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We often want to learn about physical processes that are described by complex nonlin-

ear mathematical models implemented as computer simulators. To use a simulator to

make predictions about the real physical process, it is necessary to first perform calibra-

tion; that is, to use data obtained from a physical experiment to make inference about

unknown parameters whilst acknowledging discrepancies between the simulator and

reality. The computational expense of many simulators makes calibration challenging.

Thus, usually in calibration, we use a computationally cheaper approximation to the

simulator, often referred to as an emulator, constructed by fitting a statistical model to

the results of a relatively small computer experiment. Although there is a substantial

literature on the choice of the design of the computer experiment, the problem of de-

signing the physical experiment in calibration is much less well-studied. This thesis is

concerned with methodology for Bayesian optimal designs for the physical experiment

when the aim is estimation of the unknown parameters in the simulator.

Optimal Bayesian design for most realistic statistical models, including those incor-

porating expensive computer simulators, is complicated by the need to numerically

approximate an analytically intractable expected utility; for example, the expected

gain in Shannon information from the prior to posterior distribution. The standard ap-

proximation method is “double-loop” Monte Carlo integration using nested sampling

from the prior distribution. Although this method is easy to implement, it produces

biased approximations and is computationally expensive. For the Shannon information

gain utility, we propose new approximation methods which combine features of impor-

tance sampling and Laplace approximations.

These approximations are then used within an optimisation algorithm to find optimal

designs for three problems: (i) estimation of the parameters in a nonlinear regression

model; (ii) parameter estimation for a misspecified regression model subject to discrep-

ancy; and (iii) estimation of the calibration parameters for a computational expensive

simulator. Through examples, we demonstrate the advantages of this combination of

methodology over existing methods.
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Chapter 1

Introduction

Engineers and scientists increasingly use deterministic computer models, referred to

here as simulators, to study actual or theoretical physical processes that would other-

wise be very difficult to analyse. There are many examples of scientific and technolog-

ical developments that use simulators to reduce or replace costly or infeasible physical

experimentation. Two examples are:

• When designing an aircraft wing, computational fluid dynamics models are used

in order to calculate the air flow over a wing (Forrester, 2010).

• In drug development, molecular modelling is an important part of exploring,

describing and predicting properties of potential drug candidates (Norrisa et al.,

2000).

A simulator is often an implementation of a complex mathematical model that maps

several input variables to a (possibly multivariate) output. The resulting computer code

is typically expensive in terms of computer time to run. Hence, only small number of

runs can be performed at particular combinations of values of the input variables. Sacks

et al. (1989) proposed the construction of an emulator or a surrogate model, specifically

a Gaussian process model, which approximates the simulator but is much faster to run.

This approach is now commonly used to predict the output of the simulator at untried

input combinations. It is often described as a ‘black box’ method, meaning that it

makes no use of information about the mathematical model, except knowledge of the

outputs for the simulator runs that have been performed. In this thesis we focus on

simulators of a process for which some limited physical experimentation is also possible.

To use a simulator to make predictions, it may be necessary to first perform calibra-

tion, that is, to use physical data to estimate the values of any unknown simulator

parameters, whilst also acknowledging possible discrepancies between the simulator

and reality (Kennedy and O’Hagan, 2001). In order to combine simulator evaluations

with the physical data, the simulator is considered as a biased version of the true mean

response (Brynjarsdóttir and O’Hagan, 2014).

1



The computational expense of the simulator makes calibration challenging. The sim-

ulator output is only known for the few combinations of input values that have been

run, and for other input combinations we are uncertain about the value of the simulator

output. We are also uncertain about the form of the (unobservable) model discrepancy.

In their seminal paper, Kennedy and O’Hagan (2001) proposed that both these sources

of uncertainty may be represented by independent Gaussian processes.

The Kennedy-O’Hagan approach has received considerable attention in the literature

(e.g. Higdon et al., 2004; Reese et al., 2004; Bayarri et al., 2007b; Bayarri et al., 2007a;

Gramacy and Lee, 2008; Wang et al., 2009; Wilkinson, 2010; Gramacy et al., 2015;

Storlie et al., 2015; Arendt et al., 2016). It has been used in a variety of applications

including hydrology, radiological protection, cylinder implosion and climate prediction

(see Williams et al., 2006; Murphy et al., 2007; Higdon et al., 2008; Han et al., 2009;

Goh et al., 2013; Leatherman et al., 2014). In this thesis, we also follow the Kennedy-

O’Hagan approach.

1.1 A statistical model for calibration

In the calibration problem we have two groups of inputs to the simulator; the con-

trollable variables, or inputs, x = (x1, . . . , xq1)T, x ∈ X ⊂ Rq1 and the calibration

parameters, θ = (θ1, . . . , θpθ)
T, θ ∈ Θ. The controllable variables, x, can be controlled

and set both when observing the physical process and when running the simulator. The

calibration parameters, θ, can only be set when running the simulator, whose output is

denoted as η(x,θ). The calibration parameters are assumed to take fixed but unknown

values θp ∈ Θ for all physical observations (Higdon et al., 2008). The aim of calibration

is to learn θp to describe the physical observations.

For the physical experiment, let yi denote the response from the ith run made un-

der settings xi of the controllable variables (i = 1, . . . , n). We consider the following

statistical model:

yi = ζ(xi) + εi = ρ η(xi,θ
p) + δθp(xi) + εi, i = 1, . . . , n. (1.1)

Above, ρ ∈ R is an unknown regression parameter, and the discrepancy function, δθp(x),

encodes the difference between the simulator evaluated at the ‘true’ θp, η(x,θp), and the

mean, ζ(x), of the physical process. We assume εi ∼ N(0, σ2
ε) are independent. Usually

δθp(·) is a nonzero function because the simulator is built under certain assumptions

that might not be true in real life and hence the physical observations might differ from

the simulator output.

In addition to the physical data, we have a limited number of simulator runs from a

computer experiment:

zj = η(xcj ,θ
c
j), j = 1, . . . ,m, (1.2)
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where for the jth run of the computer experiment xcj denotes the vector of settings

of the controllable variables and θcj denotes the vector of settings of the calibration

parameters. In the Bayesian framework of Kennedy and O’Hagan (2001), calibration is

performed using (1.1) and (1.2) by first placing appropriate prior distributions on θp,

δθp(x), and η(x,θ) (Gaussian process priors are typically used for δθp(x) and η(x,θ);

see Section 2.2). A posterior distribution for θp is then formed by conditioning on

y1, . . . , yn and z1, . . . , zm. For more details see Chapter 6.

The Kennedy-O’Hagan framework has long been known to suffer from an identifiability

problem, which we now explain. Underpinning (1.1) is the idea of writing the mean of

the physical process, ζ(x), as

ζ(x) = ρ η(x,θp) + δθp(x). (1.3)

At first glance, given ζ(x), (1.3) appears to define both θp and the discrepancy function

δθp(x). However, in fact this is not the case. Given a different arbitrary choice of

calibration parameters, θ′ ∈ Θ, we can find a corresponding function

δθ′(x) = ζ(x)− ρ η(x,θ′),

that satisfies

ζ(x) = ρ η(x,θ′) + δθ′(x),

and so (1.3) does not define θp and δθp(·) uniquely. In other words, without further

conditions, θp and δθp(·) are not identifiable from the physical process.

Bayarri et al. (2007b) argue that despite this identifiability problem the Kennedy-

O’Hagan approach is still effective because the prior distributions on θp and δθp(x)

ensure that the posterior distributions are well-defined, and so predictions can still be

made. Nonetheless, more recently several authors have continued to seek a resolution of

the identifiability problem by more carefully considering how to define the ‘true’ values

of the calibration parameters. We discuss some of these ideas below.

First, note that if the assumed simulator were true then there would be no discrepancy,

δθp(x) = 0, and hence there would exist a ‘true’ θp for which

ζ(x) = η(x,θp), (1.4)

for all x ∈ X. However, if the simulator is not correct, which is usually the case,

Equation (1.4) cannot hold.

When δθp(x) is not equal to zero for all x ∈X, a common approach to achieve identi-

fiability of the calibration parameters is to redefine the ‘true’ parameter values, θp, as

those that minimise the ‘distance’ between the mean of the physical process and the

simulator output. For calibration, typically the L2 norm has been used (Tuo and Wu,
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2016), giving

θp = arg min
θ∈Θ

∫
X

[ζ(x)− η(x,θ)]2dx. (1.5)

For a deterministic physical process, Tuo and Wu (2016) defined the following estimator

for these L2-best calibration parameters:

θ̂p = arg min
θ∈Θ

∫
X

[ζ̂(x)− η(x,θ)]2dx,

where ζ̂(x) is the mean of a Gaussian process fitted to the physical data (Chapter 2).

The estimator θ̂p is consistent for θp in the sense that as the number of physical runs

n becomes larger and the design becomes more dense on X, θ̂p tends to θp. Also, ζ̂(x)

converges at an optimal rate to η(x,θ). This framework was extended to stochastic

physical systems by Tuo and Wu (2015).

Defining the ‘true’ θp as given in (1.5), Plumlee (2017) showed that the discrepancy

function δθp(x) is orthogonal to the gradient of the simulator η(x,θ), and suggested

the use of a Gaussian process prior on δθp(x) that respects this orthogonality property.

This can be achieved through the use of a Gaussian process prior on δθp(x) with an

appropriate covariance function, giving an approach known as Bayesian L2-calibration.

Orthogonality of δθp(x) and ∂η(x,θ)
∂θ can be demonstrated as follows.

Taking the first derivative with respect to θ for Equation (1.5) at θp gives:

∂

∂θ

∫
X

[ζ(x)− η(x,θ)]2dx

∣∣∣∣
θ=θp

= −
∫
X

2[ζ(x)− η(x,θp)]
∂η(x,θ)

∂θ

∣∣∣∣
θ=θp

dx = 0,

and as δθp(x) = ζ(x)− η(x,θp), this implies,

−
∫
X

δθp(x)
∂η(x,θ)

∂θ

∣∣∣∣
θ=θp

dx = 0, (1.6)

establishing the orthogonality result.

Gu and Wang (2018) criticised the above orthogonality condition as (1.6) can hold for

any local minimum or even maximum. This orthogonality condition is necessary for

minimising the L2 norm but is not sufficient. The L2 norm used for calibration may

have multiple turning points, i.e. multiple points where the derivative is zero. They

proposed an alternative prior for the discrepancy function, known as a scaled Gaussian

process, which does not impose orthogonality. Instead, a prior distribution is placed

on the L2 norm of δθp(·) that penalises large discrepancy functions.

In this thesis, we construct Bayesian optimal designs under the original Kennedy-

O’Hagan framework, without imposing orthogonality through the prior for δθp(·) (see

Section 6.3). However, we briefly return to the topic of Bayesian L2 calibration in

Section 7.2.2.
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Calibration can also be performed using a frequentist approach. Loeppky et al. (2006)

introduced a likelihood alternative to the Bayesian methodology for estimating un-

known parameters. This approach involved finding the values of the unknown calibra-

tion parameters that maximise the likelihood of the simulator and physical training

data. Joseph and Melkote (2009) considered a parametric form of the discrepancy

function. Wong et al. (2017) formulated a nonparametric model for the discrepancy

function and used the L2 norm (1.5) to define the ‘true’ calibration parameters, and

estimate these by

θ̂ = arg min
θ∈Θ

1

n

n∑
i=1

{yi − η(xi,θ)}2 .

They estimated δθp(·) by applying a nonparametric regression method to {xi, yi −
η(xi, θ̂)}, i = 1, . . . , n, to deal with identifiability issues.

As an alternative to Kennedy-O’Hagan calibration, history matching has been used with

computer simulators to obtain parameter sets that may plausibly contain θp (Craig

et al., 1997; Vernon et al., 2010). The basic idea of history matching is to use the

mean and variance of an emulator of the simulator to calculate the ‘implausibility’ of

an input combination θ, using the standardised difference between the emulator mean

and the physical data (Wilkinson, 2014; Oakley and Youngman, 2017). Implausible

regions of the parameter space are then ruled out, and the simulator is re-run where

‘implausibility’ is low. The emulator is then updated in the reduced parameter space,

and new ‘implausibility’ measures are calculated. History matching does not assume a

complete probability model for (1.1); in particular, no prior distribution is assumed for

the discrepancy function or the parameters. As we shall see later in this thesis, a full

probability model is needed for decision-theoretic design of experiments, leading us to

focus on the Kennedy-O’Hagan calibration framework.

1.2 Design of experiments

In calibration, data from two types of experiments inform the estimation of the statis-

tical model: the computer experiment, in which η(xcj ,θ
c
j) is evaluated, and the physical

experiment, in which the physical observation yi is assumed to be observed at fixed and

unknown values θp. This leads to two design problems: choice of the set of values of

xc1, . . . ,x
c
m and θc1, . . . ,θ

c
m at which to evaluate the simulator, and choice of conditions,

xp1, . . . ,x
p
n under which to observe the physical process.

Experimental design involves the specification of all aspects of an experiment. The

choice of a design is often considered as an optimisation problem. Optimal experiment

designs are the ‘best’ designs under a specific criterion, tailored to the experimental

goals. Experimental design has been widely studied in theory and in practice, see, for

example, Atkinson et al. (2007). The decisions that must be made when designing an

experiment include which treatments, that is, combinations of values of the controllable
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variables, to run, the choice of sample size, specification of the experimental units to

be studied and the choice of ranges or levels for each variable. In this thesis we address

the design of the physical experiment and choose which combination of values of the

controllable variables at which to observe the physical process.

1.2.1 Physical experiment

We define a design for a physical experiment as a set ξ = [x1,x2, . . . ,xn] of n points

with each xi chosen from a design space X ⊂ Rq1 . A n-size optimal design ξ? is defined

by comparison with the set Ξ of all possible designs of size n with respect to a specific

criterion. The objective function, ϕ, reflects the aim of the experiment, which is to be

maximised or minimised, and is used as the criterion for a design to be optimal in the

set Ξ.

In the frequentist approach to design (Kiefer and Wolfowitz, 1959), many criteria have

ϕ formulated as a function of the expected Fisher information matrix I(ψ; ξ), for pa-

rameters ψ under a statistical model with likelihood function πl(y|ψ, ξ).

Definition 1.1. The expected Fisher information matrix of the parameter vector

ψ = (ψ1, . . . , ψq2)T is defined as the covariance matrix of the score function, i.e. the

variance of the gradient of the log-likelihood function, log πl(y|ψ, ξ), with respect to

ψ. Assuming mild regularity conditions we have:

I(ψ; ξ) = Var

(
d

dψ
log πl(y|ψ, ξ)

)
= −E

(
d2

dψdψT
log πl(y|ψ, ξ)

)
, (1.7)

where, for a function f(ψ), df
dψ =

(
∂f
∂ψ1

, . . . , ∂f
∂ψq2

)T
, and d2f

dψdψT is the matrix with ijth

element ∂2f
∂ψi∂ψj

.

Common criteria include A-optimality, under which a design minimises tr[I(ψ; ξ)−1]

with respect to ξ, and D-optimality under which a design maximises log |I(ψ; ξ)| with

respect to ξ given ψ (Fedorov, 1972; Pukelsheim and Torsney, 1991; Atkinson et al.,

2007).

For nonlinear models, i.e. models that are nonlinear in the unknown parameters, or

when interest is in estimating nonlinear functions of the model parameters in a linear

model, the information matrix I(ψ; ξ) may depend on the values of these parameters.

This creates a problem for classical optimal design, as we require knowledge of the

values of the model parameters prior to designing an optimal experiment to estimate

them. There are three common approaches to address this problem.

• Locally optimal designs, using a point prior guess for ψ.

• Formulation of criteria that optimise some summary of a classical objective func-

tion with respect to the prior information, e.g. an average or minimax crite-
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rion (e.g. Pronzato and Walter, 1985). Optimising the expectation of classical

objective functions with respect to a prior distribution is often referred to as

“Pseudo-Bayesian” and has an asymptotic Bayesian justification via a normal

approximation to the posterior distribution (Chaloner and Verdinelli, 1995).

• Fully Bayesian design (see Section 4.1) optimising a function of the posterior

density.

Often, at least some information is available prior to an experiment and hence Bayesian

methods can be very useful. In the Bayesian approach to designing experiments (e.g.

Chaloner, 1984; Müller, 1999; Cook et al., 2008; Müller et al., 2006; Huan and Mar-

zouk, 2013; Ryan et al., 2016) the available prior information about the parameters

is exploited. As described by Chaloner and Verdinelli (1995), the design problem is

formulated as a decision-theoretic problem (more in Section 4.1).

1.2.2 Computer experiments

We define a design for a computer experiment as a set ξc = [(xc1,θ
c
1), . . . , (xcm,θ

c
m)] of

m choices of input combinations at which to collect simulator evaluations to build an

emulator, chosen from a design space X×Θ. An optimal design ξc? of size m is defined

by comparison with the set Ξc of all possible designs of size m with respect to a specific

criterion. The design of computer experiments has been well-studied in the past 30

years and there is substantial literature, see for example Sacks et al. (1989), Santner

et al. (2003) and Burstyn and Steinberg (2006), that indicates its rapid development.

For the design of computer experiments two classes of designs have been considered:

the model-based and model-free approaches (see Pronzato and Müller (2012), for an

overview). The model-based approach explicitly accounts for the statistical emulator

and is separated into designs for estimation (see Section 4.1) and designs for prediction,

e.g. selecting the design points to minimise prediction error. The model-free approach

does not make use of any assumptions about the statistical emulator (for example,

the Gaussian process prior) that will be used to approximate the simulator. The most

popular model-free approach is the use of space-filling designs (see Lin and Tang (2015)

for a recent review).

Space-filling properties are usually defined via summaries of Euclidean distances be-

tween design points (and sometimes other points in the design space). Common meth-

ods of finding space-filling designs include:

• optimising summaries of the distances between design points, i.e. geometric cri-

teria (Johnson et al., 1990)

• sampling methods including simple random sampling, stratified random sampling

and Latin Hypercube sampling (McKay et al., 1979)

• optimising statistical measures of uniformity (Fang et al., 2000).
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Figure 1.1: Example of (a) maximin and (b) minimax designs for two variables and
m = 6 points

Johnson et al. (1990) developed designs based on geometric criteria. The two main cate-

gories are: maximin- and minimax-distance designs. First we define d [(xc,θc), (xc′,θc′)]

to be a distance function, e.g. the Euclidean distance.

Definition 1.2. The Euclidean distance is the straight line distance between two vec-

tors w = [w1, . . . , wq]
T,w′ = [w′1, . . . , w

′
q]

T ∈ Rq given by:

d(w,w′) =

√√√√ q∑
h=1

(wh − w′h)2.

Maximin-distance criterion: a maximin-distance design ξc? maximises

ϕMm(ξc) = min
j 6=j′∈{1,...,m}

d
[
(xcj ,θ

c
j), (x

c
j′ ,θ

c
j′)
]
.

Minimax-distance criterion: a minimax-distance design ξc? minimises

ϕmM (ξc) = max
(xc,θc)∈X×Θ;

min
j=1,...,m

d
[
(xc,θc), (xcj ,θ

c
j)
]
.

A maximin-distance design maximises the minimum distance between any two points

in the design. Hence, the points are spread throughout the region and no pairs of points

in the design are ‘too close’. A minimax-distance design minimises the biggest distance

from all the points in the region to their nearest point in the design. Hence, the points

cover the design region. In general, minimax-distance designs are not widely used

because they are computationally difficult to generate. See Figure 1.1 for examples of

maximin and minimax designs on [0, 1]2 for two variables and m = 6.

Another approach to select the design points in a computer experiment utilises sam-

pling methods such as: simple random sampling, stratified random sampling and Latin
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Hypercube sampling. In simple random sampling the m points of the design are selected

from the design region X at random, typically with respect to a uniform distribution.

However, in high dimensions this method results in poor coverage of the design space

and clustering of points. Stratified random sampling was proposed to overcome this

problem. The design region is partitioned into m equally sized strata and one point

is randomly selected from each stratum. Stratified sampling benefits from coverage

of the whole experimental region. However, it is difficult for this method to cover a

high-dimensional space. Latin Hypercube Designs (LHD) were proposed to overcome

this problem.

When the output is influenced by only a few input variables, the design points should

be evenly spaced across the projections onto these significant inputs. Latin Hypercube

designs (McKay et al., 1979) were introduced to satisfy exactly this need; to allow for

the projection of the design points into any single dimension to be equally spaced. The

design region is divided into cells with equal size and then m cells are randomly selected

satisfying the contraint that the projections of the selected cells on to each dimension

do not overlap.

McKay et al. (1979) compared the above methods of sampling, and concluded that

Latin Hypercube designs gave more accurate, i.e. lower variance, estimates of the

mean and variance of the probability distribution of the output. Latin Hypercube

designs are computationally inexpensive, easy to generate and have good projection

properties. Because of these reasons, they have become the most popular sampling

method for computer experiments. Different extensions of Latin Hypercube designs

have also been proposed.

Several authors considered combining aspects of these three methods of designing com-

puter experiments. For example, a geometric criterion can be used to find a maximin

Latin Hypercube design, see Morris and Mitchell (1995) and Santner et al. (2003, Chap-

ter 5). In addition, projection properties in higher dimensions have also been considered

(e.g. Tang, 1993; Joseph et al., 2015).

1.2.3 Combining physical and computer experiments

In the physical experiment the observations are the result of a designed experiment on

the physical process. There is little literature on this design problem, although Ranjan

et al. (2011) and Williams et al. (2011) suggested designing and running these experi-

ments in batches, updating the posterior distributions between batches and taking into

account this updated information when designing the next batch. Leatherman et al.

(2017) compared Mean Squared Error optimal designs for the combined physical and

computer experiments using a particle swarm optimisation algorithm at a grid of inputs

to find the starting design and a gradient-based quasi-Newton algorithm to search for

the optimal design. More details about these methods and their limitations can be

found in Chapter 6.
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1.3 Aim and objectives

The aim of this thesis is to develop methodology for Bayesian optimal design of ex-

periments for situations where the simulator η(x,θ) does not provide an adequate

description of the mean of a system or a process, or the simulator might be expensive

to evaluate, precluding its direct use in inference.

This work differs from previous research in the area as it is the first to find fully Bayesian

optimal designs for a calibration model using the expected Shannon information gain

utility function. Previous literature has addressed the design of follow-up experiments

or locally-optimal designs. The Shannon information gain utility is combined with

the approximate coordinate exchange (ACE) algorithm (Overstall and Woods, 2017)

to construct optimal designs; we propose and use new methods, called ALIS and LIS,

for approximating the evidence πe(y|ξ), on which Shannon information gain depends,

which reduce bias that might lead to overestimation of the information gain from a

design.

Specific objectives of the thesis are to:

1. review the area of decision-theoretic design, especially the numerical approxima-

tion of the expected utility;

2. develop a new methodology for approximating the evidence in the evaluation of

the expected Shannon information gain;

3. apply this methodology to approximate the expected utility for nonlinear models

and combine this methodology with an optimisation algorithm to find Bayesian

optimal designs for these models;

4. perform the first thorough comparison of several existing methods of approximat-

ing the expected Shannon information gain with the new proposed methods in

terms of accuracy, precision and computational cost;

5. develop methodology to find Bayesian optimal designs for the physical process

to enable collection of informative data that enable efficient estimation of the

parameters θp in the calibration model;

6. apply this methodology in cases where the simulator: (i) does not provide an

accurate description of the mean; or (ii) is expensive to run or does not have an

analytical form.

1.4 Thesis Organisation

In Chapter 2 we introduce a number of key concepts for Gaussian process models

and their role in calibration. We review the Bayesian approach, which will be used
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throughout the thesis, and present fundamental results for the Gaussian process models.

The Gaussian process allows inference about an observation at a new point, x̃, via

the posterior predictive distribution (Rasmussen and Williams, 2006). However, in

the most general case, this distribution is not available in closed form. Hence, we

apply Markov chain Monte Carlo (MCMC) methods in order to evaluate numerically

intractable integrals.

Chapter 3 illustrates the impact of choice of design on calibration through some simple

examples. First we introduce the Michaelis-Menten model, the estimation of which we

initially treat as a simple Bayesian nonlinear regression problem; in later examples, this

model is used as a known (i.e. computationally inexpensive) simulator in a calibration

problem. We divide the latter into two cases; a known simulator with known calibration

parameters and a known simulator with unknown calibration parameters.

In Chapter 4 we describe and apply the decision-theoretic approach to develop Bayesian

optimal designs using the expected Shannon information gain utility function (Shan-

non, 1948) and illustrate the evaluation of the expected Shannon information gain on

a simple example. A näıve nested Monte Carlo scheme is the simplest approach for

approximating the expected utility, however in some cases it fails to give an accurate

approximation. For this reason several authors have proposed more sophisticated meth-

ods that both reduce the computational burden and bias. Here, we introduce additional

new methods for approximating the expected utility. In Chapter 5 we compare and

assess through examples the different methods, including our new proposed methods,

for approximating the expected Shannon information gain. We then describe the ap-

proximate coordinate exchange (ACE) algorithm for finding designs that maximise the

expected utility. We combine these methods with the ACE algorithm to find Bayesian

optimal designs.

Often the simulator η(x,θ) may not provide an adequate description of the mean, may

be computationally expensive to run, or both. We address these problems in Chapter 6

following the Kennedy-O’Hagan calibration framework. For the first problem, we find

optimal designs for the calibration model (1.1) assuming a Gaussian process prior on

the unknown discrepancy function δθp(x). For the second problem, we assume a Gaus-

sian process prior on the computationally expensive simulator η(x,θ) and find optimal

designs to collect the physical experimental data to combine with simulator runs, in

order to compute the posterior distribution for the unknown calibration parameters θp.

We find Bayesian optimal designs by combining our new methods for approximating

the expected utility with the ACE algorithm.

Chapter 7 concludes this thesis by summarising the research contributions and suggests

future research directions.
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Chapter 2

Gaussian Processes

In this chapter Gaussian process models are described in detail and the related concepts

and methods used in this thesis are introduced. We begin by defining a Gaussian

process and discussing its properties. After a brief introduction to Bayesian inference,

we describe the Bayesian approach to Gaussian process modelling. Using results from

the literature we give formulations and derivations of the prior, posterior and predictive

distributions which are used in the following chapters.

2.1 Introduction to the Gaussian process model

Given data of the form (xi, yi), i = 1, . . . , n, where xi = (xi1, . . . , xiq1)T ∈ X and yi

denotes a response measured at a specific point xi, we assume that

yi = g(xi) + εi, (2.1)

where εi represents the measurement error with εi ∼ N(0, σ2
ε) independently, and the

deterministic function g(x) is unspecified.

O’Hagan (1978) used Gaussian processes to model the behaviour of an unknown math-

ematical function. We adopt a nonparametric Bayesian approach by assuming the

Gaussian process prior

g(x) ∼ GP
[
fT(x)β, σ2κ(x,x′;φ)

]
, (2.2)

where f(x) = [f0(x), f1(x), . . . , fk−1(x)]T is a k-vector of known regression functions,

β = (β0, β1, . . . , βk−1)T ∈ B is also a k-vector of unknown trend parameters, 0 ≤
κ(x,x′;φ) ≤ 1 is the correlation function, φ = (φ1, . . . , φq1)T ∈ Φ = (0,∞)q1 is the

vector of (positive) correlation parameters and σ2 > 0 is the constant variance. By

nonparametric regression here we mean that the complexity of the approximating model

for g(x) increases with n.
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The defining property of the prior (2.2) is that any finite collection of function evalua-

tions g = [g(x1), . . . , g(xn)]T has a multivariate normal distribution,

g ∼ N
[
Fβ, σ2K(φ)

]
, (2.3)

where F = [f(x1) f(x2) . . . f(xn)]T is the n×k model matrix and K(φ) is the correlation

matrix with ijth entry K(φ)ij = κ(xi,xj ;φ), i, j = 1, . . . , n.

The set of allowable correlation functions is limited by the fact that K(φ) must be

positive-definite and symmetric for any choices of [x1, . . . ,xn] and φ, and also because

κ(x,x′;φ) = 1 when x = x′. A correlation function is separable when it can be written

as a product of one-dimensional correlation functions,

κ(x,x′;φ) =

q1∏
r=1

ω(xr, x
′
r;φr), (2.4)

where x = (x1, . . . , xq1)T and x′ = (x′1, . . . , x
′
q1)T.

One important family of correlation functions is the powered exponential, see for exam-

ple Diggle et al. (1998), which has the form,

ω(x, x′;φ) = exp
[
−φ || x− x′ ||ν

]
, (2.5)

where 0 < ν ≤ 2 is the decay parameter, φ > 0 is the smoothness parameter and || · ||
denotes the Euclidean norm. We treat ν as fixed and known.

Another widely used family of correlation functions is the Matèrn (Matèrn, 1960), given

by:

ω(x, x′;φ) =
1

2ν−1Γ(ν)
(2
√
ν || x− x′ || φ)νKν(2

√
ν || x− x′ || φ),

where ν > 0 is the decay parameter, φ > 0 is the smoothness parameter and Kν is the

modified Bessel function of order ν.

In this thesis we will adopt the squared exponential correlation function,

ω(x, x′; φ) = exp
[
−φ || x− x′ ||2

]
. (2.6)

The squared exponential correlation function is a special case of the powered exponen-

tial correlation functions with ν = 2. This correlation function is stationary1 and a

decreasing function of the Euclidean distance between x and x′. It also corresponds

to the prior assumption that the model is very smooth in the sense that is infinitely

differentiable.

1A stationary correlation function is a function of x − x′, and it is invariant to translations of the
input space.
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Combining Equations (2.1) and (2.3) we have

y | β, σ2,φ, σ2
ε ∼ N(Fβ, σ2K(φ) + σ2

εIn),

where y = (y1, . . . , yn)T is the n-vector of responses and In is the n×n identity matrix.

It is useful to reparameterise the model to make computation easier. Here we adopt

the reparameterisation

y | β, σ2,φ, τ2 ∼ N
(
Fβ, σ2[K(φ) + τ2In]

)
, (2.7)

where τ2 = σ2
ε/σ

2 is the ratio of the noise to the process variation, known as the nugget

(Diggle and Ribeiro, 2007). From now on we will use the reparameterised covariance

matrix σ2[K(φ) + τ2In] = σ2Σ.

Gaussian process modelling is a Bayesian alternative for classical nonparametric meth-

ods such as splines and local polynomial regression (Rasmussen and Williams, 2006,

Chapter 6; Gramacy and Lee, 2008). In this thesis we follow a fully Bayesian approach

and the Gaussian process provides a natural description of our prior beliefs about the

function and allows us to update these beliefs using the data. In Gaussian process

modelling, conjugate prior distributions are available for some parameters to simplify

the calculations required for obtaining predictions.

In the next section we point out the relevance of Gaussian processes to calibration. We

discuss inference for the Gaussian process model in Section 2.3.

2.2 The role of Gaussian processes in calibration

When computer simulations are time consuming and very computationally expensive

to run, there is a need to find a computationally cheaper metamodel or emulator, that

can replace the simulator to some degree. The emulator provides fast prediction of the

outputs at untested input points, together with a measure of uncertainty about these

predictions. A very popular emulator, is the Gaussian process, introduced to the field

of computer experiments by Sacks et al. (1989). The Gaussian process emulator is a

flexible and adaptive non-parametric smoother/interpolator2, and can be used to gain

knowledge into the simulator over the entire design region. Tasks such as validation

and calibration, sensitivity and uncertainty analysis thus become feasible for expensive

simulators (see Santner et al., 2003 and Fang et al., 2006).

We consider the calibration model (1.1). As mentioned in Section 1.1, in this model we

have two groups of inputs but we also have two groups of responses. First we have the

outputs after running the simulator for inputs (xcj ,θ
c
j), j = 1, . . . ,m, and second the

2A function f is an interpolator of the data (xi, yi) if f(xi) = yi, i = 1, . . . , n, and may be appropriate
if σ2

ε = 0, i.e. εi = 0 in (2.1). A smoother is an estimate of the regression function g in (2.1) that does
not need to pass through the data points.
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observations of the physical process with inputs xpi , i = 1, . . . , n. The motivation for

the notation distinguishing of xp and xc comes from the fact that we may not use the

same values of the controllable variables that were used when observing the physical

system and when running the simulator.

Let y = [y1, . . . , yn]T be the vector of n responses from the physical experiment and z =

[η(xc1,θ
c
1), . . . , η(xcm,θ

c
m)]T be the outcomes of m-runs of the simulator. For simplicity

we will assume that the regression parameter is known and fixed at ρ = 1. We represent

prior uncertainty about both the simulator η(x,θ) and discrepancy δθp(x) by Gaussian

processes,

η(x,θ) ∼ GP
(
fT
η (x,θ)βη, σ

2
ηκη[(x,θ), (x′,θ′);φη]

)
, (2.8)

and also,

δθp(x) ∼ GP
(
fT
δ (x)βδ, σ

2
δκδ(x,x

′;φδ)
)
. (2.9)

Above fη(x,θ) = (fη0 (x,θ), . . . , fηkη−1(x,θ))T and fδ(x) = (f δ0 (x), . . . , f δkδ−1(x))T are

the kη- and kδ-vectors of known regression functions, respectively, of the Gaussian

process prior for the simulator and discrepancy. In addition, βη = (βη0 , β
η
1 , . . . , β

η
kη−1)T

and βδ = (βδ0, β
δ
1, . . . , β

δ
kδ−1)T are the corresponding parameter vectors that contain the

unknown trend parameters of the Gaussian process prior for the simulator and discrep-

ancy respectively. Further, κη[(x,θ), (x′,θ′);φη] and κδ(x,x
′;φδ) are the correlation

functions of the Gaussian process prior for the simulator and discrepancy respectively,

with vector of correlation parameters φη and φδ. Finally, σ2
η and σ2

δ are the prior

emulator variance and the prior variance of the Gaussian process for the discrepancy,

respectively.

We define the (n + m)-vector v =
[
yT zT

]T
to contain the physical data and the

outcomes of the m-runs of the simulator. The distribution of the combined vector of

responses, v, is:

v | θp,βη,βδ, σ2
η, σ

2
δ , σ

2
ε ,φη,φδ ∼ N(µv,Σv). (2.10)

Above, the prior conditional expectation of v is

µv =

[
Fp
ηβη + Fp

δβδ

Fc
ηβη

]
, (2.11)

where Fp
η = [fη(x

p
1,θ

p) fη(x
p
2,θ

p) . . . fη(x
p
n,θp)]T, Fp

δ = [fδ(x
p
1) fδ(x

p
2) . . . fδ(x

p
n)]T and

Fc
η = [fη(x

c
1,θ

c
1) fη(x

c
2,θ

c
2) . . . fη(x

c
m,θ

c
m)]T.

In addition the prior conditional covariance matrix for v in (2.10) is the (n+m)×(n+m)

matrix:

Σv = σ2
ηΣη +

[
σ2
εIn + σ2

δΣδ 0n×m

0m×n 0m×m

]
. (2.12)
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Here, Σδ is an n× n correlation matrix with ii′th entry κδ(x
p
i ,x

p
i′ ;φδ), and

Ση =

[
Σpp
η Σpc

η

Σcp
η Σcc

η

]
,

where Σpp
η is the n×n correlation matrix with ii′th entry κη[(x

p
i ,θ

p), (xpi′ ,θ
p);φη], Σpc

η is

the n×m correlation matrix with ijth entry κη[(x
p
i ,θ

p), (xcj ,θ
c
j);φη] and Σpc

η = (Σcp
η )T.

The m×m correlation matrix Σcc
η has jj′th entry κη[(x

c
j ,θ

c
j), (x

c
j′ ,θ

c
j′);φη].

The likelihood function for v is then given by:

πl(v | θp,βη,βδ, σ2
η, σ

2
δ , σ

2
ε ,φη,φδ) ∝ |Σv|−

1
2 exp

{
−1

2
(v − µv)T Σ−1

v (v − µv)

}
.

The model formulation is completed by specifying prior distributions for the parameters

βη, βδ, σ
2
η, σ

2
δ , σ

2
ε , φη and φδ. Prior distributions are also required for the unknown

calibration parameters θp. Details of our choices of prior distributions for the Gaussian

process parameters are given in the examples in Chapter 6.

In the next section we discuss inference for the Gaussian process model. We return to

the calibration problem in Chapter 6.

2.3 Gaussian process inference

Now we return to the Gaussian process model and present fundamental results for

Bayesian inference and prediction.

2.3.1 Conditional prediction with known hyperparameters

In order to make predictive inference about the response, ỹ at a new point x̃ ∈X, we

need to derive the predictive distribution for the random variable ỹ using model (2.7).

Following Banerjee et al. (2004, Chapter 2), the joint prior distribution of y and ỹ,

conditional on all unknown model parameters β, σ2,φ, τ2, is given by,(
ỹ

y

) ∣∣∣∣∣β, σ2,φ, τ2 ∼ N

((
fT(x̃)β

Fβ

)
, σ2

(
(1 + τ2) k(x̃)T

k(x̃) Σ

))
, (2.13)

where k(x̃) = [κ(x̃,x1;φ), . . . , κ(x̃,xn;φ)]T is the n-vector of correlations between the

response at each of the existing input points xi and the response at x̃.

Standard results for multivariate normal distributions can be used to derive the follow-

ing conditional posterior distribution

ỹ | y,β, σ2,φ, τ2 ∼ N
(
µ(x̃), s2(x̃)

)
,
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with

µ(x̃) = E(ỹ | y,β, σ2,φ, τ2) = f(x̃)Tβ + k(x̃)TΣ−1 [y − Fβ] , (2.14)

s2(x̃) = var(ỹ | y,β, σ2,φ, τ2) = σ2[(1 + τ2)− k(x̃)TΣ−1k(x̃)]. (2.15)

Equation (2.14) is the prior mean plus a weighted linear combination of the residuals

from a linear model with regressors F and coefficients β. The weight assigned to a

residual decreases with the distance between the corresponding xi and the point x̃,

at which we are predicting. The smaller these weights, the closer the prediction is to

the conditional prior mean. Equation (2.15) is the prior variance minus a quadratic

form in the correlations between the response at each of the existing input points and

the response at x̃. The further x̃ is from the points at which we have observed, the

smaller this quadratic form will be. Summarising, the closer x̃ is to the points we

have observed, the more we potentially update the prior mean and reduce the posterior

variance. The further from the points we have seen, the closer we stay to the prior

mean and variance. The parameter vector φ controls the strength of correlation and

hence clearly influences how much the conditional prediction changes due to observing

the data, y.

2.3.2 Bayesian inference

We define ψ = (βT, σ2,φT, τ2)T as the vector of unknown hyperparameters which

belongs to the parameter space Ψ = Rk × (0,∞) × (0,∞)q1 × (0,∞). To obtain an

unconditional posterior predictive distribution, we integrate out these hyperparameters

with respect to their posterior density, πa(ψ | y):

π(ỹ | y) =

∫
Ψ
πa(ỹ | y,ψ)πa(ψ | y)dψ.

We obtain πa(ψ | y) using Bayes’ theorem to update our prior beliefs for the unknown

parameters ψ after observing data y. The posterior density for ψ satisfies

πa(ψ | y) ∝ πl(y | ψ)πb(ψ), (2.16)

where πb(ψ) is the prior density and πl(y | ψ) the likelihood of the parameters given the

data. The density πb(ψ) contains all prior information we have about the unknown pa-

rameters ψ. The posterior density πa(ψ | y), the density of the parameters after taking

into account the observed data, provides inference about the unknown parameters.

A family of prior distributions is conjugate to a particular likelihood if the posterior

distribution is in the same family as the prior distribution (Raiffa and Schlaifer, 1961).

We use conjugate prior distributions for the Gaussian process variance, σ2, and trend

parameter, β, conditional on the vector of correlation parameters φ and the nugget τ2.
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For further background on Bayesian inference, see O’Hagan and Forster (2004).

2.3.3 Prior specification

The model specification requires assignment of prior distributions to the unknown

parameters β, σ2,φ, τ2. A common approach is to assume that the trend parame-

ters, β, and the Gaussian process variance, σ2, are independent of the correlation

parameters, φ, and the nugget, τ2. In addition, φ and τ2 are also independent,

πb(β, σ
2,φ, τ2) = πb(β | σ2)πb(σ

2)πb(φ)πb(τ
2).

For the trend parameter β and variance σ2, we can consider (conditionally) conjugate

prior distributions and assign β | σ2 a normal distribution and σ2 an inverse-gamma

distribution,

β | σ2 ∼ N(β0, σ
2R) and σ2 ∼ IG(a, b).

Therefore,

πb(β | σ2) =
1

(2πσ2)
k
2 | R |

1
2

exp

{
− 1

2σ2
(β − β0)TR−1(β − β0)

}
,

and

πb(σ
2) =

ba

Γ(a)
(σ2)−(a+1) exp

{
− b

σ2

}
,

where β0 is the k-vector of known prior means, R is a known symmetric, positive

definite k × k matrix and a, b > 0 are known hyperparameters.

The joint density for β | σ2 and σ2 is given by:

πb(β, σ
2) = πb(β | σ2)πb(σ

2)

∝ (σ2)−( 2a+k
2

+1) exp

{
− 1

σ2

[
1

2
(β − β0)TR−1(β − β0) + b

]}
, (2.17)

which corresponds to a normal-inverse-gamma prior distribution,

(β, σ2) ∼ NIG (β0,R, a, b) .

In later chapters, we assume exponential prior distributions for the vector of correlation

parameters φ and the nugget τ2 to guarantee positive values.

In order to use a Gaussian process model to make predictions, the posterior distributions

of the parameters and the posterior predictive distribution are required. In the following

two sections we derive these distributions.

2.3.4 Posterior predictive distribution with known correlation param-

eters and nugget

In this section, we assume fixed and known correlation parameters, φ, and nugget, τ2,

and we derive Bayesian inference results for the Gaussian process model. We allow
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for uncertainty only in the trend parameter, β, and variance, σ2. Hence the posterior

distribution for β and σ2, and the posterior predictive distribution are available in

analytical form.

The likelihood function for the model (2.7) is

πl(y | β, σ2,φ, τ2) =
1

(2πσ2)
n
2 |Σ|

1
2

exp

{
− 1

2σ2

[
(y − Fβ)TΣ−1(y − Fβ)

]}
. (2.18)

Using Bayes’ Theorem (2.16) and the joint prior density (2.17) we can calculate the

unnormalised posterior density:

πa(β, σ
2 | y,φ, τ2) ∝ πl(y | β, σ2,φ, τ2)πb(β, σ

2)

∝
(

1

σ2

)n
2

exp

{
− 1

2σ2
(y − Fβ)TΣ−1(y − Fβ)

}
×
(

1

σ2

) 2a+k
2

+1

exp

{
− 1

σ2

[
b+

1

2
(β − β0)TR−1(β − β0)

]}
=

(
1

σ2

) k+2a?
2

+1

exp

{
− 1

σ2

[
1

2
(β − β?)TΣ−1

? (β − β?) + b?

]}
,

(2.19)

where

β? =
(
FTΣ−1F + R−1

)−1 (
FTΣ−1y + R−1β0

)
Σ? =

(
FTΣ−1F + R−1

)−1

a? = a+
n

2

b? = b+
1

2

[
(y − Fβ0)T (Σ + FRFT)−1(y − Fβ0

)]
. (2.20)

The posterior density given by (2.19) corresponds to a normal-inverse-gamma distribu-

tion NIG(β?,Σ?, a?, b?).

The expression for b? is given by the use of the Sherman-Woodbury-Morrison identity

(Harville, 2008) to establish that:

βT
0 R−1β0 + yTΣ−1y − βT

? Σ?β? =
[
(y − Fβ0)T(Σ + FRFT)−1(y − Fβ0)

]
.

The marginal posterior distribution for β has density,

π(β | y,φ, τ2) =

∫ ∞
0

πa(β, σ
2 | y,φ, τ2)dσ2

∝
∫ ∞

0
(σ2)−

2a?+k
2
−1 exp

{
− 1

σ2

[
1

2
(β − β?)TΣ−1

? (β − β?) + b?

]}
dσ2

=

[
1 +

(β − β?)TΣ−1
? (β − β?)

2b?

]− 2a?+k
2

. (2.21)
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Hence, β follows a multivariate t-distribution,

β | y,φ, τ2 ∼ t2a?
(
k,β?,

b?
a?

Σ?

)
, (2.22)

with 2a? degrees of freedom, mean β? and variance b?
a?−1Σ?.

The marginal posterior for σ2 is an inverse-gamma distribution,

σ2 | y,φ, τ2 ∼ IG (a?, b?) , (2.23)

following directly from the fact that the joint posterior density of β | σ2 and σ2 condi-

tional on y, φ and τ2 is a normal-inverse-gamma distribution.

To obtain the posterior predictive distribution for ỹ at a new point x̃ we use the

conditional posterior predictive distribution ỹ | y,β, σ2,φ, τ2 ∼ N(µ(x̃), s2(x̃)) where

µ(x̃) and s2(x̃) are given by Equations (2.14) and (2.15) respectively and the conditional

posterior distribution, β | y, σ2,φ, τ2 ∼ N(β?, σ
2Σ?), from (2.19).

We can rewrite Equation (2.14) as

µ(x̃) = aỹ + bT
ỹ β,

where aỹ = k(x̃)TΣ−1y and bT
ỹ = f(x̃)T − k(x̃)TΣ−1F. Hence,

µ(x̃) | y, σ2,φ, τ2 ∼ N
[
aỹ + bT

ỹ β?, bT
ỹ (σ2Σ?)bỹ

]
.

Also, from the conditional posterior predictive distribution we have

ỹ − µ(x̃) | y,β, σ2,φ, τ2 ∼ N
[
0, s2(x̃)

]
, (2.24)

where the variance s2(x̃) is given by (2.15).

The right-hand side of (2.24) does not depend on µ(x̃), and hence does not depend on

β, and therefore ỹ − µ(x̃) is statistically independent of µ(x̃) given y, σ2, φ and τ2.

Hence, given y, σ2, φ and τ2,

ỹ = [ỹ − µ(x̃)] + µ(x̃),

is a sum of two independent normal random variables. Thus,

ỹ | y, σ2,φ, τ2 ∼ N(µ̃?, σ̃
2
?),
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with:

µ̃? = aỹ + bT
ỹ β?

= k(x̃)TΣ−1y + [f(x̃)T − k(x̃)TΣ−1F]β?

= k(x̃)TΣ−1y + [f(x̃)T − k(x̃)TΣ−1F](FTΣ−1F + R−1)−1(FTΣ−1y + R−1β0)

= (fT(x̃)− k(x̃)TΣ−1F)(FTΣ−1F + R−1)−1R−1β0

+ [k(x̃)TΣ−1 + (fT(x̃)− k(x̃)TΣ−1F)(FTΣ−1F + R−1)−1FTΣ−1]y, (2.25)

σ̃2
? = s2(x̃) + bT

ỹ (σ2Σ?)bỹ

= σ2[(1 + τ2)− k(x̃)TΣ−1k(x̃)] + [f(x̃)T − k(x̃)TΣ−1F][σ2Σ?][f(x̃)T − k(x̃)TΣ−1F]T

= σ2
{

(1 + τ2)− k(x̃)TΣ−1k(x̃)

+[f(x̃)T − k(x̃)TΣ−1F][FTΣ−1F + R−1]−1[fT(x̃)− k(x̃)TΣ−1F]T
}

= σ2Σ̃?. (2.26)

The components in the above expression of σ̃2
? are interpreted as: (a) the variability

without taking into account any information provided from the data, (b) the decrease

in variability resulting from conditioning on the data, and (c) the rise in variability as

a result of the posterior uncertainty of the estimation of β.

The posterior predictive density is obtained by integrating out the unknown σ2 with

respect to its posterior distribution,

π(ỹ | y,φ, τ2) =

∫ ∞
0

π(ỹ | y, σ2,φ, τ2)π(σ2 | y,φ, τ2)dσ2

∝
[
1 +

(ỹ − µ̃?)2

2b?Σ̃?

]−( 2a?+1
2

)

, (2.27)

where µ̃? and Σ̃? are given by Equations (2.25) and (2.26) respectively. Equation (2.27)

indicates that the posterior predictive density for the output ỹ at a new point x̃ is a

univariate (scalar) t-distribution,

ỹ | y,φ, τ2 ∼ t2a?
(

1, µ̃?,
b?
a?

Σ̃?

)
, (2.28)

with 2a? degrees of freedom, mean µ̃? and variance b?
a?−1 Σ̃?.

2.3.5 Unconditional inference

Unnormalised posterior density for the parameters

In practice, the values of the correlation parameters φ will usually be unknown. Hence,

we need to allow for uncertainty in φ. We now consider two cases. First, β, σ2, and φ
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are unknown, conditional on τ2 and then β, σ2, φ and τ2 are unknown. In both cases,

the posterior distribution of the parameters or the posterior predictive distribution

cannot be derived analytically.

Case 1: φ unknown, τ2 known

As in Section 2.3.3, we assign a normal-inverse-gamma prior distribution to (β, σ2). We

also consider an independent proper prior density for φ, giving the joint prior density,

πb(β, σ
2,φ) = πb(β, σ

2)πb(φ).

By Bayes’ theorem, the marginal posterior density for φ satisfies:

π(φ | y, τ2) ∝ π(y | φ, τ2)πb(φ).

Thus we require the marginal likelihood of the data, π(y | φ, τ2). This likelihood takes

the form of a t2a
[
n,Fβ0,

b
a

[
Σ + FRFT

]]
distribution, obtained from,

π(y | φ, τ2) =

∫ ∞
0

π(y | σ2,φ, τ2)πb(σ
2)dσ2

=
(2π)−

n
2 baΓ(a?)

|Σ + FRFT|
1
2 Γ(a)

∫ ∞
0

(
1

σ2

)a?+1

× exp

{
− 1

σ2

[
1

2
(y − Fβ0)T

[
Σ + FRFT

]−1
(y − Fβ0) + b

]}
dσ2

=
(2π)−

n
2 baΓ(a?)

|Σ + FRFT|
1
2 Γ(a)

[
b+

(y − Fβ0)T
[
Σ + FRFT

]−1
(y − Fβ0)

2

]−a?

∝ |Σ + FRFT|−
1
2[

1 + 1
2a(y − Fβ0)T

[
b
a(Σ + FRFT)

]−1
(y − Fβ0)

] 2a+n
2

.

Hence,

π(φ | y, τ2) ∝ |Σ + FRFT|−
1
2

[b+ 1
2(y − Fβ0)T[Σ + FRFT]−1(y − Fβ0)]a?

πb(φ). (2.29)

In the derivation of (2.29) we have used the fact that

y | σ2,φ, τ2 ∼ N
[
Fβ0, σ

2
(
Σ + FRFT

)]
.

This can be seen as follows. First note that y | β, σ2,φ, τ2 ∼ N(Fβ, σ2Σ) and β | σ2 ∼
N(β0, σ

2R). Hence,

y − Fβ | β, σ2,φ, τ2 ∼ N(0n, σ
2Σ).

The right hand side does not depend on β and so y−Fβ is statistically independent of

β given σ2, φ and τ2. Moreover as y − Fβ is independent of β, it is also independent

of Fβ, which has conditional distribution N(Fβ0, σ
2FRFT). Hence, given σ2, φ and
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τ2,

y = (y − Fβ) + Fβ

is a sum of two independent multivariate normal random variables, and so is a multi-

variate normal with the claimed mean and variance.

Case 2: φ and τ2 unknown

We assign a normal-inverse-gamma prior distribution to (β, σ2). We consider proper

prior densities for φ and τ2, which we assume independent of β and σ2:

πb(β, σ
2,φ, τ2) = πb(β, σ

2)πb(φ)πb(τ
2).

By Bayes’ theorem, the marginal posterior density for φ and τ2 satisfies:

π(φ, τ2 | y) ∝ π(y | φ, τ2)πb(φ, τ
2).

Similar to the previous case we have that,

π(φ, τ2 | y) ∝ |Σ + FRFT|−
1
2

[b+ 1
2(y − Fβ0)T[Σ + FRFT]−1(y − Fβ0)]a?

πb(φ)πb(τ
2). (2.30)

In both cases the marginal posterior densities (2.29) and (2.30) are not standard dis-

tributions and hence the posterior predictive distribution π(ỹ | y) does not have an

analytical form. In the Bayesian framework, prediction is based on the predictive dis-

tribution given by:

Case 1: π(ỹ | y) =

∫
Φ
π(ỹ | y,φ, τ2)π(φ | y, τ2)dφ,

Case 2: π(ỹ | y) =

∫ ∞
0

∫
Φ
π(ỹ | y,φ, τ2)π(φ, τ2 | y)dφ dτ2.

Another problem, which is similar to the above, occurs for the marginal posterior

density π(β | y), which cannot be expressed analytically:

π(β | y) =

∫ ∞
0

∫
Φ

∫ ∞
0

πa(β, σ
2,φ, τ2 | y)dσ2 dφ dτ2

=

∫ ∞
0

∫
Φ
π(β | y,φ, τ2)π(φ, τ2 | y)dφ dτ2.

These integrals are unavailable in closed form and hence numerical evaluation is re-

quired. We employ sampling techniques based on Markov chain Monte Carlo methods,

which are overviewed in the next section. Alternatively, φ can be replaced by a point

estimate e.g. the posterior mode or maximum likelihood estimate (MLE). In Section

6.4 we use the MLE plug-in approach (see for example Bayarri et al., 2007b).
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2.4 Markov chain Monte Carlo

When performing Bayesian inference, the aim is to compute the joint posterior distri-

bution for a set of random variables. However, this is not always easy because it often

requires the calculation of integrals that are unavailable in closed form. In cases like

this, we can use sampling techniques based on Markov chain Monte Carlo (MCMC)

methods, see for example Gelman et al. (2013, Chapter 11). MCMC methods construct

a Markov chain3 ψ(0),ψ(1),ψ(2), . . . , with steady state distribution equal to the pos-

terior density, πa(ψ | y), of interest. The empirical distribution of the first M̃ values,

ψ(1), . . . ,ψ(M̃), will then converge to πa(ψ | y) as M̃ → ∞. A good approximation

to πa(ψ | y) is obtained by running the chain for large finite M̃ . There are general

procedures for constructing Markov chains to match any πa(ψ | y).

The chain is initialised with starting values, ψ(0). The Markov property specifies that

the distribution of ψ(i+1) given all previous draws, ψ(i+1) | ψ(i),ψ(i−1), . . . , depends

only on the most recent value drawn ψ(i).

2.4.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Metropolis et al., 1953 and Hastings, 1970) enables

sampling from an essentially arbitrary target distribution. It proceeds as follows.

The first step is to initialise the chain with starting values ψ(0) for the random variables.

Let the current state of the chain be ψ(i). The main loop of the algorithm consists of

three components: generate a sample from a proposal density q, compute the acceptance

probability, α, and accept or reject the candidate sample with probability α, or 1− α,

respectively (see Algorithm 1). In practice, we must allow some burn-in4 time to let

the empirical distribution of the chain become close enough to the target distribution.

Note that because the posterior density appears in both the numerator and the denom-

inator of the acceptance ratio α as given in Algorithm 1, we only require an expression

for the unnormalised density.

The Metropolis-Hastings algorithm is a general approach for sampling from a target

density, in our case πa(ψ | y). However, it requires the specification of a proposal

density, which must be chosen carefully. The acceptance rates, which depend on the

proposal distribution, must be continuously monitored for low and high values. The

efficiency depends crucially on the scaling of the proposal density. If the variance of

the proposal is too small, the acceptance rate will be high but the Markov chain will

3 We construct a sequence of random variables {ψ(0),ψ(1),ψ(2), . . . }, such that at each time t ≥ 0,
the next state ψ(t+1) is sampled from a distribution f(ψ(t+1)|ψ(t)) which depends only on the current
state of the chain ψ(t). This sequence is called Markov chain, and f(· | ·) is called the transition kernel
of the chain (Gilks et al., 1996, Chapter 1).

4Burn-in is the procedure of throwing away some iterations at the beginning of an MCMC run.
Inference is based on the assumption that the distribution of the simulated values ψ(i), for large
enough i, are close to the target distribution, πa(ψ | y).
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Algorithm 1: Metropolis-Hastings algorithm

Choose initial values for the chain, ψ(0);
for i = 1, 2, . . . , M̃ do

Propose: ψ∗ ∼ q(ψ∗ | ψ(i−1))

Acceptance probability: α(ψ∗ | ψ(i−1)) = min
{

1, q(ψ(i−1)|ψ∗)πa(ψ∗|y)

q(ψ∗|ψ(i−1))πa(ψ(i−1)|y)

}
Sample u ∼ Uniform(0, 1)
if u < α then

Accept the proposal: ψ(i) ← ψ∗

else

Reject the proposal: ψ(i) ← ψ(i−1)

converge slowly since all its increments will be small. Conversely, if the variance is

too large, the Metropolis-Hastings algorithm will reject too high a proportion of its

proposed moves and the chain will become ‘stuck’ at particular values of ψ. A high

acceptance rate does not necessarily indicate that the algorithm is behaving satisfac-

torily. Also, a low acceptance rate does not mean that the chain explores the entire

support of the target distribution. Roberts et al. (1997) recommended for random walk

algorithms (Gilks et al., 1996) the use of distributions with acceptance rates close to 1
4

for models of high dimension and equal to 1
2 for the models of dimension 1 or 2.

As in many MCMC methods, the draws are regarded as a sample from the target

distribution only after the chain has passed the burn-in time and the effect of the fixed

starting value has become so small that it can be ignored. The convergence occurs

under mild regularity conditions such as irreducibility5 and aperiodicity.6

2.5 Summary

In this chapter we introduced a number of key concepts for Gaussian process models

and their role in calibration. We also reviewed the Bayesian approach which will be

used throughout this thesis. For conjugate prior distributions for the trend and variance

parameters, we define the posterior and predictive distributions, when the correlation

parameters and the nugget are either known or unknown. Last, we introduced MCMC

methods that we will employ in the next chapter in order to evaluate numerically

intractable integrals.

5Given suitable technical conditions, for each x there exists a positive integer n such that Pn(x,A) >
0, where Pn(x,A) = P [Xn ∈ A | X0 = x] and A is any measurable set. In this case we say the chain is
irreducible.

6If the transition kernel (see Footnote 3) has density f(· | ·), a sufficient condition for aperiodicity is
that f(· | x) is positive in a neighbourhood of x, since the chain can then remain in this neighbourhood
for an arbitrary number of times before visiting another set A.
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Chapter 3

The impact of choice of design

In this chapter we illustrate, through examples, the impact of the choice of design in

calibration. In the first section we introduce the Michaelis-Menten model, the estima-

tion of which we treat as a Bayesian calibration problem. We start by discussing the

choice of prior distributions and write down the posterior distribution for the model

parameters. We then assess the differences in posterior inference from a small number

of designs.

In the second example of this chapter, we assume the simplest case of the calibration

model (1.1) where there is no random error, with the simulator being the Michaelis-

Menten model with fixed calibration parameters θp1 and θp2. We find the posterior

distribution for the discrepancy function, δθp(x), given data from a simulated physical

process, with δθp(x) being a sinusoidal function. Lastly, we consider different designs

in order to see how the choice of the design affects uncertainty in the predictions.

Taking a step further towards the analysis of the calibration model (1.1), in the third

example we assume that the simulator is again known but with unknown calibration

parameters θp. Again the simulator is the Michaelis-Menten model. We also assume

a Gaussian process prior for the discrepancy function δθp(x) and implement Bayesian

inference assuming prior distributions for the unknown calibration and correlation pa-

rameters. We then illustrate the impact of choice of the design by finding the posterior

predictive distributions for different designs.

3.1 Michaelis-Menten model

The Michaelis-Menten model (Michaelis and Menten, 1913) is a nonlinear model that

has been used in many applications (Bates and Watts, 1988, Chapters 2 and 3), for

example in modelling enzyme kinetic data (Cornish-Bowden, 1995). The Michaelis-

Menten model is also used in compartmental models to model the rate of flow from one

compartment to another.
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We will consider the Michaelis-Menten equation of the form:

η(x,θ) =
θ1x

θ2 + x
, x ∈ [0,∞), θ1, θ2 > 0, (3.1)

with θ2 known as the Michaelis-Menten constant. In the enzyme kinetic context, η(x,θ)

is the reaction velocity, θ1 is the maximum velocity of the reaction, x is the concentra-

tion of a substrate, and θ2 is the half-saturation constant; that is, the value of x where

η(x,θ) achieves half its maximum value (Lòpez-Fidalgo and Wong, 2002).

There are several methods proposed in the literature in order to estimate the parameters

θ of the Michaelis-Menten model. The majority of these methods are based on nonlinear

least squares or on transformations of (3.1) to a linear relationship and application of

linear regression techniques (Bliss and James, 1966; Glick et al., 1979; Currie, 1982).

Raaijmaakers (1987) gave arguments supporting the use of maximum likelihood for the

estimation of these parameters in the Michaelis-Menten model.

Designing experiments for the Michaelis-Menten equation has also been studied in the

literature (see for example, Duggleby and Clarke, 1991; Boer et al., 2000). To overcome

the dependence on the values of the unknown model parameters of locally optimal de-

signs, Song and Wong (1998) proposed Bayesian optimal designs. They constructed

Bayesian D-optimal designs (see Section 4.1.1) when the variance of the response de-

pends on the independent variable. A Bayesian approach is applied to find an optimal

design, by taking into account the prior information about the variance structure, and

solve the problem of this dependence being only partially known. Dette and Bieder-

mann (2003) found maximin D-optimal designs; that is designs that maximise the

minimum of the D-efficiencies1 over a certain interval for the nonlinear parameter.

In this thesis, we will concentrate on estimating the unknown parameters by taking a

Bayesian decision-theoretic approach (see Section 4.1). Initially, we assume the statis-

tical model:

yi = η(xi,θ) + εi, i = 1, . . . n. (3.2)

Here, yi is the response measured at a specific point xi, and εi is the random observa-

tional error, where εi ∼ N(0, σ2
ε) independently.

The likelihood function is given by:

πl(y | θ, σ2
ε) = (2πσ2

ε)
−n

2 exp

{
− 1

2σ2
ε

n∑
i=1

[(
yi −

θ1xi
θ2 + xi

)2
]}

, (3.3)

with y = (y1, . . . , yn)T the vector of responses.

1The D-efficiency of a design ξ is

eff(θ; ξ) =

(
| I(θ; ξ) |
| I(θ; ξ?) |

) 1
pθ

,

where I(θ; ξ) is the Fisher information matrix, ξ? is the D-optimal design and θ = (θ1, . . . , θpθ )T ∈ Θ.
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3.1.1 Example

We assume the statistical model (3.2), where η(x,θ) is the Michaelis-Menten model

(3.1). The aim of this section is to demonstrate the impact of choice of design for the

Michaelis-Menten equation. We generate six different designs, each with seven points,

and estimate the unknown parameters θ1 and θ2 for each design. To generate the data

we assume θ1 = 0.15 and θ2 = 50 (values taken from Berthouex and Brown, 2002,

Chapter 35).

Prior specification

We assume uniform prior distributions for the unknown parameters θ = (θ1, θ2)T,

θ1 ∼ Unif[a1, b1] and θ2 ∼ Unif[a2, b2], b1 > a1 > 0, and, b2 > a2 > 0,

with a1 = a2 = 0 and b1 = b2 = 200. These priors where chosen to have support that

includes point estimates from a literature data set 2.

We assume an inverse-gamma prior distribution for the error variance, σ2
ε :

σ2
ε ∼ IG(a, b), a, b > 0,

with

a =
n

2
and b =

n

2
S2

0 ,

where S2
0 is the mean of the squared residuals from a nonlinear least squares fit of the

Michaelis-Menten equation to literature data (see Footnote 2) and n is the number of

design points. For the given data we have n = 7 and S2
0 = 1.24× 10−4.

The joint prior density is given by,

πb(θ, σ
2
ε) ∝

I(a1 < θ1 < b1)

b1 − a1

I(a2 < θ2 < b2)

b2 − a2
(σ2
ε)
−(a+1) exp

{
− b

σ2
ε

}
. (3.4)

Posterior

The likelihood function for the model (3.2) is given by (3.3). Using Bayes’ Theorem

(2.16), and the joint prior density (3.4), the posterior density is proportional to:

πa(θ, σ
2
ε | y) ∝ πl(y | θ, σ2

ε)πb(θ, σ
2
ε)

∝ I(a1 < θ1 < b1)

b1 − a1

I(a2 < θ2 < b2)

b2 − a2

(
1

σ2
ε

)a+1+n
2

2The data set was taken from Berthouex and Brown (2002, Chapter 35),

(x1, . . . , xn)T = (28, 55, 83, 110, 138, 225, 375)T

y = (0.053, 0.06, 0.112, 0.105, 0.099, 0.122, 0.125)T.
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× exp

{
− 1

σ2
ε

[
1

2

n∑
i=1

(
yi −

θ1xi
θ2 + xi

)2

+ b

]}
. (3.5)

The marginal posterior distribution for θ has density:

πM (θ | y) =

∫ ∞
0

πa(θ, σ
2
ε | y)dσ2

ε

=
I(a1 < θ1 < b1)I(a2 < θ2 < b2)

(b1 − a1)(b2 − a2)

×
∫ ∞

0

(
1

σ2
ε

) 2a+n
2

+1

exp

{
− 1

2σ2
ε

[
n∑
i=1

(
yi −

θ1xi
θ2 + xi

)2

+ 2b

]}
dσ2

ε

∝ I(a1 < θ1 < b1)I(a2 < θ2 < b2)

(b1 − a1)(b2 − a2)

1 +

∑n
i=1

(
yi − θ1xi

θ2+xi

)2

2b


−(a+n

2
)

. (3.6)

MCMC implementation

In order to estimate the unknown parameters θ of the Michaelis-Menten model, we

will use the Metropolis-Hastings algorithm (Algorithm 1 in Section 2.4). We use the

estimated parameters from the nonlinear least squares fit of the Michaelis-Menten equa-

tion to the literature data (see Footnote 2) to initiate the chain. That is, (θ
(0)
1 , θ

(0)
2 )T =

(0.153, 53.665)T.

At each MCMC step we propose values for θ from a Normal distribution,

θ∗ ∼ N(θ(i−1), c2C), (3.7)

centred at the current iteration with

C =

[
0.0009 0.8333

0.8333 843.2894

]
,

the covariance matrix for the estimators of the two parameters θ1 and θ2 from the non-

linear least squares fit of the Michaelis-Menten equation, scaled by a value c2 (Laine,

2008). Following Gelman et al. (2013, Chapter 12) the most efficient proposal distri-

bution has scale,

c ≈ 2.4
√
pθ
,

where pθ is the number of parameters. Efficiency is defined in terms of the effective

sample size,

neff =
nit

1 + 2
∑∞

t=1 ρt
,

(Gelman et al., 2013, page 286) where ρt is the autocorrelation of the sequence θ

at lag t and nit is the number of iterations after we have discarded some samples as a
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Figure 3.1: (a) The true Michaelis-Menten function; (b) The six different designs;
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burn-in. The quantity neff gives the number of independent samples from that posterior

distribution that would yield the same Monte Carlo error as the autocorrelated Markov

chain.

Figure 3.1 (a) shows the true mean response we have assumed to generate the data for

each of the six designs given in Figure 3.1 (b).

• Design 1 (taken from Berthouex and Brown, 2002, Chapter 35) is an ad-hoc de-

sign, where most of the points are concentrated where the true expected response

is changing most quickly and some points are at the stationary part of the true

expected response.

• Design 2 is a space-filling design (see Section 1.2.2).

• Design 3 consists of five of the seven points of Design 1, with two of the points

repeated twice.

• Design 4 has all the points concentrated at the first half of the design space where

the true expected response is changing most quickly.

• Design 5 has all the points concentrated at the part of the design space within

the true expected response is stationary.

• Design 6 is again an ad-hoc design but now most of the points are concentrated

at the stationary part of the true expected response, and fewer points where the

true expected response is changing fastest.

For each of these designs we simulated a response vector y using the parameter values

(θ1, θ2)T = (0.15, 50)T and σ2
ε = 0.05. The posterior distribution for the simulated data

was then calculated using the Metropolis-Hastings algorithm with proposal distribution

(3.7). In each case, a chain length of M̃ = 20, 000 was used with the first 5, 000 iterations

discarded as burn-in.

Figure 3.2 and Figure 3.3 are trace-plots which show the values each parameter took

during the runtime of the chain. Inspecting these plots we notice that for most designs

the chains converge to distributions centred on the true values of θ (θ1 = 0.15, θ2 = 50).

Figure 3.4 shows the approximate posterior densities of θ1 and θ2 for each of the designs.

All the posterior densities are centred at the true values (or very close to the true values)

of θ1 and θ2. Design 4, as expected from Figures 3.2 and 3.3, has higher posterior

variance for estimating θ1 compared to the other five designs. Design 4 and Design

5 have higher posterior variance for estimating θ2 compared to the other four designs

(the posterior standard deviations for each of the designs can be found in Table 3.1).

Hence we can conclude that the choice of design is important, and that Designs 4 and

5 are not very good designs for estimating the unknown parameters for this model.
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Design Posterior st. dev.

θ1 θ2

Design 1 • 0.018 22.316

Design 2 • 0.013 22.335

Design 3 • 0.013 14.373

Design 4 • 0.049 38.461

Design 5 • 0.021 44.509

Design 6 • 0.012 23.496

Table 3.1: Posterior standard deviation of θ1 and θ2
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Figure 3.2: Trace plots for MCMC samples of θ1 for the six designs and the Michaelis-
Menten model and the true value of θ1 = 0.15 (red line)
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Figure 3.3: Trace plots for MCMC samples of θ2 for the six designs and the Michaelis-
Menten model and the true value of θ2 = 50 (red line)
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Figure 3.4: (a) Approximate posterior densities for θ1 for each design; (b) Approximate
posterior densities for θ2 for each design; the vertical lines in each plot are the true values
of the unknown parameters (θ1 = 0.15, θ2 = 50)
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3.2 Calibration model with a known simulator function

We present two simple examples to illustrate Bayesian inference for the Gaussian pro-

cess within a calibration problem. We find the posterior distribution for δθp(·) from

model (1.1) given data from a simulated physical process.

3.2.1 Example 1: known simulator parameters θp and σ2
ε = 0

In this section we assume the calibration model (1.1) with simulator, η(x,θ), the

Michaelis-Menten model described in Section 3.1. We assume the simplest case where

the ‘true’ parameters θp of the simulator are known and fixed at θp1 = 15 and θp2 = 50

(see Figure 3.5). We also assume that there is no random error, i.e. σ2
ε = 0. For

simplicity we fix the regression parameter at ρ = 1. We can rewrite (1.1) as,

yi − η(xi,θ
p) = δθp(xi), i = 1, . . . , n.

We assume a Gaussian process prior on δθp(xi) such that:

δθp ∼ N
[
0n, σ

2K(φ)
]
,

where δθp = [δθp(x1), . . . , δθp(xn)]T and K(φ) is the correlation matrix with ijth entry

K(φ)ij = κ(xi, xj ;φ), i, j = 1, . . . , n. We assume a conjugate prior distribution for the

Gaussian process variance with σ2 ∼ IG(3, 2). We choose a = 3 to ensure finite prior

variance. See Appendix C.1.1 for samples from the prior distribution on δθp(·).

We also assume the squared exponential correlation function given in (2.6),

κ(x, x′; φ) = exp
[
−φ
(
x− x′

)2]
.

Lastly, for the correlation parameter φ, we assume the prior distribution φ ∼ Exp(λφ),

with rate λφ = 200, which ensures φ > 0. See Appendix C.1.1 for further discussion

on the choice of prior. In the Metropolis-Hastings algorithm, the proposal distribution

for φ will be a sliding window proposal (Gramacy and Lee, 2008; Yang and Rodŕıguez,

2013) of the form:

φ∗ | φ(i−1) ∼ Unif

[
1

λ0
φi−1, λ0φi−1

]
, λ0 > 0. (3.8)

Such a proposal distribution forms a window around the current value φ(i−1). The

window width is controlled by λ0, which is a tuning parameter. This parameter λ0 is

held fixed throughout the sampling; usually a sensitivity analysis must be implemented

in order to tune λ0 to obtain reasonable convergence.

When generating the data, we assume that the discrepancy function has the form

δθp(x) = ν1 sin(ν2x). We divide this example into two cases. In the first case we assume
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Figure 3.5: The Michaelis-Menten equation η(x,θp) = 15x
50+x .

δθp(x) = 0.5 sin(0.05x) and in the second case we assume δθp(x) = 0.5 sin(0.1x).

Case 1: ν1 = 0.5, ν2 = 0.05

The assumed physical process, ζ(x), in this case has the form:

ζ(x) =
15x

50 + x
+ 0.5 sin(0.05x).

In Figure 3.6 the blue solid line is the Michaelis-Menten equation and the green solid

line is the physical process ζ(x). The simulated data are represented as black bullets.

To approximate the posterior distribution of φ, a Metropolis-Hastings algorithm is used

to draw a sample {φi}M̃i=1 , M̃ = 150, 000, using the uniform proposal distribution (3.8).

Convergence is assessed via diagnostic plots. For each value of φ from the chain, we

calculate the predictive mean and variance of ζ(x) given by Equations (2.25) and (2.26)

respectively, and generate samples from a t-distribution with this mean and variance.

Then we sample realisations and calculate summaries of these. We find the median

of the realisations and the 97.5% and 2.5% quantiles around the median to obtain the

95% credible interval for ζ(x).

In Figure 3.7 the red line is the posterior median of the Gaussian process model, the

blue lines are the 95% probability bounds (see also Figure 3.10), the green line is the

true model and the three black lines are three realisations from the Gaussian process

posterior for ζ(x). Uncertainty is pinched to zero at the design points but as we move

away from the points uncertainty increases. Also, we notice that the posterior median

of the Gaussian process model over-smooths the true function.
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Figure 3.6: The Michaelis-Menten equation η(x,θp) = 15x
50+x (blue line), the assumed

physical process, ζ(x) = 15x
50+x+0.5 sin(0.05x) (green line) and the simulated data (black

bullets)
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Figure 3.7: Posterior median for ζ(x) (red line); pointwise 95% credible intervals (blue
lines); true model (green line); three realisations from the GP model (black lines)
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Figure 3.8: The Michaelis-Menten equation η(x,θp) = 15x
50+x (blue line), the true model

ζ(x) = 15x
50+x + 0.5 sin(0.1x) (green line) and the simulated data (black bullets)

Case 2: ν1 = 0.5, ν2 = 0.1

The assumed physical process, ζ(x), in this case has the form:

ζ(x) =
15x

50 + x
+ 0.5 sin(0.1x).

In Figure 3.8 the blue solid line is the Michaelis-Menten equation and the green solid

line is the assumed physical process, ζ(x). The simulated data are represented as black

bullets. The difference here is that we have a more complex function than before, which

is more ‘wiggly’ due to the different frequency of the sinusoidal discrepancy term.

As in the previous case, in Figure 3.9 the red line is the posterior median of the Gaussian

process model, the blue lines are the pointwise 95% credible intervals and the green line

is the true model (see also Figure 3.10). The three black lines are realisations from the

Gaussian process posterior for ζ(x). Again, uncertainty is pinched to zero at the design

points and increases as we move away from the points. As before, the posterior median

of the Gaussian process model over-smooths the true function. However, in both cases

the credible intervals reflect this lack of knowledge.

In Figures 3.10 (a) and (b) the red line is the posterior median of the Gaussian process

model, for Case 1 and Case 2, respectively. In both cases, the curve is a smooth line

and passes through the five data points. The blue lines are the pointwise 95% credible

intervals and make it clear that we have relatively little information away from these

five points. The uncertainty is pinched to zero at the five design points because we set

the error variance σ2
ε = 0 in the statistical model. The green line is the true model.

Figure 3.10 (b) shows that the red line over-smooths the true function. Due to the small

number of data points, the credible intervals do not clearly show the higher frequency
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Figure 3.9: Posterior median for ζ(x) (red line); pointwise 95% credible intervals (blue
lines); true model (green line); three realisations from the GP model (black lines)
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Figure 3.10: Posterior median for ζ(x) (red line); pointwise 95% credible intervals (blue
lines); true model (green line) for (a) Case 1: ζ(x) = 15x

50+x + 0.5 sin(0.05x); (b) Case 2:

ζ(x) = 15x
50+x + 0.5 sin(0.1x)
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Figure 3.11: Posterior median for ζ(x) (red line), pointwise 95% credible intervals (blue
line) and the true model (green line) for Case 1: ζ(x) = 15x

50+x + 0.5 sin(0.05x) and, (a)

a fixed value of the correlation parameter, φ = 10−4; (b) Plug-in approach using MLE
for the correlation parameter (c) the correlation parameter is estimated using MCMC

of the discrepancy function in Case 2.

The correlation parameter

The correlation parameter φ influences how the posterior prediction changes due to

knowing the response at the design points. In the previous section we estimated the

values of the correlation parameter by using MCMC methods (Section 2.4) and more

specifically the Metropolis-Hastings algorithm. Here we show how the results are chang-

ing by estimating φ using MCMC, using a fixed arbitrary value and using the maximum

likelihood estimate (MLE).

In Figure 3.11 (a) we show how the Gaussian process model approximates the true

model ζ(x) = 15x
50+x + 0.5 sin(0.05x) when using a fixed value for the correlation pa-

rameter, φ = 10−4. Although uncertainty is negligible we can notice that there are

regions where the Gaussian process median approximates the true model very poorly

and the GP model is overconfident in an incorrect prediction. This happens because

we have chosen an inappropriate value of φ that assumes that the correlation between

data points decays too slowly with the difference in x.

The use of the MLE or estimating the correlation parameter φ using MCMC, as shown

in Figures 3.11 (b) and (c), increases the uncertainty. However, Figures 3.11 (b) and

(c) show a more realistic representation of the true function, while in Figure 3.11 (a)

the prediction intervals consistently fail to include the true function.

Design comparison

As we mentioned in Section 1.2 the choice of the design points is an important part

of the calibration problem. We illustrate an example in which we change the design
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Figure 3.12: Posterior median for ζ(x) (red line), pointwise 95% credible intervals
(blue lines), true model (green line) and the simulated data (black bullets) as we move
some design points from the initial equally spaced design, for Case 1: ζ(x) = 15x

50+x +
0.5 sin(0.05x)
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Figure 3.13: Posterior median for ζ(x) (red line), pointwise 95% credible intervals
(blue lines), true model (green line) and the simulated data (black bullets) as we move
some design points from the initial equally spaced design, for Case 2: ζ(x) = 15x

50+x +
0.5 sin(0.1x)

points from the initial design used in Case 1 and Case 2.

For the discrepancy functions given in Cases 1 and 2, we illustrate how the predictive

uncertainty changes with the design. Again in these figures, the red line is the median of

the Gaussian process model, the blue dashed lines are pointwise 95% credible intervals,

the green line is the true model and our chosen design points are shown as black bullets.

The three plots in each of Figures 3.12 and 3.13 show a sequence in which the design

points are changed.

We move some design points, from the initial equally spaced design given in Figures

3.6 and 3.8, closer together in order to learn how quickly the curve is changing and

hence learn more about the correlation parameter φ. As the space between the points

decreases our uncertainty about ζ(x) between these points decreases as well, whereas

as the space between the points increases our uncertainty about ζ(x) between these

points increases.
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We notice in Figure 3.12 (b) and (c) for Case 1 that the median of the Gaussian process

model adapts to shape of the true model quickly in regions with a high density of design

points, and the uncertainty is reduced. In this case, the true function does not change

very quickly and the median of the Gaussian process can learn the shape of the true

function. Similarly, in Figure 3.13 (b) and (c) for Case 2 we notice that the uncertainty

is decreased in regions with high density of design points, however the median of the

Gaussian process is still different from the true model. In Case 2 we have a more

complex function which is more ‘wiggly’ due to the different frequency of the sinusoidal

discrepancy term.

3.2.2 Example 2: unknown simulator parameters θp and σ2
ε 6= 0

In this section we again assume the calibration model (1.1) with simulator, η(x,θ),

the Michaelis-Menten equation described in Section 3.1. However, now we assume that

the parameters of the simulator, θp, are unknown and hence prior distributions on

these parameters are required. We assume a Gaussian process prior for the discrepancy

function δθp(x), and we give an example where we find posterior predictive distributions

to illustrate the calibration problem and demonstrate the impact of choice of design.

The regression parameter is known and fixed at ρ = 1. We have:

yi = η(xi,θ
p) + δθp(xi) + εi, i = 1, . . . , n,

with η(xi,θ) = θ1xi
θ2+xi

and assume a Gaussian process prior on δθp(·), similar to the

previous example, such that:

δθp ∼ N
[
0n, σ

2K(φ)
]
,

where δθp = [δθp(x1), . . . , δθp(xn)]T and K(φ) is the correlation matrix with ijth entry

K(φ)ij = κ(xi, xj ;φ), i, j = 1, . . . , n. The random error is normally distributed with

zero mean and variance σ2
ε , εi ∼ N(0, σ2

ε).

We define η = [η(x1,θ
p), . . . , η(xn,θ

p)]T and y = [y1, . . . , yn]T. Hence,

y ∼ N
(
η, σ2K(φ) + σ2

εIn
)
.

The reparameterisation described in Section 2.3.3 gives that

y ∼ N
(
η, σ2Σ

)
,

where Σ = K(φ) + τ2In. More on the calibration model can be found in Chapter 6.

Prior specification

First, we specify the prior distributions for the unknown parameters as follows:
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θp1 ∼ Unif[a1, b1], θp2 ∼ Unif[a2, b2], σ2 ∼ IG(a, b),

φ ∼ exp(λφ), τ2 ∼ exp(λτ2),

with b1 > a1 > 0, b2 > a2 > 0, a, b > 0, λφ > 0 and λτ2 > 0. The joint prior density is

given by:

πb(θ
p
1, θ

p
2, σ

2, φ, τ2) = πb(θ
p
1)πb(θ

p
2)πb(σ

2)πb(φ)πb(τ
2)

∝ I(a1 < θ1 < b1)

b1 − a1

I(a2 < θ2 < b2)

b2 − a2

×
(

1

σ2

)(a+1)

exp

{
− b

σ2

}
πb(φ)πb(τ

2). (3.9)

The posterior density results from applying Bayes’ Theorem (2.16):

πa(θ
p
1, θ

p
2, σ

2, φ, τ2 | y) ∝ πl(y | θp1, θ
p
2, σ

2, φ, τ2)πb(θ
p
1, θ

p
2, σ

2, φ, τ2),

where

πl(y | θp1, θ
p
2, σ

2, φ, τ2) =
|Σ|−

1
2

(2πσ2)
n
2

exp

{
− 1

2σ2

(
[y − η]T Σ−1 [y − η]

)}
,

is the likelihood function (see Section 2.3.4).

We can derive the posterior distribution, the conditional marginal distributions and the

conditional predictive distributions as shown analytically in Sections 2.3.4 and 2.3.5.

However, most integrals do not have an analytical solution and, as a result, we employ

sampling techniques based on Markov chain Monte Carlo methods (see Section 2.4).

Example

To illustrate the calibration problem and demonstrate the impact of choice of design,

we find posterior predictive distributions for the model (1.1) where the simulator is

known with unknown parameters.

To simulate data, we assume θp1 = 15, θp2 = 50, δθp(x) = 0.5 sin(0.1x) and σ2
ε = 0.05.

We assume the GP prior model (2.9) for δθp(·) with the squared exponential correlation

function κ(x, x′; φ) = exp[−φ(x − x′)2]. We assume a priori θp1 ∼ Unif[8, 24] and θp2 ∼
Unif[20, 85]. Figure C.3 (a) shows that we get a reasonable range of different shapes of

the expected response of η(x,θ). In addition we assume σ2 ∼ IG(3, 2), φ ∼ Exp(200),

τ2 ∼ Exp(15), which gives small noise-to-signal ratio. See also Appendix C.1.2 for

samples from the prior distribution of δθp(x). A Metropolis-Hastings algorithm is used

to draw a dependent sample (φi, τ
2
i ,θ

p
i ), i = 1, . . . , 150, 000 using proposal distributions

for φ and τ2 of the form (3.8) and a normal proposal distribution for θp.

We examine four different designs with different sizes, shown in Figure 3.14 (b) and
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Figure 3.14: (a) True functions η(x,θp) and ζ(x); (b) The four designs outlined in
Table 3.2.

outlined in Table 3.2.

• Design 1 is a two-point maximin D-optimal design. The design is found by

maximising the minimum D-efficiency over the parameter space [20, 85] (see Dette

and Biedermann, 2003).

• Design 2 is an ad hoc design with seven points. Most of the points of this design

are concentrated where the true model is changing fastest and we also have some

points at the stationary part of the model.

• Design 3 is a random Latin Hypercube design (McKay et al., 1979) with seven

points (see Section 1.2.2).

• Design 4 is a random Latin Hypercube design (McKay et al., 1979) with 25 points.

We fit the calibration model to simulated data from each design and approximate the

resulting posterior distributions for the unknown parameters θp (Figures 3.15 (a) and

3.15 (b)), the discrepancy δθp(x) (Figures 3.16 (b), 3.17 (b), 3.18 (b), and 3.19 (b)) and

reality ζ(x) (Figures 3.16 (a), 3.17 (a), 3.18 (a), 3.19 (a)). There are clear differences

between the designs.

Table 3.2 holds the values of the posterior standard deviations and root mean squared

errors for the two parameters θp1, θp2 and the reality ζ(x) averaged across the design

space, for each of the four designs.
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Figure 3.15: (a) Approximate posterior density of θp1 for each design; (b) Approximate
posterior density of θp2 for each design

Design Posterior st. dev. RMSE

θp1 θp2 ζ(x) θp1 θp2 ζ(x)

Design 1 �

2 point maximin D-optimal

design

0.4482 7.5818 0.1367 0.4484 8.2457 0.3955

Design 2 N

7 point ad hoc design

0.6675 7.7606 0.2074 0.6716 7.7678 0.3629

Design 3 �

7 point Latin Hypercube de-

sign

0.5657 8.2990 0.1542 0.8158 13.4297 0.3998

Design 4 •
25 point Latin Hypercube de-

sign

0.3961 6.3918 0.0557 0.4345 7.1979 0.1292

Table 3.2: Posterior standard deviation and root mean squared errors of θp1, θp2 and
ζ(x) averaged across the design space

Design 1 results in poor estimation of the discrepancy function δθp(x) as shown in

Figure 3.16 (b), and overconfidence in the predictions as can be seen in Figure 3.16 (a).

As noted by Brynjarsdóttir and O’Hagan (2014), an analysis that does not account

for model discrepancy may lead to biased and over-confident parameter estimators and

predictions. This is the case here, since the design does not take into account the

discrepancy function δθp(x). The posterior standard deviations are larger than might

be anticipated from Figure 3.15 due to the long tails of the distribution and the fact

that the estimate of θp2 is biased.

Design 2 performs reasonably (see Figure 3.17 and Table 3.2). Uncertainty is small
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Figure 3.16: Design 1: (a) The true model (green line) the posterior median of ζ(x)
(red line) and 95% credible intervals; (b) Samples from the posterior distribution of the
discrepancy function δθp(x)

for small values of x, where the majority of design points are placed, and the model

is able to capture the sinusoidal form of the discrepancy function. As we move to the

stationary part of the model, where we also have fewer points, the uncertainty increases

and is only pinched to zero at the design points and we have a poor estimation of the

discrepancy function.

Design 3, which makes no use of η(x,θ), has the worst performance (see Table 3.2).

The bias in the posterior distribution for θp may arise from non-identifiability. By this

we mean the difficulty of identifying the discrepancy function, δθp(·), that corresponds

to the ‘true’ values of the simulator parameters, θp, since for any value of θ ∈ Θ we

can find a different discrepancy function, δθ(·) (see Section 1.1 and Section 7.2.2).

Lastly, Design 4, with more points, most accurately captures the high-frequency dis-

crepancy (see Figure 3.19). However, the posterior distribution for θp is biased com-

pared to the parameter values assumed in the simulation, also a consequence of non-

identifiability (see Table 3.2).

3.3 Summary

In this chapter we gave some examples that demonstrated the importance of the choice

of design. Existing optimal designs and space-filling designs result in poor estimation

of the discrepancy function and this motivates us to find a methodology for finding

Bayesian optimal designs that will be more suitable for estimation of the unknown

parameters. We take a fully Bayesian approach by using a utility function and an opti-

misation algorithm in order to find designs for nonlinear models such as the Michaelis-
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Figure 3.17: Design 2: (a) The true model (green line) the posterior median of ζ(x)
(red line) and 95% credible intervals; (b) Samples from the posterior distribution of the
discrepancy function δθp(x)
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Figure 3.18: Design 3: (a) The true model (green line) the posterior median of ζ(x)
(red line) and 95% credible intervals; (b) Samples from the posterior distribution of the
discrepancy function δθp(x)
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Figure 3.19: Design 4: (a) The true model (green line) the posterior median of ζ(x)
(red line) and 95% credible intervals; (b) Samples from the posterior distribution of the
discrepancy function δθp(x)

Menten model (see Chapter 5) and the calibration model for known or unknown simu-

lator η(x,θ) (see Chapter 6).

48



Chapter 4

Methods for approximating the

expected Shannon information

gain in Bayesian optimal design

The objective of this chapter is to describe the decision-theoretic approach to develop

Bayesian optimal designs. We introduce Bayesian optimal designs that maximise the

expected Shannon information gain utility and illustrate expected utility evaluation

for the simple linear model. In general, Bayesian design is easy in principle and hard

in practice. For many nonlinear models, the expected utility will be intractable, and

involve high-dimensional integrals with respect to y, necessitating numerical approxi-

mation. Näıve nested Monte Carlo is the most straightforward approximation method,

however in some cases it fails to give an accurate estimate of the expected utility. For

this reason a number of methods have been proposed to reduce the computational

burden and reduce bias. Motivated by the simple linear example, we consider several

alternative numerical methods for estimating the expected Shannon information gain.

We illustrate some of the existing improved methods and propose two further new meth-

ods, called Laplace importance sampling (LIS) and approximate Laplace importance

sampling (ALIS).

4.1 Decision-theoretic Bayesian designs

Decision theory (e.g. Berger, 1985, Chapter 1) addresses the problem of choosing an ac-

tion, a, from a set, A, of possible actions under uncertainty about a parameter, ψ ∈ Ψ.

The uncertainty about ψ is typically represented by a probability distribution with

density π(ψ). The theory proposes that a should be chosen to maximise the expecta-

tion, with respect to ψ, of a utility function, u(a,ψ), or equivalently to minimise the

expectation of a loss function. Bayesian experimental design can be viewed as a deci-

sion problem where the utility function is chosen to reflect the aims of the experiment,
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for example parameter inference or prediction.

Assume that given the design decision ξ ∈ Ξ and parameter values ψ = (ψ1, . . . , ψq2)T ∈
Ψ, we will observe data y ∈ Y arising from the probability density function πl(y|ψ, ξ).
Also, we assume the parameters ψ have prior density πb(ψ) and that we have a utility

function u(ξ,ψ,y) quantifying performance in relation to the aims of the experiment.

A Bayesian optimal design, ξ? ∈ Ξ, maximises the expected utility U(ξ) = E[u(ξ,ψ,y)],

where the expectation is with respect to the future data y and model parameters ψ.

That is,

ξ? ∈ arg max
ξ∈Ξ

U(ξ),

where

U(ξ) = E[u(ξ,ψ,y)]

=

∫
Ψ

∫
Y

u(ξ,ψ,y)π(y,ψ|ξ)dydψ

=

∫
Ψ

∫
Y

u(ξ,ψ,y)πl(y|ψ, ξ)πb(ψ)dydψ. (4.1)

With a few exceptions, for most models, prior distributions and utility functions the

integral (4.1) does not have a closed-form solution. Thus, to find Bayesian designs,

(4.1) must be approximated either analytically, traditionally using asymptotic results

(Chaloner and Verdinelli, 1995), or alternatively using numerical methods. Since many

experiments have a small number of runs, asymptotic approximations may be inappro-

priate. Recently, progress has been made using Monte Carlo approaches to approximate

the utility (Ryan et al., 2015), which may be more accurate for experiments with few

runs. However, this raises several challenges, as we discuss in the next few sections.

For reviews of Bayesian design of experiments and related computational methods, see

Chaloner and Verdinelli (1995), Ryan et al. (2015) and Woods et al. (2017).

4.1.1 Utility functions

Bernardo (1979) discussed the choice of a utility function when the goal of the experi-

ment is inference, i.e. selection of a probability distribution that describes uncertainty

about the parameter ψ. He strongly advocated the utility function

u(ξ,ψ,y) = log πa(ψ|y, ξ)− log πb(ψ). (4.2)

He argued that, in order to encourage the scientist to be honest, the utility should

be maximised at (and only at) the posterior distribution, i.e. it should be a proper
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scoring rule1. It was shown that (4.2) is the the unique local2 proper scoring rule.

Also when the purpose of the experiment is inference about ψ it is common to use a

utility function which can be thought of as the reduction in the surprisal3 about the

true parameter value using the posterior rather than the prior distribution.

In this case, the expected utility can be shown to be equal to the expected gain in

Shannon information, or equivalently the expected Kullback-Leibler divergence from

posterior density πa(ψ|y, ξ) to the prior density πb(ψ) (Shannon, 1948; Lindley, 1956).

A simple way to show that the expected utility is equal to the expected Kullback-Leibler

divergence from posterior to prior density is given below.

The expected utility is given by:

E[u(ξ,ψ,y)] =

∫
Ψ

∫
Y

log
πa(ψ|y, ξ)
πb(ψ)

π(y,ψ|ξ)dydψ. (4.3)

The Kullback-Leibler divergence from posterior to the prior density is:

dKL[πa(ψ|y, ξ)||πb(ψ)] =

∫
Ψ

log
πa(ψ|y, ξ)
πb(ψ)

πa(ψ|y, ξ)dψ.

Hence, the expected Kullback-Leibler divergence is given by:

E {dKL [πa(ψ|y, ξ)||πb(ψ)]} =

∫
Y

∫
Ψ

log
πa(ψ|y, ξ)
πb(ψ)

πa(ψ|y, ξ)dψπe(y|ξ)dy.

Using Fubini’s theorem and assuming mild regularity conditions we have,

E {dKL [πa(ψ|y, ξ)||πb(ψ)]} =

∫
Ψ

∫
Y

log
πa(ψ|y, ξ)
πb(ψ)

πa(ψ|y, ξ)πe(y|ξ)dydψ

=

∫
Ψ

∫
Y

log
πa(ψ|y, ξ)
πb(ψ)

π(y,ψ|ξ)dydψ,

which is the expected utility as given in Equation (4.3).

In common with other authors in this thesis we work with an alternative expression for

(4.2) which can be derived using Bayes’ rule (2.16):

πa(ψ|y, ξ)
πb(ψ)

=
πa(ψ|y, ξ)πe(y|ξ)
πb(ψ)πe(y|ξ)

=
πl(y|ψ, ξ)
πe(y|ξ)

.

Hence we can replace log πa(ψ|y, ξ) − log πb(ψ) with log πl(y|ψ, ξ) − log πe(y|ξ). It

1A real function u is a proper scoring rule if for each density g(·),

supf

∫
Ψ

u(f(·),ψ)g(ψ)dψ =

∫
Ψ

u(g(·),ψ)g(ψ)dψ,

and the supremum is only attained at g(·) (see Definition 2 in Bernardo, 1979).
2Let u be the real function that describes the utility u(f(·),ψ) obtained by the scientist if the density

function f(·) is reported as the final conclusion after an experiment has been performed and ψ is the
unknown parameter. The function u is a local utility function if u(f(·),ψ) = u(f(ψ),ψ) for all values
of ψ ∈ Ψ (see Definition 3 in Bernardo, 1979).

3The surprisal given a density f is − log f(ψ) (Baldi and Itti, 2010).
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follows that

u(ξ,ψ,y) = log πl(y|ψ, ξ)− log πe(y|ξ), (4.4)

where

πe(y|ξ) =

∫
Ψ
πl(y|ψ, ξ)πb(ψ)dψ,

is commonly called the evidence, a quantity of importance in model selection, e.g. Friel

and Wyse (2012).

This leads to the following form of the expected utility:

U(ξ) = E[u(ξ,ψ,y)]

=

∫
Ψ

∫
Y

[log πl(y|ψ, ξ)− log πe(y|ξ)]π(y,ψ|ξ)dydψ

=

∫
Ψ

∫
Y

log
πl(y|ψ, ξ)
πe(y|ξ)

π(y,ψ|ξ)dydψ. (4.5)

Many authors have used the following approximation to U(ξ) justified via an asymptotic

approximation to the posterior distribution of ψ:

ϕ(ξ) = E[log |I(ψ; ξ)|] =

∫
Ψ

log |I(ψ; ξ)|πb(ψ)dψ, (4.6)

where I(ψ; ξ) denotes the expected Fisher information, given in (1.7), for parameters ψ

under the design ξ. Designs that maximise ϕ(ξ) are sometimes referred to as (pseudo-)

Bayesian D−optimal designs. This expression also results from taking the expectation

of the utility function,

u(ξ,ψ,y) = log |I(ψ; ξ)|,

which does not depend on y. The integral (4.6) can be approximated via Monte Carlo

integration, via sampling from the prior distribution for ψ, or numerical quadrature

(for the latter, see Woods et al., 2006; Gotwalt et al., 2009).

In some cases, the goal of the experiment may be prediction rather than parameter

inference. In this case an expected utility that quantifies the uncertainty of the posterior

predictive distribution will be adopted. Suppose that, given the responses y obtained

from design ξ, interest lies in predicting the response ỹ at one new design point x̃. Then

an appropriate (expected) utility is the expected Shannon information gain between

the prior and the posterior predictive distribution. The prior predictive density (the

marginal density π(ỹ)) does not depend on the design, and so maximisation of the

expected gain in Shannon information for ỹ is equivalent to maximisation of

U(ξ) =

∫
Y

∫
Yp

log π(ỹ|y, ξ)π(ỹ,y|ξ)dỹdy, (4.7)
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see San Martini and Spezzaferri (1984) and Verdinelli et al. (1993) where

π(ỹ|y, ξ) =

∫
Ψ
π(ỹ|ψ,y)πa(ψ|y, ξ)dψ

is the posterior predictive density. If convenient, we can rewrite π(ỹ,y|ξ) using Bayes’

theroem (2.16).

Another common utility function is the Negative Squared Error Loss, given by

u(ξ,ψ,y) = −
q2∑
w=1

[ψw − E(ψw|y, ξ)]2, (4.8)

where q2 is the number of components of ψ. Minimising the expected negative squared

error loss is equivalent to maximising the expectation of the average posterior variance

of ψ with respect to the marginal distribution of y (e.g. Overstall et al., 2018),

U(ξ) = E {E [u(ξ,ψ,y)|y]} = E[−tr{var(ψ|y, ξ)}]. (4.9)

As before, (4.9) may be approximated using an asymptotic normal approximation to

the posterior distribution of ψ, as follows:

ϕ(ξ) = −E[tr{I(ψ; ξ)−1}] = −
∫

Ψ
tr{I(ψ; ξ)−1}πb(ψ)dψ.

Designs that maximise ϕ(ξ) are referred to as (pseudo-) Bayesian A−optimal designs.

4.1.2 Monte Carlo approximation of the expected utility

In this section, we focus on numerical evaluation of the expected Shannon information

gain utility U(ξ), given in (4.5), using Monte Carlo integration methods. An obvious

way to approximate U(ξ) is via

Ũ(ξ) =
1

k1

k1∑
h=1

[
log πl(yh|ψh, ξ)− log π̃he

]
, (4.10)

where (ψh,yh), for h = 1, . . . , k1, are independent samples from the joint prior density

π(ψ,y|ξ), and π̃he is an estimate of the evidence πe(yh|ξ).

There are several existing methods for estimating the evidence in (4.10), which vary in

accuracy and computational expense. The simplest is ‘näıve Monte Carlo’, discussed

in Section 4.1.3, which gives biased results. Other existing methods are Laplace ap-

proximations, discussed in Sections 4.2.1 and 4.2.2, and nested importance sampling

discussed in Section 4.2.3. A novel method is discussed in Section 4.3, and shown in

Chapter 5 to be more efficient than existing methods.

To find an optimal design, we wish to maximise Ũ(ξ). The problem with all Monte
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Carlo approximations of U(ξ) is that yh depends on ξ, for h = 1, . . . , k1. This means

that every evaluation of Ũ(ξ) for a new ξ requires a new sample to be generated. This

will be computationally expensive and, perhaps more importantly, U(ξ) will not be a

smooth function, which means that conventional optimisation algorithms cannot be ap-

plied. For low-dimensional problems (one variable and a small number of design points),

Müller and Parmigiani (1996) performed stochastic optimisation by fitting curves to

the Monte Carlo samples, effectively conducting a noisy computer experiment to con-

struct a statistical emulator for the approximation Ũ(ξ). However, for problems with a

large number of design variables this approach is computationally very expensive. For

high-dimensional design spaces, typically a very large number of function evaluations

is required to build an accurate emulator. Thus it is desirable to reduce the dimension-

ality of the problem. Overstall and Woods (2017) achieved this by using a coordinate

exchange algorithm (Meyer and Nachtsheim, 1995) to break up the optimisation in

to a sequence of one-dimensional problems. The need to emulate high-dimensional

functions is therefore eliminated, resulting in an effective and computationally efficient

design selection methodology. For further details of their algorithm, see Section 5.2.

4.1.3 Näıve Monte Carlo and its bias

In (4.10), the simplest way to approximate the evidence, πe(yh|ξ), is via

π̃he =
1

k2

k2∑
k=1

πl(yh|ψ̃hk, ξ),

where ψ̃hk is another sample from the prior density πb(ψ), for h = 1, . . . , k1, and

k = 1, . . . k2. We refer to this approximation as the näıve Monte Carlo (nMC) method,

outlined in Algorithm 2.

Algorithm 2: The näıve Monte Carlo method

Generate a sample ψh, h = 1, . . . , k1, from πb(ψ);
for h = 1, . . . , k1 do

Generate a response yh from πl(y|ψh, ξ);
Generate a sample {ψ̃hk}k2

k=1 from πb(ψ);
for k = 1, . . . , k2 do

Calculate ũhk = πl(yh|ψ̃hk, ξ);

Estimate the evidence πe(yh|ξ) via π̃he = 1
k2

∑k2
k=1 ũhk;

Calculate ũh = log πl(yh|ψh, ξ)− log π̃he ;

Estimate the expected Shannon information gain utility by Ũ(ξ) = 1
k1

∑k1
h=1 ũh;

Ryan (2003) has shown that the näıve Monte Carlo integration method yields a biased

estimator Ũ(ξ) of U(ξ). Asymptotically, the bias is

E[Ũ(ξ)− U(ξ)] ≈ C(ξ)

k2
,
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where

C(ξ) =
1

2
E

{
1

[πe(y|ξ)]2
var

[
πl(y|ψ, ξ)
πe(y|ξ)

∣∣∣∣∣y
]}

.

Hence k2 controls the bias. Ryan (2003) also showed that k1 controls the variance.

Large values of k1 and k2 make the approximation problem computationally expensive,

and hence one must consider a trade-off between k1 and k2. Increasing k1 results in

reduction of variance and increasing k2 results in reduction of the positive bias. If the

function C(ξ) is approximately constant over ξ, the bias will be roughly constant in ξ for

fixed k2, and thus of no consequence when comparing designs. For fixed computational

effort it will be therefore best to choose a fixed k2 and choose k1 to be larger than k2.

A severe practical problem that occurs if moderate inner loop sample sizes, k2, are

used is that the evidence πe(y|ξ) can often be estimated as zero, leading to a numerical

estimate of infinity for the expected utility. This occurs when the posterior distribution

is much more concentrated than the prior distribution since then the inner loop sample

consists largely of values that are far from the region of highest posterior density and

hence have zero likelihood.

Huan and Marzouk (2013) overcome the numerical issues with zero evidence by using

the same sample of parameter values in the inner loop as in the outer loop. The

approximation to the expected utility (4.10) is now given by

Ũ(ξ) =
1

k1

k1∑
h=1

[
log πl(yh|ψh, ξ)−

1

k1

k1∑
k=1

πl(yh|ψk, ξ)

]
, (4.11)

where {ψk}k1
k=1 is a sample from the prior density, πb(ψ). Note that the same sample is

used in the outer and inner summation. We refer to this approach as the ‘reuse’ method.

It usually gives finite estimates of the expected utility gain because, for each yh, the

inner loop sample now contains the value ψh which is used to generate the response and

which usually has nonneglible posterior density. The biases of näıve Monte Carlo and

‘reuse’ estimators are asymptotically of the same order, although ‘reuse’ estimators offer

substantial gains in computational efficiency because finite estimates of the expected

utility can be obtained with much smaller values of k2. However for finite inner loop

sample sizes, this method can result in large negative bias (see examples in Sections

5.1.2 and 5.1.3).

In the next section we illustrate through the simple linear example how näıve Monte

Carlo approximation of the expected Shannon information gain results in positive bias

and overestimation of the information gain for a given design.
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Linear Regression example

For the näıve Monte Carlo (nMC) method, we now illustrate how the bias and variance

change with the sizes of the inner and outer loop samples. We do so using an illustrative

example in which the expected Shannon information gain is available analytically. We

assume the linear model

y = Xβ + ε, (4.12)

where X is the n × 2 model matrix X = [1n (x1, . . . , xn)T] with xi the value of an

explanatory variable for the ith run, i = 1, . . . , n, β = (β0, β1)T ∈ B ⊂ R2 contains the

unknown regression parameters, εi ∼ N(0, σ2
ε) is the observation error, and σ2

ε is the

known constant variance.

The conjugate prior distribution for β is a multivariate normal, N(β0, σ
2
εR), for which:

πb(β) = (2πσ2
ε)
− p

2 |R|−
1
2 exp

{
− 1

2σ2
ε

(β − β0)TR−1(β − β0)

}
,

where p is the number of unknown regression parameters in β.

The likelihood function is given by:

πl(y|β, σ2
ε , ξ) = (2πσ2

ε)
−n

2 exp

{
− 1

2σ2
ε

(y −Xβ)T(y −Xβ)

}
.

Using Bayes’ theorem (2.16) we obtain the posterior density,

πa(β|y, σ2
ε , ξ) ∝ πl(y|β, σ2

ε , ξ)πb(β)

= (2πσ2
ε)
−(n+p

2
)|R|−

1
2 exp

{
− 1

2σ2
ε

[
(β − β0)TR−1(β − β0)

+ (y −Xβ)T(y −Xβ)
]}

∝ 1

(2πσ2
ε)
p/2|S∗|1/2

exp

{
− 1

2σ2
ε

[
(β − β∗)TS∗−1(β − β∗)

]}
,

with

β∗ = (XTX + R−1)−1(XTy + R−1β0)

S∗ = (XTX + R−1)−1.

Hence β | y, σ2
ε is normal with mean β∗ and variance σ2

εS
∗.

The expected Shannon information gain is:

U(ξ) =

∫
B

∫
Y

log[πa(β|y, σ2
ε , ξ)− log πb(β)]π(β,y|ξ)dydβ
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=

∫
B

∫
Y

[
−p

2
log 2πσ2

ε −
1

2
log |S∗| − 1

2σ2
ε

(β − β∗)TS∗−1(β − β∗)

−
{
−p

2
log 2πσ2

ε −
1

2
log |R| − 1

2σ2
ε

(β − β0)TR−1(β − β0)

}]
π(β,y|ξ)dydβ

=

∫
B

∫
Y

[
−p

2
log 2πσ2

ε −
1

2
log |S∗|

− 1

2σ2
ε

(β − β∗)TS∗−1(β − β∗)
]
πl(y|β, σ2

ε , ξ)πb(β)dydβ

+

∫
B

∫
Y

[
p

2
log 2πσ2

ε +
1

2
log |R|

+
1

2σ2
ε

(β − β0)TR−1(β − β0)

]
πl(y|β, σ2

ε , ξ)πb(β)dydβ

= SIG1 + SIG2.

For the second integral we have

SIG2 =

∫
B

∫
Y

[
p

2
log 2πσ2

ε +
1

2
log |R| (4.13)

+
1

2σ2
ε

(β − β0)TR−1(β − β0)

]
πl(y|β, σ2

ε , ξ)πb(β)dydβ

=
p

2
log 2πσ2

ε +
1

2
log |R|+ 1

2σ2
ε

∫
B

(β − β0)TR−1(β − β0)πb(β)dβ

=
p

2
log 2πσ2

ε +
1

2
log |R|+ 1

2σ2
ε

tr(σ2
εR
−1R)

=
p

2
log 2πσ2

ε +
1

2
log |R|+ p

2
. (4.14)

By a similar argument, the first integral is

SIG1 =
1

2
log
∣∣XTX + R−1

∣∣− p

2
log(2πσ2

ε)−
p

2
, (4.15)

agreeing with known results from Chaloner and Verdinelli (1995).

Combining Equations (4.14) and (4.15) we get:

U(ξ) =
1

2
log
∣∣XTX + R−1

∣∣− p

2
log(2πσ2

ε)−
p

2
+

(
p

2
log 2πσ2

ε +
1

2
log |R|+ p

2

)
=

1

2
log
∣∣XTX + R−1

∣∣+
1

2
log |R|. (4.16)

We now show how the bias of the näıve Monte Carlo (nMC) method changes for different

values of k1 and k2 using the exact value of the expected utility as shown in (4.16).

We assume σ2
ε = 1

3 and β ∼ N(0p, σ
2
εIp). We use the design presented in Figure 4.1 for

all the results that we are going to illustrate for this linear regression example. This

design is an expected Shannon information gain optimal design found for the linear

model using the ACE algorithm (Section 5.2) and nMC (Section 4.1.3). Figure 4.2
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Figure 4.1: Expected Shannon information gain optimal design with n = 7, found for
the linear model using ACE (Section 5.2) and nMC (Section 4.1.3); two of the points
are repeated twice

shows the distribution of 100 estimates of the expected utility obtained using nMC for

different combinations of k1 and k2. The true value of the Shannon information gain,

obtained using (4.16), is shown by the red horizontal line.

From Figure 4.2, we notice considerable differences for the different pairs of k1 and

k2. As the number of samples in the inner loop, k2, increases, the bias decreases

as anticipated from the asymptotic theory (Ryan, 2003). As the number of samples

in the outer loop, k1, increases, the variance decreases. A very large inner loop size

(k2 = 100, 000) moves the estimates of the expected utility much closer to the true

value but also increases the computational expense of the approximating method.

4.2 Existing improved methods for approximating the ex-

pected utility

The approximation of the expected Shannon information gain utility function,

U(ξ) =

∫
Ψ

∫
Y

log
πl(y|ψ, ξ)
πe(y|ξ)

π(y,ψ|ξ)dydψ,

requires the solution of intractable integrals and for this reason numerical approxima-

tion methods are used as described in Section 4.1.2. An obvious way to approximate

the expected utility is via (4.10); that is to take an independent sample of (ψh,yh),

h = 1, . . . , k1, from the joint prior density π(y,ψ|ξ) and approximate the evidence,

πe(y|ξ), using another sample from a known distribution.

There are several existing methods for estimating the evidence in (4.10), which vary in

accuracy and computational expense. A summary of these methods can be found in

Table 5.1 of Chapter 5.

The most straightforward approach, näıve Monte Carlo (nMC), approximates the evi-

dence using another sample from the prior density πb(ψ) (see Section 4.1.3). However,

the positive bias of this method overestimates the information gain from an experiment.

Also, it requires large values of k1 and k2 to obtain sufficient precision and accuracy
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Figure 4.2: Estimated expected Shannon information gain for the linear model (4.12)
using nMC and different combinations of k1 and k2, and the true value of the Shannon
information gain obtained using (4.16) (red line)

of the approximation. As each design assessment requires k1(1 + k2) likelihood eval-

uations, this leads to computationally expensive optimisation when searching for an

optimal design, for even moderate k1 and k2. For diffuse prior distributions and infor-

mative experiments, a problem of zero approximation to the evidence can also occur

(Section 4.1.3). These challenges have led to the development of new improved methods

that will give better approximations to the evidence, πe(y|ξ), in order to reduce the

positive bias.

Long et al. (2013) aimed to reduce the computational expense of sampling techniques,

i.e. näıve Monte Carlo approximation, by employing the Laplace approximation. This

approximation uses a second-order Taylor series expansion of the log-posterior density,

log πa(ψ|y, ξ), about the posterior mode ψ̂, leading to a Gaussian approximation of the

posterior distribution of ψ. This fundamental asymptotic method was first introduced

by Pierre Simon Laplace (Stigler, 1986) under the assumption that a sufficient number

of observations, n, is available.

In Sections 4.2.1 and 4.2.2 we consider two different methods of approximating the

expected Shannon information gain based on Laplace approximations. The (k1 × k2)

inner likelihood evaluations are replaced with k1 optimisations, each of which takes only

a few iterations of a quasi-Newton algorithm. The first of these, which we call Laplace

Approximation I (LA1), coincides with the approximation proposed by Overstall et al.

(2018), and follows from the expression of the utility function as the difference between

the log-likelihood and log-evidence (see Section 4.1.1); an estimate for the evidence is

59



found based on a Laplace approximation and is used within (4.10) to approximate the

expected Shannon information gain. The second approximation, which we call Laplace

Approximation II (LA2), coincides with that derived by Long et al. (2013), and follows

from the alternative expression of the utility function, discussed in Section 4.1.1, as the

difference of the log-posterior and log-prior densities.

Importance sampling is a Monte Carlo integration method commonly used for approx-

imating a target integral of interest. In Section 4.2.3 we describe an alternative ap-

proximation of the expected Shannon information gain that uses importance sampling

to estimate the evidence, introduced by Feng (2015).

In Section 4.3 we propose two further new approximation methods to estimate the

evidence in the expected Shannon information gain, called Laplace importance sampling

(LIS) and approximate Laplace importance sampling (ALIS). These methods combine

features of importance sampling and Laplace approximations.

4.2.1 Approximating the evidence - Laplace Approximation I

In this section an approximation to the evidence, πe(y|ξ), required to estimate the

expected utility via (4.10), is found using a Laplace approximation.

Recall the utility function is given by

u(ξ,ψ,y) = log πl(y|ψ, ξ)− log πe(y|ξ),

with the expected Shannon information gain given by Equation (4.5).

We can express the evidence as:

πe(y|ξ) =

∫
Ψ
πl(y|ψ, ξ)πb(ψ)dψ =

∫
Ψ

exp [log πu(ψ|y, ξ)] dψ, (4.17)

where πu(ψ|y, ξ) = πl(y|ψ, ξ)πb(ψ) is the unnormalised posterior density.

A second order Taylor series expansion of log πu(ψ|y, ξ) about the posterior mode ψ̂

gives:

log πu(ψ|y, ξ) ≈ log πu(ψ̂|y, ξ) +
∂ log πu(ψ|y, ξ)

∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)

− 1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂),

where H(ψ̂) is the negative Hessian of the log-unnormalised posterior density,

H(ψ̂) = −∂
2 log πu(ψ|y, ξ)
∂ψ∂ψT

∣∣∣ψ=ψ̂ .

By definition the first derivative of the log-unnormalised posterior density is zero at
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the posterior mode, and so the second term of the Taylor expansion vanishes, giving:

log πu(ψ|y, ξ) ≈ log πu(ψ̂|y, ξ)− 1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂). (4.18)

Exponentiating the above gives:

πu(ψ|y, ξ) ≈ πu(ψ̂|y, ξ) exp

[
−1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂)

]
,

and integrating this expression results in:

πe(y|ξ) =

∫
Ψ
πu(ψ|y, ξ)dψ

≈
∫

Ψ
πu(ψ̂|y, ξ) exp

[
−1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂)

]
dψ

=
πu(ψ̂|y, ξ)(2π)q2/2∣∣∣H(ψ̂)

∣∣∣1/2 ,

where q2 is the number of unknown parameters ψ.

Hence in (4.10), the Laplace approximation to the evidence is

πe(y|ξ) ≈
πu(ψ̂|y, ξ)(2π)q2/2∣∣∣H(ψ̂)

∣∣∣1/2 .

The approximation of the expected Shannon information gain (4.5) is given by:

U(ξ) ≈
∫
Ψ

∫
Y

[
log πl(y|ψ, ξ)− log πu(ψ̂|y, ξ)

−1

2
log
[
(2π)q2

∣∣∣H(ψ̂)−1
∣∣∣]]π(y,ψ|ξ)dydψ. (4.19)

Hence the approximation (4.10) becomes:

Ũ(ξ) =
1

k1

k1∑
h=1

[
log πl(yh|ψh, ξ)− log π̃he

]

=
1

k1

k1∑
h=1

[
log πl(yh|ψh, ξ)− log πu(ψ̂h|yh, ξ)−

1

2
log
[
(2π)q2

∣∣∣H(ψ̂h)−1
∣∣∣]] ,

where ψ̂h is obtained using a quasi-Newton algorithm (see Section 4.3).

We refer to this approximation as Laplace Approximation I or LA1.

Overstall et al. (2018) showed through some examples that such a normal-based ap-

proximation together with the ACE algorithm (Section 5.2) is able to find efficient

Bayesian optimal designs.
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4.2.2 Laplace approximation II

Laplace approximation II, or LA2, is a different approximation to the expected Shannon

information gain that does not directly use an approximation to the evidence. If we

take the alternative expression of the utility given in Section 4.1.1,

u(ξ,ψ,y) = log πa(ψ|y, ξ)− log πb(ψ),

it is possible to obtain the following approximation to (4.3):

U(ξ) ≈
∫
Y

[
−1

2
log(2π)q2 |H(ψ̂)−1| − q2

2
− log πb(ψ̂)

−1

2
tr
[
Q(ψ̂)H(ψ̂)−1

]]
πe(y|ξ)dy. (4.20)

To get the above result, we take a second order Taylor series expansion of the log-

posterior density, log πa(ψ|y, ξ), about the posterior mode, ψ̂:

log πa(ψ|y, ξ) ≈ log πa(ψ̂|y, ξ) +
∂ log πa(ψ|y, ξ)

∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)

− 1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂)

= log πa(ψ̂|y, ξ)−
1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂), (4.21)

as ∂ log πa(ψ|y,ξ)
∂ψ

∣∣∣ψ=ψ̂ = 0 by definition and,

∂2 log πa(ψ|y, ξ)
∂ψ∂ψT

∣∣∣ψ=ψ̂ =
∂2 log πu(ψ|y, ξ)

∂ψ∂ψT

∣∣∣ψ=ψ̂ = −H(ψ̂),

which holds from Bayes’ Theorem (2.16) and by the fact that the evidence, πe(y|ξ),
does not depend on the unknown parameters ψ.

In the previous section we showed that the evidence,

πe(y|ξ) ≈
πu(ψ̂|y, ξ)(2π)q2/2∣∣∣H(ψ̂)

∣∣∣1/2 =
πl(y|ψ̂, ξ)πb(ψ̂)(2π)q2/2∣∣∣H(ψ̂)

∣∣∣1/2 .

Again using Bayes’ Theorem, the posterior density is given by

πa(ψ̂|y, ξ) =
πl(y|ψ̂, ξ)πb(ψ̂)

πe(y|ξ)
,

and combining these two results we get:

πa(ψ̂|y, ξ) ≈

∣∣∣H(ψ̂)
∣∣∣1/2

(2π)q2/2
.
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Plugging this result back into Equation (4.21) we get a normal approximation to the

posterior density with mean ψ̂ and variance H(ψ̂)−1:

log πa(ψ|y, ξ) ≈ − log

[
(2π)q2/2

∣∣∣H(ψ̂)
∣∣∣−1/2

]
− 1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂). (4.22)

Hence the approximation of the expected Shannon information gain (4.3) becomes

U(ξ) ≈
∫

Ψ

∫
Y

[
−1

2
log(2π)q2 |H(ψ̂)−1| − 1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂)

− log πb(ψ)

]
πa(ψ|y, ξ)πe(y|ξ)dydψ

=

∫
Y

[
− 1

2
log(2π)q2 |H(ψ̂)−1| −

∫
Ψ

1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂)πa(ψ|y, ξ)dψ︸ ︷︷ ︸

I1

−
∫

Ψ
log πb(ψ)πa(ψ|y, ξ)dψ︸ ︷︷ ︸

I2

]
πe(y|ξ)dy.

For the first integral, I1, we use the normal approximation to the posterior density

(4.22), and the known formula of the expectation of a quadratic form4:

I1 =

∫
Ψ

1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂)πa(ψ|y, ξ)dψ

≈ 1

2
tr[H(ψ̂)H(ψ̂)−1]

=
1

2
tr[Iq2 ]

=
q2

2
.

In order to approximate the second integral, I2, we take a second-order Taylor series

expansion of the log-likelihood, log πl(y|ψ, ξ), about the posterior mode ψ̂:

log πl(y|ψ, ξ) ≈ log πl(y|ψ̂, ξ) +
∂ log πl(y|ψ, ξ)

∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)

+
1

2
(ψ − ψ̂)T

[
−H(ψ̂)−Q(ψ̂)

]
(ψ − ψ̂), (4.23)

where

Q(ψ̂) =
∂2 log πb(ψ)

∂ψ∂ψT

∣∣∣ψ=ψ̂ .

4The expectation of a quadratic form is

E[cTΛc] = tr[ΛΣc] + µT
c Λµc,

where c is a vector of nc random variables, Λ is a nc-dimensional symmetric matrix, µc is the expected
value of c and Σc is the variance-covariance matrix of c (Mathai and Provost, 1992, Chapter 3).
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and

−H(ψ̂)−Q(ψ̂) =
∂2 log πl(y|ψ, ξ)

∂ψ∂ψT

∣∣∣ψ=ψ̂ .

This results from

H(ψ̂) = −∂
2 log πu(ψ|y, ξ)
∂ψ∂ψT

∣∣∣ψ=ψ̂

= −∂
2 log[πl(y|ψ, ξ)πb(ψ)]

∂ψ∂ψT

∣∣∣ψ=ψ̂

=

[
−∂

2 log πl(y|ψ, ξ)
∂ψ∂ψT

∣∣∣ψ=ψ̂ −
∂2 log πb(ψ)

∂ψ∂ψT

∣∣∣ψ=ψ̂

]
.

Note that, to approximate I2, (4.23) only needs to be an accurate approximation in a

small neighbourhood around ψ̂, because if the sample size n is large then the posterior

distribution will be concentrated around ψ̂.

Using Equation (4.18) and (4.23), the log-prior density, log πb(ψ), is given by:

log πb(ψ) = log πu(ψ|y, ξ)− log πl(y|ψ, ξ)

≈ log πu(ψ̂|y, ξ)− 1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂)− log πl(y|ψ̂, ξ)

− ∂ log πl(y|ψ, ξ)
∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)− 1

2
(ψ − ψ̂)T

[
−H(ψ̂)−Q(ψ̂)

]
(ψ − ψ̂)

= log πb(ψ̂) +
∂ log πb(ψ)

∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂) +
1

2
(ψ − ψ̂)TQ(ψ̂)(ψ − ψ̂),

from

∂ log πl(y|ψ, ξ)
∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂) =
∂ log πu(ψ|y, ξ)

∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)

− ∂ log πb(ψ)

∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂),

where
∂ log πu(ψ|y, ξ)

∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂) = 0,

by definition.

Then we approximate the second integral I2, with respect to ψ as:

I2 =

∫
Ψ

log πb(ψ)πa(ψ|y, ξ)dψ

≈
∫

Ψ
log πb(ψ̂)πa(ψ|y, ξ)dψ︸ ︷︷ ︸

I3

+

∫
Ψ

∂ log πb(ψ)

∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)πa(ψ|y, ξ)dψ︸ ︷︷ ︸
I4
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+

∫
Ψ

1

2
(ψ − ψ̂)TQ(ψ̂)(ψ − ψ̂)πa(ψ|y, ξ)dψ︸ ︷︷ ︸

I5

.

We know that

I3 = Eψ|y
[
log πb(ψ̂)

]
= log πb(ψ̂),

and

I5 ≈
1

2
tr[H(ψ̂)−1Q(ψ̂)].

Lastly we have that

I4 =

∫
Ψ

∂ log πb(ψ)

∂ψ

∣∣∣ψ=ψ̂ ψ πa(ψ|y, ξ)dψ −
∫

Ψ

∂ log πb(ψ)

∂ψ

∣∣∣ψ=ψ̂ ψ̂ πa(ψ|y, ξ)dψ

=
∂ log πb(ψ)

∂ψ

∣∣∣ψ=ψ̂ Eψ|y[ψ]− ∂ log πb(ψ)

∂ψ

∣∣∣ψ=ψ̂ ψ̂

≈ 0, (4.24)

following from the assumption ψ|y ∼ N [ψ̂,H(ψ̂)−1], approximately.

Hence, we have proved that the approximation of the expected Shannon information

gain is given by Equation (4.20).

Similar to (4.10), for the Laplace Approximation II we have,

Ũ(ξ) =
1

k1

k1∑
h=1

[
−1

2
log
[
(2π)q2

∣∣∣H(ψ̂h)−1
∣∣∣]− q2

2

− log πb(ψ̂h)− 1

2
tr
[
Q(ψ̂h)H(ψ̂h)−1

]]
,

where ψ̂h is obtained by maximising πu(ψ|yh, ξ) with respect to ψ using a quasi-Newton

algorithm (see Section 4.3), where yh ∼ πe(y|ξ).

A connection between Laplace Approximation I and Laplace Approximation II can be

found in Appendix A.

In the next section we consider importance sampling as an alternative approach for

approximating the evidence in (4.10).

4.2.3 Approximating the evidence - Importance sampling

The aim is to find an improved way of estimating the evidence πe(y|ξ) = E[πl(y|ψ, ξ)] =∫
Ψ πl(y|ψ, ξ)πb(ψ)dψ, needed in order to estimate the expected utility via (4.10), that

will give reduced bias and will be computationally inexpensive.

Another approach for approximating the evidence is importance sampling. Importance

sampling is a Monte Carlo integration method commonly used for approximating a
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target integral of interest. Suppose that we wish to approximate

I = E[f(x)] =

∫
Rq1

f(x)h(x)dx, (4.25)

where h(x) is a probability density function on Rq1 with support5 Q, so that h(x) = 0

when x /∈ Q. Suppose moreover that we have available an importance density, q(x),

such that q(x) > 0 for all x ∈ Q with f(x)h(x) > 0. Then, if x1, . . . ,xM is an

independent sample from q,

Î =
1

M

M∑
i=1

f(xi)h(xi)

q(xi)
(4.26)

is an unbiased estimator of I. The adjustment factor wi = h(xi)
q(xi)

is called the importance

ratio or weight.

Moreover, the variance of Î is finite provided∫
Q

f(x)2h(x)2

q(x)
dx = Eq

[
f(x)2h(x)2

q(x)2

]
is finite, which roughly means that q must have heavy enough tails given functions f

and h. The optimal importance density is q(x) ∝ f(x)h(x), which makes the variance

of Î zero (Geweke, 1989).

As described in Section 4.1.2 the Monte Carlo approximation of the expected Shannon

information gain is given by

Ũ(ξ) =
1

k1

k1∑
h=1

[
log πl(yh|ψh, ξ)− log π̃he

]
,

where π̃he is an estimate of the evidence

πe(yh|ξ) =

∫
Ψ
πl(yh|ψ, ξ)πb(ψ)dψ,

which is of the form (4.25) with f = πl(yh|ψ, ξ) and h = πb(ψ). Hence we can esti-

mate the evidence by taking an independent sample ψ̃h1, . . . , ψ̃hk2 , from an importance

density qhψ(ψ) and evaluating the importance sampling estimator,

πe(yh|ξ) ≈ π̃he =
1

k2

k2∑
k=1

whkπl(yh|ψ̃hk, ξ). (4.27)

Above,

whk =
πb(ψ̃hk)

qhψ(ψ̃hk)
,

5The support of a real-valued function g is the subset of the domain containing those elements which
are not mapped to zero, supp(g) = {x ∈X|g(x) 6= 0}.
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and we assume that the likelihood function πl(yh|ψ̃hk, ξ) can be evaluated for each

yh ∼ πl(y|ψh, ξ) from the outer sample.

To see how to choose a good importance density, note that if we could sample from

the posterior density πa(ψ|y, ξ), with weights whk = πb(ψ̃hk)/πa(ψ̃hk|yh, ξ), then the

approximation (4.27) would be exactly the evidence. Thus, a good importance distribu-

tion should be similar to the posterior distribution, i.e. qψ(ψ) should be approximately

proportional to πl(y|ψ, ξ)πb(ψ).

A number of different approximations to the posterior distribution have been used to

form the importance distribution.

(i) Nested importance sampling

Feng (2015) uses a normal approximation to the posterior as an importance distribution,

qhψ(ψ) ∼ N
(
µ̂h, Σ̂h

)
.

The posterior mean µh and posterior covariance Σh for yh, are estimated using self-

normalised importance sampling from the prior density πb(ψ) (Owen, 2013, Chapter

9). Here,

µh = E[ψ|yh, ξ]

=

∫
Ψ
ψ πa(ψ|yh, ξ)dψ

=

∫
Ψ
ψ
πl(yh|ψ, ξ)
πe(yh|ξ)

πb(ψ)dψ. (4.28)

The evidence πe(yh|ξ) is approximated by

πe(yh|ξ) =

∫
Ψ
πl(yh|ψ, ξ)πb(ψ)dψ

≈ 1

k1

k1∑
i=1

πl(yh|ψi, ξ), (4.29)

with ψ1, . . . ,ψk1 a sample from the prior density πb(ψ). Then the approximate evidence

is used with Equation (4.28) to get the estimate of the posterior mean,

µ̂h =

k1∑
i=1

ψi
πl(yh|ψi, ξ)∑k1
i=1 πl(yh|ψi, ξ)

. (4.30)

The posterior covariance is given by:

Σh = Var[ψ|yh, ξ]
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=

∫
Ψ

(ψ − µh)(ψ − µh)Tπl(yh|ψ, ξ)
πe(yh|ξ)

πb(ψ)dψ.

Estimate (4.29) of the evidence and the estimate of the posterior mean, µ̂h, can be

used to obtain an estimate of the posterior variance:

Σ̂h =

k1∑
i=1

(ψi − µ̂h)(ψi − µ̂h)T πl(yh|ψi, ξ)∑k1
i=1 πl(yh|ψi, ξ)

. (4.31)

The mean (4.30) and variance (4.31) are used to form a multivariate normal impor-

tance distribution or, if fatter tails are needed, they are used to form a multivariate t

importance distribution to approximate the evidence. This distribution is used to per-

form the sampling required for approximation (4.27), and approximate the expected

Shannon information gain via (4.10). We will refer to this method as nested importance

sampling (nIS).

Feng (2015) demonstrated that this nested importance sampling scheme is not very

robust especially for small inner sample size, k2. For this reason a minimum effective

sample size was introduced, which is used as a cutoff for reverting to using the original

näıve Monte Carlo approach of sampling from the prior distribution, as described in

Section 4.1.2.

The effective sample size (ESS) is used as a diagnostic to show when the weights,

whk =
πl(yh|ψ̃hk, ξ)
qhψ(ψ̃hk)

,

are problematic. We assume that whk > 0 (if whk = 0 for all k = 1, . . . , k2 then the

importance sampling has failed). The effective sample size compares the variance of Î

under the importance distribution to the variance that would be obtained if the prior

distribution were used as the importance distribution. Different derivations can be used

to find a useful expression of ESS (Owen, 2013, Chapter 9). A popular formula is given

by

ESS =
1∑k1

h=1(w̄h)2
,

where

w̄h =
πl(yh|ψh, ξ)∑k1
i=1 πl(yh|ψi, ξ)

, h = 1, . . . k1,

are the normalised weights.

4.2.4 Other methods for approximating the evidence

Various other approaches have been proposed to approximate the evidence. Newton

and Raftery (1994) proposed the use of the harmonic mean estimator. Chib (1995)

proposed that the posterior can be estimated by a Monte Carlo average based on draws
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from the Gibbs sampler. DiCiccio et al. (1997) investigated theoretical and empirical

properties of Laplace approximation, Bartlett’s adjustment, importance sampling and

bridge sampling for estimating the evidence. Gelman and Meng (1998) investigated

path sampling for estimating normalising constants. However, all these methods require

MCMC samples from the posterior in order to estimate the evidence. Thus it would be

computationally expensive to use them in our design utility approximations, since an

MCMC chain would need to be run for each iteration of the outer loop (Ryan, 2003).

A possible way to extend the importance sampling approach might be to use annealed

importance sampling (Neal, 2001) which adaptively defines an importance sampling

distribution to approximate the posterior. However, this method requires a temper-

ature cooling scheme which will be difficult to choose within Monte Carlo loops and

optimisation schemes. Skilling (2006) proposed nested sampling for the approximation

of the evidence which again is computationally expensive, and likely to be too bur-

densome for repeated use at each iteration of the outer loop (Friel and Wyse, 2012).

Power posteriors were explored by Friel and Pettitt (2008) for estimating the evidence.

Similar to the annealed importance sampling method the power posterior approach also

requires a temperature scheme to be chosen, which will be difficult within Monte Carlo

loops that are repeated many times in the search for an optimal design.

Along similar lines to a Laplace approximation we could consider other deterministic

approximations such as Variational Bayes methods (Parise and Welling, 2007) or an

integrated nested Laplace approximation (INLA) (Rue et al., 2009). The potential

application of these methods within design optimisation problems is an area for future

research.

4.3 Laplace importance sampling for approximating the

expected utility

We now approximate the evidence, πe(y|ξ), by importance sampling using a Laplace ap-

proximation to the posterior distribution as the importance distribution. This approx-

imation to the evidence is then used to approximate the expected Shannon information

gain via (4.10). Compared to näıve Monte Carlo, sampling from an approximation to

the posterior distribution is much less likely to result in a zero estimate of the evidence.

Recall that the basic idea of the Laplace approximation is to approximate the log-

unnormalised posterior density log πu(ψ|y, ξ), with a quadratic Taylor series expansion

around the posterior mode ψ̂,

log πu(ψ|y, ξ) ≈ log πu(ψ̂|y, ξ)− 1

2

[
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂)

]
,

where as before,

H(ψ̂) = −∂
2 log πu(ψ|y, ξ)
∂ψ∂ψT

∣∣∣
ψ=ψ̂

.
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This implies that if H(ψ̂) is positive-definite, then exp [log πu(ψ|y, ξ)] is approximately

proportional to the density of a multivariate normal distribution with mean µ and

variance Σ = H(ψ̂)−1.

Kuk (1999) first proposed to use the Laplace approximation to form an importance

distribution in the context of estimating the likelihood function of generalised linear

mixed models. We implement this idea within a nested Monte Carlo scheme for ap-

proximating the expected Shannon information gain utility and explore how the bias

and variance change with the inner and outer loop Monte Carlo sample sizes.

We describe two methods, Laplace Importance Sampling (LIS) and Approximate Laplace

Importance Sampling (ALIS), outlined in Algorithm 3, which both approximate the ev-

idence using (4.27) with an importance density of the form:

qhψ(ψ) ∼ N(µ̂h, Σ̂h).

If the posterior density has fatter tails it is possible that a t importance distribution

might give a better approximation thus we will include a t distribution in our compar-

isons as well. Oh and Berger (1993) suggested to use a low number, ν, of degrees of

freedom for the t distribution. In the examples presented in this thesis we use ν = 5

which seems to have adequate performance in our numerical examples given in Chap-

ters 5 and 6. The choice of the degrees of freedom in this design problems is an area of

future research.

In both cases, Σ̂h is obtained via

Σ̂h = H(µ̂h)−1,

where H(µ̂h) is the negative Hessian of the log-unnormalised posterior density evaluated

at the mean µ̂h of the importance density.

In LIS, µ̂h is obtained via,

µ̂h = ψ̂h ∈ arg max
ψ

πu(ψ|yh, ξ). (4.32)

The posterior mode, ψ̂h, is found using a quasi-Newton algorithm6, the Broyden-

Fletcher-Goldfarb-Shanno algorithm (Bonnans et al., 2006, Chapter 4); our imple-

mentation is from Press et al. (2007, Chapter 10). This algorithm typically converges

in a few iterations, using as initial values the parameter values, ψh, known to have

generated the hypothetical data, yh. We do not use Fisher scoring because in most of

our examples the expected Fisher information matrix is difficult to calculate and this

matrix can suffer from problems with numerical ill-conditioning, see also Section 4.3.3.

Intuitively, LIS seems to be the natural way to construct a good importance sampling

6Quasi-Newton algorithms essentially employ the Newton-Raphson method with an estimated Hes-
sian matrix which is guaranteed to be positive-definite.
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distribution. However, for some models it might be the case that the posterior mode

ψ̂h does not change significantly from the initial values ψh we have sampled from the

prior distribution. Hence the additional computational expense of finding the posterior

mode may be unnecessary. For this reason, we also introduce ALIS, a simpler version

of LIS.

In ALIS, µ̂h is obtained via

µ̂h =


ψh, if H(ψh) is positive-definite

ψ̂h otherwise .
(4.33)

As shown in Equation (4.33), if H(ψh) is positive-definite, the mean of the importance

sampling distribution is the true parameter vector ψh sampled from the prior distribu-

tion, that is known to have generated the hypothetical data yh. This will reduce the

computational expense because we only need to proceed to the optimisation for the few

occasions when H(ψh) is not positive-definite.

Algorithm 3: ALIS/LIS Algorithm

Generate a sample ψh, h = 1, . . . , k1, from πb(ψ);
for h = 1, . . . , k1 do

Generate a response yh from πl(y|ψh, ξ);
Calculate µ̂h and Σ̂h using Algorithm 4 or Algorithm 5;

Generate a sample {ψ̃hk}k2
k=1, from the importance density qhψ(ψ) with mean µ̂h

and variance Σ̂h;
for k = 1, . . . , k2 do

Calculate ũhk = πl(yh|ψ̃hk,ξ)πb(ψ̃hk)

qhψ(ψ̃hk)
;

Estimate the evidence πe(yh|ξ) via π̃he = 1
k2

∑k2
k=1 ũhk;

Calculate ũh = log πl(yh|ψh, ξ)− log π̃he ;

Estimate the expected Shannon information gain utility Ũ(ξ) = 1
k1

∑k1
h=1 ũh;

Algorithm 4: LIS step

Calculate the posterior mode, ψ̂h of πu(ψ|yh, ξ);
Set µ̂h = ψ̂h and Σ̂h = H(µ̂h)−1

Ryan et al. (2015) first suggested implementing LIS in the Bayesian design framework

for a particular Pharmacokinetics example, and using different utility functions to that

employed in this thesis. LIS was then used within an MCMC algorithm in order to

search for near-optimal designs for the particular PK study.

Recently, Beck et al. (2018) examined the performance of LIS under statistical models

with fixed error variance and designs consisting of a single replicated design point. They

provided some theoretical error analysis for these examples, and limited comparisons
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Algorithm 5: ALIS step

Calculate H(ψh);
if H(ψh) positive-definite then

Set µ̂h = ψh and Σ̂h = H(µ̂h)−1;
else

Calculate the posterior mode, ψ̂h of πu(ψ|yh, ξ);
Set µ̂h = ψ̂h and Σ̂h = H(µ̂h)−1;

to other methods. Optimal values of the inner and outer sample sizes are presented

to achieve given error tolerances in the estimate of the expected Shannon information

gain for minimum computational resource. In this thesis, in the numerical comparisons

in Chapter 5, we take the opposite approach of assuming a fixed computational budget

for both samples. Interestingly, Beck et al. (2018) dismissed ALIS due to discrepancy

between ψh and ψ̂h; in Chapter 5, we find the effectiveness of ALIS is very much

dependent on the example under study.

4.3.1 ALIS/LIS for nuisance parameters

We will now study the case where the model contains nuisance parameters. Any pa-

rameter, e.g. the variance components, which is not of immediate interest is called a

nuisance parameter; such parameters must still taken into account when studying the

parameters which are of interest.

We partition the parameter vector as ψ = (θT,γT)T, where θ ∈ Θ are the pθ param-

eters of interest and γ ∈ Γ are the pγ nuisance parameters. The expected utility now

takes the form:

U(ξ) = E[u(ξ,θ,y)]

=

∫
Θ

∫
Y

[log πM (y|θ, ξ)− log πe(y|ξ)]π(y,θ|ξ)dydθ

=

∫
Θ

∫
Y

log
πM (y|θ, ξ)
πe(y|ξ)

π(y,θ|ξ)dydθ,

where

πM (y|θ, ξ) =

∫
Γ
π(y,γ|θ, ξ)dγ =

∫
Γ
πl(y|θ,γ, ξ)πb(γ|θ)dγ,

is the marginal distribution of the data, y, after integrating out the nuisance parame-

ters, γ.

Hence the approximation (4.10) of the expected Shannon information gain, becomes

Ũ(ξ) ≈ 1

k1

k1∑
h=1

[
log π̃hM − log π̃he

]
,
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with, as before,

πe(yh|ξ) ≈ π̃he =
1

k2

k2∑
k=1

πl(yh|ψ̃hk, ξ)
πb(ψ̃hk)

qhψ(ψ̃hk)
,

{ψ̃hk}k2
k=1 = {θ̃hk, γ̃hk}k2

k=1, and now a second importance sampling approximation is

used to estimate the likelihood marginal to the nuisance parameters γ,

πM (yh|θh, ξ) ≈ π̃hM =
1

k3

k3∑
s=1

πl(yh|θh, ˜̃γhs, ξ)
πb(˜̃γhs|θh)

qhγ|θ(
˜̃γhs)

,

{ ˜̃γhs}k3
s=1. Here qhγ|θ is the importance density and πb(γ|θ) is the prior density of the

nuisance parameters γ given the parameters of interest θ.

We choose qhγ|θ to approximate the conditional posterior density πa(γ|y,θ) via a mul-

tivariate normal approximation to the joint posterior distribution of θ and γ,(
θh
γh

) ∣∣∣∣∣yh, ξ ∼ N (µ̂h, Σ̂h
)
, (4.34)

where µ̂h =
[
µ̂hθ µ̂

h
γ

]T
is defined by (4.32) for LIS, and (4.33) for ALIS, and

Σ̂h =
[
H(µ̂h)

]−1
=

[
Hh
θθ Hh

θγ

(Hh
θγ)T Hh

γγ

]−1

=

[
Hθθ
h Hθγ

h

(Hθγ
h )T Hγγ

h

]
.

Here

Hh
θθ,ij = −

[
∂2 log πu(µ̂h|yh, ξ)

∂θi∂θj

]
, Hh

θγ,ij′ = −
[
∂2 log πu(µ̂h|yh, ξ)

∂θi∂γj′

]
,

Hh
γγ,i′j′ = −

[
∂2 log πu(µ̂h|yh, ξ)

∂γi′∂γj′

]
,

where i, j = 1, . . . , pθ and i′, j′ = 1, . . . , pγ . There are partition formulas to obtain Hθθ

from Hθθ, Hθγ and Hγγ , see, for example, Graybill (1983, Chapter 8).

It follows from standard results on multivariate normal distributions (Banerjee et al.,

2004, Chapter 2) that if (4.34) holds then:

γh | yh,θh, ξ ∼ N
(
µ̂hγ + Hγθ

h

(
Hθθ
h

)−1
(θh − µ̂hθ), Hγγ

h −Hγθ
h

(
Hθθ
h

)−1
Hθγ
h

)
,

with Hγθ
h = (Hθγ

h )T.

We use this approximate conditional posterior as the importance distribution to ap-

proximate the marginal likelihood to integrate out the nuisance parameters γ, and

approximate expected Shannon information gain with ALIS and LIS as outlined in

Algorithm 6.
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Algorithm 6: ALIS/LIS Algorithm for nuisance parameters

Generate a sample ψh = (θh,γh)T, h = 1, . . . , k1, from πb(ψ);
for h = 1, . . . , k1 do

Generate a response yh from πl(y|ψh, ξ);
Calculate µ̂h and Σ̂h using Algorithm 4 or Algorithm 5;

Generate a sample {ψ̃hk}k2
k=1 = {θ̃hk, γ̃hk}k2

k=1, from the importance density qhψ(ψ)

with mean µ̂h and variance Σ̂h;
for k = 1, . . . , k2 do

Calculate ũhk = πl(yh|ψ̃hk,ξ)πb(ψ̃hk)

qhψ(ψ̃hk)
;

Estimate the evidence πe(yh|ξ) by π̃he = 1
k2

∑k2
k=1 ũhk;

Calculate µ̂hγ|θ = µ̂hγ + Hγθ
h

(
Hθθ
h

)−1
(θh − µ̂hθ), Σ̂h

γ|θ = Hγγ
h −Hγθ

h

(
Hθθ
h

)−1
Hθγ
h ;

Generate a sample { ˜̃γhs}k3
s=1, from the importance density qhγ|θ(γ) with mean µ̂hγ|θ

and variance Σ̂h
γ|θ;

for s = 1, . . . , k3 do

Calculate ũhs = πl(yh|θh, ˜̃γhs,ξ)πb(˜̃γhs)

qh
γ|θ(˜̃γhs)

;

Estimate the marginal likelihood πM (yh|θh, ξ) by π̃hM = 1
k3

∑k3
s=1 ũhs;

Calculate ũh = log π̃hM − log π̃he ;

Estimate the expected Shannon information gain utility by Ũ(ξ) = 1
k1

∑k1
h=1 ũh;

4.3.2 ALIS/LIS for transformed parameters

Often we need to construct an importance distribution that guarantees that the pa-

rameters of interest satisfy some constraints, e.g. are always positive. We do this by

constructing a normal approximation to the posterior distribution of a transformed

version of the parameter, ψ′ = T (ψ), e.g. T = log to ensure positivity. Another

reason for transforming the parameters is to put them on a scale where the normal

approximation to the posterior distribution is more accurate, e.g. when the posterior

distribution is log-normal then the transformation ψ′ = (logψ1, . . . , logψq2)T will make

the approximation exact.

Let πl, π
ψ′

l denote the likelihood in ψ and ψ′ parameterisations, respectively, and

similarly let πb, π
ψ′

b denote the prior densities for ψ and ψ′ respectively. Then the

unnormalised posterior denisty of ψ′ is given by,

πψ
′

u (ψ′|y, ξ) = πψ
′

l (y|ψ′, ξ)πψ
′

b (ψ′)

= πl(y|T−1(ψ′), ξ)πb(T
−1(ψ′))

∣∣detJ
[
T−1(ψ′)

]∣∣ , (4.35)

where J
[
T−1(ψ′)

]
is the Jacobian matrix7 of T−1. It is necessary to calculate the

7The Jacobian matrix for the transformation (x, y)→ (z, u) is:

J =

[
dz
dx

dz
dy

du
dx

du
dy

]
.
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negative Hessian of the log-unnormalised posterior density (4.35) with respect to ψ′,

Hψ′(ψ
′), i.e. find the derivatives of log πψ

′
u (ψ′|y, ξ) with respect to ψ′. For T (ψi) =

logψi, i = 1, . . . , q2,

∂T−1(ψ′i)

∂ψ′j
=
∂ expψ′i
∂ψ′j

=


expψ′i, i = j

0, i 6= j ,

log

∣∣∣∣∂T−1(ψ′i)

∂ψ′i

∣∣∣∣ = log expψ′i = ψ′i ⇔
∂ log

∣∣∣∂T−1(ψ′i)
∂ψ′i

∣∣∣
∂ψ′i

= 1,

and hence

∂ log πψ
′

u (ψ′|y, ξ)
∂ψ′i

=
∂ log πl(y|T−1(ψ′), ξ)

∂ψ′i
+
∂ log πb(T

−1(ψ′))

∂ψ′i
+ 1,

∂2 log πψ
′

u (ψ′|y, ξ)
∂ψ′i∂ψ

′
j

=
∂2 log πl(y|T−1(ψ′), ξ)

∂ψ′i∂ψ
′
j

+
∂2 log πb(T

−1(ψ′))

∂ψ′i∂ψ
′
j

, (4.36)

where j = 1, . . . , q2.

To estimate the evidence, πe(y|ξ), in the approximate expected Shannon information

gain (4.10) by importance sampling, as shown in Equation (4.27), we sample {ψ̃′hk}
k2
k=1

from the importance density of the transformed parameters ψ′,

qhψ′(ψ
′) ∝ N

(
µ̂hψ′ ,Σ

h
ψ′

)
,

where µ̂hψ′ is defined by

µ̂hψ′ = ψ̂′h ∈ arg max
ψ′

πψ
′

u (ψ′|yh, ξ), (4.37)

for LIS (Algorithm 8), and

µ̂hψ′ =


ψ′h, if Hψ′(ψ

′
h) is positive-definite

ψ̂′h otherwise ,
(4.38)

for ALIS (Algorithm 9). The variance of the importance density is

Σh
ψ′ =

[
Hψ′(µ̂

h
ψ′)
]−1

. (4.39)

It is necessary to work out the implied importance density for the untransformed pa-

rameters ψ. It follows directly from the form of qhψ′ that

qhψ(ψ) = qhψ′ (T (ψ)) |detJ [T (ψ)]| ,
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where J [T (ψ)] is the Jacobian matrix of T , the transformation from ψ to ψ′.

The approximation of the expected Shannon information gain for the transformed pa-

rameters ψ′ with ALIS and LIS is outlined in Algorithm 7.

Algorithm 7: ALIS/LIS Algorithm for transformed parameters

Generate a sample ψh, h = 1, . . . , k1, from πb(ψ);

Calculate the transformed sample {ψ′h}
k1

h=1 = {T (ψh)}k1
h=1;

for h = 1, . . . , k1 do
Generate a response yh from πl(y|ψh, ξ);
Calculate µ̂hψ′ and Σ̂h

ψ′ using Algorithm 8 or Algorithm 9;

Generate a sample {ψ̃′hk}
k2
k=1, from the importance density qhψ′(ψ

′) with mean

µ̂hψ′ and variance Σ̂h
ψ′ , and calculate ψ̃hk = T−1(ψ̃′hk);

for k = 1, . . . , k2 do

Calculate ũhk =
πl(yh|ψ̃hk,ξ)πb(ψ̃hk)

qh
ψ′(T (ψ̃hk))|detJ[T (ψ̃hk)]| ;

Estimate the evidence πe(yh|ξ) via π̃he = 1
k2

∑k2
k=1 ũhk;

Calculate ũh = log πl(yh|ψh, ξ)− log π̃he ;

Estimate the expected Shannon information gain utility by Ũ(ξ) = 1
k1

∑k1
h=1 ũh;

Algorithm 8: LIS step for transformed parameters

Calculate the posterior mode, ψ̂′h of πψ
′

u (ψ′|yh, ξ);
Set µ̂hψ′ = ψ̂′h and Σ̂h

ψ′ = Hψ′(µ̂
h
ψ′)
−1

Algorithm 9: ALIS step for transformed parameters

Calculate Hψ′(ψ
′
h);

if Hψ′(ψ
′
h) positive-definite then

Set µ̂hψ′ = ψ′h and Σ̂h
ψ′ = Hψ′(µ̂

h
ψ′)
−1;

else

Calculate the posterior mode, ψ̂′h of πψ
′

u (ψ′|yh, ξ);
Set µ̂hψ′ = ψ̂′h and Σ̂h

ψ′ = Hψ′(µ̂
h
ψ′)
−1;

4.3.3 Different methods for constructing the importance sampling

distribution

In order to arrive at the formulation of ALIS and LIS described in Section 4.3, we first

attempted to construct the importance sampling distribution in a number of different

ways.

First, we tried to use µ̂h = ψh as the mean of the importance distribution for all h =

1, . . . , k1, and the inverse of the observed Fisher information matrix as the covariance

matrix. However the observed Fisher information matrix is often not positive-definite

and hence is not always invertible. Hence, we attempted to regularise the observed
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Fisher information matrix by adding the Hessian of the log-prior density which will

always be positive-definite. Even so, the negative Hessian of the log-unnormalised

posterior density is often not positive-definite at ψh but will be at ψ̂h. Instead we

could have used the expected Fisher information matrix, which is by definition positive-

definite. However, often it is non-trivial to obtain the expected Fisher information

matrix for some nonlinear models, especially when σ2
ε is integrated out of the likelihood

function. Also, although the expected Fisher information matrix is positive-definite in

theory, it is often numerically close to singular.

Second, we tried to identify an approximate posterior mean by performing a very

small number (one or two) of Newton-Raphson steps, using ψh as the starting values.

However, again the negative Hessian of the log-unnormalised posterior density was

often not positive-definite. In the final form of ALIS, we thus decided to selectively

use a quasi-Newton algorithm, initialized at ψh, to obtain the posterior mode in cases

where the negative Hessian of the log-unnormalised posterior density was numerically

indefinite or singular.

In the next chapter we perform the first thorough comparison of the different methods

introduced in the previous sections (Section 4.1.3, Section 4.2.1, Section 4.2.2 and

Section 4.2.3) and the new proposed methods, ALIS and LIS (Section 4.3), in terms of

their relative performance and computational cost in the context of expected Shannon

information gain estimation.

4.4 Summary

In this chapter we described several existing methods for numerical estimation of the

expected Shannon information gain utility, and provided details for two unexplored

methods, ALIS and LIS. We described the general approach to fully Bayesian designs

of experiments, dealing with several important challenges including estimation of the

utility function, and design optimisation. We illustrated through the simple linear

example how the most simple approach (Näıve Monte Carlo) used to approximate the

expected Shannon information gain results in positive bias and overestimation of the

information gain for a given design. In the next chapter, we show that ALIS and LIS

give an efficient compromise between accuracy and computational cost of estimation of

the expected utility.
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Chapter 5

Assessments of Shannon

information gain approximations

in Bayesian design

In this chapter we perform the first thorough comparison of the different methods

introduced in Chapter 4 in terms of their relative performance and computational cost

in the context of expected Shannon information gain estimation. An optimisation

algorithm, the approximate coordinate exchange (ACE) algorithm, is then described to

optimise the expected utility. We combine ACE with the different methods in Chapter

4 to find Bayesian optimal designs for nonlinear models.

5.1 Introduction

We aim to approximate the expected Shannon information gain using

Ũ(ξ) =
1

k1

k1∑
h=1

[
log πl(yh|ψh, ξ)− log π̃he

]
,

with a variety of approximations π̃he to the evidence, πe(y|ξ); see Table 5.1.

Using expression (4.3) we can also apply the Laplace approximation II (LA2), described

in Section 4.2.2, where an approximation to the expected Shannon information gain

takes the form

Ũ(ξ) =
1

k1

k1∑
h=1

[
−1

2
log
[
(2π)q2

∣∣∣H(ψ̂h)−1
∣∣∣]− q2

2

− log πb(ψ̂h)− 1

2
tr
[
Q(ψ̂h)H(ψ̂h)−1

]]
,

which does not directly use an approximation to the evidence.
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Method Approximate Evidence

Näıve Monte Carlo (nMC) π̃he = 1
k2

∑k2
k=1 πl(yh|ψ̃hk, ξ), ψ̃hk ∼ πb(ψ)

Importance Sampling

qhψ is a N
(
µ̂h, Σ̂h

)
or

tν

(
q2, µ̂

h, ν−2
ν Σ̂h

)
density

π̃he = 1
k2

∑k2
k=1

πb(ψ̃hk)

qhψ(ψ̃hk)
πl(yh|ψ̃hk, ξ), ψ̃hk ∼ qhψ(ψ)

For nuisance parameters or transformed parameters

see Sections 4.3.1 and 4.3.2, respectively

Nested Importance sam-

pling (nIS)

µ̂h and Σ̂h defined via Equation (4.30)

and Equation (4.31), respectively

Laplace Importance sam-

pling (LIS)

µ̂h = ψ̂h

Σ̂h = H(ψ̂h)−1

where H(ψ̂h) is the negative Hessian of log πu(ψ|y, ξ)
evaluated at ψ̂h ∈ arg maxψ πu(ψ|yh, ξ)

Approximate Laplace Im-

portance sampling (ALIS)
µ̂h =


ψh, H(ψh) positive-definite

ψ̂h otherwise

Σ̂h = H(µ̂h)−1

Laplace Approximation I

(LA1)

π̃he = log πu(ψ̂h|yh, ξ) + 1
2 log

[
(2π)q2

∣∣∣H(ψ̂h)−1
∣∣∣]

Table 5.1: Methods described in Chapter 4 for approximating the evidence in the
expected Shannon information gain

Firstly we show the advantage of ALIS and LIS over nMC through the simple linear

regression example, and then we compare all the methods for three nonlinear regression

models. In the examples in Section 5.1.2 and Section 5.1.3 we also assess the ‘reuse’

method (4.11) (Huan and Marzouk, 2013) for approximating the expected utility.

5.1.1 Linear Regression example (continued)

Continuing the example from Section 4.1.3, we will now compare nMC with the new

methods for approximating the expected utility, ALIS and LIS, proposed in Section

4.3. We acknowledge that this example is unusually favourable to LIS as here the true

posterior is a normal distribution, and so the approximate posterior will be exactly
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Figure 5.1: Estimated expected Shannon information gain for the linear model (4.12)
using nMC and different combinations of k1 and k2, and the true value of the Shannon
information gain obtained using (4.16) (red line)

equal to the true posterior distribution. Hence the approximation π̃he to the evidence

will be exact.

Figures 5.1, 5.2 and 5.3, show the distribution of 100 estimates of the expected Shan-

non information gain utility approximated using nMC, ALIS and LIS, respectively, for

different pairs of inner and outer loop sizes. The scale in these three figures is chosen to

be comparable. It is clear that the estimate of the expected utility in Figures 5.2 and

5.3, is much closer to the true value even for very small values of the inner and outer

loop sample sizes. For this reason we do not include results for k1 = 300, k2 = 100000.

In Figure 5.1, results for k1 = k2 = 300 are omitted due to occurrence of the zero

evidence problem (see Section 4.1.3).

Figure 5.4 shows the same results as Figure 5.2 for ALIS but with a smaller y-axis

scale than before in order to better illustrate any differences between the different pairs

of k1 and k2. We notice that for small inner loop sample size (k2 = 300) the bias

is nonzero, but substantially smaller than when using nMC. For large values of the

inner loop sample size (k2 = 2000, 10000) the bias is negligible. The variance of the

approximation of the expected utility decreases as k1 increases. We will discuss the

interaction between sample size and computational expense further in the following

examples.

Figure 5.5 shows the same results as Figure 5.3 for LIS but again on a smaller y-axis
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Figure 5.2: Estimated ESIG for the linear model (4.12) using ALIS and different com-
binations of k1 and k2, and the true value of the Shannon information gain obtained
using (4.16) (red line)
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Figure 5.3: Estimated ESIG for the linear model (4.12) using LIS and different com-
binations of k1 and k2, and the true value of the Shannon information gain obtained
using (4.16) (red line)
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Figure 5.4: Estimated ESIG for the linear model (4.12) using ALIS and different com-
binations of k1 and k2, and the true value of the Shannon information gain obtained
using (4.16) (red line) on a smaller y-axis scale
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Figure 5.5: Estimated ESIG for the linear model (4.12) using LIS and different com-
binations of k1 and k2, and the true value of the Shannon information gain obtained
using (4.16) (red line) on a smaller y-axis scale
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scale. We notice that the bias has decreased compared to ALIS and the approximation

of the expected utility estimates are centred closer to the true value for the different

pairs of k1 and k2. The only thing that changes in this figure is the variance, which is

controlled by the size of k1.

In this example, where the posterior is actually a normal distribution, for LIS the

approximate posterior will be exactly equal to the true posterior distribution, and

so the approximation of the evidence will be exact. This will result in the method

being exactly unbiased. However, in this example, using LIS (centering on the mode

and using the negative Hessian of the log-unnormalised posterior density) rather than

ALIS (centering on the true parameters that generated the data) has not resulted in a

substantial improvement, supporting the use of ALIS with more complex examples.

5.1.2 Michaelis-Menten model

The first nonlinear example in this section is the Michaelis-Menten model,

yi =
θ1xi
θ2 + xi

+ εi, i = 1, . . . , n,

where εi ∼ N(0, σ2
ε) and θ1, θ2, σ2 > 0 are unknown parameters (see Section 3.1).

We assume a conjugate inverse-gamma prior distribution, σ2
ε ∼ IG(a, b), where a = 3

and b = 2 are known hyperparameters. We also assume independent log-normal prior

distributions, θ1 ∼ logN(µ1, σ
2
1) and θ2 ∼ logN(µ2, σ

2
2), where µ1 = 4.38, σ1 = 0.07,

µ2 = 1.19 and σ2 = 0.84. These prior distributions result in E[θ1] = 80 and E[θ2] = 5

and imply that the 10% and 90% quantiles of noise-to-signal ratio (σε divided by the

maximum expected response η(400,θ)) are 0.009 and 0.02 1, respectively. We chose

a more diffuse prior distribution for θ2 as this is the parameter that has a greater

influence on the shape of the response. See Appendix C.1.3 for examples of the shape

of the expected response of the Michaelis-Menten model for different values of θ1 and

θ2 sampled from these prior distributions.

We integrate out σ2
ε to obtain the marginal likelihood with respect to θ = (θ1, θ2)T,

which is available in closed form:

πM (y|θ, ξ) =

∫ ∞
0

πl(y|θ, σ2
ε , ξ)πb(σ

2
ε)dσ

2
ε

=

∫ ∞
0

(2πσ2
ε)
−n

2 exp

{
− 1

2σ2
ε

n∑
i=1

[(
yi −

θ1xi
θ2 + xi

)2
]}

× (σ2
ε)
−(a+1) exp

{
− b

σ2
ε

}
dσ2

ε

1We choose a small noise-to-signal ratio as this is the case which is most interesting in a computa-
tional point of view, where existing methods for approximating the evidence that use samples from the
prior distribution fail to give a very good estimate of the evidence.
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∝

1 +

∑n
i=1

(
yi − θ1xi

θ2+xi

)2

2b


−(a+n

2
)

.

The log-unnormalised posterior density is then given by:

log πu(θ|y, ξ) = −
(
a+

n

2

)
log

[
2b+

n∑
i=1

(
yi −

θ1xi
θ2 + xi

)2
]

+ constant

− log[θ1σ1

√
2π]− (log θ1 − µ1)2

2σ2
1

− log[θ2σ2

√
2π]− (log θ2 − µ2)2

2σ2
2

. (5.1)

In order to ensure positive values for θ1 and θ2 we use the transformation θ′ =

(log θ1, log θ2)T in LIS and ALIS (Section 4.3). Hence, we take a normal approxi-

mation to the posterior distribution of θ′ as described in Section 4.3.2. To calculate

the negative Hessian of the log-unnormalised posterior density, Hθ′(θ
′), we first have

to find the derivatives of the log-unnormalised posterior density log πθ
′
u (θ′|y, ξ) with

respect to θ′ using Equations (4.36). The derivatives can be found in Appendix B.2.1.

We compare approximations of the expected Shannon information gain for space-filling

designs with n = 5, 10, 20 points, given in Figure 5.6. We use both normal and t

importance distributions for the importance sampling methods. The ESIG using nMC,

ALIS, LIS and nIS is estimated for two combinations of inner and outer sample sizes: (i)

k1 = 2000, k2 = 10000, and (ii) k1 = k2 = 300. For LA1 and LA2 (single loop methods)

we use: (i) k1 = 2000, (ii) k1 = 300, and for the ‘reuse’ method: (i) k1 = 2000, (ii)

k1 = 300.

Figure 5.7 shows the distribution of 100 estimates of the ESIG obtained using the

different methods, and different combinations of inner and outer sample sizes, for the

n = 5 space-filling design, ξ5. We treat as the ‘true’ ESIG the nMC approximation with

k1 = k2 = 1, 000, 000 (red line), as these sample sizes should lead to negligible bias.

We notice that ALIS and LIS have small bias and variance even for small k1 and k2

compared to all other methods for the same sample sizes. Increasing k1 and k2 reduces

the variance and bias of nMC (see Section 4.1.2), and nMC,2000 has ESIG similar to

the importance sampling based methods (ALIS, LIS, nIS). Similarly, increasing k1 and

k2 reduces the variance and bias of the ‘reuse’ method. Increasing k1 and k2 also makes

a big improvement to nIS, because small k1 and k2 leads to small effective sample

size and hence in most iterations of nIS, samples from the prior are used rather than

samples from the approximate posterior distribution (see Section 4.2.3). For ALIS and

LIS, increasing (k1, k2) from (300, 300) to (2000, 10000) has little effect on the mean of

the distribution, perhaps because the bias is already small even for (k1, k2) = (300, 300).

However, the variance is reduced. In this particular example, changing from a normal

importance distribution to a t importance distribution sightly improves ALIS but makes
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Figure 5.6: The space-filling designs, ξ5, ξ10, ξ20 used with the Michaelis-Menten exam-
ple with n = 5, 10, 20, respectively

little difference for LIS. LA1 and LA2 have less bias than nMC, nIS, and ‘reuse’ with

k1 = k2 = 300, but for larger k1 and k2, use of LA1 and LA2 result in more bias than

these three methods.

Figure 5.8 shows the results for applying the methods to the 5-run space filling de-

sign, ξ5, in terms of relative root mean squared error (rRMSE) with respect to a nMC

approximation with k1 = k2 = 1, 000, 000. The figure plots rRMSE against computa-

tional log-time. The nMC,1000000 approximation is treated as the ‘true’ ESIG because

it should lead to negligible bias and variance. Four clusters can be distinguished in Fig-

ure 5.8: a cluster of nMC and nIS for small k1 and k2; a cluster of LA1, LA2 and ’reuse’

for small k1 and k2; a cluster of ALIS and LIS for small k1 and k2; and a cluster of

all methods for large k1 and k2. The least computationally expensive methods are

LA1,300 and LA2,300 but these methods result in higher rRMSE compared with most

other methods. As expected, nMC,300, nIS,300 and nIS,t,300 give the highest rRMSE

(nIS for small k1 and k2 leads to small effective sample size and hence the prior distri-

bution is often being used as the importance distribution rather than an approximate

posterior distribution, see Section 4.2.3). ALIS and LIS with k1 = k2 = 300 and both

normal and t importance distributions have lower rRMSE than other methods with

similar computational expense. Increasing k1 and k2 for all methods has decreased the

rRMSE but increased the computational expense.

Next we present results for the designs with more runs (n = 10, 20) which also support

the results and insights from above.
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Figure 5.7: Estimated expected Shannon information gain for the parameters θ of the
Michaelis-Menten model for all methods (see Table 5.1, Section 4.2.2 and (4.11)) for the
n = 5 space-filling design, ξ5, and the ‘true’ ESIG (red line) obtained from nMC with
k1 = k2 = 1, 000, 000 (the notation nMC,2000 denotes estimation of the ESIG using
näıve Monte Carlo with k1 = 2000 and k2 = 10000, nMC,300 is the ESIG evaluated
100 times using nMC with k1 = k2 = 300, etc)
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Figure 5.9: Estimated ESIG for the parameters θ of the Michaelis-Menten model for all
methods for the n = 10 space-filling design, ξ10, and the ‘true’ ESIG (red line) obtained
from nMC with k1 = k2 = 1, 000, 000
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Figure 5.10: Estimated ESIG for the parameters θ of the Michaelis-Menten model for all
methods for the n = 10 space-filling design, ξ10, and the ‘true’ ESIG (red line) obtained
from nMC with k1 = k2 = 1, 000, 000 (nMC,300, nIS,300, nIS,t,300 and reuse,300 are
omitted because these methods exhibit large bias)
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Figure 5.11: The rRMSE against log-time for the n = 10 space-filling design, ξ10, for
the Michaelis-Menten example

Figures 5.9 and 5.10 show 100 estimates of the ESIG for each method for the 10-run

space-filling design, ξ10. In Figure 5.10, the results for nMC,300, nIS,300, nIS,t,300 and

reuse,300 are omitted because these methods exhibit large bias. The results are similar

to the results of the n = 5 space-filling design presented in Figure 5.7, but with higher

information gains in general. For this 10-run design nMC and nIS result in greater bias

than the 5-run design possibly due to the greater difference between the prior and the

posterior distributions.

In Figure 5.11 we assess the n = 10 space-filling design, ξ10, in terms of rRMSE against

log-time. The same procedure was followed as before. The least computationally expen-

sive methods are LA1,300 and LA2,300 however these have higher rRMSE than other

methods. We omit nMC,300, nIS,300, nIS,t,300 and reuse,300 because these methods

exhibit large bias. Compared to the Laplace approximation methods, ALIS,300 and

LIS,300 with both normal and t importance distributions give much reduced rRMSE for

a moderate increase in computational cost. ALIS,300 and LIS,300 are also substantially

cheaper and more accurate than nMC,2000, nIS,2000 and reuse,2000. Only ALIS,2000

and LIS,2000 for both normal and t importance distributions are more accurate, but

this comes at the price of a significant increase in computational expense which does

not seem worthwhile for this example.

Figure 5.12 shows 100 estimates of the ESIG for each method for the n = 20 space-
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Figure 5.12: Estimated ESIG for the parameters θ of the Michaelis-Menten model for all
methods for the n = 20 space-filling design, ξ20, and the ‘true’ ESIG (red line) obtained
from nMC with k1 = k2 = 1, 000, 000 (nMC,300, nIS,300, nIS,t,300 and reuse,300 are
omitted because these methods exhibit large bias)
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Figure 5.13: The rRMSE against log-time for the n = 20 space-filling design, ξ20, for
the Michaelis-Menten example
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filling design, ξ20. Similar results are obtained as in Figures 5.7 and 5.9 but with the

information gain again being higher. We can notice that increasing the number of runs,

n, of the design has increased the bias in the ‘reuse’ method. Also, increasing n has

decreased the bias in LA1 and LA2, as we would expect, as the Laplace approximation

relies on asymptotic results and hence as n increases the bias decreases.

In Figure 5.13 we assess the 20-run space-filling design, ξ20, in terms of rRMSE against

log-time. Similar results apply here as for the previous designs. LIS,300 and ALIS,300

give a highly accurate approximation at relatively low computational cost.

Figures 5.7-5.13 show that ALIS and LIS with small k1 and k2 have given results with

less bias than other methods for low computational cost (small k1 and k2).

5.1.3 Biochemical Oxygen Demand (BOD) model

A data set on biochemical oxygen demand (BOD) was analysed by Bates and Watts

(1988, Chapter 2) assuming the following model:

yi = θ1(1− exp{−θ2xi}) + εi, i = 1, . . . , n, (5.2)

where εi ∼ N(0, σ2
ε), yi is BOD (mg/L) and xi is time (in days).

We assume independent log-normal prior distributions, θ1 ∼ logN(µ1, σ
2
1) and θ2 ∼

logN(µ2, σ
2
2), with µ1 = 3.38, σ1 = 0.20, µ2 = 1.098, σ2 = 1.12. The prior means

were chosen to match the means as given by DiCiccio et al. (1997) (E(θ1) = 30 and

E(θ2) = 3). The prior variances were chosen to show differences between the methods

(for smaller and bigger variances the results were similar for all methods). We also

assume a non-informative prior distribution on σε with πb(σε) ∝ σ−1
ε . See Appendix

C.1.4 for examples of the shape of the expected response of the BOD model for different

values of θ1 and θ2 sampled from these prior distributions.

The likelihood is given by:

πl(y|θ, σ2
ε , ξ) =

1

(2πσ2
ε)
n/2

exp

{
− 1

2σ2
ε

(y − η)T(y − η)

}
,

where η = [η(x1,θ) . . . η(xn,θ)]T and η(xi,θ) = θ1(1− exp{−θ2xi}).

We integrate out σ2
ε to obtain the marginal likelihood:

πM (y|θ, ξ) =

∫ ∞
0

πl(y|θ, σ2
ε , ξ)πb(σε)dσε

∝
∫ ∞

0

1

(2πσ2
ε)
n/2

exp

{
− 1

2σ2
ε

(y − η)T(y − η)

}
1

σε

1

2σε
dσ2

ε

=

∫ ∞
0

1

2

1

(2π)n/2
1

(σ2
ε)
n/2+1

exp

{
− 1

2σ2
ε

(y − η)T(y − η)

}
dσ2

ε

∝
[
(y − η)T(y − η)

]−n/2
.
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The above integral is evaluated by comparison with an inverse-gamma density and is

finite provided that the residuals of the sum of squares, (y − η)T(y − η), is non zero

which is true with probability one.

The log-unnormalised posterior density for θ = (θ1, θ2)T is then given by:

log πu(θ|y, ξ) = −n
2

log
[
(y − η)T(y − η)

]
+ constant

− log[θ1σ1

√
2π]− (log θ1 − µ1)2

2σ2
1

− log[θ2σ2

√
2π]− (log θ2 − µ2)2

2σ2
2

.

(5.3)

Similarly to the previous example (Section 5.1.2), we aim to construct an importance

distribution that guarantees positive values of all parameters θ. Hence, we take a

normal approximation to the distribution of θ′ = (log θ1, log θ2)T as described in Section

4.3.2. In order to calculate the negative Hessian of the log-unnormalised posterior,

Hθ′(θ
′), in ALIS and LIS (Section 4.3), we first have to find the derivatives of the

log-unnormalised posterior density log πθ
′
u (θ′|y, ξ) with respect to θ′ using Equations

(4.36). These derivatives can be found in Appendix B.2.2.

We compare approximations of the ESIG for the design given in Bates and Watts

(1988, Appendix 1) (n = 6) and for space-filling designs with n = 10, 20 as shown in

Figure 5.14, for all methods similar to the previous example. We use both normal and

t importance distributions for the importance sampling methods.

As in Section 5.1.2, Figure 5.15 shows the distribution of 100 estimates of the ESIG

obtained using the different methods, and different combinations of inner and outer

sample sizes. For each choice of method and sample size, 100 Monte Carlo estimates

were calculated for the n = 6 design, ξ6. Again, we treat as the ‘true’ ESIG the nMC

approximation with k1 = k2 = 1, 000, 000 (red line) because the very large Monte Carlo

sample size should lead to negligible bias and variance. We notice that ALIS and LIS

for even small k1 and k2 have less bias and variance compared to the other methods

for the same sample sizes. Increasing k1 and k2 reduces the variance and bias of nMC

and also makes a big improvement to nIS and ‘reuse’. For ALIS and LIS, increasing

(k1, k2) from (300, 300) to (2000, 10000) has little effect on the mean of the distribution,

perhaps because the bias is already small even for (k1, k2) = (300, 300). However, the

variance is reduced. Changing from a normal to a t importance distribution slightly

improves ALIS, LIS and nIS. LA1 and LA2 have less bias than nMC,300, nIS,300,

nIS,t,300 and reuse,300, but the bias is larger than for the other methods for larger k1

and k2. In this example we can see greater differences in the ESIG between LA1 and

LA2 and the other methods; for this nonlinear example, the Laplace approximation

methods overestimate the information gain for this particular design.

Figure 5.16 shows the results for the BOD example from applying all the methods to

the n = 6 run design, ξ6, in terms of relative root mean squared error (rRMSE) with
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Figure 5.14: BOD example: The n = 6 design, ξ6, from Bates and Watts (1988,
Appendix 1), and n = 10, 20 space-filling designs, ξ10 and ξ20, respectively
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Figure 5.15: Estimated ESIG for the parameters θ of the BOD model for all methods
(see Table 5.1, Section 4.2.2 and (4.11)) for the n = 6 design, ξ6, and the ‘true’ ESIG
(red line) obtained from nMC with k1 = k2 = 1, 000, 000 (for notation see Figure 5.7)
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Figure 5.16: The rRMSE against log-time for the n = 6 design, ξ6, for the BOD example

respect to a nMC approximation with k1 = k2 = 1, 000, 000 against computational

log-time, similar to the example in Section 5.1.2. As before, the methods are separated

into four clusters. The least computationally expensive methods are LA1 and LA2 but

these have higher rRMSE than other methods. Also, reuse,300 is computationally cheap

but has higher rRMSE than other methods. ALIS,300 and LIS,300 for both normal

and t importance distributions have small rRMSE and are computationally cheap. As

expected nMC,300, nIS,300 and nIS,t,300 have the highest rRMSE. Increasing k1 and

k2 for all methods decreases the rRMSE but increases the computational expense.

Figure 5.17 and 5.18 show the distribution of 100 estimates of the ESIG for the 10-

run space-filling design, ξ10, with the only difference that nMC,300, nIS,300, nIS,t,300

and reuse,300 are omitted from Figure 5.18 because these methods exhibit large bias.

Similar comments apply here as in Figure 5.15. The difference between LA1 and LA2

and the other methods has decreased for this design as the Laplace approximation relies

on asymptotic results and hence as n increases the bias decreases.

In Figure 5.19 we assess the 10-run space-filling design, ξ10, in terms of rRMSE against

log-time. Similar results apply as for the previous design and the previous example.

We can notice here a bigger difference in rRMSE between LA1 and LA2 (LA1 results

in lower rRMSE than LA2).

Figure 5.20 shows the distribution of 100 estimates of the ESIG for each method for

the 20-run space-filling design, ξ20, following the same procedure as for the previous

example and the previous designs. We can notice similar results as in Figure 5.15 and
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Figure 5.17: Estimated ESIG for the parameters θ of the BOD model for all methods
for the n = 10 space-filling design, ξ10, and the ‘true’ ESIG (red line) obtained from
nMC with k1 = k2 = 1, 000, 000
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Figure 5.18: Estimated ESIG for the parameters θ of the BOD model for all methods
for the n = 10 space-filling design, ξ10, and the ‘true’ ESIG (red line) obtained from
nMC with k1 = k2 = 1, 000, 000 (nMC,300, nIS,300, nIS,t,300 and reuse,300 are omitted
because these methods exhibit large bias)
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Figure 5.19: The rRMSE against log-time for the n = 10 space-filling design, ξ10, for
the BOD example (nMC,300, nIS,300, nIS,t,300 and reuse,300 are omitted because
these methods exhibit large bias)
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Figure 5.20: Estimated ESIG for the parameters θ of the BOD model for all methods
for the n = 20 space-filling design, ξ20, and the ‘true’ ESIG (red line) obtained from
nMC with k1 = k2 = 1, 000, 000 (nMC,300, nIS,300, nIS,t,300 and reuse,300 are omitted
because these methods exhibit large bias)
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Figure 5.21: The rRMSE against log-time for the n = 20 space-filling design, ξ20, for
the BOD example (nMC,300, nIS,300, nIS,t,300 and reuse,300 are omitted because
these methods exhibit large bias)

Figure 5.18. Increasing the number of runs of the design, n, has decreased the bias in

LA1 and LA2, which is now less than the bias from nMC,2000, nIS,2000 and nIS,t,2000.

In Figure 5.21 we assess the 20-run space-filling design, ξ20, in terms of rRMSE against

log-time for all the methods. The same comments apply as for the previous designs

(ξ6 and ξ10) and the previous example. LIS,300 and ALIS,300 give a highly accurate

approximation at relatively low computational cost.

As in the previous example, Figures 5.15-5.21 show that ALIS and LIS with small k1

and k2 have given results with smaller bias than other methods with low computational

cost (small k1 and k2). The bias of the ‘reuse’ method remained large compared to the

other methods as we increased n. Also, for this example we notice that the difference

between LA1 and LA2 and the other methods decreases as n increases; the Laplace

approximation relies on asymptotic results and hence as n increases the bias decreases.

In addition, for this example the difference between the two Laplace approximations is

also higher (LA1 results in less bias than LA2) possibly due to the additional assumption

required in LA2 (see Section 4.2.2).
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5.1.4 Lubricant model

The last nonlinear example in this chapter is a 10-dimensional model. Following Bates

and Watts (1988, Chapter 3), the kinematic viscosity of a lubricant is given as a function

of temperature (◦C), x1, and pressure (atm), x2. The model is given by:

yi =
θ1

θ2 + x1i
+ θ3x2i + θ4x

2
2i + θ5x

3
2i + (θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
+ εi, (5.4)

where εi ∼ N(0, σ2
ε) and we define θ10 = log σε. We assume independent normal prior

distributions, θj ∼ N(µj , σ
2
j ), j = 1, . . . , 10, with mean and standard deviation equal to

the maximum likelihood estimates and their standard errors from data available from

Bates and Watts (1988, Chapter 3) (see also DiCiccio et al., 1997), which can be found

in Table 5.2.

The likelihood is

πl(y|θ, ξ) =
1

(2πσ2
ε)
n/2

exp

{
− 1

2σ2
ε

(y − η)T(y − η)

}
,

where η = [η(x11, x21,θ) . . . η(x1n, x2n,θ)]T with

η(x1i, x2i,θ) =
θ1

θ2 + x1i
+ θ3x2i + θ4x

2
2i + θ5x

3
2i + (θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
,

and the log-unnormalised posterior density is:

log πu(θ|y, ξ) = −n
2

log[2πσ2
ε ]−

1

2σ2
ε

[
(y − η)T(y − η)

]
−

10∑
j=1

{
1

2
log[2πσ2

j ] +
1

2σ2
j

(θj − µj)2

}
. (5.5)

The derivatives of this density can be found in Appendix B.2.3. The different meth-

ods listed in Table 5.1 are used to approximate the evidence, and hence the expected

Shannon information gain. In addition we also employ LA2.

We compare approximations of the expected Shannon information gain for the design

given in Bates and Watts (1988, Appendix 1) with n = 53 and for a subset of the

original design with n = 20, chosen at random with stratification to include five design

points at each level of temperature. These designs are shown in Figure 5.22. The ESIG

using nMC and nIS is estimated for k1 = 2000, k2 = 10000; using ALIS and LIS for

k1 = k2 = 300; and using LA1 and LA2 (single loop methods) k1 = 300. We choose

these combinations of inner and outer sample sizes based on the results from previous

examples. For this example the ‘reuse’ method is omitted because as shown in the

previous examples it performs poorly.
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Figure 5.22: (a) The n = 53 design, ξ53, as given by Bates and Watts (1988, Appendix
1) for the lubricant model; (b) A sub-design, ξ20, with n = 20 chosen from the 53-run
design given by Bates and Watts (1988, Appendix 1) for the lubricant model

Parameter Mean St. dev.

θ1 1054.54 24.63

θ2 206.55 5.29

θ3 1.46 0.04

θ4 -0.26 0.01

θ5 0.02 0.002

θ6 0.40 0.03

θ7 0.04 0.001

θ8 57.40 2.37

θ9 -0.48 0.075

θ10 = log σε -1.50 0.10

Table 5.2: The prior means and standard deviations of the unknown parameters θj ,
j = 1, . . . , 10 of the lubricant model (5.4)

Figure 5.23 shows boxplots of the Monte Carlo distribution of estimates of the ESIG

obtained using the different methods for the n = 53 design, ξ53. For each choice of

method 100 Monte Carlo estimates were calculated. The nMC method has resulted in

ESIG much higher than all the other methods. We also notice that the estimated ESIG

using LA2 is sometimes also very large with the distribution for this approximation

having a long right tail.

In order to reduce the estimated ESIG of nMC for this example we increase k2. Figure

5.24 shows boxplots of the Monte Carlo distribution of 100 estimates of the ESIG

obtained using nMC for two different combinations of k1 and k2: (i) k1 = 2000, k2 =
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Figure 5.23: Estimated ESIG for the parameters θ of the lubricant model for all meth-
ods (see Table 5.1 and Section 4.2.2) for the n = 53 design, ξ53 (for notation see Figure
5.7)

Figure 5.24: Estimated ESIG for the parameters θ of the lubricant model found using
nMC for different combinations of k1 and k2, for the n = 53 design, ξ53
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Figure 5.25: Estimated ESIG for the parameters θ of the lubricant model for all meth-
ods for the n = 53 design, ξ53 (nMC and LA2 are omitted)

10000; (ii) k1 = 300, k2 = 1000000. Increasing k2 does not change the estimated ESIG.

For this 10-parameter nonlinear example, it appears that nMC is not a good method

for approximating the expected utility as it seems to overestimate the information gain

even for very large values of k2.

In order to display differences between the methods, in Figure 5.25 nMC and LA2

are omitted. ALIS and LIS give lower estimates of the ESIG than other methods.

For all the importance sampling methods (ALIS, LIS and nIS), changing from a nor-

mal to a t importance distribution has reduced the estimated ESIG. The nIS method

has sometimes resulted in infinite ESIG estimates because the evidence, πe(y|ξ), were

approximated as zero and hence the approximate expected utility is

Ũ(ξ) =
1

k1

k1∑
h=1

[
log πl(yh|θh, ξ)− log π̃he

]

=
1

k1

k1∑
h=1

[log πl(yh|θh, ξ)− log(0)]

=
1

k1

k1∑
h=1

[log πl(yh|θh, ξ)− (−∞)]

=∞,

(see also Section 4.1.3). This zero evidence phenomenon can occur when most of the

sampled θ in the inner loop are a long way from the region of high likelihood or high

posterior density, as can happen with nMC or importance sampling with a poorly

chosen importance density.
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Figure 5.26: Estimated ESIG for the parameters θ of the lubricant model for all meth-
ods for the n = 20 design, ξ20 (nMC is omitted)

Figure 5.26 shows the same results as Figure 5.25 but for the n = 20 design. The nMC

method is omitted as it exhibits large ESIG. Similar comments apply here as for the

previous design.

In order to see any differences between the methods, LA2 is also omitted in Figure

5.27 because of the long right tail. Similar to the 53-run design LIS,300 and ALIS,300

result in approximations with lower ESIG. For this design, nIS,2000 and nIS,t,2000

also result in approximations with lower ESIG, similar to that of ALIS and LIS. The

better performance of nIS for the 20-run design may be due to the prior distribution

being a better approximation of the posterior distribution in this case. In contrast, for

the 53-run design, there may be a greater difference between the prior and posterior

distributions. This may lead to a small effective sample size in the estimation of the

posterior mean and covariance, and so the importance distribution will usually revert

to the prior distribution (see Section 4.2.3), giving performance comparable to nMC.

For this example a plot to compare the relative root mean squared error (rMSE) against

computational time is not included because we cannot find a ‘true’ value of the ESIG

for comparison.

For this model we have seen that for the importance sampling methods (ALIS, LIS

and nIS) changing from a normal to a t distribution results in lower estimates of the

ESIG. This might be a consequence of the posterior distribution having fatter tails

than the prior distribution and hence a t distribution is more appropriate. Also, the

estimated ESIG with LA1 and LA2 for this model is different than the other methods.

Possibly the asymptotic normal approximation to the posterior density underpinning
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Figure 5.27: Estimated ESIG for the parameters θ of the lubricant model for all meth-
ods for the n = 20 design, ξ20 (LA2 is omitted)

the Laplace approximation is inaccurate due to the large number of parameters relative

to the sample size.

5.2 Optimisation of the utility function

A fundamental problem is how to optimise the objective function, and hence find opti-

mal designs, in a computationally efficient manner. The most common approach used

to search numerically for an optimal exact design is to use an exchange algorithm. This

fall into two main classes: point exchange algorithms and coordinate exchange algo-

rithms. Point exchange algorithms (Fedorov, 1972; Johnson and Nachtsheim, 1983)

involve systematically exchanging design points with points from a candidate set in

order to improve the value of the objective function. These approaches may be compu-

tationally expensive for problems with many continuous factors due to the need to use

a very large candidate set. Coordinate exchange algorithms (Meyer and Nachtsheim,

1995) instead change one element, or ‘coordinate’, of the design at a time, without the

need for a candidate set. A ‘coordinate’ is the value taken by an individual variable

in a single run. These algorithms apply when the objective function can be evaluated

exactly and deterministically, as is usually the case with frequentist design. However,

in Bayesian design typically a Monte Carlo approximation to the objective function,

i.e. the expected utility, is used, and so the standard exchange algorithms are not

applicable.

For low-dimensional Bayesian design problems (one variable and a small number of

design points), Müller and Parmigiani (1996) and more recently Weaver et al. (2016),
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performed stochastic optimisation for expected utility maximisation. This is performed

by conducting a noisy computer experiment to construct a statistical emulator for

the Monte Carlo approximation Ũ(ξ) for a small number of designs and smooth the

resulting values of the approximation to the utility. However application of this idea

to high-dimensional design problems suffers from the curse of dimensionality.

A more recent development that is also compatible with noisy evaluations of the ob-

jective function is the Approximate Coordinate Exchange (ACE) algorithm (Overstall

and Woods, 2017). For each coordinate, a noisy Monte Carlo estimate of the expected

utility is made for a small number of potential changes to the coordinate. These noisy

evaluations of the expected utility are then smoothed using a Gaussian process em-

ulator. The fitted emulator is smooth, and so can be optimised directly unlike the

noisy evaluations themselves. The advantage of embedding the emulation step within a

coordinate exchange algorithm is that it is only necessary to emulate one-dimensional

functions, thereby eliminating the computational expense that occurs when using Gaus-

sian processes in high dimensions (Rasmussen and Williams, 2006), e.g. through the

need to use a large space-filling design.

The ACE algorithm

The algorithm is divided into two phases. Phase I of the algorithm is application of

a coordinate exchange algorithm by constructing a sequence of one-dimensional emu-

lators; see Algorithm 10. This phase tends to produce designs with clusters of similar

design points. Phase II checks if the points in each cluster can be reduced by using a

point exchange algorithm, using the optimal design from Phase I as a candidate list.

Algorithm 10: The ACE algorithm (Overstall and Woods, 2017)

Start with a randomly chosen initial design ξ;
repeat

for i = 1, . . . , n do
for j = 1, . . . , q1 do

Generate a 1d space-filling design dj = [x1
j , . . . , x

Q
j ] ∈X

Q
j ;

for k = 1, . . . , Q do

Evaluate Ũk = Ũ(ξij(x
k
j ));

Construct a 1d Gaussian process emulator Û(x) from data {xkj , Ũk};
Set xij = arg maxx∈Xj Û(x) with probability p̃ obtained from Algorithm 11;

until convergence;

Above we use the notation ξij(x) = [x1, . . . ,xi−1,wij(x),xi+1, . . . ,xn], where
wij(x) = (xi1, . . . , xij−1, x, xij+1 . . . , xiq1)T.

In Algorithm 10 the notation ξij(x) = [x1, . . . ,xi−1,wij(x),xi+1, . . . ,xn], where wij(x) =

(xi1, . . . , xij−1, x, xij+1 . . . , xiq1)T, defines a new design with a new proposed ijth coor-
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dinate x. In addition Ũk = Ũ(ξij(x
k
j )), k = 1, . . . , Q, is the evaluation of the expected

utility for the new design ξij(x
k
j ) with the new proposed coordinate xkj , with the pro-

posals xkj coming from a one-dimensional space-filling design dj . The emulator is given

by the posterior mean of a Gaussian process,

Û(x) = µ̂ij + σ̂ija
T(x, dj)A(dj)

−1zij ,

with µ̂ij =
∑Q

k=1 Ũk/Q, σ̂2
ij =

∑Q
k=1(Ũk − µ̂ij)

2/(Q − 1) and zij is a vector having

kth entry (Ũk − µ̂ij)/σ̂ij . Under the common assumption of a squared exponential

correlation structure, the vector a is the Q vector of correlations between variable x

and each coordinate xkj and A is theQ×Q correlation matrix between all the coordinates

xkj (see Woods et al., 2017).

In Algorithm 10, the proposed change to the coordinate is accepted with probability

resulting from an independent check on the difference in expected utilities between the

current and proposed designs. See Algorithm 11, which essentially describes obtaining

the posterior probability that the proposed design has larger expected utility than the

current design, using a separate Monte Carlo sample from the joint distribution of ψ

and y.

Algorithm 11: Accept/reject step of the ACE Algorithm 10

Given the current design ξ and the new proposed coordinate x;
Let ξij(x) be the design formed by replacing the ijth coordinate of ξ with x;
for s = 1, . . . , B do

Sample ψ̃s from πb(ψ);

Sample y1 ∼ πl(y|ψ̃s, ξij(x)) and y2 ∼ πl(y|ψ̃s, ξ);
Set U1s = ũ(ξij(x), ψ̃s,y1) and U2s = ũ(ξ, ψ̃s,y2);

Assume U1 ∼ N(b1 + b2, a) and U2 ∼ N(b1, a);
Calculate the posterior probability, p̃, that b2 > 0 using “data” U1 and U2;

In Algorithm 11 the notation ũ(ξ,ψ,y) defines the estimate of u(ξ,ψ,y) obtained by

estimating the evidence using a specified approximation.

Convergence of the algorithm is assessed graphically from trace plots of the approximate

expected utility against the iteration number. Also, to avoid local optima, the algorithm

is run P times with each run starting from a different, randomly chosen, initial design, ξ.

See Overstall and Woods (2017) for more details. The ACE algorithm is implemented

in the R package acebayes (Overstall et al., 2017).

As we find optimal designs numerically, all our designs may only be near-optimal.
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5.3 Bayesian optimal designs using the approximate co-

ordinate exchange algorithm

In this section we combine the expected utility approximation methods presented in

Table 5.1, Section 4.2.2 and (4.11) with ACE (see Section 5.2) to find Bayesian optimal

designs for the Michaelis-Menten model (Section 5.1.2), the BOD model (Section 5.1.3)

and the Lubricant model (Section 5.1.4).

When using ACE, for the emulator building step we used k1 = k2 = 2000 and k1 = 2000

for the single loop methods, for the Michaelis-Menten model and the BOD model. For

the lubricant model we used k1 = k2 = 300 for ALIS and LIS and k1 = 300 for LA1

and LA2. For nMC and nIS a larger Monte Carlo sample size was needed because

the evaluation of the expected utility fails for small sample sizes; we used k1 = 2000,

k2 = 10000. In Algorithm 11 of ACE we set B = k1 = k2 = 10000. Post-hoc the

ESIG is approximated for each design found using ALIS with k1 = k2 = 300 which as

shown in the previous section is computationally efficient and results in less bias than

the other methods.

Michaelis-Menten model

We employ the ACE algorithm to find expected Shannon information gain optimal

designs with n = 5, 10, 20. For each design, 10 random starts of the ACE algorithm are

used, each starting from a different random Latin hypercube design.

Figures 5.28, 5.30 and 5.32 show the optimal designs produced using the different

methods for n = 5, 10, 20 runs, respectively. Figure 5.28 shows some small differences

in the design points found for each method, with the main pattern being that all

methods tend to position some design points at the start of the region, where the

expected response is changing more quickly, and some at the end of the region, where

the expected response is more stable. The designs produced using LA2 and the ‘reuse’

method have more differences with the designs found using all the other methods; the

former results in a design where some points are kept in the middle and no points are

placed at the end of the design region, and the latter, results in a design where some

points are also kept in the middle of the design region. Similar patterns can also be

noticed in Figures 5.30 and 5.32 for n = 10, 20, with the addition of points at the start

of the design region and some points in the middle of the design region. LA1 produces

an optimal 20-run design different from the other methods, where there are no points

at the end of the design region (Figure 5.32).

Figures 5.29, 5.31 and 5.33 give the estimated ESIG for the optimal designs for the

different methods, approximated using ALIS with k1 = k2 = 300. All the optimal

designs have higher ESIG than the space-filling design, and all optimal designs have

similar ESIG. For the n = 20 optimal designs, LA2 and the ‘reuse’ have produced
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Figure 5.28: Expected Shannon information gain optimal designs with n = 5 for the
Michaelis-Menten model and the 5-run space-filling design, ξ5
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Figure 5.29: Estimated ESIG for the parameters θ of the Michaelis-Menten model
found using ALIS for the n = 5 optimal designs and the space-filling design, ξ5
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Figure 5.30: ESIG optimal designs with n = 10 for the Michaelis-Menten model and
the 10-run space-filling design, ξ10
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Figure 5.31: Estimated ESIG for the parameters θ of the Michaelis-Menten model
found using ALIS for the n = 10 optimal designs and the space-filling design, ξ10
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Figure 5.32: ESIG optimal designs with n = 20 for the Michaelis-Menten model and
the 20-run space-filling design, ξ20
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Figure 5.33: Estimated ESIG for the parameters θ of the Michaelis-Menten model
found using ALIS for the n = 20 optimal designs and the space-filling design, ξ20
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Figure 5.34: Estimated ESIG for the parameters θ of the Michaelis-Menten model for
optimal designs with n = 1, . . . , 20, found using ACE and ALIS with k1 = k2 = 2000

designs where the ESIG is lower than from the designs produced from all the other

methods; however the difference is small.

Note that as we increase the number of runs, n, of the design the ESIG does not

change very quickly. To see that clearly, we find optimal designs using ALIS and

k1 = k2 = 300 with n = 1, 2, . . . , 20 runs, and then estimate the ESIG 100 times using

ALIS and k1 = k2 = 2000 for each design. Figure 5.34 shows the increasing relationship

between the runs of the design, n, and ESIG. The rate of increase decreases with n.

Biochemical Oxygen Demand (BOD) model

In this section we find optimal designs using the ACE algorithm for the BOD model.

Again, 10 random starting designs are used in ACE, each starting from a different

random LHS design. The same procedure was followed to find the optimal designs as

for the Michaelis-Menten model. For this model LA2 is omitted as the optimisation

failed to converge due to infinite objective function values.

Figures 5.35, 5.37 and 5.39 show the optimal designs produced using the different

methods for n = 6, 10, 20 runs, respectively. Figure 5.35 shows some small differences

in the design points found for each method, with the main pattern similar to that of

the Michaelis-Menten model optimal designs; all methods tend to position some design

points at the start of the region, where the expected response is changing more quickly,
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Figure 5.35: ESIG optimal designs with n = 6 for the BOD model and the 6-run design,
ξ6, given by Bates and Watts (1988)
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Figure 5.36: Estimated ESIG for the parameters θ of the BOD model for the n = 6
optimal designs and and the 6-run design, ξ6, given by Bates and Watts (1988)
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Figure 5.37: ESIG optimal designs with n = 10 for the BOD model and the space-filling
design, ξ10
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Figure 5.38: Estimated ESIG for the parameters θ of the BOD model for the n = 10
optimal designs and the space-filling design, ξ10
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Figure 5.39: ESIG optimal designs with n = 20 for the BOD model and the space-filling
design, ξ20
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Figure 5.40: Estimated ESIG for the parameters θ of the BOD model for the n = 20
optimal designs and the space-filling design, ξ20
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and some at the end of the region, where the expected response is more stable. Similar

patterns can also be noticed in Figures 5.37 and 5.39 for n = 10, 20, with the addition

of more repeated points at the start and the end of the design region and some points

in the middle of the design region. In Figure 5.37 we notice that the ‘reuse’ method

produces a design where the points cover the design region.

Figures 5.36, 5.38 and 5.40 give the estimated ESIG for the optimal designs for the

different methods, approximated using ALIS with k1 = k2 = 300. For each of the

methods 100 Monte Carlo estimates were calculated. In Figures 5.36 and 5.38, all the

optimal designs have higher ESIG than the 6-run design given by Bates and Watts

(1988) and the space-filling design with n = 10, respectively, and all optimal designs

have similar ESIG. In Figure 5.40 we notice that the optimal design found with the

‘reuse’ method has similar ESIG to the space-filling and lower ESIG than the optimal

designs found with all the other methods, which have higher ESIG than the space-filling

design.

For this model, perhaps the poorer performance of the optimal designs obtained from

the ‘reuse’ method is due to the Monte Carlo size used to estimate the ESIG being

insufficient.

Lubricant model

In this section we find optimal designs using the ACE algorithm for the lubricant model.

Again, 10 random starting designs are used in ACE. The same procedure was followed

to find the optimal designs as for the Michaelis-Menten model and the BOD model. For

this model we omitted the ‘reuse’ method due to the poor performance of the optimal

designs found for the previous examples.

Figure 5.41 shows the 53-run design as given in Bates and Watts (1988, Appendix 1).

Figure 5.42 shows the optimal designs with n = 53 found using ACE with the different

methods. We notice that the optimal design produced by LA1 is almost a “one-factor-

at-a-time” design (Czitrom, 1999) with variation in x2 almost only occurring at the

lowest value of x1. Similar, but less extreme, patterns are observed in the designs

found using ALIS and LIS. The optimal designs found using nMC, nIS and LA2 vary

the values of x1 and x2 in the design region more uniformly compared to the other

methods.

Figure 5.43 shows boxplots of the Monte Carlo distribution of 100 estimates of the

ESIG obtained using ALIS with k1 = k2 = 300 for the optimal designs found with the

different methods. All optimal designs have higher ESIG than the 53-run design from

Bates and Watts (1988, Appendix 1). However, the optimal designs found with ALIS,

114



0 20 40 60 80 100

0
1

2
3

4
5

6
7

x1

x2

Figure 5.41: The n = 53 design, ξ53, as given in Bates and Watts (1988, Appendix 1)
for the lubricant model
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Figure 5.42: ESIG optimal designs with n = 53 for the lubricant model (the numbers
on some points show how many times the point is repeated)
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Figure 5.43: Estimated ESIG for the parameters θ of the lubricant model for the 53-run
optimal designs shown in Figure 5.42 and the design ξ53 shown in Figure 5.41

Parameter Mean St. dev.

θ3 0.0 5.0

θ4 0.0 5.0

θ5 0.0 5.0

Table 5.3: The means and standard deviations of the unknown parameters θ3, θ4 and
θ5 of the lubricant model (5.4) used to find n = 20 optimal designs

LIS and LA1, which are also more similar to each other, have higher ESIG than the

optimal designs found with the other methods.

To investigate the sensitivity of the designs to the choice of the prior distribution, for

the same model we change the means and standard deviations of the prior distributions

on θ3, θ4 and θ5 and keep the prior distributions of all other parameters fixed (as given

in Table 5.2), and find optimal designs using ACE with n = 20. The new prior means

and standard deviations for θ3, θ4 and θ5 are given in Table 5.3. We follow the same

procedure as before.

Figure 5.45 shows the ESIG optimal designs found using ACE with the different meth-

ods. The designs found using ALIS and LIS are similar with most points for x2 take

the highest value. LA1 and LA2 have produced designs with fewer distinct values of

x1. For these prior distributions we could not find optimal designs using nMC and nIS

due to the zero evidence problem (see Section 4.1.3).

In Figure 5.46 we present the ESIG estimated 100 times and approximated using ALIS

with k1 = k2 = 300, for the four different optimal designs and the 20-run design, ξ20

116



0 20 40 60 80 100

0
1

2
3

4
5

6
7

x1

x2

Figure 5.44: A sub-design with n = 20, ξ20, chosen from the 53-run design given in
Bates and Watts (1988, Appendix 1) for the lubricant model
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Figure 5.45: ESIG optimal designs with n = 20 for the lubricant model (the numbers
on some points show how many times the point is repeated)
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Figure 5.46: Estimated ESIG for the parameters θ of the lubricant model for the 20-run
optimal designs shown in Figure 5.45 and the design ξ20 shown in Figure 5.44

(a subset of the design given by Bates and Watts, 1988, Appendix 1, see Section 5.1.4

and Figure 5.44). All optimal designs, except the optimal design found using LA2 have

higher ESIG than ξ20. In this higher dimensional example, the optimal designs found

with ALIS and LIS have higher ESIG than the optimal designs found with the other

methods. It is likely that the poorer performance of the designs from LA1 and LA2

occurs due to the larger experiment sizes being required to produce accurate asymptotic

results.

5.4 Summary

In this chapter we have showed through nonlinear examples that the new proposed

methods of approximating the evidence and hence approximating the expected Shannon

information gain, ALIS and LIS, with a moderate Monte Carlo sample size provide

a good balance between bias and computational expense. We have also illustrated

that ALIS and LIS perform better than existing improved methods. Lastly, we found

Bayesian optimal designs by combining the methods introduced in Chapter 4 with

the ACE algorithm and showed that for complex models ALIS and LIS have produced

designs that have higher expected Shannon information gain than the designs produced

with the other methods.
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Chapter 6

Bayesian optimal designs for a

calibration model

In this chapter we focus on finding fully Bayesian optimal designs for the calibration

model (1.1), with a particular focus on designs for the physical experiment. We describe

existing methods in the literature for finding optimal designs for the physical experiment

in the calibration problem. We use the Kennedy-O’Hagan calibration framework to

address design under the two key problems, present in many systems or processes, of

model discrepancy and computationally expensive models. We assume that only one

of the two problems holds at a time, and Gaussian process priors are used to model

unknown functions. ALIS and LIS are used to approximate the expected Shannon

information gain and they are combined with the ACE algorithm to find Bayesian

optimal designs.

6.1 Statistical calibration

The Kennedy-O’Hagan calibration framework addresses two key problems that are

present in many systems or processes:

• the function η(x,θ) may not provide an adequate description of the mean;

• the model may be expensive to evaluate, precluding direct use of the model in

inference.

Both of these problems can be addressed using Gaussian processes. This can be done

simultaneously (see Section 2.2), but for the purposes of this chapter we assume that

only one of these statements holds.

We consider the following statistical model for the physical observation yi:

yi = ζ(xi) + εi = η(xi,θ
p) + δθp(xi) + εi, i = 1, . . . , n. (6.1)

119



The discrepancy function, δθp(·), encodes the difference between the simulator evaluated

at the ‘true’ θp, η(xi,θ
p), and the mean, ζ(xi), of the physical process. We assume εi

is the random error and εi ∼ N(0, σ2
ε) independently.

We divide the calibration problem into the following sub-problems:

SP1. known simulator η(x,θ), with δθp(x) = 0 (nonlinear design, see Chapter 5);

SP2. known simulator η(x,θ), with discrepancy;

SP3. unknown simulator η(x,θ), and δθp(x) = 0;

SP4. unknown simulator η(x,θ), with discrepancy.

In Section 6.2, we review existing methods in the literature for finding optimal de-

signs for the physical experiment to estimate the parameter θp = (θp1, . . . , θ
p
pθ)

T in the

calibration model (6.1), or predict the mean of the physical system.

In Sections 6.3 and 6.4 we develop novel methodology for optimal design of the phys-

ical experiment in Sub-problem 2 (SP2) and Sub-problem 3 (SP3), respectively. Sub-

problem 4 (SP4) is left as future work, with further discussion in Section 7.2.

6.2 Experimental designs for simulator calibration

We define a design for a physical experiment as a set ξ = [x1,x2, . . . ,xn] of n points

from a design space X ⊂ Rq1 . A n-size optimal design ξ? is defined by comparison

with the set Ξ of all possible designs of size n with respect to a specific criterion. We

define a design for a computer experiment as a set ξc = [(xc1,θ
c
1), . . . , (xcm,θ

c
m)] of m

set of choices of input combinations at which to run the simulator in order to collect

simulator evaluations to build an emulator, from a design space X ×Θ. An optimal

design ξc? of size m is defined by comparison with the set Ξc of all possible designs of

size m with respect to a specific criterion.

In their important paper, Kennedy and O’Hagan (2001) suggested a sequential design

for the simulator, to ensure joint coverage of the calibration input space and the control

input space. Also, they recommended that points should be ‘close’ to physical obser-

vations in order to infer the discrepancy function. However, they did not suggest an

optimality criterion nor methods for finding optimal designs.

For the simpler problem of Gaussian process interpolation in computer experiments,

the most popular design criteria to assess the quality of prediction are functions of the

Mean Square Prediction Error (MSPE), see Sacks et al. (1989) and Santner et al. (2003,

Chapter 6). The optimal designs are found by minimising the Maximum Mean Square

Prediction Error (MMSPE) or the Integrated Mean Square Prediction Error (IMSPE).

IMSPE is more commonly used and averages the mean square prediction error over the
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design space (Hardin and Sloane, 1993). A quasi-Newton algorithm was proposed by

Sacks et al. (1989) to find IMPSE-optimal designs.

A number of authors have sought to extend IMSPE criteria to the calibration prob-

lem (Ranjan et al., 2011; Williams et al., 2011; Leatherman et al., 2017). Given the

combined vector of responses v = [yT zT]T and the full vector of model parameters

ψ = [(θp)T,βT
η ,β

T
δ , σ

2
η, σ

2
δ , σ

2
ε ,φ

T
η ,φ

T
δ ]T (see Section 2.2), an IMPSE-optimal combined

design [ξ?, ξc?] minimises the objective function

ϕ(ξ, ξc|ψ) =

∫
X

E
[
(E[ζ(x)|v,ψ]− ζ(x))2 |ψ

]
dx.

Note that this is essentially a local optimality criterion, as it conditions on particular

values of the parameters. This seems undesirable, as it means that, for example, the

performance of the design for estimating θp is not considered. Our fully Bayesian

approach considers the amount of information gained about θp.

Ranjan et al. (2011) discussed the design of follow-up experiments for calibration (the

selection of new trials that improve the predictive ability of the calibration model).

Designs are considered for both the physical experiment and the computer experiment.

Two ideas are used to reduce the computational expense of design construction by

reducing the dimension of the optimisation problem: replication (forced replicates of

field observations leads to a simple estimation procedure for σ2
ε) and alignment of

physical trials and computer trials. The main focus of the paper was the prediction

of the physical process at unobserved trial locations, that is, to select new trials that

improve the predictive ability of the calibration model (6.1). They constructed IMSPE-

optimal follow-up designs for the calibration setting using posterior point estimates

of the calibration parameters θp and found that adding physical points gives greater

reduction in IMPSE than adding simulator points.

Williams et al. (2011), similar to Ranjan et al. (2011), focussed on batch sequential

design optimisation using standard space-filling designs as the initial physical and sim-

ulator designs in order to achieve an accurate prediction of the discrepancy (IMPSE

for δθp(·) to minimise the integrated posterior variance of the discrepancy function con-

ditional on the calibration parameters θp). Batch sequential criteria were developed

to add new simulation runs for calibration of computer models based on maximising

the expected improvement, and MSE-based and distance-based criteria to achieve ac-

curate predictions of quantities of interest. The proposed sequential design criteria are

influenced by the existing literature on computer experiments with extensions to allow

design augmentation in batches.

Leatherman et al. (2017) focussed on predicting the mean of the physical system based

on physical observations and simulator runs, and constructed local IMPSE-optimal

designs (local to the parameters). The designs depend on the assumed values for the

parameters θp which are unknown prior to experimentation; however a simulation study

was performed to examine the prediction accuracy of a range of local IMPSE-optimal
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designs in order to find out if there is a choice of parameter values that allows accurate

empirical predictions for a range of “test-bed” response surfaces. A class of designs was

constructed using particle swarm optimisation (Kennedy and Eberhart, 1995) to find an

initial design which was then refined using a gradient-based quasi-Newton algorithm to

find the optimal designs under IMPSE. These designs were also compared with space-

filling designs. They concluded that there is no optimal design that predicts better

than all other designs for all “test-beds” and all design sizes.

Huan and Marzouk (2013) proposed an algorithmic approach for optimal Bayesian

designs for simulators with zero discrepancy and polynomial chaos emulation. Calibra-

tion in such situations is typically a simple statistically identifiable problem. A utility

function (Shannon information gain) is used, reflecting expected information gain. A

mathematical approximation to the computationally expensive simulator and the näıve

Monte Carlo integration method are used to evaluate the expected information gain.

Stochastic approximation algorithms are then used to make optimisation feasible.

In this thesis we take a fully Bayesian approach to find optimal designs for the cal-

ibration model (6.1). Prior information about unknown parameters and models is

represented by prior distributions, and the aim of the experiment is described in the

decision-theoretic framework by the utility function. Our goal is to estimate unknown

calibration parameters θp. Similarly to the previous chapter, the designs found max-

imise an approximation to the expected Shannon information gain,

U(ξ) =

∫
Ψ

∫
Y

log
πl(y|ψ, ξ)
πe(y|ξ)

π(y,ψ|ξ)dydψ.

We approximate the evidence, πe(y|ξ), in the expected Shannon information gain us-

ing the ALIS and LIS approximations described in Section 4.3. The expected Shannon

information gain is maximised using the approximate coordinate exchange (ACE) al-

gorithm (Overstall and Woods, 2017) described in Section 5.2.

In the next section we consider SP2 from Section 6.1 and use a Gaussian process prior

to model the unknown discrepancy function δθp(·).

6.3 Known simulator with discrepancy

Inadequacy of the simulator η(x,θ) can be addressed by adopting the extended model

given in Equation (6.1),

yi = ζ(xi) + εi = η(xi,θ
p) + δθp(xi) + εi, i = 1, . . . , n,

with εi ∼ N(0, σ2
ε). As briefly described in Section 3.2.2, we assume that δθp(x), the

discrepancy between the simulator η(x,θp) and the mean ζ(x) of the physical process, is

an unknown function about which we have limited insight and whose form is unknown.
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For this reason we assume a Gaussian process prior

δθp(x) ∼ GP
[
0, σ2κ(x,x′;φ)

]
.

This prior has constant zero mean and covariance σ2κ(x,x′;φ), where σ2 is the con-

stant variance, κ(x,x′;φ) is the correlation function and φ is the vector of correlation

parameters. For more details on Gaussian processes see Chapter 2.

We assume that the simulator η(x,θ) is a known function but the calibration parameters

θp are unknown. Hence, we have that the physical observation yi comes from a normal

distribution with mean η(xi,θ
p) and variance σ2 + σ2

ε , and

y | θp, σ2,φ, σ2
ε ∼ N

[
η, σ2K(φ) + σ2

εIn
]
,

where η = [η(x1,θ
p), . . . , η(xn,θ

p)]T is the mean vector, K(φ) is the n× n correlation

matrix and In is the n× n identity matrix. We use the reparameterisation τ2 = σ2
ε/σ

2

described in Section 2.1 to obtain

y | θp, σ2,φ, τ2 ∼ N
[
η, σ2Σ

]
,

where Σ = K(φ) + τ2In.

The likelihood function is given by

πl(y|ψ, ξ) =
1

(2πσ2)
n
2 |Σ|

1
2

exp

{
− 1

2σ2
[y − η]TΣ−1[y − η]

}
,

where ψ = [(θp)T, σ2,φT, τ2]T. Hence the log-likelihood function is:

log πl(y|ψ, ξ) = −n
2

log(2πσ2)− 1

2
log |Σ| − 1

2σ2
[y − η]TΣ−1[y − η]. (6.2)

The model specification requires prior distributions on the unknown parameters ψ.

We aim to approximate the expected Shannon information gain using

Ũ(ξ) =
1

k1

k1∑
h=1

[
log πl(yh|ψh, ξ)− log π̃he

]
,

with (ψh,yh) ∼ π(ψ,y|ξ), h = 1, . . . , k1, and the approximation π̃he to the evidence,

πe(yh|ξ), found using ALIS and LIS (see Section 4.3). Technically, in order to use ALIS

and LIS to approximate the evidence we have to calculate H(ψ), the negative Hessian

of the log-unnormalised posterior density. However, we shall instead obtain a similar

approximation by using

H(ψ) = I(ψ; ξ)−Q(ψ),

with I(ψ; ξ) the expected Fisher information matrix, and Q(ψ) the Hessian of the log-

prior density. The reason for this choice is that for multivariate normal data, there is
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a simple expression for the expected Fisher information matrix (see Lemma 6.1).

Lemma 6.1. Assume y = [y1, . . . , yn]T follows a multivariate normal distribution with

mean µ(ψ), covariance matrix Σ(ψ), and ψ = [ψ1, ψ2, . . . , ψq2 ]T is the q2−dimensional

vector of parameters. Then the ijth element, Ii,j , for 0 ≤ i, j ≤ q2 of the expected

Fisher information matrix is given by:

Ii,j =
∂µ(ψ)

∂ψi

T

Σ(ψ)−1∂µ(ψ)

∂ψj
+

1

2
tr

(
Σ(ψ)−1∂Σ(ψ)

∂ψi
Σ(ψ)−1∂Σ(ψ)

∂ψj

)
, (6.3)

see Porat and Friedlander (1986).

In order to ensure positive values for σ2, φ and τ2, we construct the importance distribu-

tion by taking a normal approximation to the posterior of the transformed parameters,

ψ′ =
[
(θp)T, log σ2, log φ1, . . . , log φq1+pθ , log τ2

]T
,

as described in Section 4.3.2.

6.3.1 Example: Michaelis-Menten simulator and δθp(x) 6= 0

In this section we compare the performance of four different designs for estimating the

unknown calibration parameters in terms of the expected Shannon information gain

utility given in Equation (4.5). The expected utility is approximated using LIS1 as

described in Section 4.3. We then find Bayesian optimal designs using ACE (Section

5.2).

We assume the statistical model given in Equation (6.1), where

η(xi,θ) =
θ1xi
θ2 + xi

, i = 1, . . . , n.

Thus the simulator is the Michaelis-Menten model and ψ = [θp1, θ
p
2, σ

2, φ, τ2]T. An

example of the Michaelis-Menten model, η(x,θ), and reality, ζ(x), is shown in Figure

6.1. The correlation parameter φ here is a scalar as there is a single control variable

x. We assume prior distributions for the unknown parameters, θp1 ∼ logN(µ1, σ
2
1),

θp2 ∼ logN(µ2, σ
2
2), σ2 ∼ IG(a, b), φ ∼ Exp(λφ) and τ2 ∼ Exp(λτ2). We also assume a

Gaussian process prior for the discrepancy function δθp(x) ∼ GP
[
0, σ2κ(x, x′;φ)

]
with

the squared exponential correlation function (2.6). The log-likelihood function is given

by Equation (6.2).

The log-prior density for ψ is given by:

log πb(ψ) = log πb(θ
p
1) + log πb(θ

p
2) + log πb(σ

2) + log πb(φ) + log πb(τ
2)

1Previous examples in Chapter 5 have shown that LIS is more stable than ALIS for this type of
example and we will use LIS as the default in this section.
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Figure 6.1: The Michaelis-Menten model for θp1 = 15 and θp2 = 50 (black line) and an
example of reality ζ(x) where we assumed a sinusoidal function for δθp(x) (blue line)

= − log
[
θp1σ1(2π)1/2

]
− (log θp1 − µ1)2

2σ2
1

− log
[
θp2σ2(2π)1/2

]
− (log θp2 − µ2)2

2σ2
2

+ log

[
ba

Γ(a)

]
− (a+ 1) log σ2 − b

σ2
+ log λφ − λφφ+ log λτ2 − λτ2τ2,

and the log-unnormalised posterior density, log πu(ψ|y, ξ) = log πl(y|ψ, ξ) + log πb(ψ).

For this example, we aim to construct an importance distribution that guarantees

positive values of all parameters ψ. Hence, we take a normal approximation to the

distribution of ψ′ = [log θp1, log θp2, log σ2, log φ, log τ2]T as described in Section 4.3.2.

In order to calculate the negative Hessian of the log-unnormalised posterior density,

Hψ′(ψ
′), in ALIS and LIS (Section 4.3), we first have to find the derivatives of the

log-unnormalised posterior density log πψ
′

u (ψ′|y, ξ) with respect to ψ′ using Equations

(4.36). These derivatives can be found in Appendix B.2.4.

For the hyperparameters we assume µ1 = 4.38, σ1 = 0.07, µ2 = 1.19, σ2 = 0.84, to

match the hyperparameters used for the nonlinear Michaelis-Menten model in Section

5.1.2, a = 3, b = 2 and λφ = 200, λτ2 = 50 to guarantee small values for the correlation

parameter φ and the nugget τ2. See Appendix C.1.5 for examples of the shape of the

expected response of η(x,θ), and samples from the prior distribution of the discrepancy

function δθp(x). The choice of prior distribution of τ2 implies that the 10% and 90%

quantiles of the noise-to-signal ratio (σε divided by the maximum expected response,

η(400,θ)) are 0.0005 and 0.003, respectively. The prior distributions of σ2 and τ2

imply that the 10% and 90% quantiles of the error variance σ2
ε , are 0.003 and 0.112,

respectively.

We compare the performance of the four different designs shown in Figure 6.2. Each

design consists of ten points.

• Design 1, ξ?D, is a two-point maximin D−optimal design as described in Section
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Figure 6.2: The four designs compared for the calibration model with known simulator,
the Michaelis-Menten model and δθp(x) 6= 0

3.2.2 (Dette and Biedermann, 2003). Each point of the design is repeated five

times. This design is based on the assumption that the Michaelis-Menten model

is correct.

• Design 2, ξ?MM , is a ten-point optimal design for the Michaelis-Menten model

found be combining LIS with ACE and assuming δθp(x) = 0, i.e. that the model

is correct (see Section 5.1.2). This design features five support points, where the

first point is replicated twice, the third point is replicated twice, the sixth point

is repeated three times and the fifth point is replicated twice. We notice that

most points of this design are concentrated at the part of the design space where

the simulator is changing most quickly and also there are some points at the

stationary part of the curve.

• Design 3, ξLHS , is a space-filling design, specifically a maximin Latin Hypercube

design with ten points (Santner et al., 2003, Chapter 5) and does not take into

account the model.

• Design 4, ξ?cal, is a ten point optimal design for the calibration model assuming

the Michaelis-Menten model with discrepancy, found again by combining LIS with

ACE. This design features eight support points, where the first and the eighth

point are replicated twice. This design appears to be a compromise between

Design 2 and Design 3, which we would expect since a design with a greater
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Figure 6.3: Estimated expected Shannon information gain for the parameters ψ of the
Michaelis-Menten calibration model (estimated using LIS with k1 = k2 = 300 for each
of the four designs shown in Figure 6.2)

spread of points will be able to better capture the discrepancy function.

Figure 6.3 shows, for each design, 100 independent estimates of the expected Shannon

information gain obtained using LIS with k1 = k2 = 300 which as shown in Chapter 5 is

computationally efficient. Design 1, ξ?D (maximin D-optimal design), appears to have

the worst performance, i.e. the lowest expected Shannon information gain. Design 2,

ξ?MM (Bayesian nonlinear regression design), and Design 3, ξLHS (maximin LHS design),

have a similar performance with ξ?MM performing a little better. The design with the

best performance is Design 4, ξ?cal (Bayesian optimal calibration design). Hence, we are

able to conclude that designs tailored to the calibration problem can perform better

than either existing optimal designs or space-filling designs.

In Appendix C.2, for each of the designs given in Figure 6.2 we give further comparisons

using LIS and comparisons using nMC and ALIS for two combinations of k1 and k2.

In Figure 6.4 we present Bayesian optimal designs for the Michaelis-Menten calibration

model as we change the number of points (n = 5, 10, 20) and keep the prior information

fixed. These designs were found by combining LIS with the ACE algorithm. Most of

the new points are added where the simulator is changing most quickly and tend to be

spread over the design region in order to capture the form of the discrepancy function.
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Figure 6.4: Bayesian optimal designs for the Michaelis-Menten calibration model where
ξ?5 is the optimal design with n = 5, ξ?10 is the optimal design with n = 10 (also given
in Figure 6.2 as ξ?cal) and ξ?20 is the optimal design with n = 20

Optimal design α b Mean Variance

ξ?1 20 0.5 0.03 3.8× 10−5

ξ?2 15 1 0.07 4× 10−4

ξ?3 12 1.5 0.13 0.01

ξ?4 10 2 0.22 0.06

ξ?5 7 3 0.5 0.05

ξ?6 5 4 1.0 0.33

ξ?cal 3 2 1.0 1.0

ξ?7 3 4 2.0 4.0

ξ?8 3 7 3.5 12.25

Table 6.1: The values of the hyperparameters a and b of the inverse-gamma prior
distribution of the Gaussian process variance σ2 and the implied mean and variance
for each combination of a and b used to obtain the Bayesian optimal designs presented
in Figure 6.5

Next we find Bayesian optimal designs as we change the prior of the discrepancy func-

tion δθp(x). In particular we change the values for the hyperparameters a and b of the

inverse-gamma distribution for the Gaussian process variance σ2.

In Figure 6.5 we present ten Bayesian optimal designs found using LIS and ACE for
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Figure 6.5: Bayesian optimal designs for the parameters ψ of the Michaelis-Menten
calibration model found using LIS and k1 = k2 = 300 for different priors on the
discrepancy for each design; the design with points plotted using orange diamonds is
the Bayesian optimal design for the nonlinear Michaelis-Menten model (i.e. δθp(x) = 0)
and the design with points plotted using purple bullets is the Bayesian optimal design
for the Michaelis-Menten calibration model, as given in Figure 6.2

each combination of values of a and b as given in Table 6.1. In this figure we have also

included the optimal design for the nonlinear Michaelis-Menten model and the optimal

design for the Michaelis-Menten calibration model for the original prior distribution

(a = 3, b = 2). Small prior mean and variance for σ2 implies small variance for the

Gaussian process model and the Bayesian optimal designs obtained are similar to the

Bayesian optimal design for the Michaelis-Menten model (δθp(x) = 0). Large prior

mean and variance for σ2 implies large variance for the Gaussian process model and

the Bayesian optimal designs obtained are similar to designs that are equally spaced

across the design region (space-filling designs).

Lastly, we find Bayesian optimal designs for the calibration model assuming that γ =

(σ2, φ, τ2)T are nuisance parameters (for more information on nuisance parameters see

Section 4.3.1). Hence the designs are tailored to estimate the parameters of interest

θp = (θp1, θ
p
2)T.
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Figure 6.6: Bayesian optimal designs for (i) the Michaelis-Menten model, ξ?MM (orange);
(ii) the calibration model, ξ?cal (purple, also given in Figure 6.4) (iii) the calibration
model when γ = (σ2, φ, τ2)T are treated as nuisance parameters, ξ?cal,nuis (black)

In Figure 6.6 we compare Bayesian optimal designs found using LIS and ACE for: (i)

the Michaelis-Menten model with no discrepancy, ξ?MM ; (ii) the calibration model, ξ?cal;

(iii) the calibration model where σ2, φ and τ2 are nuisance parameters, ξ?cal,nuis. The

first two designs are also presented in Figure 6.2. Treating γ = (σ2, φ, τ2)T as nuisance

parameters results in an optimal design with points that are more spread over the

design region. As we would expect, this is more similar to the optimal design for the

calibration model instead of the Michaelis-Menten model with no discrepancy.

Figure 6.7 shows boxplots for each design presented in Figure 6.6, corresponding to the

distribution of 100 approximations of the ESIG for the full parameter vector ψ for (a)

the optimal design obtained for the Michaelis-Menten model with no discrepancy, ξ?MM ;

(b) the optimal design obtained by treating ψ = (θp1, θ
p
2, σ

2, φ, τ2)T as interest parame-

ters, ξ?cal; and (c) the optimal design obtained by treating γ = (σ2, φ, τ2)T as nuisance

parameters, ξ?cal,nuis. To perform the calculation, LIS was used with k1 = k2 = 300. De-

signs ξ?cal and ξ?cal,nuis have very similar performance for estimating ψ. This means that

the optimal design found treating γ = (σ2, φ, τ2)T as nuisance parameters also performs

well under the calibration model treating all parameters as interest parameters.

Figure 6.8, similarly to Figure 6.7, shows boxplots for each design presented in Figure

6.6, corresponding to the distribution of 100 estimates of the ESIG for a known (correct)

Michaelis-Menten model. To estimate the expected utility, LIS was used with k1 = k2 =
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Figure 6.7: Estimated ESIG for the parameters ψ of the Michaelis-Menten calibra-
tion model for the optimal designs obtained for the Michaelis-Menten model with no
discrepancy, ξ?MM , the calibration model by treating the full vector ψ as parameters
of interest, ξ?cal, and the calibration model when treating γ = (σ2, φ, τ2)T as nuisance
parameters, ξ?cal,nuis

300. The Bayesian optimal design for the Michaelis-Menten model with no discrepancy,

ξ?MM , has the best performance. The Bayesian optimal design for the calibration model

when treating γ = (σ2, φ, τ2)T as nuisance parameters, ξ?cal,nuis, has similar performance

to the optimal design for the Michaelis-Menten model, as it is an optimal design suitable

for estimating the parameters of interest. The design with the worst performance is

the Bayesian optimal design for the calibration model with the full vector ψ treated as

parameters of interest, ξ?cal.

Lastly, in Figure 6.9 we present boxplots for each design presented in Figure 6.6, cor-

responding to the distribution of 100 estimates of the ESIG for the calibration model

where γ = (σ2, φ, τ2)T are treated as nuisance parameters. To estimate the expected

utility, LIS was used with k1 = k2 = k3 = 300 (see Section 4.3.1). The results here are

similar to the results presented in Figure 6.7.

The performance of Bayesian optimal designs for the calibration model is affected little

whether γ = (σ2, φ, τ2)T are treated as interest parameters or nuisance parameters

when finding or assessing the design. However, the optimal design for estimating ψ in

the calibration model is less effective than the other two designs if the Michaelis-Menten

model is correct.

In this chapter we found designs for a calibration model without addressing the iden-

tifiability issue discussed in detail in Section 1.1. To find designs for closely related
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Figure 6.8: Estimated ESIG for the parameters θ = (θ1, θ2)T of the Michaelis-Menten
model with no discrepancy, for the optimal designs obtained for the Michaelis-Menten
model with no discrepancy, ξ?MM , the calibration model by treating the full vector ψ as
parameters of interest, ξ?cal, and the calibration model when treating γ = (σ2, φ, τ2)T

as nuisance parameters, ξ?cal,nuis

identifiable formulation such as L2-calibration different priors on the discrepancy func-

tion can be used, see Plumlee (2017).

In the next section we assume that η(x,θ) is a computationally expensive or unknown

simulator and the discrepancy function δθp(x) is zero (SP3 of Section 6.1).

6.4 Computationally expensive or unknown simulator

In this section, we consider SP3 from Section 6.1. Namely, we assume that the sim-

ulator, η(x,θ), is computationally expensive to run, and hence its value is unknown

except at a small number of input combinations (xc1,θ
c
1), . . . , (xcm,θ

c
m), where simulator

evaluations η(xcj ,θ
c
j) have been collected in a computer experiment. Uncertainty about

the simulator output at untried input combinations is modelled by placing a Gaussian

process prior on η(x,θ), and conditioning on the computer experiment data. Also,

for the purposes of this section we assume that the discrepancy between the simulator

and reality, δθp(x), is zero. We approximate the expected Shannon information gain

using ALIS and LIS approximations and find Bayesian optimal designs for the physical

experiment using ACE.

Due to its computational expense, the simulator cannot be used directly in inference
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Figure 6.9: Estimated ESIG for the parameters θp = (θp1, θ
p
2)T of the calibration model,

when treating γ = (σ2, φ, τ2)T as nuisance parameters, for three different designs; the
designs are the optimal design obtained under the Michaelis-Menten model with no
discrepancy, ξ?MM , the calibration model by treating the full vector ψ as parameters
of interest, ξ?cal, and the calibration model when treating γ = (σ2, φ, τ2)T as nuisance
parameters, ξ?cal,nuis

or when constructing designs. In this case, the calibration model (6.1) takes the form

yi = η(xpi ,θ
p) + εi, i = 1, . . . , n, (6.4)

where the random error εi ∼ N(0, σ2
ε) independently.

Let y = [y1, . . . , yn]T be the vector of n observations from the physical experiment

and z = [η(xc1,θ
c
1), . . . , η(xcm,θ

c
m)]T the vector of simulator evaluations from the m-run

computer experiment.

We represent prior uncertainty about the simulator η(x,θ) by a Gaussian process,

η(x,θ) ∼ GP
(
fT(x,θ)β, σ2κ[(x,θ), (x′,θ′);φ]

)
, (6.5)

where f(x,θ) = (f0(x,θ), . . . , fkη−1(x,θ))T is the kη-vector of known regression func-

tions and β = (β0, β1, . . . , βkη−1)T is the corresponding kη-parameter vector that con-

tains the unknown regression parameters for the emulator of the simulator. In addition,

κ[(x,θ), (x′,θ′);φ] is the correlation function, with vector of correlation parameters φ,

and σ2 is the prior variance (see also Section 2.2).

Following the results presented in Chapter 2 we have that,

z | β, σ2,φ ∼ N(Fcβ, σ2Σcc), (6.6)
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where Fc = [f(xc1,θ
c
1) f(xc2,θ

c
2) . . . f(xcm,θ

c
m)]T is the m× kη model matrix of the com-

puter experiment and Σcc is defined through the correlation function with jj′th entry

Σcc,jj′ = κ[(xcj ,θ
c
j), (x

c
j′ ,θ

c
j′);φ], j, j′ = 1, . . . ,m.

The prior joint density of β | σ2 and σ2 corresponds to a normal-inverse-gamma distri-

bution (see Section 2.3.3),

(β, σ2) ∼ NIG (β0,R, a, b) .

The conditional posterior density πa(β, σ
2|z,φ) (see Section 2.3.4) also corresponds to

a normal-inverse-gamma distribution NIG(β?,Σ?, a?, b?) with

β? = (FcTΣ−1
cc Fc + R−1)−1(FcTΣ−1

cc z + R−1β0)

Σ? = (FcTΣ−1
cc Fc + R−1)−1

a? = a+
m

2

b? = b+
1

2

[
(z− Fcβ0)T(Σcc + FcRFcT)−1(z− Fcβ0)

]
, (6.7)

as shown in (2.20).

The conditional posterior distribution

β | z, σ2,φ ∼ N(β?, σ
2Σ?), (6.8)

follows from Equation (2.19), and the marginal posterior for σ2 is an inverse-gamma

distribution

σ2 | z,φ ∼ IG (a?, b?) , (6.9)

see Equation (2.23). Both β|z, σ2,φ and σ2|z,φ are conditionally independent of θp

given z.

6.4.1 Conditional prediction with known hyperparameters

The joint prior distribution of physical data, y, and simulator evaluations, z, conditional

on all unknown model parameters θp,β, σ2,φ, τ2, is given by:(
y

z

) ∣∣∣∣∣θp,β, σ2,φ, τ2 ∼ N

((
Fpβ

Fcβ

)
, σ2

(
Σpp + τ2In ΣT

cp

Σcp Σcc

))
, (6.10)

where τ2 = σ2
ε/σ

2, Fp = [f(xp1,θ
p) f(xp2,θ

p) . . . f(xpn,θp)]T is the n× kη model matrix

for the physical experiment and Σpp, Σcp are defined through the correlation function

with entries given by Σpp,ii′ = κ[(xpi ,θ
p), (xpi′ ,θ

p);φ] and Σcp,ji = κ[(xcj ,θ
c
j), (x

p
i ,θ

p);φ],

where i, i′ = 1, . . . , n and j = 1, . . . ,m.

Standard results on multivariate normal distributions can be used to derive the follow-
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ing conditional posterior distribution

y | z,θp,β, σ2,φ, τ2 ∼ N (µy,Σy) ,

with

µy = E(y | z,θp,β, σ2,φ, τ2) = Fpβ + ΣT
cpΣ

−1
cc [z− Fcβ] , (6.11)

and

Σy = var(y | z,θp,β, σ2,φ, τ2) = σ2[Σpp + τ2In −ΣT
cpΣ

−1
cc Σcp]. (6.12)

Hence the likelihood for the physical data y, conditional on the simulator evaluations

z, is

πl(y | z,θp,β, σ2,φ, τ2) =
1

(2π)n/2|Σy|1/2
exp

{
−1

2
(y − µy)TΣ−1

y (y − µy)
}
.

We obtain the marginal distribution of the physical data conditional on simulator eval-

uations, by using the fact that y | z,θp,β, σ2,φ, τ2 ∼ N(µy,Σy) and β | z, σ2,φ, τ2 ∼
N(β?, σ

2Σ?). It follows that

y − µy | z,θp,β, σ2,φ, τ2 ∼ N(0n, σ
2Σ?

y), (6.13)

where Σy = σ2Σ?
y. The right hand side of (6.13) does not depend on β, and so

y − µy is statistically independent of β given z, θp, σ2, φ and τ2. Moreover y − µy is

also conditionally independent of µy, which is a linear transformation of β (Equation

(6.11)). The vector µy|z,θp, σ2,φ, τ2 also follows a multivariate normal distribution

with mean and variance given by:

E[µy|z,θp, σ2,φ, τ2] = E(Fpβ + ΣT
cpΣ

−1
cc [z− Fcβ])

= E[Fpβ] + ΣT
cpΣ

−1
cc E [z− Fcβ]

= Fpβ? + ΣT
cpΣ

−1
cc [z− Fcβ?]

= Fp(FcTΣ−1
cc Fc + R−1)−1(FcTΣ−1

cc z + R−1β0)

+ ΣT
cpΣ

−1
cc

[
z− Fc(FcTΣ−1

cc Fc + R−1)−1(FcTΣ−1
cc z + R−1β0)

]
,

(6.14)

and

var[µy|z,θp, σ2,φ, τ2] = var[Fpβ + ΣT
cpΣ

−1
cc (z− Fcβ)]

= var[(Fp −ΣT
cpΣ

−1
cc Fc)β + ΣT

cpΣ
−1
cc z]

= σ2(Fp −ΣT
cpΣ

−1
cc Fc)Σ?(F

p −ΣT
cpΣ

−1
cc Fc)T

= σ2(Fp −ΣT
cpΣ

−1
cc Fc)(FcTΣ−1

cc Fc + R−1)−1(Fp −ΣT
cpΣ

−1
cc Fc)T.
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Hence, given z, θp, σ2, φ and τ2,

y = (y − µy) + µy,

is a sum of two independent multivariate normal random variables. Thus,

y | z,θp, σ2,φ, τ2 ∼ N [µ̃y, σ
2Σ̃y],

where µ̃y = E[µy|z,θp, σ2,φ, τ2] given by (6.14) and Σ̃y given by:

Σ̃y = {Σ?
y + (Fp −ΣT

cpΣ
−1
cc Fc)(FcTΣ−1

cc Fc + R−1)−1(Fp −ΣT
cpΣ

−1
cc Fc)T}. (6.15)

We can then integrate out σ2 with respect to its marginal posterior distribution, σ2 |
z,φ, τ2 ∼ IG(a?, b?), given in (6.9), to obtain:

π(y | z,θp,φ, τ2) =

∫ ∞
0

π(y | z,θp, σ2,φ, τ2)π(σ2 | z,φ, τ2)dσ2

=

∫ ∞

0

 1

(σ2)n/2
√

(2π)n|Σ̃y|
exp

{
− 1

2σ2
(y − µ̃y)TΣ̃−1

y (y − µ̃y)
}

× (b?)
a?

Γ(a?)
(σ2)−(a?+1) exp

{
− b?
σ2

}]
dσ2

=
(b?)

a?

Γ(a?)
√

(2π)n|Σ̃y|

∫ ∞

0

(σ2)−(a?+1+n/2)

× exp

{
− 1

σ2

[
1

2
(y − µ̃y)TΣ̃−1

y (y − µ̃y) + b?

]}
dσ2

=
(b?)

a?Γ
(
a? + n

2

)
Γ(a?)

√
(2π)n|Σ̃y|

[
b? +

(y − µ̃y)TΣ̃−1
y (y − µ̃y)

2

]−(a?+n/2)

=
(b?)

−n/2Γ
(
a? + n

2

)
Γ(a?)

√
(2π)n|Σ̃y|

[
1 +

(y − µ̃y)TΣ̃−1
y (y − µ̃y)

2b?

]−(a?+n/2)

.

(6.16)

Equation (6.16) indicates that the predictive distribution of the physical data y is a

multivariate t-distribution,

y | z,θp,φ, τ2 ∼ t2a?
(
n, µ̃y,

b?
a?

Σ̃y

)
,

with 2a? degrees of freedom, mean µ̃y given by (6.14), and variance b?
a?−1Σ̃y, where Σ̃y

is given by (6.15).

Hence we have obtained the marginal posterior predictive distribution of the physical

data y given simulator runs z, calibration parameters θp, correlation parameters φ and

the nugget τ2. This distribution can be used when designing physical experiments.
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6.4.2 Approximation of the expected utility

We are interested in finding designs that maximise an approximation to the expected

Shannon information gain

U(ξ) =

∫
Ψ

∫
Y

log
πl(y|z,ψ, ξ)
πe(y|z, ξ)

π(y,ψ|z, ξ)dydψ.

We approximate the expected Shannon information gain using the ALIS and LIS ap-

proximations described in Section 4.3, and find optimal designs using the approximate

coordinate exchange (ACE) algorithm (see Section 5.2).

The negative Hessian of the log-unnormalised posterior density, H(ψ), must be calcu-

lated in order to use ALIS and LIS, where ψ = [(θp)T, τ2]T and we assume that the

vector of correlation parameters, φ, for the emulator is held fixed at the maximum

likelihood estimates from the computer experiment. The log-unnormalised posterior

density is given by:

log πu(θp, τ2|y, z, ξ) = log[π(y|z,θp, τ2, ξ)πb(θ
p)πb(τ

2)]

= log π(y|z,θp, τ2, ξ) + log πb(θ
p) + log πb(τ

2),

where, from (6.16),

log π(y|z,θp, τ2, ξ) = −1

2
log |Σ̃y| −

(
a? +

n

2

)
log
[
2b? + (y − µ̃y)TΣ̃−1

y (y − µ̃y)
]

+ constant. (6.17)

In order to guarantee positivity of sampled parameters we construct the importance

distributions of ALIS and LIS by making a normal approximation to the posterior

distribution of a transformed parameter vector ψ′, with ψ′h = Th(ψh), i.e. ψ′h de-

pends only on the hth component of ψ′ and not the other components, as described

in Section 4.3.2. For the first example in Section 6.4.3 we use the transformation

ψ′ = (θp, log τ2)T and for the second example in Section 6.4.4 we use the transforma-

tion ψ′ = (log θp1, log θp2, log τ2)T.

We now find the first and second derivatives of (6.17) required to construct the ALIS

and LIS importance densities, which we use in the examples presented in Sections 6.4.3

and 6.4.4.

We have ψ = (ψ1, . . . , ψq2)T and ψ′ = (ψ′1, . . . , ψ
′
q2)T. For h = 1, . . . , q2, the first

derivatives are given by:

∂ log π(y|z,ψ, ξ)
∂ψ′h

=
∂ log π(y|z,ψ, ξ)

∂ψh

∂ψh
∂ψ′h

∂ log π(y|z,ψ, ξ)
∂ψh

= −1

2

∂ log |Σ̃y|
∂ψh

+ a?
∂ log[2b?]

∂ψh
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−
(
a? +

n

2

)[ 2 ∂b?
∂ψh

2b? + (y − µ̃y)TΣ̃−1
y (y − µ̃y)

]

−
(
a? +

n

2

)−2
(
∂µ̃y
∂ψh

)T
Σ̃−1
y (y − µ̃y) + (y − µ̃y)T ∂Σ̃−1

y

∂ψh
(y − µ̃y)

2b? + (y − µ̃y)TΣ̃−1
y (y − µ̃y)

 ,
where

∂ log |Σ̃y|
∂ψh

= tr

[
Σ̃−1
y

∂Σ̃y

∂ψh

]
.

We first find the derivatives with respect to the true calibration parameters θp. For

k = 1, . . . , pθ, we have:

∂µ̃y
∂θpk

=
∂Fp

∂θpk
(FcTΣ−1

cc Fc + R−1)−1(FcTΣ−1
cc z + R−1β0)

+
∂ΣT

cp

∂θpk
Σ−1
cc

[
z− Fc(FcTΣ−1

cc Fc + R−1)−1(FcTΣ−1
cc z + R−1β0)

]
,

∂Σ̃−1
y

∂θpk
= −Σ̃−1

y

∂Σ̃y

∂θpk
Σ̃−1
y ,

∂Σ̃y

∂θpk
=
∂Σpp

∂θpk
−
∂ΣT

cp

∂θpk
Σ−1
cc Σcp −ΣT

cpΣ
−1
cc

∂Σcp

∂θpk

+

(
∂Fp

∂θpk
−
∂ΣT

cp

∂θpk
Σ−1
cc Fc

)
(FcTΣ−1

cc Fc + R−1)−1(Fp −ΣT
cpΣ

−1
cc Fc)T

+ (Fp −ΣT
cpΣ

−1
cc Fc)(FcTΣ−1

cc Fc + R−1)−1

(
∂Fp

∂θpk
−
∂ΣT

cp

∂θpk
Σ−1
cc Fc

)T

,

∂ log[2b?]

∂θpk
= 0,

∂b?
∂θpk

= 0,

∂Σpp,ii′

∂θpk
= 2φθkΣpp,ii′(θ

p
k − θ

p
k) = 0, i, i′ = 1, . . . , n,

∂Σcp,ji

∂θpk
= 2φθkΣcp,ji(θ

c
jk − θ

p
k), i = 1, . . . , n, j = 1, . . . ,m.

Then we find the derivative of the variance Σ̃y with respect to the nugget τ2. The

mean µ̃y does not depend on the nugget. We have:

∂Σ̃−1
y

∂τ2
= −Σ̃−1

y

∂Σ̃y

∂τ2
Σ̃−1
y ,

∂Σ̃y

∂τ2
= In.

For h, s = 1, . . . , q2, the second derivatives are given by:

∂2 log π(y|z,ψ, ξ)
∂ψ′h∂ψ

′
s

=
∂

∂ψ′s

[
∂ log π(y|z,ψ, ξ)

∂ψ′h

]
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=
∂ψs
∂ψ′s

∂

∂ψs

[
∂ log π(y|z,ψ, ξ)

∂ψ′h

]
=
∂ψs
∂ψ′s

∂

∂ψs

[
∂ψh
∂ψ′h

∂ log π(y|z,ψ, ξ)
∂ψh

]
=
∂ψs
∂ψ′s

[
∂2ψh
∂ψs∂ψ′h

∂ log π(y|z,ψ, ξ)
∂ψh

+
∂ψh
∂ψ′h

∂2 log π(y|z,ψ, ξ)
∂ψs∂ψh

]
=
∂ψs
∂ψ′s

[
∂ψh
∂ψ′h

∂2 log π(y|z,ψ, ξ)
∂ψs∂ψh

]
.

Here,

∂2 log π(y|z,ψ, ξ)
∂ψs∂ψh

= −1

2

∂2 log |Σ̃y|
∂ψs∂ψh

+ a?
∂2 log[2b?]

∂ψs∂ψh
−
(
a? +

n

2

)( ∂A
∂ψs

B −A ∂B
∂ψs

B2

)
,

where

A = 2
∂b?
∂ψh

− 2

(
∂µ̃y
∂ψh

)T

Σ̃−1
y (y − µ̃y) + (y − µ̃y)T

∂Σ̃−1
y

∂ψh
(y − µ̃y)

∂A

∂ψs
= 2

∂2b?
∂ψs∂ψh

− 2

(
∂2µ̃y
∂ψs∂ψh

)T

Σ̃−1
y (y − µ̃y)− 2

(
∂µ̃y
∂ψh

)T ∂Σ̃−1
y

∂ψs
(y − µ̃y)

+ 2

(
∂µ̃y
∂ψh

)T

Σ̃−1
y

(
∂µ̃y
∂ψs

)
− 2

(
∂µ̃y
∂ψs

)T ∂Σ̃−1
y

∂ψh
(y − µ̃y)

+ (y − µ̃y)T
∂2Σ̃−1

y

∂ψs∂ψh
(y − µ̃y)

B = 2b? + (y − µ̃y)TΣ̃−1
y (y − µ̃y)

∂B

∂ψs
= 2

∂b?
∂ψs
− 2

(
∂µ̃y
∂ψs

)T

Σ̃−1
y (y − µ̃y) + (y − µ̃y)T

∂Σ̃−1
y

∂ψs
(y − µ̃y),

and

∂2 log |Σ̃y|
∂ψs∂ψh

= tr

[
−Σ̃−1

y

∂Σ̃y

∂ψs
Σ̃−1
y

∂Σ̃y

∂ψh
+ Σ̃−1

y

∂2Σ̃y

∂ψs∂ψh

]

We first find the second derivatives with respect to the true calibration parameters θp.

For k, r = 1, . . . , pθ we have:

∂2µ̃y
∂θpk∂θ

p
r

=
∂2Fp

∂θpk∂θ
p
r

(FcTΣ−1
cc Fc + R−1)−1(FcTΣ−1

cc z + R−1β0)

+
∂2ΣT

cp

∂θpk∂θ
p
r
Σ−1
cc

[
z− Fc(FcTΣ−1

cc Fc + R−1)−1(FcTΣ−1
cc z + R−1β0)

]
,

∂2Σ̃−1
y

∂θpk∂θ
p
r

= Σ̃−1
y

∂Σ̃y

∂θpk
Σ̃−1
y

∂Σ̃y

∂θpr
Σ̃−1
y − Σ̃−1

y

∂2Σ̃y

∂θpk∂θ
p
r
Σ̃−1
y + Σ̃−1

y

∂Σ̃y

∂θpr
Σ̃−1
y

∂Σ̃y

∂θpk
Σ̃−1
y ,
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∂2Σ̃y

∂θpk∂θ
p
r

=
∂2Σpp

∂θpk∂θ
p
r
−

∂2ΣT
cp

∂θpk∂θ
p
r
Σ−1
cc Σcp −

∂ΣT
cp

∂θpk
Σ−1
cc

∂Σcp

∂θpr

−
∂ΣT

cp

∂θpr
Σ−1
cc

∂Σcp

∂θpk
−ΣT

cpΣ
−1
cc

∂2Σcp

∂θpr∂θ
p
k

+

(
∂2Fp

∂θpk∂θ
p
r
−

∂2ΣT
cp

∂θpk∂θ
p
r
Σ−1
cc Fc

)
(FcTΣ−1

cc Fc + R−1)−1(Fp −ΣT
cpΣ

−1
cc Fc)T

+

(
∂Fp

∂θpk
−
∂ΣT

cp

∂θpk
Σ−1
cc Fc

)
(FcTΣ−1

cc Fc + R−1)−1

(
∂Fp

∂θpr
−
∂ΣT

cp

∂θpr
Σ−1
cc Fc

)T

+

(
∂Fp

∂θpr
−
∂ΣT

cp

∂θpr
Σ−1
cc Fc

)
(FcTΣ−1

cc Fc + R−1)−1

(
∂Fp

∂θpk
−
∂ΣT

cp

∂θpk
Σ−1
cc Fc

)T

+ (Fp −ΣT
cpΣ

−1
cc Fc)(FcTΣ−1

cc Fc + R−1)−1

(
∂2Fp

∂θpk∂θ
p
r
−

∂2ΣT
cp

∂θpk∂θ
p
r
Σ−1
cc Fc

)T

,

∂2Σpp,ii′

∂θpk∂θ
p
r

= 0,

∂2Σcp,ji

∂θpk∂θ
p
r

= 4φθkφθrΣcp,ji(θ
c
jk − θ

p
k)(θ

c
jr − θpr)− 2φθkΣcp,ji

∂θpk
∂θpr

= 4φθkφθrΣcp,ji(θ
c
jk − θ

p
k)(θ

c
jr − θpr)− 2φθkΣcp,jiδkr,

where

δkr =


1, if k = r

0, otherwise ,
(6.18)

is the Kronecker delta and i, i′ = 1, . . . , n and j = 1, . . . ,m.

The second derivatives of the variance Σ̃y involving the nugget τ2 is,

∂2Σ̃−1
y

∂θpk∂τ
2

= Σ̃−1
y

∂Σ̃y

∂θpk
Σ̃−1
y

∂Σ̃y

∂τ2
Σ̃−1
y − Σ̃−1

y

∂2Σ̃y

∂θpk∂τ
2
Σ̃−1
y + Σ̃−1

y

∂Σ̃y

∂τ2
Σ̃−1
y

∂Σ̃y

∂θpk
Σ̃−1
y ,

∂2Σ̃y

∂θpk∂τ
2

= 0n×n,

∂2Σ̃y

∂[τ2]2
= 0n×n,

∂2µ̃y
∂θpk∂τ

2
= 0n.

Finally, the second derivatives of b? with respect to ψs:

∂f(b?)

∂ψs
= 0,

for any function f and any s = 1, . . . , q2.
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In this section we have presented the derivatives of log π(y|z,θp, τ2, ξ). The derivatives

of log πb(ψ) can be found in Appendix B.2.5 for the example in Section 6.4.3 and in

Appendix B.2.6 for the example in Section 6.4.4.

In Section 6.4.3 we present an example for calibration problem SP3 of Section 6.1. We

compare the ESIG for a fixed physical design as we increase the number of runs of

the computer experiment, m. Lastly, we compare optimal designs for this model with

optimal designs found for a corresponding nonlinear model.

6.4.3 Example 1: Unknown simulator and δθp(x) = 0 - Cantilever beam

function

We estimate the expected Shannon information gain with ALIS and LIS approximations

(Section 4.3) for the statistical model (6.4) and assume a Gaussian process prior for

the simulator as given in Equation (6.5). We combine ALIS and LIS with the ACE

algorithm (Section 5.2) and find Bayesian optimal designs.

For the purpose of this example, we generate simulator runs using the model of can-

tilever beam displacement (in inches) (Wu et al., 2001) given by:

η(x, θ) =
4L3

θwt

√(x1

t2

)2
+
( x2

w2

)2
. (6.19)

For the purposes of finding Bayesian optimal designs, η(x, θ) is treated as an unknown

expensive simulator.

Equation (6.19) is used to model a simple uniform cantilever beam with horizontal and

vertical loads as shown in Figure 6.10. The beam length L is a constant with value

L = 100 inches, w is the width of the cross-section with value w = 4 inches and t is

thickness of the cross-section with value t = 2 inches. The controllable variables x1 and

x2 are the vertical and horizontal load (Newtons), respectively. Both x1 and x2 take

values in the range [−2000, 2000]. The negative values of the force here imply load in

the opposite direction from the one given in Figure 6.10. The calibration parameter,

θp, is Young’s modulus of the beam material for which a normal prior distribution,

θp ∼ N [2.9 × 107, (1.45 × 106)2], is assumed as given by Surjanovic and Bingham

(2017). Figure 6.11 shows ellipsoidal contours of the simulator for a given value of the

calibration parameter.

We also assume that during calibration, the correlation parameters φ = (φx1 , φx2 , φθ)
T

for the emulator are held fixed at the maximum likelihood estimates from the com-

puter experiment. In other words, the correlation parameters will not be updated with

the physical experiment data. However, the prior distributions for the parameters θp

and τ2 = σ2
ε/σ

2 will be updated following the physical experiment. We maximise the

expected Shannon information gain for θp and treat τ2 as a nuisance parameter. We in-

tegrate out β | z, σ2,φ, τ2 and σ2 | z,φ, τ2 using their marginal posterior distributions,
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Figure 6.10: A beam under vertical and horizontal loads (taken from Wu et al., 2001)

Figure 6.11: Contour plot of the cantilever beam function for θp = 3.15× 107
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as shown in Section 6.4.1, to obtain

y | z,θp, τ2 ∼ t2a?
[
n, µ̃y,

b?
a?

Σ̃y

]
,

as given in Equation (6.16), where µ̃y, Σ̃y are given by Equations (6.14) and (6.15)

respectively, and a?, b? are given by Equation (6.7).

For the design of the computer experiment, ξc = [(xc1, θ
c
1), . . . , (xcm, θ

c
m)], we use three-

dimensional LHS designs scaled to the range [−2000, 2000] × [−2000, 2000] × [2.5 ×
107, 3.2 × 108] with the range of θp chosen as the 1% and 99% prior quantiles of the

prior distribution. We transform the variables according to:

θp′ =
θp − 2.9× 107

1.9× 106
, x′1 =

x1

1173.8
and x′2 =

x2

1173.8
,

so each column of the transformed design matrix has zero mean and standard deviation

one. Hence θp′ ∼ N(µ1, σ
2
1), is the prior distribution for the transformed calibration

parameter θp′ with µ1 = 0 and σ1 = 0.73. The new range of the transformed simulator

designs ξc′ = [(xc′1 , θ
c′
1 ), . . . , (xc′m, θ

c′
m)] is [−1.7, 1.7]× [−1.7, 1.7]× [−1.65, 1.65].

We assume the product of one-dimensional correlation functions (2.4) where each one-

dimensional correlation function is the squared exponential correlation function (2.6).

We also assume prior distributions for the trend parameter β, the variance of the

Gaussian process σ2 and the nugget τ2 as given below:

β ∼ N(01, σ
2I1), σ2 ∼ IG(3, 2), τ2 ∼ Exp(20).

The choice of prior distribution of τ2 implies that the 10% and 90% quantiles of the

noise-to-signal ratio (σε divided by the maximum expected response η(2000, 2000, θ))

are 0.007 and 0.04, respectively. The prior distributions of σ2 and τ2 imply that the

10% and 90% quantiles of the error variance σ2
ε , are 0.003 and 0.112, respectively.

We assume that the regression trend function for the Gaussian process is f(x) = 1, so

Fc = 1m and Fp = 1n. We denote by ξ the physical design for which the Shannon infor-

mation gain is estimated. The design ξ has points in the range [−1.7, 1.7]× [−1.7, 1.7].

In Appendix C.3 a detailed investigation is presented into the change in the Gaussian

process fit to the cantilever beam function as the number of simulator runs, m, is

changed (m = 30, 60, 90). To summarise the results, the GP models fit well for all

values of m considered, with the fit of the posterior mean to the simulator response

obviously improving as m increases. This improvement is most obvious near the edges

of the design region. The posterior variance decreases as m increases.

We assume the expected Shannon information gain utility function (4.5). We approxi-

mate the evidence in the ESIG using ALIS and LIS approximations (Section 4.3) which

are then combined with the ACE algorithm (Section 5.2) to find Bayesian optimal
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Figure 6.12: Estimated ESIG for the parameter θ of the nonlinear model (cantilever
beam example) when treating σ2

ε as a nuisance parameter (red) and the parameter of
interest θp of the calibration model when τ2 is treated as a nuisance parameter, as we
increase the number of simulator runs, m, and found using ALIS and LIS

designs.

The log-unnormalised marginal posterior density is given by:

log πu(θp′, τ2|y, z, φ, ξ) = log π(y|z, θp′,φ, τ2, ξ) + log πb(θ
p′) + log πb(τ

2)

= log π(y|z, θp′,φ, τ2, ξ)− 1

2
log
(
2πσ2

1

)
− (θp′ − µ1)2

2σ2
1

+ log λτ2 − λτ2τ2,

and log π(y|z, θp′,φ, τ2, ξ) is given by Equation (6.17).

For this example, we aim to construct an importance distribution that guarantees

that positive values for the nugget, τ2, will be sampled. Hence, we take a normal

approximation to the posterior distribution of ψ′ = (θp′, log τ2)T as described in Section

4.3.2. In order to calculate the negative Hessian of the log-unnormalised posterior

density, Hψ′(ψ
′), in ALIS and LIS (see Section 4.3), we first have to find the derivatives

of the log-unnormalised posterior density log πψ
′

u (ψ′|y, z, ξ) with respect to ψ′ using

Equations (4.36). The derivatives of the log-marginal predictive density of the physical

data, log π(y|z,φ,ψ, ξ), can be found in Section 6.4.2 and the derivatives of the log-

prior density, log πb(ψ), can be found in Appendix B.2.5 which give the derivatives of

log πψ
′

u (ψ′|y, z, ξ) using Equations (4.36). We also treat the nugget τ2 as a nuisance

parameter which we integrate out as described in Section 4.3.1.
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In Figure 6.12, we compare the expected Shannon information gain for a space-filling

physical design with n = 10 runs calculated (i) for the nonlinear model assuming

the cantilever beam function (6.19) is known and can be evaluated, and the response

has normally distributed errors (see Appendix B.2.5); and (ii) the calibration model

assuming (6.19) can only be evaluated for a m-run computer experiment. The number

of simulator runs is set to m = 30, 60 and 90. We present 100 estimates of the expected

Shannon information gain for the two models and the different sizes of simulator runs,

m. To perform the calculation we use ALIS and LIS with k1 = k2 = 2000 for the

nonlinear model (σ2
ε is integrated-out analytically, see Appendix B.2.5) and k1 = k2 =

k3 = 2000 for the calibration model, and both normal and t importance distributions.

As the number of simulator runs is increased, the approximate ESIG also increases.

For m = 60 and m = 90 the computer experiment produces a good approximation to

the simulator. Hence, the approximate ESIG based on these computer experiments is

roughly equal to the ESIG for θ under the nonlinear regression model.

Figure 6.12 shows differences between ALIS and LIS for the same number of simulator

runs, m. These differences arise as ALIS sometimes “fails” because of poorly condi-

tioned matrices Hψ′(ψ
′) that are still just positive-definite. Hence ALIS does not enter

the optimisation step (see Section 4.3). However, the ill-conditioning results in very

large variances, and so very large values of some sampled parameters, for which the

likelihood evaluation cannot be performed. The results in Figure 6.12 are conditional

on the likelihood evaluation being possible, which results in the ALIS estimator having

negative bias. For the results presented in the rest of this example we will use LIS.

Next we find Bayesian optimal designs by combining LIS with the ACE algorithm.

Similar to the previous examples we use 10 different random starts in ACE. We present

optimal designs for the physical experiment with n = 10 for both the nonlinear model

when σ2
ε is treated as a nuisance parameter and the calibration model when τ2 is

treated as a nuisance parameter with different numbers of simulator runs. Finally, we

approximate the ESIG of the optimal designs found with ACE for each model.

Figure 6.13 shows Bayesian optimal designs for the nonlinear cantilever beam function

when σ2
ε is treated as a nuisance parameter, and the calibration problem when treating

τ2 as a nuisance parameter and for different number of simulator runs (m = 30, 60, 90).

In Appendix B.2.5 we present more near-optimal designs obtained from different ran-

dom starts of ACE. We notice that as we increase m, the optimal designs obtained

for the calibration model become more similar to the optimal design for the nonlinear

model. That is, for the physical design, there are many values of x1 (vertical load) but

x2 (horizontal load) only takes the extreme values ±1.7. The calibration designs for

m = 60, 90 also mainly contain values of x2 close to the edges of the range, but the

calibration design for m = 30 exhibits a greater spread of values of x2, including values

in the interior of the range. This difference is probably due to the smaller computer

experiment producing a poorer approximation to the simulator.
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Figure 6.13: Cantilever beam example: (a) Bayesian optimal design for the nonlinear
model when treating σ2

ε as a nuisance parameter (ξ?CBF ); Bayesian optimal design for
the calibration model when treating τ2 as a nuisance parameter and (b) m = 30 (ξ?cal,30);
(c) m = 60 (ξ?cal,60); (d) m = 90 (ξ?cal,90); the number on some points in each plot shows
how many times the point is repeated
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Figure 6.14: Cantilever beam example: estimated ESIG for the parameter of interest θp′

for the calibration model when treating τ2 as a nuisance parameter and as we increase
the number of simulator runs, m, for the optimal designs shown in Figure 6.13, found
using LIS with k1 = k2 = k3 = 2000

Figure 6.14 shows boxplots for each design presented in Figure 6.13, corresponding to

the distribution of 100 estimates of the ESIG for the calibration model when treating

τ2 as a nuisance parameter and as we increase the number of simulator runs (m =

30, 60, 90). To perform the calculation, LIS was used with k1 = k2 = k3 = 2000.

For the calibration model with m = 30 simulator runs (boxplots under the grey line)

the optimal design found under this model, ξ?cal,30, has the best performance. For the

calibration model with m = 60 simulator runs (boxplots under the orange line) all

optimal designs have similar performance with design ξ?CBF performing slightly better.

Finally, for the calibration model with m = 90 simulator runs (boxplots under the pink

line) the design for the calibration model ξ?cal,90 has the best performance. This plot

provides further evidence that the computer experiment with m = 30 has provided

an approximation to the simulator that is quite different from that obtained from the

larger computer experiments.

In Figure 6.15 we present boxplots for each design presented in Figure 6.13, corre-

sponding to the distribution of 100 estimates of the ESIG for the nonlinear model

when treating σ2
ε as a nuisance parameter. Again to perform the calculation, LIS was

used with k1 = k2 = 2000 (σ2
ε is integrated-out analytically). The optimal designs

found for the calibration model when treating τ2 as nuisance parameter with m = 60

and m = 90 simulator runs have very similar performance to the optimal design found

for the nonlinear model.

We have shown (Appendix C.3) that the Gaussian process posterior mean adapts very
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Figure 6.15: Cantilever beam example: estimated ESIG for the nonlinear model when
treating σ2

ε as a nuisance parameter for the optimal designs shown in Figure 6.13, found
using LIS with k1 = k2 = 2000

quickly to the true model as we increase the number of simulator runs m and the

Gaussian process posterior variance decreases. As a result, optimal designs found using

the calibration model with large m are reasonably efficient for estimating the parame-

ters of the nonlinear model. Similarly, optimal designs under the nonlinear model are

reasonably efficient for estimating the parameters of the calibration model.

In this example, because the simulator has a simple equation we are able to compare

optimal designs found for the calibration model with unknown simulator with optimal

designs for a nonlinear model. However, in general this will not be the case. This

example shows that efficient designs can be obtained even in the unknown simulator

case.

6.4.4 Example 2: Unknown simulator and δθp(x) = 0 - Michaelis-

Menten model

Similarly to the previous example, we estimate the expected Shannon information gain

with ALIS and LIS approximations (Section 4.3) for the statistical model (6.4) and

assume a Gaussian process prior for the simulator as given in Equation (6.5). We

combine ALIS and LIS with the ACE algorithm (Section 5.2) to find Bayesian optimal

designs.

For the purposes of this example, we generate simulator runs using the Michaelis-
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Menten model (3.1),

η(x,θ) =
θ1x

θ2 + x
.

Again η(x,θ) is treated as an unknown expensive simulator for the purposes of finding

Bayesian optimal calibration designs. We assume that during calibration, the correla-

tion parameters φ = (φx, φθ1 , φθ2)T are held fixed at the maximum likelihood estimates

from the computer experiment. In other words, the correlation parameters will not be

updated with the physical experiment data. However, the prior distributions for the

parameters θp = (θp1, θ
p
2)T and τ2 = σ2

ε/σ
2 will be updated following the physical exper-

iment. We maximise the expected Shannon information gain for θp and treat τ2 as a

nuisance parameter. Similarly to the previous example, we integrate out β | z, σ2,φ, τ2

and σ2 | z,φ, τ2 using their marginal posterior distributions as shown in Section 6.4.1.

For the design of the computer experiment, ξc = [(xc1,θ
c
1), . . . , (xcm,θ

c
m)], we use three-

dimensional LHS designs scaled to the range [0, 400]× [68.05, 94.29]× [0.25, 45.59] with

the range of θp1 and θp2 chosen as the 1% and 99% quantiles of their prior distribu-

tions. We denote by ξ the physical design for which the Shannon information gain

is estimated. The physical design ξ has points in [0, 400]. We assume the product

of one-dimensional correlation functions (2.4) where each one-dimensional correlation

function is the squared exponential correlation function (2.6). We also assume the

following prior distributions:

θp1 ∼ logN(4.38, 0.072), θp2 ∼ logN(1.19, 0.842), β ∼ N(01, σ
2I1),

σ2 ∼ IG(3, 2), τ2 ∼ Exp(50).

The choice of prior distribution of τ2 implies that the 10% and 90% quantiles of the

noise-to-signal ratio (σε divided by the maximum expected response, η(400,θ)) are

0.0004 and 0.003, respectively. The prior distributions of σ2 and τ2 imply that the 10%

and 90% quantiles of the error variance σ2
ε , are 0.001 and 0.047, respectively.

As in the previous example (Section 6.4.3) we assume that the regression trend function

for the Gaussian process is f(x) = 1, so Fc = 1m and Fp = 1n.

We maximise the expected Shannon information gain utility function (4.5) for the

parameters ψ = [(θp)T, τ2]T, and approximate the evidence in this utility using ALIS

and LIS approximations (see Section 4.3). The log-unnormalised posterior density is

given by:

log πu(θp, τ2|y, z, ξ) = log π(y|z,θp,φ, τ2, ξ) + log πb(θ
p) + log πb(τ

2)

= log π(y|z,θp,φ, τ2, ξ)− log
[
θp1σ1(2π)1/2

]
− (log θp1 − µ1)2

2σ2
1

− log
[
θp2σ2(2π)1/2

]
− (log θp2 − µ2)2

2σ2
2

+ log λτ2 − λτ2τ2,

where log π(y|z,θp,φ, τ2, ξ) is given by Equation (6.17).
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Figure 6.16: ESIG optimal design with n = 10, found for the Michaelis-Menten cali-
bration model with δθp(x) 6= 0, using LIS with k1 = k2 = 300; two of the points are
repeated twice (also given in Figure 6.2 as ξ?cal)

For this example, we aim to construct an importance distribution that guarantees posi-

tive values of all parameters ψ. Hence, we take a normal approximation to the distribu-

tion of ψ′ = [log θp1, log θp2, log τ2]T, as described in Section 4.3.2. In order to calculate

the negative Hessian of the log-unnormalised posterior density, Hψ′(ψ
′), in ALIS and

LIS (Section 4.3), we first have to find the derivatives of the log-unnormalised posterior

density log πψ
′

u (ψ′|y, z, ξ) with respect to ψ′ using Equations (4.36). The derivatives

of log π(y|z,φ,ψ, ξ) and log πb(ψ) can be found in Section 6.4.2 and Appendix B.2.6

respectively, which give the derivatives of log πψ
′

u (ψ′|y, z, ξ) using Equations (4.36).

In Figure 6.17 we compare the distribution of 100 independent estimates of the ESIG

for the design shown in Figure 6.16 with n = 10 runs, as we increase the number of

simulator runs, m = 30, 50, 60, 90, 150. We treat τ2 as a nuisance parameter (see Section

4.3.1). To perform the calculation, ALIS and LIS were used with k1 = k2 = k3 = 300

and both normal and t importance distributions.

As we increase the number of simulator runs, m, we expect that the ESIG will also

increase as we become more certain about the simulator, so that it eventually becomes

essentially known. However, Figure 6.17 shows exactly the opposite. This happens

because the marginal posterior distribution of the Gaussian process variance, σ2, from

the computer experiment, has increasing mean and variance (a? and b? depend on

the simulator design, and both increase with m), the prior distribution on τ2 is fixed,

and hence the implied prior distribution on the error variance, σ2
ε = σ2 × τ2 also has

increasing mean and variance (see Figure 6.18). This increasing “size” of the error

variance leads to lower ESIG. This is a consequence of the model not being stationary

in x and θp. These features result in a more diffuse distribution for y for larger m and

hence sampling of more extreme values.

Figure 6.19 shows a sample from the prior distributions of θp1 and θp2 and the simulator

designs as we increase m. As we increase the number of simulator runs, these designs

cover a slightly wider region; however points sampled from the extremes of the prior

distributions will never be included in the design. This causes problems for Gaussian

process predictions for the unknown simulator η(x,θ) near these points.

150



A
LI
S

A
LI
S
,t

LI
S

LI
S
,t

A
LI
S

A
LI
S
,t

LI
S

LI
S
,t

A
LI
S

A
LI
S
,t

LI
S

LI
S
,t

A
LI
S

A
LI
S
,t

LI
S

LI
S
,t

A
LI
S

A
LI
S
,t

LI
S

LI
S
,t

1.0

1.5

2.0

2.5

3.0

3.5

4.0
E

st
im

at
ed

 E
S

IG
m=30 m=50 m=60 m=90 m=150

Figure 6.17: Estimated ESIG for the parameters of interest θp of the Michaelis-Menten
calibration model when treating τ2 as a nuisance parameter, using ALIS and LIS with
k1 = k2 = k3 = 300, as we increase the number of simulator runs, m, for a fixed physical
design and fixed priors on the unknown parameters

(a)

6 8 10 12 14

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

logσ2

D
en
si
ty

m=30
m=50
m=60
m=90
m=150

(b)

-5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

 

logσε
2

D
en
si
ty

m=30
m=50
m=60
m=90
m=150

Figure 6.18: (a) The prior density of the log Gaussian process variance, log σ2, and (b)
the implied prior distribution of the log error variance, log σ2

ε as we increase the number
of simulator runs, m, in the computer experiment for the Michaelis-Menten calibration
example, and keep the prior of τ2 fixed
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Figure 6.19: A sample from the prior distributions of θp1 and θp2 and the simulator
designs with: m = 30 (blue); m = 60 (green); m = 90 (purple) for the Michaelis-
Menten calibration model

In Figures 6.20, 6.21 and 6.22 we show predictions from the Gaussian process fit of

simulator runs to the simulator outputs (generated from the Michaelis-Menten model)

as we increase the number of simulator runs, m = 30, 60, 90. The red line is the mean

of the Gaussian process, the blue dashed lines are 95% probability bounds and the

black line is the true Michaelis-Menten model for a given θ, as shown for each plot. We

present four plots for each value of m (plot (a): θ1 = 90, θ2 = 12; plot (b): θ1 = 90,

θ2 = 8.5; plot (c): θ1 = 90, θ2 = 30; plot (d): θ1 = 90, θ2 = 0.9). For plots (c)

and (d), θ2 samples extreme points from the prior distribution. As we increase m,

the uncertainty in plots (a) and (b) decreases and the mean of the Gaussian process

adapts to the shape of the true function. However, for plot (c), the uncertainty is large

for m = 30, improves a little for m = 60, and increases again for m = 90. These

results are consistent with the increases in σ2 seen in Figure 6.18. Lastly, for plot (d)

as we increase m the variance of the Gaussian process decreases, but the mean does

not converge to the true Michaelis-Menten model, which has quite a different shape

compared to the other three plots.

To overcome these issues we match the implied distribution of the error variance of

the calibration model to the prior distribution for the error variance for a nonlinear

regression model based on the Michaelis-Menten equation. We treat τ2 of the calibra-

tion model and σ2
ε of the nonlinear Michaelis-Menten model as nuisance parameters

(see Section 4.3.1). Then we match the implied distribution of the error variance,

σ2
ε = σ2 × τ2, of the calibration model, with the error variance, σ2

ε , of the nonlinear

Michaelis-Menten model by changing the prior distribution on τ2. The values of the

hyperparameters of the inverse-gamma distribution of the error variance, σ2
ε , for the

nonlinear Michaelis-Menten model are a = 2.9 and b = 16.9 and we change the prior

distribution of τ2 to match the implied distribution of σ2
ε for the calibration model with

the error variance of the nonlinear Michaelis-Menten model: (i) for m = 30, λτ2 = 50,

(ii) for m = 60, λτ2 = 3000 and (iii) for m = 90, λτ2 = 6000. We use the same prior
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Figure 6.20: Posterior predictive mean for the Gaussian process fit with m = 30 sim-
ulator runs (red line); 95% probability bounds (blue lines); the true Michaelis-Menten
function for a given θ (black line)
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Figure 6.21: Posterior predictive mean for the Gaussian process fit with m = 60 sim-
ulator runs (red line); 95% probability bounds (blue lines); the true Michaelis-Menten
function for a given θ (black line)
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Figure 6.22: Posterior predictive mean for the Gaussian process fit with m = 90 sim-
ulator runs (red line); 95% probability bounds (blue lines); the true Michaelis-Menten
function for a given θ (black line)
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Figure 6.23: Estimated ESIG for the parameters of interest θp of the calibration model
(6.4) for the Michaelis-Menten example, as we increase the number of simulator runs,
m, and change the prior of the nuisance parameter τ2 (which is treated as a nuisance pa-
rameter), to keep the implied prior distribution of σ2

ε fixed, and also for the parameters
θ of the nonlinear Michaelis-Menten model where σ2

ε is a nuisance parameter

distribution on θp (calibration model) and θ (nonlinear Michaelis-Menten model).

In Figure 6.23 we present 100 estimates of the ESIG for the nonlinear Michaelis-Menten

model where σ2
ε is treated as a nuisance parameter, and the calibration model where

τ2 is treated as a nuisance parameter, as we increase the number of simulator runs

(m = 30, 60, 90). The mean and variance of the implied distribution of σ2
ε for the

calibration model, is held approximately fixed by changing the mean and variance of

τ2. The ESIG for the parameters of interest θp for the calibration model increases as m

increases. For m = 90 the emulator is a better approximation of the simulator for the

range of values of θp that appear in the importance sample, and the ESIG is similar to

the ESIG for the parameters θ of the nonlinear Michaelis-Menten model for the design

shown in Figure 6.16.

Next we find Bayesian optimal designs, as described before, using LIS and k1 = k2 =

300, and ACE for 10 random starts for the nonlinear Michaelis-Menten model where σ2
ε

is a nuisance parameter (σ2
ε is integrated-out analytically, see Section 5.1.2), and LIS

with k1 = k2 = k3 = 300 for the calibration model where τ2 is a nuisance parameter

and m = 30. It was only possible to find optimal designs for the case m = 30 due to

numerical issues we discuss in Section 6.5, caused by the Gaussian process fit failing as

shown in Figures 6.20, 6.21 and 6.22.

The left hand panel in Figure 6.24 shows four Bayesian near-optimal designs, denoted
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Figure 6.24: Bayesian near-optimal designs for (a) the Michaelis-Menten nonlinear
regression model when σ2

ε is treated as a nuisance parameter; (b) the Michaelis-Menten
calibration model when τ2 is treated as a nuisance parameter and m = 30

ξMM,1, ξMM,2, ξMM,3 and ξMM,4, for the nonlinear Michaelis-Menten model found from

four of the random starts of ACE, with prior hyperparameters µ1 = 4.38, σ1 = 0.07,

µ2 = 1.19, σ2 = 0.84, a = 2.915 and b = 16.92, and σ2
ε treated as a nuisance parameter.

The right hand panel in Figure 6.24 shows four Bayesian near-optimal designs, denoted

ξcal,1, ξcal,2, ξcal,3 and ξcal,4, for the calibration model with m = 30, again obtained

from four of the random starts of ACE, with hyperparameters µ1 = 4.38, σ1 = 0.07,

µ2 = 1.19, σ2 = 0.84, a = 3, b = 2 and λτ2 = 50, and τ2 treated as a nuisance

parameter. Designs ξMM,1 and ξMM,3 are similar to optimal designs for the Michaelis-

Menten from previous examples, having most points where the function is changing

fastest and some points where function is stable. Designs ξMM,2 and ξMM,4 have most

points in the region where the function is changing fastest, however they do not have

any points at the end of the design region as has been seen before. This may be a result

of the new prior distribution for σ2
ε , as the variance is now larger. For the calibration

model, all designs follow this pattern with no points near the end of the design region.

A potential explanation for this might be that at this edge of the design region we are

very uncertain about the output of simulator for most parameter values (see Figures

6.20, 6.21 and 6.22).

In Figure 6.25 we present 100 estimates of the ESIG for the parameters θ of the

nonlinear Michaelis-Menten model when σ2
ε is treated as a nuisance parameter (σ2

ε

is integrated-out analytically), found using LIS and k1 = k2 = 300 for the designs pre-

sented in Figure 6.24 (a). All designs have similar performance with ξMM,2 performing

slightly better. We denote this design by ξ?MM .

Figure 6.26 shows 100 estimates of the ESIG found using LIS and k1 = k2 = k3 = 300
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Figure 6.25: Estimated ESIG for the parameters θ of the nonlinear Michaelis-Menten
model when σ2

ε is treated as a nuisance parameter for the designs from Figure 6.24 (a)
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Figure 6.26: Estimated ESIG for the parameters θp of the Michaelis-Menten calibration
model where τ2 is treated as a nuisance parameter and m = 30 for the designs from
Figure 6.24 (b)
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Figure 6.27: Estimated ESIG for the parameters θ of the nonlinear Michaelis-Menten
model when σ2

ε is treated as a nuisance parameter, for the designs ξ?MM and ξ?cal

for the calibration model when τ2 is treated as a nuisance parameter and with m = 30,

for the designs presented in Figure 6.24 (b). Again, all designs have similar performance

with design ξcal,2 performing slightly better. We denote this design by ξ?cal.

Figure 6.27 shows 100 estimates of the ESIG from LIS with k1 = k2 = 300 for the

parameters θ of the nonlinear Michaelis-Menten model, where σ2
ε is a nuisance param-

eter, for ξ?MM and ξ?cal. Figure 6.28 shows 100 estimates of the ESIG from LIS with

k1 = k2 = k3 = 300 for the calibration parameters θp, where τ2 is a nuisance parameter,

and m = 30 for ξ?MM and ξ?cal. The Bayesian optimal design for the calibration model

is not optimal under the Michaelis-Menten model as shown in Figure 6.27. However,

the optimal design found under the Michaelis-Menten model is reasonably efficient for

estimating the parameters of the calibration model.

In this example, again the simulator has a simple equation and hence we are able

to compare optimal designs found for the calibration model with unknown simulator

with optimal designs for a nonlinear model. This example shows that optimal designs

obtained in the unknown simulator case can be inefficient under the nonlinear Michaelis-

Menten model. In this example, this seems to be probably due to the relatively poor

fit of the Gaussian process emulator.

For this example we are not able to construct optimal designs for ALIS and LIS for

larger m because the prior distribution of the nugget τ2 results in very small sampled

values and the negative Hessian matrix H(ψ) becomes ill-conditioned (non-invertible).
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Figure 6.28: Estimated ESIG for the parameters of interest θp of the Michaelis-Menten
calibration model when treating τ2 as a nuisance parameter and m = 30, for the designs
ξ?MM and ξ?cal

Numerical problems caused by these issues are discussed in the next section.

6.5 Numerical issues

As seen in Example 6.4.3, for calibration with an unknown simulator, ALIS can fail

due to the Hessian matrix H(ψ) being ill-conditioned. These matrices result in very

large parameter variances in the ALIS importance distribution. As a consequence, we

obtain very large values of some sampled parameters, for which the likelihood evaluation

cannot be performed. Conditional on the likelihood evaluation being possible the ALIS

estimator seems to result in negative bias in the estimate of the expected Shannon

information gain. Hence we would recommend using LIS rather than ALIS for this

type of problem.

In Example 6.4.4 the Gaussian process posterior mean did not adapt to the true model

very quickly and the Gaussian process variance, σ2, increased with the number of

simulator runs, m. A potential explanation for this is that a stationary Gaussian

process is a poor approximation to the model. To deal with this issue we altered the

prior distribution on τ2 for different values of m in order to keep the implied prior

distribution on σ2
ε fairly constant. To achieve this for large m, the prior mean of τ2

had to be made very small. This results in numerical issues in ALIS and LIS as we are
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unable to invert the variance covariance matrix Σ̃y and the likelihood function is not

defined. Hence, the common parameterisation τ2 = σ2
ε/σ

2 appears to perform poorly

in cases like this.

6.6 Summary

We have developed the necessary methods to address two key problems within the

Kennedy-O’Hagan calibration framework, namely Bayesian design when: (i) the func-

tion η(x,θ) does not provide an accurate description of the mean; and (ii) the model

may be expensive to evaluate or unknown precluding direct use of the model in infer-

ence. We showed how ALIS and LIS can be used within these very general settings

to approximate the expected Shannon information gain. We have shown that designs

tailored to the calibration problem perform better than either existing optimal designs

or space-filling designs. For each of these two problems we found Bayesian optimal

designs using the ACE algorithm and compared them with Bayesian optimal designs

for nonlinear models. Last, we have shown that optimal designs for the calibration

model with δθp(x) = 0 perform as well as optimal designs obtained when we know the

model if suitable experiments can be performed.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we have discussed the problem of Bayesian design for nonlinear models,

particularly physical models within the Kennedy-O’Hagan framework. The objective of

this research was to develop methodology for Bayesian optimal designs for the physical

experiment to be combined with limited simulator runs to perform inference for the

unknown parameters. We sought Bayesian optimal designs that maximise the expected

Shannon information gain when the aim of the experiment was to estimate unknown

parameters (Chapter 5 and Chapter 6). Throughout the thesis, we have discussed the

challenges of approximating this expected utility which, in many cases, is intractable

and involves high-dimensional integrals. We also discussed how existing methods, in

some cases, fail to give an accurate approximation of the expected utility.

We have developed, assessed and compared new methods for approximating the ex-

pected Shannon information gain, namely Laplace importance sampling (LIS) and ap-

proximate Laplace importance sampling (ALIS); see Chapter 4. We firstly applied

these methods in the search for Bayesian design for nonlinear models, and showed that

their use provides better approximations than existing methods; they provide a good

balance between bias and computational expense. Combined with an optimisation al-

gorithm, we have also showed that these new methods can produce designs that have

better performance than the designs produced with the other methods (Chapter 5).

We also developed the necessary methods to address two key design problems within

the Kennedy-O’Hagan calibration framework, namely Bayesian design when: (i) the

function η(x,θ) does not provide an accurate description of the mean; and (ii) the

model may be expensive to evaluate or unknown, precluding its direct use in inference.

In Chapter 6 we showed how ALIS and LIS can be used to approximate the expected

Shannon information gain in these two cases, and hence facilitate the search for optimal

designs.
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The methods in this thesis help to overcome the computational complexity of Bayesian

optimal design, and address the reliance of previous methods on either knowing the

functional form of the simulator, as in traditional nonlinear model design, or assuming

the calibration parameters are known, as in most of the existing optimal design methods

for calibration.

One limitation of this research is that the derivatives of the model are required. How-

ever, this is not a huge problem when a Gaussian process prior is used to model the

simulator. The research in this thesis is tailored to optimal designs maximising the

expected Shannon information gain. However ALIS and LIS provide a better approx-

imation to the posterior distribution (Section 4.3) that should be beneficial in the

construction of distributions of interest when using a different utility function.

Lastly, it is well-known that when the discrepancy function is present, the calibra-

tion parameters are not uniquely identifiable without the use of informative prior dis-

tributions. To allow unique estimation of both the calibration parameters and the

discrepancy function, the Gaussian process prior of the discrepancy function must be

formulated appropriately and satisfy some constraints; this topic is discussed below in

Section 7.2.2.

7.2 Future work

7.2.1 ALIS and LIS

ALIS and LIS could be extended to approximate different utility functions, for example

the expected Shannon information gain between prior and posterior predictive distri-

butions when the aim of the experiment is prediction, or the negative square error loss

for either parameters or predictions. For these utility functions, different distributions

must be approximated; however a better approximation to the posterior distribution,

as given in Section 4.3, will aid in the construction of approximations to the distribu-

tions of interest. For example, to approximate the negative squared error loss utility

function given by

u(ξ,ψ,y) = −
q2∑
w=1

[ψw − E(ψw|y, ξ)]2,

E(ψw|y, ξ) can be approximated via ALIS and LIS as

Ẽh(ψw|y, ξ) =

∑k2
k=1 ψ̃kw

πl(yh|ψ̃hk,ξ)πb(ψ̃hk)

qhψ(ψ̃hk)∑k2
k=1

πl(yh|ψ̃hk,ξ)πb(ψ̃hk)

qhψ(ψ̃hk)

where ψ̃hk, h = 1, . . . , k1, k = 1, . . . , k2, is a sample from the importance distribution

(see also Section 4.3 for notation). Note that using an approximation to the posterior

is not necessary the optimal choice of importance density for estimating the posterior
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mean.

As discussed in Chapter 5, the ALIS and LIS approximations are combined with the

ACE algorithm to obtain Bayesian optimal designs. This combination involves a trade-

off between accuracy of the expected Shannon information gain and computational

expense of the optimisation of this utility. Namely, should the computational budget

be spent on more precise and accurate approximations to the expected utility, or on

performing more random starts of the ACE algorithm? Future work could investigate

this trade-off and provide recommendations for specific classes of problem. A further

refinement to the computational methodology could be to vary the values of the outer

Monte Carlo sample size in the ALIS and LIS approximations as we progress through

the iterations in ACE, with larger sample sizes for later iterations. A better estimate

of the expected utility is more important for later iterations of ACE, where smaller

improvements in the expected utility are anticipated.

7.2.2 Design for calibration

Our methodology for finding fully Bayesian optimal deigns for calibration could be

extended to experiments where the simulator η(x,θ) is both computationally expensive

(with no closed form) and subject to non-zero discrepancy. Gaussian process priors

for both the simulator and the unknown discrepancy function must be assumed. For

η(x,θ), we have

η(x,θ) ∼ GP
(
fT
η (x,θ)βη, σ

2
ηκη[(x,θ), (x′,θ′);φη]

)
,

and for δθp(x),

δθp(x) ∼ GP
(
fT
δ (x)βδ, σ

2
δκδ(x,x

′;φδ)
)
,

as described in more detail in Section 2.2. The distribution of the combined (n + m)-

vector of responses v = [yT zT]T from the physical and the computer experiment

is:

v | ψ ∼ N(µv,Σv),

where ψ = [(θp)T,βT
η ,β

T
δ , σ

2
η, σ

2
δ , σ

2
ε ,φ

T
η ,φ

T
δ ]T, with

µv = E[v] =

[
Fp
ηβη + Fp

δβδ

Fc
ηβη

]
,

and

Σv = cov[v] = σ2
ηΣη +

[
σ2
εIn + σ2

δΣδ 0n×m

0m×n 0m×m

]
,

where

Ση =

[
Σpp
η Σpc

η

Σcp
η Σcc

η

]
.
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The joint distribution of y and z, conditional on all unknown model parameters ψ is:(
y

z

) ∣∣∣∣∣ψ ∼ N

((
Fp
ηβη + Fp

δβδ
Fc
ηβη

)
,

(
σ2
ηΣ

pp
η + σ2

εIn + σ2
δΣδ σ2

ηΣ
cpT
η

σ2
ηΣ

cp
η σ2

ηΣ
cc
η

))
,

The correlation matrices Σpp
η , Σcp

η , Σcc
η and Σδ are defined through the correlation

functions with entries given by:

Σpp
η,ii′ = κη[(x

p
i ,θ

p), (xpi′ ,θ
p);φη],

Σcp
η,ji = κη[(x

c
j ,θ

c
j), (x

p
i ,θ

p);φη],

Σcc
η,jj′ = κη[(x

c
j ,θ

c
j), (x

c
j′ ,θ

c
j′);φη],

Σδ,ii′ = κδ[(x
p
i ,x

p
i′);φδ],

where i, i′ = 1, . . . , n, and j, j′ = 1, . . . ,m.

Standard results for multivariate normal distributions can be used to derive the follow-

ing conditional distribution

y | z,ψ ∼ N (µy,Σy) ,

with

µy = E(y | z,ψ) = Fp
ηβη + Fp

δβδ + ΣcpT
η Σcc−1

η

[
z− Fc

ηβη
]
,

Σy = var(y | z,ψ) = σ2
ηΣ

pp
η + σ2

εIn + σ2
δΣδ −ΣcpT

η Σcc−1

η Σcp
η .

As before, the model specification requires prior distributions for the unknown param-

eters ψ = [(θp)T,βT
η ,β

T
δ , σ

2
η, σ

2
δ , σ

2
ε ,φ

T
η ,φ

T
δ ]T.

In order to use the ALIS and LIS approximations to the expected Shannon information

gain, the negative Hessian of the log-unnormalised posterior density, H(ψ), is required.

The log-unnormalised posterior density is given by:

log πu(ψ|y, z, ξ) = log[πl(y|z,ψ, ξ)] + log[πb(θ
p)] + log[πb(βη)] + log[πb(βδ)]

+ log[πb(σ
2
η)] + log[πb(σ

2
δ )] + log[πb(σ

2
ε)] + log[πb(φη)] + log[πb(φδ)].

Once the derivatives of this expression have been obtained the procedure described in

Sections 4.3 and 5.2 can be followed to estimate the expected Shannon information

gain for a given design and find Bayesian optimal designs using the ACE algorithm as

in Chapters 5 and 6.

It is well-known that when a discrepancy function is present, the calibration parameters

are not identifiable (see Section 1.1). To resolve this identifiability problem, Plumlee

(2017) suggested Bayesian L2-calibration, which involves the use of a Gaussian process

prior with a correlation function that incorporates the constraint that δθp(·) is orthog-

onal to the gradient of the simulator η(x,θ). Specifically, when the simulator η(x,θ)
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is known, the correlation function of the discrepancy function δθp(x) is chosen as:

κ̃δ(x,x
′;φδ) = κδ(x,x

′;φδ)− hθ(x)TH−1
θ hθ(x

′),

where κδ(x,x
′;φδ) is an arbitrary choice of correlation function (e.g. the squared

exponential),

hθ(x) =

∫
X

∂η(t,θ)

∂θ
κδ(x, t;φδ)dt,

and

Hθ =

∫
X

∫
X

∂η(t′,θ)

∂θ

[
∂η(t,θ)

∂θ

]T

κδ(t
′, t;φδ)dt

′dt.

A harder problem is when the simulator η(x,θ) is unknown or expensive to evaluate.

For this problem the derivatives and integrals must be approximated numerically, see

Plumlee (2017) for more details. A very interesting extension of our results would be

to apply ALIS and LIS as part of a methodology to find optimal designs under these

L2-calibration prior distributions.
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Yang, Z. and Rodŕıguez, C. E. (2013) Searching for efficient Markov chain Monte Carlo

proposal kernels. Proceedings of the National Academy of Sciences, 110, 19307–

19312.

178



Appendix A

A.1 Connection between Laplace approximation I (LA1)

and Laplace approximation II (LA2)

In this section we illustrate a connection between Laplace Approximation I, discussed in

Section 4.2.1, and Laplace Approximation II, discussed in Section 4.2.2. In particular,

we show that LA2 can be derived from LA1 by using a Taylor approximation to the

likelihood in addition to the normal approximation to the posterior density used in

LA1.

Plugging the second order Taylor series expansion (4.23) of the log-likelihood, log πl(y|ψ, ξ),
about the posterior mode ψ̂, back into Equation (4.19) we get:

U(ξ) ≈
∫

Ψ

∫
Y

[
log πl(y|ψ̂, ξ) +

∂ log πl(y|ψ, ξ)
∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)

+
1

2
(ψ − ψ̂)T

[
−H(ψ̂)−Q(ψ̂)

]
(ψ − ψ̂)

− log πu(ψ̂|y, ξ)− 1

2
log
[
(2π)q2

∣∣∣H(ψ̂)−1
∣∣∣]]π(y,ψ|ξ)dydψ

=

∫
Ψ

∫
Y

[
log πl(y|ψ̂, ξ) +

∂ log πl(y|ψ, ξ)
∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)

+
1

2
(ψ − ψ̂)T

[
−H(ψ̂)−Q(ψ̂)

]
(ψ − ψ̂)

−[log πl(y|ψ̂, ξ) + log πb(ψ̂)]− 1

2
log[(2π)q2 |H(ψ̂)−1|

]
π(y,ψ|ξ)dydψ

=

∫
Y

[
− log πb(ψ̂)− 1

2
log
[
(2π)q2

∣∣∣H(ψ̂)−1
∣∣∣]

+

∫
Ψ

∂ log πl(y|ψ, ξ)
∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)πa(ψ|y, ξ)dψ︸ ︷︷ ︸
I6

+

∫
Ψ

1

2
(ψ − ψ̂)T

[
−H(ψ̂)−Q(ψ̂)

]
(ψ − ψ̂)πa(ψ|y, ξ)dψ︸ ︷︷ ︸

I7

]
πe(y|ξ)dy.
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Firstly I6 can be solved as:

I6 =

∫
Ψ

∂ log πu(ψ|y, ξ)
∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)πa(y|ψ, ξ)dψ

−
∫

Ψ

∂ log πb(ψ)

∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂)πa(y|ψ, ξ)dψ︸ ︷︷ ︸
I4

≈ 0,

because ∂ log πu(ψ|y,ξ)
∂ψ

∣∣∣ψ=ψ̂ (ψ − ψ̂) = 0 by definition, and I4 ≈ 0 as shown in (4.24).

Secondly we approximate I7 as:

I7 = −
∫

Ψ

1

2
(ψ − ψ̂)TH(ψ̂)(ψ − ψ̂)πa(y|ψ, ξ)dψ

−
∫

Ψ

1

2
(ψ − ψ̂)TQ(ψ̂)(ψ − ψ̂)πa(y|ψ, ξ)dψ

≈ −q2

2
− 1

2
tr
[
Q(ψ̂)H(ψ̂)−1

]
.

Hence Equation (4.19) becomes

U(ξ) ≈
∫
Y

[
−1

2
log(2π)q2

∣∣∣H(ψ̂)−1
∣∣∣− q2

2
− log πb(ψ̂)− 1

2
tr
[
Q(ψ̂)H(ψ̂)−1

]]
πe(y|ξ)dy,

which is identical to (4.20).

Both of these methods assume a normal approximation to the posterior density. The

main difference between Laplace Approximation I and Laplace Approximation II is

an additional second-order approximation to the log-likelihood (or equivalently to the

log-prior density) assumed to hold over the region of highest posterior density. This

requires that the posterior is quite highly concentrated around ψ̂, which will be the

case for large n.
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Appendix B

B.1 Fisher Information Matrix for the multivariate nor-

mal distribution

When y ∼ N [µ(ψ),Σ(ψ)] follows a multivariate normal distribution, the Fisher in-

formation matrix for parameters ψ is given by Equation (6.3). When the mean and

variance depend on parameter vectors ψ1 and ψ2, i.e. µ(ψ1) and Σ(ψ2), then:

I(ψ1,ψ2; ξ) = diag [I(ψ1; ξ), I(ψ2; ξ)] ,

where

I(ψ1; ξ)i,j =
∂µ(ψ1)T

∂ψ1i

Σ(ψ2)−1∂µ(ψ1)

∂ψ1j

, (B.1)

and

I(ψ2; ξ)i′,j′ =
1

2
tr

[
Σ(ψ2)−1∂Σ(ψ2)

∂ψ2i′
Σ(ψ2)−1∂Σ(ψ2)

∂ψ2j′

]
. (B.2)

B.2 Derivatives

In order to use LIS and ALIS to estimate the expected Shannon information gain,

we need to calculate the first and second derivatives of the log-unnormalised posterior

density of interest.

For most models we are interested in finding the derivatives with respect to ψ′, a

transformation of the original parameters ψ. The most common transformation we use

is ψ′ = (logψ1, . . . , logψq2)T in order to ensure positive values for the parameters ψ

when sampling from the importance density. We use the chain rule:

∂ log πψ
′

u (ψ′|y, ξ)
∂ψ′

=
∂ log πψ

′
u (ψ′|y, ξ)
∂ψ

∂ψ

∂ψ′
, (B.3)

and

∂2 log πψ
′

u (ψ′|y, ξ)
∂ψ′T∂ψ′

=
∂ψ

∂ψ′
∂

∂ψ

[
∂ log πψ

′
u (ψ′|y, ξ)
∂ψ

∂ψ

∂ψ′

]
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=
∂ψ

∂ψ′

[
∂2 log πψ

′
u (ψ′|y, ξ)

∂ψT∂ψ

∂ψ

∂ψ′
+
∂ log πψ

′
u (ψ′|y, ξ)
∂ψ

∂2ψ

∂ψT∂ψ′

]
.

(B.4)

All the derivatives derived in this appendix have been checked numerically for a variety

of different designs, data sets and parameter values.

B.2.1 Michaelis-Menten model

In this section we calculate the derivatives of the log-unnormalised posterior density,

log πu(θ|y, ξ), of the Michaelis-Menten model given in Equation (5.1).

First derivatives:

∂ log πu(θ|y, ξ)
∂θ1

= 2
(
a+

n

2

) ∑n
i=1

(
xiyi
θ2+xi

− θ1x2
i

(θ2+xi)2

)
2b+

∑n
i=1

(
yi − θ1xi

θ2+xi

)2 −
1

θ1
− log θ1 − µ1

σ2
1θ1

,

∂ log πu(θ|y, ξ)
∂θ2

= −2
(
a+

n

2

) ∑n
i=1

(
θ1xiyi

(θ2+xi)2 −
θ2
1x

2
i

(θ2+xi)3

)
2b+

∑n
i=1

(
yi − θ1xi

θ2+xi

)2 −
1

θ2
− log θ2 − µ2

σ2
2θ2

.

Second derivatives:

∂2 log πu(θ|y, ξ)
∂θ2

1

= 2
(
a+

n

2

)
∑n

i=1

(
− x2

i
(θ2+xi)2

)[
2b+

∑n
i=1

(
yi − θ1xi

θ2+xi

)2
]

[
2b+

∑n
i=1

(
yi − θ1xi

θ2+xi

)2
]2

−
2
[∑n

i=1

(
xiyi
θ2+xi

− θ1x2
i

(θ2+xi)2

)]2

[
2b+

∑n
i=1

(
yi − θ1xi

θ2+xi

)2
]2


+

1

θ2
1

− 1− log θ1 + µ1

θ2
1σ

2
1

,

∂2 log πu(θ|y, ξ)
∂θ1∂θ2

= 2
(
a+

n

2

)
∑n

i=1

(
− xiyi

(θ2+xi)2 +
2θ1x2

i
(θ2+xi)3

)
[2b+

∑n
i=1

(
yi − θ1xi

θ2+xi

)2
][

2b+
∑n

i=1

(
yi − θ1xi

θ2+xi

)2
]2

−
2
∑n

i=1

(
xiyi
θ2+xi

− θ1x2
i

(θ2+xi)2

)∑n
i=1

(
θ1xiyi

(θ2+xi)2 −
θ2
1x

2
i

(θ2+xi)3

)
[
2b+

∑n
i=1

(
yi − θ1xi

θ2+xi

)2
]2

 ,
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∂2 log πu(θ|y, ξ)
∂θ2

2

= −2
(
a+

n

2

)
∑n

i=1

(
− 2θ1xiyi

(θ2+xi)3 +
3θ2

1x
2
i

(θ2+xi)4

)[
2b+

∑n
i=1

(
yi − θ1xi

θ2+xi

)2
]

[
2b+

∑n
i=1

(
yi − θ1xi

θ2+xi

)2
]2

−
2
[∑n

i=1

(
θ1xiyi

(θ2+xi)2 −
θ2
1x

2
i

(θ2+xi)3

)]2

[
2b+

∑n
i=1

(
yi − θ1xi

θ2+xi

)2
]2

+
1

θ2
2

− 1− log θ2 + µ2

θ2
2σ

2
2

,

∂2 log πu(θ|y, ξ)
∂θ1∂θ2

=
∂2 log πu(θ|y, ξ)

∂θ2∂θ1
.

Using Equations (B.3), (B.4) and (4.36) we obtain the derivatives of the log-unnormalised

posterior density log πθ
′
u (θ′|y, ξ), with respect to θ′ = (log θ1, log θ2)T.

As described in Section 4.3.2 we are required to derive the implied importance density

for the untransformed parameters θ. We have that the importance density of the

transformed parameters θ′, qhθ′(θ
′), is a normal density with mean µ̂hθ′ , defined using

Equations (4.37) and (4.38) for LIS and ALIS respectively, and variance Σ̂h
θ′ defined

using Equation (4.39). Hence,

qhθ(θ) = qhθ′(T (θ)) |detJ[T (θ)]| ,

where

J[T (θ)] =

[
1
θ1

0

0 1
θ2

]
, (B.5)

is the Jacobian matrix of the transformation from θ′ to θ.

B.2.2 Biochemical Oxygen Demand (BOD) model

We will now calculate the derivatives of the log-unnormalised posterior density log πu(θ|y, ξ)
for the BOD model given in Equation (5.3).

First derivatives:

∂ log πu(θ|y, ξ)
∂θ1

= −
n
∑n

i=1 [yi − θ1(1− exp{−θ2xi})] [−(1− exp{−θ2xi})]∑n
i=1 [yi − θ1(1− exp{−θ2xi})]2

− 1

θ1
− log θ1 − µ1

σ2
1θ1

,

∂ log πu(θ|y, ξ)
∂θ2

= −
n
∑n

i=1 [yi − θ1(1− exp{−θ2xi})] [−θ1xi exp{−θ2xi}]∑n
i=1 [yi − θ1(1− exp{−θ2xi})]2

− 1

θ2
− log θ2 − µ2

σ2
2θ2

.
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Second derivatives:

∂2 log πu(θ|y, ξ)
∂θ2

1

=
2n [
∑n

i=1 [yi − θ1(1− exp{−θ2xi})] [−1 + exp{−θ2xi}]]2[∑n
i=1 [yi − θ1(1− exp{−θ2xi})]2

]2

−
n
∑n

i=1 [−1 + exp{−θ2xi}]2∑n
i=1 [yi − θ1(1− exp{−θ2xi})]2

+
1

θ2
1

− 1− log θ1 + µ1

θ2
1σ

2
1

,

∂2 log πu(θ|y, ξ)
∂θ2

2

=
2n [
∑n

i=1 [yi − θ1(1− exp{−θ2xi})] [−θ1xi exp{−θ2xi}]]2[∑n
i=1 [yi − θ1(1− exp{−θ2xi})]2

]2

−
n
∑n

i=1 [yi − θ1(1− exp{−θ2xi})]
[
θ1x

2
i exp{−θ2xi}

]∑n
i=1 [yi − θ1(1− exp{−θ2xi})]2

−
n [
∑n

i=1 [−θ1xi exp{−θ2xi}]]2∑n
i=1 [yi − θ1(1− exp{−θ2xi})]2

+
1

θ2
2

− 1− log θ2 + µ2

θ2
2σ

2
2

,

∂2 log πu(θ|y, ξ)
∂θ1∂θ2

=
2n [
∑n

i=1 [−θ1xi exp{−θ2xi}] [yi − θ1(1− exp{−θ2xi})]]2[∑n
i=1 [yi − θ1(1− exp{−θ2xi})]2

]2

−
n
∑n

i=1 [−θ1xi exp{−θ2xi}] [−1 + exp{−θ2xi}]∑n
i=1 [yi − θ1(1− exp{−θ2xi})]2

−
n
∑n

i=1 [yi − θ1(1− exp{−θ2xi})] [−xi exp{−θ2xi}]∑n
i=1 [yi − θ1(1− exp{−θ2xi})]2

,

∂2 log πu(θ|y, ξ)
∂θ1∂θ2

=
∂2 log πu(θ|y, ξ)

∂θ2∂θ1
.

Using Equations (B.3), (B.4) and (4.36) we obtain the derivatives of the log-unnormalised

posterior density log πθ
′
u (θ′|y, ξ), with respect to θ′ = (log θ1, log θ2)T.

Again, we have to work out the implied importance density for the untransformed pa-

rameters θ, as described in Section 4.3.2 and as demonstrated in the previous example.

The Jacobian matrix is given by Equation (B.5).

B.2.3 Lubricant model

We now calculate the derivatives of the log-unnormalised posterior density log πu(θ|y, ξ)
for the lubricant model given in Equation (5.5).

For simplicity we denote ηi = η(x1i, x2i,θ) = θ1
θ2+x1i

+ θ3x2i + θ4x
2
2i + θ5x

3
2i + (θ6 +

θ7x
2
2i)x2i exp

{
− x1i

θ8+θ9x2
2i

}
, and we assume θ10 = log σ2

ε .

First derivatives:

∂ log πu(θ|y, ξ)
∂θ1

=
1

σ2
ε

n∑
i=1

(yi − ηi)
(

1

θ2 + x2i

)
− 1

σ2
1

(θ1 − µ1),

∂ log πu(θ|y, ξ)
∂θ2

= − 1

σ2
ε

n∑
i=1

(yi − ηi)
(

θ1

(θ2 + x2i)2

)
− 1

σ2
2

(θ2 − µ2),
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∂ log πu(θ|y, ξ)
∂θ3

= − 1

σ2
ε

n∑
i=1

(yi − ηi) (−x2i)−
1

σ2
3

(θ3 − µ3),

∂ log πu(θ|y, ξ)
∂θ4

= − 1

σ2
ε

n∑
i=1

(yi − ηi) (−x2
2i)−

1

σ2
4

(θ4 − µ4),

∂ log πu(θ|y, ξ)
∂θ5

= − 1

σ2
ε2

n∑
i=1

(yi − ηi) (−x3
2i)−

1

σ2
5

(θ5 − µ5),

∂ log πu(θ|y, ξ)
∂θ6

= − 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})
− 1

σ2
6

(θ6 − µ6),

∂ log πu(θ|y, ξ)
∂θ7

= − 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

})
− 1

σ2
7

(θ7 − µ7),

∂ log πu(θ|y, ξ)
∂θ8

= − 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−[θ6 + θ7x

2
2i]x2i exp

{
− x1i

θ8 + θ9x2
2i

}{
x1i

(θ8 + θ9x2
2i)

2

})
− 1

σ2
8

(θ8 − µ8),

∂ log πu(θ|y, ξ)
∂θ9

= − 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−[θ6 + θ7x

2
2i]x2i exp

{
− x1i

θ8 + θ9x2
2i

}{
x1ix

2
2i

(θ8 + θ9x2
2i)

2

})
− 1

σ2
9

(θ9 − µ9),

∂ log πu(θ|y, ξ)
∂θ10

= −n+
1

σ2
ε

n∑
i=1

(yi − ηi)−
1

σ2
10

(θ10 − µ10).

Second derivatives:

∂2 log πu(θ|y, ξ)
∂θ2

1

= − 1

σ2
ε

n∑
i=1

[
− 1

θ2 + x2i

]2

− 1

σ2
1

,

∂2 log πu(θ|y, ξ)
∂θ1∂θ2

=
1

σ2
ε

n∑
i=1

[
θ1

(θ2 + x2i)2

] [
1

θ2 + x2i

]
+

1

σ2

n∑
i=1

(yi − ηi)
[
− 1

(θ2 + x2i)2

]
,

∂2 log πu(θ|y, ξ)
∂θ1∂θ3

=
1

σ2
ε

n∑
i=1

(−x2i)

[
1

θ2 + x2i

]
,

∂2 log πu(θ|y, ξ)
∂θ1∂θ4

=
1

σ2
ε

n∑
i=1

(−x2
2i)

[
1

θ2 + x2i

]
,

∂2 log πu(θ|y, ξ)
∂θ1∂θ5

=
1

σ2
ε

n∑
i=1

(−x3
2i)

[
1

θ2 + x2i

]
,

∂2 log πu(θ|y, ξ)
∂θ1∂θ6

=
1

σ2
ε

n∑
i=1

(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})[
1

θ2 + x2i

]
,

∂2 log πu(θ|y, ξ)
∂θ1∂θ7

=
1

σ2
ε

n∑
i=1

(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

})[
1

θ2 + x2i

]
,

∂2 log πu(θ|y, ξ)
∂θ1∂θ8

=
1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)[
1

θ2 + x2i

]
,
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∂2 log πu(θ|y, ξ)
∂θ1∂θ9

=
1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)[
1

θ2 + x2i

]
,

∂2 log πu(θ|y, ξ)
∂θ1∂θ10

= − 2

σ2
ε

n∑
i=1

(yi − ηi)
[

1

θ2 + x2i

]
,

∂2 log πu(θ|y, ξ)
∂θ2

2

= − 1

σ2
ε

n∑
i=1

[
θ1

(θ2 + x1i)2

]2

− 1

σ2

n∑
i=1

(yi − ηi)
[
− 2θ1

(θ2 + x2i)2

]
− 1

σ2
2

,

∂2 log πu(θ|y, ξ)
∂θ2∂θ3

= − 1

σ2
ε

n∑
i=1

(−x2i)

[
θ1

(θ2 + x2i)2

]
,

∂2 log πu(θ|y, ξ)
∂θ2∂θ4

= − 1

σ2
ε

n∑
i=1

(−x2
2i)

[
θ1

(θ2 + x2i)2

]
,

∂2 log πu(θ|y, ξ)
∂θ2∂θ5

= − 1

σ2
ε

n∑
i=1

(−x3
2i)

[
θ1

(θ2 + x2i)2

]
,

∂2 log πu(θ|y, ξ)
∂θ2∂θ6

= − 1

σ2
ε

n∑
i=1

(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})[
θ1

(θ2 + x2i)2

]
,

∂2 log πu(θ|y, ξ)
∂θ2∂θ7

= − 1

σ2
ε

n∑
i=1

(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

})[
θ1

(θ2 + x2i)2

]
,

∂2 log πu(θ|y, ξ)
∂θ2∂θ8

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)[
θ1

(θ2 + x2i)2

]
,

∂2 log πu(θ|y, ξ)
∂θ2∂θ9

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)[
θ1

(θ2 + x2i)2

]
,

∂2 log πu(θ|y, ξ)
∂θ2∂θ10

=
2

σ2
ε

n∑
i=1

(yi − ηi)
[

θ1

(θ2 + x2i)2

]
,

∂2 log πu(θ|y, ξ)
∂θ2

3

= − 1

σ2
ε

n∑
i=1

(−x2i)
2 − 1

σ2
3

,

∂2 log πu(θ|y, ξ)
∂θ3∂θ4

= − 1

σ2
ε

n∑
i=1

(−x2
2i)(−x2i),

∂2 log πu(θ|y, ξ)
∂θ3∂θ5

= − 1

σ2
ε

n∑
i=1

(−x3
2i)(−x2i),

∂2 log πu(θ|y, ξ)
∂θ3∂θ6

= − 1

σ2
ε

n∑
i=1

(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})
(−x2i),

∂2 log πu(θ|y, ξ)
∂θ3∂θ7

= − 1

σ2
ε

n∑
i=1

(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

})
(−x2i),
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∂2 log πu(θ|y, ξ)
∂θ3∂θ8

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)
(−x2i),

∂2 log πu(θ|y, ξ)
∂θ3∂θ9

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)
(−x2i),

∂2 log πu(θ|y, ξ)
∂θ3∂θ10

=
2

σ2
ε

n∑
i=1

(yi − ηi) (−x2i),

∂2 log πu(θ|y, ξ)
∂θ2

4

= − 1

σ2
ε

n∑
i=1

(−x2
2i)

2 − 1

σ2
4

,

∂2 log πu(θ|y, ξ)
∂θ4∂θ5

= − 1

σ2
ε

n∑
i=1

(−x3
2i)(−x2

2i),

∂2 log πu(θ|y, ξ)
∂θ4∂θ6

= − 1

σ2
ε

n∑
i=1

(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})
(−x2

2i),

∂2 log πu(θ|y, ξ)
∂θ4∂θ7

= − 1

σ2
ε

n∑
i=1

(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

})
(−x2

2i),

∂2 log πu(θ|y, ξ)
∂θ4∂θ8

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)
(−x2

2i),

∂2 log πu(θ|y, ξ)
∂θ4∂θ9

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)
(−x2

2i),

∂2 log πu(θ|y, ξ)
∂θ4∂θ10

=
2

σ2
ε

n∑
i=1

(yi − ηi) (−x2
2i),

∂2 log πu(θ|y, ξ)
∂θ2

5

= − 1

σ2
ε

n∑
i=1

(−x3
2i)

2 − 1

σ2
5

,

∂2 log πu(θ|y, ξ)
∂θ5∂θ6

= − 1

σ2
ε

n∑
i=1

(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})
(−x3

2i),

∂2 log πu(θ|y, ξ)
∂θ5∂θ7

= − 1

σ2
ε

n∑
i=1

(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

})
(−x3

2i),

∂2 log πu(θ|y, ξ)
∂θ5∂θ8

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)
(−x3

2i),

∂2 log πu(θ|y, ξ)
∂θ5∂θ9

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)
(−x3

2i),

∂2 log πu(θ|y, ξ)
∂θ5∂θ10

=
2

σ2
ε

n∑
i=1

(yi − ηi) (−x3
2i),
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∂2 log πu(θ|y, ξ)
∂θ2

6

= − 1

σ2
ε

n∑
i=1

(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})2

− 1

σ2
6

,

∂2 log πu(θ|y, ξ)
∂θ6∂θ7

= − 1

σ2
ε

n∑
i=1

(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

}){
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})
,

∂2 log πu(θ|y, ξ)
∂θ6∂θ8

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)
×
(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})
− 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)
,

∂2 log πu(θ|y, ξ)
∂θ6∂θ9

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)
×
(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})
− 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)
,

∂2 log πu(θ|y, ξ)
∂θ6∂θ10

=
2

σ2
ε

n∑
i=1

(yi − ηi)
(
−x2i exp

{
− x1i

θ8 + θ9x2
2i

})
,

∂2 log πu(θ|y, ξ)
∂θ2

7

= − 1

σ2
ε

n∑
i=1

(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

})2

− 1

σ2
7

,

∂2 log πu(θ|y, ξ)
∂θ7∂θ8

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)
×
(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

})
− 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)
,

∂2 log πu(θ|y, ξ)
∂θ7∂θ9

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)
×
(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

})
− 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)
,
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∂2 log πu(θ|y, ξ)
∂θ7∂θ10

=
2

σ2
ε

n∑
i=1

(yi − ηi)
(
−x3

2i exp

{
− x1i

θ8 + θ9x2
2i

})
,

∂2 log πu(θ|y, ξ)
∂θ2

8

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)2

,

− 1

σ2
ε

n∑
i=1

(yi − ηi)

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}[
x1i

(θ8 + θ9x2
2i)

2

]2
)

− 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}[
− 2x1i

(θ8 + θ9x2
2i)

3

])
− 1

σ2
8

,

∂2 log πu(θ|y, ξ)
∂θ8∂θ9

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)2

− 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
× x1ix

2
2i

(θ8 + θ9x2
2i)

2

x1i

(θ8 + θ9x2
2i)

2

)
− 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
−2x1ix

2
2i

(θ8 + θ9x2
2i)

3

)
,

∂2 log πu(θ|y, ξ)
∂θ8∂θ10

= − 2

σ2
ε

n∑
i=1

(yi − ηi)
(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1i

(θ8 + θ9x2
2i)

2

)
,

∂2 log πu(θ|y, ξ)
∂θ2

9

= − 1

σ2
ε

n∑
i=1

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)2

− 1

σ2
ε2

n∑
i=1

(yi − ηi)

(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}[
x1ix

2
2i

(θ8 + θ9x2
2i)

2

]2
)

− 1

σ2
ε

n∑
i=1

(yi − ηi)
(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}[
− 2x1ix

3
2i

(θ8 + θ9x2
2i)

3

])
− 1

σ2
9

,

∂2 log πu(θ|y, ξ)
∂θ9∂θ10

= − 2

σ2
ε

n∑
i=1

(yi − ηi)
(
−(θ6 + θ7x

2
2i)x2i exp

{
− x1i

θ8 + θ9x2
2i

}
x1ix

2
2i

(θ8 + θ9x2
2i)

2

)
,
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∂2 log πu(θ|y, ξ)
∂θ2

10

=
2

σ2
ε

n∑
i=1

(yi − ηi)2 − 1

σ2
10

.

B.2.4 Calibration model: Michaelis-Menten simulator with δθp(x) 6= 0

We now calculate the derivatives of the log-unnormalised posterior density log πu(ψ|y, ξ)
for the calibration model given in Section 6.3.1, where the simulator is the Michaelis-

Menten model and there is non-zero discrepancy, i.e. δθp(x) 6= 0.

The first derivatives of the log-unnormalised posterior density are:

∂ log πu(ψ|y, ξ)
∂θp1

=
1

σ2

(
∂η(x,θ)

∂θp1

)T

Σ−1[y − η(x,θ)]− 1

θp1
− log θp1 − µ1

σ2
1θ
p
1

,

∂ log πu(ψ|y, ξ)
∂θp2

=
1

σ2

(
∂η(x,θ)

∂θp2

)T

Σ−1[y − η(x,θ)]− 1

θp2
− log θp2 − µ2

σ2
2θ
p
2

,

∂ log πu(ψ|y, ξ)
∂σ2

= − n

σ2
+

1

2(σ2)2
[y − η(x,θ)]TΣ−1[y − η(x,θ)]− (a+ 1)σ2 + b

(σ2)2 ,

∂ log πu(ψ|y, ξ)
∂φ

= −1

2
tr

[
Σ−1∂Σ

∂φ

]
− 1

2σ2
[y − η(x,θ)]T

[
−Σ−1∂Σ

∂φ
Σ−1

]
[y − η(x,θ)]

− λφ,
∂ log πu(ψ|y, ξ)

∂τ2
= −1

2
tr

[
Σ−1 ∂Σ

∂τ2

]
− 1

2σ2
[y − η(x,θ)]T

[
−Σ−1 ∂Σ

∂τ2
Σ−1

]
[y − η(x,θ)]

− λτ2 ,

where

∂η(x,θ)

∂θp1
=

[
x1

θp2 + x1
, . . . ,

xn
θp2 + xn

]T

,

∂η(x,θ)

∂θp2
=

[
− θp1x1

(θp2 + x1)2
, . . . ,− θp1xn

(θp2 + xn)2

]T

,

∂Σ

∂φ
ij = −(xi − xj)2 exp[−φ(xi − xj)2] = −(xi − xj)2K(φ)ij ,

∂Σ

∂τ2
= In.

Using Equations (B.3), (B.4) and (4.36) we obtain the derivatives of the log-unnormalised

posterior density log πψ
′

u (ψ′|y, ξ), with respect toψ′ = (log θp1, log θp2, log σ2, log φ, log τ2)T.

The second derivatives of the log-likelihood can now be easily calculated using Equation

(6.3). In this case, the mean and variance depend on different vectors of parameters

and hence we have the special case described in Section B.1. The information matrix
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for ψ = (θp1, θ
p
2, σ

2, φ, τ2)T has the form

I(ψ; ξ) =


I11 I12 0 0 0

I21 I22 0 0 0

0 0 I33 I34 I35

0 0 I43 I44 I45

0 0 I53 I54 I55

 , (B.6)

where

I11 =
∂η

∂θp1

T Σ−1

σ2

∂η

∂θp1
,

I12 = I21 =
∂η

∂θp1

T Σ−1

σ2

∂η

∂θp2
,

I22 =
∂η

∂θp2

T Σ−1

σ2

∂η

∂θp2
,

I33 =
1

2
tr[In],

I34 = I43 =
1

2
tr[φΣ−1∂Σ

∂φ
],

I35 = I53 =
1

2
tr[τ2Σ−1 ∂Σ

∂τ2
],

I44 =
1

2
tr[φ2Σ−1∂Σ

∂φ
Σ−1∂Σ

∂φ
],

I45 = I54 =
1

2
tr[Σ−1φ

∂Σ

∂φ
Σ−1τ2 ∂Σ

∂τ2
],

I55 =
1

2
tr[(τ2)2Σ−1 ∂Σ

∂τ2
Σ−1 ∂Σ

∂τ2
].

The second derivatives of the log-prior density are:

∂2 log πb(θ
p
1)

∂θp21

= − 1

θp1σ
2
1

,

∂2 log πb(θ
p
2)

∂θp22

= − 1

θp2σ
2
2

,

∂2 log πb(σ
2)

∂[σ2]2
= − b

(σ2)2
,

∂2 log πb(φ)

∂φ2
= −λφ,

∂2 log πb(τ
2)

∂[τ2]2
= −λτ2 ,

and, again, using (B.3), (B.4) and (4.36) we obtain the derivatives with respect to ψ′.

As described in Section 4.3.2 and demonstrated in previous examples, we must derive

the implied importance density for the untransformed parameters ψ. We have that the
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importance density of the transformed parameters ψ′, qhψ′(ψ
′), is a normal density with

mean µ̂hψ′ , defined using Equations (4.37) and (4.38) for LIS and ALIS respectively,

and variance Σh
ψ′ defined using Equation (4.39). Hence,

qhψ(ψ) = qhψ′(T (ψ)) |detJ[T (ψ)]| ,

where

J[T (ψ)] =



1
θp1

0 0 0 0

0 1
θp2

0 0 0

0 0 1
σ2 0 0

0 0 0 1
φ 0

0 0 0 0 1
τ2


, (B.7)

is the Jacobian matrix.

B.2.5 Unknown simulator and δθp(x) = 0 - Cantilever Beam function

Results required to find Bayesian optimal designs for a known cantilever

beam simulator

We first assume that the simulator η(x,θ) is known and is given by the cantilever beam

function. We have

yi =
4L3

θwt

√(x1i

t2

)2
+
(x2i

w2

)2
+ εi, i = 1, . . . , n,

where εi ∼ N(0, σ2
ε). We assume a normal distribution for the unknown parameter

θ ∼ N(µ1, σ
2
1) and a conjugate inverse-gamma prior distribution for σ2

ε ∼ IG(a, b).

The likelihood function is given by:

πl(y|θ, σ2
ε , ξ) =

1

(2πσ2
ε)
n/2

exp

{
− 1

2σ2
ε

(y − η)T(y − η)

}
,

where η = [η(x1, θ) . . . η(xn, θ)]
T and η(xi, θ) = 4L3

θwt

√(
x1i
t2

)2
+
(
x2i
w2

)2
.

We integrate out σ2
ε to obtain the marginal likelihood:

π(y|θ, ξ) =

∫ ∞
0

πl(y|θ, σ2
ε)πb(σ

2
ε)dσ

2
ε

=

∫ ∞
0

(2πσ2
ε)
−n

2 exp

{
− 1

2σ2
ε

[
(y − η)T(y − η)

]}
(σ2
ε)
−(a+1) exp{−bσ−2

ε }dσ2
ε

∝
[
1 +

(y − η)T(y − η)

2b

]−(a+n
2

)

.
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The log-unnormalised marginal posterior density is then given by:

log πu(θ|y, ξ) = −
(
a+

n

2

)
log
[
2b+ (y − η)T(y − η)

]
+
(
a+

n

2

)
log[2b]

− 1

2
log[2πσ2

1]− 1

2σ2
1

(θ − µ1)2.

We estimate the expected Shannon information gain using ALIS and LIS approxi-

mations which are then combined with the ACE algorithm to find Bayesian optimal

designs.

We take a normal approximation to the posterior distribution of θ as described in Sec-

tion 4.3.2. To calculate the negative Hessian, H(θ), of the log-unnormalised posterior

density required by the ALIS and LIS approximations (see Section 4.3), we first have to

find the derivatives of the log-unnormalised posterior density log πu(θ|y, ξ) with respect

to θ. The derivatives are given below.

For convenience we assume

Ai =
(x1i

t2

)2
+
(x2i

w2

)2
.

∂ log πu(θ|y, ξ)
∂θ

= −2
(
a+

n

2

) ∑n
i=1

(
yi

4L3

θ2wt

√
Ai − 16L6

θ3w2t2
Ai

)
2b+

∑n
i=1

(
yi − 4L3

θwt

√
Ai

)2 − θ − µ1

σ2
1

,

∂2 log πu(θ|y, ξ)
∂θ2

= −2
(
a+

n

2

)

×


∑n

i=1

[
−yi 8L3

θ3wt

√
Ai + 48L6

θ4w2t2
Ai

] [
2b+

∑n
i=1

(
yi − 4L3

θwt

√
Ai

)2
]

[
2b+

∑n
i=1

(
yi − 4L3

θwt

√
Ai

)2
]2

−
2
[∑n

i=1

(
yi

4L3

θ2wt

√
Ai − 16L6

θ3w2t2
Ai

)] [∑n
i=1

(
yi

4L3

θ2wt

√
Ai − 16L6

θ3w2t2
Ai

)]
[
2b+

∑n
i=1

(
yi − 4L3

θwt

√
Ai

)2
]2


− 1

σ2
1

.

Results required to find Bayesian designs when the simulator is unknown

Now, we assume η(x,θ) is unknown and we assume the calibration model given in

Equation (6.4) and a Gaussian process prior for the unknown simulator as described

in the example in Section 6.4.3. We calculate the derivatives of the log-prior density,

log πb(ψ) with respect to the unknown parameters ψ′, where ψ′ = (θp, log τ2)T. We

have that:

θp ∼ logN(µ1, σ
2
1), τ2 ∼ Exp(λτ2).
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Figure B.1: Cantilever beam example: Bayesian near-optimal-ESIG designs from dif-
ferent random starts of ACE for the nonlinear model when σ2

ε is treated as a nuisance
parameter (the numbers on some points show how many times the point is repeated)

The log-prior density is:

log πb(ψ) = log πb(θ
p) + log πb(τ

2)

= log
[
θpσ1(2π)1/2

]
+

(log θp − µ1)2

2σ2
1

+ log λτ2 + λτ2τ2.

First Derivatives:

∂ log πb(θ
p
1)

∂θp
= −θ

p − µ1

σ2
1

,

∂ log πb(τ
2)

∂ log τ2
= −λτ2τ2.

Second derivatives:

∂2 log πb(θ
p
1)

∂[θp]2
= − 1

σ2
1

,

∂2 log πb(τ
2)

∂[log τ2]2
= −λτ2τ2.

In Section 6.4.3 we found Bayesian optimal designs by combining LIS with the ACE

algorithm where we used 10 random starts. We presented optimal designs for the

physical experiment with n = 10 for both the nonlinear model when σ2
ε is treated

as a nuisance parameter and the calibration model when τ2 is treated as a nuisance

parameter with different numbers of simulator runs (m = 30, 60, 90). Here we present

near-optimal designs from different random starts of ACE, see Figures B.1-B.4. For

each model and size of computer experiment, we see a wide variety of different designs.

However, they all have similar estimated ESIG, see Table B.1.
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Figure B.2: Cantilever beam example: Bayesian near-optimal-ESIG designs from dif-
ferent random starts of ACE for the calibration model when τ2 is treated as a nuisance
parameter and m = 30
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Figure B.3: Cantilever beam example: Bayesian near-optimal-ESIG designs from dif-
ferent random starts of ACE for the calibration model when τ2 is treated as a nuisance
parameter and m = 60
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Figure B.4: Cantilever beam example: Bayesian near-optimal-ESIG designs from dif-
ferent random starts of ACE for the calibration model when τ2 is treated as a nuisance
parameter and m = 90
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Mean of 100 estimates of the ESIG

Design Nonlinear

model

Calibration

model, m = 30

Calibration

model, m = 60

Calibration

model, m = 90

ξCBF,1
Fig. B.1 (a)

1.087 0.282 0.747 0.831

ξCBF,2 Fig.

B.1 (b)

1.082 0.271 0.739 0.829

ξCBF,3
Fig. B.1 (c)

1.079 0.279 0.699 0.818

ξcal,30,1

Fig. B.2 (a)

0.880 0.535 0.629 0.708

ξcal,30,2
Fig. B.2 (b)

0.873 0.529 0.622 0.699

ξcal,30,3

Fig. B.2 (c)

0.868 0.520 0.615 0.693

ξcal,60,1

Fig. B.3 (a)

1.074 0.385 0.692 0.801

ξcal,60,2
Fig. B.3 (b)

1.070 0.381 0.686 0.799

ξcal,60,3

Fig. B.3 (c)

1.063 0.376 0.679 0.783

ξcal,90,1

Fig. B.4 (a)

1.084 0.297 0.687 0.871

ξcal,90,2
Fig. B.4 (b)

1.078 0.292 0.681 0.868

ξcal,90,3

Fig. B.4 (c)

1.072 0.284 0.679 0.859

Table B.1: Mean of 100 estimates of the expected Shannon information gain for the
designs given in Figures B.1-B.4; the ESIG was estimated under (i) the nonlinear
model where σ2

ε is treated as a nuisance parameter; (ii) the calibration model where τ2

is treated as a nuisance parameter and (a) m = 30; (b) m = 60; and (c) m = 90

B.2.6 Unknown simulator and δθp(x) = 0 - Michaelis-Menten model

Finally, we calculate the derivatives of the log-prior density, log πb(ψ), with respect to

the unknown parameters ψ′, where ψ′ = (log θp1, log θp2, log τ2)T, for the example given

in Section 6.4.4. We have that:

θp1 ∼ logN(µ1, σ
2
1), θp2 ∼ logN(µ2, σ

2
2), τ2 ∼ Exp(λτ2).

The log-prior density is:

log πb(ψ) = log πb(θ
p
1) + log πb(θ

p
2) + log πb(τ

2)
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= log
[
θp1σ1(2π)1/2

]
+

(log θp1 − µ1)2

2σ2
1

+ log
[
θp2σ2(2π)1/2

]
+

(log θp2 − µ2)2

2σ2
2

+ log λτ2 + λτ2τ2.

First Derivatives:

∂ log πb(θ
p
1)

∂ log θp1
= −1− log θp1 − µ1

σ2
1

,

∂ log πb(θ
p
2)

∂ log θp2
= −1− log θp2 − µ2

σ2
2

,

∂ log πb(τ
2)

∂ log τ2
= −λτ2τ2.

Second derivatives:

∂2 log πb(θ
p
1)

∂[log θp1]2
= − 1

σ2
1

,

∂2 log πb(θ
p
2)

∂[log θp2]2
= − 1

σ2
2

,

∂2 log πb(τ
2)

∂[log τ2]2
= −λτ2τ2.
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Appendix C

C.1 The choice of hyperparameters for different examples

C.1.1 Example 3.2.1

For the example given in Section 3.2.1 we assume the calibration model (1.1) and we

also assume a known simulator, the Michaelis-Menten model, with known and fixed

parameters θp = (15, 50)T. Therefore

η(x,θp) =
15x

50 + x
.

We also assume a Gaussian process prior on the discrepancy function δθp(·) such that

δθp ∼ N
[
0n, σ

2K(φ)
]
,

where δθp = [δθp(x1), . . . , δθp(xn)]T. We also assume σ2 ∼ IG(a, b), φ ∼ Exp(λφ) with

densities

πb(σ
2) =

ba

Γ(a)
(σ2)−a−1 exp

{
− b

σ2

}
,

πb(φ) = λφ exp{−λφφ},

with a = 3, b = 2, λφ = 200 and σ2
ε = 0. This choice of prior distribution for

the correlation parameter φ suggests that if two points x and x′ in the range [0, 400]

are ‘close’ then the correlation function κ(x, x′;φ) is close to one and as the distance

between the two points is increased the correlation function κ(x, x′;φ) decreases and

tends to zero. See Figure C.1 for the density of κ(x, x′;φ) for different values of φ

sampled from the prior distribution and for three fixed distances between two points.

In Figure C.2 (b) we present samples from the prior distribution of the discrepancy

function δθp(x) for this particular choice of hyperparameters.

This choice of hyperparameters results in a sensible prior distribution in relation to

the “size” of the model (see Figure C.2 (a) for the expected response of the Michaelis-

Menten model), for the discrepancy function δθp(x). Samples from the posterior dis-

tribution of the discrepancy function are presented in Section 3.2.1.

199



0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

|x-x'|=10

κ(x,x';φ)

D
en
si
ty

0.0 0.2 0.4 0.6 0.8

0
5

10
15

20
25

30

|x-x'|=100

κ(x,x';φ)

D
en
si
ty

0e+00 2e-04 4e-04 6e-04 8e-04

0.
0e
+0
0

1.
0e
+5
3

2.
0e
+5
3

3.
0e
+5
3

|x-x'|=350

κ(x,x';φ)

D
en
si
ty

Figure C.1: The density of κ(x, x′;φ) for different values of φ sampled from the prior
distribution and for three fixed distances between two points: (i) |x − x′| = 10; (ii)
|x− x′| = 100; and (iii) |x− x′| = 350
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Figure C.2: Example 3.2.1: (a) The expected response of the Michaelis-Menten model,
η(x,θp) = 15x

50+x ; (b) Samples from the prior distribution of the discrepancy function
δθp(x)
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Figure C.3: Example 3.2.2: Examples of (a) the shape of the expected response of
the Michaelis-Menten model for different values of θp1 and θp2 sampled from the prior
distributions; (b) realisations from the prior distribution of the discrepancy function
δθp(x) for the particular choice of hyperparameters

C.1.2 Example 3.2.2

For the example given in Section 3.2.2, we assume the calibration model (1.1) and a

known simulator, the Michaelis-Menten model, with unknown parameters θp:

η(x,θ) =
θ1x

θ2 + x
.

We also assume a Gaussian process prior on the discrepancy function δθp(·) such that

δθp ∼ N
[
0n, σ

2K(φ)
]
,

where δθp = [δθp(x1), . . . , δθp(xn)]T and θp1 ∼ Unif[8, 24], θp2 ∼ Unif[20, 85], σ2 ∼
IG(3, 2), φ ∼ Exp(200) and τ2 ∼ Exp(15) (similar to Example C.1.1). In Figure C.1

we present the density of κ(x, x′;φ), for different values of φ sampled from the prior

distribution and for three fixed distances between two points. In Figure C.3 we present

(a) examples of the shape of the expected response of the Michaelis-Menten model for

different values of θp1 and θp2 sampled from these prior distributions and (b) samples

from the prior distribution of the discrepancy function δθp(x) for this particular choice

of hyperparameters.

This choice of hyperparameters results in a sensible prior for the discrepancy function

δθp(x) in relation to the “size” of the model for different values of θp1 and θp2. Samples

from the posterior distribution of the discrepancy function are presented in Section

3.2.2.
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Figure C.4: Example 5.1.2: The expected response of the Michaelis-Menten model for
different values of θ1 and θ2 sampled from their prior distributions

C.1.3 Example 5.1.2

For the Michaelis-Menten model given in Section 5.1.2 we assume log-normal prior

distributions for the unknown parameters θ1 and θ2 with µ1 = 4.38, σ1 = 0.07, µ2 =

1.19 and σ2 = 0.84. In Figure C.4 we present examples of the shape of the expected

response of the Michaelis-Menten model for different values of θ1 and θ2 sampled from

these prior distributions.

Figure C.4 describes the variability of the simulator output due to the variability in the

parameters. Also, the variability shown in this figure explains why the optimal designs

obtained for the Michaelis-Menten model have most points where the curve is changing

more quickly and also some points at the stable part of the curve.

C.1.4 Example 5.1.3

For the Biochemical Oxygen Demand (BOD) model given in Section 5.1.2 we assume

log-normal prior distributions for the unknown parameters θ1 and θ2 with µ1 = 3.38,

σ1 = 0.20, µ2 = 1.098, σ2 = 1.12. In Figure C.5 we show the shape of the expected

response of the BOD model for different values of θ1 and θ2 sampled from these prior

distributions.

Similarly to the previous example, Figure C.5 describes the variability of the simulator
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Figure C.5: Example 5.1.3: The expected response of the BOD model for different
values of θ1 and θ2 sampled from their prior distributions

output due to the variability in the parameters. Again, the variability shown in this

figure explains why the optimal designs obtained for the BOD model have most points

where the curve is changing more quickly and also some points at the stable part of

the curve.

C.1.5 Example 6.3.1

For the example given in Section 6.3.1 we assume the calibration model (6.1) with the

simulator being the Michaelis-Menten model with unknown parameters θ, similar to

Example C.1.2, such that:

η(x,θ) =
θ1x

x+ θ2
.

We assume independent log-normal prior distributions θp1 ∼ logN(4.38, 0.072) and θp1 ∼
logN(1.19, 0.842) (as in Example C.1.3). We also assume a Gaussian process prior for

the discrepancy function δθp(x)

δθp ∼ N
[
0n, σ

2K(φ)
]
,

where δθp = [δθp(x1), . . . , δθp(xn)]T. We use σ2 ∼ IG(3, 2), φ ∼ Exp(200) and τ2 ∼
Exp(20). In Figure C.1 we present the density of the correlation function κ(x, x′;φ), for

different values of φ sampled from the prior distribution and for three fixed distances

between two points.
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Figure C.6: Example 6.3.1: Examples of (a) the shape of the expected response of
the Michaelis-Menten model for different values of θp1 and θp2 sampled from the prior
distributions; (b) realisations from the prior distribution of the discrepancy function
δθp(x) for the particular choice of hyperparameters

In Figure C.6 we present (a) examples of the shape of the expected response of the

Michaelis-Menten model for different values of θp1 and θp2 sampled from these prior

distributions, and (b) samples from the prior distribution of the discrepancy function

δθp(x) for this particular choice of hyperparameters. This choice of hyperparameters

results in a sensible prior for the discrepancy function δθp(x) in relation to the “size”

of the model for different values of θp1 and θp2.

C.2 Example: Michaelis-Menten simulator and δθp(x) 6= 0

We assume the example given in Section 6.3.1. We compare estimates of the expected

Shannon information gain found using nMC, ALIS and LIS for two combinations of

k1 and k2; (i) k1 = k2 = 300 and (ii) k1 = 2000, k2 = 10000. Both normal and t

importance distributions are used in ALIS and LIS. The expected Shannon information

gain is approximated for the designs given in Figure 6.2. We treat as the ‘true’ ESIG

the nMC approximation with k1 = k2 = 1, 000, 000 (red line) because should lead to

negligible bias.

Figure C.7 shows the distribution of 100 estimates of the ESIG found using nMC, ALIS

and LIS for the D-optimal design, ξ?D. Increasing k1 and k2 reduces the variance and

bias of nMC. For this design, the ESIG using ALIS and LIS also changes by increasing

k2 which controls the bias and by increasing k1 which reduces the variance. Changing

the importance distribution from a normal to a t also makes a difference.
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Figure C.7: Estimated ESIG for the parameters ψ of the calibration model found using
nMC, ALIS and LIS for different combinations of k1 and k2, for the D-optimal design,
ξ?D, and the ‘true’ ESIG (red line) obtained from nMC with k1 = k2 = 1, 000, 000

Figure C.8: Estimated ESIG for the parameters ψ of the calibration model found using
nMC, ALIS and LIS for different combinations of k1 and k2, for the Bayesian optimal
design of the Michaelis-Menten model found using ACE, ξ?MM , and the ‘true’ ESIG
(red line) obtained from nMC with k1 = k2 = 1, 000, 000
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Figure C.9: Estimated ESIG for the parameters ψ of the calibration model found using
nMC, ALIS and LIS for different combinations of k1 and k2, for the Bayesian optimal
design for the Michaelis-Menten model found using ACE, ξ?MM , and the ‘true’ ESIG
(red line) obtained from nMC with k1 = k2 = 1, 000, 000 (nMC,300 is omitted because
this method exhibits large bias)

Figures C.9 and C.8 show the distribution of 100 estimates of the ESIG found using

nMC, ALIS and LIS for the Bayesian optimal design for the Michaelis-Menten model

found using ACE, ξ?MM . In the latter plot nMC,300 results have been omitted due to

high positive bias. We can see similar patterns as discussed for Figure C.7.

In Figure C.10 we show the distribution of 100 estimates of the ESIG found using

nMC, ALIS and LIS for the maximin LHS design, ξLHS . We can see similar patterns

as in Figures C.7 and C.9. Again, we have not included nMC,300 results due to high

bias. For this design, which is equally spaced in one dimension, the prior distribution

of the correlation parameter, φ, is more similar to the posterior distribution than the

approximation to the posterior distribution used in ALIS and LIS, and for this reason

nMC appears to perform better than either ALIS or LIS.

In Figure C.11, similarly to the previous figures, we show the distribution of 100 esti-

mates of the ESIG found using nMC, ALIS and LIS for the Bayesian optimal design

for the calibration model found using ACE, ξ?cal. Clearly in this figure we can see that

ALIS with a t importance distribution gives approximations with the least bias.

Figure C.12 shows 100 estimates of the ESIG for two replicates of the 10-run Bayesian

optimal design for the calibration model found using ACE. For this design, the advan-

tage of ALIS and LIS over nMC is much clearer.
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Figure C.10: Estimated ESIG for the parameters ψ of the calibration model found using
nMC, ALIS and LIS for different combinations of k1, k2, for the maximin LHS design,
ξLHS , and the ‘true’ ESIG (red line) obtained from nMC with k1 = k2 = 1, 000, 000

Figure C.11: Estimated ESIG for the parameters ψ of the calibration model found using
nMC, ALIS and LIS for different combinations of k1, k2, for the Bayesian optimal design
for the calibration model found using ACE, ξ?cal, and the ‘true’ ESIG (red line) obtained
from nMC with k1 = k2 = 1, 000, 000
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Figure C.12: Estimated ESIG for the parameters ψ of the calibration model found
using nMC, ALIS and LIS for different combinations of k1 and k2, for two replicates of
the 10-run Bayesian optimal design for the calibration model, ξ?cal, and the ‘true’ ESIG
(red line) obtained from nMC with k1 = k2 = 1, 000, 000

The examples where nMC is performing better than ALIS and LIS are when evaluating

designs that probably do not give much information about the calibration parameters.

In these examples the prior distribution is a better approximation to the posterior than

an asymptotic Laplace approximation. For the designs that give information about the

calibration parameters, nMC requires big sample sizes k1 and k2 in order to reduce the

bias. For this particular example we chosen LIS to approximate the expected Shannon

information gain as is a bit more accurate than ALIS, and empirically is not much more

computationally expensive, at least for small Monte Carlo sample sizes.

C.3 Unknown simulator and δθp(x) = 0 - Cantilever Beam

function

For the example presented in Section 6.4.3, we fit a Gaussian process with a constant

mean to the simulator outputs, z, obtained using a computer experiment observed

under a design ξc = [(xc1, θ
c
1), . . . , (xcm, θ

c
m)]. The prior distributions used are the same

given in Section 6.4.3. We use mlegp package (Dancik, 2007), to model the effect of

Young’s modulus of beam material, θ, on the output of the cantilever beam function.

We fit a GP to m = 30, 60, 90 simulator runs.
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(a) (b)

(c) (d)

Figure C.13: Gaussian process fit for m = 30. (a) Contour plot of the cantilever beam
function for a fixed θ = 2.71 × 107; (b) Posterior mean of the Gaussian process fit on
the cantilever beam function; (c) The root squared difference between the response and
the posterior mean; (d) Posterior standard deviation of the Gaussian process fit on the
cantilever beam function
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(a) (b)

(c) (d)

Figure C.14: Gaussian process fit for m = 30. (a) Contour plot of the cantilever beam
function for a fixed θ = 3.15 × 107; (b) Posterior mean of the Gaussian process fit on
the cantilever beam function; (c) The root squared difference between the response and
the posterior mean; (d) Posterior standard deviation of the Gaussian process fit on the
cantilever beam function
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(a) (b)

(c) (d)

Figure C.15: Gaussian process fit for m = 60. (a) Contour plot of the cantilever beam
function for a fixed θ = 2.71 × 107; (b) Posterior mean of the Gaussian process fit on
the cantilever beam function; (c) The root squared difference between the response and
the posterior mean; (d) Posterior standard deviation of the Gaussian process fit on the
cantilever beam function
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(a) (b)

(c) (d)

Figure C.16: Gaussian process fit for m = 60. (a) Contour plot of the cantilever beam
function for a fixed θ = 3.15 × 107; (b) Posterior mean of the Gaussian process fit on
the cantilever beam function; (c) The root squared difference between the response and
the posterior mean; (d) Posterior standard deviation of the Gaussian process fit on the
cantilever beam function
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(a) (b)

(c) (d)

Figure C.17: Gaussian process fit for m = 90. (a) Contour plot of the cantilever beam
function for a fixed θ = 2.71 × 107; (b) Posterior mean of the Gaussian process fit on
the cantilever beam function; (c) The root squared difference between the response and
the posterior mean; (d) Posterior standard deviation of the Gaussian process fit on the
cantilever beam function
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(a) (b)

(c) (d)

Figure C.18: Gaussian process fit for m = 90. (a) Contour plot of the cantilever beam
function for a fixed θ = 3.15 × 107; (b) Posterior mean of the Gaussian process fit on
the cantilever beam function; (c) The root squared difference between the response and
the posterior mean; (d) Posterior standard deviation of the Gaussian process fit on the
cantilever beam function
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Figures C.13 - C.18 present results from these GP models from m = 30 (C.13 and C.14),

60 (C.15 and C.16), and 90 (C.17 and C.18) runs. For each figure, plot (a) presents the

simulator output for a value of θ not in the computer experiment design, plot (b) gives

the posterior predictive mean for this θ value from the GP model, plot (c) gives the

root squared difference between the true simulator output and the posterior predictive

mean, and plot (d) gives the posterior predictive standard deviation.

As we increase the number of simulator runs m, the posterior mean of the GP more

closely resembles the true response; especially noticeable at the edge of the design

space. The root squared difference between the true response and the posterior mean

becomes smaller for larger m. The posterior standard deviation of the GP decreases as

we increase m.

These figures demonstrate that as we increase the number of observations m we get

a GP mean that adapts better to the true response and the GP standard deviation

is smaller. For space-filling designs and Bayesian optimal designs the estimated ESIG

tends to the value of the estimated ESIG for the nonlinear model as m increases.
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