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We often want to learn about physical processes that are described by complex nonlin-
ear mathematical models implemented as computer simulators. To use a simulator to
make predictions about the real physical process, it is necessary to first perform calibra-
tion; that is, to use data obtained from a physical experiment to make inference about
unknown parameters whilst acknowledging discrepancies between the simulator and
reality. The computational expense of many simulators makes calibration challenging.
Thus, usually in calibration, we use a computationally cheaper approximation to the
simulator, often referred to as an emulator, constructed by fitting a statistical model to
the results of a relatively small computer experiment. Although there is a substantial
literature on the choice of the design of the computer experiment, the problem of de-
signing the physical experiment in calibration is much less well-studied. This thesis is
concerned with methodology for Bayesian optimal designs for the physical experiment

when the aim is estimation of the unknown parameters in the simulator.

Optimal Bayesian design for most realistic statistical models, including those incor-
porating expensive computer simulators, is complicated by the need to numerically
approximate an analytically intractable expected utility; for example, the expected
gain in Shannon information from the prior to posterior distribution. The standard ap-
proximation method is “double-loop” Monte Carlo integration using nested sampling
from the prior distribution. Although this method is easy to implement, it produces
biased approximations and is computationally expensive. For the Shannon information
gain utility, we propose new approximation methods which combine features of impor-

tance sampling and Laplace approximations.

These approximations are then used within an optimisation algorithm to find optimal
designs for three problems: (i) estimation of the parameters in a nonlinear regression
model; (ii) parameter estimation for a misspecified regression model subject to discrep-
ancy; and (iii) estimation of the calibration parameters for a computational expensive
simulator. Through examples, we demonstrate the advantages of this combination of

methodology over existing methods.
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Chapter 1

Introduction

Engineers and scientists increasingly use deterministic computer models, referred to
here as simulators, to study actual or theoretical physical processes that would other-
wise be very difficult to analyse. There are many examples of scientific and technolog-
ical developments that use simulators to reduce or replace costly or infeasible physical

experimentation. Two examples are:

e When designing an aircraft wing, computational fluid dynamics models are used

in order to calculate the air flow over a wing (Forrester, 2010).

e In drug development, molecular modelling is an important part of exploring,
describing and predicting properties of potential drug candidates (Norrisa et al.,
2000).

A simulator is often an implementation of a complex mathematical model that maps
several input variables to a (possibly multivariate) output. The resulting computer code
is typically expensive in terms of computer time to run. Hence, only small number of
runs can be performed at particular combinations of values of the input variables. Sacks
et al. (1989) proposed the construction of an emulator or a surrogate model, specifically
a Gaussian process model, which approximates the simulator but is much faster to run.
This approach is now commonly used to predict the output of the simulator at untried
input combinations. It is often described as a ‘black box’ method, meaning that it
makes no use of information about the mathematical model, except knowledge of the
outputs for the simulator runs that have been performed. In this thesis we focus on

simulators of a process for which some limited physical experimentation is also possible.

To use a simulator to make predictions, it may be necessary to first perform calibra-
tion, that is, to use physical data to estimate the values of any unknown simulator
parameters, whilst also acknowledging possible discrepancies between the simulator
and reality (Kennedy and O’Hagan, 2001). In order to combine simulator evaluations
with the physical data, the simulator is considered as a biased version of the true mean

response (Brynjarsdottir and O’Hagan, 2014).



The computational expense of the simulator makes calibration challenging. The sim-
ulator output is only known for the few combinations of input values that have been
run, and for other input combinations we are uncertain about the value of the simulator
output. We are also uncertain about the form of the (unobservable) model discrepancy.
In their seminal paper, Kennedy and O’Hagan (2001) proposed that both these sources

of uncertainty may be represented by independent Gaussian processes.

The Kennedy-O’Hagan approach has received considerable attention in the literature
(e.g. Higdon et al., 2004; Reese et al., 2004; Bayarri et al., 2007b; Bayarri et al., 2007a;
Gramacy and Lee, 2008; Wang et al., 2009; Wilkinson, 2010; Gramacy et al., 2015;
Storlie et al., 2015; Arendt et al., 2016). It has been used in a variety of applications
including hydrology, radiological protection, cylinder implosion and climate prediction
(see Williams et al., 2006; Murphy et al., 2007; Higdon et al., 2008; Han et al., 2009;
Goh et al., 2013; Leatherman et al., 2014). In this thesis, we also follow the Kennedy-
O’Hagan approach.

1.1 A statistical model for calibration

In the calibration problem we have two groups of inputs to the simulator; the con-
trollable variables, or inputs, x = (z1,... ,:cql)T, x € X' C R?% and the calibration
parameters, @ = (01,...,0,,)", @ € ©. The controllable variables, x, can be controlled
and set both when observing the physical process and when running the simulator. The
calibration parameters, 8, can only be set when running the simulator, whose output is
denoted as 7(x, 0). The calibration parameters are assumed to take fixed but unknown
values 6P € O for all physical observations (Higdon et al., 2008). The aim of calibration

is to learn 6P to describe the physical observations.

For the physical experiment, let y; denote the response from the ith run made un-
der settings x; of the controllable variables (i = 1,...,n). We consider the following

statistical model:
yi = C(xi) +ei = pn(xi, 07) +ogr(x;) + &5, i=1,...,n. (1.1)

Above, p € R is an unknown regression parameter, and the discrepancy function, dgr (x),
encodes the difference between the simulator evaluated at the ‘true’ 7, n(x, 7), and the
mean, ((x), of the physical process. We assume &; ~ N (0, 02) are independent. Usually
dor(-) is a nonzero function because the simulator is built under certain assumptions
that might not be true in real life and hence the physical observations might differ from

the simulator output.

In addition to the physical data, we have a limited number of simulator runs from a
computer experiment:

zj =n(x5,67), j=1,...,m, (1.2)



where for the jth run of the computer experiment xj denotes the vector of settings
of the controllable variables and 65 denotes the vector of settings of the calibration
parameters. In the Bayesian framework of Kennedy and O’Hagan (2001), calibration is
performed using (1.1) and (1.2) by first placing appropriate prior distributions on 67,
dor(x), and n(x, 0) (Gaussian process priors are typically used for dgr(x) and 7(x, 0);
see Section 2.2). A posterior distribution for 6? is then formed by conditioning on

Y1, -+, Yn and 21, ..., 2m,. For more details see Chapter 6.

The Kennedy-O’Hagan framework has long been known to suffer from an identifiability
problem, which we now explain. Underpinning (1.1) is the idea of writing the mean of

the physical process, ((x), as

((x) = pn(x,0") + dor (x). (1.3)

At first glance, given ((x), (1.3) appears to define both 67 and the discrepancy function
dgr(x). However, in fact this is not the case. Given a different arbitrary choice of

calibration parameters, 8’ € ®, we can find a corresponding function

do (X) = C(X) -p U(Xa 9/)7

that satisfies
C(x) = pn(x,8)+ o (x),

and so (1.3) does not define 87 and dgr(-) uniquely. In other words, without further

conditions, 67 and dgr(-) are not identifiable from the physical process.

Bayarri et al. (2007b) argue that despite this identifiability problem the Kennedy-
O’Hagan approach is still effective because the prior distributions on 6P and dgr(x)
ensure that the posterior distributions are well-defined, and so predictions can still be
made. Nonetheless, more recently several authors have continued to seek a resolution of
the identifiability problem by more carefully considering how to define the ‘true’ values

of the calibration parameters. We discuss some of these ideas below.

First, note that if the assumed simulator were true then there would be no discrepancy,

dgr(x) = 0, and hence there would exist a ‘true’ 67 for which

((x) = n(x,6"), (1.4)

for all x € X. However, if the simulator is not correct, which is usually the case,
Equation (1.4) cannot hold.

When dgr (x) is not equal to zero for all x € X, a common approach to achieve identi-
fiability of the calibration parameters is to redefine the ‘true’ parameter values, 67, as
those that minimise the ‘distance’ between the mean of the physical process and the

simulator output. For calibration, typically the Ly norm has been used (Tuo and Wu,



2016), giving
0" = argmin/ [C(x) — n(x, 0)]2dx. (1.5)
X

0cO
For a deterministic physical process, Tuo and Wu (2016) defined the following estimator

for these Lo-best calibration parameters:

0" = arg ggg/x[f(X) —n(x,0)%dx,

where ¢ (x) is the mean of a Gaussian process fitted to the physical data (Chapter 2).
The estimator 67 is consistent for 7 in the sense that as the number of physical runs
n becomes larger and the design becomes more dense on X, 6” tends to 6. Also, CA (x)
converges at an optimal rate to n(x,0). This framework was extended to stochastic
physical systems by Tuo and Wu (2015).

Defining the ‘true’ 6”7 as given in (1.5), Plumlee (2017) showed that the discrepancy
function dgr(x) is orthogonal to the gradient of the simulator n(x, ), and suggested
the use of a Gaussian process prior on dgr(x) that respects this orthogonality property.
This can be achieved through the use of a Gaussian process prior on dgr(x) with an
appropriate covariance function, giving an approach known as Bayesian Lo-calibration.

Orthogonality of dgr(x) and w can be demonstrated as follows.

Taking the first derivative with respect to 6 for Equation (1.5) at 6P gives:

0 2 _ on(x,0) B
e R Y G R e T
and as dgr(x) = ((x) — n(x, 67), this implies,
on(x, 0)
— Ogr —_— dx =0, 6
/x o) 59|, X (1.6)

establishing the orthogonality result.

Gu and Wang (2018) criticised the above orthogonality condition as (1.6) can hold for
any local minimum or even maximum. This orthogonality condition is necessary for
minimising the Lo norm but is not sufficient. The Lo norm used for calibration may
have multiple turning points, i.e. multiple points where the derivative is zero. They
proposed an alternative prior for the discrepancy function, known as a scaled Gaussian
process, which does not impose orthogonality. Instead, a prior distribution is placed

on the Ly norm of dgr(-) that penalises large discrepancy functions.

In this thesis, we construct Bayesian optimal designs under the original Kennedy-
O’Hagan framework, without imposing orthogonality through the prior for dgr(-) (see
Section 6.3). However, we briefly return to the topic of Bayesian Ly calibration in
Section 7.2.2.



Calibration can also be performed using a frequentist approach. Loeppky et al. (2006)
introduced a likelihood alternative to the Bayesian methodology for estimating un-
known parameters. This approach involved finding the values of the unknown calibra-
tion parameters that maximise the likelihood of the simulator and physical training
data. Joseph and Melkote (2009) considered a parametric form of the discrepancy
function. Wong et al. (2017) formulated a nonparametric model for the discrepancy
function and used the L2 norm (1.5) to define the ‘true’ calibration parameters, and

estimate these by
R 1 & 9
6= in — ; — 5, 0)} .
arg Imin — ;1 {vi —n(x:, 0)}

They estimated dgr(-) by applying a nonparametric regression method to {x;,y; —
n(xq, é)}, i=1,...,n, to deal with identifiability issues.

As an alternative to Kennedy-O’Hagan calibration, history matching has been used with
computer simulators to obtain parameter sets that may plausibly contain 67 (Craig
et al.,, 1997; Vernon et al., 2010). The basic idea of history matching is to use the
mean and variance of an emulator of the simulator to calculate the ‘implausibility’ of
an input combination @, using the standardised difference between the emulator mean
and the physical data (Wilkinson, 2014; Oakley and Youngman, 2017). Implausible
regions of the parameter space are then ruled out, and the simulator is re-run where
‘implausibility’ is low. The emulator is then updated in the reduced parameter space,
and new ‘implausibility’ measures are calculated. History matching does not assume a
complete probability model for (1.1); in particular, no prior distribution is assumed for
the discrepancy function or the parameters. As we shall see later in this thesis, a full
probability model is needed for decision-theoretic design of experiments, leading us to

focus on the Kennedy-O’Hagan calibration framework.

1.2 Design of experiments

In calibration, data from two types of experiments inform the estimation of the statis-
tical model: the computer experiment, in which n(xz?, 0]0) is evaluated, and the physical
experiment, in which the physical observation y; is assumed to be observed at fixed and

unknown values @P. This leads to two design problems: choice of the set of values of

x{,...,xy, and 67,..., 0, at which to evaluate the simulator, and choice of conditions,
x!, ..., x5 under which to observe the physical process.

Experimental design involves the specification of all aspects of an experiment. The
choice of a design is often considered as an optimisation problem. Optimal experiment
designs are the ‘best’ designs under a specific criterion, tailored to the experimental
goals. Experimental design has been widely studied in theory and in practice, see, for
example, Atkinson et al. (2007). The decisions that must be made when designing an

experiment include which treatments, that is, combinations of values of the controllable



variables, to run, the choice of sample size, specification of the experimental units to
be studied and the choice of ranges or levels for each variable. In this thesis we address
the design of the physical experiment and choose which combination of values of the

controllable variables at which to observe the physical process.

1.2.1 Physical experiment

We define a design for a physical experiment as a set £ = [x1,Xa,...,X;,] of n points
with each x; chosen from a design space X' C R%. A n-size optimal design &* is defined
by comparison with the set = of all possible designs of size n with respect to a specific
criterion. The objective function, ¢, reflects the aim of the experiment, which is to be
maximised or minimised, and is used as the criterion for a design to be optimal in the

set =.

In the frequentist approach to design (Kiefer and Wolfowitz, 1959), many criteria have
¢ formulated as a function of the expected Fisher information matrix I(v;¢§), for pa-

rameters 1 under a statistical model with likelihood function m;(y|, £).

Definition 1.1. The expected Fisher information matriz of the parameter vector
P = (Y1,... ,wQQ)T is defined as the covariance matrix of the score function, i.e. the
variance of the gradient of the log-likelihood function, log m;(y|, &), with respect to

1. Assuming mild regularity conditions we have:

d d?
I(y;¢€) = —1 =-E(—F=1 1.
T
where, for a function f(v)), % = (5?7{1’ e %) , and dwdjl% is the matrix with ijth
2

element &pafiafwj

Common criteria include A-optimality, under which a design minimises tr[I(e); &)™
with respect to &, and D-optimality under which a design maximises log|I(t);&)| with
respect to € given v (Fedorov, 1972; Pukelsheim and Torsney, 1991; Atkinson et al.,
2007).

For nonlinear models, i.e. models that are nonlinear in the unknown parameters, or
when interest is in estimating nonlinear functions of the model parameters in a linear
model, the information matrix I(1;&) may depend on the values of these parameters.
This creates a problem for classical optimal design, as we require knowledge of the
values of the model parameters prior to designing an optimal experiment to estimate

them. There are three common approaches to address this problem.
e Locally optimal designs, using a point prior guess for ).

e Formulation of criteria that optimise some summary of a classical objective func-

tion with respect to the prior information, e.g. an average or minimax crite-



rion (e.g. Pronzato and Walter, 1985). Optimising the expectation of classical
objective functions with respect to a prior distribution is often referred to as
“Pseudo-Bayesian” and has an asymptotic Bayesian justification via a normal

approximation to the posterior distribution (Chaloner and Verdinelli, 1995).

e Fully Bayesian design (see Section 4.1) optimising a function of the posterior

density.

Often, at least some information is available prior to an experiment and hence Bayesian
methods can be very useful. In the Bayesian approach to designing experiments (e.g.
Chaloner, 1984; Miiller, 1999; Cook et al., 2008; Miiller et al., 2006; Huan and Mar-
zouk, 2013; Ryan et al., 2016) the available prior information about the parameters
is exploited. As described by Chaloner and Verdinelli (1995), the design problem is

formulated as a decision-theoretic problem (more in Section 4.1).

1.2.2 Computer experiments

We define a design for a computer experiment as a set £¢ = [(x§, 8Y), ..., (x5,,05,)] of
m choices of input combinations at which to collect simulator evaluations to build an
emulator, chosen from a design space X' x ®. An optimal design £°* of size m is defined
by comparison with the set =, of all possible designs of size m with respect to a specific
criterion. The design of computer experiments has been well-studied in the past 30
years and there is substantial literature, see for example Sacks et al. (1989), Santner

et al. (2003) and Burstyn and Steinberg (2006), that indicates its rapid development.

For the design of computer experiments two classes of designs have been considered:
the model-based and model-free approaches (see Pronzato and Miiller (2012), for an
overview). The model-based approach explicitly accounts for the statistical emulator
and is separated into designs for estimation (see Section 4.1) and designs for prediction,
e.g. selecting the design points to minimise prediction error. The model-free approach
does not make use of any assumptions about the statistical emulator (for example,
the Gaussian process prior) that will be used to approximate the simulator. The most
popular model-free approach is the use of space-filling designs (see Lin and Tang (2015)

for a recent review).

Space-filling properties are usually defined via summaries of Euclidean distances be-
tween design points (and sometimes other points in the design space). Common meth-

ods of finding space-filling designs include:

e optimising summaries of the distances between design points, i.e. geometric cri-
teria (Johnson et al., 1990)

e sampling methods including simple random sampling, stratified random sampling

and Latin Hypercube sampling (McKay et al., 1979)

e optimising statistical measures of uniformity (Fang et al., 2000).
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Figure 1.1: Example of (a) maximin and (b) minimax designs for two variables and
m = 6 points

Johnson et al. (1990) developed designs based on geometric criteria. The two main cate-
gories are: maximin- and minimax-distance designs. First we define d [(x€, 6°), (x¥, )]

to be a distance function, e.g. the Euclidean distance.

Definition 1.2. The Euclidean distance is the straight line distance between two vec-

tors w = [wy, ..., wy] T, W = [w],... ,wg]T € R? given by:
q
d(w,w') = Z(wh - wh)2
h=1

Maximin-distance criterion: a maximin-distance design £ maximises

pum(E°) = Jplind (x5, 65), (x5,,05)] -

Minimax-distance criterion: a minimax-distance design £°* minimises

Omu (£6) = (xc,ercl)l?ﬁ’x@;jﬂgfmd [(x°,6°, (x5, 0;-)} )

A maximin-distance design maximises the minimum distance between any two points
in the design. Hence, the points are spread throughout the region and no pairs of points
in the design are ‘too close’. A minimax-distance design minimises the biggest distance
from all the points in the region to their nearest point in the design. Hence, the points
cover the design region. In general, minimax-distance designs are not widely used
because they are computationally difficult to generate. See Figure 1.1 for examples of

maximin and minimax designs on [0, 1]? for two variables and m = 6.

Another approach to select the design points in a computer experiment utilises sam-

pling methods such as: simple random sampling, stratified random sampling and Latin



Hypercube sampling. In simple random sampling the m points of the design are selected
from the design region X at random, typically with respect to a uniform distribution.
However, in high dimensions this method results in poor coverage of the design space
and clustering of points. Stratified random sampling was proposed to overcome this
problem. The design region is partitioned into m equally sized strata and one point
is randomly selected from each stratum. Stratified sampling benefits from coverage
of the whole experimental region. However, it is difficult for this method to cover a
high-dimensional space. Latin Hypercube Designs (LHD) were proposed to overcome

this problem.

When the output is influenced by only a few input variables, the design points should
be evenly spaced across the projections onto these significant inputs. Latin Hypercube
designs (McKay et al., 1979) were introduced to satisfy exactly this need; to allow for
the projection of the design points into any single dimension to be equally spaced. The
design region is divided into cells with equal size and then m cells are randomly selected
satisfying the contraint that the projections of the selected cells on to each dimension

do not overlap.

McKay et al. (1979) compared the above methods of sampling, and concluded that
Latin Hypercube designs gave more accurate, i.e. lower variance, estimates of the
mean and variance of the probability distribution of the output. Latin Hypercube
designs are computationally inexpensive, easy to generate and have good projection
properties. Because of these reasons, they have become the most popular sampling
method for computer experiments. Different extensions of Latin Hypercube designs

have also been proposed.

Several authors considered combining aspects of these three methods of designing com-
puter experiments. For example, a geometric criterion can be used to find a maximin
Latin Hypercube design, see Morris and Mitchell (1995) and Santner et al. (2003, Chap-
ter 5). In addition, projection properties in higher dimensions have also been considered
(e.g. Tang, 1993; Joseph et al., 2015).

1.2.3 Combining physical and computer experiments

In the physical experiment the observations are the result of a designed experiment on
the physical process. There is little literature on this design problem, although Ranjan
et al. (2011) and Williams et al. (2011) suggested designing and running these experi-
ments in batches, updating the posterior distributions between batches and taking into
account this updated information when designing the next batch. Leatherman et al.
(2017) compared Mean Squared Error optimal designs for the combined physical and
computer experiments using a particle swarm optimisation algorithm at a grid of inputs
to find the starting design and a gradient-based quasi-Newton algorithm to search for
the optimal design. More details about these methods and their limitations can be
found in Chapter 6.



1.3 Aim and objectives

The aim of this thesis is to develop methodology for Bayesian optimal design of ex-
periments for situations where the simulator 7(x,0) does not provide an adequate
description of the mean of a system or a process, or the simulator might be expensive

to evaluate, precluding its direct use in inference.

This work differs from previous research in the area as it is the first to find fully Bayesian
optimal designs for a calibration model using the expected Shannon information gain
utility function. Previous literature has addressed the design of follow-up experiments
or locally-optimal designs. The Shannon information gain utility is combined with
the approximate coordinate exchange (ACE) algorithm (Overstall and Woods, 2017)
to construct optimal designs; we propose and use new methods, called ALIS and LIS,
for approximating the evidence m.(y|¢), on which Shannon information gain depends,
which reduce bias that might lead to overestimation of the information gain from a

design.
Specific objectives of the thesis are to:

1. review the area of decision-theoretic design, especially the numerical approxima-

tion of the expected utility;

2. develop a new methodology for approximating the evidence in the evaluation of

the expected Shannon information gain;

3. apply this methodology to approximate the expected utility for nonlinear models
and combine this methodology with an optimisation algorithm to find Bayesian

optimal designs for these models;

4. perform the first thorough comparison of several existing methods of approximat-
ing the expected Shannon information gain with the new proposed methods in

terms of accuracy, precision and computational cost;

5. develop methodology to find Bayesian optimal designs for the physical process
to enable collection of informative data that enable efficient estimation of the

parameters 6P in the calibration model;

6. apply this methodology in cases where the simulator: (i) does not provide an
accurate description of the mean; or (ii) is expensive to run or does not have an

analytical form.

1.4 Thesis Organisation

In Chapter 2 we introduce a number of key concepts for Gaussian process models

and their role in calibration. We review the Bayesian approach, which will be used

10



throughout the thesis, and present fundamental results for the Gaussian process models.
The Gaussian process allows inference about an observation at a new point, X, via
the posterior predictive distribution (Rasmussen and Williams, 2006). However, in
the most general case, this distribution is not available in closed form. Hence, we
apply Markov chain Monte Carlo (MCMC) methods in order to evaluate numerically

intractable integrals.

Chapter 3 illustrates the impact of choice of design on calibration through some simple
examples. First we introduce the Michaelis-Menten model, the estimation of which we
initially treat as a simple Bayesian nonlinear regression problem; in later examples, this
model is used as a known (i.e. computationally inexpensive) simulator in a calibration
problem. We divide the latter into two cases; a known simulator with known calibration

parameters and a known simulator with unknown calibration parameters.

In Chapter 4 we describe and apply the decision-theoretic approach to develop Bayesian
optimal designs using the expected Shannon information gain utility function (Shan-
non, 1948) and illustrate the evaluation of the expected Shannon information gain on
a simple example. A naive nested Monte Carlo scheme is the simplest approach for
approximating the expected utility, however in some cases it fails to give an accurate
approximation. For this reason several authors have proposed more sophisticated meth-
ods that both reduce the computational burden and bias. Here, we introduce additional
new methods for approximating the expected utility. In Chapter 5 we compare and
assess through examples the different methods, including our new proposed methods,
for approximating the expected Shannon information gain. We then describe the ap-
proximate coordinate exchange (ACE) algorithm for finding designs that maximise the
expected utility. We combine these methods with the ACE algorithm to find Bayesian

optimal designs.

Often the simulator 7(x, @) may not provide an adequate description of the mean, may
be computationally expensive to run, or both. We address these problems in Chapter 6
following the Kennedy-O’Hagan calibration framework. For the first problem, we find
optimal designs for the calibration model (1.1) assuming a Gaussian process prior on
the unknown discrepancy function dgr(x). For the second problem, we assume a Gaus-
sian process prior on the computationally expensive simulator 7(x, @) and find optimal
designs to collect the physical experimental data to combine with simulator runs, in
order to compute the posterior distribution for the unknown calibration parameters 67.
We find Bayesian optimal designs by combining our new methods for approximating
the expected utility with the ACE algorithm.

Chapter 7 concludes this thesis by summarising the research contributions and suggests

future research directions.
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Chapter 2

(Gaussian Processes

In this chapter Gaussian process models are described in detail and the related concepts
and methods used in this thesis are introduced. We begin by defining a Gaussian
process and discussing its properties. After a brief introduction to Bayesian inference,
we describe the Bayesian approach to Gaussian process modelling. Using results from
the literature we give formulations and derivations of the prior, posterior and predictive

distributions which are used in the following chapters.

2.1 Introduction to the Gaussian process model

Given data of the form (x;,%;), i = 1,...,n, where x; = (z;1,...,%ig )" € X and y;

denotes a response measured at a specific point x;, we assume that

yi = g(xi) + &i, (2.1)

where ¢; represents the measurement error with ¢; ~ N(0,02) independently, and the

deterministic function g(x) is unspecified.

O’Hagan (1978) used Gaussian processes to model the behaviour of an unknown math-
ematical function. We adopt a nonparametric Bayesian approach by assuming the

Gaussian process prior

9(x) ~ GP [f7(x)8,0%s(x, X ¢)] | (2:2)
where f(x) = [fo(x), f1(%X),..., fro1(x)]T is a k-vector of known regression functions,
B = (Bo,B1,...,Pr_1)T € B is also a k-vector of unknown trend parameters, 0 <

k(x,x';¢) < 1 is the correlation function, ¢ = (¢1,..., ¢4 )" € ® = (0,00)% is the

2 > 0 is the constant variance. By

vector of (positive) correlation parameters and o
nonparametric regression here we mean that the complexity of the approximating model

for g(x) increases with n.

13



The defining property of the prior (2.2) is that any finite collection of function evalua-

tions g = [g(x1),...,9(x,)]T has a multivariate normal distribution,

N [FB,0°K(9)] , (2.3)

where F = [f(x1) f(x2) ... f(x,)]" is the n x k model matrix and K(¢) is the correlation
matrix with ijth entry K(¢)i; = 6(xi,x5;0), 4,7 =1,...,n

The set of allowable correlation functions is limited by the fact that K(¢) must be
positive-definite and symmetric for any choices of [x1,...,X,] and ¢, and also because
k(x,x’;¢) =1 when x = x'. A correlation function is separable when it can be written

as a product of one-dimensional correlation functions,

K(x,X'; @) = war, 0 b)), (2.4)
where x = (z1,...,24)" and X' = (2,...,2))"

One important family of correlation functions is the powered exponential, see for exam-
ple Diggle et al. (1998), which has the form,

w(z,2’;¢) =exp [~ ||z — 2" |"], (2.5)

where 0 < v < 2 is the decay parameter, ¢ > 0 is the smoothness parameter and || - ||

denotes the Euclidean norm. We treat v as fixed and known.

Another widely used family of correlation functions is the Matern (Matern, 1960), given

by:
1

w(,:6) = g

2Vv ||z —a' || )" K, 2V ||z — 2 || ¢),

where v > 0 is the decay parameter, ¢ > 0 is the smoothness parameter and K, is the

modified Bessel function of order v.

In this thesis we will adopt the squared exponential correlation function,
wiz,a’; o) = exp [~¢ ||z — 2" |]?]. (2.6)

The squared exponential correlation function is a special case of the powered exponen-
tial correlation functions with v = 2. This correlation function is stationary' and a
decreasing function of the Euclidean distance between z and z’. It also corresponds
to the prior assumption that the model is very smooth in the sense that is infinitely
differentiable.

LA stationary correlation function is a function of x — 2/, and it is invariant to translations of the
input space.

14



Combining Equations (2.1) and (2.3) we have

y | B,0% ¢,0% ~ N(FB,0°K(¢) + 021,),

where y = (y1,...,yn)T is the n-vector of responses and I,, is the n x n identity matrix.

It is useful to reparameterise the model to make computation easier. Here we adopt

the reparameterisation

y | B,0% ¢, 7% ~ N (FB,0%[K(¢) + 7°L,]) (2.7)

2 = 02 /0? is the ratio of the noise to the process variation, known as the nugget

where 7
(Diggle and Ribeiro, 2007). From now on we will use the reparameterised covariance

matrix o?[K(¢) + 7%L,] = 0?%.

Gaussian process modelling is a Bayesian alternative for classical nonparametric meth-
ods such as splines and local polynomial regression (Rasmussen and Williams, 2006,
Chapter 6; Gramacy and Lee, 2008). In this thesis we follow a fully Bayesian approach
and the Gaussian process provides a natural description of our prior beliefs about the
function and allows us to update these beliefs using the data. In Gaussian process
modelling, conjugate prior distributions are available for some parameters to simplify

the calculations required for obtaining predictions.

In the next section we point out the relevance of Gaussian processes to calibration. We

discuss inference for the Gaussian process model in Section 2.3.

2.2 The role of Gaussian processes in calibration

When computer simulations are time consuming and very computationally expensive
to run, there is a need to find a computationally cheaper metamodel or emulator, that
can replace the simulator to some degree. The emulator provides fast prediction of the
outputs at untested input points, together with a measure of uncertainty about these
predictions. A very popular emulator, is the Gaussian process, introduced to the field
of computer experiments by Sacks et al. (1989). The Gaussian process emulator is a
flexible and adaptive non-parametric smoother /interpolator?, and can be used to gain
knowledge into the simulator over the entire design region. Tasks such as validation
and calibration, sensitivity and uncertainty analysis thus become feasible for expensive

simulators (see Santner et al., 2003 and Fang et al., 2006).

We consider the calibration model (1.1). As mentioned in Section 1.1, in this model we
have two groups of inputs but we also have two groups of responses. First we have the

outputs after running the simulator for inputs (X?,Bj‘?), j =1,...,m, and second the

2 A function f is an interpolator of the data (x;, y;) if f(2:) = yi, i = 1,...,n, and may be appropriate
if 62 =0, 1i.e. g, = 0in (2.1). A smoother is an estimate of the regression function g in (2.1) that does
not need to pass through the data points.
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observations of the physical process with inputs x, i = 1,...,n. The motivation for
the notation distinguishing of xP and x° comes from the fact that we may not use the
same values of the controllable variables that were used when observing the physical

system and when running the simulator.

Lety = [y1,...,9n|T be the vector of n responses from the physical experiment and z =
[n(x§,05),...,1(x¢,,05)]T be the outcomes of m-runs of the simulator. For simplicity

we will assume that the regression parameter is known and fixed at p = 1. We represent
prior uncertainty about both the simulator 7(x, @) and discrepancy dgr(x) by Gaussian

processes,
77(Xa 0) ~ GP (f'r’]T(X7 0)/6777 U%HW[(X, 0)7 (X,7 0,); ¢77]) ’ (28)

and also,
Sor (%) ~ GP (£ (x)Bs, 03 k5(x, X'; ¢5)) - (2.9)

Above f,(x,0) = (fJ(x,0),..., z}“,?ﬂ_l(x7 0))T and f5(x) = (f3(x),... ,f,fa_l(x))T are
the k,- and ks-vectors of known regression functions, respectively, of the Gaussian
process prior for the simulator and discrepancy. In addition, 8, = (87, 87, - - -, /Bl:;],,—l)T
and B5 = (ﬁg, 6% e 525_1)T are the corresponding parameter vectors that contain the
unknown trend parameters of the Gaussian process prior for the simulator and discrep-
ancy respectively. Further, k,[(x,0), (x',0'); ¢,] and ks(x,x’; ¢s) are the correlation
functions of the Gaussian process prior for the simulator and discrepancy respectively,
with vector of correlation parameters ¢, and ¢;. Finally, 0727 and org are the prior
emulator variance and the prior variance of the Gaussian process for the discrepancy,

respectively.

We define the (n + m)-vector v = [yT ZT]T to contain the physical data and the
outcomes of the m-runs of the simulator. The distribution of the combined vector of

responses, Vv, is:

v ’ 9p71617716(5>0—72770—§>o—21¢777¢5NN(“’szv)' (210)
Above, the prior conditional expectation of v is

Fgﬁn + Fgﬁg

, 2.11
Fog, (2.11)

Ky =

where F§ = [£,(x],07) £,(x5,07) ... £,(x0,07)]T, F§ = [f5(x}) £5(xB) ... £5(x})]T and
F;, = [£,(x7, 07) £, (x5, 65) ... fn<xfn70fn)]T-

In addition the prior conditional covariance matrix for v in (2.10) is the (n+m) x (n+m)
matrix:

T, = 0.2, + (2.12)

O’?In + U§25 0,xm ]

Om><n Ome
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Here, 35 is an n X n correlation matrix with ii'th entry rg(x?, x5 and
) Hd Y Re\X; 5 X5 Ps ),

Pp pc
277 277

%= | gy i

I

where 37 is the nxn correlation matrix with ¢'th entry r,[(x?, 67), (xL,, 07); ¢,], =1 is

the n x m correlation matrix with ijth entry ,[(x}, 87), (x5, 05); ¢,] and 297 = (Z;7)T.

The m x m correlation matrix ¥i¢ has jj'th entry /ﬁn[(x;, HJC-), (xj,, 9;,); &n).

The likelihood function for v is then given by:
_1 1 _
7Tl(V | Op)/@nv/gév 0-12770-(%7 U?) ¢777 ¢5) X |ZV’ 2 €Xp {_2 (V - IJ’V)T 2}vl (V - IJ’V)} .

The model formulation is completed by specifying prior distributions for the parameters
By, Bs, 0,27, og, og, ¢, and ¢s. Prior distributions are also required for the unknown
calibration parameters 6. Details of our choices of prior distributions for the Gaussian

process parameters are given in the examples in Chapter 6.

In the next section we discuss inference for the Gaussian process model. We return to

the calibration problem in Chapter 6.

2.3 Gaussian process inference

Now we return to the Gaussian process model and present fundamental results for

Bayesian inference and prediction.

2.3.1 Conditional prediction with known hyperparameters

In order to make predictive inference about the response, § at a new point x € X', we

need to derive the predictive distribution for the random variable § using model (2.7).

Following Banerjee et al. (2004, Chapter 2), the joint prior distribution of y and g,

conditional on all unknown model parameters 3, 02, ¢, 72, is given by,

(e = x((7) (0 F1)) e

where k(X) = [k(X,X1; @), ..., k(X,Xn; @)]" is the n-vector of correlations between the

response at each of the existing input points x; and the response at X.

Standard results for multivariate normal distributions can be used to derive the follow-

ing conditional posterior distribution

jly.B,0% ¢, 7% ~ N (ux),s%x)),
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with
px) =E(j|y.B8,0% ¢,7°) =£(%)"'B+kXx) "2 [y - Fg], (2.14)

s2(x) = var(j | y, 8,02, ¢, 7%) = 02[(1 +7%) — k(i)TE_lk(i)]. (2.15)

Equation (2.14) is the prior mean plus a weighted linear combination of the residuals
from a linear model with regressors F and coefficients 3. The weight assigned to a
residual decreases with the distance between the corresponding x; and the point x,
at which we are predicting. The smaller these weights, the closer the prediction is to
the conditional prior mean. Equation (2.15) is the prior variance minus a quadratic
form in the correlations between the response at each of the existing input points and
the response at x. The further X is from the points at which we have observed, the
smaller this quadratic form will be. Summarising, the closer X is to the points we
have observed, the more we potentially update the prior mean and reduce the posterior
variance. The further from the points we have seen, the closer we stay to the prior
mean and variance. The parameter vector ¢ controls the strength of correlation and
hence clearly influences how much the conditional prediction changes due to observing
the data, y.

2.3.2 Bayesian inference

We define 1 = (87,02, ¢",72)T as the vector of unknown hyperparameters which
belongs to the parameter space ¥ = R* x (0,00) x (0,00)? x (0,00). To obtain an
unconditional posterior predictive distribution, we integrate out these hyperparameters

with respect to their posterior density, m,(¢ | y):

(i | y) = [y rali | s ) ma(t) | y)dap.

We obtain 7,(% | y) using Bayes’ theorem to update our prior beliefs for the unknown

parameters 1 after observing data y. The posterior density for ¥ satisfies

Ta(P | y) < m(y | ¥)m(¢p), (2.16)

where 7,(1)) is the prior density and m;(y | ¥) the likelihood of the parameters given the
data. The density (1)) contains all prior information we have about the unknown pa-
rameters 1. The posterior density 7, (1 | y), the density of the parameters after taking

into account the observed data, provides inference about the unknown parameters.

A family of prior distributions is conjugate to a particular likelihood if the posterior
distribution is in the same family as the prior distribution (Raiffa and Schlaifer, 1961).
We use conjugate prior distributions for the Gaussian process variance, o2, and trend

parameter, 3, conditional on the vector of correlation parameters ¢ and the nugget 72.
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For further background on Bayesian inference, see O’Hagan and Forster (2004).

2.3.3 Prior specification

The model specification requires assignment of prior distributions to the unknown
parameters 3,02, ¢, 72. A common approach is to assume that the trend parame-
ters, B, and the Gaussian process variance, o2, are independent of the correlation

parameters, ¢, and the nugget, 72. In addition, ¢ and 72 are also independent,

(8,02, ¢, 7) = m(B | o) mp (o) (D) e (T2).

2

For the trend parameter 8 and variance o“, we can consider (conditionally) conjugate

prior distributions and assign 3 | 02 a normal distribution and ¢? an inverse-gamma

distribution,
B|o?~ N(By,o’R) and 0> ~ IG(a,b).
Therefore,
(8] o?) = — 1exp{—12<ﬂ—ﬂo>TR1<ﬂ—ﬂo>},
(2m0?)z [R |2 20
and

A b
%) = gy () e {1}

where (¢ is the k-vector of known prior means, R is a known symmetric, positive

definite k x k matrix and a,b > 0 are known hyperparameters.
The joint density for 3 | 02 and o? is given by:

m(8,0%) = m(B | 0*)my(0?)

2a+k

<o ep{ Ll - g -0 +o] . @an

o2
which corresponds to a normal-inverse-gamma prior distribution,

(B,0%) ~ NIG (Bo, R, a,b).

In later chapters, we assume exponential prior distributions for the vector of correlation

parameters ¢ and the nugget 72 to guarantee positive values.

In order to use a Gaussian process model to make predictions, the posterior distributions
of the parameters and the posterior predictive distribution are required. In the following

two sections we derive these distributions.

2.3.4 Posterior predictive distribution with known correlation param-
eters and nugget

In this section, we assume fixed and known correlation parameters, ¢, and nugget, 72,

and we derive Bayesian inference results for the Gaussian process model. We allow
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for uncertainty only in the trend parameter, 3, and variance, o2. Hence the posterior
distribution for B and o2, and the posterior predictive distribution are available in

analytical form.

The likelihood function for the model (2.7) is

m(y | B,0% ¢,7%) = —% (y —FB)'= ' (y - FB)] } . (218)

o1 OXD
(2r02)3 |52 { 20

Using Bayes’ Theorem (2.16) and the joint prior density (2.17) we can calculate the

unnormalised posterior density:

Wa(ﬂng | Y7¢)77-2) X ﬂl(y | 67027¢7T2)7rb(/670-2)

x (;) ' exp {—2;(3' ~FB)'= Ny - Fﬁ)}

1 2a2+k: +1
>< R
1 k+22a* +1

exp {5 [+ 58— B0 "R 6 - )| |

exp{ -5 |58 BIT= 8- 8 ]},

(2.19)
where
B, =(F'S'F+R ) (FTS ly + R4
%, = (F's'F+R)™
ay = a + n
2
1
bo=b+ (v = FB0)" (S +FRF) "\ (y - Fgo)|. (2.20)

The posterior density given by (2.19) corresponds to a normal-inverse-gamma distribu-
tion NIG(Bs, Xk, Gy, by ).

The expression for b, is given by the use of the Sherman-Woodbury-Morrison identity
(Harville, 2008) to establish that:

BiR By +y 'Sy - BI%.8 = [(y — FBo) (E+FRF") 'y — F&)] .

The marginal posterior distribution for 3 has density,

o0

(B |y, .7 /0 7a(B,0% | y, 6, 7%)do
o0 2a*+k 1 1
« [ lexp{gz 50-80TE B -8 40 fao?
B-B)S BB T

[1 + (2.21)

2b,
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Hence, 3 follows a multivariate t-distribution,

by
16 | Yy, ¢77_2 ~ toq, (ky,a*, a2*> , (222)
*

with 2a, degrees of freedom, mean 3, and variance afjlﬁ*.

The marginal posterior for o2 is an inverse-gamma distribution,
o |y, ¢, 7% ~ IG (a.,b,), (2.23)

following directly from the fact that the joint posterior density of 3 | 0 and ¢ condi-

tional on y, ¢ and 72 is a normal-inverse-gamma distribution.

To obtain the posterior predictive distribution for § at a new point X we use the
conditional posterior predictive distribution § | y, 3,02, ¢, 7% ~ N(u(X), s%(X)) where
w(X) and s%(X) are given by Equations (2.14) and (2.15) respectively and the conditional
posterior distribution, 3 | y, o2, ¢, 72 ~ N(B,, 02%,), from (2.19).

We can rewrite Equation (2.14) as
=\ T
:U’(X) =ay + bg/B)
where a; = k(X)TZ 1y and bg =f(%)T — k(X)TZ"'F. Hence,
Also, from the conditional posterior predictive distribution we have
§—n&) |y,B.0% ¢, 7 ~ N [0,s*(%)], (2.24)

where the variance s2(X) is given by (2.15).

The right-hand side of (2.24) does not depend on (%), and hence does not depend on
B3, and therefore § — p(X) is statistically independent of u(X) given y, 02, ¢ and 72.

Hence, given y, 02, ¢ and 72,
g =[5 —pE)]+pux),
is a sum of two independent normal random variables. Thus,
gly. 0% ¢, 7 ~ N(ji, 57),
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with:

fi. = aj + b} B,
=kX) =y + (%) - k(x)'=TF]B,
kX) TSy + f®)T - k@) TS IFEFETSTIF+R D TYETEly + R716))
= (%) -kE)'"STF)F'ETF+RT) TR
+kE)"ST 4+ ((T®) - kF) TSR ETSTIF+ R TIFTS )y, (2.25)

52 = 82(5() + bg(azﬁ*)bg
=?[(14+7%) - k)T k&) + [f(®)T - k&F) "SF][0?2,][f(%)T — k&) T2 1F)T
=2 {(1+7%) - k) '='k(x)
+f&)T -kE)'EFFTEIF+ RO (R) - k(®) TSR
=023, (2.26)

The components in the above expression of 52 are interpreted as: (a) the variability
without taking into account any information provided from the data, (b) the decrease
in variability resulting from conditioning on the data, and (c) the rise in variability as

a result of the posterior uncertainty of the estimation of 3.

The posterior predictive density is obtained by integrating out the unknown o? with

respect to its posterior distribution,

o0
(i |y, d,72) = /0 7 | y,0% by 7)m(02 | 3, s 72)dor?
_(2(1*+1)

K[H@Z;*g*f} C (2.27)

where fi, and ¥, are given by Equations (2.25) and (2.26) respectively. Equation (2.27)
indicates that the posterior predictive density for the output § at a new point X is a

univariate (scalar) ¢-distribution,

- R/
Yy ’ Yy, ¢)77—2 ~ t2q, <17N*7 CL*E*> s (228)
*
with 2a, degrees of freedom, mean i, afilfl*.

2.3.5 Unconditional inference
Unnormalised posterior density for the parameters

In practice, the values of the correlation parameters ¢ will usually be unknown. Hence,

we need to allow for uncertainty in ¢. We now consider two cases. First, 3, 02, and ¢
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are unknown, conditional on 72 and then B3, 02, ¢ and 72 are unknown. In both cases,
the posterior distribution of the parameters or the posterior predictive distribution

cannot be derived analytically.

Case 1: ¢ unknown, 72 known
As in Section 2.3.3, we assign a normal-inverse-gamma prior distribution to (3, 0?). We

also consider an independent proper prior density for ¢, giving the joint prior density,
(8, 0%, d) = m(B,0°)m(9).
By Bayes’ theorem, the marginal posterior density for ¢ satisfies:
(¢ |y, %) < 7(y | ¢.7%)m ().

Thus we require the marginal likelihood of the data, 7(y | ¢,72). This likelihood takes
the form of a t9, [n, F3o, g [E + FRFTH distribution, obtained from,

w67 = [ aly | 0% 6. 7)m(o)do?
_(2m)7 3T (ay) /°° <1>“*“
X + FRFT|2I'(a) Jo \0?

X exp {—012 B(y —FBy)?T [+ FRFT] - (y —FBo) + b] } do?

@) [, 6 -FB)T[E+FRFT) (y-Fa] "
X + FRFT|2I(a) 2
= + FRFT| 2
X 2a+n *
1+ %0y ~FB)T [2(S+ FRFT)] ' (y - Fgo)|
Hence,
> + FRFT|:
(¢ |y, 7°) L2k | (). (2.29)

b+ 3(y — FBo)T[E + FRFT]~!(y — F3)]*

In the derivation of (2.29) we have used the fact that
y | 0% ¢,7% ~ N [FBo,0? (= + FRFT)].

This can be seen as follows. First note that y | 3,02, ¢, 72 ~ N(F3,02%) and B | 02 ~
N (B, o?R). Hence,
y — F/B ’ 1870-27¢7T2 ~ N(0n7‘722)'

The right hand side does not depend on 3 and so y — F3 is statistically independent of
3 given 02, ¢ and 72. Moreover as y — F(3 is independent of 3, it is also independent
of F3, which has conditional distribution N (F3q,c?FRFT). Hence, given o2, ¢ and
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y=(y—-FB)+Fp3

is a sum of two independent multivariate normal random variables, and so is a multi-

variate normal with the claimed mean and variance.

Case 2: ¢ and 72 unknown
We assign a normal-inverse-gamma prior distribution to (3,02). We consider proper

prior densities for ¢ and 72, which we assume independent of 3 and o?:

(8,02, ¢, 7%) = mp(B, o) mp(p)mH(77).

By Bayes’ theorem, the marginal posterior density for ¢ and 72 satisfies:

77(¢77-2 ’ Y) X 7T(y ’ ¢77-2)7rb(¢77-2)'
Similar to the previous case we have that,

=+ FRFT| 2

b+ 3y~ PRI + FRET Ay~ w30

(¢, 7 | y)

In both cases the marginal posterior densities (2.29) and (2.30) are not standard dis-
tributions and hence the posterior predictive distribution 7 (7 | y) does not have an
analytical form. In the Bayesian framework, prediction is based on the predictive dis-

tribution given by:

Case 1: W(g | Y) - / W(g | Yy, ¢a 7'2)7T(¢ | y,TQ)d(pa

P

Case 2: 7(§ | y) = /0 /@ 7 | b, 7)m(hy 7 | y)deb dr.

Another problem, which is similar to the above, occurs for the marginal posterior

density 7(8 | y), which cannot be expressed analytically:

(8 y) = /0 [D /O Ta(B.0%, 6,72 | y)do? dep dr?
- /0 L 7B |y, ¢ (2 | y)dep dr’.

These integrals are unavailable in closed form and hence numerical evaluation is re-
quired. We employ sampling techniques based on Markov chain Monte Carlo methods,
which are overviewed in the next section. Alternatively, ¢ can be replaced by a point
estimate e.g. the posterior mode or maximum likelihood estimate (MLE). In Section

6.4 we use the MLE plug-in approach (see for example Bayarri et al., 2007b).
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2.4 Markov chain Monte Carlo

When performing Bayesian inference, the aim is to compute the joint posterior distri-
bution for a set of random variables. However, this is not always easy because it often
requires the calculation of integrals that are unavailable in closed form. In cases like
this, we can use sampling techniques based on Markov chain Monte Carlo (MCMC)
methods, see for example Gelman et al. (2013, Chapter 11). MCMC methods construct
a Markov chain® (©) ™M) @) . with steady state distribution equal to the pos-
terior density, m,(1) | y), of interest. The empirical distribution of the first M values,
IS .,¢(M), will then converge to (¢ | y) as M — oo. A good approximation
to m4(¢ | y) is obtained by running the chain for large finite M. There are general

procedures for constructing Markov chains to match any 7,(v¢ | y).

The chain is initialised with starting values, ¥(?). The Markov property specifies that
the distribution of (1 given all previous draws, (1 | 4@ (=1 depends

only on the most recent value drawn (%),

2.4.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Metropolis et al., 1953 and Hastings, 1970) enables

sampling from an essentially arbitrary target distribution. It proceeds as follows.

The first step is to initialise the chain with starting values ¥(? for the random variables.
Let the current state of the chain be ¥(). The main loop of the algorithm consists of
three components: generate a sample from a proposal density ¢, compute the acceptance
probability, «, and accept or reject the candidate sample with probability «, or 1 — «,
respectively (see Algorithm 1). In practice, we must allow some burn-in* time to let

the empirical distribution of the chain become close enough to the target distribution.

Note that because the posterior density appears in both the numerator and the denom-
inator of the acceptance ratio « as given in Algorithm 1, we only require an expression

for the unnormalised density.

The Metropolis-Hastings algorithm is a general approach for sampling from a target
density, in our case m,(¢ | y). However, it requires the specification of a proposal
density, which must be chosen carefully. The acceptance rates, which depend on the
proposal distribution, must be continuously monitored for low and high values. The
efficiency depends crucially on the scaling of the proposal density. If the variance of

the proposal is too small, the acceptance rate will be high but the Markov chain will

3 We construct a sequence of random variables {¢(O), ¢(1), 1,1,'(2)7 ...}, such that at each time t > 0,
the next state 91 is sampled from a distribution f(z/i(t“) |'¢(t)) which depends only on the current
state of the chain (). This sequence is called Markov chain, and f(- | -) is called the transition kernel
of the chain (Gilks et al., 1996, Chapter 1).

4Burn-in is the procedure of throwing away some iterations at the beginning of an MCMC run.
Inference is based on the assumption that the distribution of the simulated values %@, for large
enough i, are close to the target distribution, 74 (¢ | y).
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Algorithm 1: Metropolis-Hastings algorithm

Choose initial values for the chain, ),
for :=1,2,...,M do
Propose: 9" ~ g(¢* | (7))

it * 1 =D — mi gD )ma (3 |y) }
Acceptance probability: a(¢* | 9 ) = min {1, T [T D) (D5

Sample u ~ Uniform(0, 1)
if v < a then

| Accept the proposal: 9@ « a*
else

L Reject the proposal: 1) < qp(i—1)

converge slowly since all its increments will be small. Conversely, if the variance is
too large, the Metropolis-Hastings algorithm will reject too high a proportion of its
proposed moves and the chain will become ‘stuck’ at particular values of ¥. A high
acceptance rate does not necessarily indicate that the algorithm is behaving satisfac-
torily. Also, a low acceptance rate does not mean that the chain explores the entire
support of the target distribution. Roberts et al. (1997) recommended for random walk
algorithms (Gilks et al., 1996) the use of distributions with acceptance rates close to i

for models of high dimension and equal to % for the models of dimension 1 or 2.

As in many MCMC methods, the draws are regarded as a sample from the target
distribution only after the chain has passed the burn-in time and the effect of the fixed
starting value has become so small that it can be ignored. The convergence occurs

under mild regularity conditions such as irreducibility® and aperiodicity.®

2.5 Summary

In this chapter we introduced a number of key concepts for Gaussian process models
and their role in calibration. We also reviewed the Bayesian approach which will be
used throughout this thesis. For conjugate prior distributions for the trend and variance
parameters, we define the posterior and predictive distributions, when the correlation
parameters and the nugget are either known or unknown. Last, we introduced MCMC
methods that we will employ in the next chapter in order to evaluate numerically

intractable integrals.

5Given suitable technical conditions, for each x there exists a positive integer n such that P™(z, A) >
0, where P"(z, A) = P[X,, € A| Xo = z] and A is any measurable set. In this case we say the chain is
irreducible.

STf the transition kernel (see Footnote 3) has density f(- | -), a sufficient condition for aperiodicity is
that f(- | z) is positive in a neighbourhood of z, since the chain can then remain in this neighbourhood
for an arbitrary number of times before visiting another set A.
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Chapter 3
The impact of choice of design

In this chapter we illustrate, through examples, the impact of the choice of design in
calibration. In the first section we introduce the Michaelis-Menten model, the estima-
tion of which we treat as a Bayesian calibration problem. We start by discussing the
choice of prior distributions and write down the posterior distribution for the model
parameters. We then assess the differences in posterior inference from a small number

of designs.

In the second example of this chapter, we assume the simplest case of the calibration
model (1.1) where there is no random error, with the simulator being the Michaelis-
Menten model with fixed calibration parameters 6] and 5. We find the posterior
distribution for the discrepancy function, dgr(x), given data from a simulated physical
process, with dgr(z) being a sinusoidal function. Lastly, we consider different designs

in order to see how the choice of the design affects uncertainty in the predictions.

Taking a step further towards the analysis of the calibration model (1.1), in the third
example we assume that the simulator is again known but with unknown calibration
parameters 8P. Again the simulator is the Michaelis-Menten model. We also assume
a Gaussian process prior for the discrepancy function dgr () and implement Bayesian
inference assuming prior distributions for the unknown calibration and correlation pa-
rameters. We then illustrate the impact of choice of the design by finding the posterior

predictive distributions for different designs.

3.1 Michaelis-Menten model

The Michaelis-Menten model (Michaelis and Menten, 1913) is a nonlinear model that
has been used in many applications (Bates and Watts, 1988, Chapters 2 and 3), for
example in modelling enzyme kinetic data (Cornish-Bowden, 1995). The Michaelis-
Menten model is also used in compartmental models to model the rate of flow from one

compartment to another.
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We will consider the Michaelis-Menten equation of the form:

911‘
92 + x’

n(z,0) = x € [0,00), 01,62 >0, (3.1)
with 62 known as the Michaelis-Menten constant. In the enzyme kinetic context, n(z, 6)
is the reaction velocity, 81 is the maximum velocity of the reaction, x is the concentra-
tion of a substrate, and s is the half-saturation constant; that is, the value of x where

n(x, @) achieves half its maximum value (Lopez-Fidalgo and Wong, 2002).

There are several methods proposed in the literature in order to estimate the parameters
0 of the Michaelis-Menten model. The majority of these methods are based on nonlinear
least squares or on transformations of (3.1) to a linear relationship and application of
linear regression techniques (Bliss and James, 1966; Glick et al., 1979; Currie, 1982).
Raaijmaakers (1987) gave arguments supporting the use of maximum likelihood for the

estimation of these parameters in the Michaelis-Menten model.

Designing experiments for the Michaelis-Menten equation has also been studied in the
literature (see for example, Duggleby and Clarke, 1991; Boer et al., 2000). To overcome
the dependence on the values of the unknown model parameters of locally optimal de-
signs, Song and Wong (1998) proposed Bayesian optimal designs. They constructed
Bayesian D-optimal designs (see Section 4.1.1) when the variance of the response de-
pends on the independent variable. A Bayesian approach is applied to find an optimal
design, by taking into account the prior information about the variance structure, and
solve the problem of this dependence being only partially known. Dette and Bieder-
mann (2003) found maximin D-optimal designs; that is designs that maximise the

1

minimum of the D-efficiencies” over a certain interval for the nonlinear parameter.

In this thesis, we will concentrate on estimating the unknown parameters by taking a
Bayesian decision-theoretic approach (see Section 4.1). Initially, we assume the statis-
tical model:

yi =n(x;,0)+e, i=1,...n. (3.2)

Here, y; is the response measured at a specific point z;, and ¢; is the random observa-

tional error, where ; ~ N(0,02) independently.

The likelihood function is given by:

2 o\_n _ o 144
m(y | 0,02) = (2moZ)” 2 exp{ —203 ;:1 [(yz ot 551) ] } , (3.3)

with y = (y1, ... ,yn)T the vector of responses.

!The D-efficiency of a design £ is

o (116;9) | \7e
eﬂ(g’g)‘(uw;e)l) ’

where I(8;¢) is the Fisher information matrix, £* is the D-optimal design and 8 = (01, ...,60,,)T € ©.
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3.1.1 Example

We assume the statistical model (3.2), where n(x, ) is the Michaelis-Menten model
(3.1). The aim of this section is to demonstrate the impact of choice of design for the
Michaelis-Menten equation. We generate six different designs, each with seven points,
and estimate the unknown parameters 61 and 6> for each design. To generate the data
we assume 07 = 0.15 and 6 = 50 (values taken from Berthouex and Brown, 2002,
Chapter 35).

Prior specification

We assume uniform prior distributions for the unknown parameters 6 = (0y,62)7,
01 ~ Unif[a, b1] and 6 ~ Unif[ag, be], by > a1 > 0, and, b > ag > 0,

with a; = ag = 0 and b; = by = 200. These priors where chosen to have support that

includes point estimates from a literature data set 2.

We assume an inverse-gamma prior distribution for the error variance, o2:

02 ~1G(a,b), a,b >0,

with

n n
a=g and b:§S[2),

where S? is the mean of the squared residuals from a nonlinear least squares fit of the
Michaelis-Menten equation to literature data (see Footnote 2) and n is the number of

design points. For the given data we have n = 7 and S5 = 1.24 x 1074,
The joint prior density is given by,

I(al < 64 <b1)I(a2<02 <bg)
b1 — a1 by — a9

77(,(0,03) x

(02)~* D exp {—:g} L (34)

Posterior

The likelihood function for the model (3.2) is given by (3.3). Using Bayes’ Theorem
(2.16), and the joint prior density (3.4), the posterior density is proportional to:

Wa(aaag ‘ y) X 7Tl(y ’ 070—2)71—17(070—&2‘)
o Tlax <61 < by) Iaz < 6y < by) ( 1 >a+1+3

)
UE

b1 — a1 by — a2

2The data set was taken from Berthouex and Brown (2002, Chapter 35),

(z1,...,2,)" = (28,55,83,110,138,225,375)"
y = (0.053,0.06,0.112,0.105,0.099, 0.122, 0.125) ™.
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} . (3.5)

1|1« 01z; \*
1T
X e -—— = E ; — +b
Xp{ 0? [2 1 (yl 02—|—l’i>
The marginal posterior distribution for 8 has density:

(8| y) = /0 7a(8,0% | y)do?

. I(a1 < 91 < bl)I(CLQ < 92 < bg)
(b1 — a1)(b2 — az)

2a+n
/1 2+l 1 - 012; 2
- 1> (i - 2
></o <U§> exp{ 202 [ (yl 92+x¢> i

=1

} do?

" 012, \2 —(a+3)
I(a; < 01 < by)I(ag < 02 < by) L+ dic (yi - 792+£,.>
(b1 —ay)(ba — a2) 2b

. (3.6)

MCMC implementation

In order to estimate the unknown parameters 6@ of the Michaelis-Menten model, we
will use the Metropolis-Hastings algorithm (Algorithm 1 in Section 2.4). We use the
estimated parameters from the nonlinear least squares fit of the Michaelis-Menten equa-
tion to the literature data (see Footnote 2) to initiate the chain. That is, (9§0), 950))T =
(0.153,53.665) .

At each MCMC step we propose values for 6 from a Normal distribution,
6* ~ N6V 2C), (3.7)

centred at the current iteration with

o | 00009 08333
| 0.8333 843.2804 |’

the covariance matrix for the estimators of the two parameters 6; and 6, from the non-
linear least squares fit of the Michaelis-Menten equation, scaled by a value ¢? (Laine,
2008). Following Gelman et al. (2013, Chapter 12) the most efficient proposal distri-

bution has scale,
2.4

VP’

where pg is the number of parameters. Efficiency is defined in terms of the effective

~
~

sample size,
it

Meff = Tz
T2

(Gelman et al., 2013, page 286) where p; is the autocorrelation of the sequence 6

at lag t and ng is the number of iterations after we have discarded some samples as a
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Figure 3.1: (a) The true Michaelis-Menten function; (b) The six different designs;
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burn-in. The quantity n.g gives the number of independent samples from that posterior
distribution that would yield the same Monte Carlo error as the autocorrelated Markov

chain.

Figure 3.1 (a) shows the true mean response we have assumed to generate the data for

each of the six designs given in Figure 3.1 (b).

e Design 1 (taken from Berthouex and Brown, 2002, Chapter 35) is an ad-hoc de-
sign, where most of the points are concentrated where the true expected response
is changing most quickly and some points are at the stationary part of the true

expected response.
e Design 2 is a space-filling design (see Section 1.2.2).

e Design 3 consists of five of the seven points of Design 1, with two of the points

repeated twice.

e Design 4 has all the points concentrated at the first half of the design space where

the true expected response is changing most quickly.

e Design 5 has all the points concentrated at the part of the design space within

the true expected response is stationary.

e Design 6 is again an ad-hoc design but now most of the points are concentrated
at the stationary part of the true expected response, and fewer points where the

true expected response is changing fastest.

For each of these designs we simulated a response vector y using the parameter values
(61,09)T = (0.15,50)" and 02 = 0.05. The posterior distribution for the simulated data
was then calculated using the Metropolis-Hastings algorithm with proposal distribution
(3.7). In each case, a chain length of M = 20, 000 was used with the first 5, 000 iterations

discarded as burn-in.

Figure 3.2 and Figure 3.3 are trace-plots which show the values each parameter took
during the runtime of the chain. Inspecting these plots we notice that for most designs

the chains converge to distributions centred on the true values of 8 (6; = 0.15, 62 = 50).

Figure 3.4 shows the approximate posterior densities of 1 and 0, for each of the designs.
All the posterior densities are centred at the true values (or very close to the true values)
of 01 and 65. Design 4, as expected from Figures 3.2 and 3.3, has higher posterior
variance for estimating #; compared to the other five designs. Design 4 and Design
5 have higher posterior variance for estimating o compared to the other four designs
(the posterior standard deviations for each of the designs can be found in Table 3.1).
Hence we can conclude that the choice of design is important, and that Designs 4 and

5 are not very good designs for estimating the unknown parameters for this model.
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Design Posterior st. dev.
61 02
Design 1 e 0.018 22.316
Design 2 o 0.013 22.335
Design 3 o 0.013 14.373
Design 4 0.049 38.461
Design 5 o 0.021 44.509
Design 6 0.012 23.496

Table 3.1: Posterior standard deviation of #; and 69
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Figure 3.2: Trace plots for MCMC samples of 8; for the six designs and the Michaelis-
Menten model and the true value of #; = 0.15 (red line)
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Figure 3.3: Trace plots for MCMC samples of 8, for the six designs and the Michaelis-
Menten model and the true value of 83 = 50 (red line)
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Figure 3.4: (a) Approximate posterior densities for ; for each design; (b) Approximate
posterior densities for 5 for each design; the vertical lines in each plot are the true values
of the unknown parameters (¢; = 0.15, 2 = 50)

34



3.2 Calibration model with a known simulator function

We present two simple examples to illustrate Bayesian inference for the Gaussian pro-
cess within a calibration problem. We find the posterior distribution for dg»(-) from

model (1.1) given data from a simulated physical process.

3.2.1 Example 1: known simulator parameters 6 and o2 =0

In this section we assume the calibration model (1.1) with simulator, n(z, ), the
Michaelis-Menten model described in Section 3.1. We assume the simplest case where
the ‘true’ parameters 67 of the simulator are known and fixed at #7 = 15 and 65 = 50
2

= 0. For

(see Figure 3.5). We also assume that there is no random error, i.e. o7

simplicity we fix the regression parameter at p = 1. We can rewrite (1.1) as,
yi — n(x;, ) = g (zi), i=1,...,n.
We assume a Gaussian process prior on dgp(z;) such that:
dor ~ N [0,,0°K(¢)]

where dg» = [6gr (1), - - ., dor (7,,)]T and K(¢) is the correlation matrix with ijth entry
K(¢)ij = k(xi,xj;6), 1,7 = 1,...,n. We assume a conjugate prior distribution for the
Gaussian process variance with 02 ~ IG(3,2). We choose a = 3 to ensure finite prior

variance. See Appendix C.1.1 for samples from the prior distribution on dg»(-).

We also assume the squared exponential correlation function given in (2.6),
k(x,2'; ¢) = exp [—gb (:L' - $’)2] .

Lastly, for the correlation parameter ¢, we assume the prior distribution ¢ ~ Exp(Ag),
with rate Ay, = 200, which ensures ¢ > 0. See Appendix C.1.1 for further discussion
on the choice of prior. In the Metropolis-Hastings algorithm, the proposal distribution
for ¢ will be a sliding window proposal (Gramacy and Lee, 2008; Yang and Rodriguez,
2013) of the form:

. 1
¢* | pUY ~ Unif [)\qﬁi_l, Ao@_l] . Ao > 0. (3.8)
0

Such a proposal distribution forms a window around the current value ¢, The
window width is controlled by Ay, which is a tuning parameter. This parameter )\g is
held fixed throughout the sampling; usually a sensitivity analysis must be implemented

in order to tune \g to obtain reasonable convergence.

When generating the data, we assume that the discrepancy function has the form

dgr () = v1 sin(rex). We divide this example into two cases. In the first case we assume
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Figure 3.5: The Michaelis-Menten equation 7(x, 8P) = 5%)5@6.

dgr () = 0.5s8in(0.052) and in the second case we assume dgr(z) = 0.5sin(0.1z).

Case 1: v; =0.5,15 = 0.05

The assumed physical process, ((x), in this case has the form:

_ 15z
50+

¢(x) + 0.5sin(0.05x).

In Figure 3.6 the blue solid line is the Michaelis-Menten equation and the green solid

line is the physical process ((x). The simulated data are represented as black bullets.

To approximate the posterior distribution of ¢, a Metropolis-Hastings algorithm is used
to draw a sample {qbi}gl , M = 150, 000, using the uniform proposal distribution (3.8).
Convergence is assessed via diagnostic plots. For each value of ¢ from the chain, we
calculate the predictive mean and variance of {(z) given by Equations (2.25) and (2.26)
respectively, and generate samples from a t-distribution with this mean and variance.
Then we sample realisations and calculate summaries of these. We find the median
of the realisations and the 97.5% and 2.5% quantiles around the median to obtain the

95% credible interval for ((z).

In Figure 3.7 the red line is the posterior median of the Gaussian process model, the
blue lines are the 95% probability bounds (see also Figure 3.10), the green line is the
true model and the three black lines are three realisations from the Gaussian process
posterior for ¢(z). Uncertainty is pinched to zero at the design points but as we move
away from the points uncertainty increases. Also, we notice that the posterior median

of the Gaussian process model over-smooths the true function.
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Figure 3.6: The Michaelis-Menten equation n(x,0?) = gjﬁfx (blue line), the assumed

physical process, ((x) = 5%)“:2 +0.5sin(0.05x) (green line) and the simulated data (black
bullets)
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Figure 3.7: Posterior median for {(z) (red line); pointwise 95% credible intervals (blue
lines); true model (green line); three realisations from the GP model (black lines)
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Figure 3.8: The Michaelis-Menten equation n(x, 0P) = 5%)5&6 (blue line), the true model
((z) = 5%)“:2 + 0.5sin(0.1z) (green line) and the simulated data (black bullets)

Case 2: v =0.5,15 =0.1

The assumed physical process, ((x), in this case has the form:

15z

) =572

+ 0.5sin(0.1z).

In Figure 3.8 the blue solid line is the Michaelis-Menten equation and the green solid
line is the assumed physical process, ((x). The simulated data are represented as black
bullets. The difference here is that we have a more complex function than before, which

is more ‘wiggly’ due to the different frequency of the sinusoidal discrepancy term.

As in the previous case, in Figure 3.9 the red line is the posterior median of the Gaussian
process model, the blue lines are the pointwise 95% credible intervals and the green line
is the true model (see also Figure 3.10). The three black lines are realisations from the
Gaussian process posterior for ¢(x). Again, uncertainty is pinched to zero at the design
points and increases as we move away from the points. As before, the posterior median
of the Gaussian process model over-smooths the true function. However, in both cases

the credible intervals reflect this lack of knowledge.

In Figures 3.10 (a) and (b) the red line is the posterior median of the Gaussian process
model, for Case 1 and Case 2, respectively. In both cases, the curve is a smooth line
and passes through the five data points. The blue lines are the pointwise 95% credible
intervals and make it clear that we have relatively little information away from these
five points. The uncertainty is pinched to zero at the five design points because we set
the error variance o2 = 0 in the statistical model. The green line is the true model.
Figure 3.10 (b) shows that the red line over-smooths the true function. Due to the small

number of data points, the credible intervals do not clearly show the higher frequency
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Figure 3.9: Posterior median for {(z) (red line); pointwise 95% credible intervals (blue
lines); true model (green line); three realisations from the GP model (black lines)
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Figure 3.10: Posterior median for {(z) (red line); pointwise 95% credible intervals (blue
lines); true model (green line) for (a) Case 1: ((z) = 2L 4 0.5sin(0.05z); (b) Case 2:

T 50+
((z) = 5%‘2@ + 0.5sin(0.12)
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Figure 3.11: Posterior median for {(z) (red line), pointwise 95% credible intervals (blue
line) and the true model (green line) for Case 1: ((z) = 5%)3?9: + 0.5sin(0.05z) and, (a)
a fixed value of the correlation parameter, ¢ = 10~%; (b) Plug-in approach using MLE
for the correlation parameter (c¢) the correlation parameter is estimated using MCMC

of the discrepancy function in Case 2.

The correlation parameter

The correlation parameter ¢ influences how the posterior prediction changes due to
knowing the response at the design points. In the previous section we estimated the
values of the correlation parameter by using MCMC methods (Section 2.4) and more
specifically the Metropolis-Hastings algorithm. Here we show how the results are chang-
ing by estimating ¢ using MCMC, using a fixed arbitrary value and using the maximum
likelihood estimate (MLE).

In Figure 3.11 (a) we show how the Gaussian process model approximates the true

model ((z) = 5%)?35 + 0.5sin(0.052) when using a fixed value for the correlation pa-

rameter, ¢ = 10~ Although uncertainty is negligible we can notice that there are

regions where the Gaussian process median approximates the true model very poorly
and the GP model is overconfident in an incorrect prediction. This happens because
we have chosen an inappropriate value of ¢ that assumes that the correlation between

data points decays too slowly with the difference in z.

The use of the MLE or estimating the correlation parameter ¢ using MCMC, as shown
in Figures 3.11 (b) and (c), increases the uncertainty. However, Figures 3.11 (b) and
(c) show a more realistic representation of the true function, while in Figure 3.11 (a)

the prediction intervals consistently fail to include the true function.

Design comparison

As we mentioned in Section 1.2 the choice of the design points is an important part

of the calibration problem. We illustrate an example in which we change the design
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15

Figure 3.12: Posterior median for ((z) (red line), pointwise 95% credible intervals
(blue lines), true model (green line) and the simulated data (black bullets) as we move

. . e . . 15
some design points from the initial equally spaced design, for Case 1: ((z) = 5 Tt
0.5sin(0.05z)

(a) (b) ()

Figure 3.13: Posterior median for ((z) (red line), pointwise 95% credible intervals
(blue lines), true model (green line) and the simulated data (black bullets) as we move

. . Ces . . 15
some design points from the initial equally spaced design, for Case 2: ((v) = 55 +
0.5sin(0.1z)

points from the initial design used in Case 1 and Case 2.

For the discrepancy functions given in Cases 1 and 2, we illustrate how the predictive
uncertainty changes with the design. Again in these figures, the red line is the median of
the Gaussian process model, the blue dashed lines are pointwise 95% credible intervals,
the green line is the true model and our chosen design points are shown as black bullets.
The three plots in each of Figures 3.12 and 3.13 show a sequence in which the design

points are changed.

We move some design points, from the initial equally spaced design given in Figures
3.6 and 3.8, closer together in order to learn how quickly the curve is changing and
hence learn more about the correlation parameter ¢. As the space between the points
decreases our uncertainty about ((z) between these points decreases as well, whereas
as the space between the points increases our uncertainty about ((z) between these

points increases.

41



We notice in Figure 3.12 (b) and (c) for Case 1 that the median of the Gaussian process
model adapts to shape of the true model quickly in regions with a high density of design
points, and the uncertainty is reduced. In this case, the true function does not change
very quickly and the median of the Gaussian process can learn the shape of the true
function. Similarly, in Figure 3.13 (b) and (c) for Case 2 we notice that the uncertainty
is decreased in regions with high density of design points, however the median of the
Gaussian process is still different from the true model. In Case 2 we have a more
complex function which is more ‘wiggly’ due to the different frequency of the sinusoidal

discrepancy term.

3.2.2 Example 2: unknown simulator parameters ¢6? and o2 # 0

In this section we again assume the calibration model (1.1) with simulator, n(z,8),
the Michaelis-Menten equation described in Section 3.1. However, now we assume that
the parameters of the simulator, 8P, are unknown and hence prior distributions on
these parameters are required. We assume a Gaussian process prior for the discrepancy
function dgr (), and we give an example where we find posterior predictive distributions

to illustrate the calibration problem and demonstrate the impact of choice of design.

The regression parameter is known and fixed at p = 1. We have:

yi = n(xi, 0°) + dgr(x;) + €4, 1=1,...,n,

with n(z;,0) = éfg@i and assume a Gaussian process prior on dgr (), similar to the

previous example, such that:
691’ ~ N [On)U2K(¢)] )

where dgr = [Sgr (1), . . ., 0o (5)]T and K(¢) is the correlation matrix with ijth entry
K(¢)ij = k(xi,xj56), 4,5 = 1,...,n. The random error is normally distributed with

zero mean and variance o2, &; ~ N (0, 02).

We define n = [n(x1,67),...,n(z,, )T and y = [y1,...,9,]T. Hence,
y ~ N (n,0°K(¢) + 02L,) .
The reparameterisation described in Section 2.3.3 gives that
y ~ N (n,0°%),

where 3 = K(¢) + 72I,,. More on the calibration model can be found in Chapter 6.

Prior specification

First, we specify the prior distributions for the unknown parameters as follows:
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0} ~ Uniflay, b1], 65 ~ Unif[ag, ba], o* ~1G(a,b),

¢ ~exp(Ny), 7>~ exp(A2),

with by > a1 >0, ba > az >0, a,b >0, Ay > 0 and A2 > 0. The joint prior density is
given by:

(0%, 05, 0°, ¢, 7%) = T (07) 7 (05) 0 (0% ) o () (72)
I(a1 < (91 < bl) I(ag < 92 < bg)
bl — a1 bg — a9

" (;)(QH) xp {—j;} (@ (7). (3.9)

The posterior density results from applying Bayes’ Theorem (2.16):
7-‘-0,(0;;77 95) 027 ¢’ 7-2 | y) X 7Tl(y ‘ 01177 957 0-27 (;5) 7—2)7712(911)7 0]277 027 ¢7 T2)a

where

P gp 2 2_’2|7% IR /R N
iy | 05.05,0%.07) = 2 e {0 (=l iy )

is the likelihood function (see Section 2.3.4).

We can derive the posterior distribution, the conditional marginal distributions and the
conditional predictive distributions as shown analytically in Sections 2.3.4 and 2.3.5.
However, most integrals do not have an analytical solution and, as a result, we employ

sampling techniques based on Markov chain Monte Carlo methods (see Section 2.4).

Example

To illustrate the calibration problem and demonstrate the impact of choice of design,
we find posterior predictive distributions for the model (1.1) where the simulator is

known with unknown parameters.

To simulate data, we assume 6} = 15, 05 = 50, dgs(x) = 0.5sin(0.1z) and o2 = 0.05.
We assume the GP prior model (2.9) for dgr(-) with the squared exponential correlation
function x(z,2'; ¢) = exp[—¢(z — 2/)?]. We assume a priori 6] ~ Unif[8, 24] and 65 ~
Unif[20, 85]. Figure C.3 (a) shows that we get a reasonable range of different shapes of
the expected response of n(z, ). In addition we assume o2 ~ IG(3,2), ¢ ~ Exp(200),
72 ~ Exp(15), which gives small noise-to-signal ratio. See also Appendix C.1.2 for
samples from the prior distribution of dg» (z). A Metropolis-Hastings algorithm is used
to draw a dependent sample (¢;, 72,0%), 3 = 1,..., 150,000 using proposal distributions

177

for ¢ and 72 of the form (3.8) and a normal proposal distribution for °.

We examine four different designs with different sizes, shown in Figure 3.14 (b) and
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Figure 3.14: (a) True functions n(x,0?) and ((x); (b) The four designs outlined in
Table 3.2.

outlined in Table 3.2.

e Design 1 is a two-point maximin D-optimal design. The design is found by
maximising the minimum D-efficiency over the parameter space [20, 85] (see Dette
and Biedermann, 2003).

e Design 2 is an ad hoc design with seven points. Most of the points of this design
are concentrated where the true model is changing fastest and we also have some

points at the stationary part of the model.

e Design 3 is a random Latin Hypercube design (McKay et al., 1979) with seven
points (see Section 1.2.2).

e Design 4 is a random Latin Hypercube design (McKay et al., 1979) with 25 points.

We fit the calibration model to simulated data from each design and approximate the
resulting posterior distributions for the unknown parameters 87 (Figures 3.15 (a) and
3.15 (b)), the discrepancy dgr(z) (Figures 3.16 (b), 3.17 (b), 3.18 (b), and 3.19 (b)) and
reality ((z) (Figures 3.16 (a), 3.17 (a), 3.18 (a), 3.19 (a)). There are clear differences

between the designs.
Table 3.2 holds the values of the posterior standard deviations and root mean squared

errors for the two parameters 67, 65 and the reality ((z) averaged across the design

space, for each of the four designs.
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Figure 3.15: (a) Approximate posterior density of 6} for each design; (b) Approximate
posterior density of 4 for each design

Design Posterior st. dev. RMSE

o7 05 | ¢lx) | o 05 | <)
Design 1 B 0.4482 | 7.5818 | 0.1367 | 0.4484 | 8.2457 | 0.3955
2 point maximin D-optimal
design
Design 2 A 0.6675 | 7.7606 | 0.2074 | 0.6716 | 7.7678 | 0.3629
7 point ad hoc design
Design 3 0.5657 | 8.2990 | 0.1542 | 0.8158 | 13.4297 | 0.3998
7 point Latin Hypercube de-
sign
Design 4 o 0.3961 | 6.3918 | 0.0557 | 0.4345 | 7.1979 | 0.1292

25 point Latin Hypercube de-

sign

Table 3.2: Posterior standard deviation and root mean squared errors of 67, 65 and
((x) averaged across the design space

Design 1 results in poor estimation of the discrepancy function dgr(x) as shown in
Figure 3.16 (b), and overconfidence in the predictions as can be seen in Figure 3.16 (a).
As noted by Brynjarsdéttir and O’Hagan (2014), an analysis that does not account
for model discrepancy may lead to biased and over-confident parameter estimators and
predictions. This is the case here, since the design does not take into account the
discrepancy function dgr(x). The posterior standard deviations are larger than might
be anticipated from Figure 3.15 due to the long tails of the distribution and the fact
that the estimate of 6% is biased.

Design 2 performs reasonably (see Figure 3.17 and Table 3.2). Uncertainty is small
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Figure 3.16: Design 1: (a) The true model (green line) the posterior median of ¢(z)
(red line) and 95% credible intervals; (b) Samples from the posterior distribution of the
discrepancy function dg» ()

for small values of x, where the majority of design points are placed, and the model
is able to capture the sinusoidal form of the discrepancy function. As we move to the
stationary part of the model, where we also have fewer points, the uncertainty increases
and is only pinched to zero at the design points and we have a poor estimation of the

discrepancy function.

Design 3, which makes no use of n(z, ), has the worst performance (see Table 3.2).
The bias in the posterior distribution for 8P may arise from non-identifiability. By this
we mean the difficulty of identifying the discrepancy function, dgr(+), that corresponds
to the ‘true’ values of the simulator parameters, 6P, since for any value of 8 € ® we

can find a different discrepancy function, dg(-) (see Section 1.1 and Section 7.2.2).

Lastly, Design 4, with more points, most accurately captures the high-frequency dis-
crepancy (see Figure 3.19). However, the posterior distribution for 67 is biased com-
pared to the parameter values assumed in the simulation, also a consequence of non-
identifiability (see Table 3.2).

3.3 Summary

In this chapter we gave some examples that demonstrated the importance of the choice
of design. Existing optimal designs and space-filling designs result in poor estimation
of the discrepancy function and this motivates us to find a methodology for finding
Bayesian optimal designs that will be more suitable for estimation of the unknown
parameters. We take a fully Bayesian approach by using a utility function and an opti-

misation algorithm in order to find designs for nonlinear models such as the Michaelis-
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Figure 3.17: Design 2: (a) The true model (green line) the posterior median of {(z)
(red line) and 95% credible intervals; (b) Samples from the posterior distribution of the
discrepancy function dgs ()
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Figure 3.18: Design 3: (a) The true model (green line) the posterior median of ¢(z)
(red line) and 95% credible intervals; (b) Samples from the posterior distribution of the
discrepancy function &g ()
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Figure 3.19: Design 4: (a) The true model (green line) the posterior median of ((z)
(red line) and 95% credible intervals; (b) Samples from the posterior distribution of the
discrepancy function dg» ()

Menten model (see Chapter 5) and the calibration model for known or unknown simu-
lator n(x, @) (see Chapter 6).
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Chapter 4

Methods for approximating the
expected Shannon information

gain in Bayesian optimal design

The objective of this chapter is to describe the decision-theoretic approach to develop
Bayesian optimal designs. We introduce Bayesian optimal designs that maximise the
expected Shannon information gain utility and illustrate expected utility evaluation
for the simple linear model. In general, Bayesian design is easy in principle and hard
in practice. For many nonlinear models, the expected utility will be intractable, and
involve high-dimensional integrals with respect to y, necessitating numerical approxi-
mation. Naive nested Monte Carlo is the most straightforward approximation method,
however in some cases it fails to give an accurate estimate of the expected utility. For
this reason a number of methods have been proposed to reduce the computational
burden and reduce bias. Motivated by the simple linear example, we consider several
alternative numerical methods for estimating the expected Shannon information gain.
We illustrate some of the existing improved methods and propose two further new meth-
ods, called Laplace importance sampling (LIS) and approximate Laplace importance
sampling (ALIS).

4.1 Decision-theoretic Bayesian designs

Decision theory (e.g. Berger, 1985, Chapter 1) addresses the problem of choosing an ac-
tion, a, from a set, A, of possible actions under uncertainty about a parameter, ¢ € W.
The uncertainty about 1 is typically represented by a probability distribution with
density 7(t)). The theory proposes that a should be chosen to maximise the expecta-
tion, with respect to 4, of a utility function, u(a, ), or equivalently to minimise the
expectation of a loss function. Bayesian experimental design can be viewed as a deci-

sion problem where the utility function is chosen to reflect the aims of the experiment,
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for example parameter inference or prediction.

Assume that given the design decision ¢ € = and parameter values ¥ = (¢1,...,%,,)T €
U, we will observe data y € Y arising from the probability density function m;(y|,§).
Also, we assume the parameters 1 have prior density (1)) and that we have a utility
function u(&, 1, y) quantifying performance in relation to the aims of the experiment.
A Bayesian optimal design, £* € =, maximises the expected utility U (&) = E[u(¢, ,y)],
where the expectation is with respect to the future data y and model parameters 2.
That is,

& € argmax U (§),
£eE

where

U(€) = Eu(§, ¥, y)]
—//u(ﬁ,w,Y)W(y,w\f)dydw
v Jy

- / / w(é, B y)mi(y b, €)my(3p) dydap. (4.1)
v JY

With a few exceptions, for most models, prior distributions and utility functions the
integral (4.1) does not have a closed-form solution. Thus, to find Bayesian designs,
(4.1) must be approximated either analytically, traditionally using asymptotic results
(Chaloner and Verdinelli, 1995), or alternatively using numerical methods. Since many
experiments have a small number of runs, asymptotic approximations may be inappro-
priate. Recently, progress has been made using Monte Carlo approaches to approximate
the utility (Ryan et al., 2015), which may be more accurate for experiments with few

runs. However, this raises several challenges, as we discuss in the next few sections.

For reviews of Bayesian design of experiments and related computational methods, see
Chaloner and Verdinelli (1995), Ryan et al. (2015) and Woods et al. (2017).

4.1.1 Utility functions

Bernardo (1979) discussed the choice of a utility function when the goal of the experi-
ment is inference, i.e. selection of a probability distribution that describes uncertainty

about the parameter 1. He strongly advocated the utility function

u(§, 1, y) = log ma(Ply, &) — log my(). (4.2)

He argued that, in order to encourage the scientist to be honest, the utility should

be maximised at (and only at) the posterior distribution, i.e. it should be a proper
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scoring rule!. It was shown that (4.2) is the the unique local? proper scoring rule.
Also when the purpose of the experiment is inference about % it is common to use a
utility function which can be thought of as the reduction in the surprisal® about the

true parameter value using the posterior rather than the prior distribution.

In this case, the expected utility can be shown to be equal to the expected gain in
Shannon information, or equivalently the expected Kullback-Leibler divergence from
posterior density 7, (1y, ) to the prior density (1)) (Shannon, 1948; Lindley, 1956).
A simple way to show that the expected utility is equal to the expected Kullback-Leibler

divergence from posterior to prior density is given below.

The expected utility is given by:

Bints.v.¥)) = | [ 106 S nty. wieydyau (4.3

The Kullback-Leibler divergence from posterior to the prior density is:

A [ma(aply, €)lImo ()] = Alogw

Hence, the expected Kullback-Leibler divergence is given by:

Ta(Yly, §)dep

B i braiy. )mos)) = | [ 10w ™y ety

Using Fubini’s theorem and assuming mild regularity conditions we have,

B (i braiy o)) = [ [ 1os ™ W iy, mvigpayay

// ¢\y ) (v, Y|&)dydip,

which is the expected utility as given in Equation (4.3).

In common with other authors in this thesis we work with an alternative expression for
(4.2) which can be derived using Bayes’ rule (2.16):

Ta($1y,6) _ maltbly, O7e(ylE) _ mlyleh.€)
w@w) | m@)nle) | meylE)

Hence we can replace log m,(¢|y, &) — logmp(vp) with logm(y|v, &) — log me(y|€).

! A real function u is a proper scoring rule if for each density g(-),

sup, / w(f(), )g()dep = / ),

and the supremum is only attained at g(-) (see Definition 2 in Bernardo, 1979).

2Let u be the real function that describes the utility u(f(-), %) obtained by the scientist if the density
function f(-) is reported as the final conclusion after an experiment has been performed and % is the
unknown parameter. The function wu is a local utility function if u(f(-), 1) = u(f (), ) for all values
of 1 € ¥ (see Definition 3 in Bernardo, 1979).

3The surprisal given a density f is —log f(v) (Baldi and Ttti, 2010).
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follows that

u(&,,y) = logm(y|v, §) —log me(yl€), (4.4)

where

mo(yl€) = A mi(y1, €)my(ap)dep,

is commonly called the evidence, a quantity of importance in model selection, e.g. Friel
and Wyse (2012).

This leads to the following form of the expected utility:

U(E) = Elult, ,y)]
- / / log (14, €) — log e (y]€)lm(y, w|€)dydp

/ / y"" 5) (. () dydap. (4.5)

Many authors have used the following approximation to U () justified via an asymptotic

approximation to the posterior distribution of b:

(€)= Ellog [I(3:£)[] = /W log [1(4; €)|my (), (4.6)

where I(1); £) denotes the expected Fisher information, given in (1.7), for parameters )
under the design £. Designs that maximise ¢(§) are sometimes referred to as (pseudo-)
Bayesian D—optimal designs. This expression also results from taking the expectation

of the utility function,
w(& ,y) = log|I(3; )],

which does not depend on y. The integral (4.6) can be approximated via Monte Carlo
integration, via sampling from the prior distribution for %, or numerical quadrature
(for the latter, see Woods et al., 2006; Gotwalt et al., 2009).

In some cases, the goal of the experiment may be prediction rather than parameter
inference. In this case an expected utility that quantifies the uncertainty of the posterior
predictive distribution will be adopted. Suppose that, given the responses y obtained
from design &, interest lies in predicting the response § at one new design point X. Then
an appropriate (expected) utility is the expected Shannon information gain between
the prior and the posterior predictive distribution. The prior predictive density (the
marginal density 7(7)) does not depend on the design, and so maximisation of the

expected gain in Shannon information for g is equivalent to maximisation of
— [ [ wgnaly.on(.vIe)didy, (47)
Y JYp
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see San Martini and Spezzaferri (1984) and Verdinelli et al. (1993) where

r(ily, €) = /W r (G, y)Ta(ly, €)dap

is the posterior predictive density. If convenient, we can rewrite (g, y|{) using Bayes’
theroem (2.16).

Another common utility function is the Negative Squared Error Loss, given by

q2

w(&P,y) ==Y [w — E(uly, ), (4.8)

w=1

where ¢ is the number of components of 1. Minimising the expected negative squared
error loss is equivalent to maximising the expectation of the average posterior variance

of 1 with respect to the marginal distribution of y (e.g. Overstall et al., 2018),

U(€) = E{E [u(§, 9, y)ly]} = E[-tr{var(|y, ) }]. (4.9)

As before, (4.9) may be approximated using an asymptotic normal approximation to

the posterior distribution of 1, as follows:

o(€) = —Eftr{I(:€)1}] = — /@ {1 (45 €)Yy ()

Designs that maximise ¢(&) are referred to as (pseudo-) Bayesian A—optimal designs.

4.1.2 Monte Carlo approximation of the expected utility

In this section, we focus on numerical evaluation of the expected Shannon information
gain utility U(&), given in (4.5), using Monte Carlo integration methods. An obvious

way to approximate U (&) is via

k1

- 1 3
0(©) = - Y [loemynlpn,€) — log 7], (4.10)
L=
where (¥, yn), for h =1,..., k1, are independent samples from the joint prior density

7(p,y|€), and 7" is an estimate of the evidence 7 (yp|€).

There are several existing methods for estimating the evidence in (4.10), which vary in
accuracy and computational expense. The simplest is ‘naive Monte Carlo’, discussed
in Section 4.1.3, which gives biased results. Other existing methods are Laplace ap-
proximations, discussed in Sections 4.2.1 and 4.2.2, and nested importance sampling
discussed in Section 4.2.3. A novel method is discussed in Section 4.3, and shown in

Chapter 5 to be more efficient than existing methods.

To find an optimal design, we wish to maximise U(g) The problem with all Monte
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Carlo approximations of U(§) is that yj, depends on &, for h = 1,...,k;. This means
that every evaluation of U (&) for a new ¢ requires a new sample to be generated. This
will be computationally expensive and, perhaps more importantly, U(£) will not be a
smooth function, which means that conventional optimisation algorithms cannot be ap-
plied. For low-dimensional problems (one variable and a small number of design points),
Miiller and Parmigiani (1996) performed stochastic optimisation by fitting curves to
the Monte Carlo samples, effectively conducting a noisy computer experiment to con-
struct a statistical emulator for the approximation U (£). However, for problems with a
large number of design variables this approach is computationally very expensive. For
high-dimensional design spaces, typically a very large number of function evaluations
is required to build an accurate emulator. Thus it is desirable to reduce the dimension-
ality of the problem. Overstall and Woods (2017) achieved this by using a coordinate
exchange algorithm (Meyer and Nachtsheim, 1995) to break up the optimisation in
to a sequence of one-dimensional problems. The need to emulate high-dimensional
functions is therefore eliminated, resulting in an effective and computationally efficient

design selection methodology. For further details of their algorithm, see Section 5.2.

4.1.3 Nalve Monte Carlo and its bias

In (4.10), the simplest way to approximate the evidence, m.(yp|§), is via

ko

- 1 ~
W? = I{,’i Zﬂl(yh‘¢hk7£)7
2
k=1
where &hk is another sample from the prior density m(%), for h = 1,...,k;, and

k=1,...ky. We refer to this approximation as the naive Monte Carlo (nMC) method,
outlined in Algorithm 2.

Algorithm 2: The naive Monte Carlo method

Generate a sample ¥y, h = 1,..., k1, from m());
for h=1,...,k; do
Generate a response yj, from m(y|¢p,§);

Generate a sample {'l;hk};?:l from 7y (2);
for k=1,... ks do
L Calculate upr = m(yh|®¥hk, £);

Estimate the evidence m.(y|¢) via 7l = é 21,22:1 Uhk;

B Calculate uy, = log m(yn|tn, &) — logfrél;

Estimate the expected Shannon information gain utility by U &) = l?ll 221:1 Up;

Ryan (2003) has shown that the naive Monte Carlo integration method yields a biased
estimator U (&) of U(€). Asymptotically, the bias is

c©)

E[U(§) - U)] ~ =
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where

1 LR K164 RS
0(5)‘2E{[we<y|s>12 [myr&) H}

Hence kg controls the bias. Ryan (2003) also showed that k; controls the variance.
Large values of k; and ko make the approximation problem computationally expensive,
and hence one must consider a trade-off between k; and ko. Increasing ki results in
reduction of variance and increasing ks results in reduction of the positive bias. If the
function C'(§) is approximately constant over &, the bias will be roughly constant in & for
fixed ko, and thus of no consequence when comparing designs. For fixed computational

effort it will be therefore best to choose a fixed ko and choose k; to be larger than ko.

A severe practical problem that occurs if moderate inner loop sample sizes, ko, are
used is that the evidence 7. (y|£) can often be estimated as zero, leading to a numerical
estimate of infinity for the expected utility. This occurs when the posterior distribution
is much more concentrated than the prior distribution since then the inner loop sample
consists largely of values that are far from the region of highest posterior density and

hence have zero likelihood.

Huan and Marzouk (2013) overcome the numerical issues with zero evidence by using
the same sample of parameter values in the inner loop as in the outer loop. The

approximation to the expected utility (4.10) is now given by

k‘l kl
0 = 1> [logmaln ) - 1 S mynlwns o) (4.11)
h=1 k=1

where {wk}’,?:l is a sample from the prior density, 7,(?0). Note that the same sample is
used in the outer and inner summation. We refer to this approach as the ‘reuse’ method.
It usually gives finite estimates of the expected utility gain because, for each yj,, the
inner loop sample now contains the value 1), which is used to generate the response and
which usually has nonneglible posterior density. The biases of naive Monte Carlo and
‘reuse’ estimators are asymptotically of the same order, although ‘reuse’ estimators offer
substantial gains in computational efficiency because finite estimates of the expected
utility can be obtained with much smaller values of k3. However for finite inner loop
sample sizes, this method can result in large negative bias (see examples in Sections
5.1.2 and 5.1.3).

In the next section we illustrate through the simple linear example how naive Monte
Carlo approximation of the expected Shannon information gain results in positive bias

and overestimation of the information gain for a given design.
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Linear Regression example

For the naive Monte Carlo (nMC) method, we now illustrate how the bias and variance
change with the sizes of the inner and outer loop samples. We do so using an illustrative
example in which the expected Shannon information gain is available analytically. We

assume the linear model
y = X8 + ¢, (4.12)

where X is the n x 2 model matrix X = [1,, (21,...,2,)"] with z; the value of an
explanatory variable for the ith run, i = 1,...,n, 8 = (o, 81)T € B C R? contains the
unknown regression parameters, g; ~ N(0,02) is the observation error, and o2 is the

known constant variance.

The conjugate prior distribution for 3 is a multivariate normal, N (Bp, o2R)), for which:

1
202

wdﬂ)zﬁhvb‘ﬂRféam{—- <ﬂ—ﬂ@TRﬁ%ﬂ—ﬂw},

where p is the number of unknown regression parameters in 3.

The likelihood function is given by:

_n 1
Wl(Y’/B,Ugaf) — (27’(’0’3) 2 exp {_M
€

¥ X0 - X))
Using Bayes’ theorem (2.16) we obtain the posterior density,

ma(Bly, 02,€) o< m(y|B, 02, &)my(B)

1
202

= (QWU?)_(HTH)]R]_% exp { - {(,3 —Bo)"R™(B - Bo)

+(y - X8)"(y - XB)] }

1 1 * *— *
* GBS {—203 (8-S (B8 } ,

with

B =X'X+R)(Xy + R 6y)
S = (XTX+R )L

Hence 3 | y, 0?2 is normal with mean 3* and variance 02S*.

The expected Shannon information gain is:
U©) = [ [ tostna(Bly. o2.6) ~ osm(B)r(8.vIe)dvap
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_ _]2 2_1 *_1 _ ax\Tgx—1 -t
= [ ] |5rom2na — 1os s — 58-S (B 8

~{on2no? ~ ogIR| - 558 - 60 "R (8 - o)} | (8. yl€)ayap

[ 1
:// —glog2ﬂ0§—§log\5*|
g Jy L

L (8- p)Ts (8- 5*)} m1(y13.0%. €)m(B)dydp

2
20

1
+// [Zlog%mg—l—zlog]m
BJY

+o3(8—B0) R (B - ﬁo>] mi(y|B, o2, )m(B)dyds

= SIG; + SIGa.

For the second integral we have

1
SIGe = / / [p log 2mo? + ~log|R| (4.13)
1 _
+5,3(8 = B0) 'R™(B = Bo)| m(y|B, 02, €)m(8)dydp3
1 1 _
— Dlog2n? + 3 log [R| + 5 [ (8- Bo)"R™(8 - Boym(9)d6
0z Ja
_— log 202 + 1log IR| + ! tr(e2R7'R)
2 ¢T3 202\
_P 2 1 p
=3 log 2moZ + 5 log |R| + 5 (4.14)

By a similar argument, the first integral is
1
SIG1 = 5 log [X"X + R™!| - glog(27ra€2) - g, (4.15)

agreeing with known results from Chaloner and Verdinelli (1995).

Combining Equations (4.14) and (4.15) we get:

1 1
U = 5 log ‘XTX + R_1| - glog(%mg) — g + (g log 202 + 5 log |R| + g)

1 1
=3 log ’XTX + R_1| + 3 log |R/|. (4.16)

We now show how the bias of the naive Monte Carlo (nMC) method changes for different

values of k1 and ky using the exact value of the expected utility as shown in (4.16).

We assume o2 = % and B ~ N(0,,021,). We use the design presented in Figure 4.1 for

all the results that we are going to illustrate for this linear regression example. This
design is an expected Shannon information gain optimal design found for the linear
model using the ACE algorithm (Section 5.2) and nMC (Section 4.1.3). Figure 4.2
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Figure 4.1: Expected Shannon information gain optimal design with n = 7, found for
the linear model using ACE (Section 5.2) and nMC (Section 4.1.3); two of the points
are repeated twice

shows the distribution of 100 estimates of the expected utility obtained using nMC for
different combinations of k; and ko. The true value of the Shannon information gain,

obtained using (4.16), is shown by the red horizontal line.

From Figure 4.2, we notice considerable differences for the different pairs of k1 and
ko. As the number of samples in the inner loop, ko, increases, the bias decreases
as anticipated from the asymptotic theory (Ryan, 2003). As the number of samples
in the outer loop, ki, increases, the variance decreases. A very large inner loop size
(k2 = 100,000) moves the estimates of the expected utility much closer to the true

value but also increases the computational expense of the approximating method.

4.2 Existing improved methods for approximating the ex-

pected utility

The approximation of the expected Shannon information gain utility function,

/ / log yL’f,’f) (v, () dydsp,

requires the solution of intractable integrals and for this reason numerical approxima-
tion methods are used as described in Section 4.1.2. An obvious way to approximate
the expected utility is via (4.10); that is to take an independent sample of (¥, yn),
h = 1,...,k1, from the joint prior density 7(y,|{) and approximate the evidence,

Te(y]€), using another sample from a known distribution.

There are several existing methods for estimating the evidence in (4.10), which vary in
accuracy and computational expense. A summary of these methods can be found in
Table 5.1 of Chapter 5.

The most straightforward approach, naive Monte Carlo (nMC), approximates the evi-
dence using another sample from the prior density (1)) (see Section 4.1.3). However,
the positive bias of this method overestimates the information gain from an experiment.

Also, it requires large values of k1 and ko to obtain sufficient precision and accuracy
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Figure 4.2: Estimated expected Shannon information gain for the linear model (4.12)
using nMC and different combinations of k1 and ks, and the true value of the Shannon
information gain obtained using (4.16) (red line)

of the approximation. As each design assessment requires k1(1 + k2) likelihood eval-
uations, this leads to computationally expensive optimisation when searching for an
optimal design, for even moderate k1 and ko. For diffuse prior distributions and infor-
mative experiments, a problem of zero approximation to the evidence can also occur
(Section 4.1.3). These challenges have led to the development of new improved methods
that will give better approximations to the evidence, m.(y|{), in order to reduce the

positive bias.

Long et al. (2013) aimed to reduce the computational expense of sampling techniques,
i.e. nalve Monte Carlo approximation, by employing the Laplace approximation. This
approximation uses a second-order Taylor series expansion of the log-posterior density,
log o (y, £), about the posterior mode 1&, leading to a Gaussian approximation of the
posterior distribution of 7». This fundamental asymptotic method was first introduced
by Pierre Simon Laplace (Stigler, 1986) under the assumption that a sufficient number

of observations, n, is available.

In Sections 4.2.1 and 4.2.2 we consider two different methods of approximating the
expected Shannon information gain based on Laplace approximations. The (k1 X k)
inner likelihood evaluations are replaced with k1 optimisations, each of which takes only
a few iterations of a quasi-Newton algorithm. The first of these, which we call Laplace
Approximation I (LA1), coincides with the approximation proposed by Overstall et al.
(2018), and follows from the expression of the utility function as the difference between

the log-likelihood and log-evidence (see Section 4.1.1); an estimate for the evidence is
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found based on a Laplace approximation and is used within (4.10) to approximate the
expected Shannon information gain. The second approximation, which we call Laplace
Approximation II (LA2), coincides with that derived by Long et al. (2013), and follows
from the alternative expression of the utility function, discussed in Section 4.1.1, as the

difference of the log-posterior and log-prior densities.

Importance sampling is a Monte Carlo integration method commonly used for approx-
imating a target integral of interest. In Section 4.2.3 we describe an alternative ap-
proximation of the expected Shannon information gain that uses importance sampling

to estimate the evidence, introduced by Feng (2015).

In Section 4.3 we propose two further new approximation methods to estimate the
evidence in the expected Shannon information gain, called Laplace importance sampling
(LIS) and approximate Laplace importance sampling (ALIS). These methods combine

features of importance sampling and Laplace approximations.

4.2.1 Approximating the evidence - Laplace Approximation I

In this section an approximation to the evidence, m.(y|{), required to estimate the

expected utility via (4.10), is found using a Laplace approximation.

Recall the utility function is given by

u(&,,y) = logm(yly, &) — log me(yl€),

with the expected Shannon information gain given by Equation (4.5).

We can express the evidence as:

To(yl€) = /m (1, €)my () dap = A expllogmu($ly, &) dip,  (4.17)

where 7, (Yy, &) = m(y|e, §)mp (1)) is the unnormalised posterior density.

A second order Taylor series expansion of log m,(%¥]y, &) about the posterior mode '1,5

gives:
. log 7 (W], .
log (91, ~ log mu(9ly, ) + TEELE | )
— S = BHE) W - P),

where H(iﬁ) is the negative Hessian of the log-unnormalised posterior density,

_ 9*logmu(¢ly,€)

By definition the first derivative of the log-unnormalised posterior density is zero at
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the posterior mode, and so the second term of the Taylor expansion vanishes, giving:

log mu(bly €) ~ ogmul($ly. &) — 5 — $)TH@) (@ —F).  (418)
Exponentiating the above gives:

m1y.O) = iy, exp | 30— 6 THE W - 6)].
and integrating this expression results in:

mo(y[€) = A ru(bly, €)dp

~ [ m@y e |-
g

_ m(ly, &)(2m)®/?

1/2 )

(4 — ) TH($) () — @5)} dup

H(%)

where ¢o is the number of unknown parameters .

Hence in (4.10), the Laplace approximation to the evidence is

mu(Bly, ©)(2m) =/

We(ylg) ~ 1/2

H(%)

The approximation of the expected Shannon information gain (4.5) is given by:

U@~ [ [ [logmiyls.€) - ogma(diy.©
vy

1
- a2
5 log [(2%)

1) ||| s wioivav. (@19

Hence the approximation (4.10) becomes:

U¢) = k11 {log T (ynln, &) — log 7}?}
h=1
1 & A 1 N
Tk [logm(}’hhﬂh,f) — log mu(¥nlyn, §) — 5 log [(QW)QQ H(4)" H] |
h=1

where ¢h is obtained using a quasi-Newton algorithm (see Section 4.3).
We refer to this approximation as Laplace Approximation I or LA1.

Overstall et al. (2018) showed through some examples that such a normal-based ap-
proximation together with the ACE algorithm (Section 5.2) is able to find efficient

Bayesian optimal designs.
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4.2.2 Laplace approximation II

Laplace approximation II, or LA2, is a different approximation to the expected Shannon
information gain that does not directly use an approximation to the evidence. If we

take the alternative expression of the utility given in Section 4.1.1,

u(€7 1/%3’) = IOg 7Ta(¢|y7£) - logﬂ-b('l/))a

it is possible to obtain the following approximation to (4.3):

U(e)~ [ |5 loatzn) ) - %~ ogm()

To get the above result, we take a second order Taylor series expansion of the log-

posterior density, log m,(¥|y, £), about the posterior mode, 1&:

dlog ma(Ply, §)

log 7o (Y]y, €) ~ log ma (Ply, €) + B

Pp=1p ('ﬂb - 1&)
(¥ =) TH(¥) (¢ — )
(% — ) "H($) (¥ — ), (4.21)

N

= log 74 (]y, €) —%

as 510g7r51(p¢|y,§)

p—p = 0 by definition and,

Plogma(Ply,&) | _ Plogmu(¥ly.§)
OpoyYT V=1 Opop™T

Pp=p _H(d;)u

which holds from Bayes’ Theorem (2.16) and by the fact that the evidence, 7.(y|¢),

does not depend on the unknown parameters .

In the previous section we showed that the evidence,

mu(Bly, ) CrYE2 _ mlyl, )m () (2m) e/

77@(3”5) ~ 1/2 H(,lp) 1/2

~

H(v)

Again using Bayes’ Theorem, the posterior density is given by

_ myl, &)m(3h)

Wa(qtz;b“g) - T (y|§) )
and combining these two results we get:
L1172
) ()
Ta(Ply, §) = W

62



Plugging this result back into Equation (4.21) we get a normal approximation to the

posterior density with mean 1& and variance H(I/A;)*l:

—1/2:| 1 N

log ma(tly, €) ~ —log [(%)‘12/2 H($) S =) HE)( —9).  (4.22)

Hence the approximation of the expected Shannon information gain (4.3) becomes

v~ [ [ |-3lostm e - - ) W - b

logmy(t) ]wa<¢\y,£>we<y\£>dyd¢

_ / [_ 3 1os2n) P [ S~ $)THE) @ - h)m (v, v
y T

I

- [D log m () ma(Yly, §)dep ] me(y[€)dy -

Ip)

For the first integral, I;, we use the normal approximation to the posterior density

(4.22), and the known formula of the expectation of a quadratic form*:

h= [ 50— THE)@ - Dl v
v

In order to approximate the second integral, Is, we take a second-order Taylor series

expansion of the log-likelihood, log m;(y|%, &), about the posterior mode &:

dlog m(y|4,€) 2
oy ’¢:1[, (¢ — )

by -9 [CH@) - Q)] (- ), (4.23)

log m(y|v, &) ~ log m(y|e, £) +

where
*logmy(vp) |

Q¢) = T opopT ’¢:¢ :

4The expectation of a quadratic form is
E[c"Ac] = tr[AS.] + pur Apte,
where c is a vector of n. random variables, A is a n.-dimensional symmetric matrix, u. is the expected

value of ¢ and ¥, is the variance-covariance matrix of ¢ (Mathai and Provost, 1992, Chapter 3).
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and

O*log m(y|,€)

~H(s) — Q(¢) =

a,wa,w’l‘ ¢:¢' )
This results from
A 32 logﬁu(d"yaf)
H(’(,b) - - 8’([)8’1/)T "lﬁ:’lZ’
P loglm(yl, )my ()] ‘ )
- a1,[131,bT Pp=1

_ [ &*logm(yly,€) ‘ o 0210@;7%‘
B OpopT v=v OpoYT  |v=v

Note that, to approximate Iy, (4.23) only needs to be an accurate approximation in a
small neighbourhood around 1ﬁ, because if the sample size n is large then the posterior

distribution will be concentrated around '(ﬁ

Using Equation (4.18) and (4.23), the log-prior density, log 7, (%)), is given by:
log 7y (1) = log mu(ly, §) — log m(y|v, )
~logmu(Bly. €) — 5 (% — $) HE) @b — ) — logm(y|sh, )
01 . . .
Og”—y’w i =) — L — )" [HED) - Q)] (v — )

= logm, (4h) + M o (0 =)+ 5 (o — D) Q) — D),
from
W Lp:i& (4 — ) = dlog ng(:)’y’g) )Uﬂ/} )
e ]
where

ol u ) n
Ogﬂ'af;b‘y §) bt (¢ — ) =0,

by definition.

Then we approximate the second integral Is, with respect to ¥ as:

- /P log b (3) e (W ]y, €)dep
~ A log () ma (Bl €)dep

I3

9log 7 () P
+ [ SR = By, v

Iy
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+ [ 5 - DT - B (ly, O

We know that

&
=
AS
<
p—
o
0]
3
o
—
<,
N—
| I
|
.
o
0]
3
o
—
<,
N—

and

Lastly we have that

91 a1 )
Iy :/\1; Ogﬂ'b ‘w s Y . (Yly, §)dyp — / Ogﬂ'b ﬂ’) i b ma(Wly, )dup

Glogwb 310g7rb
9 ’w b Boyl¥l - —5, ‘w ww

~ 0, (4.24)
following from the assumption |y ~ N4, H(e)) 1], approximately.

Hence, we have proved that the approximation of the expected Shannon information

gain is given by Equation (4.20).

Similar to (4.10), for the Laplace Approximation II we have,

U = 1 - 1 a2 7oy—1 q2
(@—kl;[gog (2 B[] - 2

~togm(i) — 5tr [QUHG ]|

where 1, is obtained by maximising T (P |yn, §) with respect to 1 using a quasi-Newton

algorithm (see Section 4.3), where yj, ~ m.(y|€).

A connection between Laplace Approximation I and Laplace Approximation II can be

found in Appendix A.

In the next section we consider importance sampling as an alternative approach for

approximating the evidence in (4.10).

4.2.3 Approximating the evidence - Importance sampling

The aim is to find an improved way of estimating the evidence 7. (y|¢) = E[m(y|¥,&)] =
Jo m(y|9, &)my(1p)dap, needed in order to estimate the expected utility via (4.10), that

will give reduced bias and will be computationally inexpensive.

Another approach for approximating the evidence is importance sampling. Importance

sampling is a Monte Carlo integration method commonly used for approximating a
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target integral of interest. Suppose that we wish to approximate

I=E[f(x)= | fGoh(x)dx (4.25)
1

where h(x) is a probability density function on R? with support® @, so that h(x) =0
when x ¢ ). Suppose moreover that we have available an importance density, q(x),
such that ¢(x) > 0 for all x € @ with f(x)h(x) > 0. Then, if x1,...,x) is an
independent sample from g,
M
-1 o f(xi)h(xi)
I1=— — 4.26
M ZZ; q(x) (420)

is an unbiased estimator of I. The adjustment factor w; = ZE:’))

is called the importance

ratio or weight.

Moreover, the variance of I is finite provided

e ]

is finite, which roughly means that ¢ must have heavy enough tails given functions f
and h. The optimal importance density is ¢(x) o< f(x)h(x), which makes the variance
of I zero (Geweke, 1989).

As described in Section 4.1.2 the Monte Carlo approximation of the expected Shannon

information gain is given by

k1
0(€) = 1> [logmvalipn. ) — log ]

h=1

h

U is an estimate of the evidence

where 7

ro(yl€) = A T (ynlth, €)my (40) .

which is of the form (4.25) with f = m(yn|1, &) and h = m(¢p). Hence we can esti-
mate the evidence by taking an independent sample 'Jahl, ey 1,5;1;@2, from an importance

density qZ, () and evaluating the importance sampling estimator,

1 & -
me(ynl€) = 7l = o > wnkmi(ynlPnk, €. (4.27)
k=1
Above, ~
o — ™ (Ynr)
a3, (Pni)

5The support of a real-valued function g is the subset of the domain containing those elements which
are not mapped to zero, supp(g) = {x € X|g(x) # 0}.
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and we assume that the likelihood function m(yp|¥ns, &) can be evaluated for each

Vi ~ m(y|tn, &) from the outer sample.

To see how to choose a good importance density, note that if we could sample from
the posterior density mq(t|y,£), with weights wpy = 7 (PYur)/Ta(Pnr|yn, €), then the
approximation (4.27) would be exactly the evidence. Thus, a good importance distribu-

tion should be similar to the posterior distribution, i.e. gy (1)) should be approximately
proportional to m(y |, {)my ().

A number of different approximations to the posterior distribution have been used to

form the importance distribution.

(i) Nested importance sampling

Feng (2015) uses a normal approximation to the posterior as an importance distribution,

dy(¥) ~ N (" 2").

The posterior mean p and posterior covariance " for y;, are estimated using self-
normalised importance sampling from the prior density m(1) (Owen, 2013, Chapter
9). Here,

=E[|yn, €]
—AmeW@M

:/wm(}’hwf §)

e (yalE) () dap. (4.28)

The evidence 7¢(yp|§) is approximated by

re(ynl€) = /W T (yhlth, €)my (40)

k1

Z (ynlts, €), (4.29)

with 4y, ..., 9, asample from the prior density 7 (%)). Then the approximate evidence

is used with Equation (4.28) to get the estimate of the posterior mean,

yh”lnbl) )
. 4.30
Z¢ S m(yali, €) (4.50)

The posterior covariance is given by:
5" = Vartplyn, ¢]
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rT(YnlY, )

A

~ [ u"
v
Estimate (4.29) of the evidence and the estimate of the posterior mean, ", can be

used to obtain an estimate of the posterior variance:

k1

sh = Sy — g (i — @M)T mi(ynl¥i, §)
ZZ;( g )( g ) i= lﬂ-l(Yh|¢27 )

(4.31)

The mean (4.30) and variance (4.31) are used to form a multivariate normal impor-
tance distribution or, if fatter tails are needed, they are used to form a multivariate ¢
importance distribution to approximate the evidence. This distribution is used to per-
form the sampling required for approximation (4.27), and approximate the expected
Shannon information gain via (4.10). We will refer to this method as nested importance

sampling (nlS).

Feng (2015) demonstrated that this nested importance sampling scheme is not very
robust especially for small inner sample size, ks. For this reason a minimum effective
sample size was introduced, which is used as a cutoff for reverting to using the original
naive Monte Carlo approach of sampling from the prior distribution, as described in
Section 4.1.2.

The effective sample size (ESS) is used as a diagnostic to show when the weights,

_ Myl €)
ACT

are problematic. We assume that wpr > 0 (if wpr = 0 for all kK = 1,..., ke then the
importance sampling has failed). The effective sample size compares the variance of I
under the importance distribution to the variance that would be obtained if the prior
distribution were used as the importance distribution. Different derivations can be used
to find a useful expression of ESS (Owen, 2013, Chapter 9). A popular formula is given
by

1
ESS = .
> he1 (Wn)
where
wp, = Wl(Yhh.bha ) th,...kl,
i= 17rl(yh|¢17 )

are the normalised weights.

4.2.4 Other methods for approximating the evidence

Various other approaches have been proposed to approximate the evidence. Newton
and Raftery (1994) proposed the use of the harmonic mean estimator. Chib (1995)

proposed that the posterior can be estimated by a Monte Carlo average based on draws
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from the Gibbs sampler. DiCiccio et al. (1997) investigated theoretical and empirical
properties of Laplace approximation, Bartlett’s adjustment, importance sampling and
bridge sampling for estimating the evidence. Gelman and Meng (1998) investigated
path sampling for estimating normalising constants. However, all these methods require
MCMC samples from the posterior in order to estimate the evidence. Thus it would be
computationally expensive to use them in our design utility approximations, since an
MCMC chain would need to be run for each iteration of the outer loop (Ryan, 2003).

A possible way to extend the importance sampling approach might be to use annealed
importance sampling (Neal, 2001) which adaptively defines an importance sampling
distribution to approximate the posterior. However, this method requires a temper-
ature cooling scheme which will be difficult to choose within Monte Carlo loops and
optimisation schemes. Skilling (2006) proposed nested sampling for the approximation
of the evidence which again is computationally expensive, and likely to be too bur-
densome for repeated use at each iteration of the outer loop (Friel and Wyse, 2012).
Power posteriors were explored by Friel and Pettitt (2008) for estimating the evidence.
Similar to the annealed importance sampling method the power posterior approach also
requires a temperature scheme to be chosen, which will be difficult within Monte Carlo

loops that are repeated many times in the search for an optimal design.

Along similar lines to a Laplace approximation we could consider other deterministic
approximations such as Variational Bayes methods (Parise and Welling, 2007) or an
integrated nested Laplace approximation (INLA) (Rue et al., 2009). The potential
application of these methods within design optimisation problems is an area for future

research.

4.3 Laplace importance sampling for approximating the

expected utility

We now approximate the evidence, m.(y|£), by importance sampling using a Laplace ap-
proximation to the posterior distribution as the importance distribution. This approx-
imation to the evidence is then used to approximate the expected Shannon information
gain via (4.10). Compared to naive Monte Carlo, sampling from an approximation to

the posterior distribution is much less likely to result in a zero estimate of the evidence.

Recall that the basic idea of the Laplace approximation is to approximate the log-
unnormalised posterior density log 7, (¢|y, §), with a quadratic Taylor series expansion

around the posterior mode 1[),

log mu (¥l ) ~ log mu(bly. €) — 5 (1 — )" H(®)( ~ )]

where as before,

_ P*logmu(ly, &)

H) =~ |y
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This implies that if H()) is positive-definite, then exp [log 7, (¢ |y, £)] is approximately
proportional to the density of a multivariate normal distribution with mean g and
variance ¥ = H(a)) L.

Kuk (1999) first proposed to use the Laplace approximation to form an importance
distribution in the context of estimating the likelihood function of generalised linear
mixed models. We implement this idea within a nested Monte Carlo scheme for ap-
proximating the expected Shannon information gain utility and explore how the bias

and variance change with the inner and outer loop Monte Carlo sample sizes.

We describe two methods, Laplace Importance Sampling (LIS) and Approximate Laplace
Importance Sampling (ALIS), outlined in Algorithm 3, which both approximate the ev-

idence using (4.27) with an importance density of the form:

@y () ~ N(A",5").

If the posterior density has fatter tails it is possible that a ¢ importance distribution
might give a better approximation thus we will include a ¢ distribution in our compar-
isons as well. Oh and Berger (1993) suggested to use a low number, v, of degrees of
freedom for the ¢ distribution. In the examples presented in this thesis we use v = 5
which seems to have adequate performance in our numerical examples given in Chap-
ters 5 and 6. The choice of the degrees of freedom in this design problems is an area of

future research.

In both cases, " is obtained via

where H(f1") is the negative Hessian of the log-unnormalised posterior density evaluated

at the mean fi* of the importance density.

In LIS, 1 is obtained via,
Al = i € argmaxm, ($lyn, €)- (4.32)

The posterior mode, 1ﬁh, is found using a quasi-Newton algorithm®, the Broyden-
Fletcher-Goldfarb-Shanno algorithm (Bonnans et al., 2006, Chapter 4); our imple-
mentation is from Press et al. (2007, Chapter 10). This algorithm typically converges
in a few iterations, using as initial values the parameter values, 1,, known to have
generated the hypothetical data, y;. We do not use Fisher scoring because in most of
our examples the expected Fisher information matrix is difficult to calculate and this

matrix can suffer from problems with numerical ill-conditioning, see also Section 4.3.3.

Intuitively, LIS seems to be the natural way to construct a good importance sampling

5Quasi-Newton algorithms essentially employ the Newton-Raphson method with an estimated Hes-
sian matrix which is guaranteed to be positive-definite.
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distribution. However, for some models it might be the case that the posterior mode
1@h does not change significantly from the initial values 1), we have sampled from the
prior distribution. Hence the additional computational expense of finding the posterior
mode may be unnecessary. For this reason, we also introduce ALIS, a simpler version
of LIS.

In ALIS, 1" is obtained via

Yy, if H(4y) is positive-definite
_ (4.33)

1, otherwise.

As shown in Equation (4.33), if H()y,) is positive-definite, the mean of the importance
sampling distribution is the true parameter vector 1, sampled from the prior distribu-
tion, that is known to have generated the hypothetical data y;. This will reduce the
computational expense because we only need to proceed to the optimisation for the few

occasions when H()) is not positive-definite.

Algorithm 3: ALIS/LIS Algorithm

Generate a sample ¥, h = 1,... k1, from 7,(2);
for h=1,...,k do
Generate a response yy, from m(y|vn, §);

Calculate i and 3" using Algorithm 4 or Algorithm 5;

Generate a sample {"Z’hk}];?:p from the importance density qz)(@b) with mean fi”
and variance ﬁ]h;

for k=1,...,ks do

= m(ynlYne )T (i) .
L Calculate i, = & () ;

Estimate the evidence m.(yp|¢) via 7l = é 21122;1 Upk;

Calculate uy, = log m(yn|¥n, &) — log 7?2;

Estimate the expected Shannon information gain utility U (¢) = % 21:1 Up;

Algorithm 4: LIS step

Calculate the posterior mode, 1y, of Tu(P|yn, &);
Set i = 4pj, and X" = H(ah)~!

Ryan et al. (2015) first suggested implementing LIS in the Bayesian design framework
for a particular Pharmacokinetics example, and using different utility functions to that
employed in this thesis. LIS was then used within an MCMC algorithm in order to

search for near-optimal designs for the particular PK study.

Recently, Beck et al. (2018) examined the performance of LIS under statistical models
with fixed error variance and designs consisting of a single replicated design point. They

provided some theoretical error analysis for these examples, and limited comparisons
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Algorithm 5: ALIS step

Calculate H(vy,);

if H(v,) positive-definite then

| Set i = 4y, and B = H(ah)

else

L Calculate the posterior mode, 1, of Tu(P|yn, £);

Set i = 4, and B = H(a") ™

to other methods. Optimal values of the inner and outer sample sizes are presented
to achieve given error tolerances in the estimate of the expected Shannon information
gain for minimum computational resource. In this thesis, in the numerical comparisons
in Chapter 5, we take the opposite approach of assuming a fixed computational budget
for both samples. Interestingly, Beck et al. (2018) dismissed ALIS due to discrepancy
between 1, and 'q@h; in Chapter 5, we find the effectiveness of ALIS is very much

dependent on the example under study.

4.3.1 ALIS/LIS for nuisance parameters

We will now study the case where the model contains nuisance parameters. Any pa-
rameter, e.g. the variance components, which is not of immediate interest is called a
nuisance parameter; such parameters must still taken into account when studying the

parameters which are of interest.

We partition the parameter vector as ¥ = (8%,4™)T, where 8 € © are the py param-
eters of interest and v € I' are the p, nuisance parameters. The expected utility now

takes the form:

U(€) = E[u(&,0,y)]
- / / llog a1 (y16, €) — log me(y|€)](y. 0]€)dyd6

-/ / T '0 5) #(y, 0]€)dyd6,

where

1 (y16,€) = /F w(y,710,)dy = /F T1(y10.7, ) (v10)d,

is the marginal distribution of the data, y, after integrating out the nuisance parame-

ters, .

Hence the approximation (4.10) of the expected Shannon information gain, becomes
k1

U(¢) ~ k:iz [log T — logfré‘} ,

h=1
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with, as before,
k ~

_ 1 7Tb(¢hk)
Te(ynl€) ~ 7! s kZ:: (Y h|PnEs €) &)

{¢hk}:2:1 = {Bhk,ﬁhk}ﬁil, and now a second importance sampling approximation is

used to estimate the likelihood marginal to the nuisance parameters -y,
k3

- 1 - .10
P40~ Ty = 1= 35000 T ) LI,
3 s=1 qu‘G(’YhS)

{'ths}l;?’zl. Here qf;w is the importance density and 7 (v|@) is the prior density of the

nuisance parameters v given the parameters of interest 6.

We choose q% to approximate the conditional posterior density 7, (7y|y, @) via a mul-

tivariate normal approximation to the joint posterior distribution of @ and -,

(%)

where g = [fp [Lf;]T is defined by (4.32) for LIS, and (4.33) for ALIS, and

yis& ~N (" 2h), (4.34)

-1
_ h h 00 O~

) I e 0 I I A e
(He'y)T H'y'y (Hh’y)T HZW

Here
| § P o logﬂu(ﬂh|yh’£) = s logﬂ'u(ﬂhb’hvé)
00.ij 80@'89]' 0~,ij 891‘8’)/]-/ 5
Hh L= — 82 log Wu(ﬂhb’hyf)
e 0 Oy ’
where i,j = 1,...,pg and i, j' = 1,...,p,. There are partition formulas to obtain H??

from Hgg, Hg, and H,., see, for example, Graybill (1983, Chapter 8).

It follows from standard results on multivariate normal distributions (Banerjee et al.,
2004, Chapter 2) that if (4.34) holds then:

-1 -1
Y | Yh:On,§ ~ N (ﬂ: +H)° (HZ") (0n — frp), HY" —H}° <H20) HZAY) ;

with HY® = (HO™)T.

We use this approximate conditional posterior as the importance distribution to ap-
proximate the marginal likelihood to integrate out the nuisance parameters =, and
approximate expected Shannon information gain with ALIS and LIS as outlined in
Algorithm 6.
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Algorithm 6: ALIS/LIS Algorithm for nuisance parameters

Generate a sample ¥y, = (0, v,)", h = 1,..., k1, from m(1);

for h=1,...,k do

Generate a response yj, from m(y|Yp, §);

Calculate " and 3 using Algorithm 4 or Algorithm 5;

Generate a sample {thk}’,?:l = {éhk,ﬁhk}],?:l, from the importance density qZ,(Q/J)
with mean i and variance she

for k=1,...,ko do

= m(yaltne€)m (Phk) .
L Calculate @iy, = &, () ;

Estimate the evidence m.(y|€) by 7/ = 1712 Z],?:l Upk;
sho ok 0 (py00) ! SRy $wh 0 (00! §107.
Calculate 1, = i, + H)" (HR?)  (6), — jag), 30y = H)” — H}” (H®)  H,7;

k3 h
s=17 716

Generate a sample {7y} from the importance density q’;w('y) with mean [

and variance X"
V16
for s=1,...,ks do

L Calculate i, = WZ(thgh;Yhiug)”b(f/hs).

q’}‘/L|9(FYh5)

Estimate the marginal likelihood s (y|60h, &) by 7, = k—lg Z];il Ups;

Calculate 1y, = log 7?%4 — log

Estimate the expected Shannon information gain utility by U(£) = k% ]fll:l Up;

4.3.2 ALIS/LIS for transformed parameters

Often we need to construct an importance distribution that guarantees that the pa-
rameters of interest satisfy some constraints, e.g. are always positive. We do this by
constructing a normal approximation to the posterior distribution of a transformed
version of the parameter, 1’ = T(1), e.g. T = log to ensure positivity. Another
reason for transforming the parameters is to put them on a scale where the normal
approximation to the posterior distribution is more accurate, e.g. when the posterior
)T

distribution is log-normal then the transformation ¢’ = (log 1, . ..,log1g,)" will make

the approximation exact.

Let 7, wzb/ denote the likelihood in % and 1)’ parameterisations, respectively, and
similarly let 7, ﬂf, denote the prior densities for 1 and v’ respectively. Then the

unnormalised posterior denisty of 7/’ is given by,

' (@ly, &) = (vl E)m (¥')
= m(y|T ("), )m (T~ (4")) |det § [T~} (x)]

, (4.35)

where ¢ [T e )] is the Jacobian matrix” of T77!. It is necessary to calculate the

"The Jacobian matrix for the transformation (z,y) — (z,u) is:

dz  dz
qi dx dy
J T | du du | *

dz dy
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negative Hessian of the log-unnormalised posterior density (4.35) with respect to 1,
H, ('), i.e. find the derivatives of log ﬂyl(d)’\y,{) with respect to ¥'. For T(¢;) =

1ng’i’i: 13"'7q27

OT ()  Dexpy | exPYL =]

)

i W o i
oT 1 (¥7)
T '(v)| _ o 8log‘ | _
log W —logexpwi—wi = 8—’¢J;_1’
and hence
dlogmy (W, &) _ dlogm(y|T~'(¢).€)  dlogm(T(¥) |
2 o oY ’
Plogmy (W]y,€) _ 9*logm(y|T"'(¥),¢) | Plogm(T~(3))) (4.36)
OO, OO, T '

where j=1,...,¢s.

To estimate the evidence, 7.(y|{), in the approximate expected Shannon information
gain (4.10) by importance sampling, as shown in Equation (4.27), we sample {1,5’ hk}2221

from the importance density of the transformed parameters 1)/,
(') o< N (@l )
where fif}, is defined by
~hoo 0 W ol
By = 9y, € arg Il’llpa;XWu (Y'|yn, &), (4.37)

for LIS (Algorithm 8), and

. ¥}, if Hys(1p}) is positive-definite
v, otherwise,

for ALIS (Algorithm 9). The variance of the importance density is
h N
»h, = [HW(W,)} . (4.39)

It is necessary to work out the implied importance density for the untransformed pa-

rameters 1. It follows directly from the form of qﬁ,, that

0 (¥) = ag (T()) |det § [T ()],
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where § [T'()] is the Jacobian matrix of T, the transformation from % to v'.

The approximation of the expected Shannon information gain for the transformed pa-
rameters 1’ with ALIS and LIS is outlined in Algorithm 7.

Algorithm 7: ALIS/LIS Algorithm for transformed parameters

Generate a sample ¥, h = 1,..., k1, from 7(2));

Calculate the transformed sample {1}, l;‘;l:l = {T(v¢p) Ifllzl;

for h=1,...,k do

Generate a response yj, from m;(y|Yp,§);

Calculate /fLZ,, and ZA}Z,, using Algorithm 8 or Algorithm 9;

Generate a sample {v/ hk}iil, from the importance density qZ,, (1) with mean
’)’Z)’ and variance ﬁlfp,, and calculate vy, = Tfl(i,%k);

for k=1,...,ky do

L Calculate iy, = w1 (v Pnk o (P )

s, (T @) [det I[Tne)]|

Estimate the evidence 7 (yp|¢) via 7 = é 1122:1 Uhk;

B Calculate uy, = log m;(yn|tn, &) — logfrg;

Estimate the expected Shannon information gain utility by U(£) = 1711 Zfbl:l Up;

Algorithm 8: LIS step for transformed parameters

Calculate the posterior mode, 1% of 7’ (Y'|yn, €);
Set @l = 4}, and Xf, = Hy (fal),) !

Algorithm 9: ALIS step for transformed parameters
Calculate Hyy (v);
if H,y (v)},) positive-definite then
| Set all, = e}, and B, = Hy ()7
else

Calculate the posterior mode, 1@2 of mqfl('zp’]yh, §);
L Set ﬂ?p, = 4, and 22}/ = Hd,/(ﬂfp,)_l;

4.3.3 Different methods for constructing the importance sampling
distribution

In order to arrive at the formulation of ALIS and LIS described in Section 4.3, we first
attempted to construct the importance sampling distribution in a number of different

ways.

First, we tried to use i = ), as the mean of the importance distribution for all A =
1,..., k1, and the inverse of the observed Fisher information matrix as the covariance
matrix. However the observed Fisher information matrix is often not positive-definite

and hence is not always invertible. Hence, we attempted to regularise the observed
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Fisher information matrix by adding the Hessian of the log-prior density which will
always be positive-definite. Even so, the negative Hessian of the log-unnormalised
posterior density is often not positive-definite at 10, but will be at '&h. Instead we
could have used the expected Fisher information matrix, which is by definition positive-
definite. However, often it is non-trivial to obtain the expected Fisher information
matrix for some nonlinear models, especially when o2 is integrated out of the likelihood
function. Also, although the expected Fisher information matrix is positive-definite in

theory, it is often numerically close to singular.

Second, we tried to identify an approximate posterior mean by performing a very
small number (one or two) of Newton-Raphson steps, using 1, as the starting values.
However, again the negative Hessian of the log-unnormalised posterior density was
often not positive-definite. In the final form of ALIS, we thus decided to selectively
use a quasi-Newton algorithm, initialized at 1)y, to obtain the posterior mode in cases
where the negative Hessian of the log-unnormalised posterior density was numerically

indefinite or singular.

In the next chapter we perform the first thorough comparison of the different methods
introduced in the previous sections (Section 4.1.3, Section 4.2.1, Section 4.2.2 and
Section 4.2.3) and the new proposed methods, ALIS and LIS (Section 4.3), in terms of
their relative performance and computational cost in the context of expected Shannon

information gain estimation.

4.4 Summary

In this chapter we described several existing methods for numerical estimation of the
expected Shannon information gain utility, and provided details for two unexplored
methods, ALIS and LIS. We described the general approach to fully Bayesian designs
of experiments, dealing with several important challenges including estimation of the
utility function, and design optimisation. We illustrated through the simple linear
example how the most simple approach (Naive Monte Carlo) used to approximate the
expected Shannon information gain results in positive bias and overestimation of the
information gain for a given design. In the next chapter, we show that ALIS and LIS
give an efficient compromise between accuracy and computational cost of estimation of

the expected utility.

77



78



Chapter 5

Assessments of Shannon
information gain approximations

in Bayesian design

In this chapter we perform the first thorough comparison of the different methods
introduced in Chapter 4 in terms of their relative performance and computational cost
in the context of expected Shannon information gain estimation. An optimisation
algorithm, the approximate coordinate exchange (ACE) algorithm, is then described to
optimise the expected utility. We combine ACE with the different methods in Chapter

4 to find Bayesian optimal designs for nonlinear models.

5.1 Introduction

We aim to approximate the expected Shannon information gain using

k1

0(e) = kllhz [log 1y o €) — log 7]
=1

with a variety of approximations 7 to the evidence, m.(y|¢); see Table 5.1.

Using expression (4.3) we can also apply the Laplace approximation IT (LA2), described
in Section 4.2.2, where an approximation to the expected Shannon information gain

takes the form

~togmy(sn) ~ yor [QU )]

which does not directly use an approximation to the evidence.
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Method Approximate Evidence

Naive Monte Carlo (nMC) 7?2 = é 222:1 Wl(yh\zﬁhk,f), 1/~)hk ~ mp(1h)

Importance Sampling = g i B (yal, €), P~ ()

k=1 .k (.],
hiisa N (@t 3P or : Gy (Vs
Ay w, For nuisance parameters or transformed parameters

t, (qg, ol %gh) density | see Sections 4.3.1 and 4.3.2, respectively

f" and 3" defined via Equation (4.30)

Nested Importance sam-
and Equation (4.31), respectively

pling (nlS)

~h _ ]
1=y
Laplace Importance sam- | s:h :H('lﬁh)_l

pling (LIS) where H(ty,) is the negative Hessian of log m, (3y, €)

evaluated at 12% € arg maxy Tu(P|yn, &)

, H ositive-definite
Approximate Laplace Im- | jh — Ph (¥n)

portance sampling (ALIS) by, otherwise
S =H(a") ™!

Laplace Approximation I | 7" = logm,(¢p|yn, &) + 1 log [(27r)‘12 H(iﬁh)*lu

(LA1)

Table 5.1: Methods described in Chapter 4 for approximating the evidence in the
expected Shannon information gain

Firstly we show the advantage of ALIS and LIS over nMC through the simple linear
regression example, and then we compare all the methods for three nonlinear regression
models. In the examples in Section 5.1.2 and Section 5.1.3 we also assess the ‘reuse’

method (4.11) (Huan and Marzouk, 2013) for approximating the expected utility.

5.1.1 Linear Regression example (continued)

Continuing the example from Section 4.1.3, we will now compare nMC with the new
methods for approximating the expected utility, ALIS and LIS, proposed in Section
4.3. We acknowledge that this example is unusually favourable to LIS as here the true

posterior is a normal distribution, and so the approximate posterior will be exactly
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Figure 5.1: Estimated expected Shannon information gain for the linear model (4.12)
using nMC and different combinations of k1 and ks, and the true value of the Shannon
information gain obtained using (4.16) (red line)

equal to the true posterior distribution. Hence the approximation 7?2 to the evidence

will be exact.

Figures 5.1, 5.2 and 5.3, show the distribution of 100 estimates of the expected Shan-
non information gain utility approximated using nMC, ALIS and LIS, respectively, for
different pairs of inner and outer loop sizes. The scale in these three figures is chosen to
be comparable. It is clear that the estimate of the expected utility in Figures 5.2 and
5.3, is much closer to the true value even for very small values of the inner and outer
loop sample sizes. For this reason we do not include results for k1 = 300, ko = 100000.
In Figure 5.1, results for k&1 = ko = 300 are omitted due to occurrence of the zero

evidence problem (see Section 4.1.3).

Figure 5.4 shows the same results as Figure 5.2 for ALIS but with a smaller y-axis
scale than before in order to better illustrate any differences between the different pairs
of k1 and k3. We notice that for small inner loop sample size (k2 = 300) the bias
is nonzero, but substantially smaller than when using nMC. For large values of the
inner loop sample size (k3 = 2000, 10000) the bias is negligible. The variance of the
approximation of the expected utility decreases as k; increases. We will discuss the
interaction between sample size and computational expense further in the following

examples.
Figure 5.5 shows the same results as Figure 5.3 for LIS but again on a smaller y-axis
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Figure 5.2: Estimated ESIG for the linear model (4.12) using ALIS and different com-

binations of k1 and k2, and the true value of the Shannon information gain obtained
using (4.16) (red line)
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Figure 5.3: Estimated ESIG for the linear model (4.12) using LIS and different com-

binations of k; and k2, and the true value of the Shannon information gain obtained
using (4.16) (red line)
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Figure 5.4: Estimated ESIG for the linear model (4.12) using ALIS and different com-
binations of k; and ko, and the true value of the Shannon information gain obtained
using (4.16) (red line) on a smaller y-axis scale
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Figure 5.5: Estimated ESIG for the linear model (4.12) using LIS and different com-
binations of k; and ko, and the true value of the Shannon information gain obtained
using (4.16) (red line) on a smaller y-axis scale
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scale. We notice that the bias has decreased compared to ALIS and the approximation
of the expected utility estimates are centred closer to the true value for the different
pairs of k1 and ko. The only thing that changes in this figure is the variance, which is
controlled by the size of k.

In this example, where the posterior is actually a normal distribution, for LIS the
approximate posterior will be exactly equal to the true posterior distribution, and
so the approximation of the evidence will be exact. This will result in the method
being exactly unbiased. However, in this example, using LIS (centering on the mode
and using the negative Hessian of the log-unnormalised posterior density) rather than
ALIS (centering on the true parameters that generated the data) has not resulted in a

substantial improvement, supporting the use of ALIS with more complex examples.

5.1.2 Michaelis-Menten model

The first nonlinear example in this section is the Michaelis-Menten model,

where g; ~ N(0,02) and 61, 6, 0% > 0 are unknown parameters (see Section 3.1).

We assume a conjugate inverse-gamma prior distribution, o2 ~ IG(a,b), where a = 3
and b = 2 are known hyperparameters. We also assume independent log-normal prior
distributions, 6; ~ log N (u1,0%) and 0 ~ log N (u2,03), where py = 4.38, o1 = 0.07,
w2 = 1.19 and o2 = 0.84. These prior distributions result in E[f;] = 80 and E[#2] = 5
and imply that the 10% and 90% quantiles of noise-to-signal ratio (o, divided by the
maximum expected response 7(400,80)) are 0.009 and 0.02 !, respectively. We chose
a more diffuse prior distribution for 6 as this is the parameter that has a greater
influence on the shape of the response. See Appendix C.1.3 for examples of the shape
of the expected response of the Michaelis-Menten model for different values of 6; and

f, sampled from these prior distributions.

We integrate out 2 to obtain the marginal likelihood with respect to 8 = (61,62)7,

which is available in closed form:

T (y10,€) = /0 m(y18, 0%, )my(02)do?

> _n 1 " 911’1' 2
= 2mo? -—— i —
/0 (2mo?) 2exp{ QUE;[(U 92+93i) ]}

_a b
x (g2)~(at+D) exp{—aQ}dag

£

"We choose a small noise-to-signal ratio as this is the case which is most interesting in a computa-
tional point of view, where existing methods for approximating the evidence that use samples from the
prior distribution fail to give a very good estimate of the evidence.
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The log-unnormalised posterior density is then given by:

n 9 ; 2
logm,(Oly, &) = — (a + g) log |2b + Z (yZ "4 fx) + constant
i=1 !
log 6 — p11)?
~log[fyo0v/2r] — M
207
log 05 — j12)?
— log[0202\/ 27T] — (0g2202,u2) (5.1)
2

In order to ensure positive values for #; and 6y we use the transformation 6 =
(log 01,log62)™ in LIS and ALIS (Section 4.3). Hence, we take a normal approxi-
mation to the posterior distribution of @ as described in Section 4.3.2. To calculate
the negative Hessian of the log-unnormalised posterior density, Hg/(6'), we first have
to find the derivatives of the log-unnormalised posterior density log Trfl/ (0'y, &) with

respect to 6’ using Equations (4.36). The derivatives can be found in Appendix B.2.1.

We compare approximations of the expected Shannon information gain for space-filling
designs with n = 5,10,20 points, given in Figure 5.6. We use both normal and ¢
importance distributions for the importance sampling methods. The ESIG using nMC,
ALIS, LIS and nlS is estimated for two combinations of inner and outer sample sizes: (i)
k1 = 2000, k2 = 10000, and (ii) k1 = ko = 300. For LA1 and LA2 (single loop methods)
we use: (i) k1 = 2000, (ii) k1 = 300, and for the ‘reuse’ method: (i) k; = 2000, (ii)
k1 = 300.

Figure 5.7 shows the distribution of 100 estimates of the ESIG obtained using the
different methods, and different combinations of inner and outer sample sizes, for the
n = 5 space-filling design, &5. We treat as the ‘true’ ESIG the nMC approximation with
k1 = ko = 1,000,000 (red line), as these sample sizes should lead to negligible bias.
We notice that ALIS and LIS have small bias and variance even for small k; and ko
compared to all other methods for the same sample sizes. Increasing k1 and ko reduces
the variance and bias of nMC (see Section 4.1.2), and nMC,2000 has ESIG similar to
the importance sampling based methods (ALIS, LIS, nIS). Similarly, increasing k; and
ko reduces the variance and bias of the ‘reuse’ method. Increasing ki and ks also makes
a big improvement to nlS, because small k; and ko leads to small effective sample
size and hence in most iterations of nlS, samples from the prior are used rather than
samples from the approximate posterior distribution (see Section 4.2.3). For ALIS and
LIS, increasing (k1, k2) from (300, 300) to (2000, 10000) has little effect on the mean of
the distribution, perhaps because the bias is already small even for (k1, k2) = (300, 300).
However, the variance is reduced. In this particular example, changing from a normal

importance distribution to a ¢ importance distribution sightly improves ALIS but makes

85



® 0000000000000 000 0 00 *Ezo

Figure 5.6: The space-filling designs, &5, £19, {20 used with the Michaelis-Menten exam-
ple with n = 5, 10, 20, respectively

little difference for LIS. LA1 and LA2 have less bias than nMC, nlIS, and ‘reuse’ with
k1 = ko = 300, but for larger k1 and ks, use of LAl and LA2 result in more bias than
these three methods.

Figure 5.8 shows the results for applying the methods to the 5-run space filling de-
sign, &5, in terms of relative root mean squared error (rRMSE) with respect to a nMC
approximation with k1 = ko = 1,000,000. The figure plots rRMSE against computa-
tional log-time. The nMC,1000000 approximation is treated as the ‘true’ ESIG because
it should lead to negligible bias and variance. Four clusters can be distinguished in Fig-
ure 5.8: a cluster of nMC and nIS for small k; and k9; a cluster of LA1, LA2 and ’reuse’
for small k1 and ko; a cluster of ALIS and LIS for small k1 and ko; and a cluster of
all methods for large k; and ko. The least computationally expensive methods are
LA1,300 and LLA2,300 but these methods result in higher rRMSE compared with most
other methods. As expected, nMC,300, nIS,300 and nlS,t,300 give the highest rRMSE
(nIS for small k; and ko leads to small effective sample size and hence the prior distri-
bution is often being used as the importance distribution rather than an approximate
posterior distribution, see Section 4.2.3). ALIS and LIS with k; = k2 = 300 and both
normal and ¢ importance distributions have lower rRMSE than other methods with
similar computational expense. Increasing k1 and ko for all methods has decreased the

rRMSE but increased the computational expense.

Next we present results for the designs with more runs (n = 10, 20) which also support

the results and insights from above.
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Figure 5.7: Estimated expected Shannon information gain for the parameters 8 of the
Michaelis-Menten model for all methods (see Table 5.1, Section 4.2.2 and (4.11)) for the
n = 5 space-filling design, &5, and the ‘true’ ESIG (red line) obtained from nMC with
k1 = ko = 1,000,000 (the notation nMC,2000 denotes estimation of the ESIG using
naive Monte Carlo with k£, = 2000 and ko = 10000, nMC,300 is the ESIG evaluated
100 times using nMC with k1 = ko = 300, etc)
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methods for the n = 10 space-filling design, £19, and the ‘true’ ESIG (red line) obtained
from nMC with k1 = ko = 1,000, 000
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Figure 5.10: Estimated ESIG for the parameters 6 of the Michaelis-Menten model for all
methods for the n = 10 space-filling design, £19, and the ‘true’ ESIG (red line) obtained
from nMC with k; = k2 = 1,000,000 (nMC,300, nIS,300, nIS,t,300 and reuse,300 are
omitted because these methods exhibit large bias)
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Figure 5.11: The rRMSE against log-time for the n = 10 space-filling design, £;9, for
the Michaelis-Menten example

Figures 5.9 and 5.10 show 100 estimates of the ESIG for each method for the 10-run
space-filling design, £19. In Figure 5.10, the results for nMC,300, nIS,300, nIS,t,300 and
reuse,300 are omitted because these methods exhibit large bias. The results are similar
to the results of the n = 5 space-filling design presented in Figure 5.7, but with higher
information gains in general. For this 10-run design nMC and nlS result in greater bias
than the 5-run design possibly due to the greater difference between the prior and the

posterior distributions.

In Figure 5.11 we assess the n = 10 space-filling design, &9, in terms of rRMSE against
log-time. The same procedure was followed as before. The least computationally expen-
sive methods are LA1,300 and LA2,300 however these have higher rRMSE than other
methods. We omit nMC,300, nIS,300, nIS,t,300 and reuse,300 because these methods
exhibit large bias. Compared to the Laplace approximation methods, ALIS,300 and
LIS,300 with both normal and ¢ importance distributions give much reduced rRMSE for
a moderate increase in computational cost. ALIS,300 and LIS,300 are also substantially
cheaper and more accurate than nMC,2000, nIS,2000 and reuse,2000. Only ALIS,2000
and LIS,2000 for both normal and ¢ importance distributions are more accurate, but
this comes at the price of a significant increase in computational expense which does

not seem worthwhile for this example.

Figure 5.12 shows 100 estimates of the ESIG for each method for the n = 20 space-
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Figure 5.12: Estimated ESIG for the parameters 0 of the Michaelis-Menten model for all
methods for the n = 20 space-filling design, £29, and the ‘true’ ESIG (red line) obtained
from nMC with k; = k2 = 1,000,000 (nMC,300, nIS,300, nIS,t,300 and reuse,300 are
omitted because these methods exhibit large bias)
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Figure 5.13: The rRMSE against log-time for the n = 20 space-filling design, &5, for
the Michaelis-Menten example
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filling design, £29. Similar results are obtained as in Figures 5.7 and 5.9 but with the
information gain again being higher. We can notice that increasing the number of runs,
n, of the design has increased the bias in the ‘reuse’ method. Also, increasing n has
decreased the bias in LA1 and LA2, as we would expect, as the Laplace approximation

relies on asymptotic results and hence as n increases the bias decreases.

In Figure 5.13 we assess the 20-run space-filling design, &9, in terms of rRMSE against
log-time. Similar results apply here as for the previous designs. LIS,300 and ALIS,300

give a highly accurate approximation at relatively low computational cost.

Figures 5.7-5.13 show that ALIS and LIS with small k; and ks have given results with

less bias than other methods for low computational cost (small k1 and k2).

5.1.3 Biochemical Oxygen Demand (BOD) model

A data set on biochemical oxygen demand (BOD) was analysed by Bates and Watts
(1988, Chapter 2) assuming the following model:

y; = 01(1 —exp{—0ox;}) +¢;, i=1,...,n, (5.2)

where g; ~ N(0,02), y; is BOD (mg/L) and z; is time (in days).

We assume independent log-normal prior distributions, ; ~ log N(ju1,07) and 6y ~
log N (p12,03), with y3 = 3.38, o1 = 0.20, pa = 1.098, 0o = 1.12. The prior means
were chosen to match the means as given by DiCiccio et al. (1997) (E(f;) = 30 and
E(62) = 3). The prior variances were chosen to show differences between the methods
(for smaller and bigger variances the results were similar for all methods). We also

1

assume a non-informative prior distribution on o. with m,(0:) x o7 . See Appendix

C.1.4 for examples of the shape of the expected response of the BOD model for different

values of #; and 6y sampled from these prior distributions.

The likelihood is given by:
2 1 1 T
m(yl6,0Z,¢) = (mo2yi2 P T3,z y-—m (y—-m,

where = [n(x1,0)...0(x,,0)]T and n(z;,0) = 01(1 — exp{—0az;}).

We integrate out o2 to obtain the marginal likelihood:

rar(y]6,€) = /O (16, 02, )y (0. )do

* 1 1 T 11 5
—— — - - ——d
S /0 @ro2)i? &P { 202 =My n)} o 20, 7
11 1 1 T 9



The above integral is evaluated by comparison with an inverse-gamma density and is
finite provided that the residuals of the sum of squares, (y — 1) (y — ), is non zero

which is true with probability one.

The log-unnormalised posterior density for @ = (61, 02)T is then given by:

n
log m (8ly.€) = — log [(y —m)"(y — )] + constant
log 6, — 2 log 65 — 2
~ logftroyv/am] — UBI )T g0,y /am) - 10802 —p2)”
207 205
(5.3)

Similarly to the previous example (Section 5.1.2), we aim to construct an importance
distribution that guarantees positive values of all parameters 8. Hence, we take a
)T

normal approximation to the distribution of 8’ = (log 61, log 62)" as described in Section

4.3.2. In order to calculate the negative Hessian of the log-unnormalised posterior,
Hy/(0'), in ALIS and LIS (Section 4.3), we first have to find the derivatives of the
log-unnormalised posterior density log7? (6'[y, &) with respect to @ using Equations
(4.36). These derivatives can be found in Appendix B.2.2.

We compare approximations of the ESIG for the design given in Bates and Watts
(1988, Appendix 1) (n = 6) and for space-filling designs with n = 10,20 as shown in
Figure 5.14, for all methods similar to the previous example. We use both normal and

t importance distributions for the importance sampling methods.

As in Section 5.1.2, Figure 5.15 shows the distribution of 100 estimates of the ESIG
obtained using the different methods, and different combinations of inner and outer
sample sizes. For each choice of method and sample size, 100 Monte Carlo estimates
were calculated for the n = 6 design, . Again, we treat as the ‘true’ ESIG the nMC
approximation with k1 = ko = 1,000,000 (red line) because the very large Monte Carlo
sample size should lead to negligible bias and variance. We notice that ALIS and LIS
for even small k1 and ko have less bias and variance compared to the other methods
for the same sample sizes. Increasing k; and ko reduces the variance and bias of nMC
and also makes a big improvement to nIS and ‘reuse’. For ALIS and LIS, increasing
(k1, k2) from (300, 300) to (2000, 10000) has little effect on the mean of the distribution,
perhaps because the bias is already small even for (ki, k2) = (300,300). However, the
variance is reduced. Changing from a normal to a ¢ importance distribution slightly
improves ALIS, LIS and nIS. LAl and LA2 have less bias than nMC,300, nIS,300,
nlIS,t,300 and reuse,300, but the bias is larger than for the other methods for larger ky
and ko. In this example we can see greater differences in the ESIG between LA1 and
LA2 and the other methods; for this nonlinear example, the Laplace approximation

methods overestimate the information gain for this particular design.

Figure 5.16 shows the results for the BOD example from applying all the methods to

the n = 6 run design, &, in terms of relative root mean squared error (rRMSE) with
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Figure 5.14: BOD example: The n = 6 design, &, from Bates and Watts (1988,
Appendix 1), and n = 10, 20 space-filling designs, {19 and a9, respectively
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Figure 5.15: Estimated ESIG for the parameters 68 of the BOD model for all methods
(see Table 5.1, Section 4.2.2 and (4.11)) for the n = 6 design, &, and the ‘true’ ESIG
(red line) obtained from nMC with k1 = kg = 1,000,000 (for notation see Figure 5.7)
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Figure 5.16: The rRMSE against log-time for the n = 6 design, &, for the BOD example

respect to a nMC approximation with k; = ke = 1,000,000 against computational
log-time, similar to the example in Section 5.1.2. As before, the methods are separated
into four clusters. The least computationally expensive methods are LA1 and LA2 but
these have higher rRMSE than other methods. Also, reuse,300 is computationally cheap
but has higher rfRMSE than other methods. ALIS,300 and LIS,300 for both normal
and t importance distributions have small rRMSE and are computationally cheap. As
expected nMC,300, nIS,300 and nIS,t,300 have the highest rRMSE. Increasing k1 and

ko for all methods decreases the rRMSE but increases the computational expense.

Figure 5.17 and 5.18 show the distribution of 100 estimates of the ESIG for the 10-
run space-filling design, £1g, with the only difference that nMC,300, nIS,300, nIS,t,300
and reuse,300 are omitted from Figure 5.18 because these methods exhibit large bias.
Similar comments apply here as in Figure 5.15. The difference between LA1 and LA2
and the other methods has decreased for this design as the Laplace approximation relies

on asymptotic results and hence as n increases the bias decreases.

In Figure 5.19 we assess the 10-run space-filling design, &19, in terms of rRMSE against
log-time. Similar results apply as for the previous design and the previous example.
We can notice here a bigger difference in rRMSE between LA1 and LA2 (LA1 results
in lower rRMSE than LA2).

Figure 5.20 shows the distribution of 100 estimates of the ESIG for each method for
the 20-run space-filling design, &9, following the same procedure as for the previous

example and the previous designs. We can notice similar results as in Figure 5.15 and
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for the n = 10 space-filling design, &0, and the ‘true’ ESIG (red line) obtained from
95

nMC with k1 = ko = 1,000,000 (nMC,300, nIS,300, nIS,t,300 and reuse,300 are omitted

Figure 5.18: Estimated ESIG for the parameters € of the BOD model for all methods
because these methods exhibit large bias)
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Figure 5.19: The rRMSE against log-time for the n = 10 space-filling design, &9, for
the BOD example (nMC,300, nIS,300, nIS,t,300 and reuse,300 are omitted because
these methods exhibit large bias)
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Figure 5.21: The rRMSE against log-time for the n = 20 space-filling design, £s9, for
the BOD example (nMC,300, nIS,300, nIS,t,300 and reuse,300 are omitted because
these methods exhibit large bias)

Figure 5.18. Increasing the number of runs of the design, n, has decreased the bias in
LA1 and LA2, which is now less than the bias from nMC,2000, nIS,2000 and nIS,t,2000.

In Figure 5.21 we assess the 20-run space-filling design, 99, in terms of rRMSE against
log-time for all the methods. The same comments apply as for the previous designs
(&6 and &19) and the previous example. LIS,300 and ALIS,300 give a highly accurate

approximation at relatively low computational cost.

As in the previous example, Figures 5.15-5.21 show that ALIS and LIS with small k;
and ko have given results with smaller bias than other methods with low computational
cost (small k; and k9). The bias of the ‘reuse’ method remained large compared to the
other methods as we increased n. Also, for this example we notice that the difference
between LAl and LA2 and the other methods decreases as n increases; the Laplace
approximation relies on asymptotic results and hence as n increases the bias decreases.
In addition, for this example the difference between the two Laplace approximations is
also higher (LA1 results in less bias than LA2) possibly due to the additional assumption
required in LA2 (see Section 4.2.2).
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5.1.4 Lubricant model

The last nonlinear example in this chapter is a 10-dimensional model. Following Bates
and Watts (1988, Chapter 3), the kinematic viscosity of a lubricant is given as a function

of temperature (°C), z1, and pressure (atm), x3. The model is given by:

Oy +

__ M
Os + 991‘%1-

Y + O3x9; + 9437%2 + 0593%1 + (06 + 973:%i)a;2i exp { } + &4, (5.4)
where ¢; ~ N(0,02) and we define 619 = log o.. We assume independent normal prior
distributions, 6; ~ N (pu;, sz-), j=1,...,10, with mean and standard deviation equal to
the maximum likelihood estimates and their standard errors from data available from
Bates and Watts (1988, Chapter 3) (see also DiCiccio et al., 1997), which can be found

in Table 5.2.
The likelihood is
(v16,6) = ——— Ly -y —m)
= —-— X —_—— — J—
m(yl0, @ro2yi2 PP\ Tz )y =)y
where 1 = [n(x11, 221, 0) ... 0(T1n, Ton, 8)]T with

77(£E1z‘,$2z‘> 9)

T1s
-1 + O3x9; + 9411)%Z + 951‘%1 + (96 + 071‘%)1‘21 exp { h} R
Oy + x1;

B Os + 99%%

and the log-unnormalised posterior density is:
n 2 1 T
log mu(Bly, §) = =5 log[2mo] — o [(y =m) (v = m)]

202
0 (4 1
_ E {2 log[27raj2-] + ?(ﬁj - ,uj)2} . (5.5)

j=1 J

The derivatives of this density can be found in Appendix B.2.3. The different meth-
ods listed in Table 5.1 are used to approximate the evidence, and hence the expected

Shannon information gain. In addition we also employ LA2.

We compare approximations of the expected Shannon information gain for the design
given in Bates and Watts (1988, Appendix 1) with n = 53 and for a subset of the
original design with n = 20, chosen at random with stratification to include five design
points at each level of temperature. These designs are shown in Figure 5.22. The ESIG
using nMC and nlS is estimated for k1 = 2000, k3 = 10000; using ALIS and LIS for
k1 = ko = 300; and using LA1 and LA2 (single loop methods) k3 = 300. We choose
these combinations of inner and outer sample sizes based on the results from previous
examples. For this example the ‘reuse’ method is omitted because as shown in the

previous examples it performs poorly.
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Figure 5.22: (a) The n = 53 design, &53, as given by Bates and Watts (1988, Appendix
1) for the lubricant model; (b) A sub-design, £29, with n = 20 chosen from the 53-run
design given by Bates and Watts (1988, Appendix 1) for the lubricant model

Parameter Mean | St. dev.
01 1054.54 24.63
0 206.55 5.29
03 1.46 0.04
0,4 -0.26 0.01
05 0.02 0.002
s 0.40 0.03
07 0.04 0.001
0 57.40 2.37
09 -0.48 0.075
010 = log o, -1.50 0.10

Table 5.2: The prior means and standard deviations of the unknown parameters 6;,
j=1,...,10 of the lubricant model (5.4)

Figure 5.23 shows boxplots of the Monte Carlo distribution of estimates of the ESIG
obtained using the different methods for the n = 53 design, &53. For each choice of
method 100 Monte Carlo estimates were calculated. The nMC method has resulted in
ESIG much higher than all the other methods. We also notice that the estimated ESIG
using LA2 is sometimes also very large with the distribution for this approximation

having a long right tail.

In order to reduce the estimated ESIG of nMC for this example we increase k3. Figure
5.24 shows boxplots of the Monte Carlo distribution of 100 estimates of the ESIG
obtained using nMC for two different combinations of k1 and ko: (i) k1 = 2000, kg =
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Figure 5.23: Estimated ESIG for the parameters 8 of the lubricant model for all meth-

ods (see Table 5.1 and Section 4.2.2) for the n = 53 design, &3 (for notation see Figure
5.7)
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Figure 5.24: Estimated ESIG for the parameters 6 of the lubricant model found using
nMC for different combinations of k1 and ko, for the n = 53 design, &53
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Figure 5.25: Estimated ESIG for the parameters 8 of the lubricant model for all meth-
ods for the n = 53 design, &3 (nMC and LA2 are omitted)

10000; (ii) k1 = 300, ko = 1000000. Increasing ks does not change the estimated ESIG.
For this 10-parameter nonlinear example, it appears that nMC is not a good method
for approximating the expected utility as it seems to overestimate the information gain

even for very large values of ks.

In order to display differences between the methods, in Figure 5.25 nMC and LA2
are omitted. ALIS and LIS give lower estimates of the ESIG than other methods.
For all the importance sampling methods (ALIS, LIS and nlS), changing from a nor-
mal to a ¢t importance distribution has reduced the estimated ESIG. The nIS method
has sometimes resulted in infinite ESIG estimates because the evidence, m.(y|£), were

approximated as zero and hence the approximate expected utility is

1o

0(€) = 1 [loam(ynlr.€) —log !
h=1

k1

= k:ll Z [log 7 (y#|0h, &) — log(0)]
h=1
k1

— o 3 log (¥4 &) — (~0)

h=1

:OO,

(see also Section 4.1.3). This zero evidence phenomenon can occur when most of the
sampled @ in the inner loop are a long way from the region of high likelihood or high
posterior density, as can happen with nMC or importance sampling with a poorly

chosen importance density.
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Figure 5.26: Estimated ESIG for the parameters 6 of the lubricant model for all meth-
ods for the n = 20 design, £ (nMC is omitted)

Figure 5.26 shows the same results as Figure 5.25 but for the n = 20 design. The nMC
method is omitted as it exhibits large ESIG. Similar comments apply here as for the

previous design.

In order to see any differences between the methods, LA2 is also omitted in Figure
5.27 because of the long right tail. Similar to the 53-run design LIS,300 and ALIS,300
result in approximations with lower ESIG. For this design, nIS,2000 and nIS,t,2000
also result in approximations with lower ESIG, similar to that of ALIS and LIS. The
better performance of nIS for the 20-run design may be due to the prior distribution
being a better approximation of the posterior distribution in this case. In contrast, for
the 53-run design, there may be a greater difference between the prior and posterior
distributions. This may lead to a small effective sample size in the estimation of the
posterior mean and covariance, and so the importance distribution will usually revert

to the prior distribution (see Section 4.2.3), giving performance comparable to nMC.

For this example a plot to compare the relative root mean squared error (rMSE) against
computational time is not included because we cannot find a ‘true’ value of the ESIG

for comparison.

For this model we have seen that for the importance sampling methods (ALIS, LIS
and nlS) changing from a normal to a ¢ distribution results in lower estimates of the
ESIG. This might be a consequence of the posterior distribution having fatter tails
than the prior distribution and hence a t distribution is more appropriate. Also, the
estimated ESIG with LA1 and LA2 for this model is different than the other methods.

Possibly the asymptotic normal approximation to the posterior density underpinning

102



—_
6 [}
Q o
w0
i}
hel e
Q I
© 1
5 -
£ —
k7] —_ I
w | —_
— ©
|
1
[
4 —_—
_
—_—
e ——
— —_—
]
L ——
T T T T T T T
=] o =] =1 o o o
=1 =] S =1 s S =1
] a A @ < 8 a
12} e 4] b o -
=i @ o} @ 1] pr 1
< | } € v
< c

Figure 5.27: Estimated ESIG for the parameters 6 of the lubricant model for all meth-
ods for the n = 20 design, &30 (LA2 is omitted)

the Laplace approximation is inaccurate due to the large number of parameters relative

to the sample size.

5.2 Optimisation of the utility function

A fundamental problem is how to optimise the objective function, and hence find opti-
mal designs, in a computationally efficient manner. The most common approach used
to search numerically for an optimal exact design is to use an exchange algorithm. This
fall into two main classes: point exchange algorithms and coordinate exchange algo-
rithms. Point exchange algorithms (Fedorov, 1972; Johnson and Nachtsheim, 1983)
involve systematically exchanging design points with points from a candidate set in
order to improve the value of the objective function. These approaches may be compu-
tationally expensive for problems with many continuous factors due to the need to use
a very large candidate set. Coordinate exchange algorithms (Meyer and Nachtsheim,
1995) instead change one element, or ‘coordinate’, of the design at a time, without the
need for a candidate set. A ‘coordinate’ is the value taken by an individual variable
in a single run. These algorithms apply when the objective function can be evaluated
exactly and deterministically, as is usually the case with frequentist design. However,
in Bayesian design typically a Monte Carlo approximation to the objective function,
i.e. the expected utility, is used, and so the standard exchange algorithms are not

applicable.

For low-dimensional Bayesian design problems (one variable and a small number of

design points), Miiller and Parmigiani (1996) and more recently Weaver et al. (2016),
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performed stochastic optimisation for expected utility maximisation. This is performed
by conducting a noisy computer experiment to construct a statistical emulator for
the Monte Carlo approximation U (&) for a small number of designs and smooth the
resulting values of the approximation to the utility. However application of this idea

to high-dimensional design problems suffers from the curse of dimensionality.

A more recent development that is also compatible with noisy evaluations of the ob-
jective function is the Approximate Coordinate Exchange (ACE) algorithm (Overstall
and Woods, 2017). For each coordinate, a noisy Monte Carlo estimate of the expected
utility is made for a small number of potential changes to the coordinate. These noisy
evaluations of the expected utility are then smoothed using a Gaussian process em-
ulator. The fitted emulator is smooth, and so can be optimised directly unlike the
noisy evaluations themselves. The advantage of embedding the emulation step within a
coordinate exchange algorithm is that it is only necessary to emulate one-dimensional
functions, thereby eliminating the computational expense that occurs when using Gaus-
sian processes in high dimensions (Rasmussen and Williams, 2006), e.g. through the

need to use a large space-filling design.

The ACE algorithm
The algorithm is divided into two phases. Phase I of the algorithm is application of

a coordinate exchange algorithm by constructing a sequence of one-dimensional emu-
lators; see Algorithm 10. This phase tends to produce designs with clusters of similar
design points. Phase II checks if the points in each cluster can be reduced by using a

point exchange algorithm, using the optimal design from Phase I as a candidate list.

Algorithm 10: The ACE algorithm (Overstall and Woods, 2017)

Start with a randomly chosen initial design &;
repeat

for i=1,...,ndo

for j=1,...,¢1 do

Generate a 1d space-filling design d; = [wjl, e ,SL‘]Q] € I‘JQ;
for k=1,...,Q do
L Evaluate Uy, = U (&; (%?))7

Construct a 1d Gaussian process emulator U(x) from data {xf, f]k},

| Set x;; = argmaxex; U () with probability p obtained from Algorithm 11;

until convergence;

Above we use the notation &;j(x) = [x1,...,Xi—1, Wj(Z), Xit1, - - ., Xp], where
T
Wi (T) = (Ti1, .+, Tij 1, T, Ty -+ Tigy) -
In Algorithm 10 the notation &;;(z) = [x1,...,Xi—1, Wi;(2), Xit1, . . ., Xp), Where wy;(x) =
(i1, - Tije1, T, Tijg1 - - - ,miql)T, defines a new design with a new proposed ¢jth coor-
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dinate . In addition Uj, = ﬁ(&j(:ﬂf)), k=1,...,Q, is the evaluation of the expected
utility for the new design fzj(mf) with the new proposed coordinate zr:;C , with the pro-
posals xf coming from a one-dimensional space-filling design ¢;. The emulator is given

by the posterior mean of a Gaussian process,

U(x) = fuij + 635" (,d;) A(d)) 2,

with f;; = Zgzl U/ Q, 6% = Zgzl(ﬁk — fij)?/(Q — 1) and z;; is a vector having
kth entry (Up — f1;5)/64j. Under the common assumption of a squared exponential
correlation structure, the vector a is the @) vector of correlations between variable x
and each coordinate :1:;C and A is the @ x(Q correlation matrix between all the coordinates

xf (see Woods et al., 2017).

In Algorithm 10, the proposed change to the coordinate is accepted with probability
resulting from an independent check on the difference in expected utilities between the
current and proposed designs. See Algorithm 11, which essentially describes obtaining
the posterior probability that the proposed design has larger expected utility than the
current design, using a separate Monte Carlo sample from the joint distribution of ¥

and y.

Algorithm 11: Accept/reject step of the ACE Algorithm 10

Given the current design £ and the new proposed coordinate x;
Let &j(x) be the design formed by replacing the ijth coordinate of { with x;
for s=1,...,Bdo
Sample v, from my(1));
Sample y1 ~ m(y|ths, &ij(x)) and ya ~ m(y|es, §);
Set Urs = u(&ij(), s, y1) and Uzs = (€, s, y2);
Assume Uy ~ N(by + be,a) and Us ~ N (b1, a);
Calculate the posterior probability, p, that by > 0 using “data” U; and Us;

In Algorithm 11 the notation @(,,y) defines the estimate of u(, 1, y) obtained by

estimating the evidence using a specified approximation.

Convergence of the algorithm is assessed graphically from trace plots of the approximate
expected utility against the iteration number. Also, to avoid local optima, the algorithm
is run P times with each run starting from a different, randomly chosen, initial design, &.
See Overstall and Woods (2017) for more details. The ACE algorithm is implemented
in the R package acebayes (Overstall et al., 2017).

As we find optimal designs numerically, all our designs may only be near-optimal.
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5.3 Bayesian optimal designs using the approximate co-

ordinate exchange algorithm

In this section we combine the expected utility approximation methods presented in
Table 5.1, Section 4.2.2 and (4.11) with ACE (see Section 5.2) to find Bayesian optimal
designs for the Michaelis-Menten model (Section 5.1.2), the BOD model (Section 5.1.3)
and the Lubricant model (Section 5.1.4).

When using ACE, for the emulator building step we used k1 = ko = 2000 and k1 = 2000
for the single loop methods, for the Michaelis-Menten model and the BOD model. For
the lubricant model we used k1 = ko = 300 for ALIS and LIS and &; = 300 for LA1
and LA2. For nMC and nIS a larger Monte Carlo sample size was needed because
the evaluation of the expected utility fails for small sample sizes; we used k; = 2000,
ko = 10000. In Algorithm 11 of ACE we set B = k1 = ko = 10000. Post-hoc the
ESIG is approximated for each design found using ALIS with k; = ko = 300 which as
shown in the previous section is computationally efficient and results in less bias than
the other methods.

Michaelis-Menten model

We employ the ACE algorithm to find expected Shannon information gain optimal
designs with n = 5,10, 20. For each design, 10 random starts of the ACE algorithm are

used, each starting from a different random Latin hypercube design.

Figures 5.28, 5.30 and 5.32 show the optimal designs produced using the different
methods for n = 5,10, 20 runs, respectively. Figure 5.28 shows some small differences
in the design points found for each method, with the main pattern being that all
methods tend to position some design points at the start of the region, where the
expected response is changing more quickly, and some at the end of the region, where
the expected response is more stable. The designs produced using LA2 and the ‘reuse’
method have more differences with the designs found using all the other methods; the
former results in a design where some points are kept in the middle and no points are
placed at the end of the design region, and the latter, results in a design where some
points are also kept in the middle of the design region. Similar patterns can also be
noticed in Figures 5.30 and 5.32 for n = 10, 20, with the addition of points at the start
of the design region and some points in the middle of the design region. LA1 produces
an optimal 20-run design different from the other methods, where there are no points

at the end of the design region (Figure 5.32).

Figures 5.29, 5.31 and 5.33 give the estimated ESIG for the optimal designs for the
different methods, approximated using ALIS with k&1 = ko = 300. All the optimal
designs have higher ESIG than the space-filling design, and all optimal designs have
similar ESIG. For the n = 20 optimal designs, LA2 and the ‘reuse’ have produced
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Figure 5.28: Expected Shannon information gain optimal designs with n = 5 for the
Michaelis-Menten model and the 5-run space-filling design, &5

© o
—— o
o ! | ! |
===
1
1
e
: 1
] R —
1
2 L
w o 7
o
]
k9]
©
£
»
LIJQ__'_
© I
1
1
1
[Te) R —
w7 (o]

* | * |

* | Bl « il
ES EnMC EALIS §LIS EnIS ELA1 ELAZ Ereuse

Figure 5.29: Estimated ESIG for the parameters @ of the Michaelis-Menten model
found using ALIS for the n = 5 optimal designs and the space-filling design, &5
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Figure 5.30: ESIG optimal designs with n = 10 for the Michaelis-Menten model and
the 10-run space-filling design, &1
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Figure 5.31: Estimated ESIG for the parameters € of the Michaelis-Menten model
found using ALIS for the n = 10 optimal designs and the space-filling design, &1
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Figure 5.32: ESIG optimal designs with n = 20 for the Michaelis-Menten model and

the 20-run space-filling design, &0
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Figure 5.33: Estimated ESIG for the parameters @ of the Michaelis-Menten model
found using ALIS for the n = 20 optimal designs and the space-filling design, &2

109



Estimated ESIG

==
1 T T T T T T T T T T T T T T T T T 1
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n

Figure 5.34: Estimated ESIG for the parameters @ of the Michaelis-Menten model for
optimal designs with n =1,...,20, found using ACE and ALIS with k; = ko = 2000

designs where the ESIG is lower than from the designs produced from all the other

methods; however the difference is small.

Note that as we increase the number of runs, n, of the design the ESIG does not
change very quickly. To see that clearly, we find optimal designs using ALIS and
k1 = ko = 300 with n = 1,2,...,20 runs, and then estimate the ESIG 100 times using
ALIS and k1 = ko = 2000 for each design. Figure 5.34 shows the increasing relationship

between the runs of the design, n, and ESIG. The rate of increase decreases with n.

Biochemical Oxygen Demand (BOD) model

In this section we find optimal designs using the ACE algorithm for the BOD model.
Again, 10 random starting designs are used in ACE, each starting from a different
random LHS design. The same procedure was followed to find the optimal designs as
for the Michaelis-Menten model. For this model LA2 is omitted as the optimisation

failed to converge due to infinite objective function values.

Figures 5.35, 5.37 and 5.39 show the optimal designs produced using the different
methods for n = 6,10, 20 runs, respectively. Figure 5.35 shows some small differences
in the design points found for each method, with the main pattern similar to that of
the Michaelis-Menten model optimal designs; all methods tend to position some design

points at the start of the region, where the expected response is changing more quickly,
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Figure 5.35: ESIG optimal designs with n = 6 for the BOD model and the 6-run design,
&6, given by Bates and Watts (1988)
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Figure 5.36: Estimated ESIG for the parameters 8 of the BOD model for the n = 6
optimal designs and and the 6-run design, &, given by Bates and Watts (1988)
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Figure 5.37: ESIG optimal designs with n = 10 for the BOD model and the space-filling
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Figure 5.38: Estimated ESIG for the parameters 8 of the BOD model for the n = 10
optimal designs and the space-filling design, &g
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Figure 5.39: ESIG optimal designs with n = 20 for the BOD model and the space-filling
design, &20
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Figure 5.40: Estimated ESIG for the parameters 6 of the BOD model for the n = 20
optimal designs and the space-filling design, &2
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and some at the end of the region, where the expected response is more stable. Similar
patterns can also be noticed in Figures 5.37 and 5.39 for n = 10, 20, with the addition
of more repeated points at the start and the end of the design region and some points
in the middle of the design region. In Figure 5.37 we notice that the ‘reuse’ method

produces a design where the points cover the design region.

Figures 5.36, 5.38 and 5.40 give the estimated ESIG for the optimal designs for the
different methods, approximated using ALIS with k1 = ko = 300. For each of the
methods 100 Monte Carlo estimates were calculated. In Figures 5.36 and 5.38, all the
optimal designs have higher ESIG than the 6-run design given by Bates and Watts
(1988) and the space-filling design with n = 10, respectively, and all optimal designs
have similar ESIG. In Figure 5.40 we notice that the optimal design found with the
‘reuse’ method has similar ESIG to the space-filling and lower ESIG than the optimal
designs found with all the other methods, which have higher ESIG than the space-filling
design.

For this model, perhaps the poorer performance of the optimal designs obtained from
the ‘reuse’ method is due to the Monte Carlo size used to estimate the ESIG being

insufficient.

Lubricant model

In this section we find optimal designs using the ACE algorithm for the lubricant model.
Again, 10 random starting designs are used in ACE. The same procedure was followed
to find the optimal designs as for the Michaelis-Menten model and the BOD model. For
this model we omitted the ‘reuse’ method due to the poor performance of the optimal

designs found for the previous examples.
Figure 5.41 shows the 53-run design as given in Bates and Watts (1988, Appendix 1).

Figure 5.42 shows the optimal designs with n = 53 found using ACE with the different
methods. We notice that the optimal design produced by LA1 is almost a “one-factor-
at-a-time” design (Czitrom, 1999) with variation in xs almost only occurring at the
lowest value of x1. Similar, but less extreme, patterns are observed in the designs
found using ALIS and LIS. The optimal designs found using nMC, nIS and LA2 vary
the values of x1 and xo in the design region more uniformly compared to the other
methods.

Figure 5.43 shows boxplots of the Monte Carlo distribution of 100 estimates of the
ESIG obtained using ALIS with k; = ky = 300 for the optimal designs found with the
different methods. All optimal designs have higher ESIG than the 53-run design from
Bates and Watts (1988, Appendix 1). However, the optimal designs found with ALIS,
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Figure 5.41: The n = 53 design, &3, as given in Bates and Watts (1988, Appendix 1)

for the lubricant model
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Figure 5.42: ESIG optimal designs with n = 53 for the lubricant model (the numbers
on some points show how many times the point is repeated)

115



O _]
- L o
— —— —
JR— PR —
f_" ]
QO o | _
O o —
i —— = —
Ee} —_l
by o
©
E 2 1
E
L
o
.
© - =
PR —
T x| * | P M |
Es3 Emc  Eaus ELis Enis EL A1 LAz

Figure 5.43: Estimated ESIG for the parameters @ of the lubricant model for the 53-run
optimal designs shown in Figure 5.42 and the design £53 shown in Figure 5.41

Parameter | Mean | St. dev.
03 0.0 5.0
0,4 0.0 5.0
05 0.0 5.0

Table 5.3: The means and standard deviations of the unknown parameters 63, 64 and
05 of the lubricant model (5.4) used to find n = 20 optimal designs

LIS and LA1, which are also more similar to each other, have higher ESIG than the
optimal designs found with the other methods.

To investigate the sensitivity of the designs to the choice of the prior distribution, for
the same model we change the means and standard deviations of the prior distributions
on 03, 4 and 05 and keep the prior distributions of all other parameters fixed (as given
in Table 5.2), and find optimal designs using ACE with n = 20. The new prior means
and standard deviations for 63, 84 and 05 are given in Table 5.3. We follow the same

procedure as before.

Figure 5.45 shows the ESIG optimal designs found using ACE with the different meth-
ods. The designs found using ALIS and LIS are similar with most points for xo take
the highest value. LAl and LA2 have produced designs with fewer distinct values of
x1. For these prior distributions we could not find optimal designs using nMC and nIS

due to the zero evidence problem (see Section 4.1.3).

In Figure 5.46 we present the ESIG estimated 100 times and approximated using ALIS
with k1 = ko = 300, for the four different optimal designs and the 20-run design, &2¢
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Figure 5.44: A sub-design with n = 20, &9, chosen from the 53-run design given in
Bates and Watts (1988, Appendix 1) for the lubricant model

EALIS 2;LIS
~ Jo 5 Mo » ~ 86 05 05 2
i © - 2
0 — © ®
3 * ~ Ye
x Y e X o
_ ~ °
C\I—a - »
T e o e
T T T T T T T T T T
0 20 40 60 0 20 40 60 80 100
X1 x1
ELA1 gLAZ
~ 3 2 2 ~ % 2
(0—2 © '
w0 - 0 - 8
)
< <t
R N ° ]
o - o -
3
o~ ~ -
o 48 o é
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
x1 x1
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Figure 5.46: Estimated ESIG for the parameters @ of the lubricant model for the 20-run
optimal designs shown in Figure 5.45 and the design &3¢ shown in Figure 5.44

(a subset of the design given by Bates and Watts, 1988, Appendix 1, see Section 5.1.4
and Figure 5.44). All optimal designs, except the optimal design found using LA2 have
higher ESIG than &5. In this higher dimensional example, the optimal designs found
with ALIS and LIS have higher ESIG than the optimal designs found with the other
methods. It is likely that the poorer performance of the designs from LAl and LA2
occurs due to the larger experiment sizes being required to produce accurate asymptotic

results.

5.4 Summary

In this chapter we have showed through nonlinear examples that the new proposed
methods of approximating the evidence and hence approximating the expected Shannon
information gain, ALIS and LIS, with a moderate Monte Carlo sample size provide
a good balance between bias and computational expense. We have also illustrated
that ALIS and LIS perform better than existing improved methods. Lastly, we found
Bayesian optimal designs by combining the methods introduced in Chapter 4 with
the ACE algorithm and showed that for complex models ALIS and LIS have produced
designs that have higher expected Shannon information gain than the designs produced
with the other methods.
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Chapter 6

Bayesian optimal designs for a

calibration model

In this chapter we focus on finding fully Bayesian optimal designs for the calibration
model (1.1), with a particular focus on designs for the physical experiment. We describe
existing methods in the literature for finding optimal designs for the physical experiment
in the calibration problem. We use the Kennedy-O’Hagan calibration framework to
address design under the two key problems, present in many systems or processes, of
model discrepancy and computationally expensive models. We assume that only one
of the two problems holds at a time, and Gaussian process priors are used to model
unknown functions. ALIS and LIS are used to approximate the expected Shannon
information gain and they are combined with the ACE algorithm to find Bayesian

optimal designs.

6.1 Statistical calibration

The Kennedy-O’Hagan calibration framework addresses two key problems that are

present in many systems or processes:
e the function 7(x,0) may not provide an adequate description of the mean;

e the model may be expensive to evaluate, precluding direct use of the model in

inference.

Both of these problems can be addressed using Gaussian processes. This can be done
simultaneously (see Section 2.2), but for the purposes of this chapter we assume that

only one of these statements holds.

We consider the following statistical model for the physical observation y;:
yi = C(x;) + & = n(xi,0°) + dgr(x;) + €4, i =1,...,n. (6.1)
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The discrepancy function, dgs(+), encodes the difference between the simulator evaluated
at the ‘true’ 8P, n(x;, P), and the mean, ((x;), of the physical process. We assume ¢;

is the random error and &; ~ N(0,02) independently.
We divide the calibration problem into the following sub-problems:
SP1. known simulator 7(x, 8), with dgr(x) = 0 (nonlinear design, see Chapter 5);
SP2. known simulator n(x, @), with discrepancy;
SP3. unknown simulator 7(x, @), and dgr(x) = 0;
SP4. unknown simulator n(x, @), with discrepancy.

In Section 6.2, we review existing methods in the literature for finding optimal de-
signs for the physical experiment to estimate the parameter 7 = (67,...,65)T in the

calibration model (6.1), or predict the mean of the physical system.

In Sections 6.3 and 6.4 we develop novel methodology for optimal design of the phys-
ical experiment in Sub-problem 2 (SP2) and Sub-problem 3 (SP3), respectively. Sub-

problem 4 (SP4) is left as future work, with further discussion in Section 7.2.

6.2 Experimental designs for simulator calibration

We define a design for a physical experiment as a set & = [x1,Xg,...,X;,]| of n points
from a design space X' C R%. A n-size optimal design £* is defined by comparison
with the set = of all possible designs of size n with respect to a specific criterion. We
define a design for a computer experiment as a set {¢ = [(x5,05),..., (x5,,05,)] of m
set of choices of input combinations at which to run the simulator in order to collect
simulator evaluations to build an emulator, from a design space X' x ©. An optimal
design £°* of size m is defined by comparison with the set =, of all possible designs of

size m with respect to a specific criterion.

In their important paper, Kennedy and O’Hagan (2001) suggested a sequential design
for the simulator, to ensure joint coverage of the calibration input space and the control
input space. Also, they recommended that points should be ‘close’ to physical obser-
vations in order to infer the discrepancy function. However, they did not suggest an

optimality criterion nor methods for finding optimal designs.

For the simpler problem of Gaussian process interpolation in computer experiments,
the most popular design criteria to assess the quality of prediction are functions of the
Mean Square Prediction Error (MSPE), see Sacks et al. (1989) and Santner et al. (2003,
Chapter 6). The optimal designs are found by minimising the Maximum Mean Square
Prediction Error (MMSPE) or the Integrated Mean Square Prediction Error (IMSPE).

IMSPE is more commonly used and averages the mean square prediction error over the
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design space (Hardin and Sloane, 1993). A quasi-Newton algorithm was proposed by
Sacks et al. (1989) to find IMPSE-optimal designs.

A number of authors have sought to extend IMSPE criteria to the calibration prob-
lem (Ranjan et al., 2011; Williams et al., 2011; Leatherman et al., 2017). Given the
combined vector of responses v = [y* z']T and the full vector of model parameters
W = [(67)7T, ,?,,B;F, 0727, 02,02, (,b;, @F]" (see Section 2.2), an IMPSE-optimal combined

design [£*, £°*] minimises the objective function

Pl 6°19) = | BBV, 9] - C0)? ] i

Note that this is essentially a local optimality criterion, as it conditions on particular
values of the parameters. This seems undesirable, as it means that, for example, the
performance of the design for estimating 6P is not considered. Our fully Bayesian

approach considers the amount of information gained about 6P.

Ranjan et al. (2011) discussed the design of follow-up experiments for calibration (the
selection of new trials that improve the predictive ability of the calibration model).
Designs are considered for both the physical experiment and the computer experiment.
Two ideas are used to reduce the computational expense of design construction by
reducing the dimension of the optimisation problem: replication (forced replicates of
field observations leads to a simple estimation procedure for ¢2) and alignment of
physical trials and computer trials. The main focus of the paper was the prediction
of the physical process at unobserved trial locations, that is, to select new trials that
improve the predictive ability of the calibration model (6.1). They constructed IMSPE-
optimal follow-up designs for the calibration setting using posterior point estimates
of the calibration parameters 8” and found that adding physical points gives greater

reduction in IMPSE than adding simulator points.

Williams et al. (2011), similar to Ranjan et al. (2011), focussed on batch sequential
design optimisation using standard space-filling designs as the initial physical and sim-
ulator designs in order to achieve an accurate prediction of the discrepancy (IMPSE
for dgr (+) to minimise the integrated posterior variance of the discrepancy function con-
ditional on the calibration parameters 67). Batch sequential criteria were developed
to add new simulation runs for calibration of computer models based on maximising
the expected improvement, and MSE-based and distance-based criteria to achieve ac-
curate predictions of quantities of interest. The proposed sequential design criteria are
influenced by the existing literature on computer experiments with extensions to allow

design augmentation in batches.

Leatherman et al. (2017) focussed on predicting the mean of the physical system based
on physical observations and simulator runs, and constructed local IMPSE-optimal
designs (local to the parameters). The designs depend on the assumed values for the
parameters 8P which are unknown prior to experimentation; however a simulation study

was performed to examine the prediction accuracy of a range of local IMPSE-optimal
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designs in order to find out if there is a choice of parameter values that allows accurate
empirical predictions for a range of “test-bed” response surfaces. A class of designs was
constructed using particle swarm optimisation (Kennedy and Eberhart, 1995) to find an
initial design which was then refined using a gradient-based quasi-Newton algorithm to
find the optimal designs under IMPSE. These designs were also compared with space-
filling designs. They concluded that there is no optimal design that predicts better

than all other designs for all “test-beds” and all design sizes.

Huan and Marzouk (2013) proposed an algorithmic approach for optimal Bayesian
designs for simulators with zero discrepancy and polynomial chaos emulation. Calibra-
tion in such situations is typically a simple statistically identifiable problem. A utility
function (Shannon information gain) is used, reflecting expected information gain. A
mathematical approximation to the computationally expensive simulator and the naive
Monte Carlo integration method are used to evaluate the expected information gain.

Stochastic approximation algorithms are then used to make optimisation feasible.

In this thesis we take a fully Bayesian approach to find optimal designs for the cal-
ibration model (6.1). Prior information about unknown parameters and models is
represented by prior distributions, and the aim of the experiment is described in the
decision-theoretic framework by the utility function. Our goal is to estimate unknown
calibration parameters 8P. Similarly to the previous chapter, the designs found max-

imise an approximation to the expected Shannon information gain,

m(ylp,§)
// oy [E) 7(y, ¥|§)dydip.

We approximate the evidence, 7.(y|€), in the expected Shannon information gain us-
ing the ALIS and LIS approximations described in Section 4.3. The expected Shannon
information gain is maximised using the approximate coordinate exchange (ACE) al-
gorithm (Overstall and Woods, 2017) described in Section 5.2.

In the next section we consider SP2 from Section 6.1 and use a Gaussian process prior

to model the unknown discrepancy function dgs(-).

6.3 Known simulator with discrepancy

Inadequacy of the simulator 7(x, @) can be addressed by adopting the extended model
given in Equation (6.1),

yi = ((x) +ei = (x4, 0°) + 0gr(xi) +5, 1=1,...,n,

with e; ~ N(0,02). As briefly described in Section 3.2.2, we assume that dg»(x), the
discrepancy between the simulator n(x, 8?) and the mean ((x) of the physical process, is

an unknown function about which we have limited insight and whose form is unknown.
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For this reason we assume a Gaussian process prior

dor (x) ~ GP [0,0%k(x,%; @)] .

This prior has constant zero mean and covariance o2(x,x’; @), where o2 is the con-
stant variance, k(x,x’; ) is the correlation function and ¢ is the vector of correlation

parameters. For more details on Gaussian processes see Chapter 2.

We assume that the simulator 7(x, 8) is a known function but the calibration parameters
6P are unknown. Hence, we have that the physical observation y; comes from a normal

distribution with mean 7(x;, 8?) and variance o2 + o2, and
y | 07,0% ¢,02 ~ N [n,0°K(¢) + 021,]

where n = [(x1,0?),...,n(xp, 07)]T is the mean vector, K(¢) is the n x n correlation
matrix and I, is the n x n identity matrix. We use the reparameterisation 72 = ag Jo?

described in Section 2.1 to obtain
y ’ 9p70.27 ¢7T2 ~ N [777022] )

where ¥ = K(¢) + 72L,.

The likelihood function is given by

m(ylY,§) = T exp{—%iz[y—n]Tzl[y—n}},

(2m0?)2 |22

where ¥ = [(67)T, 02, ¢, 72]*. Hence the log-likelihood function is:

n 1 1 _
log m(y[#, &) = —5 log(2m0?) — S log || = o[y =] ="'y — n]. (6.2)
The model specification requires prior distributions on the unknown parameters .

We aim to approximate the expected Shannon information gain using

k1

=3 [logmilynlein. &) — log ]

U(g) = T 2
with (Yn,yn) ~ 7(,y|€), h = 1,..., k1, and the approximation #” to the evidence,
Te(ynr|€), found using ALIS and LIS (see Section 4.3). Technically, in order to use ALIS
and LIS to approximate the evidence we have to calculate H(v)), the negative Hessian
of the log-unnormalised posterior density. However, we shall instead obtain a similar

approximation by using

H(y) = 1(¥;€) — Q(v),

with I(2); &) the expected Fisher information matrix, and Q(v) the Hessian of the log-

prior density. The reason for this choice is that for multivariate normal data, there is
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a simple expression for the expected Fisher information matrix (see Lemma 6.1).

Lemma 6.1. Assumey = [y1,...,ys]T follows a multivariate normal distribution with
mean p(1p), covariance matrix X (1), and 9 = [1, 12, ..., 1, ] is the go—dimensional
vector of parameters. Then the ijth element, I; ;, for 0 < 7,5 < g2 of the expected

Fisher information matrix is given by:

op(y) "
A,

see Porat and Friedlander (1986).

_10u(v) + ltr <E(1/;)

Ij =
N Oy 2

()

OB g 1 O5()
TR

In order to ensure positive values for o2, ¢ and 72, we construct the importance distribu-

tion by taking a normal approximation to the posterior of the transformed parameters,

T
Y = [(6")T,logo® log ¢1,...,10g dg,4py, log 7],

as described in Section 4.3.2.

6.3.1 Example: Michaelis-Menten simulator and dg»(x) # 0

In this section we compare the performance of four different designs for estimating the
unknown calibration parameters in terms of the expected Shannon information gain
utility given in Equation (4.5). The expected utility is approximated using LIS! as
described in Section 4.3. We then find Bayesian optimal designs using ACE (Section
5.2).

We assume the statistical model given in Equation (6.1), where

. Glxi
ZEY

n(x;, @) i=1,...,n.

Thus the simulator is the Michaelis-Menten model and 3 = [0],605, 02 ¢, 72T, An
example of the Michaelis-Menten model, n(z, 6), and reality, ((z), is shown in Figure
6.1. The correlation parameter ¢ here is a scalar as there is a single control variable
x. We assume prior distributions for the unknown parameters, 6] ~ log N (p1,0%),
05 ~ log N(u2,03), 0* ~ 1G(a,b), ¢ ~ Exp(\s) and 72 ~ Exp(\,2). We also assume a
Gaussian process prior for the discrepancy function dgr () ~ GP [O, o?k(x, 2, gb)] with
the squared exponential correlation function (2.6). The log-likelihood function is given
by Equation (6.2).

The log-prior density for v is given by:

log (1)) = log m(67) + log my(65) + log my(0?) + log my(¢) + log my(72)

'Previous examples in Chapter 5 have shown that LIS is more stable than ALIS for this type of
example and we will use LIS as the default in this section.
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Figure 6.1: The Michaelis-Menten model for #) = 15 and 64 = 50 (black line) and an
example of reality ((z) where we assumed a sinusoidal function for dgr(z) (blue line)

p 2 P 2
= _ 4 /2| _ M _ P 1/2] w
log [9101(27r) } 207 log [9202(27r) ] 202

a

b
+ log [I’(a)} —(a+1)logo? — S+ log Ay — Mg + log A2 — A 272,

and the log-unnormalised posterior density, log m,(¢|y, &) = log m(y|, €) + log 7 ().

For this example, we aim to construct an importance distribution that guarantees
positive values of all parameters @. Hence, we take a normal approximation to the
distribution of ¢’ = [log 67, log 6%, log o2, 1log ¢, log 72T as described in Section 4.3.2.
In order to calculate the negative Hessian of the log-unnormalised posterior density,
Hy(¢'), in ALIS and LIS (Section 4.3), we first have to find the derivatives of the
log-unnormalised posterior density log mﬂp /(1,0’ ly, &) with respect to 9’ using Equations
(4.36). These derivatives can be found in Appendix B.2.4.

For the hyperparameters we assume p; = 4.38, o1 = 0.07, uo = 1.19, o2 = 0.84, to
match the hyperparameters used for the nonlinear Michaelis-Menten model in Section
5.1.2, a =3, b= 2 and Ay = 200, A2 = 50 to guarantee small values for the correlation
parameter ¢ and the nugget 72. See Appendix C.1.5 for examples of the shape of the
expected response of n(z, @), and samples from the prior distribution of the discrepancy
function dg»(z). The choice of prior distribution of 72 implies that the 10% and 90%
quantiles of the noise-to-signal ratio (0. divided by the maximum expected response,
n(400,0)) are 0.0005 and 0.003, respectively. The prior distributions of ¢ and 72
imply that the 10% and 90% quantiles of the error variance o2, are 0.003 and 0.112,

respectively.

We compare the performance of the four different designs shown in Figure 6.2. Each

design consists of ten points.

e Design 1, £, is a two-point maximin D—optimal design as described in Section
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Figure 6.2: The four designs compared for the calibration model with known simulator,
the Michaelis-Menten model and dgr (2) # 0

3.2.2 (Dette and Biedermann, 2003). Each point of the design is repeated five
times. This design is based on the assumption that the Michaelis-Menten model

is correct.

e Design 2, {3/, is a ten-point optimal design for the Michaelis-Menten model
found be combining LIS with ACE and assuming dgr(z) = 0, i.e. that the model
is correct (see Section 5.1.2). This design features five support points, where the
first point is replicated twice, the third point is replicated twice, the sixth point
is repeated three times and the fifth point is replicated twice. We notice that
most points of this design are concentrated at the part of the design space where
the simulator is changing most quickly and also there are some points at the

stationary part of the curve.

e Design 3, {1, is a space-filling design, specifically a maximin Latin Hypercube
design with ten points (Santner et al., 2003, Chapter 5) and does not take into

account the model.

*
cal’

the Michaelis-Menten model with discrepancy, found again by combining LIS with

e Design 4, £* . is a ten point optimal design for the calibration model assuming

ACE. This design features eight support points, where the first and the eighth
point are replicated twice. This design appears to be a compromise between

Design 2 and Design 3, which we would expect since a design with a greater
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Figure 6.3: Estimated expected Shannon information gain for the parameters ¥ of the
Michaelis-Menten calibration model (estimated using LIS with k; = ko = 300 for each
of the four designs shown in Figure 6.2)

spread of points will be able to better capture the discrepancy function.

Figure 6.3 shows, for each design, 100 independent estimates of the expected Shannon
information gain obtained using LIS with k1 = ko = 300 which as shown in Chapter 5 is
computationally efficient. Design 1, £}, (maximin D-optimal design), appears to have
the worst performance, i.e. the lowest expected Shannon information gain. Design 2,
&y (Bayesian nonlinear regression design), and Design 3, &1 s (maximin LHS design),
have a similar performance with £3,,, performing a little better. The design with the
best performance is Design 4, ¥, (Bayesian optimal calibration design). Hence, we are
able to conclude that designs tailored to the calibration problem can perform better

than either existing optimal designs or space-filling designs.

In Appendix C.2, for each of the designs given in Figure 6.2 we give further comparisons

using LIS and comparisons using nMC and ALIS for two combinations of k1 and ko.

In Figure 6.4 we present Bayesian optimal designs for the Michaelis-Menten calibration
model as we change the number of points (n = 5,10, 20) and keep the prior information
fixed. These designs were found by combining LIS with the ACE algorithm. Most of
the new points are added where the simulator is changing most quickly and tend to be

spread over the design region in order to capture the form of the discrepancy function.
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Figure 6.4: Bayesian optimal designs for the Michaelis-Menten calibration model where
&% is the optimal design with n = 5, £}, is the optimal design with n = 10 (also given
in Figure 6.2 as ;) and &5, is the optimal design with n = 20

Optimal design | « b | Mean | Variance
& 20 05| 0.03 |38x107°
& 15/ 1 | 007 | 4x1074
& 12 [ 1.5 | 0.13 0.01
& 10 | 2 0.22 0.06
& 71 3 0.5 0.05
& 5| 4 1.0 0.33
il 3| 2 1.0 1.0
& 3| 4 2.0 4.0
& 3|7 3.5 12.25

Table 6.1: The values of the hyperparameters a and b of the inverse-gamma prior
distribution of the Gaussian process variance o? and the implied mean and variance
for each combination of a and b used to obtain the Bayesian optimal designs presented
in Figure 6.5

Next we find Bayesian optimal designs as we change the prior of the discrepancy func-

tion dgr (x). In particular we change the values for the hyperparameters a and b of the

inverse-gamma distribution for the Gaussian process variance o2.

In Figure 6.5 we present ten Bayesian optimal designs found using LIS and ACE for
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Figure 6.5: Bayesian optimal designs for the parameters 1 of the Michaelis-Menten
calibration model found using LIS and k; = ko = 300 for different priors on the
discrepancy for each design; the design with points plotted using orange diamonds is
the Bayesian optimal design for the nonlinear Michaelis-Menten model (i.e. dgr(2) = 0)
and the design with points plotted using purple bullets is the Bayesian optimal design
for the Michaelis-Menten calibration model, as given in Figure 6.2

each combination of values of @ and b as given in Table 6.1. In this figure we have also
included the optimal design for the nonlinear Michaelis-Menten model and the optimal
design for the Michaelis-Menten calibration model for the original prior distribution

2 implies small variance for the

(e = 3, b = 2). Small prior mean and variance for o
Gaussian process model and the Bayesian optimal designs obtained are similar to the
Bayesian optimal design for the Michaelis-Menten model (dgr(z) = 0). Large prior
mean and variance for o2 implies large variance for the Gaussian process model and
the Bayesian optimal designs obtained are similar to designs that are equally spaced

across the design region (space-filling designs).

Lastly, we find Bayesian optimal designs for the calibration model assuming that v =
(02,6, 7%)T are nuisance parameters (for more information on nuisance parameters see
Section 4.3.1). Hence the designs are tailored to estimate the parameters of interest
or = (67,05)T.
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Figure 6.6: Bayesian optimal designs for (i) the Michaelis-Menten model, £},,, (orange);
(ii) the calibration model, &, (purple, also given in Figure 6.4) (iii) the calibration

model when v = (02, ¢, 72)T are treated as nuisance parameters, Eovalnuis (black)

In Figure 6.6 we compare Bayesian optimal designs found using LIS and ACE for: (i)

*

the Michaelis-Menten model with no discrepancy, 3,,,; (ii) the calibration model, £ ;;

(iii) the calibration model where 02, ¢ and 72 are nuisance parameters, fjamuis. The
first two designs are also presented in Figure 6.2. Treating v = (02, ¢, 72)T as nuisance
parameters results in an optimal design with points that are more spread over the
design region. As we would expect, this is more similar to the optimal design for the

calibration model instead of the Michaelis-Menten model with no discrepancy.

Figure 6.7 shows boxplots for each design presented in Figure 6.6, corresponding to the
distribution of 100 approximations of the ESIG for the full parameter vector v for (a)
the optimal design obtained for the Michaelis-Menten model with no discrepancy, 3,/
(b) the optimal design obtained by treating 1 = (67,65, 02, ¢, 72)T as interest parame-

ters, £*,;; and (c) the optimal design obtained by treating v = (02, ¢,7%)T as nuisance

*
parameters, §ml7nms.
3 * *
s1gns gcal and gcal,nuis

To perform the calculation, LIS was used with k1 = ko = 300. De-
have very similar performance for estimating t. This means that
the optimal design found treating v = (02, ¢, 72)" as nuisance parameters also performs

well under the calibration model treating all parameters as interest parameters.

Figure 6.8, similarly to Figure 6.7, shows boxplots for each design presented in Figure
6.6, corresponding to the distribution of 100 estimates of the ESIG for a known (correct)
Michaelis-Menten model. To estimate the expected utility, LIS was used with k; = kg =
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Figure 6.7: Estimated ESIG for the parameters @ of the Michaelis-Menten calibra-
tion model for the optimal designs obtained for the Michaelis-Menten model with no
discrepancy, £}, the calibration model by treating the full vector 1) as parameters

of interest, £*,;, and the calibration model when treating v = (02, ¢, 7%)T as nuisance

*
parameters, .fcal’nm-s

300. The Bayesian optimal design for the Michaelis-Menten model with no discrepancy,
&3 has the best performance. The Bayesian optimal design for the calibration model

when treating v = (02, ¢, 72)" as nuisance parameters, & has similar performance

:al,nuis?
to the optimal design for the Michaelis-Menten model, as it is an optimal design suitable
for estimating the parameters of interest. The design with the worst performance is
the Bayesian optimal design for the calibration model with the full vector 1 treated as

parameters of interest, £ ;.

Lastly, in Figure 6.9 we present boxplots for each design presented in Figure 6.6, cor-
responding to the distribution of 100 estimates of the ESIG for the calibration model
where v = (02, ¢,72)T are treated as nuisance parameters. To estimate the expected
utility, LIS was used with k1 = ka = k3 = 300 (see Section 4.3.1). The results here are

similar to the results presented in Figure 6.7.

The performance of Bayesian optimal designs for the calibration model is affected little
whether v = (Uz,gb, 7’2)T are treated as interest parameters or nuisance parameters
when finding or assessing the design. However, the optimal design for estimating 1) in
the calibration model is less effective than the other two designs if the Michaelis-Menten

model is correct.

In this chapter we found designs for a calibration model without addressing the iden-

tifiability issue discussed in detail in Section 1.1. To find designs for closely related
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Figure 6.8: Estimated ESIG for the parameters 6 = (61,62)T of the Michaelis-Menten
model with no discrepancy, for the optimal designs obtained for the Michaelis-Menten
model with no discrepancy, {,,,, the calibration model by treating the full vector 1) as

parameters of interest, £* ;, and the calibration model when treating v = (02, ¢, 7%)T

as nuisance parameters, §§al nuis
b

identifiable formulation such as Lo-calibration different priors on the discrepancy func-

tion can be used, see Plumlee (2017).

In the next section we assume that 7(x, ) is a computationally expensive or unknown

simulator and the discrepancy function dgr(x) is zero (SP3 of Section 6.1).

6.4 Computationally expensive or unknown simulator

In this section, we consider SP3 from Section 6.1. Namely, we assume that the sim-
ulator, n(x, @), is computationally expensive to run, and hence its value is unknown
except at a small number of input combinations (x5, 65), ..., (x%,,05,), where simulator
evaluations n(x?, HJC) have been collected in a computer experiment. Uncertainty about
the simulator output at untried input combinations is modelled by placing a Gaussian
process prior on 7(x,0), and conditioning on the computer experiment data. Also,
for the purposes of this section we assume that the discrepancy between the simulator
and reality, dgr(x), is zero. We approximate the expected Shannon information gain
using ALIS and LIS approximations and find Bayesian optimal designs for the physical

experiment using ACE.

Due to its computational expense, the simulator cannot be used directly in inference
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Figure 6.9: Estimated ESIG for the parameters 67 = (67, 6% )T of the calibration model,
when treating v = (02, ¢,72)T as nuisance parameters, for three different designs; the
designs are the optimal design obtained under the Michaelis-Menten model with no
discrepancy, &},,, the calibration model by treating the full vector 1) as parameters
of interest, £ ;, and the calibration model when treating v = (02, ¢,7%)T as nuisance

*
parameters, {wlmuis

or when constructing designs. In this case, the calibration model (6.1) takes the form
yi =n(xt,0°) +e;, i=1,...,n, (6.4)

where the random error ¢; ~ N(0,02) independently.

Let y = [y1,.. .,yn]T be the vector of n observations from the physical experiment
and z = [n(x$,6¢),...,n(x5,,05)]" the vector of simulator evaluations from the m-run

computer experiment.

We represent prior uncertainty about the simulator n(x, @) by a Gaussian process,

1(x,0) ~ GP (f1(x,0)8, o°s[(x,0), (x',0');#]) , (6.5)
where f(x,0) = (fo(x,0),..., fr,—1(x,0))" is the k,-vector of known regression func-
tions and B = (Bo, f1, - - - ,,Bkn,l)T is the corresponding k,-parameter vector that con-

tains the unknown regression parameters for the emulator of the simulator. In addition,
k[(x,0), (x',0); ¢] is the correlation function, with vector of correlation parameters ¢,

and o? is the prior variance (see also Section 2.2).

Following the results presented in Chapter 2 we have that,
z|B,0% ¢ ~ N(F°B,0°Z.,), (6.6)
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where F¢ = [f(x§, 07) £(x$, 05) ... f(x¢,,0%)]T is the m x k, model matrix of the com-

my T m

puter experiment and 3. is defined through the correlation function with jj'th entry
ECC7jj/ = K[(X% 0]0)’ (X§” 0;’)a ¢]7 jaj, = 17 ceey M.

The prior joint density of 3 | 0 and ¢ corresponds to a normal-inverse-gamma distri-
bution (see Section 2.3.3),

(B,0%) ~ NIG (8o, R,a,b).

The conditional posterior density 7,(3, 02|z, ¢) (see Section 2.3.4) also corresponds to
a normal-inverse-gamma distribution NIG(B,, Xy, ax, bx) with
B.=FTZF+R)TIEFTE 2+ R By)
>, = (FCTE;:IFC + R—l)—l

. m
ay, = a + 5
by = b+ % [(z—FBo)" (Zee + FRF) 1z — FBy)] (6.7)

as shown in (2.20).

The conditional posterior distribution

Blz,0% ¢~ N(Bi oS, (6.8)

2

follows from Equation (2.19), and the marginal posterior for o is an inverse-gamma

distribution
02| z,¢ ~ IG (ay,by), (6.9)

see Equation (2.23). Both 3|z,02, ¢ and 02|z, ¢ are conditionally independent of 67

given z.

6.4.1 Conditional prediction with known hyperparameters

The joint prior distribution of physical data, y, and simulator evaluations, z, conditional

on all unknown model parameters 87, 3,02, ¢, 72, is given by:

(y> 0% B,0% ¢ 7> ~ N((Fpﬂ>,az<2”p”zl" 2Tp>> (6.10)

FCB 2cp Yee
where 72 = 02 /02, FP = [f(x},60P) £(x5,67)... f(x},6P)]T is the n x k, model matrix
for the physical experiment and X,,, 3., are defined through the correlation function

with entries given by 3., . = &[(x], 07), (x,, 07); @] and Xy, ji = [(x5, 05), (x7, 07); H],

where i,7/ =1,...,nand j=1,...,m.
Standard results on multivariate normal distributions can be used to derive the follow-

134



ing conditional posterior distribution

y ’ Z70P7B7025¢772 NN(/»LyaEy)a

with
py =E(y|2,6°,8,06% ¢ 7°) =F'B+ 3,5 [z - FQ], (6.11)

and
2, =var(y | 2,67,8,0%, ¢,7) = 0°[Zp, + 771, — 80,3, Bey]. (6.12)

Hence the likelihood for the physical data y, conditional on the simulator evaluations

z, is

1 1 -
m(y | 2.67,8,0% ¢,7%) = @y, |12 P {—2(y — 1) E, Ny - uy)} :
Y

We obtain the marginal distribution of the physical data conditional on simulator eval-
uations, by using the fact that y | z, 67, 8,02, ¢, 72 ~ N(py, X)) and B | z,02, ¢, 72 ~
N(B,,0°%,). Tt follows that

Y — Ky ‘ Z79p7/87027¢772 NN(O,,“JQEZ), (613)

where 3, = 0?3}, The right hand side of (6.13) does not depend on 3, and so
Y — My is statistically independent of 3 given z, 67, 0%, ¢ and 72. Moreover y — My is
also conditionally independent of p,, which is a linear transformation of 8 (Equation
(6.11)). The vector p,|z,07,0% ¢, 72 also follows a multivariate normal distribution

with mean and variance given by:

Elpy|z,67,0% ¢, 7] = E(F*B + 3,2, [z - Fg))
= E[F?3] + 2T S Bz - F3]
=F"B, + X3 [z — F°B,]
=FP(FIZ'F + R H Y FTIE 2+ R713))
+ 3,3 [z-F(FISF+ RN FIE 2+ R 6o)]
(6.14)

and

var(p, |z, 07, 0%, ¢, 7] = var[FPB + 2} o 1 (z —FB)]
= var[(FP — chp <F)B+2. 57
=X (F? - 23 'FO)S,(FF — B3, F) T
= A (FP = SO F)(FTSF+ R THFP - 2 3 F) T
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Hence, given z, 8P, 0%, ¢ and 72,
y = = py) + 1y,
is a sum of two independent multivariate normal random variables. Thus,
y | 2.6°,0% ¢,7° ~ Njay, 0”8,
where fi, = E[uy|z, 67,02, ¢, 7%] given by (6.14) and 2y given by:
3, = {3+ F - S S FO)FTEF 4+ R NEF -8B FO)TL (6.15)

We can then integrate out o2 with respect to its marginal posterior distribution, o2 |

z, ¢, 72 ~ 1G(ay, by), given in (6.9), to obtain:

w(y | 2,67, 6,72) / w(y | 2,07, 0% ¢, ) (0 | 2, ,7%)do”
0

o0

1
A (0.2)n/2 (271- n

—(ax+1+n/2)

ﬁ/

cexp{ - 5= m)TE - )+ 0] bao?

B (b*)“*r (a*+ %) —(ax+n/2)

(e 2n)n1Sy|
B (be) ™™ (ax + 2)

 T(a)y/ @0y

(y - ﬁy)Tngl(y - ﬁy)

b*“‘ 2

~ S . —(ax+n/2)
- (y—uy)TEyl(y—uy)] .

2b

(6.16)

Equation (6.16) indicates that the predictive distribution of the physical data y is a

multivariate t-distribution,
D 2 by
y | Z70 7¢>T Nt?a* “y>72y )

with 2a, degrees of freedom, mean fi, given by (6.14), and variance %f}y, where fiy
is given by (6.15).

Hence we have obtained the marginal posterior predictive distribution of the physical
data y given simulator runs z, calibration parameters 87, correlation parameters ¢ and

the nugget 72. This distribution can be used when designing physical experiments.
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6.4.2 Approximation of the expected utility

We are interested in finding designs that maximise an approximation to the expected

Shannon information gain

m yl 29
U(§) = //y T ,Z 5) m(y, |z, §)dydip

We approximate the expected Shannon information gain using the ALIS and LIS ap-
proximations described in Section 4.3, and find optimal designs using the approximate

coordinate exchange (ACE) algorithm (see Section 5.2).

The negative Hessian of the log-unnormalised posterior density, H(%), must be calcu-
lated in order to use ALIS and LIS, where v = [(67)T,72]T and we assume that the
vector of correlation parameters, ¢, for the emulator is held fixed at the maximum
likelihood estimates from the computer experiment. The log-unnormalised posterior

density is given by:

log m, (07, 7|y, 2, &) = log[r(y|z, 07, 72, )my (67 ) my(72))]
= logm(yl|z, 07, 7°,&) + log m,(6”) + log my(72),

where, from (6.16),

1 = n - = _
log w(y|z,0%,7%,€) =~ 10g [Zy| — (. + 5 ) log [ 26 + (v — 1) ", (v — )]

+ constant. (6.17)

In order to guarantee positivity of sampled parameters we construct the importance
distributions of ALIS and LIS by making a normal approximation to the posterior
distribution of a transformed parameter vector v, with ¢, = T, (¢y), ie. 1) de-
pends only on the hth component of 1)’ and not the other components, as described
in Section 4.3.2. For the first example in Section 6.4.3 we use the transformation
' = (07,log 72)T and for the second example in Section 6.4.4 we use the transforma-
tion ¢’ = (log 0}, log 65, log 7)™.

We now find the first and second derivatives of (6.17) required to construct the ALIS
and LIS importance densities, which we use in the examples presented in Sections 6.4.3
and 6.4.4.

We have 9 = (11,...,%4)" and ¢/ = (zﬂﬁ,...,@béQ)T. For h = 1,...,q9, the first

derivatives are given by:

dlogm(ylz,,§)  Ologn(yl|z,,&) v

oy, a On oy,
dlogm(y|z,¥,§) _lﬁlogliyl ta 0log[2b,]
oMy, 2 oYy T O
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B 9 Oby
_ (a* + 7) Y
2 | 2b, + (y — lly)sz 1<y — Ry)

) 2 (9) S0y )+ (y — )T (v~ o)

B (a* t3 o \T3—1 ’
2 20, + (y — fy) 2y (v — fiy)
where R
Olog |Ey| 103,
23;
oY, Y

We first find the derivatives with respect to the true calibration parameters 6P. For

k=1,...,pg, we have:

opy _ OFP 11 1 eTs—1 1
Ly (FTSIF 4+ RN (FTS Iz + R B)
007 ~ o67
82?? cpclTs—1ppe —1\—1 cTsg—1 —1
Gy Do Hz - FFTELFOH R T ETE 2+ RG]
%t 0%
y 2 1 yz 1
067 v 6P
0%, 9%, 8Ech 1 T 5-19%cp
= Yoo X — X, E
00" ~ o0r 6" "o
OF? 62'5 1ge Ty —1ppe —1\—1 T sv—1xe\T
(aag_ aeppz FO)(FOSF +R ) (FP - 2,3 F)
T
15) o) S8
Fp_ET E—IFC FCTE—IFC R—l -1 = sz_ch
+( cp—cc )( cc + ) 802) aaz cc )
0log[2b,]
—— =,
o967
Oby
a6”
Oy iit .
82% = 209, Zppivr(0h —00) =0, 4,i'=1,...,n,
k
0Xcp ii . .
09%] =200, Bepji(05 —07), i=1,....,n, j=1,...,m.

Then we find the derivative of the variance f]y with respect to the nugget 72. The

mean [i, does not depend on the nugget. We have:

0%, . 0%

— yz 1
or2 Y or? ’
0%,
orz "
For h,s =1,...,qs, the second derivatives are given by:

(‘?Qlogﬂ(y|z,7,b,§): 0 [0Ologm(y|z,,¢§)
Oy, O, oYy oYy,

138



_ oy, 0 [mogﬂ()’IZ’%f)}

O, Oy oy,
_ O 0 [Whalogﬁ(y!z,iﬁ,f)]
oYl Os | Oy, oy,
_ 57/)5 |: a2¢h 8log7r(y]z,1/),§) aT/’h 82 logﬂ'(y]z,'l/),f)
oYty | OnpsOpy, O, oy, OOy,
_ aﬂ)s [aﬂ}h 82 10g7T(y|Z,’l,b,£):|
oL | Oy, OOy, '
Here,
9?log 7(y|z, v, €) B 18210g|2~]y\ 02 log[2b,] n gng AaB
D0O0n 2 b0 | 00U _(“*+§> B2 ’
where
Ob, O, \ " - N ) St 3
A:28wh_2(8gz> SNy =y + (y — fay)" azpy (y — fy)
DA 0%, Ppy \ ey, - o, \" ozt
B~ 209.00n _2<awsa¢h) By v~ hy) <aw> G, ¥ )
Oy T~—1 opy\ . (Ohy 82;1 o
”(am) y (aws> 2<8ws> Gy ¥ )
822—1
T Yy
+ (v — fry) 8¢58wh(y fiy)

and
Plog|y| _ | ¢ 1085105y 1 93y
57/)33% v a¢s 4 a¢h 4 a"bsad}h
We first find the second derivatives with respect to the true calibration parameters 6°.
For k,r =1,...,pg we have:
82[1‘9 _ aQFP (FCTzlec_'_Rfl)fl(FcTEle_i_RflIBO)
007007 067,007 ce e
822310 Ty —1 1\—1 eTy—1 1
Sraap e (2~ FUETIF + RT)THETE 2+ R76y)]
89 00;
0’ ) SN 8 9°%, 0%, o, 0%,
Yy —19%y -1 1 s-1 —1 1924y -1 1
> 2 > > >
692897’ Y 80p voer v 06, 89p v 3y o0 Y 69p ’
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8229 _ 82217? . 82ZCTP 2—12 o 82;[1\72—182017
07007 — DGTO0E  OTORE < TP T agr e g
— azg;’ 2—1 820}’ _ ZT 2—1 822017

cp

o0 e 96" 96007

PFr  0PX,
_ C] Elec FCTzleC Rfl —1 FP — ET Elec T
—"_ <89Z89£ agzaeg cc ( cc + ) ( cp cc )

007 — 67

T
(an ) oF? 9% _IFC>

2;1};\0) (FCTEC—ClFC+R—1)—1 (aep (%,p Ecc
T T

T

) G) Y ) ) >
e C Egchc (FCngchc + Rfl)fl il cp Egchc
< T 907 ~ o0

T
O*FP o*xl
FP — 2T s-lpe)(Frs 1R -l — S S
* e F)ET R B+ R G ~ garoer e ¥ |

8221)1),%’ -0
067,067 ’
822 . 697,;
89251)92’1 = Ao, do, Bep,ji (05, — 0)(05, — 0F) — 200, Xep.ji G
= 4o, b0, Bep,ji (05, — 01)(05, — 07) — 20, Bep jidkr,
where
1, ifk=r
Oy = (6.18)
0, otherwise,
is the Kronecker delta and 7,7/ =1,...,nand j=1,...,m.
The second derivatives of the variance f]y involving the nugget 72 is,
PE;t L 08, . 0%, ¢ N Y < 102, < 105, <
Yy s—19%y-19%4y 51 -1 Y -1 194y 192y 51
90072 — v o v oz T ggraresy TPy Gy Gy
%,
o6voT? Onscn;
%,
W = Opxn,
%[y _o
007072 S

Finally, the second derivatives of b, with respect to vs:

of(b)
o,

for any function f and any s =1,...,¢qo.
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In this section we have presented the derivatives of log 7(y|z, 7, 72, ¢). The derivatives
of log (7)) can be found in Appendix B.2.5 for the example in Section 6.4.3 and in
Appendix B.2.6 for the example in Section 6.4.4.

In Section 6.4.3 we present an example for calibration problem SP3 of Section 6.1. We
compare the ESIG for a fixed physical design as we increase the number of runs of
the computer experiment, m. Lastly, we compare optimal designs for this model with

optimal designs found for a corresponding nonlinear model.

6.4.3 Example 1: Unknown simulator and gy (z) = 0 - Cantilever beam
function

We estimate the expected Shannon information gain with ALIS and LIS approximations
(Section 4.3) for the statistical model (6.4) and assume a Gaussian process prior for
the simulator as given in Equation (6.5). We combine ALIS and LIS with the ACE
algorithm (Section 5.2) and find Bayesian optimal designs.

For the purpose of this example, we generate simulator runs using the model of can-

tilever beam displacement (in inches) (Wu et al., 2001) given by:

n(x,0) = 35}?\/(2)2 - (%)2 (6.19)

For the purposes of finding Bayesian optimal designs, 7(x, ) is treated as an unknown

expensive simulator.

Equation (6.19) is used to model a simple uniform cantilever beam with horizontal and
vertical loads as shown in Figure 6.10. The beam length L is a constant with value
L = 100 inches, w is the width of the cross-section with value w = 4 inches and ¢t is
thickness of the cross-section with value t = 2 inches. The controllable variables x; and
x9 are the vertical and horizontal load (Newtons), respectively. Both x; and xo take
values in the range [—2000,2000]. The negative values of the force here imply load in
the opposite direction from the one given in Figure 6.10. The calibration parameter,
0P, is Young’s modulus of the beam material for which a normal prior distribution,
0P ~ N[2.9 x 107,(1.45 x 10°%)?], is assumed as given by Surjanovic and Bingham
(2017). Figure 6.11 shows ellipsoidal contours of the simulator for a given value of the

calibration parameter.

We also assume that during calibration, the correlation parameters ¢ = (¢z;, Gz, d9) T
for the emulator are held fixed at the maximum likelihood estimates from the com-
puter experiment. In other words, the correlation parameters will not be updated with
the physical experiment data. However, the prior distributions for the parameters 6P
and 72 = 02/0? will be updated following the physical experiment. We maximise the
expected Shannon information gain for #” and treat 72 as a nuisance parameter. We in-

tegrate out 3 | z,0%, ¢, 72 and o2 | z, ¢, 72 using their marginal posterior distributions,
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Figure 6.10: A beam under vertical and horizontal loads (taken from Wu et al., 2001)
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Figure 6.11: Contour plot of the cantilever beam function for 7 = 3.15 x 107
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as shown in Section 6.4.1, to obtain
p 2 - beg
y | Zae y T Nt2a* ny“yaaizy )
*

as given in Equation (6.16), where fi,, f]y are given by Equations (6.14) and (6.15)

respectively, and a,, b, are given by Equation (6.7).

For the design of the computer experiment, £¢ = [(x§, 0), ..., (X5, 05,)], we use three-
dimensional LHS designs scaled to the range [—2000,2000] x [—2000,2000] x [2.5 x
107,3.2 x 10%] with the range of 7 chosen as the 1% and 99% prior quantiles of the

prior distribution. We transform the variables according to:

6P — 2.9 x 107 1 9
g — =7 X Y r_ d oz = "2
19x100 17 11738 M 2T 1973 %

so each column of the transformed design matrix has zero mean and standard deviation
one. Hence 0” ~ N(u1,0%), is the prior distribution for the transformed calibration
parameter 0” with p; = 0 and o1 = 0.73. The new range of the transformed simulator
designs 7 = [(x{,0{),...,(xZ,0%)] is [-1.7,1.7] x [-1.7,1.7] x [—1.65, 1.65].

m’m

We assume the product of one-dimensional correlation functions (2.4) where each one-
dimensional correlation function is the squared exponential correlation function (2.6).
We also assume prior distributions for the trend parameter (3, the variance of the

Gaussian process 02 and the nugget 72 as given below:
B~ N(01,0%1}), o ~1G(3,2), 7%~ Exp(20).

The choice of prior distribution of 72 implies that the 10% and 90% quantiles of the
noise-to-signal ratio (o. divided by the maximum expected response 7(2000, 2000, 0))
are 0.007 and 0.04, respectively. The prior distributions of ¢? and 72 imply that the
10% and 90% quantiles of the error variance o2 , are 0.003 and 0.112, respectively.

We assume that the regression trend function for the Gaussian process is f(x) = 1, so
F¢=1,, and FP = 1,,. We denote by ¢ the physical design for which the Shannon infor-
mation gain is estimated. The design ¢ has points in the range [—1.7,1.7] x [-1.7,1.7].

In Appendix C.3 a detailed investigation is presented into the change in the Gaussian
process fit to the cantilever beam function as the number of simulator runs, m, is
changed (m = 30,60,90). To summarise the results, the GP models fit well for all
values of m considered, with the fit of the posterior mean to the simulator response
obviously improving as m increases. This improvement is most obvious near the edges

of the design region. The posterior variance decreases as m increases.

We assume the expected Shannon information gain utility function (4.5). We approxi-
mate the evidence in the ESIG using ALIS and LIS approximations (Section 4.3) which
are then combined with the ACE algorithm (Section 5.2) to find Bayesian optimal
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Figure 6.12: Estimated ESIG for the parameter 6 of the nonlinear model (cantilever
beam example) when treating o2 as a nuisance parameter (red) and the parameter of
interest 6P of the calibration model when 72 is treated as a nuisance parameter, as we
increase the number of simulator runs, m, and found using ALIS and LIS

designs.

The log-unnormalised marginal posterior density is given by:

log 70, (07, 7|y, 2, 6, €) = log 7 (y|z, 07, ¢, 72, ) + log m(0¥") + log my(7?)

(0" — p11)?

1
= lOgTr(Y|Z79p/7¢a TZ,&) - §1Og (271—0-%) B 20-2
1

+1log A2 — \272,
and log 7(y|z, 07, ¢, 72, €) is given by Equation (6.17).

For this example, we aim to construct an importance distribution that guarantees
that positive values for the nugget, 72, will be sampled. Hence, we take a normal
approximation to the posterior distribution of ¢’ = (6”,1og 72)T as described in Section
4.3.2. In order to calculate the negative Hessian of the log-unnormalised posterior
density, Hyy(v'), in ALIS and LIS (see Section 4.3), we first have to find the derivatives
of the log-unnormalised posterior density log 7T;f/(’l,b/ ly,z,€&) with respect to v’ using
Equations (4.36). The derivatives of the log-marginal predictive density of the physical
data, log 7(y|z, ¢, 1, &), can be found in Section 6.4.2 and the derivatives of the log-
prior density, log (1)), can be found in Appendix B.2.5 which give the derivatives of
log mff’/(dﬁ’|y,z,£) using Equations (4.36). We also treat the nugget 72 as a nuisance

parameter which we integrate out as described in Section 4.3.1.
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In Figure 6.12, we compare the expected Shannon information gain for a space-filling
physical design with n = 10 runs calculated (i) for the nonlinear model assuming
the cantilever beam function (6.19) is known and can be evaluated, and the response
has normally distributed errors (see Appendix B.2.5); and (ii) the calibration model
assuming (6.19) can only be evaluated for a m-run computer experiment. The number
of simulator runs is set to m = 30, 60 and 90. We present 100 estimates of the expected
Shannon information gain for the two models and the different sizes of simulator runs,
m. To perform the calculation we use ALIS and LIS with k1 = ko = 2000 for the
nonlinear model (o2 is integrated-out analytically, see Appendix B.2.5) and ki = ko =

ks = 2000 for the calibration model, and both normal and ¢ importance distributions.

As the number of simulator runs is increased, the approximate ESIG also increases.
For m = 60 and m = 90 the computer experiment produces a good approximation to
the simulator. Hence, the approximate ESIG based on these computer experiments is

roughly equal to the ESIG for # under the nonlinear regression model.

Figure 6.12 shows differences between ALIS and LIS for the same number of simulator
runs, m. These differences arise as ALIS sometimes “fails” because of poorly condi-
tioned matrices Hyy (1)) that are still just positive-definite. Hence ALIS does not enter
the optimisation step (see Section 4.3). However, the ill-conditioning results in very
large variances, and so very large values of some sampled parameters, for which the
likelihood evaluation cannot be performed. The results in Figure 6.12 are conditional
on the likelihood evaluation being possible, which results in the ALIS estimator having

negative bias. For the results presented in the rest of this example we will use LIS.

Next we find Bayesian optimal designs by combining LIS with the ACE algorithm.
Similar to the previous examples we use 10 different random starts in ACE. We present
optimal designs for the physical experiment with n = 10 for both the nonlinear model
when o2 is treated as a nuisance parameter and the calibration model when 72 is
treated as a nuisance parameter with different numbers of simulator runs. Finally, we

approximate the ESIG of the optimal designs found with ACE for each model.

Figure 6.13 shows Bayesian optimal designs for the nonlinear cantilever beam function
when o2 is treated as a nuisance parameter, and the calibration problem when treating
72 as a nuisance parameter and for different number of simulator runs (m = 30,60, 90).
In Appendix B.2.5 we present more near-optimal designs obtained from different ran-
dom starts of ACE. We notice that as we increase m, the optimal designs obtained
for the calibration model become more similar to the optimal design for the nonlinear
model. That is, for the physical design, there are many values of 21 (vertical load) but
x2 (horizontal load) only takes the extreme values £1.7. The calibration designs for
m = 60,90 also mainly contain values of xo close to the edges of the range, but the
calibration design for m = 30 exhibits a greater spread of values of x5, including values
in the interior of the range. This difference is probably due to the smaller computer

experiment producing a poorer approximation to the simulator.
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Figure 6.13: Cantilever beam example: (a) Bayesian optimal design for the nonlinear
model when treating 02 as a nuisance parameter (€5 pr); Bayesian optimal design for
the calibration model when treating 72 as a nuisance parameter and (b) m = 30 (£%,; 50);
(¢) m =60 (5,60); (d) m =90 (&, 90); the number on some points in each plot shows
how many times the point is repeated
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Figure 6.14: Cantilever beam example: estimated ESIG for the parameter of interest 6%’
for the calibration model when treating 72 as a nuisance parameter and as we increase
the number of simulator runs, m, for the optimal designs shown in Figure 6.13, found
using LIS with k; = ke = ks = 2000

Figure 6.14 shows boxplots for each design presented in Figure 6.13, corresponding to
the distribution of 100 estimates of the ESIG for the calibration model when treating
72 as a nuisance parameter and as we increase the number of simulator runs (m =
30,60,90). To perform the calculation, LIS was used with k1 = ko = k3 = 2000.
For the calibration model with m = 30 simulator runs (boxplots under the grey line)
the optimal design found under this model, fzal,307 has the best performance. For the
calibration model with m = 60 simulator runs (boxplots under the orange line) all
optimal designs have similar performance with design /5, performing slightly better.
Finally, for the calibration model with m = 90 simulator runs (boxplots under the pink
line) the design for the calibration model fZal,90 has the best performance. This plot
provides further evidence that the computer experiment with m = 30 has provided
an approximation to the simulator that is quite different from that obtained from the

larger computer experiments.

In Figure 6.15 we present boxplots for each design presented in Figure 6.13, corre-
sponding to the distribution of 100 estimates of the ESIG for the nonlinear model
when treating 02 as a nuisance parameter. Again to perform the calculation, LIS was
used with k; = ko = 2000 (02 is integrated-out analytically). The optimal designs
found for the calibration model when treating 72 as nuisance parameter with m = 60
and m = 90 simulator runs have very similar performance to the optimal design found

for the nonlinear model.

We have shown (Appendix C.3) that the Gaussian process posterior mean adapts very
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Figure 6.15: Cantilever beam example: estimated ESIG for the nonlinear model when
treating 02 as a nuisance parameter for the optimal designs shown in Figure 6.13, found
using LIS with k; = ko = 2000

quickly to the true model as we increase the number of simulator runs m and the
Gaussian process posterior variance decreases. As a result, optimal designs found using
the calibration model with large m are reasonably efficient for estimating the parame-
ters of the nonlinear model. Similarly, optimal designs under the nonlinear model are

reasonably efficient for estimating the parameters of the calibration model.

In this example, because the simulator has a simple equation we are able to compare
optimal designs found for the calibration model with unknown simulator with optimal
designs for a nonlinear model. However, in general this will not be the case. This
example shows that efficient designs can be obtained even in the unknown simulator

case.

6.4.4 Example 2: Unknown simulator and dgp-(z) = 0 - Michaelis-
Menten model

Similarly to the previous example, we estimate the expected Shannon information gain
with ALIS and LIS approximations (Section 4.3) for the statistical model (6.4) and
assume a Gaussian process prior for the simulator as given in Equation (6.5). We
combine ALIS and LIS with the ACE algorithm (Section 5.2) to find Bayesian optimal

designs.

For the purposes of this example, we generate simulator runs using the Michaelis-
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Menten model (3.1),
01:13

0) = .
n(z,0) btz

Again n(x, ) is treated as an unknown expensive simulator for the purposes of finding
Bayesian optimal calibration designs. We assume that during calibration, the correla-
tion parameters ¢ = (¢, ¢y, , Pgp,) " are held fixed at the maximum likelihood estimates
from the computer experiment. In other words, the correlation parameters will not be
updated with the physical experiment data. However, the prior distributions for the
parameters 6P = (67, 605)T and 72 = 02 /o2 will be updated following the physical exper-
iment. We maximise the expected Shannon information gain for 87 and treat 72 as a
nuisance parameter. Similarly to the previous example, we integrate out 3 | z, 02, ¢, 72

and o2 | z, ¢, 72 using their marginal posterior distributions as shown in Section 6.4.1.

For the design of the computer experiment, £¢ = [(z{, 65), ..., (x5, 0%,)], we use three-
dimensional LHS designs scaled to the range [0, 400] x [68.05,94.29] x [0.25, 45.59] with
the range of 67 and 6% chosen as the 1% and 99% quantiles of their prior distribu-
tions. We denote by £ the physical design for which the Shannon information gain
is estimated. The physical design ¢ has points in [0,400]. We assume the product
of one-dimensional correlation functions (2.4) where each one-dimensional correlation
function is the squared exponential correlation function (2.6). We also assume the

following prior distributions:
0} ~ log N(4.38,0.07%), 65 ~log N(1.19,0.84%), B ~ N(01,0°I;),

0? ~1G(3,2), 72 ~ Exp(50).

The choice of prior distribution of 72 implies that the 10% and 90% quantiles of the
noise-to-signal ratio (o. divided by the maximum expected response, 1(400,80)) are
0.0004 and 0.003, respectively. The prior distributions of o2 and 72 imply that the 10%

and 90% quantiles of the error variance o2, are 0.001 and 0.047, respectively.

As in the previous example (Section 6.4.3) we assume that the regression trend function

for the Gaussian process is f(x) = 1, so F¢ = 1,, and F? = 1,,.

We maximise the expected Shannon information gain utility function (4.5) for the
parameters 1 = [(67)T, 72]T, and approximate the evidence in this utility using ALIS
and LIS approximations (see Section 4.3). The log-unnormalised posterior density is

given by:

log 7, (67, 72|y, 2, €) = log (y|2, 07, ¢, 7%, &) + log m(8P) + log my(7?)

(log 67 — p1)?

= log 7 (y|z, 67, ¢, 72, &) — log [021’01(277)1/2} — 502
1

log 09 — 112)?
— log [9302(27?)1/2} — W +log A2 — A 272,
P

where log 7(y|z, 07, ¢, 72, €) is given by Equation (6.17).
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Figure 6.16: ESIG optimal design with n = 10, found for the Michaelis-Menten cali-
bration model with dgr(z) # 0, using LIS with k; = ko = 300; two of the points are

repeated twice (also given in Figure 6.2 as &)

For this example, we aim to construct an importance distribution that guarantees posi-
tive values of all parameters v. Hence, we take a normal approximation to the distribu-
tion of ¢’ = [log 6}, log 65, log 72]T, as described in Section 4.3.2. In order to calculate
the negative Hessian of the log-unnormalised posterior density, Hy(7)’), in ALIS and
LIS (Section 4.3), we first have to find the derivatives of the log-unnormalised posterior
density log ﬂ':fl(’l,b, ly,z,€&) with respect to 1" using Equations (4.36). The derivatives
of logn(y|z, ¢, v, ) and log m,(¢0) can be found in Section 6.4.2 and Appendix B.2.6
respectively, which give the derivatives of log ﬂfl (Y'|y, z, &) using Equations (4.36).

In Figure 6.17 we compare the distribution of 100 independent estimates of the ESIG
for the design shown in Figure 6.16 with n = 10 runs, as we increase the number of
simulator runs, m = 30, 50, 60, 90, 150. We treat 72 as a nuisance parameter (see Section
4.3.1). To perform the calculation, ALIS and LIS were used with k1 = ko = ks = 300

and both normal and ¢ importance distributions.

As we increase the number of simulator runs, m, we expect that the ESIG will also
increase as we become more certain about the simulator, so that it eventually becomes
essentially known. However, Figure 6.17 shows exactly the opposite. This happens
because the marginal posterior distribution of the Gaussian process variance, o2, from
the computer experiment, has increasing mean and variance (ay and b, depend on
the simulator design, and both increase with m), the prior distribution on 72 is fixed,
and hence the implied prior distribution on the error variance, 02 = 02 x 72 also has
increasing mean and variance (see Figure 6.18). This increasing “size” of the error
variance leads to lower ESIG. This is a consequence of the model not being stationary
in x and OP. These features result in a more diffuse distribution for y for larger m and

hence sampling of more extreme values.

Figure 6.19 shows a sample from the prior distributions of #} and 6% and the simulator
designs as we increase m. As we increase the number of simulator runs, these designs
cover a slightly wider region; however points sampled from the extremes of the prior
distributions will never be included in the design. This causes problems for Gaussian

process predictions for the unknown simulator 7(x, @) near these points.
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Figure 6.17: Estimated ESIG for the parameters of interest 8 of the Michaelis-Menten
calibration model when treating 72 as a nuisance parameter, using ALIS and LIS with
k1 = ko = kg = 300, as we increase the number of simulator runs, m, for a fixed physical
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Figure 6.18: (a) The prior density of the log Gaussian process variance, log o2, and (b)
the implied prior distribution of the log error variance, log o2 as we increase the number
of simulator runs, m, in the computer experiment for the Michaelis-Menten calibration
example, and keep the prior of 72 fixed
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Figure 6.19: A sample from the prior distributions of #] and 6% and the simulator
designs with: m = 30 (blue); m = 60 (green); m = 90 (purple) for the Michaelis-
Menten calibration model

In Figures 6.20, 6.21 and 6.22 we show predictions from the Gaussian process fit of
simulator runs to the simulator outputs (generated from the Michaelis-Menten model)
as we increase the number of simulator runs, m = 30, 60,90. The red line is the mean
of the Gaussian process, the blue dashed lines are 95% probability bounds and the
black line is the true Michaelis-Menten model for a given 8, as shown for each plot. We
present four plots for each value of m (plot (a): 61 = 90, 62 = 12; plot (b): 6; = 90,
62 = 8.5; plot (c): 61 = 90, 2 = 30; plot (d): 6, = 90, 62 = 0.9). For plots (c)
and (d), #2 samples extreme points from the prior distribution. As we increase m,
the uncertainty in plots (a) and (b) decreases and the mean of the Gaussian process
adapts to the shape of the true function. However, for plot (c), the uncertainty is large
for m = 30, improves a little for m = 60, and increases again for m = 90. These

2 seen in Figure 6.18. Lastly, for plot (d)

results are consistent with the increases in o
as we increase m the variance of the Gaussian process decreases, but the mean does
not converge to the true Michaelis-Menten model, which has quite a different shape

compared to the other three plots.

To overcome these issues we match the implied distribution of the error variance of
the calibration model to the prior distribution for the error variance for a nonlinear
regression model based on the Michaelis-Menten equation. We treat 72 of the calibra-
tion model and o2 of the nonlinear Michaelis-Menten model as nuisance parameters
(see Section 4.3.1). Then we match the implied distribution of the error variance,

g = 02 x 72, of the calibration model, with the error variance, ag, of the nonlinear

o
Michaelis-Menten model by changing the prior distribution on 72. The values of the
hyperparameters of the inverse-gamma distribution of the error variance, o2, for the
nonlinear Michaelis-Menten model are ¢ = 2.9 and b = 16.9 and we change the prior
distribution of 72 to match the implied distribution of o2 for the calibration model with
the error variance of the nonlinear Michaelis-Menten model: (i) for m = 30, A2 = 50,

(ii) for m = 60, A2 = 3000 and (iii) for m = 90, A\,2 = 6000. We use the same prior
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Figure 6.20: Posterior predictive mean for the Gaussian process fit with m = 30 sim-
ulator runs (red line); 95% probability bounds (blue lines); the true Michaelis-Menten
function for a given @ (black line)
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Figure 6.21: Posterior predictive mean for the Gaussian process fit with m = 60 sim-
ulator runs (red line); 95% probability bounds (blue lines); the true Michaelis-Menten
function for a given 6 (black line)
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Figure 6.23: Estimated ESIG for the parameters of interest 67 of the calibration model
(6.4) for the Michaelis-Menten example, as we increase the number of simulator runs,
m, and change the prior of the nuisance parameter 72 (which is treated as a nuisance pa-

rameter), to keep the implied prior distribution of o2 fixed, and also for the parameters

0 of the nonlinear Michaelis-Menten model where o2 is a nuisance parameter

distribution on @? (calibration model) and @ (nonlinear Michaelis-Menten model).

In Figure 6.23 we present 100 estimates of the ESIG for the nonlinear Michaelis-Menten
model where o2 is treated as a nuisance parameter, and the calibration model where
72 is treated as a nuisance parameter, as we increase the number of simulator runs
(m = 30,60,90). The mean and variance of the implied distribution of o2 for the
calibration model, is held approximately fixed by changing the mean and variance of
72. The ESIG for the parameters of interest 87 for the calibration model increases as m
increases. For m = 90 the emulator is a better approximation of the simulator for the
range of values of 8P that appear in the importance sample, and the ESIG is similar to
the ESIG for the parameters 0 of the nonlinear Michaelis-Menten model for the design

shown in Figure 6.16.

Next we find Bayesian optimal designs, as described before, using LIS and ky = ko =

2

300, and ACE for 10 random starts for the nonlinear Michaelis-Menten model where o2

is a nuisance parameter (o2 is integrated-out analytically, see Section 5.1.2), and LIS
with k; = kg = k3 = 300 for the calibration model where 72 is a nuisance parameter
and m = 30. It was only possible to find optimal designs for the case m = 30 due to
numerical issues we discuss in Section 6.5, caused by the Gaussian process fit failing as

shown in Figures 6.20, 6.21 and 6.22.

The left hand panel in Figure 6.24 shows four Bayesian near-optimal designs, denoted
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Figure 6.24: Bayesian near-optimal designs for (a) the Michaelis-Menten nonlinear
regression model when o2 is treated as a nuisance parameter; (b) the Michaelis-Menten
calibration model when 72 is treated as a nuisance parameter and m = 30

Evim,1s Envm2, Enm,z and Earara, for the nonlinear Michaelis-Menten model found from
four of the random starts of ACE, with prior hyperparameters p; = 4.38, o1 = 0.07,
pe = 1.19, 09 = 0.84, a = 2.915 and b = 16.92, and o2 treated as a nuisance parameter.
The right hand panel in Figure 6.24 shows four Bayesian near-optimal designs, denoted
Ecal,1> Ecal2s Eeat,3 and Eeqp 4, for the calibration model with m = 30, again obtained
from four of the random starts of ACE, with hyperparameters u; = 4.38, o1 = 0.07,
ps = 1.19, 09 = 0.84, a = 3, b = 2 and A2 = 50, and 72 treated as a nuisance
parameter. Designs &arar,1 and &3 are similar to optimal designs for the Michaelis-
Menten from previous examples, having most points where the function is changing
fastest and some points where function is stable. Designs &yrar2 and &prar,4 have most
points in the region where the function is changing fastest, however they do not have

any points at the end of the design region as has been seen before. This may be a result

2

2, as the variance is now larger. For the calibration

of the new prior distribution for o
model, all designs follow this pattern with no points near the end of the design region.
A potential explanation for this might be that at this edge of the design region we are
very uncertain about the output of simulator for most parameter values (see Figures

6.20, 6.21 and 6.22).

In Figure 6.25 we present 100 estimates of the ESIG for the parameters 6 of the
nonlinear Michaelis-Menten model when o2 is treated as a nuisance parameter (o2
is integrated-out analytically), found using LIS and k; = k2 = 300 for the designs pre-
sented in Figure 6.24 (a). All designs have similar performance with /a2 performing

slightly better. We denote this design by &£3,,,-

Figure 6.26 shows 100 estimates of the ESIG found using LIS and k; = ky = k3 = 300
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Figure 6.25: Estimated ESIG for the parameters @ of the nonlinear Michaelis-Menten
model when o2 is treated as a nuisance parameter for the designs from Figure 6.24 (a)
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Figure 6.26: Estimated ESIG for the parameters ” of the Michaelis-Menten calibration
model where 72 is treated as a nuisance parameter and m = 30 for the designs from
Figure 6.24 (b)
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Figure 6.27: Estimated ESIG for the parameters 8 of the nonlinear Michaelis-Menten

9 . . . L ex *
model when o7 is treated as a nuisance parameter, for the designs £3,,, and &£,

for the calibration model when 72 is treated as a nuisance parameter and with m = 30,
for the designs presented in Figure 6.24 (b). Again, all designs have similar performance

with design &.q2 performing slightly better. We denote this design by &

cal*

Figure 6.27 shows 100 estimates of the ESIG from LIS with k; = ko = 300 for the

2
€

eter, for &3,,, and & ;. Figure 6.28 shows 100 estimates of the ESIG from LIS with
2

parameters @ of the nonlinear Michaelis-Menten model, where ¢~ is a nuisance param-

k1 = ko = ks = 300 for the calibration parameters 8”7, where 7 is a nuisance parameter,
and m = 30 for £,,, and & ,;. The Bayesian optimal design for the calibration model
is not optimal under the Michaelis-Menten model as shown in Figure 6.27. However,
the optimal design found under the Michaelis-Menten model is reasonably efficient for

estimating the parameters of the calibration model.

In this example, again the simulator has a simple equation and hence we are able
to compare optimal designs found for the calibration model with unknown simulator
with optimal designs for a nonlinear model. This example shows that optimal designs
obtained in the unknown simulator case can be inefficient under the nonlinear Michaelis-
Menten model. In this example, this seems to be probably due to the relatively poor

fit of the Gaussian process emulator.

For this example we are not able to construct optimal designs for ALIS and LIS for
larger m because the prior distribution of the nugget 72 results in very small sampled

values and the negative Hessian matrix H(t)) becomes ill-conditioned (non-invertible).

159



]
~o
o
-
I
1
g_ o !
1
1
]
O
n v _|
w !
© I
2 ' i
c < | l |
EN | :
7 |
—_—
™
(\i_ T
1
1
1
N 1
o 1
1
I
—_—
+ T
EMM Ecal

Figure 6.28: Estimated ESIG for the parameters of interest 8P of the Michaelis-Menten
calibration model when treating 72 as a nuisance parameter and m = 30, for the designs

Ehrnr and &gy

Numerical problems caused by these issues are discussed in the next section.

6.5 Numerical issues

As seen in Example 6.4.3, for calibration with an unknown simulator, ALIS can fail
due to the Hessian matrix H(t)) being ill-conditioned. These matrices result in very
large parameter variances in the ALIS importance distribution. As a consequence, we
obtain very large values of some sampled parameters, for which the likelihood evaluation
cannot be performed. Conditional on the likelihood evaluation being possible the ALIS
estimator seems to result in negative bias in the estimate of the expected Shannon
information gain. Hence we would recommend using LIS rather than ALIS for this

type of problem.

In Example 6.4.4 the Gaussian process posterior mean did not adapt to the true model

2 increased with the number of

very quickly and the Gaussian process variance, o
simulator runs, m. A potential explanation for this is that a stationary Gaussian
process is a poor approximation to the model. To deal with this issue we altered the
prior distribution on 72 for different values of m in order to keep the implied prior
distribution on o2 fairly constant. To achieve this for large m, the prior mean of 72

had to be made very small. This results in numerical issues in ALIS and LIS as we are
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unable to invert the variance covariance matrix f)y and the likelihood function is not

2

defined. Hence, the common parameterisation 72 = o2 /02 appears to perform poorly

in cases like this.

6.6 Summary

We have developed the necessary methods to address two key problems within the
Kennedy-O’Hagan calibration framework, namely Bayesian design when: (i) the func-
tion n(x, @) does not provide an accurate description of the mean; and (ii) the model
may be expensive to evaluate or unknown precluding direct use of the model in infer-
ence. We showed how ALIS and LIS can be used within these very general settings
to approximate the expected Shannon information gain. We have shown that designs
tailored to the calibration problem perform better than either existing optimal designs
or space-filling designs. For each of these two problems we found Bayesian optimal
designs using the ACE algorithm and compared them with Bayesian optimal designs
for nonlinear models. Last, we have shown that optimal designs for the calibration
model with dgr (x) = 0 perform as well as optimal designs obtained when we know the

model if suitable experiments can be performed.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we have discussed the problem of Bayesian design for nonlinear models,
particularly physical models within the Kennedy-O’Hagan framework. The objective of
this research was to develop methodology for Bayesian optimal designs for the physical
experiment to be combined with limited simulator runs to perform inference for the
unknown parameters. We sought Bayesian optimal designs that maximise the expected
Shannon information gain when the aim of the experiment was to estimate unknown
parameters (Chapter 5 and Chapter 6). Throughout the thesis, we have discussed the
challenges of approximating this expected utility which, in many cases, is intractable
and involves high-dimensional integrals. We also discussed how existing methods, in

some cases, fail to give an accurate approximation of the expected utility.

We have developed, assessed and compared new methods for approximating the ex-
pected Shannon information gain, namely Laplace importance sampling (LIS) and ap-
proximate Laplace importance sampling (ALIS); see Chapter 4. We firstly applied
these methods in the search for Bayesian design for nonlinear models, and showed that
their use provides better approximations than existing methods; they provide a good
balance between bias and computational expense. Combined with an optimisation al-
gorithm, we have also showed that these new methods can produce designs that have

better performance than the designs produced with the other methods (Chapter 5).

We also developed the necessary methods to address two key design problems within
the Kennedy-O’Hagan calibration framework, namely Bayesian design when: (i) the
function 7n(x,0) does not provide an accurate description of the mean; and (ii) the
model may be expensive to evaluate or unknown, precluding its direct use in inference.
In Chapter 6 we showed how ALIS and LIS can be used to approximate the expected
Shannon information gain in these two cases, and hence facilitate the search for optimal

designs.
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The methods in this thesis help to overcome the computational complexity of Bayesian
optimal design, and address the reliance of previous methods on either knowing the
functional form of the simulator, as in traditional nonlinear model design, or assuming
the calibration parameters are known, as in most of the existing optimal design methods

for calibration.

One limitation of this research is that the derivatives of the model are required. How-
ever, this is not a huge problem when a Gaussian process prior is used to model the
simulator. The research in this thesis is tailored to optimal designs maximising the
expected Shannon information gain. However ALIS and LIS provide a better approx-
imation to the posterior distribution (Section 4.3) that should be beneficial in the

construction of distributions of interest when using a different utility function.

Lastly, it is well-known that when the discrepancy function is present, the calibra-
tion parameters are not uniquely identifiable without the use of informative prior dis-
tributions. To allow unique estimation of both the calibration parameters and the
discrepancy function, the Gaussian process prior of the discrepancy function must be
formulated appropriately and satisfy some constraints; this topic is discussed below in
Section 7.2.2.

7.2 Future work

7.2.1 ALIS and LIS

ALIS and LIS could be extended to approximate different utility functions, for example
the expected Shannon information gain between prior and posterior predictive distri-
butions when the aim of the experiment is prediction, or the negative square error loss
for either parameters or predictions. For these utility functions, different distributions
must be approximated; however a better approximation to the posterior distribution,
as given in Section 4.3, will aid in the construction of approximations to the distribu-
tions of interest. For example, to approximate the negative squared error loss utility

function given by
a2

U(£7 '¢7 Y) == ZWw - E(T/Jw|y7 5)]27

w=1

E(¢y|y, &) can be approximated via ALIS and LIS as

2231 @kw Wl(th"Z’hka)Wb("Z’hk)

~ " (Pnk)
" = A\ i
(Wuly, &) ko m(ynl¥ne.8)m (Prr)
k=1 aj, (¥nk)
where '(ﬁhk, h=1,...,ki, k=1,..., ko, is a sample from the importance distribution

(see also Section 4.3 for notation). Note that using an approximation to the posterior

is not necessary the optimal choice of importance density for estimating the posterior
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mean.

As discussed in Chapter 5, the ALIS and LIS approximations are combined with the
ACE algorithm to obtain Bayesian optimal designs. This combination involves a trade-
off between accuracy of the expected Shannon information gain and computational
expense of the optimisation of this utility. Namely, should the computational budget
be spent on more precise and accurate approximations to the expected utility, or on
performing more random starts of the ACE algorithm? Future work could investigate
this trade-off and provide recommendations for specific classes of problem. A further
refinement to the computational methodology could be to vary the values of the outer
Monte Carlo sample size in the ALIS and LIS approximations as we progress through
the iterations in ACE, with larger sample sizes for later iterations. A better estimate
of the expected utility is more important for later iterations of ACE, where smaller

improvements in the expected utility are anticipated.

7.2.2 Design for calibration

Our methodology for finding fully Bayesian optimal deigns for calibration could be
extended to experiments where the simulator 7(x, 8) is both computationally expensive
(with no closed form) and subject to non-zero discrepancy. Gaussian process priors
for both the simulator and the unknown discrepancy function must be assumed. For

n(x, 0), we have
n(x,8) ~ GP (£, (x,0)8y, opry[(x,0), (x',6); ¢y))

and for dg» (x),
Sor (x) ~ GP (£ (x)Bs, o5 ks (x, x's $5)) ,

as described in more detail in Section 2.2. The distribution of the combined (n + m)-
vector of responses v = [y' z']T from the physical and the computer experiment
is:

v ‘ P~ N(IJ'WEV)’

where ¢ = [(0")T, 8T, BY 02,0}, 02, ¢}, ¢1]T, with

F%,@n + F]gﬁg

pv =E[v] = )
v F%,@n
and
¥, = cov[v] = 02X, + o2ln + 0555 Onxm
v - bl
e Omxn Omxm
where
o |
C
57w
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The joint distribution of y and z, conditional on all unknown model parameters ) is:

()~ (o). (o e )

c 2§Cp 2yce
z Fnﬁ'f} 0-71277 0'7,]277

The correlation matrices X7, 377 ¥ and 3; are defined through the correlation

functions with entries given by:

Ezl,)iz’ = RU[(Xé}’ op)v (XZZ'DH 0p)7 ¢77]7
i = (x5, 05), (x7, 07); &y,
X = Eal(x5, 05), (x5/, 05); ¢,

X5 = rsl(x],%5); ¢s),

where ¢,7/ =1,...,n,and 5,5/ =1,...,m.

Standard results for multivariate normal distributions can be used to derive the follow-

ing conditional distribution
y | Za¢ NN(,Ll,y,Ey),

with

-1
py =E(y | z,9) =F'B, + F}Bs + FTRS [z - F;B,],
B, = var(y | z,9) = 0252 4+ 021, + 0385 — SPTBE 5P,

As before, the model specification requires prior distributions for the unknown param-

eters ¢ = [(ep)Ta gaﬁ(ST7U72770-§7037 ¢$7 d)}}T

In order to use the ALIS and LIS approximations to the expected Shannon information
gain, the negative Hessian of the log-unnormalised posterior density, H(1)), is required.

The log-unnormalised posterior density is given by:

log mu ¥y, 2,€) = loglm(y|z, ¥, )] + log[my(67)] + log[my(By)] + log[ms(Bs)]
+log[my(0)] + loglmy(03)] + log[my(02)] + log[ms(¢by)] + log ms(s)].

Once the derivatives of this expression have been obtained the procedure described in
Sections 4.3 and 5.2 can be followed to estimate the expected Shannon information
gain for a given design and find Bayesian optimal designs using the ACE algorithm as
in Chapters 5 and 6.

It is well-known that when a discrepancy function is present, the calibration parameters
are not identifiable (see Section 1.1). To resolve this identifiability problem, Plumlee
(2017) suggested Bayesian Lg-calibration, which involves the use of a Gaussian process
prior with a correlation function that incorporates the constraint that dg»(-) is orthog-

onal to the gradient of the simulator 7(x, @). Specifically, when the simulator n(x, 8)
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is known, the correlation function of the discrepancy function dgr(x) is chosen as:
~, /. _ /. T —1 /
K5(X7Xa¢5)_ﬁ5(X)X7¢5)_h9(X) H9 h@(X),

where k5(x,X’;¢s) is an arbitrary choice of correlation function (e.g. the squared

exponential),

o) = [ P, g

and

_ on(t',e) [ont, 01" ., /
H@—/x/r 90 90 ks(t', t; ¢s)dt'dt.

A harder problem is when the simulator n(x, #) is unknown or expensive to evaluate.
For this problem the derivatives and integrals must be approximated numerically, see
Plumlee (2017) for more details. A very interesting extension of our results would be
to apply ALIS and LIS as part of a methodology to find optimal designs under these

Lo-calibration prior distributions.
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Appendix A

A.1 Connection between Laplace approximation I (LA1)
and Laplace approximation IT (LA2)

In this section we illustrate a connection between Laplace Approximation I, discussed in
Section 4.2.1, and Laplace Approximation II, discussed in Section 4.2.2. In particular,
we show that LA2 can be derived from LA1 by using a Taylor approximation to the
likelihood in addition to the normal approximation to the posterior density used in
LAT.

Plugging the second order Taylor series expansion (4.23) of the log-likelihood, log m;(y|%, £),
about the posterior mode 1,b, back into Equation (4.19) we get:

1 -
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Firstly Is can be solved as:

01 ”
= [ ZEROWD | fimaisle. av

01
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~ 0,

because 8logﬂ'§7¢|y§ ‘1/) — (¢ — 4p) = 0 by definition, and I; ~ 0 as shown in (4.24).

Secondly we approximate I7 as:

== [ 3= $HG @ - Dyl v
h4
- [ 50 =9 QI — Bl

Hence Equation (4.19) becomes

H($) |~ £ ~logm() — i [Q(«&)H@&)ﬂ me(yl¢)dy,

v~ [ - log(2n)e :

which is identical to (4.20).

Both of these methods assume a normal approximation to the posterior density. The
main difference between Laplace Approximation I and Laplace Approximation II is
an additional second-order approximation to the log-likelihood (or equivalently to the
log-prior density) assumed to hold over the region of highest posterior density. This
requires that the posterior is quite highly concentrated around 1,@, which will be the

case for large n.
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Appendix B

B.1 Fisher Information Matrix for the multivariate nor-

mal distribution

When y ~ N [u(v), X(¢p)] follows a multivariate normal distribution, the Fisher in-
formation matrix for parameters v is given by Equation (6.3). When the mean and

variance depend on parameter vectors ¥ and v, i.e. (1) and X(¢p2), then:

I(vp1, 42 €) = diag [I(v1;€), L(2;§)],

where 5 - 5
I = () ), (B.1)
d
" o1 O (p) o, OS(4)
00,y = gt | Bl T () 1 T (B.2)

B.2 Derivatives

In order to use LIS and ALIS to estimate the expected Shannon information gain,
we need to calculate the first and second derivatives of the log-unnormalised posterior

density of interest.

For most models we are interested in finding the derivatives with respect to %, a
transformation of the original parameters 9. The most common transformation we use
is ' = (log 1, ...,log qu)T in order to ensure positive values for the parameters )

when sampling from the importance density. We use the chain rule:

dlogmy (W'ly,§) _ dlogmy (¢'ly,€) v
o’ oy o

(B.3)

and

9*logmy (Y'y,&) 9y 9 |dlogml (¥ly.€) 9y
oY'T o’ Oy O oY oy’
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(B.4)

All the derivatives derived in this appendix have been checked numerically for a variety

of different designs, data sets and parameter values.

B.2.1 Michaelis-Menten model

In this section we calculate the derivatives of the log-unnormalised posterior density,

log m,(8y, &), of the Michaelis-Menten model given in Equation (5.1).

First derivatives:
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Using Equations (B.3), (B.4) and (4.36) we obtain the derivatives of the log-unnormalised
posterior density log 7 (6'|y, €), with respect to 8’ = (log 81, log 62)T.

As described in Section 4.3.2 we are required to derive the implied importance density
for the untransformed parameters 8. We have that the importance density of the
transformed parameters ', qg,(O’ ), is a normal density with mean ﬂg,, defined using
Equations (4.37) and (4.38) for LIS and ALIS respectively, and variance SZ/ defined
using Equation (4.39). Hence,

where

1
gr(6)) - [901 ?] , (B.5)
02

is the Jacobian matrix of the transformation from 6’ to 6.

B.2.2 Biochemical Oxygen Demand (BOD) model

We will now calculate the derivatives of the log-unnormalised posterior density log 7, (0]y, &)
for the BOD model given in Equation (5.3).

First derivatives:
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Second derivatives:
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Using Equations (B.3), (B 4) and (4.36) we obtain the derivatives of the log-unnormalised
posterior density log 7% (6/|y, ¢), with respect to 8’ = (log 61, log 62)T.

Again, we have to work out the implied importance density for the untransformed pa-
rameters 0, as described in Section 4.3.2 and as demonstrated in the previous example.

The Jacobian matrix is given by Equation (B.5).

B.2.3 Lubricant model

We now calculate the derivatives of the log-unnormalised posterior density log 7, (0|y, &)

for the lubricant model given in Equation (5.5).

For simplicity we denote n; = n(x1;, z2;,0) = + O329; + 94:1:2Z + 953321 (0 +

92+I1
0733, )12; exp {_98f01;z%. }, and we assume 019 = log 2.
First derivatives:
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B.2.4 Calibration model: Michaelis-Menten simulator with dg»(z) # 0

We now calculate the derivatives of the log-unnormalised posterior density log 7, (¥]y, &)
for the calibration model given in Section 6.3.1, where the simulator is the Michaelis-

Menten model and there is non-zero discrepancy, i.e. dgr(z) # 0.

The first derivatives of the log-unnormalised posterior density are:

Ologmu(Yly.§) _ 1 (0In(x.6) 1 log — m
00} o?

T
ZR ) ol 0 —- - =71 M
89]17 ) [y T](Xa )] 911) 0_%0;1; )

Dlogmu(¥ly,&) _ 1 (9n(x,0)\" ¢, 4 1 logh — ps
6% 2\ aer 2y = n(x,0)] o8 T
dlogm,(Yly,§) = n 1 _ Ty —1f, _(a+1)a*+b
57 =-—3+ 2(0_2)2[37 n(x,0)]" 7 [y —n(x,0)] I
0log m, (Yly, 1 0% 1 10X
E a; y.9) :—itr X lﬁgb} _T‘_Q[y_n(x70)]T [—2 1% 1} ly — n(x,0)]
— Ao,
Olog m,(Yly, & 1 [ 0% 1 403
aiz .0 = _§tr 2 187—2] - @[y—n(x, )" [—2 1@2 1} [y —n(x,6)]
Ao,
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on(x,0) B T Ty T
o | +a T+,
on(x0) [  On _ Bwn T
008 | (05 + )27 (05 +xn)?]
oy .
96 = — (i — )" exp[—(a; — 25)°] = —(z; — 2)°K ()i,
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o2 ~ v

Using Equations (B.3), (B.4) and (4.36) we obtain the derivatives of the log-unnormalised

posterior density log 773), ('ly, €), with respect to 10’ = (log 67, log 65, log 0%, log ¢, log 7%) T

The second derivatives of the log-likelihood can now be easily calculated using Equation
(6.3). In this case, the mean and variance depend on different vectors of parameters

and hence we have the special case described in Section B.1. The information matrix
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for ¢ = (9{’, 9129, o2, ¢,72)T has the form

(1 I, 0 0 0
Iy I O 0 0
I(p;)= 10 0 I3z Isq I35, (B.6)
0 0 Iyg Iaa Ius
| 0 0 Is3 Iss Iss]
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2= 500 57 oep
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The second derivatives of the log-prior density are:
9% log m,(67) _ 1
o6%> 0707’
9% log m,(65) _ 1
86%? Ohos’
*logmy(c?) b
PIERE (02)2’
& log my(9)
i R W
0¢?
02 log mp(72)
— e = — A2,
o[r?)?

and, again, using (B.3), (B.4) and (4.36) we obtain the derivatives with respect to 1’

As described in Section 4.3.2 and demonstrated in previous examples, we must derive

the implied importance density for the untransformed parameters 1». We have that the
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importance density of the transformed parameters 1), qiz, (¢'), is a normal density with
mean ﬂZ,,, defined using Equations (4.37) and (4.38) for LIS and ALIS respectively,
and variance Efp, defined using Equation (4.39). Hence,

0 (%) = i (T(3)) |det J[T ()],

where ) )

% 0 0 0 0

1

0 0 0 0

2
Jr@l=1o0 o L o ol (B.7)
1
0 0 0 % 0
0 0 0 0 &

is the Jacobian matrix.

B.2.5 Unknown simulator and dg»(z) = 0 - Cantilever Beam function

Results required to find Bayesian optimal designs for a known cantilever

beam simulator

We first assume that the simulator n(x, 8) is known and is given by the cantilever beam

function. We have

4L3 T4 2 T 2 .
b= gui\ (7) + (53) e =1,

where g; ~ N(0,02). We assume a normal distribution for the unknown parameter
0 ~ N(ui,0?) and a conjugate inverse-gamma prior distribution for o2 ~ I1G(a, b).
The likelihood function is given by:

1 1
my10.0%.6) = G e {—5aly =" -}

where n = [n(x1,0) .. .n(xn,e)]T and 7n(x;,0) = g—ﬁ (5‘;1)2 + (123)2.

We integrate out o2 to obtain the marginal likelihood:
OO 2 2\ 7 2
7(316.6) = [ m(y16.02)m (02 do?
0

= oo(2m?) 2 exp
0

T2
(yn }

! [<y )y - n)]}< 2@+ xp{—bos 2} do?
(a+

oc[l—i—
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The log-unnormalised marginal posterior density is then given by:

log m(0ly, §) = — (a+ 5 ) log [2b+ (v =)y —m)] + (a+ 5 ) log[20]

1 o 1 2
- 5108“[27701] - ﬁ(a - )"

We estimate the expected Shannon information gain using ALIS and LIS approxi-
mations which are then combined with the ACE algorithm to find Bayesian optimal

designs.

We take a normal approximation to the posterior distribution of 6 as described in Sec-
tion 4.3.2. To calculate the negative Hessian, H(0), of the log-unnormalised posterior
density required by the ALIS and LIS approximations (see Section 4.3), we first have to
find the derivatives of the log-unnormalised posterior density log 7, (f]y, ) with respect

to 6. The derivatives are given below.

For convenience we assume
15\ 2 2i\ 2
Ay = (B 4 (1)
t2 w2

dlogm,(0)y, &) _ < ﬁ) >ie1 (yZ;Qﬁt\/E 9§6L2(;2A> 0 — 11
09 2/ gpgpym (yi - %\/E)Q ot
(

0% logmu(fly.€) _
062

E?:l{ y203wt\ﬁ+ 03%‘22 ] {254‘21 1< ; %\/E>2}
[2b+ Z?:l (yi — %\/E)12

[ - )] [0 - )
[2b+2’? ( ,_m@)Qr
i=1 \¥i — guz Vi

Results required to find Bayesian designs when the simulator is unknown

Now, we assume 7(x,0) is unknown and we assume the calibration model given in
Equation (6.4) and a Gaussian process prior for the unknown simulator as described
in the example in Section 6.4.3. We calculate the derivatives of the log-prior density,
log m(1) with respect to the unknown parameters 1/, where 1’ = (67 log72)T. We
have that:

6 ~log N(u1,07), 7~ Exp(A;2).
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Figure B.1: Cantilever beam example: Bayesian near-optimal-ESIG designs from dif-
ferent random starts of ACE for the nonlinear model when o2 is treated as a nuisance
parameter (the numbers on some points show how many times the point is repeated)

The log-prior density is:

log mp(vp) = log m,(6F) + log m,(TQ)

log 0P — puy)?
M +log A2 + \272.

= log [9p01(27r)1/2] + 5
i

First Derivatives:

dlogmy(07) _ 67—

oor O'% ’
Olog 7rb(7'2) 9
— 2L =) .
dlog 72 T
Second derivatives:
Plogm(6]) 1
o[6r)? o o2’
2 2
0% log mp(77) — e
J[log 72]?

In Section 6.4.3 we found Bayesian optimal designs by combining LIS with the ACE
algorithm where we used 10 random starts. We presented optimal designs for the
physical experiment with n = 10 for both the nonlinear model when o2 is treated
as a nuisance parameter and the calibration model when 72 is treated as a nuisance
parameter with different numbers of simulator runs (m = 30, 60,90). Here we present
near-optimal designs from different random starts of ACE, see Figures B.1-B.4. For
each model and size of computer experiment, we see a wide variety of different designs.

However, they all have similar estimated ESIG, see Table B.1.
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Figure B.2: Cantilever beam example: Bayesian near-optimal-ESIG designs from dif-
ferent random starts of ACE for the calibration model when 72 is treated as a nuisance
parameter and m = 30

(a) (b) (c)
2
© w ] v
< | 4 e |
wn w wn
S S c
- o - o - o
X S < 3 < 24
8
wn w wn
< @ 2 )
o | < | =
w0 | w | e
: . : .
T T T T T T T T T T T T T T T T T T T T T
-15 10 -05 00 05 10 15 15 -10 -05 00 05 10 15 -15 10 -05 00 05 10 15
X2 X2 X2

Figure B.3: Cantilever beam example: Bayesian near-optimal-ESIG designs from dif-
ferent random starts of ACE for the calibration model when 72 is treated as a nuisance
parameter and m = 60
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Figure B.4: Cantilever beam example: Bayesian near-optimal-ESIG designs from dif-
ferent random starts of ACE for the calibration model when 72 is treated as a nuisance
parameter and m = 90
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Mean of 100 estimates of the ESIG

Design Nonlinear Calibration Calibration Calibration

model model, m = 30 | model, m = 60 | model, m = 90
§CBF 1.087 0.282 0.747 0.831
Fig. B.1 (a)
écBF2 Fig. | 1.082 0.271 0.739 0.829
B.1 (b)
§cBrR3 1.079 0.279 0.699 0.818
Fig. B.1 (¢)
€cal,30,1 0.880 0.535 0.629 0.708
Fig. B.2 (a)
§cal 30,2 0.873 0.529 0.622 0.699
Fig. B.2 (b)
§cal 30,3 0.868 0.520 0.615 0.693
Fig. B.2 (¢)
§cal 60,1 1.074 0.385 0.692 0.801
Fig. B.3 (a)
&cal 60,2 1.070 0.381 0.686 0.799
Fig. B.3 (b)
&cal 60,3 1.063 0.376 0.679 0.783
Fig. B.3 (¢)
&eal,90,1 1.084 0.297 0.687 0.871
Fig. B4 (a)
&cal,90,2 1.078 0.292 0.681 0.868
Fig. B.4 (b)
&cal,90,3 1.072 0.284 0.679 0.859
Fig. B.4 (c)

Table B.1: Mean of 100 estimates of the expected Shannon information gain for the
designs given in Figures B.1-B.4; the ESIG was estimated under (i) the nonlinear

model where o2 is treated as a nuisance parameter; (ii) the calibration model where 7
is treated as a nuisance parameter and (a) m = 30; (b) m = 60; and (c) m = 90

B.2.6 Unknown simulator and dyp(z) = 0 - Michaelis-Menten model

Finally, we calculate the derivatives of the log-prior density, log 7, (%)), with respect to

the unknown parameters v’, where ¥’ = (log 6 ,1log 65,1og 72)T, for the example given
in Section 6.4.4. We have that:

07 ~log N(u1,07), 05 ~log N(ua,03), 7~ Exp(As2).

The log-prior density is:

log m,(v0) = log m,(6%) + log m,(6%) + log 7rb(72)

196




P 2 p 2
_ P 1/2 (log 0 — ) D 1/2 (log b — 142)
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+log A2 + A 272,

First Derivatives:
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dlog m(72) 9
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Appendix C

C.1 The choice of hyperparameters for different examples

C.1.1 Example 3.2.1

For the example given in Section 3.2.1 we assume the calibration model (1.1) and we
also assume a known simulator, the Michaelis-Menten model, with known and fixed
parameters 67 = (15,50)T. Therefore

15z
50+

n(z,0") =
We also assume a Gaussian process prior on the discrepancy function dgr () such that
gr ~ N [0,,,0°K(9)]

where dgr = [0gr (1), ..., 0gr (z)]T. We also assume o2 ~ IG(a,b), ¢ ~ Exp(),) with

densities

) = g e {2}
(@) = Ap exp{—Ay0},

with @ = 3, b = 2, \y = 200 and 02 = 0. This choice of prior distribution for
the correlation parameter ¢ suggests that if two points x and 2’ in the range [0, 400]
are ‘close’ then the correlation function k(z,2’; ¢) is close to one and as the distance
between the two points is increased the correlation function k(z,2’;¢) decreases and
tends to zero. See Figure C.1 for the density of k(x,2’;¢) for different values of ¢
sampled from the prior distribution and for three fixed distances between two points.
In Figure C.2 (b) we present samples from the prior distribution of the discrepancy

function dg»(x) for this particular choice of hyperparameters.

This choice of hyperparameters results in a sensible prior distribution in relation to
the “size” of the model (see Figure C.2 (a) for the expected response of the Michaelis-
Menten model), for the discrepancy function dgr(x). Samples from the posterior dis-

tribution of the discrepancy function are presented in Section 3.2.1.
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Figure C.1: The density of x(z,z'; ¢) for different values of ¢ sampled from the prior
distribution and for three fixed distances between two points: (i) | — /| = 10; (ii)
|z — 2’| = 100; and (iii) |« — 2’| = 350
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Figure C.2: Example 3.2.1: (a) The expected response of the Michaelis-Menten model,
n(z, O7) = 5%)54235 (b) Samples from the prior distribution of the discrepancy function
5917 (.%')
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Figure C.3: Example 3.2.2: Examples of (a) the shape of the expected response of
the Michaelis-Menten model for different values of 67 and 65 sampled from the prior
distributions; (b) realisations from the prior distribution of the discrepancy function
dgr () for the particular choice of hyperparameters

C.1.2 Example 3.2.2

For the example given in Section 3.2.2, we assume the calibration model (1.1) and a

known simulator, the Michaelis-Menten model, with unknown parameters 6%:

91.@
) +z

n(z,0) =
We also assume a Gaussian process prior on the discrepancy function dgr(-) such that
601’ ~ N [0n70'2K(¢)] ’

where dg» = [0gr(71), ..., 060(7,)]T and 67 ~ Unif[8,24], 65 ~ Unif[20,85], o2 ~
1G(3,2), ¢ ~ Exp(200) and 72 ~ Exp(15) (similar to Example C.1.1). In Figure C.1
we present the density of k(z,z’;¢), for different values of ¢ sampled from the prior
distribution and for three fixed distances between two points. In Figure C.3 we present
(a) examples of the shape of the expected response of the Michaelis-Menten model for
different values of 67 and 65 sampled from these prior distributions and (b) samples
from the prior distribution of the discrepancy function dgr(x) for this particular choice

of hyperparameters.

This choice of hyperparameters results in a sensible prior for the discrepancy function
der () in relation to the “size” of the model for different values of 67 and 5. Samples
from the posterior distribution of the discrepancy function are presented in Section
3.2.2.
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Figure C.4: Example 5.1.2: The expected response of the Michaelis-Menten model for
different values of #; and 65 sampled from their prior distributions

C.1.3 Example 5.1.2

For the Michaelis-Menten model given in Section 5.1.2 we assume log-normal prior
distributions for the unknown parameters 61 and 6s with uy = 4.38, o1 = 0.07, us =
1.19 and o9 = 0.84. In Figure C.4 we present examples of the shape of the expected
response of the Michaelis-Menten model for different values of 1 and 6, sampled from

these prior distributions.

Figure C.4 describes the variability of the simulator output due to the variability in the
parameters. Also, the variability shown in this figure explains why the optimal designs
obtained for the Michaelis-Menten model have most points where the curve is changing

more quickly and also some points at the stable part of the curve.

C.1.4 Example 5.1.3

For the Biochemical Oxygen Demand (BOD) model given in Section 5.1.2 we assume
log-normal prior distributions for the unknown parameters 6; and 62 with py = 3.38,
o1 = 0.20, po = 1.098, 0o = 1.12. In Figure C.5 we show the shape of the expected
response of the BOD model for different values of #; and 62 sampled from these prior

distributions.

Similarly to the previous example, Figure C.5 describes the variability of the simulator
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Figure C.5: Example 5.1.3: The expected response of the BOD model for different
values of A1 and 6y sampled from their prior distributions

output due to the variability in the parameters. Again, the variability shown in this
figure explains why the optimal designs obtained for the BOD model have most points
where the curve is changing more quickly and also some points at the stable part of

the curve.

C.1.5 Example 6.3.1

For the example given in Section 6.3.1 we assume the calibration model (6.1) with the
simulator being the Michaelis-Menten model with unknown parameters @, similar to

Example C.1.2, such that:
911‘

0) = .
n(z,0) s

We assume independent log-normal prior distributions 6} ~ log N (4.38, 0.07?) and 67 ~
log N(1.19,0.842) (as in Example C.1.3). We also assume a Gaussian process prior for

the discrepancy function dgr ()
601’ ~ N [On;UQK(¢)] )

where 8g» = [6gr (1), ..., 000 (x,)]T. We use 02 ~ IG(3,2), ¢ ~ Exp(200) and 72 ~
Exp(20). In Figure C.1 we present the density of the correlation function x(z, z’; ¢), for
different values of ¢ sampled from the prior distribution and for three fixed distances

between two points.
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Figure C.6: Example 6.3.1: Examples of (a) the shape of the expected response of
the Michaelis-Menten model for different values of 67 and 64 sampled from the prior
distributions; (b) realisations from the prior distribution of the discrepancy function
0gr () for the particular choice of hyperparameters

In Figure C.6 we present (a) examples of the shape of the expected response of the
Michaelis-Menten model for different values of #) and 65 sampled from these prior
distributions, and (b) samples from the prior distribution of the discrepancy function
dgr () for this particular choice of hyperparameters. This choice of hyperparameters
results in a sensible prior for the discrepancy function dgr(z) in relation to the “size”

of the model for different values of 9’17 and 95 .

C.2 Example: Michaelis-Menten simulator and &g (x) # 0

We assume the example given in Section 6.3.1. We compare estimates of the expected
Shannon information gain found using nMC, ALIS and LIS for two combinations of
k1 and ko; (i) k1 = ko = 300 and (ii) k1 = 2000, k2 = 10000. Both normal and ¢
importance distributions are used in ALIS and LIS. The expected Shannon information
gain is approximated for the designs given in Figure 6.2. We treat as the ‘true’ ESIG
the nMC approximation with k; = ko = 1,000,000 (red line) because should lead to
negligible bias.

Figure C.7 shows the distribution of 100 estimates of the ESIG found using nMC, ALIS
and LIS for the D-optimal design, £7,. Increasing k1 and ky reduces the variance and
bias of nMC. For this design, the ESIG using ALIS and LIS also changes by increasing
ko which controls the bias and by increasing k; which reduces the variance. Changing

the importance distribution from a normal to a ¢ also makes a difference.
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Figure C.7: Estimated ESIG for the parameters 1) of the calibration model found using
nMC, ALIS and LIS for different combinations of k1 and ks, for the D-optimal design,
&5, and the ‘true’ ESIG (red line) obtained from nMC with k1 = k2 = 1,000, 000
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Figure C.8: Estimated ESIG for the parameters 1) of the calibration model found using
nMC, ALIS and LIS for different combinations of k1 and ko, for the Bayesian optimal
design of the Michaelis-Menten model found using ACE, £},,,, and the ‘true’ ESIG
(red line) obtained from nMC with k; = ko = 1,000,000
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Figure C.9: Estimated ESIG for the parameters 1 of the calibration model found using
nMC, ALIS and LIS for different combinations of k1 and ko, for the Bayesian optimal
design for the Michaelis-Menten model found using ACE, &£3,,,, and the ‘true’ ESIG
(red line) obtained from nMC with k; = k2 = 1,000,000 (nMC,300 is omitted because
this method exhibits large bias)

Figures C.9 and C.8 show the distribution of 100 estimates of the ESIG found using
nMC, ALIS and LIS for the Bayesian optimal design for the Michaelis-Menten model
found using ACE, &j,,,. In the latter plot nMC,300 results have been omitted due to

high positive bias. We can see similar patterns as discussed for Figure C.7.

In Figure C.10 we show the distribution of 100 estimates of the ESIG found using
nMC, ALIS and LIS for the maximin LHS design, £175. We can see similar patterns
as in Figures C.7 and C.9. Again, we have not included nMC,300 results due to high
bias. For this design, which is equally spaced in one dimension, the prior distribution
of the correlation parameter, ¢, is more similar to the posterior distribution than the
approximation to the posterior distribution used in ALIS and LIS, and for this reason
nMC appears to perform better than either ALIS or LIS.

In Figure C.11, similarly to the previous figures, we show the distribution of 100 esti-
mates of the ESIG found using nMC, ALIS and LIS for the Bayesian optimal design

for the calibration model found using ACE, £* ;. Clearly in this figure we can see that

*
cal*

ALIS with a t importance distribution gives approximations with the least bias.

Figure C.12 shows 100 estimates of the ESIG for two replicates of the 10-run Bayesian
optimal design for the calibration model found using ACE. For this design, the advan-
tage of ALIS and LIS over nMC is much clearer.
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Figure C.10: Estimated ESIG for the parameters 1 of the calibration model found using
nMC, ALIS and LIS for different combinations of k1, ko, for the maximin LHS design,
&rms, and the ‘true’ ESIG (red line) obtained from nMC with k; = ko = 1,000, 000
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Figure C.11: Estimated ESIG for the parameters 1 of the calibration model found using
nMC, ALIS and LIS for different combinations of k1, ke, for the Bayesian optimal design
for the calibration model found using ACE, £ ;, and the ‘true’ ESIG (red line) obtained
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Figure C.12: Estimated ESIG for the parameters @ of the calibration model found
using nMC, ALIS and LIS for different combinations of k1 and ks, for two replicates of
the 10-run Bayesian optimal design for the calibration model, £* ;, and the ‘true’ ESIG
(red line) obtained from nMC with k; = ko = 1,000, 000

*
cal’

The examples where nMC is performing better than ALIS and LIS are when evaluating
designs that probably do not give much information about the calibration parameters.
In these examples the prior distribution is a better approximation to the posterior than
an asymptotic Laplace approximation. For the designs that give information about the
calibration parameters, nMC requires big sample sizes k; and ko in order to reduce the
bias. For this particular example we chosen LIS to approximate the expected Shannon
information gain as is a bit more accurate than ALIS, and empirically is not much more

computationally expensive, at least for small Monte Carlo sample sizes.

C.3 Unknown simulator and dg(z) = 0 - Cantilever Beam

function

For the example presented in Section 6.4.3, we fit a Gaussian process with a constant
mean to the simulator outputs, z, obtained using a computer experiment observed
under a design &¢ = [(x§,605),. .., (x5,,05,)]. The prior distributions used are the same
given in Section 6.4.3. We use mlegp package (Dancik, 2007), to model the effect of
Young’s modulus of beam material, 6, on the output of the cantilever beam function.

We fit a GP to m = 30, 60,90 simulator runs.
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Figure C.13: Gaussian process fit for m = 30. (a) Contour plot of the cantilever beam
function for a fixed § = 2.71 x 107; (b) Posterior mean of the Gaussian process fit on
the cantilever beam function; (¢) The root squared difference between the response and
the posterior mean; (d) Posterior standard deviation of the Gaussian process fit on the

cantilever beam function
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Figure C.14: Gaussian process fit for m = 30. (a) Contour plot of the cantilever beam
function for a fixed § = 3.15 x 107; (b) Posterior mean of the Gaussian process fit on
the cantilever beam function; (c¢) The root squared difference between the response and
the posterior mean; (d) Posterior standard deviation of the Gaussian process fit on the
cantilever beam function
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Figure C.15: Gaussian process fit for m = 60. (a) Contour plot of the cantilever beam
function for a fixed § = 2.71 x 107; (b) Posterior mean of the Gaussian process fit on
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the posterior mean; (d) Posterior standard deviation of the Gaussian process fit on the
cantilever beam function
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Figure C.16: Gaussian process fit for m = 60. (a) Contour plot of the cantilever beam
function for a fixed § = 3.15 x 107; (b) Posterior mean of the Gaussian process fit on
the cantilever beam function; (¢) The root squared difference between the response and
the posterior mean; (d) Posterior standard deviation of the Gaussian process fit on the
cantilever beam function
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Figure C.17: Gaussian process fit for m = 90. (a) Contour plot of the cantilever beam
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Figure C.18: Gaussian process fit for m = 90. (a) Contour plot of the cantilever beam
function for a fixed § = 3.15 x 107; (b) Posterior mean of the Gaussian process fit on
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cantilever beam function
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Figures C.13 - C.18 present results from these GP models from m = 30 (C.13 and C.14),
60 (C.15 and C.16), and 90 (C.17 and C.18) runs. For each figure, plot (a) presents the
simulator output for a value of # not in the computer experiment design, plot (b) gives
the posterior predictive mean for this 6 value from the GP model, plot (c) gives the
root squared difference between the true simulator output and the posterior predictive

mean, and plot (d) gives the posterior predictive standard deviation.

As we increase the number of simulator runs m, the posterior mean of the GP more
closely resembles the true response; especially noticeable at the edge of the design
space. The root squared difference between the true response and the posterior mean
becomes smaller for larger m. The posterior standard deviation of the GP decreases as

we increase m.

These figures demonstrate that as we increase the number of observations m we get
a GP mean that adapts better to the true response and the GP standard deviation
is smaller. For space-filling designs and Bayesian optimal designs the estimated ESIG

tends to the value of the estimated ESIG for the nonlinear model as m increases.
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