
D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 1 of 48

European Security in Health Data Exchange

Deliverable D4.1

Privacy by design models and tools: proof of concept

Editor(s): Stefanie Cox, Mike Surridge

Responsible Partner: IT Innovation

Status-Version: Final

Date: 22/12/2017

Distribution level (CO, PU): PU

Ref. Ares(2017)6377796 - 28/12/2017

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 2 of 48

Project Number: GA 727301

Project Title: SHiELD

Title of Deliverable:
Privacy by design models and tools: proof of
concept

Due Date of Delivery to the EC: 31/12/2017

Work package responsible for
the Deliverable:

WP4

Editor(s): Stefanie Cox, Mike Surridge

Contributor(s):
Xabier Larrucea Uriarte, Muhammad Barham, Chris
Miles, Ken Meacham

Reviewer(s): IBM

Approved by: All partners

Recommended/mandatory
readers:

WP4 partners, use case- and tool owners

Abstract: This initial release enables work to start on the
detailed privacy by design analysis of end-to-end
test systems and scenarios proposed at M12 in
Task 6.1. It covers initial asset-centric security
threats and countermeasures, and basic secure
design patterns. This deliverable is the result from
Task 4.1 – Task 4.3.

Keyword List: Security Modelling Tools, Secure Knowledge Base,
Secure Design Patterns, Privacy by design

Disclaimer This document reflects only the author’s views
and neither Agency nor the Commission are
responsible for any use that may be made of the
information contained therein

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 3 of 48

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 07/08/2017 First draft version Stefanie Cox (IT
Innovation)

v0.2 25/08/2017 Second draft version Xabier Larrucea Uriarte
(Tecnalia)

v0.3 16/11/2017 Third draft version Stefanie Cox (IT
Innovation)

v0.4 23/11/2017 Fourth draft version Stefanie Cox (IT
Innovation)

v0.5 29/11/2017 Fifth draft version Stefanie Cox (IT
Innovation)

v0.6 13/12/2017 Version for internal review Stefanie Cox (IT
Innovation)

v1.0 22/12/2017 Final version Stefanie Cox (IT
Innovation)

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 4 of 48

Table of Contents

Table of Contents .. 4

List of Figures .. 6

List of Tables .. 6

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction .. 9

2 Initial Security Modelling Tools ... 10

2.1 Introduction .. 10

2.2 Terminology .. 10

2.3 Backend components .. 11

2.3.1 Remote attacks and control inference .. 11

2.3.2 Compliance threats ... 12

2.3.3 Performance improvements ... 12

2.4 User Guide ... 12

2.4.1 Getting started .. 13

2.4.1.1 Main page .. 13

2.4.1.2 User login .. 14

2.4.1.3 Logout .. 14

2.4.2 Model management .. 14

2.4.2.1 List models ... 14

2.4.2.2 Create model ... 15

2.4.2.3 Export/Import.. 16

2.4.2.4 Delete model ... 16

2.4.3 Model construction ... 17

2.4.3.1 Select and add asserted asset ... 17

2.4.3.2 Add relationship between assets .. 19

2.4.3.3 Delete asset ... 20

2.4.3.4 Delete relation ... 21

2.4.3.5 Rename asset .. 21

2.4.4 Model validation ... 21

2.4.5 Threat management .. 22

2.4.5.1 Threats associated with a given asset ... 22

2.4.5.2 Selecting controls in the Control sets panel .. 24

2.4.6 Threat Editor ... 25

2.4.6.1 Using the Threat Editor to select controls .. 25

2.4.6.2 Accepting a threat ... 26

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 5 of 48

3 Initial knowledge base ... 27

3.1 Generic security threats .. 31

3.1.1 Remote Exploits... 32

3.1.2 Software Bugs .. 32

3.1.3 Unauthorised Local Access .. 32

3.2 Mobile devices (UC Metrarc.1) ... 32

3.2.1 Use case description .. 32

3.2.2 Identified threats ... 33

3.2.2.1 Interception of login credentials (T Metrarc.1.1) .. 33

3.3 Use case title (UC IBM.1) ... 35

3.3.1 Use case description .. 35

3.3.2 Identified threats ... 35

3.3.2.1 Lawfulness (T IBM.1.1) .. 35

4 Initial Secure Design patterns ... 36

4.1 Patterns ... 38

4.1.1 Security patterns ... 38

4.1.2 High level patterns .. 41

4.1.3 Low level patterns ... 41

4.2 Preliminary benefits from using patterns ... 41

4.3 Threat identification tool .. 42

4.3.1 Identified threats ... 42

4.3.2 Design of the solution ... 46

5 Conclusions ... 47

6 References ... 48

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 6 of 48

List of Figures

FIGURE 1 – SYSTEM MODELLER MAIN PAGE ... 13
FIGURE 2 – USER LOGIN PAGE .. 14
FIGURE 3 – LISTING THE MODELS .. 15
FIGURE 4 – MODEL DROP-DOWN MENU .. 15
FIGURE 5 – CREATING A NEW MODEL .. 16
FIGURE 6 – IMPORTING A MODEL FROM A FILE ... 16
FIGURE 7 – MODEL EDITING .. 17
FIGURE 8 – SELECTING ITEMS FROM NETWORK ASSETS .. 18
FIGURE 9 – ADDING ASSETS TO THE MODEL CANVAS .. 19
FIGURE 10 – CONNECTING ASSETS .. 19
FIGURE 11 – TARGET ASSETS FOR MAKING CONNECTIONS... 20
FIGURE 12 – CONNECTING ASSETS .. 20
FIGURE 13 – DELETE RELATION .. 21
FIGURE 14 – MODEL AFTER VALIDATION ... 22
FIGURE 15 – LIST OF THREATS ASSOCIATED WITH HOST1 .. 23
FIGURE 16 – THREAT HIGHLIGHTING AND SELECTION ... 24
FIGURE 17 – SELECTING CONTROL SET PROPERTIES FOR HOST1 .. 24
FIGURE 18 – RESOLVING THREATS .. 25
FIGURE 19 – CONTROL STRATEGIES IN THE THREAT EDITOR .. 26
FIGURE 20 – ACTIVE CONTROL STRATEGY .. 26
FIGURE 21 – ACCEPTING THREATS .. 26
FIGURE 22 – ACCEPTING A THREAT ... 27
FIGURE 23 – THE UI AFTER ACCEPTING A THREAT .. 27
FIGURE 24 – ARCHITECTURAL OVERVIEW ... 28
FIGURE 25 - ITALY HIGH-LEVEL ARCHITECTURE .. 29
FIGURE 26 - SPAIN HIGH-LEVEL ARCHITECTURE ... 29
FIGURE 27 - UK HIGH-LEVEL ARCHITECTURE ... 30
FIGURE 28 - COMMERCIAL PROVIDER HIGH-LEVEL ARCHITECTURE .. 30
FIGURE 29 - PATIENT HIGH-LEVEL ARCHITECTURE .. 31
FIGURE 30 – UC METRARC.1 .. 33
FIGURE 31 – T METRARC.1.1 .. 34
FIGURE 32 – T METRARC.1.1 CONTROL STRATEGY ... 34
FIGURE 33 – CROSS-JURISDICTIONAL DATA TRANSFER .. 35
FIGURE 34 - SENSITIVE DATA LEAKING... 36
FIGURE 35 - MASKING AS A CONTROL STRATEGY TO PREVENT SENSITIVE DATA LEAKING 36
FIGURE 36: EXAMPLE OF THE ABSTRACTION LAYERS ... 38
FIGURE 37: DIFFERENT TIERS FROM WHICH WE CAN IDENTIFY PATTERNS... 39
FIGURE 38: CLASS DIAGRAM SECURITY PATTERN [15] .. 40
FIGURE 39 – SHIELDANALYZER ARCHITECTURE .. 46

List of Tables

TABLE 1 – MODEL STATUS ICONS ... 15
TABLE 2 – MODEL EDITING CONTROLS... 17
TABLE 3: CWE IDENTIFIED FOR SHIELD BASED ON SONAR JAVA ANALYSER .. 42

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 7 of 48

Terms and abbreviations

CRUD Create, Read, Update and Delete

DoS Denial of Service

KPI Key Performance Indicator

NCP National Contact Point

PbD Privacy by Design

PN Participating Nation

SPARQL SPARQL Protocol and RDF Query Language

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 8 of 48

Executive Summary

This is the accompanying report for WP4’s D4.1 software deliverable. It describes the work done
in tasks T4.1, T4.2 and T4.3, and:

 describes the current proof-of-concept prototypes (i.e. describes D4.1 itself); and

 outlines the future development plan for the incremental updates to the SHiELD WP4
deliverables.

T4.1 (Security modelling tools) creates design-time (“offline”) modelling tools to support the
modelling of health data being transferred as required by the use cases described in WP6, D6.1.
This report describes the existing tool including some generic improvements and initial versions
of the extensions to support modelling of regulatory compliance.

This version of the “System Modeller” tool enables the user to create design-time models of IT
systems describing healthcare applications. Additionally to basic functionality such as signing in
and out, performing CRUD (Create, Read, Update, Delete) operations on models and
import/export of models, it supports:

 validating a model, i.e. generating a threat catalogue by matching pre-defined patterns
from the knowledge base in the system

 asserting controls directly on assets or applying control strategies to block threats

 accepting threats, for example when they don’t have a control strategy

System Modeller relies on the security knowledge base in order to perform any of these tasks.

T4.2 (Security knowledge base) captures potential security and compliance threats in a
knowledge base. The initial threats are described by tool owners, and explain how the tools can
help to manage the threats. The set of threats covered in this deliverable also serves as an
example to help use case owners describe the threats they are typically confronted with.

In its initial version, the security knowledge base contains generic security threats, including but
not limited to

 remote exploits, such as denial of service attacks, remote injections or snooping attacks

 software bugs, causing a host to become unreliable or unavailable

 unauthorised local access, where an attacker gains physical access to hardware,
enabling them to steal data or alter processes or hardware

Furthermore, secondary threats are covered, i.e. threats that appear when a precondition exists.
These secondary effects cause other assets to misbehave. This means that they can be chained
into “secondary effect chains”, where a set of root causes can cause a whole tree of secondary
effects and misbehaviours in related assets.

T4.3 (Secure design patterns) devises architectural design patterns on two levels:

 low-level Java design patterns that can protect software against common software
vulnerabilities; and

 high-level architectural patterns that assist a system designer to create pre-approved,
secure systems.

Both types of patterns can be linked by representing Java design patterns as controls in a system
model that – when applied – protect against certain threats.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 9 of 48

1 Introduction

This report accompanies the D4.1 initial software release. It describes the current proof of
concept software implementation and how we propose to add the results from T4.1 – T4.3.

T4.1 focuses on the Security modelling tools, which will be extended for SHiELD during the
course of the project. We show the existing functionality of the System Modeller Tool, which
will be the starting point for future developments.

T4.2 defines the Security knowledge base, including basic asset classes, threats and security
measures. It draws from the use case scenarios as defined in WP6 and detailed in D6.1. Based
on this asset model, we added some initial threats to illustrate how we will extend the
knowledge base which at this point consists of generic security threats as explained in the
executive summary.

T4.3 devises architectural design patterns on two different layers. High-level patterns help users
of System Modeller to design systems that comply with legislation in different jurisdictions by
default. They correspond to patterns of assets in the security model, and the security measures
that should be included with each such pattern. Low level design patterns give a fine-grained
description of software architecture on a code level. They correspond to code structures needed
to correctly implement sets of security measures. Both types of patterns can therefore be
related to the system security model, and in future the tools will provide support for both system
designers and software developers to develop systems that contain privacy by design.

Section 2 covers work from task T4.1 and provides an initial version of the user guide for the
proof of concept version of the “System Modeller” tool. The starting point was work from
previous projects (the UK ASSURED project and the H2020 5G-ENSURE project), so much of the
user guide relates to work done in previous projects, but it has been included here for SHiELD
partners who need to use the tools. The main additions to this tool made in the SHiELD project
are related to network connectivity and control inference, and the use of threat models to
represent compliance with regulations. Additionally, we have improved the usability of the GUI
and made some performance improvements in anticipation of dealing with extended end-to-
end (cross-border) network models. Section 2 provides a brief description of improvements in
the back end components of System Modeller, which covers the bulk of work done in SHIELD.
This is followed by a description of the user interface from a user’s perspective, much of which
is taken from previous projects. We included this material to provide a complete user guide,
which will be needed by SHIELD partners wishing to experiment with the proof of concept tool.

Section 3 covers the models developed in SHiELD in task T4.2 to represent relevant systems and
associated component assets and SHiELD-specific threats. These models are not based on
previous projects, although basic asset and threat types have been included where they are
relevant to SHiELD.

Section 4 describes the work on secure patterns from task T4.3. It describes how low-level Java
patterns can be linked to high-level architectural patterns to protect against security threats
during different phases in the system lifecycle.

Section 0 provides a summary of results achieved, their implications and next steps. This is
followed by a brief list of key references.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 10 of 48

2 Initial Security Modelling Tools

2.1 Introduction

System Modeller is a graphical tool that enables a user to create models of complex systems
such as computer networks, then analyse (validate) these in order to identify security threats
and take mitigation actions. The output of validation is a modified system model, enriched by
features that were not captured by the initial design. The original idea was devised some time
ago in the SERSCIS project for run-time threat analysis [1], and first applied to design-time
analysis in the OPTET project [2]. Since then it has been refined and now forms the basis for our
tools for design-time analysis of end-to-end risks in SHIELD.

2.2 Terminology

In describing the software, we use a set of terms for explaining various features:

 Core Model – the core ontology, defining common vocabulary and relationships used in

all higher-level models.

 Domain Model – an ontology defining the typology of Assets, Threats and Controls

(security measures) for a given domain (e.g. computer networks).

 Domain Modeller – a software tool for defining a generic domain model.

 Design-Time System Model – an abstract model of a particular system, described in

terms of relationships between system specific assets. The design time model can be

enriched by specifying Security Controls to protect the assets from potential threats to

the system.

 Runtime System Model – a model using instances of Assets, Threats and Controls for

describing what is known about the current state of the system.

 System Modeller – a software tool for defining a design-time system model in terms of

assets and other elements from a suitable generic model.

 Asset – is an element of the socio-technical network described by a system model.

 Involved Asset – an asset which forms part of a pattern, the presence of which is

necessary for a threat to occur or to be managed. Pattern here means a set of assets

that are connected to each other user a set of relationships. A pattern is a directed graph

that can be used for other purposed, such as described in section 4.1.2.

 Stakeholder – can be a person or an organization, i.e. a special type of asset that has

motives for participating and initiating actions within the modelled system

 Process – usually represented by software, is a type of asset that can transfer or process

data.

 Network asset – a type of asset representing an element of the infrastructure or

environment.

 Misbehaviour – represents a way in which an asset may be compromised as a

consequence of an active threat.

 Control Strategy is a set of controls located at one or more assets that block or mitigate

a threat.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 11 of 48

2.3 Backend components

The system modeller consists of a front-end (web hosted) graphical user interface, and a back-
end service that allows network models to be stored and analysed. Most of the SHiELD-related
additions we have implemented in SHIELD T4.1 are not visible in the UI yet. However, these
changes represent important functionality which will be required to complement the results of
T4.2 and T4.3 in the following releases.

2.3.1 Remote attacks and control inference

Our starting point for T4.2 is a common domain model, covering generic threats to IT networks
and their countermeasures. The user can assert hosts and logical subnet assets, and create a
design-time system model in which these assets are connected to each other. The model
thereby captures the logical network topology in terms of logical subnets and gateway hosts.
This logical connectivity is then used to infer potential remote attacks on networked assets from
each logical subnet, including:

 remote attacks against devices, e.g. exploiting bugs in the operating system or
unnecessary services running on devices that have not been properly secured;

 remote attacks against services that are needed as part of an application, by exploiting
bugs or using other methods such as client spoofing;

 more complex attacks such as ‘confused deputy’ attacks in which a trusted service is
induced to take harmful actions against back end resources.

To model such threats properly, one must determine the possible paths from the subnet where
the attack is launched to the host (i.e. device) that is the target or hosts the target service. In
order to manage such threats, one option is to use firewall restrictions to block paths that might
be taken by an attacker’s messages. However, while it is sensible to consider such paths as assets
in the network (since they enable communication beyond a local logical subnet), they are not
the kinds of assets where a user could implement a security measure like firewall restrictions. In
practice, firewall restrictions can only be implemented at a host, and can only restrict the flow
of messages to, from or (in the case of a gateway) through the host.

Network segmentation and firewalling is very important in health care networks and associated
regulations. Most regulations include a requirement that health data not be stored on a public
network. Whether a network segment is considered public depends on the network topology
and the firewall restrictions in place.

To handle this, remote attacks are now modelled in terms of ‘path’ assets representing routes
from the attacker to the target, and control strategies included representing blocking the path.
Users cannot assert a firewall control to block a path, but can assert firewall controls at network
interfaces (controlling messages to or from a host) and at gateway hosts (controlling messages
routed between subnets through the host). Whether a path is blocked is now inferred from the
asserted firewall rules present at interfaces and gateways.

The inference procedure depends on the type of attack, or rather, the target of the attack. An
attack against a host can be prevented by blocking the path from the attacker. Attacks on
services can’t always be addressed so easily because one must not block the path from their
legitimate clients. Moreover, the use of network address translation (NAT) means that to allow
messages from a client to pass through a firewall restriction, one may have to allow messages
from one or more entire subnets. Threat models representing remote attacks therefore refer to
different types of path assets, each using a different inference procedure to determine whether
or not the attack is blocked. This new feature is triggered whenever a control is asserted.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 12 of 48

2.3.2 Compliance threats

Another new feature in the context of SHiELD is the addition of compliance threats.

Particularly when designing systems that span multiple jurisdictions, it becomes more important
to be aware of compliance with various regulations. These regulations are encoded in a domain
model and consist of “ComplianceSets”. Each compliance set represents compliance with a
certain set of rules, and consists of a collection of threats (sometimes called ‘compliance
threats’) that shall be treated. These threats typically fall into three broad classes:

 threats describing potential attacks that the regulations require implementers to
address, e.g. rules requiring wireless networks to be protected from snooping attacks;

 threats describing a pattern of interacting assets that is not permitted under the
regulations, e.g. rules prohibiting back end services with an Internet accessible user
interface being used also by users from a secure network (due to the risk that they will
upload sensitive data);

 threats describing sets of security controls that should be used irrespective of whether
they are needed to control any specific security threat.

The last of these may seem spurious, but represents a ‘precautionary principle’ approach to deal
with security threats that were outside the scope of a threat analysis, or for which no means of
implementation is currently known. A good example might be to mandate the use of encrypted
storage even for servers in secure environments. Threats describing prohibited patterns are also
slightly unusual in the sense that they have no control strategy, since one cannot address them
by adding security measures, but only by changing the design of the network.

To capture a set of regulations, one simply specifies in the domain knowledge base which threats
are members of the corresponding compliance set. This may involve adding threats to represent
prohibited design patterns or precautionary security features, so they can be included in the
compliance set. During the validation, system-specific threats are discovered based on all
threats in the knowledge base. The system can be checked for compliance with a given set of
rules by checking if all system-specific threats from the relevant compliance set are addressed.

This feature has currently been implemented on the backend side only, but in future releases
we plan to make this information accessible to the user by displaying it in the GUI.

2.3.3 Performance improvements

The validation is computationally expensive and can take minutes or even hours for very large
models. While this is still a great improvement over the manual threat identification process, we
continue to work on speed optimisation. The changes we’ve made include:

 Optimisation of SPARQL (SPARQL Protocol and RDF Query Language) queries through
reordering of statements and extensive use of graph filtering options

 Re-architecting of the validator component to minimise the number of queries executed

 Optimisation of the front-end components to reduce the number of REST calls

2.4 User Guide

The following sections provide details of the System Modeller functionality. We have included
material produced in previous projects in this section so it provides a complete description of
the user interface for project partners wishing to use the proof of concept release. This covers:

 Getting started

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 13 of 48

 Model management

 Model editing

o Stage 1: defining assets and relationships which provide the initial model of a

network

o Stage 2: validation and auto-generation of threats

o Stage 3: defining threat management strategy (selecting controls for assets or

control strategies for threats)

 Model outputs (e.g. export)

The modelling process has three stages that may be repeated several times. First, the user
constructs a model by placing assets onto the modelling canvas and creates links (or relations)
between them (these user-defined entities assets are called “asserted assets” and “asserted
relations”). The validation process in Stage 2 automatically generates inferred assets/relations,
threats and security controls to counteract these threats. The validation process also determines
whether the information provided about the assets and relationships is consistent and
complete. If the validation fails (i.e. the model gets marked as ‘invalid’) then the user should go
back to Stage 1 and update the model, so that it contains sufficient/correct information for a
successful validation. In Stage 3, the user addresses threats by selecting or modifying the set of
security controls that protect the assets in the system. The aim is to eliminate or at least mitigate
the threats.

2.4.1 Getting started

The software can be accessed at https://shield.it-innovation.soton.ac.uk/system-modeller/.
User accounts will be created on request.

2.4.1.1 Main page

On the main (welcome) page of System Modeller (Figure 1) there are several links (also available
on other pages): System Modeller, Home and a drop-down menu under Account. The System
Modeller and Home links return the user to the main page of System Modeller. The options
under the Account dropdown are Sign In, Register and Forgot Password.

Figure 1 – System Modeller main page

https://shield.it-innovation.soton.ac.uk/system-modeller/

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 14 of 48

2.4.1.2 User login

The login page of System Modeller is activated either by clicking on Sign In link in the dropdown
menu or by clicking on the Login button (see Figure 2). The user must enter their username and
password. These are case-sensitive.

Figure 2 – User login page

2.4.1.3 Logout

Logout is activated by clicking on the Sign Out link in the dropdown menu on the main page
under the currently logged in user.

2.4.2 Model management

The term “Model Management” incorporates several functions such as:

a) Listing models

b) Creating models

c) Importing/exporting models

d) Deleting models

2.4.2.1 List models

After a successful login, the user is presented with a list of their models (see Figure 3).

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 15 of 48

Figure 3 – Listing the models

In the model details, the Domain used by the model is labelled. There is also a description of the
model, which can be edited via the Edit Details function (described in Figure 4). At the bottom
of the model panel, there are several icons that reflect the current status of the model (see Table
1).

Icon Description

last modification of the model

when the model was created

Table 1 – Model status icons

The drop-down menu in the top right corner of the model window offers several functions, these
are: Delete, Export and Edit Details (see Figure 4).

Figure 4 – Model drop-down menu

2.4.2.2 Create model

By clicking on the “Create New Model” button, the user can create a new model (see Figure 5).
The “Domain Model” drop-down allows the user to choose which domain model to use. The new
model is added to the models list, as described in the previous section.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 16 of 48

Figure 5 – Creating a new model

The “Import Existing Model” option (available on the “Create New Model” drop-down list) allows
the user to import a model from a file (see next section).

2.4.2.3 Export/Import

Once we have constructed the model, it may be exported into a file. Using the Export option in
the model drop-down menu (see Figure 4), the model is exported into the user’s “Downloads”
directory.

Similarly, the Import operation allows the user to upload a previously saved file into a new
model. In order to do this, the user clicks on the “Create New Model” control and selects the
“Import Existing Model” option. A dialog appears (see Figure 6). The user may choose to Import
asserted facts only (e.g. asserted assets, relations). If restoring a previous version of a model,
the user can check Overwrite existing model. Attempting to import the same model without this
being checked will result in an error. A user can re-import an existing model with a different
name by checking New Name.

Figure 6 – Importing a model from a file

2.4.2.4 Delete model

The delete action removes the model along with any associated data items (e.g. assets,
relationships).

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 17 of 48

2.4.3 Model construction

Clicking the Edit button (on a model in the models list) opens the model editing page that
consists of three main parts (see Figure 7).

On the left side is the “Asset Palette”, in the middle the Model Construction Canvas and, on the
right, the Model Summary. These are described below.

Asset Palette: contains icons representing the asset types (e.g. “Host”) that may be added to
the model

Model Construction Canvas: the main area for designing/displaying the model

Model Summary: summarizes details about the model and shows a lists of assets, threats, etc.
(these are empty initially).

Figure 7 – Model editing

The top right corner contains four buttons, these are shown in Table 2 below:

Icon Description

Process (validate) the model

Configure the model

Zoom controls

Table 2 – Model editing controls

2.4.3.1 Select and add asserted asset

The Asset Palette contains various assets; these fall into five main categories:

a) ArchAsset

b) HostedAsset

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 18 of 48

c) NetworkAsset (for illustration see Figure 8)

d) Space

e) Stakeholder

Figure 8 – Selecting items from Network Assets

An asset can be added to the model by selecting an icon in Asset Palette and dragging it onto
the model canvas (see Figure 9), showing 5 added assets. N.B. these have already been renamed,
as described in section 2.4.3.5).

By clicking on the asset, the right-hand panel updates to show the following asset details:

a) Name and description of the asset

b) Incoming relations

c) Outgoing relations

d) Inferred relations (once the model has been validated)

e) Control sets (once the model has been validated)

f) Threats (once the model has been validated)

For illustration purposes, we analyse a typical use case representing the threats associated with
accessing a web page hosted on a remote server. Constructing a security model involves placing
assets onto the canvas and establishing connections between them. The model itself consist of
two hosts connected to the Internet. The user of Host1 uses a Browser to access a WebService
deployed on Host2. This is a simple model that represents the scenario of downloading a web
page from the remote web server. The reasons for selecting this simple model are as follows:

a) Frequently occurring case, typical for all web applications

b) Simplicity

c) All types of inference can be well demonstrated, these are:

o Inferred assets

o Inferred relationships

d) The threats inherent to the model are well understood

e) The effect of controls and threats can be easily interpreted

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 19 of 48

Figure 9 – Adding assets to the model canvas

2.4.3.2 Add relationship between assets

Once the assets have been put onto the modelling canvas, the user can connect pairs of assets
by establishing links between them, by clicking on the green cross that appears in the top left
corner (Figure 10).

Figure 10 – Connecting assets

After clicking on the green cross (on Host1 in our example) a blue tick sign will appear on several
other assets, indicating that a link can be made to these assets (see Figure 11).

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 20 of 48

Figure 11 – Target assets for making connections

By clicking on one of the blue tick icons, we can establish a connection between the two assets.
Here, we continue making connections (or “asserted relations”) between assets until the model
appears as in Figure 12.

Figure 12 – Connecting assets

2.4.3.3 Delete asset

Assets can be deleted by clicking on the red trash icon of the asset in the top right corner (see
Figure 10). The delete operation also removes all links between the selected asset and other
assets.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 21 of 48

2.4.3.4 Delete relation

By right clicking on the connection between two assets a dialog with a delete button pops up
(see Figure 13). The delete applies only to the relationship itself; the assets remain on the
canvas.

Figure 13 – Delete relation

2.4.3.5 Rename asset

The user can rename an existing asset by editing the asset’s name under the corresponding icon.
N.B. by changing the name, the asset’s connections will stay unaffected. All asset names must
be unique.

2.4.4 Model validation

Once the model has been constructed, it then needs to be validated. This operation is initiated
by clicking on the red “play” button (see Table 2), which indicates that the model is currently
invalid (for a valid model, this button would be green). The validation operation runs semantic
reasoning that generates inferred assets and relations that are added to the model
automatically, and produces a list of threats that can be associated with the given model. This
operation guarantees that the inferred assets are consistent with the asserted assets and
relationships. The validation operation can take some time, depending on the complexity of the
model. On completion, the updated model is presented to the user (see Figure 14).

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 22 of 48

Figure 14 – Model after validation

Here, you will see that certain assets are now highlighted in yellow, which indicates that there
are now associated (invisible) inferred assets and relations connected to this asserted asset
(these may be viewed via the asset details panel on the right). Similarly, a relation marked in
yellow indicates that there are newly added (inferred) assets and relations in the model,
connected to this relation. By selecting this relation, the user can view information related to
the inferred asset, via the asset details panel.

2.4.5 Threat management

2.4.5.1 Threats associated with a given asset

In order to view the threats associated with a given asset, the user must first select this asset on
the canvas then click to expand the “Threats” panel within the asset details panel (see Figure
15).

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 23 of 48

Figure 15 – List of threats associated with Host1

In our example, none of the threats have yet been addressed, so each status icon is red. The
user may hover over a threat in the list, which highlights the threat in green, along with its
associated pattern of assets and relations on the canvas. For example, Figure 16 shows the
highlighted threat to Host1, “H.A.RoH.1_RoH_Host1_Internet”. The code stands for a threat
applying to a host (“H”), causing a loss of availability (“A”) in a remote attack on a on host (“RoH”)
involving the Host1 and Internet assets. Clicking the adjacent Edit button brings up the Threat
Editor that allows the user to view threat details, and mitigate the threat in various ways (this
will be described further in Section 2.4.6).

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 24 of 48

Figure 16 – Threat highlighting and selection

2.4.5.2 Selecting controls in the Control sets panel

Threats may be resolved by selecting one or more controls within the Control sets panel (N.B.
the exact control(s) required depend on each threat). Each control set represents a control on
this asset. For example, the controls that are available for Host1 are shown in Figure 17; to
expand the Control sets panel, simply click on it.

Figure 17 – Selecting Control Set properties for Host1

For the purpose of demonstration, we can select two control options (Software Patching, Anti
Malware) and see which threats will be “resolved”. These threats are then indicated by a green
colour (see Figure 18).

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 25 of 48

Figure 18 – Resolving threats

Figure 18 shows that four threats have been resolved as a result of selecting Software Patching
and AntiMalware from the Control sets. Resolving the threats is an iterative process; the user
needs to go through the assets one by one, selecting options from the Control sets and checking
which threats have been eliminated (resolved). Threats may also be resolved via the Threat
Editor, as we shall see in the next section.

This User Guide describes the threat resolution steps for one asset (Host1) but the same steps
are applicable to all assets. By following these steps, the user should be able to resolve most (if
not all) threats associated with the given model.

2.4.6 Threat Editor

2.4.6.1 Using the Threat Editor to select controls

The previous section described how to address threats by applying controls to assets directly.
This is particularly useful for experienced users who know about the effects that the controls
have on the assets. Inexperienced users, however, need some guidance on how a threat can be
addressed. This is done using Control Strategies, which are essentially collections of Control Sets.
An active Control Strategy manages a threat. Whilst a Control Set describes a Control located at
a particular asset, a Control Strategy contains one or more Control Sets. Semantically, this means
that for the threat to be managed (blocked or mitigated), all Control Sets within the Control
Strategy must be applied. The validated system model contains mappings between Threats and
Control Strategies that are made visible in the Threat Editor, see Figure 19.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 26 of 48

Figure 19 – Control Strategies in the Threat Editor

If any of the Control Strategies for a threat are active, it means that the threat is managed.
Managed threats appear in green. Hovering over the threat icon inside the panel shows the
management type (e.g. “blocked”), see Figure 20.

Figure 20 – Active Control Strategy

2.4.6.2 Accepting a threat

In cases where no control strategy exists for a given threat (e.g. see Figure 21), or the control
strategy would be difficult or expensive to implement the user can instead “accept” the threat.

Figure 21 – Accepting threats

Accepting a threat means that the user accepts the risk posed by the threat (see Figure 22). The
user must also type in a reason for accepting the threat.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 27 of 48

Figure 22 – Accepting a threat

Upon saving, the icon for the accepted threat will change to indicate the new status (see Figure
23). “Accepted” threats are differentiated from other resolved threats, as they are highlighted
in yellow.

Figure 23 – The UI after accepting a threat

3 Initial knowledge base

System Modeller as described in section 2 is a graphical threat modelling tool, which draws the
information required for its reasoning capabilities from a knowledge base. Technically, this
knowledge base is a graph store that contains:

 a core model describing assets, threats and controls modelled based on the ISO 27000
series of standards which forms the basis for all threat modelling

 domain models that describe a particular domain, such as “networking”, or “consent”.
These domain models make up the building blocks from which system models can be
composed and contain all pattern matching rules and threat definition in order to
validate a system model

 system models that depend on the domain models

The knowledge in this knowledge base is captured based on the SHiELD use cases defined in
WP6 and the tools developed in WP5. Figure 24 shows a consolidated overview of the
architecture across all SHiELD use cases as detailed in D6.1. It is divided into different spaces,
representing different jurisdictions with a common space that is shared by all of them. Each
threat in the knowledge base contains a subset of these assets.

It is important to note that the use case diagram depicts a system at design-time, i.e. all assets
in the diagram represent classes of things rather than individuals. The underlying model specifies
the asset types used in such a diagram as well as the relationship types with which assets can be
linked. We call this the asset model, which provides the building blocks of the knowledge base.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 28 of 48

The asset model is then used to model patterns, i.e. groups of assets connected using specific
relationship types. These patterns for the basis of threats. Every threat applies to a pattern,
meaning it only occurs when the assets from its pattern exist in this exact constellation in a
system model. A threat may cause any involved asset to misbehave. To block or mitigate such
misbehaviours, it may define control strategies whereby controls get deployed on the asset to
protect it from the effects of the threat.

Figure 24 – Architectural overview

Figure 24 shows three jurisdictions, covering all use cases defined in D6.1.

FCSR on the Italian side is shown in detail in Figure 25. Doctors here use tablets to connect to
the Galileo repository to retrieve patient data. This network has restricted access and is separate
from the public WiFi.

Figure 26 shows Osakidetza and the Spanish part of the system. Doctors access patient data via
their desktop machines from different repositories, which Basque as well as Spanish patient
data. Devices need to have their MAC address registered before they’re allowed to connect to
the hospital LAN.

Figure 27 shows the UK side containing LPRES and their connection to the NHS. The N3
connection is provided by AIMES but does not currently use OpenNCP.

Figure 28 shows a fictional company called GetFit, which represents commercial providers of
lifestyle and healthcare applications and tracking systems. The architecture is deliberately kept
simple and contains only a data server which is connected to the internet. Depending on the size
and business model of the commercial provider, this part of the architecture diagram may be
much more complex.

The patient is shown in Figure 29, which is outside any jurisdiction, representing the fact that
the patient is mobile and should be able to access their data independently of their physical
location. The diagram covers end-to-end threats to data privacy and consent as well as common
security threats arising from the use of networking.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 29 of 48

Figure 25 - Italy high-level architecture

Figure 26 - Spain high-level architecture

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 30 of 48

Figure 27 - UK high-level architecture

Figure 28 - Commercial provider high-level architecture

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 31 of 48

Figure 29 - Patient high-level architecture

Use Case 1 describes a “Break glass” circumstance, where an Italian patient has a stroke while
on holiday in Spain. The access to patient data is not subject to consent as the patient’s life
depends on it.

Use Case 2 is about a Spanish patient travelling across Europe within two months of a surgical
intervention. During his trip, sudden symptoms cause him to visit an Italian A&E department,
where the doctors require access to data about his recent surgery. Due to the nature of the use
case, the patient was able to give consent for sharing data prior to the trip for time-constrained,
localised access.

Use case 3 deals with chronic conditions and remote monitoring. In this example, an Italian
woman with diabetes, who currently lives in Spain travels to the UK for 3 months for work. She
uses a Spanish remote monitoring app with access to her historic Italian data. Following a
collapse at work, she is taken to A&E, where various data needs to be accessed, including third
party monitoring data that originated from a wearable device and a healthcare/lifestyle mobile
application.

3.1 Generic security threats

Apart from SHiELD-specific threats, initial versions of which we have identified in 3.2 and 3.3,
the initial knowledge base prototype contains a range of “generic” security threats that apply to
IT systems in general. The main categories covered are described in this section.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 32 of 48

3.1.1 Remote Exploits

These threats describe an attacker gaining access through a remote subnet. This is usually
achieved by exploiting a software vulnerability. Once the attacker has access, they can then
access, modify or delete data and cause misbehaviours in various assets. We cover the following
categories:

 Anonymous remote exploits
where an anonymous attacker exploits a software vulnerability to gain access to a host
or a process or data on a host

 Network DoS attacks
where an attacker sends an excessive number of requests to overload a service, host
or interface

 Remote injections
where an attacker injects SQL code in user input fields to gain access to or corrupt a
database

 Remote service exploits
where an attacker conducts a malicious exchange using open service ports to corrupt,
crash or deny access to the service or data it uses

 Snooping attacks
where an attacker intercepts messages resulting in loss of confidentiality

 Spoofing attacks
where an attacker impersonates a legitimate client or service in order to gain access to
data or resources or to overload the system

3.1.2 Software Bugs

These threats relate to the low-level patterns in section 4.1.3. They model how software bugs
can make hosts unreliable or unavailable. They can typically be treated by applying software
patching to the hosts to fix the vulnerabilities.

3.1.3 Unauthorised Local Access

These threats describe situations in which an attacker gains access to a physical location, for
instance a hospital server room, and uses console access to read, alter or corrupt stored data or
processes, deny access to the host or its data or processes for legitimate users.

3.2 Mobile devices (UC Metrarc.1)

3.2.1 Use case description

In this use case a mobile device accesses health data, using a key that is stored and accessible
on a device. A mobile device then connects to a data exchange service which includes a signing
process with a stored private key that is accessible on the device.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 33 of 48

Figure 30 – UC Metrarc.1

For this scenario, it doesn’t matter in which jurisdiction the data is stored or the mobile device
is located. As long as there is a physical connection between the mobile device and the data, the
identified threats for this use case pattern apply.

3.2.2 Identified threats

3.2.2.1 Interception of login credentials (T Metrarc.1.1)

The doctor is impersonated by an attacker, who acquired the doctor’s password to log into the
system. The attacker gains access to the patient record, resulting in a loss of confidentiality on
the data as well as loss of trust at the patient whose data was leaked.

The mitigation strategy is to employ ICMetrics. This will require additional metrics on top of the
correct password, which are derived from the doctor’s use of the device so the attacker can’t
get into the system even with the stolen password.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 34 of 48

Figure 31 – T Metrarc.1.1

This threat can be controlled by applying ICMetrics controls to the relevant assets as shown in
Figure 32.

Figure 32 – T Metrarc.1.1 Control Strategy

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 35 of 48

3.3 Use case title (UC IBM.1)

3.3.1 Use case description

Figure 33 – Cross-jurisdictional data transfer

Figure 33, shows personal health data relating to a patient from country ‘B’, which resides on a
health provider’s servers in country ‘B’. It is subsequently moved to another health provider in
country ‘A’, caused by one of SHiELD’s use cases. The data passes through the countries’ national
contact points.

3.3.2 Identified threats

3.3.2.1 Lawfulness (T IBM.1.1)

According to GDPR, all personal data must be collected/processed lawfully and fairly. Moving
health data between different countries may violate the regulations of the involved countries as
well as the EU’s. This threat is a compliance threat that doesn’t necessarily originate from
malicious behaviour but rather from a misconfiguration or erroneous design.

As with most compliance threats, no specific control strategy exists to address the entire threat.
A specific control may need to be applied to address any specific compliance issue. For example,

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 36 of 48

modifying masking policies or redesigning the system data flow may be needed to prevent the
compliance threat from occurring.

Figure 34 - Sensitive Data leaking

Control strategy:

The masking tool and the consent management tool can provide some mitigation to this threat
by enforcing consent and addressing several privacy issues.

Figure 35 - Masking as a control strategy to prevent sensitive data leaking

4 Initial Secure Design patterns

A Secure Design pattern is a fuzzy concept which can be understood differently depending on
the reader. As stated by G.Booch in [4]:

“Similarly, all well-structured software intensive systems are full of patterns. Architectural
patterns serve the same role as song structure; design patterns and musical motifs are at the
same level of abstraction; programmatic idioms and musical rhythms and scales are isomorphic.”
Therefore, when we are talking about a design pattern we are referring to architectural patterns.
Obviously, there are different abstraction layers in any system, and the SHIELD project is not an

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 37 of 48

exception. Each abstraction layer has a specific purpose, and it represents specific elements on
each layers. Obviously, each layer abstracts and does not represent other elements which are
not included in the layer’s purpose. For example, the high abstraction layer does not represent
JAVA classes’ structures. In addition, each person involved on each layer has different skills. For
example, the higher abstraction layer can specify that a specific server/machine encrypts a
connection between two servers. However, this layer omits which Java libraries are used to
encrypt this communication. This approach has been widely used such as in [5] for describing
service oriented architecture patterns.

Figure 36 represents different abstraction layers for describing a specific architecture. All these
layers are intertwined and therefore implicit connections are set among these layers. These
connections can be manually or automatically handled, but the SHIELD project is just focused on
those manually made. The development of automatic mechanisms between these layers that
can be reused [6] requires a software intensive development approach which is out of the scope
of this project. The drawings in Figure 36 are just examples for each layer, and their goal is just
illustrative.

Our purpose is to identify a set of architectural patterns for secure design on each layer. Each
identified pattern has a specific purpose, and users should identify which ones apply to their
systems and which ones are good enough [7] to be used. A recent study on design patterns [8]
reveals that “Pattern Development, Pattern Mining, and Pattern Usage are the most active topics
in the field of design patterns” [8]. In fact, each architectural pattern resolves a recurring
problem, and this kind of situations can be dealt with a problem frame approach [9]. In this
sense, we need to identify which security contexts are going to be solved. There is a vast amount
of academic and industrial papers related to security and privacy in health care sector such as
[10]. In fact, electronic health information systems are complex, and they raise several security
and privacy issues [11]. In this sense we are going to deal with privacy aspects, and we are going
to identify which patterns are stemming from SHIELD scenarios and use cases. As result of
SHIELD WP2 D2.1 “eHealth security challenges” there is a set of eHealth security challenges. For
each of these challenges a pattern should be identified. However, each challenge is related to
several high-level patterns.

 Interoperability: there is no a specific pattern to deal with this aspect within the core
Security Patterns Catalogue. Instead we are relying on HL7 (health Level 7) for data
structure which is a standards Developing Organisations accredited by ANSI (American
National Standards Institute). There is

 Confidentiality: data protection mechanisms such as encryption are associated to this
challenge. From the pattern catalogue, “Secure Pipe” and “Secure Message Router” are
two relevant patterns to be added.

 Privacy: [KR07] Privacy tool

 Regulations: ([KR06] Data protection mechanisms, [KR08] Legal recommendations
Report), and [KR07] Privacy tool (to enforce regulation)

 eHealth related data: specific health related data may be identified appropriately
([KR06] Data protection mechanisms).

 PKI: OpenNCP relies on a specific PKI infrastructure. This challenge can be taken into
account when defining the resulting architecture ([KR04] SHiELD open architecture and
open secure interoperability API). We will be focused on Open NCP, and some PKI
considerations and experiences should be taken into account in order to define an
appropriate model.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 38 of 48

It is relevant to highlight and to stress that security, including privacy, is not achieved only
through technical means [10]. We need to include processes at management and organisational
levels which allow and/or avoid specific practices for preserving privacy aspects. These levels
include personal and behavioural aspects. However, our approach is focused on our abstraction
layers which roughly are high level abstraction and low level abstraction layers. Therefore, we
need to identify process patterns at each abstraction layer which will be considered as good
practices. From a technical point of view and in order to preserve security and privacy in personal
health records (PHR) [12] there are several approaches such as flexible attribute based
encryption approaches to secure personal healthcare records in electronic health information
systems [13] which can be used. Our approach is to include privacy preserving activities during
design time of the resulting product/platform. Therefore we consider the Privacy by Design
(PbD) approach [14] to be applied at high and low abstraction layers in order to deal with privacy
issues.

Figure 36: Example of the abstraction layers1

4.1 Patterns

4.1.1 Security patterns

There are several approaches for identifying security patterns. Chris Steel, Ramesh Nagappan
and Ray Lai published a referenced book related to security patterns [15], and they have become
a reference for security patterns. From this reference study we have adopted the same logical
tiers.

1 We are using examples extracted from different sources such as
http://agilemodeling.com/artifacts/componentDiagram.htm for describing UML2 components.

Abstraction

layers

public class Bicycle {

public int cadence;

public int gear;

public int speed;

public Bicycle(int startCadence, int startSpeed, int startGear)

{ gear = startGear; cadence = startCadence; speed = startSpeed; }

public void setCadence(int newValue) { cadence = newValue; }

public void setGear(int newValue) { gear = newValue; }

public void applyBrake(int decrement) { speed -= decrement; }

public void speedUp(int increment) { speed += increment; }

}

JAVA class

example

e.g. UML2

component

diagram

General

architecture

overview

Layer nameArchitecture

Low level

High level

http://agilemodeling.com/artifacts/componentDiagram.htm%20for%20describing%20UML2

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 39 of 48

Figure 37: Different Tiers from which we can identify patterns

Each pattern follows the same template [15]:

 Problem: Describes security issues tackled by the pattern.
 Forces: Describes main motivations and constraints related to a problem.
 Solution: Describes the approach and the associated mechanisms in detail.
 Consequences: Describes the outcomes of using the security pattern
 Security Factors and Risks: Describes factors and risks to be considered while

applying the pattern.
 Reality Checks: Describes a set of review items to identify the feasibility and

practicality of the pattern.
 Related Patterns: Lists other related patterns from the Security Patterns

Catalogue or from other related sources.

Web/Presentation Tier

Business/Application Tier

Identity/Access Control Tier

Web Services/Resource Integration Tier

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 40 of 48

Figure 38: Class diagram security pattern [15]

Basically, for each Tier we have identified the following patterns:

 Web tier:
o Authentication Enforcer
o Authorization Enforcer
o Intercepting Validator
o Secure Base Action
o Secure Logger
o Secure Pipe
o Secure Service Proxy
o Secure Session Manager
o Intercepting Web Agent

 Business tier:
o Audit Interceptor
o Container Managed Security
o Dynamic Service Management
o Obfuscated Transfer Object
o Policy Delegate
o Secure Service Facade
o Secure Session Object

 Web services tier:
o Message Inspector
o Message Interceptor Gateway
o Secure Message Router

 Identity management:

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 41 of 48

o Assertion Builder
o Credential Tokenizer
o Single Sign-on (SSO) Delegator
o Password Synchronizer

4.1.2 High level patterns

Patterns as described in section 3 can be used not only to define threats. A pattern describes a
group of assets and how they are connected. During the design of a system in System Modeller,
users will effectively define their own “system patterns” by dragging and dropping new assets
onto the canvas and connecting them. The system will then be validated, i.e. threat patterns will
be matched against it to find any potential threats. These threat patterns are invisible to the
user, meaning they only see threats after the validation has completed. This then starts an
incremental process of revising the system model, revalidating, analysing the threats etc. This
process can be accelerated by providing “pre-approved” patterns to the user. Such patterns
could be classified as compliant with regulations in one or more jurisdictions or excluding certain
security threats by default. The user would have the option to start from a pre-defined pattern
as opposed to a blank canvas. Such high-level patterns can be obtained by analysing the
compliance regulations. This will be done in cooperation with WP3 and WP6.

Once these high-level patterns have been identified, they need to be mapped to the low-level
patterns. This will ensure that the benefits of using low-level patterns propagates through to the
system designer. Mapping can be implemented in two ways or a combination thereof:

 We can introduce new asset types as subclasses of “Process” that imply the process uses
certain design patterns. When using these new asset types, they might form part of
different patterns or exclude matches of processes based on their secure design.

 We can create new controls that represent low-level design patterns. If a threat has
been found in the system, these controls could then be applied to processes to manage
the threats.

4.1.3 Low level patterns

This low level is tightly related to the epSOS platform, and on its implementation. Basically, the
programming language used on this platform is JAVA, and therefore we investigate its Java
Application Programming Interface (API). Our aim is to identify which JAVA patterns are used on
this platform and which security mechanisms can be put in place for mitigating the identified
privacy threats. As shown previously, Table 3 represents a summary of the CWE used during our
analysis. These implementations are our low level patterns.

4.2 Preliminary benefits from using patterns

The main benefit is that we are able to identify what CWEs threats are within the current
OpenNCP. A secondary benefit is related to technical debt and code smell. If we are able to
identify these “issues” during the development phase, we will reduce the efforts of rework in
later stages.

This is an iterative process which should be carried out during the whole development process.
From an empirical point of view. We need to analyse in depth OpenNCP, and we need to set up
OpenNCP instances without these issues.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 42 of 48

4.3 Threat identification tool

There is no specific use case for application security. However, we are considering and gathering
the main recommendations described by the community such as OWASP
(https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf), SANS
(https://www.sans.org/top25-software-errors/) and MITRE (http://cwe.mitre.org/top25/).

4.3.1 Identified threats

The identified threats are based on what the community has already identified as potential
threats in Java based applications. OWASP (http://www.owasp.org) is a free and open software
security community, and the OWASP contributors have dedicated efforts on defining the Ten
Most Critical Web Application Security Risks, and they have been ordered as:

 A1:2017 - Injection

 A2:2017 - Broken Authentication

 A3:2017 - Sensitive Data Exposure

 A4:2017 - XML External Entities (XXE)

 A5:2017 - Broken Access Control

 A6:2017 - Security Misconfiguration

 A7:2017 - Cross-Site Scripting (XSS)

 A8:2017 - Insecure Deserialization

 A9:2017 - Using Components with Known Vulnerabilities

 A10:2017 - Insufficient Logging & Monitoring

MITRE Corporation (https://www.mitre.org/) is a US not-for-profit company that operates
multiple federally funded research and development centres. This organisation maintains the
CWE (Common Weakness Enumeration - https://cwe.mitre.org/) web site, which is one of the
most well-known database of threats. They receive of the US Department of Homeland
Security's National Cyber Security Division, and they describe in detail the top 25 Software
errors. They include more than 700 additional Software errors, design errors and architecture
errors that can lead to exploitable vulnerabilities. SHIELD is not going to deal with all these
threats.

Table 3: CWE identified for SHIELD based on Sonar Java analyser 2

CWE ID CWE Name Implementing Rules

CWE-20 Improper Input Validation S2077 SQL binding mechanisms should be used

CWE-78

Improper Neutralization of
Special Elements used in an
OS Command ('OS
Command Injection')

S2076 Values passed to OS commands should be
sanitized

CWE-88
Argument Injection or
Modification

S2076 Values passed to OS commands should be
sanitized

CWE-89

Improper Neutralization of
Special Elements used in an
SQL Command ('SQL
Injection')

S2077 SQL binding mechanisms should be used

CWE-90
Improper Neutralization of
Special Elements used in an

S2078 Values passed to LDAP queries should be
sanitized

2 (https://tinyurl.com/y9wfwsor)

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.sans.org/top25-software-errors/
http://cwe.mitre.org/top25/

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 43 of 48

CWE ID CWE Name Implementing Rules

LDAP Query ('LDAP
Injection')

CWE-102
Struts: Duplicate Validation
Forms

S3374 Struts validation forms should have unique
names

CWE-190
Integer Overflow or
Wraparound

S2184 Math operands should be cast before
assignment

CWE-259
Use of Hard-coded
Password

S2068 Credentials should not be hard-coded

CWE-284 Improper Access Control S3369 Security constraints should be defined

CWE-293
Using Referer Field for
Authentication

S2089 HTTP referers should not be relied on

CWE-326

Inadequate Encryption
Strength

S2278 Neither DES (Data Encryption Standard) nor
DESede (3DES) should be used

S2245 Pseudorandom number generators (PRNGs)
should not be used in secure contexts

CWE-327
Use of a Broken or Risky
Cryptographic Algorithm

S2278 Neither DES (Data Encryption Standard) nor
DESede (3DES) should be used

S2277 Cryptographic RSA algorithms should always
incorporate OAEP (Optimal Asymmetric Encryption
Padding)

S2258 "javax.crypto.NullCipher" should not be used
for anything other than testing

S2257 Only standard cryptographic algorithms
should be used

S2070 SHA-1 and Message-Digest hash algorithms
should not be used

CWE-328 Reversible One-Way Hash
S2070 SHA-1 and Message-Digest hash algorithms
should not be used

CWE-330
Use of Insufficiently
Random Values

S2245 Pseudorandom number generators (PRNGs)
should not be used in secure contexts

CWE-338
Use of Cryptographically
Weak Pseudo-Random
Number Generator (PRNG)

S2245 Pseudorandom number generators (PRNGs)
should not be used in secure contexts

CWE-369 Divide By Zero S3518 Zero should not be a possible denominator

CWE-374
Passing Mutable Objects to
an Untrusted Method

S2384 Mutable members should not be stored or
returned directly

CWE-375
Returning a Mutable Object
to an Untrusted Caller

S2384 Mutable members should not be stored or
returned directly

CWE-382
J2EE Bad Practices: Use of
System.exit()

S1147 Exit methods should not be called

CWE-391 Unchecked Error Condition
S2142 "InterruptedException" should not be
ignored

CWE-395
Use of NullPointerException
Catch to Detect NULL
Pointer Dereference

S1696 "NullPointerException" should not be caught

CWE-396
Declaration of Catch for
Generic Exception

S2221 "Exception" should not be caught when not
required by called methods

S1181 Throwable and Error should not be caught

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 44 of 48

CWE ID CWE Name Implementing Rules

CWE-397
Declaration of Throws for
Generic Exception

S00112 Generic exceptions should never be thrown

CWE-412
Unrestricted Externally
Accessible Lock

S2445 Blocks should be synchronized on "private
final" fields

CWE-413 Improper Resource Locking
S2445 Blocks should be synchronized on "private
final" fields

CWE-459 Incomplete Cleanup
S2095 Resources should be closed

S2222 Locks should be released

CWE-476 NULL Pointer Dereference

S2225 "toString()" and "clone()" methods should
not return null

S3655 Optional value should only be accessed after
calling isPresent()

S2447 Null should not be returned from a
"Boolean" method

S2259 Null pointers should not be dereferenced

S2637 "@NonNull" values should not be set to null

CWE-477 Use of Obsolete Functions
CallToDeprecatedMethod "@Deprecated" code
should not be used

CWE-478
Missing Default Case in
Switch Statement

SwitchLastCaseIsDefaultCheck "switch" statements
should end with "default" clauses

CWE-481
Assigning instead of
Comparing

AssignmentInSubExpressionCheck Assignments
should not be made from within sub-expressions

CWE-483 Incorrect Block Delimitation
S2681 Multiline blocks should be enclosed in curly
braces

CWE-484
Omitted Break Statement in
Switch

S128 Switch cases should end with an unconditional
"break" statement

CWE-486
Comparison of Classes by
Name

S1872 Classes should not be compared by name

CWE-489 Leftover Debug Code

S2589 Boolean expressions should not be gratuitous

S2583 Conditionally executed blocks should be
reachable

S2653 Web applications should not have a "main"
method

CWE-493
Critical Public Variable
Without Final Modifier

ClassVariableVisibilityCheck Class variable fields
should not have public accessibility

CWE-500
Public Static Field Not
Marked Final

S1444 "public static" fields should be constant

CWE-501 Trust Boundary Violation
S3318 Untrusted data should not be stored in
sessions

CWE-546 Suspicious Comment
S1135 Track uses of "TODO" tags

S1134 Track uses of "FIXME" tags

CWE-563
Assignment to Variable
without Use ('Unused
Variable')

S1854 Dead stores should be removed

CWE-564 SQL Injection: Hibernate S2077 SQL binding mechanisms should be used

CWE-568
finalize() Method Without
super.finalize()

ObjectFinalizeOverridenCallsSuperFinalizeCheck "su
per.finalize()" should be called at the end of
"Object.finalize()" implementations

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 45 of 48

CWE ID CWE Name Implementing Rules

CWE-570 Expression is Always False
S2583 Conditionally executed blocks should be
reachable

CWE-571 Expression is Always True
S2589 Boolean expressions should not be gratuitous

S2583 Conditionally executed blocks should be
reachable

CWE-572
Call to Thread run() instead
of start()

S1217 Thread.run() should not be called directly

CWE-579
J2EE Bad Practices: Non-
serializable Object Stored in
Session

S2441 Non-serializable objects should not be stored
in "HttpSession" objects

CWE-580
clone() Method Without
super.clone()

S1182 Classes that override "clone" should be
"Cloneable" and call "super.clone()"

CWE-581
Object Model Violation: Just
One of Equals and Hashcode
Defined

S1206 "equals(Object obj)" and "hashCode()"
should be overridden in pairs

CWE-582
Array Declared Public, Final,
and Static

S2386 Mutable fields should not be "public static"

CWE-583
finalize() Method Declared
Public

S1174 "Object.finalize()" should remain protected
(versus public) when overriding

CWE-584 Return Inside Finally Block
S1143 Jump statements should not occur in "finally"
blocks

CWE-586 Explicit Call to Finalize()
ObjectFinalizeCheck The Object.finalize() method
should not be called

CWE-594
J2EE Framework: Saving
Unserializable Objects to
Disk

S1948 Fields in a "Serializable" class should either
be transient or serializable

CWE-595
Comparison of Object
References Instead of
Object Contents

S1698 "==" and "!=" should not be used when
"equals" is overridden

CWE-597
Use of Wrong Operator in
String Comparison

S1698 "==" and "!=" should not be used when
"equals" is overridden

CWE-600
Uncaught Exception in
Servlet

S1989 Exceptions should not be thrown from
servlet methods

CWE-607
Public Static Final Field
References Mutable Object

S2386 Mutable fields should not be "public static"

CWE-609 Double-Checked Locking S2168 Double-checked locking should not be used

CWE-614
Sensitive Cookie in HTTPS
Session Without 'Secure'
Attribute

S2092 Cookies should be "secure"

CWE-754
Improper Check for Unusual
or Exceptional Conditions

S899 Return values should not be ignored when
they contain the operation status code

CWE-780
Use of RSA Algorithm
without OAEP

S2277 Cryptographic RSA algorithms should always
incorporate OAEP (Optimal Asymmetric Encryption
Padding)

CWE-783
Operator Precedence Logic
Error

S864 Limited dependence should be placed on
operator precedence rules in expressions

CWE-798
Use of Hard-coded
Credentials

S2068 Credentials should not be hard-coded

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 46 of 48

CWE ID CWE Name Implementing Rules

CWE-807
Reliance on Untrusted
Inputs in a Security Decision

S2254 "HttpServletRequest.getRequestedSessionId(
)" should not be used

S2089 HTTP referers should not be relied on

CWE-835
Loop with Unreachable Exit
Condition ('Infinite Loop')

S888 Equality operators should not be used in "for"
loop termination conditions

CWE-943
Improper Neutralization of
Special Elements in Data
Query Logic

S2077 SQL binding mechanisms should be used

SANS (https://www.sans.org) is a non for profit entity which maintains a series of assessments
of secure coding skills in three languages along with certification exams that allow programmers
to determine gaps in their knowledge of secure coding (https://www.sans.org/top25).

All of them are applicable to SHIELD use case scenarios, but we are going to be focused on the
top threats identified by these entities.

4.3.2 Design of the solution

This subsection proposes a small tool for identifying some of these threats from the code we are
generating. For example, this tool helps programmers during the development of the OpenNCP
platform. Tools are helpful during code development, review and testing phases. However, we
consider tools can generate some false positives or issues that should be solved by humans. This
means that despite this tool this approach requires human based supervision.

Next Figure 39 represents our prototype. We consider that the development environment is
the Eclipse platform and our SHIELD analyser reads JAVA projects and identifies threats
identified by MITRE, SANS and OWASP. This tool summarizes these metrics and provides a
Metrics Score Card, and a Pattern visualizer containing a set of security patterns.

Figure 39 – SHiELDanalyzer architecture

OWASP SANS

MITRE

Analyzer engine

Development

environment

SHIELD analyzer

reads

server

Metrics
Scored

Card

Patterns
visualizer

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 47 of 48

5 Conclusions

This accompanying report for the software deliverable D4.1 describes the work done on WP4 in
M7-M12.

We present the initial prototype of “System Modeller” and the underlying knowledge base.

The tool itself has been extended in the past six months, focusing mainly on performance and
usability improvements. In parallel, we have been working on concepts for extensions to the
software to support some of the key features SHiELD tries to address. Specifically we will be
working on visualising compliance in the user interface.

The knowledge base continues to be updated as the project as a whole makes more progress
towards modelling the use cases and understanding the requirements to correctly represent the
infrastructure as well as model

 security threats that can affect cross-border health data exchange;

 controls representing tools developed in WP5 that block threats;

 regulatory compliance in different jurisdictions with input from WP3 and WP6.

Furthermore, we describe our plan for the creation of a secure design pattern catalogue and
how we intend to link the concepts of low-level patterns and high-level patterns. This plan will
be implemented starting with the next release (D4.2) which is due at the end of M18 and contain
some low-level design patterns linked to controls as well as high-level patterns to support users
in building compliant systems more easily.

D4.1 – Privacy by design models and tools: proof of concept Version 1.0, Date: 22/12/2017

Project Title: SHiELD Contract No. GA 727301 http://project-shield.eu/

Page 48 of 48

6 References

1. Surridge, M., Nasser, B., Chen, X., Chakravarthy, A., & Melas, P., Run-Time Risk Management
in Adaptive ICT Systems. In Eighth International Conference on Availability, Reliability and
Security (ARES), 2013, (pp. 102-110). IEEE (2013).

2. Chakravarthy, A., Wiegand, S., Chen, X., Nasser, B. and Surridge, M., Trustworthy Systems
Design using Semantic Risk Modelling. Procs 1st International Conference on Cyber Security
for Sustainable Society, Coventry, UK, 2015, (pp. 49-81). Digital Economy Sustainable Society
Network. (2015).

3. The MITRE Corporation: Adversarial Tactics, Techniques, and Common Knowledge
(ATT&CK™). https://attack.mitre.org (accessed 11/12/2017)

4. Booch, G.: The Well-Tempered Architecture. IEEE Softw. 24, 24–25 (2007).
5. Rothenhaus, K.J., Michael, J.B., Man-Tak Shing: Architectural Patterns and Auto-Fusion

Process for Automated Multisensor Fusion in SOA System-of-Systems. IEEE Syst. J. 3, 304–
316 (2009).

6. Kallel, S., Tramoni, B., Tibermacine, C., Dony, C., Kacem, A.H.: Generating reusable,
searchable and executable “architecture constraints as services.” J. Syst. Softw. 127, 91–108
(2017).

7. Booch, G.: Goodness of Fit. IEEE Softw. 23, 14–15 (2006).
8. Bafandeh Mayvan, B., Rasoolzadegan, A., Ghavidel Yazdi, Z.: The state of the art on design

patterns: A systematic mapping of the literature. J. Syst. Softw. 125, 93–118 (2017).
9. Michael Jackson: Problem frames: analyzing and structuring software development

problems. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.
10. Cavalli, E., Mattasoglio, A., Pinciroli, F., Spaggiari, P.: Information security concepts and

practices: the case of a provincial multi-specialty hospital. Int. J. Med. Inf. 73, 297–303
(2004).

11. Bertino, E., Deng, R.H., Huang, X., Zhou, J.: Security and privacy of electronic health
information systems. Int. J. Inf. Secur. 14, 485–486 (2015).

12. Qian, H., Li, J., Zhang, Y., Han, J.: Privacy-preserving personal health record using multi-
authority attribute-based encryption with revocation. Int. J. Inf. Secur. 14, 487–497 (2015).

13. Qin, B., Deng, H., Wu, Q., Domingo-Ferrer, J., Naccache, D., Zhou, Y.: Flexible attribute-based
encryption applicable to secure e-healthcare records. Int. J. Inf. Secur. 14, 499–511 (2015).

14. Schaar, P.: Privacy by Design. Identity Inf. Soc. 3, 267–274 (2010).
15. Steel, C., Nagappan, R., Lai, R.: core Security Patterns. Pearson Education (2005).

https://attack.mitre.org/

