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Faced with challenges of energy security and recognition of the anthropogenic climate change, there

have been ongoing international efforts to develop indigenous renewable energy resources. This

transition is challenging traditional planning approaches of energy systems, with difficulties faced

in both identifying suitable locations for renewable energy development, and issues in delivering

projects within existing top-down governmental planning structures.

Within the context of the United Kingdom, this project explored the vulnerability of cities and

regions in meeting their electricity requirements through renewable energy sources. Onshore wind

energy was selected as the primary focus of the study, being the most established technology in

the region, with over 3000 planning applications made between 1990 and 2017.

In order to create a more accurate site location model, analysis was conducted to identify the

influential factors for a wind energy site receiving planning permission. This understanding was

then integrated into a novel onshore wind site selection model, assessing the economic, legislative

and social suitability of potential wind energy site. Finally, an overarching methodology to assess

the potential for a region to meet its energy requirements through renewable energy resources was

proposed, with the methodology demonstrated within a case study which considered 14 UK towns

and cities.

The study revealed that local demographic and political parameters appear to influence the planning

outcomes of onshore wind energy projects. By integrating social constraints, the results from this

onshore wind energy site modelling highlight that the exploitable wind capacity is an order of

magnitude less than previous estimates. Finally, it is demonstrated that cities and regions face

major restrictions in meeting their energy requirements through local renewable energy resources,

and that there is the potential for resource conflict between neighbouring cities. The application

of these findings can help inform planning policy and aid further renewable energy development

within the United Kingdom.
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Preface
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available through the Pure online repository (pure.soton.ac.uk). The online repository also

provides the full source code and access to datasets used within the analysis.

A number of other packages are used throughout the analysis. Those which provided a specific

task within the analysis are referenced at their time of use, whilst the following packages are used

throughout the analysis:

• rmarkdown (Allaire et al., 2017) knitr (Xie, 2017b) and bookdown (Xie, 2017a): used for

producing the report within R.

• ggplot (Wickham & Chang, 2016): used for producing graphs and data visualisation.

• ggmap (Kahle & Wickham, 2017) is used for visualising spatial data.

In addition, the R package sotonthesis (Ismay & Harper, 2017) was developed by the author to

produce the report in accordance with the University of Southampton thesis guidelines. Installation

instructions are provided within the GitHub for reuse.

Session Information:

This thesis and analysis was built using R version 3.4.2 (2017-09-28) on the x86 64, linux-gnu

operating system. The fully detailed system information is provided within the online repository.

The code has been tested on both Linux and Windows systems and is stable at the time of

publishing.

1

https://github.com/mikey-harper/PhD
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Chapter 1

Introduction

With a commitment to tackle climate change, the UK government established legally binding

targets to reduce greenhouse gas emissions by a minimum of 80% by 2050 (The Climate Change

Act 2008). Since the formation of these emission targets, significant investment has been made

into renewable and low-carbon technologies, resulting in 25% of UK electricity being supplied by

such sources in 2016 (DBIES, 2016a). However, there are growing concerns that the UK is not

meeting the required rate of development in this sector, and it is projected that the UK will miss

interim targets set for 2020 (ECCC, 2016).

To assist in the planning of renewable energy technologies, there has been significant international

interest in methodologies to locate suitable sites for development. However, there are concerns

within literature that existing approaches do not accurately model the social challenges surrounding

the development of renewable energy projects (Langer et al., 2016). In particular, projects often

face strong local opposition and experience difficulty in receiving planning permission, an issue

which is particularly apparent within the UK, where over 50% of onshore wind energy projects

are not granted planning permission (DECC, 2016c). Such high rejection rates have limited the

capacity of the UK to meet renewable energy targets, and suggest potential under-performance of

pre-planning methodologies in their assessments.

Furthermore, the decentralisation of energy in the UK has raised questions surrounding the scale at

which energy systems should be planned. Historically, energy systems were largely coordinated at

a regional or national scale, but there have been greater calls for devolution of control to cities and

regions, who argue they are in a better position to deliver the development required for a low-carbon

energy transition (Bridge et al., 2013). However, there is a limited understanding within existing

literature of the optimal scale at which planning should be conducted within a low-carbon energy

system, or how sub-national carbon targets should be set. This research therefore investigates

the influence of spatial scale on the ability of a district to supply itself with sustainable energy

generated within the boundaries of that district, termed “energy neutrality” (Jablonska et al.,

2011). In doing so, this work seeks to contribute to the understanding of spatial scale in energy

planning by providing quantitative evidence that builds upon existing qualitative literature.

3
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In addition, this study assesses previous onshore wind energy planning decisions in the UK to

determine the key parameters influencing the likelihood of a project receiving planning permission.

Findings from this analysis are then integrated with technical and environmental constraints to

identify suitable areas for development of onshore wind energy.

1.1 Research aims and objectives

Aims

The overall aim is to investigate the impact of spatial planning scale on the ability of a region to

achieve energy neutrality. Within this scope, the study will identify factors that may influence the

planning acceptance of onshore wind energy, and integrate the resulting information into spatial

modelling of onshore wind energy to identify suitable locations for development.

Objectives

• To understand and assess the influence of technical, demographic and political parameters

on the acceptance of onshore wind projects within a UK context.

• To develop a predictive model of the planning application acceptance of onshore wind energy

based on the understanding achieved with the first objective.

• To assess the suitability of sites for onshore wind development, integrating the likelihood of

the project receiving planning permission.

• To assess the impact of spatial planning scale on the ability of a region to achieve energy

neutrality, using onshore wind as a case study.

• To develop a generalised approach for assessing the potential for energy neutrality of a region.

• To provide recommendations on the implication of the model results on regional energy

planning.

1.2 Thesis Structure

For the purpose of clarity, the thesis was split into three parts, as follows:

• Part I: Background & Literature: aims to provide the overall context of the work

conducted, and to provide justification for the research questions addressed.

• Part II: Data Preparation: explains the processes used to gather, validate and summarise

datasets used within the modelling.

• Part III: Analysis & Discussion: details the modelling conducted and discusses the

implications of the findings.



Chapter 1 Introduction 5

This structure is shown in Figure 1.1, providing a high-level summary of the key themes and

development within the thesis. The map aims to highlight the connections between sections, and

highlight the stages at which the project scope is refined throughout the document.

Figure 1.1: Thesis map highlighting the overall structure of the project.
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The aim of this section is to describe the overall context in which the work was conducted, and

provide justification for the research questions developed. It is formed of the following chapters:

• Chapter 2 provides the broader context of the work, highlighting the background challenges

crucial to the development of the research topic.

• Chapter 3 expands upon the issues framed within the background literature provided in

Chapter 2, and details relevant technical concepts utilised within the research field.

• Chapter 4 reviews the relevant academic literature, and highlights a number of limitations

within existing approaches.





Chapter 2

Research Context

There are many legislative, technological and political issues surrounding the development of

renewable energy technologies within the UK, and spatial scale forms a key component of this

context. This chapter therefore aims to detail the key background information to help synthesize

the research questions. Relating specifically to a UK context, the objectives of this chapter are as

follows:

• to outline the legislative drivers and targets for the reduction of greenhouse gas emissions.

• to define the concept of spatial scale and its use within this project.

• to explain the importance of spatial planning scale within the transition to renewable energy

technologies.

• to detail the historical development of the electricity network, highlighting the varying scales

at which energy has been planned.

• to explore the recent trends in local government involvement within energy planning.

• to outline the renewable energy technologies within the UK context and summarise their

suitability for further exploitation.

• to highlight spatial renewable energy capacity assessments conducted within government

studies.

• to outline the challenges caused by the increased use of renewable energy technologies.

• to reflect upon the information presented and define the project scope for further assessment.

This chapter presents the broader context of renewable energy as a whole. The findings from this

chapter are used to define the project scope, as explained within Section 2.8.1.

9
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2.1 Drivers for Renewable Energy

The recognition of anthropogenic climate change has led to significant international action to

reduce greenhouse gases (GHG) emissions. To this end, the UK government signed the Kyoto

protocol to the UN Framework Convention on Climate Change in 1997 (United Nations, 1998), in

the first legislative action to directly target emission reductions.

Long-term targets for the year 2050 were established through the Energy Paper 2003 (DTI, 2003).

The recommendations of this report were legislated under the Climate Change Act 2008, which

established legally binding targets to reduce carbon emissions by 80% between 1990 and 2050

(“Climate Change Act 2008,” 2008). With electricity generation, transport and heating accounting

for more than 80% of emissions1, the development of renewable and low-carbon energy technologies

is a critical aspect of meeting these targets.

To ensure regular progress towards the 2050 target, the Climate Change Act 2008 established a

system of five-yearly carbon budgets proposed by the UK’s Committee on Climate Change (CCC).

In July 2016, the fifth carbon budget was set for the period 2028 to 2032 and requires a 57%

reduction in emissions. Progress against the UK annual GHG emission targets are shown in Figure

2.1a, which highlights that that there has already been a 30% reduction between 1990 and 2013

(DBIES, 2016c). Whilst a significant portion of this reduction can be accounted for by renewable

energy generation, a large part of the carbon reduction was achieved through fuel switching from

coal to gas, the closure of many energy intensive industries,2 and the prolonged recession of 2008

impacting economic activity (Griffin et al., 2013, 2016). Because of such one-off changes, it

has become progressively more difficult to reduce emissions without the further exploitation of

renewable energy technologies.

In addition to the carbon emission targets, the UK has a target of supplying 15% of overall energy

consumption from renewable electricity by 2020 (European Parliament, 2009). Figure 2.1b shows

the annual percentage of energy demand within the UK met by renewable sources. It can be seen

that there has been significant growth in the supply of renewable energy over the past 10 years, and

that 24.6% of electricity demand was met by renewable energy in 2016. However, the relatively

slow progress in heating and transport has resulted in only 8.9% of overall energy demand being

met by renewables. EU countries have also agreed to a new, non-legally binding, renewable energy

target of 27% by 2030 (European Commission, 2014). This target highlights the need for the UK

to ensure a consistent strategy to develop renewable energy and further reduce GHG emissions.

1Calculated from DUKES (DECC, 2016b)
2A notable example include the Redcar Steelworks (BBC, 2015)
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Figure 2.1: Graphs highlighting UK progress against emissions and carbon targets

Since the 2016 referendum on UK’s membership of the EU, there have been further questions raised

about the UK’s commitment to renewable energy targets. As with all European led policy, it is

unclear what policies will be retained if the UK leaves the EU. There are suggestions, however, that

the renewable energy targets will be reduced or removed completely (Bloomberg, 2017). Despite

this, the UK carbon emission targets have been set domestically and therefore emphasis remains

on the commitment to reduce greenhouse gas emissions (DBIES, 2016a).
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2.2 Spatial Scale

This section aims to frame the key definitions of spatial scale within energy modelling, and highlight

the importance it plays within the development of energy modelling. The concepts outlined in this

section are aimed to frame the issue of scale, and are expanded upon further within the chapter.

2.2.1 Concepts

The concept of spatial scale has multiple meanings, both between and within academic disciplines.

Within the scope of this study, the spatial data analysis perspective is used, which relates to the

scale at which the spatial measurement is conducted or planned (Lloyd, 2014). Although no strict

definition is made of the different spatial scales, analyses often consider “local”, “sub-regional”,

“regional”, “national” and “global”. Figure 2.2 expands upon these basic definitions by highlighting

the administrative scales considered within energy planning and policy in the UK.

Figure 2.2: Schematic highlighting typical scales of planning within energy planning.

Electricity is an intrinsically spatial issue, with the production, distribution and consumption

spanning multiple scales. As an example, Figure 2.3 outlines the typical arrangement of electricity

distribution systems, with generation and demand occurring at remotely located power stations.

In such an arrangement, electricity must be transmitted and distributed via regional electricity

networks before being consumed at local areas. Such a structure has typically been led by

regional and national scale planning, as explained further within Section 2.3.

Figure 2.3: Schematic of electricity generation, transmission and distribution.

The traditional arrangement of electricity networks is being challenged within the energy

transition to renewable and low-carbon technologies. Compared to traditional electricity systems,

renewable technologies require significant local investment in decentralised technologies, and
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therefore action requires a much greater local perspective in planning (Ackermann et al., 2001).

Increased interest within research has therefore been seen to assess the spatial dimension of

sustainable transformations, with studies aiming to assess the geographical implication of a

transition towards low carbon energy (Bridge et al., 2013; Bulkeley & Betsill, 2005; Spath &

Rohracher, 2012).

2.2.2 Planning Scale and Energy

Scale forms an important aspect of planning. How social and political powers are organised and

exercised over space is described as territoriality (Brenner et al., 2008). All infrastructure systems

for energy capture, transmission and distribution are spatially constituted, but they have been

territorialized in different ways over time: for example, initial electricity systems were developed

as localised “islands” with no interconnection, however were replaced over time with integrated

national scale energy systems.

Bridge et al. (2013, p. 10) note that “the territorialisation of the UK energy system is an unsettled

project that is on-going and contested”. In one aspect, the UK’s energy system is being re-

territorialised in the context of EU policies on the liberalisation of energy markets. At the same

time, there is increasing recognition of the importance cities and urban infrastructural networks

play in energy consumption, and therefore serve as a potentially important site for political action

around energy transition (Bridge et al., 2013; Bulkeley & Betsill, 2005; Spath & Rohracher, 2012).

These concepts are highlighted within Figure 2.4, and will be further explored within Sections 2.3

and 2.4.

Figure 2.4: Schematic highlighting gap between planning and action within renewable
energy development.

Despite concerns surrounding the importance of spatial scale, it has been noted that little

significance has been placed on it within energy policy, and that assumptions about scale pervade

existing decision-making. As noted Bridge et al. (2013), “there is little questioning of the

geographical imaginations which underpin the idea of nested and discrete scales of political

authority over the environment”. This view reflects the limited understanding of the importance

of spatial scale, and whether the existing structure of local, regional and national governments are

the most suitable for the development of renewable energy technologies. Purcell (2006) further

summarises:

“It is dangerous to make any assumption about any scale. Scales are not independent

entities with pre-given characteristics. Instead, they are socially constructed strategies
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to achieve particular ends. Therefore, any scale or scalar strategy can result in any

outcome [. . . ] All depends on the agenda of those empowered by a given scalar

strategy.”

In response to such concerns, it has been noted within governmental guidance that “the scale of

analysis should be tailored to mesh with functional issues and that different scales are appropriate

for different issues” (CLG, 2008, p. 69). This view largely mirrors the Matching Principle, whereby

the scale of the infrastructure challenge should determine the appropriate governance level for

responding to it (Butler & Macey, 1996). As shown, physical energy infrastructure exhibits a strong

local dimension, and even regional, national or continental dimensions. Therefore, governmental

arrangements should be established to account for the action required at the various spatial scales.

It is argued by the author that the existing government arrangements demonstrate a gap in

knowledge (Figure 2.4). The lack of such integration can clearly be seen within national emission

target planning in the UK, whereby national carbon targets have been set, yet there is limited

coordination within the local scale investments required to meet such targets. This view is

supported by literature that notes that there is often difficulty integrating spatial planning across

multiple scales (Ran & Nedovic-Budic, 2016). These concerns are further explored within this

chapter and the literature review in Chapter 4.
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2.3 History of UK Energy and Governance

It was noted within Section 2.2 that the territorialisation of the UK electricity network has been a

continuing project since its early development. To place recent trends within the broader social,

political and technological landscape, it is important to understand the historical development of

the electricity generation and distribution system within the UK. This section therefore provides a

summary of the key developments that influenced current planning, and highlights the varying role

that local governance has served. An overview of the timeline is provided in Figure 2.5, which is

expanded upon within the following subsections.

Figure 2.5: A timeline of UK electricity and the involvement of local government, 1850
to 2010.

2.3.1 1800s: Precursors of Electricity

In the early 1800s, the primary source of fuel for heating, power and cooking was coal, whilst all

forms of artificial light were obtained from some form of open flame, either using candles or oil

lamps. At this stage, there were no stand-alone lighting sources and none provided by a “public

utility”, a term generally referring to a company or organisation, either private or government-

owned, that provides services to the general public over a network (Dupuit, 1844).

Developments in lighting had started at end of the 18th century, when it was discovered that gas

could be derived from coal and burned in lanterns. While a small number of standalone gas lighting

systems were built, the first public utilities devoted to illumination were gas networks within urban

areas. These were developed from 1813, and by 1826, most towns of more than 10,000 people

were served (Falkus, 1967). However, these early networks would initially serve to provide lighting

for streets and commercial premises, with a limited number of domestic connections. It was not

until the 1840s before it became affordable for domestic customers to be connected to the network

(Falkus, 1982).

Up until 1850, there was very little involvement from local authorities in the operation of gas

networks, and networks were primarily developed by private enterprises (Falkus, 1967). However,

as local authorities sought to improve conditions for their local communities, there was increased

interest in establishing and delivering public services and the concept of “municipal socialism”

grew in importance, whereby local governments lead social reform (Cohn, 1910). A notable

example is provided by Birmingham in 1873, whereby the council bought up local gas supplies

and water networks to create large municipal networks (Ward, 2005). Following similar
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developments nationally, most cities and towns had control of their gas supply by the 1880s

marking the beginning of involvement from local authorities that would last almost 70 years.

2.3.2 1880s: Early Developments of Electricity

The development of the electric utility had begun in earnest at the start of the 19th century.

These steps included the scientific discovery of electricity, the creation of devices that used

electricity (primarily lights and motors) and devising the means of transmitting and distributing

electricity (Hausman et al., 2008). Like early gas systems, early electric generators had been sold

as independent, self-dedicated units. Each system would have a generator that formed part of a

complete system within itself. Such systems were installed throughout the 1860s and 1870s in the

UK but were primarily limited to industrial customers (Hughes, 1983).

The first central electricity station in Britain opened in London in 1882, providing 160kW of power

for lighting at Holborn Station and surrounding properties (Hughes, 1983). The Electric Lighting

Act of 1882 allowed individuals, companies or local authorities to establish their own electricity

supply systems. However, there was initially limited interest as such systems could cost from 3 to

8 times that of the old gas lighting (Byatt, 1962). In addition, municipal government had invested

heavily in gas lighting and did not believe taxpayers’ money should be invested in a technology that

had not yet been proven. These issues led to an initially slow development of electricity networks,

it would not be until the 1890s that widespread development began.

2.3.3 1890s: Electricity as a public utility

With technological improvements and increased acceptance of the value of electricity, public

electricity systems began to be developed from the 1890s onwards. The first power stations were

established in London in the years 1889-92 and in the early and mid-1890s electricity was supplied

to the provinces. By 1900, the general trend was established that the large towns had municipal

supply, while smaller towns had privately developed supplies (Byatt, 1962).

Most systems operated using a low voltage, and generally, it was uneconomical to supply areas

greater than a half-mile radius due to the losses incurred with such systems. This limitation resulted

in power plants being installed within urban areas, close to areas of demand. By the end of the

First World War, such electrical networks had become well established within the UK. However,

there was no standardised specification for such supplies, resulting in different AC and DC systems

operating at a range of voltages and frequencies (Hughes, 1983). Reflecting upon this period,

Hannah (1979) noted that “there could be no doubt that a new strategy was required and that the

existing structure of the industry was not conducive to the development of large central stations

and bulk supply”.
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2.3.4 1924: The Weir Committee

To address the developing problems within the UK electricity infrastructure, the Weir Committee

was established by the UK government in 1924 to provide recommendations for its improvement.

The findings of their research were published in 1925, and outlined a number of changes which would

reform the supply of electricity (The Weir Committee, 1926). The report recommended regional

and national interconnections be formed through the construction of a ‘gridiron’. The report also

recommended the establishment of area boards that were coordinated under one central body,

the Central Electricity Board (CEB). These changes marked a significant new direction in state

enterprise which would foreshadow the subsequent trend of nationalisation within UK industries.

The concept of regional networks was well established by the 1920s, with countries such as the US

and Germany establishing national grids within the 1910s (Chick, 2007). Hughes (1983, p. 356)

summarised the design and operating principles of regional energy systems as follows:

• Obtaining economies of scale with large generating units (steam and water turbines).

• Massing the generating units near load centres or economical sources of energy and near

cooling water (giant power plants).

• Transmitting electricity to load centres (high-voltage transmission lines).

• Cultivating mass consumption by charging low and differential rates and allowing supply to

create demand.

• Interconnecting power plants to optimize their differential characteristics.

• Interconnecting loads to take advantage of diversity3 and therefore raise load and demand

factors.

• Centralising control of interconnected loads and power plants (establishing dispatching, or

system-coordinating, centres).

• Forecasting load requirements in order to achieve optimum operations within the interconnect

system

• Lowering installed and reserve capacity and coordinating maintenance shut downs through

the exploitation of power plant interconnections.

• Accepting government regulation in order to establish a natural monopoly.

• Earning a regular and adequate return on investment in order to obtain capital at a reasonable

interest rate.

2.3.5 1927: The National Grid

The Electricity Supply Act 1926 (HM Government, 1926) implemented the advice of the Weir

Committee, establishing the CEB and commencing development of the National Grid. Construction

started in 1927, and was the largest peacetime construction project that Britain had undertaken,

with 3,000 miles of transmission lines and 28,000 pylons (Hughes, 1983).

3Diversity refers to having a mix of types of customers to reduce fluctuations in demand and avoidance of a
common peak in demand
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The construction of such a project was not without opposition. Many felt the creation of

transmission pylons through rural areas disfigured the landscape and sought “the salvation of

what is left of England’s green and pleasant lands” (Anon., 1933).4 It was noted that before the

National Grid, the use of electricity had largely been confined to urban regions, with only 10% of

the rural population having access to electricity in 1927 (CEB, 1929). Such environmental

opposition for the electricity industry would resurface later in the century with the development of

wind energy in the UK.

With the formation of the National Grid, the UK could begin to benefit from the economies of scale

offered, resulting in a rapid increase in electricity demand: between 1926 and 1944, demand for

electricity increased from 6TWh to 36TWh while the number of generating stations was reduced

from approximately 600 to 362.5

2.3.6 1947: Centralisation and Nationalisation

From the early 1900s until 1947, local authorities had played an important role within the

development of electricity networks. By 1947, 60% of electricity capacity was controlled by local

authorities (Electricity Commission, 1948). However, there was a drive for nationalisation in UK

industries to ensure a coordinated approach in future developments. To this effect, the Electricity

Act 1947 (HM Government, 1947) nationalised the electricity generation and supply industry,

consolidating the companies into 14 regional electricity boards of the new Central Electricity

Authority (CEA). This removed the local municipality influence on energy supply and transferred

powers to a regional and national level (Katzarov, 1964).

The period from 1947 until the 1970s experienced a surge in demand for electricity, and there

was a consequent increase in the supply of electricity as shown in Figure 2.6. Up until the 1950s,

coal had provided the bulk of this electricity generation, with only a single oil power plant at

Bankside in London and nuclear power yet to contribute to electricity generation. However, it had

become clear that demand for coal would not be met by the 1960s (Ashworth, 1986), prompting the

government to begin the investigation into alternative sources. While the primary focus had been to

explore nuclear and domestic oil production, the potential of wind power was briefly explored with

an isolated attempt to construct a demonstration wind turbine in Wales in 1955 (CEGB, 1981).

These plans were however overturned by intense opposition from the affected local community.

The restructuring of the electricity industry during the 1950s unintentionally coincided with the

1956 Suez Crisis, which impacted global oil supplies and highlighted the risk of security of supply.

This period provides a useful insight into the beliefs of the future inputs for electricity generation.

Chick (2007) suggests that there was an over-reaction by the UK with a massive expansion in the

nuclear programme, and a planned shift within the UK energy mix away from coal. Energy security

dominated the fuel choices of UK government, and nuclear energy was seen as a key part of this

plan. Such a view would often come at the expense of renewable energy, as explained further in

the following section.

4More example includes (Croft, 1932, Anon. (1932))
5These figures were calculated from the CEB Annual Electricity Reports (Electricity Commission, 1948, p. 17)
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Figure 2.6: UK Fuel Input for electricity generation. Lines refer to key dates in UK
energy development. Data Source: DUKES (DBIES, 2016).

2.3.7 1970s: Beginning of Renewable Energy Research

By the 1970s, oil had overtaken coal as the main source of fuel in the UK, accounting for nearly

48 percent of primary energy consumption (DBIES, 2016b).6 With North Sea oil yet to be in

production, the UK was reliant on imports for this resource. Once again, the UK found itself

within a state of emergency as the 1973 Oil Crisis resulted in a fourfold increase in crude oil prices

(Yergin, 1991). This crisis triggered global interest in the development of alternative energy sources

and signalled the urgent need for the UK to develop a coherent energy policy.

As part of the revised government strategy, the Department of Energy (DoEn) was formed in 1974,

which established the Energy Technology Support Unit (ETSU) (Kenward, 1974). The purpose

of ETSU was to lead an alternative energy research and development programme, and establish

feasible options for future renewable energy technologies.

The focus of research in the 1970s primarily explored wave energy, which had been indicated as

highly suitable for the UK in early studies. A number of experimental devices were built, but by 1978

it had become clear that these were prohibitively expensive. In 1979, the incoming Conservative

government signalled a reduction of the expenditure on energy research. While nuclear energy was

again protected from cuts, ‘non-nuclear research and development’ and ‘energy conservation’ were

seen as less important and the funding was reduced significantly. This led to the controversial

termination of the UK tidal energy programme (Newton & Burch, 1985).

Following the reduction in funding, the priority of the ETSU research programme shifted towards

onshore wind. Throughout the 1980s, ETSU continued to produce a range of studies and reports

although there were limited attempts to develop working demonstration projects.7 The only direct

project to be constructed was a single 3MW turbine constructed in 1987 (DoEn, 1988b). However,

6“Primary Energy Consumption” includes all fuel used for heating, transport and electricity generation
7Some of their key studies include research into wind energy assessments (Newton & Burch, 1985) and energy

from waste (Buck & Ader, 1985)



20 Chapter 2 Research Context

this would prove to be the conclusion of the UK government’s direct involvement in wind energy,

and was the last act of the UK renewable energy research programme.

Two key conclusions can be drawn from this period. Firstly, Wilson (2012) notes that renewable

energy was still seen as a form of insurance policy. There was still a strong belief that nuclear

power was the technology of the future. Secondly, the pursuit of large turbines that exceeded

technological limits of the day reflected the government’s belief that systems must be based around

the same principles as conventional power systems, where bigger was seen to be better. International

examples had proved 1MW turbines to be the most cost-effective at the time, yet plans were

established to construct 4MW turbines, a size which would not be common until 20 years later

(DECC, 2016a).

2.3.8 1990s: Privatisation of the Network

In 1988, the government set out the new direction for renewable energy with Energy Paper 55

‘Renewable Energy in the UK: The Way Forward’ (DoEn, 1988a). The plan proposed a market-

led system to encourage commercial development in renewable energy with the aim of reducing

government involvement.

The electricity supply industry within the UK was privatised in 1990, dividing the UK network

into six regional bodies. The primary mechanism of support for renewable energy technologies in

this time was the Non Fossil Fuel Obligation (NFFO), which was designed to support nuclear and

renewable technologies. The NFFO operated by placing a levy on all consumers, and the newly

privatised Regional Energy Companies were obliged to purchase electricity supplied from the NFFO

suppliers.

The original NFFO schemes caused several issues. Firstly, the auction process rewarded power

output, and therefore wind farms were sited in the windiest, often most remote and scenic locations.

This results in power generation that is distant from the high voltage (HV) grid and key urban

centres. Secondly, the tendering process was conducted in successive rounds, and created batches

of parallel projects, giving rise to a perceived rush for wind power. It has been noted that these

issues led to increased opposition of such projects and created barriers in the development of wind

resources within the UK (Mitchell & Connor, 2004).

In addition, there was limited overlap between the NFFO and government research objectives. The

three NFFO auction rounds prioritised the funding of landfill gas, small turbines and energy from

waste while research had primarily focussed on larger wind turbines (Mitchell, 1996). By capacity,

80% of projects obtaining NFFO support were conventional landfill gas and Energy from Waste

(EfW) projects (Elliott, 1996).

These issues reflect the reliance on the market to lead the development of renewable energy. The

majority of renewable energy generation policies at this stage were market-based and led from a

national perspective, which can arguably lead to short-term decision-making (Mitchell & Connor,

2004). Compared with interventions internationally, most notably Germany and Denmark, greater
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levels of participation are encouraged in energy planning from local communities (Centre for Climate

Change Mitigation Research, 2015).

2.3.9 1998 to 2012: Regional Development Agencies (RDAs)

The Regional Development Agencies Act 1998 (HMCO, 1998) established 7 zones within the UK,

with the aim of planning regional strategies for future development. As shown in Section 2.1,

the period saw the increased awareness of the need to reduce emissions and the development of

renewable energy. Part of the role of the RDA was “to contribute to the achievement of sustainable

development in the United Kingdom where it is relevant to its area to do so”.

A key aspect of the planning framework was the creation of Regional Spatial Strategies (RSS),

which were designed to identify key investment opportunities within the region and drive economic

growth. Planning Policy Statement 22 mandated that these RSS addressed renewable energy

development for each region (UK Government, 2004).

During this period, the Utilities Act 2000 was established, which required electricity suppliers

to provide a proportion of their sale from renewable sources. The Renewable Obligation (RO)

was established and was designed to drive renewable energy development through a market-based

mechanism. A Renewable Obligation Certificate (ROC) would be issued for each Mega Watt

hour (MWh) of renewable energy generation. When the system was first released in 2002, each

form of renewable energy technology received the same level of support of one ROC/MWh. This

reflected the government’s ambition to promote a market-led approach and not favour any particular

technology. However, this system resulted in the deployment of more established technologies such

as landfill gas and onshore wind over less developed technologies that were further from being

commercial viable. It was not until 2009 that the differing levels of ROCs were offered to provide

higher rates for the less commercially viable options.

Another major change in the traditional energy system was the introduction of feed-in tariffs (FITs).

The policy mechanism was designed to accelerate investment in renewable energy technologies, and

started in 2010. This policy has led to a large change in the way the national grid has operated,

as will be discussed further in Section 2.7.

2.3.10 2012 to Present: Localism

Localism, or increased local governance, is a current policy within the UK influencing many areas

of planning. Changes enacted through The Localism Act 2011 have given a general power of

competence to all local authorities and gives them “the power to do anything that individuals

generally may do” (DCLG, 2011). This has opened up many new opportunities for councils which

were previously restricted in their involvement, and as a result, there has been increased interest in

development of energy strategies.
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In 2012, the RDAs were abolished. This move reflected an increasing trend for local representation

in decision-making, and a shift away from top-down governmental structures. Local Enterprise

Partnerships (LEPs) were formed to create voluntary partnerships between local authorities and

businesses, with a total of 39 LEPS in England. The change in regional boundaries can be seen in

Figure 2.7.

The aim of the LEPs is to help determine key priorities and lead economic growth and job creation

within the local area. While the LEPs carry out some of the functions previously served by the

RDAs, they are technically voluntary organisations that have not been designed to directly replace

RDAs. As a result, there is a less clear and consistent administrative structure at a local level than

experienced previously, and concerns have been raised that “Power Vacuum” has been created as

there is an absense of local actors who are directly accountable for regional targets (CCLG, 2011).

Recent UK government guidance demonstrate an expectation that local authorities will take a lead

in the development of local electricity generation, through support to local communities, investment

in local energy schemes, or more targeted approaches for specific subsets of public buildings,

e.g. schools (DECC, 2015a). Furthermore, because of ongoing budget restrictions imposed on

local government, local authorities are considering a range of revenue raising and efficiency saving

options including sale of property and land, and the creation of alternative income streams (Adam

et al., 2016). Such initiatives will be explored in Section 2.4.

2.3.11 Summary of Historical Development

The historical development of energy networks provides important context for the project, and

highlights how energy planning scale has been shaped by a combination of technical and political

drivers. It can be seen from the start of the 19th century that planning scale and political motives

have shaped the direction of energy within the UK. Local stakeholders, notably local government

Figure 2.7: A comparison of boundaries for the Regional Development Agencies and
Local Enterprise Partnerships, as defined in 2015.
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organisations, were marginalised from energy governance during the post-war nationalisation of

utilities. However, the recent administrative changes have provided an opportunity for local

authorities to become involved again, as they have been granted greater powers through the

Localism Act 2011. As noted above, the impacts caused by these recent changes will be explored

further in the following sections.

It should also be noted that energy policy objectives relating to renewable energy have been driving

at a national and regional level, notably through the NFFO and RO programmes. This highlights

the issue that regional energy companies are seen as the key actors by the existing system, however

there is evidence they may not necessarily be the most effective actors to deliver decentralised

activities, with arguments being that greater local level planning would be more suitable (Bridge

et al., 2013).

Finally, parallels can be drawn between the early development of the national grid and modern

day renewable energy projects. The National Grid received much criticism for the perceived

industrialisation of the countryside, with the purpose of providing electricity primarily for the use

in urban areas (Sherry-brennan & Pearson, 2015). It is suggested that renewable energy

technologies face similar challenges today, as renewable energy technologies have been indicated

to require significant amounts of rural land to meet the energy needs which are largely

concentrated within urban areas (Stoddart & Turley, 2012).
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2.4 Recent Trends in Energy Governance

As explained in Section 2.3, local government has played a historically important role in the

development of the UK national grid. The recent changes in government policy from 2012

onwards have increased local decision making, and have provided an opportunity for local

authorities to be involved with energy planning. As shown in Figure 2.8, the majority of local

authorities have ambitions for action on sustainable energy, with 82% active to some degree

(Tingey et al., 2017). This section provides an overview of some of the key interventions which

have been implemented by local authorities.
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Figure 2.8: UK Local Authorities According to Level of Engagement in Energy Systems
(Tingey et al., 2017).

2.4.1 Energy Interventions

Renewable Energy Producers

While Feed-in Tariffs have generally targeted individuals or business users, there has been increased

interest from councils looking to deploy renewable energy technologies across its building stock

within the city. A striking example is Portsmouth Council, which has deployed over 2MW of solar

capacity across their properties within the city (Pratt, 2016). This investment has seen a return of

between 8 and 12% and has helped provide an additional revenue streams for the council.

Energy Suppliers

There has been a growth in interest from local authorities to directly provide and sell electricity

within their local authority by forming an Energy Service Company (ESCO). To this effect, Robin

Hood Energy was established by Nottingham Council in 2016, and is the first council-owned energy
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firm to operate since the electricity network was nationalised in 1948 (Robin Hood Energy Limited,

2016). The company uses electricity generated from Energy from Waste plants, solar panels and

waste food plants and also buys in gas and electricity from the market. Robin Hood Energy operates

under a principle of always being cheaper than any of the ‘big six ’ providers so that users no longer

need to continually switch providers. The effectiveness of the project has sparked interest across

councils with many regions in the UK looking to follow this model, including Bristol (Bristol Energy,

2016) and Cheshire (Fairer Power, 2016).

Network Operators

There are a few examples of distribution networks being formed by local councils. These typically

comprise heat networks that are used in conjunction with Combined Heat and Power (CHP) plant,

which supply heating to buildings within a district. A few examples of CHP networks have existed

since the 1980s in the UK, with Southampton providing one of the most well-known example along

with Aston, Birmingham, which is now the largest operating CHP network in the UK (Engie, 2014).

Local planning can be used to steer investments in renewable energy: as an example, Southampton

City Council has preferential planning rights that encourage developments to connect to their

established heating and cooling network.

City Energy Systems

There are international examples of cities taking the role of regulators, providers and promoters of

solar, wind, hydro power, and biomass fuel as locally produced energy sources, including Freiburg,

Germany (Kern & Alber, 2009), and off-grid solutions built in developing nations (Goldthau,

2014). The ultimate goal is to decouple municipal energy systems from centralised infrastructure

and sources and to operate independent networks (Goldthau, 2014). This concept of running an

independent system with no connections to a national grid is termed ‘energy autarky ’ (Mller et

al., 2011). Such systems capitalise on the ability of local governance to create coordinated

strategies and drive investment into low-carbon solutions (Riahi, 2015).

Recent trends in the UK have seen the development of the Core Cities initiative (CORE Cities,

2013). They argue that cities can and do more to solve energy challenges for the nation, however

lack sufficient legislative powers to fully benefit from their proposals.

Energy Neutrality

Energy neutrality refers to “the extent to which a district [. . . ] can supply itself with sustainable

energy generated within the boundaries of that district” (Jablonska et al., 2011). Compared to the

concept of energy autarky, neutrality does not negate being part of a larger network, and therefore
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energy can be transferred in and out of the region providing the annual contributions are balanced.

n∑
j=1

EDemand − ESupply = 0 (2.1)

There are several examples of regions within Europe which have successfully transitioned towards

renewable energy, in particular Siena, Italy (Casprini, 2013) and Sams, Denmark (Waal & Stremke,

2014). While these areas have relatively low population densities, more densely populated regions

within the UK and Europe have defined ambitious targets for an energy transition (CORE Cities,

2013). However, such regions are often unaware whether spatial characteristics of the region are

suitable for their targets, and transition targets are more often set on aspirational targets than

technological feasibility.

2.4.2 Summary

Changes granted through the Localism Act 2011 have provided an opportunity for local authorities

to increase their involvement within the electricity generation sector. The examples shown have

demonstrated a clear interest in the development of renewable energy from local authorities, and

the different levels of development that have been pursued. However, it further highlights the

importance of cities understanding the renewable energy technologies available to them in order

for such approaches to be possible. Section 2.5 therefore provides an overview of key renewable

and low-carbon technologies available.

It is important to note that the motivations for cities to develop energy systems stem from financial,

not environmental, challenges. Within the UK, budgets for councils have been cut by 40% since

2010 and there are increasing pressures to generate income streams.

Cities appear to be in a strong position to drive the development of sustainable energy. However,

Tingey (2017) notes that “larger scale contributions from localised energy are likely to require

clear direction from central governments”. Existing developments are largely optional for political

authorities, and as such, there is much variation in the targets being set and the actions being

taken.
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2.5 Renewable & Low Carbon Technologies

It was shown in Section 2.1 that ambitious renewable energy targets have been set for the UK. This

has resulted in a significant increase in renewable energy within the past decade, surpassing 30GW

of installed capacity in 2016 (DBIES, 2016a). The overall annual electricity generation is shown in

Figure 2.9, which highlights the exponential development of renewable energy technologies.
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Figure 2.9: Annual electricity generation (TWh) from renewable energy technologies
installed within the UK, 1990 to 2016.

This section provides an overview of the key technologies available and methods for renewable and

low-carbon energy generation. In particular, this section is focussed on highlighting the suitability

of technologies to be utilised by local authorities, either within their city limits or surrounding

hinterland.

Installed capacities as of 2015 are in brackets by each title, and were taken from the Digest of

United Kingdom Energy Statistics (DBIES, 2016a).

2.5.1 Types of Technology

Onshore Wind (Existing Capacity = 9188MW)

It has long been noted that the UK has a large available wind resource due to its position and high

amounts of coastline, and it was previously predicted that UK has two thirds of the European Wind

resource (Strachan et al., 2006). The onshore wind industry is one of the most mature renewable

technologies in the UK based on installed capacity.

Whilst progress has been made in developing onshore wind, projects have experienced particular

difficulty in gaining planning permission and projects often invoke strong opposition from local

communities. Projects are often visually intrusive and may have negative ecological impacts if

sited incorrectly.
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Recent amendments to the planning of onshore wind schemes have changed planning approval

process for wind energy projects. Firstly, local councils have become the primary decision-makers

for planning applications for new onshore wind farms (HMCO, 2015). Until 2016, larger onshore

wind energy projects of above 50MW were treated as Nationally Significant Infrastructure Projects

(NSIPs), which meant that development consent of such projects was granted by the Secretary of

State under the Planning Act 2008 (HMSO, 2008). However, legislative changes8 have removed

onshore wind projects over 50MW from the NSIP regime, returning decision-making authority to

the Local Planning Authority (LPA) (Smith, 2016).

With the changes in planning for onshore wind, LPAs must take planning decisions in accordance

with the policies set out in the National Planning Policy Framework. In addition, further

considerations must be made so that “local people have the final say on wind farm applications.”

(HMCO, 2015). Potential areas will need to be allocated clearly in a local or neighbourhood plan,

and maps showing the wind resource as favourable to wind will not be sufficient.

Offshore Wind (Existing Capacity = 5103MW)

There has been a rapid growth in the installed offshore capacity since 2010 as a number of large

offshore projects have been developed. Being within coastal waters, these schemes have been

controlled through the Crown Estate, and sites for potential developments have been released

through a number of planning rounds.

Despite their location, offshore projects have still faced issues in achieving planning consent and

encountered similar criticisms to onshore projects. For example, the 970MW proposed Nativus Bay

Wind Farm was rejected in 2015, with the primary reason for this being the seascape, landscape

and visual impact (DECC, 2015b).

Solar Photovoltaic (Existing Capacity = 9187 MW)

Solar PV systems are generally categorised into three types of system: residential rooftops,

commercial rooftop, and ground mounted utility scale. Within the UK, the typical residential

system is 4kW while the largest utility sized plant installed has been 69.8MW (as of November

2017).9

Driven by advances in technology and increases in manufacturing scale, the price of solar PV has

experienced a fivefold decrease in price since 2010 (DECC, 2015b). Installed capacity surpassed

onshore wind in 2016, making it the largest installed renewable in the UK. However, with a load

factor of 10-12%, compared to a typical value of 30% for onshore wind, means that the annual

generation of solar remains lower than onshore wind.

8Specifically, the Energy Act 2016 together with the Infrastructure Planning (Onshore Wind Generating Stations)
Order 2016.

9Constructed in 2015, MOD Lyneham is the largest plant (DECC, 2016c)
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Hydropower (Existing Capacity = 1477MW)

Large hydropower is the most established renewable energy technology and was largely developed

in the 1950s and 1960s in the UK (DECC, 2016c). Future opportunities are limited due to the site

specific limited sites available, and as such there are few opportunities to expand the technology.

Small Hydro (Existing Capacity = 282MW)

Small hydro is generally classed as projects smaller than 10MW (DECC, 2013). These sites will

typically operate as run-of-river devices, with no large reservoir being formed. Similar to large-scale

hydro, the requirements for small-scale hydro are largely site specific and therefore only present

limited opportunities for development.

Wave and Tidal (Existing Capacity = 9MW)

Wave and tidal devices extract energy from the ocean. Despite early interest in marine energy

from ETSU, the technology was largely abandoned due to the prohibitive cost of the technology.

However, there have been recent developments of interest for tidal sources in the UK, with a number

of example projects being developed in in Scotland, Cornwall and the Isle of Wight. In addition,

there are considerations of tidal lagoons and barrages within the Severn Estuary. However, it is not

expected for these technologies to be deployed at a larger scale until at least 2030 (DECC, 2013).

Landfill Gas (Existing Capacity = 1061MW)

The use of landfill methane gas for power generation began in 1985, and was quickly increased in

the 1990s as a consequence of the NFFO (Brown & Maunder, 1994). The gas is generated from

the decomposition of organic material in the waste stream.

Future opportunities for the expansion of natural landfill gas are limited, as the European Waste

Directive (European Commission, 2008) has mandated a reduction in the amount of organic waste

disposed of at landfill. Consequentially, the amount of landfill gas production is expected to

decrease, and therefore this resource will reduce with time.

Biomass (Existing Capacity = 2619MW)

Biomass covers a diverse range of fuel sources and technologies. In summary, it utilises the

combustion of various organic materials to produce electricity or heat. Most biomass in the UK is

currently used for large-scale power production in traditional power stations such as Drax, which

is located away from city centres. This resource, however, is largely imported from overseas, and

there are concerns surrounding the long-term sustainability of such resources. However, there is
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growing interest in the use of biomass for combined heat and power (CHP) which can be used

within urban regions.

Energy from Waste (Existing Capacity = 925MW)

Energy from Waste (EfW) involves the combustion of municipal and industrial waste to produce

electricity and heat. It has become a more popular option in recent years as landfill capacity has

reduced and limits have been imposed on the amount of waste generated, and it can be seen that

there has been a large increase in installed capacity since 2010.

While EfW is considered a low-carbon technology, there are concerns about the use of waste as

a source of fuel. In particular, the technology relies on combustible material for operation, and

recyclable materials such as cardboard and plastic both have high calorific values. There has

been evidence to suggest that EfW technologies can therefore discourage the pursuit of increased

recycling rates with local authorities (DECC, 2013).

2.5.2 Renewable Energy Planning Scale

Within the context of the thesis, the various technologies have different scales at which planning

is typically led, as highlighted within Figure 2.10. Many technologies are out of the scope of

local decision-makers, including offshore wind and tidal projects, which are coordinated by national

planning decisions. On the other hand, technologies including Solar PV and onshore wind are

predominantly planned at a local level. These issues are central to the research theme, and are

expanded upon within the summary of the chapter.
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Figure 2.10: A comparison of energy technologies and the spatial scale at which
planning is influenced.
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2.6 Spatial Renewable Energy Capacity Assessments

As part of the historical development of energy systems presented in Section 2.3, there has been

repeated interested from national and regional government to assess the potential of renewable

energy technologies. This section provides a brief overview of these studies and explains some of

the key limitations of the approaches used.

2.6.1 1970s: ETSU Research

Throughout the 1970s, a number of renewable energy potential studies were conducted within the

UK (ETSU & AEAT, 2001). Such studies largely focussed on the physical scale of the resource,

and did not quantify what could feasibly be utilised. However, by the 1980s there was increased

assessment of the economic potential of technologies, with onshore wind and tidal energy placed

as the most promising technologies (Buckley-Golder et al., 1984).

2.6.2 2001: Regional Capacity Assessments

Interest in regional energy assessments increased in the early 2000s, as renewable energy

development strategies were included within the spatial strategies for UK RDAs. These reports

were the first large scale assessments of renewable energy of the UK, and utilised Geographical

Information Systems (GIS) to assess the potential for renewable energy. However, there was no

fixed definition of how the assessment should be conducted, and more importantly no guidance

about the level of renewable energy which each region must aim to produce. As a result, there

were large variations in targets that were set for the regions, resulting in large variations between

the outputs of these studies. As an example, it was seen that only four of the thirteen regions

studied set any renewable energy target, and these targets varied between 5 and 15% (OXERA,

2002).

2.6.3 2010: Regional Capacity Assessments

To address the concerns raised within previous studies, the Department of Energy and Climate

Change (DECC) commissioned a methodology to consistently assess potential renewable energy

capacity across the UK (SQW Energy & Land Use Consultants, 2010). The methodology outlined

the following stages, which aimed to determine renewable energy targets for cities and regions:

1. Naturally Available Resource: quantify the naturally available renewable energy resource.

2. Technically accessible resource: estimate how much of the natural resource can be

harnessed using commercialised technology.

3. Physical constraints of high priority: explore the physical barriers to deployment such as

areas where renewables schemes cannot practically be built.
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4. Planning and regulatory constraints: apply a set of constraints relevant to each renewable

technology that reflects the current planning and regulatory framework, such as excluding

from the assessment areas and resources that cannot be developed.

5. Economically viable potential: consider the cost of technology, energy commodity prices

and cost of capital.

6. Deployment constraints: identify supply chain constraints e.g. maturity and capacity of the

supply chain to deliver the required renewable fuel or technology and to deploy the technology.

7. Regional ambition target setting: set the level of renewables to be targeted within the

region based on political and legislative drivers.

Stages 1 to 4 of the methodology was applied to each region to reassess the renewable energy targets

for each region, with no specific guidance provided for Stages 5 to 7. Despite the establishment

of a consistent methodology, there were still difficulties in producing comparable analysis across all

the regions. Limited data availability in several regions meant that alternative methodologies were

occasionally adopted to derive results (AECOM, 2011).

Additional concerns were raised about the underlying assumptions within the analysis. A review of

the regional studies reflected views that the analysis significantly overestimated both onshore wind

and micro-generation capacity, and felt the analysis was too simplistic to fully model the challenges

in implementing these technologies (Stoddart & Turley, 2012). In particular, it was noted that the

methodology was oversimplified in its approach to the challenges of planning.

As a final observation, the studies assumed that there is an equal split of the decarbonisation

targets of 80% regardless of the potential for renewable energy exploitation in the region. Clearly,

in the urban areas such as London, the scope for renewables is reduced, whilst rural regions can

meet the required levels relatively easily (Oudes & Stremke, 2018). Such spatial dependencies of

renewable energy targets are discussed further within the Literature Review.

2.6.4 2014 onwards: Local Enterprise Partnerships

The abolition of RDAs has led to a restructuring of the renewable energy planning goals, as regional

target setting is no longer used to drive forward planning. While the administrative boundaries have

been removed, the challenges of implementing national targets at a local level still remain, and local

authorities are starting to investigate their potential role in the development of renewable energy.

To this effect, there been interest in assessing renewable energy potential within Local Enterprise

Partnership (LEP) regions. Two studies have been identified that utilise similar approaches to the

2010 DECC methodology, but are partially adapted to reflect the local challenges, being conducted

for the Solent (Arup, 2014) and Liverpool LEPs (LEP Co., 2017).

A limitation of the new LEP-led approach is that as voluntary organisations, there is no legislative

requirement for energy strategies to be formulated. As a result, there has been inconsistent coverage

of such studies, and such studies lack any overall coordination which was present previously. In

addition, LEP regions can overlap, and therefore the same resource is possible to count within two

separate estimates.
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2.6.5 Summary

While the DECC low-carbon assessment methodology provides a useful framework to assess

renewable technologies, there are limitations in the suitability of the result. A major barrier in

these studies has been in understanding the impact of regulatory and planning influences. This

issue of model validation will be explored further within the literature review to form a greater

understanding of the physical and regulatory constraints.

In addition, the studies have been conducted at a predetermined planning scale, and that a strong

methodological nationalism is exhibited (Cowell et al., 2017). As such, there spatial aspects are

often not fully considered, such as proximity in actor networks or any kind of sub-national variations

(Spath & Rohracher, 2012).
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2.7 Energy Transition Challenges

It was outlined within the historical development that the traditional energy system is modelled

around large-scale power plant operating within an interconnected network (Hughes, 1983). Such

an approach has enabled economies of scale and lower reserve capacity to be achieved. However,

the recent developments in renewable energy capacity are beginning to challenge these operating

principles. This section therefore explains the key challenges relating to the development of

renewable energy, with focus on spatially dependent issues.

2.7.1 Changes in Grid Composition

Current legislation, energy policy and economic constraints have made it increasingly difficult for

large-scale traditional power stations to operate. The European Large Combustion Plant

Directive (European Parliament, 2001) has set strict emission standards on large thermal plant

which has resulted in many closures, with many coal and oil-fired power stations no longer being

able to operate economically.10 The closure of these very large power systems is contrasted with

the deployment of small-scale generation throughout the UK. The downward shift in the size of

generation and the tendency to decentralise is leading to the establishment of more distributed

generation.

2.7.2 Separation of Supply and Demand

Renewable energy policy has largely been driven at a national level, and, as a result, projects

have been constructed where the resource is best nationally. For example, it is noted by Wilson

(2012) that windy sites “do not generally coincide with the area of maximum industrial or domestic

demand for electricity. Indeed they tend to lie in the more remote areas of natural beauty.”. This

is demonstrated by Figure 2.11, which highlights that spatial patterns are clearly visible, with wind

energy projects largely built in Scotland and Wales, solar installations largely located in the South

West.

The geographical mismatch between supply and demand requires transmission networks to help

transfer electricity between these regions. Such transmission has resulted in capacity constraints in

electricity transmission network, with projects in the South West being delayed by up to 6 years as

additional capacity is developed (Western Power Distribution, 2015). Such upgrades are not only

expensive, but have delayed the progress of renewable energy development within parts of the UK.

Temporal aspects are also a key consideration of renewable energy, as renewable technologies are

largely intermittent. There is a requirement to develop storage technologies to help balance supply

and demand of technologies. However, this project focusses on spatial imbalance, not temporal

imbalance.

10Some notable examples include Longannet, Didcot and Fawley Power Stations (Scottish Power, 2015).
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2.7.3 Planning Barriers

It was noted within the review of the government planning studies that existing renewable energy

methodologies were viewed to overestimate the capacities of renewables, and a large problem was

the inability to account for challenges in planning (Stoddart & Turley, 2012). These concerns can

be further supported by the low acceptance rates of wind energy projects within the UK, although

technologies face differing levels of acceptance, as shown in Figure 2.12. The most contested

project type is onshore wind, with over 50% of projects being rejected planning permission (DECC,

2016c). Such rejection rates suggest that models are failing to accurately account for all the issues

surrounding the development of onshore wind energy, and therefore do not provide a suitable tool

for identifying suitable wind energy sites.

2.7.4 Spatial Scale of Planning

A persistent theme in the analysis of environmental governance is that there is a mismatch between

the scale of a problem and the institutional arrangements (Cowell et al., 2017). Analysis conducted

at too small or big scale can be accused of being ‘too localized’ and ‘too centralized’ respectively.

Whilst there are concerns that existing planning is being conducted at too large of scale, it is

also suggested that cities are too local of a resolution for action to be effectively driven. There is

evidence that cities alone are too small scale to be able to deliver change.



36 Chapter 2 Research Context

Solar Photovoltaics Wind Onshore

Figure 2.11: The location of installed PV and onshore wind sites within the UK as of
May 2016. Only sites greater than 1MW are displayed. Data source: Renewable Energy

Planning Database (DECC, 2016c).
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Figure 2.12: Project type and the proportion of projects that receive planning
permission.
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2.8 Conclusion

The chapter has aimed to outline the background motivation for the thesis, and position the work

within the broader political and social context. This has focussed on the UK’s commitment to

reduce GHG emissions, and the required development of renewable and low-carbon technologies to

meet these targets.

The issue of spatial scale has become increasingly important within recent developments in the UK

energy sector. Whilst the traditional development of energy systems has been led at a national

and regional level, there has been increasing shift in decision-making required for renewable energy

technologies to a local level. There has been little questioning of these geographical imaginations

which underpin political authority (Bridge et al., 2013), and as such there is a limited understanding

as to whether the existing arrangement is most suitable for the transition to renewable energy

technologies.

The historical context of the UK energy system was outlined in Section 2.3. It was shown that the

territorialisation within the UK energy system have constantly evolved throughout its history, and

that such changes within these spatial imaginations for planning have been shaped by both political

and technical challenges. With changes in governmental powers in 2011 through the Localism Act,

there has been a surge in interest from local authorities to be involved within the local energy

sectors. It is argued within literature that such bodies are the ideal scale at which the low-carbon

transition should best be led. However, such involvement is largely motivated by economic benefits

for the councils, and there are no legislative requirements for councils to meet sub-national carbon

targets.

Section 2.5 demonstrated that the UK has a range of renewable energy resources available for

development. However, the suitability of technologies is highly influenced by the scale at which

planning is considered: projects including large hydropower schemes and offshore wind energy

are typically planned nationally, whilst onshore wind and solar projects have a much greater local

perspective. It is therefore crucial that the scale of energy planning is integrated within the resource

assessment of technologies when identifying potential locations for development.

There has been a high level of interest within government to assess the renewable energy potential

for a region. Whilst the DECC methodology was developed in 2010, it was commented that these

approaches grossly overestimated the level of renewable energy which could be installed within a

region (Stoddart & Turley, 2012). Receiving planning permission is a major limitation within such

studies, and over 50% of onshore wind energy projects have been rejected planning permission,

highlighting a potential gap between existing modelling approaches in determining suitable sites.

2.8.1 Refinement of Study Scope

Within the context of scale, here has been a growing emphasis on cities as a driver for low carbon

energy development, with calls for greater autonomy to be provided to cities. It is argued that such
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control would empower cities and enable them to drive the radical change required to transition

to a low-carbon future, and that a decentralised planning approach is more suitable for renewable

energy resources. However, there are concerns that cities have a limited resource availability for

renewable sources, and there is a lack of understanding within current policy of the optimal scale

at which energy should be planned.

While it was highlighted in Section 2.5 that there are a range of renewable energy technologies

for development, it was decided that only a single technology should be selected for development

in the scope for this study. Such a narrowing of scope was preferred as it would allow for a more

detailed assessment to be made, rather than the more general “all-technology” approaches which

are commonly used within governmental studies presented within this chapter.

Based on the recent growth of interest from city-regions to lead sustainable development and low-

carbon energy, it was decided to explore opportunities that may be developable by a local authority

or region. For the following reasons, it was decided that that onshore wind energy should be

selected for the study:

• Onshore wind is an established technology, with the lowest Levelised Cost of Energy (LCOE)

when compared with competing technologies (UNEP, 2016).

• Changes in planning for onshore wind have transferred greater responsibility to the local

authorities granting greater powers to local bodies to influence development (Smith, 2016).

• As will be discussed further within the Literature Review, a number of research gaps had

been identified within existing methodologies to examine the regional potential for onshore

wind energy.

• Onshore wind energy provide a large database of existing projects. As presented in Chapter

6, there have been over 2000 wind energy projects proposed within the United Kingdom.

Regarding other technologies, the following reasons were suggested to exclude the technologies

within this project:

• Solar: there are issues surrounding local grid capacity caused by the load matching of the

technology. Both daily and seasonal spikes fit poorly to existing load profiles, and therefore

there are limitations to the wide scale development of such technologies.

• Offshore Wind: although projected to play a major role within the UK energy system, the

development of such projects is not under the control of councils or regions.

• Biomass: this technology requires dedicated land for use of growing crops, which creates

major land use issues and competition with existing agricultural practises.

• Small Hydro: this technology is highly site specific, which limits the development

opportunities across the country.

• Large Hydro: the scale of investment required for such projects is beyond the scope of a

local authority, and are typically led at a national level. Further to this, there are limited

opportunties for further expansion of the resource.



Chapter 2 Research Context 39

These conclusions do not intend to suggest that these other technologies are not suitable for future

research. The purpose of defining a scope of select technologies was to help define a narrower and

more focussed approach for this thesis. As will be discussed further in the future works, there are

opportunities to integrate other renewable energy technologies into the methodologies proposed

within this thesis.

Chapter Summary

• Ambitious emission reduction targets have been set for the UK, yet there is evidence

insufficient progress is being made.

• Energy systems are intrinsically spatial issues, yet there has been limited assessment of

the geographical underpinnings of such systems.

• Changes to renewable energy is challenging the spatial planning scale of energy planning,

with a shift to decentralised planning.

• Historically, local authorities played a key part in the development of electricity networks.

However, the influence was reduced over two centuries of policy and planning changes.

• Local authorities are emerging as a key actor within energy planning and are leading a

number of initiatives to develop local energy sources.

• There has been consistent interest from governments to assess the renewable energy

potentials, with the last methodology developed in 2010.

• The UK has a wide range of suitable renewable energy resources available for development

including wind, solar and biomass.

• Onshore wind energy was selected as the technology to be studied as a case study for

development, due to its low cost, potential for further development and the availability

of data for modelling.





Chapter 3

Technical Background of Onshore

Wind Assessment

Chapter 2 highlighted the development of renewable energy and positioned the work within the

broader social and political context. It was shown that national scale renewable energy planning in

the UK is creating many challenges in renewable energy development, and demonstrated limited

understanding of the appropriate planning scale for renewable energy development. Much of the

current planning process does not reflect the emergence of cities or regions as the new scale of

economic power, or does not consider whether planning at this scale is even suitable for leading

renewable energy development.

In addition, it was shown that there has been interest in mapping renewable energy potential for

regions, with several methodologies developed to assist regions in establishing targets (SQW Energy

& Land Use Consultants, 2010). However, it is argued that these existing governmental renewable

energy analyses appears to overestimate potential capacity, particularly due to the difficulties in

modelling the impacts of planning constraints on developments.

Chapter 3 provides the technical background of the research area to help frame the academic

literature presented within the following chapter. The aim is broken into the following objectives:

• to explain the development of geospatial modelling systems and their use within spatial

planning.

• to detail the parameters typically used in assessing wind energy site suitability.

• to detail the various assessment techniques which can be used in identifying suitable sites for

wind development.

• to reflect upon the presented techniques and define the scope for the literature review.

41
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3.1 Geospatial Modelling and Planning

Geographical Information Systems (GIS) are defined as “tools which are designed to capture, store,

manipulate, analyse, manage and present spatial or geographical data” (Malczewski, 2004, p. 4).

Development in GIS systems has grown from its infancy in the 1960s to forming an integral part

of spatial planning, and the technology has wide applications within transport, energy and various

land-use problems.1

The spatial distribution of renewable energy supply (RES), the inherent dependence on

site-specific constraints and the overall cost dependence on spatial attributes makes GIS a key

tool in energy management (Petit, 1995). A key advancement in GIS modelling was the

introduction of cartographic modelling and map algebra techniques into computer-assisted

mapping (Malczewski, 2004). Central to this approach was the use of overlay analysis, whereby a

new layer (output layer) is produced as a function of two or more input layers.

One of the most useful applications of GIS modelling for planning and management is to map

and analyse suitable land-use. Land-use suitability analysis aims to identify the most appropriate

spatial pattern for future land use, based on specific requirements, preferences or predictors of some

activity (Hopkins, 1977). These will be explained in more detail within Section 3.3.

There has been a changing perspective of GIS within planning decisions since the early development

in the 1960s, which saw the planning paradigm focus on applied data science (Malczewski, 2004).

This approach uses the underlying assumption of a direct relationship between the data processing

capability and information availability, and the quality of planning on the other: the better the data

processing capabilities, the better the quality of planning.

The 1980s saw an increasing disappointment in the applied data science model of planning, as it

was argued that scientific approaches failed to address the relationship between planning and the

society being planned (Malczewski, 2004). This disillusionment led to the adoption of a strong

political perspective on planning, whereby it was recognised that planning involves socio-political

systems composed of interest groups with conflicting values and preferences (Friend, 1997). By

viewing planning in this way, the key underlying concepts became public participation,

negotiation, compromise, redistribution, consensus building and conflict management and

resolution (Malczewski, 2004).

The change in understanding of and approach to planning also altered the use of GIS models, and

empirical studies revealed that planning is more than the collection and provision of information that

can improve the policy-making process (Harris, 1989). GIS planning moved from being a closed

black box, to becoming a more communicative and participatory tool in the planning process.

While some elements of the planning process are well defined, there are significant components of

subjective knowledge, common wisdom and myths within the process. The concept of combining

these objective and subjective elements in a computer-based system lies at the heart of a Spatial

1For a detailed account of the historical development in GIS, see Malczewski (Malczewski, 2004)



Chapter 3 Technical Background of Onshore Wind Assessment 43

Decision Support System (SDSS). These systems is designed specifically to tackle the issue of semi-

structured problems, and combines judgement and computer-based programs to aid the decision-

making process (Malczewski, 2004).

Spatial decision-making forms two key two elements: an action (what to do?) and location (where

to do it?). A Spatial Decision Support System (SDSS) is based on the fundamental analytical

functions of GIS; attribute or spatial queries, proximity, buffer analysis, neighbourhood analysis,

network analysis and spatial modelling. Various combinations of these are used to analyse the

geographical data to help identify the most suitable sites for development (Malczewski, 2004).

There are three stages to the decision-making process applied within the context of a SDSS (Simon,

1979):

1. Intelligence: this phase consists of finding, identifying, and formulating the problem or

situation that calls for a decision. This has been called deciding what to decide, and selects

the evaluation criteria by which the options will be assessed.

2. Design: this phase normally involves GIS analysis to develop a solution set of spatial decision

alternatives. The integration of decision analytical techniques is critical for supporting this

phase (Ascough II, J. C.; Rector, H. D.; Hoag, 2002).

3. Choice: finally, a particular set of alternatives is selected from those available. The end

product of this phase is a decision that is suggested to be carried out.

Further detail of these concepts is provided in Section 3.4.
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3.2 Wind Energy Geospatial Siting Parameters

A wide range of environmental, technical and social parameters influence the acceptability of a site

for onshore wind energy development. This section focuses on the key parameters which are most

regularly used within studies, and primarily focusses on those which have been included within the

government renewable energy assessments described in Section 2.6. A more detailed review of

parameters is also included within the Literature Review to identify those less frequently used.

3.2.1 Wind Resource

The availability of a sufficient wind resource is a key parameter for a wind turbine to be economically

viable. Wind Speeds are affected by the ground roughness and obstructions including buildings

and trees, all of which can adversely impact wind speed. The higher above ground a turbine is

positioned, the higher the average wind speed it will receive. As wind speeds are rarely measured

at the height of the proposed turbine, the wind profile power law can be used to calculate the wind

speed at for the turbine against a reference point, and is denoted as:

v = vr

(
z

zr

)α
(3.1)

where v is the wind speed at height z, and vr is the known wind speed at a reference height zr.

The exponent α is an empirically derived coefficient that varies dependent on the stability of the

atmosphere, and is typically 1/7 used within wind resource assessments. An example wind speed

profile plot is shown in Figure 3.1a, as calculated for an estimated wind speed plot of 4ms−1 at 10

metres above ground.

The Turbine power is a function of the wind speed, and can be calculated as:

P = 1
2ρAv

3CP (3.2)

where P is the power output in Watts, ρ is the density of air, A is the swept area of the wind

turbine, v is the velocity of the wind, and CP is the power coefficient.2 As can be seen by the

equation, there is a cubic relationship between wind speed and power, and consequentially even a

small change in wind speed has a significant impact on the potential power generation.

Whilst wind power increases cubically, turbines will have a maximum rated power and will be

designed to operate at this power across a range of wind speeds. Beyond a certain speed, a turbine

will be designed to shut off to prevent damage. As a result, there is a relatively narrow band of

wind speeds where they operate at full capacity, with the typical output from a turbine shown in

Figure 3.1b.

When siting a wind turbine, it is more important to understand the electricity generation potential

for a turbine across a period of time, most typically expressed annually. As wind speed data is

2This value varies for each turbine, but reaches a maximum value of 16/27 (59.3%) and is known as Betz Limit.
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usually recorded as a sample of the wind speed or an average speed over some time period, it

must be converted to a time-series wind speed. The Wiebull distribution is most frequently used

to transform wind speed data to calculate annualised electricity generation estimates (Seguro &

Lambert, 2000). The statistical tool provides an estimate of how often winds of different speeds

will be seen at a location with a certain average wind speed, and can be expressed as:

f(x) = α

β

(
v

α

)α−1
e

(
−
(
v

β

)α)
(3.3)

where α and β are the shape and scale factors, and v is the average wind speed. For onshore wind

assessments, these factors are typically specified as 2. Figure 3.1c provides an example plot for

a 5ms−1 wind speed, which has historically been used as the lowest acceptable wind speed for a

wind turbine to be economically viable within the UK (SQW Energy, 2010).

Finally, the electricity generation (GWh) over a period of time can be expressed as:

E = T

∫ vin

vout
f(v)p(v) (3.4)

where f(v) is the probabilistic density function of the wind speed v, p(v) is the power curve of the

turbine and T is the production time period. Electricity generation starts at the turbine’s cut-in

wind speed vin and stops at cut-out wind speed vout.

3.2.2 Turbine Size

As shown in Equation 3.2, the swept area A of the turbine influences the electricity generation

potential. Turbine studies will typically assume a standard wind turbine size dependent on the

technology available at the time of the study. There has been the general progression in turbine

size, and technologically feasible turbines can reach 10MW, although such turbines are typically

only used in offshore projects. Where it has been stated, studies have typically utilised turbines

between 1 or 2MW (SQW Energy, 2010; Watson & Hudson, 2015; Yue & Wang, 2006). To verify

the choice of this value, the general increase in turbine size with time was plotted in Figure 3.1d,

which shows the largest onshore turbine constructed in the UK per calendar year along with the

annual average. While the maximum size turbine reached 3.5MW in 2015, the average size has

remained around 2MW since 2006. Such a 2MW turbine will typically have a blade size of 50 to

60 metres, with a tower height of between 80 and 100 metres (Vestas, 2017).

3.2.3 Turbine Development Density

Turbines require a minimum spacing distance to prevent interference with each other, which can

reduce operational efficiency (Newman, 1977). Theoretical models have typically operated on a

minimum spacing of seven times the rotor diameter for turbines within a hypothetical “infinite”

wind-farm (Meyers & Meneveau, 2012), which equates to around 750 metres for a typical 2MW

turbine. In reality, models have assumed that turbines will be installed in smaller pockets with less
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risk of interaction, and therefore spacing of 500m or a density of 4 turbines per kilometre squared

has been more commonly used (SQW Energy, 2010).

3.2.4 Social Geographic Features

A range of social geographic features are typically used with studies to identify suitable sites for

onshore wind. These are explained as follows:

• Urban Areas: A particularly important aspect is the interaction with urban areas, as the

potential issues arising from noise and visual intrusion make them generally unpopular. Sites

typically aim to be located away from urban areas, with many studies being based on a

minimum of 500 metres separation (Baban & Parry, 2001; Miller & Li, 2014; Watson &

Hudson, 2015).

• Transmission Network: Proximity to the electricity transmission network is also seen as

an important parameter (Baban & Parry, 2001). Being close to a transmission network can

reduce the need to construct additional power lines, which causes both considerable added

expense and increased complexity in planning.

• Site Access: Site access is required for both the construction and ongoing maintenance of

the turbine, and therefore studies often assess the proximity to the road network. This is

considered an important parameter in locating suitable sites. A minimum buffer distance

must also be applied to roads to provide a topple distance of their tip-height plus 50 meters

(DFT, 2013).

• Slope and Gradient The gradient and elevation of the site is used as an important parameter

for site selection (Baban & Parry, 2001; Chaudhry, 2008). Slightly sloped and elevated sites

typically have improved wind speeds as they experience less impact from ground cover, while

overly steep sites can become inaccessible for construction.

• Airports: Wind turbines have the potential to impact the operation of airports, both from the

physical obstacle formed and the interference with radar stations (Civil Aviation Authority,

2016). As a result, airport safeguarding rules within the UK state that any wind energy

project within 30km of an airport must demonstrate no potential for interference with the

airport (DFT, 2002).

3.2.5 Visual Impacts

The visual impact of onshore wind turbines make them particularly sensitive to landscape

designations within the UK (Baban & Parry, 2001; Watson & Hudson, 2015). Many recognised

landscapes are protected within the UK, including 15 National Parks and 46 Areas of Outstanding

Natural Beauty (AONBs) (Natural England, 2016a). An extensive list is provided within Section

7 of the report, as the designations are dependent on the study region.
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3.2.6 Ecological Impacts

Wind turbines can have impacts on living organisms such as birds and sensitive natural environments

as follows:

• Bird and Bat Sensitivity: Wind turbines can have a negative impact on wildlife, providing

a collision risk to birds and bats, and a disturbance of habitats (Drewitt & Langston, 2006).

As a result, planning guidance requires that the potential impact of turbines against birds

is assessed. Bird sensitivity is often required for the detailed planning of potential sites, but

regional assessments often utilise a growing number of bird sensitivity maps which highlight

potentially unsuitable regions for development (Pearce-Higgins & Green, 2014).

• International Statutory Sites: Where wind farms are proposed, their development should

not cause adverse effects on the integrity of statutory international sites. Within the UK,

there are a range of international statutory conservation designations which can impact the

location of wind energy projects.

• National Statutory Sites: Along with the internationally specified protected areas, there

are a range of national designations specified by the UK government which are designed to

protect sensitive areas.

Specific details of the International and National Statutory sites are provided within the Data

Collection in Chapter 7.
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3.3 GIS Assessment Methods

Section 3.2 highlighted the range of parameters extensively used within GIS modelling of onshore

wind energy. This section summarises the main types of GIS methods used within SDSSs for

onshore wind assessment, before highlighting their suitability for this project.

Table 3.1 provides an overview of the methods covered within this section. A few specific examples

are provided of studies which utilise each method within this section. However, these are more

fully expanded within a detailed review of studies in Section 4.2.

Table 3.1: A summary of onshore wind GIS assessment techniques.

Method Assessment Result Applicability

Multi-criteria Decision
Analysis

Suitability Site Identification

Boolean Accept / Reject Target Setting
Viewshed Analysis Visibility Impact of Turbine Visibility Impact

3.3.1 Boolean Overlay

The Boolean overlay method assesses site suitability using a set list of criteria and applying non-

compensatory combination rules to these values (Malczewski, 2006a). Suitable sites are identified

if they meet the condition criteria specified.3 Therefore, if there are N criteria, and a minimum

value of X is required, then the site suitability is calculated as:

Site Suitability =

1, if (Maxi > Xi > Mini) for i = 1, 2, 3...N

0, otherwise

This method was applied for the government-led renewable energy studies described in Section 2.6.3

(SQW Energy, 2010). It has also been used in a range of academic studies which are discussed

further within the literature review. However, while such studies are useful for establishing the

maximum potential for a region, they provide limited guidance on which sites are best to be

utilised and therefore have limited applicability to development when applied in isolation.

This Boolean rule method can be combined with other methods to specify regions of exclusion,

before more advanced analysis is conducted on the remaining areas (Van Haaren & Fthenakis,

2011). This will be discussed in detail within Section 4.2.

3These may be minimum wind speeds, maximum site gradient, or a specified buffer distance around sensitive
features such as airports.



50 Chapter 3 Technical Background of Onshore Wind Assessment

3.3.2 Multiple-Criteria Decision Analysis

Multiple-Criteria Decision Analysis (MCDA) methods deal with the process of making decisions

in the presence of multiple objectives (i.e. minimise cost, carbon emissions and social impact)

(Malczewski, 2006b). Options are assessed by comparing the relative score of sites based on a

number of suitability criteria, which can consider economic, technical and political variables as

shown in Figure 3.2. Using these various data layers an overall score is calculated for the site based

on the separate criteria.

Figure 3.2: Geospatial MCDA approach (Rikalovic et al., 2016).

It has been noted that MCDA helps reflect a more realistic model of the challenges in wind

development and assesses the suitability of locations within a given region (Pohekar &

Ramachandran, 2004). More than 30 studies have been identified which use MCDA within the

locating of wind energy projects, as discussed further within the literature review in Chapter 4.

3.3.3 Viewshed Analysis

Predicting whether one point is visible from another (intervisibility analysis) and predicting the

total area that is visible from a single point (viewshed analysis) are standard features within GIS

software (Wheatley, 1995). Viewshed analysis has been used in a variety of applications but has

been particularly useful in assessing the visual impact of wind energy developments (Kidner et al.,

1997; Minelli et al., 2014; Moller, 2006; Rafal Wrozynski et al., 2016).

Whilst viewshed analysis is used for modelling onshore wind, it is most typically used on potential

sites which have gone through an initial screening process and as part of the detailed planning

stage; the analysis requires the exact positioning of turbines to produce accurate results. The

results from the analysis produce the Zone of Theoretical Visibility (ZTV) mapping the area where

a wind farm will theoretically be totally or partially seen. While the method is useful on a site-by-

site assessment, existing literature has focussed largely on one single viewpoint, or at most for a

very small number of observers (Tabik et al., 2012). This limitation is due to the computational

requirements of such analysis, and also the fact that single-point algorithms cannot efficiently be
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scaled to all points. To the author’s best knowledge, there are currently no effective methods for

this to be used across a region.

3.3.4 Suitability of Approaches for Project

This section has presented the three key GIS techniques which have been used with the assessment

of onshore wind site suitability. Each have a range of benefits regarding the results produced,

however they vary in their suitability for regional assessments and potential site identification. As

this study requires the formation of a model to assess the land suitability across a region, and to

identify the most suitable sites for development, MCDA provides the most suitable form of GIS

assessment, and is expanded further within the following Section.
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3.4 GIS Multiple-Criteria Decision Analysis

While an overview of MCDA was provided in Section 3.3, this section expands upon the different

MCDA techniques typically utilised within onshore wind assessments.

3.4.1 MCDA Classifications

Models can be defined according to three parameters as follows:

1. Decision Rules: Multi-objective decision analysis (MODA) versus multi-attribute decision

analysis (MADA);

2. Decision Makers: Individual versus group decision making;

3. Uncertainties: Decisions under certainty (deterministic) versus decisions under uncertainty

(probabilistic and fuzzy).

For the Decision rules, Objectives are the reflection of the desire of decision makers and reflect

the direction on which the decision should be decided (Pedrycz, 2016). Multi objective decision-

making (MODM) is known as the continuous type of MCDA and therefore involve the design of

alternatives that optimise or at least satisfy the objectives set.

Attributes are the characteristics, qualities, or performance characteristics of alternatives (Pedrycz,

2016). Multi attribute decision-making (MADM) is related to making preference decisions (that

is, comparison, choice, prioritisation, and/or ordering) over the available alternatives that are

characterised by multiple, usually conflicting, attributes.

For renewable energy assessments, there is typically a single objective (is the site suitable for

selection) and a range of attributes (resource availability, proximity to features etc.). As a result,

models have typically used MADM techniques for the selection of sites (Malczewski, 2004; Mardani

et al., 2015). The literature therefore focuses on these techniques for further discussion.

For decision makers, if there is a single goal-preference structure, then the problem can be referred

to as a single decision-maker’s problem. This is regardless of the number of individuals actually

involved, and studies are completed from an individual point of view. Alternatively, if the individuals

(interest groups) are characterised by different goal-preference structures, then the problems become

that of group decision-making (Malczewski, 2004).

Finally, if the decision maker has perfect knowledge of the decision environment, then the decision

is made under conditions of certainty. Such analysis is termed deterministic. In many real-world

situations, there are aspects which are unknown or very difficult to predict, and such analysis is

considered as decisions under situations of uncertainty. This uncertainty can further be divided into

two kinds of uncertainty: limited information about the decision situation, or alternatively fuzziness

(imprecision) concerning the description of the semantic meanings of the event, phenomena or

statements themselves. These create probabilistic (stochastic) and fuzzy decision-making problems

depending on respective type of uncertainty involved.
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Hansen (Hansen, 2005) provides the example of wind turbine noise as an example of the

usefulness of fuzziness within the data. It may potentially be clear that a noise of 60 dB or more

is unquestionably annoying and less than 20 dB is not a problem, however there may be no clear

point at which this transition happens. A fuzzy relationship could therefore define the degree of

membership (known as the “possibility”) of a location in the set called “at risk”, with values

greater than 60dB have a value of 1.0 while those lower than 20dB have a membership value of

0.0. Between these two extremes, values would be scaled according to one of many range of

possible membership functions. This process of transforming a binary scale to create a redefined

scale is termed “fuzzification” (Hansen, 2005).

Many analysts choose to model spatial decisions as occurring under a condition of certainty because

of insufficient information (Malczewski, 2004). Consequentially, the majority of GIS-MCDA articles

fall into the deterministic category although in reality they contain aspects of probabilistic and fuzzy

decision-making (Daim et al., 2013; Mardani et al., 2015).

3.4.2 Methods of MCDA

As mentioned in Section 3.3.2, there are a range of MCDA methods which can be applied to

renewable energy modelling. This section the key types of MCDA which have been applied within

literature.4

3.4.2.1 Weighted Sum Method (WSM)

The WSM is the most commonly used method of MCDA, especially in single dimension problems

(i.e. economic, environmental or social criteria). If there are M alternatives and N decision criteria

then the best alternative is the one that satisfies the following expression:

AWSM
i =

n∑
j=1

wjaij for i = 1, 2, 3, ...N (3.5)

where AWSM
i is the WSM score of the best alternative, N is the number of decision criteria,

aij is the actual value of the ith alternative in terms of the jth criterion, and wj is the weight of

importance. The primary reason for the popularity of the weighted summation and related methods

is that the approaches are very easy to implement with the GIS environment using map algebra

operations and cartographic modelling (Malczewski, 2004).

4A range of other methods have been proposed, although they were not considered suitable for the assessment
of onshore wind. For a comprehensive review of the main MCDA methods, the author recommends Pohekar (2004).
These include 1) Ideal/reference point analysis types 2) Linear-integer programming (TOPSIS, MOLA) and 3)
Heuristic search/ evolutionary/ genetic algorithms.
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3.4.2.2 Analytic Hierarchy Process

Analytic Hierarchy Process (AHP) is a method proposed by Saaty (Saaty, 1980), and provides

a mathematically based tool to deal with complex, unstructured and multi-attribute problems.

A relational hierarchy is formed for the criteria, and pairwise comparisons of these are made to

calculate the relative importance of the two parameters being compared. The results from the

pairings can then be used to derive parameter weightings that can be used in a similar fashion to

the WSM outlined previously.

One of the benefits of AHP is that it allows the relative importance for varying parties to be

calculated, and can help gain an understanding of the viewpoints of key actors within the decision-

making process (i.e. developers, planners etc.). However, a drawback is that it can be very time

consuming to implement, and the pairing process is inherently subjective.

3.4.2.3 Outranking Methods

The preference ranking organisation method for enrichment evaluation (PROMETHEE) and the

elimination and choice translating reality (ELECTRE) are both similar methods used to compare

potential options. They perform a pair-wise comparison of alternatives to rank them with respect to

a number of criteria. However, they do not directly specify whether a project should be developed,

but instead highlight which are the best options of the provided alternatives.

Such methods are relatively limited in application for regional assessments, although extensively

used within different forms of land use assessment where only a small number (less than 100) of

specified sites have been provided (Malczewski, 2006b).
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3.5 Conclusion

This chapter aimed to provide the necessary technical context for the research. In Section 3.1, it

was highlighted how GIS modelling approaches have been extensively used within the modelling

of renewable energy technologies. Such tools are highly suitable as they provide a method to

combine the many different information layers that are often required for locating suitable sites

for development. However, spatial problems often comprise a range of objective and subjective

elements, and as a result, there has been increased development in the use of SDSS to counter

these challenges.

Section 3.2 outlined the key environmental and technical parameters which are commonly used

within the decision-making process for onshore wind energy projects. These largely focus on the

technical constraints, including the available wind resource, distance to the electricity transmission

network etc. The broader social issues surrounding the acceptability of sites is expanded upon

within the Literature Review in the following chapter.

Three geospatial modelling techniques to assess onshore wind energy sites were presented in Section

3.3, including Boolean, MCDA, Viewshed analysis or combinations of these. As the emphasis of

this study is to identify regional wind energy capacities, the Boolean and MCDA methods were

selected as the key assessment techniques to be explored further.

Having defined the scope of the approaches to MCDA, Chapter 3.4 expanded upon the techniques of

MCDA. Three methods were presented which can be used to determine the weighting of parameters

within the decision making process, primarily WSM and AHP. These are explained further within

the Literature Review.

Chapter Summary

• GIS developed as a tool to assist spatial planners, and is extensively used within modelling

of renewable energy technologies.

• Spatial decision support systems are used extensively to aid in spatial decisions within

semi-structured problems.

• A range of parameters are typically used within the assessment of onshore wind energy,

including wind speed, proximity to urban areas and protected landscapes.

• Whilst a number of techniques are available within GIS modelling, Boolean and MCDA

methods are primarily used for regional assessment of onshore wind technologies.

• The Weighted Sum Method (WSM) and Analytic Hierarchy Process (AHP) are

commonly used methods for determining the parameter weighting within MCDA.





Chapter 4

Literature Review

Chapters 2 and 3 framed the background information of the research issue, highlighting the relevant

technical framework for the analysis. This chapter builds upon these previous chapters and provides

a review of the academic approaches used to address the issues of renewable energy planning and

scale, with a focus on onshore wind energy. The objectives of the chapter are as follows:

• to synthesise the rationale for the research questions based on the research background

presented.

• to explain the approach used to conduct the literature review, highlighting the scope of

literature included.

• to highlight existing research conducted within wind energy site modelling.

• to identify limitations within onshore wind geospatial modelling techniques.

57
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4.1 Methodology

Research Questions

Two key research areas were raised within Chapter 2. Primarily, there is uncertainty within energy

planning of the spatial scale at which energy should be planned and developed. Whilst cities appear

to be emerging as a dominant power within the UK, there is a limited understanding as to whether

they are in the best position to lead the development of renewable energy technologies.

In addition, there was evidence that existing geospatial modelling approaches grossly overestimate

the potential for renewable energy technologies. There is a clear issue within wind energy modelling,

as over 50% of such projects have been rejected in planning. Based on these concerns, the following

research questions were therefore developed to be explored within the literature review:

1. What methods are used internationally to assess the site suitability of wind energy projects?

2. What factors influence the planning acceptance of wind energy projects?

3. How can model results be checked and validated against existing development patterns?

4. How is spatial planning scale be considered within existing GIS modelling?

These will be expanded upon within each section of the literature review.

Review Approach

Based on the defined questions, the following areas were researched using the listed search terms:

• Onshore wind energy site location methods: “wind resource assessment”, “wind energy

siting”, “wind energy GIS”, “onshore wind GIS”

• Planning Acceptance of Wind Energy: “wind turbine planning acceptance”, “wind energy

planning acceptance”

• Spatial Scale modelling: “energy spatial scale”

The literature review focussed primarily on academic journal publications, identified through Google

Scholar and Science Direct. For onshore wind energy location modelling there has been large

amount of non-academic interest in the area, with a number of government studies conducted as

highlighted in Section 2.6. These studies have not been included within the literature review.

The review has focussed on the most recent published papers in onshore wind as these are more

clearly related to current planning practice. Papers were therefore primarily focussed on since

2014 (the start of the PhD), recording all sources found within this period that were relevant

to the research problem. Papers before this date were also selected, but only those which were

instrumental in the development of knowledge.
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4.2 Onshore Wind Site Location

In total, 23 GIS-MCDA wind energy studies were identified within the scope of the literature

review. An overall summary of these studies is Table 4.1, with each summarised using the following

categories:

• Location: in which Country/Continent was the study conducted

• Scale: the administrative unit covered (Continent, Country, Region/State, County)

• Area: the area (km2) of the study region. Where no value was explicitly stated, an estimate

was calculated.

• Resolution: the cell size of the spatial modelling

• MCDA Method: the decision-making method used, as described in Section 3.4.2.

• Weighting Method: the method used to determine the relative importance of parameters

within the model.

• References: which other GIS-MCDA were directly cited by the study.

Many models at first appeared suitable, however many only dealt with a single aspect of the wind

energy siting issue, primarily economic wind potential. Some recent examples include De Meij et

al. (2016) and Mas’ud et al. (2017). Due to the number of these studies, they were not considered

within the scope of the study, with the focus primarily on understanding how models combined

economic, technical and social parameters within a decision-making framework.

Offshore wind energy GIS studies were initially considered within the scope of the review, due to

similarities between the two technologies and the similarities in aspects of the siting problems.

However, it was deemed that this broad scope provided no additional merit to the literature review,

as there are large differences to the way that social issues are modelled within such studies. In

particular, onshore wind turbines can generally receive greater local opposition due to the perceived

negative visual impacts, and the more localised issues which projects can generate, such as noise

and site access requirements (Toke et al., 2008). Offshore wind studies were therefore excluded

from this review.

This section of the literature review is broken into three parts: firstly, the development of papers is

shown chronologically to highlight the sequential development of the studies, drawing attention to

the main themes of development within the literature. Secondly, a critical review of the literature

is conducted to explain the gaps identified within the literature. Conclusions are finally drawn from

these two sections within the final stage of the work.

4.2.1 Chronological Development of GIS modelling

Voivontas et al. (1998) provides one of the earliest examples of renewable energy site assessment

with a case study applied to Crete. A SDSS was developed to evaluate renewable energy potential

and the financial analysis of investments. A range of digital maps including wind speed, road
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Table 4.1: A summary of GIS-MCDA studies reviewed.

ID Year Author Country Scale Area Res MCDA
Methods

Weighting
Source

References

23 2017 Kazak et al. Poland, Region 4500 - WSM Unspecified -
22 2017 Manomaiphiboon

et al.
Thailand Country 513e3 1000 Boolean Econometric -

21 2017 Baseer et al. Saudi
Arabia

2.2e6 - Boolean,
WSM

AHP 1 3 5 6 7
8 12 14

20 2017 Liu et al. China Country 10e6 1000 Boolean Econometric -
19 2017 Mentis et al. Africa Continent 30e6 5000 Boolean Econometric 10 13 15

18

18 2016 Siyal et al. Sweden Country 447e3 1000 Boolean Econometric 10
17 2016 Sanchez-Lozano et

al.
Spain Region 4456 - Boolean,

WSM
AHP 6,8

16 2016 Herran et al. Global - 10000 Boolean,
WSM

Unspecified -

15 2015 Noorollahi et al. Iran Region 29530 200 Boolean,
WSM

Unspecified 2 6 6 8

14 2015 Atici et al. Turkey Region 2400 2000 Boolean,
ELECTRE

AHP 2 5 7 8

13 2015 Watson and
Hudson

UK Region 17094 90 Boolean,
WSM

Literature 2 3 4 5

12 2014 Miller and Li US Region 20000* 200 Boolean,
WSM

Unspecified 4 5 8

11 2014 Wang et al. Japan Region 13782 100 Boolean Literature 2 7
10 2013 Gass et al. Austria Country 84000 100 Boolean Literature 1 5

9 2013 Neufville Jamaica Country 11000 1000 Boolean,
WSM

AHP 2

8 2011 Van Haaren US State 141300 1000 Boolean,
WSM

Econometric 2 3 5

7 2011 Szkiliarz and Vogt Poland, Country 312679 500 Boolean Econometric -
6 2010 Janke US State 270000 1500 WSM Unspecified 1 2 4 5
5 2010 Aydin et al. Turkey Region 30000 - Boolean OWA 1 2
4 2006 Yue and Wang Taiwan Region 125 - Boolean - -

3 2005 Hansen Denmark Region 600* 250 Boolean Unspecified -
2 2001 Baban and Parry UK County 1600 1000 WSM Unspecified -
1 1998 Voivontas et al. Crete National 8303 2000 Boolean - -

networks, airports were used to assess suitable locations for wind energy installations, with Boolean

restrictions specifying zones of potential development. The LCOE was then calculated at a 4km2

resolution for the suitable sites selected to determine the most economic sites to be developed.

Baban and Parry (2001) provided a key stage in the development of onshore wind assessments. They

conducted the first major analysis within the UK to identify suitable wind energy sites using GIS-

MCDA models, assessing the wind potential for a 40 x 40km region in Lancashire. Criteria for the

model were identified through surveys with various organisations in the UK (60 councils and 4 wind

energy companies), and considered a range of environmental, economic and planning constraints.

A pairwise comparison method was used to assign the relative weighting to the parameters, and

suitability determined using the WSM. The results of the analysis were composed of classes from

0 to 10, where 0 represents ideal locations and 10 represents unsuitable locations.

Hansen (2005) conducted an assessment in Jutland, Denmark, utilising fuzzy variables within their

analysis combined with Boolean exclusion criteria. The result produced site suitability maps scoring
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from 0 to 1 at a cell size of 250 metres. While the author commented that that “weighting the

various layers is perhaps the most critical part in the analysis”, a “common sense” approach was

used to select the variables, with no justification provided within the analysis.

Yue and Wang (2006) assessed wind energy within a region of Taiwan using a similar approach

as adopted by Voinvontas et al (1998). However, the method only used a Boolean approach to

determine whether sites were suitable, and therefore there was limited use as a model to identify

suitable sites against marginal options.

Aydin et al. (2010) assessed the environmental impact of wind turbines within Western Turkey.

The methodology applied fuzzy logic principles to determine suitable sites based on two parameters:

“sufficient potential for wind energy generation” and “satisfaction of most of the environmental

objectives”. MCDA utilised Ordered Weight Averaging (OWA), a method similar to WSM but

used specifically for fuzzy logic models (Yager, 1988).

Janke (2010) conducted GIS analysis of wind and solar farms in Colorado. The analysis used

a combination of Boolean rules to define absolute limits, combined with WSM methods being

used to calculate a site suitability score for the other regions. The research was largely based

on the methodology specified by Baban and Perry (Baban & Parry, 2001). The author provided

no justification for the selection of the weighting parameters for this model, raising questions

surrounding the validity of the model.

Van Haaren (2011) assessed the wind capacity in New York State using a SDSS. Boolean exclusion

parameters were used to identify non-suitable sites, and an economic driven model was used to

determine the economic viability of projects across the region. An interesting comparison was made

between the results from the model against existing wind developments in the state, and the study

noted that there was a good match between the model and actual developments. However, it is

unclear whether the model was only compared once completed, or whether the location of existing

projects was used to “tune” the model within the development.

Szkliniarz and Vogt (2011) conducted an economic assessment of potential wind turbine sites in a

region of Poland. Boolean rules were used to specify exclusion zones, but again the study noted

“there are no specific mandatory recommendations relative to the site assessment for wind farms”.

Compared to other models reviewed in this section, this study had a greater economic emphasis

and aimed to produce greater understanding of expected load curves and power production costs

of turbines within the region.

Gass et al. (2013) provided an economic assessment of onshore wind in Austria. Exclusion criteria

were used to identify potentially developable sites, and then LCOE calculations were used to assess

the economic viability of the sites. In effect, land suitability was based on the economic parameters

(wind speed, proximity to grid) and built upon the analysis methodology outlined by Voivontas et

al. (Voivontas et al., 1998).

Neufville (2013) further developed the use of AHP in their study of site suitability in Trinidad.

Five experts were used to formulate the AHP model, and were from the sectors of 1) academia;

2) land management; 3) urban and regional planning ; 4) sustainable energy and 5) wind farm
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development. Interestingly, the results of the AHP resulted in a strong weighting towards resource

availability and less consideration of the social impact of projects, with wind speed and proximity to

settlements having weightings of 37% and 2% respectively. This highlights a potential limitation of

the AHP ‘expert panel ’, as it does not appear that these members had a socio-political background,

instead largely focusing on the technical challenges of development.

Miller and Li (2014) developed a model to assess development in Northeast Nebraska, USA. The

research follows a broadly similar approach to that of Janke (Janke, 2010), with a two-layer

Boolean/WSM method used to set exclude areas and score the remaining areas. Similar to

several previous studies, no justification or explanation was provided for the selection of the

weighting parameters.

Watson and Hudson (2015) assessed central Southern England for wind and solar energy suitability

using an AHP method. Being the first known literature study to assess wind in the UK since

Baban (2001), the methodology built upon much of the work conducted in the previous study. It is

interesting to note that wind speed had a 55% weighting within the site suitability score, highlighting

that technical challenges were prioritised over visual, ecological and economic constraints.

Atici et al. (2015) proposes a MCDA model applies a novel ELECTRE methodology to rank

potential sites. The first stage is pre-elimination of non-viable sites using Boolean criteria, and

the second stage is evaluation of available sites using ELECTRE. This study is unique in the

reviewed literature in its use of a ranking method of potential sites; however, the model studied a

comparatively small area when compared to similar studies.

Noorollahi et al. (2015) conducted a two-stage wind assessment of Iran using Boolean and WSM

methods. While the model integrated many variables within the exclusion zone stage of the analysis,

the only three used to calculate the WSM were the economic parameters 1) proximity to power

lines; 2) distance to access roads and 3) wind speed. As with many other models, there was no

justification for the use of the weightings within the WSM.

Since 2015, there has been continued global interest in the research problem of locating wind farms.

These studies have largely built upon the approaches built within existing studies but applying the

models new study regions (Baseer et al., 2017; Mentis et al., 2017). In addition, there has been

the continued development of econometric models, with the main parameter for site consideration

of such models being the overall cost of electricity (Liu et al., 2017; Manomaiphiboon et al., 2017;

Mentis et al., 2017; Siyal et al., 2016).

4.2.2 Review of GIS-MCDA Literature

The review highlighted 23 GIS-MCDA studies developed for the assessment of onshore wind site

suitability. The wide range of countries across the globe in which studies have been conducted

demonstrates a clear international interest in the research problem, with Figure 4.1 graphically

highlighting this coverage.
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Figure 4.1: Location of onshore wind energy GIS-MCDA studies referenced within the
literature review.

It is important to acknowledge the country in which the study was conducted. It was observed

that there were differing approaches based around the country in which the study was conducted,

with varying priority for the environmental, social and technical criteria. In particular, European

studies generally placed a greater emphasis on the social aspects of wind farms when compared

to other studies reviewed. It is argued that these differences result from the differing institutional

and regulatory controls that influence wind energy developments within different studies. Similar

parameters were used throughout the studies, and predominantly considered the geospatial siting

criteria outlined in Section 3.2. It was noted that studies in Europe and the US typically considered

more parameters, potentially reflecting the wider availability of open data that is available within

developed nations.

None of the studies reviewed attempted to model demographic or social influences beyond the

use of proximity areas. It is suggested that this omission fails to fully factor in the impact that

social challenges present on the suitability of sites for development. There is evidence to suggest

that socio-demographic issues can influence the chance of wind energy projects achieving planning

approval. In particular, it has been noted within literature that developers were “keen to avoid

relatively privileged communities and target areas where people are thought to less likely put up a

fight” (Horst & Toke, 2010). This issue is discussed further within Section 4.3.

A common aspect between all studies was that a Boolean approach was used to exclude

undevelopable areas, whereby a list of criteria is set which exclude the site from development if

any single criteria is not met. However, the studies have large differences between both the

parameters used and the exclusion distance surrounding each type of land, as demonstrated in

Table 4.2 which highlights some of key studies. It is suggested that such differences stem from

two reasons:

1. Wind energy development is regionally specific. For example, a less populated region

may be able to be more selective in where they install wind turbines, and therefore may

exclude areas closer to urban areas. Studies in the US have placed greater buffers around
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urban areas (1500 metres) (Janke, 2010) than those conducted within the UK (500 metres)

(Baban & Parry, 2001; Watson & Hudson, 2015).

2. There are very few “hard” rules internationally stating where wind turbines can and

cannot be built: as such, models largely rely on the guidance of local specialists to determine

suitable locations. Such experts will have varying experience and knowledge of their local

region.

Table 4.2: Exclusion distances used within key onshore wind energy GIS-MCDA studies
reviewed, highlighting the limits used within Boolean rules.

Economic Planning Ecological

Study Area Wind speed Power grid Roads Forests Airports Urban Lakes Study

UK - - - - - 500 500 (Watson and Hudson, 2015)
UK 5 m/s 10000 10000 500 - 2000 400 (Baban and Parry, 2001)
Turkey 200 W/mˆ2 - - 4500 4500 1500 3750 (Atici et al., 2015)
Denmark 200 W/mˆ2 - - 550 6250 1000 450 (Hansen, 2005)
USA - Cost 5000 - - 2000 3000 (Van Haaren, 2011)

Poland - 200 100 500 3000 500 200 (Sliz-Szkliniarz and Vogt, 2011)
Sweden - 200 200 - 2500 500 100 (Siyal et al., 2015)
* Note: The Units are in meters (m) unless otherwise specified.

For the selection of the best sites within the non-excluded areas, there are predominantly two

approaches which have been applied: 1) Weighted Sum Method and 2) Economic selection. Whilst

the WSM studies combined economic, social, and environmental parameters in an attempt to find

the most suitable sites across multiple factors, the economic models solely based the suitability of

potential sites on the Net Present Value (NPV) of potential investments. It was observed that

economic models typically were applied in regions where there appeared to be less social contention

against projects while European studies typically utilised a WSM method.

As discussed within the technical literature in Section 3.4, the selection of weighting scores for

model parameters is an important consideration within MCDA (Malczewski, 2004). Despite this,

a number of studies provided no justification for the weighting used (Kazak et al., 2017; Miller

& Li, 2014; Noorollahi et al., 2015; Silva Herran et al., 2016). This raises concerns about the

validity/transferability of these studies, as site suitability of models could be highly influenced by

the selection of different parameters.

Many of the MCDA studies placed a very high ranking on the resource availability of the site

(Neufville, 2013; Watson & Hudson, 2015). Such models reflect the priorities of the project

developer, who must seek to maximise the economic returns on a project. However, in countries

such as the UK, the land-use planning consent regime is not concerned with the energy yield of

proposed wind developments (Sturge et al., 2014). Instead, local planning decisions will typically

be made on the assessment of local impact of projects, most notably the visual impacts of projects

and the opposition of local communities (Smith, 2016).

The locations of operational wind turbines were integrated into several studies (Aydin et al.,

2010; Gass et al., 2013; Miller & Li, 2014; Van Haaren & Fthenakis, 2011; Watson & Hudson,

2015). However, these were largely used only as a form of discussion, and the information was
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not directly used to develop the models. This overlooks a valuable contribution that existing sites

could provide in understanding whether there are any spatial development patterns which can be

identified. In particular, Watson (2015) noted “operational wind farms in South Central England

were predominantly located in areas suggested to be of lower suitability”, suggesting that the

model inaccurately assessed site suitability in the region.

Table 4.1 highlighted the interconnection within the existing literature, as denoted by the Reference

column. It can be noted that the early studies established much of the framework which has been

within wind energy studies (Baban & Parry, 2001; Voivontas et al., 1998). Whilst there have been

developments on these methodologies since, the overall approach of recent analysis has largely

been unaltered. Many recent studies are still largely based on the approaches outlined within these

initial studies (Baseer et al., 2017; Watson & Hudson, 2015)

It can be observed within the literature that there is a trend for models to assess increasingly large

areas. It is argued that this reflects the increase in computational power available to a researcher,

and the wider availability of datasets, and a prevailing assumption that “bigger is better”. However,

this potentially overlooks the highly localised issues which can limit the development, and applying

a “one-size-fits-all” approach may not be the most suitable for regions which may have large

diversity.

4.2.3 Critique of GIS-MCDA Literature

The combined Boolean/WSM method is commonly applied within literature for the assessment

of onshore wind turbines, and it is argued that this is a suitable method to assess the suitability

of wind energy sites within the UK. However, there is limited consideration of the assumptions

underlying the model. In particular, there is often a lack of understanding of the weights assigned

to the attributes and the consequent impact on the results. It is noted within the literature that

MCDA is highly sensitive to the weights used within the assessment, and failing to accurately

specify these can create inaccurate models (Malczewski, 2004).

Although AHP has been used within some studies to determine the weighting of parameters, this

approach is still highly subjective and ultimately reflects the views of those who have been selected

to be part of the analysis. From the studies cited, experts and academics were primarily chosen,

with no involvement of local citizens who may be impacted by projects.

A potential gap between modelling approaches and actual development patterns can be highlighted

by the low acceptance rates of wind energy projects within the UK, shown previously within the

background information. It is proposed that this gap between modelling and reality could be

influenced by two factors:

1. Incorrect parameter weightings are being assigned. As seen with previous studies, a

high weighting is often applied to wind resource (Watson & Hudson, 2015). Prioritising the

resource may be leading to the selection of sites which are less socially acceptable.
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2. Influential parameters are not being included within the analysis. Existing studies place

low emphasis on socio-demographic issues, and instead prioritise the technical and economic

parameters. Although the methodologies attempt to model social issues by avoiding sites

near urban areas, literature suggests that there may be more complicated interactions beyond

those of simply spatial proximity (Horst & Toke, 2010). These issues are explored further in

Section 4.3.

GIS Approach

Overall, the approaches adopted by the GIS models reviewed follow the structure of “Forward

Theory” GIS approach, as highlighted in Figure 4.2a. Within this approach, model parameters

are selected, a model created and the suitability of locations for development are predicted. As

previously noted, however, such approaches are highly sensitive to assumptions in defining the

weighting of parameters.

Observations Model Model 
Parameters

Model 
Parameters Model Predicted 

Results(a)

(b)

Figure 4.2: Comparison of Forward and Inverse GIS MCDA model structures.

In situations where there is a large enough sample of similar historical spatial decisions, an “Inverse

theory” approach can be applied to determine subjective valuation of criteria by stakeholders

(Cirucci, 2014). This approach is outlined in Figure 4.2b. Although retrospective techniques have

not been applied to the field of wind energy, they are examples of analysis conducted in public

health studies (Brody et al., 2002; Garcia-Ayllon, 2013; Mohamed et al., 2004; Yamada et al.,

2009) and infrastructure location decision-making (Cirucci et al., 2015; US EPA, 2002). Such an

approach appears suitable for onshore wind energy in the UK, and as of 2017, there are more than

3500 onshore wind turbine applications within the UK which can be used to provide an insight into

the planning outcome of projects.

Combining non-commensurate data

A further challenge arises from the standardisation of non-commensurate datasets within the

MCDA process. As an example, costs can easily be calculated by aggregating the available wind

resource, distance to power grids, etc. However, cost cannot be directly summed with social and

environmental parameters, including the proximity to urban areas and landscape designations.

Standardisation is therefore required to combine the non-commensurate datasets, and different

techniques may lead to different land-use suitability patterns. In addition, there is little theoretical

and empirical justification for transformations methods (Jiang & Eastman, 2000). This is

discussed further within the methodology in Chapter 5.
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Based on the findings of this first stage of the literature review, it was determined that a greater

understanding was required of the parameters which influence the planning acceptance rates of wind

energy projects. The following section therefore explores the wider range of qualitative literature.
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4.3 Social Acceptance Parameters

Section 4.2 presented the development of wind energy site selection studies. These studies have

largely developed using the geospatial parameters outlined within Section 3.3, including wind speed,

distance to urban areas etc. However, literature has suggested that there may be a wider range of

parameters that should be considered, and that the acceptability of wind energy projects is based on

more than just geospatial parameters (Horst & Toke, 2010). To this effect, it has been noted that

public acceptance of wind energy “has gone from a marginal and little studied point of discussion

to be at the forefront of broader debates in the social sciences” (Fournis & Fortin, 2017).

This section of the literature review builds upon the existing geospatial literature MCDA presented,

and identify the broader social, institutional and psycho-social influences which relate to wind

energy planning acceptance. This section is formed of three key parts:

1. Acceptance Parameters for Onshore Wind: identifies parameters that have been

suggested to be connected to the acceptance of wind energy projects.

2. Qualitative Assessments: explores the use of surveys to assess the relationship between

broader social parameters and wind energy projects.

3. Quantitative Analysis of Wind Energy Acceptance Rates: explores the use of statistical

techniques to identify relationships between parameters and planning acceptance rates.

As highlighted in Figure 4.3, the three separate parts of this section form three distinct parts within

the approach. Literature is first reviewed to identify potentially influential parameters. Qualitative

assessments can then be used to form hypotheses, and then the resulting hypotheses can be tested

using quantitative methods. This section is structured thematically around these three key points.

Figure 4.3: Process of identifying key parameters to be used within the analysis.

4.3.1 Scope of Literature Search

Compared to the literature review of GIS-MCDA, which aimed to catalogue all recent developments,

the aim of this section is to capture the main research trends and developments. As such, only the

key research papers are provided within each of the subsections.
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Psycho-social

Visual Impact
Landscape Characteristics
Turbine Colour
Turbine and farm size
Unity of the environment
Wind farm design
Turbine noise
Distance to turbines
Ecological site
characteristics

Familiarity and Onshore
Wind Knowledge
General Attitudes
Perceived Benefits
Socio demographics
Social network influences

Physical and
Environmental

Social and
Institutional

Participatory planning
Public engagement
Justice and faireness
Local ownership
Policy frameworks
Centralisation/
Decentralisation

Figure 4.4: A summary of factors that influence the social acceptance of wind energy
projects. Information adapted from Langer (2016).

For the qualitative approaches, the review primarily focuses on the use of stated-preference surveys.

The review does not seek to explore the exact application of the techniques, but is primarily focussed

on understanding the conclusions drawn from the studies, and the inferred connections between

wind energy planning acceptance and the parameters outlined in Section 4.3.2.

For the review of quantitative literature, the scope primarily focussed on the use of statistical

regression techniques to measure the influential parameters. However, the detailed discussion of

these techniques is not included within this part of the literature.

4.3.2 Acceptance Parameters for Onshore Wind

Before further exploring the issue of social acceptance, it is important to define the concept of

social acceptance. Whilst a number of definitions are generally defined, the definition adopted for

the purpose of this report is:

“a favourable or positive response (including attitude, intention, behaviour and - where

appropriate - use) relating to proposed or in situ technology or social technical system by

members of a given social unit (country or region, community or town and household,

organisation)” (Upham et al., 2015, p. 107).

It is generally supported that geographical variables such as quantity of wind resources are in

themselves insufficient to explain patterns of implementation of wind power (Horst & Toke, 2010;

Langer et al., 2016; Toke et al., 2008). A critical review of the key parameters is provided by Langer

(2016), which examined 146 journal articles relating to public acceptance, perception and attitudes

towards onshore wind turbines. This analysis highlighted the key categories and parameters that

have been connected to the acceptance rates of wind energy projects, as highlighted within Figure

4.4. These sections are expanded upon within the following subsections.
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Physical Characteristics

Visual impact has been considered the main influence on public attitudes towards wind farms, as

“aesthetic perceptions, both positive and negative, are the strongest single influence on public

attitudes” (Wolsink, 2000). The perceived impact on landscape seems to be the crucial factor in

this regard, and opposition to the visual despoliation of valued landscapes has been analysed as

the key motivation to opposition to wind farms (Warren et al., 2005).

A key concept consistently investigated within empirical research is the “proximity hypothesis”,

which states that those living closest to a wind farm will have the most negative perceptions

of it (Devine-Wright, 2005b; Warren et al., 2005). However, attempts to prove this hypothesis

have largely proved unsuccessful, and results have proved conflicting. For example, evidence from

Denmark suggests no link between proximity of residential properties to the nearest turbine and

negative public perceptions, with suggestions that respondents living closest (i.e. within 500 metres)

actually had more positive perceptions in comparison with individuals residing away from turbines

(Krohn & Damborg, 1999). This view was further supported by a study in Cornwall, UK, which

found that local communities with visibility of the turbines were generally more supportive of wind

turbines (Eltham et al., 2008). However, several studies have reported the opposite relationship

(Ladenburg & Dubgaard, 2006; Meyerhoff et al., 2010), with the studies finding that negative

perceptions increased with proximity to wind energy developments.

The wind farm size has also been indicated as a potentially important factor in public acceptance.

In an international comparison of projects within the UK, Denmark, The Netherlands and Ireland,

it was found that there is a systematic preference for smaller groups of turbines over large-scale

installations (Devine-Wright, 2005b).

Psycho-social

It has been argued within literature that psycho-social factors have become crucial dimensions to

explain how local communities interact with, and react to, new wind farm developments (Langer et

al., 2016). The effects of socio-demographic variables on individuals’ views of wind farms have also

been studied within literature (Devine-Wright, 2005b; Warren & McFadyen, 2010). Age, gender,

experience with wind farms, and use of the land and/or beach were found to be slightly correlated

with the attitudes towards wind power in a Danish study dealing with public perceptions of onshore

or offshore wind energy projects (Wustenhagen et al., 2007).

At an individual level, empirical findings suggest that political beliefs are correlated with social

acceptance of different low carbon technologies (Devine-Wright, 2007). This is supported by

surveys that indicated that only 62% of individuals indicating support for the Conservative party

were supportive of new renewable energy developments, compared to 86% and 84% for Labour and

Liberal Democrats respectively (Populus, 2005).
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Social and Institutional

It was highlighted in Section 2.5 that the planning of wind energy projects is controlled by Local

Planning Authorities, who have the right to grant or refuse planning based on their local

considerations. There is also the further complication that LPAs are represented by the political

party in power for that local authority. It is not fully understood how these national party agendas

influence local decision-making, and it has been noted that it is difficult to capture such factors

within a quantitative study (McLaren Loring, 2007). To the authors’ knowledge, no academic

study has assessed whether the acceptance rates of onshore wind energy projects are impacted by

the political mix of the surrounding area, but it seems to be an important consideration to

understand given the vastly different planning rates.

It has been noted previously in this report that the UK has attempted to drive the development

of renewable energy by providing support to the incumbent large-scale electricity generators, with

both the NFFO and RO policies providing support to this group. This has led to a top-down

imposition of projects, with little local involvement. This approach can create strong hostility from

the local communities against the local project, and is suggested to be very unlikely that this is the

best of models to follow (Walker et al., 2007). As noted by Toke (2008):

“The local environmental disadvantages of wind power can lead to a lack of public

acceptance of wind farms. Local ownership of wind turbines (local farmers,

co-operatives or companies) can ensure local acceptance of projects”

In contrast to the UK, other European countries have encouraged greater levels of local

engagement for wind energy projects. Most notably, Germany has over 60% of projects owned by

community groups and local farmers. Three studies were identified which indicate that greater

community involvement increases the success rates of projects, and a greater number of projects

receiving planning permission for development (Eltham et al., 2008; Firestone et al., 2015; Krohn

& Damborg, 1999).

4.3.3 Qualitative Assessment of Wind Energy Acceptance Rates

The literature presented in Section 4.3.2 highlighted that the issues surrounding the suitability

of wind farm projects are far broader than just geospatial parameters. As such, it appears that

existing modelling techniques are excluding key information when considering the suitability of

sites for development. This subsection of the literature review therefore aims to explore the use

of qualitative research methods to assess the influence of parameters on the public perception of

wind energy projects.

This subsection focuses on the use of stated-preference surveys, which have seen increased use

within the modelling of renewable energy technologies and assessing the scale of perceived

impacts of projects (Menegaki, 2012). Such approaches apply a survey-based economic technique

for the valuation of non-market resources, such as environmental preservation or the impact of
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contamination. For example, people receive benefit from a beautiful view of a mountain, and

therefore studies will aim to identify the value attached to the loss of this view.

Development of Literature

Alvarez-Farizo and Hanley (2002) were among the first who used choice experiments to understand

the potential environmental impacts of onshore wind developments in Spain. The study provided

alternative choice models to understand decision preference of respondents according to a number

of criteria (protection of cliffs, habitat and fauna, or Protection of Landscape). It was found

that a greater importance was placed by respondents on protecting habitats and fauna than for

geologically-rare cliffs or protected landscapes. The study concluded that such insights could be

used to minimise the social cost of wind projects.

Groothuis et al. (2008) conducted a survey to understand how personal support for wind turbines

resulted in support for a proposed local project. A willingness to accept framework was used

to measure the compensation required to allow wind turbines to be built within the vicinity of

survey participants. From the survey results, it was suggested that support for wind developments

decreases as both income and age increase. In addition, it found that people with a concern of the

environment are generally more supportive of local projects, contrary to the NIMBY belief that has

been extensively applied within onshore wind developments.

Dimitropolous and Kontoleon (2009) examined the local acceptance of wind farms on the Greek

islands Naxos and Skyros using choice surveys. On Naxos, three wind farms (each with a capacity

of 36MW) were proposed while the analysis of Skyros considered ten sites totalling 333MW. The

choice attributes were 1) number of turbines 2) turbine height 3) conservation status of the

site 4) whether planning will be carried out in cooperation with municipal authorities and local

representatives and 5) the annual subsidy received per household as compensation for the negative

externalities. It was found that respondents valued the conservation status and a cooperative

planning procedure more than the number of turbines or their height.

Krueger (2011) conducted a study in Delaware, US, to assess the social value of visual impacts

from offshore wind projects. A stated preference survey was used to estimate the external costs

of wind by comparing the relative acceptability of alternative proposals. The study highlighted a

clear preference for wind farms to be located far away from the coast (i.e. out of sight), and also

linked a number of demographic variables with the response, including 1) gender and 2) education,

finding that male respondents and postgraduate degree students appeared generally less supportive

than the general population. While the study considered offshore technologies, the findings were

considered to be of relevance for potential onshore developments.

Jones (2011) studied the connection between local demographics and the view on wind energy.

The survey assessed the view of wind development against a range of variables including 1) age;

2) gender ; 3) length of residency in the region; 4) employment status; 5) home-ownership; 6) past

or current affiliation to the energy industry ; and 7) belief in anthropogenic climate change. The
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study concluded that age was as a significant predictor of capacity estimates, such that the older

people were, the fewer turbines they would tend to endorse (Jones et al., 2011).

In addition to the review of literature outlined in Section 4.3.2, Langer et al. (2016) conducted

qualitative analysis in Bavaria to identify potential influences on acceptance rates. A detailed review

of literature and interviews with key stakeholders in wind energy was conducted to identify factors

which appeared to have influenced the outcomes of planning. The authors conclude:

“Looking to the future, there is a need to combine qualitative and quantitative research.

Qualitative research aims to represent different views and opinions as well as to generate

hypotheses. Therefore, in order to enhance knowledge about contradictory influencing

factors qualitative research could uncover which conditions induce acceptance towards

wind energy. In addition, quantitative research approaches on the influencing factors on

acceptance of wind energy would enrich insights by analyzing a representative sample.

(Langer et al., 2016, p. 256)”

4.3.4 Quantitative Analysis of Wind Energy Acceptance Rates

As noted by Langer et al. (2016), there is the need to combine qualitative and quantitative research

to identify which conditions induce acceptance towards wind energy. Whilst qualitative research is

primarily exploratory in nature, quantitative research can be used to quantify the problem by way

of generating numerical data or data that can be transformed into usable statistics.

5 studies were identified which utilised quantitative techniques to assess the social acceptability

of onshore wind energy projects. A summary of these studies is presented in Table 4.3, and is

discussed further within the following subsection.

Several regression techniques were used within the studies, including multiple linear regression,

logistic regression and probit regression. Linear regression models are suitable for assessing the

relationship to continuous outcome variable, while logistic and probit regression are suitable in

cases where there is a binary outcome (i.e. yes/no). There are only minor differences between

logistic and probit regression, specifically how the distribution of errors is assumed. However

results broadly tend to be similar.

Table 4.3: A summary of the quantitative studies completed assessing wind energy
acceptance rates reviewed within the literature.

ID Study Country Statistical.Method Scope

4 (Van Rensburg et al., 2015) Ireland Probit Regression Technological
Institutional

3 (Van der Horst and Toke, 2010) Scotland Univariate Regression Socio demographic
2 (Haggett and Toke, 2008) England and Wales Logistic Regression Logistic Regression;

Discourse Analysis Discourse Analysis & Key actors
1 (Toke, 2005) England and Wales Logistic Regression Key actors
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Development of Literature

Toke (2005) conducted logistic regression analysis using data collected for 51 wind energy sites

within the UK, and explored how planning outcomes were influenced by the views of key actors

within the planning process of wind energy, including local councils, planning authorities and

landscape protection groups. The study found that planning acceptance rates were closely

associated with the high level of apprehension about such schemes amongst people living in the

immediate vicinity, highlighting the importance that social influences have on planning

acceptance. In particular, it was noted that there was specific concern on the impact of projects

on the economic impact on a region, either through loss in property value or tourism revenue.

Haggett and Toke (2008) reapplied the analysis applied by Toke (2005) to include Discourse Analysis

(DA) to further understand issues in public administration, and further consider how campaigns

handle accusations of ’Not In My Back Yard’ (NIMBY-ism). The work is novel for its combination

of qualitative and quantitative analysis, and highlighted the benefit of analysis that included both

forms.

Van der Horst and Toke (2010) assessed how local characteristics related to the planning

outcome of wind energy projects in England. 117 variables related to education, health,

demography, employment and housing were used and compared with the planning outcomes for

77 wind energy projects (of which 40 were approved). Univariate regression analysis was

conducted with the Mann-Whitney test being used to analyse the associations between the

dependent variable (the planning decision outcome) and each of the independent variables

separately. Several strong associations were identified for planning refusal, including 1) voter

turnout and 2) years of potential life lost1. The study notes that wind energy appear to generally

be more likely to receive planning permission in deprived areas, and as previously noted within the

review, some developers were “keen to avoid relatively privileged communities and target areas

where people are thought to less likely put up a fight” (Horst & Toke, 2010, p. 220). These

issues highlight the potential importance of social parameters in site selection.

Van Rensburg et al. (2015) utilised adjusted probit regression to assess the relative magnitudes of

association amongst wind farm project planning approval against a range of 66 variables including

project technology, institutional processes and site endowment. Information was collected from

354 wind farm applications and planning authority decisions between 1990 and 2011 in Ireland.

The results suggested a range of variables which appeared significant for planning, including 1)

proximity to Natura 2000 sites; 2) sites with high bird sensitivity ; 3) hub height and 4) project

capacity. In addition, the study noted that proximity of the nearest dwellings and wind speeds

appeared insignificant, which counters the views reported within many previous studies. Of the

variables included within the model, it concluded a 0.31 predictive confidence value (i.e. it was able

to account for 31% of the variance within planning outcome decisions).

1Years of potential life lost (YPLL) is an estimate of the average years a person would have lived if he or she had
not died prematurely. It is, therefore, a measure of premature mortality.
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4.3.5 Critique of Planning Acceptance Literature

This section highlights the wider range of parameters which have been linked to the planning

acceptance of wind energy planning applications. It has been demonstrated that a broad range of

physical, psycho-social, social and institutional factors are connected with the public acceptance

of wind energy. However, such parameters are largely excluded from existing geospatial modelling

techniques and therefore there is a clear gap in the suitability of such techniques.

There has been a growth in both the use of qualitative and quantitative research techniques to

assess the level of influence parameters have on planning acceptance of wind energy projects. The

analysis presented by Van Rensburg et al. (2015) highlighted the effectiveness of using regression

analysis to identify variables which significantly impact planning acceptance, and valuing their

relative importance. The outcomes gained from such models can provide useful insights to planners

and developers alike to understand and locate turbines within suitable sites. However, a number

of limitations can be identified within the context of this thesis:

1. Consideration of Geospatial Parameters: the study did not consider many of the physical

parameters which were indicated as potentially influential within both Sections 4.3.2 and

3.2. Models are largely built around the assumption that the proximity to “sensitive’ features

(i.e. urban areas, landscape designations, airports) lessens the suitability of a potential site.

2. Difference in Study Region: the study was conducted within the context of Ireland. As

previously indicated, there are national differences between the social acceptance of wind

energy projects in different countries and landscapes. It is therefore argued that the findings

of this study cannot be directly utilised within modelling within the United Kingdom.

To the author’s knowledge, there has been no attempt to combine the results of quantitative

studies in onshore wind with traditional GIS-MCDA methodologies. Such an approach responds to

comments from Van der Horst and Toke (2010), who noted that the limitations in applying their

results is that they have focused on the planning approval aspect rather than the site selection

decision. They note that such future analysis could be relevant to address developer concerns

about identifying appropriate sites.
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4.4 Energy & Scale

The third aspect of the literature review focuses on the issue of planning scale within energy

planning and development. As highlighted in the background information, the planning scale is a

crucial question within the development of energy policy. However, existing governmental studies

have been conducted at predetermined scales set by the governmental structure of the time, and

it was shown in Section 2.5 that this has included RDA and LEP regions.

Having established the political drivers for the importance of spatial scale within Chapter 2, the

primary focus of this literature review is to identify techniques that can be used to assess spatial

scale within energy modelling. However, the broader concepts of energy modelling are first explained

in order to position the work within the field.

4.4.1 Energy Model Classification

Energy system models are frequently used to aid in the decision-making process when faced by

multiple development options (Jebaraj & Iniyan, 2006). Models form an essential aspect of decision-

making due to to the complexity of the problems in energy systems: not only are there a wide

range of technologies to be considered, but also there are multiple objectives which may be sought

to be optimised, including cost and GHG emissions.

There has been extensive interest within literature of the use of energy models to determine the

most economic investments and help determine which technologies should be utilised to achieve

energy targets. Hall et. al (2016) conducted a detailed review of 110 academic papers on energy

system modelling within the UK. In order to differentiate the approaches used within the reviewed

literature, the author of this study proposed a classification schema, of which the key criteria are

summarised as follows:

1. Purpose of the model: studies are categorised as either 1) General or 2) Specific. General

models seek to forecast and explore future energy scenarios, whilst Specific models consider

a focussed part of the system in isolation.

2. Geographic coverage: as outlined within the background literature, analysis can be

conducted at varying geographic scales (National/Regional/Local/Individual Project etc.).

3. Sectoral coverage: considers whether the model focuses on energy sectors only, or whether

the whole economy is included. Generally, econometric models include the wider economy to

assess the influence of energy prices on production.

4. The time horizon: there is no set definition of the timeframe, but models typically are

considered Short (less than 5 years), Medium (5 - 15 years) or Long term (over 15 years).

5. The time step: the time resolution of the model,and the extent to which variability of

energy supply is considered. Long-term forecasting models have typically assessed in annual

or five-year timesteps, whilst smaller timesteps (quarterly, daily, hourly) have become more

common in short-term models to attempt to account for the intermittency of renewable

energy resources.
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6. Renewable Technology Inclusion: the renewable energy technologies are included within

the study, as specified in Section 2.5.

7. Storage Technology Inclusion: the storage technologies considered, including established

technologies such as pumped-hydro storage, and more recent technologies such as batteries

and compressed air.

8. Demand Characteristic Inclusion: the energy demand sectors included

(electricity/heating/transport) and the type of customers (domestic/industrial)

9. The Underlying Methodology: There are a diverse range of analytic approaches applied,

including econometric, accounting models, optimisation and multi-criteria models as

discussed within Section 4.2.

10. The Mathematical Approach: mathematical approach defines the underlying programming

approach taken in the model. The most common approaches are linear, mixed-integer and

dynamic programming.

11. Data Requirements: all energy systems models require some input of data. This field

attempts to specify the level of data that is necessary for each model.

4.4.2 Modelling Techniques

It is noted that within the review conducted by Hall et al. (2016), there are three methodologies

which are prevalent within existing studies: 1) Long range Energy Alternatives Planning System

(LEAP) (Heaps, 2008); 2) MARKAL/TIMES (Loulou et al., 2004) and 3) MESSAGE. Of the 110

papers, these approaches were used 80 times. However, they largely focus on accounting/macro-

economic perspective, and therefore are of limited applicability within the context of this literature

review. As will be discussed in the following subsection, the review focuses on geospatial-based

modelling techniques and their assessment of renewable energy technologies.

Geospatial modelling techniques have been discussed in detail within in Section 4.2 to identify

suitable sites for onshore wind site selection. These studies primarily dealt with the issues of energy

supply in isolation, and made no attempt to compare the geospatial patterns against existing energy

demand. This issue is reflected as a common challenge within the geospatial modelling of renewable

energy potential, as it is argued within literature that the location of sites for renewable energy

development is implicitly linked to existing energy demand patterns (Resch et al., 2014).

It can be observed that there were limited applications of geospatial models within energy modelling.

In addition, it is noted that none of the papers referenced in the review explored the influence of

spatial scale on energy planning, with all the referenced studies were conducted at a predetermined

spatial scale (Hall & Buckley, 2016). Due to these concerns, additional literature was reviewed,

focussing on geospatial modelling techniques, including those in an international context.
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4.4.3 Supply & Demand Modelling

Fulfilling a regions own energy needs, termed energy self-sufficiency, came to prominence in the

1970s in response to the oil crisis as countries sought to reduce their reliance on foreign imports

and become energy independent (Auer, 1976). A few examples have been conducted which aim

to construct supply and demand models (Hulscher & Hommes, 1992; Srensen & Meibom, 1999).

However, interest within these modelling approaches largely focussed at a national level, and a

review of energy systems found there were few developments in the use of energy balance in

determining renewable energy developments at a more localised perspective (“Optimization

methods applied to renewable and sustainable energy: A review,” 2011).

There have been recent developments in the use of energy balance modelling, with the application

of this concept to a local level as cities or regions aim to meet their energy requirements using

renewable energy technologies. A study conducted in Japan investigated the renewable energy

potential compared with demand (Wang et al., 2014). Supply and demand were calculated at a

resolution of 500 metres, and the net electricity balance determined for each cell. The resulting

maps are highlighted in Figure 4.5, highlighting regions of high net energy demand and supply,

coloured red and blue respectively.

Figure 4.5: Calculation of energy self-sufficiency within methodologies (Wang et al.,
2014).

The study highlighted the mismatch between rural regions (net producers) and urban regions (net

consumers). By comparing supply and demand using such a method, it was noted by the author

that regions could be determined which may have potential energy self-sufficiency with balanced
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supply and demand. However, the analysis did not go as far as undertake analysis to determine

the spatial organisation.

4.4.4 Spatially Explicit Energy Models

There has been increased interest in modelling the influence of spatial scale on renewable energy

target setting (Ramachandra & Shruthi, 2007). Regions are often unaware whether their regional

characteristics are compatible with aspirations for energy neutrality (Balta-Ozkan et al., 2015). In

addition, it is observed that targets are often set for regions on little evidence regarding technological

feasibility (Oudes & Stremke, 2018).

There has been recent focus on the idea of spatially dependent renewable energy targets. A Spatial

Transition Analysis (STA) methodology has been developed, whereby the regional targets vary for

a region depending on their available supply and demand resource (Oudes & Stremke, 2018, p. 2).

Whilst STA model presented provided an improved framework, it is argued the application of this

model is different from the aim of this study. Whilst the study altered targets to meet the spatial

resource of an existing region, the spatial scale of the analysis was fixed. It is instead proposed

that a set target should be established, and the regional extent be varied in order for the target to

be achieved, as will be explained further within Chapter 10.

There have been examples of regions which have achieved energy neutrality. Siena, Italy (Casprini,

2013) and Samso, Denmark (Waal & Stremke, 2014) are two regions within Europe which have

transitioned to renewable energy technologies. However, it is observed by Oudes et al. (2018) that

both these regions have low population densities, and therefore faced less difficulty in achieving

their targets. Whilst more densely populated regions have set ambitious energy neutrality targets,

there is significant challenge in these regions achieving them.

Although it was not within the primary scope of this literature review, the concept of spatial scale

in governance was found within other disciplines. For example, the concept of “watersheds” has

been explored for water resource management, whereby it is argued that the scale at which water

resources are managed match the drainage basin of water bodies (Padt et al., 2014, p. 173). Such

an approach is argued to encourage a more sustainable use of water resource, and more naturally

reflects the “Matching Principle” discussed within Section 2.2.

4.4.5 Critique of Literature

Due to the complexity of energy modelling, there is a broad range of literature available. Whilst

the topic of spatial scale has been raised in literature (Frew & Jacobson, 2016; Horsch & Brown,

2017; Oudes & Stremke, 2018), there has been limited literature regarding the assessment of the

suitable planning scale of cities, and no quantitative assessments have previously been conducted.

To the author’s knowledge, there is no published literature that directly assesses renewable energy

planning scale. Studies have typically focussed on identifying solutions for a predetermined scale
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(city, regional, national, etc.) as seen in the existing GIS-MCDA models. By assessing the spatial

scale of energy modelling, a greater understanding could be achieved of the scale at which optimal

targets could be set. This will be explored further within Chapter 10.
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4.5 Conclusion

The literature review has summarised the overall development of wind energy geospatial modelling,

and highlighted the broader issues surrounding the social acceptance of wind energy projects.

Finally, it was shown that there is significant amounts of literature within energy modelling, although

there have been limited attempts to assess the implications of spatial scale on achieving renewable

energy targets. The main limitations of the literature were therefore summarised as follows:

1. Existing Wind Energy Models are largely based on technological concerns:

23 studies were highlighted which assessed the suitability of a region for onshore wind development

in Section 4.2. However, these studies have largely been based around technological concerns,

and they appear to largely exclude the social parameters which have pose a major barrier to the

development of wind energy.

2. MCDA parameter weighting lack sufficient justification:

The results from GIS-MCDA models are highly sensitive to the underlying modelling assumptions

and the parameter weightings. Whilst AHP has been used within studies to determine these

weightings, the results still remain subjective and are heavily influenced by the background of those

who are surveyed. It was highlighted that an inverse GIS-MCDA approach provides a method to

determine the influence of parameters non-subjectively, yet has not been applied within the context

of onshore wind energy.

3. There is limited validation of models against existing development patterns of wind

energy projects:

It was noted that 5 studies directly compare the results of onshore wind MCDA analyses again

the actual development patterns of wind turbines (Aydin et al., 2010; Gass et al., 2013; Miller

& Li, 2014; Van Haaren & Fthenakis, 2011; Watson & Hudson, 2015). Whilst there has been

interest within literature to rigorously quantify key influences of wind energy planning acceptance

from historical planning outcomes (Haggett & Toke, 2006, Horst & Toke (2010), Rensburg et

al. (2015), Toke et al. (2008)), these have largely focussed on institutional parameters instead

of geospatial characteristics. In addition, the findings from such studies has yet to be integrated

within a full geospatial model.

4. Limited development of spatially explicit energy models:

It was demonstrated in Section 2.2 that spatial scale is a key consideration within the modelling

of renewable energy. However, there has been limited research to assess the influence of this on

regional target setting for renewable energy, with only one study being identified which explores

the influence of spatial scale on energy transition targets (Oudes & Stremke, 2018). Compared to
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existing studies, it is argued that spatial scale should be considered as a variable within the analysis,

not assumed to be optimal.

Chapter 5 builds upon these limitations of existing literature, and outlines the overall methodology

of the research project. In doing so, the chapter aims to highlight how the concerns are addressed

within the work.

Chapter Summary

• An extensive review of geospatial modelling approaches was conducted, with 23

international studies identified within the scope

• GIS models primarily focus on technical issues, with high emphasis frequently placed on

the wind resource.

• There is often limited justification provided for the weighting used within MCDA. Whilst

AHP techniques are occasionally used to overcome these concerns, this technique remains

highly subjective.

• Section 4.3 highlighted that the planning acceptance of wind energy projects is influenced

by the physical characteristics of the site, psycho-social, social and institutional factors.

• There has been increased interested in using qualitative and quantitative methods to

identify influential parameters for the planning acceptance of onshore wind projects.

• To the author’s knowledge, no studies have considered spatial scale explicitly within the

analysis.
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The aim of this section is to outline the overall methodology of the research project, and prepare

the required datasets into a suitable format for the statistical analysis presented in Part III.

• Chapter 5 details the overall research methodology, highlighting how the study aimed to

address the gaps identified within existing literature.

• Chapter 6 details the wind energy project dataset used within the analysis that provides the

planning and spatial data. A key part of this chapter highlights the validation process, which

was conducted to assess the locational accuracy of the turbine data used within the model.

• Chapter 7 explains the data sources used within the statistical analysis, and the process used

to standardise these datasets. The datasets are spatially joined to the wind energy dataset,

allowing for their use within the analysis presented in the following chapters.





Chapter 5

Research Methodology

Part I of the thesis highlighted the research context of the project, and identified a number of key

issues surrounding renewable energy development. Building upon these limitations with existing

methodologies, this Chapter presents the overall research methodology and explains the key stages

of the analysis.

5.1 Research Approach

The research is broadly split into five key phases:

1. Wind Turbine Data Preparation: wind turbine data is collected and formatted for use

within the analysis. A validation process is made to ensure the locational accuracy of the

dataset and ensure it is suitable for use within the later stages of analysis.

2. Contextual Data Collection: The research involves the collation and processing of data

compiled from a range of sources. This explains the steps taken to ensure sufficient data

accuracy and preliminary research to explore potential indicators within the datasets.

3. Statistical Analysis of Turbine Planning Acceptance A large number of GIS-MCDA

models have been previously developed, which utilise a range of geospatial parameters to

identify suitable sites for wind turbine development. However, these models often lack

validation of their input assumptions, and as a result, concerns have been raised regarding

their validity. This section presents statistical analysis which analyses the location of

existing wind turbines.

4. Onshore Wind GIS-MCDA: Combining the results from the first stage of the analysis,

a GIS-MCDA was built which integrated planning, social and econometric constraints to

identify potential suitable sites for wind turbine developments.

5. Energy Spatial Scale Assessment: Existing electricity capacity methodologies have been

conducted at a specified scale or region. However, this ignores the challenge faced by cities,
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which need to have a greater understanding of the area required for them to potentially meet

their electricity demand. The third stage of the analysis therefore seeks to apply energy

clustering principles to understand the optimum sized region at which urban and city energy

demand can be met.

A summary of these analysis stages is shown in Figure 5.1. This flowchart is also presented at

the start of each Chapter, highlighting the data sources and process used within the Chapter. A

distinction is made between “Data” which represents a single datasets, and “Database”, which are

aggregated datasets representing multiple different attributes.

Study Scope

The study was conducted across Great Britain (England, Scotland & Wales). This was chosen

because of the broadly similar categorisation of land types, nature designation, data availability

and legislation across these regions (HM Government, 2014). The Shetland Islands had initially

been included within the scope of the analysis; however, it was considered that their geographic

isolation and distance from mainland Britain created issues in generalising the model results.
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Figure 5.1: Summary Schematic for Research Methodology.





Chapter 6

Wind Turbine Data Preparation

The location of wind energy project planning applications is central to the modelling and analysis

conducted. The overall aim of this chapter is to explain the data collection and processing

implemented to prepare the wind turbine data for the analysis, and is broken into the following

objectives:

• to explain the data sources used for wind energy project positional data in the UK.

• to reformat datasets to prepare for use within the analysis.

• to validate the positional accuracy of the wind turbines within the dataset.

• to quantify potential error within the dataset.

89
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6.1 Turbine Location Data

Data for wind energy planning applications was extracted from the Renewable Energy Planning

Database (REPD), which records commercial wind energy planning applications since 1990 (DECC,

2016c). The information for each planning application includes 1) project attribute data (number of

turbines, capacity); 2) year of the project planning ; 3) planning application decision; 4) registered

address of the project and 5) site coordinates.

Whilst data has been recorded since 1990 within the REPD, there was a change in the methodology

used to record projects in 2014. The changes increased the minimum size of a project which was

recorded from 0.1 to 1MW, reflecting the general increase in size of commercial-scale projects

which has occurred due to advances in technology. Data was therefore collected from two separate

datasets:

1. Latest REPD Release: the data released monthly. Includes information on all planned

projects larger than 1MW. The dataset used within the analysis was last updated on

04/08/2017.

2. Archived Release: The method of data collection changed in October 2014, and before this

date all projects greater than 0.1MW in size were recorded. This therefore also provides data

of the smaller wind energy projects (between 0.1MW and 1MW) constructed from 1990 to

2014.1

For comparison, Figure 6.1 highlights typical sizes of wind turbines and power outputs. As the

REPD records the project size, the latest release of the REPD dataset includes 258 where the

turbine is less than 1MW, but multiple turbines are installed.

Figure 6.1: Comparison of Wind Turbine Size categories, indicating whether they are
included within the REPD dataset used in the study.

1It should be noted that any wind energy developments smaller than 1MW proposed since October 2014 will not
be included, however these were deemed to be insignificant as the size of turbines has increased and most commercial
projects are now greater than 1MW.
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The database records the latest planning application status of the project, which is updated to reflect

any changes to the project development. 12 different stages are included within the database, with

Figure 6.2 highlighting the potential pathways which can be followed by projects. Turbines with

a hub height of less than 12 metres do not require planning, although such sized turbines are not

recorded within the dataset due to their size. For other projects, there is a process of application,

for which the decision is granted or refused. Projects which are refused can optionally be taken to

appeal by the developer, or alternatively abandoned.

NoYes

Yes No

Yes

Yes

Abandoned

No

Operational

Start Project

No

Figure 6.2: Potential planning pathways for a wind turbine application.

6.1.1 Processing Wind Energy Project Dataset

The REPD data provides information for all renewable energy technologies developed within the

UK, with more than 12000 projects recorded. Several measures were therefore taken to prepare

the data for analysis, as follows:

1. Filter data to onshore wind energy only: the database provides information on all

renewable energy technologies.

2. Filter to Study Region: as previously mentioned, the study scope was selected to cover

Great Britain only, and therefore wind energy projects from Northern Ireland were excluded.

3. Summarise Planning Status: The planning status for each site was summarised into 3

status categories (Accepted/Undecided/Rejected).

4. Add a database key to each record: this allows records to be easily identified

5. Remove superfluous variables: The data included many unneeded values for onshore wind

energy which only apply to other renewable energy technologies.
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6. Adjust Coordinate: The coordinates had to be reformatted to be suitable for geospatial

analysis. Primarily, commas within the variable had to be removed, and the resulting character

string was converted to a numeric variable.

7. Impute Missing Year: a portion of planning applications were missing the variable “year”.

Upon inspection, it was found the record “Date last updated” were typically to be similar in

value to the application date. This value was therefore used to impute the value.

8. Correct for inconsistencies between the datasets: differing naming conventions are used

for the variables between the recent and historical datasets.

9. Merge the datasets: finally, the two REPD datasets were merged into a single dataset.

The final dataset included 1809 wind energy projects between 0.1 and 1MW, and 1780 projects

with a capacity greater than 1MW. This represents the overall site capacity, not the individual size

of each turbine.

The dataset includes projects that are in one of three main stages: 1) Approved 2) Submitted (In

Planning) 3) Rejected/Abandoned. In order to conduct the statistical analysis presented in Chapter

8, the planning status must be reduced to a dichotomous variable. This was achieved by removing

the projects within planning and producing a dataset which represents either Accept (1) or Reject

(0). This filtering of data reduced the number of projects from 3589 to 3100 entries.

Using the longitude and latitude data provided within the REPD, the data was projected to provide

a geographical reference for each site. The complete wind energy dataset is shown in Figure 6.3,

with the data faceted by the planning status.

Approved
 (n = 1400)

Refused/Abandoned
 (n = 1700)

Submitted
 (n = 489)

Figure 6.3: Wind energy sites plotted by planning status summary. A count n is
provided for each type of project.
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6.2 Constructed Turbine Locations

Although an Onshore Wind Turbine must intrinsically be onshore, the spatial projection of data

indicated that 27 were outside the extent of the coastline of Britain. This issue raised concerns of

the positional accuracy of the dataset, and it was therefore decided that the REPD values should

be validated against a second dataset. This section therefore explains the collection and processing

of this dataset for use within the analysis.

6.2.1 Comparison Dataset

Wind turbine locations were extracted from the Ordnance Survey Points of Interest (POI) dataset

(Ordnance Survey, 2016a), accessed through the Edina Digimap portal.2 The OS POI data provides

location data on wind turbines in the UK, with the location data supplied by the British Wind Energy

Association. The supporting guidance states:

“All reported records will have meaningful grid references with turbines being absolute

whilst sites will be at a reasonably central location. Turbines and sites will coexist where

both have been identified. Individual turbines will have the name of the site followed

by ‘Turbine’ whilst those instances relating just to the site itself will just report the site

name. (Ordnance Survey, 2016b, p. 5)”

Upon review, however, it was found that there were inconsistencies in the data, and that turbines

could not accurately be identified based on their name as suggested. This is demonstrated in

Figure 6.4, which shows that whilst all three sites were indicated as wind turbines, the middle point

actually represents the site name for the project. The naming convention for the three points is

also inconsistent, as the points of each wind turbine do not contain the word “Turbine” as stated.

Such issues prevented it from being possible to distinguish between such points, and therefore it

was required that processing was undertaken to be able to classify site and turbine points.

2Whilst free to use for academic purposes, the licencing prevents this data from being shared and therefore is not
included within the downloadable dataset for this project.
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Figure 6.4: Map highlighting inconsistency in turbine naming within the OS POI
dataset. Two turbines lack the turbine reference and therefore incorrectly identify as a

wind farm site.

6.2.2 Classifying Turbine Sites

A methodology was developed to classify the turbine sites and turbines points within the OS

dataset. As explained in the following subsections, there were two key stages to this pairing:

1. OS POI Parameters: additional parameters were generated for each point in the dataset.

2. Rule-based Classification of Points: using the additional parameters generated, the site

was classified as either a 1) turbine or 2) site name.

OS POI Parameters

The following parameters were calculated for each point:

1. Count the number of points with the same name: if there are multiple points with the

same name, it is likely that they represent turbines, whilst individual points are more likely

to represent site names.

2. Check whether the point name contains the word “Turbine”: again, this should provide

an indicator whether it is a turbine point or a site name.

3. Check if name contain the phrase “Turbine Turbine”: some wind farms are erroneously

named “%SITE NAME% Turbine”, and therefore turbines on the site are named “%SITE

NAME% Turbine Turbine”.

4. Count Number of points are connected to the site name: the word “Turbine” is

subtracted from each point to see whether there are any matching points. This check was

made as there were inconsistencies in the points for single turbine sites: some have only a

single point while others have a point for the site and turbine.
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Rule-based Classification of Points

Using the four conditions listed, a number of logic statements were used to split the data between

turbine points and site data. It should be noted that these rules are not mutually exclusive, and

that the same point may meet the criteria of several points:

1. Standard Turbine Sites: a standard turbine site will have a unique name, and at least one

point that is related to it (i.e. a turbine with the same name).

2. Standard Turbine Point: a standard turbine point has more than one point with the same

name, contains the word turbine and has no dependent points.

3. Sites Which Contain the word “Turbine”.

4. Sites which match both turbine and site: if a site is unique and has no dependent or

related points.

5. All other: any point which does not meet any of the other four conditions. Upon inspection,

these were found to be wind turbine sites.

Based on the rules specified, the turbines were allocated to sites and points subsets. Turbine sites

can be identified as meeting Rules 1, 3 or 4. Turbine Points can be identified as meeting Rules

2, 4 or 5. The 5354 points were categorised into 4729 Turbine points and 802 wind turbine sites.

It should be noted that 177 points have counted as both turbine and site points, resulting in an

increase in the number of points.

List of Points

Count the number 
of points with 

the same name

Site Name Contains 
word Turbine 

Site Name Contains 
Turbine Turbine

Number of sites 
associated to point

Other
(n=5)

Standard Turbine 
Sites

(n=625)

Standard Site 
Point

(n=4724)

Points which are both 
Turbine and a Site

(n=177)

Site Which Contains 
Word Turbine

(n=15)

Site
(n=802)

Turbines
(n=4729)

Figure 6.5: A schematic of the OS point identification algorithm. A count n is shown,
highlighting the number of observations within each group.

To validate the allocation of points to the two datasets, 100 points were randomly sampled and

manually compared with satellite imagery. It was found that there was 100% accuracy between

the two datasets, and was deemed sufficient validation for the analysis.
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6.3 Validation of Turbine Locations

The turbine planning data recorded by the REPD only provides a single point per wind farm

representing the registered address of the site. It was highlighted in Section 6.2 that there were

concerns surrounding the positional accuracy of these sites, and as an example, it was seen that a

number of wind farms had been indicated to fall outside of the coastline of Great Britain. It was

therefore determined to be important to understand the errors present in the dataset, and assess

the positional accuracy of points.

Figure 6.6 highlights the inconsistency between the REPD and the exact location of constructed

turbines, as provided by Ordnance Survey (OS). It can be seen that sites 1 and 2 generally are

well matched, while 3 only has a small difference between the REPD and OS data sets. However,

there is a difference of 1.8km between the REPD and OS data for site 4, while site 5 has no REPD

record. Several potential causes of errors were hypothesised for the data:

1. Data entry errors: The coordinates may have been erroneously inputted into the database.

2. Sites are defined by a single point: The REPD database only provides a single point for

the site, which is not necessarily the centroid of the development. For example, it could be

the address of the registered site that may cover a large area.

3. Postcode Inaccuracies: The location may be based on the postcode, which can cover large

areas in rural locations.

Figure 6.6: A map highlighting the geospatial inconsistencies between the OS and
REPD datasets.

It was important that the inaccuracy within the turbine dataset was assessed, as project locations

were used to derive the predictor variables within the statistical modelling in Chapter 8. Any

inaccuracy in the locations will increase the margin of error of proximity calculations: for example,

project number 4 in Figure 6.6 is located outside the national park, however, the REPD record



Chapter 6 Wind Turbine Data Preparation 97

inaccurately suggests the turbines are within it. Two forms of validation were therefore used to

validate the dataset:

1. Postcode Location Validation: the coordinates provided within the REPD database were

compared against the recorded postcode. Due to the large areas covered by postcodes in

rural areas, this method provides limited accuracy but can assess regional inaccuracies in the

dataset.

2. OS Turbine Sites: the location of operational wind turbines in the REPD are compared

against the OS wind turbine dataset. As the OS turbines provide precise locations of the

wind turbine projects, this method can assess local inaccuracies in the dataset.

These two approaches and results are explained within the following subsections.

6.3.1 Validation against Postcode

The first stage of the validation was to compare the location of REPD coordinates against the

listed address. This aimed to assess regional level accuracy, as addresses and postcodes in rural

locations often cover a large area, making it difficult to find the exact location of the wind farm.

Such regional errors may have resulted from the coordinates of the site being inaccurately recorded.

The package ggmap (Kahle & Wickham, 2017) was used for geocoding within the analysis, as it

provides an interface to the Google Maps Geocoding API. The geocoding searched for locations of

projects that provided a postcode, which 20% have. Efforts were also made to geocode the address;

however, it was found that sites largely had relatively vague names which resulted in a poor rate of

success, and therefore this approach was not used: as examples, “Off A681, Bacup, Lancashire”

and “approximately 4km from Ulverston”. All search terms were limited to return results in the

UK as some addresses were being erroneously paired to international addresses.

The results of the pairing are shown in Figure 6.7c. Lines connecting the two recorded locations

for each site, termed Error vectors, are used to highlight the difference in locations. The mean

distance between the two sets of points is 6.9km, although a median value of 1km highlights that

the data is skewed by a small range of large errors, with the largest difference in being 544km.

In order to further explore the results, all sites with an error of greater than 30km were manually

investigated to identify the cause of the site error. Of these 14 sites examined, it was found that 9

had errors in their coordinates being incorrectly recorded, 4 were incorrectly sited by the geocoding

due to short postcodes which matched to multiple areas, and 1 had an error in the postcode

whereby letters being misspelt. It is also worth noting two cases where the X and Y coordinates

had been mixed, leading to them being located in the Netherlands instead of Scotland. However,

these two sites were later corrected within the database.

It is also interesting to note that 15% of the geocoded sites had a perfect locational match with

the postcode. This accuracy is unlikely due to be coincidence, but suggest that the coordinates of

the sites may have been determined directly from the post code of the site.
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Figure 6.7: Results from the internal validation based on postcode matching of REPD
datapoints. The histogram was truncated at 60km to remove outliers.

Having considered the anomalies within the data, the trimmed mean was calculated as 1.7 km.

However, while the results provide a useful indication of model accuracy, they are of limited practical

use on their own. A particular issue arises in that rural postcodes cover large areas, and therefore

the site may be distant from the centroid of the postcode region. As such, this first search is best

used as a regional level search to explore larger errors.

6.3.2 Validation against OS Turbine Sites

While the address validation provides an indication of potential erroneous data at a regional scale,

it provides no validation that the site specified accurately maps at the site-level scale. Therefore,

the positional accuracy of the planning applications was compared against locations of operational

turbines as calculated from the OS Points of Interests data collected within in Section 6.2.2.

As this validation is made against operational wind turbines, it can only be used for a subset of the

REPD dataset. The sites were therefore firstly filtered to only use operational wind farms within

the REPD.

There was no directly comparable parameter which could be used to join the REPD and OS dataset.

As a result, a process was developed to compare the two datasets and identify suitable pairings. As

shown in Figure 6.8, three approaches were developed, which are explained in following paragraphs.
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Figure 6.8: Schematic of the REPD OS pairing methodology

Firstly, a spatial join was conducted to cross tabulate the proximity of all points within the OS and

REPD dataset (n = 615134). For the simple pairing approach based on the “Closest Match”, pairs

were formed purely on the geospatial proximity of the two sites. However, there was no guarantee

that these were pairing the correct sites, and upon inspection, it was found that sites were not all

being paired accurately.3

To overcome the limitations with the Closest Match pairing method, additional parameters were

used from each dataset to assess the suitability of the match, as follows:

1. Site Name Difference: A partial string match was used to assess the similarity of the OS

and REPD names. The first 15 characters of each string were compared, and the differences

were counted with 0 being a perfect match and 15 meaning no characters matching at all.4

2. Number of turbines: the REPD provides a count of the number of turbines on the site,

and was compared with the number of turbines on the OS site as calculated within the

pre-processing in Section 6.2.2.

Based on the three assessment criteria (distance, site name and turbine count), a filtering process

was developed to remove the poorest fitting pairs within the model. This filtering process used

three Boolean conditions, specifying a maximum limit for the 1) distance between sites, 2)

difference in site names and 3) Difference in the count of wind turbines. These parameters are

shown in Table 6.1, and the approach reduced the number of potential matches from 615134 to

1257.

Having filtered the potential site pairings, the most suitable sites for the reduced list were assessed

in further detail. Each site was scored on the potential suitability, with the score being determined

3Many sites were being paired which were more than 40km away. The summary results are included within Table
6.2.

4The algorithm was run to not consider the order of the letters as there were slight inconsistencies in naming
conventions between the two data sets which could be missed data sets may get missed (i.e “WIND TURBINE” and
“TURBINE WIND” would be 0).
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Table 6.1: Parameters used within the Weighted Sum Method (WSM) used to
determine the most suitable OS REPD pairings.

Variable Cut off Unit Parameter Weighting (w)

Distance 20 Kilometre 1
Names 13 Difference in first 10 letters 3
Turbine Number Difference 2 Number of turbines 4

using the Weighted Sum Method as follows:

Site Suitability Score = 3N + 4T + 1D (6.1)

whereby N is the name score, T is the difference in Turbines, D is the site distance. The weighting

parameters were derived from a trial-and-improvement method. Based on the weighting parameters

shown in Table 6.1. At first, it may appear erroneous that distance was used as a parameter in

the pairing algorithm, as this is the value which the model was trying to determine. However, the

name and turbine count were insufficient in themselves to differentiate between the potential pairs

for the REPD and OS data. To reduce the chance of the results being unfairly skewed in favour

for sites with close proximity, a low weighting was applied to the distance parameter.

Once sites were scored, two alternative approaches were explored for selecting suitable pairs:

1. One-to-one matching: each OS can only have one REPD application joined to it. This

prevents multiple projects being associated to the same REPD or OS site.

2. One-to-many matching: OS sites may have multiple REPD applications joined to them.

This was explored as a number of OS sites have had multiple applications made at them.

For example, the re-powering of an existing wind energy project would only have a single OS

site while two successful REPD operations would have been made at this site. Therefore, the

second match checks without a one to one relationship, matching purely on the best fitting

score.

The summary statistics from the three methods are shown in Table 6.2. The “Nearest Point”

model was able to pair for each of the REPD turbines within the model, whilst the one-to-one and

one-to-many approaches only paired a subset of the points due to the filtering within the matching

process. The large difference between the mean and median values highlight that there is a strong

positive skew in the dataset, with only a small proportion of sites having a large error.

Table 6.2 also highlights that the one-to-one and one-to-many pairing methods have a relatively low

pairing success rate. Of the 536 REPD sites, less than 60% of points were paired. The algorithm

rules prioritised accuracy over coverage, and therefore no pairs would be formed for REPD sites

that did not accurately match an OS site.
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Table 6.2: Comparison of the One-to-one and One-to-many pairing methods.

Number of Pairs Mean S.D. Minimum Maximum NA

One to One 358 1.80 3.37 0.72 0 19.76
One to Many 382 2.01 3.66 0.75 0 19.79
Nearest Point 767 3.25 5.41 1.11 0 54.66

6.3.3 Error Analysis

Whilst errors were identified in the dataset, only a proportion of the sites could be validated, as

each of the two approaches only dealt with a subset of the dataset. Figure 6.9 further highlights

this issue, demonstrating the proportion of sites that were validated against the Postcode or OS

location. It can be seen that the Postcode validation could only match 19% of sites, whilst the OS

validation only analysed operational sites. As a result, 60% were not validated within the model.

Postcode OS

0.6

0.210.15 0.04

Figure 6.9: Venn diagram highlighting the matching success of the Postcode and
one-to-one assessments.

Although it is known that some sites are far from their stated coordinates, there are challenges

in correcting the dataset. As the OS validation could only be conducted on constructed sites,

projects which have not been constructed could not be validated. Whilst it is possible to correct

the known errors in the dataset, it would skew the dataset error and error would no longer be

randomly distributed within the dataset. As a result, the dataset was left unadjusted, with no

corrections being directly made to the dataset.

A more generalised attempt was made to identify whether there were any influences that correlated

with the accuracy of the site. For example, do older sites have a lower level of accuracy compared

to more recently proposed projects? To test such relationships, a regression model was developed,

based on a similar approach as that outlined in Chapter 8 whereby the outcome variable (site

location error) was compared against site parameters (year of construction, number of turbines,

etc.). However, the results proved inconclusive, with an R2 value of 0.17 and no statistically

significant parameters identified. Due to this poor overall fit, further optimisations of this model

were therefore not considered.
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6.4 Conclusion

This chapter has presented the collection of wind turbine data and the measures taken to validate

the suitability of the dataset for the analysis. This study used the REPD as the primary source for

information and provides extensive information surrounding the planning application of each wind

energy project. However, no level of accuracy was specified for the location of these sites, and

therefore it was important to assess the positional accuracy of the dataset.

Two approaches were developed to validate the accuracy of the project locational accuracy. It was

seen that while a small percentage of sites which had a large error, the median error from the

one-to-one model is 0.72km. Although attempts were made to understand the cause of this error,

no influential factor could be identified, and the error has therefore been assumed to be randomly

distributed in the dataset.

The wind energy dataset is used extensively within the following chapters and forms a key role

within the geospatial modelling conducted within the thesis.

Chapter Summary

• Locations of wind energy planning applications collected from the Renewable Energy

Planning Database.

• Formatting and aggregation conducted to make the data suitable for use within the

statistical modelling and geospatial analysis.

• Preliminary checks indicated issues within the positional accuracy of REPD sites, and

therefore site positions were validated.

• Location of constructed turbines within the UK were extracted from the OS Points of

Interest Data.

• A pairing algorithm was created to match the sites between the REPD and OS datasets.

Validation of wind energy data found that the median error of 0.7km.



Chapter 7

Contextual Data Collection

A range of datasets were used within the analysis, and were aggregated from multiple sources and

in varying formats. This section therefore explains the processes conducted to collect the data and

prepare it for use within the analysis and modelling. The section is broken into the following parts:

• to explain the overall scope and global settings used when collecting and formatting the

datasets.

• to ensure the datasets were formatted correctly for analysis.

• to aggregate parameters for each wind energy project.
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Table 7.1: Summary of data sources used to collect data for the study.

Category Dataset Region Data.Type Source

Turbine Wind Turbine Planning Data UK Tabular (REPD, 2017)
Resource Wind Speed UK Raster (NOABL, 2001)
Features Roads UK Points (OS Strategi, 2016)

Railways UK Lines (OS Strategi, 2016)
Urban Areas UK Lines (OS Strategi, 2016)

Powerlines UK Polygons (OS Strategi, 2016)
HV Powerlines UK Lines (OS Strategi, 2016)
Powerlines UK Polygons (Open Street Map, 2017)
Airports UK Polygons (Open Street Map, 2017)
Military Sites UK Polygons (Open Street Map, 2017)

Landscape National Parks UK Polygons (Pope, 2017)
Heritage Coast E Polygons (Natural England, 2015)

W Polygons (Natural Resources Wales, 2010)
AONB E Polygons (Natural England, 2016)

W Polygons (Natural Resources Wales, 2016)

NSA S Polygons (Scottish Government, 2011)
Nature SSSI UK Polygons

SPA UK Polygons (JNCC 2017)
NNR E Polygons (Natural England, 2016)

S Polygons (Scottish Natural Heritage, 2017)

W Polygons (Natural Resources Wales, 2010)
SAC UK Tabular (JNCC 2017)
RAMSAR (Natura 2000) UK Tabular (JNCC 2017)

Topography Elevation Europe Raster (European Commission, 2015)
Demographic 2011 Census Data UK Tabular (ONS 2016)

Political Local Election Results UK Tabular (The Elections Centre, 2016)
Boundaries Scottish Data Zones S Polygons (SASPAC2011)

Output Area Boundaries E, W Polygons (UK Data Service, 2017)
Local Unitary Authorities UK Polygons (UK Data Service, 2017a)

a UK = United Kingdom, E = England, S = Scotland, W = Wales

7.1 Study Formation

The literature review highlighted parameters which have been connected to the acceptance rates of

wind energy projects. Based on these findings, a comprehensive search was conducted to identify

and collect datasets for the analysis. A summary of the data sources is presented in Table 7.1, with

full explanation provided within the following subsections.

The Ordnance Survey National Grid reference system (OSGB36), otherwise known as the British

National Grid (BNG), was chosen as the most suitable coordinate system for the analysis. As a

projected coordinate system, it allows the use of geospatial tools which require planar coordinates

in comparison to spherical coordinate systems such as WGS84.

The packages Raster (Hijmans, 2017), sp (Pebesma & Bivand, 2017), rgeos (Bivand & Rundel,

2017) and rgdal (Bivand et al., 2017) provide the fundamental tools which are used for processing

the data within this chapter.
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7.2 Geographic Data

This section highlights the sources of the datasets, and explains the processes conducted to

standardise the datasets for use within the analysis.

7.2.1 Wind Speed

Wind speed data was collected from the Numerical Objective Analysis of Boundary Layer (NOABL)

wind speed database, which provides annualised wind speed estimates at a resolution of 1km by

1km (DTI, 2001). It was derived using data from 56 stations across the UK, with an air flow model

to estimate the effect of topography on wind speed (Burch & Ravenscroft, 1992). This source

has been widely used by wind assessment studies conducted within the UK (Baban & Parry, 2001;

SQW Energy, 2010; Watson & Hudson, 2015).

There is more detailed wind dataset which provides both monthly and annual averages along with

improved accuracy (Met Office, 2014). However, this data is not publicly available and therefore

was not used for the initial model. A comparison of the datasets has found that the reported

windspeeds varied by 0.5m/s on average (Met Office, 2014), and therefore the NOABL database

was deemed sufficient for this analysis.

7.2.2 Built Environment

The location of physical features including roads, railways and urban areas were collected from OS

Strategi (Ordnance Survey, 2016b), which provides shapefile data of all main geographic features

within Great Britain. Urban areas cover all types of settlements (city, towns, villages), and regions

of urban areas smaller than 0.5km2 are not captured (Ordnance Survey, 2016b). Further to this,

urban areas are captured as a large urban area if they exceed 1km2, and an urban area less than

1km2 is captured as a small urban area.

While Ordnance Survey provides many features, there is limited availability of the more detailed

datasets relevant to wind energy. Therefore, Open Street Maps (OSM) was used for a number of

datasets. Data was collected through the Overpass API, which allows queries to be run against

OSM to extract specific features. The package overpass (Rudis & Lovelace, 2017) is used to

directly query this API within R. The following datasets were extracted through OSM:

• Airport data: Ordnance Survey does not include information on smaller airfields in the UK.

In comparison, OSM includes smaller airfields and military airports along with commercial

airports. Each site is represented by a point as a unique identifier, and larger sites also have

polygon data to mark their boundary.

• Transmission Networks: While data of the transmission network is available from the

National Grid for high voltage (HV) powerlines, they provide a relatively limited coverage

http://wiki.openstreetmap.org/wiki/Overpass_API
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of the regional distribution networks to which wind energy projects are typically connected.

Data was therefore extracted through OSM which provided a greater level of coverage than

the National Grid data, with high voltage powerline data available for 11654km compared to

7247km from the National Grid data.

• Ministry of Defence (MOD) Sites: Safeguarding ensures operational facilities such as

aerodromes, explosive stores, radar facilities and range areas are not compromised by either

onshore or offshore development (Ministry of Defence, 2014). OS Strategi does not supply

details of these sites, and therefore these sites were identified in OSM.

7.2.3 Landscape and Natural Designations

Landscape designations cover a large percentage of Great Britain and restrict the developments of

wind energy projects. The designations collected for the analysis were:

• National Parks: Areas of outstanding landscape where habitation and commercial activities

are restricted (Pope, 2017).

• Heritage Coasts: areas which are recognised for their natural beauty, wildlife and heritage

and amongst the purposes of definition is support for these qualities and enabling enjoyment

of them by the public (Natural England, 2015, Natural Resources Wales (2010a)).

• Areas of Outstanding Natural Beauty (AONBs): An area of countryside designated by

a government agency as having natural features of exceptional beauty and therefore given a

protected status. In Scotland, these regions are defined as National Scenic Areas (NSA), but

share the same designation as AONBs (Natural England, 2016a, Natural Resources Wales

(2016), Scottish Government (2011)).

In addition, there are a number of Nature Designations which are designed to protect wildlife within

the UK. The designations and data sources are as follows:

• Sites of Specific Scientific Interest (SSSIs): these are the basic building block of site-

based nature conservation legislation and most other legal nature/geological conservation

designations in the United Kingdom are based upon them.

• Special Protection Areas (SPAs): a designation under the European Union Directive

on the Conservation of Wild Birds. Under the Directive, Member States of the European

Union (EU) have a duty to safeguard the habitats of migratory birds and certain particularly

threatened birds (JNCC, 2015).

• National Nature Reserves (NNRs): established to protect some of our most important

habitats, species and geology. Collected separately for England (Natural England, 2016b),

Scotland (Heritage, 2017) and Wales (Natural Resources Wales, 2010b).

• Special Areas of Conservation (SACs): a site designated under the Habitats Directive.

UK wide data was collected (JNCC, 2015).

• Ramsar sites: also known as Natura 2000 sites, these are wetland areas designated of

international importance under the Ramsar Convention (JNCC, 2015).
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7.2.4 Topography

Elevation was collected from a Digital Elevation Model (DEM) of Europe at a 25m resolution

(European Commission, 2015). This was used to calculate the gradient using the Fleming and

Hoffer algorithm (Fleming & Hoffer, 1979) within the raster package in R.

7.2.5 Cumulative Density

It has been seen within planning documents that proximity to other turbines was frequently raised

as an issue, with the cumulative impact of wind energy planning developments, and this review

was reflected within literature (Eltham et al., 2008). Therefore, the location and year of the wind

energy planning application was used to derive the nearest turbine at the time of planning.

7.2.6 Unavailable Datasets

There are often concerns surrounding the ecological impacts of wind energy on wildlife such as birds

and bats. However, there was insufficient data concerning these issues to be integrated within the

national analysis. Several maps have been produced by the RSPB for England and Wales but do

not cover Scotland, and are limited in their scope and coverage (Bright et al., 2006; J. A. Brigth

et al., 2009).

In a dissertation project based on the themes of this thesis, a review of planning applications within

the UK was conducted to identify stated reasons for rejection (Dimitriou, 2017). 60 planning

applications and appeals were reviewed in the study, and several reasons were identified in addition

to those raised within the literature review in Chapter 4. These included shadow flicker, ice throw,

and concerns of local hydrological conditions being damaged due to the concrete required for

construction of the turbine foundations. However, there was difficulty in collecting datasets to

represent these more complex issues, and such issues were only raised in 5 of the projects. The

parameters were therefore excluded from further analysis.

7.2.7 Processing Data

As the geographic data was collected from a range of sources, it was required that projections and

coordinate systems were standardised. The coordinate systems were checked and transformed as

required to OSGB36. Each dataset was then clipped to the study extent of Great Britain to create

a uniform dataset for the analysis.

http://www.eea.europa.eu/data-and-maps/data/eu-dem
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7.3 Local Socio-demographic Data

The literature review highlighted a range of demographic parameters which have been linked with

the acceptance rates of wind turbines. This section therefore explains the collection of Census and

Political data and the processing of this to make it suitable for analysis.

7.3.1 Demographic Data

Demographic data was collected from the 2011 UK Census (Office for National Statistics, 2016),

collecting information on 1) Qualifications; 2) Age; 3) Home Ownership and 4) Social Grade.

Whilst deprivation was considered as a potential variable in the analysis, it is not recommended to

use this variable for analysis between England, Scotland and Wales, as different techniques are used

to calculate the deprivation index in each country (DCLG, 2016). The datasets were summarised

into the following variables:

• Qualifications: percentage of the population with Qualifications greater than Level 4, which

include Degrees, Higher Degrees and professional qualifications.

• Age: median and mean age.

• Tenure: percentage of the population that own their property.

• Social Grade: percentage of People Social Class A or Class B.1.

To be able to use the census data within the geospatial analysis, the tabular data was merged with

boundary data (SASPAC, 2011, UK Data Service (2017)). Demographic data is provided at the

Lower Super Output Area (LSOA) for England & Wales and Data Zone (DZ) for Scotland. These

boundary types are broadly similar in their scope, and are sized to represent areas with a population

between 1000 and 3000 people (ONS, 2016).

As the LSOA and DZ regions are defined determined by population count, the area of these region

size vary depending on the population density of the region. This results in smaller zones in cities

when compared to those in rural regions. This is an important consideration for wind turbines, as

such projects are typically located in rural sites, and therefore it is not possible to capture high

levels of accuracy of local demographics within sparsely populated regions.

7.3.2 Local Political Data

Planning decisions for turbines are influenced by the Local Planning Authority, which are the local

political bodies within the UK (HM Government, 2014). In total, there are 405 local authorities

across England, Scotland and Wales. Local political data was collected for the Conservatives;

Labour, Liberal Democrat and the Scottish National Party (SNP), which between them hold 95%

of seats within Great Britain.

1A: High managerial, administrative or professional, B: Intermediate managerial, administrative or professional

http://www.electionscentre.co.uk/?page_id=3802
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Political data was collected for local councils from 1964 to 2015. To use this data, the data was

reformatted into a single dataset for the period of collected wind turbine data, 1990 to 2017.

Following this, the names of the boundaries were adjusted to allow for the dataset to be paired

with the geospatial data, as explained in the following section.2

7.3.3 Results

The resulting dataset was joined to the census shapefile, with a total of 41258 separate regions

for census data (which is collected at the Lower Super Output Area) and 380 political regions.

Example variables are shown in Figure 7.1, highlighting the variation across the Solent region for

levels of qualification and council share for Liberal Democrats, Labour and Conservatives. It can be

seen that the zonal resolution between each dataset varies, with census data available at a much

higher resolution.

2A full description of the pairing process is provided here: http://mikeyharper.uk/UK-Political-Data/

http://mikeyharper.uk/UK-Political-Data/
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(d) Conservative, percentage of council seats, 2015.

Figure 7.1: Census and Political Boundary Data for the Solent Region. Based on data
from the 2011 Census (ONS,2016) and Results from the 2015 local council elections.
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7.4 Extracting Data

Having prepared the geospatial, socio-demographic and wind energy project location data, combined

datasets were prepared for the statistical analysis. As highlighted in Figure 7.2, two key datasets

were produced for site locations and national characteristics. These two approaches are explained

in detail within the following subsections.

Figure 7.2: A summary of the two types of data extraction completed for the model
parameters

7.4.1 Turbine Site Data

The aim of the analysis is to assess how proximity to certain features influences the acceptance

rates of wind energy projects. Therefore, the data sources were aggregated for each wind energy

project for each shapefiles and rasters using the following procedures:

• Points, lines and polygons: A spatial join using rgeos (Bivand & Rundel, 2017) was

undertaken to determine the distance to the nearest feature for each project. A value of 0 is

given if the project is within the feature.

• Tabular: sites were assigned the characteristics of the region they were within. In addition,

political data was filtered to the year of the planning application to determine the political

balance at the time of planning.

• Raster: The value of the raster was extracted from the location of the project.

The full list of site parameters is shown in Table 7.2. The table specifies the variable which each

parameter represents.
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Table 7.2: Table of parameters used within the statistical analysis.

ID Category Variable Variable Value Value Type Unit

1 Turbine Wind Turbine Planning Data Planning Outcome Categorical Accept/Reject
2 Turbine Capacity Megawatts/turbine Continuous MW
3 Number of Turbines Continuous
4 Year Discrete
5 Country Categorical

6 Resource Wind Speed Annualised Wind Speed Continuous m/s
7 Features Airports Distance to Feature Continuous km
8 Roads * Distance to Feature Continuous km
9 Railways Distance to Feature Continuous km

10 Urban Areas Distance to Feature Continuous km

11 HV Powerlines ** Distance to Feature Continuous km
12 Landscape Areas of Outstanding Natural Beauty Distance to Feature Continuous km
13 National Parks Distance to Feature Continuous km
14 Heritage Coast Distance to Feature Continuous km
15 Nature Special Protection Areas Distance to Feature Continuous km

16 National Nature Reserve Distance to Feature Continuous km
17 Sites of Special Scientific Interest Distance to Feature Continuous km
18 Special Areas of Conservation Distance to Feature Continuous km
19 Geographic Elevation Height above sea level Integer m
20 Slope Gradient Continuous %

21 Census Level of Qualification Higher than L4 *** Continuous %
22 Age Mean Continuous Years
23 Social Grade Social Grade AB **** Continuous %
24 Tenure Home Ownership Continuous %
25 Political Conservatives Percentage of Council Continuous %

26 Labour Percentage of Council Continuous %
27 Liberal Democrat Percentage of Council Continuous %
28 Cumulative Nearest Turbine Distance to Feature Continuous km
29 Nearest Turbine (Accepted) Distance to Feature Continuous km
30 Nearest Turbine (Rejected) Distance to Feature Continuous km
a * Roads are broken into four main categories: Motorways, A Roads, B Roads and Minor Roads. ** High
Voltage network at 140-400kV. *** L4 represents degree level or above. **** AB represents Higher &
intermediate managerial, administrative, professional occupation

7.4.2 National Characteristic Rasters

For each layer used within the model, proximity rasters were produced. The rasters provide two key

purposes for the analysis: firstly, they allow the characteristics of wind energy sites to be compared

against the national average, as discussed in Section 8.3. Secondly, they are used to generalise the

finding of the statistical analysis for use within the GIS-MCDA in Chapter 9.

The Euclidean distance is found for each of the geographical features in the model. This provides

the distance for each cell in the raster to the nearest feature. A resolution of 250 metres was used

within the model, as this is the typical minimum spacing that is required between modern turbines

(Meyers & Meneveau, 2012).
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7.5 Conclusion

It was highlighted in Sections 3.2 and 4.3 that there are a wide range of technical, environmental and

social parameters which have been connected to wind energy developments and the acceptability

of projects. This chapter therefore aimed to build upon this previous literature, and describe the

datasets collected within the context of Great Britain, the study region for this thesis.

Datasets were collected from a wide range of sources. As a result, pre-processing was required

to standardise the datasets and ensure they could be integrated within future analysis. These

processes also included the geospatial projection of tabular data (political and census) by using

respective boundary data.

Having collected and processed the dataset, two key functions were performed. Firstly, the

parameters were aggregated at each wind energy site. As will be shown in Chapter 8, this

aggregation will be used to determine whether any parameter is influential in the planning

acceptance of wind energy projects. Secondly, generalised rasters were produced for each layer

within the model, which will be used within Chapters 8 and 9 to generalise the outcomes of the

statistical model across the whole study region.

Chapter Summary

• Datasets collected from a total of 30 data sources, including physical, environmental and

social parameters.

• Preprocessing was conducted to ensure all layers were in a consistent format for analysis.

• Political and demographic data was merged with relevant boundary data to allow for

geographical referencing of the datasets.

• Contextual data was summarised for each wind energy project within the REPD for use

within the statistical modelling in Chapter 8.

• Generalised rasters were created for each model parameter to be used within the

geospatial modelling in Chapters 8 and 9
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• Chapter 8: statistical analysis is presented which assesses the influence of site parameters

on planning acceptance rates.

• Chapter 9 presents the results of the geospatial multi-criteria decision analysis for site

selection of wind energy projects. This integrates economic, legislative and site

acceptability to assess the suitability of sites for onshore wind development.

• Chapter 10 explores the spatial implications of the optimal wind energy site placement

suggested by Chapter 9. This combines data collected for energy demand and explores the

potential for cities to meet their energy needs through onshore wind technologies.





Chapter 8

Wind Turbine Statistical Assessment

As highlighted within Section 4.2, there have been many GIS-MCDA models which have been

developed within existing literature (Baban & Parry, 2001; Voivontas et al., 1998; Watson &

Hudson, 2015). These utilise a range of geospatial parameters to identify suitable sites for wind

energy development. However, there is a limited understanding of the input assumptions which

are largely based on empirical evidence, and as a result concerns have been raised regarding the

validity and accuracy of existing approaches (Langer et al., 2016). This chapter presents statistical

analysis which investigates the relationship between planning decision outcomes and a range of

explanatory variables included with literature, and has the following objectives:

• to validate the suitability of modelling data for statistical modelling.

• to make suitable adjustments to the model data to correct for potential issues within the

modelling.

• to explain the iterative process used to conduct the statistical modelling.
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• to identify the key influential parameters within the acceptance rate.

• to determine the overall fit of the statistical model for predicting acceptance rates.

• to generalise the findings of the model to predict the acceptance rates of wind energy projects.

Chapter Structure

As highlighted in Figure 8.1, the chapter is formed of three key parts:

1. Preliminary Data Analysis conducts a number of preliminary checks to the dataset. This

aims to provide an insight into the dataset and to ensure that the datasets are suitable for

the statistical analysis.

2. Statistical Analysis explains the statistical modelling used to assess the planning

acceptance rates of wind energy planning applications. Four different modelling approaches

were developed to determine a suitable model.

3. Generalisation of Results: utilises the results from the statistical analysis, and explains the

process of generalising the model so that it can be used to predict the likelihood of acceptance

of projects.

8.1
Preliminary Data

Analysis

Output
Validated dataset 

for Section 9.2

8.2
Statistical Analysis

Output
Influential Parameters &

Overall Model Fit

8.3
Generalisation of

Results

Output
National prediction model

Validate model assumptions
Assess data suitability
Transform dataset as required

Develop logistic regression
model
Determine influential parameters

Spatial predictions for whole of
Great Britain

Figure 8.1: Stages of Statistical Analysis.

Following each section, a discussion concludes the key points. The chapter aims to highlight the

development process which shaped the analysis, and explain the rationale for the decisions made

within the modelling.

8.0.1 Statitical Analysis

The overall aim of the model is to predict the likelihood of a wind turbine project receiving planning

approval. This statistical analysis is based on a logistic regression model, which can be used to
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assess binary relationships in categorical data. A brief primer of the theory and key concepts of

logistic regression is included in Appendix A. In addition, Appendix B provides the full outputs of

the statistical analysis.
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8.1 Preliminary Data Analysis

It has been noted that statistical models are fundamentally influenced by the quality of the data

used to build them (Harrell, 2001, p. 26). Failing to understand any limitations within the dataset

can result in misspecified statistical models. It is therefore critical that checks are conducted to fully

understand any potential issues within input parameters before modelling, and that any assumptions

required for the statistical analysis are met. This section therefore presents the preliminary analysis

conducted to understand the dataset.

8.1.1 Summary Statistics

Summary statistics provide a useful overview of the modelling data, and can provide an indication

of issues which may warrant further exploration. Table 8.1 presents these statistics for the numeric

variables within the model. It can be seen that the geospatial proximity to features used within the

study vary significantly in their range. For example, the maximum distance a wind energy project is

from Urban Regions is 7.7km while Heritage Coast has a range of 393.8km. Such a large difference

in range can create difficulty in interpreting results, as a unit change of 1km has a much larger

impact on the Urban Region parameter than Heritage Coast.

While previous studies have transformed the parameters to a standardized scale by using a z-score

linear transformation (Rensburg et al., 2015), it was decided that they would be left unaltered

within approach: such a transformation provides no direct benefit to the model other than to

allow a direct comparison to be made between the influence of parameters. In addition, model

parameters create additional complication in the generalisation of the model results as models

must transformed to the adjusted z-score scale to allow for comparison (Harrell, 2001, p. 123).

8.1.2 Missing Values

Logistic regression cannot directly deal with missing values within the dataset, and if an observation

lacks any single parameter, the whole record will be removed from the data. This can result in a

loss of data and potential impact on the modelling results, as a smaller sample size is used to build

the model. It is therefore recommended that missing values are assessed, and where appropriate,

imputed to create complete records (Harrell, 2001, Griffith (2003)).

It can be seen within the summary table that there are few cases of missing data across the total

dataset (n =1691), with a total of 2.7% observations being incomplete. It was found that Slope,

Elevation and Wind Speed missing data was a result of the rasterisation of the input dataset, with

sites near the edge of land (rivers, coastline, lakes etc.) being occasionally lost within the dataset.

Further missing data was seen within the political data, which resulted from boundary changes in

1995 which made it not possible to map, and the SNP party only exist within Scotland.
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Table 8.1: Summary statistics of the parameters collected for onshore wind energy
within the statistical analysis. These values represent the dataset before missing values

were imputed

mean sd median min max skew n

Turbine Capacity MW 1.9 1.0 2.0 0.0 10.0 0.2 1691
Capacity 18.9 31.2 10.0 1.0 652.0 8.1 1691
Year 2008.5 4.9 2009.0 1991.0 2017.0 -0.9 1691
Nearest Turbine (Operational) 13.7 27.2 6.7 0.0 561.2 8.6 1691
Nearest Turbine (Planned) 10.1 24.8 4.5 0.0 561.2 10.8 1691

Nearest Turbine (Rejected) 18.2 29.3 8.7 0.0 303.8 4.2 1691
Distance to Airports 25.9 23.3 20.3 0.0 174.6 2.9 1691
Distance to AONB 26.4 17.9 25.0 0.0 95.9 0.7 1691
Distance to A Roads 5.1 5.2 3.4 0.0 37.3 2.2 1691
Distance to B Roads 3.3 3.3 2.4 0.0 27.4 2.7 1691

Distance to Heritage Coast 107.9 83.4 98.3 0.0 393.8 1.1 1691
Distance to HV Powerlines 4.9 8.2 2.6 0.0 82.9 5.5 1691
Distance to Military Sites 22.2 18.8 17.4 0.8 137.2 2.5 1691
Distance to Minor Roads 1.0 1.1 0.7 0.0 7.8 2.2 1691
Distance to Motorways 55.6 64.5 30.8 0.0 323.0 1.8 1691

Distance to National Park 45.5 36.9 37.6 0.0 210.6 1.4 1691
Distance to NNR 18.3 13.8 15.1 0.1 98.0 2.0 1691
Distance to Powerlines 4.9 8.2 2.6 0.0 82.9 5.5 1691
Distance to Primary Roads 6.1 9.9 3.5 0.0 88.6 4.9 1691
Distance to Railways 9.4 14.2 5.0 0.0 121.6 4.0 1691

Distance to Ramsar 19.5 17.2 15.2 0.0 107.0 1.9 1691
Distance to SACS 7.9 7.2 6.0 0.0 46.6 1.8 1691
Distance to Natura 2000 12.1 10.7 9.1 0.0 69.6 1.6 1691
Distance to SSSI 3.0 2.3 2.5 0.0 13.3 1.2 1691
Distance to Large Urban Areas 6.5 6.0 4.9 0.0 61.2 2.5 1691

Distance to Urban Region 1.6 1.3 1.3 0.0 7.7 1.4 1691
Distance to Small Urban Areas 1.8 1.3 1.5 0.0 11.3 1.7 1691
Site Slope 3.1 3.1 2.3 0.0 21.4 2.1 1678
Elevation 179.9 144.9 149.0 0.0 684.0 0.7 1685
Wind Speed 7.4 1.1 7.0 4.0 12.0 0.4 1682

Mean Age 42.8 3.5 42.9 26.9 54.8 -0.4 1691
Qualifications, L4 27.6 8.4 28.0 5.0 56.0 0.0 1691
Social Grade AB 21.7 8.8 20.7 3.3 61.1 0.4 1691
Home Ownership 401.6 180.3 377.0 62.0 1195.0 0.6 1691
House Ownership 72.5 11.0 74.0 10.0 96.0 -1.1 1691

Political, Conservative Share 26.1 25.1 20.6 0.0 97.5 1.0 1666
Political, Labour Share 24.0 23.9 12.9 0.0 100.0 0.9 1666
Political, Liberal Democrat 15.1 14.7 11.2 0.0 70.6 1.1 1666
Political, Other 20.6 21.7 11.8 0.0 100.0 1.5 1666
Political, SNP Share 25.2 14.3 26.5 0.0 65.0 -0.1 937
a Political data represents the number of seats held within the local council, not the vote
share. This explains why the range can vary between 0 and 100



122 Chapter 8 Wind Turbine Statistical Assessment

Two techniques were used to impute missing datasets (Mandel J, 2015). Firstly, mean substitution

was used to impute missing slope, elevation and political data. For the SNP data, any missing

values which were in England and Scotland were imputed as 0.

8.1.3 Influential Outliers

Influential outliers are observations where values deviate from the expected range and produce

extremely large residuals (Hosmer & Lemeshow, 2004). These can result in incorrect inferences from

the statistical model, as the model may overfit to these extreme cases. It is therefore recommended

that assessments are made before statistical modelling is conducted to identify potential cases which

may need removal.

Figure 8.2a highlights the distribution of proximity variables, and provides a visual method to

identify potential errors. The boxplots highlight that many parameters have outliers, which are

largely caused by a narrow interquartile range resulting from the low standard deviations within

the dataset. As the outliers are relatively evenly spread throughout the dataset, with few extreme

values, they are of limited concern within the modelling.

The extreme values are in part caused by regional differences in landscape designation. For example,

Heritage Coast designations are only present in England and Wales, resulting in projects in Scotland

being consistently far away from these types of sites. There are a large number of projects which

are more than 300km away from the nearest Heritage Coast designation.

a) Spatial

b) Spatiotemporal

0 100 200 300 400

Distance to Minor Roads
Distance to  Urban Region

Distance to Small Urban Areas
Distance to B Roads

Distance to SSSI
Distance to HV Powerlines

Distance to Powerlines
Distance to A Roads

Distance to Primary Roads
Distance to  Large Urban Areas

Distance to Railways
Distance to SACS

Distance to Natura 2000
Distance to NNR

Distance to Ramsar
Distance to Military Sites

Distance to Airports
Distance to AONB

Distance to Motorways
Distance to National Park

Distance to Heritage Coast

Nearest Turbine (Planned)
Nearest Turbine (Operational)

Nearest Turbine (Rejected)

Distance, (km)

Figure 8.2: Boxplot for proximity variables which were derived from model parameters.
A different censoring distance was applied to Spatial and Spatiotemporal datasets (30km

and 80km respectively).
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A second boxplot is shown in Figure 8.2b which highlights the “Nearest Turbine” parameter dataset.

These are represented separately as their derivation used a different approach to the other geospatial

proximity parameters, considering both the location and the year of the development. This has

resulted in a small number of extreme outliers which represent sites which were the first to be

developed within a region. Only 16 sites were further than 100km from other planned wind energy

application sites.

8.1.4 Censoring Data

The boxplots in Figure ?? highlighted that there are many sites which are geographically distant

from particular features. For example, the furthest site from a Heritage Coast designation is 394km.

As would be expected, the planning decision1 for this particular project made no reference to the

Heritage Coast, as clearly a site would not be influenced by a landscape designation so far away. It

was therefore important that adjustments were made to the dataset to reduce the impact of such

sites on the statistical modelling.

Censoring was used to handle the large values within the model. Compared to truncation, whereby

the data points are removed from the model, censoring retains the value but limits it a maximum

value. Two separate censoring values were selected for the datasets:

1. For the spatial datasets, it was decided to censor the values to a maximum of 30km. This

value was selected as it is the maximum distance at which wind turbines are typically deemed

to have potentail visual impacts (Scottish Government, 2008).

2. For the spatiotemporal datasets (nearest turbines), literature suggests that regional scale

perceptions to wind energy can be influenced by wind turbines, even if it is not visible from

the other site (Eltham et al., 2008). A value of 80km was therefore selected, as this is the

furthest that any site in the UK is now from a wind turbine.

Distance to Airports was the only exception for the censoring process, as there is generally a greater

impact caused by wind turbines due to flight paths and radar (Civil Aviation Authority, 2016).

8.1.5 Collinearity

Collinearity between predictor variables can impact on the fit of models, resulting in inflated

standard errors of regression coefficients and reducing the power of corresponding tests (Harrell,

2001, pg.64). As a result, checks are recommended to be made both before and after the model

has been built. A correlation matrix is shown in Figure 8.3 which displays the pairwise Pearson

product-moment correlation coefficient, and provides a means to visually inspect potential

collinearity. The results indicate a number of key relationships:

1See https://goo.gl/mUA7QL for the planning decision documentation

https://goo.gl/mUA7QL
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• Number of Turbines and Capacity (R2 = 0.87): unsurprisingly, this suggests that wind

farms with more turbines will have more overall capacity.

• Qualifications and Social Grade (R2 = 0.88): this suggests that those who attain higher

professional positions would typically have higher levels of qualifications.

• A number of proximity features: many features (powerlines, roads, railways, military sites)

are indicated to have a high level of correlation.

• Grouping of linked parameters: A number of parameters were split or derived from the

same datasets which would be expected to be highly correlated. These include 1) Small,

Large and All Urban Areas and 2) Nearest Turbines All, Nearest Turbine Planned, Nearest

Turbine Rejected.
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Figure 8.3: Bivariate correlation matrix for predictor variables within the analysis.

Whilst these correlations provide an important insight into the dataset, it is not recommended

that such observations are used as the sole justification for removing parameters from the model.

However, these results raise concerns which should be explored further, and therefore additional

assessments of multicollinearity were made within the statistical analysis, as presented in Section

8.2.
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8.1.6 Linearity of Logit

As briefly discussed within the influential outliers section, logistic regression assumes linearity

between the predictor variable and the logit (Harrell, 2001). Assessments were therefore

conducted to assess this assumption, with smoothed scatter plots shown in Figure 8.4, whereby

each point represents an aggregated percentile. Linearity can be assessed by the shape of the

fitted curve, and the magnitude of the potential influence is indicated by the gradient of this fit.

The following general observations were made:

• Linearity of relationships: most proximity features appear to have a linear relationship

(AONBs, National Parks, Military, Natura 2000 sites).

• Non-linearity: Notable examples include Liberal Democrat voter share, and distance to

urban areas.

• Social Grade, Mean Age and Qualifications: all three of these variables appear to

negatively influence the planning acceptance rates. Combined with the high levels of

correlation, these again may suggest multi-collinearity between the variables.

• Overfitting of curves: although efforts were made to remove influential outliers, some

graph appear influenced by non-linear relationships (e.g. Heritage Coast, Small Urban Areas,

Primary Roads).

Whilst transformations can be used to correct non-linear relationships, it is recommended that

these are only made with a valid hypothesis: attempting to make transformations for the purpose

of improving model fit can introduce type I errors and also limit the interpretability of the

resulting model (Harrell, 2001). It was observed within existing GIS wind turbine studies that

linear relationships are primarily used. As a result, it was decided that no transformations were to

be made to the dataset.

Again, while these results can help indicate potential issues, it is not recommended that parameters

are removed prior to the analysis based on these results. There is the potential that the interaction

with other variables within the model may alter these relationships, and therefore further linearity

checks are conducted within the diagnostics of the statistical modelling.

8.1.7 Summary of Preliminary Data Checks

This section has presented the preliminary data analysis conducted on the model data. Several

potential issues were raised, with alterations being made to the dataset to ensure the suitability

of the model data. In addition, concerns were raised surrounding potential collinearity and the

linearity of the logit; however no parameters have been excluded from the analysis on this basis.

Further checks will build upon these findings within the following section.
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Qualifications, L4
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Social Grade AB
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House Ownership
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Figure 8.4: Scatter plots showing proportion of sites receiving planning against each
predictor variable. The graph uses the censored datasets as described within this
chapter. Individual observations are shown in the rug plots which highlight the marginal

distributions.
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8.2 Statistical Analysis of Wind Energy Acceptance Rates

Section 8.1 presented the measures taken to ensure the suitability of the model data for further

analysis. This section presents the iterative development of the models used, and covers the four

following methods:

1. Hierarchical Model: this section presents the initial regression model formed by sequentially

adding groups of parameters to the model.

2. Parsimonious Model: optimisation was run to reduce the number of variables included

within the model.

3. Subset Models: the model was split into temporal and regional subsets to explore the

variance in local parameters within the global model.

4. Geographically Weighted Regression Model: building upon the subset models, weighting

is applied to the regression modelling to explore for localised impacts.

It should be noted that only a short discussion is provided following each model, which focuses

on explaining the rationale of the refinement process. The overall discussion is included within

the conclusions in Section 8.2.5, which reviews the overall model results and discusses influential

parameters identified.

Model Approach

Logistic regression analysis was used to assess the influences of a range of predictor variables on

the planning acceptance of wind energy projects. This is based on the wind energy planning data

collected within the REPD and processed within Chapter 6, whereby sites are classed as either

rejected (0) or accepted (1). The logistic regression formula is as follows:

Probability of Outcome(Yi) = eβ1X1+β2X2+b3X3+...+bjXj

1 + eβ1X1+β2X2+b3X3+...+bjXj (8.1)

where Yi represents the estimated probability of being in one binary outcome category i versus

the other, and eβ1X1+β2X2+b3X3+...+bjXj represents the linear regression equation for independent

variables expressed in the logit scale, instead of the original linear format.

For each model developed within the analysis, the suitability was assessed and diagnostics

conducted, including the Hosmer-Lemeshow goodness of fit test (Hosmer & Lemeshow, 2004).

Model parameters were assessed for linearity of the logit, and collinearity identified using the

Variance Inflation Factor (VIF). Any parameters which violated the assumptions of logistic

regression modelling were removed from the analysis to prevent distortion of the model.

To further validate the model fit, the model’s accuracy was assessed using K-fold internal validation.

This approach splits the data into a K number of subgroups, with (K−1) number of groups being

used to “train” the model, while the remaining group is used to “test” the model. This process is
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repeated for each of the subgroups, allowing for a resilient test which can be used to validate the

model without excessively reducing the building sample size (Hosmer & Lemeshow, 2004).

8.2.1 Hierarchical Logistic Regression Model

It was shown in Section 4.2 that existing literature placed an emphasis on physical characteristics

when assessing the suitability of a site for wind energy development. However, qualitative studies

have indicated that socio-demographic parameters are important within the acceptability of wind

energy (Langer et al., 2016), although to the authors knowledge, no GIS models have integrated

these within their analysis directly.

A hierarchical approach was therefore applied to build the first model, whereby variables were added

sequentially to the model. This is suitable for where a hypothesis based on a predetermined order

of importance, as it allows for the relative impact of each group of parameters to be assessed

(Harrell, 2001). The following hierarchy was therefore developed for the analysis:

1. Aspatial Site Attributes: variables including Number of Turbines and Installed Capacity.

2. Economic Considerations: parameters which influence the cost effectiveness of the site,

including Wind Speed and Proximity to the National Grid.

3. Temporal Aspect: the year the planning application was made.

4. Proximity to Features: inclusion of proximity to geographic features, Landscape and Nature

Designations

5. Social and Census Data: Demographic data for the area of the wind energy project,

including Mean Age and Level of Qualifications.

6. Political Data: the political composition of the local authority composition at the time of

the planning application.

7. Spatial Proximity to Other Turbines: considers the proximity to the nearest wind energy

project in order to assess cumulative impacts.

Results

A summary of the stages of the hierarchical model is shown in Table 8.2. It can be seen that there

is a marginal improvement of the Nagelkirke R2 values across the results, and that the predictive

accuracy marginally improves as more parameters are included within the model. For the Hosmer-

Lemeshow test, the final model reports a p-value of 0.032, which indicates that the null hypothesis

holds that the model fits the data. The results for the parameters included within the complete

model (Model 7) are shown in Table 8.3, which indicates the statistically significant parameters.

The odds ratios (OR) are presented, with an OR = 1 indicating the parameter does not affect

odds of the planning outcome, an OR > 1 indicating the parameters positively influences planning

acceptance, and an OR < 1 represents a negative parameter influence.
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Table 8.2: A summary of the hierarchical logistic regression models.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Observations 1685 1685 1685 1685 1685 1685 1685
Parameters 3 5 6 22 25 28 31
Deviance 2303.2 2297.61 2211.43 2139.69 2108.01 2105.38 2069.23
R.n 0.016 0.020 0.086 0.138 0.160 0.162 0.187
Chi Square 20 25 112 183 215 218 254

Degrees of Freedom 2 4 5 21 24 27 30
p 5e-05 4e-05 0.000 0.000 0.000 0.000 0.000
Residual Deviance 1682 1680 1679 1663 1660 1657 1654
AIC 2309 2308 2223 2184 2158 2161 2131
Accuracy a 55% 56% 62% 64% 64% 64% 66%
a Accuracy assessed by internal validation using a random sample of 5% with 200
iterations.

Model Comments

The results presented in Table 8.2 indicate that the model has a relatively poor overall fit, and

that with the full set of parameters included, the Nagelkirke R2 value is only 0.187. To address

these concerns, more advanced logistic regression modelling techniques were explored to improve

the model fit, as explained in the following sections.

8.2.2 Parsimonious Model

The hierarchical approach considered the full list of model variables, resulting in a relatively complex

model. However, it can be seen that a large proportion of these variables have a low estimate value

and statistical significance, and their inclusion provides minimal improvement to the model fit.

Before advanced optimisation techniques were considered, the number of model parameters was

reduced to create a parsimonious model.2

The backward elimination technique was used to develop parsimonious models. In this approach,

all candidate variables are included within the model, and the deletion of each variable is tested

using a chosen model fit criterion, deleting the variable (if any) whose parameter results in the least

deterioration in the model fit. This process is repeated until no further variables can be deleted

without a statistically significant loss of fit (Hosmer & Lemeshow, 2004).

Alternative elimination techniques were considered within the analysis, as there are concerns

about the accuracy of backward elimination model in removing parameters. Interaction between

parameters may lead to a parameter scoring poorly in the presence of other variables while being

significant in a different sub-model (Harrell, 2001). An “all-subset” approach was therefore

explored, which considers all potential parameter combinations and selects the one with the best

2A parsimonious model is a model that accomplishes a desired level of explanation or prediction with as few
predictor variables as possible
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Table 8.3: Parameter results for the complete hierarchical logistic regression model
(Model 7)

Variable Estimate Std. Error z value Pr Sig. Odds Ratio OR 2.5% CI OR 97.5% CI

Number of Turbines 0.001 0.006 0.239 0.811 1.001 0.991 1.013
Turbine Capacity MW 0.346 0.067 5.184 0.000 *** 1.413 1.241 1.612
Wind Speed -0.090 0.063 -1.429 0.153 0.914 0.809 1.034
Distance to HV Powerlines 0.011 0.008 1.402 0.161 1.011 0.996 1.028
Year -0.116 0.014 -8.394 0.000 *** 0.890 0.866 0.915

0.008 0.008 1.009 0.313 1.008 0.992 1.025
Distance to A Roads 0.000 0.012 0.032 0.974 1.000 0.976 1.025
Distance to B Roads -0.022 0.019 -1.148 0.251 0.979 0.943 1.015
Distance to Minor Roads 0.060 0.070 0.857 0.391 1.062 0.926 1.219
Distance to Motorways -0.002 0.007 -0.282 0.778 0.998 0.984 1.012

Distance to Railways 0.015 0.009 1.659 0.097 . 1.015 0.997 1.033
Distance to Urban Region 0.143 0.064 2.228 0.026 * 1.154 1.018 1.309
Distance to AONB 0.017 0.006 2.748 0.006 ** 1.017 1.005 1.030
Distance to National Park 0.029 0.007 4.249 0.000 *** 1.030 1.016 1.044
Distance to Heritage Coast -0.009 0.009 -1.011 0.312 0.991 0.973 1.009

Distance to NNR -0.002 0.007 -0.348 0.728 0.998 0.984 1.011
Distance to Ramsar 0.012 0.007 1.824 0.068 . 1.012 0.999 1.026
Distance to SACS 0.001 0.010 0.105 0.916 1.001 0.982 1.020
Distance to Natura 2000 -0.018 0.008 -2.171 0.030 * 0.982 0.967 0.998
Distance to SSSI 0.031 0.025 1.235 0.217 1.032 0.982 1.084

Distance to Military Sites 0.001 0.008 0.150 0.881 1.001 0.986 1.017
Qualifications, L4 -0.031 0.007 -4.428 0.000 *** 0.969 0.956 0.983
Mean Age -0.041 0.017 -2.375 0.018 * 0.960 0.927 0.993
Home Ownership 0.000 0.000 0.480 0.631 1.000 0.999 1.001
Political, Conservative Share -0.003 0.003 -0.775 0.439 0.997 0.991 1.004

Political, Labour Share 0.003 0.004 0.687 0.492 1.003 0.995 1.010
Political, Liberal Democrat 0.001 0.005 0.190 0.849 1.001 0.991 1.011
Nearest Turbine (Operational) -0.015 0.004 -3.765 0.000 *** 0.985 0.977 0.993
Nearest Turbine (Rejected) 0.019 0.003 5.738 0.000 *** 1.019 1.013 1.026
Distance to Large Urban Areas -0.006 0.013 -0.464 0.643 0.994 0.969 1.020
a Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

fitting. However, it was found to offer no improvement, whilst being computationally intensive to

run. The backward elimination approach was therefore deemed suitable for the analysis.

Results

The results for the reduced model are presented in Table 8.4, and the odds ratios are shown

graphically in Figure 8.5. The total number of parameters in the parsimonious model was reduced

from 30 to 13. This has led to a marginal improvement in the AIC from 2131 to 2107. However,

this has marginally reduced the model fit, with the Nagelkirke R2 value reducing from 0.187 to

0.180. Finally, the predictive accuracy of the model was determined as 66%.
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Table 8.4: Results from the parsimonious logistic regression model

Variable Estimate Std. Error z value Pr Sig. Odds Ratio OR 2.5% CI OR 97.5% CI

Turbine Capacity MW 0.349 0.064 5.431 0.000 *** 1.418 1.251 1.610
Year -0.117 0.013 -8.949 0.000 *** 0.889 0.867 0.912
Distance to Railways 0.018 0.008 2.432 0.015 * 1.018 1.004 1.034
Distance to Urban Region 0.130 0.045 2.908 0.004 ** 1.139 1.044 1.244
Distance to AONB 0.015 0.005 2.672 0.008 ** 1.015 1.004 1.026

Distance to National Park 0.026 0.006 4.255 0.000 *** 1.026 1.014 1.039
Distance to Ramsar 0.014 0.006 2.325 0.020 * 1.015 1.002 1.027
Distance to Natura 2000 -0.017 0.007 -2.230 0.026 * 0.984 0.969 0.998
Qualifications, L4 -0.032 0.007 -4.770 0.000 *** 0.968 0.956 0.981
Mean Age -0.042 0.016 -2.567 0.010 ** 0.959 0.929 0.990

Political, Labour Share 0.004 0.002 1.434 0.152 1.004 0.999 1.008
Nearest Turbine (Operational) -0.015 0.004 -3.732 0.000 *** 0.985 0.977 0.993
Nearest Turbine (Rejected) 0.019 0.003 5.783 0.000 *** 1.019 1.013 1.026

Nearest Turbine (Rejected)
Nearest Turbine (Operational)

Political, Labour Share
Mean Age 

Qualifications, L4
Distance to Natura 2000

Distance to Ramsar
Distance to National Park

Distance to AONB
Distance to  Urban Region

Distance to Railways
Year

Turbine Capacity MW

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Odds Ratio

Relationship

Negative

Positive

Uncertain

Figure 8.5: Logistic odds plot for the parsimonious model. Variables shown in either
green or red are statistically significant positive or negative at 0.95 confidence interval.

Model Comments

The complexity of the model has been greatly reduced, with non-significant parameters being

removed from the model. Whilst such a model does not improve the overall fit, the reduced

numbers of parameters makes it easier to refine the model further, as explained in the following

subsections.

8.2.3 Split Data Model

It was hypothesised that the parameters influencing the planning acceptance of wind energy may

vary between countries within Great Britain. England, Scotland and Wales have varying

demographics and population densities3 as well as differing institutional support from national

governments, with Scotland placing a greater emphasis on the development of onshore wind

(Smith, 2016; Spath & Rohracher, 2012). It can also be seen that existing planning acceptance

rates are lower in England (41%) than in Scotland (49%) and Wales (48%) (DECC, 2016c).

3The population density as of 2013 was England: 413/km2, Scotland: 68/km2, Wales: 149/km2 (ONS, 2013).
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However, the global model presented in Section 8.2.1 was not able to account for any regional

variation in relationships.

Where significant variation is expected within subgroups, split data models are recommended,

whereby the dataset is segmented into groups based on model variables, and regression models

fitted to each subgroup (Stoltzfus, 2011). Whilst a dummy variable could also be considered, such

an approach only captures the level effect and not the slope effect, and therefore only allows for

limited variability between the subgroups. A split data approach was therefore developed using the

Country variable, creating three separate models for England, Scotland and Wales respectively.

It was shown in Section 8.2.2 that a parsimonious parameter list was developed, which found the

most significant variables for the global model. However, it was also considered that there may

be differing influential parameters between each local model. Therefore, two approaches used to

select the parameters for the models:

1. Global Parameter model: each sub-model used the parsimonious model parameters (n =

13) as developed in Section 8.2.2.

2. Optimised Parameter model: The full list of parameters was provided for each model (n =

31). A backward step optimisation was used to eliminate non-influential parameters, similar

to the approach used in 8.2.2.

Results

The results of the models are summarised in Table 8.5, which compares the two sets of split data

models compared against the results of the global parsimonious model developed in Section 8.2.2.

There has been a general increase in the fit of the models represented by the Nagelkirke R2 values.

For the Optimised parameter models, it can be seen that the number of parameters within each

model varies between 13 and 16, as derived from the backward elimination process.

As the split models have been built using different datasets, there is greater difficulty in directly

comparing the diagnostics to assess the model fit. Deviance, chi-sqared values, and residual

deviance are all dependent on the size of the datasets. Therefore, the models were compared

using the sum of the deviance of the split models, with values of 2041 and 1997 for the Global

and Optimised models respectively. The influence of each parameter within the model are

represented in the odds plots shown in Figures 8.6. It can be seen that there is variation of the

odds ratios between countries, although the splitting of data has resulted in a larger margin of

error. These regional differences are expanded upon within the discussion of this section.
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Table 8.5: Comparison of subset Logistic Regression Models.

Global Parameter Optimised Parameters

Global England Scotland Wales England Scotland Wales

Observations 1685 728 796 161 728 796 161
Parameters 14 14 14 14 13 16 13
Deviance 2079.34 884.02 957.03 199.97 872.17 947.43 177.84
R.n 0.180 0.180 0.223 0.178 0.199 0.237 0.326
Chi Square 244 105 146 23 117 156 45

Degrees of Freedom 13 13 13 13 12 15 12
p 0.000 0.000 0.000 0.04092 0.000 0.000 1e-05
Residual Deviance 1671 714 782 147 715 780 148
Accuracy 66% 66% 67% 56% 67% 68% 63%

Nearest Turbine (Rejected)

Nearest Turbine (Operational)

Political, Labour Share

Mean Age 

Qualifications, L4

Distance to Natura 2000

Distance to Ramsar

Distance to National Park

Distance to AONB

Distance to  Urban Region

Distance to Railways

Year

Turbine Capacity MW

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Odds Ratio

Facet

Wales

Scotland

England

Figure 8.6: Odds plot for Multilevel regression models split by country in the UK.

There is evidence of over-fitting which has resulted from splitting the data into subsets. It is

recommended that the number of parameters p in a model should not be less than m/10 where m

is the limiting sample size min(n1, n2) (Harrell, 2001). The Wales model has limiting sample size

of 78, which therefore should mean that no more than 7 should be used within the model. This

over-fitting can is shown by the fact that despite a high Nagelkirke R2 value (0.326) there is a low

predictive accuracy (56%), indicating observed values do not agree with the predicted values.
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8.2.4 Geographically Weighted Regression

Standard global modelling techniques cannot be used to detect local variations of the predictor

variable. More specifically, the same stimulus provokes the same response in all parts of the

study region. It was shown in the previous section that split data models were used to explore

differences between subgroups in the model, however these could only capture variation for a

predetermined spatial category (i.e. Country). However, there is evidence within the literature

that the acceptability of wind turbines varies at a sub-national level (Horst & Toke, 2010). More

advanced techniques were therefore explored to capture these regional variations.

To assess the suitability of the global model, the model residuals were mapped as shown in Figure

8.7. In a well-specified model, it would be expected to see that residuals varied randomly within the

model, with no spatial correlation. However, there are clusters of high and low residuals, indicating

that the model is under and over-predicting in certain regions. The Moran-I test was further used

to assess the autocorrelation, and it was found that there was spatial clustering within the model

(p = 0.0002) (Bivand, 2017). Such autocorrelation invalidates the assumption that residual values

are independent of each other (Hosmer & Lemeshow, 2004), and therefore measures were taken

to reduce these issues.

Residuals Quantile

(−2.33,−1]

(−1,−0.635]

(−0.635,1.08]

(1.08,2.26]

Figure 8.7: Mapped Residuals for the parsimonious logistic regression model.

To address the concerns of spatial nonstationarity4 within the data, Geographic Weighted

Regression (GWR) was used to account for the spatial location of points within the model

(Brunsdon et al., 1996). This technique builds upon traditional regression modelling, and instead

of fitting a single, global regression model, local regression coefficients are fitted to explore

4spatial nonstationarity is defined as a condition in which a simple “global” model cannot explain the relationships
between some sets of variables (Brunsdon et al., 1996).
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geographic differences in estimates across the study region. These local coefficients are obtained

at each location in the model, with a regression model applied, whereby sites closer to the

location have a greater influence than those further away.5

The relationship between the proximity of neighbouring site and the influence which they have on

the model is specified by a gaussian kernel function, which requires a bandwidth to be specified.

This can be either a fixed width or adaptive, whereby the bandwidth varies for each model to

include a prespecified proportion of the observations, as demonstrated in Figure 8.8. As there is

varying spatial density of wind energy projects within Great Britain, an adaptive width bandwidth

was selected. This ensures that there are sufficient observations to produce a robust model, even

in locations where there are few existing observations (Kasner et al., 2013).

Figure 8.8: Spatial weighting functions with adaptive Bandwidth. Adapted from
Fothering et al. (2002).

In order to determine the bandwidth size for the model, an optimisation is used whereby the

bandwidth selection minimises the overall AIC of the model. For the parsimonious model parameters

determined within section 8.2.2, an optimum adaptive bandwidth of 0.41 was calculated. This value

represents the fraction of sites to be used, which equates to 690 observations per locally weighted

model.

Results

The summary results are presented within this chapter while the full statistics are shown in Appendix

B8. For the GWR model, the corrected Akaike Information Criteria (AICc) is 1198, in comparison

with 2107 from the parsimonious regression model developed previously. The predictive accuracy

of the model was estimated as 69%.

The Moran-I test was used to reassess the presence of spatial autocorrelation within the model.

There has been a reduction in statistical significance (z = 2.42, p = 0.01). However, there

remains a high level of autocorrelation within the model residuals, suggesting there may be further

unexplained clustering within the dataset.

5For a brief primer on geographically weighted regression, the author recommends Kasner et al. (2013).
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The local variation of parameters influence is shown in Figure 8.9, which maps the β estimates for

each model parameter. It can be seen that the global estimate appears suitable for a number of

parameters, although there is local variation seen within the model. These will be explored further

within the discussion.

8.2.5 Discussion

This section has presented the development of the statistical analysis used to assess acceptance

rates of wind energy. This discussion aims to summarise the key findings within the model.

Overall Model Reflection

The development of the hierarchical model was used to help assess the suitability of existing GIS

studies. Models 1 and 2 from the initial hierarchical regression models indicate that the physical

and economic characteristics are not influential in the acceptance rates of wind energy. This can

be seen from both the low Nagelkirke R2 values of 0.187, along with the high levels of residuals

within the models. The largest improvement was found with the inclusion of the temporal data

in Model 3, although the political and demographic data also provided a marginal improvement in

model fit.

The parsimonious model highlighted several key parameters, as shown in Figure 8.5. Firstly, for

project characteristics, the size of the turbine capacity is indicated as a significant parameter, with

larger turbines increasing the chance of acceptance. This at first appears counter intuitive, but may

suggest that the developers of bigger turbines are more likely to appeal the decisions made against

larger wind farms, as rejection of such projects would result in a large loss of revenue. However,

it should be noted that this variable has a small standard deviation (sd = 1.0) compared to other

variables included within this model, and therefore the odds ratio inflates their influence within the

model.

Significant Parameters

The distance to urban areas was indicated to be statistically significant, although there is

considerable uncertainty as indiciated by the confidence interval. There are a number of potential

causes for this: firstly, it could indicate that high wind speed sites suitable for development tend

to be naturally less populated (i.e. hilly, isolated regions). Additionally, it may reflect a so-called

“Not in My Back Yard” (NIMBY) view from the vocal local population, with projects in closer

proximity to urban areas being more likely to be rejected. This has been a relatively contentious

subject within literature, with a range of studies supporting (Haggett & Toke, 2006; Jones &

Richard Eiser, 2010) and rejecting (Devine-Wright, 2005a; Populus, 2005; Rensburg et al., 2015)

the NIMBY argument. However this study provides quantitative evidence to suggest that that

sites closer to urban areas have a lower chance of acceptance.
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Figure 8.9: Results of the Geographically Weighted Regression parameters.



138 Chapter 8 Wind Turbine Statistical Assessment

For landscape and environmental designations, distance to National Parks, Ramsar and AONB were

indicated as significant parameters although have marginal impacts. This potentially reflects the

negative visual impacts which are often cited as a major impact of wind energy developments (Jones

& Richard Eiser, 2010; Langer et al., 2016). However, it should be noted that these influences

have a relatively low impact, despite literature suggesting that landscape designations would play

a more important role.

The level of qualifications, and the mean age of the local populous have been retained as significant

parameters for demographic variables. It is suggested that regions of higher education may be

more effective in organising campaign groups against such projects. This supports the hypothesis

developed by Van der Horst and Toke (Horst & Toke, 2010) that developers were “keen to avoid

relatively privileged communities and target areas where people are thought to less likely put up a

fight”.

For political variables, the percentage of local council authority control for Labour appear significant.

While there is limited research exploring political views and support for wind turbines, it had been

expected that there would be a level of correlation that may result from the Conservative party, as

their party has generally opposed the building of wind turbines (Smith, 2016). In addition, other

studies have highlighted that voters of Labour and the Liberal Democrats are personally more in

favour of onshore wind (Populus, 2005), which may result in less local objection against projects

in areas where they have stronger support.

The analysis suggests that proximity to existing wind energy developments may influence the

likelihood of projects receiving planning. The nearest operational wind energy project was indicated

as having a statistically significant negative effect, which suggests that projects further away from an

existing project are less likely to be accepted. In addition, the nearest rejected project is suggested to

be have a negative estimate, inferring that the further the site is from a previously rejected project,

the higher the chance of acceptance. As shown in Section 4.3.2, this “proximity hypothesis”

has been a contentious subject challenged within literature (Eltham et al., 2008; Ladenburg &

Dubgaard, 2006; Meyerhoff et al., 2010). However, this study provides quantitative evidence to

challenge this view.

There are notable parameters which are frequently used in GIS modelling, but do not prove

influential, including wind speed and the proximity to airports. This may reflect that these

parameters represent technical challenges which can be investigated in the early stages of project

development, and therefore any sites that are not suitable will not seek planning permission. An

assessment of these technical limitations forms part of the analysis in Chapter 9.

Regional Variations

The split data model developed suggests that there are varying influential parameters within

England Scotland and Wales, although the reduced number of observations used to build each

model increases the uncertainty substantially as indicated by the confidence intervals. Parameters

including Turbine Capacity, Wind Speed and Distance to Urban Regions show differing
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relationships for each country. This suggests that there may be differing motives for projects

within each country as well as differential planning constraints. For example, sites in England

appear more sensitive to AONB and National Parks than in Scotland and Wales, and supports

research that national level government decisions can influence the local developments (Langer et

al., 2016).

The geographically weighted model developed in Section 8.2.4 highlights that the local suitability

of models should not be overlooked, as there are large amounts of regional variation within the

parameter β estimates. As an example, the model suggests that demographics such Mean Age

have a higher influence within the South of England. There is often a desire to build large, national

scale models (Baseer et al., 2017), but it is clear that local context is crucial. This supports the

literature that indicates that a local understanding is crucial for accurate modelling (Devine-Wright,

2005a), and such results could be used to better inform local planning decisions.

Several statistically significant parameters exhibit little regional variation, including the Distance

to Nearest Turbine, Year and Turbine Capacity. It is interesting to note that the proximity to

turbines holds a global relationship, as it had been suggested in previous studies that regions in

South West England were generally more supportive of wind energy if they had existing exposure

to such projects (Jones et al., 2011; Moller, 2006). To see that such relationships are valid globally

can enable these findings to be used to help inform national policy.
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8.3 Predicting Site Suitability

It was shown in Section 8.2 that a logistic regression model was developed to assess the influence

of geospatial characteristics on the success rate of wind energy planning applications. In this

section, the results from the analysis were used to spatially forecast the outcome of future planning

outcomes.

It should be noted that this section does not consider whether a site is feasibly developable, but

only focuses on the likelihood of a project being accepted. This analysis is integrated into a full

decision-making model within Chapter 9.

8.3.1 Model Development

Spatial regression models can be used to generalise the findings of statistical analysis, and are

frequently used within geospatial modelling (Ward, 2008). Three main models were developed in

the previous section: 1) global parsimonious model; 2) regional model and 3) GWR model. While

the GWR model was shown to be the technically most suitable model, there are several concerns

surrounding the use of this model for the spatial prediction:

• For the added complexity, the GWR only led to a marginal improvement in the model accuracy

compared to the global model.

• The varying β coefficient for each parameter make it difficult to compare the results between

different regions.

• Logarithmic transformation made within the formula makes it difficult to infer the influence

that each individual parameter has on the likelihood of planning success. There is additional

complexity and computational requirements to generate a predicted GWR model for a large

geographic area. Regression models must be interpolated between the sample points.

• The main packages for GWR (spgwr (Bivand & Yu, 2017) and GWmodel (Lu et al., 2017))

are unable to conduct spatial predictions for logistic regression models.

Due to these concerns and limitations, the model was built using the global parsimonious model.

This model contained 12 variables, two of which were non-spatial parameters, Turbine Capacity

and Year. To include these within the prediction, fixed values were assumed, with a Turbine Size of

2MW (the average size of wind turbines in 2016 as shown in Section 3.2.2) and predictions made

for the year 2017.

In order to gain a local understanding of the suitability of the model, case study areas were selected

to conduct detailed comparative analysis. Two regions were selected, the Midlands (centre 52.52N,

-1.47E) and Solent (centre 50.91N, -1.4E), as shown in Figures 8.10b and 8.10c respectively. These

regions broadly represent the LEP regions, although slight adjustments were made to the Midlands

region to ensure a similar sized area as the Solent Area to aid comparison.
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(a) Overview Map (b) Midlands Region (c) Solent Region

Figure 8.10: Analysis Extent and regions selected for case studies.

The two study areas were selected for several reasons:

• The regions are similar size (4173km and 4214km2 respectively) with a mix of rural and

urban areas. Solent region covers an estimated population of 1.1 million, while the Midlands

region has a population of 1.3 million (ONS, 2017).

• Both regions have extensive rural areas which have been considered for wind resources in

previous developments; there are, however, large differences in the number of wind turbines

actually deployed, with no wind turbines in the Solent region while 30 projects have been

constructed within the Midlands region (DECC, 2016c).

• The author has local knowledge of the Solent region and knowledge of projects which have

been proposed in the area. Such an insight is important to be able to explore the local

context of the modelling results.

To further explore the regional variation, a selection of planning decisions for wind energy

developments within the Solent area were reviewed, with a total of 8 projects considered. This

provided a way of assessing the predictive results against a sample of previous sites within the

region.

Predictions of site acceptance were made across the study region at a resolution of 500 metres,

which was selected as it is the recommended minimum spacing between commercial scale onshore

wind turbines (Smith, 2016). The predictions were generated using the stats package in R (R Core

Team, 2017).

8.3.2 Results

The resulting site acceptability maps are shown in Figure 8.11, providing a prediction of the

likelihood of a project receiving planning acceptance. The global average acceptance rates for the

overall model was 20% with the range of individual sites from 2 to 90. Only 0.9% of sites scored

greater than 50% site acceptability, with 75.7% of locations estimated of having less than 25%

chance of acceptance.
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Figure 8.11: Maps highlighting the likelihood of wind energy projects receiving planning
permission, as derived from the parsimonious logistic regression model. A turbine size

of 2MW was assumed, and predictions were made for the year 2017.

A detailed breakdown of the regional case studies against the national average is shown in Table

8.6. No site within the Solent area is rated higher than 25% chance of acceptance. The Midlands

region appears more suitable, although again no region exceeds a 50% estimated chance of planning

success.

Table 8.6: Summary statistics comparing region suitability of onshore wind within the
study regions

mean sd median min max skew Area

GB 0.20 0.09 0.18 0.02 0.89 1.08 228433
Midlands 0.20 0.06 0.19 0.08 0.43 0.77 4216
Solent 0.06 0.02 0.06 0.02 0.25 1.74 4164

Detailed results are presented for the two cases study areas in Figures 8.12, highlighting the value

of each variable within the two study regions. These can be combined with the knowledge of odds

ratios as shown within the statistical modelling to infer the determining factors of suitability within

each region, as will be discussed further in Section 8.3.3.
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(a) Parameter layers for Midlands region.
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(b) Parameter layers for the Solent region.

Figure 8.12: Predicted outcome and variable mapping for the cast study regions.
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8.3.3 Discussion

The national prediction raster shown in Figure 8.11a highlights that there are large regional

variations within wind energy site acceptability. For example, large regions in Scotland appear

suitable for development, while many other regions with the South of England appear “off limits”

to development, particularly the regions along the South Coast of the UK.

For the overall model, there is a low average predicted acceptance rate of 20%, which is below the

rate of acceptance of wind energy in the UK, which was 40% in 2016 (DECC, 2016c). It would be

expected that the model would return a lower average, as sites which are selected by developers will

pass through several preselection criteria prior to planning permission (Smith, 2016). Therefore,

sites which are generally opposed before planning will often be abandoned before being taken to

planning permission.

The analysis results highlight that there is no “one-size-fits-all” approach, and that there are

large regional variations in the development of wind energy projects beyond the availability of the

resource. In comparison, the regional renewable energy studies conducted within the UK in 2010

broadly followed a consistent methodology to assess the resource potential, with small differences in

the development rules in particular regard to environmental and landscape designations (Stoddart

& Turley, 2012). Chapter 9 therefore explores the implication of these findings on the resource

potential of onshore wind.

Surprisingly, the model suggests that the South West of England has a low likelihood of acceptance,

despite having high levels of wind energy within the area. The UK’s wind energy development largely

started in the region, so it had generally been considered supportive of wind energy. Studies have

however noted that the region has a higher level of wind energy support in the region (Eltham et

al., 2008).

Case Studies

Despite the Solent and Midlands being similar in area and population, the model indicates large

differences in the acceptability of wind energy. On average, the results suggest area that projects

are 14% more likely to receive planning within the Midlands than in the Solent. To explore the

cause of this difference, the layer values shown in Figure 8.12 can be combined with the parameter

influence expressed within the Odds Ratios in the Section 8.2.2 to determine influential parameters.

The following regional difference can be observed to explain the difference:

• Nature and Landscape Designations: 24% of the Solent region contains National Parks

or AONBs.6 The proximity to such sites lessens the chance of project approval.

• Demographics: The demographic composition within the Solent region is generally higher

qualified, with a higher mean age. Both these factors were suggested to reduce the chance

of planning approval.

6New Forest, South Downs National Park, and AONBs on the Isle of Wight
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• Labour council share: the statistical model indicated that increased level of labour

counsellors resulted in higher acceptance of wind energy. The Midlands region has a high

coverage, while there is a low representation within the Solent region which is largely

Conservative led.

• Proximity to existing wind energy projects: For regions in the Solent area, there are no

existing turbines in the study area, with the nearest project over 50km from the region, while a

number of projects have been rejected planning permission in the region. In comparison, there

are 30 active projects within the Midlands region, with greater proximity to sites permission.

Within the review of planning applications of projects proposed in the Solent region, it was

consistently found that the AONB and landscape designations were cited as reasons for their

rejection (Isle of Wight Council, 2010; Test Borough Council, 2013). There is difficulty in

observing any direct relationship between political and demographic variables, as these in

themselves cannot be used to refuse the planning decision. However, as discussed previously,

these variables are argued to have an indirect impact on the planning process through more

effective campaigning against projects.

The statistical model indicated that Labour council seat share positively influences the acceptance

of wind energy projects, and it can be seen within the Midlands region that there are areas with

100% representation. However, it can generally be observed that Labour voters are concentrated

in urban areas (Dunleavy, 1979), and this view was supported within the preliminary data analysis

in Chapter 8.1, which highlighted the spatial correlation between Labour voters and Large Urban

areas. While wind energy may be more acceptable in these population groups, it is unlikely that

suitable sites for development will be found due to the land requirements which are not necessarily

available in urban areas. This therefore highlights the importance of integrating the results of this

sensitivity modelling with traditional onshore wind GIS approaches to identify sites which are both

socially acceptable and feasibly developable, a topic which is explored further within Chapter 9.

8.3.3.1 Application of Findings

While the model provides useful regional insights, it was shown within Chapter 8.2 that the overall

model fit was relatively low, with a Psuedo R2 value of 0.19. However, with the estimated cost

of planning applications for commercial scale projects exceeding £50000 (Renewables First, 2016),

there is large value in even marginal improvements in the site selection. The findings from this

model can help inform regional level strategy and provide an insight to developers of where projects

may be more suitable for future development.

As highlighted within the literature, there have been recent changes in legislation regarding the

planning of wind energy. These grant greater controls to local communities to oppose the

development of wind turbines (Smith, 2016). Such changes in planning likely have an effect on

the underlying influences of wind energy acceptance rates, and therefore care is required

forecasting the results of a model based on historic data into future predictions. However, such

approaches still offer a useful insight for high-level regional forecasting.
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8.4 Conclusion of Acceptance Rates Analysis

This chapter investigated the influence of geospatial, environmental, demographic and political

attributes on the probability of wind farm planning approval in Great Britain between 1990 and

2017. Four regression modelling techniques were developed and iteratively refined to improve the

overall suitability of the model.

The findings of this work reveal that local demographic and political parameters appear to

influence the planning outcomes of projects, and that many of the geospatial parameters typically

integrated into wind energy models appear insignificant in determining site approval. To the

authors’ knowledge, such quantitative findings have not previously been demonstrated for onshore

wind, and support the conclusions existing qualitative studies.

It appears that certain demographics are less accepting of onshore wind in Great Britain. Given

that UK planning policy has now devolved power locally and allowing local communities to have

the final say on projects (Smith, 2016), there may be a clear limitation to development in certain

regions in the country.

In addition, the results raise concerns of the predictive ability of existing geospatial modelling in

locating wind energy sites. These findings provide evidence to support existing literature that

GIS tools in themselves are of limited applicability (Malczewski, 2004; Toke, 2005), and supports

the conclusion that greater emphasis needs to be given to the non-physical elements of a project

(e.g. Community engagement with the scheme from an early stage) (Toke et al., 2008; Warren &

McFadyen, 2010; Wolsink, 2000).

A number of statistically significant parameters were identified within the research. The results

appear to confirm existing literature by indicating that the distance to urban areas positively affects

acceptance rates: however, there is a large amount of uncertainty as can be seen in the error bars.

It is also interesting to note that socio-demographic characteristics have been indicated as being

significant: the model suggests that regions with higher mean age and qualifications are less

accepting of wind energy.

While the models have indicated a range of significant relationships, there are concerns surrounding

the overall model fit, with relatively poor R2 values and predictive accuracy. This clearly reflects

the concerns raised within literature that geospatial tools in isolation fail to accurately model the

local challenges within renewable energy development (Malczewski, 2006b; Strantzali & Aravossis,

2015). These findings suggest that geospatial modelling techniques should not be considered

entirely in isolation, and that they are best combined with the development process of wind energy.

For example, it was shown in the literature review that projects proposed by local communities are

generally more accepted than those proposed by large energy companies (Toke et al., 2008).

In isolation, the results of this chapter are limited in their direct applicability for locating suitable

sites for development, as the chance of a project receiving planning permission is just one aspect

of a complex selection criteria for wind energy. The results of this chapter are therefore integrated
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with MCDA techniques in the following chapter to identify locations for development and assess

regional capacity estimates.

Chapter Summary

• Preliminary data checks identified several issues with the dataset, with missing data

being replaced, and censoring conducted to limit extreme values.

• Key parameters which influence the acceptance rates of wind energy include 1) Turbine

Capacity; 2) Year of Construction; 3) Demographic variables (mean age and level of

qualifications) and 4) Political variables.

• Analysis suggests that proximity to existing wind energy developments increases the

chance of a project being successful, countering the tradition “proximity hypthesis”

proposed by literature.

• The model accuracy at predicting wind energy acceptance rates is relatively low with an

overall model fit of 0.2, highlighting the importance of non-geospatial parameters within

modelling.





Chapter 9

Onshore Wind Turbine GIS-MCDA

The research has so far focused on exploring the sensitivity of wind energy planning applications.

However, they provide no indication as to whether a wind project should be built in the given

location considering technical and economic parameters. This section therefore builds upon the

analysis presented in Chapter 8 to present a geospatial model which can be used to identify suitable

locations for development and assess regional capacity for onshore wind energy. The chapter is

broken into the following sections:

• to outline the development of the onshore wind GIS model.

• to explore the difference in development opportunities within case study regions.

• to identify potential capacity limits for the UK onshore wind development.

149
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Overview

An overview of the stages of the analysis is presented in Figure 9.1, highlighting the overall structure

of the GIS modelling and decision making process. This is explained in detail within the following

subsections.

1. Data Collection 2. GIS 3. Scoring 4. Selection 5. Results

Protected Landscapes

Urban Areas

Demographics

Politics

Wind Speed

Distance to Powerlines

Landscape Designations

Urban Areas

Roads and Railways

Airports

Military Sites

Economic Viability

Site Acceptability

Exclusion Zones

Score Potential sites 
against parameters

Select Sites Results

Define Acceptance 
Criteria

Figure 9.1: Schematic of the GIS-MCDA analysis within this chapter for assessing
onshore wind site suitability.

9.1 Research Context

It was highlighted within the literature review in Section 4.2 that there have been a large number of

geospatial models developed for assessing the suitability of sites for wind energy installation, with

models typically using Multi-criteria Decision Analysis (MCDA) to identify the suitability of sites

(Baban & Parry, 2001; Watson & Hudson, 2015). However, a number of concerns were raised for

these existing modelling approaches:

1) Assessment of Site Sensitivity: GIS models are largely driven by a developers perspective,

and have not directly inferred the chance of a wind farm being granted planning permission.

The work from Chapters 8.2 and 8.3 has helped to identify what might influence a wind farm

being accepted, but it has not considered the overall site suitability.

2) Combination of non-commensurate data To create a single site suitability score requires

the combination of a range of economic, environmental and social parameters which cannot

directly be summed together into a single scale. Methods such as the linear transformation

method are often used to standardise each variable, but there is limited empirical justification

for such approaches (Jiang & Eastman, 2000).
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This approach builds upon the analysis presented in Chapter 8.3, and demonstrates an alternative

layered approach combining non-commensurate parameters, in particular avoiding the use of linear

transformations within the MCDA.

9.2 Model Layer Definition

To overcome the limitation of existing MCDA studies, a layered model approach was used to

separate non-commensurate datasets. Instead of combining variables into a single score, the

suitability of sites were scored against three aggregated variables:

1. Exclusion zones: legislative and technical restrictions which prevent the construction of a

wind turbine.

2. Economic viability: financial return of the potentail site.

3. Social acceptability: likelihood of the site receiving planning permission.

Exclusion Zones consider whether the site would technically be suitable for development. This

was based on several sources of information: firstly, existing legislation and ecological guidance

as discussed within the literature review. However, it was observed that there are few strict rules

of where developments are allowed: for example there is no legal specification for the minimum

distance between a house and a turbine (Langer et al., 2016). The existing development patterns

of wind energy projects was therefore assessed to identify whether specific regions were avoided by

developers. Based on this research, the following taxonomy was developed to categorise the types

of exclusion criteria:

• Hard Planning Criteria: legislative restrictions that prevent the development in specific

areas. For example, wind turbines must not be built within a toppling distance of main

roads. These were explained within the Literature Review in Section 3.2.

• Soft Planning Criteria: areas where there are no legislative restrictions but are generally

avoided by onshore wind developers. These were derived from statistical analysis of existing

wind energy planning applications. As an example, it is technically possible to build in

National Parks, however only two projects have been built within them, and therefore they

are largely considered as non-developable areas.

• Buffer Criteria: areas nearby sensitive features which are generally protected from

development. While the site itself may not be designated, this explores whether there is any

geospatial trend for sites to be located away from certain features. For example, wind

turbines sites are not banned near airports or nearby national parks, however these areas are

frequently avoided by developers.

The derived values are presented in Table 9.1. Based on these three categories, three scenarios

were formed to assess the impact of planning restrictions on the development potential: 1) Low

Restriction (Hard Planning Criteria only) 2) Medium Restriction (Hard & Soft Planning Criteria)
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Table 9.1: Parameters and exclusion distances used within the model.

Exclusion Distance, km

Parameter Hard Planning Criteria Soft Planning Criteria Buffer Criteria

Airports 0 2.00 10.00
Roads 0.15 0.15 0.15
Railways 0.15 0.15 0.15
Military Sites - 0.00 10.00
Urban Areas - 0.00 2.00

Powerlines 0.15 0.15 0.15
Landscape Designations a - 0.00 2.00
Nature Designations b - 0.00 2.00
a National Parks, Areas of Outstanding Natural Beauty, Heritage Coast
b National Nature Reserves (NNR), Natura 2000, Special Protection Areas (SPA), Sites
of Special Scientific Interest (SSSI)

and 3) High Restriction (Hard, Soft and Buffer).

Economic Viability of the site assesses the potential cost effectiveness of a wind energy project.

For wind projects, this is influenced by the 1) Wind Speed 2) Distance from national grid ; 3) Site

access and 4) Ground clearance (Van Haaren & Fthenakis, 2011). For the study region, it was

considered suitable to only use the first two parameters, as site access and ground clearance are

primarily only issues in more sparsely countries. Annualised wind speed data was used (DTI, 2001),

and logarithmic height transformations were used to account for the height of the wind turbine.

The power curve for a typical 2MW wind turbine (Vestas, 2017) were used to calculate the energy

yield based on a given wind speed.

Finally, Social Acceptability was based upon the analysis from Chapter 8, and predicts the

likelihood of a project receiving planning permission. This is based on the generalised statistical

model presented in Figure 8.11.

9.3 Multi-Criteria Decision Analysis

A challenge with MCDA is how to compare non-commensurate datasets to create a single. Existing

models often merge criteria which influence different quantitative scales. For example, the developer

is primarily interested in the economic viability, something which can be measured by a cost, while

the public may prefer locations which are more remote and have a lower visual impact on surrounding

landscapes.

In order to overcome the issues of faced by non-commensurate datasets, a multi-dimensional

approach was used to prevent the combination of contrasting datasets. As shown in Figure 9.2,

each site is categorised based on its Economic viability (X-axis) and Site Suitability (Y-axis), with

four types of suitability defined (Low/Potential/Good/Excellent).
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It is argued by the author that the cost is a less dominant factor compared to planning permission

in the UK, and therefore a lower cut-off point was selected for the analysis of this value. This

supports evidence in the UK that onshore wind speeds in the UK. The analysis selected sites based

on their suitability rating. To estimate the potential capacity of sites that could be developed, all

sites that score “Excellent” or “Good” were selected as suitable for development.

Economic 
Viability
(0 to 100)

Site 
Acceptability

(0 to 100)

Exclusion 
Zones

(Yes/No)

Do not plot

Potential 
Site

Is site 
excluded?

Yes

No

Figure 9.2: Classification of potential sites based on the GIS layer results.

9.3.1 Selecting Sites

Two methods were considered to identify suitable sites within the methodology:

1. Thresholding: criteria were set for minimum acceptability for cost and site sensitivity. Sites

which met a minimum criteria for the two parameters were deemed suitable for development.

There would be no attempt to rank the solutions as the cost and site sensitivity parameters

would not be directly compared.

2. Ranking: the sites are scored on the total suitability. Sites could be compared by defining a

single-dimension suitability score which combines Economic Viability and Public Acceptability.

However ranking sites on a combination of the economic and site sensitivity data requires

the combination of non-commensurate data.

As the key driver for the model is resource capacity assessment, it was decided that the threshold

approach was more suitable. It was therefore decided that any site with a score of “Marginal” or

better was considered as a suitable site for development.

9.4 Results

The results from the three separate geospatial model layers are presented in Figure 9.3. These

layers are combined to determine the site suitability score displayed under the medium development

restriction scenario, as shown Figure 9.4. Nationally, it can be seen from the results that sites appear

to be more suitable within Scotland, the South West of England, and patches of West England.

For the Solent region, 81% of the land was excluded with no sites being deemed “Good” or
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“Excellent” for wind development. In comparison, only 36% of the Midlands region was excluded

for development.

Low High

(a) Economic Viability

Low High

(b) Site Acceptability

High None

(c) Exclusion

Figure 9.3: Results for the GIS layers from the Onshore wind GIS-MCDA model.
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(a) National (b) Midlands Region
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Figure 9.4: Site suitability results from Onshore Wind MCDA model, under the Medium
Restriction Development Scenario.

Table 9.2 provides a cross-tabulation of suitability scores against the exclusion criteria, to assess

the impact of each of the three exclusion regions on national development patterns. Sites assessed

higher than “Good” and outside of “Soft Criteria” were considered as potentially suitable for
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development. Such sites cover 0.85% of the country, and if fully utilised (assuming turbines are

installed in all suitable sites at a density of 8MW/km2), would result in a potential capacity of

16GW..

The comparative suitability of the regions can also be explored through two-dimensional density

plots as shown in Figure 9.5. Each non-excluded site is represented as a point, and the regional

variation in acceptability and economic viability can be viewed on separate scales. The site

acceptability within the Solent region is generally less than the national average and the

Midlands, although the economic viability is generally similar.

Table 9.2: Site score suitability matrix comparing exclusion criteria against site
suitability, coverage of land covered by each classification

Exclusion Criteria

Suitability Score Hard Criteria Soft Criteria Buffer Criteria No Exclusion Total

Low 13.21 29.72 30.92 2.44 76.29
Marginal 4.12 6.6 8.89 3.23 22.83
Good 0.03 0.41 0.28 0.16 0.88
Excellent 0 0 0 0 0
Total 17.36 36.73 40.08 5.83 100
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Figure 9.5: Two-dimensional density plot comparing regional site suitability.

9.5 Discussion

The analysis suggests that 16 GW of onshore wind would be highly suitable within a medium

development restriction scenario, which considered the “hard” and “soft” planning criteria. If

the stricter “buffer” criteria are met, the estimated capacity is reduced to 8 GW. Both these

estimates are significantly lower than previous studies which have suggested total capacity could

exceed 200 GW (Gove et al., 2016a; Stoddart & Turley, 2012). This highlights the impact of

considering likelihood of planning acceptance within the GIS-MCDA and the constraint this places

on development.

It was shown in Section 2.5 that there is 9GW of installed onshore wind energy in UK, 8GW of

which is within Great Britain. Based on the estimates from the model, the existing onshore wind
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capacity could be doubled, and would increase the share of renewable energy generation by 25%.

This would provide a significant contribution to renewable energy targets.

The case studies of Solent and Midlands highlight the regional variations in onshore wind potential

resource as shown in Figure 9.4, and builds upon the evidence presented in the previous chapter.

From a resource perspective, the Solent area is highly suitable with many hilly regions and its

coastal location results in high wind speeds. However, the opportunity for development is limited

by National Parks and AONBs, and the sites that are located outside of these regions are largely

unsuitable for development due to the demographic composition. In comparison, the the Midlands

region faces much less restriction in where developments could be made and presents much greater

opportunity for future development.

The results further highlight that cost is not the dominant issue in determining the suitability of

a wind energy site, as wind speeds are largely satisfactory and in Great Britain most sites are an

acceptable distance to powerlines for a wind turbine to be economic. A number of previous studies

have placed a high weighting on wind resource (Shirgholami et al., 2016), reflecting the interest of

the developer to maximise returns. In reality, it may be in their interest to select a less windy site

that is more likely to receive planning permission.

On a national level, it is important to consider the distribution of potential sites and the consequent

impact this may have on the electricity transmission network. The results indicate that regions in

Scotland are most suitable for further development; however, such areas are distant to large load

centres such as cities, requiring transmission networks or energy storage to be upgraded (National

Grid, 2017).

It was seen that there are large amounts of variation within the UK, with Scotland being highly

suitable compared to many parts of England and Wales. This is further highlighted by Figure 9.6,

with the treemap comparing the area of administrative regions against the estimated resource

potential from the model. The graph highlights how there is a disproportionate availability of

resource in Scotland, and how a select number of administrative areas have access to a large

proportion of the wind resource. In particular, the Highlands, Dumfries and Golloway and

Aberdeenshire over 30% of the national wind resource, despite covering only 19% of the land

area.

A benefit of building the model into several intermediate layers, such as used in this model, is

that it allows the results to be more easily interpreted and minimise the concerns surrounding

standardisation of parameters. When combining the variables into a single suitability score, it can

easily hide or distort what is influencing the site score, and make it difficult to understand why

some sites are more suitable than others are.

Whilst the analysis has tried to understand the chance of a project being accepted, it has only

considered those which can be geospatially modelled. As previous studies have highlighted, such

parameters in themselves only provide part of the explanation as to why wind farms are accepted

(Langer et al., 2016; Toke, 2005). Greater emphasis must also be placed on the planning process

and local engagement of a wind project if it is to be successful at planning. The analysis has also
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Figure 9.6: A treemap comparing the area against the estimated resource for Counties
within the United Kingdom.

not considered the impact of electricity transmission networks, and the potential requirement of

grid reinforcements. It is already being seen in the UK that grid reinforcements are being made to

transfer electricity and this is becoming a limiting factor in the development of renewable energy

projects (National Grid, 2015). The majority of sites identified as suitable for development are

distant from large load centres, and therefore would place additional strain on the transmission

network to transfer this electricity across the country. It is therefore important that this issue is

explored further in future analysis.

The model only considers the suitability of individual wind turbines, and does not assess whether

an area is suitable for development of a larger wind farm. There would be economies of scale

in proposing a single larger development, and as such, these locations would be preferential to

developers.

The analysis did not consider the influence of the cumulative number of wind turbines within a

certain area. It is not fully understood within literature whether there is a limit to the development

potential of wind turbines, although some evidence suggests that regions can reach a saturation

level (Moller, 2006; Toke et al., 2008).

9.6 Conclusion

This chapter has presented a GIS-MCDA which can be used to assist in locational planning of

onshore wind turbines. By integrating planning acceptance rates into the decision-making process,

the results of this model have highlighted that the potential resource is significantly lower than
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previous estimates. However, there remains an opportunity for further development of onshore

wind turbines to help meet renewable electricity generation targets.

The GIS-MCDA presented an alternative method of combining non-commensurate data into the

decision-making process. By avoiding the use of standardisation, there is less distortion to the

input data and this reduces potential errors within the model results. This also provides greater

insight into the model results as it is easier to understand the factors influencing site suitability.

Using two case studies, the results have shown how the onshore wind capacity can vary significantly

for similar types of regions within the same country. This can be influenced by physical restrictions

such as landscape and nature designations, or “hidden” factors such as local demographics and

political composition. It is therefore important that these factors are understood when wind energy

projects are being considered within a region.

The findings of this analysis can be used by a range of stakeholder to improve the planning and

development of wind energy projects. As examples, regional planners could more accurately

estimate the potential capacity within their region, and project developers could gain a greater

understanding of where sites should be proposed to increase the likelihood of receiving planning

permission. The results should support, not replace, local level planning.

Chapter Summary

• GIS MCDA model built to integrate planning acceptance analysis, as shown in Chapter

8.

• A layered approach was developed to consider legislative, economic and planning

acceptance separately to address concerns surrounding non commensurate data.

• Capacity estimates are indicated to be within a range of 8 to 16GW. This figure is

well below previous estimates, with estimates of 200GW being suggested, and is largely

due to the consideration of social acceptance reducing areas in which wind energy is

developable.



Chapter 10

Energy Neutrality Scale Analysis

The analysis so far has considered renewable electricity supply in isolation of energy demand.

However, it was noted previously that the locations where renewable energy supply is high are

often not the best for the electricity transmission network (Wilson, 2012). For example, a large

proportion of wind resource is in Scotland, and this compounds the already growing pressures to

upgrade the national grid to cope with this geographic separation from the major cities in the UK.

Using the results of the onshore wind GIS-MCDA as a case study, this chapter presents a novel

approach of assessing the ability of cities to meet their energy demand. The chapter has the

following aims:

• to outline the spatial scale analysis methodology for assessing potential energy neutrality.

• to demonstrate the use of wind energy as a case study model.

• to highlight potential areas of conflict within UK regions.

159
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10.1 Background

It was presented within the background literature in Chapter 2 that there have been calls for the

broader consideration of spatial scale within energy analysis (Bridge et al., 2013). While the topic

of spatial scale has been raised within literature (Frew & Jacobson, 2016; Horsch & Brown, 2017;

Oudes & Stremke, 2018), there has been limited consideration regarding the assessment of the

suitable planning scale of cities, and to the author’s knowledge, no quantitative assessments have

previously been conducted which directly assess the impact of planning scale on renewable energy

development.

Whilst cities are developing as a key scale for the transition to renewable energy technologies,

there are concerns that they have limited resource availability to drive the transition to renewable

technologies. In particular, urban areas have limited opportunities for renewable energy resource

(aside from building mounted Solar PV) and experience high energy demand. It is therefore argued

that urban areas are reliant on their surrounding rural land, termed “urban hinterland”, which

generally have lower levels of energy demand and greater opportunities for the development of

renewable energy technologies. These challenges are represented in Figure 10.1. However, it

remains unclear how large this surrounding area must be for the energy needs of the urban region

to be met.

Figure 10.1: The Energy Balance context of urban and rural regions.

It is therefore argued that it is important to understand the scale at which energy demand can be

met by available renewable energy resources. Such information would enable the application of the

“Matching Principle”, whereby whereby the scale of the infrastructure challenge should determine

the appropriate governance level for responding to it (Butler & Macey, 1996).
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10.2 Generalised Methodology

The Energy Neutrality Scale Analysis (ENSA) approach was developed to determine the scale at

which energy equilibrium can be met for a city. The overall methodology is outlined within Figure

10.2. By considering large urban conurbations as “hubs”, the model seeks to identify the scale at

which energy balance between energy demand and renewable resources can be achieved. The full

methodology is detailed within this subsection.

Extent and Analysis Locations

It may appear slightly circular in nature, but whilst the model aims to determine the scale of

planning, an overall study extent must first be specified for the model analysis. It is recommended

that this is conducted at the largest possible scale for initial scoping studies, with the opportunity

to further refine the model to determine local constraints later.

Within the study region, cities and towns should be selected for the assessment of energy scale.

Whilst the methodology can be run on multiple cities, it considers each location in isolation, and

therefore the energy footprint of cities in close proximity may overlap. This is discussed in detail

within Section 10.4

Energy Potential Mapping

The potential for each renewable energy technology needs to be assessed for the study region.

Energy Potential Mapping (EPM) can be used to generate resource potential maps for the renewable

energy technologies considered within the assessment (onshore wind, solar photovoltaic, etc.). Each

technology layer must be generated into a consistent resolution, both temporally and spatially, to

allow for aggregation of the various layers within the model.

The work presented in Chapters 8 and 9 aimed to highlight the importance of developing detailed

EPM models for resource assessment of renewable energy technologies. It is important that these

layers accurately reflect not only the technical constraints of renewable energy development, but

also consider the broader social and technical restrictions.

The methodology can optionally include marine resources within the assessment (offshore wind,

tidal turbines etc.). However, within the UK context, there is strong legislative control over such

developments from a national level, as development is controlled by the Crown Estate as explained

in Section 2.5. It was therefore decided to not consider such resources within the methodology,

instead focussing on land-based technologies.
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Figure 10.2: Energy Neutraility Scale Analysis, Generalised Methodology.
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Energy Demand Inclusion

Energy demand statistics must be collected for the region, and must be spatially disaggregated. It

is recommended that data is collected at the finest resolution possible (typically by council ward),

instead of regional or county level statistics. This allows for the spatial variation in energy demand

to be considered within the model.

Energy Balance

Having determined the potential energy supply and demand for the technologies considered, the

aggregated energy balance map layer can be developed. This should be calculated for each cell

within the model layer, as conceptualised within Figure 10.3.

The overall aim of this stage in the process is to highlight regions in which there is energy imbalance.

This imbalance will largely be a result of the high energy consumption within urban areas, as the

peak energy demand within cities far exceeds the renewable energy potential for rural land: as an

example, peak wind turbine installation density can generate around 10 GWh/annum/km2, which

provides around 10% of the equivalent energy density required to meet demand in Central London

(measured to be 96 GWh/annum/km2).

Figure 10.3: Schematic highlighting the calculation of energy self sufficiency within
the ENSA methodology.

Scale Building

Two approaches are proposed for the assessment of spatial scale:

• Radial Approach: concentric rings are taken from the centre of the analysis region. The

energy balance is considered within each ring of the buffer.

• Boundary Approach: the existing territorialisation is considered within this, and is based

upon the current boundaries within the study region. Starting from the centre of the study

region, neighbouring regions are sequentially added to the energy cluster with the energy

balance being considered after each stage.
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These two separate approaches are demonstrated in Figure 10.4, highlighting the difference in

regions considered for the Solent region. It should be noted that as an island, the Isle of Wight is

considered as separated in the boundary-based approach.

Southampton

(a) Study Location

10

20

30

Distance
(km)

(b) Radial Approach

0

5

10

15
Distance

(c) Territorial Approach

Figure 10.4: Two possible approaches for calculating distance within the ENSA
methodology.

Determining Planning Scale

The model calculates the energy balance for each step in the city buffer rings/neighbouring regions.

The aim of the model is to determine the scale at which energy demand can be met by renewable

energy sources. If n represents the distance from the centre of location, the aim of the model is

to satisfy the following equation:

find n where
n∑
j=1

EDemand − ESupply = 0 (10.1)

As the area of the assessment increases around a city, the demand may still increase if the study area

includes other towns or cities. This can result in spikes in demand as the search radius increases,

and is highlighted further within the case studies of this analysis.

Temporal Resolution

It is important to note that the model does not aim to achieve energy autarkic regions (i.e. regions

which operate independently with no interconnection): it is not seen as desirable operating as a

separate, local network, as the benefits of interconnection allow for electricity to be transferred

between regions during periods of excess supply or demand within the network. As a result, the

model focusses on an annualised temporal resolution with the assumption that interconnection is

available to balance the daily and seasonal variation in supply and demand.
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10.3 Application of Methodology

Having outlined the ENSA methodology within Section 10.2, this section highlights the use of

the analysis within the UK context, applying the model to a number of case study regions. The

analysis aims to highlight the challenge of spatial scale and quantify the challenges faced by cities

to achieve greater energy self-sufficiency.

10.3.1 Energy Layers

The methodology outlined that energy neutrality covers all supply and demand technologies.

However, this study focuses on the use of onshore wind as a case study technology, comparing

the potential neutrality in relation to electricity demand. The two layers were therefore generated

as follows:

• Electricity Usage (Demand): electricity demand data was collected from aggregated

statistics at the Middle Super Output Area (MSOA). This considers both domestic and

commercial consumption, and provides annualised consumption values (DECC, 2014).

• Onshore Wind Potential (Supply): the results for the onshore wind GIS-MCDA presented

in Chapter 9 were used to estimate the onshore wind energy potential. Using the higher

range estimate, it was assumed that within the initial analysis that all sites rated “Good” or

“Excellent” could be developed. For potentially developable sites, the annual energy yields

were derived using the average wind speed and Weibull transformations as outlined in Section

3.2, assuming the load profile of a typical 2MW wind turbine.

Study Locations

A number of case study towns and cities were selected for the energy scale modelling, as shown

in Figure 10.5a. The population of each region is highlighted in Figure 10.5b to demonstrate the

varying size of the regions selected. The cities and regions were selected to represent a mix of

geographic locations and sizes. In addition, neighbouring urban areas in the Midlands (Coventry,

Nuneaton & Rugby) were selected to highlight the potential resource conflict between cities and

towns in the same region. This is explained further within Section 10.3.2.

It was decided that larger cities exceeding 1 million in population (London, Birmingham,

Manchester etc.) would not be included within the analysis. Such large urban areas and

surrounding conurbations are largely unsuitable for the development of onshore wind energy

technologies as indicated within the results in Chapter 9, and therefore the results of this case

study would provide limited use in determining the energy balance within these regions.
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Figure 10.5: UK cities and urban regions selected for analysis within the model.

Building Model

For each urban hub, the energy demand and potential supply were summarised in 1km radial

buffers, up to a distance of 25km from the centre. Cumulative energy demand and supply figures

were then calculated for each of these radial distances.

10.3.2 Results

A summary of the results for each study location is shown in Table 10.1. The table highlights

the energy balance at 5km distances, up to a maximum of 25km. Within the table, the Energy

Supply (S) and Demand (D) are shown, expressed as GWh/annum. These values are used to derive

the energy balance, which indicates the percentage of energy demand which can be met from the

renewable supply. Finally, the table highlights the distance in kilometres at which energy neutrality

is achieved.
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Spatial Scale Distance

To generalise the results of the model and compare study regions, the percentage of energy supply

met by renewable sources can be plotted against distance, as shown in Figure 10.6. A value of

100% representing all demand is met by renewable energy supply (i.e. energy neutrality).
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Figure 10.6: Graph highlighting the energy balance of the case study regions. 100%
= energy neutrality. 0% = no renewable wind potential.

Figure 10.6 indicated that the population of the study region influences the ability of a region to

achieve energy neutrality. Such a relationship would be expected, as lower population areas will

generally experience a lower energy demand than a larger city. To further assess the relationship

between energy neutrality and population, Figure 10.7 provides a scatterplot comparing the

population against the distance at which energy neutrality was achieved. Of the locations

considered, no area with a population greater than 150,000 was able to achieve energy neutrality

within the study distance of 25km.
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Figure 10.7: Graph comparing the distance at which energy neutrality is achieved
compared to the population.

Neutrality Maps

Energy neutrality maps provide a way of visualising the spatial distribution of renewable energy

demand, and identifying regions of high electricity consumption and potential regions for renewable

energy development. Figure 10.8 provides an example of supply, demand, and energy neutrality

maps for Scarborough, UK, to demonstrate the formation of the layers. Figure 10.9 provides the

energy neutrality maps for each of the study areas considered within the model.
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Figure 10.8: Energy Potential Mapping for Scarborough, UK.

For the energy neutrality maps, several observations can be made:

• Both Wick and Fraserburgh are relatively small towns, with a large resource of wind energy

in the surrounding hinterland. Within the 25km study distance, it is suggested that they are

able to supply 62 and 22 times their electricity demand through onshore wind respectively.

• Inverness was the region with the highest energy demand to achieve energy neutrality.
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• Scarborough achieved energy neutrality at a distance of 24km. It can be seen that there are

few renewable energy sites nearby the site, but a large area of wind energy suitability to the

South East of the town.

• Whilst study areas generally experienced an increase in the net energy balance (Supply ÷
Demand), Coventry, Rugby and Nuneaton reduced with further distance. It can be seen in

Figure 10.9c that this may be a result of the proximity of urban areas, with the study region

including the outskirts of Birmingham.

• Both Southampton and Lowestoft were suggested to have no developable wind turbine

locations within their surrounding study area.

Resource Conflict

It was highlighted within the methodology that the ENSA model only considers each urban hub

individually. The spatial scale calculation does not consider whether the model overlaps other

urban areas. As a result, it is possible for the energy demand of neighbouring cities to be included

within the calculation as the size of the region increases. This effect was visible within the three

case study urban areas of Coventry, Nuneaton and Rugby: as the regions were in close proximity,

the increase in study buffer distance at each city resulted in the buffer zones encroaching into the

neighbouring urban areas. This spatial proximity leads to a large increase in energy demand as

the buffer area increases, which counters the more gradual demand increase found in more isolated

areas.
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Figure 10.10: Map and energy neutrality graph highlighting the potential resource
conflict within the case study towns of Rugby, Nuneaton and Coventry.
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Figure 10.9: Energy neutrality maps for the case study locations. Maps display the
annualised energy demand GWh per square kilometre.
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10.4 Discussion

The buffer maps highlight the spatial dependency of renewable energy development opportunities.

A number of cities were analysed which were comparable in size and population, including

Southampton and Plymouth. However, both cities are highly restricted in their potential for

onshore wind technologies, and therefore cannot achieve energy self-sufficiency within their

surrounding hinterland. In comparison, Dumfries, with a population of 148000, was able to

achieve energy neutrality at a distance of 14km.

The regional case study of Coventry, Nuneaton and Rugby highlights the potential resource conflict

surrounding urban areas in close proximity. The results also demonstrate the issues of the optimal

spatial planning at which towns may seek to plan their energy. Nuneaton and Rugby are both able

to achieve a higher level of energy self-sufficiency when planning at a smaller scale: the results

indicated an optimal distance of 12 and 8km respectively, where both towns were able to meet

50% of their energy demand. As the region increases in planning size, the potential energy balance

decreases as the area contains Coventry and Birmingham, two larger urban areas with high energy

demand.

Relating to existing literature, the study reinforced that the spatial scale of the energy planning is

highly dependent on the population of the region. It was shown the regions of Samso, Denmark

and Siena, Italy, had achieved energy neutrality within recent years (Casprini, 2013; Oudes &

Stremke, 2018). However, these regions are comparatively small, with populations of 3,724 and

52,774 respectively, and therefore the achievement of this targets is seen as more achievable when

compared to the larger city-regions considered within this analysis. As shown by the results, larger

urban areas will face much greater difficulty in meeting energy demand, and therefore caution is

required when using examples such as Siena and Samso as a blueprint when establishing ambitions

for energy neutrality.

The results of this analysis should be taken within the context of the model, which only considered

wind energy and electricity demand. Within the context of Great Britain, there are extensive

opportunities to utilise solar photovoltaics, with large levels of development experienced within

South England (DECC, 2016c). However, there is evidence that such resources can only provide a

limited portion of urban energy demand, with estimates suggesting a maximum of 25% for medium-

density urban areas like Southampton (Wu, 2017). The findings of this study therefore indicate

the vulnerability that regions in the UK appear to face in meeting high energy demand within

constrained areas. For the further use of this model, it is important that additional renewable

energy technologies are integrated within the assessment.

10.5 Conclusion

It was demonstrated within the background literature in Section 2.2 and the literature review in

Section 4.4 that there have been calls within literature for the consideration of spatial scale within
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the transition to renewable energy technologies (Bridge et al., 2013; Bulkeley & Betsill, 2005;

Spath & Rohracher, 2012). Whilst there has been extensive modelling conducted to assess energy

systems within the UK (Hall & Buckley, 2016), to the authors’ knowledge, no studies have assessed

the influence of spatial scale on energy planning. The work therefore aimed to explore the influence

of spatial scale on the ability of a region to meet it’s energy demand.

Within this Chapter, a generalised Energy Neutrality Scale Analysis (ENSA) methodology was

developed to assess the potential for an urban region to achieve energy neutrality. The spatially

explicit model assesses potential renewable energy generation against existing energy demand, with

the aim to determine the scale at which the urban area can balance these two layers.

A case study was presented within this Chapter, using the ENSA methodology to compare the

spatial scale at which onshore wind resources may meet the demand for urban electricity demand.

This resource assessment of onshore wind built upon the analysis presented within Chapters 8 and

Chapters 9 in an attempt to more accurately model the potential for onshore wind development.

Within this case study, it was demonstrated that the ability for a urban area to achieve energy

neutrality is highly spatially-dependent, and heavily influenced by the location of the urban

conorbation. Cities in Scotland appear to have a easier task in achieving energy neutrality, whilst

many regions in England appear to lack sufficient energy resources in the surrounding hinterland

to meet the high levels of energy demand.

It was highlighted within the literature review in Section 4.4 that there has been widespread interest

in the energy modelling within recent years (Hall & Buckley, 2016). The model aimed to provide

a specific optimisation approach, but the outcomes from the approach should be integrated with

generalised modelling. For example, LEAP and MARKAL/TIMES models are frequently used to

consider long-term trends and the potential energy mixes within future scenarios. Such an approach

would enable more advanced forecasting to be conducted and prioritise the key areas for investment.

Chapter Summary

• Energy Neutrality Scale Analysis (ENSA) methodology developed to assess the energy

neutrality of a urban area and surrounding region

• 14 case study towns and cities were used to assess the scale at which energy neutrality

could be achieved.

• Results indicate that the ability to achieve energy neutrality is highly spatially-dependent.





Chapter 11

Conclusion

The work in the thesis has presented three key research areas: firstly, statistical modelling was

conducted to assess the likelihood of a wind energy project being accepted. Secondly, a geospatial

decision support system was presented to identify suitable sites for wind energy development,

building upon the previous statistical modelling. Finally, the spatial scale of energy planning was

explored to assess its influence on the ability of a city or region to achieve energy neutrality. This

chapter therefore aims to synthesize the three areas and highlight the key findings within the

analysis, with the following objectives:

• to provide an overview of the thesis.

• to discuss the overall contributions of the research within the context of the existing literature.

• to highlight the implications of the research and potential practical applications.

• to explain potential limitations of the research.

• to make recommendations for future research areas.

11.1 Thesis Overview

Chapter 1 introduced the research challenge, and outlined the overall structure of the thesis. As

explained within the objectives, the overall aim of the thesis was to was investigate the impact of

spatial planning scale on the ability of a region to achieve energy neutrality, a term defined as “the

ability of a district to supply itself with sustainable energy generated within the boundaries of that

district” (Jablonska et al., 2011).

Chapter 2 outlined the broader context of renewable energy within the UK. The transition from

the traditional large scale generation to smaller decentralised energy is challenging the existing

structure of planning and development within the energy sector. As a result, there have been

calls from cities and local authorities to be granted greater control and ownership of their energy

planning. However, there has been limited questioning within this of whether this is the best spatial

scale at which energy should be controlled (Bridge et al., 2013).
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Whilst the primary aim of the thesis was to explore spatial scale, it was decided within Chapter 2

to narrow the scope to focus on a single renewable energy technology to allow for a more detailed

assessment of a single renewable energy technology. Onshore wind was therefore selected to be

studied in further detail for two primary reasons: firstly, there appeared to be a large gap between

modelling and actual developments, with over 50% of projects rejected during planning (DECC,

2016c). Secondly, onshore wind represents a key opportunity for the UK, with high resource

availability long being acknowledged (Strachan et al., 2006).

Chapter 3 expanded upon the issues framed within the background literature, and provided the

relevant technical concepts surrounding the geospatial modelling of onshore wind energy.The

traditional parameters used to locate wind energy projects were presented, including wind speed,

distance to the powerlines and site access. Finally, it was shown that GIS-MCDA was the

preferred technique used for site selection modelling, and that the Weighted Sum Method is most

typically used within modelling to score the suitability of sites.

Chapter 4 reviewed the relevant academic literature for two key themes: onshore wind modelling

and energy spatial scale. For onshore wind modelling, it was demonstrated that the existing

methodologies fail to consider the social issues surrounding wind energy planning acceptance,

and that there is limited justification of the weightings used for parameters within site selection

modelling. Section 4.3 expanded upon the wide range of social parameters which are connected

with planning acceptance, and identified many social parameters which were largely excluded within

existing geospatial approaches, including social and demographic issues.

Chapter 5 built upon the limitations identified within the literature, and synthesised the overall

research methodology of the thesis. The work was broadly split into two sections: firstly, data

required collecting and processing into a suitable format. Secondly, the collected data could be

used to explore the research questions developed from the literature review.

Chapter 6 detailed the process of collecting wind energy project information for the model.

Concerns were raised surrounding the accuracy of the wind turbine data, and therefore the

location of these sites were first validated. It was found that whilst errors were present, there was

minimal error within the overall dataset, and therefore the positional accuracy was deemed

suitable for further modelling.

Chapter 7 explained the collection and processing of contextual data, including technical,

environmental and social parameters. This chapter built upon the literature review and attempted

to collect parameters which were indicated to influence the suitability of wind energy site

development (Langer et al., 2016). Parameters were aggregated for each wind energy site for use

within the statistical analysis, and generalised rasters were also created to allow for a national

model to be developed within the following chapters.

Chapter 8 presented statistical analysis which assessed the influence of wind energy site parameters

on the planning acceptance of projects. The findings of this chapter revealed that local demographic

and political parameters appear to influence the planning outcomes of projects, and that many

of the geospatial parameters typically integrated into wind energy models appear insignificant in
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determining site approval. It was also shown that large areas of Great Britain appear to be highly

unaccepting of wind energy projects, with projects having a low likelihood of acceptance within

South England.

Chapter 9 built upon the findings of the statistical analysis, and developed a GIS-MCDA to

determine suitable sites for development of onshore wind energy within Great Britain. The model

integrated legislative, economic and site acceptability to increase the suitability of model results

compared to existing approaches.

Chapter 10 demonstrated the development of a methodology to assess the renewable energy

planning scale of cities. Using a case study of onshore wind energy, it was highlighted that the

potential to achieve energy neutrality is dependent not only on the size of the region, but more

importantly influenced by the spatial location of the area.

Chapter 11 provides the conclusions and future research of the thesis.

11.2 Research Objectives

As outlined in Chapter 1, the thesis investigated the impact of spatial planning scale on the ability

of a region to achieve energy neutrality. Within this scope, the study also aimed to identify factors

that may influence the planning acceptance of onshore wind energy projects, and to integrate

this information into spatial modelling of onshore wind energy to identify suitable locations for

development. To this effect, several objectives were identified, which are explained below:

1. To understand and assess the influence of technical, demographic and political

parameters on the acceptance of onshore wind projects within a UK context.

Building upon a detailed literature review, a statistical model was developed to identify the key

parameters which influence the planning success of onshore wind turbine energy projects. A total

of 40 technical, geospatial, demographic and political variables were considered, and the results

highlight that social and demographic parameters appear influential in the success of projects.

This provides quantitative evidence to suppport existing literature, highlighting that traditional

geospatial parameters (wind speed, proximity to national grid etc.) provide limited explanation for

the spatial distribution of projects.

2. To develop a predictive model of the planning application acceptance of onshore

wind energy projects, based on the understanding achieved with the first objective.

The results from the statistical analysis were generalised to form a spatial regression model to

predict the likelihood of wind turbine projects being approved within the UK. The model assessed

sites at a 500 metre resolution scoring the chance of planning acceptance from 0 to 100%. The

results revealed that there are large areas within the UK which appear “off-limits” to development,

most notably the South Coast of England.
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3. To assess the suitability of sites for onshore wind development, integrating the

likelihood of the project receiving planning permission.

Building upon the generalised statistical model, a GIS-MCDA model was developed to integrate

economic, legislative and social constraints and identify potential sites for development of onshore

wind energy. The integration of planning constraints into traditional modelling techniques

highlighted the impacts of social constraint on onshore wind energy potential, reducing estimates

from 200 GW to 16 GW.

4. To assess the impact of spatial planning scale on the ability of a region to achieve

energy neutrality, using onshore wind as a case study.

A case-study of asessing the geospatial imbalance in energy supply and demand was conducted in

14 towns in the UK. The model compared onshore wind energy resources against electricity demand

for each city, and determined the radial distance from each urban centre at which energy neutrality

could be achieved.

5. To develop a generalised approach for assessing the potential for energy neutrality

of a region.

A generalised ENSA methodology was developed, and the use of it was demonstrated within the

fourth objective. The methodology is designed to be flexible, allowing additional renewable energy

technologies (onshore wind, solar, hydro etc.) and energy demand (heating and transport). In

addition, the methodology proposes both radial and territorial approaches to determine the scale

at which energy neutrality can be acheived.

5. To provide recommendations on the implication of the model results on regional

energy planning.

The results from the spatial scale analysis conducted call into question the rescaling of planning

within the UK energy sector. Whilst some urban regions in the UK may feasibly be able to

achieve energy neutrality, others appear highly resource constrained, and therefore transferring

greater responsibility for the development of renewable energy resources may limit the potential for

development.
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11.3 Applications of Research

A large number of stakeholders are involved within the development of wind energy projects: from

councils, developers and local populations. It is therefore important that information is available in

a format which is easily accessible for all parties involved within the decision-making process. To

this effect, an experimental dashboard was developed within the project to allow interaction with

the model results, as shown in Figure 11.1. It is argued that such portals are crucial for increasing

the understanding of geospatial research, as it allows users of all stakeholders an opportunity to

query the model, and explore potential opportunities for development within their own region.

Figure 11.1: An experimental Wind Energy Database Dashboard, designed to query
the results of the statistical model of onshore wind energy project acceptance rates.

Available at: https://mikeyharper.shinyapps.io/windturbinemap/

From a national government perspective, it is of critical importance that the UK continues to

develop renewable energy resources to meet emission reduction targets. Whilst onshore wind

remains one of the cheapest forms of renewable energy technology, the difficulty in gaining planning

permission has threatened the exploitation of the resource. By helping identify suitable sites, the

GIS-MCDA analysis presented within this thesis can help determine feasible targets for onshore

wind energy, and help reduce the cost of development of renewable energy technologies within the

UK.

For a developer, the wind energy GIS-MCDA model developed here can provide a useful insight

to where developments may want to be prioritised. The planning process of a wind energy is

both long and expensive, with the estimated cost for a commercial wind energy planning process

costing around £50000 to the developer, and applications frequently taking years to be approved

(Renewables First, 2016). The model developed was found to have a predictive accuracy of 66%

in predicting the likelihood of a project receiving planning approval. It is therefore important for

developers that sites which are likely to be developed are selected, and even a marginal improvement

in planning acceptance would be beneficial.
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The results from the analysis also highlight that it is important that the developer does not overlook

the broader social issues surrounding wind energy projects: the overall predictive model had a

Pseudo R2 of 0.2, and therefore geospatial parameters used in isolation only provide a limited

influence in the planning outcome of a wind energy project. As previously stated, the findings

provide evidence to support existing literature that geospatial tools in themselves are of limited

applicability (Toke et al., 2008, Wolsink (2000), Warren & McFadyen (2010)). Developers should

therefore ensure that projects engage local communities from a early stage, a model which is heavily

applied within Germany whereby over 90% of wind energy projects are community-led (Cowell et

al., 2017).

11.4 Limitations & Future Works

11.4.1 Wind Energy Statistical Modelling

It is recommended that future work integrates more detailed information about specific wind energy

sites, specifically surrounding the planning and development process for sites. Literature suggests

that geographic variables in themselves are insufficient to explain patterns of implementation of

wind power (Toke et al., 2008), and there is strong evidence that the way in which the project

is proposed influences the outcome. For example, community-led projects generally are more

locally supported than those proposed by large developers or energy companies (Ellis & Ferraro,

2017). However, such inclusion would require the manual collection of data from each project, as

a centralised record of such information does not exist to the author’s knowledge.

Literature suggests that the acceptability of projects vary internationally (Langer et al., 2016). It

is observed that Denmark and Germany have high levels of onshore wind energy development and

generally greater acceptance rates of projects when compared to Great Britain (Fournis & Fortin,

2017; McLaren Loring, 2007). It is suggested that such differences have resulted from a difference

in planning approaches, whereby Denmark and Germany have historically generated bottom-up

mobilisation, whilst the UK has been a more complex combination of national contexts, major

international actors, national public services and wind energy companies (Fournis & Fortin, 2017).

An international comparison would enable a more detailed comparison of to be drawn between

the two regions and help identify whether there are differences in development patterns in other

countries.

The model developed within this study followed a logistic regression approach. It was discussed

within Section 8.1 that linear relationships were assumed between the predictor variables and the

logit. No transformations were made to the datasets, an approach generally recommended as it

prevents distortion of the underlying dataset (Hosmer & Lemeshow, 2004). However, there were

suggestions of slight non-linearity between the graphs: for example, proximity to both A and B

roads may be non-linear: a wind turbine should not be too close to the road, as it can cause

visual distraction to drivers, yet it cannot be too far away as access to site is required during

the construction of the project. It is therefore suggested that non-linear relationships are explored
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within further analysis in order to better capture the relationship between parameters and the logit,

ultimately resulting in an improved model fit.

There are opportunities to explore planning applications within more detail. Planning acceptance

and rejection documents are available for all projects in the UK. To this effect, a research project

conducted preliminary analysis of 50 projects to identify potential reasons for project rejection

(Dimitriou, 2017). There are opportunities to expand this form of research, and it is proposed

that key word analysis could be used to identify additional parameters for the development. As

an example, it could be analysed how many times the planning documentation made reference to

visual impacts or ecological concerns. Such an analysis would enable less structured data to be

integrated within the model, with opportunities to gain further insight into the planning process.

11.4.2 Wind Energy GIS-MCDA

The model was built using more than 20 separate data sources, and therefore the model is highly

influenced by the availability and quality of this underlying data. For example, the NOABL wind

speed data is only available at 1km resolution and does not account for roughness of surface caused

by urban developments of varying land cover such as forests (DTI, 2001). The errors from any

dataset will have propagated through the analysis and, combined with errors from other layers, may

cause inaccuracies in the output map. Sensitivity is recommended for further analysis to ensure

more robust results, and has been used within existing GIS-MCDA to assess the variability of model

results with changes in the input parameters (Neufville, 2013; Watson & Hudson, 2015).

Whilst the wind energy models aimed to integrate as many data sources as possible, there were

difficulties in collecting some types of data. In particular, full ecological datasets could not be

located to understand the impact of wind turbines may have on wildlife including birds and bats.

Poorly located wind turbines can have adverse adverse impacts on birds and bats, and the impact

on birds has been noted to be one of the main negative perceptions of wind turbines in general

(Gove et al., 2016b). Some maps were available, but only covered aspects of Wales and Scotland

(Bright et al., 2008; J. A. Brigth et al., 2009).

The modelling of wind energy is highly sensitive to external factors outside the control of planners

and developers. This can be seen within the UK, whereby changes in laws within 2015 removed

financial support for wind energy projects within Great Britain (Smith, 2016). Such a move

effectively froze all further investment in onshore wind energy in the UK. However, there are signs

that this policy change will be reversed, once again allowing for the development of onshore wind

energy within parts of the UK. There is also uncertainty surrounding the implications of the UK

leaving the European Union which may impact wind energy developments. Marsden (2017) notes

that many protected areas are currently designated by the EU, and therefore there is uncertainty

whether such areas will be “off-limits” in the future for developments of wind energy in the UK.
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11.4.3 Spatial Scale Analysis

The analysis presented in this thesis represented a case study of onshore wind, and does not consider

other renewable energy resources. Within the UK, there has been extensive development of solar

photovoltaic, which passed 9GW of installed capacity in 2017. Such development has been largely

driven by the fall in prices in solar panels experienced in recent years (DECC, 2016c). Research has

demonstrated that building integrated solar may play an important contribution to city, however

opportunities are limited by the energy density of solar photovoltaics (Wu, 2017)

There are opportunities to refine the scale analysis within the ENSA methodology. Within the

existing radial approach, each energy balance analysis was conducted in isolation, and there is no

consideration as to whether the areas are overlapping with the energy neutral zone of another

region. This was highlighted within the Midlands case study of Nuneaton, Rugby and Coventry

in Section 10.3.2, and resulted in several areas competing for the same resource. It is therefore

recommended that future analysis seeks to resolve such resource conflict by preventing the overlap

of neighbouring energy neutral areas.

The literature review highlighted that there has been extensive development of energy models. The

work presented in this thesis does not intend to replace the existing models, but provide a specific

function of understanding the optimal scale at which energy planning should be conducted. It is

suggested that the resulting spatial scale calculated from the ENSA methodology is combined with

existing energy models (LEAP, TIMES/MARKAL) to explore the impact that the spatial planning

changes influence the renewable energy development.
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Appendix A

Statistical Analysis Primer

This Appendice provides background information for the statistical analysis conducted within the thesis.

A.1 Logistic Regression Overview

There are different types of regression analysis which use depends on the research objectives and variable format, with

linear regression being one of the most frequently used methods. Linear regression analyses continuous outcomes,

and assumes that the relationship between the outcome and independent variables follows a straight line. This

can be applied in the case of multivariate linear regression, where the desire is to calculate the impact of multiple

independent variables on the outcome. This can be expressed as:

Y = β0 + β1X1 + β2X2 + βjXj (A.1)

where Y is the estimated continuous outcome, β0 is the intercept, and Xj represents each independent variable

weighted by is respective beta coefficient βj . Despite its common usage, linear regression is not suitable where there

is a binary outcome variable. Instead, logistic regression is usual method of choice (Stoltzfus, 2011). In essence, a

logarithmic transformation is made to the outcome variable to define an outcome variable between 0 and 1, and can

be expressed be expressed in a similar form to the linear regression formula:

ln( Yi
1 − Yi

) = β0 + β1X1 + β2X2 + b3X3 + ...+ bjXj (A.2)

By rearranging equation A.2, it can be shown that:

Probability of Outcome(Yi) = eβ1X1+β2X2+b3X3+...+bjXj

1 + eβ1X1+β2X2+b3X3+...+bjXj
(A.3)

where Yi represents the estimated probability of being in one binary outcome category i versus the other, and

eβ1X1+β2X2+b3X3+...+bjXj represents the linear regression equation for independent variables expressed in the logit

scale, instead of the original linear format.

A.2 Independent Variables

To ensure that the logistic regression produces an accurate model, a number of critical factors must be taken

into account during the formation of the analysis, as will be detailed in further in the following subsections. Logistic

regression is flexible in the types of data type it will accept, including continuous, ordinal and categorical. Care should
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however be applied in selecting these variables. Variables should always be justified using well-established theory, past

research, preliminary statistical analysis, or some sensible combination of these different options (Stoltzfus, 2011).

A second important consideration to be made is acknowledging and accounting for potential confounders, which can

be described as variables whose relationship to both the outcome variable and another independent variable obscures

the true association between that independent variable and the outcome (Anderson & Service), 1980). A commonly

cited example is to suppose that there is a statistical relationship between ice cream sales and number of drownings

in a given period. One could attempt to explain this causation by inferring a casual relationship (either that ice

cream causes drowning, or that drowning causes ice cream consumption), however a more likely explanation is this

relationship is spurious, and a third, confounding, variable (the season) influences the two variables. Confounding

variables may not be as readily apparent as the given example, however it should be considered formally whether

variables are being appropriately characterised and subsequently modelled. Path analysis diagrams can be particularly

useful for this purpose.

A.3 Variable Selection

There has been a range of literature which suggests stepwise variable selection should be used to pre filter

“insignificant” variables from a logistic model (Harrell, 2001). For example, Hosmer (2004) recommends that

univariate analysis should be conducted for each variable to be considered for the model, and that any variable

which has a p-value > 0.25 should be excluded from the analysis. However Harell (2001, p. 56) highlights that this

creates a range of statistical issues, and recommends that problematic variables are only removed once they have

been applied within the multivariate logistic model. Therefore, no prefiltering was used within the analysis

conducted in this research.

A.4 Assumptions and Validation

In addition to these selection criteria for the variables, basic assumptions for conducting logistic regression must

always be met. These include:

• Independence of errors: All sample group outcomes must be separate from each other (i.e. there are no

duplicate responses). If the data contains repeated measures or other correlated outcomes, the errors will be

similarly correlated and the assumption violated (Harrell, 2001).

• Linearity of the logit for any independent variable: It is assumed that there is a linear relationship between

any continuous predictors and the logit of the outcome variable. A typical method of checking this assumption

is to create a statistical term representing the interaction between each continuous variable and its natural

logarithm. If these terms are statistically significant, the assumption is violated. Solutions include dummy

coding the independent variable, or transforming it into a different scale, which will be discussed in greater

detail later.

• Absence of multicollinearity: Multicollinearity (redundancy) among independent variables should be avoided.

For example average wind speed and annual turbine electricity generation would both be highly correlated.

A logistic model with collinear variables will usually result in large standard errors for the estimate beta

coefficients of those variables. Collinearity can be tested by assessing the tolerance and variance inflation

factor (VIF). The usual solution is to eliminate redundant variables.

• Lack of influential outliers: The independent variables must lack strongly influential outliers, whereby a

predicted outcome may be vastly different from the actual outcome. If too many outliers are present, the

overall accuracy of the model could be compromised. Outliers can be detected by looking at residuals (i.e. the

difference between predicted and actual outcomes) and accompanying diagnostic statistics. A comparison can

then be made for the overall model fit and beta coefficients with and without the outlier cases. It can then
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be decided whether to retain outliers whose effect are not dramatic, or eliminate outliers with a particularly

strong influence of the model.

Harrell (2001) argues that many of these assumptions are difficult to check without bias before the model is built,

and recommends that checks and possible adjustments are only made once the model has been built. These will be

explained further in Section A.8.

A.4.1 Number of Variables to Include

As part of selecting independent variables to be included within the model, it is important to decide an appropriate

number. If too many independent variables are specified, it can result in an over-fit (and therefore unstable) model.

Generally speaking, an over-fit model has higher-than-expected standard errors.

There are no set rules for the number of observations required. However, a typical rule of thumb is that there should

be no fewer than 10 outcomes for each binary category (Harrell, 2001). For example, if 100 values were recorded,

of which 60 were positive and 40 were negative, the logistic regression model could, at most, accommodate four

independent variables.

A.5 Model Building Strategy

There are three model building strategies which can be used within logistic regression, each with a different emphasis

and purpose: (1) direct (full, standard, or simultaneous) (2) sequential (hierarchical), or (3) step-wise (statistical).

The use of these models is not necessarily interchangeable, and therefore care is required in identifying the suitable

model to meet the research objectives.

The direct approach is often seen as the default approach, since all independent variables are entered into the model

at the same time and no assumptions are made on the order or relative importance of those variables (Harrell,

2001). This is suitable if there are no specified hypotheses about which variables have greater importance than other

variables.

The sequential/ hierarchical approach is applied by adding variables sequentially based on a predetermined order

of priority. This is useful in situations where a hypothesis is being tested, and the variables perceived as the most

important can be added first, and allows for a greater understanding of the fit of the model.

In contrast to the previous methods, the step-wise approach identifies independent variables which should be either

added or removed from the model based on predefined statistical criteria that are influenced by the data being

analysed (Harrell, 2001). There are a number of different methods, including forwarded selecting models (whereby

variables are added one by one until no variable contributes significantly to the outcome) and backward elimination

(all variables are entered simultaneously, and then those with a non-significant contribution are dropped one at a

time until only statistically significant variables are left). Whilst this technique is regularly used within research, its

use is somewhat controversial as it relies on automated variable selection that tends to take advantage of random

chance factors within a given sample (Stoltzfus, 2011).

A.5.1 Internal and External Validation

There are a number of methods which can be used for validating the model. Internal validation confirms the model

results within the same datasets, and the most common method being the holdout method, whereby the dataset is

split into two separate subgroups called the training set and test set (Kohavi, 1995). The training group is used to

create the logistic regression model, and the test group used to validate it.
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An alternative method is to use k-fold cross validation, sometimes referred to as rotation estimation (Kohavi, 1995).

The dataset D is randomly split in k mutually exclusive subsets (the folds) D1, D2, D3...Dk of approximately equal

size. The model is trained and tested k, testing each against a model trained by the other subsets (D Dt). The cross

validation estimate of accuracy is the overall number of correct classifications, divided by the number of instances in

the dataset.

In addition to internal validation, efforts should be made to externally validate the dataset in a new study setting.

If the results of either the internal or external validation raise any concerns (e.g. there is a poor fit in a particular

area of the model), efforts should be made to make adjustment to the model as needed or to explicitally define any

restrictions of the model use (Steyerberg et al., 2001).

A.6 Interpreting Model Fit

After the logistic regression has been created, the level of fit to the data must be assessed. The two most commonly

used methods to assess model fit are the Pearson chi-squared and deviance statistics (Stoltzfus, 2011). Both of

these measure the difference between the predicted and outcome variables, with a higher value suggesting greater

difference and lack of a good fit of the model.

Deviance

The deviance statistic is based on summing the probabilities associated with the predicted and actual outcomes, and

is an indicator of how much unexplained information there is after the model has been fitted. It is analogous to the

residual sum of squares test used within multiple regression, and can be calculated as follows:

D = −2
N∑
i=1

[Yi ln(P (Yi)) + (1 − Yi) ln(1 − P (Yi))] (A.4)

where D is the Deviance, P (Yi) represents the probability of an event occuring for a given observation, and Yi is the

probability that Y occurs for the ith event.

The null deviance shows how well the response variable is predicted by a model that includes only the intercept (grand

mean), while the residual deviance shows how well the response variable is predicted when including the independent

variables in the model.

Pearson chi-squared

The Pearson chi squared χ2 expresses the improvement of the model against the null model. It is calculated as:

χ2 = Dnull −Dnew (A.5)

Pseudo R2

R2 are regularly used within linear regression to measure how well the model fits the data, however there is no direct

equivalent term within logistic regression due to the logarithmic transformations. Instead, Pseudo-R2 values are used

which are analogous to the R2 represented within linear regression, and represents the proportion of variance in the

criterion that is explained by the predictors. There are a number of methods which can be used to calculate this:

1) Hosmer and Lemeshow, R2
HL :

RL
2 = DModel

DBaseline
(A.6)

2) Cox and Snell R2
CS is based on the difference in deviance between the model and baseline, and the sample

size n. It is expressed as:

RCS
2 = DModel −DBaseline

n
(A.7)
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3) Nagelkerke R2
N : suggested the following amended for the value R2

N

RN
2 = RCS

2

1 − exp
(
DBaseline

n

) (A.8)

Information Criteria

The Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC) can be used to judge the model fit

but penalises for the increased complexity which results from using a greater number of predictor variables. The

intent of this variable is to prevent the inclusion of irrelevant predictors. The number itself is not meaningful, but is

used to compare multiple models and help select the most suitable one. The AIC can be calculate as:

AIC = D + 2k (A.9)

where D is the Deviance, k is the number of predictors used in the model. Alternatively the BIC can be used which

adjusts the penalty by the number of cases, n, in the data:

BIC = D + 2k log(n) (A.10)

A.7 Interpreting Individual Variable Results

It is not only important to understand how the overall model fits but also to understand the influence of each

parameter within the model. The methods used are explained in the following subsections.

Z-statistics

The z-statistic1 can be used can be test whether the the β coefficient for the independent variable is significantly

different from zero. If it is significantly greater than zero, it can be assumed that the predictor is making a significant

contribution to the prediction of the outcome Y :

z = β

SEβ
(A.11)

where β is estimated regression coefficient, and SEb is the standard error of β. However it is recommended that

z-statistics should be used cautiously as when the regression coefficient is large, the standard errors can become

inflated and results in the z-statistic being underestimated (Menard, 1995).

Odds Ratios

Results for independent variables are are usually presented as odds ratios (ORs). ORs reveal the strength of the

independent variable’s contribution to the outcome and are defined as the odds of the outcome occurring versus not

occurring:

odds = p

1 − p
= Y

1 − Y
(A.12)

95% Confidence Interval (CIs) are reported along with ORs as a measure of precision, and indicate whether the

relationship is likely to hold for a large population). If the CI crosses 1.00, there may not be a significant difference

in that population.

A.8 Model Refinement

The results for each model should be used carefully to ensure that the model provides an accurate fit to the data,

and that assumptions are being met. These will be explained in greater detail below.

1alternatively referred to as the Wald statistic
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Diagnostics

It is important that diagnostic statistics are checked before conclusions are reached about the adequacy of the final

model. These diagnostic statistics help determine whether the overall model fit remains intact across all possible

configurations of the independent variables.

Linearity of Logit

Once a variable has been identified as important, we can obtain the correct parametric relationship or scale in the

model refinement stage. A number of methods are suggested for the identification and adjustment of any variables

which may not be linear. While a number of methods are suggested by Menard [1995], univariate loess smoothed

scatter plots are one of the most suitable methods.
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Detailed Logistic Regression Results

This section provides the full outputs of the Hierarchical logistic regression analysis in addition to the results presented

in Section 8.2.1.

B.1 Model 1: Physical attributes of the plant

This is based on some of the physical attributes of the wind turbines proposed. This includes the number of wind

turbines of the site, and the turbine capacity which can be used to indicate the turbine size. The model initially

included the overall wind farm capacity, however it was found that this was this was highly collinear with the number

of turbines on the site. The capacity was therefore removed to reduce this influence on the model.

variables_model_1 <- c("No..of.Turbines", "Turbine.Capacity..MW.")
wind_models <- NULL
wind_models$No1 <- LogisticModel(variables_model_1, data_turbines)
(summary_model1 <- summary(wind_models$No1)) # Print Results

>
> Call:
> glm(formula = Formula, family = binomial(), data = Dataframe)
>
> Deviance Residuals:
> Min 1Q Median 3Q Max
> -2.4157 -1.0931 -0.9783 1.2595 1.3548
>
> Coefficients:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) -0.488147 0.112195 -4.351 1.36e-05 ***
> No..of.Turbines 0.017440 0.005004 3.485 0.000492 ***
> Turbine.Capacity..MW. 0.090942 0.052671 1.727 0.084240 .
> ---
> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
>
> (Dispersion parameter for binomial family taken to be 1)
>
> Null deviance: 2323.1 on 1684 degrees of freedom

191
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> Residual deviance: 2303.2 on 1682 degrees of freedom
> (6 observations deleted due to missingness)
> AIC: 2309.2
>
> Number of Fisher Scoring iterations: 4

# Check Diagnostics
LogisticDiagnostics(wind_models$No1)

> Chi Squared Test
> Chi Squared 19.861
> Df 2
> Chi Squared p 0
>
> Pseudo Rˆ2 for logistic regression
> Hosmer and Lemeshow Rˆ2 0.009
> Cox and Snell Rˆ2 0.012
> Nagelkerke Rˆ2 0.016
>
> Variance Inflation Factors:
> No..of.Turbines Turbine.Capacity..MW.
> 1.029437 1.029437
>
> Checking for potential issues: No apparent issues with collinearity
>
> Durbin Watson Results:
>
> lag Autocorrelation D-W Statistic p-value
> 1 0.1414363 1.715915 0
> Alternative hypothesis: rho != 0
>
> Is p-value greater than 0.05: FALSE
> Is DW ˜ 2 (range of 0 to 4 acceptable): TRUE

The Pseudo R2 values highlight the relatively low level of the model. There are no issues with collinearity of the two

variables or autocorrelation from the Durbin Watson Test.

# Check Linearity of variables against logit
LogisticModelInt(variables_model_1, "Status.Summary", data_turbines)

> Statistically significant parameters from Logarithmic Transformations:
> No..of.Turbines

The logarithmic transformations are not statistically significant, which suggest that there are no issues with the

linearity.

B.2 Model 2: Developer Parameters

The second model considers parameters which may be of interest to a developer, such as the site wind speed,

proximity to powerlines and urban areas.
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# Add variables to parameter List
variables_model_2 <- ParameterUpdate(input = variables_model_1,

add = c("WindSpeed45", "HVpowerline"))
wind_models$No2 <- LogisticModel(variables_model_2, data_turbines)
(summary_model2 <- summary(wind_models$No2))

>
> Call:
> glm(formula = Formula, family = binomial(), data = Dataframe)
>
> Deviance Residuals:
> Min 1Q Median 3Q Max
> -2.2810 -1.0862 -0.9791 1.2578 1.4194
>
> Coefficients:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) -1.049153 0.351584 -2.984 0.00284 **
> No..of.Turbines 0.015591 0.005017 3.108 0.00189 **
> Turbine.Capacity..MW. 0.105459 0.053104 1.986 0.04704 *
> WindSpeed45 0.068092 0.045589 1.494 0.13527
> HVpowerline 0.009160 0.006193 1.479 0.13910
> ---
> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
>
> (Dispersion parameter for binomial family taken to be 1)
>
> Null deviance: 2323.1 on 1684 degrees of freedom
> Residual deviance: 2297.6 on 1680 degrees of freedom
> (6 observations deleted due to missingness)
> AIC: 2307.6
>
> Number of Fisher Scoring iterations: 4

> Chi Squared Test
> Chi Squared 25.458
> Df 4
> Chi Squared p 0
>
> Pseudo Rˆ2 for logistic regression
> Hosmer and Lemeshow Rˆ2 0.011
> Cox and Snell Rˆ2 0.015
> Nagelkerke Rˆ2 0.02
>
> Variance Inflation Factors:
> No..of.Turbines Turbine.Capacity..MW. WindSpeed45
> 1.064218 1.043055 1.082025
> HVpowerline
> 1.053137
>
> Checking for potential issues: No apparent issues with collinearity
>
> Durbin Watson Results:
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>
> lag Autocorrelation D-W Statistic p-value
> 1 0.1410696 1.716657 0
> Alternative hypothesis: rho != 0
>
> Is p-value greater than 0.05: FALSE
> Is DW ˜ 2 (range of 0 to 4 acceptable): TRUE

# Linearity of variables against logit
LogisticModelInt(variables_model_2, "Status.Summary", data_turbines)

> Statistically significant parameters from Logarithmic Transformations:
> No..of.Turbines, HVpowerline, HVpowerline_Int

Results suggest that HV Powerlines should be checked as they are not linear.

There is a relatively limited improvement in this model compared to the first model. Proximity to powerlines is seen

as a significant parameter, however there appear to be issues with its linearity to the logit.

B.3 Model 3: Year of Application

variables_model_3 <- ParameterUpdate(variables_model_2, add = c("year"))
wind_models$No3 <- LogisticModel(variables_model_3, data_turbines)
(summary_model3 <- summary(wind_models$No3))

>
> Call:
> glm(formula = Formula, family = binomial(), data = Dataframe)
>
> Deviance Residuals:
> Min 1Q Median 3Q Max
> -1.9946 -1.0641 -0.7951 1.1798 1.8858
>
> Coefficients:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 220.563775 24.774173 8.903 < 2e-16 ***
> No..of.Turbines 0.006626 0.004926 1.345 0.179
> Turbine.Capacity..MW. 0.378137 0.063037 5.999 1.99e-09 ***
> WindSpeed45 0.062650 0.046812 1.338 0.181
> HVpowerline 0.009557 0.006482 1.474 0.140
> year -0.110540 0.012359 -8.944 < 2e-16 ***
> ---
> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
>
> (Dispersion parameter for binomial family taken to be 1)
>
> Null deviance: 2323.1 on 1684 degrees of freedom
> Residual deviance: 2211.4 on 1679 degrees of freedom
> (6 observations deleted due to missingness)



Appendix B Detailed Logistic Regression Results 195

> AIC: 2223.4
>
> Number of Fisher Scoring iterations: 4

B.4 Model 4: Proximity to Features

This model builds upon the previous models to include the full list of geospatial parameters derived in the previous

analysis. These provide the proximity to the nearest features and include landscape and environmental designations.

variables_model_4 <- ParameterUpdate(variables_model_3, add = c("Airports_Trans",
"ARoads_Trans", "BRoads_Trans", "MinRoads_Trans", "Motorways_Trans",
"Railway_Trans", "UrbanRegions_Trans", "AONB_Trans", "NationalParks_Trans",
"HCoast_Trans", "NNR_Trans", "RAMSAR_Trans", "SACS_Trans",
"SPA_Trans", "SSSI_Trans", "MilitarySites_Trans"))

wind_models$No4 <- LogisticModel(variables_model_4, data_turbines)
(summary_model4 <- summary(wind_models$No4))

>
> Call:
> glm(formula = Formula, family = binomial(), data = Dataframe)
>
> Deviance Residuals:
> Min 1Q Median 3Q Max
> -1.8953 -1.0405 -0.7084 1.1121 2.2594
>
> Coefficients:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 250.081969 26.084355 9.587 < 2e-16 ***
> No..of.Turbines 0.001785 0.005389 0.331 0.7405
> Turbine.Capacity..MW. 0.368250 0.065059 5.660 1.51e-08 ***
> WindSpeed45 -0.066284 0.056618 -1.171 0.2417
> HVpowerline 0.009930 0.007464 1.330 0.1834
> year -0.125272 0.013026 -9.617 < 2e-16 ***
> Airports_Trans 0.012051 0.007742 1.557 0.1196
> ARoads_Trans -0.002949 0.011973 -0.246 0.8054
> BRoads_Trans -0.028077 0.017709 -1.585 0.1129
> MinRoads_Trans 0.062959 0.067681 0.930 0.3523
> Motorways_Trans -0.007598 0.005878 -1.293 0.1961
> Railway_Trans 0.008606 0.008418 1.022 0.3066
> UrbanRegions_Trans 0.094292 0.060859 1.549 0.1213
> AONB_Trans 0.024390 0.005840 4.176 2.96e-05 ***
> NationalParks_Trans 0.031548 0.006386 4.940 7.82e-07 ***
> HCoast_Trans -0.014977 0.008332 -1.797 0.0723 .
> NNR_Trans -0.003165 0.006882 -0.460 0.6456
> RAMSAR_Trans 0.013511 0.006512 2.075 0.0380 *
> SACS_Trans -0.005652 0.009224 -0.613 0.5400
> SPA_Trans -0.018309 0.007899 -2.318 0.0205 *
> SSSI_Trans 0.024218 0.024448 0.991 0.3219
> MilitarySites_Trans -0.001295 0.007498 -0.173 0.8629
> ---
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> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
>
> (Dispersion parameter for binomial family taken to be 1)
>
> Null deviance: 2323.1 on 1684 degrees of freedom
> Residual deviance: 2139.7 on 1663 degrees of freedom
> (6 observations deleted due to missingness)
> AIC: 2183.7
>
> Number of Fisher Scoring iterations: 4

Check to see whether regression model adequately represents the data.

> Chi Squared Test
> Chi Squared 183.38
> Df 21
> Chi Squared p 0
>
> Pseudo Rˆ2 for logistic regression
> Hosmer and Lemeshow Rˆ2 0.079
> Cox and Snell Rˆ2 0.103
> Nagelkerke Rˆ2 0.138
>
> Variance Inflation Factors:
> No..of.Turbines Turbine.Capacity..MW. WindSpeed45
> 1.293795 1.426528 1.513980
> HVpowerline year Airports_Trans
> 1.301395 1.427341 1.816467
> ARoads_Trans BRoads_Trans MinRoads_Trans
> 1.376831 1.250865 1.896046
> Motorways_Trans Railway_Trans UrbanRegions_Trans
> 1.553907 1.697850 2.136182
> AONB_Trans NationalParks_Trans HCoast_Trans
> 1.316817 1.321069 1.370836
> NNR_Trans RAMSAR_Trans SACS_Trans
> 1.402576 1.695932 1.494591
> SPA_Trans SSSI_Trans MilitarySites_Trans
> 1.765613 1.165950 1.723045
>
> Checking for potential issues: No apparent issues with collinearity
>
> Durbin Watson Results:
>
> lag Autocorrelation D-W Statistic p-value
> 1 0.1231317 1.752378 0
> Alternative hypothesis: rho != 0
>
> Is p-value greater than 0.05: FALSE
> Is DW ˜ 2 (range of 0 to 4 acceptable): TRUE

> Statistically significant parameters from Logarithmic Transformations:
> No..of.Turbines, SPA_Trans, No..of.Turbines_Int
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Areas of Outstanding Natural Beauty (AONB), National Parks and SPAs are statistically significant environmental

and landscape designations. However it appears that there may be issues with AoNB linearity.

B.5 Model 5: Census Variables

This model adds Census data to understand whether demographic variables can be linked to the turbines.

Qualifications, Age, Social Grade and Tenure were added to the model.

>
> Call:
> glm(formula = Formula, family = binomial(), data = Dataframe)
>
> Deviance Residuals:
> Min 1Q Median 3Q Max
> -2.1351 -1.0248 -0.6687 1.0901 2.1888
>
> Coefficients:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 2.496e+02 2.648e+01 9.424 < 2e-16 ***
> No..of.Turbines 1.893e-03 5.498e-03 0.344 0.73058
> Turbine.Capacity..MW. 3.538e-01 6.572e-02 5.383 7.32e-08 ***
> WindSpeed45 -5.684e-02 5.891e-02 -0.965 0.33461
> HVpowerline 1.051e-02 7.518e-03 1.398 0.16216
> year -1.237e-01 1.320e-02 -9.377 < 2e-16 ***
> Airports_Trans 1.132e-02 7.974e-03 1.420 0.15562
> ARoads_Trans 2.258e-04 1.215e-02 0.019 0.98518
> BRoads_Trans -2.380e-02 1.800e-02 -1.322 0.18610
> MinRoads_Trans 5.640e-02 6.858e-02 0.822 0.41089
> Motorways_Trans -5.662e-03 6.048e-03 -0.936 0.34916
> Railway_Trans 1.445e-02 8.628e-03 1.675 0.09394 .
> UrbanRegions_Trans 1.315e-01 6.185e-02 2.126 0.03349 *
> AONB_Trans 1.743e-02 6.050e-03 2.881 0.00396 **
> NationalParks_Trans 2.701e-02 6.630e-03 4.074 4.62e-05 ***
> HCoast_Trans -1.148e-02 8.547e-03 -1.343 0.17937
> NNR_Trans -2.356e-03 6.993e-03 -0.337 0.73614
> RAMSAR_Trans 1.255e-02 6.611e-03 1.899 0.05758 .
> SACS_Trans -3.136e-04 9.384e-03 -0.033 0.97334
> SPA_Trans -1.787e-02 8.012e-03 -2.231 0.02570 *
> SSSI_Trans 2.571e-02 2.474e-02 1.039 0.29871
> MilitarySites_Trans -7.672e-04 7.601e-03 -0.101 0.91960
> QualPercL4 -3.301e-02 6.726e-03 -4.908 9.19e-07 ***
> AgeMean -4.296e-02 1.691e-02 -2.541 0.01105 *
> TenureOwned 1.817e-04 3.643e-04 0.499 0.61806
> ---
> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
>
> (Dispersion parameter for binomial family taken to be 1)
>
> Null deviance: 2323.1 on 1684 degrees of freedom
> Residual deviance: 2108.0 on 1660 degrees of freedom
> (6 observations deleted due to missingness)
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> AIC: 2158
>
> Number of Fisher Scoring iterations: 4

Check to see whether regression model adequately represents the data.

# Diagnostics
LogisticDiagnostics(wind_models$No5)

> Chi Squared Test
> Chi Squared 215.057
> Df 24
> Chi Squared p 0
>
> Pseudo Rˆ2 for logistic regression
> Hosmer and Lemeshow Rˆ2 0.093
> Cox and Snell Rˆ2 0.12
> Nagelkerke Rˆ2 0.16
>
> Variance Inflation Factors:
> No..of.Turbines Turbine.Capacity..MW. WindSpeed45
> 1.305828 1.430732 1.608825
> HVpowerline year Airports_Trans
> 1.314353 1.439489 1.891999
> ARoads_Trans BRoads_Trans MinRoads_Trans
> 1.391384 1.273828 1.909885
> Motorways_Trans Railway_Trans UrbanRegions_Trans
> 1.610107 1.759852 2.165507
> AONB_Trans NationalParks_Trans HCoast_Trans
> 1.386636 1.393019 1.421512
> NNR_Trans RAMSAR_Trans SACS_Trans
> 1.417735 1.714050 1.508830
> SPA_Trans SSSI_Trans MilitarySites_Trans
> 1.785564 1.167404 1.738657
> QualPercL4 AgeMean TenureOwned
> 1.130358 1.322023 1.574151
>
> Checking for potential issues: No apparent issues with collinearity
>
> Durbin Watson Results:
>
> lag Autocorrelation D-W Statistic p-value
> 1 0.1171062 1.764259 0
> Alternative hypothesis: rho != 0
>
> Is p-value greater than 0.05: FALSE
> Is DW ˜ 2 (range of 0 to 4 acceptable): TRUE

> Statistically significant parameters from Logarithmic Transformations:
> No..of.Turbines, HCoast_Trans, SPA_Trans, No..of.Turbines_Int, HCoast_Trans_Int

Conclusions:
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• Increased levels of qualification appear to reduce the likelihood of acceptance

• Age Median and Mean are highlight collinear. Median value removed

B.6 Model 6: Political Parameters

This adds information from local authority composition. Represents the complete model presented within the report.

variables_model_6 <- ParameterUpdate(variables_model_5, add = c("Con_share",
"Lab_share", "LD_share"))

# Could add ’SNP_PC_sha’
wind_models$No6 <- LogisticModel(variables_model_6, data_turbines)
(summary_model6 <- summary(wind_models$No6))

>
> Call:
> glm(formula = Formula, family = binomial(), data = Dataframe)
>
> Deviance Residuals:
> Min 1Q Median 3Q Max
> -2.1882 -1.0201 -0.6702 1.0944 2.1904
>
> Coefficients:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 2.418e+02 2.732e+01 8.849 < 2e-16 ***
> No..of.Turbines 1.711e-03 5.512e-03 0.310 0.75620
> Turbine.Capacity..MW. 3.543e-01 6.587e-02 5.379 7.49e-08 ***
> WindSpeed45 -7.840e-02 6.173e-02 -1.270 0.20410
> HVpowerline 1.151e-02 7.739e-03 1.487 0.13701
> year -1.200e-01 1.357e-02 -8.840 < 2e-16 ***
> Airports_Trans 1.008e-02 8.196e-03 1.230 0.21851
> ARoads_Trans 9.562e-05 1.217e-02 0.008 0.99373
> BRoads_Trans -2.279e-02 1.800e-02 -1.266 0.20555
> MinRoads_Trans 5.437e-02 6.882e-02 0.790 0.42956
> Motorways_Trans -1.966e-03 6.879e-03 -0.286 0.77502
> Railway_Trans 1.464e-02 8.727e-03 1.678 0.09334 .
> UrbanRegions_Trans 1.354e-01 6.220e-02 2.177 0.02949 *
> AONB_Trans 1.700e-02 6.094e-03 2.789 0.00528 **
> NationalParks_Trans 2.909e-02 6.779e-03 4.292 1.77e-05 ***
> HCoast_Trans -8.784e-03 9.083e-03 -0.967 0.33351
> NNR_Trans -2.100e-03 7.024e-03 -0.299 0.76498
> RAMSAR_Trans 1.143e-02 6.657e-03 1.717 0.08594 .
> SACS_Trans 1.449e-04 9.462e-03 0.015 0.98778
> SPA_Trans -1.707e-02 8.081e-03 -2.112 0.03466 *
> SSSI_Trans 2.919e-02 2.489e-02 1.173 0.24085
> MilitarySites_Trans -5.758e-04 7.758e-03 -0.074 0.94084
> QualPercL4 -3.156e-02 6.992e-03 -4.513 6.38e-06 ***
> AgeMean -4.074e-02 1.699e-02 -2.397 0.01652 *
> TenureOwned 2.762e-04 3.722e-04 0.742 0.45803
> Con_share -1.938e-03 3.195e-03 -0.607 0.54409
> Lab_share 3.404e-03 3.766e-03 0.904 0.36608
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> LD_share 2.544e-03 4.873e-03 0.522 0.60172
> ---
> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
>
> (Dispersion parameter for binomial family taken to be 1)
>
> Null deviance: 2323.1 on 1684 degrees of freedom
> Residual deviance: 2105.4 on 1657 degrees of freedom
> (6 observations deleted due to missingness)
> AIC: 2161.4
>
> Number of Fisher Scoring iterations: 4

# Diagnostics
LogisticDiagnostics(wind_models$No6)

> Chi Squared Test
> Chi Squared 217.681
> Df 27
> Chi Squared p 0
>
> Pseudo Rˆ2 for logistic regression
> Hosmer and Lemeshow Rˆ2 0.094
> Cox and Snell Rˆ2 0.121
> Nagelkerke Rˆ2 0.162
>
> Variance Inflation Factors:
> No..of.Turbines Turbine.Capacity..MW. WindSpeed45
> 1.318151 1.434903 1.766284
> HVpowerline year Airports_Trans
> 1.398842 1.525445 1.994051
> ARoads_Trans BRoads_Trans MinRoads_Trans
> 1.398824 1.277994 1.918567
> Motorways_Trans Railway_Trans UrbanRegions_Trans
> 2.075823 1.801724 2.183934
> AONB_Trans NationalParks_Trans HCoast_Trans
> 1.400399 1.451549 1.590689
> NNR_Trans RAMSAR_Trans SACS_Trans
> 1.427297 1.733981 1.526815
> SPA_Trans SSSI_Trans MilitarySites_Trans
> 1.808605 1.178912 1.807902
> QualPercL4 AgeMean TenureOwned
> 1.223422 1.336942 1.644344
> Con_share Lab_share LD_share
> 2.324242 2.911172 1.887431
>
> Checking for potential issues: No apparent issues with collinearity
>
> Durbin Watson Results:
>
> lag Autocorrelation D-W Statistic p-value
> 1 0.1189905 1.760569 0
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> Alternative hypothesis: rho != 0
>
> Is p-value greater than 0.05: FALSE
> Is DW ˜ 2 (range of 0 to 4 acceptable): TRUE

B.7 Model 7: Cumulative Development

This includes parameters which indicate how site the planning permission was to other sites at the time of the

application.

variables_model_7 <- ParameterUpdate(variables_model_6, add = c("NearestTurbineBuilt",
"NearestTurbineRejected", "UrbanLarge"), remove = "UrbanRegions")

wind_models$No7 <- LogisticModel(variables_model_7, data_turbines)
(summary_model7 <- summary(wind_models$No7))

>
> Call:
> glm(formula = Formula, family = binomial(), data = Dataframe)
>
> Deviance Residuals:
> Min 1Q Median 3Q Max
> -2.3836 -1.0030 -0.6349 1.0628 2.3263
>
> Coefficients:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 2.341e+02 2.785e+01 8.406 < 2e-16 ***
> No..of.Turbines 1.336e-03 5.591e-03 0.239 0.811165
> Turbine.Capacity..MW. 3.457e-01 6.668e-02 5.184 2.17e-07 ***
> WindSpeed45 -8.951e-02 6.263e-02 -1.429 0.152967
> HVpowerline 1.131e-02 8.065e-03 1.402 0.160816
> year -1.161e-01 1.383e-02 -8.394 < 2e-16 ***
> Airports_Trans 8.367e-03 8.294e-03 1.009 0.313104
> ARoads_Trans 4.050e-04 1.247e-02 0.032 0.974087
> BRoads_Trans -2.173e-02 1.892e-02 -1.148 0.250970
> MinRoads_Trans 6.003e-02 7.004e-02 0.857 0.391379
> Motorways_Trans -1.969e-03 6.971e-03 -0.282 0.777561
> Railway_Trans 1.475e-02 8.891e-03 1.659 0.097054 .
> UrbanRegions_Trans 1.431e-01 6.420e-02 2.228 0.025857 *
> AONB_Trans 1.695e-02 6.169e-03 2.748 0.006005 **
> NationalParks_Trans 2.920e-02 6.871e-03 4.249 2.15e-05 ***
> HCoast_Trans -9.303e-03 9.203e-03 -1.011 0.312060
> NNR_Trans -2.467e-03 7.092e-03 -0.348 0.727976
> RAMSAR_Trans 1.232e-02 6.753e-03 1.824 0.068128 .
> SACS_Trans 1.010e-03 9.631e-03 0.105 0.916468
> SPA_Trans -1.782e-02 8.210e-03 -2.171 0.029963 *
> SSSI_Trans 3.111e-02 2.520e-02 1.235 0.216943
> MilitarySites_Trans 1.189e-03 7.913e-03 0.150 0.880606
> QualPercL4 -3.135e-02 7.079e-03 -4.428 9.52e-06 ***
> AgeMean -4.122e-02 1.736e-02 -2.375 0.017570 *
> TenureOwned 1.815e-04 3.782e-04 0.480 0.631179
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> Con_share -2.517e-03 3.249e-03 -0.775 0.438532
> Lab_share 2.610e-03 3.802e-03 0.687 0.492303
> LD_share 9.439e-04 4.956e-03 0.190 0.848960
> NearestTurbineBuilt -1.544e-02 4.102e-03 -3.765 0.000167 ***
> NearestTurbineRejected 1.888e-02 3.290e-03 5.738 9.60e-09 ***
> UrbanLarge -6.025e-03 1.299e-02 -0.464 0.642836
> ---
> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
>
> (Dispersion parameter for binomial family taken to be 1)
>
> Null deviance: 2323.1 on 1684 degrees of freedom
> Residual deviance: 2069.2 on 1654 degrees of freedom
> (6 observations deleted due to missingness)
> AIC: 2131.2
>
> Number of Fisher Scoring iterations: 4

Check to see whether regression model adequately represents the data.

# Diagnostics
LogisticDiagnostics(wind_models$No7)

> Chi Squared Test
> Chi Squared 253.84
> Df 30
> Chi Squared p 0
>
> Pseudo Rˆ2 for logistic regression
> Hosmer and Lemeshow Rˆ2 0.109
> Cox and Snell Rˆ2 0.14
> Nagelkerke Rˆ2 0.187
>
> Variance Inflation Factors:
> No..of.Turbines Turbine.Capacity..MW. WindSpeed45
> 1.317263 1.442330 1.789681
> HVpowerline year Airports_Trans
> 1.493487 1.556441 1.999623
> ARoads_Trans BRoads_Trans MinRoads_Trans
> 1.421234 1.373694 1.936020
> Motorways_Trans Railway_Trans UrbanRegions_Trans
> 2.096251 1.832006 2.279739
> AONB_Trans NationalParks_Trans HCoast_Trans
> 1.406804 1.451301 1.596139
> NNR_Trans RAMSAR_Trans SACS_Trans
> 1.427238 1.742869 1.537200
> SPA_Trans SSSI_Trans MilitarySites_Trans
> 1.827295 1.187218 1.836968
> QualPercL4 AgeMean TenureOwned
> 1.235065 1.358887 1.665323
> Con_share Lab_share LD_share
> 2.343596 2.912146 1.902670
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> NearestTurbineBuilt NearestTurbineRejected UrbanLarge
> 1.447754 1.446266 2.158412
>
> Checking for potential issues: No apparent issues with collinearity
>
> Durbin Watson Results:
>
> lag Autocorrelation D-W Statistic p-value
> 1 0.1139821 1.770515 0
> Alternative hypothesis: rho != 0
>
> Is p-value greater than 0.05: FALSE
> Is DW ˜ 2 (range of 0 to 4 acceptable): TRUE

> Statistically significant parameters from Logarithmic Transformations:
> AgeMean, NearestTurbineBuilt, AgeMean_Int, NearestTurbineBuilt_Int





Appendix C

Conference Papers

Two conference papers were presented as part of the PhD research work:

• Identifying key influences for planning acceptance of onshore wind turbines:

presented in 30th International Conference on Efficiency, Cost, Optimisation, Simulation

and Environmental Impact of Energy Systems, San Diego, July 2017. This is based on the

analysis presented in Chapter 8.

• Identifying suitable locations for onshore wind turbines using a GIS-MCDA approach:

presented at 16th International Conference on Sustainable Energy Technologies, Bologna,

July 2017. The paper is based around the content of Chapter 9.
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Abstract: 

There is a global drive to develop renewable energy power generation to reduce environmental impacts and 
enhance energy security especially through indigenous resources. Wind energy conversion both on and 
offshore is one of the most effective technologies to provide sustainable power. In the deployments of such 
technologies, geographical information systems are extensively used to identify suitable sites for the 
installation of wind turbines. However, there are concerns that such approaches fail to model site suitability 
accurately, and in particular fail to account for the difficulties faced in gaining planning permission. This study 
has explored whether the planning success of proposed wind turbine projects can be predicted using a range 
of geospatial parameters based on Great Britain as a case study. Logistic regression is used to assess the 
relationship between appropriate variables and planning outcome. The results indicate that the size of the 
project, percentage of the local population with high levels of qualifications, the average age, and local political 
composition emerge as key influences affecting planning approval. To the authors’ knowledge, this is the first 
study which has quantitatively linked regional social and political data to the planning outcome of wind turbines. 
These findings can help reduce the level of planning issues encountered for proposed wind turbine, improving 
the accuracy of GIS modelling of wind turbines. 

Keywords: 

Onshore Wind, Logistic Regression, Planning, Demographics, Great Britain, GIS 

1. Introduction 
Increased environmental concern and issues surrounding security of supply have led to a global drive 

to develop renewable energy systems. In the European Union, over $40 billion is invested annually 

in renewable energy technologies (mostly wind and solar) and it is expected to increase by a further 

50% by 2020 [1].  

Onshore wind power generation is now competitive with fossil energy in many countries and is one 

of the most mature renewable energy technologies available.  However, there are major technical 

challenges in identifying suitable sites for wind turbine farms. Projects often face strong local 

opposition, as can be seen from the low acceptance rates of wind turbines in Great Britain, with over 

50% of onshore projects rejected [2]. 

A large number of geospatial models have been produced to determine site suitability for wind farms 

[3–19], but such models are highly sensitive to the underlying modelling assumptions, and there has 

been limited validation of these models against actual developments patterns. A few studies have 

aimed to rigorously quantify key influences on historical planning outcomes [20–23], but such 

analysis has yet to be integrated within a full geospatial model. 

The overall objective of the programme of work to which this paper contributes is to build an 

overarching model integrating resource availability and likely acceptability of onshore wind turbine 

projects. This paper presents the first stage of this analysis, assessing which parameters influence 

wind turbine planning outcomes utilising a range of physical, geographical, demographic and political 

parameters. In doing so, it responds to calls to merge qualitative and quantitative analysis of wind 

projects to gain a greater understanding of project approval [24].  

The work presented here has four parts: a review of existing literature relevant to onshore wind 

modelling; collection and processing of appropriate data sources used within the analysis; research 
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methodology and results and finally discussion of the theoretical and practical implications of the 

research and further research opportunities. 

2. Background 
Geographic Information Systems (GIS) are tools designed to capture, store, manipulate, analyse, 

manage, and present spatial or geographic data [25]. They are used extensively to assist in locating 

wind farms, and combine a range of geospatial information into the decision-making of wind energy 

development [26]. Early work by Voivontas et al. [3] and Baban and Parry [4] provide examples of 

such analysis, and established the structure for an international range of studies [9–19] which have 

largely followed the approach outlined in Fig. 1. 

 

 

Fig. 1. Typical stages of geospatial models for assessing wind turbine site suitability 

Similar parameters are used throughout the studies, and ideal sites are typically identified as having 

high average wind speeds; not being close to urban areas; not in protected landscapes (e.g. National 

Parks); not close to airports (to minimise radar interference); close to roads for access and finally 

close to power lines for grid connection. However the weights for each parameter in subsequent 

predictive models have traditionally been determined using surveys and questionnaires [4, 7, 13, 18] 

or previous literature [14, 15, 17]. To the authors’ knowledge, there have been no attempts to 

statistically validate the relative importance of parameters used and it is therefore unclear whether the 

parameters currently used are actually appropriate for site approval rates. In a significant contribution, 

this paper derives these weights using a statistically rigorous methodology and then tests their ability 

to correctly predict planning outcomes.  

In addition, there is increased awareness of the wider social challenges surrounding the development 

since geographical variables in themselves are insufficient to explain patterns of implementation of 

wind power [27, 28]. Recent studies have explored how planning decisions were influenced by key 

actors (e.g. local communities, planning authorities, project developers) [20, 21] and local 

characteristics [29]. In particular, a study by Van Rensburg et al. [23] explored wind farms project 

planning approval against a range of technological and institutional process variables. The results 

suggested a number of variables appeared significant for planning including the proximity to Natura 

2000 sites (an EU protected habitat designation); sites with high bird sensitivity; hub height and 

project installed capacity.  In addition, the study noted that proximity of the nearest dwellings and 

wind speeds appeared insignificant, a finding which counters the views reported within many 

previous studies. Other work has investigated the social factors that may influence planning decisions 

[24, 30–34]. For example, studies within Great Britain suggest that support for wind developments 

decreases as both income and age increase [31], and  people with higher levels of qualifications are 

less likely to support projects [32]. However, whilst these potential social factors have been identified, 

there have been no attempts to include these parameters within geospatial analysis of potential turbine 

developments. This work therefore integrates the demographic and political parameters into 

geospatial analysis with the aim of improving the validity of such a model. 

In consequence this paper builds upon many of the concepts developed by Van Rensburg et al., but 

aims to apply these concepts to a broader range of geospatial, demographic and political datasets. 
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3. Data and Variables 
An extensive literature review was conducted to identify geospatial and social parameters which have 

been connected to the planning outcomes of wind turbine applications. Parameters were collated from 

existing geospatial models, and reviewing qualitative and quantitative studies. The key sources 

included Baban and Parry [4], Langer et al. [24] and European Wind Energy Association [35].  

3.1. Study Region 

The study was conducted across Great Britain (England, Scotland & Wales). This was chosen because 

of the broadly similar categorisation of land types, nature designation, data availability and legislation 

across these regions.  

3.2. Data Sources 

Information for turbine planning applications was collected through the Renewable Energy Planning 

Database (REPD) [36] with planning dates between January 1991 and December 2016 (n=1755). 

Detailed information for each planning application includes the location; year of application; number 

of turbines; turbine capacity and planning decision.  

The planning permission status was summarised to two variables: accepted and rejected.  Fig. 2 

highlights the location of the sites the distribution of these points and the planning status. 

 
 

 

Fig. 2.  Location of onshore wind turbine planning applications used within the study. Location 

data extracted from the Renewable Energy Planning Database. 

Wind speeds were taken from the Numerical Objective Analysis of Boundary Layer (NOABL) wind 

speed database, which provides estimated annualised wind speed at 45m elevation  at a resolution of 

1km grid [37].  This source is used extensively by wind assessment studies conducted within the UK 

[4, 10, 17]. 

Physical features including roads, railways and urban areas were collected from OS Strategi [38]. The 

electricity transmission network and Airport location data (civil and military) were extracted from 

Open Street Maps (OSM) [39].  
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Site elevation and slope is used by a number of studies to determine site suitability [4, 9]. Elevation 

was extracted from a Digital Elevation Model (DEM) of Europe at a 25m resolution [40]. This data 

was then used to calculate the slope using the slope calculation tool within ArcGIS 10.2. 

Census data was collected at the Lower Super Output Area (LSOA) and Data Zone (Scotland) which 

represents regions with a population between 1000 and 3000 people. Data was collected for mean 

age; social grade (percentage of higher social class AB, representing higher & intermediate 

managerial, administrative, professional occupations); tenure (ownership of homes) and levels of 

qualifications (percentage of population with university degree). 

Planning decisions for turbines are influenced by the Local Planning Authority, which are the local 

political bodies within the UK [41]. In total, there are 405 local authorities across England, Scotland 

and Wales. Data was collected for the Conservatives; Labour, Liberal Democrat and the Scottish 

National Party (SNP), which between them hold 95% of seats within Great Britain. 

3.3. Data Transformations 

The data sources came in a range of formats including points, lines and polygons (roads, urban regions 

etc.), tabular (census and political data) and rasters (wind speed, elevation, slope) as highlighted in 

Fig. 3.  These parameters had to be summarised for each wind turbine farms within the model. ArcGIS 

10.3 was used to aggregate the datasets as follows: 

 Points, lines and polygons: A spatial join was completed to find the distance to the nearest 

feature for each turbine. A value of 0 is given if the turbine is within the feature. 

 Tabular: corresponding political and census boundaries were used to map the tabular data, 

and turbines assigned the value of the region. In addition, political data was filtered to the 

year of the planning application to determine the political balance at the time of planning. 

 Raster: The tool “Raster Value to Point” was used to extract the values for each site. 

The complete list of parameters used within the analysis is shown in Appendix A. 

 

 

Fig. 3. Mapping of Parameter data to turbine locations 

 

4. Methodology 
A logistic regression analysis was conducted to model the factors associated with a positive planning 

outcome of wind turbine applications using the predictor variables listed in Table 2. A hierarchical 

approach was applied to the model building by adding variables sequentially based on the following 

order of priority: Physical attributes of the site; Distance to Features; Environmental and Natural 

Designations; Social (Census) Data and finally Political Data. This order was selected to reflect the 

current approach of geospatial studies, which as mentioned above, generally do not consider the last 

two. 

For each additional set of parameters added to the model, diagnostic checks were made to ensure that 

the assumptions of logistic regression were maintained. Each parameter was checked for linearity of 
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the logit for independent variables, absence of multicollinearity and independence of variables [42]. 

Any parameters which violated these conditions were removed from the model.  The overall fit of the 

model was assessed using Pearson chi-squared, Psuedo R2 values and the residual deviance. Internal 

validation was used to assess the predictive accuracy of the model [43]. 

Once all parameters had been included within the model, a parsimonious model (one that 

accomplishes a desired level of explanation or prediction with as few predictor variables as possible) 

was produced to remove uninfluential parameters [44]. The Akaike Information Criterion (AIC) was 

used to determine the best fitting subset of parameters. This method avoids the issues associated with 

step-wise approaches of parameter removal [42] and resulted in nine effective parameters. 

In addition, regional differences in parameters effects between England, Scotland and Wales were 

hypothesised due to differing population densities (England: 413/km2, Wales: 149/km2, Scotland: 

68/km2) [45] as well as differing institutional support, with Scotland in particular placing a greater 

emphasis on the development of onshore wind [46]. To test this, separate logistic regression models 

were produced for each country.  These re-used the subset of influential nine  parameters (see Fig. 4) 

with the additional inclusion of Wind Speed, which had been suggested to be influential in previous 

research [23]. 

5. Results  
Table 1 provides the results from the parsimonious logistic regression analysis associating planning 

approval for all available cases. Statistically significant positive trends (e.g. increase in the parameter 

increases success rates) were observed for Number of Turbine; Distance to Urban Regions; Distance 

to National Parks; Percentage of local council Liberal Democrat and Percentage of local council 

Labour. Negative associations were found for Qualifications above L4 (university degree); Mean Age 

and Distance to Natura 2000 sites. The odds ratios (OR) are shown for each parameter in Fig. 4, 

whereby an OR = 1 means the parameter does not affect odds of the planning outcome, OR > 1 

indicate the parameters positively influence planning acceptance, OR < 1 represents a negative 

parameter influence. 

As noted, the reduced parameter set of parameters were also used to assess models for England, 

Scotland and Wales separately and the odds ratios for each parameter for these models are shown in 

Fig. 5.   

Finally, a summary of the different logistic models is shown in Table 2. 

 

Table 1 Logistic Regression results for the AIC optimised model. 

Variable Estimate Std. Error Pr Sig. 
Odds 

Ratio 

Odds Ratio C.I. 

 2.5%  97.5%  

(Intercept) 1.675 0.755 0.027 * 5.337 1.22 23.596 

Number of Turbines 0.017 0.007 0.01 ** 1.018 1.005 1.032 

Distance to  Urban Region 0.158 0.051 0.002 ** 1.171 1.06 1.295 

Distance to National Park 0.008 0.002 0 *** 1.008 1.005 1.011 

Distance to Ramsar 0.007 0.004 0.089 . 1.007 0.999 1.014 

Distance to SPA -0.013 0.006 0.041 * 0.987 0.974 0.999 

Qualifications, L4 -0.036 0.007 0 *** 0.965 0.952 0.978 

Mean Age  -0.043 0.016 0.006 ** 0.958 0.928 0.988 

Political, Labour Share 0.009 0.003 0.001 *** 1.009 1.004 1.015 

Political, Liberal Democrat 0.009 0.004 0.03 * 1.009 1.001 1.017 

Significance Codes ‘***’ 0.1%, ‘**’ 1%, ‘*’ 5% ‘.’ 10% 
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Table 2 A summary of the logistic regression models  

 
Full Reduced 

Nested 

England Scotland Wales 

Observations 1476 1476 646 698 132 

Parameters 27 9 10 11 10 

Nagelkirke R2 0.11 0.10 0.11 0.16 0.24 

Pearson Chi-squared 113.7 111.9 51.5 89.3 25.9 

Residual deviance 1932 1932 833 895 157 

Model Accuracy 60% 62% 60% 65% 57% 

 

Fig. 4.  Odds plot for the reduced logistic regression mode. Error bars show the 95% confidence 

interval. 

 
Fig. 5. Odds plot for the nested logistic regression models for England, Scotland and Wales. Error 

bars indicate 95% confidence intervals.  
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6. Discussion 
The ‘all countries’ model highlighted several key parameters, as shown in Fig. 4. First, for project 

characteristics, the number of turbines appears significant in determining project success although 

the magnitude of the effect is relatively small. It is suggested that developers are more likely to appeal 

the decisions made against larger wind farms, as rejection of such projects would result in a large loss 

of revenue.  

A number of physical parameters have been identified as significant. The distance to urban areas has 

been highlighted as an indicator, although with considerable uncertainty as the confidence intervals 

indicate. There are a number of potential causes for this: firstly, it could indicate that high wind speed 

sites suitable for development tend to be naturally less populated (i.e. hilly, isolated regions). 

Additionally, it may reflect a so-called “Not in My Back Yard” (NIMBY) view from local population, 

with project in closer proximity to urban areas being more likely to be rejected. However, there are 

conflicting views in literature whether NIMBY views impact wind turbines, with a range  of  positive 

[21, 47] and negative [23, 28, 29] studies.  

For Landscape and environmental designations, distance to National Parks and Natura 2000 sites 

were indicated as significant, although have marginal impacts. It had been expected that such 

parameters would be more influential, as the visual impact of wind turbine land is often stated as a 

reason for project refusal [48].  

Both the level of qualifications, and the mean age of the local populous have been retained as 

significant parameters for Demographic variables. It is suggested that regions of higher education 

may be more effective in organising campaign groups against such projects. This supports the 

hypothesis developed by Van der Horst and Toke [22] that developers were "keen to avoid relatively 

privileged communities and target areas where people are thought to less likely put up a fight". 

For political variables, the percentage of local council authority control for Liberal Democrats and 

Labour both appear significant. It is suggested that this may be because these parties are broadly 

supportive of wind projects at a national level, and as such, local planning decisions may be more 

favourable for proposed projects. In addition, other studies have highlighted that voters of these 

parties are personally more in favour of onshore wind [49], which may result in less local objection 

against projects in areas where they have stronger support. 

There are notable parameters which do not prove influential, including wind speed and the proximity 

to airports.  This may reflect that these parameters represent technical challenges which can be 

investigated in the early stages of project development, and therefore any sites that are not suitable 

will not seek planning permission. 

Fig. 5 highlights that, as hypothesised, the odds ratios for parameters vary by country, although the 

reduced number of cases in each model increases the uncertainty substantially as indicated by the 

confidence intervals. It can be seen that parameters such as Turbine Capacity; Wind Speed and 

Distance to Urban Regions show differing relationships for each country. These suggest that there 

may be differing motives for projects within each country as well as differential planning constraints. 

For example, projects within England appear to place higher emphasis on wind speed. It should be 

noted that the wind resource is more marginal in England, and it is suggested that low wind speed 

may be an easy way for projects to be rejected. 

For the Scotland model, the percentage of local council authority control for SNP appears significant, 

with increased percentage resulting in a lower acceptance rate.  However, upon further inspection, 

this was deemed to be a potential confounding variable with the year of application: SNP have 

increased their share of council seats between 1990 and 2016 from 15% to 35%, while at the same 

time the average acceptance rates have reduced from around 75% to 40% across that period. This 

parameter therefore appears to capture a national trend, rather than highlighting any local political 

influences.  
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As shown in Table 3, there is a relatively low level of fit with Psuedo R2 values of 0.1. Splitting the 

model into England, Scotland and Wales marginally improved these values to 0.11, 0.16 and 0.24, 

suggesting the model was a better fit for Scotland and Wales. However, while the accuracy of the 

Scotland model improved against the ‘all countries’ model (60% to 65%), the Wales only model has 

decreased to 57%, suggesting that this model has been overfitted due to the reduced number of 

observations (n = 132). 

7. Conclusions & Implications 
This paper has investigated the influence of geospatial, environmental, demographic and political 

attributes on the probability of wind farm planning approval in Great Britain between 1990 and 2016. 

The study findings reveal that local demographic and political parameters appear to influence the 

planning outcomes of projects, and that many of the geospatial parameters typically integrated into 

wind turbine models appear insignificant in determining site approval. To the authors’ knowledge, 

such quantitative findings have not previously been demonstrated using such datasets. 

It appears that certain demographics are less accepting of onshore wind in Great Britain. Given that 

UK planning policy has now devolved power locally and allowing local communities to have the 

final say on projects [48], there may be a clear block to development in certain regions in the country. 

In addition, the results raise concerns of the predictive ability of existing geospatial modelling in 

locating wind turbine sites.  These findings provide evidence to support existing literature that GIS 

tools in themselves are of limited applicability [20, 25], and supports the conclusion that greater 

emphasis needs to be given to the non-physical elements of a project (e.g. Community engagement 

with the scheme from an early stage) [27, 50, 51].   

Because of the low model fit, future work aims to integrate more detailed information about specific 

wind turbine sites. It has not been possible to include detailed information of the project development 

within the analysis. Studies have highlighted that the interaction of developers with local communities 

are key indicators of positive planning approval outcomes [20, 52–54].  

It should be noted that the parameters used to derive these findings are obtained with context to Great 

Britain, and therefore may have limited applicability internationally, and therefore should be applied 

with caution outside of this region. There are opportunities to expand upon this work by exploring 

the international context of the finding to widen its applicability. 
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Table A.1: Summary of data sources used within model 

ID Category Variable Source Data Type Variable Value Value Type Unit 

1 Turbine Wind Turbine Planning Data REPD [2] Tabular Planning Outcome Categorical Accept/Reject 

2 
 

Turbine Capacity  Tabular Megawatts/turbine Continuous MW 

3  Number of Turbines  Tabular  Continuous  

4  Year  Tabular  Discrete  

5  Country  Tabular  Categorical  

6 Resource Wind Speed NOABL [37] Raster Annualised Wind Speed Continuous m/s 

7 Features Airports OpenGeo [55] Points Distance to Feature Continuous km 

8 
 

Roads * OS Strategi [38] Lines Distance to Feature Continuous km 

9 
 

Railways 
 

Lines Distance to Feature Continuous km 

10 
 

Urban Areas 
 

Polygons Distance to Feature Continuous km 

11 
 

HV Powerlines ** Lines Distance to Feature Continuous km 

12 Landscape Areas of Outstanding Natural 

Beauty 

National Heritage 

England [56] 

Polygons Distance to Feature Continuous km 

13 
 

National Parks 
 

Polygons Distance to Feature Continuous km 

14 
 

Heritage Coast 
 

Polygons Distance to Feature Continuous km 

15 Nature Special Protection Areas 
 

Polygons Distance to Feature Continuous km 

16 
 

National Nature Reserve 
 

Polygons Distance to Feature Continuous km 

17 
 

Sites of Special Scientific 

Interest 

 
Polygons Distance to Feature Continuous km 

18 
 

Special Areas of Conservation 
 

Polygons Distance to Feature Continuous km 

19 Geographic Elevation EU DEM [40] Raster Height above sea level Integer m 

20 
 

Slope Derived from 18 Raster Gradient Continuous % 

21 Census Level of Qualification ONS [57] Tabular Higher than L4 *** Continuous % 

22 
 

Age 
 

Tabular Mean Continuous Years 

23 
 

Social Grade 
 

Tabular Social Grade AB **** Continuous % 

24 
 

Tenure 
 

Tabular Home Ownership Continuous % 

25 Political Conservatives  [58] Tabular Percentage of Council Continuous % 

26  Labour  Tabular Percentage of Council Continuous % 

27  Liberal Democrat  Tabular Percentage of Council Continuous % 
* Roads are broken into four main categories: Motorways, A Roads, B Roads and Minor Roads. ** High Voltage network at 140-400kV. *** L4 represents degree level or above. 

**** AB represents Higher & intermediate managerial, administrative, professional occupation 
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Onshore wind generation is one of the most cost-effective methods of renewable electricity generation. However, 
there is often difficulty in identifying suitable sites for development. To assist such systems, geospatial information 
systems are extensively used in identifying suitable sites for wind turbines: these models predominantly focus on 
the technical and legislative constraints, and have a limited understanding of the social issues surrounding 
development. As a result, there are concerns with the validity of these models in accurately determining suitable 
sites and fail to acknowledge the strong local opposition which some projects can experience. Building upon 
previous statistical analysis, this paper presents a geospatial multi-criteria decision analysis that integrates the 
technological, legislative, and social constraints to determine suitable sites for onshore wind turbine development. 
To the authors’ knowledge, this is the first study that aims to understand whether suitable sites are likely to receive 
planning permission and to integrate this into the decision-making process. The findings highlight the importance 
of considering the planning constraints within modelling and demonstrates the limitations in identifying suitable 
sites for development. 
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1. INTRODUCTION  

Increased environmental concern and issues surrounding security of supply have led to a global drive to develop 
renewable energy systems. This has led to a large increase in the development of these technologies, which has 
resulted in significant interest in identifying suitable locations for these to be installed. 

While onshore wind power generation is now both a mature technology and competitive with traditional energy 
supplies in many countries, there are difficulties in identifying suitable sites for wind turbine farms. To assist this 
development, many geospatial models have been proposed. However, there are concerns that current models 
provide limited actionable guidance, and in particular fail to account for the challenges faced in projects obtaining 
planning permission. This can be highlighted in the United Kingdom, where more than 50% of wind turbine projects 
in the United Kingdom are rejected at planning (DECC, 2016), suggesting that wind turbines are being proposed in 
areas which are socially unsuitable for development. 

The overall objective of the programme of work, to which this paper contributes, is to build a predictive model for 
locating onshore wind turbine projects, integrating resource availability and the likelihood of a project receiving 
planning acceptance. In the first stage, statistical analysis was conducted to identify the key influences for planning 
acceptance of onshore wind turbines. This paper presents the second stage of the analysis, outlining the geospatial 
model developed for assessing site suitability and decision making for identifying suitable sites for wind turbine 
development. 

The work presented here has four parts: an overview of the literature relevant to onshore wind GIS modelling; a 
description of the research methodology; presentation of the model results and finally discussion of the theoretical 
and practical implications of the research and further research opportunities. 

2. BACKGROUND 

Identifying suitable locations for onshore wind turbines requires the assessment of a range of largely geospatial 
parameters. As a result,  there has been  extensive use of Geographic Information Systems (GIS) which are 
designed to capture, store, manipulate, analyse, manage, and present spatial or geographic data (Malczewski, 
2004). Such GIS approaches often paired with Multi-Criteria Decision Analysis (MCDA) to provide a method to 
interpret the geospatial data and rank potential options from the model data. 

Early developments in onshore wind GIS-MCDA modelling started in the late 1990s (Voivontas et al., 1998; Baban 
and Parry, 2001). In recent years, there has been significant international interest to model wind turbine site 
suitability, and a large number of methods have been developed (Janke, 2010; SQW Energy, 2010; Sliz-Szkliniarz 
and Vogt, 2011; Van Haaren and Fthenakis, 2011; Gass et al., 2013; Neufville, 2013; Wang et al., 2014; Miller and 
Li, 2014; Atici et al., 2015; Watson and Hudson, 2015; Noorollahi et al., 2015; Gove et al., 2016).  These models 
typically are formed of the stages as shown in Figure 1. Firstly, input parameters are selected covering 
environmental, technical and social (Gigović et al., 2017). For example, ideal sites are typically identified as having 
high average wind speeds; not being close to urban areas; not in protected landscapes (e.g. National Parks); not 
close to airports (to minimise radar interference); close to roads for access and finally close to power lines for grid 
connection. Each location is then scored against these input parameters, and incompatible areas are excluded from 
further analysis, such as areas which have already been developed (roads and buildings).  

 

Figure 1 An overview of the typical structure of GIS-MCDA methodologies 

For remaining sites which could be developed, a score is calculated to assess the overall suitability of the site. While 
several techniques are used, the Weighted Sum Method (WSM) is most typically used as a method to combine the 
different layers into a single score as follows:  

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �𝑤𝑤𝑖𝑖𝑎𝑎𝑖𝑖  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, 3 …  𝑁𝑁 (1) 

where 𝑤𝑤 is the parameter weighting, 𝑎𝑎 is the parameter value and 𝑖𝑖 is the attribute layer in the model. This rating 
can then be used to determine the most suitable sites for development. 

A concern surrounding the WSM is that the method is often applied without any insight into the meanings of two 
critical elements: the weights assigned to attribute layers and the procedures for combining the layers (Malczewski, 
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2004). While methods such as the Analytic Hierarchy Procedure (AHP) are used to mitigate this (Watson and 
Hudson, 2015), models remain highly sensitive to the weightings used, and there are concerns that models result 
provide the sub-optimal location of wind turbine locations, as demonstrated by the high level of projects being 
refused planning permission within the UK. 

To address concerns of parameter weighting, there has been increased interest in quantitatively assessing which 
parameters influence the likelihood of wind turbines receiving planning permission (van Rensburg et al., 2015). This 
approach has recently been integrated within GIS modelling to  assess the influence of geospatial parameters in 
the UK (Harper et al., 2017). This can be considered as a form of retrospective GIS analysis, where the existing 
spatial distribution of sites is assessed to enable prediction of where future turbines may be acceptable. Harper et 
al’s results suggest that the 1) the number of wind turbines; 2) percentage of the local population with high levels 
of qualifications; 3) the average age and 4) local political composition emerge as key influences affecting planning 
approval, while other typically used parameters such as proximity to urban areas appear less influential. However, 
these finding have yet to be integrated into a GIS-MCDA. 

Finally, the issue of the standardisation of non-commensurate criteria within the WSM and GIS-MCDA has yet to 
be satisfactorily addressed. To create a single site suitability score requires the combination of a range of economic, 
environmental and social parameters which cannot directly be summed together into a single scale. Methods such 
as the linear transformation method are often used to standardise each variable, but there is limited empirical 
justification for such approaches (Jiang and Eastman, 2000).  

This paper addresses these concerns and presents the results of a GIS-MCDA model that integrates planning 
acceptance rates into modelling.  This approach builds upon our previous work and demonstrates an alternative 
layered approach combining non-commensurate parameters, in particular avoiding the use of linear transformations 
within the MCDA.  

3. METHODOLOGY 

The overall structure of the GIS model is shown in Figure 2, and the stages are described in the following 
subsections. 

 

Figure 2 Overview of the onshore wind GIS-MCDA Structure 

3.1.  Model formation 

A preliminary scoping study was conducted to formulate the model and identify parameters which influence wind 
turbine developments. The identification of criteria involves a systematic analysis of factors that may impact 
installation of the wind farms. This considered a range of academic work as listed in Section 2, consultancy reports 
(Land Use Consultants, 2010; SQW Energy, 2010) and wind turbine planning guidance (Smith, 2016). 

HARPER_141            
3 



16th International Conference on Sustainable Energy Technologies – SET 2017 
17th - 20th of July 2017, Bologna, IT 

The study was conducted across Great Britain (England, Scotland & Wales). This was chosen because of the 
broadly similar categorisation of land types, nature designation, data availability and legislation across these 
regions. To allow for a more detailed understanding of the local effects, this paper also highlights the results from 
two case study areas, Solent and the Midlands, as shown in Figure 3. These two areas were selected as there are 
large differences in the number of wind turbines deployed, with no wind turbines near Solent while 30 projects have 
been constructed within the Midlands region (DECC, 2016). 

 

Figure 3 Analysis Extent and regions selected for case studies, highlighting the locations of existing wind turbine projects. 

Once key parameters were identified, relevant data was collected from a range of sources for geospatial (Ordnance 
Survey, 2016; OSM, 2016), environmental (SNH, 2015) and demographic variables (Office for National Statistics, 
2016). A full explanation of the datasets is available within the previous work (Harper et al., 2017). 

3.2. GIS Model 

As highlighted within the background literature, there are challenges in combining non-commensurate data within 
MCDA. Instead of combining variables into a single score, an approach was developed to group input variables into 
layers based on their type of influence on a site suitability, with three layer GIS layers being formed; 1) Site 
acceptability; 2) Exclusion zones and 3) Economic viability. These are explained in more detail as follows. 

Site acceptability assess whether the chance of the location receiving planning permission. This layer is based on 
previous analysis which used logistic regression methods to identify the key influential parameters that determine 
whether a wind turbine successfully obtained planning consent (Harper et al., 2017). An overall predictive accuracy 
of 63% was achieved with the model, with the most influential parameters shown in Table 1. The Odds Ratio shown 
indicates how much the predicted planning acceptance rate changes for each unit of the parameter. For example, 
for each km a site is further away from an urban region, its likelihood of receiving planning approval increases by 
0.176%.  

Table 1 Parameters determined to influence the planning acceptance of wind turbines 
Parameter Unit Odds Ratio   Note 
Turbine Capacity MW 0.311 Set as 2MW (a single turbine) 
Urban Regions km 0.176 Expressed as kilometre to each feature 
AONB km 0.009  
National Parks km 0.007  
RAMSAR km -0.008  
SPA km -0.012  
Qualification Perfect Level 4 % of Population -0.031  
Mean Age years -0.052  
Time of Construction years -0.110 Assumed to be 2017 within the model 

Exclusion Zones considers whether the site can be used for development.  Existing legislation and ecological 
guidance was reviewed, and the geospatial development patterns of existing wind farms were assessed to identify 
whether specific regions were avoided by developers. These criteria were split into the following taxonomy: 

• Hard Planning Criteria: these are legislative restrictions that prevent the development in specific areas. 
For example, wind turbines must not be built within a toppling distance of main roads.  
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• Soft Planning Criteria: these are derived from statistical analysis of existing wind turbine planning 
applications to understand regions where turbines were generally not proposed but not legislatively 
restricted. For example, while it is technically possible to build in National Parks, only two projects have 
been built within them and therefore these regions can be considered as non-developable areas. This also 
excludes sites of ecological protection. 

• Buffer Criteria: explores whether there is any geospatial trend for sites to be located away from certain 
features. For example, wind turbines sites are not banned near airports, but sites are skewed away from 
these sites suggesting planners aim to keep distance between the sites. 

The values used within each of the exclusion layers are shown Table 2. Based on these three categories, three 
scenarios were formed to assess the impact of planning restrictions on the development potential: 1) Low Restriction 
(Hard Planning Criteria only) 2) Medium Restriction (Hard & Soft Planning Criteria) and 3) High Restriction (Hard, 
Soft and Buffer). 

Table 2 Parameters and exclusion distances used within the model 

Parameter Exclusion Distance (km) 
Hard Planning Criteria Soft Planning Criteria Buffer Criteria 

Airports 0 2 10 
Roads 0.15 0.15 0.15 
Railways 0.15 0.15 0.15 
Military Sites - 0 10 
Urban Areas - 0 2 
Powerlines 0.15 0.15 0.15 
Landscape Designations1 - 0 2 
Nature Designations2 - 0 2 
Notes:  
1: National Parks, Areas of Outstanding Natural Beauty, Heritage Coast  
2: (National Nature Reserves (NNR), Natura 2000, Special Protection Areas (SPA), Sites of Special Scientific Interest (SSSI)) 

Finally, economic suitability of the potential financial return of the site. This layer was determined based on the wind 
speed and proximity of the site to the distribution network. Potential wind power output was calculated using the 
Weibull probability distribution combined with logarithmic hub height correction.  

Each of the layers were calculated as a raster layer, with a spatial resolution of 250 metres, and were analysed  
and integrated using R and supporting geospatial packages raster (Hijmans, 2016) and sp (Roger S. Bivand, Edzer 
Pebesma, 2013). 

3.3. Multi-Criteria Decision Analysis 

The model considered the suitability of a site for the installation of single wind turbines, and was based on a 2MW 
wind turbine which represents the average size of onshore turbines constructed in 2016 (Vestas, 2017). Based on 
planning guidance, a spacing between turbines of 500m was used (Smith, 2016), resulting in a development density 
of 8MW/km2.  

As shown in Figure 4, each site is categorised based on its Economic viability (X-axis) and Site Suitability (Y-axis), 
with four types of suitability defined (Low/Potential/Good/Excellent). More flexibility is given to the site suitability 
parameter to reflect that there is less certainty to this value. The analysis selected sites based on their suitability 
rating. To estimate the potential capacity of sites that could be developed, all sites that score “Excellent” or “Good” 
were selected as suitable for development. 

 

Figure 4 Classification of potential sites based on the GIS layer results 
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4. RESULTS 

The results from the geospatial model layers are presented in Figure 5, which shows the three separate layers of 
the analysis. These layers are combined to determine the site suitability score displayed under the medium 
development restriction scenario, as shown Figure 6. Nationally, it can be seen from the results that sites appear 
to be more suitable within Scotland, the South East of England, and patches of West England. For the Solent region, 
77% of the land was excluded with no sites being deemed “Good” or “Excellent” for wind development.  In 
comparison, 45% of the Midlands region was excluded for development with 1.2GW of potential site capacity 
identified from suitable sites. 

 

Figure 5 Results for the three onshore wind GIS layers within the model. Darker colours indicate desirable characteristics for 
wind turbine sites. 

 

Figure 6 Comparison of Wind Turbine Potential under the medium development scenario 

Table 3 provides a detailed breakdown of the land suitability under of the each of the three exclusion regions for 
the national model. Cells highlighted in grey indicate those which are the most suitable for development potential, 
being outside crucial exclusion zones and having a high site suitability score. Such sites cover 0.74% of the country, 
and represents 13GW of potential capacity if fully utilised. 
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Suitability Score Hard Criteria Soft Criteria Buffer Criteria No Exclusion Total 
Low 11.43 25.58 37.70 2.82 77.5 

Marginal 2.78 5.90 8.98 3.07 20.72 
Good 0.07 0.93 0.51 0.23 1.74 

Excellent 0 0.005 0.003 0 0.008 
Total 14.275 32.418 47.186 6.12 100 

Table 3 Site score suitability matrix comparing exclusion criteria against site suitability, coverage of land covered by each 
classification. Cells highlighted in grey indicate the most suitable for development. 

The comparative suitability of the regions can also be explored through density plots as shown in Figure 7. Each 
non-excluded site is represented as a point, and the regional variation in acceptability and economic viability can 
be viewed on separate scales. The site acceptability within the Solent region is generally less than the national 
average and Birmingham, although the economic viability is generally similar. 

 

Figure 7 Two-dimensional Density Plots for wind turbine sites within the Birmingham and Hampshire/Solent regions. Note that 
the axes have been truncated at a score of 50. 

5. DISCUSSION 

The analysis suggests that 13GW of onshore wind would be highly suitable within a medium development restriction 
scenario, which considered the “hard” and “soft” planning criteria. If the stricter “buffer” criteria are met, the estimated 
capacity is reduced to 4 GW. Both these estimates are significantly lower than previous  studies which have 
suggested total capacity could exceed 200 GW (Stoddart and Turley, 2012; Gove et al., 2016). This highlights the 
impact of considering likelihood of planning acceptance within the GIS-MCDA and the constraint this places on 
development. 

The case studies of Solent and Midlands highlight the regional variations in onshore wind potential resource as 
shown in Figures 6 and 7. From a resource perspective, the Solent area is highly suitable with many hilly regions 
and its coastal location resulting in high wind speeds. However, the opportunity for development is limited by 
National Parks and Areas of Outstanding Natural Beauty (AONB), and the sites that are located outside of these 
regions are largely unsuitable for development due to the demographic composition. In comparison, the Birmingham 
region faces much less restriction in where developments could be made and presents much greater opportunity 
for future development.  

The results further highlight that cost is not the dominant issue in determining the suitability of a wind turbine site, 
as wind speeds are largely satisfactory and in UK most sites are an acceptance distance to powerlines for a wind 
turbine to be economic. A number of previous studies have placed a high weighting on wind resource (Shirgholami 
et al., 2016), reflecting the interest of the developer to maximise returns. In reality, it may be in their interest to select 
a less windy site that is more likely to receive planning permission. 

On a national level, it is important to consider the distribution of potential sites and the consequent impact this may 
have on the electricity transmission network. The results indicate that regions in Scotland and the South West are 
most suitable for further development; however, such areas are distant to large load centres such as cities, requiring 
transmission networks or energy storage to be upgraded.  

A benefit of building the model into several intermediate layers, such as used in this model, is that it allows the 
results to be more easily interpreted and minimise the concerns surrounding standardisation of parameters. When 
combining the variables into a single suitability score, it can easily hide or distort what is influencing the site score, 
and make it difficult to understand why some sites are more suitable than others are.  
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5.1. Limitations & Future Work 

Such models are highly influenced by the availability and quality of the data for the analysis. Wind speed is only 
available at 1km resolution and does not account for roughness of surface caused by urban developments of varying 
land cover such as forests (DTI, 2001). The errors from any dataset will have propagated through the analysis and, 
combined with errors from other layers, may cause inaccuracies in the output map. Future work will therefore 
investigate the sensitivity of results. 

Whilst the analysis has tried to understand the chance of a project being accepted, it has only considered geospatial 
parameters. As previous studies have highlighted, such parameters in themselves only provide part of the 
explanation as to why wind farms are accepted  (Toke, 2005; Langer et al., 2016).  Greater emphasis must also be 
placed on the planning process and local engagement of a wind project if it is to be successful at planning. 

The analysis has also not considered the impact of electricity transmission networks, and the potential requirement 
of grid reinforcements. It is already being seen in the UK that grid reinforcements are being made to transfer 
electricity and this is becoming a limiting factor in the development of renewable energy projects (National Grid, 
2015). The majority of sites identified as suitable for development are distant from large load centres, and therefore 
would place additional strain on the transmission network to transfer this electricity across the country. It is therefore 
important that this issue is explored further in future analysis. 

The model only considers the suitability of individual wind turbines, and does not assess whether an area is suitable 
for development of a larger wind farm. There would be economies of scale in proposing a single larger development, 
and as such, these locations would be preferential to developers.  

The analysis did not consider the influence of the cumulative number of wind turbines within a certain area. It is not 
fully understood within literature whether there is a limit to the development potential of wind turbines, although 
some evidence suggests that regions can reach a saturation level (Toke et al., 2008). 

6. CONCLUSION 

The authors’ have presented a GIS-MCDA which can be used to assist in location onshore wind turbines. By 
integrating planning acceptance rates into the decision-making process, the results of this model have highlighted 
that the potential resource is significantly lower than previous estimates. However, there remains an opportunity for 
further development of onshore wind turbines to help meet renewable electricity generation targets. 

The GIS-MCDA presented an alternative method of combining non-commensurate data into the decision-making 
process. By avoiding the use of standardisation, there is less distortion to the input data and this reduces potential 
errors within the model results. This also provides greater insight into the model results as it is easier to understand 
the factors influencing site suitability.   

Using two case studies, the results have shown how the onshore wind capacity can vary significantly for similar 
types of regions within the same country. This can be influenced by physical restrictions such as landscape and 
nature designations, or “hidden” factors such as local demographics and political composition. It is therefore 
important that these factors are understood when wind turbines are being considered within a region. 

The findings of this study can be used by a range of stakeholder to improve the planning and development of wind 
turbines.  As examples, regional planners could more accurately estimate the potential capacity within their region, 
and project developers could gain a greater understanding of where sites should be proposed to increase the 
likelihood of receiving planning permission. The results should support, not replace, local level planning. 

Whilst the analysis was completed within Great Britain, the concepts developed can be applied internationally. 
However, the specific planning acceptability data will have to be the region as outlined in previous analysis (Harper 
et al., 2017).  
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8. SUPPORTING DOCUMENTS 

The analysis was completed using R and the full analysis is provided here: https://github.com/mikey-
harper/SET2017Paper. 
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Glossary

Energy Neutrality ”the extent to which a district can supply itself with sustainable energy

generated within the boundaries of that district.

Energy Autarky an energy system which operates entirely isolated, without external assistance or

interconnection.

Urban Hinterland the rural area surrounding cities, and the transition zone where urban and rural

uses mix and often clash..

NIMBY a person who objects to the siting of something perceived as unpleasant or hazardous in

their own neighbourhood, especially while raising no such objections to similar developments

elsewhere.

Spatial Scale The geographic coverage at which spatial measurement measurement is conducted

or planned.

Spatial Nonstationarity is a condition in which a simple global model cannot explain the

relationships between some sets of variables.

Territoriality the attempt by an individual or group to affect, influence, or control people,

phenomena, and relationships, by delimiting and asserting control over a geographic area..
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Analytic Hierarchy Process, 54

distributed generation, 34

energy autarkic, 164

energy neutrality, 3, 25

energy potential mapping, 161

energy self sufficiency, 78
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Geographical Information Systems, 42

hinterland, 27

Local Enterprise Partnerships, 22

Matching Principle, 14
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Non Fossil Fuel Obligation, 20
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Renewable Energy Planning Database, 90
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Spatial Decision Support System, 43
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