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Numerical investigation of shock wave attenuation
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Abstract Here, short duration direct numerical simulations of shock water
cylinder interaction in a two-dimensional channel are conducted to study shock
wave attenuation at time scales smaller than the cylinder convection time.
Four different cylinder configurations, i.e., 1×1, 2×2, 3×3, and 4×4, are con-
sidered, where the total volume of water is kept constant throughout all the
cases. Meanwhile, the incident shock Mach number was varied from 1.1–1.4.
The physical motion of the water cylinders is quantitatively studied. Results
show that the center-of-mass velocity increases faster for the cases with more
cylinders. In the early stage of breakup, the transfer rate of kinetic energy
from the shock-induced flow to the water cylinders increases as the number
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of cylinders increases. Further, comparing the cases of different incident shock
Mach numbers, higher center-of-mass velocity is induced for the cases of lower
incident shock Mach numbers. Moreover, the pressure and impulse changes up-
stream and downstream of the cylinder matrices are tracked as a quantitative
evaluation of the shock attenuation.

Keywords shock-water interaction · multi-phase flow · shock attenuation ·

impulse

1 Introduction

Research on shock wave mitigation is closely related to the development of ef-
fective protection and disaster control, and it is motivated by the catastrophic
damage that may be caused by shock waves. Overall, the approaches to atten-
uate a shock wave can be divided into three categories, in terms of mechanism,
which are attenuating the shock wave by (1) breaking the incident shock wave
into multiple shocks with different arrival times, (2) dissipating energy through
viscosity, and (3) transferring kinetic energy of the shock-induced flow to the
potential energy of a solid or liquid barrier. Attenuating a shock wave using
rigid obstacles in a two-dimensional channel has been numerically studied by
Chaudhuri et al. (2013). Obstacles of different shapes, i.e., cylindrical, square
and triangular, were placed in either staggered or non-staggered matrix forms.
The pressure evolution upstream and downstream of the matrices was mon-
itored as an evaluation for the attenuation effect. Results showed that the
staggered matrix of reversed triangular prisms most efficiently attenuated the
incident shock wave. More recently, Wan and Eliasson (2015) numerically in-
vestigated the shock attenuation ability of a shock focusing geometry. Square
and cylindrical rigid obstacles were equidistantly arranged along the edge of a
logarithmic spiral, and fixed into a channel. Though arrival of both reflected
and transmitted shock waves was effectively delayed, the peak pressure behind
the reflected shock remained high.

Water has the potential to be successfully used to attenuate shock waves
for several reasons. Water is relatively easy to obtain and environmentally
friendly. Water has a large heat capacity, where a large amount of heat could be
absorbed by water when mitigating the blast wave. During a TNT explosion,
typical heat released is 980 cal/g, while 539 calories are required to vaporize
1 gram of water (Shin et al., 1998). On the other hand, taking account of the
environment inside an underground mining structure, solid barriers are hard
to install in the narrow channels and may block the lifesaving path during
an explosion if collapsed. In comparison, a large bulk of water will be broken
into small droplets when impacted by a shock wave, but it will not block
the channel due to its fluidic properties. Water can be used in different forms,
such as mists, sprays and bulk, to mitigate shock and blast waves (Kailasanath
et al., 2002). Part of the kinetic energy from shock-induced flow will transfer to
the water by breaking up larger droplets into finer mist, therefore the intensity
of secondary shocks could be reduced. Furthermore, due to the existence of
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water, possibly occurring chemical reactions behind the shock front are delayed
and slowed down, as water could cover the surface of the flammable material
and cut off its contact with the air.

The Weber number is a dimensionless number used to describe the relative
importance of the fluid inertia compared to its surface tension. Breakup of
a Newtonian droplet has been divided into five different regimes in terms of
Weber number: vibrational, bag, bag-and-stamen (or multi-mode), shear or
sheet stripping, and catastrophic (Pilch and Erdman, 1987; Guildenbecher
et al., 2009). The catastrophic breakup regime has been further divided into
wave-crest stripping and catastrophic by some researchers (Pilch and Erdman,
1987; Nomura et al., 2001). Typically, vibrational, bag, and bag-and-stamen
types of breakup occur for We < 40 (Gelfand, 1996), though the vibrational
type is not always observed. A shear sheet stripping mode has been observed
for 40 < We < 103. In this case a thin film is continuously stripped off from
the droplet surface and quickly collapses after being removed. The catastrophic
mode has been found for 103 < We < 105, where the droplet surface is crinkled
by the flow and forms a small number of large fragments that in turn break
up into smaller droplets.

Previous studies of liquid droplet breakup by shock wave involve both
numerical and experimental work (Theofanous, 2011). Ranger and Nicholls
(1969) experimentally studied shattering of water droplets under shock waves
with Mach number Ms = 1.3 − 3.5 in air. Results showed that the breakup
of droplets was mostly caused by the induced flow behind the incident shock
wave. In addition, the breakup time was found to be proportional to the de-
forming droplet diameter, and inversely proportional to the droplet velocity.
Wierzba and Takayama (1988) were among the first to use an experimen-
tal method to precisely study the breakup mechanism of liquid droplets un-
der shock impact. Results revealed that the stripping-type breakup of water
droplets can be divided into four steps, i.e., (1) liquid surface disruption, (2)
droplet deformation, (3) continuous stripping of microdrops, and (4) breakup
of the remaining part into relative large fragments as well as secondary strip-
ping of microdrops from the fragments. Later, Yoshida and Takayama (1990)
further investigated interactions between shock wave and liquid droplet exper-
imentally. Results showed that during the impact of shock waves, the water
droplet was first stretched in its horizontal direction, and then mist formed
due to the separation of the resulting boundary layer.

The physical motion of a single water droplet breaking up by a shock wave
has been numerically studied in recent years. Meng and Colonius (2015) sim-
ulated the early stage of the breakup process of a single water cylinder by a
planar shock wave. The post-shock gas velocity was varied from subsonic to
supersonic, and the wake region for the supersonic case was narrower than
the subsonic case, yet no significant difference was found regarding the flow
features. Though the simulations were conducted without viscosity and liq-
uid surface tension, numerical schlieren images for early breakup stage were
comparable with previous experimental work of Igra and Takayama (2001a).
Quantitative features, such as center-of-mass drift, velocity and centerline
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width, showed good agreement compared to the experimental results from
Igra and Takayama (2001b) and numerical results from Chen (2008). Also,
results showed that stronger incident shock waves induced higher center-of-
mass velocity of the water cylinder. Sembian et al. (2016) studied the wave
propagation inside a water cylinder during the impact of a shock wave with
Mach numbers 1.75 and 2.4. Cavitation bubble clouds forming inside the wa-
ter cylinder were captured using the shadowgraph technique, but were only
observed in the Mach 2.4 case, which was possibly due to the negative gauge
pressure that was recorded inside the water cylinder.

Propagation of a planar shock wave through a cloud of small water droplets
has been experimentally studied in the recent decade, yet the numerical mod-
eling for such problem is hard to conduct due to the large computational cost
of the simulations. Jourdan et al. (2010) experimentally investigated the mit-
igation of shock wave passing through a cloud of water droplets. Experiments
were conducted using a vertical shock tube, and water droplets were carefully
controlled to be 120, 250 and 500µm in diameter. The attenuation of the
shock was characterized by reducing the peak pressure after passing through
the water cloud. Results showed that the attenuation is negligible for droplets
of 120µm, while droplets of 500µm significantly reduced the peak pressure be-
hind the transmitted shock by 65%. Chauvin et al. (2011) conducted similar
experiments using different heights of water droplets clouds while the droplet
diameter was fixed. Further, it has been shown that the major factor of shock
wave mitigation is the exchange surface area of droplet atomization, which
is defined as the effective area of the droplets crossed by the shock wave at
a given location, non-dimensionalized by the cross section of the shock tube.
In general, when a planar shock wave propagates through a cloud of water
droplets, a transmitted shock forms downstream of the droplet cloud. Simul-
taneously, a reflected shock traverses in the opposite direction upstream of
the droplets, as shown in Fig. 1(a). The corresponding pressure change at the
downstream pressure probe is depicted in Fig. 1(b).

Cylindrical water obstacles have also been studied experimentally by Igra
and Takayama (2003). Water cylinders were placed in a tandem configuration
and results were presented in terms of acceleration terms and drag coefficients.
The tandem configuration was also compared to that of a single water cylinder,
and results showed that the single water cylinder behaved “virtually the same”
as the front cylinder in the tandem case. The rear cylinder experienced less
displacement, less acceleration and had a lower drag coefficient compared to
the front cylinder.

The aim of this work is to quantitatively study the attenuation of a shock
wave in a two-dimensional channel filled with air at initially atmospheric con-
ditions containing water cylinders during a very early stage as the shock wave
passes through the region with water cylinders. The water cylinders are placed
in different matrix forms, while the total amount of water is kept constant.
The numerical model is a multi-scale model leading to an accurate volume-
based homogenization of the two phases in the moment that interfaces cannot
be resolved on the mesh. The goal is to understand the interactions between
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shock waves and water cylinders, and precisely calculate the energy exchange
between the two-phase flow. In addition, by comparing the pressure change
upstream and downstream, one can quantitatively compare the attenuation ef-
fects of different water cylinder configurations. The current study is organized
in the following way: The numerical method and constraints are described in
section 2. Then, results and analysis are presented in section 3. In particular,
the physical motion and flow features are presented in section 3.1, and the
transfer of kinetic energy from air to water is discussed in section 3.2. The
behavior of cylinder matrices under different incident shock Mach numbers is
shown in section 3.3. The shock attenuation is analysed in section 3.5, and
comparison between the water cylinder matrices and solid obstacle cases is
further discussed in section 3.6. At last, conclusions are drawn in section 4.

2 Numerical approach

2.1 Simulation setup

In a two-dimensional channel, propagation of a planar incident shock wave
coming from left to right through water cylinders placed in matrix forms is
considered, as depicted in Fig. 2. Four different cylinders placements, i.e., 1×1,
2×2, 3×3, and 4×4 cylinders, are used. The total amount of water, which is
indicated by the total cross section area of the water cylinders, is kept con-
stant in all the cases. The diameter of the cylinder in the 1×1 case, shown
in Fig. 2(a), is chosen to be d0 = 6 mm, and the cylinder diameters for the
remaining cases are determined to maintain a constant total amount of wa-
ter. In particular, water cylinders are strictly placed within the w ×w square
region, where the center-of-mass is initially located at the origin. Top and
bottom boundaries are parallel and represent channel walls, where reflecting
characteristic boundary conditions are applied. The left side is the inflow;
the right side is the outflow. Atmospheric conditions are applied to the water
cylinders and the air ahead of the incident shock wave, i.e., ρag = 1.204 kg/m

3
,

ρl = 1000 kg/m
3
, pag = pl = 101325Pa. The effect of gravity is negligible and

not taken into account in the current study. As shown in Fig. 2(a), S1 and
S2 are the locations where the pressure values are recorded, which will be re-
ferred as pressure probe 1 and pressure probe 2, respectively. Both pressure
probes are placed at the same locations for all the configurations. The sim-
ulation time is non-dimensionalized using equation (1), where τd denotes the
characteristic deformation time (Gelfand, 1996; Chauvin et al., 2011) of the
cylinder associated with its diameter, as shown in Eqn. (1),

t∗ =
t

τd
, τd =

φd

us
g

√

ρl
ρsg

, (1)

where t is the actual time, φd represents the water cylinder diameter in general,
φd = d0 in the 1×1 case, us

g and ρsg denote shock-induced flow velocity and
density, respectively.



6 Q. Wan et al.

Table 1 Summary of incident shock-induced flow conditions for simulated Mach numbers

Ms ps
g
[kPa] ρs

g
[kg/m3] us

g
[m/s]

1.1 126.2 1.408 54.61
1.2 153.3 1.615 104.9
1.3 182.9 1.825 151.8
1.4 214.8 2.034 196.1

Incident shock Mach numbers are varied from Ms = 1.1 to Ms = 1.4 with
increment 0.1. For each specific incident shock Mach number, the correspond-
ing shock-induced flow pressure, psg, density, ρ

s
g, and velocity, us

g, are shown in
Tab. 1.

2.2 Governing equations

The set of used governing equations are based on a multi-component model
that involves the phase volume fractions αi with

∑m

i=1
αi = 1. Mixture quan-

tities are described as

ρ =
m
∑

i=1

αiρi , ρu =
m
∑

i=1

αiρiui , ρe =
m
∑

i=1

αiρiei. (2)

Multiple fluids are represented as mostly separated phases that can be de-
scribed by a single set of two-dimensional inviscid Euler equations

∂tρ+∇ · (ρu) = 0, (3)

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0, (4)

∂t(ρE) +∇ · ((ρE + p)u) = 0, (5)

which represent the conservation of mixture mass, mixture momentum and
total energy without any body forces. Here, u is the velocity vector and E :=
e+ 1

2
uTu the specific total energy. Applying a stiffened gas equation of state

pi = (γi − 1)ρiei − γipi,∞, (6)

the total hydrodynamic pressure p and p∞ of the mixture are given as

p

γ − 1
=

m
∑

i=1

αipi
γi − 1

,
γp∞
γ − 1

=

m
∑

i=1

αiγipi,∞
γi − 1

. (7)

Assuming a constant specific heat at constant volume, cv,i, the internal energy
in each fluid can be related to the partial temperature Ti as Fl̊atten et al. (2011)

ei = cv,iTi +
pi,∞
ρi

, (8)
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which allows expressing Eqn. (6) as

pi = (γi − 1) ρicv,iTi − pi,∞. (9)

Instead of using propagation equations of αi to distinguish the components,
the approach of Shyue (1998) has been adopted to supplement equations (3)–
(5) with the two advection equations

∂

∂t

(

1

γ − 1

)

+ u · ∇

(

1

γ − 1

)

= 0 , (10)

∂

∂t

(

γp∞
γ − 1

)

+ u · ∇

(

γp∞
γ − 1

)

= 0 . (11)

Although this description is applicable only to two-component systems, i.e.,
m = 2, the benefit is that the direct utilization of equations (10) and (11) in
the governing equations and therefore direct discretization together with (3)–
(5) is the simplest remedy (Shyue, 2006) to the otherwise intrinsic problem of
nonphysical numerical pressure oscillations at interfaces with vastly different
parameters γi and pi,∞ (Abgrall and Karni, 2001). Here, the parameters for
water were defined as γl = 6.12 and pl,∞ = 343.44MPa (Meng and Colonius,
2015), resulting in an ambient speed of sound of a0 = 1450m/s and γg = 1.4
and pg,∞ = 0 for air.

Note that the described model considers phases as mixed within a cell and
thereby represents bubbles or droplets below the grid scale by an alteration of
the volume fractions αi. Based on the relation

1

γ − 1
=

m
∑

i=1

αi

γi − 1
, (12)

that is imposed in addition, cf. (Shyue, 1998, 2006), it is straightforward to
evaluate of αi for the case m = 2 from the mixture quantity 1/(γ − 1) when
solving for equations (3)–(5) plus (10) and (11).

2.3 Numerical method

A time-explicit finite volume approach is used to discretize the governing equa-
tions with the second-order accurate wave propagation method (LeVeque,
2002). This method is designed for schemes in flux-difference splitting form
and can handle the conservative equations (3)–(5) with an approximate Rie-
mann solver as well as the non-conservative advection equations (10) and (11).
In order to cope with realistic density differences across the air-water interface,
the Harten-Lax-van Leer with contact (HLLC) scheme by Toro et al. (1994)
is used as approximate Riemann solver. An extended version of the HLLC
scheme, tailored for the above set of governing equations for two-phase flow
and smoothly incorporated into the Wave Propagation approach had been spe-
cially derived (Deiterding et al., 2009). The robustness of the HLLC approach
allows using the accurate densities for water and air.
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In order to enable technically relevant computations, the sketched finite
volume method has been incorporated into the Cartesian adaptive mesh re-
finement solver system AMROC V2.0 (Deiterding, 2011) within the freely
available fluid-structure coupling software Virtual Test Facility (Deiterding,
2005). The consideration of geometrically complex boundaries in AMROC is
achieved by a generic and discretization-independent level set technique. Based
on signed distance information stored in the level set function, reflective wall
boundary conditions are constructed by inter- and extrapolation operations in
cells adjacent to the boundary, but deemed outside of the fluid domain, before
the Cartesian discretization is employed to compute the next time step (Deit-
erding, 2009). Block-based mesh refinement is applied and regenerated consec-
utively at run-time to mitigate inaccuracies from the boundary approximation
as well as to capture essential flow features, like shock waves and material
interfaces with increased resolution (Deiterding, 2011). In the current study,
three adaptive mesh refinement (AMR) levels are chosen and a refinement fac-
tor of 2 is used. A coarse background grid of resolution 1220×124 is created
so after mesh refinement, the effective grid resolution is 4880×496. Time step
refinement by the same factor as the spatial refinement ensures that the sta-
bility condition of the explicit finite volume scheme is in principle satisfied on
all refinement levels.

Validation simulations for the sketched dynamically adaptive two-phase
HLLC method are provided by Perotti et al. (2013), where elastic deforma-
tions of tubes from shock waves in water have been analyzed meticulously. Fur-
ther verification and validation simulations for water-hammer and underwater
explosion driven plastic deformation and rupture of metallic plates with two-
phase flow and empirical cavitation modeling are given by Cirak et al. (2007)
and Deiterding et al. (2009). Lastly, for further validation and verification, a
combined numerical and experimental study on different shock wave reflection
patterns, transition angles and triple point trajectory angles for oblique shock
wave reflection off a water wedge at different inclination angles and for a range
of shock Mach numbers is provided by Wan et al. (2017).

2.4 Numerical comparison

Before starting the simulations of multiple cylinder matrices, a comparison of
the numerical approach is conducted by reproducing the results from Igra and
Takayama (2001b) and Meng and Colonius (2015), which showed the breakup
process of a single water cylinder under high-speed flow. The simulation setup
is described in Meng and Colonius (2015), as shown in Fig. 3, where a planar
shock wave with Mach number Ms = 1.47 is traveling from left to right.
Symmetric boundary conditions are applied to the bottom boundary. Left
side is inflow, and right and top sides are outflow.

The water cylinder’s leading edge drift, i.e., forward stagnation point, and
cylinder’s centerline width are traced and shown in figures 4(a) and (b). A
threshold of the liquid volume fraction, αT , was used to bound the water cylin-
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der, and all the cells with a liquid volume fraction αl ≥ αT are counted as part
of the water cylinder. The displacement of the leading edge, ∆x, and center-
line width, wc, are non-dimensionalized by the cylinder diameter, de = 4.8mm,
and the timeline is non-dimensionalized by the characteristic deformation time
regarding de using equation (1). By comparison, our results agree well with
both the numerical results from Meng and Colonius (2015) and experimental
measurements from Igra and Takayama (2001b).

In addition to the numerical comparison, a convergence study is conducted
to further validate the mesh resolution. The 1× 1 water cylinder case is sim-
ulated using five different background grid resolutions, i.e., 152×16, 304×30,
610×62, 1220×124 and 2440×248, with respectively three AMR levels refined
by a factor of 2 each. Fig. 5 shows the center-of-mass drift obtained using
different grid sizes. Convergent results are achieved as the grid resolution is
refined and hence the background coarse mesh 1220×124 is applied in the rest
of the simulations throughout this paper, cf. Section 2.3.

3 Results and analysis of water cylinder matrices breakup

The physical motion of water cylinders, i.e., center-of-mass drift, center-of-
mass velocity, and kinetic energy exchange between air and water, under shock
wave impact is quantitatively studied. Further, the attenuation of shock wave
is characterized by the pressure change in the flow field.

3.1 Water cylinders motion and flow features

Before looking into the shock attenuation by water cylinders, a physical un-
derstanding of the behavior and motion of the water cylinder matrix under
the impact of a planar incident shock wave is informative. Here, a qualitative
comparison for the flow features is conducted. Initially, the water cylinders
are located as shown in Fig. 2. The density contours at four sequential time
instants are visualized to show the propagation of a Ms = 1.3 shock wave
through the water cylinder matrix, as depicted in figures 6-7. The threshold
of the visualized density is chosen to be in the range 1.2 - 16 kg/m

3
so that

more details of the flow features can be captured. Also, the density contour
is a good representation of the mass flux of the flow field. As seen from the
density contour plots, there is no symmetry in the upper and lower half planes.
This is caused by initial conditions not being 100% symmetric, and quite com-
mon because all high-resolution solvers eventually show symmetry breaking at
unstable shear layers (only very large numerical diffusion could stabilize the
physically unstable process).

As reviewed earlier, the incident shock wave itself does little effect to the
water droplet deformation (Ranger and Nicholls, 1969). In Fig. 6(a), the in-
cident shock waves have already propagated through the cylinder matrices,
and are outside the frame. For the 1×1 cylinder case, the cylindrical shape is
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not much affected and can be recognized. For the 2×2 water cylinders case,
the deformation of the first and second columns is slightly different. In the
left column, the water cylinder on top is stretched in horizontal direction, si-
multaneously a clockwise vortex is formed at the upper side of the back of
the water cylinder, as shown in Fig. 8, which has been previously reported
by Meng and Colonius (2015). Similarly, a counter-clockwise vortex, shown in
Fig. 8, is formed at the lower side. These vorticity streams induce shear stress
that deforms the water cylinder of the right column, which results in a pointed
shape at the front side of the water cylinder. Similar deformation modes can
be found in the 3×3 and 4×4 cylinders cases.

In figures 6(b) and 7(a), the cylinder of the 1×1 case is further stretched
in width. Especially in Fig. 7(a), a liquid film is formed that gets peeled away
from the cylinder surface, which is a typical phenomenon in the shear stripping
deformation mode. For the 2×2, 3×3 and 4×4 water cylinders cases, the water
cylinders of different columns start to merge. Water cylinders at the right
columns are first stretched in the horizontal direction, where the front side is
moving toward the back side of the left column.

The cylinders of smaller sizes are more deformed, which is expected be-
cause the characteristic deformation time of a cylinder, shown in Eqn. (1), is
proportional to the cylinder diameter. As shown in Fig. 7(b), the main body
of the water cylinder for the 1×1 case is maintained at a similar size as the
original, while for the other three cases, cylinders are stretching and merging,
and vortex shedding in the wake region occurs, which makes the flow field
highly turbulent and the cylindrical shapes are not recognizable anymore.

Comparing the density contours of the four different cylinder configurations
in figures 6-7, it can be observed that the mass transportation mode is different
as the number of cylinders increases. For the 1×1 configuration, most of the
water cylinder mass is maintained near its original circular shape, while for
the 4×4 configuration, water cylinders are spread all over the wake region.
Thus, besides the qualitative visualization of the density contour, the physical
motion of water cylinders is quantitatively studied.

Since the total volume of water is kept constant in all the cases, and the
location of the center-of-mass for each case is initiated at the same origin,
this makes it possible to investigate the difference of cylinder movement under
directly comparable conditions. The displacement and velocity of the center-
of-mass of water cylinder matrices are evaluated using the method described
in Meng and Colonius (2015) by evaluating

xc =

∫

αlρlxdV
∫

αlρldV
, uc =

∫

αlρludV
∫

αlρldV
, (13)

where the volume is integrated over the entire computational domain. The
calculations naturally minimize noise produced by the finite difference approx-
imation, but still assume zero mass flux across the computational boundaries
(Meng and Colonius, 2015). Therefore, once liquid mass crosses through the
computational boundaries, equation (13) is no longer valid.
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Following the procedure in Meng and Colonius (2015), the center-of-mass
drift (also called water cylinder matrix streamwise displacement) of the four
cylinder configurations, 1×1, 2×2, 3×3 and 4×4, under incident shock Mach
numberMs = 1.3 is evaluated and shown in Fig. 9. The time is non-dimensionalized
using equation (1), where the water cylinder diameter is chosen as the diam-
eter of the 1×1 case, φd = d0. Displacement of the center-of-mass, xc, is also
non-dimensionalized using d0. As can be seen from Fig. 9, for each individual
case, the displacement increases monotonically over time. Comparing cases of
different cylinder configurations, the displacement increases as the number of
water cylinders increases.

The corresponding center-of-mass velocity is calculated using Eqn. (13),
which is not merely taking the derivatives of the center-of-mass drift. The
resulting center-of-mass velocity is shown in Fig. 10. Generally, velocity is
monotonically increasing over time for each case. Particularly, at the early
stage, the velocity profile for each case grows linearly. When water cylinders
have not deformed significantly, the pushing force from the induced flow is
almost constant, which leads to a relatively stable and unaltered acceleration
of the water cylinder matrix. After a certain time, when liquid filaments start
to be stripped from the cylinder edge and move away from its main body,
and cylinders of different columns begin to merge together, part of the kinetic
energy is lost, which causes instability of the velocity profile. More details
regarding the energy exchange between shock-induced flow and water cylinders
are discussed in the next section. Additionally, a higher center-of-mass velocity
is induced for configurations of more water cylinders.

The above increasing trend of the center-of-mass drift and velocity is ex-
pected, because the case with more cylinders has larger exchange surface area,
which is defined as the total cylinders’ cross section area, i.e.,

Se = nφd. (14)

A similar definition is given by Chauvin et al. (2011). In Eqn. (14), n denotes
the total number of cylinders. Since the simulations are two-dimensional, the
initial direct contact surface area between air and water is the total perimeter
of all cylinders, while the exchange surface area can be defined as the total
streamwise cross section area, which is the sum of all cylinder diameters. Water
cylinders in the cases of larger Se expose more surface area to the air in the
stream-wise direction, therefore the cylinders are pushed by larger force under
the same initial conditions. The exchange surface areas for the 1×1, 2×2, 3×3
and 4×4 cylinder matrix configurations are d0, 2d0, 3d0 and 4d0, respectively.

3.2 Energy exchange between air and water

The total kinetic energy of water cylinder matrices is computed as

Ek =
1

2

∫

αlρl(u
2 + v2)dV, (15)
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where u and v denote the velocity in each cell, and the volume is integrated over
the entire domain. The total kinetic energy of water cylinders, Ek, is purely
transferred from the shock-induced flow. Then, normalizing Ek by the total
kinetic energy input of the shock-induced flow provides a measure of energy
exchange between air and water. The normalization is shown in equation (16).
The resulting non-dimensional quantity En shows the fraction of kinetic energy
transferred from air to water, which can also be seen as the energy exchange
efficiency,

En =
Ek

E0

, E0 =
1

2
ρgu

3

gH(tf − ts), (16)

where E0 denotes the total input kinetic energy from shock-induced flow, H
is the height of the computational domain, here H = 2d0, tf is the final time
of the simulation, and ts is the moment that the incident shock wave arrives
at the leading edge of the water cylinder matrices.

The trace of the total kinetic energy of water cylinder matrices under inci-
dent shock Mach number Ms = 1.3 is shown in Fig. 11. The four time instants
shown in Figs. 6-7 are marked here so that connections can be made between
the density contours in Fig. 6-7 and the corresponding energy exchange. The
timeline of the four cases, denoted as t∗

0
, is scaled using equation (1) with the

same φd = d0. In Fig. 11, the slope of the curves denote the kinetic energy
transfer rate from air to water. At the early stage, t∗

0
< 0.15, kinetic energy is

transferred faster from air to water for the cases with more water cylinders,
because of larger exchange surface area. More energy is taken from the shock-
induced flow to simultaneously break up multiple smaller water cylinders than
a single larger cylinder. After 146µs, water cylinders in the 3×3 and 4×4 cases
break up quickly, which can be seen in Fig. 6(b), thus the energy curves of
the two cases almost collapse in Fig. 11 for t∗

0
> 0.2. Meanwhile, at 290µs,

the cylinders in the 2×2 case mostly maintain their original shape, shown
in Fig. 6(b), where the two columns are moving toward each other but have
not yet merged. Therefore, the energy exchange for the 2×2 case is relatively
smooth before 290µs. After 290µs, cylinders in the 2×2 case merge gradually
and cause energy loss.

To summarize, during the simulated time, up to 23% of kinetic energy
input from the shock-induced flow is converted into kinetic energy of water
cylinders for the 3×3 configuration, which is the highest among the four cases.
For the other three cases, the input kinetic energy transfer rate is 19%, 17%,
and 19% for 1×1, 2×2, and 4×4 cases, respectively.

3.3 Effect of incident shock Mach number

Four different incident shock Mach numbers, Ms = 1.1− 1.4 with increments
0.1, were explored to understand the variation of the cylinders’ physical be-
havior under different induced flow velocities.

The center-of-mass drift in the direction of the incident shock wave for
1×1 and 3×3 water cylinder matrices is shown in Fig. 12. The streamwise
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displacements are normalized by the diameter of the 1×1 water cylinder. The
curves describe that the water cylinder matrices move slower, indicated as the
curve slopes, as the incident shock Mach number is increased. On the other
hand, it can be found that increasing the number of cylinders in the matrix
does not make a significant difference to its physical behavior.

The center-of-mass streamwise velocity for 1×1 and 3×3 water cylinder
matrices is shown in figures 13(a) and (b). The evaluated velocities are nor-
malized by respective shock-induced flow velocities. The velocity profiles show
a similar trend as the center-of-mass drift, where weaker incident shock waves
induced higher cylinder matrix velocities. The resulting velocity trend is thus
opposite to the finding of Meng and Colonius (2015), yet still reasonable. The
computational domain in the current simulations are bounded with the rigid
reflecting walls at upper and lower sides, while in Meng and Colonius (2015),
non-reflecting characteristic boundary conditions were applied to the upper
wall, as shown in Fig. 3. The gaps between the cylinder matrix and the rigid
walls are comparable to the cylinder diameter, so it does not take long time
for the incident shock to get deflected by the water cylinders and reflected
back from the top and bottom walls. Therefore, when the rounded reflected
shock forms, the second column cylinders gets accelerated by the reverber-
ating shocks that reflect off the top and bottom walls, and the induced flow
behind the reverberating shock would push back the water cylinders at the
first column in the opposite direction of the incident shock wave. The back-
ward pushing pressure increases as the incident shock Mach number increases,
and the velocity of the cylinder matrix decreases. The case of 2×2 cylinder
matrix for Ms = 1.3 is illustrated as an example in Fig. 14, while the backward
pushing of the reflected shock can be found in the other configurations. On the
other hand, in the early stage of the cylinder breakup, the cylinder is acting
like a rigid circular obstacle when impacted by a shock wave, which can be
seen in Fig. 14.

The kinetic energy exchange rate between air and water for the 1×1 and
3×3 cylinder matrices under the four different incident Mach numbers is calcu-
lated and non-dimensionalized using equations (15)–(16). Results are shown in
figures 15(a) and (b). The slope of the curve indicates the rate of kinetic energy
transfer from air to water. Hence, it is clear that the transfer of energy is faster
for lower incident shock Mach numbers. This is consistent with the results of
center-of-mass velocity shown in Fig. 13. In addition, the energy transfer rate
increases (the slope gets steeper) over time for the 1×1 case. This is because
initially the cylinder does not deform significantly, thus not much energy was
absorbed. Later, the cylinder is broken gradually, and exposes more surface
area to the air, therefore kinetic energy transfer is increased. For the 3×3 case,
the energy curves are not as smooth as the 1×1 case, which is because more
cylinders are merging and an increase in water cylinder-wall reflection cause
energy loss.



14 Q. Wan et al.

3.4 Temperature change

Figure 16 shows the temperature increment of the flow fields around water
cylinders under the Mach number Ms = 1.3. In general, the temperature
upstream of the cylinders is higher than downstream. This is expected because
the gas is expanding isentropically around the obstacles. Also, due to the large
heat capacity of the water, the temperature change in the water is much smaller
than in the air. In particular, the temperature increment of the water phase is
less than 5K, which is negligible comparing with the temperature change in
the air.

3.5 Shock attenuation

As discussed earlier, the presence of water cylinders alters the pressure trace
downstream of the incident shock wave, which is illustrated in Fig. 1. Although
the characteristic peak overpressure,∆p, may not be the global maximum pres-
sure, it is one quantity that can be used to characterize the transmitted shock
wave. Alternatively, the pressure impulse, the time integral of overpressure,

I =

∫

∆p(t)dt, (17)

is another measure used to quantify the shock attenuation effect. Therefore,
the attenuation of the shock wave is studied in two aspects: (1) the overpressure
ratio ∆p/psg, and (2) the pressure impulse. Specifically, the overpressure, ∆p,
is picked as p-psg upstream due to the passage of the incident shock wave, and
p-pag downstream.

Upstream of the water cylinders, under the incident shock Mach Ms = 1.3,
the traces of overpressure and impulse evaluated at the location S1 (see Fig. 2)
are shown in Figs. 17(a) and (b), where the overpressure is normalized by the
pressure derived from the case without cylinders. In order to avoid that the
overpressure evaluated at the center point of S1 is very different from the
overpressure close to the top and bottom walls, the averaged overpressure
along S1 is also recorded. The averaged overpressure is shown as the solid line
in Fig. 17, and the recorded overpressure from the center point of S1 is shown
using the dashed line. Comparing with the evaluation at the center point, the
calculation of the averaged overpressure removes the noises and ensures that
the pressure trend elsewhere is consistent. The spatially averaged overpressure
shows a similar trend with the evaluation at the centerline, while unnecessary
noise is to some extent reduced in the averaged results. The pressure probe 1
is located behind the incident shock wave at the beginning of the simulation,
so the overpressure evaluated at t∗

0
= 0 is the shock-induced pressure. The

overpressure behind the reflected shock is used to calculate the impulse, and
the result is shown in Fig. 17(b). The spatially averaged results overlap those
evaluated along the centerline. By the end of the simulated time, the pressure
impulse of the 4×4 case is 43.0Pa · s, which is the highest among the four
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cases. The evaluated impulses for the 1×1, 2×2 and 3×3 cases are 76%, 87%
and 94%, respectively, compared to the result from the 4×4 case.

Similarly, the normalized overpressure obtained at the downstream loca-
tion is shown in Fig. 18(a). The solid lines show the trace of the averaged
overpressure along S2, and the corresponding dashed lines show the evalua-
tion at the center point of S2. For each individual case, a jump in overpressure
is followed by an underpressure, caused by the presence of expansion waves.
Further, comparing the cases of different configurations, the duration of the
first overpressure jump decreases as the number of cylinders increases. Inte-
grating the overpressure leads to the pressure impulse shown in Fig. 18(b).
The noise is further eliminated by integration. As the transmitted shock front
reaches the pressure probe, the impulse values obtained for each configuration
increase when ∆p is positive. Later, the impulse either increases with a lower
rate or it decreases due to the existence of underpressure. Comparing with the
theoretical solution of the case without water cylinders, obviously the presence
of cylinder matrices significantly reduces the impulse downstream. By the end
of the simulated time, the pressure impulses for 1×1, 2×2, 3×3 and 4×4 cases
are 27%, 26%, 27% and 23% compared to the case without any cylinders.

3.6 Comparison with the solid obstacle case

In order to further characterize the shock attenuation effect due to water
cylinders deformation and kinetic energy transfer, the propagation of a Ms =
1.3 shock wave through solid obstacle matrices with the same geometrical
setup as Fig. 2 is simulated. Specifically, the solid obstacles are of the same
size as water cylinders, and placed at the same corresponding locations, but
neither deformable nor movable in the simulations. Overpressure and impulse
are traced at the same probe location mentioned as in section 3.5, while only
the spatial averaged evaluation along S1 and S2 are shown.

Since deformation is not considered for the solid obstacle cases, dimensional
time is used. At the upstream location, a comparison of the overpressure traces
for the 1×1 and 4×4 cases is shown in Fig. 19(a). For the 1×1 configuration,
the overpressure traces of the solid obstacle and water cylinder cases overlap
at time t < 0.14ms, when the cylinder has not yet deformed. Later, the over-
pressure of the water cylinder case gradually rises above the solid obstacle case
as the cylinder is more stretched in its horizontal direction. A similar trend
for the overpressure traces can be found for the 4×4 case, yet the duration of
overlapped overpressure is shorter than in the 1×1 case. The corresponding
impulse regarding the overpressure is shown in Fig. 19(b). By the end of the
simulated time, for the 1×1 configuration, the impulse of the solid obstacle
case is 45% of the water cylinder case. For the 4×4 configuration, the impulse
of the solid obstacle case is 50% of the water cylinders case.

Downstream of the water cylinder matrices, the normalized overpressure
is shown in Fig. 20(a). An enhanced attenuation effect is achieved for the
water cylinder cases, whose overpressures drop faster. The attenuation effect
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is also reflected in the corresponding impulse traces, as shown in Fig. 20(b).
By the end of the simulated time, the impulse of the water cylinder cases is
40% and 31% of the solid obstacle cases respectively for the 1×1 and the 4×4
configurations.

4 Conclusions

The propagation of a planar incident shock wave through a two-dimensional
channel, which is blocked by water cylinder matrices of four different configu-
rations, i.e., 1×1, 2×2, 3×3, and 4×4, has been modeled numerically. The total
volume of water has been kept constant, and the locations of the center-of-
mass were initiated at the same point throughout all the configurations. First,
the physical motion of water cylinder matrices and the flow features have been
investigated. Quantitative evaluation of the center-of-mass drift and velocity
were conducted using the method previously reported by Meng and Colonius
(2015). The first set of simulations were performed with incident shock Mach
number Ms = 1.3. Results show that the center-of-mass drift increases mono-
tonically for each case. Specifically, velocity increases faster for the cases with
more cylinders. Further, the transfer of kinetic energy from the shock-induced
flow to the water cylinders has been quantified. To the best of the authors’
knowledge, this is the first work that quantitatively calculates the energy ex-
change between shock waves and water cylinders. Our results show that the
transfer rate of kinetic energy, in the early stage, from the shock-induced flow
to the water cylinders, increases as the cylinders’ number is increased. How-
ever, as the cylinders deform further, and different cylinder columns merge
with one another, the energy trace becomes unpredictable and eventually col-
lapses. By the end of the simulated time, up to 23% of the kinetic energy input
from the shock-induced flow has been converted to kinetic energy of the water
cylinders in the 3×3 case, which is the highest transfer rate among the four
considered cases.

Further, the effect of incident shock Mach number has been studied for
the 1×1 and 3×3 cases. Four different Mach numbers were considered, i.e.,
Ms = 1.1 − 1.4 with increments 0.1. In comparison, a higher center-of-mass
velocity is induced for lower incident shock Mach numbers. While contrary to
the results of Meng and Colonius (2015), this behavior can be explained by
the fact that the induced flow behind the curved reflected shock wave from
the top and bottom walls pushes the cylinders of the front column into the
opposite direction of the incident shock wave. This upstream pushing force
increases as the incident shock Mach number is increased, thus reducing the
center-of-mass velocity. Moreover, the transfer of kinetic energy from air to
water is faster for weaker shock waves, which is consistent with the velocity
observations.

The temperature increment of the flow field has also been investigated. The
temperature upstream of the cylinders is higher than downstream, which can
be explained by the fact that the gas is expanding isentropically around the
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obstacles. On the other hand, the temperature change in the water is found
to be less than 5K.

The attenuation of the shock wave has been studied by quantitatively mea-
suring the trace of overpressure and impulse at upstream and downstream loca-
tions. Upstream of the cylinder matrices, the pressure rises due to the reflected
shock. The pressure impulse of the 4×4 case is the highest, i.e., I = 43.0Pa · s.
The impulses for the 1×1, 2×2 and 3×3 cases are 76%, 87% and 94%, re-
spectively, relative to the 4×4 case. Downstream of the cylinder matrices, the
impulses for the 1×1, 2×2, 3×3 and 4×4 cases are 27%, 26%, 27% and 23%,
compared to the case without cylinders.

Shock attenuation effects of the 1×1 and 4×4 cylinders matrices have been
compared with the solid obstacle cases with the same geometrical setup. By
the end of the simulated time, at the upstream location, the evaluated impulse
values of the solid obstacle case are 45% and 50% of the water cylinder case
relative to the 1×1 and the 4×4 cases. At the downstream location, opposite
from the trend observed upstream, the impulse values of the water cylinder
cases are 40% and 34% of the solid obstacle cases with respect to the 1×1
and the 4×4 configurations. In all, water cylinders has a better capability
than the solid obstacles of the same blockage area to mitigate the shock wave
downstream.
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Fig. 1 Schematic drawing of (a) the propagation of a shock wave through a cloud of water
cylinders, and (b) the overpressure trace evaluated at a downstream probe. Figure repro-
duced from Chauvin et al. (2011).
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Fig. 6 Density contours of a Ms = 1.3 shock wave impacting 1×1, 2×2, 3×3, and 4×4
water cylinder matrices at (a) 146 µs, and (b) 290µs.
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Fig. 7 Density contours of a Ms = 1.3 shock wave impacting 1×1, 2×2, 3×3, and 4×4
water cylinder matrices at (a) 436 µs, and (b) 578µs.
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Mach number Ms = 1.3. Solid lines denote the trace of averaged evaluation along S1, and
corresponding dashed lines denote the evaluation at the center point of S1. Note that the
solid and the corresponding dashed lines in (b) overlap. The theoretical solution of the case
without water cylinders is shown for comparison.
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Fig. 18 (Color online) Trace of (a) overpressure and (b) pressure impulse at downstream
location S2 under the incident shock Mach number Ms = 1.3. Solid lines denote the trace
of averaged evaluations along S2, and corresponding dashed lines denote the evaluations at
the center point of S2. The theoretical solution of the case without water cylinders is shown
for comparison.
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Fig. 19 (Color online) Trace of (a) overpressure and (b) pressure impulse (integration of
overpressure with regards to time) at upstream location S1 under the incident shock Mach
number Ms = 1.3. Solid lines denote the traces of the solid obstacle cases, and dashed lines
denote the evaluations for water cylinder matrix cases. The theoretical solution of the case
without water cylinders is shown for comparison.
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Fig. 20 (Color online) Trace of (a) overpressure and (b) pressure impulse at upstream
location S2 under the incident shock Mach number Ms = 1.3. Solid lines denote the traces
of the solid obstacle cases, and dashed lines denote the evaluations for water cylinder matrix
cases. The theoretical solution of the case without water cylinders is shown for comparison.


