UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS

School of Electronics & Computer Science

Enhancing Distributed Real-Time Collaboration with Automatic

Semantic Annotation

by

Benjamin Paul Juby

Thesis for the degree of Doctor of Philosophy

February 2005

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS
School of Electronics & Computer Science

Doctor of Philosophy

Enhancing Distributed Real-Time Collaboration with Automatic
Semantic Annotation

by Benjamin Paul Juby

Distributed real-time collaboration, such as group-to-group videoconferencing, 1s
becoming increasingly popular. However, this form of collaboration tends to be less
effective than co-located interactions and there is a significant body of research that has
sought to improve the collaboration technology through a variety of methods. Some of
this research has focused on adding annotations that explicitly represent events that
take place during the course of a collaboration session. While this approach shows
promise, existing work has in general lacked high-level semantics, which limits the
scope for automated processing of these annotations. Furthermore, the systems tend not
to work in real-time and therefore only provide benefit during the replay of recorded
sessions. The systems also often require significant effort from the session participants
to create the annotations.

This thesis presents a general-purpose framework and proof of concept
implementation for the automated, real-time annotation of live collaboration sessions. It
uses technologies from the Semantic Web to introduce machine-processable semantics.
This enables inference to be used to automatically generate annotations by inferring
high-level events from basic events captured during collaboration sessions.
Furthermore, the semantic approach allows the framework to support a high level of
interoperability, reuse and extensibility. The real-time nature of the framework means
that the annotations can be displayed to meeting participants during a live session,
which means that they can directly be of benefit during the session as well as being
archived for later indexing and replay of a session recording.

The semantic annotations are authored in RDF (Resource Description Framework)
and are compliant to an OWL (Web Ontology Language) ontology. Both these
languages are World Wide Web Consortium (W3C) recommendations. The framework
uses rule-based inference combined with knowledge from an external triplestore to
generate the annotations. A shared buffer called a tuple space is used for sharing these
annotations between distributed sites.

The proof of concept implementation uses existing Access Grid videoconferencing
technology as an example application domain, to which speaker identification and
participant tracking are added as examples of semantic annotations.

11

Table of Contents

1 INEFOAUCTION oo 1
1.1 CONTRIBUTIONS ...cittctett ettt ettt ettt es bbb s enaearnses 3
1.2 DOCUMENT STRUCTURE....c.ciuiietetiiiiieieiesesetese et ese et sieesacennsnnnans 4

2 LIterature REVIEW ...t 5
2.1 INTRODUCTIONouiiiieiiiiieieieetee ettt 5

2.1.1 EArlYy WOIK ..o 5
2.1.2 Colab and Media SPAcCES.......ccccccoeeviiieceiieeeeeieeeeeeeeeens 6
2.1.3 Videoconferencing INtErfacescccoouveveeecenceccneiceeeenns 7
2.1.4 Conversational and Workspace AWareness................ 10
2.1.5 Computationally Mediated Interactions..........c..cceenn. 11
2.2 REVIEW OF COMPUTER ENHANCED COLLABORATION SYSTEMS................ 13
2.2.1 REVIEW CITEEII@ ..ot 13
2.2.2 INOLELOOK ... 14
2.2.3 Shared TeXt INDULc.coooeeeeeeeeeeeeeeee e 17
2.2.4 Distributed MEELINGScccooovvveieeiiieie e 19
2.2.5 The AVIARY Intelligent ROOMccccocoivioinniniieiciiecns 22
2.2.6 The Smart Meeting ROOM TaSK.......c..cccceeveeeecveiiieieieeceeenns 25
2.2.7 COAKTING ...coooooeieeieeeeeeeeee ettt 28
2.2.8 Conclusions for Review of SYStemsS.....c.cccovvneevcnccicnennn. 33
2.3 THE SEMANTIC WEBcoimiiiiieiiic ettt 33
2.4 SEMANTIC WEB APPLICATIONSootiuiiieietitereenteeneeneseeieseeseienesisicaeencasnannes 35
2.4.1 CS AKTIVESDACE ..o 35
2.4.2 Friend Of A Friend (FOAF) ..., 38
2.4.3 ANNOLEG ... 39
2.4.4 RDF Calendar TasKfOIrCe.......c.cooiereiieiniiiniieecseeeenens 41
2.5 CONCLUSIONS FROM LITERATURE REVIEWoooviiiiiiieneiceceeeen, 41
3 Background and Motivation ... 43
3.1 INTRODUCTION ..ottt 43
3.2 SEMANTIC ANNOTATIONSooviiiriieieietiteietetetese et canaseneanaees 43
3.3 SUPPORTED TECHNOLOGIES.......cootiieiniiiiieieaesee s sseisisesieeasansseasasennns 44
3.4 SUPPORTED COLLABORATION TYPESc.ciiiieeieriieee et 44

3.5 MOTIVATION FOR ANNOTATION ...coeee oot 45

3.5.1 What is being annotated?ccccoccoviovivcceeiieeeeeeeeee, 47
3.6 MOTIVATION FOR A SEMANTIC APPROACH.......c..ioiiiiiieeiereiee e 47
3.7 MOTIVATIONAL STUDY OF W3C TELEPHONE CONFERENCEScvervenne. 49

3.7.1 General ObSErvations ..o 51

3.7.2 IRC BOt FEatures USEdccccocveeiiiiiiiiiiiiieieeeeee e, 51

3.7.3 Non-bot Related Information Sent in IRC...........ccccoovoveuen. 52

3,74 CONCIUSIONS ..ot 53
3.8 EXAMPLES OF COLLABORATION EVENTS ..o, 54

3.8.1 What constitutes an @Vent?.......cocccoooveeceoeeieceseeecen, 56
3.9 MOTIVATIONAL ACCESS GRID-BASED SCENARIOccccovveveeirieieeeieeeeicnnnas 56

3.9.1 Access Grid BackgroUndccccoccooviiiiiiiiieceeceneecnae, 57

3.9.2 Access Grid WeakneSSEescccccoiiecaiiiiieieeeeeneeeceecen 58

3.9.3 Enhancing the Access Grid with Semantic Annotation60
3.10 SUMMARY ..ottt ettt 64

4 A Framework for Real-Time Semantic Annotation ..., 65
4.1 FRAMEWORK ORIGINS ..ottt sttt seeess e 65

Fo1.d INFEIENCE. ..o 66

G.1.2 SEOFAGE ... e 67

4.1.3 COMMUNICAtIONSoooeieiiet et 67

4.2 OVERVIEW OF FRAMEWORKcciiieiiitieiiiteiniice et eseae st 68
4.2.1 Comparison to Real-Time Expert Systems......c.cccccceveene. 70
.3 EVENTS oottt ettt 71
4.4 EVENT SHARING ...couitiietitietetie sttt ettt sttt esssacan s enseeenenens 72
44,1 TUPIE SPACES ... 73
4.4.2 State Change PacKeES ... 74
4.5 REAL-TIME CONSIDERATIONS ...cocoovririiiitaieieteaseeneeneeeseneieseseseeeesaasenseannnas 74
4.6 SYNCHRONISATION OF EVENTS AND MEDIA STREAMSc.coveiieieciireecenas 75
4.7 TIMESTAMP GENERATION AND FORMAT ...cooiiiiiiiiiiiiiiieii e 77
4.8 DETAILED DESCRIPTION OF FRAMEWORK COMPONENTS.......crevueiicinnnn. 78
Fo8.1 PrOGUCELS ..o 78
4.8.2 TUPIE SPACE SEIVEI ... 80
4.8.3 Tuple Space DiSCOVErY SEIVEr........cccoooeeeeeeeeieceecieaenes 80

4.8.4 INFEreNnCe ENGINE.........c.ccocooooeoeieieieeeeeeeeieeeee e 81

4.8.5 External Tripl@StOrecccccooovoiiceeiieiiiiiieeceeeeeeeeee 83
F.8.6 CONSUIMELS ..ottt 83
4.9 SUMMARY Lottt ettt 84
5 ImMPlemMeEntation ..o 85
5.1 OVERVIEW OF END-USER FUNCTIONALITY .cueeuviiiiiriieiiieieiecereiceceiceenas 85
5.2 OVERVIEW OF SYSTEM ..ottt ettt 86
5.2.1 PrOGUCEES ... 86
5.2.2 INFEIrENCE ENGINE.......cooooiiiiiiiiiitee e 88
5.2.3 CONSUIMEES .ot 89
5.3 SPEAKER IDENTIFICATION TECHNIQUE ..ooooiiieieee et 89
5.3.1 The need for infEre€ncCeccocovveoeeeiiiiiiieeeee e 91
5.4 ONTOLOGY .ottt ettt 92
5.4.1 Ontologies Chosen fOr REUSE........c...cccueeeeeeeeeeeeeeeeeeeeee e 92
5.4.2 EVENES @NA TIME ..ot s 94
54,3 LOCAEIOMN ..o 96
5.4.4 Personal IdentifiCationcoicoiiieiiciiieeiecrce e 100
5,45 EVENE TYPES ...t 102
5.5 TUPLE SPACE ..ottt 106
5.5.1 Events as EQUIP TUPIES........cooevoiiiiieiiieees 107
5.5.2 Dataspace Discovery MechaniSmcccoeoicevcvciincnnnnn. 109
5.6 PRODUCERS ...ccoiitiiiiiteteieee ettt et eb et 110
5.6.1 Session Information ProduUCErcccccoveiionieccreiciiiienn 110
5.6.2 Microphone ACtivity ProduUCErcccccooommmioicniccieienen, 111
5.6.3 [Button Reader PrOGUCESccccoeeeeeeeeiireeeeeece e 112
5.7 INFERENCE ENGINE AND TRIPLESTORE ...cceiieveiaeiirneeieneiineeseeeenseeneneaens 112
5.7.1 Overview of Relevant Jena Functionality 113
5.7.2 THIDIESEOIrE ... 114
5.7.3 INFErence ENGINE........ccccooviieiioeieeeeeeeeeeeeeee e 115
5.8 CONSUMERS ..ottt ettt eb ettt 116
5.9 SUMMARY Lottt 119
6 Details of the Inference ProCess........ccoooiiieveiiicccrcece e, 120
6.1 CREATION OF RULE SET ..ooiiiiiiiiiicicieceee ettt 120

A

6.2 CLASSIFICATION OF RULE TYPES....oii oot 121

6.3 INFERENCE RULEScoiiiiiiieiiiriieiete et 121
6.3.1 Rules That Query The TripleStorec.ccooeveceeeecceeannn. 122
6.3.2 Rules That Assert NeW Triples........ccccooovoiioiiiceeeeeieee 123
6.3.3 Rule To Archive The SESSION.........ccocceoviviiiieiiieieeieeceien 126

6.4 JENA BUILTINS ..ottt ettt 127
6.4.1 Standard Jena BUiltins...........ccccccocvoiiociiiiiiiiieieecces 127
6.4.2 NEW BUITEINS ..ot 128

6.5 BOOTSTRAPPING KNOWLEDGEvovvevvieieiiieieiiie et 133

6.6 WALKTHROUGH OF AN EXAMPLE MEETING....cecouvviiiiiiiiiiieieee e 134
6.6.1 Full Description of the Processes Taking Place.................. 138

B.7 SUMMARY ..ottt ettt ettt 140

7 EVAIUATION o 142

7.1 PERFORMANCE ..ottt ettt ettt st ettt 142

7.2 SEMANTIC ASPECTS ..ootieeiiesieeeeeeeee it eeetes et e e st nneene s aenen s 143
7.2.1 INFEIENCE. ...t 144
7.2.2 Interoperability @nd REUSEcc.ccccoeeeveiieceiiiieiee e 146
7.2.3 EXCEENSIDITIEY ..o 147
724 INAEXING ... s 148

7.3 CRITERIA FROM LITERATURE REVIEW ..oooiiiiiiiiiieiiiiceiecceiee e 149
7.3.1 Support for Live ProCeSSing.......uuueceieoeoeieieaeeieeeieenenaen, 149
7.3.2 Degree of AUEOMAELION.............cooeeeie oot 150

7.4 TOOLS AND TECHNOLOGIESooviuiiieieieieceieie e eeceveseeerereee e 150
7.4.1 RDF(S) @nd OWHL.......ooieeeeeeeeeee et 151
742 ONEOIOGIES ..ottt 151
FoB. 3 JON@ i 152
744 EQUIP ..ottt 153

7.5 OTHER ISSUES ...oouiiiiiiiiictiiee ettt e 154
7.5.1 Error Handling......coocoooooiieeeeeeeeeeee e 154
7.5.2 QUAENEY OF SEIVICE ...t 155

7.6 SUMMARY ..ottt bttt 155

8 CONCIUSIONS ..o e e 158
8.1 CONTRIBUTIONS ...ooitiiiirietiteieiessetete bttt st tese e s e st eneiese s e e ennaneaes 158

8.2 FUTURE WORK ...t 161

8.2.1 Event Types and INfErenCeS........c.ccc.oouvveoeeieeeeeieieeereaeeeens 161
B.2.2 SECUIILY ..o 162
8.2.3 Consumer FUNCEIONAIIEYcccooeoeieiiieeeeeeeeeeeeeeeeeeee e 163

8.3 RESEARCH ISSUES ..ottt 164
8.3.1 Real Time Performance ISSUES.......c.c.ccccovevvreecreeeeneennen. 164
8.3.2 Triplestore Archit@CtUIE..........cccoovooeeeeeeeeeeeeeeeeeeeeee e, 165
Appendix A - Data From W3C Telephone Conferences..........cccoooueee. 167
Appendix B - IRC log of RDF Core Working Group Telconc.......... 168
Appendix C - The Live Collaboration ONntologyccccooeiveiivecis 172
Appendix D - The CoOAKTING ONLOIOGY ..o, 178
Appendix E - The Signage Location Ontology ... 184
Appendix F - The INference RUIES ... 191
O REFEIENCES. ... bt 212

vii

Table of Figures

Figure 2.1, The original Colab in use at Xerox PARC................cooeeni. 7
Figure 2.2, the Hydra system in use showing three video surrogates....... 8
Figure 2.3, The Extra Eyes user interface.............cooiiiiiiiiiii e 9
Figure 2.4, The interface to the GAZE system.........ccooiiiiiiiiiiiinnn. 10
Figure 2.5, The Notelook 3.0 freehand annotation interface................... 15
Figure 2.6, The Web based NoteLook iNndeX.........cc.ooviiiiiiiiiiiciininannn. 15
Figure 2.7, The Shared Text Input application running on a PDA............ 17
Figure 2.8, Distributed Meetings archived meeting client....................... 19
Figure 2.9, The AVIARY graphical summary.............ooiiiiiiiiiiiiienen 23
Figure 2.10, The SMaRT Meeting Browser...............ooiiiiiiiinn 26
Figure 2.11, The presence indicators of BuddySpace................cccoeeenn. 29
Figure 2.12, An example Compendium map.......ccouvveeieiineriiieiiiaiannnn. 30
Figure 2.13, The web based Meeting Replay interface.......................... 31
Figure 2.14, The Vannotea video annotation interface.......................... 40
Figure 3.1, A screenshot of the Access Grid projection wall.................. 59
Figure 4.1, An Overview of The Semantic Annotation Framework......... 69
Figure 4.2, The Framework Components.........ccoviviiiiiiiiiiiineiienees 79
Figure 5.1, Overview of implemented system..............ociss 87

Figure 5.2, The portion of the AKT ontology representing events and time 95
Figure 5.3, The location portion of the ontology...........coovviiiiiiiins 97
Figure 5.4, The section of the ontology for personal identification......... 101

Figure 5.5, Event types reused from the AKT and CoAKTInG ontologies 103

Figure 5.6, The ontology representing the new event types.................. 104
Figure 5.7, The Participant Display Panel............c..ooiviiiiiiiciiiiinns 117
Figure 5.8, The participant display panel in a running meeting............... 118

viil

Acknowledgements

I would like to thank my supervisor, Dave De Roure, who has provided me with much

support and advice throughout the duration of the work described in this thesis.

I would also like to thank Terry Hodgkinson and Stewart Fallis from BTexact for the
helpful comments they have provided for this work. I am also grateful to BT for

supporting me with a CASE award for the first three years of my research.

The members of the Pervasive Computing and Networks research theme at
Southampton also deserve thanks for letting me bounce my ideas off them during the
course of my research. I am particularly grateful to Danius Michaelides, Mark Weal,
Tan Millard, Sajay Vivek and Xiang Fei for sparing the time to proof read and comment

on the initial draft of this thesis.

I would finally like to thank my parents for their support throughout this work.

1 Introduction

Real-time collaboration that involves geographically distributed people is becoming
increasingly commonplace. This is largely due to the now widespread availability of
computers and networks able to handle multimedia data. Any person equipped with a
standard PC, webcam and network connection can join a videoconference and
collaborate with other people. Even sophisticated room based videoconferencing
systems such as the Access Grid [Acc04] are now affordable by an increasingly large

number of organisations.

Unfortunately, meeting using a remote collaboration technology such as
videoconferencing can be less effective than meeting face-to-face. Hollan and Stornetta
[Hol92] have proposed that by using computers to enhance distributed real-time
collaboration, the potential exists to improve collaboration to the point that it becomes

as effective as, or even more effective than non-mediated face-to-face collaboration.

There is a need to enhance distributed real-time collaboration to go beyond audio,
video and simple data sharing. This thesis discusses automatic live semantic annotation
as a way to enhance real-time distributed collaboration, focusing on group-to-group
videoconferencing as a deployment scenario. The emphasis of the work is on the
infrastructure required to generate and share the semantic annotations in real-time. It
presents a generic framework based around Semantic Web technologies, and this

framework is demonstrated with a proof of concept implementation.

Semantic annotation in this context means giving the individual events that occur as
part of a collaboration activity an explicit representation that has a formally defined
meaning. In practical terms this means that in addition to distributing audio and video
streams between sites in a videoconference, real-time generated descriptions of the
events in the session are also distributed between sites. Examples of useful annotations
are agenda items, speaker identification and tracking when participants join or leave the
session. These semantic annotations that represent events can be displayed to session

participants in real-time.

Displaying annotations in real-time during a live session has a number of potential
benefits. In particular, annotations can provide useful additional information that would
otherwise only be implicit or only available to some participants. This could potentially
help increase the level of situation awareness of the participants and lead to more
effective collaboration. Furthermore, the semantic annotations may be archived in
addition to audio and video to provide an index for the recording of the session. The
potential benefits of such an index include facilitating the navigation and searching of
recordings, allowing higher level queries, and also for reusing recorded material. The
annotations can also be replayed in synchronisation with the media streams to provide a

more complete replay than audio and video alone could provide.

While there is existing work on annotation of real-time collaboration sessions, it has
not used high-level semantics for describing meeting events, i.e. explicit machine-
processable annotations combined with machine-processable semantics. This limits the
amount of automated processing that can take place. Additionally the existing systems
mostly do not work in real-time, thus only providing any benefit when replaying a
recorded session. The systems also generally require significant effort from the
participants to create the annotations and have focused on co-located collaboration,

meaning they have poor support for distributed collaboration.

The semantic approach to annotation presented in this thesis has a number of
advantages over non-semantic approaches. In particular it allows inference to be used,
which is applied to enable high-level events to be automatically derived from basic
events captured in collaboration sessions. A semantic approach also enables a high

level of interoperability, reuse and extensibility.

The framework presented here uses rule-based inference combined with knowledge
obtained from an external repository called a triplestore. A shared buffer known as a

tuple space is also used for sharing the annotations between distributed sites

The semantic annotations are authored using the Resource Description Framework
(RDF), which is a language for representing information about resources in the World
Wide Web. The vocabulary used for annotation is specified using the Web Ontology
Language (OWL). This language is used to define vocabulary terms, their meanings

and their interrelationships.

The proof of concept implementation uses Access Grid videoconferencing technology
as an example application domain, to which speaker identification and participant
tracking are added as examples of semantic annotations. Although Access Grid is used
as the example domain, the implemented system is not dependent on Access Grid
technology and is general purpose enough to be used with other room-based

conferencing technologies.

1.1 Contributions

This thesis presents a novel investigation into the application of knowledge
technologies to computer mediated collaborative applications. It therefore contributes
research to the areas of Computer Supported Cooperative Work (CSCW) and the

automated creation of content for the Semantic Web. The core contribution can be

summarised as follows:

The application of Semantic Web technologies to the domain of real-time
distributed collaboration. Existing uses of Semantic Web technologies have been
largely limited to non real-time domains. This thesis demonstrates their use in a live,
real-time domain, and additionally demonstrates the use of a real-time tuple space to

distribute semantic annotations between non co-located collaborating users.

Existing systems for semantic annotation rely heavily on hand authoring of
information, which places significant burden on users. The rule-based inference
approach demonstrated here almost completely automates the process of live semantic

annotation and requires almost no additional effort from the day-to-day users of the

system.

The automated real-time approach to the generation of the semantic annotations enables
the novel functionality of being able to display the annotations to the session
participants in real-time as soon as they are generated. This means that in addition to
the more traditional use for indexing and replay after the session, the annotations can

directly benefit the participants during the session.

This thesis also identifies a number of useful meeting events that are common to many

different meeting types. Some of these events are formalised into an ontology for

[O8]

describing live collaboration sessions. This live collaboration ontology demonstrates
the powerful features of the Semantic Web for reuse by reusing a number of existing

ontologies to create certain parts of the live collaboration ontology.

1.2 Document Structure

This thesis 1s arranged as follows:

Chapter 2 reviews a selection of relevant literature, including existing computer

enhanced collaboration systems and the Semantic Web.

Chapter 3 explains and motivates the use of semantic annotations for enhancing

distributed real-time collaboration.

Chapter 4 presents an event based framework for the automatic semantic annotation of

distributed real-time collaboration activities.

Chapter 5 describes a proof of concept implementation of the framework discussed in

chapter 4.

Chapter 6 describes in detail the inference process that the proof of concept system

used.

Chapter 7 presents a discussion based analysis of the system framework and

implementation.

Chapter 8 discusses the conclusions for the thesis.

2 Literature Review

This chapter reviews a selection of literature relevant to the research in this thesis and is
divided into two main parts after the introduction. The first part looks at a number of
existing computer enhanced collaboration systems and reviews them according to a
number of relevant criteria. The second part covers the Semantic Web, starting by
looking at the main specifications used and then discussing a number of Semantic Web

applications, some of which are used for collaborative purposes.

2.1 Introduction

The research in this thesis is within the domain of Computer Supported Cooperative
Work (CSCW), which is “a generic term which combines the understanding of the
nature of group working with the enabling technologies of computer networking,

systems support and applications” [Rod91].

Group work is commonly classified into spatial relationships between workers and their
temporal relationships [Rod91]. Collaboration can either be local or remote and
synchronous or asynchronous. Synchronous collaboration involves people interacting
in real-time, whereas in asynchronous collaboration the interactions are non real-time
and do not require an immediate response. For example, asynchronous remote
collaboration often uses e-mail or the web, and synchronous remote collaboration may
use a telephone or videoconference. Local synchronous collaboration may involve
meeting support tools and local asynchronous collaboration may involve shared
document authoring. Often a combination of these modalities will be used during the

lifetime of the collaboration activity.

2.1.1 Early Work

Some of the earliest work in CSCW was pioneered by Douglas Engelbart [Eng62]. His
work identified that computers could be used as a communication mechanism for team
cooperation, allowing people to work simultaneously on the same materials. He
hypothesised that this would lead to a significant increase in group problem solving
ability. Although he provided no firm evidence to prove this hypothesis, he did

however claim that from his own personal experience he had noticed a “really

phenomenal boost in group effectiveness over any previous form of cooperation”

[Eng62] as a result of using computer based collaboration tools.

Later work by Engelbart [Eng75] harnessed the ARPANET combined with telephone
audio conferencing for computer augmented real-time distributed group collaboration.
The system used a shared display allowing remote people to view and control the same
computer display, enabling them to access notes and working records, copy materials

and access shared whiteboard functionality.

Other notable early work in this domain was carried out by Hiltz and Turoff [Hil&81].
Their Electronic Information Exchange System (EIES) provided features for
synchronous and asynchronous text based group conferencing. It provided a directory
for locating other users and supported features such as voting and shared notebooks. It
also provided archiving and indexing of discussion, which allowed searching by topic,

author or date.

2.1.2 Colab and Media Spaces

By the mid 1980s research in CSCW had started to take off in a big way. One of the
key players at this time was the Xerox Palo Alto Research Centre (PARC) [Goo86].
The centre’s notable research contributions included the Colab and Media Spaces
projects. The Colab [Ste86] was a computer enhanced meeting room (see figure 2.1) in
which each participant had access to a networked computer allowing them to structure
and share meeting information through a multi-user interface called WYSIWIS (What
You See Is What I See). The room was also equipped with a full size touch sensitive
digital whiteboard called a Liveboard. Not only did the Colab allow the structuring and
shared manipulation of meeting artefacts, but removed the need to transcribe these to

the participants personal computers after the meeting.

At around the same time as the Colab project, work was underway on the Media Spaces
project (described in a later paper by Bly er al. [Bly93]). This linked the offices and
communal spaces of two sites separated by several hundred miles with always on audio
and video connections. This provided the kind of informal contact between the
distributed workers that collocated workers can take for granted. In addition to
traditional videoconferencing, it provided peripheral awareness, giving an overview of

who was around and what was happening, and allowed chance encounters and social

Figure 2.1, The original Colab in use at Xerox PARC (from [Ste87])

activities. A follow up project at EuroPARC called Portholes [Dou92] used less
heavyweight techniques to provide periodic video snapshots from individual offices to

give a general sense of awareness of who was around and what they were up to.

2.1.3 Videoconferencing Interfaces

Work such as that of Buxton ez al. [Bux97] has looked at provide improved interfaces
for videoconferencing to try and address weaknesses such as a lack of eye contact,
failure to perceive the group as a whole and inability to hold side conversations. Work
on this task lead to the development of the Hydra system [Sel92], which simulated a
four way round-table meeting, with one physical participant and up to three remote
participants represented by their own “video surrogate” unit consisting of a camera,
monitor and speaker (see figure 2.2). Since each participant occupied a distinct place
around the meeting table, this preserved gaze and head turning and allowed side
conversations. An evaluation of the system showed that although the structure of turn
taking behaviour was not found to be significantly different when compared to regular
videoconferencing, it did support parallel and side conversations, which the regular

videoconferencing system did not.

Figure 2.2, the Hydra system in use showing three video surrogates (from [Sel92]).

Before Hydra, other researchers had provided alternative forms of support for gaze
awareness. For example “video tunnels” described by Acker and Levitt [Ack87] were
videoconferencing terminals that used a half silvered mirror at 45° to reflect an image
of the user into a camera on top of a monitor. The mirror allowed the camera to
effectively point directly into the eyes of the person looking into the monitor, thus

accurately conveying gaze information to the remote users.

Other research led by Buxton resulted in the Extra Eyes videoconferencing system
[Yam96], which was designed to compensate for the lack of peripheral awareness
during videoconferences. When using existing systems, tasks such as keeping track of
who is at the remote site or what they are doing can be difficult as the view is limited to
whatever is in front of the camera. Extra Eyes provided a peripheral, wide-angle global
view simultaneously with a close up detail view (see figure 2.3). A bounding box
displayed in the global view precisely identified the region that was displayed in the
detailed view. Clicking in the global view controlled the remote detail camera and
caused it to be oriented to point at that new position. This interface made the
relationship between the global and detail views explicit and reduced the potential for
any confusing spatial discontinuities. Sensors in the room also detected the entry of
new participants and flagged this with an alert box in the global view and a message
asking if the viewer would like to view the doorway. An evaluation was conducted that
involved identifying different letters displayed on video monitors at changing positions
in the remote room. The letters were too small to read in the global view, requiring the
user to move between the monitors with the detailed view. The evaluation showed that

the linking between the global and detailed views made the task completion time

significantly quicker and that the addition of explicit alerts showing when a letter

changed (and its new position) further sped up the task completion.

[Detai View] " 1

Wide
Button
OK
Aol
Fran 1 CarFemence—Roon y 0w (B0
Sonaona has amtarad tha Toos,
Io wou wzh to view the doorwad? Ca.m::i

Figure 2.3, The Extra Eyes user interface (from [Yam96])

One of the main drawbacks of systems like Hydra, video tunnels and Extra Eyes was
the specialist hardware required and the complexity of the set up. Vertegaal et al.
[Ver98] developed the GAZE Groupware systemn to provide a more lightweight method
of maintaining group awareness and communicating gaze information. The system used
a PC based eye tracking camera that conveyed gaze information in a shared three-
dimensional virtual meeting room. Each participant is represented as a portrait based
personification around the table in the virtual meeting room (see figure 2.4). Each
personification rotates according to where the corresponding participant looks. For
example, if person A looks at person B, then B sees A’s personification turn to face
them. When A looks at person C, then B sees A’s personification turn towards C.
Furthermore, when a participant looks at a document in the shared workspace, a virtual
“lightspot” is projected on the document indicating which part of the document they are
currently looking at. The colour of the lightspot corresponds to the colour of the border

around the participant’s personification.

o ONISPO

‘: faii j,{j\h\p 1P . cameonto.nliCharod /GAZE bt
The GAZE Groupwars Syslem
Developed by .

‘[@—mman Tele-Greup The Human Tele.Group ate

Eigonomics Depattiment ' Rl Vertegaal
| Twonte Universty e Harro Vo
The Nethettands Robert Slagter

lightspot

i
i
h
h
I
t
[+
]
t

Frip. S eddyvarl wime Litver Re ol Qaise, et

2-mal gaze@reddwat vamv iwerse nf

t
h
i
i
f
i

Figure 2.4, The interface to the GAZE system (from [Ver98]).

2.1.4 Conversational and Workspace Awareness

The novel videoconferencing interfaces discussed in the previous section were created
to enhance videoconferencing through improving the level of conversational awareness

and workspace awareness amongst the participants.

Conversational awareness [Ver97] is awareness about what is happening in a
conversation. It provides information about who is communicating with whom and
“answers both mechanical questions (did they hear me, did they understand me, who’s
going to talk next?) and also affective questions (do they believe me, how are they

reacting?)” [Gut97]. This awareness comes from cues such as eye contact, gestures and

intonation.

Workspace awareness is the maintenance of awareness “about others' locations,
activities and intentions relative to the task and the space” [Gut96]. Gutwin [Gut97] has
identified the categories of knowledge that make up workspace awareness and the
specific elements within those categories. These are summarised in Table 2.1, along
with a list of specific questions that each element answers. Its possible to see that there

is some amount of overlap between workspace and conversational awareness,

10

especially with the presence, identity, authorship and gaze elements of workspace

awareness,

While conversational and workspace awareness usually comes naturally in face-to-face
interactions, in videoconferencing this awareness has to be explicitly designed into the
systems, as has been shown in the previous sections. The Hydra system mainly focused
on conversational awareness, Extra Eyes mainly focused on workspace awareness (by
providing peripheral awareness, which is a subset of workspace awareness) and the

GAZE system provided both conversational and workspace awareness.

Category Element Specific questions
Who Presence Is anyone in the workspace?
Identity Who is participating? Who is that?
Authorship Who is doing that?
What Action What are they doing?
Intention What goal is that action part of?
Artefact What object are they working on?
Where Location Where are they working?
Gaze Where are they looking?
View Where can they see?
Reach Where can they reach?

Table 2.1, Elements of workspace awareness (from [Gut97]).

2.1.5 Computationally Mediated Interactions

The integration of people, pervasive computation and physical reality (such as the
Colab described in section 2.1.2) is sometimes referred to as a smart space. Mark
[Mar99] describes a long-term vision for a special kind of smart space called a
mediated space. In a smart space, humans deal directly with computational devices to
accomplish task. In a mediated space, individuals primarily interact with each other and
not with the space (although explicit interaction with the space may still occur). The
mediated space improves human activities by enhancing the interaction of people in the
space by proactively suggesting relevant information from outside the space and
providing other features such as checking the consistency of interactions with previous

interactions. This is achieved through the space understanding the interactions taking

11

place, using techniques such as speech and gesture recognition. Mark predicts that

technology to achieve this will emerge over the course of the next 15 years.

While Mark describes computational mediation for co-located people, Hollan and
Stornetta [Hol92] describe the potential for mediated communication for people who
are not co-located. They argue that the potential exists to improve computationally
mediated communications to the point that it becomes as effective as, or even more
effective than non-mediated face-to-face communication. They identify a number of

specific advantages that mediated communications could have. These are summarised

here:

e Clarity. Natural spoken language can be imprecise and ambiguous. Through
spatial location of the objects of discussion in a shared visual space, specific
objects could potentially be referred to by pointing at them. This would, for

example, overcome the reference ambiguity of using the word “it” in an English

sentence.

e Feedback. Facial expressions and verbal cues are used to indicate to a speaker
that their conversation is being followed. It is argued that these mechanisms are
rather imprecise. For example, the speaker may be unclear as to what aspects of
what they are saying the listener understands or what the listener thinks their
key point is. With spatial location of key pieces of the discussion in a shared
visual space, the listener may be able to provide a rich range of feedback that
simultaneously indicates what aspect of the speaker’s comments they are

responding to.

e Archiving. A searchable audio and visual record of the interaction could

potentially be created automatically.

Hollan and Stornetta use the term “auditory paper” to describe this proposed real-time
visual extension to natural language. They also identify that unlike face-to-face
interactions, computationally mediated communication may be asynchronous, which
removes the need for all parties to be free at the same time, and hence promotes

interaction.

12

2.2 Review of Computer Enhanced Collaboration Systems

This section reviews six existing research systems that provide some form of computer
mediated enhanced support for the annotation or capture of primarily synchronous
collaboration activities, such as meetings or videoconferences. The list of systems
reviewed here is not exhaustive, as other similar systems do exist. These were however

chosen as the major systems that have implemented concepts which are relevant to this

research.

2.2.1 Review Criteria

Each system will be introduced with a summary of its functionality and will then be
reviewed according to a number of different criteria. The overall goal of the review is
to show how these existing systems compare to the new approach presented in this

thesis.

The first two criteria are intended to expose the precise problem space that each system
tackles. This shows how general purpose the approach is and how it relates to the
problem space of this thesis (i.e. supporting live temporal annotation of distributed
meetings, and the potential for indexing and replay of those meetings). The specific

criteria are:

e Type of collaboration supported. This considers factors such as if the system
supports useful features like distributed collaboration or any specific scenarios

such as lectures or meetings.

e Type of information added. This considers what the system provides over
traditional videoconferencing or video recordings, and in particular, the types of

annotations or events it is able to capture and represent.

The remaining criteria examine to what extent the systems support the key desirable
features of the approach presented in this thesis; these features being support for
machine processable annotations and semantics, live processing, and automation.

Hence the following criteria were established:

13

e Support for machine processable annotations and semantics. This considers
the scope for automated processing of the information added by the system and

if there are any machine processable semantics associated with this information.

e Support for live processing. This considers which features the system provides

during the collaboration session and which features only become available after

the session.

e Degree of automation. This considers the amount of human input required by

the system before, during or after the collaboration session.

2.2.2 NoteLook

NoteLook [Chi99b] is a system for indexing and annotating meetings that take place in
a specially constructed meeting room at FX Palo Alto Laboratories [Chi99a]. The room
is equipped with video cameras, microphones, video projectors and a wireless network.
The system uses tablet PCs to capture freehand notes taken by meeting participants and
the wireless network enables presentation slides displayed on the video projector to be
automatically displayed on the tablet PCs in real-time. This enables meeting
participants to annotate directly over the slides using digital ink as the meeting
progresses. A sequence of thumbnails from the room cameras is also added to the note
pages. This can help determine who was speaking at that time and what was going on.

These notes are time-stamped and correlated to the multimedia data.

Version 3.0 of Notel.ook [ChiO3] also adds a feature allowing the hand authored notes
to be displayed to other meeting participants during a live meeting. As shown in figure
2.5, users of NoteLook 3.0 are presented with a live panoramic view of the meeting

room on their tablet PCs on to which is overlaid an augmented reality interface, which
allows users to ‘drag’ a slide off one of the wall displays, annotate it and then ‘drag’ it

on to another wall display for immediate display to the other participants.

At the end of a meeting, the system then can be instructed to automatically generate a
web-based index and archive page for the meeting. This consists of a miniature version
of each note page displayed on the index page, which can be enlarged by clicking on
them. This is shown in figure 2.6. Clicking on a note page or an individual freehand

annotation will start the
14

playback of the meeting at the point at which that note was taken. This takes the form
of synchronised replay of the recorded video and the annotated slides, played back

through the NoteLook system.

Keynote 2

Stephen Kosslyn
Dept. of Psychology, Harv

Figure 2.5, The Notelook 3.0 freehand annotation interface (from [Chi03])

2 5luliMig-48-12-07 - Netscupe

Eile S B YmS GOl CommuncalodiiHelo 4L LA IR SRRy o B 1L
R, IR VR R e WO ~ S S S e |

. Bak = Reload Home Seach Gude Punt Secudy . s —
" # Bookmaks J Location:| Ajie ///Dl/NoteLook/stathig-98-12-07/staliMig-36-12-07_1 X7.htm ~1

13 15 i

| ToeeiTe gl jeao w8 = T |
oy {Document Done ke NI NEL

Figure 2.6, The Web based NoteLook index (from [Chi99b])

15

Type of Collaboration Supported
The system supports co-located participants in a meeting scenario that uses presentation
materials. Chiu et al. discuss the possibility of using the system in videoconferences,

but have not implemented this. The system also archives the slides, annotations and

meeting video for later viewing.

Type of Information Added

The system captures presentation materials, freehand annotations and video thumbnails,
which are all timestamped. The system also allows live display of annotations to other
participants. This captured information is used to automatically generate a web-based

index and archive of the session.

Support for Machine Processable Annotations and Semantics
Apart from an explicit notion of slide display events, the system has no real machine
processable information. For example, annotations are left as freehand pen strokes and

speaker identification is achieved by a human viewing the video thumbnails on a note

page.

Support for Live Processing
Annotations are taken during live meetings, and can be displayed to other participants

as soon as they have been authored. However, the index pages aren’t generated until

the end of a meeting.

Degree of Automation

The system can automatically provide participants with the current slide and a number
of video thumbnails which to annotate over, but the participants still have to write all
the annotations manually. The system does however automatically generate a meeting

index and record from the captured slides, video and annotations.

2.2.2.1 Conclusions about Notel.ook

The presentation material centric approach of the NoteLook system means that its
usefulness is fairly limited in meeting scenarios that don’t use slides. While the
automatically generated meeting index and record pages appear to be useful, the
system’s lack of semantics means that the information it captures is only suitable for

human consumption, which severely limits the potential for further automated

16

processing. The use of freehand notes makes its annotation capability very flexible, but

does require significant manual input from participants.

2.2.3 Shared Text Input

Shared Text Input [Den04] is a PDA-based system designed to allow students to author
and share notes in real-time during lectures using wireless PDAs or laptop PCs. If
presentation slides are used, these are also displayed on the PDAs synchronised with
the slide transitions from the lecturer. A picture of the system running on a PDA is

shown in figure 2.7.

;,_ Internet Explorer < 3:20 9
http://lestest:8080fsti_join_now.is ';f('é

]
g I—amm |Clear] |Perso| Public| | Chat |
{

Shared Text Input | = '
E 7
i bob>hello &
adas>>Shared Text Input :’
| M
= Shared Text Input]
! - 2
P = <
| View Tools ¢ € 43) %) gt

.}‘

Figure 2.7, The Shared Text Input application running on a PDA (from [Den04])

To enable faster note taking on the PDAs, students may reuse words from other notes
or presentation materials simply by selecting the word. As well as promoting faster

note taking, it is suggested that sharing the notes in real-time increases the awareness of
17

the students during the lecture. After a lecture, the system automatically archives the

notes and any presentation slides and places them on the web for future reference by

students.

In a user trial of the system, some of the notes were found to contain URLs, allowing
students to look at additional references during the class. The system was also used as a

real-time chat tool, allowing students to ask each other questions during a lecture.

Type of Collaboration Supported
The scenario the system is designed for is that of a lecture, but the system could also be

applied to a more general meeting room scenario. The notes and presentation materials

are archived enabling viewing after the lecture.

Type of Information Added

The system allows hand authored text notes to be shared in real-time during a lecture

and archived notes to be made available after the lecture.

Support for Machine Processable Annotations and Semantics

The system has some basic semantics as it supports the authoring of three different
types of notes. Private notes that are not shared, chat notes that have a username
appended to them so that they can be attributed to a particular student, and public notes,
which do not have a username added. These different types are of limited use, as they
only indicate how the note should be distributed and displayed. Some potential does

exist for automated processing of the text, as the notes are in full text rather than in

native handwriting.

Support for Live Processing

The system has good support for live processing; notes may be authored and shared in

real-time during a lecture.

Degree of Automation

The system requires manual input of notes, but does allow note takers to re-use words
from other notes. The system also automatically places the notes and any presentation

materials on the web after the lecture.

18

2.2.3.1 Conclusions about Shared Text Input
Shared Text Input has shown a novel interface for reuse of other people’s words to
allow faster note taking during lectures. It has also been suggested that sharing notes in

real-time can help improve the awareness of the lecture audience.

Through real use it has been shown that as well as proving a note taking facility, the
back channel communication features are useful for things such as sharing URLSs and
asking questions. Some users however found that seeing live shared notes from all
users caused them to experience ‘information overload’, so this shows that it is

important to limit the amount of information displayed to users at once.

2.2.4 Distributed Meetings

The Distributed Meetings system [Cut02] enables the live broadcasting and recording
of meetings. The system automatically captures a significant amount of extra

information compared to a traditional audio or video recording.

The system uses a 360° panoramic video camera in the centre of the meeting table to
capture and broadcast a view of all the participants. The system has a microphone
array, which it uses to perform sound source localisation (SSL) on people speaking.
This 1s combined with computer vision-based participant tracking techniques to
determine where in the panoramic video the current speaker is. This is used to show a
close up view of the current speaker obtained from the panoramic video. An additional
camera also captures any whiteboard activity. The video streams are broadcast live to
remote clients using multicast. Remote audio communication is achieved using the

standard public telephone system.

All this information is also recorded and archived for later replay and a kiosk in the
meeting room allows participants to start and stop the recording. The participant list
and meeting description can be automatically obtained from the initial requests to hold
a meeting using a Microsoft Exchange server. If additional participants are present who
were not included in that request, they may be specified by holding a smart ID card

next to a reader at the kiosk.

The archived meetings are automatically indexed by a speaker timeline and whiteboard

pen strokes. The archived meeting client is shown in figure 2.8.
19

7 Distributed Mesrings Client - some tapic

Altendeas:
{Location:

{Drata Collactad:
okl viewers:

Figure 2.8, Distributed Meetings archived meeting client (from [Cut02])

Clicking on the speaker time line or a pen stroke starts the replay of meeting from that
point. As the system is unable to identify specific participants in the meeting room, the
name of each person in the timeline must be entered by hand as part of the archiving
process. The system also has a time compression feature for replaying the meeting

speeded up, enabling the meeting to be watched in less time.

As part of its evaluation, the system was used to record ten real-life team meetings
where one or more team members were unable to attend the meetings. After the
meetings the absent team members then watched the recordings and were asked to fill
in a questionnaire. This presented the users with a number of statements about the
usefulness of the system and they were asked to rate to what extent they agreed or
disagreed with each statement. For example, one of the statements was “Being able to
browse the meeting using the timeline was useful”. There we similar statements about
the usefulness of the time compression, panoramic view and speaker view features. The
survey results showed that on average the users agreed with the statements about these

features. As general comments, some users suggested that if the meeting was full of
20

strangers, they would find the names on the speaker time line especially helpful and

one user suggested that it may be useful to have other meeting events marked on the

timeline also.

Overall the evaluation showed that the users at least perceived these features to be of
benefit, although it did not present any conclusive evidence of time savings or
improvements in understanding of the recordings by the users when compared to

traditional meeting records such video recordings or minutes.

Type of Collaboration Supported

The system is intended to support a meeting scenario where participants are co-located
in a single meeting room, and other participants may join the meeting over the
telephone and watch the video streams from the meeting room. Participants unable to

attend the meeting or watch the live broadcast can later watch a recording of the

session.

Type of Information Added

In a live meeting, the features provided are limited to useful camera views. These are
panoramic video, close ups of the current speaker and the whiteboard. In a recorded
session, several types of meeting metadata are available in addition to the novel camera
views. These additions are the meeting details (time, location, duration, title, names of
participants, who led the meeting, number of active participants) and indexing using a

speaker time line or whiteboard pen strokes.

Support for Machine Processable Annotations and Semantics
The system has an explicit representation of some basic meeting metadata, such as the

meeting details, individual participants speaking and whiteboard pen strokes.

Support for Live Processing
The system supports live broadcast of its various video views, but the indexing

functionality is only available after the meeting has ended.

21

Degree of Automation
The camera control, speaker identification, speaker time line and index from
whiteboard pen strokes are all created automatically. However, the names of the

participants on the speaker time line have to be manually entered.

The meeting details are automatically obtained from the initial meeting set-up in
Microsoft Exchange, although participants not included in the original communications

to arrange the meeting have to manually enter their details in the meeting room kiosk.

2.2.4.1 Conclusions about Distributed Meetings

Distributed Meetings appears to be a useful tool for automatically capturing meeting
metadata. However, its available features in a live meeting are fairly limited, as the
system provides no beneficial features for participants located in the meeting room and
simply provides some useful camera views for display the remote participants.
Furthermore, remote participants are treated as second class citizens, as the video is
only one way and their audio is not included in the speaker identification. They also

have no way of drawing on the whiteboard.

Its features for archiving meetings seem to be more useful. A first hand user account
mentioned that speaker identification was a useful way to index archived meetings, and
identifying participants by name on time line would be useful if the participants were
not known to the person viewing the replay. Another user also said that it would be

useful to record other events, such as people leaving or joining the meeting room.

2.2.5 The AVIARY Intelligent Room

The AVIARY (Audio-Video Interactive Appliances, Rooms and sYstems) intelligent
room testbed [Mik00, Hua03] is a system that handles the automated capture of multi-
person interactions in a meeting room. The room is equipped with static cameras, active
pan/tilt/zoom cameras and microphones. This allows the remote viewing of a live
meeting or the later browsing and viewing of a recorded meeting. The capture takes the
form of location tracking of participants and speaker identification, which is used to
automatically control the cameras in the room to select the best shots and to build up a
graphical summarisation of the meeting (shown in figure 2.9). This graphical summary

1s used to browse recorded meetings and locate sections of interest for video replay.

22

(o]
o) 0
o
S ° 5
o | - o O
r 0O O
: e o o
5 | § S
5 Q

- b3 6 i
m i 5] o
oo 0 (o}
Q@ | ;] O
o o
o ‘ il Ty
e ! BT

|

/ E
g
[VA TeEe S :
. 1
B |
m ;-

————----g
s Lo A

Figure 2.9, The AVIARY graphical summary (from [Mik00])

The system is able to recognise three different types of event in the room, these are:
when somebody is located in front of the whiteboard, when that person (i.e. the lead
presenter) speaks, and when other participants speak. The purpose of recognising these
events is to be able to automatically direct the cameras to capture these events and also

to mark them on the graphical summary.

In order to recognise these events, the system employs a number of computer vision
techniques combined with voice recognition. When a person enters the room, they are
required to speak in order that the system may use voice recognition to identify them
and this is combined with face recognition to ensure reliable identification. The static
cameras are then used to perform 3D tracking of each participant within the room so
that the system knows the location of each participant at any moment in time.
Whenever a participant speaks, voice recognition is used to automatically identify that
participant, and the system uses this knowledge along with the location information to
know where to aim one of the cameras in order to obtain a close up of the speaker.
Similarly the system can use the location information to detect when a participant is

using the whiteboard.

23

As well as automatically selecting optimum camera shots, the event and location
information is used to generate a 3D graphical summary of the meeting, which is
generated in real-time during the meeting and may be used to navigate through the
recorded video after the session. The summary shows the room floor plan, with a third
vertical axis representing time. Each participant’s activity is represented as three
dimensional track, which shows their location in the room over the duration of the
meeting. This makes it possible to, for example, determine when a particular participant
drew on the whiteboard. Along each track are multiple squares or circles, a square
representing that the person was speaking and circle for when they were not speaking.
When the user selects a specific track they are shown a face snapshot and the name of
the person the track represents. Clicking on a square or circle begins the replay of the

video from that point.

Type of Collaboration Supported

The system supports group meetings of co-located individuals with other remote people
passively viewing the live session. It also supports the later browsing and replay of

recorded meetings.

Type of Information Added

The system is able to keep track of who is in the room, where in the room they are and
who is currently speaking. During a live meeting this information is used to
automatically control the cameras and dynamically construct a graphical summary of

the session. After a session, the graphical summary can be used as an index for the

recorded video.

Support for Machine Processable Annotations and Semantics

AVIARY is able to recognise three interesting meeting events, and also uses a
rudimentary form of inference to determines when these events are occurring. It
achieves this by combining participant location data, speaker identification data and

existing knowledge about the room.

Support for Live Processing
It has fairly good support for live processing as the event recognition and automatic
camera control both work in near real time, although the speaker identification module

requires 1-3 seconds of speech before identification may occur, so this introduces some
24

delay. The graphical summarisation is also constructed in on-the-fly and can be

displayed to local participants and remote viewers.

Degree of Automation

The camera control and generation of the graphical summary are both done
automatically. The participants must however always remember to speak as soon as

they enter the room to allow person identification.

2.2.5.1 Conclusions for The AVIARY Intelligent Room
The most interesting feature of the AVIARY system is that it uses basic information to
infer interesting meeting events, although it doesn’t use a general purpose knowledge

representation, so extending the system to perform other inferences would be difficult.

The relatively long time required for speaker identification means that the system takes
significant time to respond (up to 5 seconds) and is likely to completely miss short
utterances altogether. It also requires all participants to speak as soon as they enter the
room, which could potentially be disruptive to a meeting if a participant joined the

meeting after it had already started.

The three dimensional summarisation of meetings is a novel representation, but in some
cases it may lead to a very complex representation that is difficult to understand,

especially if the participants move around frequently during the meeting.

2.2.6 The Smart Meeting Room Task

The Smart Meeting Room Task (SMaRT) [Wai03] is a research activity with an overall
goal to provide a smart meeting room that supports people in any kind of meeting
situation, without any explicit human computer interaction. The focus 1s on
automatically monitoring activities in the meeting room using audio and video analysis.
One of the key SMaRT tools already implemented is the Meeting Browser tool [Bet00],
which is capable of automated meeting capture and replay, supporting live meetings in
addition to record and replay capabilities. A screenshot of the Meeting Browser is

shown in figure 2.10.

25

@Maeling Browser
Fie Ed¢ View Record Summerize Help

IV Meeting

v Summary

[* ca.m. s Fisher [
|V Susan Ling ;

¥ Adm. Roc Kelly ’%h

I SecDefJohn Stone _t‘ JII“ I 3
Sl S ISR 2 ™ T] s A’T‘
Play Audio l 573“/:7130_" Stop Clear . Summarize [
. . Transcript
[Col. M. S. Fisher: THE IRANIAN DELEGATION ASKED TO f

BE SEATED WITH THE OMAN'S VICE THE SAUDIS AS THE

| SEATING CHART HAD INDICATED
!SecDef John Stone: WHAT DO YOU THINK THIS MEANS
i COLONEL
{Col. M. S. Fishex: I'M NOT SURE SIR

ol. M. S. Fishexr: BUT IT JUST COULD BE THAT THE
[IRANIANS ARE POSTURING TQ MAKE A BETTER DEAL FOR
| THEMSELVES
[Col. M. S. Fisher: WITH REGARD TO THE FLOG OF OIL
! THROUGH THE STRAITS OF HORMUZ
| Adm. Roc Kelly: IF I COULD INTERRUPT SIR SCOTT WHEN
i I WAS COMMANDER OF THE MIDDLE EAST FORCE BACK IN

i MID EIGHTIES THE IRANIANS WERE ALUAYS SPOUTING
| RHETORIC HOWEVER THIS SEENMS A LITTLE MORE UNUSUAL
jAdm., Roc Kelly: KEEP US POSTED ON ANYTHING THAT
i COMES OUT OF THAT MEETING
{Col. M. S. Fisher: UILL DO SIR FISHER OUT
| SecDef John Stone: MISS LING I BELIEVE THAT YOU
WERE ABOUT TO START
| susen Ling: YES SIR

g vl
fjjxsm Ling: I WAS GIVING YOU A RECAP ON THE CHINESE - L = _J| "! "I-‘ IA{
Search: | Save Summary I

Figure 2.10, The SMaRT Meeting Browser (from [Bet00])

The Meeting Browser supports up to six participants, some of which may join remotely
using videoconferencing. During a live meeting, the browser displays the participant
list and an automatically generated speaker identification timeline and transcript of the
meeting. If a list of action points are discussed at the end of the meeting, the system is
able to automatically capture these and email them to the meeting participants. The

system is also able to automatically generate a text summary from the transcript.

After a meeting, all this information may be archived alongside the video from the
meeting, and may be replayed in the Meeting Browser. The collection of archived
meetings may be searched by topic, keywords, participants or date, and it is also

possible to view the summary for a meeting without having to first load it into the

browser.

The functionality of the Meeting Browser is achieved by a combination of techniques.
Identification of participants uses computer vision techniques combined with voice

recognition. The voice recognition system is also used to generate the speaker
26

identification data. The automatic transcription is achieved using speech recognition
software, whose output is combined with the speaker identification data to attribute
cach comment to the correct participant. The transcript summarisation is achieved
through a summarisation server, which analyses the dialogue and returns a summary to
the Meeting Browser. Since the voice recognition system is somewhat error prone, with

typical word error rates in excess of 25%, the browser allows manual correction of the

transcripts.

Type of Collaboration Supported
Support is offered for meetings of up to six participants, who can either be co-located

or joined remotely via videoconferencing. The system also allows searching, browsing

and replay of archived meetings.

Type of Information Added

The system adds an automatically generated transcript, summary, participant list and
speaker event time line. This information is generated in near real-time, and is made
available to participants in live sessions as well as recorded sessions. The system is also

able to automatically capture discussed action points at the end of a meeting.

Support for Machine Processable Annotations and Semantics

It has an explicit representation of participants speaking and also captures other basic
metadata about the meeting such as participants and keywords, which may be used to
search for archived meetings. The system also automatically extracts a text transcript

and summary from the audio and has an explicit representation for action items.

Support for Live Processing

The system has good support for live processing. The participant list and transcript are
both created on-the-fly and displayed to participants during a meeting, although some
lag is introduced because the speaker identification requires approximately 6 seconds of

speech to produce accurate results.

Degree of Automation
The system is largely automated, supporting automatic participant and speaker

identification and automated transcription. However due to the high error rate in the

speech recognition, significant human input is required to correct the errors in the

transcript.

2.2.6.1 Conclusions for SMaRT

The Meeting Browser has many useful features and supports a significant amount of
additional meeting information compared to traditional video recordings. Most of its
features are made available to participants during live meetings, which means that its

use goes beyond a simple replay tool.

One of its main weaknesses is that its speech recognition has a significant error rate,
which requires significant manual input to correct. Its other weaknesses are its
limitation to six participants, which may often be exceeded in real meetings and a
speaker identification time in the order of several seconds, which introduces some lag

in the system.

2.2.7 CoAKTinG

The CoAKTinG (Collaborative Advanced Knowledge Technologies in the Grid)
project [Bac0O4] looks at providing mediated spaces for synchronous collaboration, as
well as tools for supporting asynchronous collaboration. The project looks primarily to
address the needs of e-Science collaboration, but the work is also applicable to

collaboration in a more generic context too.

CoAKTinG applies advanced knowledge technologies to integrate a number of tools

into existing collaborative environments, such as the Access Grid [Acc04]. The tools

are:

e BuddySpace. This is an instant messaging tool with enhanced support for
presence awareness. The presence features take the form of a map on to which
the presence information is overlaid, allowing users to tell at a glance who 1s
available to chat, and where they are located (shown in figure 2.11). The instant
messaging features may be used for ‘back channel” communication in
videoconferences, and also can support meeting control tasks such as speaker

queuing and voting on issues.

28

Bl BuddySpace2 - me3@jabber 1.ac.uk -0l x|
Jabber O Presence Roster View Maps Help

"Main ' Status [COAKTING/Myiewyar)

o

Figure 2.11, The presence indicators of BuddySpace (from [Bac04])

gend || Close

Compendium. This is a graphical tool for collective sense making and group
memory capture. Dialogue maps are hand created on-the-fly in meetings by a
trained facilitator. The maps consist of interconnected nodes that provide a
visual trace of issues, ideas, arguments and decisions in the meeting, which may
be validated by participants at the meeting (see figure 2.12). After the meeting
the maps provide a structured, searchable group memory for the meeting.
Compendium also supports live sharing of dialogue maps to support distributed
collaboration and also allows maps to be exported as RDF compliant to an

OWL ontology developed for the CoAKTinG project.

I-X Process Panels. In essence, this tool acts as an intelligent ‘to do’ list, which
can be used to coordinate pre or post-meeting actions. The interface shows users
a list of their issues and activities, and supports collaboration by allowing the
issues and activities to be passed to the panels of other users. Actions may also

be created in a meeting specific panel, which are then passed on to the relevant
29

users for action. Upon completion of an activity, users may use their panel to
report this back to the meeting specific panel. At its heart, I-X Process panels is

built using an activity ontology and has an automatic RDF export function.

i T = ™ -t =i | . ! e T T]
e o PR P el M il
Guick »easy o do AL .
—Whal arz the compesiters? €1 - crgulate the Feb's ey articie
=3
Tl A o T swilt Y
\,f, ‘__,.._,-a——-d $ 50 faky - fime o swikh ,_‘() \ &
¢ < - — -
/Ul)m;qe Lsoft YWhen does Lsoft upgrade come eut? Ben- chase LsofvE 5
2\ +
i he 72 —"thiz i5 the ralissue
: How to fit Sat3 output? ¥
. P
L tmprove Lens3 -» Sat3 hamr.rir:ﬁ-u““%\ {L7AN &{'{% .
e Vi D AN
\ ¥nat syntax does Sall requing? F 2foc kngws this stuff
\f\' am F el Satd ;i
¥ =3 emai from Felix on Sa L
S —
Reciut areat research fellowd =0 Qave's leaving in June
R .
Anra - confirm with Persenngl Eli - dran job spec by 15 April

Figure 2.12, An example Compendium map (from [Bac 04])

* Meeting Replay. Replay of meetings is achieved with a web-based tool that can
be used to navigate through an archived meeting (see figure 2.13). The tool
takes the recorded video from a meeting along with an RDF description of the
meeting events and automatically generates a timeline showing these events.
Clicking on an event in the timeline begins the replay of the meeting from that
point. The replay consists of the meeting events synchronised with audio and
video. The replay tool also displays other useful meeting metadata such as title,
date and a list of participants. Events that the replay tool is capable of handling
include agenda items, speaker identification, slide transitions and creation of
compendium nodes. The RDF description of the meeting events (e.g. speaker
identification) is largely created by hand, although Compendium supports

automatic RDF export of its maps (which are initially hand generated).

30

[Fle Edt WView Go Bookmarks Toos Window Help

‘é f :;\R ¥ a ‘,S; i& http:ﬁwww.ecs,soton.ac.ukf~dtnﬂwurh(coakting,fdema!v0.3!hdex_qu.u'ckt1me,ht|r;] dg.s:arch% i3 v |E

Foundalional Capabilitics

Co-AKTinG will use advanced knoveledge-based task and
process suppart aids based on Al planning research and
personalised intalligent process panels swhich themselves
support issue, process/activity and praduct vievspaints,
Co-AKTinG will use Compendiunt 3s a method to annaotate
and enrich callabarative meeting structures.

Co-AKTinG will deploy presence and peripheral awareness
capabilities using extended BuddySpace technology.
including an ‘ertology of presence’ and ‘knowledge profiles’ {
including COP, location, interest, content & version profiling)

v

Figure 2.13, The web based Meeting Replay interface (from [Bac 04])

Type of Collaboration Supported
CoAKTinG supports both synchronous meeting or videoconferencing scenarios, and
asynchronous collaboration after a meeting using I-X Process Panels and the meeting

replay tool.

Type of Information Added

Quite a lot of different types of additional information and features are provided. The
main features are presence management and visualisation, back channel
communication in meetings, shared Compendium maps, issue and activity tracking, and
meeting replay. The meeting replay is able to handle event types such as speaker

identification, slide transitions and creation of Compendium nodes.

31

Support for Machine Processable Annotations and Semantics

Being built around an OWL ontology, CoAKTinG has very good support for high level
semantics. Both I-X Process Panels and Compendium are capable of generating RDF
output which preserves the rich semantic relationships these tools may be used to

express. The meeting representations used by the Meeting Replay tool are also created

in RDF.

Support for Live Processing

Both BuddySpace and Compendium are tools that can be used in live meetings, and
[-X Process Panels allows real-time transfer of issues and activities between panels.
The Meeting Replay tool however relies on hand creation of the RDF meeting

representation after the meeting has ended.

Degree of Automation

All the CoAKTinG tools rely on a significant amount of explicit user input. For
example, Compendium requires significant input from a trained user. The meeting
replay tool also requires information such as participant lists and speaker identification

to be hand generated after the meeting.

2.2.7.1 Conclusions for CoAKTinG

The CoAKTinG project has demonstrated the use of Semantic Web technologies within
the domain of synchronous collaboration. It primarily uses RDF for direct ontology
level interoperability of components and expressing relationships to external resources,
but doesn’t use techniques such as inferencing to realise the full value added potential

of RDF.

A significant amount of manual effort is required to use the tools. In particular
Compendium and the generation the RDF meeting descriptions for the Meeting Replay
tool both involve significant effort. Furthermore, although BuddySpace, I-X Process
Panels and Compendium work in live meetings, the reliance of the Meeting Replay tool
on hand authored RDF after meeting means that the events it handles cannot be

displayed to participants during a live meeting.

32

2.2.8 Conclusions for Review of Systems

The review has examined a range of systems that provide some form of computer
enhanced support for annotation and capture of collaboration activities. Within the
context of this thesis, the greatest collective shortcoming of the reviewed systems was
an almost complete lack of machine processable semantics associated with the
annotations. This severely limits the potential for interoperability, reuse or inference
with the annotations. The notable exception to this was CoAKTinG, which had good
support for high-level semantics, but did have the drawback that the annotation tools
did not all work in real-time and required significant manual input. A lack of
automation was a common failing amongst the other systems too, with only Distributed
Meetings and AVIARY providing approaches that didn’t require significant user input

during or after a collaboration session.

NoteLook and Distributed Meetings made very little functionality available during live
meetings, and some useful CoAKTinG annotation features, such as speaker
identification, were only made available after a session too. This means that session
participants would not have access to all helpful annotations during a live meeting.
With the exception of SMaRT and CoAKTinG, the systems also did not support full

distributed collaboration, which clearly further limits their use.

Overall, the key observation is that none of the systems fully provided all desirable
properties at once (i.e. machine processable semantics, live processing and significant
automation). Therefore there is considerable scope to create improved systems

compared to the ones reviewed here.

2.3 The Semantic Web

The Semantic Web is defined as “an extension of the current web, in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation” [Ber01]. In essence, this means putting machine understandable data on
the web, to enable it to be shared and processed by automated tools as well as people.
This potentially enables significantly better automation, integration and reuse of data

across a variety of applications.

33

The key technology behind the Semantic Web that allows the creation of these machine
understandable descriptions is the Resource Description Framework (RDF) [Bec04]. It
1s based on a hierarchical class and property system, where all entities described by
RDF expressions are resources, which are uniquely identified by a URI (Uniform
Resource Identifier) [Ber98]. Resources have properties that are specific characteristics
or attributes that are used to describe them. The value of a property may either be a
literal value or another resource. A resource combined with a named property and its
value is a statement. Statements in RDF are structured triples of the form (subject,
predicate, object). RDF is expressed using an XML-based serialisation syntax,
although RDF may also be serialised using other representations such as Notation3

[Ber04].

The RDF schema mechanism (RDES) [BriO4] is used to define the classes of resource
that may exist and the properties they are permitted to have. RDES can be thought of as
a mechanism for expressing simple ontologies. In the context of the Semantic Web, an
ontology is a representation of a vocabulary, that specifies the terms, their meanings
and their interrelationships. Ontologies are typically used for modelling real world

domains and therefore function as domain conceptualisations.

The RDF schema mechanism is fairly limited, and to address this, the W3C have
developed the Web Ontology Language (OWL) [Dea04]. OWL extends RDFS by
enabling the specification of more complex ontologies. It adds additional features for
describing properties and classes, such as relations between classes, cardinality of
properties, equality, richer typing of properties, characteristics of properties and
enumerated classes. OWL also introduces features that allow ontologies to be
distributed across many systems, and has standard mechanisms for extending

ontologies.

De Roure and Hendler [DeR04] have discussed a number of important aspects of the
Semantic Web and these are briefly summarised in here. Much of the added value of
the Semantic Web comes from what is known as the Network Effect. This effect comes
from the accumulation of available descriptive information about resources. If there are
multiple descriptions of specific resources distributed on the Semantic Web, for

example held in databases or web sites, then this enables new kinds of questions to be

34

answered that draw on this aggregated knowledge, since it is effectively interlinked by

the objects it describes.

They also identify that the current best practice for realising the Semantic Web
infrastructure is to use a centralised, persistent and scalable database of triples called a
triplestore. This collects knowledge in a single place in a repository that is simple to
manage and query. Although this approach works well at present, in the future it 18
likely that the Semantic Web infrastructure will be provided by many distributed RDF
servers that will work with multiple ontologies to remove the requirement of being
centrally managed. Rather than having a single monolithic triplestore, the Semantic
Web will become a vast distributed triplestore, which will self-organise just as the Web

does today, although it is not clear yet how this will be achieved.

2.4 Semantic Web Applications

This section gives an overview of a number of applications that use the Semantic Web.
The discussion starts with CS AKTiveSpace, as it is one of the major applications in
the Semantic Web field and presents a useful reference for the architecture of the
current Semantic Web. It consists of a diverse set of individual services, and the key

relevant ones are discussed in the following sections, along with their rationale for

selection.

Then the Annotea semantic annotation system and work by the RDF Calendar
Taskforce are discussed. Both of these are examples of how the Semantic Web is
currently applied to the domain of collaboration, with Annotea supporting collaborative
annotation and the calendar work supporting automated scheduling of collaboration

sessions.

24.1 CS AKTiveSpace

Arguably one of the more important applications that goes some considerable way to
demonstrating what the Semantic Web can offer is CS AKTiveSpace [sch04]. This is a
large scale proof of concept application to demonstrate what the Semantic Web can
provide and is built on a larger scale than existing implementations of individual

Semantic Web services.

35

The application exploits a wide range of semantically heterogeneous and distributed
content relating to Computer Science research in the UK. It uses a single common
ontology called the AKT reference ontology [AKT04] to integrate the different data
sources. The content 1s gathered on a continuous basis using a variety of methods
including harvesting from existing databases, scraping from institutional websites and
direct submission. Specific mediators for each data source are used to convert the

information obtained from the sources to be in terms of the ontology.

CS AKTiveSpace attempts to address a number of key Semantic Web issues including
harvesting, time performance of queries, robustness, scalability and referential
integrity. Referential integrity issues arise when more than one URI is used to represent
a single resource and is a particular problem in applications like this, as knowledge 1s
integrated from multiple sources. While such co-references are entirely permissible in
the Semantic Web, they are problematic as they partition the information space in a
way to reduce the recall of queries made to that space. For existing information sources
in CS AKTiveSpace, a combination of manual and automated heuristic techniques are
used to identify co-references and rectify them, but in the future plans for CS
AKTiveSpace hope that the knowledge base will be used as a gazetteer or naming

authority to ensure that agreed names are used for resources.

2.4.1.1 Choice of Services for Discussion
CS AKTiveSpace consists of a large number of services. An overview of the chosen

services is given here along with the rationale for their choice.

e 3store. This is a triplestore implementation that provides the core knowledge
repository for CS AKTiveSpace. It was chosen as it is at the heart of CS
AKTiveSpace and any discussion would be incomplete without it. Furthermore

it is used as part of the implementation discussed in Chapter 5.

e Armadillo. This service was chosen as it shows one current approach to semi

automated semantic annotation of Web Resources.

* Ontocopi. This service is used to automatically determine the Communities of
Practice of individuals. This has particular relevance to collaboration as it can

be used to identify new people to collaborate with.

2.4.1.2 3store

Content in CS AKTiveSpace is held in a centralised triplestore called 3store [Har04],
which at the time of writing contains about 10 million triples. 3store has been designed
with scalability and performance in mind and it can scale to the order of 25million
triples and answer typical queries in a few milliseconds. Queries are issued using the
commonly used RDF Data Query Language (RDQL) [RDQOQ3]. 3store also has a built
in inference capability, so that when it is queried, it not only returns the triples
explicitly asserted in the triplestore, but also any triples that may be entailed from the
RDF and RDEFS language rules, which depending on the nature of the particular

entailment are either worked out at assertion time or dynamically at query time.

2.4.1.3 Armadillo

One of the services used to constantly update the CS AKTiveSpace triplestore is called
Armadillo [Cir04]. It is an application for largely automated knowledge extraction from
web pages. It retrieves information from different sources and integrates it into its
repository. The repository can be used both to access the extracted information and to

semantically annotate the web pages where the information was identified.

It has an initial lexicon for recognising instances of concepts, and it then can
automatically expand its lexicon by exploiting patterns in the data set it is processing. It
also exploits redundancy of information on the web to expand its lexicon and improve
the accuracy of its information extraction. The only user input required is to add
information missed by the system and to delete information incorrectly identified by
the system. This user intervention feeds back into the system to improve its future

effectiveness.

In CS AKTiveSpace Armadillo is used for extracting the names of researchers and

paper citations from institutional web sites.

2.4.1.4 Ontocopi

The CS AKTiveSpace infrastructure is used by a number of applications. An especially
useful one is the Ontology Based Community of Practice Identifier (Ontocopi) [Ala03].
It is an application that demonstrates the value of the network effect by automatically
identifying communities of practice (COPs), that otherwise would be extremely

difficult to determine. Communities of practice are self-organising informal groups of

37

individuals interested in a particular job, practice or work domain. Knowing COPs 1s
often important within organisations, as they help with understanding the knowledge

resources of an organisation, but determining them can be difficult and time

consuming.

Ontocopi uses ontological relations to infer connections between objects that are only
implicitly represented. E.g. that two people work with the same people, go to the same
conferences or have published in the same journal. These relations are determined
using a technique called Ontology-based Network Analysis (ONA), which determines
sets of instances associated with a specific instance in a knowledge base. It obtains the
COP of a selected instance by traversing selected semantic relationships between the
instance and other instances, continuing recursively until the links are exhausted or a
link threshold has been reached. The algorithm is general purpose, so it is not only
possible to determine the COP of people, but of any instance in the triplestore, such as

a project.

Another interesting use for COPs is for resolving referential integrity issues. When the
COP of two instances is sufficiently similar then it proves that the two instances are

identical.

2.4.2 Friend Of A Friend (FOAF)

Friend Of A Friend (FOAF) [Bri05] is a Semantic Web vocabulary for specifying
social networks. It allows individuals to create machine-readable homepages that
describe people, the connections between them and the things they create and do. This
allows software tools to automatically aggregate this information and harness the
network effect to infer relationships between people and resources linked to those

people, even though those relationships may not be explicitly specified anywhere.

For example, FOAF could be used to automatically sort a person’s emails by
prioritising the messages have been sent from individuals who are have an some form
of link (either explicit or implicit) to that person. Other potential applications could
enable people to automatically identify individuals with the same interests as them, or
perhaps automatically determine the complete set of authors for a document, or the set
of people who are co-depicted in the same photograph (even though none of this

information will have been explicitly specified in any single location).
38

Tools such as FOAF-a-Matic [FOAO5a] can be used to assist individuals with the
creation of FOAF content. Services such as FOAF explorer [FOAQ5b] can be used to

view and navigate the network of FOAF information.

Arguably one of the biggest weaknesses of the current FOAF specification is that its
mechanism for describing explicit links between people has very limited semantics,
being restricted to just a single type of ‘knows’ relationship. This makes it difficult to
determine the differences in relationship types between people. This, for example,
would make it impossible to differentiate between knowing trusted work colleagues
and knowing casual acquaintances, when each category of relationship should ideally

be treated differently in the social network.

2.4.3 Annotea

Annotea [KahO1] is a system from the W3C for the asynchronous collaborative
semantic annotation of Web documents. Users may annotate specific sections of a
document and these annotations are then made available to other users viewing the
document, who may author further annotations. The system uses an RDF based
infrastructure, where the annotations are held in annotation servers, which are just
general purpose triplestores accessible via HTTP. XPointer [Gro03] is used to specify
which part of the document has been annotated. Annotea specifies a core RDF schema
that defines a number of different annotation types, such as comments, questions and
advice. Users can use the standard RDF extensibility mechanisms to add other
annotation types that are required for their individual needs or the needs of their
community. In addition to annotations, Annotea also supports shared bookmarks
[K0103], to provide a collaboratively maintained list of links to interesting Web
documents displayed in a hierarchical category view. The bookmarks may also be
displayed in context within a document to provide links to related information about a

concept within the document. As with annotations, the bookmarks are stored in general

purpose triplestores.

Annotea only specifies the infrastructure, and it is left to the individual client
implementations to determine how the functionality should be presented to the user.
Annotea capable clients are typically Web browsers, which also allow the authoring of

annotations and bookmarks. When a client fetches a web page, it also queries one or
39

more annotation servers to retrieve the annotations for the page. In order to achieve
this, the client needs to be pre-configured with the locations of the of the annotation
servers. Annotea clients include Amaya [Ama04] and the Annozilla plug-in for Mozilla

[Ann04].

One shortcoming of Annotea is that the author of an annotation is stored as a literal
name rather than a URI representing that person. Clearly this makes it very difficult for
information about the author to be reliably retrieved from the Semantic Web, and thus

1s unable to fully hamess the network effect.

2.4.3.1 Vannotea

Vannotea [Sch03] is a system based on Annotea for the real-time, synchronous
collaborative annotation of high quality video streams. It supports multiple distributed
users who can communicate using the Access Grid, although the system is independent
of the Access Grid, so any real-time communication technology could be used in its
place. The system is presented to each user as a video player window where they may
collectively watch and control the video in question (see figure 2.14). An annotation
and discussion window allows users to author textual annotations, which may refer to a
segment of video, an individual frame, or a region within the frame. This window also

displays any existing annotations for the current video segment.

BB CAE il > =ioix|

i6 _'“ '_‘.n:'.\ln-lx-llSlcd'mﬁ(-hls'\&m\ll\,ﬁlﬁ‘lbﬂ\mﬁ_

05 031 dzne. Cetmiment on Sce
018.05.03 1 Doug: Question about .
A17.05.03 | Jane: Arnotabon .. |
E 17.05.031 Doug: Exampe.. |
S 16.05.03Ron Seq dsa..

~ Frame iame_1044
£ Segment scens_1122
Segment shot_1122
- Segment shot_1546

i Scenelie Stieels ol Bhutan
B StuclwedT extAnnotaton

Do RGP

pripre—— 5|l [

i 3 S b fladdonr | NGO ULE T Giape
E 1 Droeg T 21330123 P 21334219 40 122
=)

Figure 2.14, The Vannotea video annotation interface (from [Sch03])

40

The textual annotations use the Annotea system and are stored as RDF in an annotation
server, and Vannotea uses an extended form of XPointer to refer to specific segments,

frames or regions of video.

Vannotea’s integration into the semantic web is in fact fairly minimal. It treats Annotea
like a ‘black box” annotation service and doesn’t take advantage of its semantic
features. Furthermore, although the individual annotations are in RDF, the metadata
used to describe individual video files (e.g. for locating the files in the first place) 1s in

a plain XML format, rather than RDF.

2.4.4 RDF Calendar Taskforce

The RDF Calendar Taskforce [Pay02a] has worked on creating ontologies and tools to
support calendars on the Semantic Web. The purpose of this is to allow software agents
to automatically understand and reason about calendar events and schedules, which has
many advantages such as being able to find mutually agreeable appointments for
several attendees, determining where events occur and who is attending. The network
effect can then also be used to tap into other knowledge on the Semantic Web such as
the attendees connections and affiliations. The ontology work has focused on creating a
calendar ontology based on the widely used iCalendar format (RFC 2446). One of the
taskforce’s key tools is RCAL [Pay02b], which uses the calendar ontology to allow
browsing, importing, automatic scheduling between multiple users and collation of

knowledge obtained from multiple sources.

2.5 Conclusions from Literature Review

The concept of a mediated space has been introduced and it has been shown that
mediated interactions could potentially be as effective as, or possibly more effective

than non-mediated interactions.

Six existing systems that supported annotation and capture of collaboration activities
have been reviewed and it has been shown that all, except the CoAKTinG tools, lacked
machine processable semantics. Furthermore, a significant number of the systems had
poor support for distributed collaboration, live processing and automatic generation of
annotations. This shows that there is considerable scope for improving these

applications.

41

The Semantic Web has also been covered and it has been shown that it is still a
relatively new research area and that the exact form it will take once it has matured is
still unclear. CS AKTiveSpace has been discussed as an example of a large scale proof
of concept Semantic Web application. One particular Semantic Web issue that is
unclear is that of triplestore discovery, and existing applications such as CS

AKTiveSpace and Annotea rely on triplestore locations being manually specified.

The Semantic Web is being used for different forms of collaboration, such as document
annotation, identification of communities of practice and scheduling of meetings.
However, on the whole, Semantic Web technologies have not been applied to temporal
media and have not been used for real-time synchronous collaboration. For example,
although CoAKTinG tools and Vannotea both support synchronous collaboration,
CoAKTinG primarily uses Semantic Web technologies after a meeting for the purposes
of archiving. Vannotea’s integration into the Semantic Web is in fact only minimal, as
it treats Annotea like a ‘black box™ annotation service, and other metadata used by the

system does not use Semantic Web standards.

42

3 Background and Motivation

This chapter explains and motivates the use of semantic annotation for enhancing
distributed real-time collaboration. It describes what annotations can be used for in this
context and what the potential benefits of a semantic approach are. To further motivate
real-time annotation of collaboration sessions, a small scale study of text based IRC
chat usage in telephone conferences is presented. This study is used along with the
author’s own experience to produce an example list of useful annotations. Finally an
example scenario is presented in which it is shown how semantic annotation can be
used to enhance Access Grid videoconferencing, and potentially other remote

conferencing technologies too.

3.1 Introduction

The work in this thesis builds on the concept of continuous metadata [Pag01]. That is,
temporally significant metadata that is transported in close synchronisation with
streamed multimedia data to be used as supporting information to enrich the
multimedia data. Continuous metadata has been demonstrated by the HyStream
application [Cru01], which used hypertext links as an example form of metadata. The
application was capable of delivering the links synchronously with multimedia streams
over a wide area network. A demonstrator was produced that was capable of
synchronising links to presentation slides with recorded seminar videos. Later
extensions to HyStream [Bea01] enabled it to use a simple RDF schema and interact
with an RDF knowledgebase. This allowed automatic generation of a user interface for

hand authoring the temporal links, which reduced authoring effort

This existing work focused on the offline, hand mark-up of recorded media. The RDF
based extensions were also very basic, for example not incorporating any notion of

time in the schema itself.

3.2 Semantic Annotations

In the context of real-time distributed collaboration, semantic annotation means giving
the individual events that occur as part of a real-time collaboration activity an explicit

representation that has a formally defined meaning. Annotations are generated during

43

collaboration activities and, if appropriate, can then be displayed to session participants
in real-time. For example, in addition to distributing audio and video streams between
sites in a videoconference, a real-time generated description of the events in the session
18 also distributed between sites, and these events are presented to session participants

in a suitable format.

Such semantic annotations have two key purposes, firstly to provide useful additional
information in real-time for session participants and secondly to provide a machine
understandable description for a session, which can be used to index recordings of
collaboration sessions and then be replayed in synchronisation with the audio and video

recordings to provide a more complete replay that audio and video alone could provide.

3.3 Supported Technologies

This work aims to be as independent as possible from any particular collaboration
technology. The main type of technologies it aims to support are those for multipoint,
group-to-group, real-time collaboration. In particular this includes videoconferencing
(e.g. Access Grid) and audio conferencing (e.g. telephone audio conferences). The
primary focus is on videoconferencing, as this is a method of collaboration that i3

becoming increasingly popular and is a field in which the author has much first hand

experience.

3.4 Supported Collaboration Types

Here the main area of support is for synchronous (i.e. real-time) distributed
collaboration, but also asynchronous collaboration through allowing semantic

annotations to be used for archiving and later replay of collaboration sessions.

There are a broad variety of activities that fall under the category of distributed real-
time collaborations. For example, surgeons collaborating during a live operation will
have requirements very different from those of computer science researchers discussing
an academic paper. There are also different modes of collaborating in real-time, e.g.
informal group discussions, seminars with a single presenter and an audience, or more

formal meetings.

The intention is to be general purpose enough to support a wide spectrum of different

collaboration activities. From the author’s own experience, a common use of real-time
44

distributed collaboration technology, at least in the academic field, is for group
discussions, which are reasonably informal, though may still have a chair. It is such

general-purpose group discussions that will form a focus for the work covered in this

thesis.

In terms of scale of collaboration, it has been chosen to use the author’s first hand
experiences of Access Grid collaboration to provide sensible figures for the size of
collaboration sessions this work should aim to support. A typical Access Grid session
may have approximately 10 participants and consist of 3 or 4 sites, with an upper limit
of about 12 sites and 30 participants. These figures will be used as a basis for the scale
of collaboration that this work should be able to support, although the work aims to be

general-purpose enough to support smaller or larger scale collaboration.

This work is also applicable to some extent to situations where participants are all co-
located in the same physical space. Distributed collaboration has been chosen as the
focus of this work as it is often less effective than face-to-face collaboration, meaning
that there is a greater need and more potential for improvement. Furthermore, since the
collaboration is already being mediated by technology, it makes sense to try and

improve how that technology performs the mediation.

3.5 Motivation For Annotation

From a human perspective, the main reasons for annotation are to provide useful
additional information to session participants and to provide an index and archive of a

recorded session. Annotations could, for example, be used to provide information about

the following:

e The current agenda item.

e Information about the current set of participants, such as a list of names.

e When somebody is explicitly addressing you.

e When the group is bored. This could be useful for somebody who is presenting
so they can gauge when to move on to the next topic.

e When participants are distracted. There is no point addressing a remark to

somebody if they are not paying attention to hear that remark.

45

o When somebody is lying (e.g. obtained from polygraph or voice stress

measurement). This could have applications in legal settings.

The net result of adding live annotations should be an improvement in the level of
conversational and workspace awareness among participants (see section 2.1.4).
Annotations can be used to explicitly provide information that is lost in video or audio
conferencing because of missing perceptual cues. Important missing cues are factors
such as audio direction and gaze direction, which can make it difficult to tell who is
speaking or who they are speaking to, therefore reducing conversational awareness.
Cues like these have been described as focal assurance cues [Man97] and give
information relating to each participant such as who is speaking, asking questions or
interrupting. “In situations where the participants are not familiar with each other it is
especially hard to develop a sense of where people stand on issues when contributions
are not tied to a specific participant” [Man97]. Annotations, such as explicit speaker

identification could be used to compensate for these lost cues.

Basic workspace awareness, such as knowing exactly who is in the session and what
they are doing can also be difficult to maintain, as not all participants may be on
camera. Annotations provide a mechanism to enable participants to obtain information
at a glance such as who is currently in the meeting and what is currently happening,

thus enabling them to maintain their levels of awareness.

Furthermore, annotations can go beyond just replacing those cues missing in
videoconferencing. Through displaying explicit annotations that provide information
that is only otherwise implicit, the potential exists to boost participants’ levels of
awareness to beyond those found even in face-to-face communications (as discussed in
the review of Hollan and Stornetta’s work in section 2.1.5). For example, in meetings
(either face-to-face or video mediated) it may only be implicit that the group is bored,
meaning that this might not be noticed by a presenter. However, an explicit annotation
notifying a presenter of this fact would perhaps allow the presenter to modify their

presentation to try and recapture the interest of the group.

Once a session has finished, the annotations can then be used in tandem with audio and
video recordings to serve as an archive for the session. Traditionally meeting archives

have consisted of meeting minutes, which serve as a compact, structured record, but
46

one that often leaves out many of the subtleties of the meeting, and there is no way of
determining the rationale behind decisions if it has not been recorded. Audio or video
recording can overcome this problem, but present large amounts of unstructured data,

much of which may be irrelevant to the viewer.

These problems can be addressed by annotations. They firstly can be used to index the
audio and video to, for example, begin replay after a certain person joined the meeting
or to replay all the sections when a certain person spoke. They could even be used by
people who were present at the meeting answer post meeting queries of the type
“replay all the sections meeting where I was distracted”, thus allowing them to catch up
on what they missed. Furthermore, the annotations can be replayed in synchronisation
with audio and video to provide a more complete replay, for example showing the
current agenda item, a list of all the participants present at that point in the session, or

even perhaps showing when somebody was lying.

3.5.1 What is being annotated?

Annotations normally need some entity to be annotated. Here the primary entities being
annotated are the actual events that make up the collaboration activity. This annotation
of actual events holds true for both face-to-face and video mediated collaboration. If
the collaboration is video mediated or is being recorded, then the media streams (i.e.
audio and video) will be further entities that are being annotated in addition to the
actual meeting events. For example, the event of somebody being distracted is treated
here as the entity being annotated. If this event is recorded in video, then the annotation

will also serve as an annotation for the video.

When describing annotations in this thesis, the author refrains from referring to them as
‘metadata’, since this might incorrectly imply that there was always some underlying
explicit data being annotated. In a face-to-face meeting that isn’t recorded there is no
explicit data, so describing the annotations as metadata could cause confusion. It is
however true that when a meeting is video mediated there is explicit data (in the form

of video), for which the annotations can act as metadata for.

3.6 Motivation For A Semantic Approach

At this stage it may not be clear why it is beneficial to take a semantic approach to the

annotations, i.e. one that is formally defined by an ontology giving them a machine
47

understandable meaning. In addition to the potential for the network effect discussed in

section 2.3, a semantic approach has a number of key benefits:

Inference. Inference is the process of deriving new knowledge from that which
is already known. This means that new events (and hence annotations) may be

automatically derived from the events already known to the system. Automated
inference is only practical when a formally defined ontology is used. Inference

may be a useful technique for the automatic generation of semantic annotations.

Interoperability and Reuse. A semantic approach means that a system can
seamlessly integrate with existing Semantic Web knowledge sources, such as
triplestores. This knowledge can be automatically harnessed when creating
annotations and can feed into the inference process, to fill in knowledge gaps
that would otherwise prevent certain useful inferences being made. By reusing
existing knowledge from the Semantic Web this reduces the amount of
information required to explicitly bootstrap the system and potentially gives the
system access to a wider breadth of knowledge than would otherwise be
available to it. Furthermore, systems that support distributed collaboration are
inherently distributed themselves. By having a common ontology, it ensures

that distributed, heterogeneous components are able to communicate.

Extensibility. A point related to interoperability is extensibility. Systems over
their lifetime are often extended or modified, and often in the case of distributed
systems not all components are upgraded at once. By using technologies from
the Semantic Web, standard extensibility mechanisms may be used. This means
that for components that are not upgraded, on receipt of a concept it does not
have knowledge of, it may fetch the unknown ontology via the web and use
techniques such as transitive closure, to navigate back through the class and
property hierarchy until it reaches a concept it does have knowledge of. The
new concept can then be treated as an instance of the known concept, with the

extensions to the concept ignored.

Indexing. An important use for semantic annotation is to provide a machine

understandable description of a collaboration session. This description has uses

48

both in live collaboration sessions and for archived sessions. In live sessions it
could, for example, be used as a pattern to match certain sections of archived
material, which may be useful to display in the live collaboration. For archived
sessions it can be used as a temporal index, allowing users to locate specific

sections of interest by event type or could be used to perform further offline

inferencing.

3.7 Motivational Study of W3C Telephone Conferences

To provide motivation for the real-time annotation of live collaboration sessions, a brief
study was made of some of the W3C’s telephone conferences (telcons). These telcons
were of particular interest because they usually used a text-based IRC (Internet Relay
Chat) session in tandem the telephone audio. The IRC sessions were used for back
channel communication during the telcons, and as such could be thought of as
providing a rudimentary form of temporal annotation for the telcon. Furthermore the
W3Cs telephone conference bridges support two different IRC bots, which can join the
IRC session and be commanded by participants to perform useful meeting functions.
The bots provide output as further IRC chat entries, which can also be thought of as
further basic temporal annotation of the telcon. The first of these bots is called Zakim

[Kot04], and it supports the following useful features:

e Showing participants joining and leaving the telcon. This is achieved by
using caller ID data, and each telephone number can have a name associated
with it. If a person joins who is not yet known to the bot, it can be told who that
person is. The bot can even be told that several people are sharing a phone at a
given site. The bot can be queried at any point in the conference to find out who
1s present in the telcon. Another interesting feature of the bot is that it can be
queried to find the country that each participant is currently in. It does this by

using the dialling code of the telephone numbers.

e Agenda tracking. The bot can be told the list of agenda items for the session,
either by entering them directly in the IRC or by passing it a URL that points to
a file specifying the agenda in RDF according to a simple schema. The bot then
can keep track of the current agenda item by being informed when the current

agendum changes or when an agendum is closed. The bot also has a future

49

reminder (or ‘ping’) feature that means it can be told to remind the participants

about some issue at a time later in the session.

e Floor control. Participants can indicate their desire to speak by joining a virtual
queue and the chairperson then selects people from the queue to speak. The bot

can also be configured to limit the amount of time each participant may speak

for.

e Control of the telephone conference. The bot can be told to mute or
disconnect telcon participants and can also be queried for the telecon pass code.
It also has a feature that can determine the current active audio sources in the
teleconference. This feature is primarily used to determine sources of feedback
and noise in a telcon, but can also be used to find out who is talking, which

could be useful for participants who do not know all the other participants.

e Scribe nomination. The bot can be asked to randomly select one of the

participants to act as scribe for the current meeting.

The Zakim bot is usually used in conjunction with a second bot called RRSAgent
[Swi04], which automatically creates a web accessible persistent log of the IRC
session. The bot records the session as plain text, HTML and RDF. The RDF schema is
very basic and only records IRC chat events (both human and bot generated). Each chat
event consists of a timestamp, the text from the IRC entry and the IRC nickname of the
person (or bot) that created the entry. RRSagent has the additional feature that it can
track action items while a meeting is in progress. This is achieved by a participant

entering the action item to the IRC and prefixing it with the text “ACTION:”.

In order to see how the IRC and bots were being used in real telecons, the IRC logs of
ten telcons were examined to see which bot features were used most frequently and to
see what kinds of information were exchanged in the IRC channel during the telecons.
It is likely that the features that were used most frequently were also the most useful. A
table showing the usage data extracted from the IRC logs is given in Appendix A and a

transcript from one of the IRC sessions is given in Appendix B.

50

3.7.1 General Observations

The observed telcons had fairly high numbers of participants ranging from 9 to 29
people, with an average of 17. Entries (both human and bot created) appeared in IRC
on average once every 18 seconds, and given that the telcons typically lasted 1.5 hours,

this fairly heavy usage shows that the IRC was a useful collaboration tool for

participants.

3.7.2 IRC Bot Features Used

The most frequently used Zakim feature was the ‘who is here’ function. This is not
surprising as the telcons examined were all quite large, so that keeping track of who
was present could be very difficult, hence this feature seems to have been extremely
useful. Another frequently used feature was the ability to manually specify the names
of the people dialling who were not already known to the Zakim bot. It appears that the
value added by being able to tell by name who was in the session justified the

additional effort of manually entering this information.

Another feature that was used in every conference observed was the speaker queue.
The frequency with which it was used clearly shows that participants must find it of
use. Given the large numbers of people in the telcons and the absence of any visual
information, it is unsurprising that this feature was so popular, as without it there could
potentially be many people all trying to speak at once. Conversely, the speaker time
limit function was not used once in the logs examined. This probably reflects the
reasonably informal format of the meetings, where speaking to a fixed time was not
crucial. A surprisingly popular feature was the random scribe nomination feature,
which was used in over half the conferences (the author expected that more ‘scientific’

means might be employed).

Zakim’s Agenda tracking features were used in over half of the sessions. The reason
they were not used in more sessions may have been because the mechanisms for
initially specifying the agenda items were not very user friendly. The future reminder

‘ping’ function was not used in any sessions.

The ability to identify audio sources was also used in half the sessions. This was due to
a high incidence of audio problems in the teleconference (e.g. feedback, noise etc.),

which seems to be a problem for such large scale conferences. It appears that such a
51

feature is useful, at least for large teleconferences, which are more prone to technical

problems.

The ability to geographically locate a dialling code was not used. The reason for this 1s
probably because the participants in the working groups already knew each other and
also that other than satisfying somebody’s curiosity, geographically locating a

participant wouldn’t be of particular use in a session.

Muting via the Zakim bot does not seem to have been used very much either. This is
probably because the feature was also available through telephone key presses, which

may have been perceived as a simpler way of controlling the function.

The action item specification feature of RRSAgent was only used in three out of the ten
sessions examined. This relatively low level of usage indicates that this feature may not

have been very useful (often the IRC was used to directly specify action items instead).

3.7.3 Non-bot Related Information Sent in IRC

In addition to the features of the Zakim bot and RRSAgent, the IRC was also heavily

used as a back channel for text communication during the telcons.

In the majority of the conferences examined, the IRC was used a mechanism for
commenting on the current issue being discussed in the telcon. The advantage of using
the IRC for this is that the speaker can continue without being interrupted and may be

able to address the issue at an appropriate moment.

The IRC was also heavily used for as a medium for scribing the session. The possible
advantages for this could be that participants can see the scribing as it takes place, so
can check that they agree with it and have it as a source of textual reinforcement of
what is going on in case their attention wanders. Another advantage is that since the
IRC sessions are typically archived automatically using RRSagent, it removes the need
for the person doing the scribing to have to manually distribute or archive the notes.
The IRC was also used as a medium to communicate the status of participants (e.g. to

indicate that they will be back in 5 minutes etc).

52

Another important use of the IRC channel was to distribute URLSs during the sessions.
Interestingly, the most popular target of such URLs were to emails in the W3C mailing
list archives, typically from the same working group that the meeting was for. The
URLs were used as pointers to emails from the mailing list that were relevant to the
discussion in the telcon. In over half the sessions, a URL was used to distribute the
agenda for the telcon. The agenda was originally distributed before the session by
sending an email to the mailing list of the working group. Then at the start of the
telcon, a URL to the email was posted to the IRC channel by one of the participants as
a reminder of the agenda. This use of URLs to archived emails within a telecon was an
interesting bridge between the asynchronous collaboration of emails and the
synchronous collaboration contained within the telcon. In addition to URLs to archived

emails, URLs to documents were also distributed when the documents were relevant to

the discussion.

IRC was also commonly used to directly communicate agenda items (bypassing
Zakim’s agenda tracking features) and to indicate when agenda items had been closed
and to indicate action items (bypassing RRSAgents action item features). The IRC was
also used to discuss who would be scribe, which often complemented using Zakim’s
automatic scribe nomination features. For example, if the automatic scribe nomination
was used to determine who would be scribe during the next meeting, IRC was used to
confirm that the particular person would be present in the next meeting. IRC was also
used in three of the meetings to indicate that there were technical problems with the

teleconference.

3.7.4 Conclusions

The heavy usage of the IRC and bots (especially Zakim) in this real-world application
domain, provides strong evidence that live temporal annotation of collaboration
sessions is a useful feature for participants. Furthermore, the usage of RRSAgent to
record these sessions, provides evidence that archiving temporal annotations for future

reference 1s useful also.

The main weakness of the IRC and bot approach examined here are the lack of high-
level semantics and the requirement for hand-authored annotations. Although
RRSAgent was able to export the IRC logs as RDF, the schema used was very basic.

For example, information generated by Zakim was treated exactly the same as any
53

other plain text IRC entry, and the authors of the IRC entries are just recorded using
their IRC nicknames. Clearly this limits the scope for any further automated processing

on the IRC data.

The reliance on hand-authored annotations and hand issued commands to the bots is
also far from ideal, as it required significant effort from participants. Additionally,
users required some significant prior knowledge to enable them to use the bots, which
would prevent users that did not have that have that knowledge from getting the

maximum benefit from the bots.

3.8 Examples of Collaboration Events

The events that go to make up an individual collaboration activity are dependent on the
nature of the activity taking place. There are however a number of events that will be
common to a significant number of different collaboration activity types (in particular
group discussion type activities), and some of these events make useful semantic
annotations. This section presents some examples of common events, and discusses
how they may be useful as semantic annotations. This list has been compiled from the
author’s own experiences and observations from Access Grid sessions and from W3C
telcons. While this list consists of the most obvious events, it is not exhaustive and it

may be possible to come up with other useful events in future.

¢ Individual people leaving or joining the meeting. Sometimes due to other
commitments, people join or leave meeting mid session. Having this explicitly
flagged as an annotation is useful as, since not all participants are always
covered by a camera, and it might not always be obvious when somebody has
joined or left. Tt is also useful for indexing archived sessions as it can be used to
locate the section of a meeting after a specific person joined, or if a participant
had to leave part way through, they can easily watch a replay of the section after
they left at a later date. This information can be presented as a dynamically
updated participant list, with recently joined participants highlighted. This
allows participants to tell at a glance who is in the session, which helps general
awareness. Such a list of names is also useful as it can, for example, help if a

participant has forgotten another participant’s name.

54

A person speaking. Explicitly identifying who is speaking makes up for lost
perceptual cues such as audio direction. If the identification is by name, it can
also help put a name to a face, which could be useful when the meeting
participants do not know each other in advance. This can also be useful for
indexing as it can be used to, for example, locate sections of a meeting where a

specific person was the main speaker.

The start and end of the meeting. Annotations that represent the start and the
end of the meeting could be used by a media recording component to determine
when it should start and then end its recording of the session. The information
could also be used by a signage display screen outside the videoconferencing

room to show that a meeting is in session and that the participants should not be

disturbed.

The current agenda item. This is useful for increasing participant awareness
and helping participants who are not paying full attention. This is also useful for

indexing as it allows navigation of recorded media by agenda item.

A slide being displayed. When the meeting uses slides as presentation
materials, it is useful to share slide transitions to achieve synchronised display
of the slides at each site. For archived sessions, slide transitions can be used for
synchronised replay of presentation materials with the media streams. They also
have additional use for indexing, allowing a user to select a slide and replay the

media associated with that slide.

A resource being relevant to a specific section in a meeting. In some
meetings, external resources such as documents or images may be relevant to
certain sections of the meeting, either because they are being explicitly
discussed, or just in more general terms. Annotations containing references (e.g.
URLSs) to the resources may be distributed to the computing devices of the
session participant to allow them to easily view the resources. Similarly, this
provides an easy way to access the relevant resources during replay.

Furthermore, this could be used for indexing, where the user could be presented

55

with a list of resources associated with the session and may select to replay the

section associated with a particular resource.

3.8.1 What constitutes an event?

At first glance it may seem that some of the annotations from the list in the previous
section are not events at all. For example, a document being relevant to a specific
section in a meeting may not appear to be an event. Despite appearances it is in fact an
event. The event is that document being relevant to the meeting, and that event has a
start time when the document starts to be relevant and an end time, when it ceases to be
relevant. Similarly, each agenda item is an event, which starts when the meeting

reaches that agenda item and ends when the meeting moves on to the next agenda item.

So in general terms, an event in this context is something that occurs for a time interval
with a defined start and end time. This means that unlike the list in the previous section
would suggest, the start and end of the meeting are not treated as individual events, but
the whole meeting is treated as a single event that lasts the duration of the meeting.

Likewise a person joining or leaving a meeting is treated as a single event, the event is

that person being present in the meeting, which will have a start and as end time.

It is also worth pointing out that the current agenda item and the slide being displayed
are just special cases of a resource being relevant to a specific section in a meeting,

since an agenda item or a slide are both resources.

3.9 Motivational Access Grid-based Scenario

This section describes the addition of a number of different annotation types to Access
Grid videoconferencing as a motivational scenario for live semantic annotation. These
annotations include displaying the attention levels of individual participants, the
group’s current level of interest, identifying when the meeting is overrunning,
participant tracking and speaker identification. A scenario involving the last two
annotation types from this list has also been discussed by the author in [Jub03] and an
implementation of participant tracking and speaker identification functionality (but
without the window highlighting described in this scenario) is described in chapter 5 of
this thesis. The scenario presented here is reasonably generic and a significant portion

could be applied to other videoconferencing systems and even audioconferencing.

56

These areas of common ground between technologies will be discussed in this section

too.

3.9.1 Access Grid Background

The Access Grid is a room-based videoconferencing system that enables large-scale
group-to-group interactions. Each Access Grid installation is known as an Access Grid
node and at the time of writing there are over 250 of theses nodes worldwide, with the

number growing continually.

The Access Grid runs on standard PCs and uses the Internet’s multicast backbone
(Mbone) as the transport mechanism for the media streams. Multicast to unicast bridges
are provided for sites that do not have multicast connectivity. Audio and video are
handled by special versions of the Mbone conferencing tools rat and vic. The Access
Grid also uses a centralised server that implements a virtual meeting room metaphor
called Virtual Venues. Meetings are held in a specific Virtual Venue and are joined by
‘entering’ the appropriate venue, which automatically launches the correct audio and
video streams. Each Access Grid node typically transmits video streams in parallel
from four remote controlled cameras, meaning that each person in the conferencing
room is usually covered by at least one camera. Incoming video is projected on the wall
of the node by several video projectors, which can display dozens of incoming video
windows simultaneously. This means that everybody at remote sites can have
continuous “presence” in a session. Loudspeakers and tabletop microphones are used in
conjunction with echo-cancellation hardware to enable the Access Grid to support
natural hands-free voice communications. Desktop versions of the Access Grid are also
available, which allow users without access to a room-based node to participate in

meetings from a PC.

A technician known as a node operator is normally present for each Access Grid
session. Their job is to operate the software and hardware, performing such tasks as
joining the correct Virtual Venue, controlling the local cameras and selecting which
incoming video feeds are displayed. Node operators at each site use a text-based MOO
(Object Oriented MUD) for back channel communications, allowing them, for
example, to coordinate any technical adjustments without disrupting the meeting. The
Access Grid also uses software called Distributed PowerPoint (DPPT) to enable a

presenter to display and control a slide show at multiple sites from a laptop PC.
57

3.9.2 Access Grid Weaknesses

The Access Grid is often used for large meetings. For example, certain regular
management meetings in the UK involve in the order of 12 nodes and have over 25
participants, and it is not unusual for other meetings that involve fewer nodes to have
up to a dozen participants at each site. The author has a large amount of first hand
experience of such meetings, both as a participant and as a node operator, and along
with other participants has found that keeping track of who is in the session and
identifying who is speaking can be difficult tasks that can be highly distracting from the
meeting content. Figure 3.1 shows an actual screenshot of what is displayed to
participants on the projection wall during a typical large Access Grid session. This
screenshot clearly shows that participants can be overwhelmed by the amount of visual
information they are presented with, making it difficult to determine who is currently in
the session or who is currently speaking. To make matters worse, it can be made even
harder to keep track of who is in the remote meeting rooms because not everybody is

always on camera or displayed on the projection wall.

3.9.2.1 Other Technologies

Some of the Access Grid weaknesses described here are also present in other
videoconferencing technologies. In particular, all the discussed shortcomings of Access
Grid would most likely be shared by any large-scale continuous presence

videoconferencing system that used a comparable number of video feeds.

Other videoconferencing technologies (e.g. H.323, H.320) use a single voice switched
video stream that is distributed between multiple sites using a Multipoint Control Unit
(MCU). While only viewing a single voice switched stream solves the problem of

participants being overwhelmed by sheer number of video feeds, it does not help

keeping track of who is in the remote meeting rooms, as only a subset of participants
will be visible at any one time. This means that the Access Grid weakness of not being
able to keep track of participants still holds true (and could actually be worse for)

MCU-based technologies.

Additionally, in a large scale audioconferencing environment, the Access Grid
shortcomings for speaker identification and keeping track of who is in the session also

may hold true. This is because there is no visual information to aid these basic tasks.
58

Figure 3.1, A screenshot of the Access Grid projection wall.

6S

It is important to note that weaknesses described here mainly apply to large scale
collaboration sessions, since identifying who is speaking and keeping track of who is in

a session is usually simple when there are only a small number of participants.

3.9.3 Enhancing the Access Grid with Semantic Annotation

This section describes a fictional scenario where semantic annotations are used to
enhance Access Grid videoconferencing. The annotation types include speaker
identification and participant tracking to address the weaknesses identified in the
previous section. The scenario also shows how the annotations fit in with other

emerging services on the Semantic Web such as calendar scheduling and Communities

of Practice.

This scenario makes the assumption that there is a queriable Semantic Web
infrastructure in place (such as that described by De Roure and Hendler, see section
2.3) that allows information to be retrieved about specific resource instances. It also
assumes that every meeting participant carries their own iButton for personal
identification. iButtons [iBu04] are a form of contact memory that can be read by
pressing them into a suitable reader. Each iButton contains a chip with a unique 64bit

identifier and the overall package is about the same size as a house key.

The scenario describes a hypothetical first meeting between employees on a new

project consisting of 15 people distributed across 4 different sites.

Project leader Tom would like hold an initial all hands project meeting over Access
Grid. He instructs his calendar agent (see section 2.4.4) to book a meeting for all
members of the project. It automatically assigns the meeting a unique URI and arranges
a mutually agreeable date with all the other calendar agents of the project members and

the calendar agents that handle the bookings for their local Access Grid nodes.

The day before the meeting, project member Alice finds out at short notice that she has
another important meeting to go to at the same time as the project meeting. This new
meeting is unavoidable so she will have to go to that one instead. She amends her

online diary accordingly.

60

We now follow the events in one of the Access Grid nodes on the day of the project
meeting. Before the meeting is underway, participants are shown a list of names on the
projection wall of those participants already present at the remote sites and a list of
people still expected. Importantly, this list does not include Alice, so the participants

know its fine to start the meeting without her.

Participants identify themselves to the system by signing into the meeting using their
personal iButtons in a readers located at their seating positions. In order to map the
iButton ID to each person, the system queries the Semantic Web to resolve the iButton
to its owner. Each owner of an iButton is responsible for publishing this information
about their own iButton. This means that the system doesn’t have to maintain this
knowledge, and it is not limited to a closed set of users. For example, Tom is hosting a
visitor on the day of the meeting and invites her join their meeting. The system is able
to query the Semantic Web and retrieve her iButton information and uniquely identify

her, even though she is not a project member and was not scheduled to turn up.

As each participant joins the meeting, they are notified via their laptops of any people
in the meeting who have any indirect links to them that they might not be aware of
(such Communities of Practice were discussed in section 2.4.1.4). The notifications not
only identify who is in the Community of Practice, but also how they are related. This
may in turn help shape the current collaboration or foster future collaborations by

exposing hidden links between people, such as shared work interests.

All scheduled participants have arrived and the meeting is now underway. The list of
participants and sites is displayed on the projection wall. Whenever a participant
speaks, their name is highlighted in the list. Additionally, the border of the video
window(s) originating from the site that the speaker is at are highlighted while they are
speaking. This would not only aid with identifying who is speaking, but could help “put
a name to a face’, which might be helpful in situations like this where the participants

are not familiar with each other.

As the meeting progresses, Tom is gets distracted. He is using his laptop to reply to an
urgent email. Gavin has a particular point that he wishes to address to the group and
especially Tom. However due to the number of participants, it is not obvious to Gavin

that Tom is distracted and if Gavin makes his remark now it will be wasted. Fortunately
61

an annotation is displayed on the main projection wall stating that Tom is currently
distracted and Gavin is able to save his remarks for later when Tom again has his full

attention focused on the meeting.

John now has a slide presentation to deliver to the group. Initially the presentation goes
well, but he has misjudged the level of technical depth to go into and the rest of the
group rapidly become uninterested. John doesn’t notice this as its not obvious through
the video mediated communication and he is focused on delivering his presentation.
However, an annotation is delivered to John’s laptop that pops up informing him that
the group are currently uninterested. John quickly realises that he has gone into far too
much detail and has bored the group. He continues with his presentation, but provides
fewer details and he is able to recapture the interest of the group. This is confirmed to

him by another annotation stating that the group are interested again.

After John’s presentation and as the meeting draws to the end of the allocated time,
there is a sudden flurry of highly productive conversation led by Tom. The participants
are engrossed and don’t realise that the meeting is about to overrun. The Access Grid
rooms are not booked for use by anybody else, so this is not an immediate problem for

the meeting. Tom however has another meeting scheduled after this one and is in

danger of running late.

The system displays an annotation to the group showing that Tom is due to be attending
another meeting. The participants see this annotation and are able to start to wrap up
their discussions. Unfortunately, they don’t manage to wrap things up in time, and Tom
is now late for his next meeting. Fortunately the system identifies this and instructs the
other meeting room Tom is scheduled to be at to display an annotation stating that Tom

is going to be late.

At the end of meeting the system automatically emails out a web link to each of the
project members and to Tom’s visitor. When this link is opened in a web browser it

launches a fully indexed replay of the meeting.

Later on, Tom uses this link to easily locate and replay all the sections of the meeting
where he was distracted. Alice, who was unable to attend, uses it to catch up on what

happened in the meeting too. Unfortunately she is busy and doesn’t have much time.
62

She particularly needed to see John’s presentation, so she jumps straight to the section

of the meeting where John was the main speaker.

3.9.3.1 Discussion of scenario

Behind the scenes, each of the annotation types presented here were generated through
inferences. The annotations about the participants being present were obtained through
combining separate facts about an iButton being docked, the owner of that iButton and
the location of the iButton reader. These three facts were then combined through

inference to assert that there was a specific identified person present in that meeting

room.

Similarly, the speaker identification used inference to combine separate facts about
audio levels on the microphones, the locations of the microphones and the locations of

the participants. This inference is described in more detail in section 5.3.1.

If we imagine that there was an agent running on Tom’s laptop monitoring the use of
applications on the laptop, the inference about Tom being distracted was made by
combining the facts about him currently being present in the meeting, him (rather than
anybody else) being logged into that computer and the email program being used on

that computer.

The group’s level of interest could potentially be gauged through (mostly yet to be
developed) computer vision techniques examining the body language of participants.
The individual extracted body langue cues of participants could be combined to make
the higher level assertion that the group as a whole is disinterested. If vision based
techniques seem somewhat far off, a simpler solution would be to have a software
interface running on the laptop of each participant with buttons next to categories that
allow them to explicitly convey their current mental state. Again, each of these

individual contributions could be combined through inference to determine the overall

state of the group.

This scenario has not only shown the advantages of annotations, but has also shown
how through using the Semantic Web, these annotations can be linked in with other
services. For example the annotations about people being present was used in

conjunction with the calendar information to infer a list of people still scheduled to

63

arrive. Similarly, the system was able to uniquely identify Tom and determine that he
was due to be in another meeting. An inference based on Tom’s current location and

his diary information enabled an annotation to be generated stating that he was due to

be at the other meeting.

Here we see the benefit of the Semantic Web’s ability to uniquely identify resources
across domains and their relationships to other resources, which in turn can be used

with inference to combine multiple facts to make meaningful assertions.

Chapter 5 describes an implementation based on a subset of the functionality presented
in this scenario. This subset is limited to the speaker identification and participant
tracking functions. Despite being based on a subset of this scenario, the implementation
still demonstrates the general purpose infrastructure required to combine knowledge
from multiple sources in real-time using inference. To avoid later disappointment, it
should also be noted here that the window highlighting functionality of the scenario 18
not implemented either, as this would have proven to mainly be an exercise in

modifying the video tool used by the Access Grid (vic).

3.10 Summary

This chapter has provided motivation for the addition of semantic annotations to live
collaboration. Annotations can be used to present useful additional information to
session participants, which could provide useful benefits such as increased awareness
amongst participants. The annotations can also be used to index recordings of sessions
and be used to provide a more complete replay than audio and video alone would
provide. It has been shown that the semantic based approach to annotation provides
excellent scope for inference, interoperability, reuse and extensibility, which promotes

automation and reduces maintenance effort.

The study of W3C telephone conferences provided strong evidence that live annotation
of collaboration sessions is useful to real users and this study aided the creation of a list
of example useful annotations. Finally a scenario was presented in which it was
described how dynamically updated attendance lists and real-time speaker
identification could be used to overcome some of the shortcomings of Access Grid and

other conferencing technologies.

64

4 A Framework for Real-Time Semantic Annotation

This chapter presents an event based framework for the automatic semantic annotation
of distributed real-time collaboration activities. The framework is described in generic
terms and consists of producers and consumers, which communicate using a shared
tuple space. An inference engine coupled to an external triplestore is used to
automatically infer further events from events directly captured from a collaboration
session. This chapter does not discuss the design of the ontologies; this is instead

discussed in detail in chapter 5.

4.1 Framework Origins

This section sets out to explain the thinking behind the conceptual architecture for the
framework. The design decisions and specific technologies for this framework are then

discussed in detail in the remainder of this chapter.

From the discussion in the previous chapter, it is possible to see that the framewofk
needs to generate annotations that are triggered by events that occur during
collaboration sessions. Therefore components are required that feed into the system,
capturing events from the real world and generating a description of those events. Here

these source components are called producers.

It is also required that annotations be displayed to participants during collaboration
sessions. Hence some data sinks are required to receive annotations and display them to

session participants. Here these sinks are referred to as consumers.

So far then, there are events being captured by producers, which are converted into
annotations, which are transported to consumers for display to participants. However,
as stated in the previous chapter, the intention is to use inference to obtain further
annotations from existing annotations. The following section describes how inference

can be incorporated into this model.

65

4.1.1 Inference

There needs to be some form of inference component or components that receive
annotations from the producers, perform inference on those annotations and then make
any new inferred annotations available to the consumers. Note that the inference
component(s) should not prevent consumers from still receiving basic, non-inferred
events from producers too. That is, the inference component(s) should not block these

annotations, as the consumers may wish to still receive them.

There are several candidate places where the inference function could take place:

e Ateach producer.

e At each consumer.

e At asingle centralised location.

There is no obvious advantage to having multiple inference components and it would
result in needless replication of functionality and would complicate the architecture.
Therefore the author feels that a single, centralised inference component (an inference
engine) provides the neatest architecture. Furthermore administration, such as keeping

the inference logic up to date would be easier.

This centralised component receives all annotations generated by producers in a
collaboration session, performs inferences on those annotations, and makes any new
inferred annotations available to the session consumers. In fact the inference
component acts as both a consumer (receiving annotations) and a producer (generating
new annotations). It is also likely that to make useful inferences from annotations, the
inference process may need to access further knowledge from a repository similar to

the CS AKTiveSpace triplestore.

The inference engine has access to all the annotations within a collaboration session
(both those generated by producers and those it generates itself). As it is the only
component that has access to all of these annotations, it makes sense that this
component should also be responsible for placing the session annotations into persistent

storage so that they may be archived.

66

4.1.2 Storage

The previous chapter argued that annotations from a session should be archived to
create a record of the session that could potentially be later replayed in synchronisation

with recorded audio and video.

To achieve this, there needs to be some form of persistent storage in the framework. A
key issue here is whether there should be multiple components that provide this storage
or just a single, centralised component. Multiple components would most likely prove
to be more scalable and fault tolerant, but could make it difficult to locate specific
items of knowledge. Hence the decision here is for a single, centralised store (i.e. a
triplestore) as that would lead to a less complex framework. Experience from CS
AKTiveSpace has shown that a centralised store can perform well for even for

relatively large scale applications.

In addition to the storage needed for archiving annotations, storage would also be
required for any additional knowledge that might be required to feed into the inference
process. Consumers in general may also need access to further knowledge in addition
to the annotations they receive to allow them to display meaningful human readable
information (e.g. to resolve a URI to a human readable name). This knowledge could
be held in separate stores, but there would be no real reason for segregating this
knowledge. It makes more sense to hold this knowledge in the centralised triplestore
along with the archived annotation data. Not only does this simplify the architecture,
but also means that knowledge about previous collaboration sessions could then be

easily used in the inference process if required.

4.1.3 Communications

The core framework components (i.e. producers, consumers, inference engine and
triplestore) have now been discussed. What has yet to be discussed are the

communications between these components.

Since the sites that makeup a collaboration session often change from session to session
and individual sites are free to add new producers or consumers, it would not be
practical for every consumer to know the location (e.g. IP address or DNS name) of
every producer, or vice versa. Furthermore there could be many producers and many

consumers, and it would also not be practical for explicit communications channels to
67

exist between every producer and every consumer. Instead, a wiser solution is to use a
publish and subscribe (pub/sub) model, in which components communicate via some
intermediary, without needing to be explicitly aware of the existence of each other.
This means that producers publish their annotations and consumers subscribe to only

the annotations they require.

This pub/sub model also works for the producer and consumer functionality of the
inference engine. The engine can subscribe to all the annotations it requires and then

publish any new annotations it infers.

The requirements for the communications between producers and consumers are
discussed in more detail in section 4.4, where it is also shown that the requirements are

well met by a tuple space communications model.

Although this pub/sub model fits well with the producer/consumer architecture, it 18 not
suitable for making the knowledge in the triplestore available. As the triplestore could
potentially contain a large number of triples, it would be impractical to publish every
single one of these. Instead, a standard query and response mode of communication is
more practical here. The triplestore is also expected to remain at a fixed location, so it
is reasonable that each component that needs to query it be pre-configured with its

location.

Uploading annotations to the triplestore for archiving could be achieved by making the
triplestore subscribe to all the annotations from a collaboration session. However, such
behaviour is not a standard feature of existing triplestore implementations. Furthermore
there appears to be no particular merit to doing this, hence a more standard approach is
adopted where the inference engine explicitly uploads annotations to the triplestore for

archival.

4.2 Overview of Framework

Figure 4.1 shows an overview of the semantic annotation framework. Basic meeting
events are captured by producers and are encoded as RDF based annotations. These
annotations are packaged as tuples and are published to a tuple space bound to the

collaboration session.

68

' Collaborating Site -

Producers Consumers

basic basic and
events inferred

l events

query

response
Tuple Space
basic
events inferred
¢ events
query ——P
Inference «—— response .
Engine Triplestore
triples for —»
archiving

~N_

Figure 4.1, An Overview of The Semantic Annotation Framework.

69

An inference engine is also joined to the tuple space and subscribes to events generated
by the producers. The inference engine has a number of domain specific inference
rules, which it uses in conjunction with the external triplestore to infer higher level
events from the basic events captured from the session. These higher-level events are

also published to the tuple space to be used as annotations.

Consumer applications are also joined to the tuple space and subscribe to specific event
types. One possible role of consumers is to display events to session participants in a

human friendly form.

The inference engine is also responsible for storing the triples that describe each event
(both basic and inferred) in the external triplestore. This provides a permanent semantic
record of the collaboration session, which can be used in combination with an

audiovisual recording to index and replay the session.

4.2.1 Comparison to Real-Time Expert Systems

This architecture presented here has some similarities to real-time expert systems based
around the blackboard architecture that was popular in the 1980s (a good introduction
is provided by [Cor91]). This section briefly compares the architecture presented here

to blackboard based approaches.

In blackboard systems, there is a shared working memory called the blackboard into
which input data (e.g. from sensors) is placed. The problem solving knowledge come
from a collection of specialised components called knowledge sources, each of which is
able to solve one particular aspect of the problem in hand and contribute to the
information in the blackboard, providing incremental solution generation. As one
knowledge source contributes to the information in the blackboard, this may in turn
provide other knowledge sources with sufficient information to start solving their
specific aspect of the problem they have knowledge about. Each knowledge source is

treated as an independent ‘black box’ that performs a complex function.

Blackboard systems are event based, and knowledge sources subscribe only the specific

event types (i.e. changes to the blackboard) that they are able to handle. Events can be
70

triggered by changes made by knowledge sources or by external event sources (e.8.
sensor input). To ensure efficient use of knowledge sources and prevent them
attempting to access the blackboard all at once, there is a single controller component
that determines the most appropriate knowledge source to execute in response to any

particular event.

In the semantic annotation architecture presented in this chapter, there are a number of
similarities to a blackboard architecture. The tuple space represents the shared working
space and there are producers (analogous to sensors in the previous blackboard
example). We also have event based subscriptions that ensure the inference engine only
receives the event types it can handle. The main difference however is that there is a
single inference engine rather than the multiple knowledge sources of the blackboard
approach. The level of granularity in the semantic annotation framework is at the level
of individual rules in the inference engine, rather than entire knowledge sources. This
removes the need for the controller component present in blackboard systems and also
means that changes to the inference process can be made through simply modifying
rules, rather than modifying entire knowledge source components. Another difference
is that the semantic annotation framework explicitly incorporates a long term persistent
storage component (the triplestore) which provides bootstrapping knowledge and
archives the inferences. Such a component is not a standard part of the blackboard

architecture.

4.3 Events

The previous chapter discussed events during collaboration activities, and such events
are the base concept in semantic annotation of these activities. This section discusses

the representation of these events in this framework.

Events during a collaboration activity are discrete entities and need to be generated and
transported as such. Hence some form of discrete packet should be used to represent
these events. Each packet contains a payload that describes the event and is valid for a
limited time interval, meaning that the packet representing an event must record this
time interval. Incorporating a pair of timestamps into each packet may seem like the
obvious solution. However, for live collaboration each packet needs to be transported at
the beginning of each event to be of use, meaning that the end time is unknown at that

moment. Therefore in the general case, events are represented by the two state changes
71

that go to make up each single event, i.e. when the event starts, the state of the
collaboration activity changes from that event not occurring, to the event occurring, and
when the event ends, then the state changes back to that event not occurring. These two
state changes are represented as two state change packets, each containing a single
timestamp. The first packet is created and transported at the start of the event, and when

the event ends a second packet is created and transported to indicate that the event has

finished.

4.4 Event Sharing

The mechanism for sharing event state change packets between producers and

consumers must support a number of features to be suitable for this framework. These

features are:

e Pub/Sub. As discussed in section 4.1.3, in general it is not feasible for all
consumers to directly communicate with the producers, hence a pub/sub model

supporting indirect communication is more practical.

e Real-time. The time taken for a state change packet to be transported from a
producer to all consumers should be small enough to be perceived by

framework users as being sufficiently immediate.

e Reliable. In general, users of the framework will not tolerate lost or corrupt
events. State change packets should be delivered without error and be

guaranteed to reach all subscribing consumers.

e Multipoint. In general, there will be multiple components needing to share

events simultaneously.
e Persistent state changes for duration of session. See next paragraph.

Each state change packet should persist in the sharing mechanism for the duration of
the collaboration session. This allows any late joining consumer to be able to determine
the current meeting state, even though it wasn’t present when the state changes that

describe the current meeting state were initially published. Making all state changes

72

persistent allows consumers to obtain the full history of the session, which may be
useful for presentation to participants, or replay applications. In many cases making all
state changes persistent may in fact be overkill and impractical, as any late joining
consumer could potentially be flooded with many state changes, past and present when
they first join. This could be a particular problem for lightweight consumers. Where a
full history of events is not required, a better solution is to only make state change

packets persistent if they represent currently active events and remove them once they

are no longer active.

This framework assumes best effort Quality of Service (QoS) and because of that there
is some degree of conflict between the first two requirements. In particular, reliable
delivery is not compatible with true real-time delivery since if network congestion or an
error 1S encountered it requires that a packet is re-sent which introduces additional
delay. In this framework it is anticipated that users will find a slight additional delay
preferable to events being dropped. For example a slide transition that is slightly

delayed is preferable to it not being delivered at all.

4.4.1 Tuple Spaces

These requirements for sharing events map well to a tuple space. Tuple spaces were
pioneered in the Linda system [Car89] developed at Yale University in the 1980s. A
tuple space can be thought of as a shared buffer that can contain tuples. In general, a

tuple is simply a list of values, and is often used as a key-value pair.

Tuple spaces allow distributed components to communicate without being aware of the
existence of each other. Components can publish tuples in the space or subscribe to be
notified whenever tuples matching a subscription are published or modified. Tuple
spaces are a form of associative memory, with tuples being accessed by matching some
or all of the elements to values presented in a template. The template is just another

tuple created for specifically for the purpose of matching.

Alternatives that were considered for providing the event sharing in the framework
were content based routing, such as Elvin [Seg00] and a reliable multicast framework,
such as Scalable Reliable Multicast [Flo97]. The main drawback to both of these
approaches is that they do not support any form of persistence, which means that a late

joining consumer would not be able to easily determine the current state of the
73

collaboration session. An additional drawback to using a multicast based framework is
that it would not support subscriptions to events of specific types, but would instead
deliver all event to all consumers, which could potentially put significant network and
processing load on the consumers, therefore excluding the use of lightweight

consumers.

Although a tuple space fulfils the requirements of pub/sub, reliable, multipoint
communications, and session level persistence, tuple spaces aren’t usually associated
with the real-time domain. There is however no reason why real-time tuple spaces
cannot exist. Indeed, the implementation discussed in Chapter 5, uses a third party

implementation of a real-time tuple space called EQUIP [Gre02].

4.4.2 State Change Packets

Each state change packet is represented as a single tuple. Each tuple contains a pair of
values, which can be thought of a key-value pair. The first value is the type of event
that this state change describes. This is represented as 2 URI and enables consumers to
subscribe only to tuples that represent specific event types. The second value in the
tuple is the full serialisation of the RDF triples that represent the state change the
packet is describing. Subscriptions to a specific event type are achieved by consumers
specifying a tuple with a URI of the event type as the first value and a ‘wildcard’ as the

second value.

4.5 Real-Time Considerations

Since this framework needs to support real-time collaboration, some consideration
needs to be given to what is meant by ‘real-time’ in this context. Depending on the
application area, real-time can be either be a term used to describe a system that
responds within a small and specified period, or a term whose definition is couched in
terms of human perception, being a level of responsiveness that a user senses as

sufficiently immediate.

Here the author uses the second definition to define real-time in the context of this
framework, since a system that responds within a specified period is vastly more
complex to design and implement than one that does not have these guarantees. In fact,
in this framework, there are no guarantees that the responsiveness will always be

sensed by users to be sufficiently immediate, as there may be times when noticeable
74

delays may be perceived, for example as a result of a complex inference. It is for this
reason that the author favours the term near real-time, rather than just real-time to
accurately describe this framework. Miller [Mil68] found that users interacting with
systems could tolerate response times of up to one second and still perceive the system
as interactive. Therefore, the author defines the meaning of ‘near real-time’ in this
thesis to be a response time of one second or less. Since the term ‘near real-time’ 1s
somewhat clumsy to write, whenever this framework is described as ‘real-time’, what it

is actually meant is that it is ‘near real-time’.

It is worth noting that the amount of delay users may tolerate might depend on the

event type. The different level of tolerable delay for each event type is not clear and is
an area for further study. For example, for a speaker identification event, only a delay
of a few hundred milliseconds might be tolerable, whereas for a sign-in event, a delay

of several seconds might be tolerable.

4.6 Synchronisation of Events and Media Streams

Ideally this framework would be able to explicitly synchronise the display of events
and corresponding media streams at each collaborating site. Unfortunately, as will be
explained in this section, there appears to be no way to do this in the general case. It
will be argued that explicit synchronisation, although preferable, is not required by this

framework to support real-time collaboration.

Synchronising events with the media streams means that a consumer at a given site will
start to display an event when the corresponding time point in the media is reached at
that site (or at least within a small, fixed time interval bounding this point), e.g. if an
event has a starting timestamp of x, then a consumer at a specific site should display
that event when the corresponding time point x in the media streams is displayed to the
participants at that site. Note that at each site, the display of the received media streams
and events will always lag behind the actual current wall clock time because of
encoding, decoding and network transit delays. E.g. a frame in live video that was
taken at wall clock time y, will actually get displayed to participants at a remote site at
wall clock time y + d, where d is the sum of the encoding, decoding and network transit

delays, even though the frame being displayed represents wall clock time y.

75

The main reason that explicit synchronisation is not possible is that packets that make
up the media streams must be delivered using an unreliable protocol, and that each
media packet has a fixed deadline by which it must arrive in order to be displayed. Any
media packet arriving after this deadline is dropped. However, events take time to be
generated, either directly by a producer or by the inference process. This time may be
difficult to predict and, when the events are inferred, may be significantly larger than
the time taken for the corresponding point in the media streams to be generated.
Furthermore, as discussed in the previous section, events are delivered using a reliable
protocol, and events that take a longer time to arrive are not normally dropped. All this
means that there is no deadline by which events arrive, and there is no way of making
the media streams ‘wait’ to preserve synchronisation with an event that takes a longer
time to arrive. When the media stream is analogue voice telephony, a similar argument

holds true, even if the underlying mechanisms are different.

This problem could be fixed to some extent by introducing some additional buffering of
the events and media streams at the receiver, but as the time taken for events to arrive 1s
potentially unbounded, then some finite buffering would not be always guaranteed to
fix the problem. In fact any significant buffering would introduce a far worse problem
by destroying the interactive nature of the system, which is vital for real-time

collaboration.

Instead, synchronisation in this framework relies on the real-time nature of the
mechanisms used to capture or infer, transport and display the events, and to encode,
transport and display the media streams. If this is done in real-time, then the events and
media streams will be presented to users in near synchronisation. Although the
synchronisation is implicit, it should be sufficient to be perceived by humans as being
synchronised. An added bonus of not explicitly synchronising events and media is that
it means the events can be totally independent of the technology chosen to encode and

transport the media streams.

As mentioned in section 4.3, each state change packet contains a timestamp. However,
as shown here, such timestamps are of limited use during live collaboration, since each
state change packet is normally presented to participants as soon at it arrives at a

consumer. As will be mentioned in the next section, timestamps do have a use in live

76

sessions for performing sanity checking and determining things like network transit

times.

The primary purpose of timestamps is in fact for the accurate archiving and replay of
collaboration sessions. If producer generated timestamps were not used, then an
archiving consumer would have to timestamp state change packets as it received them.
This would be inaccurate because the timestamps would include the time taken to
generate the packet and also the network transit time. For this reason it is better to use

timestamps generated by producers.

4.7 Timestamp Generation and Format

This framework has different distributed producers generating state change packets
with timestamps. Clearly there needs to be some common shared time between
components, otherwise the timestamps may be inaccurate relative to each other.
Therefore all components in the framework must be time synchronised to a common
clock. Clock synchronisation may also be required for accurate synchronisation of

multiple media streams during archiving.

The most sensible common time to use is UTC (Coordinated Universal Time, formerly
known as GMT). Time synchronisation can easily be achieved by running a standard
NTP (Network Time Protocol) [Mil92] client on each component, which is capable of
synchronisation typically with an accuracy in the order of a few milliseconds, which
should be sufficient accuracy for most conceivable applications of this framework.
Forcing all components to use UTC makes the framework independent of local time
zones, which otherwise would complicate matters during sessions in which the

constituent sites spanned multiple time zones.

The framework uses absolute timestamps. One possible format for such timestamps
could be an integer that records the time as a number of milliseconds since midnight
UTC January 1% 1970, which is the format in which most computer systems record
their time, and many programming languages provide functions to obtain this value
directly. This is by no means the only suitable format for absolute timestamps and in
the implementation discussed in chapter 5, a different but equivalent format is used for

compatibility with an existing ontology.

77

The alternative to using absolute timestamps would be to use timestamps relative to the
start of the collaboration session. The drawback of using relative timestamps is that
each site joined to the collaboration session would need to have a shared knowledge of
when the session started, which might not always be the case. Furthermore, using
absolute timestamps means that each timestamp records the full date and time at which

each event occurred, which provides more information than a relative timestamp.

In the case where the media streams are being recorded, the component recording the
media streams also needs to record the UTC time it started recording the media streams
to enable synchronisation of events and the media streams during replay. When
replaying an archived meeting, it can use this as an offset to synchronise the archived

state change packets with the media streams.

Having both producers and consumers synchronised to a common clock means that the
network transit time for each non-inferred state change packet can easily be
determined. This is achieved by calculating the difference between the timestamp and
the consumer’s current clock time. For inferred events, this calculated time would also
include the time taken for the inference process, since an inferred event would most
likely reuse the timestamp from the event it was inferred from. In either case, if the
calculated difference was found to be excessive, then this could be flagged to an
operator for further investigation. The most likely causes would be network congestion
or excessive processor load on the inference engine. If a negative difference was
calculated, or a very large positive value (i.e. much greater than any plausible network
transit time and rule firing time), then it would most likely mean that either the

producer or consumer, or even both, were not synchronised to UTC.

4.8 Detailed Description of Framework Components

This section completes the chapter by giving a detailed description of the framework
components, drawing on the discussion in the previous sections. Figure 4.2 shows the

complete set of framework components.

4.8.1 Producers

Producers are typically simple devices that capture basic meeting events. These devices
can be lightweight and embedded and have very simple, one off, configuration

requirements. Typically the only configuration a device will need is its location
78

. Collaborating Site

Tuple Space
Discovery
Server

Discovery Messages

Local

Multicast

e e o e - m e e m e e e e e e e e e e e e e e e = = o —

response

Producers Consumers
[
[]
e e e e e e e e e e e e e e A e —
]
1
il i e R e e SR O S S e e T e 1
| o o o e o i e e o e T S e e i i T e — — — = —
basic basic and
events inferred
events
Tuple Space
Server

1

basic

events inferred

L events
|

Inference
Engine

query ——P
4¢— response @ ——

—>

triples for

Triplestore

archiving

Figure 4.2, The Framework Components

N

79

(represented as single URI), and a multicast address and port on which it listens for

tuple space discovery announcements (see section 4.8.3).

Each device is programmed before deployment to generate state change packets
containing RDF triples describing the events they capture. The device location is used
to feed into the triple generation process so that the location of each event is specified,
which is potentially useful for the inference process. The triples generated by producers
conform to a pre-shared OWL ontology, so that they can be understood by consumers,

and in particular the inference engine. Producers are also responsible for taking each

batch of triples they generate that describes a state change and packaging them as a
tuple and publishing them to the tuple space bound to the current collaboration session.
An example of a producer could be a digital audio mixer used to generate events that
describe microphone activity (from which events describing who is speaking could be
inferred). Such a specialist device is likely to need to be connected to a host PC to carry

out the functions of generating the triples and publishing them to the tuple space.

4.8.2 Tuple Space Server

The tuple space server is responsible for implementing the shared buffer that provides
the tuple space functionality. Producers and consumers may connect to this server to
access the tuple space. Each collaboration session requires an instance of a tuple space

to be running on the server.

4.8.3 Tuple Space Discovery Server

It would not be practical to manually instruct each producer and consumer at each
collaboration site of the tuple space bound to each collaboration session. For this
reason, this framework uses a dynamic tuple space discovery mechanism, the principles
of which are taken directly from the EQUIP tuple space implementation [Gre02]. The
discovery mechanism works by having each collaboration site run a tuple space
discovery server. The discovery server sends out discovery messages every few
seconds on a site local multicast group. The address and port is known to each producer
and consumer at the site as it is included as part of their initial configuration, and each

producer and consumer at a given site subscribes to this multicast group.

80

Whenever a collaboration session starts, as part of session establishment, the person
operating the session at each site inputs the tuple space parameters into the discovery
server (a tuple space discovery server should have a user interface to achieve this). This
server then broadcasts them as discovery messages. Each discovery message identifies
the tuple space bound to the current collaboration session. On receipt of such a

message, all producers and consumers at the site join the tuple space specified by the

parameters.

When the collaboration session ends, the operator inputs into server that the session has
ended. At this point, each message multicast from the server instructs each producer

and consumer to disconnect from the tuple space.

Since multicast is unreliable, the potential exists that a discovery message may not
reach all producers and consumer at a site. This is not a problem, since the server sends
out repeat messages every few seconds, so if a message is lost, another one will be

broadcast a few seconds later.

In an environment where multicast is not available, dynamic discovery can be achieved
by having a tuple space server at each collaboration site, which runs a default discovery
tuple space. Producers and consumers join the default discovery tuple space and

discovery messages are published as tuples.

4.8.4 Inference Engine

For each collaboration session there runs an instance of a forward chaining rule-based
inference engine. This is joined to the tuple space for the collaboration session and acts
as both a consumer and producer, subscribing to basic meeting events and inferring

higher level events from them and publishing these to the tuple space.

Each instance of the inference engine is joined to a specific instance of the tuple space,
and this joining persists between individual collaboration sessions. This means that the
inference engine does not have to dynamically discover the tuple space for each
collaboration session, but instead can be told this in a one off configuration step. The
number of instances of the inference engine and the tuple space running at the same

time determines how many collaboration sessions may take place in parallel.

81

The inference engine is pre-configured to subscribe to all the different known non-
inferred event types generated by the producers. It adds the triples from these events
into its own internal triplestore, which represents its knowledge of the current
collaboration session. (To avoid confusion with external triplestores, this internal

triplestore shall be referred to as a knowledgebase.)

The inference engine has pre-authored, domain specific inference rules that fire in real-
time when a matching pattern of triples is found in its knowledge base. These rules then
generate triples that represent higher-level events. These triples are added to its
knowledge base, and as with other producers, are also packaged as tuples and published
to the tuple space for the benefit of other consumers. In addition to using pure rules
based inference, the inference engine also queries an external triplestore whenever it

has gaps in 1ts knowledge that prevent it from making a specific inference.

For example, in the implementation described in the next chapter, one of the inferences
is that there 1s a person present in a specific seating position of a specific meeting room.
This inference 1s made as the result of a number of rules firing after there is an iButton
sign in event. The presence of the sign in event in the knowledgebase triggers a rule
that queries the triplestore for the seating position and room location of the iButton
reader. This new information in turn triggers another rule that queries the triplestore to
determine the person who owns the iButton. The presence of this ownership and
location information in the knowledgebase then causes another rule to fire which
combines this knowledge to infer that the particular person is present at that seating
position of that meeting room. Full details of the inference process are described in

chapter 6.

The inference engine is also responsible for archiving events to the external triplestore.
This is a sensible choice because at the end of a collaboration session its
knowledgebase contains the complete set of triples that represent all the events from the
collaboration session, both basic and inferred. Since an inference engine is not suited
for persistent storage, all the triples in its knowledgebase are transferred to the external
triplestore once the collaboration session has finished. All triples are then deleted from

the knowledge base, leaving the inference engine ready for a new collaboration session.

Once the triples representing a collaboration session are added to the external

triplestore, these could then be accessed by replay clients through suitable queries.

4.8.5 External Triplestore

In essence the external triplestore is a persistent repository of knowledge, represented
as triples that may be queried and added to as required. It is difficult to generalise about
what kinds of knowledge the triplestore must contain to be useful, as it is largely
domain specific. In the implementation described in the next chapter, the triplestore is
predominantly used for looking up where components are located in a location
hierarchy, as this was found to lead to useful inferences. E.g. if an iButton reader is
located in a specific seating location, then it is reasonable to infer that the person who
just signed into that reader is sitting in that seating location. The triplestore is also
queried by consumers to resolve URIs to human readable names where required for
display purposes, so it is likely that the triplestore will need to contain this type of

knowledge too.

How the triplestore is initialised and maintained is beyond the scope of the framework,
but it is possible that automated techniques such as those used in CS AKTiveSpace (sce
section 2.4.1) could be used to extract knowledge from existing sources, in conjunction

with some hand authoring of information not already available in an electronic form.

This framework assumes that there is a single triplestore and that it remains at a fixed
location. All components that need to query the triplestore (i.e. the inference engine and
consumers) are given the location of the triplestore as part of their initial configuration.

The specific mechanism for querying the triplestore is not defined by this framework.

4.8.6 Consumers

Consumers are typically some form of application for displaying events in a human
understandable form. The application may be interactive, for example displaying
information in the form of hyperlinks. Consumers, however, do not necessarily have to
be applications responsible for display. For example, the inference engine acts a

consumer too.

Consumers subscribe to the specific event type(s) that they are able to handle, and parse
the serialised RDF from received state change packets into triples. In the case of a

83

display application, these triples are converted into a human understandable form and
displayed in real-time. Part of the consumer’s process of converting triples into a
human understandable form may include queries to the triplestore to resolve URIs into

a human readable form.

Consumers may run on devices such as a standard PC, wireless PDA or even a mobile
phone. In general consumers may be more complex than producers, since they have to
perform more tasks, including parsing RDF, user interface functions and queries to the
triplestore. Furthermore, a consumer may need to handle multiple event types, which

further adds to the complexity.

4.9 Summary

This chapter has presented a generic framework for the automatic semantic annotation
of distributed real-time collaboration activities. Each semantic annotation is an event
represented as two state changes, allowing live creation and transport of events. It has
been explained that explicit synchronisation of annotations with the media streams
would be difficult in the general case, and that implicit synchronisation is sufficient for

real-time collaboration.

The framework consists of producers and consumers that communicate using a shared
tuple space. This enables reliable, loosely coupled pub/sub communication and also
supports late joining consumers. An inference engine that exhibits both producer and
consumer functionality is used to automatically infer further collaboration events from
those captured by other producers. This inference engine uses an external triplestore as

a source of additional knowledge that feeds into the inference process.

84

5 Implementation

This chapter describes a proof of concept implementation of the framework presented
in the previous chapter. The annotation functionality of the implementation is based on
the Access Grid scenario from chapter 3. An ontology is presented that represents
concepts such as events, time, locations and people, a significant portion of which was
reused from existing ontologies. A third party inference engine was used and a number
of inference rules were created. In addition to this, three producers were created for
capturing and publishing events from collaboration sessions. A single consumer was

also created for displaying attendance lists and speaker identification data.

5.1 Overview of End-User Functionality

The functionality chosen for implementation was based on a subset of that described in
the scenario presented in section 3.9. This subset was real-time speaker identification

and dynamically updated attendance lists.

The implemented system described in this chapter also differs from the scenario by not
implementing video window highlighting. Window highlighting was not implemented
as it was decided that this would prove to be mainly an exercise in modifying vic, and
would not have much relevance to the semantic annotation framework. A replay
function was also omitted from the implementation since this was a feature that had
already been provided by the CoAKTinG meeting replay tool (see section 2.2.7).
Furthermore, at the time of writing the author is employed on a project called Memetic
[Mem0O5] developing the CoAKTinG meeting replay tool to support automated and
semi automated annotation of recorded Access Grid meetings. Inference will be one of

the techniques used in Memetic for achieving this.

The implemented system is presented to participants at each site as a dynamically
updated list of sites and names of current participants. This list is displayed on the main
projection screen at each site in the session. The list consists of a number of headings,
each one being the name of a site that is currently part of the Access Grid session. As
sites join or leave, appropriate site headings are automatically added or removed. The

purpose of the site headings are so that all participants know exactly which sites are in

85

the session at any particular moment. Below each heading is a list of the names of each
participant at that specific site. Entries in this list are automatically added or removed
as individual participants join or leave the meeting. When a participant speaks, their
entry in the list is highlighted to indicate they are speaking. This list is intended to
increase participant awareness by explicitly listing session participants and to make it
easier to identify who is speaking. The system is also able to determine when a meeting
is in session at each individual Access Grid room, which could for example, be used to

display the status of the Access Grid node on a screen outside the room.

From the perspective of the participants, all they need to do extra to achieve this
functionality is to carry around a personal iButton and use this to sign into a reader
which is located in every seating position. Behind the scenes, the system automatically

generates an RDF description of each session, which is then archived in a triplestore.

Although the implementation is based around an Access Grid scenario, it is fairly
general purpose and could equally be applied to group-to-group telephone audio

conferences or other group-to-group conferencing technologies.

5.2 Overview of System

A diagram of the overall system architecture is shown in Figure 5.1. The entire system
was implemented in Java and an overview of some of these components is given in the

following sections.

5.2.1 Producers

The system required each meeting room to be equipped with the following producers:

e iButton Reader Producer. There needed to be an iButton reader located at
each seating position, each of which was connected to a host PC at each site that
was responsible for publishing annotations that described the sign in and sign

out events at each 1iButton reader.

86

\ Local i X
Collaborati ng Multicast . F;Beggce)rr]s
ite by -
serial link

Display to

v

]

)
: -

by

e

(I

[T

bl

-

iy

a1

participants E :
: Gentner AP400 Ho

Di Audio Mixer iButton Reader | t

iscovery [

H Producer 18l

messages ? p [

: 4

X : .~ serial link i

Session Informalion e

, Producer) J ¢ 4
Display Panel + Microphone b
Consumer EQUIP discovery Activity E i
server Producer Lo

e

e . U N i 1
P e L S B NI o S e NGO s - T R S ATy =l i

tuples
JDBC tuples
tuples
v -/
Equip4j server
tuples
Jena
persistent model Jena inference
(mySQL DB) < JDBC q engine \
from
file
HTTP Inference

rules

\ from file

AKT
Triplestore

—

Figure 5.1, Overview of implemented system.

other
bootstrapping
knowledge

87

e Microphone Activity Producer. Individual microphones were located at each
seating position, and these fed into a digital microphone mixer connected via a
serial link to a host PC. The host PC was responsible for publishing annotations
when sound was detected past a certain threshold at each individual

microphone.

o Session Information Producer. The session information producer was
responsible for publishing annotations that stated when the meeting room had
joined an Access Grid session. This information was manually entered by the
node operator, but this could have been achieved automatically by integrating it
with the Access Grid session handling software. The session information
producer also ran a tuple space discovery server, which enabled the other

components to join the correct tuple space.

5.2.2 Inference Engine

Central to the system was the inference engine. There was a single instance shared in a
session, which subscribed to the events generated by the producers. It had a number of
forward chaining inference rules, which it used in conjunction with queries to an
external triplestore to generate the participant list and the speaker identification

annotations.

In order to allow the display application to generate a participant list, the inference
engine took iButton reader events and firstly queried the triplestore to resolve the
iButton ID from the event to the URI for the person who owned that iButton. It also
performed a further query to determine the seating location in which the iButton reader
was located. Once these queries had been made this caused a further rule to fire, which
inferred that the person who owned the iButton must be present at that particular

seating location, and an annotation to that effect was published to the tuple space.

The inference engine also inferred participant speaking events. It did this by receiving
microphone activity events and querying the triplestore to determine which seating
position the microphone was located in. Once the seating location had been determined,
a further rule fired, which used knowledge about who was sitting in that seating

location to infer that the person had made a verbal comment, and an annotation to that

88

effect was published. The full details of the inference process are discussed at length in

chapter 6.

5.2.3 Consumers

The system had just a single consumer application, an instance of which ran at each
site. This was the display panel application that was responsible for displaying the list

of sites and participants, and the speaker identification data.

In order to allow the display panel application to display a list of connected site names,
it subscribed to the room-mapping events from the session information producers. On
receiving each event, it queried the triplestore to obtain a human readable name for

each collaboration site, and then displayed the site name in the list.

In order to display the participant list, the display application subscribed to the person
present events generated by the inference engine. On receipt of a person present event
the display application queried the triplestore to obtain a human readable name for the

person that event referred to, and then displayed the name in the list.

In order to display the speaker identification events, the display application subscribed
to the speaker identification events generated by the inference engine. On receipt of an
event, it highlighted the name of the appropriate person in the list, and when the event

ended, it removed the highlighting from that person’s name.

5.3 Speaker Identification Technique

As speaker identification was an important aspect of the implementation, some

consideration is given here for the chosen technique, which also proved to be somewhat

novel.

Numerous techniques exist for text independent automatic speaker identification,
consisting of either speech pattern matching (e.g. [Bet00]) or Sound Source
Localisation (SSL) techniques (e.g. [Cut02]). The drawback of pattern matching
techniques is that they require users to supply a sample of their voice in advance and
when in use typically require at least one or two seconds of speech before being able to

produce a result and are therefore are not suitable for real-time applications or short

89

utterances. The techniques also cannot handle two people speaking at once, which 1s a

common occurrence in meetings.

For this reason SSL techniques were favoured here, and are particularly suited to
meeting rooms, as participants tend to stay seated in the same location for the duration
of a meeting. One of the drawbacks of SSL is that it normally requires expensive
microphone arrays. The author has however discovered that it is possible to do basic
SSL by exploiting a feature of the standard audio hardware that the majority of Access

Grid nodes use.

Each room-based Access Grid node is equipped with an echo-cancelling digital audio
mixer, usually manufactured by Gentner. These Gentner products can be controlled and
monitored via the serial port of a PC allowing real-time access to the audio levels and
gating status of each microphone. When a microphone is gated on, it means that the
level it has picked up is above some specified threshold. Likewise, when gated off, it

means that the level is below a certain threshold.

Most Access Grid nodes use a Gentner AP400, which has four microphone inputs.
Initially it was hoped to do SSL by looking at the relative audio levels on each of the
microphones. Unfortunately after some experimentation it was found that hardware
limitations in the Gentner unit meant that it was only possible to access the audio level
one microphone at a time, with a 0.2 second delay between accessing each microphone,
and that this amount of delay was too large to do SSL using this technique. The gating
status of the microphones, however, proved to be more useful. The Gentner hardware
allows the status of all four microphones to be reported simultaneously once every 0.2
seconds, which is sufficiently fast to be useful. Furthermore, by default the AP400 has
a feature called First Mic Priority mode enabled, which has a useful side effect,
explained as follows. Its main purpose is to help maintain good speech intelligibility by
ensuring that only one microphone gates on when a person speaks. It achieves this by
determining the audio levels received by all the microphones when the first microphone
gates on and this audio level is then used as the ambient level for all other microphones.
The useful side effect of this is that if each participant has a microphone in front of
them, then only the microphone in front of the person speaking will gate on. This
means that the gating status of the microphones accurately reflects who is speaking at

any moment in time. The author has confirmed this experimentally. Additionally, if
90

more than one person speaks at a time, then a microphone will gate on for each person

speaking.

Performing SSL by giving each participant a tabletop microphone may sound obvious,
but without First Mic Priority mode the technique is not reliable. The author conducted
experiments with the mode switched off and found that usually two or more
microphones gated on when only one person spoke and that increasing the gating

threshold simply meant that quieter speakers were unable to gate their microphone on.

The advantage of performing SSL in this way is that it requires no additional hardware
for Access Grid nodes. The main drawback is that the maximum number of participants
is limited to the number of microphones, although similar Gentner products (€.g.
AP800) deployed at other Access Grid nodes support up to eight microphones, and
multiple Gentner units can be daisy chained to provide more microphone inputs.
Another weakness is that sounds other than speech can gate a microphone on (e.g. a
door slamming), but it is likely that in most sessions this would not occur frequently
enough to cause significant generation of incorrect speaker identification data. This
weakness could be overcome by using a technique to determine if an audio signal is

speech or non-speech (e.g. [Tur02]).

5.3.1 The need for inference

At this stage it may appear as if the AP400 is performing all the functions required for
full speaker identification. However, the only information the AP400 asserts is the
identity of the microphone that is currently gating on. Clearly this information on its
own does not identify the actual participant who spoke, as it says nothing about any
participant. In fact the AP400 has absolutely no knowledge about the participants and

no knowledge about where its microphones are located.

Inference is therefore required to take the basic microphone gating knowledge from the
AP400 and combine this information with other external knowledge about the locations
of the microphones and the locations of the participants. Only once all this knowledge
is taken into account by the inference process is it possible to make the explicit
assertion stating which participant is currently speaking. In the implementation

described here, four facts are needed to make the inference about who is currently

speaking:
91

1. The identity of the microphone that is currently gated on

2. The identity of the person signed into a specific iButton reader
3. The seating position of that iButton reader
4. The seating position of the microphone

It is possible to see that only the first of these four facts comes from AP400, with the
rest coming from the iButton reader and the external triplestore. The full inference

process 1s described in detail in chapter 6.

5.4 Ontology

The key first step in implementing a system within this framework was to author the
ontology for the various components to use. One of the many benefits of taking an
approach based around the Semantic Web was that it facilitated easy reuse of
ontologies. For this implementation, it was chosen to reuse ontologies wherever

possible as this would reduce implementation effort and promote interoperability with

existing tools.

5.4.1 Ontologies Chosen for Reuse

There are numerous existing Semantic Web ontologies, meaning that some

consideration needed to be given to the ontologies that would be reused to form the

basis of the implementation here.

The implementation required representations of concepts such as events, time, locations
and people. Appropriate ontologies for representing these were found to be the
ontologies from the CoAKTinG and AKT projects (see sections 2.2.7 and 2.4.1). The
CoAKTinG ontology was originally created for the offline semantic annotation of
recordings of synchronous collaboration activities and already had representations for
things such as distributed collaboration sessions and people speaking. This ontology in
turn reused a number of elements from the AKT Support and Portal ontologies to
provide a representation for entities such as events, time, locations and people. The

CoAKTinG ontology is given in Appendix D.

The representation of locations in the AKT Portal ontology, was however rather basic

and did not provide any means to define the relationship between locations or spaces.
92

For this reason an additional location ontology was reused from the Signage Project
[Mil04] to represent locations and the interrelationships between them. The Signage
location ontology is given in Appendix E. Its use of hierarchical spaces enabled useful
inferences to be made. For example, through a hierarchy specifying devices located in
seating positions and seating positions located in rooms, it is possible to infer when two
devices are located in the same room or in the same seating position, even though these
explicit relationships are not specified. For example, consider the following list of basic

facts that describe part of a meeting room:

1Button reader A is located in seating position 1
iButton reader B is located in seating position 2

1
2
3. Microphone X is located in seating position 1
4. Seating position 1 is located in room Y

S

Seating position 2 is located in room Y

Its possible to see that in addition to the explicit facts, several further facts can be
inferred. For example, fact 1 and 3 can be combined to infer that iButton reader A 18
co-located with microphone X in the same seating position. Facts 1, 2,4 and 5 can be
combined to infer that iButton readers A and B are located in the same room. As will
be shown in chapter 6, these inferences are used as part of the process to determine
when people are co-located or when people are sitting in front specific microphones,
which are used respectively to infer when there is a meeting taking place and which

participant is currently speaking.

Therefore using this representation and combining it with inference has removed the
need to explicitly specify all the relationships between the locations. It also means that
the configuration can be less application specific, for example another application
could combine facts 4 and 5 to infer that seating positions 1 and 2 were in the same
room. Furthermore, any changes to the device locations require only a single
relationship to be modified, thus ensuring that the maintenance of the configuration 18

straightforward.

An additional advantage of using the AKT, CoAKTinG and Signage ontologies was

that their creators were research colleagues of the author, which promoted discussion

93

about issues such as design rationale and allowed the potential for input into future

developments for these ontologies.

The ontologies described here were by no means the only suitable basis for this
implementation. For example, the MINDSWAP conference ontology [Min04] has a
representation of events, time, people, sub-events, attendees and location and the

eBiquity Group [eBi04] have published similar ontologies too.

Since there was some reuse of existing ontologies in the implementation described in
this chapter, a simple namespace mechanism will be used when describing ontology
terms so the origin of each term is clear. Any term prefixed with the namespace ‘live’
(short for ‘live collaboration ontology’) is an original contribution by the author. All
terms with other namespaces have been reused from existing ontologies. The live

collaboration ontology is given in Appendix C.

5.4.2 Events and Time

Since events and time were key to the system, the discussion shall begin on this topic.
It is fairly clear that a sensible way to structure the ontology would be to have a
superclass representing a generic event and to subclass this event into specific event
types. This is exactly what the CoAKTinG ontology does, taking a representation of an
event from the AKT Portal ontology (referred to here as ‘portal’) and subclassing it into

a number of specific event types.

Figure 5.2 shows the structure of the portal:Event class and the parts that it inherits
from the AKT Support ontology (referred to here as ‘support’). In essence, portal:Event
is something that can have a beginning time, an end time, a location and any number of
sub-events. An event can also have a ‘main agent’ and ‘other agents involved’
specified, which can, for example, be used respectively to specify the chair and other

participants of a meeting.

portal:Event gets its ability to express a beginning time and an end time by sub classing
support: Temporal-Thing, which possesses a support:has-time-interval property, which
has a range of support:Time-Interval. support:Time-Interval represents a time interval
by having a support:begins-at-time-point property and support:ends-at-time-point

property, both of which have a range of support:Time-Point.

94

suppart:Temporal-Thing

subClassOf portal:has-sub-event

support:has-time-interval \ l

portal:Event

support:Time-Interval

portal:has-other-agents-invalved

. i X portal:has-main-agent
support:begins-at-time-point

support:end-at-ime-point bortal:Generic-Agent

portal:has-location
support: Time-Point

support:year-of pl integer portal:Location

supportmonth-of g integer

support:day-of N integer

integer
support:hour-of — J

supportminute-of N integer

support:second-of B integer

integer

meeting:millisecond-of ——%

Figure 5.2, The portion of the AKT ontology representing events and time.

95

Although it may seem more intuitive to use two separate classes to represent an event
in live collaboration (i.e. one to represent the beginning of an event and one to
represent the end of the event), using portal:Event and only defining the end time once
it is known achieves the same overall function. Furthermore, when archiving events, it

1s more intuitive having a single class representing an event.

It is for these reasons that the portal:Event was chosen as the superclass for all events in

this implementation. The class required no further extensions to be suitable for use in

this implementation.

5.4.3 Location

Location was also an important part of the ontology, as it played a key role in a number
of inferences. The base concept of location was taken from two sources, the AKT
Portal ontology and the Signage Project location ontology (namespace abbreviated to
‘location’ here), and was extended by the author to meet the specific needs of the proof
of concept implementation. Figure 5.3 shows the location ontology used in the

implementation.

In the Signage ontology, the most general type of location is a location: Abstract-Space.
Specific types of location subclass this, such as location:Room and location: Work-
Area. In the AKT portal ontology, the most general type of location is portal:Location,
which is subclassed into specific location types such as portal:Country and
portal:Geographical-Region. portal:Location is the range of the portal:has-location

property of portal:Event.

So that events could use locations defined by the Signage location ontology, and to
make the Signage concept of location interoperable with the AKT Portal concept of
location in general, the author asserted in the live collaboration ontology that

location: Abstract-Space was owl:equivalentClass to portal:Location.

From the names it may not seem that location: Abstract-Space and portal:Location were
semantically equivalent concepts, so that declaring them as equivalent classes was not a
valid thing to do. The author however argues that both classes are in fact semantically

equivalent. In fact, in the English language the terms space and location are somewhat

96

location:is-located-in

_—

live:has-
collaboration-site-name

\

string

subClassOf

location:Room

subClassOf

location;Meeting-
Room

location:Abstract-Space

subCla

ssOf

live:Seating-
Position

equivalentClass

portal:Location

subClassOf

subClassOf

AY

live:Device-Position

live:Microphone-
Position

subClassOf

live:iButton-Reader-
Position

Figure 5.3, The location portion of the ontology

97

ambiguous, as a space can mean either a volume or area and a location can either be a
specific point in space or a whole area such as a city (which arguably actually occupies
a volume). This ambiguity is reflected in the Signage ontology by a location:Room and
a location: Work-Area both being subclasses of location: Abstract-Space, while the
former is arguably a volume and the latter is arguably an arca. Similarly, although few

specific subclasses of portal:Location exist, a room, or an entire country would both be

valid subclasses.

To help overcome these ambiguities, the author defines a location: Abstract-Space and
portal:Location as “any space, either in two or three dimensions where it is possible to
define the boundaries (at any given moment of time)”. This definition should also be
used whenever the author uses the terms ‘space’ or ‘location’. Note that although itis
possible to define the boundaries of the space, these boundaries need not be explicitly
defined somewhere in order to refer to that space, all that matters is that the boundaries
can be defined. In the case of a specific point in space, this can be thought of as a

bounded space of zero volume.

5.4.3.1 Location Types

The final ontology has knowledge of five different location types, these are a room, a
meeting room, a seating position, an iButton reader position and a microphone position.
All the location types are subclasses of location: Abstract-Space and are explained in

this section.

The concept of room is taken directly from the Signage ontology and is represented by
the class location:Room. This is used as a generic representation of any type of room.
The concept of meeting room is also taken directly from the Signage ontology and is
represented by the class location:Meeting-Room, which is a subclass of location:Room.
This is used to represent any room whose primary purpose is for holding meetings, and
was the representation chosen for Access Grid enabled rooms. It could be argued that
the representation of an Access Grid enabled room should be represented by a class
more specific than a generic meeting room (e.g. with a class like Access-Grid-Room),
as this would give the potential for inferences that used knowledge that the room was
Access Grid capable. While this is certainly true, the author feels that a generic meeting
room is sufficient specialisation for this system. Furthermore, a better way of

98

representing specific collaboration technologies available at that meeting room would
be to represent them as properties of that meeting room, as that would allow a meeting

room to support more than one type of collaboration technology, which is often the

case.

Since the Signage and AKT ontologies had no representation of a seating position,
iButton reader position or microphone position, these were added in the live
collaboration ontology. A seating position is represented by the live:Seating-Position
class. This is used to represent each individual seating location in a meeting room, i.e.

the location occupied by a single meeting participant.

The final two new location classes defined were live:iButton-Reader-Position and
live:Microphone-Position which are used to represent the locations the respective
devices, i.e. the space occupied by the physical device. The classes both subclassed a

generic class called live:Device-Position, which in turn subclassed location: Abstract-

Space.

5.4.3.2 Abstract-Space Properties
The location: Abstract-Space class had two properties which were useful to this
implementation. One of which was already defined in the Signage ontology and the

other of which was a new property defined in the live collaboration ontology.

The first property was location:is-located-in, which had a domain and range of
location: Abstract-Space. This is used to specify that one space is located in another
space, for example a room being located in a building. In this implementation, this
property was used to specify that a particular iButton reader position or microphone
position is located in a particular seating position, and that a seating position is located
in a particular meeting room. This property is clearly transitive, that is if, for example,
microphone position A is located in seating position B, and seating position B is
located in meeting room C, then A must also be located in C. At the time of
implementation, the Signage ontology did not declare location:is-located-in as an
owl:transitiveProperty, so this was rectified by declaring this property as transitive in
the live collaboration ontology. This allowed precisely the kind of transitive location
based inferences as described above. At the time of writing, the current version of the
Signage ontology now incorporates this transitive property definition too.

99

The second property was live:has-collaboration-site-name which was a new property
defined in the live collaboration ontology. This property was a literal string value and
was used to represent a human readable name for an individual collaboration site,
which for example may be used as the text for a site heading in the display panel
application. This name should make sense in the context of an Access Grid (or other
type collaboration session). An example of a name would be ‘Southampton University,
ECS’. The most likely subclass of location: Abstract-Space this property would be used
with is a location:Meeting-Room, as that is the actual collaboration site. Note that this
property does not provide a name for the meeting room itself, but for the site that the

Access Grid node located in that room represents in an Access Grid session.

Rather that giving live:has-collaboration-site-name a domain of location: Abstract-
Space, it may seem more appropriate to restrict its domain to location:Meeting-Room,
as that is typically what is used to represent a collaboration site. Although that is the
case for this implementation, doing so would remove the possibility of other spaces
being sites of collaboration. For example, desktop versions of the access grid exist, so a
desk could have a collaboration site name and although unlikely, its not out of the
question for somewhere like a corridor or garden to be a collaboration site. By leaving
the domain to be very general, this effectively allows any type of location:Abstract-

Space to be a collaboration site.

5.4.4 Personal Identification

The portion of the ontology that relates to the identification of individual session

participants is relatively simple and is shown in Figure 5.4.

The concept of person (i.e. the representation of people taking part in a collaboration
session) is taken from the AKT portal ontology using the class portal:Person. The
Portal ontology defines a number of properties on portal:Person, but the only one used
by this implementation was portal:full-name, which specified the person’s full name as
a human readable string. This was used when displaying the names of participants in

the display panel application.

100

portal: Generic-Agent

subClassOf

live:Personal-ldentifier

portal:Legal-Agent
subClassOf

live:has-personal-
identifier
subClassOf :
live:iButton
portal:Person
live:has-button-id
portal:full-name string
string

Figure 5.4, The section of the ontology for personal identification.

101

People identify themselves using iButtons, so these needed to be represented in the
ontology. As no suitable representations were in the existing ontologies, a
representation was added to the live collaboration ontology. This was achieved by
firstly creating the generic superclass live:Personal-Identifier to represent all forms of
tangible identifiers like iButtons that could be used to uniquely identify a person. This
is then subclassed as live:iButton which is the class that represents an iButton. This
class has a single literal string property live:has-button-id which actually records the

unique ID of the iButton.

In order to tie an iButton (or any other personal identifier) to its owner, the live
collaboration ontology also defined the property live:has-personal-identifier, which has
a domain of portal:Person and a range of live:Personal-Identifier, making it possible to

associate one or more instances of a live:Personal-Identifier with a person.

5.4.5 Event Types

With the rest of the elements of the ontology in place, the final part of the ontology is
the portion that represents the specific event types used by the system. As with the
other parts of the system, a number of the events were reused from existing ontologies.
Figure 5.5 shows the portions of the event ontology reused from existing ontologies
and Figure 5.6 shows the new portion of the ontology created specifically for the

implementation.

5.4.5.1 Events From Existing Ontologies

A single event type is taken from the AKT portal ontology, namely portal:Meeting-
Taking-Place. This is used to represent when co-located people are collaborating, such
as the activity that takes place at each of the sites participating in an Access Grid
session. The use of this class in this way (i.e. to represent the activity that takes place at
each site during distributed collaboration) was first shown by the CoAKTinG ontology.
A representation for a real-time distributed collaboration session is taken from
meeting:Distributed-Gathering. This is used to tie together each of the individual
portal:Meeting-Taking-Place events in order to form a representation of a distributed
collaboration session. This is achieved by using the meeting:has-local-event property

(which is a sub property of portal:has-sub-event), to specify each of the local meetings

102

portal:Legal-Agent

c01

portal:has-sub-event
portal:sender-of-

information
portal:has-main-

/ agent

portal:Generic- portal:Event

Agent

— subClassOf

——

portal:Generalized
-Transfer

portal:has-other-

/ agents-involved

subClassOf portal:has-location

subClassOf subClassOf

portal:Location

subClassOf f

subClassOf subClassOf

portal:Information-

portal:Social- Transfer-Event

Gathering

—

meeting:has-local-
event subClassOf

portal:meeting-

& organiser

ing:Making-a-
portal:Person meeting:Making-a

Verbal-Comment

meeting:Distributed
portal:Meeting- -Gathering

portal:meeting- Taking-Place

attendee

Figure 5.5, Event types reused from the AKT and CoAKTinG ontologies.

portal:Event

subClassOf

live:Joined-To-
supClassOf Session

subClassOf subClassOf

live:Microphone-
Active

live:Personal-
|dentifier-Event

live:Generic-
Agent-Present

subClassOf
subClassOf

live:Legal-
Agent-Present

live:iButton-Signed-In

live:perscnal-

identifier-used subClassOf
live:id-of-

ibutton-used

/

string

live:Personal-
Identifier

live:Person-
Present

Figure 5.6, The ontology representing the new event types.
104

that make up the distributed gathering. The main purpose of these two events 1S to

record who is at each site and which sites are in the collaboration session.

The CoAKTinG meeting ontology also has a representation for people speaking,

meeting:Making-a-Verbal-Comment, and this was used for the same purpose in this

implementation.

5.4.5.2 New Event Types

The first new event type required is to explicitly represent the notion of an individual
meeting room being part of a collaboration session. This event is live:Joined-To-
Session. The primary purpose of this event is during live sessions, to enable
participants to tell when another site has joined the session, even when nobody has yet
signed in at that site. It uses the inherited portal:has-location property to record the
room location joined to the session. This event does not record any explicit session

identifier, as it is implicit from the scope of the tuple space.

The next event type is used as a generic representation for any action involving a
live:Personal-Identifier. This event is live:Personal-Identifier-Event, which is used as a
base class for events such as people signing in or out using some form of personal
identifier such as an iButton. The event defines a live:has-personal-identifier property
which has a range of live:Personal-Identifier. This is used to specify the particular
instance of a personal identifier used in the event. The event is subclassed by a class
called live:iButton-Signed-In, which represents when an iButton is signed in. An
live:iButton-Signed-In event begins when the iButton is signed in and ends when the

iButton is signed out.

Since any device generating an live:iButton-Signed-In event would not normally have
knowledge of the URI of the iButton that the event represents, an additional property
called live:id-of-ibutton-used is defined for an live:iButton-Signed-In event. Thisis a
literal value for recording the 64 bit iButton ID as a string of hexadecimal digits. This

allows generation of these events without having to first determine the URI of the

1Button.

105

The event of a person being present in a collaboration session is represented by the
live:Person-Present class, which is an event that starts when the person joins the session
(indicated by signing in with an iButton) and ends when the person leaves the session
(by signing out). The person the event refers to is represented by the portal:has-main-
agent property inherited from portal:Event. For a live:Person-Present event, this
property has an owl:allValuesFrom restriction limiting it to be values from the class

portal:Person.

Since in the AKT ontology, portal:Person is a subclass of portal:Legal-Agent, which in
turn is a subclass of portal:Generic-Agent, it was chosen to mirror this class hierarchy
above the live:Person-Present event. This meant defining a new class called
live:Generic-Agent-Present, which was subclassed another new class called live:Legal-
Agent-Present. The live: Person-Present class then subclassed live:Legal-Agent-
Present. This was done to maximise the potential for any future interoperability with

the AKT ontology.

The final new event type was live:Microphone-Active, which was used to represent
when a microphone gates on. This event, along with live Person-Present is used as a

basis for inferring meeting:Making-a-Verbal-Comment events.

5.5 Tuple Space

The tuple space was a key component of the implementation, as it provided the core
communications service used by all the other components. The chosen tuple space
implementation was EQUIP [Gre02], which was originally implemented for use in the
EQUATOR Interdisciplinary Research Collaboration [EQUO04]. As well as tuple space
functionality, the full version of EQUIP also has a general event system and support for
Collaborative Virtual Environments (CVEs), like Massive-3 [Gre00], with features

such as 3D rendering. This full version of EQUIP has interfaces in both Java and C++.

Since much of the complexity of the full version of EQUIP was not required, the much
simpler Equip4j [Equ04b] was used as the basis for the proof of concept system. It is a
Java only subset of EQUIP that has a simpler mechanism for defining data items and

does not support 3D rendering, which was not required anyway.

106

Numerous other tuple space implementations exist, many of which are also Java based,
such as TSpaces [TSp04] and JavaSpaces[Jav04]. These would have been just as
suitable for providing the tuple space functionality, but EQUIP was chosen as it was
designed specifically for supporting real-time collaboration. Furthermore, the author,
although not a project member, worked with EQUATOR researchers. This meant that
there was potential for technical support if required and also for influencing future

EQUIP developments.

The data sharing service in Equip4j, which is used to publish tuples is referred to as a
dataspace. This is provided by dataspace servers, which are identified with URLs of
the form “equip://host:port/name”. Tuples are persistent for the lifetime of the
dataspace, or until they are deleted by their owner. Equip4j also supports non-persistent
tuples called tuple events. Both persistent and non-persistent tuples were used in the

proof of concept implementation.

Each tuple consists of a number of ordered values, which are instances of the
equip.runtime.valueBase Java class, which is subclassed to be container classes for
Java native types such as Strings, ints and arrays. Persistent tuples also have a unique

identifier so they can be referenced by their owners, to allow functions like deletion.

Subscriptions to particular tuples are based on exactly matching the values held within
the tuple against a template tuple. Wildcard values can be specified by using a Java null
value. A convention in EQUIP is that the first value in the tuple should always be a
pseudo class name for the tuple to say what type of tuple it is so, for example, different
applications can share the same dataspace and only subscribe to the type of tuples
intended for them. The EQUIP convention for a pseudo class name is a dotted
hierarchical string such as “bpj00r.meeting.Event”, although this syntax is not

enforced.

5.5.1 Events as EQUIP Tuples

Each collaboration event is represented using two tuples, which represent the two
individual state changes that make up the event. The state change representing the
beginning of the event is published as a persistent tuple, while the end of the event is
published as a non-persistent tuple event. Once an event has ended, the producer that

generated the event deletes the beginning tuple for the event. This means that events
107

persist in the dataspace for as long as they are still active, so that any late joining
consumer is able to determine the current session state. There is no need to make the
state change representing the end of the event persistent, since any consumer joining
after the event has ended will have no knowledge of the event. In this implementation
deleting events that are no longer active was preferable to making them persist for the
duration of the collaboration session, as otherwise a late joining consumer could have
potentially been swamped with inactive events when it first tried to join the session.
There may be cases where consumers may need to display a history of the session, in
which case making inactive events persistent is required, but this was not the case for

the proof of concept implementation.
Each tuple used in the implementation contained three values:

e The first value was the pseudo tuple class name string, needed for EQUIP

compliance. This was chosen to be “bpjO0r.meeting. Event”.

e The second value was a URI represented as a Java String. This URI specified
the RDF type of the event that the tuple represented, e.g. for a iButton-Signed-

In event the string was:

“http://www.ecs.soton.ac.uk/~bpj00r/ontologies/live-meeting-20040319- 1# iButton-Signed-In”

This type URI was specified both for tuples that represent the beginning of an

event and the end of an event.

e The third value in the tuple was another String that contained the full
serialisation of all the RDF triples that described the state change that the tuple
represented. This serialisation was in N-Triples [BecO1], since this was a very
simple form for producers to generate directly without the need for using any
external software libraries, as would otherwise have been the case if say full
XML serialisation syntax had been used. For example, the full serialisation of
an iButton-Signed-In event would be as follows: (note that the namespaces in

this example have been abbreviated for readability)

108

myns:signinevent? rdf:type live:iButton-Signed-In .

myns:signinevent1 support:has-time-interval myns:timeintervald .
myns:signinevent1 portal:has-location mylocs:sotonuni-B59-3241-seat1-reader1 .
mylocs:sotonuni-B59-3241-seat1-reader1 rdf:type live:iButton-Reader-Position .
myns:signinevent1 live:id-of-ibutton-used "02000009EA6FD301" .
myns:timeinterval1 rdf:type support:Time-Interval .

myns:timeinterval1 support:begins-at-time-point myns:timepoint1 .
myns:timepoint1 support:year-of "2004" .

myns:timepoint1 support:month-of “10" .

myns:timepoint1 support:day-of "26" .

myns:timepoint1 support:hour-of "21" .

myns:timepoint1 support:minute-of "6" .

myns:timepoint1 support:second-of "26" .

myns:timepoint1 meeting:millisecond-of "209" .

Explicitly stating the event type as a separate value in the tuples made it
straightforward for consumers to subscribe only to tuples that represented the types of
events they were able to handle. If this was not done, then the full serialisation of each
event would have needed to be parsed to by consumers to determine the event type.
Subscriptions therefore had the following template: the first value was always the string
“bpjO0r.meeting.Event” (as this is the EQUIP tuple type), the second value was the full
URI of the event type the subscription was for and third value was always null to act as

a wildcard that matched all RDF models.

5.5.2 Dataspace Discovery Mechanism

Equip4;j also has a useful built in mechanism to allow dataspace clients (i.e. producers
and consumers) to automatically discover specific dataspace instances. This discovery
mechanism was used in the proof of concept implementation to enable producers and

consumers to automatically join the correct dataspace for the current collaboration

session.

The discovery mechanism works by having a discovery server running at each local
network. The server sends out discovery messages to a predetermined local multicast
group and each dataspace client is pre-configured to subscribe to this group. When the
clients are required to connect to a particular dataspace, the server sends out a

discovery message every few seconds informing the clients of the dataspace URL they

109

should connect to. Similarly when the clients are required to disconnect, the server
sends out messages informing the clients of this. How this discovery mechanism is

used in this proof of concept application is discussed further in section 5.6.1.

5.6 Producers

Producers are responsible for capturing or inferring collaboration events and publishing
them to the tuple space mapped to the session. A producer typically consists of some
specialist hardware connected to a PC, or may be purely software based. Excluding the
inference engine, the implementation used three different types of producers. These
were: the Session Information Producer, the iButton Reader Producer and the

Microphone Activity Producer. These are discussed in detail in the following sections.

5.6.1 Session Information Producer

A single instance of the session information producer runs at each collaborating site.
This is a purely software-based producer whose purpose is to generate the live:Joined-
To-Session events. The producer software is atypical in that it also runs the discovery

server for the EQUIP dataspace.

The software runs as a basic command line application, which takes keyboard input
directly from the Access Grid node operator. In order to instruct the producer that the
Access Grid node has now joined the current Access Grid session (i.e. has entered the
correct virtual venue for the meeting), the operator simply types in the URL that
specifies the dataspace bound to the current session. This instructs the producer to join
the dataspace specified by the URL, generate a Joined-To-Session event, and publish it
to the dataspace as a persistent tuple. It also instructs the dataspace discovery server it
runs to start multicasting discovery messages, instructing all the other producers and

consumers at the site to join the correct dataspace for that session.

When the Access Grid session is over, the node operator instructs the producer of this
by simply entering the string ‘end’. This causes the producer to delete the original tuple
it published and to publish a further non-persistent tuple asserting an end-time on the
Joined-To-Session event; the producer then leaves the dataspace. The discovery server
then stops multicasting the discovery messages and starts multicasting messages

instructing the other producers and consumers to leave the dataspace.

110

Clearly there is scope for automating this process with tighter integration with the
Access Grid software (e.g. to automatically share the dataspace URL between sites and
determine when the Access Grid session begins and ends), but this basic system was
sufficient for the proof of concept system. It also had the advantage of being general
purpose enough to be used with other collaboration technologies, such as telephone

conferencing.

Each instance of this producer type has a very simple one off configuration, which is in
the form of a text file. This file simply specifies the multicast group for dataspace
discovery, and a URI which identifies the instance of Meeting-Room the Access Grid
node is located in. This URI is used to provide the value for the has-location property

of the Joined-To-Session event.

5.6.2 Microphone Activity Producer

The purpose of the microphone activity producer is to generate the Microphone-Active
events that occur as a result of a participant speaking in front of a microphone. An

instance of this producer runs at each collaborating site.

In terms of hardware, the producer consists of four tabletop microphones connected to
a Gentner AP400 echo cancelling digital audio mixer. The AP400 is then connected to
a PC using an RS232 link. Each microphone is positioned at a fixed seating location
around a table in the meeting room. Since the AP400 supports a maximum of four
microphones, so this limits the total number of seating locations to four also, although
as discussed in section 5.3 other hardware solutions are available that support more

microphones than this.

The producer software on the PC repeatedly polls the mixer for the gating status of the
microphones. Each time it detects that a microphone’s gating status has changed from
off to on, it creates a Microphone-Active event, with the location property set to the
Microphone-Position of the microphone that gated on. It then publishes this event to
the dataspace as a persistent tuple. When the microphone gates off, the producer then
deletes the previous tuple and publishes a non-persistent tuple asserting the end time of

the event.

111

This producer is configured using a text file, which specifies the dataspace discovery
multicast group and the four URIs that specify the Microphone-Position of each

microphone.

5.6.3 iButton Reader Producer

The purpose of the iButton reader producer is to generate the iButton-Signed-In events
that correspond to individual people signing in or signing out using their personal

1Buttons.

In terms of hardware, the producer consists of four individual iButton readers
connected to a PC. An iButton reader is installed next to the microphone at each seating

location. Similarly to the microphones, more than four iButton readers may be used if

additional hardware is installed.

The producer software on the PC repeatedly polls the readers and detects when an
1Button has been pushed into one of the readers and what the ID of the iButton is.
When such a ‘sign-in’ occurs, the producer generates an iButton-Signed-In event, with
the value of the id-of-ibutton-used property set to the iButton ID, and the has-location
property set to the URI of the iButton-Reader-Position. This event is then published to
the dataspace as a persistent tuple. The producer stores in memory the IDs of each of
the iButtons currently signed in, so that when one of the already ‘signed-in’ iButtons is
pushed into a reader again, it can determine that it is now a sign out event. When this
occurs it deletes the previous tuple from the dataspace and then publishes a non-

persistent tuple asserting the end time on the event.

This producer is configured using a text file, which specifies the dataspace discovery

multicast group and the four URIs that specify the iButton-Reader-Position of each of

the iButton readers.

5.7 Inference Engine and Triplestore

Both the inference engine and triplestore were implemented using the Jena 2.0
Semantic Web framework for Java [Jen04], developed by HP Labs. The framework

provides an extensive range of features, which include:

e RDF parsing and serialisation.

e RDFS, DAMLAOIL and OWL ontology handling.

e Support for persistent models in relational databases.

e Built in inference rules to allow automatic ontology-based entailments.

e A general purpose rule-based inference engine that supports user defined

forward and backward chaining inference rules.

Its support for persistent models, OWL language based entailments and its general
purpose rule engine are the features that made Jena 2.0 particularly suited to
implementing the inference engine and triplestore. This section will give a technical
description of these two components. To improve readability, a full description of the
inference rules and logic used in the proof of concept implementation will be omitted

from this section and discussed in chapter 6.

5.7.1 Overview of Relevant Jena Functionality

RDF graphs in Jena are called models. These act as a store for triples and may have
triples added or removed. The triplestore is implemented as a Jena persistent model,
held in a MySQL [MYS04] relational database. The particular model type used was a
Jena OntModel, which is an ontology aware model, that when queried will return
triples entailed from the ontologies, as well as triples that are explicitly part of the
model. Jena provides an RDQL (RDF Data Query Language) [RDQO3] query interface

for persistent models, which are accessed using JDBC (Java Database Connectivity).

The inference engine was implemented using the Jena general purpose rule engine,
configured to run in forward chaining mode. The inference functionality is exposed as a
model (called an InfModel) to which is bound a rule-based reasoner. Each rule consists
of a list of body terms (premises) and a list of head terms (conclusions). Each term can
be either a triple pattern or a call to an external piece of Java code called a ‘*builtin’,

which can be used to perform boolean tests or some other function.

For example, the rule given below is used to infer that if there is a Person-Present event
and a Meeting-Taking-Place in that room, then that person should be added as a
meeting participant. In addition to triple patterns, the rule also uses the builtins
‘noValue’, ‘eventNotInMeeting’ and ‘print’. The complete rule set is given in

Appendix F.

113

[addPersonToMeeting:

(?a rdf:type live:Person-Present),

(?a portal:has-location ?loc),

(?loc location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),
(?meeting rdf:type portal:Meeting-Taking-Place),
(?meeting portal:has-location ?room),
(?meeting support:has-time-interval ?time),
novValue (?time support:ends-at-time-point),
eventNotInMeeting (?a),

(?a support:has-time-interval ?pptime),
noValue (?pptime support:ends-at-time-point),
(?a portal:has-main-agent ?person),

—->

print ("addPersonToMeeting has fired"),
(?meeting portal:has-sub-event ?2a),

(?meeting portal:meeting-attendee person)

]

A specific rule fires when all the triple patterns in its body term match with triples
already in the InfModel. When the body contains any builtins, all these must also return
true before the rule will fire. When a rule fires, each of the triples defined by the triple
patterns in the head terms are added to the InfModel. If the head contains any builtins,
their Java code is run also. It is often the case that the new triples defined by a rule
firing will in turn cause further rules to fire. This cascade of rule firing continues until
no more rules can fire. Clearly care must be taken to avoid writing rules that will loop
indefinitely. If triples are added directly to the InfModel using the Jena API, this can
also trigger further rule firings. The forward chaining rule engine is implemented using

the RETE algorithm [For82], which is optimised for such incremental changes.

5.7.2 Triplestore
The purpose of the triplestore was to provide additional knowledge that can be used as
part of the inference process. It was also used by the display panel application to

resolve URIs into human readable names.

A one-off initialisation of the triplestore was performed by populating it with the
ontologies described in section 5.4, and some example instance knowledge required for
the inference process. The instance knowledge to initialise the triplestore took the form

114

of a number of hand authored triples specified using Notation-3 in a text file and some
further triples automatically obtained by directly querying the AKT triplestore. Further

details of this instance knowledge are discussed in section 6.5.

Since some of the initialisation knowledge was obtained from the AKT triplestore, it
may seem more sensible to have used that triplestore directly as the system triplestore,
and add the example instance knowledge to that triplestore. This would have been
entirely possible, but it was chosen to use a Jena persistent model since it had much
more support for generating OWL language entailments in response to queries.
Furthermore, running a private instance of a triplestore made it quick and easy to assert

and un-assert triples during development.

5.7.3 Inference Engine

The inference engine was an unusual component in that it acted simultaneously as both
a producer and a consumer. In its consumer role, it joins the Equip4j dataspace for a
collaboration session and subscribes to all the event types generated by the other
producers, i.e. Joined-To-Session, iButton-Signed-In, and Microphone-Active. As the
other producers publish tuples to the dataspace, the inference engine receives these
tuples as soon as they are published and adds the triples they contain directly to its
InfModel. Adding these triples may satisfy the conditions for the one or more rules to

fire, which may in turn assert more triples, potentially causing further rules to fire.

The producer role is achieved as follows. Whenever a rule fires that infers a new event,
in addition to the triples describing the event being added to the InfModel, they are also
published to the dataspace (just as other producers do) using a special builtin created

specifically for this purpose.

5.7.3.1 Archiving

At the end of a collaboration session, the InfModel contains a full description of all the
session events (both captured and inferred). At this point a rule fires which calls a
builtin to upload the triples to the triplestore in order to archive the session. As some of
the triples in the InfModel will have originated from the triplestore, the builtin checks
each triple to see if it is already in the triplestore. This avoids uploading duplicates.
Once all the triples have been successfully uploaded to the triplestore, the builtin clears

the InfModel so that it is ready for use when a new collaboration session begins.

115

5.7.3.2 Configuration
The bulk of the inference engine configuration consisted of the set of rules it used.
These were hand authored. In order that it could access the triplestore, it also needed to

be configured with the URL, username and password to access the MySQL database.

The inference engine did not use the EQUIP discovery mechanism used by the other
components as it is intended that each instance the inference engine should be
permanently bound to a given dataspace. Instead of using the discovery mechanism, the

dataspace URL is simply passed to the inference engine when it is first run.

5.8 Consumers

The only pure consumer application implemented was the participant display panel. An
instance of this consumer was intended to run at each site. It consisted of a single
window designed to be displayed to participants at each site using the Access Grid
projection screen. It was responsible for displaying the names of the individual sites
currently joined to the session and the names of the people currently participating at
that site. This information was updated in real-time to reflect changes in the session
state, such as participants joining or leaving. Whenever a participant spoke, their name
was highlighted in yellow to aid with speaker identification. Figure 5.7 shows a
screenshot of the participant display panel, indicating that Benjamin Juby is currently
speaking. Figure 5.8 shows a mock up of how the display panel would appear with the

video windows in a running meeting.

The participant display panel functionality was achieved by the application subscribing
to Joined-To-Session, Person-Present and Making-a-Verbal-Comment events. After
some consideration, it was decided that the best way to handle the incoming triples was
to again use another instance of the Jena generic rule engine. The alternative would
have been to use the Jena API directly, which would have proved to be somewhat
fiddly compared to using the rules engine. Unlike the inference engine, where rules
were primarily used to infer higher level knowledge about the session, here the rules
were used as a convenient way of matching on specific patterns of triples and invoking

appropriate custom builtins to render the text in the display panel.

116

Figure 5.7, The Participant Display Panel

117

£ oaricipantDisptay paned

Manchesper University
ff Tory Sman
j| SusanGbaon
| wanoren
Southampton Univarsity, ECE
| Dawd De Rours
[Dentamin Jutry
l| Mha Dovies
Jarve Maly
Cardiff University
Claka Thomas

Oxford Universiy

Xarvin Spencar
SarchHE
Tom Marey

811

Figure 5.8, The participant display panel in a running meeting

The display panel consumer had its own InfModel to which the triples were added as
they arrived in the tuples. When the addition of new triples caused the terms in a rule
body to match the triples in the InfModel, the rule fired, calling an appropriate builtin

to update the text displayed.

There were two different types of rules. The first type queried the triplestore to obtain
human readable text for resources (e.g. site names and participant names). The second

type was responsible for displaying and updating the text in the display panel.

Like the inference engine, the bulk of the display panel application configuration
consisted of the set of rules it used, and these were hand authored. In order that it may
access the triplestore, it also needed to be configured with the URL, username and
password to access the MySQL database. As it used the EQUIP discovery mechanism,

it also was provided with the dataspace discovery multicast group.

5.9 Summary

This chapter described an implementation of the semantic annotation framework
presented in chapter 4. The annotation functionality was based on the Access Grid
scenario from chapter 3, and consisted of dynamically updated attendance lists
combined with speaker identification. A novel technique was described for automated

speaker identification that used existing Access Grid hardware.

An ontology was created to represent concepts such as events, time, location and
people. A significant portion of this ontology was reused from existing ontologies,
which reduced implementation effort and promoted potential interoperability. Three
producers and a single consumer were created and these communicated by publishing
sets of RDF triples to an EQUIP dataspace. EQUIP had the advantage of being
specifically designed for supporting real-time collaboration and also had a useful

discovery mechanism.

The inference engine and triplestore were provided by Jena, and a number of rules were
created to describe the inference logic. In addition to the generic rules based inference,
Jena’s support for OWL entailments meant that some location inferences could be
performed without the need for authoring extra rules. Reuse of instance data was also

demonstrated by reusing participant name information from the AKT triplestore.
119

6 Details of the Inference Process

This chapter describes in detail the inference process used by the proof of concept
system. It starts by giving a full description of each of the rules used by the inference
engine. An explanation is then given of each Jena buitltin used as part of the inference
process. These builtins allowed Java code to be called directly from within inference
rules. Then a description is given of the bootstrapping knowledge that the inference
process required and the chapter then finishes with a step-by-step walkthrough of an

example collaboration session, showing how individual rules fire as a result of meeting

room events.

6.1 Creation of Rule Set

The process that resulted in the creation of the rule set began with mental run-throughs
of hypothetical collaboration sessions. In these run-throughs the different key
sequences in which the events could be generated by the producers at the beginning and
end of collaboration sessions were noted. After this, the inferences that could be made

from these states were noted too.

This resulted in a set of logic which highlighted a number of key session states and the
inferences that could be made from these. This logic was then used to help determine

the rule set required, with the rules being one possible formal definition of this logic.

When creating the rules, the key design decision that had to be made was to either use a
relatively small number of complex rules or to use a larger number of simpler rules. In
the former case, there would be more tests in the rule bodies and more triples would be
asserted by each rule, whereas in the latter case the rules would have fewer tests and
would assert fewer triples, instead using cascading firing of rules where possible to

make complex assertions.

Here the decision was to use multiple short rules where possible, as otherwise it would
have resulted in some functionality being replicated between rules. Hence by avoiding
this replication of functionality using multiple simpler rules made the rule set shorter

(in terms of lines of code) and easier to modify during development, as changes to

120

functionality could often be achieved by modifying a single rule, rather than multiple

ones.

6.2 Classification of Rule Types

Overall there were three distinct types of rules used by the inference engine:

e The first type of rule are those whose head action is to query the triplestore for
further triples and add these triples to the InfModel (see section 5.7.1), which
may in turn allow further rules to fire. A new builtin was created for querying
the triplestore in this way. An example of when such a rule may be used is when
details of a new iButton are added to the InfModel as the result of an iButton-
Signed-In event and the triplestore must be queried to determine who the

iButton belongs to before further rules may fire.

e The second, and most common type of rule, are those which infer new triples
from those triples already in the InfModel. An example of this type of rule is
one that infers a Person-Present event from an iButton-Signed-In event and the

iButton ownership information obtained from the triplestore.

e The third and final type only occurs once, and that is to archive to the triplestore

at the end of a session.

As has already been mentioned, builtins were used as not all the inference engine
functions could be achieved purely by using triple patterns in rules. In this

implementation, the builtins were used for two key purposes:

e Performing logic tests in rule bodies that could not be expressed as simple triple
patterns.
e Carrying out actions that rules alone could not perform (e.g. publishing inferred

triples to the EQUIP dataspace and querying and uploading to the triplestore).

6.3 Inference Rules

This section gives a full description of each of the twenty inference rules used by the

system, arranged using the classifications from the previous section. Each rule is named

121

in bold, with the description following its name. The full text listing of the rules, as
passed to the Jena rule parser are given in Appendix F. Each rule has been numbered in
brackets and this corresponds to the numbering of the rules given in the appendix,

enabling the reader to easily locate the listings for specific rules.

6.3.1 Rules That Query The Triplestore

Get Locations On Sign In (1)

This rule queries the triplestore the first time there is an iButton-Signed-In event at a
particular iButton reader. This is done to determine the Seating-Position and Meeting-
Room in which the iButton reader is located. Since is-located-in was declared to be a
transitive property, a single query to the triplestore returns both the Seating-Position
and Meeting-Room. This information is added to the reasoner’s knowledgebase and is
used in future inferences to, for example, determine the Seating-Position of a Person-

Present event and to infer when participants are in the same Meeting-Room.

Get Locations On Microphone Active (2)

This rule is similar to ‘Get Locations On Sign In’ and queries the triplestore the first
time there is a Microphone-Active event at a particular microphone. This is done to
determine the Seating-Position and Meeting-Room in which the microphone is located.
This information is used when Making-a-Verbal-Comment events are inferred to
determine who made to comment (by using knowledge about which participant is in
that Seating-Location) and to specify the Meeting-Room in which the verbal comment

was made.

iButton ID To URI (3)
The purpose of this rule is to query the triplestore when there is an iButton-Signed-In

event to resolve the ID of the iButton used to a URI that represents the specific iButton.

iButton To Person (4)

This rule fires after ‘iButton ID To URI’ has fired and queries the triplestore again to

determine the person that specific iButton belongs to.

6.3.2 Rules That Assert New Triples

Create Person Present (5)

When there has been an iButton-Signed-In event and the relevant rules for querying the
triplestore have fired, this rule then fires and is responsible for inferring a Person-
Present event. It does this by mapping the iButton ID to the person who owns it and
creating a Person-Present event for that person. As Person-Present events are one of the
event types that the display panel application subscribes to, the rule also publishes the

new inferred event to the EQUIP dataspace.

Create Single Meeting In One Room (6)
This rule fires when there are no other meetings in progress and a total of two Person-
Present events in a single Meeting-Room. Given that there are two people in the

Meeting-Room, it infers that there is a Meeting-Taking-Place in that Meeting-Room.

Create Meetings In Two Rooms (7)

If there are no other meetings in progress and there are a total of two Person-Present
events, but in different Meeting-Rooms, then a Meeting-Taking-Place must be created
for both Meeting-Rooms. This rule is responsible for inferring this. From the scope of
the dataspace, it is implicit that both the participants are part of the same collaboration
session and although there is only one participant present at each site, they are in a
meeting with each other. Hence meetings are created even though there is only one

participant at each Meeting-Room.

Add Person To Meeting (8)

This rule fires when there is a Meeting-Taking-Place at a specific Meeting-Room and
there is a Person-Present event at that room that is not currently part of the meeting.
This can either be due to the meeting being created after the Person-Present event (e.g.
when Create Single Meeting In One Room fires) or when a person joins a meeting that
is already in progress. This rule adds the Person-Present event to the Meeting-Taking-

Place as a sub-event and also adds the person as a meeting-attendee.

Create Distributed Gathering (9)
This rule fires once there are two instances of Meeting-Taking-Place events. It infers

that a Distributed-Gathering should be created now there are two meetings in session

123

and that both those meetings should be added to the Distributed-Gathering as local
events. Note that there can only ever be one Meeting-Taking-Place at a given Meeting-
Room and that from the scope of the dataspace, it is implicit that both the meetings are

part of the same collaboration session, hence the inference of a Distributed-Gathering is

a valid one.

Create Additional Meeting (10)

Once at least one meeting is in progress, this rule fires to create a further new Meeting-
Taking-Place whenever the first participant signs in at a new site. In a similar way to
‘Create Meetings In Two Rooms’, this rule infers a meeting at the new site even though
there is only a single participant at that site, since this rule only ever fires after there is
at least one other Meeting-Taking-Place. Note that this rule will only ever fire after an
initial meeting or meetings have been created by either ‘Create Single Meeting In One

Room’ or ‘Create Meetings In Two Rooms’.

Add Meeting To Distributed Gathering (11)
When there is a Distributed-Gathering in session and a new Meeting-Taking-Place is
created, this rule fires and adds the Meeting-Taking-Place to the Distributed-Gathering

by asserting that it is a local event of the Distributed-Gathering.

Handle Sign Out (12)

When somebody signs out of a meeting using their iButton, this rule is responsible for
asserting an end time on the Person-Present event that represented the person being
present at the meeting. This shows that the person is no longer present at the meeting.
As the display panel application subscribes to Person-Present events, this rule also

publishes the end time to the dataspace.

End Meeting During Distributed Gathering (13)

This rule fires when there is a Distributed-Gathering in session and all the people have
signed out of a meeting at a particular site. Since there are no more participants at that
particular meeting, this rule asserts an end time on that Meeting-Taking-Place to

indicate that it has now finished.

124

End Distributed Gathering (14)
This rule fires when all but one of the meetings in a Distributed-Gathering have ended.
Since there is only one meeting still in session, the Distributed-Gathering must have

ended, so this rule asserts an end time on the Distributed-Gathering to indicate this.

End Meeting After Distributed Gathering (15)

Since one meeting will still be in session (i.e. the last site with people still signed in)
after a Distributed-Gathering has ended, this rule is responsible for ending this last
meeting by asserting an end time on the Meeting-Taking-Place once enough people
have signed out. Unlike ‘End Meeting During Distributed Gathering’, which ended the
meeting once it had zero participants, this rule ends a meeting once it has one
participant left. This is because as there are no other meetings in session (and hence

participants) to collaborate with, so the final meeting must be over once it is down to its

last participant.

End Meeting Before Distributed Gathering (16)

This rule handles the unusual case where a collaboration session has just a single
meeting (i.e. at just one site) and a Distributed-Gathering has not yet formed (and may
never form if other sites do not join) and then enough participants sign out of this
meeting for it to end. Like ‘End Meeting After Distributed Gathering’, this rule will
end this single meeting once it has just one participant left and it does this by asserting
an end time on the Meeting-Taking-Place. Note that the only reason this rule is separate
to ‘End Meeting After Distributed Gathering’ is that it is not possible in a single rule to
specify the logic required (at least not without creating a specific builtin) to match on
the distinct cases of either there being no Distributed-Gathering whatsoever, or there
being a Distributed-Gathering, but that has now ended. This is why two rules were

required to perform such similar tasks.

Create Verbal Comment In Meeting (17)

This rule is responsible for inferring a Making-a-Verbal-Comment event from
Microphone-Active and Person-Present events. It does this by matching on the Person-
Present event that is-located-in the same Seating-Position that the Microphone-Position
is-located-in. It then matches on the has-main-agent property of the Person-Present
event to determine who made the verbal comment. When this rule asserts a new

Making-a-Verbal-Comment event, it also adds the event as a sub-event of the meeting
125

the participant is in. As the display panel application subscribes to Making-a-Verbal-

Comment events, this rule also publishes the new inferred event to the dataspace.

Create Verbal Comment Outside Meeting (18)

This rule is identical to ‘Create Verbal Comment In Meeting’, except that it only fires
when a verbal comment is made when there is a Person-Present, but no Meeting-
Taking-Place, and hence a Making-a-Verbal-Comment event is inferred, but is not
specified as a sub-event of any meeting. There are only two scenarios where there can
be a Person-Present event and no meeting. These are when the person is the very first to
sign into a session or is the very last to sign out of a session. In both these scenarios,
there will only be one participant present in the entire collaboration session, so it could
be argued that there is no need to infer verbal comments in this situation as there is
nobody else for the participant to speak to. While this is certainly true, the author feels
that recording verbal comments in this situation is still potentially useful. For example,
if the audio and video from a session were also being recorded, then a lone participant
may wish to make a comment purely for the recording to perhaps serve as an

introduction or a wrap up. In this situation having these comments annotated would

clearly be useful.

Handle Microphone Active End (19)

The purpose of this rule is to assert an end time on a Making-a-Verbal-Comment event
once the underlying Microphone-Active event from which it was inferred has ended.
This shows that the verbal comment has finished being made. As the display panel
application subscribes to Making-a-Verbal-Comment events, this rule also publishes

the end time to the dataspace.

6.3.3 Rule To Archive The Session

Archive Session (20)

The purpose of this rule is to archive a collaboration session to the external triplestore
once the session has ended. This rule determines a session is over once the very last
participant signs out of the session. When this rule fires it calls a builtin which uploads
the entire contents of the reasoner’s knowledgebase to the triplestore and also clears the

knowledgebase of triples, so it is ready for the next session.

126

6.4 Jena Builtins

The majority of the functionality of the Inference Engine was achieved through rules
that had triple patterns in the rule bodies and asserted new triples in the rule heads.
Unfortunately, not all the functionality described in the section 6.3 could be achieved
purely by matching triple patterns in rule bodies and asserting new triples based on
these patterns in rule heads. Fortunately Jena allows Java code to be called directly
from within rules using builtins (see section 5.7.3 for more details). A number of
builtins were created by the author to achieve specialist functions, and these were used
along with a number of standard builtins that already came with the Jena distribution.

These builtins are described here.

6.4.1 Standard Jena Builtins

This section describes how the standard predefined builtins that came as part of the

Jena distribution were used.

noValue

This builtin takes two arguments: x and p, and returns true if there is no known triple
(X, p, *) in the reasoner’s knowledge base (where * represents a wildcard). It is used in

anumber of ways in this proof of concept application.

Firstly, it is used as a check before querying the triplestore to ensure that it has not

already been queried for the same information, thus eliminating redundant queries.

Secondly, it is used to tell if an end time is asserted on an event. This is used to

determine if an event is still active or not.

Thirdly, it is used as a way to prevent some rules firing twice because it can check if
triples are present that have been asserted when the rule fired. This is needed because
some rules such as ‘Create Meetings In Two Rooms’ that match on two events of the

same type can fire on the same set of data twice, with the events in a different order.

127

notEqual

This builtin takes two resources as an argument and returns true when those resources
are not equal. This is used in the rules that match on two different events of the same

type to ensure that the rule does not just match on a single event twice.

print
The print builtin simply prints out text to the standard output. This text can either be the
URI of a resource, a literal or any other string defined by the user. This proved to be

extremely useful for debugging. The final set of the rules uses this builtin in each rule

to show when each rule has fired by displaying an appropriate message.

6.4.2 New Builtins

This section describes the new builtins created by the author and how they were used.
The discussion is partitioned into two sub-sections that handle respectively the builtins

that performed logic tests and those builtins that performed other kinds of actions.

6.4.2.1 Logic Tests

noValue3

This builtin was identical to the Jena predefined noValue builtin, except that it took
three, rather than two arguments. This meant that it could match on all three values of a
triple, rather than just the subject and predicate. This was used to determine if a
Distributed-Gathering had already formed, by checking if there were any resources of
type Distributed-Gathering. Note that at the time of writing, the current version of Jena

(version 2.1) now supports this with the standard noValue builtin.

noMeetingAtPhysLoc

This builtin takes the URI of a room location and returns true only if there is not
currently a meeting in session at that location. What is meant by there being no meeting
in session is that, within scope of current collaboration session, there has never been a
meeting or there has been one but it has now ended. This is, for example, used in the

rules that infer new meetings to check that there is not already a meeting in the room

where they are about to infer a new meeting.

128

eventNotInMeeting

This builtin takes the URI of any event that can be a sub-event of a meeting and returns
true only if that event is not currently a sub-event of any meeting (i.e. is not part of a
meeting). This builtin is used in all rules that make inferences from Person-Present
events (such as those that infer new meetings) and it ensures that rules only fire on
Person-Present events that are not already sub-events of a meeting, since we would not

wish to infer a new meeting from Person-Present events that are already sub-events of

existing meetings.

eventNotInDistGath

This builtin takes the URI of any event that can be a local-event of a Distributed-
Gathering and returns true if that event is not currently a local-event of any Distributed-
Gathering. This builtin is used in ‘Add Meeting To Distributed Gathering’ to determine

when a meeting is not currently part of a Distributed-Gathering.

participantsPresent

This builtin is used to determine if the number of participants present at a specific
meeting is above or below some specified threshold. It takes three arguments, the first
it the URI of the Meeting-Taking-Place to be tested, the second is the test to be
performed, which is either "<=" (less than or equal to) or ">" (greater than), and the
third is a number, which specifies the participant threshold. For example, the following
call will return true only when the number of participants present in the meeting

specified by ?meeting is less than or equal to one:
participantsPresent (?meeting, "<=","1")

This builtin is used in the rules for ending meetings to determine when the number of

participants in the meeting has reached the threshold for ending the meeting.

onlyOneMeetingInSession
This builtin takes no arguments and returns true only when there is currently one
meeting in progress. This is used in the ‘End Distributed Gathering’ rule as part of the

logic for determining when a Distributed-Gathering should be ended.

129

eventHasMostRecentEnd Time

This builtin is used to determine if a particular event that has ended has the most recent
end time out of a specified set of events. It takes a variable number of arguments. The
first argument is the URI of a Time-Point to be tested, the second argument specifies
the event type, which can be used to specify a Person-Present event or a Meeting-
Taking-Place event. The third argument is only used when the event type is Person-
Present and specifies a room location, which limits set of events to be tested. In this
case, the builtin will only return true when there are no Person-Present events at that
room with a more recent end time. When the event type is Meeting-Taking-Place, the
builtin returns true when there are no Meeting-Taking-Place events in the reasoner’s
knowledgebase that have a more recent end time than the time being tested

(irrespective of location).

When invoked for a Person-Present event, this builtin is used in all the rules that end
meetings. Once the number of participants has reached the required threshold for the
meeting to end (as tested by the participantsPresent builtin), then the
eventHasMostRecentEndTime builtin is used to ensure that the rule matches on the
most recent Participant-Present event to have ended, as it is the end time of this event

that is taken as the end time for the meeting.

When invoked for a Meeting-Taking-Place event, this builtin is used in the rule ‘End
Distributed Gathering’, and it ensures that the rule matches on the most recent meeting

to have ended, as it is this end time that is taken as the end time for the Distributed-

Gathering.

6.4.2.2 Actions

queryTriplestore

This builtin allows the external triplestore to be queried from within rules. It takes three
arguments which specify a triple pattern. In the triple pattern, one or two of the
arguments will be variables and the rest are resources or literals. The variables are
treated like wildcards and it queries the triplestore for all triples that match the triple
pattern. The triples returned by the query are added directly to the reasoner’s

knowledge base.

130

makeResource

The makeResource builtin takes a single variable as an argument, to which it binds an
automatically generated unique URI. This is used whenever a new event is inferred,

with the automatically generated URI used to represent the new resource.

publishToDataspace

The publishToDataspace builtin is used to publish inferred triples to the EQUIP
dataspace as tuples or tuple events. It is a rather complex builtin that takes a variable
number of arguments and is stateful between calls. It is called multiple times in a rule
head to build up a tuple or tuple event before publishing it to the dataspace. Although it
takes a variable number of arguments, the first argument is always a literal string,

which specifies the type of operation to be performed.

The first call is always used to specify whether a tuple or tuple event is required. This
operation type is specified by the string "TUPLE_TYPE" and the valid types are
"TUPLE" (for the beginning of a meeting event) or "TUPLE_EVENT" (for the end of a

meeting event). For example the following call specifies a tuple:
publishToDataspace ("TUPLE_TYPE", "TUPLE")

The second call is used to specify the RDF type of the event that the tuple or tuple
event represents (this is done to enable consumers to subscribe to the tuples or tuple
events). For example, the following call specifies that the tuple contains a Person-

Present event:
publishToDataspace ("EVENT _TYPE", live:Person-Present)

The next calls are then used to add the triples that represent the meeting event to the
tuple or tuple event. For example, the following two calls specify that the resource

bound to ?pp_event has an RDF type of Person-Present and a location of the

resource bound to ?location.

publishToDataspace ("ADD_TRIPLE", ?pp_event, rdf:type, live:Person-

Present)

131

publishToDataspace ("ADD_TRIPLE", ?pp_event, portal:has-location,

?location)

Finally, once the tuple or tuple event has been created through successive calls to the

builtin, it is published with the following call:
publishToDataspace ("PUBLISH")

Additionally, if the builtin has just been used to publish the end of a meeting event, the
associated tuple that specifies the beginning of the event needs to be deleted. This is
achieved by calling publishToDataspace with "DELETE" as the first argument and the
URI of the event as the second argument. For example the following call will delete the

tuple that that represented the beginning of the Person-Present event that is bound to

?pp_event.
publishToDataspace ("DELETE", ?pp_event)

getMostRecentTimePoint

This builtin takes three arguments. The first two are URIs of instances of support:Time-
Point and the third is a variable to which the most recent of the two time points is
bound. This buitltin is used in rules such as ‘Create Distributed Gathering’, where two
events are used to infer an instance of a new single event (e.g. the presence of two
meetings is used to infer that a single Distributed-Gathering is happening). In such a
case then the new inferred event (e.g. Distributed-Gathering) needs to be given a time
point which specifies when the event begun, and this time point should be the time
point from the most recently created event from which it was inferred. E.g. a
Distributed-Gathering starts as soon as the second meeting (i.e. most recent) is created,

so should therefore take the beginning time point from that meeting, and not the earlier

first meeting.

archiveSession

This builtin takes no arguments and when called uploads the entire contents of the
reasoner’s knowledgebase to the triplestore and also clears the knowledgebase of
triples, so that it is ready for the next session. When uploading the triples, it checks

each triple to see if the triplestore already contains that triple, since some of the triples

132

in the knowledgebase will have originally come from the triplestore. This ensures that

duplicate triples are not added to the triplestore.

6.5 Bootstrapping Knowledge

In addition to the inference rules, the system also required some explicit
‘bootstrapping” knowledge to seed the inference process. This described the specific set
of instances (e.g. people, meeting rooms etc.) that the system had knowledge of. All
this knowledge was hand authored, apart from the human readable names for
participants, which were automatically extracted from the CS AKTiveSpace triplestore.
This bootstrapping knowledge was held in the triplestore component of the system and

consisted of the following types of information:

e Information to map an iButton ID on to a specific person. For example, triples
that specify the iButton that belongs to Benjamin Juby are shown below in

Notation-3.

ecsinfo:person-03435 live:has-personail-identifier myibuttons:bpjOO0r .
myibuttons:bpjo0r rdf:type live:iButton .
myibuttons:bpj00r live:has-ibutton-id "02000009EA6FD301" .

e Human readable names for participants, which were used in the display panel

application. For example:
ecsinfo:person-03435 portal:full-name "Benjamin Juby" .

o Information about each Meeting-Room, specifying that the resource is of RDF
type Meeting-Room and a human readable collaboration site name for use by
the display panel application. For example, the following triples represent this
information about the Southampton University, Electronics and Computer

Science Access Grid room:

mylocs:sotonuni-B59-3241 rdf:type location:Meeting-Room .
mylocs:sotonuni-B59-3241 live:has-collaboration-site-name "Southampton ECS" .

|8

e Information about each Seating-Position in each Meeting-Room, specifying its

RDF type and which Meeting-Room it is located in. For example:

mylocs:sotonuni-B59-3241-seat1 rdf:type live:Seating-Position .
mylocs:sotonuni-B59-3241-seat1 location:is-located-in mylocs:sotonuni-B59-3241 .

e Information about each iButton-Reader-Position, specifying its RDF type and

which Seating-Position it is located in. For example:

mylocs:sotonuni-B59-3241-seat1-reader1 rdf:type live:iButton-Reader-Position .
mylocs:sotonuni-B59-3241-seat1-reader1 location:is-located-in mylocs:sotonuni-B59-3241-seatl .

e Information about each Microphone-Position, specifying its RDF type and

which Seating-Position it is located in. For example:

mylocs:sotonuni-B59-3241-seat1-mic1 rdf:type live:Microphone-Position .
mylocs:sotonuni-B59-3241-seat1-mic1 location:is-located-in mylocs:sotonuni-B59-3241-seatl .

6.6 Walkthrough of an Example Meeting

To demonstrate the inference process in action, this section gives a step-by-step
walkthrough of a simple example fictional collaboration session. The example features
three sites called A, B and C. Table 6.1 shows the events that occur in the session and
the rules that fire as a consequence of those events. Table 6.2 then gives some actual
examples of the triples that are generated at certain points in the meeting. A full
description of the processes taking place is given in section 6.6.1 after the tables. In

order to be understood, the tables first require some explanation.

Time is represented vertically on table 6.1, with time progressing down the page. Each
basic (i.e. non-inferred) meeting room event is represented by an individual row in
table 6.1. Note that the time interval between rows need not be equal. The room
location of each event is indicated by which column it is in. The rightmost column then
shows which inference rules fire, and in what order, as a result of the event. The

following events are represented in the table 6.1:

e join — This represents the beginning of a Joined-To-Session event.

e leave — This represents the end of a Joined-To-Session event.
134

in — This represents the beginning of an iButton-Signed-In event (i.e. the act of

signing in). The number after the event shows the number of the seating

position at which the sign-in occurred.

out — This represents the end of an iButton-Signed-In event (i.e. the act of

signing out). The number after the event shows the number of the seating

position at which the sign-out occurred.

on — This represents the beginning of a Microphone-Active event. The number

after the event shows the number of the seating position at which the

microphone is located.

off — This represents the end of a Microphone-Active event. The number after

the event shows the number of the seating position at which the microphone is

located.

Any event or rule firing shown in table 6.1 written in bold, with a following number

in superscript, has a corresponding numbered section in table 6.2. Each of these
numbered sections in table 6.2 gives an example of the actual triples that are

generated as a result of that event occurring or rule firing. Please note that this

numbering has no relation to the numbering assigned to the individual rules when

they were described in section 6.3.

Time

!

Site A

Site B

Site C

Firing Rules

join

join

join

in 1

Get Locations On Sign In
iButton ID To URI
iButton To Person

Create Person Present

in 2!

Get Locations On Sign In”

iButton ID To URI’

iButton To Person’

Create Person Present’

6

Create Single Meeting In One Room
Add Person To Meeting’

135

Add Person To Meeting

mnl

Get Locations On Sign In
iButton ID To URI

1Button To Person

Create Person Present

Create Additional Meeting

Add Person To Meeting

Create Distributed Gathering®

n?2

Get Locations On Sign In
iButton ID To URI
1Button To Person

Create Person Present

Add Person To Meeting

inl

Get Locations On Sign In

1Button ID To URI

iButton To Person

Create Person Present

Create Additional Meeting

Add Person To Meeting

Add Meeting To Distributed Gathering

on 2

Get Locations On Microphone Active

Create Verbal Comment In Meeting

off 2

Handle Microphone Active End

on 2

Create Verbal Comment In Meeting

off 2

Handle Microphone Active End

out 1

Handle Sign Out

out 1

Handle Sign Out

out 1

Handle Sign Out
End Meeting During Distributed Gathering

out 2

Handle Sign Out

End Meeting During Distributed Gathering
End Distributed Gathering

End Meeting After Distributed Gathering

out 2’

Handle Sign Out'®

136

Archive Session

leave

leave

leave

Table 6.1, A timeline of an example collaboration session showing rule firings.

1. Triples added by the ‘in2’ event

myns:signinevent1 rdf:type live:iButton-Signed-In .

myns:signinevent! support:has-time-interval myns:timeintervall .
myns:signineventi portal:has-location mylocs:sotonuni-B59-3241-seat1-readert .
mylocs:sotonuni-B59-3241-seat1-readeri rdf:type live:iButton-Reader-Position .
myns:signinevent1 live:id-of-ibutton-used "02000009EAGFD301" .
myns:timeintervall rdf:type support: Time-Interval .

myns:timeintervall support:begins-at-time-point myns:timepoint1 .
myns:timepoint1 support:year-of "2004" .

myns:timepoint1 support:month-of "10" .

myns:timepoint1 support:day-of "26" .

myns:timepoint1 support:hour-of "21" .

myns:timepoint1 support:minute-of "6" .

myns:timepoint1 support:second-of "26" .

myns:timepoint1 meeting:millisecond-of "209" .

2. Triples added by the ‘Get Locations On Sign In’ rule firing

mylocs:sotonuni-B59-3241-seat1-reader1 location:is-located-in mylocs:sotonuni-B59-3241-seat1 .

mylocs:sotonuni-B59-3241-seat1 location:is-located-in mylocs:sotonuni-B59-3241 .

3. Triples added by the ‘iButton ID To URI’ rule firing

myibuttons:bpj00r live:has-ibutton-id "02000009EABFD301" .

4. Triples added by the ‘iButton To Person’ rule firing

ecsinfo:person-03435 live:has-personal-identifier myibuttons:bpjoOr .

5. Triples added by the ‘Create Person Present’ rule firing

mynamespace:ppevent! rdf:type live:Person-Present .
mynamespace:ppevent1 portal:has-location mylocations:sotonuni-B59-3241-seat1-reader? .

mynamespace:ppevent1 support:has-time-interval mynamespace:timeinterval2 .
mynamespace:timeinterval2 rdf:type support: Time-Interval .
mynamespace:timeinterval2 support:begins-at-time-point mynamespace:timepoint1 .

mynamespace:ppevent! portal:has-main-agent ecsinfo:person-03435 .

6. Triples added by the ‘Create Single Meeting In One Room’ rule firing

mynamespace:meeting1 rdf:type portal:Meeting-Taking-Place .

mynamespace:meeting1 support:has-time-interval mynamespace:timeinterval3 .

137

mynamespace:timeinterval3 rdf:type support:Time-Interval .
mynamespace:timeinterval3 support:begins-at-time-point mynamespace:timepointi .

mynamespace:meeting1 portal:has-location mylocations:sotonuni-B59-3241 .

7. Triples added by the ‘Add Person To Meeting’ rule firing

mynamespace:meeting? portal:has-sub-event mynamespace:ppeventi .

mynamespace:meeting? portal:meeting-attendee ecsinfo:person-03435 .

8. Triples added by the ‘Create Distributed Gathering’ rule firing

mynamespace:distgath1 rdf:type meeting:Distributed-Gathering .
mynamespace:distgath1 support:has-time-interval mynamespace:timeinterval4 .
mynamespace:timeinterval4 rdf:type support:Time-Interval .
mynamespace:timeintervald support:begins-at-time-point mynamespace:timepoint2 .
mynamespace:distgath1 meeting:has-local-event mynamespace:meetingi .

mynamespace:distgath1 meeting:has-local-event mynamespace:meetingt .
9. Triples added by the ‘out 2’ event

mynamespace:signinevent1 support:ends-at-time-point mynamespace:timepoint3 .

mynamespace:timepoint3 support:year-of "2004" .
mynamespace:timepoint3 support:month-of “10" .
mynamespace:timepoint3 support:day-of "26" .
mynamespace:timepoint3 support:hour-of "21" .
mynamespace:timepoint3 support:minute-of "47" .
mynamespace:timepoint3 support:second-of "32" .

mynamespace:timepoint3 meeting:millisecond-of "77" .

10. Triples added by the ‘Handle Sign Out’ rule firing

mynamespace:timeinterval2 support:ends-at-time-point mynamespace:timepoint3

Table 6.2, Examples of triples generated at specific points in the meeting.

6.6.1 Full Description of the Processes Taking Place

The session starts by each site asserting a Joined-To-Session begin event. This does not
trigger any rules, but does enable the display panel application to show that sites are

joined to the collaboration session, even if there are no participants present yet.

The first sign-in is at site A, and this triggers ‘Get Locations On Sign In” which queries
the triplestore for the Seating-Position and Meeting-Room that the iButton-Reader-
Position is located in. This information is used in future inferences. ‘iButton ID To
URI also fires and this queries the triplestore, to resolve the iButton ID to the iButton
it belongs to. The presence of this new iButton in the knowledgebase then triggers
‘iButton To Person’ which queries the triplestore for the person who owns that iButton.

After this query, the presence of this new person then triggers ‘Create Person Present’,
138

which asserts a Person-Present event. This pattern of rule firings occurs whenever a

person signs-in.

The second sign-in is at site A also, and after the standard sign-in rule firings, ‘Create
Single Meeting In One Room’ then fires as a result of there being two Person-Present
events in the same Meeting-Room (the location information asserted by ‘Get Locations
On Sign In’ contributed to this inference). This rule asserts a Meeting-Taking-Place at
site A. As both Person-Present events at site A are not yet sub-events of the Meeting-

Taking-Place, ‘Add Person To Meeting’ fires twice to add both Person-Present events

to the meeting.

The next sign-in is at site B, and after the standard sign-in rule firings, ‘Create
Additional Meeting’ fires to create a new meeting at site B and then ‘Add Person To
Meeting’ fires to add the person at site B to the newly created meeting. As there are
now two meetings, ‘Create Distributed Gathering’ fires to create a Distributed-

Gathering containing those meetings.

The next sign-in is at site B also, and after the standard sign-in rule firings, ‘Add
Person To Meeting’ fires to add the new person to the meeting already taking place at

site B.

The next sign in is at site C, and after the standard sign-in rule firings, ‘Create
Additional Meeting’ fires to create a new meeting at site C, then ‘Add Person To
Meeting’ adds that person to the new meeting. ‘Add Meeting To Distributed Gathering’
then fires to add the newly created meeting to the Distributed-Gathering that is already

taking place between site A and site B.

There is then a Microphone-Active begin event at seating position #2 at site A. As this
is the first Microphone-Active event at that particular microphone, ‘Get Locations On
Microphone Active’ fires which queries the triplestore for the Seating-Position and
Meeting-Room that the Microphone-Position is located in. ‘Create Verbal Comment In
Meeting’ then fires, which infers from the location information asserted by ‘Get
Locations On Microphone Active” and ‘Get Locations On Sign In’ that the person

sitting at seating position #2 has started Making-a-Verbal-Comment.

139

The Microphone-Active event then ends, causing ‘Handle Microphone Active End’ to
fire. The sole purpose of this rule is to publish the end time on the Making-a-Verbal-

Comment to the dataspace for the benefit of consumers.

There is then another Microphone-Active begin event at seating position #2, and as this
event has occurred at that position before, ‘Get Locations On Microphone Active’ does
not fire, as the triplestore has already been queried for the Seating-Position that the

Microphone-Position is located in.

The first sign-out event is at site A, and this simply causes ‘Handle Sign Out’, which
asserts an end time on the associated Person-Present event. The same happens for the

next sign out at site B.

There is then another sign-out at site C, which causes ‘Handle Sign Out’ to fire. As
there are no longer any participants in the meeting at site C, ‘End Meeting During

Distributed Gathering’ fires to end this meeting.

The next sign-out is at site B, which causes ‘Handle Sign Out’ to fire. As there are no
longer any participants in the meeting at site B, ‘End Meeting During Distributed
Gathering’ fires to end this meeting. Furthermore as there is now only a single meeting
at site A, ‘End Distributed Gathering’ fires to end the Distributed-Gathering. Since
there is no longer a Distributed-Gathering in session, the criteria for ending a meeting
now is that it should be ended once there is only one participant left (compared to zero
participants left when there is a distributed gathering). As the meeting at site A has only

one participant left, ‘End Meeting After Distributed Gathering’ fires to end this final

meeting.

The final sign-out is at site A, which causes ‘Handle Sign Out’ to fire. Since there are

now no participants in the session, ‘Archive Session’ fires.

6.7 Summary

This chapter has provided a detailed description of the rules used by the inference
engine in the proof of concept implementation of the framework from chapter 4. The
most common rule type were those that inferred new triples from those already

asserted, but rules were also required to query and upload to the triplestore. The
140

implemented Jena builtins were also discussed, as these were required to carry out
functions that pure rules were not capable of. These functions fell into the categories of
either logic tests or actions such as querying the triplestore or publishing to the

dataspace.

There now remains two more chapters; the next chapter provides a discussion based
evaluation of the framework and implementation and the final chapter presents the

overall conclusions for the thesis.

141

7 Evaluation

This chapter presents a discussion-based qualitative analysis of the system framework
and implementation. It starts with a discussion on the performance and then presents an
evaluation of the system. The performance discussion helps justify the building of the
prototype system as it uncovers some real-time performance features that could not be
accurately predicted without implementing a real system. The evaluation then focuses
on the semantic features, as this is where the majority of the novel work has been. The
criteria used to evaluate the systems in the literature review, will also be applied here.

The tools and technologies used to perform the implementation are also evaluated.

It was decided not to perform a user-based evaluation of the system, as this would have
mainly evaluated the functionality that was passed on to session participants. While
such an evaluation would be useful for evaluating the human factors, the key
contributions of the implementation were infrastructure based. The system
demonstrated a general purpose architecture that was capable of using inference in real-
rime to combine facts obtained from multiple sources of knowledge as would be found

in the Semantic Web. This key contribution would not have been evaluated by a user

trial.

7.1 Performance

The speed performance of the implemented system was examined on a qualitative
level. Initially the system was found to be extremely slow. Specifically, responses to
queries to the triplestore (i.e. the Jena persistent model) were found to take in the order
of a minute. Clearly this would not have been practical for a system intended to
respond in near real-time. The reason for the slow response time was found to be due to
the ontology level entailments being computed by the persistent model on-the-fly at

query time.

These entailments were the transitive closure of rdf:type and also the properties
declared as owl:TransitiveProperty. The transitive closure of rdf:type meant that for

each query for the type of a class, the Jena model would not only return the type

142

explicitly declared in the ontology, but would also work out all the other superclasses

the class was implicitly an instance of.

The transitive property declaration on the location:is-located-in property meant that
every time the persistent model was queried to find out which instance of
location:Abstract-Space another instance of Abstract-Space was located in, it would

also compute and return all the other instances of Abstract-Space higher up the location

hierarchy too.

Both these types of entailments could potentially be useful, although in the
implemented system, only the owl: TransitiveProperty entailments were harnessed, as
these reduced the amount of location information that had to be explicitly added to the
triplestore and also resulted in fewer queries to the triplestore. The rdf:type entailments
could have been used to allow more generic rules to have been written that would
match on instances of classes of several different types (providing they shared a
common superclass), for example allowing rules to fire on any instance of

location:Room, rather than the more specific location:Meeting-Room.

In order to speed up the query response time, the system persistent model was modified
to not work out any entailments at query time, but instead to pre-compute the transitive
property entailments when the triplestore was initialised. This was achieved by making
a query for all triples that had an location:is-located-in property. This query returned all
the entailed triples as well as the explicitly specified ones. These returned triples were

then placed back into the triplestore.

After this single modification, the performance of the system improved dramatically. In
terms of human perception, queries to the triplestore were performed near
instantaneously and the display panel application performed without any perceivable
lag, meaning that the rule-based inferences were being performed in near real-time, as

was originally intended.

7.2 Semantic Aspects

The system shall be evaluated against the criteria taken directly from the motivational

discussion in chapter 3. These criteria are inference, interoperability, reuse,

143

extensibility and indexing, since these are arguably the key value-added features the

semantic approach provides over non-semantic approaches.

7.2.1 Inference

Clearly inference was a central feature of the system. It was demonstrated on two
different levels, namely generic rules based inference and language based entailments.
The approach was able to combine knowledge from multiple sources and then assert
facts that were otherwise only implicit from the input provided by the producers and
the triplestore. Some of these asserted facts were then in turn be combined using
inference again to assert further facts. This meant that the information generated by the
consumers or held in the triplestore could be very basic and therefore simple to create.
Yet despite this information being basic, meaningful and relatively complex

functionality was built up through using inference.

For example, apart from the tuple space discovery address, the only configuration
1Button readers required was a single URI. From this single URI and the ID of an
iButton pushed into the reader, rules based inference was able to take these facts and
combine them with another fact from the external triplestore that stated who owned that
iButton. Each of these facts in isolation were very simple to generate, but had only very
limited meaning. However, the inference process was able to use these simple facts to
make the meaningful assertion that there was a specific, identified person located at

that iButton reader.

From this inference, further meaningful inferences could be made. For example, it then
allowed inferences to be made about when that person was speaking. As described in
section 5.3.1, facts about the microphone being active, the seating position the
microphone was located in, the seating position the iButton reader was located in were
combined with the already inferred fact about the specific person being located at that
iButton reader. These first three facts had only very limited meaning on their own, and
yet though inference, these basic facts could be combined with another inferred fact to

make a meaningful assertion about a specific person speaking.

Similarly, the inferred facts about participants being present were combined with facts
about their seating positions and the relationship of those seating positions to a specific

meeting room. This was used to determine when the number of participants was above
144

a certain threshold and therefore make the inference about there being a meeting taking
place between those people in that meeting room. Furthermore, transitive property
entailments from the OWL language meant that the indirect relationship about the
iButton readers being located in a meeting room (i.e. only specified in the
bootstrapping knowledge through their relationship to seating positions) appeared as an
explicit relationship when querying the triplestore. This resulted in fewer queries to the
triplestore, as instead of querying for the iButton reader’s seating position and then
querying for the room which that seating position was located in, a single direct query
could instead be made for the iButton reader’s meeting room. This also simplified the
inference rules, since instead of having to specify extra body terms to match on an
indirect relationship, they could instead match on the direct relationship between an

iButton reader and its meeting room.

Therefore it is possible to see that through using inference, meaningful functionality
has been built up from very simple facts that are straightforward for devices to generate
or to specify in an external triplestore. Even though each of the basic facts had very
limited meaning when examined in isolation, combining them with inference meant

that meaningful facts were obtained.

Looking specifically at the bootstrapping knowledge in the triplestore, using inference
had clear advantages. It removed the need to explicitly specify all the relationships
between all resource instances. This enabled the bootstrapping knowledge to potentially
be more general purpose, as it did not need to assert all the specific relationships that
were used by the implemented system. For example the triplestore only needed to
specify the location of each meeting room device relative to a seating location, but the
system was still able to use this information to make inferences about devices being
located next to each other or in the same meeting room. Furthermore, when moving a
device to a different location, updating the triplestore knowledge to reflect this would

be very simple as only a single relationship would have to be altered.

As the Semantic Web becomes more distributed, its possible to envisage moving
beyond a single triplestore to provide bootstrapping knowledge. With multiple
distributed sources of bootstrapping knowledge, it would likely be the case that
publishers of this information may not know all the explicit relationships between

system resources, thus the ability to infer these relationships is an attractive feature.
145

Furthermore, though enabling fewer relationships to be specified in fewer components,
it could potentially reduce the chances of contradictory relationships being accidentally
specified. Inference therefore also has the potential to simplify maintaining consistency

between multiple knowledge sources.

7.2.2 Interoperability and Reuse

The system provided excellent interoperability due to common ontologies being shared
by the different components. Interoperability with an independent external component
was demonstrated by the system using knowledge about the names of participants held
in the CS AKTive Space triplestore. This knowledge was automatically obtained from
this triplestore and was added to the other bootstrapping knowledge used by the system.
The knowledge pulled out of this triplestore did not need any modification and
integrated seamlessly with the other bootstrapping knowledge despite the fact that the

CS AKTive Space triplestore was developed independently.

Interoperability between the diverse components within the system was also
demonstrated. The system consisted of varied producers, consumers, an inference
engine and a triplestore. Through the use of RDF and a shared ontology, the
information that originated from each component was completely interoperable with
the other components in its native form. For example, the inference engine needed to
draw no distinction between facts asserted by producers and facts obtained from the

triplestore, despite these components having very different roles in the system.

The use of formally defined ontologies would also aid other external systems in
interoperating with the proof of concept system, giving a clear specification of the
vocabulary that the external system would have to use if it, say, wanted to reuse the
information held in the triplestore. In fact because the proof of concept system reused
the ontology from the CoAKTinG project, it meant that the CoAKTinG meeting replay

tool would be able to use the annotations generated by the system.

Furthermore, had it been required to integrate the system with a component that used a
different external ontology, this could have been achieved quite simply and rather
elegantly by creating a new mapping ontology to map terms in the external ontology to

terms in the existing ontologies.

146

The system demonstrated reuse on two different levels, namely ontology level reuse
and instance level reuse. At the ontology level, it came from reusing the AKT,
CoAKTinG and Signage location ontologies, which not only significantly reduced the
amount effort to create an ontology for the implementation, but also potentially allowed

straightforward interoperability with existing tools.

At the instance level, it came from reusing the name information held in the CS
AKTive Space triplestore, which reduced the amount of effort required when
specifying knowledge required by the system. Admittedly the instance level reuse was
on a fairly small scale as it was just restricted to people’s names. However, a more
complex application could potentially reuse more information about people, or other

resources such as projects.

7.2.3 Extensibility

The architecture was well suited to being extended. The main ways in which it 1s
possible to envisage the system being extended are through the addition of new
producers and event types, or the addition of new consumers for either displaying new

events or existing events in a different form.

By using inference to enable the bootstrapping knowledge to record only a small
number of explicit relationships between resources, it means that the addition of new
components such as producers would require only minimal changes to this knowledge,
since their relationship to the other components can be inferred, rather than having to
be explicitly stated. Similarly, the existing producers would not have to be modified, as
they do not need to have any knowledge of the other components in order to generate
their simple, isolated facts. The pub/sub model of a tuplespace also means that there is
no need for producers and consumers to be aware of the existence of each other in

order to communicate.

Furthermore, the ability of inference to enable the knowledge within the system to be
distributed (see section 7.2.1) also means that new sources of bootstrapping knowledge
could be easily ‘bolted on’ without having to explicitly integrate it with the existing

bootstrapping knowledge.

147

The standard OWL extensibility mechanism that allows anybody to import an existing
ontology and add new terms is well suited to allowing people to define new event
types. New rules may also easily be added to the rule set of the inference engine to
handle or generate new event types. An open issue, however, is who performs
extensions or modifications to the rule set. While anybody is free to add producers,
consumers or extend the ontologies, the rules reside on a centralised inference engine
and may only be modified by those people with administrative rights for the engine.
This is a limitation to truly open extensibility, as many extensions to the system would
require modification of the rules and clearly only trusted people may be allowed to

modify the rule set.

7.2.4 Indexing

As stated in chapter 5, a feature for replaying indexed video from meetings was not
implemented since this feature had already been implemented by the CoAKTinG
meeting replay tool, and is currently being actively developed by the author for the
Memetic project. The ability of the implementation presented in this thesis to be able to
automatically generate annotations (which can then be used as indices) was a vital

feature, since the existing CoOAKTinG tool relied heavily on labour intensive manual

annotation.

The annotations generated in the implementation were ideal for use as indices, since
they were timestamped with both start and end times that identified the precise portions
of the meeting where the events occurred. The use of UTC timestamps also meant that

the system would work for meetings distributed across timezones.

The chosen annotation types were also well suited to providing meaningful indices to
meetings. For example, participant tracking would allow a replay start at the point
when a particular participant joined the meeting. Alternatively, if a participant had to
leave the meeting mid session, they could later easily locate that point in a meeting
recording and start the replay from there to catch up on what they missed. Similarly,
speaker identification information presented as a timeline makes it straightforward to
jump to sections where a specific participant was the primary speaker. Indeed during
initial discussions, end users on the Memetic project have stated that they would like to
use annotations about who was in a meeting and who was speaking as indices for

recorded meetings.
148

Furthermore, by using the formally defined ontology for the annotations, the index can
be used by computers as well as people. This could potentially be used to automatically
edit meetings or re-purpose material. For example, long meetings sometimes have
intentional coffee breaks etc. where the meeting stops for the participants to leave and
then later resume the meeting. A video recording component may be left running
during these breaks. Using annotations about when the meeting was in session, an

automated editing component could remove these sections of the video from the

recording.

Its possible to envisage automated re-purposing being of use in domains like television
news, where the production team may wish to locate specific sections of meetings

between politicians etc. for inclusion in broadcast news items.

7.3 Criteria from Literature Review

Section 2.2 of the literature review reviewed a number of existing systems according to
a set of criteria. Of those criteria, two have not been discussed yet in this evaluation and
it is useful for them to be applied to the proof of concept system and be discussed here.

These criteria are support for live processing and degree of automation.

7.3.1 Support for Live Processing

The system had excellent support for live processing, which meant that the value added
by the system could be taken advantage of during live collaboration sessions, as well as
after sessions. The qualitative testing has shown that the tuple space, inference engine
and triplestore each perform in near real-time, the net result of which is that the display
panel application could display useful information to session participants in near real-

time.

One area in which live processing has not been explored is for building up an index of

the session on-the-fly in a replay client. This could be used to replay earlier sections of
a collaboration session still in progress to help late joining participants or refresh group
memory after a digression, in a similar way to the Where Were We system [Min93],

which used hand authored index marks.

149

In order to achieve on-the-fly indexing, a replay client would join the tuple space and
subscribe to all the different events it requires to build up an index on-the-fly. In this
case, it would be preferable not to delete events from the tuple space once they have

ended, as this would allow a late joining replay client to obtain a full session history.

7.3.2 Degree of Automation

The system supported a high degree of automation, especially from the perspective of
session participants, leaving them free to focus on the collaboration and not have to
make any significant effort to author annotations. The only additional task that the
system required participants to do was to use a personal iButton to sign into or sign out
of the session. It is easy to envisage other biometric participant identification and
location tracking techniques such as face recognition that would no longer make it

necessary for participants to carry iButtons and explicitly sign in or out.

The system operator (e.g. the Access Grid node operator) also had to perform only very
simple tasks to initialise the system and then later teardown a session. It is possible to
envisage these functions being integrated directly into the software that handles the
videoconferencing session meaning that they could all be done automatically when the

operator starts up and tears down the videoconferencing session.

The system did require some hand initialisation of its bootstrapping knowledge, for
example to specify information about seating, microphone and iButton reader positions
and also to specify the iButton that belonged to each person. In a deployed system this
knowledge would also have to be maintained, for example being updated when new
personnel joined or when meeting room layout was changed. Some of this knowledge
could be obtained from existing sources, as was demonstrated with the participant
names taken from the CS AKTive Space triplestore, but it is unlikely that all the
bootstrapping knowledge could be obtained from existing sources. For example
information about a meeting room layout is not something normally specified in

existing information sources.

7.4 Tools and Technologies

This section discusses the tools and technologies used to implement the proof of
concept system and discusses any strengths or weaknesses exposed in the

implementation.
150

7.4.1 RDF(S) and OWL
Using RDF(S) and OWL proved to be a good choice. One of the key benefits provided

over other knowledge representation formats was integration with the Semantic Web.
This provided massive potential for reuse of ontology and instance data, and this reuse

of ontologies and instance data was demonstrated in the proof of concept system.

Only a small subset of the features of OWL were required by the system, nor did the
implementation expose any features that were missing from RDF(S) or OWL. The
extensibility mechanism of OWL was seen to work well, allowing multiple existing
ontologies to be easily imported into the live collaboration ontology by just specifying
the URIs, and also allowing classes to be extended through the RDFS inheritance
mechanism. The use of owl:equivalentClass was also demonstrated to successfully
integrate the Signage location ontology and the AKT Portal ontology. Additionally, the
use of owl:transitiveProperty was used to reduce the amount of bootstrapping

knowledge that needed to be hand authored, and also reduce the number of triplestore

queries.

7.4.2 Ontologies

In addition to the creation of a new ontology, the implementation saw the reuse of the

AKT Support, AKT Portal, CoAKTinG meeting and Signage location ontologies.

One area of the live collaboration ontology that warrants further discussion was the
chosen representation for the locations of iButton readers and microphones. This
representation was based on an extension of the Signage location ontology. The
Signage ontology was created in such a way that there was some degree of duality
between the concept of location and the physical object that defined that location. For
example a building can either be thought of as physical object consisting of bricks and
mortar, or as some form or enclosed space. While this duality is intuitive for things
such as buildings or rooms, it is not intuitive for things such as iButton readers and
microphones. This means that the classes iButton-Reader-Position and Microphone-

Position, proved to be counter intuitive representations.

It would have been more intuitive to use classes that represented the physical devices,
rather than their positions. A more sensible representation may have been to define a

class called Device and subclass it into the classes iButton-Reader and Microphone.
151

These would then represent the actual physical devices, rather than their location. This
representation could then be tied into the existing Signage ontology by giving the
Device class an is-located-in property with a range of Abstract-Space. Furthermore the
Event class could be extended with a new property such as device-of-origin, to record

the device that generated the event.

One particular feature from that AKT support ontology that was not ideal was 1ts
representation of time. It was a highly verbose format that (including the CoAKTinG
milliseconds extension) used seven instances of owl:DatatypeProperty to specify a
single point in time. The main effect of this was that it led to the inference rules
containing a fairly large number of terms when having to match against time points or
assert new ones. A better representation would have been a single numeric timestamp
to represent a point in time. It was chosen to use the AKT representation of time as it
would potentially allow easier interoperability with other AKT tools, and in particular

the CoAKTinG meeting replay tool.

7.4.3 Jena

The Jena 2 framework has been shown to be a powerful framework with many useful
features. In particular, its support for rules based inference, OWL entailments and

remote queries to persistent models were central to the proof of concept system.

The benefit of the rules based approach to inference was that it allowed logic to be
simply and compactly specified that would otherwise have been very awkward to
specify using the Jena API directly. Furthermore, the RETE algorithm used by the rules
engine was ideal as it was optimised for precisely the kind of incremental updates to the

knowledgebase that the proof of concept system used.

Conversely, the main drawback of the rules based approach was that there were some
functions that it was very awkward or impossible to implement using rules alone, such
as determining how many participants were present in a meeting or which time point
out of a pair was the most recent. However, Jena’s support for builtins in rules that
could call regular Java code meant that these could be used whenever pure rules could
not. Builtins were an especially powerful feature, that not only allowed complex logic
functions to be performed, but also allow calls to external code, which could be used to

perform tasks such as publishing EQUIP tuples or querying the triplestore. Therefore
152

the rules engine in Jena allowed a hybrid approach in which rules could be seamlessly

integrated with calls to Java code, giving the ‘best of both worlds’.

The support for language based entailments was a useful feature, but its performance
was too slow for these to be computed at query time and a workaround had to be done
to pre-compute these. Cleary a useful addition to Jena’s functionality would be an
inbuilt facility for pre-computing entailments. When the entailments were pre-
computed, the persistent model appeared to perform well and responded to queries in

near real-time.

7.4.4 EQUIP

Equip4j (and a tuple space model in general) proved to be a good choice for
implementing the event communications infrastructure. Its speed performance appeared
to be very good and did not introduce any appreciable delay in the system. Using tuples
meant that each event type could be directly exposed as a separate tuple field, allowing
subscriptions to be straightforward. Furthermore the pub/sub model of a tuple space
allowed the knowledge producers to be loosely coupled with the knowledge consumers,

which would allow easy addition of new producers or consumers.

The tuple persistence mechanism of EQUIP was also a useful feature, as it allowed late
joining consumers to retrieve the current meeting state. If inactive events were not
deleted, it could also be used to allow a late joining consumer to retrieve the entire

meeting history, which could be used by a replay client (as discussed in section 7.3.1).

The multicast based discovery mechanism was another handy feature and further
promoted the loose coupled and dynamic nature of the system. One drawback was that
it relied on local multicast being available, which is not a feature present on all
networks. However, if multicast wasn’t available, a local unicast only dataspace could

have been used instead to perform a similar function.

Clearly as EQUIP was not originally designed for use in Semantic Web applications it
is not ontologically aware and treats the data it carries as opaque values. One potential
extension to EQUIP could be to extend its subscription mechanism to understand the
RDF class hierarchy, allowing a subscription to a single event type to also

automatically subscribe to all subclasses of that event also.
153

7.5 Other Issues

This section discusses a number of open issues that the implementation exposed. In

particular these issues were error handling and Quality of Service.

7.5.1 Error Handling

One of the drawbacks of the approach taken during the implementation was that the
final system was intolerant to certain kinds of errors. Specifically, it was unable to
elegantly handle the cases when a query to the triplestore returned no results, or
returned information that was incorrect. Assuming that the producers and inference
rules were correctly written, the information in the triplestore was the weak link. The
system had a requirement that all external knowledge it needed was held in the
triplestore, and that this knowledge contained no errors. In a prototype system, this
requirement was not unrealistic, but in a deployment situation it may not be realistic to
expect that a triplestore would not contain any missing information or incorrect

knowledge.

Missing information was a problem, as it could cause the inference process to halt,
since the required information would not be present to infer other knowledge from.

Incorrect information was also a problem, as it led to false inferences.

In the case of incorrect information, it would be difficult for an application to
automatically determine that the information was incorrect, and even harder to
automatically correct the information. An approach that could help identify incorrect
information would be to query multiple triplestores. If the triplestores were not
initialised from the same sources, then it may be possible to identify incorrect

knowledge by looking for contradictions between the knowledge obtained from the

different stores.

Missing information was straightforward to detect during a collaboration session, but
like incorrect information, would be difficult to automatically correct. In the
implementation, some basic functionality was created to handle some types of missing
information. For example, when a query to resolve an iButton to the person who owned

it returned no results, then a new instance of a person was automatically generated.

154

This meant that the inference process could continue, even if there was no other

information about that person, such as their name.

It would also have been possible to implement further functionality that flagged such an
occurrence to the node operator or to the participant concerned. This would then allow

them to input further information about that new person instance, such as their name. If
that person already had an entry in the triplestore, then it could be manually declared as

owl:sameAs the automatically created instance.

This approach of creating a new resource when a query returned no results was not
suitable for all query types in the implementation. For example, it was not suitable for
location queries, since generating a new instance of Meeting-Room or Seating-Position,
would not have helped with inferences about people or devices being located in the

same seating positions or meeting rooms.

7.5.2 Quality of Service

The system framework assumed that the underlying network provided only best effort
Quality of Service (QoS). While this fitted in well with the current Internet, its was far
from ideal as it is preferable in a live session that each event has a defined time by
which it must arrive. This can’t be achieved with best effort QoS, unless late data is
dropped, which is not acceptable in this framework. Initially it may appear that
incorporating an existing QoS framework such as IntServ [B1a98] or DiffServ [Bra94]
would provide a strai ghtfbrward solution. However, different event types require a
different QoS and this is something that existing QoS frameworks do not provide. For
example real-time speaker identification data has fairly tight synchronisation
requirements and should not be delayed for more than, say, a few hundred
milliseconds, whereas participant sign-in data has much looser requirements where it
could be delayed by several seconds and still be of use. It is difficult to see how these

mixed requirements could be achieved using existing QoS frameworks.

7.6 Summary

This penultimate chapter has presented a qualitative discussion-based evaluation of the
semantic annotation framework and implementation. This evaluation can be

summarised as follows:

The time performance of the implementation was qualitatively evaluated as near
real-time, although the entailment features of Jena were not found to work in
real-time. A built in Jena feature for pre-computing entailments would be

useful. Overall it was shown that real-time inferencing during live collaboration

was practical.

The Semantic Web based approach provided excellent features for inference,
interoperability, reuse, extensibility and indexing. A significant portion of the
system ontology was reused from existing applications, which reduced
implementation effort and also allowed potential easy interoperability with

existing tools that used those ontologies.

The rules based approach to the inference was a convenient format for
specifying complex inference logic, but was limited in the types of logic it
could specify. These limitations were overcome by invoking Java code directly

from rules, which meant that compact, but powerful rules could be written.

The implementation used a small subset of OWL and RDF(S) and did not
expose any shortcomings in the languages. OWL’s support for transitive
properties meant that automatic entailments could be used to reduce the amount
of system bootstrapping knowledge required and also resulted in fewer queries

to the triplestore.

Overall the existing ontologies used appeared to be good basis for the live
collaboration ontology. The chosen location based representation of meeting
room devices proved to be counter intuitive and an alternative representation
was discussed. The representation of time taken from the AKT support ontology

also was found to be verbose and awkward to work with when writing inference

rules.

A weakness of the framework was that it required the information in the
triplestore to be complete and correct, which may not be the case in real-world
situations. Missing information could cause the inference process to halt and

incorrect information could lead to false inferences.

156

e A tuple space model was shown to be an appropriate basis for the
communications infrastructure. Tuples proved to be a convenient way of
packaging RDF descriptions of collaboration events, and a pub/sub model was
ideal for the framework. Furthermore, the persistent nature of tuples was useful

for supporting late joining clients.
e The differing nature of the event types means that QoS requirements for the

framework are non-trivial and would not be adequately handled by existing QoS

frameworks. This is an area for further study.

157

8 Conclusions

This final chapter presents the overall conclusions from the thesis. It starts by giving a
detailed breakdown of the contributions within this thesis and then discusses the
potential for future work. Finally, open research issues that are relevant to this thesis

are considered.

8.1 Contributions

The core contribution of this thesis has been the application of Semantic Web
technologies to the domain of distributed real-time collaboration. This has been
demonstrated by the development of a conceptual framework for automated live
semantic annotation of distributed collaboration sessions, and a successful proof of
concept implementation that was compliant to this framework. The remainder of this
section gives a detailed chapter by chapter breakdown of the individual contributions

that have gone to make up this overall outcome.

The literature review in chapter 2 identified a number of existing systems that
supported some form of annotation of collaboration activities. It identified a number of
desirable characteristics for systems of this type, which were support for machine
processable semantics, live processing and automation. The review established that not
one system fully provided all these features. A particular collective shortcoming
exposed was a lack of machine processable semantics, limiting the scope for automated
further processing. Additionally, the review of existing work in the domain of the
Semantic Web exposed the fact that Semantic Web technologies have yet to be applied
to the domain of the synchronous collaboration. The review also identified literature
that described the concept of a mediated space and the potential for mediated

teractions to be even more effective than face-to-face interactions.

Chapter 3 motivated the need for live semantic annotation of collaboration sessions. It
did this by firstly identifying the benefits of providing additional information in the
form of annotations and then discussing the advantage of a semantic approach, enabling

significant potential for interoperability, reuse, extensibility and automation through

inference.
158

A study of IRC use in telephone conferences was undertaken and it showed that live
temporal annotation of collaboration sessions was useful to session participants, as was
archiving the annotations for later use. The study was used along with experiences of
using the Access Grid to establish a list of key event types that could make useful

annotations and were common to many types of synchronous collaboration activities.

The problems of speaker identification and participant tracking in the Access Grid were
identified and a scenario was described where these were overcome by semantic
annotations to provide dynamically updated attendance lists and speaker highlighting.
The scenario also described other annotation types and how they could be integrated
other Semantic Web services. It was also established that these weaknesses of the
Access Grid were common to other video and audio conferencing technologies and that

they would also benefit from these forms of semantic annotations.

Chapter 4 developed the conceptual framework and the result was a general purpose
architecture on which to base implementations of systems for performing real-time
semantic annotation of live distributed collaboration sessions. It identified the role of
producers for the generation of annotations and consumers as sinks for annotations,
performing functions such as display. The need for an inference engine was established
and it was argued that it would make sense for this to be a single component shared
between sites in a given collaboration session. The need for a triplestore was also
established to meet the dual requirements of providing additional knowledge for the
inference process and providing storage for archiving annotations. The interaction
mechanism between the producers and consumers was identified as needing to support
communications that were pub/sub, real-time, reliable, multipoint and persistent and it

was shown that these requirements map well to a tuple space.

It was established that live annotations needed to be represented as a pair of state
change packets and it was shown how such packets could be packaged as tuples. The
real-time requirements for the annotations were also discussed and it was argued that
these were fairly flexible. It was also identified that due to the differing natures of the
annotation and media streams, explicit synchronisation of these streams would be a

very challenging task.

159

Chapter 5 described the implementation of a proof of concept system that was

compliant to the conceptual architecture. The implementation was based on some of the

functionality from the motivational scenario presented in chapter 3.

It identified the specific producers and consumers required and also developed a novel
speaker identification technique for use in the Access Grid. The basic events that
needed to be generated by the producers were determined and the inferences that could
be made from them were identified. This was used to develop a detailed OWL ontology
that formally specified the different annotations within the system and also enabled
automatic entailments about location information. Furthermore, the effort in creating
the system ontology was greatly reduced by identifying appropriate sections of existing
ontologies and reusing them. Appropriate choices of existing software were also

identified to provide the tuple space, inference engine and triplestore functions.

The implementation also demonstrated a display panel based consumer, which was
capable of displaying the names of the connected sites and the names of the participants
at those sites. This list updated in real-time to reflect changes to the makeup of the

session and also to highlight the name of the current speaker.

Chapter 6 identified the logic required for the inferences, formally expressed as a set of
inference rules, categorised by the type of operation the rules performed. The tests and
actions that could not be performed by rules alone were established, and Jena builtins

were created to implement these functions.

The categories of knowledge required to bootstrap the inference process for the proof
of concept implementation were also determined and a small set of instances were
created to enable the system to be tested. Reuse within the Semantic Web was
demonstrated by obtaining some of this instance knowledge by querying the CS

AKTiveSpace triplestore.

Finally, chapter 7 provided a discussion based evaluation of the conceptual framework
and proof of concept implementation. A finding of particular interest was that the
entailment features of Jena worked too slowly to allow real-time processing. This

prompted the creation of a workaround for pre-computing certain entailments to enable

160

real-time processing. Despite this limitation, the implementation demonstrated that

real-time inferencing was practical.

The framework and implementation were found to have good support for inference,
interoperability, reuse, automation and the chosen tools and technologies were found to
be suitable. Missing or incorrect information in the triplestore was identified as a

potential source for errors and techniques for minimising the impact of this were

described.

8.2 Future Work

This section discusses a number of possible extensions to the work presented in this

thesis.

8.2.1 Event Types and Inferences

One way of extending the work in this thesis would be to add further event types to the
live collaboration ontology and create the appropriate producers, consumers and rules
for handling them. Examples could be agenda items, slide transitions or hand authored
text notes (e.g. taken on PDAs, see section 2.2.3). It would also be useful to try and
harness any personal diary information (see section 2.4.4) to, for example, display a list

of participants still expected to arrive.

Another useful inference would be to try and determine how formal or important a
collaboration session is. This information could be used, for example, to display ‘Do
Not Disturb’ on a screen outside the room of a formal meeting or could be used to
automatically determine the level of intrusiveness [Ram04] that participants are willing
to accept from sources such as mobile phones or Instant Messenger clients. Such a
‘meeting importance’ measure could possibly be derived from the job rank of the
participants involved (which could be automatically obtained from the CS AKTive
Space triplestore). For example in an academic setting, meetings primarily made up of
postgraduate students and research assistants tend to be less formal (or more tolerant of
interruptions) than those made up of higher ranking members of staff, like professors or

heads of departments.

A further useful feature could be to extend the CS AKTiveSpace Communities of

Practice work to flag to session participants which other people in the session are in
161

their COP, and also show how they are linked to the individuals in their COP. Clearly
this may often yield many uninteresting results, since people will usually already know
who is working closely with them. However, the interesting results would be the ones
where people share a COP but work in different fields or physical locations, as they
may not be aware that they share a COP. It might be possible to automatically

determine which results are interesting by looking for such indirect links between COP

members.

One type of inferencing that has not been explored so far is offline inferencing after a
meeting has ended to help improve the meeting archive. Offline inferencing could be
used to perform inferences that are too complex to be performed in real-time or ones
that simply need access to the entire meeting record. An example of offline inference
would be to determine who the primary speaker in a meeting was, which could be used
when searching meeting records. Furthermore, as the framework currently stands, there
1s no ability to exploit knowledge generated in previous meetings (for either real-time
or offline inferencing). This might potentially be a valuable source of knowledge to

feed into the inference process and is one that would be worthwhile exploring further.

8.2.2 Security

Another important infrastructure feature that so far has not been discussed is security.
There may be times when a distributed meeting must be kept private so that unwanted
‘snoopers’ on the Internet cannot eavesdrop on the session content. Videoconferencing
tools like Access Grid allow their media streams to be encrypted to prevent snooping,
but clearly the addition of un-encrypted shared semantic annotations would be a weak
point, giving the potential for snoopers to obtain some information about the session.
Furthermore the pub/sub architecture means that any producer can join the tuple space
and start publishing events. Clearly without any access controls an unauthorised
producer could join the session and start publishing events which might either be

unwanted or be deliberately incorrect to sabotage the session.

The most obvious solution to this would be to make the tuple space encrypted. This is a
feature not currently supported by EQUIP. One way this could be achieved would be to
extend EQUIP to support a symmetric encryption algorithm, meaning that all producers
and consumers could only join a session’s tuple space by using a pre-shared key. As it

would be impractical for the operator at each site to configure each producer and
162

consumer with the key, EQUIP’s tuple space discovery mechanism could be extended
to multicast the key (entered by the operator into the Session Information Producer) as
well the dataspace URL. Although this multicasted information would only be local to
each site, it could still be snooped, so this traffic could also be encrypted with a
different pre-shared key, which each producer and consumer at a site could be pre-
configured in a one off configuration step, in a similar way as they are already pre-

configured to use a certain local multicast address for discovery.

8.2.3 Consumer Functionality

The proof of concept implementation only used a relatively simple consumer that
passively displayed information to session participants. There is significant scope for
extending consumer functionality to go beyond this. In particular, consumers could be
created that ran on the personal laptops of session participants. This would be feasible
as it is now commonplace for meeting rooms to be equipped with wireless networks
and for participants to take laptops with them. Giving each participant a personal
consumer would mean that the consumers could be interactive and could also
personalise the information they displayed. An interactive consumer could, for
example, provide a hypertext interface, allowing a participant to click on another
participant’s name and be presented with further information about that participant,
such as contact details, job title or publications they have authored. All this information
could be obtained by the consumer querying the CS AKTive Space triplestore.
Personalisation could, for example, be used to highlight participants who are in the

laptop owner’s community of practice.

A drawback of potentially making consumers mobile is that the automated EQUIP
dataspace discovery mechanism is not well suited to mobile devices, since the multicast
address for discovery might be different in every meeting room. The most
straightforward workaround for this would be to have the laptop user either manually
enter the discovery address when joining the session (it could be displayed on the wall

of the meeting room), or have them just enter the session dataspace URL directly.

The speaker identification functionality in the proof of concept application could also
be further extended. As it currently stands, it only identifies the speaker by name and
does not provide any additional cues to help identify which vic video window the

speaker is located in. A useful extension would be to add window highlighting to vic,
163

which could be used to easily draw attention to the window that contained the current

speaker.

To highlight just the window that the speaker is depicted in is actually a very
challenging task, since Access Grid sites typically transmit four simultaneous video
feeds and determining which of those video window(s) the speaker is located is non
trivial and would either require complex computer vision techniques or knowledge of
where the camera is pointing combined with participant location information to

determine who was in each shot.

A much simpler solution would be to highlight every video window from the site where
the speaker is located, as this would still provide useful visual cues. This could be
achieved by modifying vic to become a consumer. The vic feature for allowing
individual video windows to be named could be used to specify the room URI for each
video stream so that vic would know which windows to highlight. To ensure that the
window names could still be read by humans, vic could also be modified to query the

triplestore to resolve the room URIs into human readable names for display purposes.

8.3 Research Issues

This final section closes the thesis by discussing a number of open research issues

relevant to this work.

8.3.1 Real Time Performance Issues

Testing of the proof of concept implementation revealed that Jena was not capable of
computing its ontology based entailments in real-time. While not conclusive, this hints
at a more fundamental potential problem for real-time Semantic Web applications. The
complex interwoven nature of knowledge (at both instance and ontology level) within
the Semantic Web could mean that real-time processing of this knowledge may at times
be a challenging requirement. Tronically it is this potential for expressing complex
interwoven relationships that is arguably one of the great strengths of the Semantic

Web, enabling the Network Effect to answer new kinds of questions.

It could be argued that the inevitable increases in computing predicted by Moore’s Law
provide a straightforward solution to potential real-time performance problems.

However, if the Semantic Web takes off, it is likely that the volume and complexity of
164

knowledge it has to offer will continue to expand at an ever increasing rate, which

could more than offset any increases in computing power.

The proof of concept implementation in this thesis overcame poor query performance
by explicitly representing knowledge that otherwise would have only been implicit
from the combination of the ontology and instance data. However, while this approach
worked well for a relatively small scale application, such an approach would not scale
well for the massive amounts of knowledge that the Semantic Web may one day
contain. When dealing with knowledge on this scale, the total amount of implicit
information becomes virtually limitless, making it totally infeasible to pre-compute and
store. Therefore totally new techniques may have to be developed to enable the

valuable implicit information in the Semantic Web to be harnessed in real-time.

8.3.2 Triplestore Architecture

The system architecture in this thesis was based around a single, centralised triplestore.
This was a simple architecture to work with and is one that has been used in other
applications such as CS AKTiveSpace. However this does not provide a massively
scalable solution, and as De Roure and Hendler [DeR04] have stated, it is likely that the
Semantic Web will evolve to use multiple triplestores and eventually many self-
organising distributed RDF servers. Going beyond a single centrally managed
triplestore is not only a challenge for architecture presented in this thesis, but also for

the Semantic Web in general.

A particularly important issue is that of discovery; with a single triplestore, all
components that need to use it can be simply pre-configured with its location. When the
number of knowledge sources increases this becomes increasingly impractical, and

when dealing with knowledge on the scale of the web, becomes virtually impossible.

A distributed Semantic Web introduces further problems of correctness and
consistency. Without central management there is nothing to stop incorrect information
being placed on the Semantic Web (either accidentally or deliberately), and with

multiple knowledge sources it is also possible that contradicting knowledge may be

published.

165

It was discussed in section 7.5.1 that the proof of concept implementation was not able
to deal with incorrect or contradictory knowledge from the triplestore and at this stage
it is not clear how it could be extended to robustly handle such cases. Resolving this
issue may partly come down to trust. If knowledge 1s only taken from trusted sources,
then it may potentially be more reliable than using un-trusted sources. This might be
achieved through using digital signatures to sign statements, however as it would be
difficult to explicitly specify all trusted sources, and it is likely that a ‘web of trust’
[Gol03] may emerge where, for example, if A trusts B and B trusts C, then A also can

trust C, even though it is not explicitly stated.

166

Title of WG RDF Care WG ~ WebOnt WG mean [
date of meeting 20/08/02|23/08/02| 16/08/02| 09/08/02 | 26/07/02 | 26/08/02 | 18/09/02(12/09/02| 04/09/02] 29/08/072

number of participants on phone 12 13 g 12 10 23 18 24 28 22 17.3
numher of participatns in IRC g & 5 7 g 15 14 14 14 15 10.8
duration of teleconference 89 80 138 110 87 96 123 95 105 g4 2.7
‘total number of IRC entries 278 364 255 873 376 288 172 437 158 447 334.3]
Optional Zakim botand R‘SSvayg‘e‘ht featuresused I total

list participants in telcan X X X X X X X X 3 X 10
manually identify telcon participants |x X X X X X X X P 10
ruting telcan participant X X X X X 5
identifying audio sources X X X X X 9
discaonnect telcon participant X 1
dismiss Zakim bot 0
geagraphically locate dialing code]
gueuing to speak X X X X X X X X X X 10
speakertime limit 0
agenda tracking X X X X X X B
future reminder {'ping’) 0
scrihe nominatian X X X X X X G
highlight action items X X X 3
gquery for conference passcode X X 2
identify participants sharing phone |x X 2
Misc data sentin IRC ; ; ‘{ : total
comments X X X X X X X X 8
scriking X X X X X X X X 7
status (e.g.back in & mins) X X X X X X 7
URLs to agenda X 1X X X X X 8
URLs to emall X X X X X X X X X X 10
URLs to misc. documents X X X X X % X X 8]
\agenda‘ itermn s X X X % X X X % X 4?]
agenda item results X X X X X | d '< %]
action items X X [x X X X X % g
discussing who will he scribe X X [x X X X X !
indicating technical problems X [x X 3

$0URIAJU0)) duoydap], DEA WOoL] BlR(- v XIpuaddy

Appendix B - IRC log of RDF Core Working Group Telcon

Log from telcon held on 16/08/2002

All names have been replaced with fictitious ones to ensure anonymity. The original log is
publicly available on the web at http://www.w3.0rg/2002/08/16-rdfcore-irc

13:59:39 [RRSAgent]
RRSAgent has joined #rdfcore
14:01:02 [jsmith]
jsmith has joined #rdfcore
14:01:34 [MikeJones]
MikeJones has joined #rdfcore
14:02:00 [MikeJones]
Zakim, what's the passcode?
14:02:01 [Zakim]
sorry, MikeJones, | don't know what conference this is
14:02:04 [MikeJones]
Zakim, this is RDF
14:02:06 [Zakim]
ok, MikeJones
14:02:12 [MikeJones]
agenda?
14:02:34 [MikeJones]
agenda + 16Aug http://lists‘w3.org/ArChives/PubIic/w30—rdfcore—wg/2002Aug/O144.html
14:02:36 [ad]
zakim, who is here?
14:02:37 [Zakim]
On the phone | see ??P10, Davis, DaveW, GeorgeD, ??P14
14:02:38 [Zakim]
On IRC | see MikeJones, jsmith, RRSAgent, Zakim, ad, rch, Adam, logger_1
14:03:07 [Zakim]
+DaveP
14:03:15 [MikeJones]
DaveP?
14:03:21 [Adam]
zakim, DaveP is Adam
14:03:23 [Zakim]
+Adam; got it
14:03:25 [MikeJones]
ah
14:03:36 [Adam]
zakim, who is muted
14:03:37 [Zakim]
Adam, you need to end that query with '?'
14:03:38 [Zakim]
+Miked
14:03:39 [Adam]
zakim, who is muted?
14:03:40 [Zakim]
| see no one muted
14:03:47 [ad]
zakim, ??P10 is SimonR
14:03:48 [Zakim]
+SimonR; got it
14:03:57 [ad]
zakim, ??P14 is GavinK

168

14:03:58 [Zakim]
+GavinK; got it
14:04:24 [Zakim]
+John_Smith
14:04:37 [MikeJones]
Zakim, pick a scribe
14:04:38 [Zakim]
Not knowing who is chaliring or who scribed recently, | propose MikeJ
14:04:40 [MikeJones]
Zakim, pick a scribe
14:04:41 [Zakim]
Not knowing who is chairing or who scribed recently, | propose DaveW
14:04:55 [jsmith]
John Smith is scribing
14:05:01 [MikeJones]
MikeJones has changed the topic to: RDFCore 16Aug. scribe: JohnS
14:05:14 [MikeJones]
Zakim, who's on the phone?
14:05:15 [Zakim]
On the phone | see SimonR, Davis, DaveW, GeorgeD, GavinK, Adam, MikeJ,
John_Smith
14:05:16 [Adam]
zakim, who is here?
14:05:17 [ad]
zakim, who is here?
14:05:17 [Zakim]
On the phone | see SimonR, Davis, DaveW, GeorgeD, GavinK, Adam, MikeJ,
John_Smith
14:05:18 [Zakim)]
On the phone | see SimonR, Davis, DaveW, GeorgeD, GavinK, Adam, MikeJ,
John_Smith
14:05:20 [Zakim]
On IRC | see MikeJones, jsmith, RRSAgent, Zakim, ad, rch, Adam, logger_1
14:06:00 [jsmith]
regrets: Pete, Mark, Anne Bolton, Nick, Alan Thompson, Dan Harris
14:06:29 [jsmith]
Will Davis proposes WG sing happy birthday to Will
14:06:30 [Adam]
zakim, mute Adam
14:06:31 [Zakim]
Adam should now be muted
14:06:56 [jsmith]
next telecon same time next week
14:07:08 [jsmith]
no other agenda changes
14:07:21 [MikeJones]
Zakim, pick a scribe
14:07:23 [ad]
zakim, pick a victim,
14:07:23 [Zakim]
Not knowing who is chairing or who scribed recently, | propose Davis
14:07:24 [Zakim] '
| don't understand 'pick a victim.', ad. Try /msg Zakim help
14:07:26 [MikedJones]
Zakim, pick a scribe
14:07:28 [Zakim]
Not knowing who is chairing or who scribed recently, | propose Davis
14:07:30 [MikedJones]
Zakim, pick a scribe
14:07:32 [Zakim]
Not knowing who is chairing or who scribed recently, | propose DaveW
14:07:34 [MikeJones]

169

Zakim, pick a scribe
14:07:35 [Zakim]
Not knowing who is chairing or who scribed recently, | propose GavinK
14:08:34 [MikeJones]
Zakim, pick a scribe
14:08:35 [Zakim]
Not knowing who is chairing or who scribed recently, | propose DaveW
14:08:37 [MikeJones]
Zakim, pick a scribe
14:08:38 [Zakim]
Not knowing who is chairing or who scribed recently, | propose John_Smith
14:08:40 [MikeJones]
Zakim, pick a scribe
14:08:42 [Zakim)]
Not knowing who is chairing or who scribed recently, | propose Adam (muted)
14:08:44 [jsmith]
Eric Miller will scribe next week if he's here (babysitting)
14:09:05 [jsmith]
reviewing action list
14:09:29 [jsmith]
minutes of July 19 missing?
14:09:30 [Adam]
zakim, unmute Adam
14:09:31 [Zakim]
Adam should no longer be muted
14:10:05 [MikeJones]
19 July IRC log: http://www.w3.0rg/2002/07/19-rdfcore-irc#T14-54-10
14:10:35 [jsmith]
Adam: split between 2 authors with IRC access vs. time
14:10:55 [ad]
http://www.w3.0rg/2002/07/19-rdfcore-irc.htmi|
14:10:57 [jsmith]
IRC log was submitted and accepted as minutes
14:11:40 [jsmith]
approval of last week's minutes postponed due to late availability
14:12:00 [jsmith]
Brian will check IRC log against his action list
14:12:27 [MikeJones]
Zakim, who's talking?
14:12:28 [Adam]
zakim, drop Adam
14:12:29 [Zakim]
Adam is being disconnected
14:12:29 [Zakim]
-Adam
14:12:31 [jsmith]
reviewing long list state of completed actions
14:12:37 [rch_]
rch_ has joined #rdfcore
14:12:38 [Zakim]
Mikedones, listening for 10 seconds | heard sound from the following: MikedJ (29%)
14:13:34 [jsmith]
no objections to actions being closed off
14:13:35 [MikeJones]
=== 8: daml:.collection test case - volunteer to complete
14:14:08 [jsmith]
Miked has anyone implemented parseType="Literal"?
14:14:11 [jsmith]
rch: ARP has
14:14:38 [jsmith]
DaveW: validator produces ntriples
14:14:59 [jsmith]

170

ACTION: rch to complete test case
14:15:04 [Zakim]
+Adam
14:15:38 [jsmith]
item 9:
14:16:23 [jsmith]
MikedJ: dark triple request from WebOnt may have gone away
14:16:45 [Adam]
Should note that there is active discussion on www-rdf-logic about layering amongst
Williams, Fuller and other WG members
14:16:51 [jsmith]
ACTION: rch ask SWCG to check priority of dark triples requirement
14:16:55 [jsmith]
item 10:
14:17:25 [jsmith]
ad: wanted to confirm with rch as series editor
14:17:34 [jsmith]
ad: additional pubrules cleanups, etc.
14:17:38 [MikeJones]
validator looks buggy w.r.t. parseType="Literal"
14:17:46 [jsmith]
rch: go ahead
14:18:34 [jsmith]
ad: WG previously approved publication
14:18:45 [jsmith]
ACTION: ad publish GUIDE
14:18:55 [jsmith]
additional regrets: Stan
14:19:13 [jsmith]
rch: on 19th, discussed detailed review of individual documents
14:19:26 [jsmith]
ad: WG didn't get to this
14:20:17 [jsmith]
ad: editors indicated that they would all need to include material on datatypes - more
than an editorial change for last call - need to integrate and review schedule
14:20:40 [jsmith]
ad: would require 2 reviews: current and with datatypes
14:22:01 [jsmith]
Will: PRIMER doesn't yet address parseType="Collection" since it hasn't appeared in
SYNTAX yet
14:22:42 [jsmith]
Will: newer draft of July 25 on server now
14:23:14 [MikeJones]
"on the server"... which server? where?
14:23:16 [jsmith]
Adam: more work needed before review - would like another week
14:23:49 [MikeJones]
#
14:23:50 [MikeJones]
* new Primer version Will Davis (Thu, Jul 25 2002)
http://lists.w3.org/Archives/Public/w3c-rdfcore-wg/2002JuI/O1 56.htm!
14:23:59 [jsmith]
review SCHEMA week of August 30
14:24:08 [jsmith]
PRIMER also August 30
14:25:01 [MikeJones]
0156 -> http://www.w3.org/2001/09/rdfprimer/rdf-primer—20020725.htm|
14:25:49 [Zakim]
+Chris_Moore
14:26:48 [jsmith]
Chris: Model Theory waiting for data type resolution

171

Appendix C - The Live Collaboration Ontology

<?xml version='1.0' encoding='I150-8859-1"'?>
<!DOCTYPE owl [
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#">
<!ENTITY xsd "http://www.w3.0rg/2000/10/XMLSchema#">
<!ENTITY dc "http://purl.org/dc/elements/1.1/">
<!ENTITY dct "http://purl.org/dc/terms/">
<!ENTITY support "http://www.aktors.org/ontology/support#">
<!ENTITY portal "http://www.aktors.org/ontology/portal#">
<!IENTITY meeting
"http://www.ecs.soton.ac.uk/~krp/coakting/rdf/meeting-20030606-2#">
<IENTITY location "http://signage.ecs.soton.ac.uk/location#">
<IENTITY live "http://www.ecs.soton.ac.uk/~bpj00r/ontologies/live-
meeting-20040319-1#">
<IENTITY base "http://www.ecs.soton.ac.uk/~bpj00r/ontologies/live-

meeting-20040319-1#">
1>

<rdf :RDF xmlns:owl="&owl;"

xmlng:rdf="&rdf;"
xmlns:rdfs="&rdfs;"

xmlns:dc="&dc; "

xmlns:dct="&dct; "
xmlns:xsd="&xsd;"

xmlns: support="&support;"

xmlns:portal="&portal;"
xmlns:meeting="&meeting;"
xmlns:live="&live;"

xml : base="&base; ">

<owl:0Ontology rdf:about="">
<owl:versionInfo>1.2</owl:versionInfo>
<rdfs:comment>The live collaboration ontology by Ben
Juby</rdfs:comment>

<!-- import the CoAKTinG and Signage Location ontologies -->

<!-- CoAKTInG ontology already imports the AKT ontologies, SO no
need to explicitly import them -->
<owl:imports
rdf :resource="http://www.ecs.soton.ac.uk/~krp/coakting/rdf/meeting-
20030606-2#"/>
<owl:imports
rdf :resource="http://signage.ecs.soton.ac.uk/location#"/>
<dc:creator>Ben Juby (bpj00r€ecs.soton.ac.uk)</dc:creator>
<dct:created>2004-03-19</dct:created>

</owl:0ntology>

<!-- Personal Identifiers -->

<owl:Class rdf:ID="Personal-Identifier">
<rdfs:label>Personal Identifier</rdfs:label>
<rdfs:comment>A generic class for tangible identifiers like
iButtons and RFID tags that uniquely identify a person</rdfs:comment>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:Class rdf:ID="iButton">
<rdfs:label>iButton</rdfs:label>
<rdfs:comment>A representation of an iButton</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Personal-Identifier"/>
<rdfs:isDefinedBy rdf:resource="g&base;"/>

</owl:Class>

<owl :DatatypeProperty rdf:ID="has-button-id">
<rdfs:label>has button id</rdfs:label>
<rdfs:comment>The 64 bit iButton ID represented as a string of
hexadecimal digits</rdfs:comment>
<rdfs:domain rdf:resource="#iButton"/>
<rdfs:range rdf:resource="&xsd;string"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl :DatatypeProperty>

<!-- Extend portal:Person to include a Personal-Identifier (eg an

iButton) -->

<owl:0bjectProperty rdf:ID="has-personal-identifier">

<rdfs:label>has personal identifier</rdfs:label>

173

<rdfs:comment>a personal identifier (e.g. i1Button) that uniguely

belongs to the person</rdfs:comment>
<rdfs:domain rdf:resource="&portal;Person"/>
<rdfs:range rdf:resource="#Personal-Identifier"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:0bjectProperty>

<!-- new types of Event -->

<owl:Class rdf:ID="Personal-Identifier-Event">
<rdfs:label>Personal Identifier Event</rdfs:label>
<rdfs:comment>Any event that involes a personal
identifier</rdfs:comment>
<rdfs:subClassOf rdf:resource="&portal;Event"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:0bjectProperty rdf:ID="personal-identifier-used">
<rdfs:label>personal identifier used</rdfs:label>
<rdfs:comment>Records the instance of personal identifier used
the event, if known</rdfs:comment>
<rdfs:domain rdf:resource="#Personal-Identifier-Event"/>
<rdfs:range rdf:resource="#Personal-Identifier"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:0bjectProperty>

<owl:Class rdf:ID="iButton-Signed-In">
<rdfs:label>iButton Signed In</rdfs:label>
<rdfs:comment>Represents an i1iButton being 'signed
in'</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Personal-Identifier-Event"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&portal;has-location" />
<owl:allvaluesFrom rdf:resource="#1iButton-Reader-Position"
</owl:Restriction>
</rdfs:subClassOf>

<rdfs:isDefinedBy rdf:resource="g&base;"/>

</owl:Class>

<owl :DatatypeProperty rdf:ID="id-of-ibutton-used">

<rdfs:label>id of ibutton used</rdfs:label>

in

/>

174

<rdfs:comment>Records the 64 bit hex ID of the iButton used in the
event</rdfs:comment>

<rdfs:domain rdf:resource="#iButton-Signed-In"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Generic-Agent-Present">
<rdfs:label>Generic Agent Present</rdfs:label>
<rdfs:comment>Represents a Generic Agent being present in a
collaboration session</rdfs:comment>
<rdfs:subClassOf rdf:resource="&portal;Event"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:Class rdf:ID="Legal-Agent-Present">
<rdfs:label>Legal Agent Present</rdfs:label>
<rdfs:comment>Represents a Legal Agent being present in a
collaboration session</rdfs:comment>
<rdfs:subClassOf rdf:resource="Generic-Agent-Present"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl :onProperty rdf:resource="&portal;has-main-agent" />
<owl:allValuesFrom rdf:resource="&portal;Legal-Agent"” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:Class rdf:ID="Person-Present">
<rdfs:label>Person Present</rdfs:label>
<rdfs:comment>Represents a Person being present in a collaboration
session</rdfs:comment>
<rdfs:subClassOf rdf:resource="Legal-Agent-Present"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&portal;has-main-agent" />
<owl:allValuesFrom rdf:resource="&portal;Person" />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

175

<owl:Class rdf:ID="Microphone-Active">
<rdfs:label>Microphone Active</rdfs:label>
<rdfs:comment>An event to indicate that a microphone is gated
on</rdfs:comment>
<rdfs:subClassOf rdf:resource="&portal;Event"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&portal;has-location" />
<owl:allvaluesFrom rdf:resource="#Microphone-Position" />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:Class rdf:ID="Joined-To-Session">
<rdfs:label>Joined To Session</rdfs:label>
<rdfs:comment>An event that represents when a physical location is
currently joined to a distributed collaboration session</rdfs:comment>
<rdfs:subClassOf rdf:resource="&portal;Event"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>
<!-- Extensions to the Signage Location ontology -->

<!-- Extend location:Abstract-Space to say that it is equivalent to

portal:Location --> -

<rdf:Description rdf:about="&location;Abstract-Space">
<owl:equivalentClass rdf:resource="&portal ; Location"/>

</rdf:Description>
<!-- Declare location:is-located-in property as transitive -->

<rdf :Description rdf:about="&location;is-located-in">
<rdf:type rdf:resource="&owl;TransitiveProperty" />

</rdf:Description>
<!-- Declare location:adjacent-to as owl:SymmetricProperty -->

<rdf:Description rdf:about="&location;adjacent-to">

<rdf:type rdf:resource="&owl;SymmetricProperty" />

176

</rdf:Description>

<!-- Extend location:Abstract-Space to have a property that records

a collaboration site name -->

<owl :DatatypeProperty rdf:ID="has-collaboration-site-name">
<rdfs:label>has collaboration site name</rdfs:label>
<rdfs:comment>The name of the site that is shown to people at
others sites - e.g. "Southampton ECS"</rdfs:comment>
<rdfs:domain rdf:resource="&location;Abstract-Space"/>
<rdfs:range rdf:resource="&xsd;string"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:DatatypeProperty>
<!-- new types of location:Abstract-Space -->

<owl:Class rdf:ID="Device-Position">
<rdfs:label>Device-Position</rdfs:label>
<rdfs:comment>the location of any device</rdfs:comment:>

<rdfs:subClassOf rdf:resource="&location;Abstract-Space" />

</owl:Class>

<owl:Class rdf:ID="iButton-Reader-Position">
<rdfs:label>iButton-Reader-Position</rdfs:label>
<rdfs:comment>the location of an iButton reader</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Device-Position" />

</owl:Class>

<owl:Class rdf:ID="Microphone-Position">
<rdfs:label>Microphone-Position</rdfs:label>
<rdfs:comment>the location of a microphone</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Device-Position" />

</owl:Class>

<owl:Class rdf:ID="Seating-Position">
<rdfs:label>Seating-Position</rdfs:label>
<rdfs:comment>a specific seating position in a meeting
room</rdfs:comment>

<rdfs:subClassOf rdf:resource="&location;Abstract-Space" />

</owl:Class>

</rdf:RDF>
177

Appendix D - The CoAKTinG Ontology

<?xml version='1.0"' encoding='IS0-8859-1'?>

<!DOCTYPE owl [
<!ENTITY owl "http://www.w3.0rg/2002/07/owl# ">
<!ENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<!IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#">
<!ENTITY xsd "http://www.w3.o0rg/2000/10/XMLSchema#">
<!ENTITY dc "http://purl.org/dc/elements/1.1/">
<!ENTITY dct "http://purl.org/dc/terms/">
<!ENTITY support "http://www.aktors.org/ontology/support#">
<!ENTITY portal "http://www.aktors.org/ontology/portal#">
<!l-- ENTITY meeting "http://www.aktors.org/ontology/meeting#" -->
<IENTITY meeting

"http://www.ecs.soton.ac.uk/~krp/coakting/rdf /meeting-20030606-2#">
<!-- ENTITY base "http://www.aktors.org/ontology/meeting" -->
<!ENTITY base "http://www.ecs.soton.ac.uk/~krp/coakting/rdf/meeting-

20030606-2">

1>
<!-- CoOAKTIinG meeting ontology added above, and as namespace below -->

<rdf:RDF xmlns:owl="&owl;"

xmlng:rdf="&rdf; "
xmlns:rdfs="&rdfs;"

xmlns:dc="&dc; "

xmlns:dct="&dct; "
xmlns:xsd="&xsd; "

xmlns: support="&support;"

xmlns:portal="&portal;"
xmlns:meeting="&meeting; "

xml : base="&base; ">

<owl :Ontology rdf:about="&base;">
<rdfs:label xml:lang="en">CoAKTinG Meeting Ontology.</rdfs:label>
<dc:title xml:lang="en">CoAKTinG Meeting Ontology.</dc:title>
<dc:description xml:lang="en">The CoAKTinG Meeting Ontology has
been designed to support the CoAKTinG project and tools, extending the
AKT Reference Ontology.</dc:description>
<dc:creator>CoAKTinG Project</dc:creator>

<dc:creator>Kevin R. Page</dc:creator>

178

<dct:created>2003-06-02</dct:created>

<owl:versionInfo>0.2</owl:versionInfo>

<owl :imports
rdf:resource="http://www.aktors.org/ontology/portal"/>

</owl:Ontology>
<!-- add milliseconds to TimePoints -->

<owl:DatatypeProperty rdf:ID="millisecond-of ">
<rdfs:label xml:lang="en">millisecond of</rdfs:label>
<rdfs:domain rdf:resource="&support;Time-Point"/>
<rdfs:range rdf:resource="&xsd;nonNegativelInteger"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:DatatypeProperty>

<owl:Class rdf:about="&support;Time-Point">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#millisecond-of"/>
<owl :maxCardinality
rdf:datatype="&xsd;nonNegativelnteger">1l</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<!-- a new subsclass of Event to represent meetings which

concurrently take place in several locations -->

<owl:Class rdf:ID="Distributed-Gathering">
<rdfs:label>Distributed Gathering</rdfs:label>

<rdfs:comment>Gatherings that take place in more than one physical

location.</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Social-Gathering"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

<!-- a Distributed Gathering must have one or more constituent
Events -->
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#has-local-event"/>
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1l</owl :minCardinality>

179

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:0bjectProperty rdf:ID="has-local-event">
<rdfs:subPropertyOf rdf:resource="&portal;has-sub-event"/>
<rdfs:domain rdf:resource="#Distributed-Gathering"/>
<rdfs:range rdf:resource="&portal;Social-Gathering"/>
<rdfs:isDefinedBy rdf:resource="g&base;"/>

</owl:0bjectProperty>

<!-- Information-Exhibition is a subclass of Information-Transfer-

Event, which

is used to express the exhibition / display of an Information-

Bearing-Object,

e.g. the presentation of slides or documents in a meeting -->

<owl:Class rdf:ID="Information-Exhibition">
<rdfs:label>Information Exhibition</rdfs:label>
<rdfs:comment>Information Exhibition expresses the display of an
Information-Bearing-Object, e.g. the presentation of slides or
documents in a meeting.</rdfs:comment>
<rdfs:subClassOf rdf:resocurce="&portal;Information-Transfer-
Event"/>
<rdfs:isDefinedBy rdf:resource="g&base;"/>

</owl:Class>

<owl:0bjectProperty rdf:ID="has-information-object">
<rdfs:domain rdf:resource="#Information-Exhibition"/>
<rdfs:range rdf:resource="&portal;Information-Bearing-Object"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:0bjectProperty>

<!-- Define a class to describe Compound Information Objects, e.g.

presentation that includes multiple slides, video etc. -->

<owl:Class rdf:ID="Compound-Information-Object">
<rdfs:label>Compound Information Object</rdfs:label>
<rdfs:comment>Compound Information Objects describe Information
Bearing Objects that are constructed from a collection of further
Information Bearing Objects. e.g. a presentation containing several

gslides and a video.</rdfs:comment>

a

180

<rdfs:subClassOf rdf:resource="&portal;Information-Bearing-
Object" />
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:0bjectProperty rdf:ID="has-component">
<rdfs:domain rdf:resource="#Compound-Information-Object"/>
<rdfs:range rdf:resource="&portal;Information-Bearing-0Object"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:0bjectProperty>

<owl:Class rdf:ID="Presentation">
<rdfs:label>Presentation</rdfs:label>
<rdfs:comment>e.g. a PowerPoint presentation</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Compound-Information-Object"/>
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:Class rdf:ID="Slide">
<rdfs:label>Slide</rdfs:label>
<rdfs:comment>A slide within a presentation</rdfs:comment>
<rdfs:subClassOf rdf:resource="&portal;Information-Bearing-
Object" />
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:0bjectProperty rdf:ID="has-rendered-uri">
<rdfs:label xml:lang="en">has rendering</rdfs:label>
<rdfs:comment xml:lang="en">The location of a rendering of an
Information Bearing Object. e.g. a JPEG rendering of a
Slide.</rdfs:comment>
<rdfs:domain rdf:resource="&portal;Information-Bearing-Object"/>

<!-- rdfs:range rdf:resource="&portal; Information-Bearing-Object"/

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:0bjectProperty>
<!-- Verbal comment Event -->

<owl:Class rdf:ID="Making-a-Verbal-Comment">

<rdfs:label>Verbal Comment</rdfs:label>

181

<rdfs:comment>An Event to bind when a Person makes a comment (e.g.
in a meeting) .</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Information-Transfer-
Event"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="&portal; sender-of-information"

<owl:allvaluesFrom rdf:resource="&portal;Person" />
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:0ObjectProperty rdf:ID="has-transcription">

<rdfs:label xml:lang="en">has transcription</rdfs:label>

<rdfs:comment xml:lang="en">The transcription of an event, e.g.
the minutes of a meeting, or the video recording of a
presentation.</rdfs:comment>

<rdfs:domain rdf:resource="&portal;Event"/>

<rdfs:range rdf:resource="&portal;Information-Bearing-Object"/>

<rdfs:isDefinedBy rdf:resource="g&base;"/>

</owl:0ObjectProperty>

<!-- The has-start-time and has-end-time are expected to map to the
creation and last

modified times of Compendium nodes -->

<owl:Class rdf:ID="Creating-a-Compendium-Node ">
<rdfs:label xml:lang="en">creating a compendium node</rdfs:label>
<rdfs:comment xml:lang="en">This event marks when a Compendium
node was created e.g. when compendium is used to minute a
meeting.</rdfs:comment>
<rdfs:subClassOf rdf:resource="&portal;Information-Transfer-
Event"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

<rdfs:subClassOf>

<owl:Restriction>

182

<owl:onProperty rdf:resource="&portal; sender-of-information"

<owl:allvaluesFrom rdf:resource="&portal;Person" />
</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&meeting;has-compendium-node" />
<owl:allvValuesFrom rdf:resource="&portal; Person" />
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1l</owl:minCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl :0ObjectProperty rdf:ID="has-compendium-node">
<rdfs:label xml:lang="en">has Compendium node</rdfs:label>
<rdfs:comment xml:lang="en">A Compendium node being created.
Currently the resource is expected to be within the XML output from
Compendium, rather than a class/instance in the knowledge

base.</rdfs:comment>

<rdfs:domain rdf:resource="&meeting;Creating-a-Compendium-Node" />
<!-- rdfs:range rdf:resource="&meeting;Agumentation"/ -->
<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:0ObjectProperty>

</rdf :RDF>

183

Appendix E - The Signage Location Ontology

<?xml version="1.0"?2>

<IDOCTYPE owl [

<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY

1>

rdf
rdfs
xsd
owl
dc
dct
akt
akts

base

<rdf:RDF xmlns:

xmlns:

xmlns:

xmlns
xmlns

xmlns

xmlns:

xmlns:

"http://www
"http://www
"http://www.
"http://www

w3
w3
w3.

.w3.0rg/2002/07/owl# ">

.0rg/1989/02/22-rdf-syntax-ns#">

org/2000/01/rdf -schema#">
org/2001/XMLSchema#">

"http://purl.org/dc/elements/1.1/">

"http://purl.org/dc/terms/ ">

"http://www.aktors.org/ontology/portal#">

"http://www.aktors.org/ontology/support#">

"http://signage.ecs.soton.ac.uk/location#">

rdf="&rdf;"
rdfs="&rdfs;"

xsd="&xsd; "

:owl="&owl;™"

:dc="&dc; "
:dct="&dct;"
akt="&akt;"

akts="&akts; "

xml :base="&base; ">

<owl:Ontology rdf:about="">

<rdfs:label>Building Ontology</rdfs:label>

<dc:title xml:lang="en">Building Ontology</dc:title>

<dc:description xml:lang="en">The Building Ontology has been

designed to describe the structure,

building,

applications.</dc:description>

<dc:creator>Signage Project

in order support a number of pervasive computing

(http://signage.ecs.soton.ac.uk/)</dc:creator>

<dc:creator>Ian Millard

(icm02r@ecs.soton.ac.uk)</dc:creator>

<dct:created>2004-01-19</dct:created>

<owl:versionInfo>0.l</owl:versionInfo>

</owl:0Ontology>

contents and occupants of a

184

<!-- Abstract space, and associated properties -->

<owl:Class rdf:ID="Abstract-Space">

<rdfs:label>Abstract-Space</rdfs:label>

<rdfs:comment>This is a high-level abstraction of any abstract

space</rdfs:comment>

</owl:Class>

<owl :0ObjectProperty rdf:ID="is-located-in">

<rdfs:label>is-located-in</rdfs:label>

<rdfs:comment>This property is to be used to describe an Abstract-

Space which is located within another,</rdfs:comments>
<rdfs:domain rdf:resource="#Abstract-Space" />
<rdfs:range rdf:resource="#Abstract-Space" />

</owl:0bjectProperty>

<owl :0ObjectProperty rdf:ID="is-part-of">

<rdfs:label>ig-part-of</rdfs:label>

<rdfs:comment>This property 1is to be used to describe an Abstract-

Space which forms part of another</rdfs:comment:>
<rdfs:domain rdf:resource="#Abstract-Space" />
<rdfs:range rdf:resource="#Abstract-Space" />

</owl:0bjectProperty>

<owl:0bjectProperty rdf:ID="is-owned-by">
<rdfs:label>is-owned-by</rdfs:label>
<rdfs:comment>This property is to be used to describe the
Organization of the Abstract-Space</rdfs:comment>
<rdfs:domain rdf:resource="#Abstract-Space" />
<rdfs:range rdf:resource="&akt;Organization" />

</owl:0bjectProperty>

<owl :0ObjectProperty rdf:ID="has-usual-occupant ‘>

<rdfs:label>has-usual-occupant</rdfs:label>

owning

<rdfs:comment>This property i1s to be used to describe the usual

occupant of an Abstract-Space</rdfs:comment>
<rdfs:domain rdf:resource="#Abstract-Space" />
<rdfs:range rdf:resource="&akt;Person" />

</owl :0ObjectProperty>

<owl:0bjectProperty rdf:ID="adjacent-to">

185

<rdfs:label>adjacent-to</rdfs:label>

<rdfs:comment>This property indicates that one Abstract Space 1is
adjacent to another</rdfs:comment>

<rdfs:domain rdf:resource="#Abstract-Space" />

<rdfs:range rdf:resource="#Abstract-Space" />

</owl:0ObjectProperty>

<owl:0bjectProperty rdf:ID="adjacent-on-north-side">
<rdfs:label>adjacent-on-north-side</rdfs:label>
<rdfs:comment>This property is to be used to describe another
adjacent Abstract Space which is to the North</rdfs:comment>
<rdfs:subProperty0Of rdf:resource="#adjacent-to" />

</owl:0ObjectProperty>

<owl:0bjectProperty rdf:ID="adjacent-on-south-side">
<rdfs:label>adjacent-on-south-side</rdfs:label>
<rdfs:comment>This property is to be used to describe another
adjacent Abstract Space which is to the South</rdfs:comment>
<rdfs:subPropertyQOf rdf:resource="#adjacent-to" />

</owl:0ObjectProperty>

<owl:0bjectProperty rdf:ID="adjacent-on-east-side">
<rdfs:label>adjacent-on-east-side</rdfs:label>
<rdfs:comment>This property is to be used to describe another
adjacent Abstract Space which is to the East</rdfs:comment>
<rdfs:subProperty0Qf rdf:resource="#adjacent-to" />

</owl:0bjectProperty>

<owl:ObjectProperty rdf:ID="adjacent-on-west-side">
<rdfs:label>adjacent-on-west-gide</rdfs:label>
<rdfs:comment>This property is to be used to describe another
adjacent Abstract Space which is to the West</rdfs:comment>
<rdfs:subPropertyOf rdf:resource="#adjacent-to" />

</owl:0ObjectProperty>

<!-- Enclosed space, and associated properties -->

<owl:Class rdf:ID="Enclosed-Space">
<rdfs:label>Enclosed-Space</rdfs:label>
<rdfs:comment>This is a high-level abstraction of any enclosed or
bounded space (such as a building or room) which constrians movement

from one space to another</rdfs:comment>

186

<rdfs:subClassOf rdf:resource="#Abstract-Space" />

</owl:Class>

<owl:0bjectProperty rdf:ID="permits-access-to">
<rdfs:label>permits-access-to</rdfs:label>
<rdfs:comment>This property is to be used to describe a connection
(such as a door) which permits access between two Enclosed-
Spaces</rdfs:comment>
<rdfs:domain rdf:resource="#Enclosed-Space" />
<rdfs:range rdf:resource="#Abstract-Space" />

</owl:0bjectProperty>
<!-- A building -->

<owl:Class rdf:ID="Building">
<rdfs:label>Building</rdfs:label>
<rdfs:comment>This class is used to represent a
Building</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Enclosed-Space" />

</owl:Class>

<owl:0bjectProperty rdf:ID="has-postal-address">
<rdfs:label>has-postal-address</rdfs:label>
<rdfs:comment>This property denotes that a Building is located at
a particular Postal-Address</rdfs:comment>
<rdfs:domain rdf:resource="#Building" />
<rdfs:range rdf:resource="&akt;Postal-Address" />

</owl:0bjectProperty>
<!-- A floor in a building -->

<owl:Class rdf:ID="Floor">
<rdfs:label>Floor</rdfs:label>
<rdfs:comment>This class is used to represent a Floor in a
Building</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Enclosed-Space" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#is-part-of" />
<owl:allvaluesFrom rdf:resource="#Building" />
</owl:Restriction>

</rdfs:subClassOf>

187

</owl:Class>

<!-- A Room on a Floor of a Building -->

<owl:Class rdf:ID="Room">
<rdfs:label>Room</rdfg:label>
<rdfs:comment>This class is used to represent a Room on a Floor in
a Building</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Enclosed-Space" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#ig-part-of" />
<owl:allValuesFrom rdf:resource="#Floor" />
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<!-- Types of room -->

<owl:Class rdf:ID="0Office">

<rdfs:label>0ffice</rdfs:label>

<rdfs:comment>This class is used to represent an Office, usually

inhabited by a small number of people</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Room" />

</owl:Class>

<owl:Class rdf:ID="Laboratory">

<rdfs:label>0ffice</rdfs:label>

<rdfs:comment>This class is used to represent a Laboratory,
usually inhabited by a large number of people</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Room" />

</owl:Class>

<owl:Class rdf:ID="Meeting-Room">
<rdfs:label>Meeting-Room</rdfs:label>

<rdfs:comment>This clags is used to represent a room used for

meetings</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Room" />

</owl:Class>

<!l-- A Corridoor -->

188

<owl:Class rdf:ID="Corridoor">
<rdfs:label>Corridoor</rdfs:label>
<rdfs:comment>This class is used to represent a corridoor, on a
Floor of a Building</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Enclosed-Space" />
<rdfs:subClassOf>
<owl:Restriction>
<owl :onProperty rdf:resource="#is-part-of" />
<owl:allvValuesFrom rdf:resource="#Floor" />
</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>
<!-- Floor-Traversing-Spaces -->

<owl:Class rdf:ID="Floor-Traversing-Space">
<rdfs:label>Floor-Traversing-Space</rdfs:label>
<rdfs:comment>This class 1s used to represent a space which
traverses Floors</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Enclosed-Space" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#is-part-of" />
<owl:allvaluesFrom rdf:resource="#Building" />
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Stairs">
<rdfs:label>Stairs</rdfs:label>

<rdfs:comment>This class is used to represent Stairs, which

traverse between Floors</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Floor-Traversing-Space" />

</owl:Class>

<owl:Class rdf:ID="Lift">
<rdfs:label>Lift</rdfs:label>

<rdfs:comment>This class is used to represent a 1lift, which

traverses between Floors</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Floor-Traversing-Space" />

</owl:Class>

189

<!-- A Partitioned-Space -->

<owl:Class rdf:ID="Partitioned-Space">
<rdfs:label>Partitioned-Space</rdfs:label>
<rdfs:comment>This class is used to represent a partitioned space
in a Building. This i1s an Enclosed-Space, like a room, but which may
permit communication between Partitioned-Spaces</rdfs:comment>
<rdfs:subClagsOf rdf:resource="#Enclosed-Space" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#ig-part-of" />
<owl:allValuesFrom rdf:resource="#Enclosed-Space" />
</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<!-- Work area -->

<owl:Class rdf:ID="Work-Area">
<rdfs:label>Work-Area</rdfs:label>
<rdfs:comment>This class is used to represent a localised area in
which someone works, such as a desk, laboratory bench, machine in a
workshop etc</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Abstract-Space" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#is-located-in" />
<owl:allvValuesFrom rdf:resource="#Abstract-Space" />
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

</rdf:RDF>

190

Appendix F - The Inference Rules

1 - Get Locations On Sign In

[getLocationsOnSignIn:

//query for the things that an 1Button reader is-located-in
(?sign_in rdf:type live:iButton-Signed-In),
(?sign_in portal:has-location ?reader_loc),

novalue(?reader_loc, location:is-located-in)

print ("getLocationsOnSignIn has fired"),

queryTriplestore(?reader_loc, location:is-located-in, ?loc)

]

2 - Get Locations On Microphone Active

[getLocationsOnMicrophoneActive:

//query for the things that a microphone position is-located-in
(?mic_active rdf:type live:Microphone-Active),
(?mic_active portal:has-location ?mic_pos),

noValue (?mic_pos, location:is-located-in)

print ("getLocationsOnMicrophoneActive has fired"),
queryTriplestore(?mic_pos, location:is-located-in, ?loc)

]

3 - iButton ID To URI

[iButtonIDToOURTI :

//resolves an iButton ID to its URI

(?a live:id-of-ibutton-used ?2id)

print ("iButtonIDToURI has fired"),

191

3 continued:
queryTriplestore(?ibutton, live:has-ibutton-id, 2id),

]

4 - iButton To Person

[iButtonToPerson:

//resolves the URI of an iButton to a person

(?ibutton rdf:type live:iButton)

print ("iButtonToPerson has fired "),

queryTriplestore (?person, live:has-perscnal-identifier, 2ibutton)

]

5 - Create Person Present

[createPersonPresent:

(?a rdf:type live:iButton-Signed-In),
(?a portal:has-location ?location),

(?a live:id-of-ibutton-used 2id),

(?a support:has-time-interval ?time_int),

(?time_int support:begins-at-time-point ?begin_time),

{(?person live:has-personal-identifier ?ibutton),

(?ibutton live:has-ibutton-id ?2id),

makeResource (?pp_event),

makeResource (?time)

print ("createPersonPresent has fired"),
(?pp_event, rdf:type live:Person-Present),

(?pp_event, portal:has-location ?location),

(?pp_event support:has-time-interval ?time),
(?time rdf:type support:Time-Interval),

(?time support:begins-at-time-point ?begin_time),

192

5 continued:

(7pp_event, portal:has-main-agent ?person),

publishToDataspace ("TUPLE_TYPE" "TUPLE") ,

publishToDataspace ("EVENT_TYPE", live:Person-Present),

publishToDataspace ("ADD_TRIPLE", ?pp_event, rdf:type, live:Person-

Present) ,

publishToDataspace ("ADD_TRIPLE", 7?pp_event, portal:has-location,

?location),

publishToDataspace ("ADD_TRIPLE", ?pp_event support:has-time-interval

?time),

publishToDataspace ("ADD_TRIPLE", ?time rdf:type support:Time-
Interval),

publishToDataspace {"ADD TRIPLE", ?time support:begins-at-time-point
?begin_time),

publishToDataspace ("ADD_TRIPLE", ?pp_event, portal:has-main-agent

?person),

publishToDataspace ("PUBLISH")
]

6 - Create Single Meeting In One Room

[createSingleMeetingInOneRoom:

(?a rdf:type live:Person-Present),
(?b rdf:type live:Person-Present),

notEqual (?a, ?b),

//check that both events have the same room location
//this location should be an ibutton reader
(?a portal:has-location ?loc_a),

(?b portal:has-location ?loc_b),

//3store will have already been queried when getLocations fired
(?loc_a location:is-located-in ?room),
(?loc_b location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),

noMeetingAtPhysLoc (?room),

193

6 continued:
//check that both person present events are not in a meetin
eventNotInMeeting(?a),

eventNotInMeeting (?b),

//get time intervals and start times

(?a support:has-time-interval ?time_a),

(?b support:has-time-interval ?time_b),

(?time_a support:begins-at-time-point ?begin_a),

(?time_b support:begins-at-time-point ?begin_b),

//check that the PP events are still active
noValue(?time_a support:ends-at-time-point),

noValue (?time_b support:ends-at-time-point),
getMostRecentTimePoint (?begin_a, ?begin_b, ?most_recent),
//get 'main agents'

(?a portal:has-main-agent ?person_a),

(?b portal:has-main-agent ?person_b),

makeResource (?meeting),

makeResource(?time),
//check that this rule hasn't fired before

//but with data the other way round

novalue (?b live:csmior-has-fired),

print ("createSingleMeetingInOneRoom has fired"),

//create a Meeting-Taking-Place

//add person to meeting rule will

//then fire to add the Person-Present events

//Ccreate a new meeting taking place

(?meeting rdf:type portal:Meeting-Taking-Place) ,

//create appropriate start time

(?meeting support:has-time-interval ?time),

194

6 continued:

(?time rdf:type support:Time-Interval),

//I want the most recent sign in - need to test

(?time support:begins-at-time-point ?most_recent),

//also need to add room location

(?meeting portal:has-location ?room),

//assert some a unique triple to say rule has fired

(?a live:csmior-has-fired "fired")

7 - Create Meetings In Two Rooms

[createMeetingsInTwoRooms::

(?a rdf:type live:Person-Present),
(?b rdf:type live:Person-Present),

notEcqual (?a, ?b),
//check that the room locations are different

//this location should be an ibutton reader
(?a portal:has-location ?loc_a),

(?b portal:has-location ?loc_b},

//3store will have already been queried when getLocations fired
(?loc_a location:is-located-in ?room_a),

(?loc_b location:is-located-in ?room_b),

(?room_a rdf:type location:Meeting-Room),

(?room_b rdf:type location:Meeting-Room),

notEqual (?room_a, ?room_Db) ,

noMeetingAtPhysLoc (?room_a),

noMeetingAtPhysLoc (?room _b),

//check that both person present events are not in a meeting
//this test is needed because if Person-Present event a or b
//were already part of meetings that were finished then this
//rule would still fire

eventNotInMeeting (?a),

195

7 continued:

eventNotInMeeting (?b),

//get time intervals and start times

(?a support:has-time-interval ?timeint_a),

(?b support:has-time-interval ?timeint b),
(?timeint_a support:begins-at-time-point ?begin_a),

(?timeint_b support:begins-at-time-point ?begin_b),

//check that the PP events are still active
noValue (?timeint_a support:ends-at-time-point)

noValue(?timeint b support:ends-at-time-point)

getMostRecentTimePoint (?begin_a, ?begin_b, ?most_recent),

//get 'main agents'
(?a portal:has-main-agent ?person_a),

(?b portal:has-main-agent ?person_b),

//create new resouces to become meetings and time intervals
makeResource (?meeting a),

makeResource (?meeting_b),

makeResource (?time_a),

makeResource(?time_b),
//check that this rule hasn't fired before

//but with data the other way round

novValue (?b live:cmitr-has-fired)

print("createMeetingsInTwoRooms has fired"),

//create a 2 instances of Meeting-Taking-Place

//add person to meeting rule will

//then fire to add the Person-Present events

//create 2 new meetings taking place
(?meeting a rdf:type portal:Meeting-Taking-Place),

196

7 continued:

(?meeting_b rdf:type portal:Meeting-Taking-Place),

//create appropriate start times
(?meeting_a support:has-time-interval ?time_a),

(?meeting_b support:has-time-interval ?time_b),

(?time_a rdf:type support:Time-Interval),

(?time_b rdf:type support:Time-Interval),

//I want the most recent sign in - need to test
(?time_a support:begins-at-time-point ?most_recent),

(?time_b support:begins-at-time-point ?most_recent),

//add the agent present as sub events of the meetings
// (?meeting a portal:has-sub-event ?a),

// (?meeting_b portal :has-sub-event ?b),

//add participants to the social gathering
//{?meeting_a portal:meeting-attendee person_a),

// (?meeting_b portal:meeting-attendee person_b),

//also need to add room location
(?meeting_a portal:has-location ?room_a),

(?meeting_b portal:has-location ?room_b),

//assert some a unique triple to say rule has fired

(?a live:cmitr-has-fired "fired")

8 - Add Person To Meeting

[addPersonToMeeting:

(?a rdf:type live:Person-Present),

//this location should be an ibutton reader

(?a portal:has-location ?loc),

//3store will have already been gueried when getLocations fired
(?loc location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),

197

8 continued:

//match on a meeting currently in session in the meeting room
(?meeting rdf:type portal:Meeting-Taking-Place),

(?meeting portal:has-location ?room),

(?meeting support:has-time-interval ?time),

novalue (?time support:ends-at-time-point),

//check that the person present event is not already in a meeting

eventNotInMeeting(?a),

//check that pp event is still active
(?a support:has-time-interval ?pptime),

novValue (?pptime support:ends-at-time-point),

//get 'main agent'

(?a portal:has-main-agent ?person),

print ("addPersonToMeeting has fired"),

//add the person present to the meeting

(?meeting portal:has-sub-event ?2a),

//add participant to the meeting

(?meeting portal:meeting-attendee person)

9 - Create Distributed Gathering

[createDistributedGathering:

//match on two different meetings taking place
(?meeting_a rdf:type portal :Meeting-Taking-Place),
(?meeting_b rdf:type portal :Meeting-Taking-Place),

notEqual (?meeting_a, ?meeting b),

//check there is not already an instance of Distributed Gathering
novValue3 (?existing dist_gath, rdf:type, meeting:Distributed-

Gathering),

198

9 continued:

//get time intervals and start times

(?meeting_a support:has-time-interval ?time_a),
(?meeting_b support:has-time-interval ?time_b),
(?time_a support:begins-at-time-point ?begin_a),

(?time_b support:begins-at-time-point ?begin_b),

//check that the meetings are still in session
novalue(?time_a support:ends-at-time-point),
novValue(?time_b support:ends-at-time-point),
getMostRecentTimePoint (?begin_a, ?begin_ b, ?most_recent),
makeResource(?dist_gath),

makeResource(?time),

//check that this rule hasn't fired before

//but with data the other way round

novalue (?meeting_b live:cdg-has-fired)

print("create distributed gathering has fired"),
(?dist_gath rdf:type meeting:Distributed-Gathering),
//create appropriate start time

(?dist_gath support:has-time-interval ?time),

(?time rdf:type support:Time-Interval),

//I want the start time of the most recent meeting

(?time support:begins-at-time-point ?most_recent),
//add the meetings as local events of the distributed gathering
(?dist_gath meeting:has-local-event ?meeting_a) .,

(?dist_gath meeting:has-local-event ?meeting_b),

(?meeting_a live:cdg-has-fired "fired")

199

10 - Create Additional Meeting

[createAdditionallMeeting:

(?a rdf:type live:Person-Present),

//this rule should only fire when there

//already is at least on meeting in session

(?existing meeting rdf:type portal:Meeting-Taking-Place)
(?existing _meeting support:has-time-interval ?existing_time),

noValue (?existing_time support:ends-at-time-point),

//this location should be an ibutton reader

(?7a portal:has-location ?loc),

//3store will have already been queried when getLocations fired
(?loc location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),

//check that no meeting is currently in session in the room

noMeetingAtPhysLoc (?room) ,

//check that the person present event is not
//already in a meeting, this is in case it 1is part
//of a meeting that has finished

eventNotInMeeting(?a),
//get time interval and start time
(?7a support:has-time-interval ?time_a),

(?time_a support:begins-at-time-point ?begin_time),

//get 'main agent'

(?a portal:has-main-agent ?person),

makeResource (?meeting) ,

makeResource (?time) ,

//check that this rule hasn't fired before on the same

//person present event

novalue(?a live:cam-has-fired)

200

10 continued:

print ("createAdditionalMeeting has fired"),

//create a Meeting-Taking-Place containing the Person-Present

(?meeting rdf:type portal :Meeting-Taking-Place) ,
//create appropriate start time

(?meeting support:has-time-interval ?time),
(?time rdf:type support:Time-Interval),

(?time support:begins-at-time-point ?begin_time),

//also need to add room location

(?meeting portal:has-location ?room),

//assert a unique triple so we know this rule has already fired

(?a live:cam-has-fired "fired")

11 - Add Meeting To Distributed Gathering

[addMeetingToDistGath:
(?meeting rdf:type portal:Meeting-Taking-Place),

//match on a distributed gathering

(?dist_gath rdf:type meeting:Distributed-Gathering),
//check that the meeting is not already

//part of a distributed gathering

eventNotInDistGath (?meeting)

print ("addMeetingToDistGath has fired"),

//add the meeting to the distributed gathering

(?dist_gath meeting:has-local-event ?meeting)

12 - Handle Sign Out

[handleSignQut:

//match on an iButton-Signed-In that has an end time
(?sign_in rdf:type live:iButton-Signed-In),
(?sign_in support:has-time-interval ?time_int),

(?time_int support:ends-at-time-point ?end_time),
(?sign_in live:id-of-ibutton-used ?id),

//ibutton will have already been resolved to a uri
//and resolved to a person when the corresponding sign_in ocurred
(?person live:has-personal-identifier ?ibutton),

(?ibutton live:has-ibutton-id 2id),

//get the corresponding Person-Present event
(?pp_event rdf:type live:Person-Present),
(?pp_event portal :has-main-agent ?person),

(?pp_event support:has-time-interval ?pp_time),

//check that the PP event is still active

novValue (?pp_time support:ends-at-time-point),

//check this rule hasn't already fired on this sign out

novValue(?sign_in live:hso-has-fired)

print ("handleSignOut has fired"),

//assert the end time on the person present event

(?pp_time support:ends-at-time-point ?end_time) ,

publishToDataspace ("TUPLE_TYPE", "TUPLE_EVENT") ,

publishToDataspace ("EVENT_TYPE", live:Person-Present),

publishToDataspace{"ADD_TRIPLE", ?pp_time, support:ends-at-time-point,

?end_time),

publishToDataspace ("PUBLISH"),

o
(]
(]

12 continued:
//finally delete the tuple for the start of the event

publishToDataspace ("DELETE", ?pp_event),

//ensure that this rule only fires once per sign out
//by asserting a triple that says this rule has fired

(?sign_in live:hso-has-fired "fired")

13 - End Meeting During Distributed Gathering

[endMeetingDuringDistGath:

(?pp_event rdf:type live:Person-Present),
(?pp_event support:has-time-interval ?pp_timeint),

(?pp_timeint support:ends-at-time-point ?pp_end_time),

(?pp_event portal:has-location ?loc),
(?loc location:is-located-in Zroom),

(?room rdf:type location:Meeting-Room),

//need this to match as otherwise rule will fire before all of
//the sign out event has been added

(?pp_end_time, support:year-of, ?year),

(?pp_end_time, support:month-of, ?month),

(?pp_end_time, support:day-of, ?day),

(?pp_end_time, support:hour-of, 2hour),

(?pp_end_time, support:minute-of, ?minute),

(?pp_end_time, support:second-of, ?second),

(?pp_end_time, meeting:millisecond-of, ?milli),

//check that the pp event is the most recent one - as that is
//the end time we need

eventHasMostRecentEndTime (?pp_end_time, live:Person-Present, ?room),

//check that the distributed gathering is still in session
(?dist_gath rdf:type meeting:Distributed-Gathering),
(?dist_gath support:has-time-interval ?timeint),

novValue(?timeint support:ends-at-time-point),

//match when a meeting is in session at the location

203

13 continued:

(?meeting rdf:type portal:Meeting-Taking-Place),
(?meeting portal:has-location ?room),

(?meeting support:has-time-interval ?meet timeint),

noValue (?meet_timeint support:ends-at-time-point),

//ensure that pp_event is from this current meeting and not an
//earlier finished one that was in the same location

(?meeting portal:has-sub-event ?pp_event),

//see 1f there are no more participants at the meeting
//number must be quoted

participantsPresent (?meeting, "<=", "0"),

print ("endMeetingDuringDistGath has fired"),

//assert an end time on the meeting

(?meet_timeint support:ends-at-time-point ?pp_end_time)

14 - End Distributed Gathering

[endDistGath:

(?meeting_finished rdf:type portal :Meeting-Taking-Place),
(?meeting_finished support:has-time-interval ?meet_timeint),

(?meet_timeint support:ends-at-time-point ?end_time),

//check that the meeting finished is the most recent one - as
//that is the end time we need

eventHasMostRecentEndTime (?end_time, portal:Meeting-Taking-Place),

(?dist_gath rdf:type meeting:Distributed-Gathering),
(?dist_gath support:has-time-interval ?2timeint),
novValue(?timeint support:ends-at-time-point),

(?dist_gath meeting:has-local-event ?meeting finished),

onlyOneMeetingInSession() ,

//match on the details of the final active meeting

14 continued:
(?meeting active rdf:type portal:Meeting-Taking-Place),
(?meeting_active support:has-time-interval ?meet active timeint),

novValue (?meet_active timeint support:ends-at-time-point),

//check that the final active meeting has more than one
//participant
//otherwigse we need the special case to fire

//participantsPresent (?meeting_active, ">" ,"1"),

print ("endDistGath has fired"),

(?timeint support:ends-at-time-point ?end_time)

15 - End Meeting After Distributed Gathering

[endMeetingAfterDistGath:

(?pp_event rdf:type live:Person-Present),
(?pp_event support:has-time-interval ?pp_timeint),

(?pp_timeint support:ends-at-time-point ?pp_end_time),
(?pp_event portal:has-location ?loc),

(?loc location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),

//need this to match as otherwise rule will fire before all of
//the sign out event has been added

(?pp_end_time, support:year-of, ?year),

(?pp_end_time, support:month-of, ?month),

(?pp_end_time, support:day-of, ?2day),

(?pp_end_time, support:hour-of, ?2hour),

(?pp_end_time, support:minute-of, ?minute),

(?pp_end_time, support:gecond-of, ?second),

(?pp_end_time, meeting:millisecond-of, ?milli),

//check that the pp event is the most recent one - as that is

//the end time we need

205

15 continued:

eventHasMostRecentEndTime (?pp_end time, live:Person-Present, ?room),

//match on a meeting still in session
(?meeting rdf:type portal:Meeting-Taking-Place) ,
(?meeting support:has-time-interval ?meet_timeint),

noValue(?meet_timeint support:ends-at-time-point),

//ensure that pp_event is from this current meeting and not an
//earlier finished one that was in the same location

(?meeting portal:has-sub-event ?pp_event),

//check that there has been a distributed gathering and that it
//has ended

(?dist_gath rdf:type meeting:Distributed-Gathering),
(?dist_gath support:has-time-interval ?dist_gath_timeint),

(?dist_gath timeint support:ends-at-time-point ?dist_gath_end_time)

//match when we are down to the last meeting participant

participantsPresent (?meeting, "<=","1")

print ("endMeetingAfterDistGath has fired"),

//assert an end time on the meeting

(?meet_timeint support:ends-at-time-point ?pp_end_time)

16 - End Meeting Before Distributed Gathering

[endMeetingBeforeDistGath:

(?pp_event rdf:type live:Person-Present),

(?pp_event support:has-time-interval ?pp_timeint),
(?pp_timeint support:ends-at-time-point ?pp_end_time),

(?pp_event portal:has-location ?loc),

(?loc location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),

206

16 continued:

//need this to match as otherwise rule will fire before all of
//the sign out event has been added

(?pp_end_time, support:year-of, ?year),

(?pp_end_time, support:month-of, ?month),

(?pp_end_time, support:day-of, ?day),

(?pp_end_time, support:hour-of, ?hour),

(?pp_end_time, support:minute-of, ?minute),

(?pp_end__time, support:second-of, ?second),

(?pp_end_time, meeting:millisecond-of, ?milli}),

//check that the pp event is the most recent one - as that is
//the end time we need

eventHasMostRecentEndTime (?pp_end_time, live:Person-Present, ?room),

//match on a meeting still in session
(?meeting rdf:type portal:Meeting-Taking-Place),
(?meeting support:has-time-interval ?meet_timeint),

noValue (?meet_timeint support:ends-at-time-point),

//ensure that pp_event is from this current meeting and not an
//earlier finished one that was in the same location

(?meeting portal:has-sub-event ?pp_event),

//check that there has not yet been a distributed gathering
noValue3 (?dist_gath rdf:type meeting:Distributed-Gathering),

//match when we are down to the last meeting participant

participantsPresent (?meeting, "<=","1"}),

print ("endMeetingBeforeDistGath has fired"),

//assert an end time on the meeting

(?meet_timeint support:ends-at-time-point ?pp_end time)

17 - Create Verbal Comment In Meeting

[createVerbalCommentInMeeting:

//match on an active Microphone-Active event
(?mic_act rdf:type live:Microphone-Active),
//loc is a microphone-position

(?mic_act portal:has-location ?loc),

(?mic_act support:has-time-interval ?timeint),

noValue(?timeint support:ends-at-time-point),

//get the room location of the
(?loc location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),

//get the ibutton reader located in the same seating position

//as the microphone

(?loc location:is-located-in ?seat_pos),
(?seat_pos rdf:type live:Seating-Position),
(?ibut_read pos location:is-located-in ?seat_pos),

(?ibut_read_pos rdf:type live:iButton-Reader-Position),

//get the person seating in that seating position
(?pp_event rdf:type live:Person-Present),
(?pp_event portal:has-location ?ibut_read pos),
(?pp_event portal:has-main-agent ?person),
(?pp_event support:has-time-interval ?pp_timeint),

noValue (?pp_timeint support:ends-at-time-point),

//get the meeting that the pp_event is part of

(?meeting portal:has-sub-event ?pp_event)

//create a resource to become the verbal comment

makeResource (?vc)

print ("createVerbalCommentInMeeting has fired")

(?vc rdf:type meeting:Making-a-Verbal-Comment),
(?vc support:has-time-interval ?timeint),
(?vc portal:sender-of-information ?person),

(?vc portal:has-location ?room),

208

17 continued:
//set this verbal comment as a subevent of the meeting its part of

(?meeting portal:has-sub-event ?vc),

publishToDataspace ("TUPLE_TYPE", "TUPLE"),

publishToDataspace ("EVENT_TYPE", meeting:Making-a-Verbal-Comment}),

publishToDataspace ("ADD_TRIPLE", ?vc, rdf:type, meeting:Making-a-
Verbal-Comment) ,

publishToDataspace ("ADD_TRIPLE", ?vc, portal:sender-of-information,
?person) ,

publishToDataspace ("ADD_TRIPLE", ?vc, support:has-time-interval,

?timeint),

publishToDataspace ("PUBLISH")

18 - Create Verbal Comment Outside Meeting

[createVerbalCommentOutsideMeeting:

//match on an active Microphone-Active event
(?mic_act rdf:type live:Microphone-Active),
//loc is a microphone-position

(?mic_act portal:has-location ?loc),

(?mic_act support:has-time-interval ?timeint),

noValue(?timeint support:ends-at-time-point),

//get the room location of the
(?loc location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),

//get the ibutton reader located in the same seating position as
//the microphone

(?loc location:is-located-in ?seat_pos),

(?seat_pos rdf:type live:Seating-Position),

(?ibut_read_pos location:is-located-in ?seat_pos),

(?ibut_read_pos rdf:type live:iButton-Reader-Position),

//get the person sitting in that seating position

(?pp_event rdf:type live:Person-Present),

18 continued:

(?pp_event portal:has-location ?ibut_read_pos),

(?pp_event portal:has-main-agent ?person),

(?pp_event support:has-time-interval ?pp_timeint),

noValue (?pp_timeint support:ends-at-time-point),

//check that there is no meeting in session

noMeetingAtPhysLoc (?room) ,

//create a resource to become the verbal comment

makeResource (?vc)

print("createVerbalCommentOutsideMeeting has fired"),

(?vc
(?vc
(?vec

(?vec

rdf:type meeting:Making-a-Verbal-Comment) ,
support:has-time-interval ?timeint),
portal:sender-of-information ?person),

portal:has-location ?room),

publishToDataspace ("TUPLE_TYPE", "TUPLE"),

publishToDataspace ("EVENT_TYPE", meeting:Making-a-Verbal-Comment),

publishToDataspace ("ADD_TRIPLE", ?vc, rdf:type, meeting:Making-a-

Verbal-Comment) ,

publishToDatasgpace ("ADD_TRIPLE", ?vc, portal:sender-of-information,

?person),

publishToDataspace ("ADD_TRIPLE", ?vc, support:has-time-interval,

?timeint) ,

publishToDataspace ("PUBLISH")

19 - Handle Microphone Active End

[handleMicrophoneActiveEnd:

(?mic_act rdf:type live:Microphone-Active),

(?mic_act support:has-time-interval ?timeint),

(?timeint support:ends-at-time-point 2end),

210

19 continued:
(?ve rdf:type meeting:Making-a-Verbal-Comment) ,

(?vc support:has-time-interval ?timeint),

print ("handleMicrophoneActiveEnd has fired"),

(?timeint support:ends-at-time-point ?Zend)

publishToDataspace ("TUPLE_TYPE", "TUPLE_EVENT"),

publishToDataspace ("EVENT_TYPE", meeting:Making-a-Verbal-Comment),

publishToDataspace ("ADD_TRIPLE", ?timeint, support:ends-at-time-point,

?end) ,
publishToDataspace ("PUBLISH"),

//finally delete the tuple for the start of the event

publishToDataspace ("DELETE", ?vc)

20 - Archive Session

[archiveSession:

(?pp_event rdf:type live:Person-Present),

(?pp_event support:has-time-interval ?pp_timeint),
(?pp_timeint support:ends-at-time-point ?pp_end_time),
(?pp_event portal:has-location ?loc}),

(?loc location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),

noMeetingAtPhysLoc (?room),

print ("archiveSession has fired"),

archiveSession|{()

]

211

9 References

[Acc04] The Access Grid,
http://www.accessgrid.org/, 2004. (verified 31st January 2005)

[Ack87] S. Acker and S. Levitt, “Designing videoconference facilities for improved

eye contact”, Journal of Broadcasting & Electronic Media, 31(2), pp181-191, 1987.

[AKTO04] The AKT Reference Ontology, http://www.aktors.org/publications/ontology/,
2002. (verified 31st January 2005)

[Ala03] Harith Alani, Srinandan Dasmahapatra, Kieron O’ Hara, and
Nigel Shadbolt, “Identifying communities of practice through

ontology network analysis”, IEEE Intelligent Systems 18(2), pp. 18-25, 2003.

[Ama04] The Amaya Web Editor/Browser,
http://www.w3.org/Amaya/, 2004. (verified 31st January 2005)

[Ann04] The Annozilla plug-in,
http://annozilla.mozdev.org/, 2004. (verified 31st January 2005)

[Bac04] Bachler, M., Buckingham Shum, S., Chen-Burger, J., Dalton, J., De Roure, D.,
Eisenstadt, M., Komzak, J., Michaelides, D., Page, K., Potter, S., Shadbolt, N., Tate,
A., “Collaborative Tools in the Semantic Grid”, GGF11 - The Eleventh Global Grid
Forum, Honolulu, Hawaii, USA, June 6-10, 2004.

[BeaOl] Richard Beales, Don Cruickshank, David De Roure, Nick Gibbins, Ben Juby,
Danius Michaelides and Kevin Page, “The Pipeline of Enrichment: Supporting Link
Creation for Continuous Metadata”, In The Proceedings of the 7th International

Workshop on Open Hypermedia Systems, pp. 47-58, 2001.

[BecO1] Dave Beckett, “N-Triples”, 2001,
http:// www.w3.0rg/2001/sw/RDFCore/ntriples/ (verified 31st January 2005)
212

[BecO4] Dave Beckett (editor), “RDF/XML Syntax Specification (Revised)”, W3C
Recommendation, 10 February 2004

[Ber98] T.Berners-Lee, R. Ficlding and L. Masinter. “Uniform Resource Identifiers
(URI): Generic Syntax”, RFC 2396, August 1998.

[BerO1]Tim Berners-Lee, James Hendler, Ora Lassila, “The Semantic Web”, Scientific

American, May 2001.

[Ber04] Tim Bemers-Lee, “Notation3”, July 2004,
http://www.w3.org/Designlssues/Notation3.html (verified 3 1st January 2005)

[Bet0OO] M. Bett, R. Gross, H. Yu, X. Zhu, Y. Pan, I. Yang and A. Waibel. "Multimodal
Meeting Tracker". In Proc. RTAO2000 (Recherche d’Information Assistée par
Ordinateur), Paris, France, April 2000.

[Bla98] S. Blake, D. Black, M. Carlson, E. Davies, E. Davies, Z. Wang and W. Weiss.
“An Architecture for Differentiated Services”, RFC 2475, December 1998.

[Bly93] S. A. Bly, S. R. Harrison, S. Irwin, "Media Spaces: bringing people together in

a video, audio, and computing environment", Communications of the ACM, 36(1), pp-

28-46, 1993.

[Bra94] R. Braden, D. Clark and S. Shenker. “Integrated Services in the Internet
Architecture: an Overview”, RFC 1633, June 1994.

[Bri04] Dan Brickley, R.V. Guha, eds. “RDF Vocabulary Description Language 1.0:
RDF Schema”, W3C Recommendation, 10 February 2004.

[BriO5] Dan Brickley and Libby Miller, “The FOAF Vocabulary Specification”, 31
June 2005, http://xmlns.com/foaf/0.1/ (verified 20" June 2005)

[Bux97] W. Buxton, A. Sellen, M. Sheasby, “Interfaces for Multiparty
Videoconferences”, In K.E. Finn, A.J. Sellen, & S.B. Wilbur (Eds), Video-mediated

communication, pp. 385-400, 1997, New Jersey: Lawrence Erbaum Associates.

[Car89] Nicholas Carriero and David Gelernter, “Linda in Context”, Communications

of The ACM, 32(4), pp. 444-458, April 1989.

[Chi03] Patrick Chiu, Qiong Liu, John Boreczky, Jonathan Foote, Tohru Fuse, Don
Kimber, Surapong Lertsithichai, and Chunyuan Liao “Manipulating and annotating
slides in a multi-display environment”, In Proc. INTERACT '03, pp. 583-590,
September 1, 2003.

[Chi99a] P. Chiu, A. Kapuskar, S. Reitmeier, and L. Wilcox. “Meeting Capture in a
Media Enriched Conference Room”. In Proceedings of the Second International
Workshop on Cooperative Buildings (CoBuild'99), Lecture Notes in Computer

Science, Vol. 1670 Springer-Verlag, pp. 79-88, 1999.

[Chi99b] P. Chiu, A. Kapuskar, S. Reitmeier and L. Wilcox. “NoteLook: Taking Notes

in Meetings with Digital Video and Ink”, In Proc. 7" ACM Conference on Multimedia,

1999.

[Cir04] Fabio Ciravegna, Sam Chapman, Alexiei Dingli and Yorick Wilks, “Learning
to Harvest Information for the Semantic Web”, in Proc. 1st European Semantic Web

Symposium, Heraklion, Greece, May 10-12, 2004.

[Cor91] D. Corkhill, “Blackboard Systems”, AI Expert, 6(9), pp 40-47, September
1991.

[Cru01] Don Cruickshank, Luc Moreau, David De Roure, “Architectural Design of a
Multi-Agent System for Handling Metadata Streams”, In Proc. Fifth International

Conference on Autonomous Agents, pp 505-512, 2001.

[Cut02] Ross Cutler, Yong Rui, Anoop Gupta, JJ Cadiz, Ivan Tashev, Li-wei He, Alex
Colburn, Zhengyou Zhang, Zicheng Liu, Steve Silverberg. “Distributed Meetings: A

214

Meeting Capture and Broadcasting System”, In Proc. 10" ACM Conference on

Multimedia, 2002.

[Dea04] M. Dean, G. Schreiber, eds. “OWL Web Ontology Language Reference”,
W3C Recommendation, 10 Feb 2004.

[Den04] Laurent Denoue, Gurminder Singh, Arijit Das, “Taking Notes on PDAs with
Shared Text Input”, In Proc. ED-Media 2004, June 21, 2004.

[DeR04]De Roure, D. and Hendler, J.A., “E-Science: the Grid and the Semantic Web”,
[EEE Intelligent Systems, 19(1), pp 65-71, 2004.

[Dou92] P. Dourish and S. Bly, “Portholes: Supporting Awareness in a Distributed
Work Group”, Proceedings of the Conference on Human Factors in Computing

Systems, Monterey, CA, pp 541-547, 1992.
[eBi04] eBiquity: RGB Ontologies, http://ebiquity.umbc.edu/v2.1/ontology/, 2004.

[Eng62] Douglas C. Engelbart. “Augmenting Human Intellect: A Conceptual
Framework”. Summary Report AFOSR-3223 under Contract AF 49(638)-1024, SRI

Project 3578 for Air Force Office of Scientific Research, Stanford Research Institute,

Menlo Park, Ca., October 1962.

[Eng75] Douglas C. Engelbart. “NLS Teleconferencing Features: The Journal, and
Shared-Screen Telephoning”. In Proceedings of the COMPCON Conference, pp. 173-
176, 1975.

[EQUO04] The EQUATOR Interdisciplinary Research Collaboration,
http://www .equator.ac.uk, 2004. (verified 31st January 2005)

[Equ04b] Equip4j,
http://www.crg.cs.nott.ac.uk/~cmg/Equatotr/, 2004 (verified 31* January 2005)

[Flo97] Floyd, S., Jacobson, V., Liu, C., McCanne, S., and Zhang, L., “A Reliable
Multicast Framework for Light-weight Sessions and Application Level Framing”,

IEEE/ACM Transactions on Networking, 5(6), pp. 784-803, December 1997.
215

[FOAO5a] “The FOAF-a-Matic”, http://www.ldodds.com/foaf/foaf-a-matic.html
(verified 20™ June 2005)

[FOAO5b] “FOAF Explorer”, http://xml.mfd-consult.dk/foaf/explorer/ (verified 20"
June 2005)

[For82] C. L. Forgy, “RETE: A Fast Algorithm for the Many Patterns/Many Objects
Match Problem”, Artificial Intelligence, 19(1), pp. 17-37, 1982.

[Gol03] Jennifer Golbeck, Bijan Parsia, and James Hendler, “Trust Networks on the

Semantic Web”, In Proc. Cooperative Intelligent Agents 2003, Helsinki, Finland,

August 2003.

[Goo86] G. O. Goodman, M. J. Abel, “Collaboration research in SCL”, In Proc. The
1986 ACM Conference on Computer-Supported Cooperative Work, Austin Texas, pp
246-251, Dec 3-6, 1986.

[Gre00] Chris Greenhalgh, Jim Purbrick, Dave Snowdon, “Inside MASSIVE-3:
Flexible Support for Data Consistency and World Structuring”, In Proc. Third
International Conference on Collaborative Virtual Environments, pp 119-127, San

Francisco, California, 2000.

[Gre02] Chris Greenhalgh, “EQUIP: An Extensible Platform For Distributed
Collaboration”, In Proc. WACE 2002, Edinburgh, UK, 2002.

[Gro03] Paul Grosso, Eve Maler, Jonathan Marsh, Norman Walsh, eds. “XPointer
Framework”, W3C Recommendation, 25 March 2003.

[Gut96] C. Gutwin, S. Greenberg, “Workspace Awareness For Groupware”, In Proc.

CHI "96, pp 208-209, 1996.

[Gut97] C. Gutwin “Workspace Awareness in Real-Time Distributed Groupware”,

Ph.D. Thesis, University of Calgary, Canada, 1997.

216

[Har03] Harris, Stephen and Gibbins, Nicholas, “3store: Efficient Bulk RDF Storage”,
In Proc. 1st International Workshop on Practical and Scalable Semantic Web Systems,

Sanibel Island, Florida, USA. pp1-15, 2003.

[Hil81] S. R. Hiltz and M. Turoff, “The evolution of user behavior in a computerized

conferencing system”, Communications of the ACM, 24(11), pp. 739-751, 1981.

[Holl92] Jim Hollan and Scott Stornetta. “Beyond Being There”. In Proc. ACM
CHI’92, pp. 119-125, 1992.

[Hua03] K. Huang, M. M. Trivedi, "Video arrays for real-time tracking of person, head,
and face in an intelligent room," Machine Vision and Applications, 14(2), pp. 103-111,

June 2003.

[1BuO4] iButton - Contact Memory, http://www.ibutton.com/, 2004. (verified 31st
January 2005)

[JavO04], JavaSpaces, http://java.sun.com/developer/products/jini/index.jsp, 2004.
(verified 31st January 2005)

[Jen04] The Jena Semantic Web Framework,

http://jena.sourceforge.net/, 2004. (verified 31st January 2005)

[Jub03] Benjamin Juby and David De Roure, “Real-Time Speaker Identification and
Participant Tracking in The Access Grid”, In Proc. 4th Annual Postgraduate
Symposium on the Convergence of Telecommunications, Networking and

Broadcasting (PG Net 2003) , pp. 313-319, Liverpool, UK, June 2003.

[KahO1] José Kahan, Marja-Riitta Koivunen, Eric Prud Hommeaux, and Ralph R.
Swick, “Annotea: An Open RDF Infrastructure for Shared Web Annotations”,

in Proc. of the WWW 10 International Conference, Hong Kong, May 2001.

[K0103] Marja-Riitta Koivunen, Ralph Swick, Eric Prudhommeaux, “Annotea Shared
Bookmarks”, In Proc. of the KCAP 2003 workshop on knowledge markup & semantic

annotation, Sanibel, Florida, October 2003.
217

[Kot04] Alan Kotok, Ralph Swick, “The Zakim IRC Teleconference Agent”,
http://www.w3.0rg/2001/12/zakim-irc-bot.html, 2004. (verified 31st January 2005)

[Man97] A. Mané, “Group space: The role of video in multipoint videoconferencing
and its implication for design”, In K.E. Finn, A.J. Sellen, & S.B. Wilbur (Eds), Video-

mediated communication, pp. 401-414, 1997, New Jersey: Lawrence Erbaum

Associates.

[Mar99] W. Mark.“Turning pervasive computing into mediated spaces”, IBM Systems
Journal, 38(4), pp 677-692, 1999.

[MemO05] The Memetic Project, http://www.memetic-vre.net/ (viewed 25" June 2005)

[Mik00] Mikic I., Kohsia H., Trivedi M., “Activity monitoring and summarization for
an intelligent meeting room” Proceedings IEEE Workshop on Human Motion, Austin

Texas, December 2000.

[Mil68] R. B. Miller, “Response time in man-computer conversational transactions”, In

Proc. AFIPS Fall Joint Computer Conference, Vol. 33, pp 267-277, 1968.

[Mil92] D. Mills “Network Time Protocol (Version 3) Specification, Implementation

and Analysis”, RFC 1305, March 1992.

[Mil04] I.C. Millard, D.C. De Roure, N.R. Shadbolt, “The use of ontologies in
contextually aware environments”, In Proc. First International Workshop on

Advanced Context Modelling, Reasoning and Management, Nottingham, UK, pp.42-
47,2004

[Min93] Scott. L. Minneman, Steve. R Harrison, “Where Were We: making and using

near-synchronous, pre-narritive video”, In Proceedings of ACM Multimedia '93, pp.

207-214, 1993.

218

[Min04] MINDSWAP Conference Ontology,
http://www.mindswap.org/~golbeck/web/www04photo.owl, 2004. (verified 31st

January 2005)

[MYS04] The MySQL Database Server,
http://www.mysql.com/, 2004. (verified 31st January 2005)

[Pag01] Kevin Page, Ben Juby, Richard Beales and David De Roure, “Continuous
Metadata”. In Proc. 2nd Annual Postgraduate Symposium on The Convergence of
Telecommunications, Networking & Broadcasting (PGNET 2001), pp.265-269,
Liverpool, UK, 2001.

[Pay02a] Payne, T. R. and Miller, L., “Calendars, Schedules and the Semantic Web”.
ECRIM News(51), pp. 16-17, 2002.

[Pay02b] Payne, T. R., Singh, R. and Sycara, K., “Calendar Agents on the Semantic
Web”, IEEE Intelligent Systems 17(3), pp. 84-86, 2002.

[Ram04] S. D. Ramchurn, B. Deitch, M. K. Thompson, D. C. De Roure, N. R.
Jennings, and M. Luck, “Minimising Intrusiveness in Pervasive Computing
Environments using Multi-Agent Negotiation”, In Proc. First Annual International
Conference on Mobile and Ubiquitous Systems: Networking and Services

(MobiQuitous’04), pp. 364-372, Boston, Massachusetts, 2004.

[RDQO3] Hewlett-Packard Labs, RDQL - RDF data query language,
http://www.hpl.hp.com/semweb/rdql.htm, 2003. (verified 3 1st January 2005)

[Rod91] T. A. Rodden. “A Survey of CSCW Systems”, Interacting with Computers,
3(3), pp 319-353, 1991.

[Seg00] Bill Segall, David Arnold, Julian Boot, Michael Henderson and Ted Phelps
“Content Based Routing with Elvin4”, In Proc. AUUG2K, Canberra, Australia, June

2000.

219

[Sel92] Sellen, A., Buxton, W. & Arnott, J. "Using spatial cues to improve
videoconferencing”, in Proc. CHI '92, pp 651-652, 1992.

[Sch03] Ronald Schroeter, Jane Hunter, Douglas Kosovic, “Vannotea — A
Collaborative Video Indexing, Annotation and Discussion System For Broadband
Networks” In Proc. KCAP 2003 workshop on knowledge markup & semantic

annotation, Sanibel, Florida, October 2003.

[sch04] schraefel, m. c., Shadbolt, N. R., Gibbins, N., Glaser, H. and Harris, S. “CS
AKTive Space: Representing Computer Science in the Semantic Web,” In Proc. 2004

World Wide Web Conf., ACM Press, 2004.

[Ste86] M. Stefik, D. G. Bobrow, S. Lanning, D. Tatar, G. Foster, "WYSIWIS revised:
early experiences with multi-user interfaces"”, In Proc. The 1986 ACM Conference on

Computer-Supported Cooperative Work, Austin Texas, pp 276-290, Dec 3-6, 1986.

[Ste87] M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning and L. Suchman,
“Beyond The Chalkboard: Computer support for collaboration and problem solving in

meetings”’, Communications of the ACM, 30(1), pp. 32-47, 1987.

[Swi04] Ralph Swick, “The RRSAgent IRC Bot Description”,
http://www.w3.0rg/2002/03/RRS Agent, 2004. (verified 3 1st January 2005)

[TSp04] TSpaces — Intelligent Connectionware,
http://www.almaden.ibm.com/cs/TSpaces/, 2004. (verified 31st January 2005)

[Tur02] O. Turk, O. Sayli, H. Dutagaci, L. Arslan, “A Sound Source Classification
System Based on Subband Processing”, In Proc. 7" International Conference on

Spoken Language Processing, September 2002.

[Ver97] R. Vertegaal, “Conversational Awareness in Multiparty VMC”, Extended
Abstracts of ACM CHI’97 Conference on Human Factors in Computing Systems,

Atlanta, GA, 1997.

220

[Ver98] R. Vertegaal , H. Vons , R. Slagter, “Look Who’s Talking: The GAZE
Groupware System”, In Proc. CHI '98, pp 293-294, April 1998.

[Wai03] Alex Waibel, Tanja Schultz, Michael Bett, Mathias Denecke, Robert Malkin,
Ivica Rogina, Rainer Stiefelhagen, Jie Yang “SmaRT: The Smart Meeting Room Task
at ISL”, In Proc. IEEE International Conference on Accoustics, Speech and Signal

Processing, pp. 752-755, Hong Kong, April 2003.

[Yam96] Yamaashi, K., Cooperstock, J., Narine, T. & Buxton, W. “Beating the

limitations of camera-monitor mediated telepresence with extra eyes”. In Proceeding

of CHI '96, pp 50-57, 1996.

221

