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Abstract—Unmanned aerial vehicles (UAVs) have been widely
used in a range of compelling applications. In this paper, we
integrate both the networking techniques and cloud computing
tasks of multi-UAV systems. We commence by proposing an
energy efficient scheme for selecting the gateway of UAVs invoked
for relaying data to the heterogenous cloud. Then, relying on
queuing theory and Lyapunov optimization, we strike a power-
delay trade-off by jointly optimizing the computational task
scheduling and resource allocation in the heterogeneous cloud
architecture, which is comprised of an edge cloud and a powerful
remote cloud. We analyze the optimal resource-allocation strategy
for each time slot and an iterative algorithm is conceived for
reducing the computational complexity. Finally, our numerical
results demonstrate the superiority of the proposed scheme.

Index Terms—Gateway selection, heterogenous cloud, power-
delay trade-off, task scheduling, resource allocation.

I. INTRODUCTION

G IVEN their low cost and high-flexibility deployment,
unmanned aerial vehicles (UAVs) have been widely used

both in military and in civilian applications for surveillance,
environmental monitoring and emergency rescue, etc. De-
pending on their cruising duration and action radius, UAVs
may be categorized into four classes, i.e. high-altitude and
long-endurance UAVs, medium-range UAVs, short-range s-
mall UAVs and mini UAVs [1]. They are usually equipped
with a variety of sensors in order to fulfill different tasks.
Given the maturity of the UAV industry, small and mini
UAVs have also been popularized among the public and their
proliferation in diverse applications has attracted a lot of
research attention. Recently, UAV communications have been
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extensively studied for boosting the capacity and coverage of
the existing wireless networks [2]–[6]. Specifically, UAVs can
be used both as flying base stations and as relays as discussed
in [3] and [6], respectively. The optimum altitudes of UAV
for achieving the maximum capacity both in static and in
mobile scenarios were derived in these contributions. A similar
work considering the UAV’s trajectory optimization at a fixed
altitude was conducted by Zeng et al. in [4]. Moreover, UAVs
have been introduced for Internet of Things (IoT) applications
by Mozaffari et al. [5], where the UAVs are used for collecting
data from IoT devices. Explicitly, the network association,
the UAV placement and the devices’ transmit power were
jointly optimized for achieving maximum system capacity.
However, their low load-carrying capacity and modest cruising
capability have substantially limited the applications of small
or mini UAVs. Additionally, computationally-intensive tasks
impose challenges on these UAVs because of their limited
processing capability and battery life. Hence, novel solutions
should be conceived for enhancing the UAV’s computational
and communications capability.

Considering the limitations of a single UAV, the cooperation
of multiple UAVs has been developed for improving the
quality-of-service (QoS). The UAVs relying on sophisticated
sensors can be coordinated by the ground station (GS) to
fulfill specific tasks. The multi-UAV system concept was
first proposed in [7] based on the flying ad hoc network
(FANET) philosophy, which was later expanded in [8]–[10].
Although multi-UAV networks have substantial benefits over
their single-UAV counterparts, they also have numerous chal-
lenges. Taking air-to-ground (A2G) communications as an
example, if each UAV of the FANET is allowed to set up
a communication link with the GS, they would lead to low
spectral efficiency and severe interference. Hence, some of
the superior drones should be chosen as the gateways to
coordinate communications between the UAVs and the GS.
Gateway selection schemes have been widely investigated in
the context of mobile ad hoc networks (MANETs) [11]–[17].
In [12], Leng et al. proposed a k-hop compound metric based
clustering scheme for selecting the gateways of a MANET,
where the host connectivity and host mobility were jointly
considered. Their simulation results showed that the scheme
was characterized by rapid convergence despite its low control
overhead. A network parameter optimization based gateway
selection algorithm was proposed in [13] by Bouk et al. where
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multiple QoS parameters, such as the path availability period,
the path’s load capacity and latency were jointly optimized.
Moreover, a fuzzy QoS balancing gateway selection algorithm
was proposed by Zhioua et al. for vehicular networks [15],
where the fuzzy logic was utilized for making decisions on
the specific choice of the gateway relying on the received
signal strength, on the traffic load of the cluster head, on
the gateway candidates and on the link connectivity duration.
They showed that the fuzzy scheme outperformed the deter-
ministic scheme in terms of its adaptability. As for gateway
selection in FANETs, Luo et al. [18] proposed a distributed
gateway selection algorithm relying on the dynamic network
partitioning concept, which considered the influence of the
network topology on the gateway selection process. However,
bearing in mind the high Doppler frequency, the limited
energy resource and the constrained computational capability
of FANETs, it is necessary to conceive a gateway selection
scheme capable of balancing the QoS of all UAVs.

Mobile edge computing (MEC) and fog computing have
become promising techniques for balancing and distributing
the computationally-intensive tasks amongst resource-limited
devices [19]–[21], since the devices can offload their tasks
to cloud servers which are deployed locally in their vicinity,
and the cloud servers return the final computational results to
the devices. In [20], Bonomi et al. defined the characteristics
of mobile edge/fog computing, which make it a suitable
platform for both the IoT and big data analysis. The security
and resilience of edge cloud were analysed by Shirazi et
al in [21]. Relying on MEC and fog computing, both the
power consumption and execution delay of the system can be
substantially reduced. However, in comparison to traditional
cloud computing, the computational resources in the edge
cloud are typically restricted by its local configuration. Hence
conceiving efficient resource allocation becomes a critical
issue in MEC, which has therefore attracted much atten-
tion [22]–[28]. Specifically, in [22], Sardellitti et al. proposed
an iterative algorithm based on successive convex approx-
imation for jointly allocating both the radio resources and
computational resources to multiple users in a multiple-input
and multiple-output (MIMO) aided MEC system. Moreover, a
power-vs-delay trade-off was formulated in [23] in the context
of a multi-user MEC system, where the local processing
capability of devices was considered and an optimal resource
allocation scheme was designed with the aid of Lyapunov
optimization. The power-vs-delay trade-off problems were
also studied in [24], [25] with the Lyapunov optimization
framework. In [26], Liu et al. studied the delay-optimal task
scheduling and resource allocation problem under specific
power constraints in MEC systems, where the optimal strategy
was modeled by a Markov decision process. Their scheme
was capable of achieving shorter average execution delay
than their benchmark schemes. The computation offloading
decision, the physical resource block allocation and the MEC
computational resource allocation were integrated into an
amalgamated framework and were jointly optimized in [28]
by Wang et al., who achieved a better integrated performance
than classic resource allocation schemes. However, the existing
works are focused on the interplay between the devices and

edge cloud, while ignoring the interaction between the edge
cloud and the powerful remote cloud.

In order to further improve the QoS performance, relying
on both the flexible configuration of the edge cloud and on
the more powerful computational capability of the remote
cloud, a beneficial architecture combining both the edge cloud
and the remote cloud has been developed in [29]–[35]. To
elaborate a little further, Gelenbe et al. [30] studied the optimal
load sharing problem between a local and a remote cloud,
where an optimal scheme was proposed based on the analysis
of the power consumption and the computing time in the
context of diverse tasks and requirements. The fairness of
resource allocation problems was investigated in [32] in the
heterogenous cloud context, where a multi-resource allocation
mechanism was designed for guaranteeing fairness, whilst
maintaining service isolation amongst the users. Moreover,
the delay-bounded task offloading problem of heterogenous
cloud based systems was highlighted by Zhao et al. [33] upon
considering both the wireless transmission delay as well as
the computational execution delay. They modeled the service
arrival process by the classic M/M/1 queue. Based on this
model, the success probability of the delay-bounded task
execution was derived both in the context of a single-user
and a multi-user scenario. Finally, a total power minimization
based task scheduling problem was studied by Gai et al. [35].

Against this background, in this paper, we focus on the
combination of UAV networks, MEC and the heterogenous
cloud. Specifically, we study the QoS-based network associ-
ation problem, with a special focus on the gateway selection
and resource allocation of our heterogenous cloud based multi-
UAV system. To elaborate, different UAVs jointly constitute a
group in a FANET, and the computational tasks of the different
FANETs can be offloaded to the heterogenous cloud composed
of an edge cloud and a remote cloud. The heterogenous cloud
platform then deals with these tasks and provides feedback to
the control center. We consider a pair of QoS metrics, namely
the energy/power consumption as well as the transmission and
execution time delay, demonstrating that this framework sig-
nificantly improves the system performance. We shed light on
how the cloud interacts with UAVs and on how the cooperation
between the clouds improves the system performance. Our
main contributions are summarized as follows:

• By jointly optimizing both the energy consumption and
the data transmission time, we conceive an energy-
efficient gateway selection scheme, where the specific
UAV, which consumes the least energy can be selected
as the gateway in each time slot.

• Relying on analyzing the power consumption and cloud-
based computation execution delay, we formulate a power
consumption minimization problem under strict system
stability constraints in order to find the optimal task-
scheduling and resource allocation strategy. Furthermore,
a power-vs-delay trade-off is struck based on Lyapunov
optimization [36] and an iterative algorithm is conceived
for finding the optimal strategy.

• Our extensive simulations demonstrate the efficiency of
our proposed algorithms, which are characterized by rapid
convergence as well as by a beneficial power/energy
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Fig. 1. The structure of the heterogeneous cloud-aided multi-UAV system.

consumption and transmission/execution delay.

The remainder of this paper is organized as follows. The
system model, including the UAV model, the channel model
and the cloud execution model, is introduced in Section II. In
Section III, our energy efficient gateway selection scheme is
characterized based on the analysis of the energy consumption
and data transmission time. In Section IV, the power-vs-delay
trade-off is improved based on Lyapunov optimization. More-
over, an iterative algorithm is invoked for finding the optimal
strategy in each time slot. Finally, our simulation results are
provided in Section V for evaluating the performance of our
proposed scheme, followed by our conclusions in Section VI.

II. SYSTEM MODEL

In this paper, we consider a heterogeneous cloud-based
multi-UAV system, which consists of multiple UAV clusters,
an edge cloud and a remote cloud, as shown in Fig. 1. The
UAVs in different clusters carry sensed data related to different
tasks, while the UAVs in the same cluster constitute a FANET.
We assume that these tasks are computationally-intensive,
hence the UAVs have to offload the tasks to the clouds for
their execution. The UAVs are able to communicate with the
clouds through a radio access network (RAN). In our model,
the edge cloud can be viewed as a small processing center
with limited computational capabilities at the wireless access
point (AP), while the remote cloud is a large-scale processing
center with powerful processing capabilities with the aid of its
high-rate, low-delay Internet backbone. The system is operated
under dynamically fluctuating conditions because of the high
mobility of the UAV nodes. For the simplicity of analysis, the
dynamic fluctuations of the system are discretized into time
slots, i.e. t ∈ T = {1, 2, 3, ...}. We assume that the topology
of different UAV clusters remains relatively time-invariant in
one slot. In each time slot, first a gateway is selected to relay
the sensed data of different UAVs within the same FANET
to the AP over the air, and then the data is processed by the
virtualized machines (VMs) either within the edge cloud or in
the remote cloud.

A. The UAV Model

We assume that there are I FANETs executing I tasks in
the multi-UAV system, which are denoted as {G1,G2, ...,GI},
while Gi = [1, 2, ..., Ni] represents all the UAVs in FANET
i. The tasks are assigned by the GS. Once being assigned a
task, the related UAVs will fly to certain area according to the
pre-defined path, collect the related data, then offload the data
to the nearest AP. These UAVs are equipped with sensor units,
control units, management units and communication units to
fulfill their tasks. Specifically, the communication units are
composed of multiple modules configured by various protocol-
s [1], so that the UAVs can communicate with the AP via Wi-
Fi, long-term evolution (LTE) transceivers, etc. as required. We
assume that the gateways are allocated orthogonal resources
(e.g., OFDMA systems) so that the interferences between
different gateways can be neglected and that the bandwidth
allocated to each gateway is B. The UAVs in the same
FANET communicate with each other using the IEEE protocol
802.11b/g (WiFi). Since the inter-FANET communication is
beyond the focus of this paper, we assume that the energy
consumption and the delay between UAVs and the gateway
can be neglected compared to that caused by air-to-ground
(A2G) communication and cloud-based computations. Under
this assumption, we only consider the packet-arrivals from the
selected gateway. Let Ai(t) denote the number of packets
arriving at the AP from the gateway of Gi in time slot t,
while A(t) = [A1(t), A2(t), ..., AI(t)] denotes the vector
of arrivals in time slot t, where Ai(t) in the different time
slots is independent and identically distributed (i.i.d.). We
also assume that the number of packet-arrivals is bounded
by Ai,min ≤ Ai(t) ≤ Ai,max and that Ai(t) is uniformly
distributed between [Ai,min, Ai,max]. Let λi = E [Ai(t)]
denote the rate of packet arrival from the gateway of Gi in
time slot t.

B. The Channel Model

In contrast to cellular networks, in A2G communications,
each UAV typically has a line-of-sight (LoS) path towards
the AP with a given probability. The probability of LoS
propagation depends both on the environment and on the
elevation angle, which may be quantified by [5] [37]:

fLoS =
1

1 + ϕ exp (−φ [θ − ϕ])
, (1)

where ϕ and φ are constants that depend on the specific
environment and θ is the elevation angle. Let us denote
the communication distance as d. Then θ is calculated by
θ = 180

π × sin−1
(
H
d

)
, where H is the hovering altitude of

the UAV. Therefore, an averaged path loss model considering
both the LoS and NLoS links having a Rician block-fading
model is invoked for characterizing the channel between the
UAV and the AP, where the Rician fading coefficient remains
constant in each block, but changes randomly from one block
to another. We assume that the block duration is the time
needed to transmit a packet. Hence, the channel model is given
by:

h =
(
ξ1f

LoS + ξ2f
NLoS

)
d−α/2h̃, (2)
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where ξ1 and ξ2 are path loss coefficients in the LoS and
NLoS cases, α denotes the path loss exponent, h̃ represents
the fast fading coefficient and fNLoS = 1−fLoS. We consider
the effect of path loss and fast fading, while the effect of
shadowing is neglected. Moreover, in this article, the fast
fading coefficient h̃ is formulated as:

h̃ = X1 + jX2, (3)

where X1 ∼ N (µ1, σ
2) and X2 ∼ N (µ2, σ

2) are Gaussian
random variables. Therefore, the Rician probability density
function (PDF) of

∣∣∣h̃∣∣∣ is expressed as:

f|h̃| (z) =
σ2

z
exp

[
− 1

2σ2

(
z2 +A2

)]
I0

(
Az

σ2

)
, (4)

where A2 = µ2
1 + µ2

2 is the power of the LOS signal, while
I0 is the 0-th order modified Bessel function of the first kind.

C. Cloud Computation Model
In our paper, the packets arriving from different FANETs are

offloaded and processed in the clouds. Once data transmission
from the gateways and the AP is finished, we assume that
part of the tasks of FANET i, denoted as Ae,i(t), will be
processed in the edge cloud, while Ar,i(t) packets of the tasks
will be processed in the remote cloud. Here we have Ai(t) =
Ae,i(t) +Ar,i(t).

1) Edge Cloud: In the edge cloud, there are a total of I
VMs exclusively used by I FANETs. When the packets reach
the edge cloud, the corresponding VM allocates appropriate
computational resources to carry out the processing task. The
computational resources may be quantified in terms of the
number of CPU-cycles [23]. Naturally, the number of CPU-
cycles per unit time-duration is proportional to the CPU’s
clock-frequency. In this paper, we assume that FANET i has
ni(t) CPU-cycles in time slot t, while the total number of
CPU-cycles per unit time in the edge cloud is nmax. We
express the number of packets that can be processed by the
VM i in the edge cloud as:

µi(t) = ∆tni(t)L
−1
i , ∆t > ni(t)L

−1
i (5)

where ∆t denotes the duration of the time slot and Li is
the minimum number of CPU cycles needed to process a
single packet received from FANET i. Moreover, the power
consumption of the computations in the edge cloud can be
approximated by [23]:

Pe,i(t) = κn3
i (t), (6)

where κ is the capacitance proportionality factor.
The newly arrived packets will be queued in the buffer of the

edge cloud, when the corresponding VM is busy processing
the earlier packets. Let Qi(t) denote the queue length in the
i-th VM related to FANET i, where we have Qi(0) = 0 at
the beginning. Then the evolution of the queue length can be
expressed as:

Qi(t+ 1) = max{Qi(t)− µi(t), 0}+Ae,i(t). (7)

The computational delay of the edge cloud may simply arise
from managing the queue. Relying on Little’s Law [38], the

average queueing delay can be derived from the average queue
length, which can be calculated from Eq. (7).

2) Remote Cloud: By contrast, the power consumption in
the remote cloud is closely related to the variation of the
computational workload, which is formulated by:

Pr,i(t) = CeAr,i(t), (8)

where C is a proportionality coefficient. As for the execution
delay in the remote cloud, given that it is equipped with
a multi-core high-speed CPU, we assume that the packets
arriving can be processed without any queueing delay. Hence,
the time delay essentially depends on the Internet trans-
mission process. Moreover, according to [39], the Internet’s
transmission delay can only be characterized empirically. For
simplicity, we assume that the Internet’s transmission process
has a deterministic delay D.

III. ENERGY-EFFICIENT GATEWAY SELECTION

As mentioned in Section I, if each UAV in a FANET estab-
lishes a communication link with the AP, this may lead to low
spectral efficiency and high interferences at the AP. Hence, it is
necessary to select superior UAVs to act as gateways so that the
ordinary UAVs in the FANET can communicate with the AP
via the relay of gateway. In this section, we design an energy-
efficient gateway selection scheme considering both the energy
and the time needed for data transmission. Given our stochastic
channel, it may result in a probabilistic communication outage
as well as stochastic energy consumption and time delay.
Without loss of generality, in the following, we only consider
FANET i as a simple example and study how to select the
gateway drone.

A. The Communication Model Analysis
In time slot t, let u denote the UAV selected as the gateway

in FANET i, where u ∈ Gi. Then the signal received at the
AP from u can be modeled as:

y =
√
Pu

(
ξ1f

LoS
u + ξ2f

NLoS
u

)
d−α/2
u h̃uxu + nu, (9)

where Pu denotes the transmit power of drone u, while xu

represents its transmitted data. Moreover, nu ∼ N (0, N0) is
the additive white Gaussian noise (AWGN). Then, the signal-
to-noise ratio (SNR) is given by:

SNRu =
Pu

(
ξ1f

LoS
u + ξ2f

NLoS
u

)2
d−α
u

∣∣∣h̃u

∣∣∣2
N0

. (10)

Let us now define the outage event.

Proposition 1. The transmission between the gateway u and
the AP fails, when the receiver’s SNRu is below a given
threshold β, which is defined as an outage event. This event
occurs with the probability fu, which can be expressed as:

fu = 1−Q

(
A

σ
,

N0βd
α

Pu(ξ1fLoS
u + ξ2fNLoS

u )
2

)
, (11)

where

Q(u, v) =

∫ ∞

v

x exp

[
−1

2
(x2 + u2)

]
I0(xu)dx (12)
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is the Marcum Q function.

Proof: See Appendix A.

Proposition 1 indicates that the data transmission between
the gateway UAV and the AP may fail because of the stochastic
character of the channel. Hence, an effective retransmission
scheme is needed for improving the reliability of the com-
munication [40]. The automatic repeat request (ARQ) scheme
allows the gateway UAV to retransmit the packet either until
it is successfully received or a maximum number of retrans-
missions N is reached. The number of ARQ rounds required
depends on the channel conditions.

B. Required Transmission Time and Energy Consumption

The energy consumption and the time required for data
transmission are the main parameters in selecting the gateway.
Given that the energy consumption and the time required
for transmitting a single packet depends on the number of
ARQ attempts, only the average performance is considered in
the following. We first calculate the average number N̄ trans

u

of packet retransmissions of the gateway u, which can be
expressed as:

N̄ trans
u = 1 · Pr(S1) + 2 · Pr(F 1, S2) + · · ·

+ (N − 1) · Pr(F 1, F 2, ..., SN−1)

+N ·
[
Pr(F 1, F 2, ..., SN ) + Pr(F 1, F 2, ..., FN )

]
= 1 · Pr(S1) + 2 · Pr(F 1, S2) + · · ·
+ (N − 1) · Pr(F 1, F 2, ..., SN−1)

+N · Pr(F 1, F 2, ..., FN−1),
(13)

where Pr(F 1, F 2, ..., Fm−1, Sm) denotes the probability that
the transmission fails at the 1st, ..., (m − 1)-th rounds but
succeeds at the m-th round. Since the channel state in-
formation (CSI) at each ARQ round is i.i.d., the failure
and success probability of each time transmission are in-
dependent of each other, i.e. Pr(F 1, F 2, ..., Fm−1, Sm) =
Pr(F 1)Pr(F 2) · · ·Pr(Fm−1)Pr(Sm) = fm−1

u (1 − fu) =
fm−1
u − fm

u . Therefore, N̄trans can be further expressed as:

N̄ trans
u = (1− fu) + 2(fu − f2

u) + · · ·
+ (N − 1)(fN−2

u − fN−1
u ) +NfN−1

u

= 1 + fu + · · ·+ fN−1
u =

1− fN
u

1− fu
.

(14)

Let T one
u be the average time required for transmitting a single

packet, which is given by:

T one
u = N̄ trans

u · T travel, (15)

where T travel denotes the ‘flight-time’ of a packet. Assuming
that a packet contains K bits, T travel can be expressed as:

T travel =
K

Blog2(1 + β)
. (16)

If Ai(t) packets of a FANET have to be transmitted, the total
transmission time is given by:

T total
u = Ai(t) · T one

u

= Ai(t) ·
1− fN

u

1− fu
· K

Blog2(1 + β)
.

(17)

The energy consumption of the gateway UAV u includes
both the hovering energy and the transmission energy, but
naturally the hovering energy dominates the total energy
consumption, which depends on the UAV type. We assume
that the hovering power of the gateway UAV u is P hover

u , and
hence the hovering energy consumption in each time slot can
be calculated by:

Ehover
u = P hover

u ∆t. (18)

By contrast, the energy consumption of transmitting Ai(t)
packets is calculated by:

Etrans
u = Ai(t) · Pu · T one

u

= Ai(t) · Pu · 1− fN
u

1− fu
· K

Blog2(1 + β)
.

(19)

Therefore, the total energy consumption in each time slot can
be expressed as:

Etotal
u = Ehover

u + Etrans
u

= P hover
u ∆t+Ai(t) · Pu · 1− fN

u

1− fu
· K

Blog2(1 + β)
.

(20)

C. An Energy-Efficient Gateway Selection Scheme

In this section, we design an energy-efficient gateway se-
lection scheme. Our objective is to minimize the total energy
consumption under specific energy and transmission time con-
straints. Let EBattery

u denote the residual battery energy of u,
which should have sufficient energy both for hovering and data
transmission, i.e. EBattery

u > Etotal
u . Moreover, the residual

energy of the selected gateway u should exceed a threshold
Eth for its operation in the next time slot. Additionally, the
time required for transmission should not exceed a pre-defined
threshold T th. Let ςu be a Boolean decision variable, which
is defined as follows:

ςu =

{
1 If u is selected as the gateway,
0 Otherwise.

(21)

Then the gateway selection can be formulated as a linear
integer problem given by:

P1 : min
ςu

∑
u∈Gi

Etotal
u · ςu

s.t.
∑
u∈Gi

(EBattery
u − Etotal

u ) · ςu ≥ Eth, (22a)

T total
u ≤ T th, ∀u ∈ Gi, (22b)∑

u∈Gi

ςu = 1, (22c)

ςu ∈ {0, 1}, ∀u ∈ Gi. (22d)
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Specifically, Eq. (22a) ensures that the selected gateway has
sufficient residual energy for continuing its operation, while
Eq. (22b) guarantees that the transmission latency is lower
than the threshold. Eq. (22c) requires that only one UAV can
be selected as the gateway UAV in a FANET, and Eq. (22d)
indicates that each UAV only has a binary selection space.

Again, problem P1 is an integer programming problem,
which can be solved by brute-force search. In fact, since the
set Gi is given, the size of the search space is |Gi|, where
| · | is the cardinality of a set. Therefore, the exhaustive search
will have a complexity order of O(1), which is suitable for the
computationally-limited UAV network. Moreover, P1 can also
be converted to a convex optimization problem. Since only a
single of ςu has the value of one and the other ςu have a value
of zero, we can relax the integer constraint of Eq. (22d) to
a continuous convex constraint 0 ≤ ςu ≤ 1 without affecting
the optimal outcome or increasing computational complexity.
Hence, the optimal gateway can also be found by Algorithm 1.

Algorithm 1 Energy-Efficient Gateway Selection Scheme
1: At the beginning of the time slot t, obtain Ai(t).
2: Observe the channel state of UAV u.
3: Calculate fu according to Eq. (11).
4: Calculate T total

u and Etotal
u according to Eq. (17) and

Eq. (20), respectively.
5: Calculate

ςu =argmin
∑
u∈Gi

Etotal
u · ςu

s.t. (22a), (22b), (22c),
0 ≤ ςu ≤ 1, ∀u ∈ Gi.

6: Select UAV u whose ςu = 1 as the gateway and set t =
t+ 1.

IV. TASK SCHEDULING AND RESOURCE ALLOCATION
SCHEME

As mentioned before, task scheduling is an important issue
in heterogeneous cloud aided systems. Specifically, if all the
packets are locally processed in the edge cloud, it is difficult to
maintain the system’s stability because both the computational
capability and the buffer capacity of the edge cloud are limited.
On the other hand, if all the packets are offloaded and tackled
by the remote cloud, the power consumption may become
excessive. In this section, our goal is to find an optimal
scheme to determine the percentage of packets processed
in the edge cloud as well as the amount of computational
resources allocated for different tasks considering both the
average power consumption and the cloud execution delay.

A. Average Power Consumption and Cloud Execution Delay

The power consumption of processing the packets arriving
from FANET i in time slot t is composed of two parts,
i.e. the power consumption in the edge cloud and the power
consumption in the remote cloud. Let Pi(t) = Pe,i(t)+Pr,i(t)
denote the total power consumption of fulfilling the task

requested by UAV i in time slot t. Considering a total
number of I FANETs, the system’s power consumption can
be calculated as P (t) =

∑I
i=1 Pi(t). Then, the time-averaged

power consumption is given by:

P̄ = lim
t→∞

1

t
E

[
t−1∑
τ=0

P (t)

]
. (23)

Since the Internet’s transmission delay in the remote cloud is
assumed to be constant, the average execution delay essentially
hinges on the sojourn time in each edge cloud’s queue. Relying
on Little’s Law [38], we use the time-averaged queue length
in the task buffer as a metric of the average execution delay,
which is expressed as:

Q̄i = lim
t→∞

1

t
E

[
t−1∑
τ=0

Qi(t)

]
. (24)

Definition 1. The queueing system of FANET i is strongly
stable in the edge cloud, if [36]:

lim
t→∞

1

t
E

[
t−1∑
τ=0

Qi(t)

]
< ∞. (25)

Note that if all the queues are stable, the system’s average
service rate is equal to the packet arrival rate, yielding:

lim
t→∞

1

t

t−1∑
τ=0

ui(t) = lim
t→∞

1

t

t−1∑
τ=0

Ae,i(t), (26)

which guarantees that the arriving packets can be processed
within a finite time delay.

In this paper, we aim for finding a task scheduling and
resource allocation scheme for the sake of minimizing the
time-averaged power consumption under the constraint that
all the tasks can be executed within a finite time delay.
Let η(t) = [η1(t), η2(t), ..., ηI(t)], where ηi(t) =

Ae,i(t)
Ai(t)

denotes the ratio of packets processed in the edge cloud, and
n(t) = [n1(t), n2(t), ..., nI(t)]. Hence, this scheduling and
resource allocation problem can be formulated as:

P2 : min
η(t),n(t)

P̄

s.t. 0 ≤ ηi(t) ≤ 1, i = 1, 2, ..., I, t ∈ T , (27a)
I∑

i=1

ni(t) ≤ nmax, t ∈ T , (27b)

lim
t→∞

1

t
E

[
t−1∑
τ=0

Qi(t)

]
< ∞, i = 1, 2, ..., I. (27c)

To elaborate, (27a) requires that the packets arriving from
FANET i should be processed either by the edge cloud or
by the remote cloud, while (27b) indicates that the sum of the
number of CPU-cycles does not exceed the total computational
capacity. Moreover, (27c) indicates that the packets can be
processed in the edge cloud within a finite delay.

B. Task Scheduling and Resource Allocation Scheme Based
on Lyapunov Optimization

Problem P2 is a stochastic optimization problem since
both η(t) and n(t) are time-varying, and hence the optimal
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strategy is temporally corrected. In this section, we design
an online algorithm to determine the optimal task scheduling
and resource allocation strategy of each time slot based on
Lyapunov optimization. To elaborate, Lyapunov optimization
is designed for the greedy minimization of the queue backlog
in each time slot by solving a deterministic problem. The
detailed discussions and theorems of Lyapunov optimization
can be found in [36].

First of all, we define the function L [Q(t)] as the sum of
the squared number of packets in the queue:

L [Q(t)] =
1

2

I∑
i=0

Q2
i (t). (28)

Then, the conditional Lyapunov drift in time slot t can be
expressed by:

∆[Q(t)] = E [L {Q(t+ 1)} − L {Q(t)} |Q(t)] . (29)

If we minimize ∆[Q(t)] in each time slot, this may stabilize
the system. However, the average power consumption might be
unnecessarily high. Alternatively, we may define a drift-plus-
penalty function ∆V [Q(t)] to strike a tradeoff between the
power-cost and queue backlog. The drift-plus-penalty function
may be defined as:

∆V [Q(t)] = ∆ [Q(t)] + V · E [P (t)|Q(t)] , (30)

where V is the control weighting parameter that represents
how much we emphasize the power consumption. A large
value of V is beneficial of optimizing the average power
consumption at the expense of high average delay. Thus, the
drift-plus-penalty function provably strikes a balance between
the power consumption and execution delay in the cloud.

Lemma 1. For any η(t) and n(t) satisfying ηi(t) ∈
[0, 1] , ni(t) ∈ [0, nmax] , i = 1, 2, ..., I , ∆V [Q(t)] is upper
bounded by:

∆V [Q(t)] ≤

1

2
E

[
I∑

i=1

(
A2

e,i(t) + µ2
i (t)− 2Ae,i(t)µi(t)

)
|Q(t)

]

− E

[
I∑

i=1

Qi(t) (µi(t)−Ae,i(t))|Q(t)

]
+ V · E [P (t)|Q(t)] .

(31)

Proof: See Appendix B.
For the sake of achieving a superior task scheduling and

resource allocation, we conceived Algorithm 2 aiming for the
greedy minimization of the upper bound of ∆V [Q(t)] in each
time slot, where we have:

hc [η(t),n(t)] =
1

2

I∑
i=1

[
A2

e,i(t) + µ2
i (t)− 2Ae,i(t)µi(t)

]
−

I∑
i=1

[Qi(t) (µi(t)−Ae,i(t))] + V · P (t).

(32)
Note that in Algorithm 2, solving the stochastic optimization
problem P2 is reduced to deal with a deterministic optimiza-

tion problem P3 in each time slot. Since P3 is a convex
optimization problem, Algorithm 2 is able to find the optimal
solution in each time slot with a complexity order of O(I2).
By appropriately adjusting the value of V , we can strike a
power-vs-delay trade-off. Moreover, the proposed algorithm is
capable of minimizing the power consumption and of driving
the queue backlog towards a low buffer content corresponding
to a low delay.

Algorithm 2 Task Scheduling and Resource Allocation
Scheme

1: At the beginning of the time slot t, obtain {Qi(t)} and
{Ai(t)}.

2: Calculate

P3 : {η(t),n(t)} =argmin hc [η(t),n(t)]

s.t. (27a), (27b).

3: Update {Qi(t)} according to Eq. (7) and set t = t+ 1.

C. A Low-Complexity Iterative Algorithm

Problem P3 is a convex optimization problem and can be
solved by interior-point methods [41]. However, the generic
convex-problem solution algorithms suffer from high compu-
tational cost. In this section, we conceive a low-complexity
algorithm for solving P3 based on the structured nature
of the problem. Since P2 is a joint task-scheduling and
resource allocation problem, its minimization can be achieved
by searching through the solution-space by exploiting the
decreasing gradient direction of either of them. Hence, by
fixing one of the two variables, we can obtain the optimal
value of the other one.

Substituting Eq. (5), Eq. (6) and Eq. (8) into Eq. (32), we
have:

hc [η(t),n(t)] =

1

2

I∑
i=1

[η2i (t)A
2
i (t) + ∆t2n2

i (t)L
−2
i −2ηi(t)Ai(t)∆tni(t)L

−1
i ]

−
I∑

i=1

[
Qi(t)

(
∆tni(t)L

−1
i − ηi(t)Ai(t)

)]
+ V

I∑
i=1

[
κn3

i (t) + Ce(1−ηi(t))Ai(t)
]
.

(33)
Optimal resource allocation : By fixing η(t), the opti-

mization goal of P3 reduces to:

hc [η(t),n(t)|η(t)] =

1

2

I∑
i=1

[
∆t2n2

i (t)L
−2
i − 2ηi(t)Ai(t)∆tni(t)L

−1
i

]
−

I∑
i=1

Qi(t)∆tni(t)L
−1
i + V

I∑
i=1

κn3
i (t).

(34)

Hence, the resultant single-variable optimization problem can
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be formulated as:

P4 : min
n(t)

hc [η(t),n(t)|η(t)]

s.t.
I∑

i=1

ni(t) ≤ nmax. (35a)

Problem P4 can be solved using the Lagrangian dual method.
The Lagrangian function of P4 can be written as:

L [n(t), λ] = hc [η(t),n(t)|η(t)] + λ

(
I∑

i=1

ni(t)− nmax

)
,

(36)
where λ is the Lagrangian multiplier associated with the
constraint Eq. (35a). Since P4 is a convex optimization
problem, the optimal solution of the original and of the dual
problem, i.e. of n̂i(t) and λ̂, should satisfy the Karush-Kuhn-
Tucker (KKT) conditions:

λ̂ ≥ 0,
I∑

i=1

n̂i(t)− nmax ≤ 0,

λ̂

(
I∑

i=1

n̂i(t)− nmax

)
= 0,

∂hc (η(t),n(t)|η(t))
∂ni(t)

∣∣∣∣
ni(t)=n̂i(t)

+ λ̂ = 0.

(37)

Substituting Eq. (34) into Eq. (37), n̂i(t) can be expressed as
Eq. (38). Hence, we only have to determine λ̂. In Eq. (37),

if λ = 0 and
I∑

i=1

ni(t) − nmax ≤ 0, λ̂ = 0 is the optimal

solution. Otherwise, λ̂ can be determined with the aid of the
bisection search approach. The region of the search approach

spans [λL, λU ], where λL = 0 and λU satisfies
I∑

i=1

ni(t) −
nmax ≤ 0. Thus, the available selection of λU is given by:

λU = max
i

{
∆tL−1

i (ηi(t)Ai(t) +Qi(t))
}
. (39)

The search for the optimal λ̂ is terminated if:∣∣∣∑I
i=1 ni(t)− nmax

∣∣∣
nmax

≤ δ, (40)

where δ is the search precision.

Optimal Task Scheduling: By fixing n(t), the optimization

Algorithm 3 An Alternative Iterative Algorithm for Solving
P3

1: Initialize η(t), set k = 0, δ = 10−10, ε = 10−6.
2: Set hk

c = 0.
3: repeat
4: Update k = k + 1.
5: Set λ = 0.
6: Calculate nk

i (t) according to Eq. (38).
7: if

∑I
i=1 n

k
i (t)− nmax ≤ 0 then

8: Update n̂k
i (t) = nk

i (t).
9: else

10: Set λL = 0.
11: Calculate λU according to Eq. (38).
12: repeat
13: Set λ = 1

2 (λL + λU ).
14: Calculate nk

i (t) according to Eq. (38).
15: Update nk

i (t) = max{nk
i (t), 0}.

16: if
∑I

i=1 n
k
i (t)− nmax ≤ 0 then

17: Update λU = λ.
18: else
19: Update λL = λ.
20: end if
21: until |∑I

i=1 ni(t)−nmax|
nmax

≤ δ.
22: Update n̂k

i (t) = nk
i (t).

23: end if
24: Update {η̂ki (t)} by solving Eq. (43).
25: Update hk

c according to Eq. (33).
26: until

∣∣hk
c − hk−1

c

∣∣ ≤ ε.
27: Obtain n̂opt

i (t) = nk
i (t), η

opt
i (t) = η̂ki (t).

objective reduces to:

hc [η(t),n(t)|n(t)] =

1

2

I∑
i=1

[
η2i (t)A

2
i (t)− 2ηi(t)Ai(t)∆tni(t)L

−1
i

]
+

I∑
i=1

[Qi(t)ηi(t)Ai(t)] + CV

M∑
i=1

e(1−ηi(t))Ai(t).

(41)

Then, the optimization problem can be rewritten as:

P5 : min
η(t)

hc [η(t),n(t)|n(t)]

s.t. 0 ≤ ηi(t) ≤ 1, i = 1, 2, ..., I. (42a)

Since ηi(t)
′s are i.i.d., the optimal solutions can be achieved

n̂i(t) =

−∆t2L−2
i +

√
∆t4L−4

i + 12V κ
[
∆tL−1

i (ηi(t)Ai(t) +Qi(t))− λ̂
]

6V κ
.

(38)
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Fig. 2. Outage probability (calculated by Eq. (11)) versus UAV’s hovering altitude parameterized by the UAV’s transmit power, where (a), (b) and (c)
represents the cases that the horizontal distance between the UAV and the AP is 50 m, 100 m and 200 m, respectively.

by solving:

∂hc [η(t),n(t)|n(t)]
∂ηi(t)

=

Ai(t)CV e[1−ηi(t)]Ai(t) − ηi(t)A
2
i (t) +Ai(t)∆tni(t)L

−1
i

−Qi(t)Ai(t) = 0.
(43)

Eq. (43) is a transcendental equation, which can be readily
solved by numerical methods such as Newton’s method or
Secant method. The detailed procedure is omitted in this
paper. Let η∗i (t) be the solution of Eq. (43), for which we
have ∂2hc[η(t),n(t)|n(t)]

∂η2
i (t)

∣∣∣
ηi(t)=η∗

i (t)
≥ 0. Hence, η∗i (t) is the

global minimum point. Considering ηi(t) ∈ [0, 1], the optimal
solution is given by:

η̂i(t) = max {0,min {η∗i (t), 1}} , i = 1, 2, ..., I. (44)

Note that although problem P4 and P5 are solved optimal-
ly, the solutions obtained in Eq. (38) and Eq. (44) may not be
the optimal ones to P3 for the existence of the coupling term.
Therefore, we provide an iterative algorithm for finding the
optimal solutions for P3. Our solution is detailed in Algorithm
3. Since both the subproblems, e.g., problem P4 and P5, are
solved optimally, Algorithm 3 is guaranteed to converge to the
optimal solutions to problem P3 with a complexity order of
O(IL), where L is the number of iterations, which is usually
far less than I .

V. SIMULATION RESULTS

In this section, we provide numerical results for character-
izing the proposed algorithms. We assume that all the UAVs
in I FANETs are randomly distributed in a circular area with
a radius of R and hover at a height of H. We assume urban
environment with ϕ = 11.95 and φ = 0.14 [5]. The path
loss coefficients are ξ1 = 7 × 10−5, ξ2 = 3.5 × 10−5 and
the path loss exponent is α = 2. The mean and variance of
the Gaussian random signals are set to be µ1 = µ2 = 8
and σ2 = 5, respectively. Hence the k-factor of the Rician
fading channel is µ1

2+µ2
2

2σ2 = 12.8. The power of AWGN
is N0 = Bn0, where n0 = −174 dBm/Hz is the AWGN’s
power spectral density and B = 10 MHz is the bandwidth
allocated to each FANET. The SNR threshold is set to β = 5
dB. For each FANET, the length of one time slot is 30 ms,
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Fig. 3. Energy consumption (calculated by Eq. (20)) of different gateway
selection schemes versus the number of UAVs.

and we assume that Ai,min = 10, Ai,max = 100. Moreover,
Ai(t) is uniformly distributed within the range of [10, 100].
The number of bits that a packet contains is K = 5000 and
the maximum number of retransmission rounds of the ARQ
scheme is N = 8. Additionally, let κ = 10−27, L = 3× 106,
nmax = 1010 and C = 10−20.

A. Performance of Gateway Selection Scheme

Since the transmission energy and transmission time are
related to the link quality, e.g. the outage probability, which
further depends on the UAV’s transmit power and hovering
altitude, we first explore the interaction between them. The
corresponding results are shown in Fig. 2. It is observed
from Fig. 2 that as expected, the outage probability decreases
with the transmit power. Moreover, it is also observed that
the outage probability first decreases and then increases with
the hovering altitude. This is plausible because when the
hovering altitude increases from a low height, the probability
of LoS links is increased. However, when the hovering altitude
exceeds a certain height, the path loss increase outweights
the gains brought about by having more LoS links. This
phenomenon indicates that the hovering altitudes of UAVs has
to be carefully designed for maximizing the channel gain.

We then evaluate the performance of the gateway selection
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Fig. 4. Required transmission time (calculated by Eq. (17)) of different
gateway selection schemes versus the number of UAVs.

scheme described in Algorithm 1. Without loss of generality,
we highlight the performance of a single FANET in one time
slot. We assume that the horizontal distances between the
AP and UAVs are randomly distributed between [150, 200] m
and the hovering altitudes are randomly distributed between
[200, 300] m. The energy of the UAVs’ batteries are randomly
distributed within [5000, 8000] mAh with an output voltage of
15 V. The energy threshold and time thresholds are 4500 mAh
and 30 ms, respectively. The hovering power of the UAV is
40 W, while the transmit power is randomly distributed within
[0.5, 0.8] W. The results are averaged over 500 simulation-
s. The required transmission energy1 and transmission time
performances are characterized in Fig. 3 and Fig. 4. The per-
formances of our proposed energy-optimal gateway selection
scheme and of other schemes, i.e. of the time-optimal scheme
and of the greedy scheme, are also compared at the same time.
Specifically, the time-optimal scheme selects the specific UAV
that needs the lowest transmission time as the gateway, while
the greedy scheme randomly chooses a UAV that satisfies
the energy and transmission time constraints considered. It is
shown in Fig. 3 and Fig. 4 that our proposed energy-optimal
scheme consumes the least energy, while the time-optimal
scheme requires the least transmission time. Moreover, the
performance of the greedy scheme falls somewhere in be-
tween. When jointly considering both the energy consumption
and transmission time, our proposed energy-optimal scheme
consumes nearly 10 mAh lower energy than that of the other
two schemes at the cost of less than 2 ms higher transmission
time than that of the time-optimal scheme. This is beneficial in
the context of a battery-constrained environments. Therefore,
our proposed scheme is superior to other two schemes.

B. Performance of Task Scheduling and Resource Allocation
scheme

This section analyzes the performance of the proposed
task scheduling and resource allocation scheme described in

1The energy consumption is represented by the electricity consumption in
our simulations, they can be mutually transformed since the output voltage
and the length of one time slot are known as given parameters.
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Fig. 5. The convergence of the bisection search process in Algorithm 3
parameterized by different number of FANETs.
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Fig. 6. The convergence of Algorithm 3 parameterized by different number
of FANETs.

Algorithm 2 and Algorithm 3. In Fig. 5, we first characterize
the convergence of the bisection search process described in
the inner loop of Algorithm 3. The convergence of the outer
loop of Algorithm 3 is shown in Fig. 6, where we set the
control parameter of the drift-plus-penalty function in Eq. (30)
as V = 500. Fig. 5 shows that the bisection based search finds
the optimal solutions of P4 within 15 loops at a relative error
below 10−10. It is much faster than solving P4 using other
optimization algorithm considering the huge region of search.
Additionally, it can be inferred from Fig. 6 that given a set of
randomly generated η0(t), Algorithm 3 is capable of achieving
convergence in as few as 2 steps. Moreover, increasing the
number of drones in the FANETs has almost no influence
on the rate of convergence. Therefore, our algorithm achieves
fast convergence at a lower computational cost compared to
solving P3 using interior-point methods.

Fig. 7 shows the time-averaged power consumption of task
execution and the average queue length per user versus the
control parameter, where we set I = 10. The results are
averaged over 100 time slots. It can be observed that the time-
averaged power consumption decreases upon increasing V ,



11

0 2 4 6 8
Control parameter V

×104

0

10

20

30

40

50

60
T

im
e-

av
er

ag
ed

 p
ow

er
 c

on
su

m
pt

io
n

(a)

0 2 4 6 8
Control parameter V

×104

200

300

400

500

600

700

800

900

1000

T
im

e-
av

er
ag

ed
 q

ue
ue

 le
ng

th
 p

er
 u

se
r

(b)

8

×104

0.2
0.4

Fig. 7. Time-averaged power consumption (calculated by Eq. (23)) and queue
length (calculated by Eq. (24)) versus the control parameter.
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Fig. 8. The time evolution of the ratio of packets processed in the edge
cloud (calculated by Eq. (43)) parameterized by different packet arrival rates.

and converges to the minimum value, when V is sufficiently
large. By contrast, the average queue length per user increases
with V and also converges, when V is sufficiently large. It can
be explained that when V is sufficiently large, the optimal
ratio of packets processed in the edge cloud tends to be a
constant, so do the time-averaged power consumption and
time-averaged queue length. These results quantify the tradeoff
between the power consumption and execution delay, adjusted
by the control parameter V .

The time evolution of the ratio of packets processed in
the edge cloud ηi(t) parameterized by the packets arrival
rates is shown in Fig. 8, where we assume that there are
I = 4 FANETs and the packet arrival rates of the FANETs
in each time slot is fixed to [A1(t), A2(t), A3(t), A4(t)] =
[20, 40, 60, 80], V is set to be 4000. It is observed that our
scheme tends to off-load more packets to the edge cloud for
higher arrival rates. Specifically, all of the packets will be off-
loaded to the remote cloud when Ai(t) = 20. Moreover, less
packets will be off-loaded to the edge cloud, as time passes.
The reason is that the queue length grows with the passage of
time, thus more packets will be sent to the remote cloud to
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Fig. 9. The performance of average power consumption (calculated by
Eq. (23)) and the system’s queue length (calculated by Eq. (24)) both with
and without the assistance of the remote cloud.

strike a power-vs-delay trade-off.
Fig. 9 depicts the comparison of the average pow-

er consumption versus the queue length of systems be-
tween the scenarios operating both with and without
the remote cloud. Here we set I = 10 and V ∈
{50, 100, 200, 300, 400, 500, 1000, 2000, 4000}. It is shown
that in general, the average power consumption decreases with
the average queue length for both systems. Therefore, it is
necessary to carefully select a suitable V value to balance the
power consumption vs execution delay. Moreover, the decay-
rate of the power consumption operating without without the
remote cloud is more rapid than that of the system relying on
the remote cloud, which indicates that the control parameter
has more substantial influence on the system without the
remote cloud. Additionally, more power is consumed by the
system without the remote cloud, while leading to longer
delays. This is because the edge cloud cannot stabilize its task
buffers, due to its limited computational capacity, if it is not
assisted by the remote cloud. In this case, Fig. 9 confirms the
superiority of the heterogenous cloud system advocated.

VI. CONCLUSIONS

In this paper, we studied the QoS-based network association
problem of heterogenous cloud aided multi-UAV systems.
We proposed an energy efficient gateway selection scheme
for choosing the optimal UAV as the gateway in each time
slot. Moreover, we jointly optimized the task scheduling and
resource allocation in the heterogeneous cloud infrastructure.
We formulated the problem as a power consumption mini-
mization problem under specific system stability constraints.
A power-vs-delay trade-off was struck as well as an optimal
solution relying on Lyapunov optimization was designed.
Our numerical results showed that our gateway selection
scheme has a better energy consumption performance than
other schemes. Furthermore, our proposed task scheduling
and resource allocation scheme reaches the optimal solution
within a few iterative rounds and yields an improved QoS
performance. These results confirm that the heterogeneous
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cloud structure is beneficial for constructing high-performance
multi-UAV systems.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: The outage probability of data transmission be-
tween the gateway UAV u and the AP can be expressed as:

fu = Pr (SNR ≤ β)

= Pr

Pu

(
ξ1f

LoS
u + ξ2f

NLoS
u

)2
d−α
u

∣∣∣h̃u

∣∣∣2
N0

≤ β

 .

(45)
Since

∣∣∣h̃u

∣∣∣ follows Rician distribution according to Eq. (4),

the distribution of
∣∣∣h̃u

∣∣∣2 is given by the non-central chi-square
(χ2) distribution [42], whose PDF can be expressed as:

f|h̃u|2(z) =
1

2σ2
exp

[
− 1

2σ2
(z +A2)

]
I0

(
A

σ2

√
z

)
. (46)

Hence, we have:

fu = Pr

(∣∣∣h̃u

∣∣∣2 ≤ Ξ

)
=

∫ Ξ

0

1

2σ2
exp

[
− 1

2σ2
(z +A2)

]
I0

(
A

σ2

√
z

)
dz,

(47)

where Ξ = N0βd
α

Pu(ξ1fLoS
u +ξ2fNLoS

u )2
. Let z = r2, then we obtain:

fu =

∫ Ξ

0

r

σ2
exp

[
− 1

2σ2
(r2 +A2)

]
I0

(
A

σ2
r

)
dr

=

∫ Ξ

0

r

σ
exp

[
−1

2

(
(
r

σ
)2 + (

A

σ
)2
)]

I0

(
A

σ
· r
σ

)
d
( r
σ

)
= 1−Q

(
A

σ
,Ξ

)
.

(48)
This completes the proof of Proposition 1.

APPENDIX B
PROOF OF LEMMA 1

Proof: We first use Eq. (7) to deduce the upper bound
of the difference of the Lyapunov function between one time
slot and the next time slot, which can be formulated as:

L [Q(t+ 1)]− L [Q(t)]

=
1

2

I∑
i=1

[
Q2

i (t+ 1)−Q2
i (t)

]
=

1

2

I∑
i=1

[(
max {Qi(t)− µi(t), 0}+A2

e,i(t)
)2 −Q2

i (t)
]

≤ 1

2

I∑
i=1

[
A2

e,i(t) + µ2
i (t)− 2Ae,i(t)µi(t)

]
−

I∑
i=1

[Qi(t) (µi(t)−Ae,i(t))].

(49)

For any Q ≥ 0, µ ≥ 0, A ≥ 0, we have:

(max {Q− µ, 0}+A)
2 ≤ Q2+µ2+A2+2Aµ−2Q(µ−A).

(50)
Thus, by computing the conditional Lyapunov function ac-
cording to Eq. (29) and adding the penalty item of V ·
E [P (t)|Q(t)], we can achieve the upper bound in Lemma 1.
This completes the proof of Lemma 1.
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(FANETs): A survey,” Ad Hoc Networks, vol. 11, no. 3, pp. 1254–1270,
May 2013.

[8] O. K. Sahingoz, “Networking models in flying ad-hoc networks
(FANETs): Concepts and challenges,” Journal of Intelligent & Robotic
Systems, vol. 74, no. 1-2, pp. 513–527, Apr. 2014.
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