 0.02 6.89 1.03 1.22 39.65 1.62 1.31 1.99 0.64 1.15 

JLW-15* CA3 4.35 3.34 5.44 0.56 2.11 0.41 0.13 0.46 0.06 0.39 3.50 0.08 0.22 0.03 0.16 0.02 13.43 1.13 1.64 44.85 1.68 1.23 24.95 1.38 1.13 

JLW-16* CA3 4.80 7.69 13.39 1.52 5.39 0.95 0.18 0.90 0.13 0.80 5.75 0.15 0.44 0.06 0.38 0.05 32.04 0.98 1.04 37.48 1.47 1.09 6.96 1.35 1.01 

JLW-17* CA3 5.25 6.58 10.39 1.26 4.90 0.97 0.26 1.07 0.15 0.89 7.95 0.17 0.50 0.06 0.37 0.05 27.6 1.00 1.45 46.46 1.80 1.18 6.57 1.21 1.19 

JLW-18 CA3 5.70 9.26 16.49 1.56 6.29 1.2 0.31 1.27 0.17 1.10 10.49 0.23 0.68 0.08 0.49 0.06 39.20 1.34 1.42 45.97 1.75 1.18 8.41 1.29 1.09 

JLW-19 CA3 6.15 6.55 10.16 1.02 3.89 0.71 0.18 0.73 0.10 0.62 5.68 0.12 0.37 0.04 0.27 0.03 24.79 1.19 1.37 45.48 1.82 1.12 6.27 1.62 1.03 

JLW-24 Mem2 11.60 5.98 5.40 1.10 3.90 0.53 0.12 0.37 0.09 0.27 1.94 0.05 0.12 0.05 0.11 0.02 18.11 0.55 1.19 36.73 1.49 0.66 7.33 3.55 0.83 

JLW-25 Mem2 13.60 3.57 4.08 0.79 2.91 0.47 0.14 0.32 0.08 0.27 1.86 0.05 0.12 0.05 0.13 0.03 13.00 0.60 1.50 34.35 1.43 0.75 31.48 1.89 0.94 



JLW-27 Mem2 15.10 5.10 6.97 0.99 3.84 0.70 0.20 0.62 0.08 0.42 2.50 0.07 0.20 0.03 0.16 0.02 19.42 0.85 1.67 33.87 1.37 0.78 21.34 2.01 1.14 

JLW-31 Mem2 18.20 7.19 9.01 1.52 6.21 1.15 0.33 1.03 0.13 0.69 3.87 0.11 0.28 0.03 0.21 0.03 27.93 0.76 1.70 34.03 1.35 0.78 8.98 2.34 1.28 

JLW-33 Mem2 25.50 2.50 4.41 0.52 2.08 0.42 0.13 0.40 0.05 0.32 1.70 0.06 0.16 0.02 0.13 0.02 11.22 1.06 1.72 30.4 1.09 0.97 172.78 1.28 1.23 

JLW-35 Mem2 29.10 2.63 4.24 0.58 2.36 0.49 0.14 0.50 0.07 0.44 2.47 0.08 0.22 0.03 0.18 0.03 11.99 0.94 1.56 31.81 1.19 1.16 127.72 0.99 1.27 

                                                      

(b) Huajipo section, the Three Gorges area, South China 

Samples   Depth La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu ∑REE Ce/Ce* Eu/Eu* Y/Ho Y* Dy n /Smn Ba/Nd La n /Yb n MREE/MREE* 

    (m) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)                  

HJP-1* CA1 0.25 21.01 46.63 5.72 23.37 4.87 1.38 4.68 0.59 3.02 17.41 0.48 1.14 0.12 0.71 0.09 113.81 1.04 1.63 36.32 1.40 0.80 3.80 1.99 1.57 

HJP-2 CA1 0.5 1.50 3.40 0.30 1.16 0.22 0.05 0.23 0.03 0.16 1.28 0.03 0.08 0.01 0.07 0.01 7.26 1.37 1.42 44.64 1.72 0.94 82.02 1.38 1.14 

HJP-3* CA1 0.75 1.58 3.13 0.32 1.23 0.24 0.07 0.26 0.04 0.22 2.17 0.05 0.14 0.02 0.13 0.02 7.43 1.18 1.52 48.07 1.85 1.19 14.99 0.82 1.02 

HJP-4* CA1 1.00 2.24 3.95 0.47 1.88 0.39 0.10 0.47 0.07 0.46 5.53 0.10 0.34 0.05 0.33 0.05 10.9 1.06 1.25 53.78 2.07 1.53 33.64 0.46 0.95 

HJP-5 CA2 1.15 1.53 3.26 0.38 1.47 0.30 0.07 0.30 0.04 0.25 1.96 0.05 0.15 0.02 0.14 0.02 7.99 1.06 1.33 40.65 1.56 1.05 43.85 0.72 1.10 

HJP-6 CA2 1.30 1.69 3.53 0.39 1.52 0.31 0.08 0.31 0.04 0.26 1.90 0.05 0.14 0.02 0.13 0.02 8.49 1.09 1.39 38.37 1.48 1.08 15.5 0.85 1.13 

HJP-7 CA2 1.45 1.32 2.72 0.32 1.27 0.25 0.06 0.25 0.03 0.21 1.62 0.04 0.12 0.02 0.12 0.02 6.77 1.03 1.33 39.14 1.50 1.08 15.61 0.74 1.10 

HJP-8 CA2 1.60 1.43 2.87 0.36 1.40 0.28 0.06 0.3 0.04 0.26 1.86 0.05 0.15 0.02 0.14 0.02 7.38 0.99 1.14 37.06 1.42 1.17 6.34 0.70 1.14 

HJP-9* CA2 1.90 1.76 3.55 0.42 1.63 0.33 0.08 0.33 0.05 0.30 1.93 0.06 0.16 0.02 0.14 0.02 8.82 1.04 1.28 34.07 1.31 1.17 79.46 0.84 1.16 

HJP-10* CA2 1.95 0.81 1.74 0.19 0.77 0.16 0.04 0.18 0.03 0.17 1.13 0.03 0.10 0.01 0.10 0.01 4.37 1.11 1.30 32.25 1.24 1.37 214.28 0.57 1.13 

HJP-11* CA2 2.05 0.95 1.96 0.23 0.89 0.19 0.04 0.19 0.03 0.20 1.29 0.04 0.12 0.02 0.11 0.02 4.99 1.02 1.27 32.38 1.24 1.39 66.74 0.56 1.07 

HJP-12* CA2 2.25 0.99 1.95 0.22 0.83 0.16 0.04 0.17 0.03 0.17 1.11 0.03 0.10 0.01 0.09 0.01 4.80 1.05 1.44 34.32 1.32 1.31 177.54 0.76 1.06 

HJP-13* CA3 3.05 3.81 7.22 0.85 3.24 0.61 0.13 0.62 0.09 0.55 4.24 0.11 0.30 0.04 0.23 0.03 17.85 1.00 1.16 39.65 1.52 1.17 1.30 1.11 1.15 

HJP-14 CA3 3.30 1.11 1.67 0.23 0.94 0.20 0.05 0.24 0.04 0.25 2.06 0.05 0.16 0.02 0.14 0.02 5.13 0.90 1.33 38.79 1.49 1.60 18.31 0.55 1.10 

HJP-15 CA3 3.60 2.41 4.90 0.53 1.98 0.39 0.09 0.40 0.06 0.36 2.45 0.07 0.20 0.03 0.16 0.02 11.59 1.09 1.28 36.05 1.39 1.19 16.93 1.00 1.15 

HJP-16* CA3 4.20 20.95 46.3 4.66 18.49 3.72 0.78 4.62 0.75 5.39 48.68 1.20 3.96 0.55 3.37 0.43 115.18 1.23 1.02 40.49 1.56 1.87 4.86 0.42 0.97 

HJP-18 CA3 4.35 9.86 21.66 1.64 6.48 1.36 0.32 1.77 0.28 2.07 18.59 0.46 1.50 0.20 1.17 0.14 48.92 1.64 1.13 40.02 1.54 1.97 9.57 0.57 0.99 



HJP-20 Mem.2 4.75 1.27 1.86 0.27 1.08 0.21 0.07 0.20 0.03 0.2 1.27 0.04 0.11 0.01 0.09 0.01 5.46 0.87 1.72 33.28 1.28 1.23 184.5 0.92 1.10 

HJP-22 Mem.2 6.25 0.71 1.10 0.16 0.68 0.14 0.04 0.15 0.02 0.14 0.98 0.03 0.09 0.01 0.07 0.01 3.37 0.90 1.65 34.83 1.34 1.30 323.01 0.69 1.17 

HJP-24 Mem.2 8.25 0.74 1.44 0.19 0.81 0.18 0.04 0.19 0.03 0.18 1.07 0.03 0.09 0.01 0.08 0.01 4.03 0.99 1.31 32.42 1.25 1.24 159.73 0.63 1.31 

HJP-26 Mem.2 10.25 1.08 1.98 0.27 1.17 0.28 0.07 0.31 0.05 0.30 1.80 0.06 0.17 0.02 0.14 0.02 5.91 0.98 1.37 31.17 1.20 1.38 141.77 0.53 1.29 

                                                      

(c) Wuhe section, the Three Gorges area, South China 

Samples   Depth La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu ∑REE Ce/Ce* Eu/Eu* Y/Ho Y* Dy n /Smn Ba/Nd La n /Yb n MREE/MREE* 

    (m) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)                  

WH-1* CA1 0.10 14.01 28.70 3.31 13.44 2.75 0.88 2.73 0.33 1.76 11.59 0.29 0.73 0.08 0.47 0.06 69.55 1.10 1.84 39.42 1.52 0.83 6.97 2.03 1.46 

WH-2 CA1 0.60 3.44 5.92 0.69 2.76 0.59 0.16 0.72 0.10 0.72 8.54 0.16 0.54 0.08 0.55 0.09 16.51 1.07 1.37 53.97 2.08 1.58 4.60 0.42 0.93 

WH-3 CA1 0.90 1.36 2.58 0.32 1.30 0.29 0.07 0.32 0.05 0.32 3.25 0.07 0.22 0.03 0.23 0.04 7.20 1.02 1.22 48.07 1.85 1.43 7.29 0.40 0.98 

WH-4* CA1 1.10 1.82 4.16 0.51 2.04 0.45 0.10 0.47 0.07 0.46 4.14 0.10 0.32 0.05 0.34 0.05 10.94 1.04 1.17 42.42 1.63 1.33 31.37 0.36 0.99 

WH-5 CA2 1.30 2.21 5.65 0.66 2.56 0.49 0.10 0.42 0.05 0.31 1.95 0.05 0.15 0.02 0.12 0.02 12.79 1.03 1.21 36.14 1.39 0.82 3.92 1.26 1.24 

WH-6* CA2 1.70 2.21 3.91 0.53 2.14 0.47 0.11 0.54 0.08 0.53 3.90 0.11 0.33 0.04 0.31 0.05 11.35 0.92 1.15 36.54 1.4 1.44 14.53 0.48 1.10 

WH-7 CA2 1.90 1.59 2.68 0.39 1.63 0.38 0.09 0.45 0.07 0.45 3.48 0.09 0.29 0.04 0.27 0.04 8.45 0.91 1.27 37.87 1.46 1.52 20.59 0.39 1.12 

WH-8* CA3 2.20 1.34 3.14 0.36 1.38 0.26 0.07 0.25 0.03 0.19 1.26 0.03 0.09 0.01 0.07 0.01 7.24 1.06 1.60 37.29 1.43 0.94 77.55 1.28 1.25 

WH-9* CA3 2.40 1.21 2.14 0.24 0.94 0.21 0.05 0.23 0.03 0.23 1.61 0.05 0.15 0.02 0.14 0.02 5.66 1.05 1.16 34.26 1.32 1.45 19.84 0.59 1.06 

WH-10 CA3 2.90 0.98 1.46 0.19 0.77 0.17 0.04 0.19 0.03 0.21 1.69 0.04 0.15 0.02 0.14 0.02 4.41 0.93 1.15 37.74 1.45 1.63 37.78 0.48 0.98 

WH-11* CA3 3.20 0.75 1.27 0.13 0.48 0.09 0.02 0.09 0.01 0.10 0.70 0.02 0.06 0.01 0.06 0.01 3.11 1.12 1.16 35.48 1.36 1.39 30.89 0.87 0.93 

WH-12* CA3 3.50 6.78 13.9 1.50 5.60 1.04 0.23 1.01 0.14 0.81 5.71 0.15 0.42 0.05 0.31 0.04 31.99 1.09 1.26 37.95 1.46 1.01 2.59 1.50 1.17 

WH-13 CA3 3.80 0.91 1.43 0.17 0.69 0.14 0.03 0.17 0.03 0.18 1.52 0.04 0.13 0.02 0.12 0.02 4.09 1.04 1.21 38.04 1.46 1.64 37.08 0.50 0.98 

WH-14 CA3 4.20 3.13 5.13 0.67 2.69 0.62 0.16 0.73 0.12 0.81 6.43 0.17 0.53 0.07 0.42 0.06 15.29 0.97 1.25 37.8 1.45 1.70 12.3 0.5 1.12 

WH-15* CA3 4.40 13.91 22.53 1.90 7.39 1.43 0.42 1.79 0.27 1.83 17.92 0.40 1.25 0.16 0.93 0.12 54.32 1.44 1.46 45.03 1.73 1.65 83.43 1.01 1.00 

WH-16 CA3 4.60 6.07 9.43 0.86 3.46 0.67 0.19 0.83 0.12 0.80 7.69 0.17 0.52 0.07 0.38 0.05 23.62 1.37 1.47 44.51 1.71 1.55 32.32 1.09 1.05 

WH-17* CA3 4.80 2.23 4.24 0.57 2.29 0.47 0.11 0.43 0.06 0.32 1.88 0.06 0.15 0.02 0.11 0.02 11.08 0.93 1.38 33.86 1.30 0.88 6.81 1.31 1.34 
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