
UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS

School of Electronics & Computer Science

Enhancing Distributed Real-Time Collaboration with Automatic

Semantic Annotation

by

Benjamin Paul Juby

Thesis for the degree of Doctor of Philosophy

February 2005

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS

School of Electronics & Computer Science

Doctor of Philosophy

Enhancing Distributed Real-Time Collaboration with Automatic
Semantic Annotation

by Benjamin Paul Juby

Distributed real-time collaboration, such as group-to-group videoconferencing, is
becoming increasingly popular. However, this form of collaboration tends to be less
effective than co-located interactions and there is a significant body of research that has
sought to improve the collaboration technology through a variety of methods. Some of
this research has focused on adding annotations that explicitly represent events that
take place during the course of a collaboration session. While this approach shows
promise, existing work has in general lacked high-level semantics, which limits the
scope for automated processing of these annotations. Furthermore, the systems tend not
to work in real-time and therefore only provide benefit during the replay of recorded
sessions. The systems also often require significant effort from the session participants
to create the annotations.

This thesis presents a general-purpose framework and proof of concept
implementation for the automated, real-time annotation of live collaboration sessions. It
uses technologies from the Semantic Web to introduce machine-processable semantics.
This enables inference to be used to automatically generate annotations by inferring
high-level events from basic events captured during collaboration sessions.
Furthermore, the semantic approach allows the framework to support a high level of
interoperability, reuse and extensibility. The real-time nature of the framework means
that the annotations can be displayed to meeting participants dUling a live session,
which means that they can directly be of benefit during the session as well as being
archived for later indexing and replay of a session recording.

The semantic annotations are authored in RDF (Resource Description Framework)
and are compliant to an OWL (Web Ontology Language) ontology. Both these
languages are World Wide Web Consortium (W3C) recommendations. The framework
uses rule-based inference combined with knowledge from an external triplestore to
generate the annotations. A shared buffer called a tuple space is used for sharing these
annotations between distributed sites.

The proof of concept implementation uses existing Access Grid videoconferencing
technology as an example application domain, to which speaker identification and
participant tracking are added as examples of semantic annotations.

11

Table of Contents

1 Introduction ... 1

1.1 CONTRIBUTIONS .. 3

1.2 DOCUMENT STRUCTURE .. 4

2 Literature Review .. 5

2.1 INTRODUCTION .. 5

2.1.1 Early Work .. 5

2.1.2 Colab and Media Spaces ... 6

2.1.3 Videoconferencing Interfaces ... 7

2.1.4 Conversational and Workspace Awareness 10

2.1.5 Computationally Mediated Interactions 11

2.2 REVIEW OF COMPUTER ENHANCED COLLABORATION SYSTEMS 13

2.2.1 Review Criteria ... 13

2.2.2 NoteLook ... 14

2.2.3 Shared Text Input ... 17

2.2.4 Distributed Meetings .. 19

2.2.5 The AVIARY Intelligent Room ... 22

2.2.6 The Smart Meeting Room Task .. 25

2.2.7 CoAKTinG .. 28

2.2.8 Conclusions for Review of Systems .. 33

2.3 THE SEMANTIC WEB ... 33

2.4 SEMANTIC WEB ApPLICATIONS .. 35

2.4.1 CS AKTiveSpace ... 35

2.4.2 Friend Of A Friend (FOAF) .. 38

2.4.3 Annotea ... 39

2.4.4 RDF Calendar Taskforce .. 41

2.5 CONCLUSIONS FROM LITERATURE REVIEW .. .41

3 Background and Motivation .. .43

3.1 INTRODUCTION .. 43

3.2 SEMANTIC ANNOTATIONS ... 43

3.3 SUPPORTED TECHNOLOGIES ... 44

3.4 SUPPORTED COLLABORATION TYPES .. .44

111

3.5 MOTIVATION FOR ANNOTATION ... 45

3.5.1 What is being annotated? .. 47

3.6 MOTIVATION FOR A SEMANTIC ApPROACH .. .47

3.7 MOTIVATIONAL STUDY OF W3C TELEPHONE CONFERENCES49

3.7.1 General Observations .. 51

3.7.2 IRC Bot Features Used .. 51

3.7.3 Non-bot Related Information Sent in IRC. 52

3.7.4 Conclusions .. 53

3.8 EXAMPLES OF COLLABORATION EVENTS ... 54

3.8.1 What constitutes an event? .. 56

3.9 MOTIVATIONAL ACCESS GRID-BASED SCENARIO 56

3.9.1 Access Grid Background ... 57

3.9.2 Access Grid Weaknesses .. 58

3.9.3 Enhancing the Access Grid with Semantic Annotation 60

3.10 SUMMARy ... 64

4 A Framework for Real-Time Semantic Annotation 65

4.1 FRAMEWORK ORIGINS .. 65

4.1.1 Inference ... 66

4.1.2 Storage .. 67

4.1.3 Communications .. 67

4.2 OVERVIEW OF FRAMEWORK .. 68

4.2.1 Comparison to Real-Time Expert Systems 70

4.3 EVENTS ... 71

4.4 EVENT SHARING .. 72

4.4.1 Tuple Spaces ... 73

4.4.2 State Change Packets .. 74

4.5 REAL-TIME CONSIDERATIONS ... 74

4.6 SYNCHRONISATION OF EVENTS AND MEDIA STREAMS 75

4.7 TIMESTAMP GENERATION AND FORMAT .. 77

4.8 DETAILED DESCRIPTION OF FRAMEWORK COMPONENTS 78

4.8.1 Producers .. 78

4.8.2 Tuple Space Server ... 80

4.8.3 Tuple Space Discovery Server .. 80
iv

4.8.4

4.8.5

4.8.6

Inference Engine .. 81

External Triplestore .. 83

Consumers ... 83

4.9 SUMMARy ... 84

5 Implementation .. 85

5.1 OVERVIEW OF END-USER FUNCTIONALITY ... 85

5.2 OVERVIEW OF SySTEM .. 86

5.2.1 Producers .. 86

5.2.2 Inference Engine .. 88

5.2.3 Consumers ... 89

5.3 SPEAKER IDENTIFICATION TECHNIQUE ... 89

5.3.1 The need for inference .. 91

5.4 ONTOLOGY ... 92

5.4.1 Ontologies Chosen for Reuse .. 92

5.4.2 Events and Time .. 94

5.4.3 Location ... 96

5.4.4 Personal Identification ... 100

5.4.5 Event Types ... 102

5.5 TUPLE SPACE ... 106

5.5.1 Events as EQUIP Tuples .. 107

5.5.2 Dataspace Discovery Mechanism .. 109

5.6 PRODUCERS ... 110

5.6.1 Session Information Producer .. 110

5.6.2 Microphone Activity Producer ... 111

5.6.3 iButton Reader Producer ... 112

5.7 INFERENCE ENGINE AND TRIPLESTORE ... 112

5.7.1 Overview of Relevant Jena Functionality l13

5.7.2 Triplestore .. 114

5.7.3 Inference Engine .. 115

5.8 CONSUMERS ... 116

5.9 SUMMARy ... 119

6 Details of the Inference Process .. 120

6.1 CREATION OF RULE SET ... 120

v

6.2 CLASSIFICATION OF RULE TyPES ... 121

6.3 INFERENCE RULES ... 121

6.3.1 Rules That Query The Triplestore ... 122

6.3.2 Rules That Assert New Triples .. 123

6.3.3 Rule To Archive The Session ... 126

6.4 JENA BUILTINS .. 127

6.4.1 Standard Jena Builtins ... 127

6.4.2 New Builtins ... 128

6.5 BOOTSTRAPPING KNOWLEDGE ... 133

6.6 WALKTHROUGH OF AN EXAMPLE MEETING .. 134

6.6.1 Full Description of the Processes Taking Place 138

6.7 SUMMARY ... 140

7 Evaluation ... 142

7.1 PERFORMANCE ... 142

7.2 SEMANTIC ASPECTS .. 143

7.2.1 Inference ... 144

7.2.2 Interoperability and Reuse .. 146

7.2.3 Extensibility ... 147

7.2.4 Indexing .. 148

7.3 CRITERIA FROM LITERATURE REVIEW ... 149

7.3.1 Support for Live Processing ... 149

7.3.2 Degree of Automation .. 150

7.4 TOOLS AND TECHNOLOGIES ... 150

7.4.1 RDF(S) and OWL. ... 151

7.4.2 Ontologies .. 151

7.4.3 Jena ... 152

7.4.4 EQUIP ... 153

7.5 OTHER ISSUES .. 154

7.5.1 Error Handling ... 154

7.5.2 Quality of Service .. 155

7.6 SUMMARy ... 155

8 Conclusions .. 158

8.1 CONTRIBUTIONS .. 158
VI

8.2 FUTURE WORK ... 161

8.2.1 Event Types and Inferences .. 161

8.2.2 Security ... 162

8.2.3 Consumer Functionality .. 163

8.3 RESEARCH ISSUES .. 164

8.3.1 Real Time Performance Issues ... 164

8.3.2 Triplestore Architecture ... 165

Appendix A - Data From W3C Telephone Conferences 167

Appendix B - IRC log of RDF Core Working Group Telcon 168

Appendix C - The Live Collaboration Ontology .. 172

Appendix D - The CoAKTinG Ontology .. 178

Appendix E - The Signage Location Ontology .. 184

Appendix F - The Inference Rules ... 191

9 References .. 212

Vll

Table of Figures

Figure 2.1, The original Colab in use at Xerox PARC........................... 7

Figure 2.2, the Hydra system in use showing three video surrogates....... 8

Figure 2.3, The Extra Eyes user interface.. 9

Figure 2.4, The interface to the GAZE system..................................... 10

Figure 2.5, The Notelook 3.0 freehand annotation interface................... 15

Figure 2.6, The Web based NoteLook index....................................... 15

Figure 2.7, The Shared Text Input application running on a PDA. 17

Figure 2.8, Distributed Meetings archived meeting client.................... ... 19

Figure 2.9, The AVIARY graphical summary................ 23

Figure 2.10, The SMaRT Meeting Browser...................................... ... 26

Figure 2.11, The presence indicators of BuddySpace........................... 29

Figure 2.12, An example Compendium map....................................... 30

Figure 2.13, The web based Meeting Replay interface... 31

Figure 2.14, The Vannotea video annotation interface... 40

Figure 3.1, A screenshot of the Access Grid projection wall.................. 59

Figure 4.1, An Overview of The Semantic Annotation Framework......... 69

Figure 4.2, The Framework Components.. 79

Figure 5.1, Overview of implemented system............ 87

Figure 5.2, The portion of the AKT ontology representing events and time 95

Figure 5.3, The location portion of the ontology................................. 97

Figure 5.4, The section of the ontology for personal identification......... 101

Figure 5.5, Event types reused from the AKT and CoAKTinG ontologies 103

Figure 5.6, The ontology representing the new event types.................. 104

Figure 5.7, The Participant Display Pane!................ 117

Figure 5.8, The participant display panel in a running meeting............... 118

Vlll

Acknowledgements

I would like to thank my supervisor, Dave De Roure, who has provided me with much

support and advice throughout the duration of the work described in this thesis.

I would also like to thank TelTY Hodgkinson and StewaIt Fallis from BTexact for the

helpful comments they have provided for this work. I am also grateful to BT for

supporting me with a CASE award for the first three years of my research.

The members of the Pervasive Computing and Networks research theme at

Southampton also deserve thanks for letting me bounce my ideas off them during the

course of my research. I am particularly grateful to Danius Michaelides, Mark Weal,

Ian Millard, Sajay Vivek and Xiang Fei for sparing the time to proof read and comment

on the initial draft of this thesis.

I would finally like to thank my parents for their support throughout this work.

x

1 Introduction

Real-time collaboration that involves geographically distributed people is becoming

increasingly commonplace. This is largely due to the now widespread availability of

computers and networks able to handle multimedia data. Any person equipped with a

standard PC, webcam and network connection can join a videoconference and

collaborate with other people. Even sophisticated room based videoconferencing

systems such as the Access Grid [Acc04] are now affordable by an increasingly large

number of organisations.

Unfortunately, meeting using a remote collaboration technology such as

videoconferencing can be less effective than meeting face-to-face. Hollan and Stometta

[HoI92] have proposed that by using computers to enhance distributed real-time

collaboration, the potential exists to improve collaboration to the point that it becomes

as effective as, or even more effective than non-mediated face-to-face collaboration.

There is a need to enhance distributed real-time collaboration to go beyond audio,

video and simple data sharing. This thesis discusses automatic live semantic annotation

as a way to enhance real-time distributed collaboration, focusing on group-to-group

videoconferencing as a deployment scenario. The emphasis of the work is on the

infrastructure required to generate and share the semantic annotations in real-time. It

presents a generic framework based around Semantic Web technologies, and this

framework is demonstrated with a proof of concept implementation.

Semantic annotation in this context means giving the individual events that occur as

part of a collaboration activity an explicit representation that has a formally defined

meaning. In practical terms this means that in addition to distributing audio and video

streams between sites in a videoconference, real-time generated descriptions of the

events in the session are also distributed between sites. Examples of useful annotations

are agenda items, speaker identification and tracking when participants join or leave the

session. These semantic annotations that represent events can be displayed to session

participants in real-time.

1

Displaying annotations in real-time during a live session has a number of potential

benefits. In particular, annotations can provide useful additional information that would

otherwise only be implicit or only available to some participants. This could potentially

help increase the level of situation awareness of the participants and lead to more

effective collaboration. Furthermore, the semantic annotations may be archived in

addition to audio and video to provide an index for the recording of the session. The

potential benefits of such an index include facilitating the navigation and searching of

recordings, allowing higher level queries, and also for reusing recorded matelial. The

annotations can also be replayed in synchronisation with the media streams to provide a

more complete replay than audio and video alone could provide.

While there is existing work on annotation of real-time collaboration sessions, it has

not used high-level semantics for describing meeting events, i.e. explicit machine­

processable annotations combined with machine-processable semantics. This limits the

amount of automated processing that can take place. Additionally the existing systems

mostly do not work in real-time, thus only providing any benefit when replaying a

recorded session. The systems also generally require significant effort from the

participants to create the annotations and have focused on co-located collaboration,

meaning they have poor support for distlibuted collaboration.

The semantic approach to annotation presented in this thesis has a number of

advantages over non-semantic approaches. In particular it allows inference to be used,

which is applied to enable high-level events to be automatically derived from basic

events captured in collaboration sessions. A semantic approach also enables a high

level of interoperability, reuse and extensibility.

The framework presented here uses rule-based inference combined with knowledge

obtained from an external repository called a triplestore. A shared buffer known as a

tuple space is also used for sharing the annotations between distributed sites

The semantic annotations are authored using the Resource Description Framework

(RDF), which is a language for representing information about resources in the World

Wide Web. The vocabulary used for annotation is specified using the Web Ontology

Language (OWL). This language is used to define vocabulary terms, their meanings

and their intelTelationships.
2

The proof of concept implementation uses Access Grid videoconferencing technology

as an example application domain, to which speaker identification and participant

tracking are added as examples of semantic annotations. Although Access Grid is used

as the example domain, the implemented system is not dependent on Access Grid

technology and is general purpose enough to be used with other room-based

conferencing technologies.

1.1 Contributions

This thesis presents a novel investigation into the application of knowledge

technologies to computer mediated collaborative applications. It therefore contributes

research to the areas of Computer Supported Cooperative Work (CSCW) and the

automated creation of content for the Semantic Web. The core contribution can be

summarised as follows:

The application of Semantic Web technologies to the domain of real-time

distributed collaboration. Existing uses of Semantic Web technologies have been

largely limited to non real-time domains. This thesis demonstrates their use in a live,

real-time domain, and additionally demonstrates the use of a real-time tuple space to

distlibute semantic annotations between non co-located collaborating users.

Existing systems for semantic annotation rely heavily on hand authoring of

information, which places significant burden on users. The rule-based inference

approach demonstrated here almost completely automates the process of live semantic

annotation and requires almost no additional effort from the day-to-day users of the

system.

The automated real-time approach to the generation of the semantic annotations enables

the novel functionality of being able to display the annotations to the session

pmticipants in real-time as soon as they are generated. This means that in addition to

the more traditional use for indexing and replay after the session, the annotations can

directly benefit the participants during the session.

This thesis also identifies a number of useful meeting events that are common to many

different meeting types. Some of these events are formalised into an ontology for
3

describing live collaboration sessions. This live collaboration ontology demonstrates

the powerful features of the Semantic Web for reuse by reusing a number of existing

ontologies to create celtain parts of the live collaboration ontology.

1.2 Document Structure

This thesis is arranged as follows:

Chapter 2 reviews a selection of relevant literature, including existing computer

enhanced collaboration systems and the Semantic Web.

Chapter 3 explains and motivates the use of semantic annotations for enhancing

distributed real-time collaboration.

Chapter 4 presents an event based framework for the automatic semantic annotation of

distributed real-time collaboration activities.

Chapter 5 describes a proof of concept implementation of the framework discussed in

chapter 4.

Chapter 6 describes in detail the inference process that the proof of concept system

used.

Chapter 7 presents a discussion based analysis of the system framework and

implementation.

Chapter 8 discusses the conclusions for the thesis.

4

2 Literature Review

This chapter reviews a selection of literature relevant to the research in this thesis and is

divided into two main parts after the introduction. The first part looks at a number of

existing computer enhanced collaboration systems and reviews them according to a

number of relevant criteria. The second part covers the Semantic Web, stm1ing by

looking at the main specifications used and then discussing a number of Semantic Web

applications, some of which are used for collaborative purposes.

2.1 Introduction

The research in this thesis is within the domain of Computer Supported Cooperative

Work (CSCW), which is "a generic term which combines the understanding of the

nature of group working with the enabling technologies of computer networking,

systems support and applications" [Rod91].

Group work is commonly classified into spatial relationships between workers and their

temporal relationships [Rod91l Collaboration can either be local or remote and

synchronous or asynchronous. Synchronous collaboration involves people interacting

in real-time, whereas in asynchronous collaboration the interactions are non real-time

and do not require an immediate response. For example, asynchronous remote

collaboration often uses e-mail or the web, and synchronous remote collaboration may

use a telephone or videoconference. Local synchronous collaboration may involve

meeting supp011 tools and local asynchronous collaboration may involve shared

document authoring. Often a combination of these modalities will be used during the

lifetime of the collaboration activity.

2.1.1 Early Work

Some of the earliest work in CSCW was pioneered by Douglas Engelbart [Eng62l His

work identified that computers could be used as a communication mechanism for team

cooperation, allowing people to work simultaneously on the same materials. He

hypothesised that this would lead to a significant increase in group problem solving

ability. Although he provided no firm evidence to prove this hypothesis, he did

however claim that from his own personal experience he had noticed a "really

5

phenomenal boost in group effectiveness over any previous form of cooperation"

[Eng62] as a result of using computer based collaboration tools.

Later work by Engelbart [Eng75] harnessed the ARPANET combined with telephone

audio conferencing for computer augmented real-time distributed group collaboration.

The system used a shared display allowing remote people to view and control the same

computer display, enabling them to access notes and working records, copy materials

and access shared whiteboard functionality.

Other notable early work in this domain was carried out by Hiltz and Turoff [HiI81].

Their Electronic Information Exchange System (EIES) provided features for

synchronous and asynchronous text based group conferencing. It provided a directory

for locating other users and supported features such as voting and shared notebooks. It

also provided archiving and indexing of discussion, which allowed searching by topic,

author or date.

2.1.2 Colab and Media Spaces

By the mid 1980s research in CSCW had statted to take off in a big way. One of the

key players at this time was the Xerox Palo Alto Research Centre (PARC) [Go086].

The centre's notable research contributions included the Colab and Media Spaces

projects. The Colab [Ste86] was a computer enhanced meeting room (see figure 2.1) in

which each participant had access to a networked computer allowing them to structure

and share meeting information through a multi-user interface called WYSIWIS (What

You See Is What I See). The room was also equipped with a full size touch sensitive

digital whiteboard called a Liveboard. Not only did the Colab allow the structuring and

shared manipulation of meeting attefacts, but removed the need to transcribe these to

the participants personal computers after the meeting.

At around the same time as the Colab project, work was underway on the Media Spaces

project (described in a later paper by Bly et al. [Bly93]). This linked the offices and

communal spaces of two sites separated by several hundred miles with always on audio

and video connections. This provided the kind of informal contact between the

distributed workers that collocated workers can take for granted. In addition to

traditional videoconferencing, it provided peripheral awareness, giving an overview of

who was around and what was happening, and allowed chance encounters and social

6

Figure 2.1, The original Colab in use at Xerox P ARC (from [Ste87])

activities. A follow up project at EuroPARC called Portholes [Dou92] used less

heavyweight techniques to provide periodic video snapshots from individual offices to

give a general sense of awareness of who was around and what they were up to.

2.1.3 Videoconferencing Interfaces

Work such as that of Buxton et al. [Bux97] has looked at provide improved interfaces

for videoconferencing to try and address weaknesses such as a lack of eye contact,

failure to perceive the group as a whole and inability to hold side conversations. Work

on this task lead to the development of the Hydra system [SeI92], which simulated a

four way round-table meeting, with one physical participant and up to three remote

participants represented by their own "video surrogate" unit consisting of a camera,

monitor and speaker (see figure 2.2). Since each participant occupied a distinct place

around the meeting table, this preserved gaze and head turning and allowed side

conversations. An evaluation of the system showed that although the structure of tum

taking behaviour was not found to be significantly different when compared to regular

videoconferencing, it did support parallel and side conversations, which the regular

videoconferencing system did not.

7

Figure 2.2, the Hydra system in use showing three video surrogates (from [SeI92]).

Before Hydra, other researchers had provided alternative forms of support for gaze

awareness. For example "video tunnels" described by Acker and Levitt [Ack87] were

videoconferencing terminals that used a half silvered mirror at 45° to reflect an image

of the user into a camera on top of a monitor. The mirror allowed the camera to

effectively point directly into the eyes of the person looking into the monitor, thus

accurately conveying gaze information to the remote users.

Other research led by Buxton resulted in the Extra Eyes videoconferencing system

[Yam96], which was designed to compensate for the lack of peripheral awareness

during videoconferences. When using existing systems, tasks such as keeping track of

who is at the remote site or what they are doing can be difficult as the view is limited to

whatever is in front of the camera. Extra Eyes provided a peripheral, wide-angle global

view simultaneously with a close up detail view (see figure 2.3). A bounding box

displayed in the global view precisely identified the region that was displayed in the

detailed view. Clicking in the global view controlled the remote detail camera and

caused it to be oriented to point at that new position. This interface made the

relationship between the global and detail views explicit and reduced the potential for

any confusing spatial discontinuities. Sensors in the room also detected the entry of

new participants and flagged this with an alert box in the global view and a message

asking if the viewer would like to view the doorway. An evaluation was conducted that

involved identifying different letters displayed on video monitors at changing positions

in the remote room. The letters were too small to read in the global view, requiring the

user to move between the monitors with the detailed view. The evaluation showed that

the linking between the global and detailed views made the task completion time

8

significantly quicker and that the addition of explicit alerts showing when a letter

changed (and its new position) further sped up the task completion.

Figure 2.3, The Extra Eyes user interface (from [Yam96])

One of the main drawbacks of systems like Hydra, video tunnels and Extra Eyes was

the specialist hardware required and the complexity of the set up. Vertegaal et al.

[Ver98] developed the GAZE Groupware system to provide a more lightweight method

of maintaining group awareness and communicating gaze information. The system used

a PC based eye tracking camera that conveyed gaze information in a shared three­

dimensional virtual meeting room. Each participant is represented as a portrait based

personification around the table in the virtual meeting room (see figure 2.4). Each

personification rotates according to where the corresponding participant looks. For

example, if person A looks at person B, then B sees A's personification tum to face

them. When A looks at person C, then B sees A's personification tum towards C.

Furthermore, when a participant looks at a document in the shared workspace, a virtual

"lights pot" is projected on the document indicating which part of the document they are

currently looking at. The colour of the lightspot corresponds to the colour of the border

around the participant's personification.

9

E lgollorT~C~ Dep¢t1merrl
T WOi1k· U,.,tvcr,slly
The Noetheriandt

htlp . llloddw~f. wrrn.'i'. U't.WC:TAo ,ntlgui:/:, h~fI1I

e·n1a~ · Qaze@lreddwarl wmw tJIW£<"<le nf

.. ~~"....:..?·~lightspots

T hi> Human T ;,le.Group Ma·

t j
Avd VerteqOol

H6rro v;,,~
Robert Siaoler

Iightspot

Figure 2.4, The interface to the GAZE system (from [Ver98]).

2.1.4 Conversational and Workspace Awareness

The novel videoconferencing interfaces discussed in the previous section were created

to enhance videoconferencing through improving the level of conversational awareness

and workspace awareness amongst the participants.

Conversational awareness [Ver97] is awareness about what is happening in a

conversation. It provides information about who is communicating with whom and

"answers both mechanical questions (did they hear me, did they understand me, who's

going to talk next?) and also affective questions (do they believe me, how are they

reacting?)" [Gut97]. This awareness comes from cues such as eye contact, gestures and

intonation.

Workspace awareness is the maintenance of awareness "about others' locations,

activities and intentions relative to the task and the space" [Gut96] . Gutwin [Gut97] has

identified the categories of knowledge that make up workspace awareness and the

specific elements within those categories. These are summarised in Table 2.1, along

with a list of specific questions that each element answers. Its possible to see that there

is some amount of overlap between workspace and conversational awareness,

10

especially with the presence, identity, authorship and gaze elements of workspace

awareness,

While conversational and workspace awareness usually comes naturally in face-to-face

interactions, in videoconferencing this awareness has to be explicitly designed into the

systems, as has been shown in the previous sections. The Hydra system mainly focused

on conversational awareness, Extra Eyes mainly focused on workspace awareness (by

providing peripheral awareness, which is a subset of workspace awareness) and the

GAZE system provided both conversational and workspace awareness.

Category Element Specific questions

Who Presence Is anyone in the workspace?

Identity Who is participating? Who is that?

Authorship Who is doing that?

What Action What are they doing?

Intention What goal is that action part of?

Artefact What object are they working on?

Where Location Where are they working?

Gaze Where are they looking?

View Where can they see?

Reach Where can they reach?

Table 2.1, Elements of workspace awareness (from [Gut97]).

2.1.5 Computationally Mediated Interactions

The integration of people, pervasive computation and physical reality (such as the

Colab described in section 2.1.2) is sometimes referred to as a smart space. Mark

[Mar99] describes a long-term vision for a special kind of smart space called a

mediated space. In a smart space, humans deal directly with computational devices to

accomplish task. In a mediated space, individuals primmily interact with each other and

not with the space (although explicit interaction with the space may still occur). The

mediated space improves human activities by enhancing the interaction of people in the

space by proactively suggesting relevant information from outside the space and

providing other features such as checking the consistency of interactions with previous

interactions. This is achieved through the space understanding the interactions taking

11

place, using techniques such as speech and gesture recognition. Mark predicts that

technology to achieve this will emerge over the course of the next 15 years.

While Mark desclibes computational mediation for co-located people, Hollan and

Stometta [HoI92] describe the potential for mediated communication for people who

are not co-located. They argue that the potential exists to improve computationally

mediated communications to the point that it becomes as effective as, or even more

effective than non-mediated face-to-face communication. They identify a number of

specific advantages that mediated communications could have. These are summarised

here:

• Clarity. Natural spoken language can be imprecise and ambiguous. Through

spatial location of the objects of discussion in a shared visual space, specific

objects could potentially be refelTed to by pointing at them. This would, for

example, overcome the reference ambiguity of using the word "it" in an English

sentence.

• Feedback. Facial expressions and verbal cues are used to indicate to a speaker

that their conversation is being followed. It is argued that these mechanisms are

rather imprecise. For example, the speaker may be unclear as to what aspects of

what they are saying the listener understands or what the listener thinks their

key point is. With spatial location of key pieces of the discussion in a shared

visual space, the listener may be able to provide a rich range of feedback that

simultaneously indicates what aspect of the speaker's comments they are

responding to.

• Archiving. A searchable audio and visual record of the interaction could

potentially be created automatically.

Hollan and Stometta use the term "auditory paper" to describe this proposed real-time

visual extension to natural language. They also identify that unlike face-to-face

interactions, computationally mediated communication may be asynchronous, which

removes the need for all parties to be free at the same time, and hence promotes

interaction.

12

2.2 Review of Computer Enhanced Collaboration Systems

This section reviews six existing research systems that provide some form of computer

mediated enhanced support for the annotation or capture of primarily synchronous

collaboration activities, such as meetings or videoconferences. The list of systems

reviewed here is not exhaustive, as other similar systems do exist. These were however

chosen as the major systems that have implemented concepts which are relevant to this

research.

2.2.1 Review Criteria

Each system will be introduced with a summary of its functionality and will then be

reviewed according to a number of different criteria. The overall goal of the review is

to show how these existing systems compare to the new approach presented in this

thesis.

The first two criteria are intended to expose the precise problem space that each system

tackles. This shows how general purpose the approach is and how it relates to the

problem space of this thesis (i.e. supporting live temporal annotation of distributed

meetings, and the potential for indexing and replay of those meetings). The specific

criteria are:

• Type of collaboration supported. This considers factors such as if the system

supports useful features like distributed collaboration or any specific scenarios

such as lectures or meetings.

• Type of information added. This considers what the system provides over

traditional videoconferencing or video recordings, and in particular, the types of

annotations or events it is able to capture and represent.

The remaining criteria examine to what extent the systems support the key desirable

features of the approach presented in this thesis; these features being support for

machine processable annotations and semantics, live processing, and automation.

Hence the following criteria were established:

13

.. Support for machine processable annotations and semantics. This considers

the scope for automated processing of the infollllation added by the system and

if there are any machine processable semantics associated with this information.

.. Support for live processing. This considers which features the system provides

during the collaboration session and which features only become available after

the session.

.. Degree of automation. This considers the amount of human input required by

the system before, during or after the collaboration session.

2.2.2 NoteLook

NoteLook [Chi99b] is a system for indexing and annotating meetings that take place in

a specially constructed meeting room at FX Palo Alto Laboratories [Chi99a]. The room

is equipped with video cameras, microphones, video projectors and a wireless network.

The system uses tablet PCs to capture freehand notes taken by meeting participants and

the wireless network enables presentation slides displayed on the video projector to be

automatically displayed on the tablet PCs in real-time. This enables meeting

participants to annotate directly over the slides using digital ink as the meeting

progresses. A sequence of thumbnails from the room cameras is also added to the note

pages. This can help dete111line who was speaking at that time and what was going on.

These notes are time-stamped and correlated to the multimedia data.

Version 3.0 of NoteLook [Chi03] also adds a feature allowing the hand authored notes

to be displayed to other meeting participants during a live meeting. As shown in figure

2.5, users of NoteLook 3.0 are presented with a live panoramic view of the meeting

room on their tablet PCs on to which is overlaid an augmented reality interface, which

allows users to 'drag' a slide off one of the wall displays, annotate it and then 'drag' it

on to another wall display for immediate display to the other participants.

At the end of a meeting, the system then can be instructed to automatically generate a

web-based index and archive page for the meeting. This consists of a miniature version

of each note page displayed on the index page, which can be enlarged by clicking on

them. This is shown in figure 2.6. Clicking on a note page or an individual freehand

annotation will start the

14

playback of the meeting at the point at which that note was taken. This takes the form

of synchronised replay of the recorded video and the annotated slides, played back

through the NoteLook system.

Figure 2.5, The Notelook 3.0 freehand annotation interface (from [Chi03])

*' sloIiMlg-~8-12-01 - Nelscope I!lIiII3
f,~e ~dit)~I~ _~.&cm~!...!I::~~

~ ,j.';;~ l $ia..I,;i ,;;Ja:l!
~~_ 'h:r ... :e;n Reload Home :?ee.rCfl Guide Plinl SeoJrity ",;1 _

. r-- :;(t· S ,priark$,~ LOc:CItion; A tl e:/IIDI/NoteLook/stafftv11 98' 12-07!stalfMt -98-12-{)7_1.J<7.hlm

Figure 2.6, The Web based NoteLook index (from [Chi99b])

15

Type of Collaboration Supported

The system supports co-located participants in a meeting scenario that uses presentation

materials. Chiu et al. discuss the possibility of using the system in videoconferences,

but have not implemented this. The system also archives the slides, annotations and

meeting video for later viewing.

Type of Information Added

The system captures presentation materials, freehand annotations and video thumbnails,

which are all timestamped. The system also allows live display of annotations to other

participants. This captured information is used to automatically generate a web-based

index and archive of the session.

Support for Machine Processable Annotations and Semantics

Apart from an explicit notion of slide display events, the system has no real machine

processable information. For example, annotations are left as freehand pen strokes and

speaker identification is achieved by a human viewing the video thumbnails on a note

page.

Support for Live Processing

Annotations are taken during live meetings, and can be displayed to other participants

as soon as they have been authored. However, the index pages aren't generated until

the end of a meeting.

Degree of Automation

The system can automatically provide participants with the current slide and a number

of video thumbnails which to annotate over, but the participants still have to write all

the annotations manually. The system does however automatically generate a meeting

index and record from the captured slides, video and annotations.

2.2.2.1 Conclusions about NoteLook

The presentation material centric approach of the NoteLook system means that its

usefulness is fairly limited in meeting scenarios that don't use slides. While the

automatically generated meeting index and record pages appear to be useful, the

system's lack of semantics means that the information it captures is only suitable for

human consumption, which severely limits the potential for further automated

16

processing. The use of freehand notes makes its annotation capability very flexible, but

does require significant manual input from participants.

2.2.3 Shared Text Input

Shared Text Input [Den04] is a PDA-based system designed to allow students to author

and share notes in real-time during lectures using wireless PDAs or laptop pes. If

presentation slides are used, these are also displayed on the PDAs synchronised with

the slide transitions from the lecturer. A picture of the system running on a PDA is

shown in figure 2.7.

nadlas:>Stllart~d Text Input

@)

@

Shat@oTextInput

Figure 2.7, The Shared Text Input application running on a PDA (from [Den04])

To enable faster note taking on the PDAs, students may reuse words from other notes

or presentation materials simply by selecting the word. As well as promoting faster

note taking, it is suggested that sharing the notes in real-time increases the awareness of
17

the students during the lecture. After a lecture, the system automatically archives the

notes and any presentation slides and places them on the web for future reference by

students.

In a user trial of the system, some of the notes were found to contain URLs, allowing

students to look at additional references during the class. The system was also used as a

real-time chat tool, allowing students to ask each other questions dming a lecture.

Type of Collaboration Supported

The scenario the system is designed for is that of a lecture, but the system could also be

applied to a more general meeting room scenario. The notes and presentation materials

are archived enabling viewing after the lecture.

Type of Information Added

The system allows hand authored text notes to be shared in real-time dming a lecture

and archived notes to be made available after the lecture.

Support for Machine Processable Annotations and Semantics

The system has some basic semantics as it supports the authoring of three different

types of notes. Private notes that are not shared, chat notes that have a usemame

appended to them so that they can be attributed to a particular student, and public notes,

which do not have a usemame added. These different types are of limited use, as they

only indicate how the note should be distributed and displayed. Some potential does

exist for automated processing of the text, as the notes are in full text rather than in

native handwriting.

Support for Live Processing

The system has good support for live processing; notes may be authored and shared in

real-time during a lecture.

Degree of Automation

The system requires manual input of notes, but does allow note takers to re-use words

from other notes. The system also automatically places the notes and any presentation

materials on the web after the lecture.

18

2.2.3.1 Conclusions about Shared Text Input

Shared Text Input has shown a novel interface for reuse of other people's words to

allow faster note taking during lectures. It has also been suggested that sharing notes in

real-time can help improve the awareness of the lecture audience.

Through real use it has been shown that as well as proving a note taking facility, the

back channel communication features are useful for things such as sharing URLs and

asking questions. Some users however found that seeing live shared notes from all

users caused them to experience 'information overload' , so this shows that it is

important to limit the amount of information displayed to users at once.

2.2.4 Distributed Meetings

The Distributed Meetings system [Cut02] enables the live broadcasting and recording

of meetings. The system automatically captures a significant amount of extra

information compared to a traditional audio or video recording.

The system uses a 3600 panoramic video camera in the centre of the meeting table to

capture and broadcast a view of all the participants. The system has a microphone

array, which it uses to perform sound source localisation (SSL) on people speaking.

This is combined with computer vision-based participant tracking techniques to

determine where in the panoramic video the current speaker is. This is used to show a

close up view of the current speaker obtained from the panoramic video. An additional

camera also captures any whiteboard activity. The video streams are broadcast live to

remote clients using multicast. Remote audio communication is achieved using the

standard public telephone system.

All this information is also recorded and archived for later replay and a kiosk in the

meeting room allows participants to start and stop the recording. The pmticipant list

and meeting description can be automatically obtained from the initial requests to hold

a meeting using a Microsoft Exchange server. If additional participants are present who

were not included in that request, they may be specified by holding a smmt ID card

next to a reader at the kiosk.

The archived meetings are automatically indexed by a speaker timeline and whiteboard

pen strokes. The archived meeting client is shown in figure 2.8.
19

Figure 2.8, Distributed Meetings archived meeting client (from [Cut02])

Clicking on the speaker time line or a pen stroke starts the replay of meeting from that

point. As the system is unable to identify specific participants in the meeting room, the

name of each person in the timeline must be entered by hand as part of the archiving

process. The system also has a time compression feature for replaying the meeting

speeded up, enabling the meeting to be watched in less time.

As part of its evaluation, the system was used to record ten real-life team meetings

where one or more team members were unable to attend the meetings. After the

meetings the absent team members then watched the recordings and were asked to fill

in a questionnaire. This presented the users with a number of statements about the

usefulness of the system and they were asked to rate to what extent they agreed or

disagreed with each statement. For example, one of the statements was "Being able to

browse the meeting using the timeline was useful". There we similar statements about

the usefulness of the time compression, panoramic view and speaker view features. The

survey results showed that on average the users agreed with the statements about these

features. As general comments, some users suggested that if the meeting was full of

20

strangers, they would find the names on the speaker time line especially helpful and

one user suggested that it may be useful to have other meeting events marked on the

timeline also.

Overall the evaluation showed that the users at least perceived these features to be of

benefit, although it did not present any conclusive evidence of time savings or

improvements in understanding of the recordings by the users when compared to

traditional meeting records such video recordings or minutes.

Type of Collaboration Supported

The system is intended to support a meeting scenario where participants are co-located

in a single meeting room, and other participants may join the meeting over the

telephone and watch the video streams from the meeting room. Participants unable to

attend the meeting or watch the live broadcast can later watch a recording of the

seSSIOn.

Type of Information Added

In a live meeting, the features provided are limited to useful camera views. These are

panoramic video, close ups of the current speaker and the whiteboard. In a recorded

session, several types of meeting metadata are available in addition to the novel camera

views. These additions are the meeting details (time, location, duration, title, names of

participants, who led the meeting, number of active participants) and indexing using a

speaker time line or whiteboard pen strokes.

Support for Machine Processable Annotations and Semantics

The system has an explicit representation of some basic meeting metadata, such as the

meeting details, individual participants speaking and whiteboard pen strokes.

Support for Live Processing

The system supports live broadcast of its various video views, but the indexing

functionality is only available after the meeting has ended.

21

Degree of Automation

The camera control, speaker identification, speaker time line and index from

whiteboard pen strokes are all created automatically. However, the names of the

participants on the speaker time line have to be manually entered.

The meeting details are automatically obtained from the initial meeting set-up in

Microsoft Exchange, although participants not included in the original communications

to arrange the meeting have to manually enter their details in the meeting room kiosk.

2.2.4.1 Conclusions about Distributed Meetings

Distributed Meetings appears to be a useful tool for automatically capturing meeting

metadata. However, its available features in a live meeting are fairly limited, as the

system provides no beneficial features for participants located in the meeting room and

simply provides some useful camera views for display the remote participants.

Furthermore, remote participants are treated as second class citizens, as the video is

only one way and their audio is not included in the speaker identification. They also

have no way of drawing on the whiteboard.

Its features for archiving meetings seem to be more useful. A first hand user account

mentioned that speaker identification was a useful way to index archived meetings, and

identifying participants by name on time line would be useful if the participants were

not known to the person viewing the replay. Another user also said that it would be

useful to record other events, such as people leaving or joining the meeting room.

2.2.5 The AVIARY Intelligent Room

The AVIARY (Audio-Video Interactive Appliances, Rooms and sYstems) intelligent

room testbed [MikOO, Hua03] is a system that handles the automated capture of multi­

person interactions in a meeting room. The room is equipped with static cameras, active

pan/tiltlzoom cameras and microphones. This allows the remote viewing of a live

meeting or the later browsing and viewing of a recorded meeting. The capture takes the

form of location tracking of participants and speaker identification, which is used to

automatically control the cameras in the room to select the best shots and to build up a

graphical summarisation of the meeting (shown in figure 2.9). This graphical summary

is used to browse recorded meetings and locate sections of interest for video replay.

22

0 G> 0
0 0 0 0 0 0 Q) ~ Q I (})

* I
(?) 0
0 0

J () 0 qI I 0
ij! 0 0

Iii! 0 0
1m 0
0 § 0 • [J 0 .,
0 13 0 • I

"
I
j ,, :

IIfI I
IIfI I
IiII

Figure 2.9, The AVIARY graphical summary (from [MikOO])

The system is able to recognise three different types of event in the room, these are:

when somebody is located in front of the whiteboard, when that person (i .e. the lead

presenter) speaks, and when other participants speak. The purpose of recognising these

events is to be able to automatically direct the cameras to capture these events and also

to mark them on the graphical summary.

In order to recognise these events, the system employs a number of computer vision

techniques combined with voice recognition. When a person enters the room, they are

required to speak in order that the system may use voice recognition to identify them

and this is combined with face recognition to ensure reliable identification. The static

cameras are then used to perform 3D tracking of each participant within the room so

that the system knows the location of each participant at any moment in time.

Whenever a participant speaks, voice recognition is used to automatically identify that

participant, and the system uses this knowledge along with the location information to

know where to aim one of the cameras in order to obtain a close up of the speaker.

Similarly the system can use the location information to detect when a participant is

using the whiteboard.

23

As well as automatically selecting optimum camera shots, the event and location

information is used to generate a 3D graphical summary of the meeting, which is

generated in real-time during the meeting and may be used to navigate through the

recorded video after the session. The summary shows the room floor plan, with a third

vertical axis representing time. Each participant's activity is represented as three

dimensional track, which shows their location in the room over the duration of the

meeting. This makes it possible to, for example, determine when a particular participant

drew on the whiteboard. Along each track are multiple squares or circles, a square

representing that the person was speaking and circle for when they were not speaking.

When the user selects a specific track they are shown a face snapshot and the name of

the person the track represents. Clicking on a square or circle begins the replay of the

video from that point.

Type of Collaboration Supported

The system supports group meetings of co-located individuals with other remote people

passively viewing the live session. It also supports the later browsing and replay of

recorded meetings.

Type of Information Added

The system is able to keep track of who is in the room, where in the room they are and

who is currently speaking. During a live meeting this information is used to

automatically control the cameras and dynamically construct a graphical summary of

the session. After a session, the graphical summary can be used as an index for the

recorded video.

Support for Machine Processable Annotations and Semantics

A VIARY is able to recognise three interesting meeting events, and also uses a

rudimentary form of inference to determines when these events are occuning. It

achieves this by combining participant location data, speaker identification data and

existing knowledge about the room.

Support for Live Processing

It has fairly good support for live processing as the event recognition and automatic

camera control both work in near real time, although the speaker identification module

requires 1-5 seconds of speech before identification may occur, so this introduces some
24

delay. The graphical summarisation is also constructed in on-the-fly and can be

displayed to local participants and remote viewers.

Degree of Automation

The camera control and generation of the graphical summary are both done

automatically. The participants must however always remember to speak as soon as

they enter the room to allow person identification.

2.2.5.1 Conclusions for The AVIARY Intelligent Room

The most interesting feature of the AVIARY system is that it uses basic information to

infer interesting meeting events, although it doesn't use a general purpose knowledge

representation, so extending the system to perform other inferences would be difficult.

The relatively long time required for speaker identification means that the system takes

significant time to respond (up to 5 seconds) and is likely to completely miss short

utterances altogether. It also requires all participants to speak as soon as they enter the

room, which could potentially be disruptive to a meeting if a participant joined the

meeting after it had already started.

The three dimensional summarisation of meetings is a novel representation, but in some

cases it may lead to a very complex representation that is difficult to understand,

especially if the participants move around frequently during the meeting.

2.2.6 The Smart Meeting Room Task

The Smart Meeting Room Task (SMaRT) [Wai03] is a research activity with an overall

goal to provide a smart meeting room that supports people in any kind of meeting

situation, without any explicit human computer interaction. The focus is on

automatically monitoring activities in the meeting room using audio and video analysis.

One of the key SMaRT tools already implemented is the Meeting Browser tool [BetOO],

which is capable of automated meeting capture and replay, supporting live meetings in

addition to record and replay capabilities. A screenshot of the Meeting Browser is

shown in figure 2.10.

25

~Meelong Browser I!!II.!1Ei
File Edt View Record SUmmEMize· Help

'" Meeting

". ,.;-;
~ :'Susan Ling ...

'" Adm. Roc Kelly jffjf
'" SecDefJohn Slone ~

CoL I!. S . Fisher: TIll: IRANIAN DELEGATI ON ASKED TO

BE s.4~ IlITII TIll: OlIAN'S VICE TIll: SAUDIS AS TIll:
SEATING CHART HAD INDICATED

SecDef John Stone: WHAT DO YOU TIlHlK TIllS llEANS
COLONEL

Co l. M. S. Fisher: I I M NOT SURE SIR
Col. H. S. Fi sher: BUT IT JUST COULD BE THAT TIll:

lRAlHANS ARE POSTURING TO HAKE A BETTER DEAL fOR
TIll:MSELVES

CoL H. S. fi s he r: lJITII REGARD TO TIll: FLOll OF OIL
TIlROUGH TIll: STRAITS Of HORHUZ

Adm.. Roc Kelly: If I COULD INTERRUPT SIR SCOTT lJHEN
I WAS COMMANDER Of TIll: MIDDLE EAST fORCE BACK I N

TIll:
MID EIGlITIES TIll: IRANIANS tlERE AWAYS SPOUTING
RllETORIC HOloJEVER TIllS SHHS A LITTLE MORE UNUSUAL

Adm.. Roc Kelly: KEEP US POSTED Ol! ANYTIIING THAT
COllES OUT Of THAT lIEETING

Col. H. S. Fisher: lJILL DO SIR fISHER OUT
SecDef John Stone: MISS LING I BELIEVE THAT YOU

OJERE ABOUT TO START
Susan Ling: YES SIR

Ling: I lJAS GIVING YOU A RECAP ON TIll: CHINESE

Search:

Figure 2.10, The SMaRT Meeting Browser (from [BetOO])

The Meeting Browser supports up to six participants, some of which may join remotely

using videoconferencing. During a live meeting, the browser displays the participant

list and an automatically generated speaker identification timeline and transcript of the

meeting. If a list of action points are discussed at the end of the meeting, the system is

able to automatically capture these and email them to the meeting participants. The

system is also able to automatically generate a text summary from the transcript.

After a meeting, all this infonnation may be archived alongside the video from the

meeting, and may be replayed in the Meeting Browser. The collection of archived

meetings may be searched by topic, keywords, participants or date, and it is also

possible to view the summary for a meeting without having to first load it into the

browser.

The functionality of the Meeting Browser is achieved by a combination of techniques.

Identification of participants uses computer vision techniques combined with voice

recognition. The voice recognition system is also used to generate the speaker
26

identification data. The automatic transcription is achieved using speech recognition

software, whose output is combined with the speaker identification data to attribute

each comment to the conect participant. The transcript summarisation is achieved

through a summarisation server, which analyses the dialogue and returns a summary to

the Meeting Browser. Since the voice recognition system is somewhat error prone, with

typical word enor rates in excess of 25%, the browser allows manual conection of the

transcripts.

Type of Collaboration Supported

Support is offered for meetings of up to six participants, who can either be co-located

or joined remotely via videoconferencing. The system also allows searching, browsing

and replay of archived meetings.

Type of Information Added

The system adds an automatically generated transcript, summary, palticipant list and

speaker event time line. This information is generated in near real-time, and is made

available to participants in live sessions as well as recorded sessions. The system is also

able to automatically capture discussed action points at the end of a meeting.

Support for Machine Processable Annotations and Semantics

It has an explicit representation of participants speaking and also captures other basic

metadata about the meeting such as participants and keywords, which may be used to

search for archived meetings. The system also automatically extracts a text transcript

and summary from the audio and has an explicit representation for action items.

Support for Live Processing

The system has good support for live processing. The participant list and transcript are

both created on-the-fly and displayed to participants during a meeting, although some

lag is introduced because the speaker identification requires approximately 6 seconds of

speech to produce accurate results.

Degree of Automation

The system is largely automated, suppOlting automatic participant and speaker

identification and automated transcription. However due to the high enor rate in the

27

speech recognition, significant human input is required to correct the errors in the

transcript.

2.2.6.1 Conclusions for SMaRT

The Meeting Browser has many useful features and supports a significant amount of

additional meeting information compared to traditional video recordings. Most of its

features are made available to participants during live meetings, which means that its

use goes beyond a simple replay tool.

One of its main weaknesses is that its speech recognition has a significant error rate,

which requires significant manual input to correct. Its other weaknesses are its

limitation to six participants, which may often be exceeded in real meetings and a

speaker identification time in the order of several seconds, which introduces some lag

in the system.

2.2.7 CoAKTinG

The CoAKTinG (Collaborative Advanced Knowledge Technologies in the Grid)

project [Bac04] looks at providing mediated spaces for synchronous collaboration, as

well as tools for supporting asynchronous collaboration. The project looks primarily to

address the needs of e-Science collaboration, but the work is also applicable to

collaboration in a more generic context too.

CoAKTinG applies advanced knowledge technologies to integrate a number of tools

into existing collaborative environments, such as the Access Grid [Acc04]. The tools

are:

• BuddySpace. This is an instant messaging tool with enhanced support for

presence awareness. The presence features take the form of a map on to which

the presence information is overlaid, allowing users to tell at a glance who is

available to chat, and where they are located (shown in figure 2.11). The instant

messaging features may be used for 'back channel' communication in

videoconferences, and also can support meeting control tasks such as speaker

queuing and voting on issues.

28

~labber G Eresence B.oster ~lew Maps Help

Figure 2.11, The presence indicators of BuddySpace (from [Bac04])

• Compendium. This is a graphical tool for collective sense making and group

memory capture. Dialogue maps are hand created on-the-fly in meetings by a

trained facilitator. The maps consist of interconnected nodes that provide a

visual trace of issues, ideas, arguments and decisions in the meeting, which may

be validated by participants at the meeting (see figure 2.12). After the meeting

the maps provide a structured, searchable group memory for the meeting.

Compendium also supports live sharing of dialogue maps to support distributed

collaboration and also allows maps to be exported as RDF compliant to an

OWL ontology developed for the CoAKTinG project.

• I-X Process Panels. In essence, this tool acts as an intelligent 'to do' list, which

can be used to coordinate pre or post-meeting actions. The interface shows users

a list of their issues and activities, and supports collaboration by allowing the

issues and activities to be passed to the panels of other users. Actions may also

be created in a meeting specific panel, which are then passed on to the relevant

29

users for action. Upon completion of an activity, users may use their panel to

report this back to the meeting specific panel. At its heart, I-X Process panels is

built using an activity ontology and has an automatic RDF export function.

f iJ\ -. quic~ o.asylO do \;..- --
/ __ _ ...--wh.l ,he <amp.,il",,? EiII - w <ulat»tneF9.D'S'e'Aew.rt1<le

:.....-------n $0 n •• ,!- ~me to ""'It(h riA &
t \::.r- ..--- -,

ItJhen doe!? L$otl.oIJQf(ldetom~ OuP- Beh· (han 1$()thf).5

- emall nom Feltt on S.at3:<hIt

Renolt " real r.&'Se.'uch felloW'i ;·0

~ - Elli - dr,,~ IOD spe. 'a>f 15 Aptll

Figure 2.12, An example Compendium map (from [Bac 04])

• Meeting Replay. Replay of meetings is achieved with a web-based tool that can

be used to navigate through an archived meeting (see figure 2.13). The tool

takes the recorded video from a meeting along with an RDF description of the

meeting events and automatically generates a timeline showing these events.

Clicking on an event in the timeline begins the replay of the meeting from that

point. The replay consists of the meeting events synchronised with audio and

video. The replay tool also displays other useful meeting metadata such as title,

date and a list of participants. Events that the replay tool is capable of handling

include agenda items, speaker identification, slide transitions and creation of

compendium nodes. The RDF description of the meeting events (e.g. speaker

identification) is largely created by hand, although Compendium supports

automatic RDF export of its maps (which are initially hand generated).

30

'~Mozilla I" ':.~ "

Foundational Capabilities

1. Co-AKTinG \"IiII use advanc\?d kno"'o'ledge-based task and
process support aids based on AI planning research and
periona6sed i ntelligent process panels which themselves
support issue: processJadivity and product Yie'l.'lpoints.

2. Co-AKTinG \"IiII use Compendium as a method to annotate
and enrich cDllaborative meeting structures.

3. Co-AKTinG......,1I deploy presence and peripheral awareness
capabilities using extended Budd'lSp.ce tec hnology,
including an :ontology of presence' and 'knowledge profiles: (
including COP. location. interest. cornent & version profiling)

t:\·"'·J"J .' 4t" ~ TtItIe: (J0.AKTiAG liomost0ne l5liscussion
(Date; 16:eJO, 21st Jar:u.:Iary 20l!J3

Participllnts: Jiri, Michelle, Simon, Marc, Nick,
k:evin, Dave, ()aPIHS, ~igel. ~ustin,
Stephen, JessiGa

", :,t.r . " , ~ ,'~··: 'I I,",,'., .,~,

:.. : ... ,.,~.' .•. ':'''' tI.,- :- :.'
· :.:~ •• ~: _ I;""""" .. :
· :';::::~7!:~~-~ .'·~-~:f :-.'~"':
~[:'l.:;""'.-.'# -

.. ,',;..:;::'; (........ -
• ~ .'1 ,-'"~. .. • .1 .. , •• • • ,.

i i

Cur:reAf Speaker: Austin
Nodes: question Tombstones:? <::- question flr0pesal: objeetives <- anSWEr ObJeotive 3

Figure 2.13, The web based Meeting Replay interface (from [Bac 04])

Type of Collaboration Supported

CoAKTinG supports both synchronous meeting or videoconferencing scenarios, and

asynchronous collaboration after a meeting using I-X Process Panels and the meeting

replay tool.

Type of Information Added

Quite a lot of different types of additional infonnation and features are provided. The

main features are presence management and visualisation, back channel

communication in meetings, shared Compendium maps, issue and activity tracking, and

meeting replay. The meeting replay is able to handle event types such as speaker

identification, slide transitions and creation of Compendium nodes.

31

Support for Machine Processable Annotations and Semantics

Being built around an OWL ontology, CoAKTinG has very good support for high level

semantics. Both I-X Process Panels and Compendium are capable of generating RDF

output which preserves the rich semantic relationships these tools may be used to

express. The meeting representations used by the Meeting Replay tool are also created

in RDF.

Support for Live Processing

Both BuddySpace and Compendium are tools that can be used in live meetings, and

I-X Process Panels allows real-time transfer of issues and activities between panels.

The Meeting Replay tool however relies on hand creation of the RDF meeting

representation after the meeting has ended.

Degree of Automation

All the CoAKTinG tools rely on a significant amount of explicit user input. For

example, Compendium requires significant input from a trained user. The meeting

replay tool also requires information such as participant lists and speaker identification

to be hand generated after the meeting.

2.2.7.1 Conclusions for CoAKTinG

The CoAKTinG project has demonstrated the use of Semantic Web technologies within

the domain of synchronous collaboration. It plimarily uses RDF for direct ontology

level interoperability of components and expressing relationships to external resources,

but doesn't use techniques such as inferencing to realise the full value added potential

ofRDF.

A significant amount of manual effort is required to use the tools. In particular

Compendium and the generation the RDF meeting descriptions for the Meeting Replay

tool both involve significant effort. Furthermore, although BuddySpace, I-X Process

Panels and Compendium work in live meetings, the reliance of the Meeting Replay tool

on hand authored RDF after meeting means that the events it handles cannot be

displayed to participants during a live meeting.

32

2.2.8 Conclusions for Review of Systems

The review has examined a range of systems that provide some form of computer

enhanced support for annotation and capture of collaboration activities. Within the

context of this thesis, the greatest collective shortcoming of the reviewed systems was

an almost complete lack of machine processable semantics associated with the

annotations. This severely limits the potential for interoperability, reuse or inference

with the annotations. The notable exception to this was CoAKTinG, which had good

support for high-level semantics, but did have the drawback that the annotation tools

did not all work in real-time and required significant manual input. A lack of

automation was a common failing amongst the other systems too, with only Distributed

Meetings and AVIARY providing approaches that didn't require significant user input

during or after a collaboration session.

NoteLook and Distributed Meetings made very little functionality available during live

meetings, and some useful CoAKTinG annotation features, such as speaker

identification, were only made available after a session too. This means that session

participants would not have access to all helpful annotations during a live meeting.

With the exception of SMaRT and CoAKTinG, the systems also did not support full

distlibuted collaboration, which clearly further limits their use.

Overall, the key observation is that none of the systems fully provided all desirable

properties at once (i.e. machine processable semantics, live processing and significant

automation). Therefore there is considerable scope to create improved systems

compared to the ones reviewed here.

2.3 The Semantic Web

The Semantic Web is defined as "an extension of the current web, in which information

is given well-defined meaning, better enabling computers and people to work in

cooperation" [BerOl]. In essence, this means putting machine understandable data on

the web, to enable it to be shared and processed by automated tools as well as people.

This potentially enables significantly better automation, integration and reuse of data

across a variety of applications.

33

The key technology behind the Semantic Web that allows the creation of these machine

understandable descriptions is the Resource Description Framework (RDF) [Bec04]. It

is based on a hierarchical class and propel1y system, where all entities described by

RDF expressions are resources, which are uniquely identified by a URI (Uniform

Resource Identifier) [Ber98]. Resources have properties that are specific characteristics

or attributes that are used to describe them. The value of a property may either be a

literal value or another resource. A resource combined with a named property and its

value is a statement. Statements in RDF are structured triples of the form (subject,

predicate, object). RDF is expressed using an XML-based serialisation syntax,

although RDF may also be serialised using other representations such as Notation3

[Ber04].

The RDF schema mechanism (RDFS) [Bri04] is used to define the classes ofresource

that may exist and the properties they are permitted to have. RDFS can be thought of as

a mechanism for expressing simple ontologies. In the context of the Semantic Web, an

ontology is a representation of a vocabulary, that specifies the terms, their meanings

and their interrelationships. Ontologies are typically used for modelling real world

domains and therefore function as domain conceptualisations.

The RDF schema mechanism is fairly limited, and to address this, the W3C have

developed the Web Ontology Language (OWL) [Dea04]. OWL extends RDFS by

enabling the specification of more complex ontologies. It adds additional features for

describing properties and classes, such as relations between classes, cardinality of

properties, equality, richer typing of properties, characteristics of properties and

enumerated classes. OWL also introduces features that allow ontologies to be

distributed across many systems, and has standard mechanisms for extending

ontologies.

De Roure and Hendler [DeR04] have discussed a number of important aspects of the

Semantic Web and these are briefly summarised in here. Much of the added value of

the Semantic Web comes from what is known as the Network Effect. This effect comes

from the accumulation of available descriptive information about resources. If there are

multiple descriptions of specific resources distributed on the Semantic Web, for

example held in databases or web sites, then this enables new kinds of questions to be

34

answered that draw on this aggregated knowledge, since it is effectively interlinked by

the objects it describes.

They also identify that the CUlTent best practice for realising the Semantic Web

infrastructure is to use a centralised, persistent and scalable database of tliples called a

triplestore. This collects knowledge in a single place in a repository that is simple to

manage and query. Although this approach works well at present, in the future it is

likely that the Semantic Web infrastructure will be provided by many distributed RDF

servers that will work with multiple ontologies to remove the requirement of being

centrally managed. Rather than having a single monolithic triplestore, the Semantic

Web will become a vast distributed triplestore, which will self-organise just as the Web

does today, although it is not clear yet how this will be achieved.

2.4 Semantic Web Applications

This section gives an overview of a number of applications that use the Semantic Web.

The discussion starts with CS AKTiveSpace, as it is one of the major applications in

the Semantic Web field and presents a useful reference for the architecture of the

CUlTent Semantic Web. It consists of a diverse set of individual services, and the key

relevant ones are discussed in the following sections, along with their rationale for

selection.

Then the Annotea semantic annotation system and work by the RDF Calendar

Taskforce are discussed. Both of these are examples of how the Semantic Web is

cUlTently applied to the domain of collaboration, with Annotea supporting collaborative

annotation and the calendar work supporting automated scheduling of collaboration

seSSIOns.

2.4.1 CS AKTiveSpace

Arguably one of the more important applications that goes some considerable way to

demonstrating what the Semantic Web can offer is CS AKTiveSpace [sch04]. This is a

large scale proof of concept application to demonstrate what the Semantic Web can

provide and is built on a larger scale than existing implementations of individual

Semantic Web services.

35

The application exploits a wide range of semantically heterogeneous and distributed

content relating to Computer Science research in the UK. It uses a single common

ontology called the AKT reference ontology [AKT04] to integrate the different data

sources. The content is gathered on a continuous basis using a variety of methods

including harvesting from existing databases, scraping from institutional websites and

direct submission. Specific mediators for each data source are used to convert the

information obtained from the sources to be in terms of the ontology.

CS AKTiveSpace attempts to address a number of key Semantic Web issues including

harvesting, time performance of queries, robustness, scalability and referential

integrity. Referential integrity issues arise when more than one URI is used to represent

a single resource and is a particular problem in applications like this, as knowledge is

integrated from multiple sources. While such co-references are entirely permissible in

the Semantic Web, they are problematic as they partition the information space in a

way to reduce the recall of queries made to that space. For existing information sources

in CS AKTiveSpace, a combination of manual and automated heuristic techniques are

used to identify co-references and rectify them, but in the future plans for CS

AKTiveSpace hope that the knowledge base will be used as a gazetteer or naming

authOlity to ensure that agreed names are used for resources.

2.4.1.1 Choice of Services for Discussion

CS AKTiveSpace consists of a large number of services. An overview of the chosen

services is given here along with the rationale for their choice.

• 3store. This is a triplestore implementation that provides the core knowledge

repository for CS AKTiveSpace. It was chosen as it is at the heart of CS

AKTiveSpace and any discussion would be incomplete without it. Furthermore

it is used as part of the implementation discussed in Chapter 5.

• Armadillo. This service was chosen as it shows one current approach to semi

automated semantic annotation of Web Resources.

• Ontocopi. This service is used to automatically determine the Communities of

Practice of individuals. This has particular relevance to collaboration as it can

be used to identify new people to collaborate with.

36

2.4.1.2 3store

Content in CS AKTiveSpace is held in a centralised triplestore called 3store [Har04],

which at the time of writing contains about 10 million triples. 3store has been designed

with scalability and performance in mind and it can scale to the order of 25million

triples and answer typical queries in a few milliseconds. Queries are issued using the

commonly used RDF Data Query Language (RDQL) [RDQ03]. 3store also has a built

in inference capability, so that when it is queried, it not only returns the triples

explicitly asserted in the triplestore, but also any triples that may be entailed from the

RDF and RDFS language rules, which depending on the nature of the particular

entailment are either worked out at assertion time or dynamically at query time.

2.4.1.3 Armadillo

One of the services used to constantly update the CS AKTiveSpace triplestore is called

Armadillo [Cir04]. It is an application for largely automated knowledge extraction from

web pages. It retrieves information from different sources and integrates it into its

repository. The repository can be used both to access the extracted information and to

semantically annotate the web pages where the information was identified.

It has an initial lexicon for recognising instances of concepts, and it then can

automatically expand its lexicon by exploiting patterns in the data set it is processing. It

also exploits redundancy of information on the web to expand its lexicon and improve

the accuracy of its information extraction. The only user input required is to add

information missed by the system and to delete information incorrectly identified by

the system. This user intervention feeds back into the system to improve its future

effectiveness.

In CS AKTiveSpace Armadillo is used for extracting the names of researchers and

paper citations from institutional web sites.

2.4.1.4 Ontocopi

The CS AKTiveSpace infrastructure is used by a number of applications. An especially

useful one is the Ontology Based Community of Practice Identifier (Ontocopi) [Ala03].

It is an application that demonstrates the value of the network effect by automatically

identifying communities of practice (COPs), that otherwise would be extremely

difficult to determine. Communities of practice are self-organising informal groups of

37

individuals interested in a particular job, practice or work domain. Knowing COPs is

often important within organisations, as they help with understanding the knowledge

resources of an organisation, but determining them can be difficult and time

consuming.

Ontocopi uses ontological relations to infer connections between objects that are only

implicitly represented. E.g. that two people work with the same people, go to the same

conferences or have published in the same journal. These relations are determined

using a technique called Ontology-based Network Analysis (ONA), which determines

sets of instances associated with a specific instance in a knowledge base. It obtains the

COP of a selected instance by traversing selected semantic relationships between the

instance and other instances, continuing recursively until the links are exhausted or a

link threshold has been reached. The algorithm is general purpose, so it is not only

possible to determine the COP of people, but of any instance in the triplestore, such as

a project.

Another interesting use for COPs is for resolving referential integrity issues. When the

COP of two instances is sufficiently similar then it proves that the two instances are

identical.

2.4.2 Friend Of A Friend (FOAF)

Friend Of A Friend (FOAF) [BriOS] is a Semantic Web vocabulary for specifying

social networks. It allows individuals to create machine-readable homepages that

describe people, the connections between them and the things they create and do. This

allows software tools to automatically aggregate this information and harness the

network effect to infer relationships between people and resources linked to those

people, even though those relationships may not be explicitly specified anywhere.

For example, FOAF could be used to automatically sort a person's emails by

prioritising the messages have been sent from individuals who are have an some form

of link (either explicit or implicit) to that person. Other potential applications could

enable people to automatically identify individuals with the same interests as them, or

perhaps automatically determine the complete set of authors for a document, or the set

of people who are co-depicted in the same photograph (even though none of this

information will have been explicitly specified in any single location).

38

Tools such as FOAF-a-Matic [FOA05a] can be used to assist individuals with the

creation of FOAF content. Services such as FOAF explorer [FOA05b] can be used to

view and navigate the network of FOAF information.

Arguably one of the biggest weaknesses of the current FOAF specification is that its

mechanism for describing explicit links between people has very limited semantics,

being restricted to just a single type of 'knows' relationship. This makes it difficult to

determine the differences in relationship types between people. This, for example,

would make it impossible to differentiate between knowing trusted work colleagues

and knowing casual acquaintances, when each category of relationship should ideally

be treated differently in the social network.

2.4.3 Annotea

Annotea [KahOl] is a system from the W3C for the asynchronous collaborative

semantic annotation of Web documents. Users may annotate specific sections of a

document and these annotations are then made available to other users viewing the

document, who may author further annotations. The system uses an RDF based

infrastructure, where the annotations are held in annotation servers, which are just

general purpose triplestores accessible via HTTP. XPointer [Oro03] is used to specify

which part of the document has been annotated. Annotea specifies a core RDF schema

that defines a number of different annotation types, such as comments, questions and

advice. Users can use the standard RDF extensibility mechanisms to add other

annotation types that are required for their individual needs or the needs of their

community. In addition to annotations, Annotea also supports shared bookmarks

[Koi03], to provide a collaboratively maintained list of links to interesting Web

documents displayed in a hierarchical category view. The bookmarks may also be

displayed in context within a document to provide links to related information about a

concept within the document. As with annotations, the bookmarks are stored in general

purpose triplestores.

Annotea only specifies the infrastructure, and it is left to the individual client

implementations to determine how the functionality should be presented to the user.

Annotea capable clients are typically Web browsers, which also allow the authoring of

annotations and bookmarks. When a client fetches a web page, it also queries one or

39

more annotation servers to retrieve the annotations for the page. In order to achieve

this, the client needs to be pre-configured with the locations of the of the annotation

servers. Annotea clients include Amaya [Ama04] and the Annozilla plug-in for Mozilla

[Ann04] .

One shortcoming of Annotea is that the author of an annotation is stored as a literal

name rather than a URI representing that person. Clearly this makes it very difficult for

information about the author to be reliably retrieved from the Semantic Web, and thus

is unable to fully harness the network effect.

2.4.3.1 Vannotea

Vannotea [Sch03] is a system based on Annotea for the real-time, synchronous

collaborative annotation of high quality video streams. It supports multiple distributed

users who can communicate using the Access Grid, although the system is independent

of the Access Grid, so any real-time communication technology could be used in its

place. The system is presented to each user as a video player window where they may

collectively watch and control the video in question (see figure 2.14). An annotation

and discussion window allows users to author textual annotations , which may refer to a

segment of video, an individual frame, or a region within the frame. This window also

displays any existing annotations for the current video segment.

- Ffameframe_ TOU
8 Segner'll SCef'le_1122

Segment shoU122
. . Segnenl shoU54S &II

f ooU302

m
SliceII' 01 Bhutan

Figure 2.14, The Vannotea video annotation interface (from [Sch03])

40

The textual annotations use the Annotea system and are stored as RDF in an annotation

server, and Vannotea uses an extended form of XPointer to refer to specific segments,

frames or regions of video.

Vannotea's integration into the semantic web is in fact fairly minimal. It treats Annotea

like a 'black box' annotation service and doesn't take advantage of its semantic

features. Furthermore, although the individual annotations are in RDF, the metadata

used to describe individual video files (e.g. for locating the files in the first place) is in

a plain XML format, rather than RDF.

2.4.4 RDF Calendar Taskforce

The RDF Calendar Taskforce [Pay02a] has worked on creating ontologies and tools to

support calendars on the Semantic Web. The purpose of this is to allow software agents

to automatically understand and reason about calendar events and schedules, which has

many advantages such as being able to find mutually agreeable appointments for

several attendees, determining where events occur and who is attending. The network

effect can then also be used to tap into other knowledge on the Semantic Web such as

the attendees connections and affiliations. The ontology work has focused on creating a

calendar ontology based on the widely used iCalendar format (RFC 2446). One of the

taskforce's key tools is RCAL [Pay02b], which uses the calendar ontology to allow

browsing, importing, automatic scheduling between mUltiple users and collation of

knowledge obtained from multiple sources.

2.5 Conclusions from Literature Review

The concept of a mediated space has been introduced and it has been shown that

mediated interactions could potentially be as effective as, or possibly more effective

than non-mediated interactions.

Six existing systems that supported annotation and capture of collaboration activities

have been reviewed and it has been shown that all, except the CoAKTinG tools, lacked

machine processable semantics. Furthermore, a significant number of the systems had

poor support for distributed collaboration, live processing and automatic generation of

annotations. This shows that there is considerable scope for improving these

applications.

41

The Semantic Web has also been covered and it has been shown that it is still a

relatively new research area and that the exact form it will take once it has matured is

still unclear. CS AKTiveSpace has been discussed as an example of a large scale proof

of concept Semantic Web application. One particular Semantic Web issue that is

unclear is that of triplestore discovery, and existing applications such as CS

AKTiveSpace and Annotea rely on triplestore locations being manually specified.

The Semantic Web is being used for different forms of collaboration, such as document

annotation, identification of communities of practice and scheduling of meetings.

However, on the whole, Semantic Web technologies have not been applied to temporal

media and have not been used for real-time synchronous collaboration. For example,

although CoAKTinG tools and Vannotea both support synchronous collaboration,

CoAKTinG primarily uses Semantic Web technologies after a meeting for the purposes

of archiving. Vannotea's integration into the Semantic Web is in fact only minimal, as

it treats Annotea like a 'black box' annotation service, and other metadata used by the

system does not use Semantic Web standards.

42

3 Background and Motivation

This chapter explains and motivates the use of semantic annotation for enhancing

distributed real-time collaboration. It describes what annotations can be used for in this

context and what the potential benefits of a semantic approach are. To further motivate

real-time annotation of collaboration sessions, a small scale study of text based IRC

chat usage in telephone conferences is presented. This study is used along with the

author's own experience to produce an example list of useful annotations. Finally an

example scenario is presented in which it is shown how semantic annotation can be

used to enhance Access Grid videoconferencing, and potentially other remote

conferencing technologies too.

3.1 Introduction

The work in this thesis builds on the concept of continuous metadata [PagOl]. That is,

temporally significant metadata that is transported in close synchronisation with

streamed multimedia data to be used as supporting information to enrich the

multimedia data. Continuous metadata has been demonstrated by the HyStream

application [CruOl], which used hypertext links as an example form of metadata. The

application was capable of delivering the links synchronously with multimedia streams

over a wide area network. A demonstrator was produced that was capable of

synchronising links to presentation slides with recorded seminar videos. Later

extensions to HyStream [BeaOl] enabled it to use a simple RDF schema and interact

with an RDF knowledgebase. This allowed automatic generation of a user interface for

hand authoring the temporal links, which reduced authoring effort

This existing work focused on the offline, hand mark-up of recorded media. The RDF

based extensions were also very basic, for example not incorporating any notion of

time in the schema itself.

3.2 Semantic Annotations

In the context of real-time disttibuted collaboration, semantic annotation means giving

the individual events that occur as part of a real-time collaboration activity an explicit

representation that has a formally defined meaning. Annotations are generated during

43

collaboration activities and, if appropriate, can then be displayed to session palticipants

in real-time. For example, in addition to distributing audio and video streams between

sites in a videoconference, a real-time generated description of the events in the session

is also distributed between sites, and these events are presented to session participants

in a suitable format.

Such semantic annotations have two key purposes, firstly to provide useful additional

information in real-time for session participants and secondly to provide a machine

understandable description for a session, which can be used to index recordings of

collaboration sessions and then be replayed in synchronisation with the audio and video

recordings to provide a more complete replay that audio and video alone could provide.

3.3 Supported Technologies

This work aims to be as independent as possible from any particular collaboration

technology. The main type of technologies it aims to support are those for multipoint,

group-to-group, real-time collaboration. In particular this includes videoconferencing

(e.g. Access Grid) and audio conferencing (e.g. telephone audio conferences). The

primary focus is on videoconferencing, as this is a method of collaboration that is

becoming increasingly popular and is a field in which the author has much first hand

experIence.

3.4 Supported Collaboration Types

Here the main area of support is for synchronous (i.e. real-time) distributed

collaboration, but also asynchronous collaboration through allowing semantic

annotations to be used for archiving and later replay of collaboration sessions.

There are a broad valiety of activities that fall under the category of distributed real­

time collaborations. For example, surgeons collaborating during a live operation will

have requirements very different from those of computer science researchers discussing

an academic paper. There are also different modes of collaborating in real-time, e.g.

informal group discussions, seminars with a single presenter and an audience, or more

formal meetings.

The intention is to be general purpose enough to support a wide spectrum of different

collaboration activities. From the author's own expelience, a common use of real-time
44

distributed collaboration technology, at least in the academic field, is for group

discussions, which are reasonably informal, though may still have a chair. It is such

general-purpose group discussions that will fOlm a focus for the work covered in this

thesis.

In terms of scale of collaboration, it has been chosen to use the author's first hand

experiences of Access Grid collaboration to provide sensible figures for the size of

collaboration sessions this work should aim to support. A typical Access Grid session

may have approximately 10 participants and consist of 3 or 4 sites, with an upper limit

of about 12 sites and 30 participants. These figures will be used as a basis for the scale

of collaboration that this work should be able to support, although the work aims to be

general-purpose enough to support smaller or larger scale collaboration.

This work is also applicable to some extent to situations where participants are all co­

located in the same physical space. Distributed collaboration has been chosen as the

focus of this work as it is often less effective than face-to-face collaboration, meaning

that there is a greater need and more potential for improvement. Furthermore, since the

collaboration is already being mediated by technology, it makes sense to try and

improve how that technology performs the mediation.

3.5 Motivation For Annotation

From a human perspective, the main reasons for annotation are to provide useful

additional information to session participants and to provide an index and archive of a

recorded session. Annotations could, for example, be used to provide information about

the following:

• The CUlTent agenda item.

• Information about the cunent set of participants, such as a list of names.

• When somebody is explicitly addressing you.

• When the group is bored. This could be useful for somebody who is presenting

so they can gauge when to move on to the next topic.

• When participants are distracted. There is no point addressing a remark to

somebody if they are not paying attention to hear that remark.

45

• When somebody is lying (e.g. obtained from polygraph or voice stress

measurement). This could have applications in legal settings.

The net result of adding live annotations should be an improvement in the level of

conversational and workspace awareness among patticipants (see section 2.l.4).

Annotations can be used to explicitly provide information that is lost in video or audio

conferencing because of missing perceptual cues. Important missing cues are factors

such as audio direction and gaze direction, which can make it difficult to tell who is

speaking or who they are speaking to, therefore reducing conversational awareness.

Cues like these have been described as focal assurance cues [Man97] and give

information relating to each participant such as who is speaking, asking questions or

intelTupting. "In situations where the participants are not familiar with each other it is

especially hard to develop a sense of where people stand on issues when contributions

are not tied to a specific patticipant" [Man97]. Annotations, such as explicit speaker

identification could be used to compensate for these lost cues.

Basic workspace awareness, such as knowing exactly who is in the session and what

they are doing can also be difficult to maintain, as not all participants may be on

camera. Annotations provide a mechanism to enable participants to obtain information

at a glance such as who is cUlTently in the meeting and what is cUlTently happening,

thus enabling them to maintain their levels of awareness.

Furthermore, annotations can go beyond just replacing those cues missing in

videoconferencing. Through displaying explicit annotations that provide information

that is only otherwise implicit, the potential exists to boost participants' levels of

awareness to beyond those found even in face-to-face communications (as discuJsed in

the review of Hollan and Stornetta's work in section 2.1.5). For example, in meetings

(either face-to-face or video mediated) it may only be implicit that the group is bored,

meaning that this might not be noticed by a presenter. However, an explicit annotation

notifying a presenter of this fact would perhaps allow the presenter to modify their

presentation to try and recapture the interest of the group.

Once a session has finished, the annotations can then be used in tandem with audio and

video recordings to serve as an archive for the session. Traditionally meeting archives

have consisted of meeting minutes, which serve as a compact, structured record, but
46

one that often leaves out many of the subtleties of the meeting, and there is no way of

determining the rationale behind decisions if it has not been recorded. Audio or video

recording can overcome this problem, but present large amounts of unstructured data,

much of which may be irrelevant to the viewer.

These problems can be addressed by annotations. They firstly can be used to index the

audio and video to, for example, begin replay after a certain person joined the meeting

or to replay all the sections when a certain person spoke. They could even be used by

people who were present at the meeting answer post meeting queries of the type

"replay all the sections meeting where I was distracted", thus allowing them to catch up

on what they missed. Furthermore, the annotations can be replayed in synchronisation

with audio and video to provide a more complete replay, for example showing the

current agenda item, a list of all the participants present at that point in the session, or

even perhaps showing when somebody was lying.

3.5.1 What is being annotated?

Annotations normally need some entity to be annotated. Here the primary entities being

annotated are the actual events that make up the collaboration activity. This annotation

of actual events holds true for both face-to-face and video mediated collaboration. If

the collaboration is video mediated or is being recorded, then the media streams (i.e.

audio and video) will be further entities that are being annotated in addition to the

actual meeting events. For example, the event of somebody being distracted is treated

here as the entity being annotated. If this event is recorded in video, then the annotation

will also serve as an annotation for the video.

When describing annotations in this thesis, the author refrains from referring to them as

'metadata', since this might incorrectly imply that there was always some underlying

explicit data being annotated. In a face-to-face meeting that isn't recorded there is no

explicit data, so describing the annotations as metadata could cause confusion. It is

however true that when a meeting is video mediated there is explicit data (in the form

of video), for which the annotations can act as metadata for.

3.6 Motivation For A Semantic Approach

At this stage it may not be clear why it is beneficial to take a semantic approach to the

annotations, i.e. one that is formally defined by an ontology giving them a machine

47

understandable meaning. In addition to the potential for the network effect discussed in

section 2.3, a semantic approach has a number of key benefits:

• Inference. Inference is the process of deriving new knowledge from that which

is already known. This means that new events (and hence annotations) may be

automatically derived from the events already known to the system. Automated

inference is only practical when a formally defined ontology is used. Inference

may be a useful technique for the automatic generation of semantic annotations.

• Interoperability and Reuse. A semantic approach means that a system can

seamlessly integrate with existing Semantic Web knowledge sources, such as

triplestores. This knowledge can be automatically harnessed when creating

annotations and can feed into the inference process, to fill in knowledge gaps

that would otherwise prevent certain useful inferences being made. By reusing

existing knowledge from the Semantic Web this reduces the amount of

information required to explicitly bootstrap the system and potentially gives the

system access to a wider breadth of knowledge than would otherwise be

available to it. Furthermore, systems that support distributed collaboration are

inherently distributed themselves. By having a common ontology, it ensures

that distributed, heterogeneous components are able to communicate.

• Extensibility. A point related to interoperability is extensibility. Systems over

their lifetime are often extended or modified, and often in the case of distributed

systems not all components are upgraded at once. By using technologies from

the Semantic Web, standard extensibility mechanisms may be used. This means

that for components that are not upgraded, on receipt of a concept it does not

have knowledge of, it may fetch the unknown ontology via the web and use

techniques such as transitive closure, to navigate back through the class and

property hierarchy until it reaches a concept it does have knowledge of. The

new concept can then be treated as an instance of the known concept, with the

extensions to the concept ignored.

• Indexing. An important use for semantic annotation is to provide a machine

understandable description of a collaboration session. This description has uses

48

both in live collaboration sessions and for archived sessions. In live sessions it

could, for example, be used as a pattem to match certain sections of archived

material, which may be useful to display in the live collaboration. For archived

sessions it can be used as a temporal index, allowing users to locate specific

sections of interest by event type or could be used to perform further offline

inferencing.

3.7 Motivational Study of W3C Telephone Conferences

To provide motivation for the real-time annotation of live collaboration sessions, a brief

study was made of some of the W3C's telephone conferences (telcons). These teIcons

were of particular interest because they usually used a text-based IRC (Intemet Relay

Chat) session in tandem the telephone audio. The IRC sessions were used for back

channel communication during the telcons, and as such could be thought of as

providing a rudimentary form of temporal annotation for the telcon. Furthermore the

W3Cs telephone conference bridges support two different IRC bots, which can join the

IRC session and be commanded by participants to perform useful meeting functions.

The bots provide output as further IRC chat entries, which can also be thought of as

further basic temporal annotation of the telcon. The first of these bots is called Zakim

[Kot04], and it SUPPOltS the following useful features:

• Showing participants joining and leaving the telcon. This is achieved by

using caller ID data, and each telephone number can have a name associated

with it. If a person joins who is not yet known to the bot, it can be told who that

person is. The bot can even be told that several people are sharing a phone at a

given site. The bot can be queried at any point in the conference to find out who

is present in the telcon. Another interesting feature of the bot is that it can be

queried to find the country that each participant is currently in. It does this by

using the dialling code of the telephone numbers.

• Agenda tracking. The bot can be told the list of agenda items for the session,

either by entering them directly in the IRC or by passing it a URL that points to

a file specifying the agenda in RDF according to a simple schema. The bot then

can keep track of the current agenda item by being informed when the current

agendum changes or when an agendum is closed. The bot also has a future

49

reminder (or 'ping') feature that means it can be told to remind the participants

about some issue at a time later in the session.

• Floor control. Participants can indicate their desire to speak by joining a virtual

queue and the chairperson then selects people from the queue to speak. The bot

can also be configured to limit the amount of time each participant may speak

for.

• Control of the telephone conference. The bot can be told to mute or

disconnect telcon participants and can also be queried for the telecon pass code.

It also has a feature that can determine the current active audio sources in the

teleconference. This feature is primarily used to determine sources of feedback

and noise in a telcon, but can also be used to find out who is talking, which

could be useful for participants who do not know all the other participants.

• Scribe nomination. The bot can be asked to randomly select one of the

participants to act as scribe for the current meeting.

The Zakim bot is usually used in conjunction with a second bot called RRSAgent

[Swi04], which automatically creates a web accessible persistent log of the IRC

session. The bot records the session as plain text, HTML and RDF. The RDF schema is

very basic and only records IRC chat events (both human and bot generated). Each chat

event consists of a timestamp, the text from the IRC entry and the IRC nickname of the

person (or bot) that created the entry. RRSagent has the additional feature that it can

track action items while a meeting is in progress. This is achieved by a participant

entering the action item to the IRC and prefixing it with the text "ACTION:".

In order to see how the IRC and bots were being used in real telecons, the IRC logs of

ten telcons were examined to see which bot features were used most frequently and to

see what kinds of information were exchanged in the IRe channel during the telecons.

It is likely that the features that were used most frequently were also the most useful. A

table showing the usage data extracted from the IRC logs is given in Appendix A and a

transcript from one of the IRC sessions is given in Appendix B.

50

3.7.1 General Observations

The observed telcons had fairly high numbers of paI1icipants ranging from 9 to 29

people, with an average of 17. Entries (both human and bot created) appeared in IRC

on average once every 18 seconds, and given that the telcons typically lasted 1.5 hours,

this fairly heavy usage shows that the IRC was a useful collaboration tool for

participants.

3.7.2 IRe Bot Features Used

The most frequently used Zakim feature was the 'who is here' function. This is not

surprising as the telcons examined were all quite large, so that keeping track of who

was present could be very difficult, hence this feature seems to have been extremely

useful. Another frequently used feature was the ability to manually specify the names

of the people dialling who were not already known to the Zakim bot. It appears that the

value added by being able to tell by name who was in the session justified the

additional effort of manually entering this information.

Another feature that was used in every conference observed was the speaker queue.

The frequency with which it was used clearly shows that participants must find it of

use. Given the large numbers of people in the telcons and the absence of any visual

information, it is unsurprising that this feature was so popular, as without it there could

potentially be many people all trying to speak at once. Conversely, the speaker time

limit function was not used once in the logs examined. This probably reflects the

reasonably informal format of the meetings, where speaking to a fixed time was not

crucial. A surprisingly popular feature was the random scribe nomination feature,

which was used in over half the conferences (the author expected that more 'scientific'

means might be employed).

Zakim's Agenda tracking features were used in over half of the sessions. The reason

they were not used in more sessions may have been because the mechanisms for

initially specifying the agenda items were not very user friendly. The future reminder

'ping' function was not used in any sessions.

The ability to identify audio sources was also used in half the sessions. This was due to

a high incidence of audio problems in the teleconference (e.g. feedback, noise etc.),

which seems to be a problem for such large scale conferences. It appears that such a
51

feature is useful, at least for large teleconferences, which are more prone to technical

problems.

The ability to geographically locate a dialling code was not used. The reason for this is

probably because the participants in the working groups already knew each other and

also that other than satisfying somebody's curiosity, geographically locating a

participant wouldn't be of particular use in a session.

Muting via the Zakim bot does not seem to have been used very much either. This is

probably because the feature was also available through telephone key presses, which

may have been perceived as a simpler way of controlling the function.

The action item specification feature of RRSAgent was only used in three out of the ten

sessions examined. This relatively low level of usage indicates that this feature may not

have been very useful (often the IRe was used to directly specify action items instead).

3.7.3 Non-bot Related Information Sent in IRe

In addition to the features of the Zakim bot and RRSAgent, the IRe was also heavily

used as a back channel for text communication dUling the telcons.

In the majority of the conferences examined, the IRe was used a mechanism for

commenting on the current issue being discussed in the telcon. The advantage of using

the IRe for this is that the speaker can continue without being interrupted and may be

able to address the issue at an appropriate moment.

The IRe was also heavily used for as a medium for scribing the session. The possible

advantages for this could be that participants can see the scribing as it takes place, so

can check that they agree with it and have it as a source of textual reinforcement of

what is going on in case their attention wanders. Another advantage is that since the

IRe sessions are typically archived automatically using RRSagent, it removes the need

for the person doing the scribing to have to manually distribute or archive the notes.

The IRe was also used as a medium to communicate the status of participants (e.g. to

indicate that they will be back in 5 minutes etc).

52

Another important use of the IRC channel was to distribute URLs during the sessions.

Interestingly, the most popular target of such URLs were to emails in the W3C mailing

list archives, typically from the same working group that the meeting was for. The

URLs were used as pointers to emails from the mailing list that were relevant to the

discussion in the telcon. In over half the sessions, a URL was used to distribute the

agenda for the telcon. The agenda was originally distributed before the session by

sending an email to the mailing list of the working group. Then at the start of the

telcon, a URL to the email was posted to the IRC channel by one of the participants as

a reminder of the agenda. This use of URLs to archived emails within a telecon was an

interesting bridge between the asynchronous collaboration of emails and the

synchronous collaboration contained within the telcon. In addition to URLs to archived

emails, URLs to documents were also distributed when the documents were relevant to

the discussion.

IRC was also commonly used to directly communicate agenda items (bypassing

Zakim's agenda tracking features) and to indicate when agenda items had been closed

and to indicate action items (bypassing RRSAgents action item features). The IRC was

also used to discuss who would be scribe, which often complemented using Zakim's

automatic scribe nomination features. For example, if the automatic scribe nomination

was used to determine who would be scribe during the next meeting, IRC was used to

confirm that the particular person would be present in the next meeting. IRC was also

used in three of the meetings to indicate that there were technical problems with the

teleconference.

3.7.4 Conclusions

The heavy usage of the IRC and bots (especially Zakim) in this real-world application

domain, provides strong evidence that live temporal annotation of collaboration

sessions is a useful feature for participants. Furthermore, the usage of RRSAgent to

record these sessions, provides evidence that archiving temporal annotations for future

reference is useful also.

The main weakness of the IRC and bot approach examined here are the lack of high­

level semantics and the requirement for hand-authored annotations. Although

RRSAgent was able to export the IRC logs as RDF, the schema used was very basic.

For example, information generated by Zakim was treated exactly the same as any

53

other plain text IRC entry, and the authors of the IRC entries are just recorded using

their IRC nicknames. Clearly this limits the scope for any fU1ther automated processing

on the IRC data.

The reliance on hand-authored annotations and hand issued commands to the bots is

also far from ideal, as it required significant effort from participants. Additionally,

users required some significant prior knowledge to enable them to use the bots, which

would prevent users that did not have that have that knowledge from getting the

maximum benefit from the bots.

3.8 Examples of Collaboration Events

The events that go to make up an individual collaboration activity are dependent on the

nature of the activity taking place. There are however a number of events that will be

common to a significant number of different collaboration activity types (in particular

group discussion type activities), and some of these events make useful semantic

annotations. This section presents some examples of common events, and discusses

how they may be useful as semantic annotations. This list has been compiled from the

author's own experiences and observations from Access Grid sessions and from W3C

telcons. While this list consists of the most obvious events, it is not exhaustive and it

may be possible to come up with other useful events in future.

• Individual people leaving or joining the meeting. Sometimes due to other

commitments, people join or leave meeting mid session. Having this explicitly

flagged as an annotation is useful as, since not all participants are always

covered by a camera, and it might not always be obvious when somebody has

joined or left. It is also useful for indexing archived sessions as it can be used to

locate the section of a meeting after a specific person joined, or if a participant

had to leave part way through, they can easily watch a replay of the section after

they left at a later date. This information can be presented as a dynamically

updated pmticipant list, with recently joined participants highlighted. This

allows participants to tell at a glance who is in the session, which helps general

awareness. Such a list of names is also useful as it can, for example, help if a

participant has forgotten another participant's name.

54

It A person speaking. Explicitly identifying who is speaking makes up for lost

perceptual cues such as audio direction. If the identification is by name, it can

also help put a name to a face, which could be useful when the meeting

participants do not know each other in advance. This can also be useful for

indexing as it can be used to, for example, locate sections of a meeting where a

specific person was the main speaker.

It The start and end of the meeting. Annotations that represent the start and the

end of the meeting could be used by a media recording component to determine

when it should start and then end its recording of the session. The information

could also be used by a signage display screen outside the videoconferencing

room to show that a meeting is in session and that the participants should not be

disturbed.

• The current agenda item. This is useful for increasing participant awareness

and helping participants who are not paying full attention. This is also useful for

indexing as it allows navigation of recorded media by agenda item.

• A slide being displayed. When the meeting uses slides as presentation

materials, it is useful to share slide transitions to achieve synchronised display

of the slides at each site. For archived sessions, slide transitions can be used for

synchronised replay of presentation materials with the media streams. They also

have additional use for indexing, allowing a user to select a slide and replay the

media associated with that slide.

• A resource being relevant to a specific section in a meeting. In some

meetings, external resources such as documents or images may be relevant to

certain sections of the meeting, either because they are being explicitly

discussed, or just in more general terms. Annotations containing references (e.g.

URLs) to the resources may be distributed to the computing devices of the

session participant to allow them to easily view the resources. Similarly, this

provides an easy way to access the relevant resources during replay.

Furthermore, this could be used for indexing, where the user could be presented

55

with a list of resources associated with the session and may select to replay the

section associated with a particular resource.

3.8.1 What constitutes an event?

At first glance it may seem that some of the annotations from the list in the previous

section are not events at all. For example, a document being relevant to a specific

section in a meeting may not appear to be an event. Despite appearances it is in fact an

event. The event is that document being relevant to the meeting, and that event has a

start time when the document starts to be relevant and an end time, when it ceases to be

relevant. Similarly, each agenda item is an event, which starts when the meeting

reaches that agenda item and ends when the meeting moves on to the next agenda item.

So in general terms, an event in this context is something that occurs for a time interval

with a defined start and end time. This means that unlike the list in the previous section

would suggest, the start and end of the meeting are not treated as individual events, but

the whole meeting is treated as a single event that lasts the duration of the meeting.

Likewise a person joining or leaving a meeting is treated as a single event, the event is

that person being present in the meeting, which will have a start and as end time.

It is also worth pointing out that the current agenda item and the slide being displayed

are just special cases of a resource being relevant to a specific section in a meeting,

since an agenda item or a slide are both resources.

3.9 Motivational Access Grid-based Scenario

This section describes the addition of a number of different annotation types to Access

Grid videoconferencing as a motivational scenario for live semantic annotation. These

annotations include displaying the attention levels of individual participants, the

group's current level of interest, identifying when the meeting is overrunning,

participant tracking and speaker identification. A scenario involving the last two

annotation types from this list has also been discussed by the author in [Jub03] and an

implementation of participant tracking and speaker identification functionality (but

without the window highlighting described in this scenario) is described in chapter 5 of

this thesis. The scenario presented here is reasonably generic and a significant pOltion

could be applied to other videoconferencing systems and even audioconferencing.

56

These areas of common ground between technologies will be discussed in this section

too.

3.9.1 Access Grid Background

The Access Grid is a room-based videoconferencing system that enables large-scale

group-to-group interactions. Each Access Grid installation is known as an Access Grid

node and at the time of writing there are over 250 of theses nodes worldwide, with the

number growing continually.

The Access Grid runs on standard PCs and uses the Internet's multicast backbone

(Mbone) as the transport mechanism for the media streams. Multicast to unicast bridges

are provided for sites that do not have multicast connectivity. Audio and video are

handled by special versions of the Mbone conferencing tools rat and vic. The Access

Grid also uses a centralised server that implements a virtual meeting room metaphor

called Virtual Venues. Meetings are held in a specific Virtual Venue and are joined by

'entering' the appropriate venue, which automatically launches the correct audio and

video streams. Each Access Grid node typically transmits video streams in parallel

from four remote controlled cameras, meaning that each person in the conferencing

room is usually covered by at least one camera. Incoming video is projected on the wall

of the node by several video projectors, which can display dozens of incoming video

windows simultaneously. This means that everybody at remote sites can have

continuous "presence" in a session. Loudspeakers and tabletop microphones are used in

conjunction with echo-cancellation hardware to enable the Access Grid to support

natural hands-free voice communications. Desktop versions of the Access Grid are also

available, which allow users without access to a room-based node to participate in

meetings from a PC.

A technician known as a node operator is normally present for each Access Grid

session. Their job is to operate the software and hardware, performing such tasks as

joining the correct Viltual Venue, controlling the local cameras and selecting which

incoming video feeds are displayed. Node operators at each site use a text-based MOO

(Object Oriented MUD) for back channel communications, allowing them, for

example, to coordinate any technical adjustments without disrupting the meeting. The

Access Grid also uses software called Distributed PowerPoint (DPPT) to enable a

presenter to display and control a slide show at multiple sites from a laptop Pc.

57

3.9.2 Access Grid Weaknesses

The Access Grid is often used for large meetings. For example, certain regular

management meetings in the UK involve in the order of 12 nodes and have over 25

participants, and it is not unusual for other meetings that involve fewer nodes to have

up to a dozen participants at each site. The author has a large amount of first hand

experience of such meetings, both as a participant and as a node operator, and along

with other participants has found that keeping track of who is in the session and

identifying who is speaking can be difficult tasks that can be highly distracting from the

meeting content. Figure 3.1 shows an actual screenshot of what is displayed to

participants on the projection wall during a typical large Access Grid session. This

screenshot clearly shows that participants can be overwhelmed by the amount of visual

information they are presented with, making it difficult to determine who is currently in

the session or who is currently speaking. To make matters worse, it can be made even

harder to keep track of who is in the remote meeting rooms because not everybody is

always on camera or displayed on the projection wall.

3.9.2.1 Other Technologies

Some of the Access Grid weaknesses described here are also present in other

videoconferencing technologies. In particular, all the discussed shortcomings of Access

Grid would most likely be shared by any large-scale continuous presence

videoconferencing system that used a comparable number of video feeds.

Other videoconferencing technologies (e.g. H.323, H.320) use a single voice switched

video stream that is distributed between multiple sites using a Multipoint Control Unit

(MCU). While only viewing a single voice switched stream solves the problem of

participants being overwhelmed by sheer number of video feeds, it does not help

keeping track of who is in the remote meeting rooms, as only a subset of participants

will be visible at anyone time. This means that the Access Grid weakness of not being

able to keep track of participants still holds true (and could actually be worse for)

MCU-based technologies.

Additionally, in a large scale audioconferencing environment, the Access Grid

shortcomings for speaker identification and keeping track of who is in the session also

may hold true. This is because there is no visual information to aid these basic tasks.

58

l.JI
\0

Figure 3.1, A screenshot of the Access Grid projection wall.

It is important to note that weaknesses described here mainly apply to large scale

collaboration sessions, since identifying who is speaking and keeping track of who is in

a session is usually simple when there are only a small number of participants.

3.9.3 Enhancing the Access Grid with Semantic Annotation

This section describes a fictional scenario where semantic annotations are used to

enhance Access Grid videoconferencing. The annotation types include speaker

identification and participant tracking to address the weaknesses identified in the

previous section. The scenario also shows how the annotations fit in with other

emerging services on the Semantic Web such as calendar scheduling and Communities

of Practice.

This scenario makes the assumption that there is a queriable Semantic Web

infrastructure in place (such as that described by De Roure and Hendler, see section

2.3) that allows information to be retrieved about specific resource instances. It also

assumes that every meeting participant carries their own iButton for personal

identification. iButtons [iBu04] are a form of contact memory that can be read by

pressing them into a suitable reader. Each iButton contains a chip with a unique 64bit

identifier and the overall package is about the same size as a house key.

The scenario describes a hypothetical first meeting between employees on a new

project consisting of 15 people distributed across 4 different sites.

Project leader Tom would like hold an initial all hands project meeting over Access

Grid. He instructs his calendar agent (see section 2.4.4) to book a meeting for all

members of the project. It automatically assigns the meeting a unique URI and arranges

a mutually agreeable date with all the other calendar agents of the project members and

the calendar agents that handle the bookings for their local Access Grid nodes.

The day before the meeting, project member Alice finds out at short notice that she has

another important meeting to go to at the same time as the project meeting. This new

meeting is unavoidable so she will have to go to that one instead. She amends her

online diary accordingly.

60

We now follow the events in one of the Access Grid nodes on the day of the project

meeting. Before the meeting is underway, participants are shown a list of names on the

projection wall of those pal1icipants already present at the remote sites and a list of

people still expected. Importantly, this list does not include Alice, so the participants

know its fine to stm1 the meeting without her.

Participants identify themselves to the system by signing into the meeting using their

personal iButtons in a readers located at their seating positions. In order to map the

iButton ID to each person, the system queries the Semantic Web to resolve the iButton

to its owner. Each owner of an iButton is responsible for publishing this information

about their own iButton. This means that the system doesn't have to maintain this

knowledge, and it is not limited to a closed set of users. For example, Tom is hosting a

visitor on the day of the meeting and invites her join their meeting. The system is able

to query the Semantic Web and retrieve her iButton information and uniquely identify

her, even though she is not a project member and was not scheduled to tum up.

As each participant joins the meeting, they are notified via their laptops of any people

in the meeting who have any indirect links to them that they might not be aware of

(such Communities of Practice were discussed in section 2.4.1.4). The notifications not

only identify who is in the Community of Practice, but also how they are related. This

may in tum help shape the current collaboration or foster future collaborations by

exposing hidden links between people, such as shared work interests.

All scheduled participants have arrived and the meeting is now underway. The list of

pm1icipants and sites is displayed on the projection wall. Whenever a participant

speaks, their name is highlighted in the list. Additionally, the border of the video

window(s) originating from the site that the speaker is at are highlighted while they are

speaking. This would not only aid with identifying who is speaking, but could help 'put

a name to a face', which might be helpful in situations like this where the participants

are not familiar with each other.

As the meeting progresses, Tom is gets distracted. He is using his laptop to reply to an

urgent email. Gavin has a particular point that he wishes to address to the group and

especially Tom. However due to the number of participants, it is not obvious to Gavin

that Tom is distracted and if Gavin makes his remark now it will be wasted. Fortunately
61

an annotation is displayed on the main projection wall stating that Tom is currently

distracted and Gavin is able to save his remarks for later when Tom again has his full

attention focused on the meeting.

John now has a slide presentation to deliver to the group. Initially the presentation goes

well, but he has misjudged the level of technical depth to go into and the rest of the

group rapidly become uninterested. John doesn't notice this as its not obvious through

the video mediated communication and he is focused on delivering his presentation.

However, an annotation is delivered to John's laptop that pops up informing him that

the group are currently uninterested. John quickly realises that he has gone into far too

much detail and has bored the group. He continues with his presentation, but provides

fewer details and he is able to recapture the interest of the group. This is confirmed to

him by another annotation stating that the group are interested again.

After John's presentation and as the meeting draws to the end of the allocated time,

there is a sudden flurry of highly productive conversation led by Tom. The participants

are engrossed and don't realise that the meeting is about to overrun. The Access Grid

rooms are not booked for use by anybody else, so this is not an immediate problem for

the meeting. Tom however has another meeting scheduled after this one and is in

danger of running late.

The system displays an annotation to the group showing that Tom is due to be attending

another meeting. The participants see this annotation and are able to start to wrap up

their discussions. Unfortunately, they don't manage to wrap things up in time, and Tom

is now late for his next meeting. Fortunately the system identifies this and instructs the

other meeting room Tom is scheduled to be at to display an annotation stating that Tom

is going to be late.

At the end of meeting the system automatically emails out a web link to each of the

project members and to Tom's visitor. When this link is opened in a web browser it

launches a fully indexed replay of the meeting.

Later on, Tom uses this link to easily locate and replay all the sections of the meeting

where he was distracted. Alice, who was unable to attend, uses it to catch up on what

happened in the meeting too. Unfortunately she is busy and doesn't have much time.
62

She particularly needed to see John's presentation, so she jumps straight to the section

of the meeting where John was the main speaker.

3.9.3.1 Discussion of scenario

Behind the scenes, each of the annotation types presented here were generated through

inferences. The annotations about the participants being present were obtained through

combining separate facts about an iButton being docked, the owner of that iButton and

the location of the iButton reader. These three facts were then combined through

inference to assert that there was a specific identified person present in that meeting

room.

Similarly, the speaker identification used inference to combine separate facts about

audio levels on the microphones, the locations of the microphones and the locations of

the participants. This inference is described in more detail in section 5.3.1.

If we imagine that there was an agent running on Tom's laptop monitoring the use of

applications on the laptop, the inference about Tom being distracted was made by

combining the facts about him cUlTently being present in the meeting, him (rather than

anybody else) being logged into that computer and the email program being used on

that computer.

The group's level of interest could potentially be gauged through (mostly yet to be

developed) computer vision techniques examining the body language of participants.

The individual extracted body langue cues of participants could be combined to make

the higher level assertion that the group as a whole is disinterested. If vision based

techniques seem somewhat far off, a simpler solution would be to have a software

interface running on the laptop of each participant with buttons next to categories that

allow them to explicitly convey their current mental state. Again, each of these

individual contributions could be combined through inference to detelmine the overall

state of the group.

This scenario has not only shown the advantages of annotations, but has also shown

how through using the Semantic Web, these annotations can be linked in with other

services. For example the annotations about people being present was used in

conjunction with the calendar information to infer a list of people still scheduled to

63

arrive. Similarly, the system was able to uniquely identify Tom and detelmine that he

was due to be in another meeting. An inference based on Tom's current location and

his diary information enabled an annotation to be generated stating that he was due to

be at the other meeting.

Here we see the benefit of the Semantic Web's ability to uniquely identify resources

across domains and their relationships to other resources, which in turn can be used

with inference to combine multiple facts to make meaningful assertions.

Chapter 5 describes an implementation based on a subset of the functionality presented

in this scenario. This subset is limited to the speaker identification and participant

tracking functions. Despite being based on a subset of this scenario, the implementation

still demonstrates the general purpose infrastructure required to combine knowledge

from multiple sources in real-time using inference. To avoid later disappointment, it

should also be noted here that the window highlighting functionality of the scenario is

not implemented either, as this would have proven to mainly be an exercise in

modifying the video tool used by the Access Grid (vic).

3.10 Summary

This chapter has provided motivation for the addition of semantic annotations to live

collaboration. Annotations can be used to present useful additional information to

session participants, which could provide useful benefits such as increased awareness

amongst participants. The annotations can also be used to index recordings of sessions

and be used to provide a more complete replay than audio and video alone would

provide. It has been shown that the semantic based approach to annotation provides

excellent scope for inference, interoperability, reuse and extensibility, which promotes

automation and reduces maintenance effort.

The study of W3C telephone conferences provided strong evidence that live annotation

of collaboration sessions is useful to real users and this study aided the creation of a list

of example useful annotations. Finally a scenario was presented in which it was

described how dynamically updated attendance lists and real-time speaker

identification could be used to overcome some of the shortcomings of Access Grid and

other conferencing technologies.

64

4 A Framework for Real-Time Semantic Annotation

This chapter presents an event based framework for the automatic semantic annotation

of distributed real-time collaboration activities. The framework is described in generic

terms and consists of producers and consumers, which communicate using a shared

tuple space. An inference engine coupled to an external triplestore is used to

automatically infer further events from events directly captured from a collaboration

session. This chapter does not discuss the design of the ontologies; this is instead

discussed in detail in chapter 5.

4.1 Framework Origins

This section sets out to explain the thinking behind the conceptual architecture for the

framework. The design decisions and specific technologies for this framework are then

discussed in detail in the remainder of this chapter.

From the discussion in the previous chapter, it is possible to see that the framework

needs to generate annotations that are triggered by events that occur during

collaboration sessions. Therefore components are required that feed into the system,

capturing events from the real world and generating a description of those events. Here

these source components are called producers.

It is also required that annotations be displayed to participants during collaboration

sessions. Hence some data sinks are required to receive annotations and display them to

session participants. Here these sinks are referred to as consumers.

So far then, there are events being captured by producers, which are converted into

annotations, which are transported to consumers for display to participants. However,

as stated in the previous chapter, the intention is to use inference to obtain further

annotations from existing annotations. The following section describes how inference

can be incorporated into this model.

65

4.1.1 Inference

There needs to be some form of inference component or components that receive

annotations from the producers, perform inference on those annotations and then make

any new infelTed annotations available to the consumers. Note that the inference

component(s) should not prevent consumers from still receiving basic, non-infelTed

events from producers too. That is, the inference component(s) should not block these

annotations, as the consumers may wish to still receive them.

There are several candidate places where the inference function could take place:

• At each producer.

• At each consumer.

• At each collaborating site.

• At a single centralised location.

There is no obvious advantage to having multiple inference components and it would

result in needless replication of functionality and would complicate the architecture.

Therefore the author feels that a single, centralised inference component (an inference

engine) provides the neatest architecture. Furthermore administration, such as keeping

the inference logic up to date would be easier.

This centralised component receives all annotations generated by producers in a

collaboration session, performs inferences on those annotations, and makes any new

inferred annotations available to the session consumers. In fact the inference

component acts as both a consumer (receiving annotations) and a producer (generating

new annotations). It is also likely that to make useful inferences from annotations, the

inference process may need to access further know ledge from a repository similar to

the CS AKTiveSpace triplestore.

The inference engine has access to all the annotations within a collaboration session

(both those generated by producers and those it generates itself). As it is the only

component that has access to all of these annotations, it makes sense that this

component should also be responsible for placing the session annotations into persistent

storage so that they may be archived.

66

4.1.2 Storage

The previous chapter argued that annotations from a session should be archived to

create a record of the session that could potentially be later replayed in synchronisation

with recorded audio and video.

To achieve this, there needs to be some form of persistent storage in the framework. A

key issue here is whether there should be multiple components that provide this storage

or just a single, centralised component. Multiple components would most likely prove

to be more scalable and fault tolerant, but could make it difficult to locate specific

items of knowledge. Hence the decision here is for a single, centralised store (i.e. a

triplestore) as that would lead to a less complex framework. Experience from CS

AKTiveSpace has shown that a centralised store can perform well for even for

relatively large scale applications.

In addition to the storage needed for archiving annotations, storage would also be

required for any additional knowledge that might be required to feed into the inference

process. Consumers in general may also need access to further knowledge in addition

to the annotations they receive to allow them to display meaningful human readable

information (e.g. to resolve a URI to a human readable name). This knowledge could

be held in separate stores, but there would be no real reason for segregating this

knowledge. It makes more sense to hold this knowledge in the centralised triplestore

along with the archived annotation data. Not only does this simplify the architecture,

but also means that knowledge about previous collaboration sessions could then be

easily used in the inference process if required.

4.1.3 Communications

The core framework components (i.e. producers, consumers, inference engine and

triplestore) have now been discussed. What has yet to be discussed are the

communications between these components.

Since the sites that makeup a collaboration session often change from session to session

and individual sites are free to add new producers or consumers, it would not be

practical for every consumer to know the location (e.g. IP address or DNS name) of

every producer, or vice versa. Furthermore there could be many producers and many

consumers, and it would also not be practical for explicit communications channels to
67

exist between every producer and every consumer. Instead, a wiser solution is to use a

publish and SUbsclibe (pub/sub) model, in which components communicate via some

intermediary, without needing to be explicitly aware of the existence of each other.

This means that producers publish their annotations and consumers subscribe to only

the annotations they require.

This pub/sub model also works for the producer and consumer functionality of the

inference engine. The engine can subscribe to all the annotations it requires and then

publish any new annotations it infers.

The requirements for the communications between producers and consumers are

discussed in more detail in section 4.4, where it is also shown that the requirements are

well met by a tuple space communications model.

Although this pub/sub model fits well with the producer/consumer architecture, it is not

suitable for making the knowledge in the triplestore available. As the triplestore could

potentially contain a large number of triples, it would be impractical to publish every

single one of these. Instead, a standard query and response mode of communication is

more practical here. The triplestore is also expected to remain at a fixed location, so it

is reasonable that each component that needs to query it be pre-configured with its

location.

Uploading annotations to the triplestore for archiving could be achieved by making the

triplestore subscribe to all the annotations from a collaboration session. However, such

behaviour is not a standard feature of existing triplestore implementations. Furthermore

there appears to be no particular merit to doing this, hence a more standard approach is

adopted where the inference engine explicitly uploads annotations to the triplestore for

archival.

4.2 Overview of Framework

Figure 4.1 shows an overview of the semantic annotation framework. Basic meeting

events are captured by producers and are encoded as RDF based annotations. These

annotations are packaged as tuples and are published to a tuple space bound to the

collaboration session.

68

Collaborating Site

Producers

I
I

'---r---------

-
Consumers

r--
1
1 r-

, _______________________________ _ ____ ------ ______ 1

basic
events

events inferred
events

Inference
Engine

I

....

basic and
inferred
events

query

query

response

triples for -..
archiving

Figure 4.1, An Overview of The Semantic Annotation Framework.

Triplestore

69

An inference engine is also joined to the tuple space and subscribes to events generated

by the producers. The inference engine has a number of domain specific inference

rules, which it uses in conjunction with the external triplestore to infer higher level

events from the basic events captured from the session. These higher-level events are

also published to the tuple space to be used as annotations.

Consumer applications are also joined to the tuple space and subscribe to specific event

types. One possible role of consumers is to display events to session participants in a

human friendly form.

The inference engine is also responsible for storing the triples that describe each event

(both basic and inferred) in the external triplestore. This provides a permanent semantic

record of the collaboration session, which can be used in combination with an

audiovisual recording to index and replay the session.

4.2.1 Comparison to Real-Time Expert Systems

This architecture presented here has some similarities to real-time expert systems based

around the blackboard architecture that was popular in the 1980s (a good introduction

is provided by [Cor91]). This section briefly compares the architecture presented here

to blackboard based approaches.

In blackboard systems, there is a shared working memory called the blackboard into

which input data (e.g. from sensors) is placed. The problem solving knowledge come

from a collection of specialised components called knowledge sources, each of which is

able to solve one particular aspect of the problem in hand and contribute to the

information in the blackboard, providing incremental solution generation. As one

knowledge source contributes to the information in the blackboard, this may in tum

provide other knowledge sources with sufficient information to start solving their

specific aspect of the problem they have knowledge about. Each knowledge source is

treated as an independent 'black box' that performs a complex function.

Blackboard systems are event based, and knowledge sources subscribe only the specific

event types (i.e. changes to the blackboard) that they are able to handle. Events can be

70

triggered by changes made by knowledge sources or by external event sources (e.g.

sensor input). To ensure efficient use of knowledge sources and prevent them

attempting to access the blackboard all at once, there is a single controller component

that determines the most appropliate knowledge source to execute in response to any

particular event.

In the semantic annotation architecture presented in this chapter, there are a number of

similmities to a blackboard architecture. The tuple space represents the shared working

space and there are producers (analogous to sensors in the previous blackboard

example). We also have event based subscriptions that ensure the inference engine only

receives the event types it can handle. The main difference however is that there is a

single inference engine rather than the multiple knowledge sources of the blackboard

approach. The level of granularity in the semantic annotation framework is at the level

of individual rules in the inference engine, rather than entire knowledge sources. This

removes the need for the controller component present in blackboard systems and also

means that changes to the inference process can be made through simply modifying

rules, rather than modifying entire knowledge source components. Another difference

is that the semantic annotation framework explicitly incorporates a long term persistent

storage component (the triplestore) which provides bootstrapping knowledge and

archives the inferences. Such a component is not a standard part of the blackboard

architecture.

4.3 Events

The previous chapter discussed events during collaboration activities, and such events

are the base concept in semantic annotation of these activities. This section discusses

the representation of these events in this framework.

Events during a collaboration activity are discrete entities and need to be generated and

transported as such. Hence some form of discrete packet should be used to represent

these events. Each packet contains a payload that desClibes the event and is valid for a

limited time interval, meaning that the packet representing an event must record this

time interval. Incorporating a pair of timestamps into each packet may seem like the

obvious solution. However, for live collaboration each packet needs to be transported at

the beginning of each event to be of use, meaning that the end time is unknown at that

moment. Therefore in the general case, events are represented by the two state changes
71

that go to make up each single event, i.e. when the event starts, the state of the

collaboration activity changes from that event not occUlTing, to the event occuning, and

when the event ends, then the state changes back to that event not occuning. These two

state changes are represented as two state change packets, each containing a single

timestamp. The first packet is created and transported at the stmt of the event, and when

the event ends a second packet is created and transported to indicate that the event has

finished.

4.4 Event Sharing

The mechanism for sharing event state change packets between producers and

consumers must support a number of features to be suitable for this framework. These

features are:

• Pub/Sub. As discussed in section 4.l.3, in general it is not feasible for all

consumers to directly communicate with the producers, hence a pub/sub model

supporting indirect communication is more practical.

• Real-time. The time taken for a state change packet to be transported from a

producer to all consumers should be small enough to be perceived by

framework users as being sufficiently immediate.

• Reliable. In general, users of the framework will not tolerate lost or corrupt

events. State change packets should be delivered without error and be

guaranteed to reach all subscribing consumers.

• Multipoint. In general, there will be multiple components needing to share

events simultaneously.

• Persistent state changes for duration of session. See next paragraph.

Each state change packet should persist in the sharing mechanism for the duration of

the collaboration session. This allows any late joining consumer to be able to detelmine

the current meeting state, even though it wasn't present when the state changes that

describe the current meeting state were initially published. Making all state changes

72

persistent allows consumers to obtain the full history of the session, which may be

useful for presentation to participants, or replay applications. In many cases making all

state changes persistent may in fact be overkill and impractical, as any late joining

consumer could potentially be flooded with many state changes, past and present when

they first join. This could be a particular problem for lightweight consumers. Where a

full history of events is not required, a better solution is to only make state change

packets persistent if they represent currently active events and remove them once they

are no longer active.

This framework assumes best effort Quality of Service (QoS) and because of that there

is some degree of conflict between the first two requirements. In particular, reliable

delivery is not compatible with true real-time delivery since if network congestion or an

error is encountered it requires that a packet is re-sent which introduces additional

delay. In this framework it is anticipated that users will find a slight additional delay

preferable to events being dropped. For example a slide transition that is slightly

delayed is preferable to it not being delivered at all.

4.4.1 Tuple Spaces

These requirements for sharing events map well to a tuple space. Tuple spaces were

pioneered in the Linda system [Car89] developed at Yale University in the 1980s. A

tuple space can be thought of as a shared buffer that can contain tuples. In general, a

tuple is simply a list of values, and is often used as a key-value pair.

Tuple spaces allow distributed components to communicate without being aware of the

existence of each other. Components can publish tuples in the space or subscribe to be

notified whenever tuples matching a subscription are published or modified. Tuple

spaces are a form of associative memory, with tuples being accessed by matching some

or all of the elements to values presented in a template. The template is just another

tuple created for specifically for the purpose of matching.

Alternatives that were considered for providing the event sharing in the framework

were content based routing, such as Elvin [SegOO] and a reliable multicast framework,

such as Scalable Reliable Multicast [Fl097]. The main drawback to both of these

approaches is that they do not support any form of persistence, which means that a late

joining consumer would not be able to easily determine the current state of the

73

collaboration session. An additional drawback to using a multicast based framework is

that it would not support subscriptions to events of specific types, but would instead

deliver all event to all consumers, which could potentially put significant network and

processing load on the consumers, therefore excluding the use of lightweight

consumers.

Although a tuple space fulfils the requirements of pub/sub, reliable, multipoint

communications, and session level persistence, tuple spaces aren't usually associated

with the real-time domain. There is however no reason why real-time tuple spaces

cannot exist. Indeed, the implementation discussed in Chapter 5, uses a third party

implementation of a real-time tuple space called EQUIP [Gre02].

4.4.2 State Change Packets

Each state change packet is represented as a single tuple. Each tuple contains a pair of

values, which can be thought of a key-value pair. The first value is the type of event

that this state change describes. This is represented as a URI and enables consumers to

subscribe only to tuples that represent specific event types. The second value in the

tuple is the full serialisation of the RDF triples that represent the state change the

packet is describing. Subscriptions to a specific event type are achieved by consumers

specifying a tuple with a URI of the event type as the first value and a 'wildcard' as the

second value.

4.5 Real-Time Considerations

Since this framework needs to support real-time collaboration, some consideration

needs to be given to what is meant by 'real-time' in this context. Depending on the

application area, real-time can be either be a telID used to describe a system that

responds within a small and specified period, or a term whose definition is couched in

terms of human perception, being a level of responsiveness that a user senses as

sufficiently immediate.

Here the author uses the second definition to define real-time in the context of this

framework, since a system that responds within a specified period is vastly more

complex to design and implement than one that does not have these guarantees. In fact,

in this framework, there are no guarantees that the responsiveness will always be

sensed by users to be sufficiently immediate, as there may be times when noticeable

74

delays may be perceived, for example as a result of a complex inference. It is for this

reason that the author favours the term near real-time, rather than just real-time to

accurately describe this framework. Miller [Mil68] found that users interacting with

systems could tolerate response times of up to one second and still perceive the system

as interactive. Therefore, the author defines the meaning of 'near real-time' in this

thesis to be a response time of one second or less. Since the term 'near real-time' is

somewhat clumsy to write, whenever this framework is described as 'real-time', what it

is actually meant is that it is 'near real-time'.

It is worth noting that the amount of delay users may tolerate might depend on the

event type. The different level of tolerable delay for each event type is not clear and is

an area for further study. For example, for a speaker identification event, only a delay

of a few hundred milliseconds might be tolerable, whereas for a sign-in event, a delay

of several seconds might be tolerable.

4.6 Synchronisation of Events and Media Streams

Ideally this framework would be able to explicitly synchronise the display of events

and corresponding media streams at each collaborating site. Unfortunately, as will be

explained in this section, there appears to be no way to do this in the general case. It

will be argued that explicit synchronisation, although preferable, is not required by this

framework to support real-time collaboration.

Synchronising events with the media streams means that a consumer at a given site will

start to display an event when the corresponding time point in the media is reached at

that site (or at least within a small, fixed time interval bounding this point), e.g. if an

event has a starting timestamp of x, then a consumer at a specific site should display

that event when the corresponding time point x in the media streams is displayed to the

participants at that site. Note that at each site, the display of the received media streams

and events will always lag behind the actual current wall clock time because of

encoding, decoding and network transit delays. E.g. a frame in live video that was

taken at wall clock time y, will actually get displayed to participants at a remote site at

wall clock time y + d, where d is the sum of the encoding, decoding and network transit

delays, even though the frame being displayed represents wall clock time y.

75

The main reason that explicit synchronisation is not possible is that packets that make

up the media streams must be delivered using an unreliable protocol, and that each

media packet has a fixed deadline by which it must arrive in order to be displayed. Any

media packet arriving after this deadline is dropped. However, events take time to be

generated, either directly by a producer or by the inference process. This time may be

difficult to predict and, when the events are inferred, may be signi:ticantly larger than

the time taken for the corresponding point in the media streams to be generated.

Furthermore, as discussed in the previous section, events are delivered using a reliable

protocol, and events that take a longer time to arrive are not nOlmally dropped. All this

means that there is no deadline by which events arrive, and there is no way of making

the media streams 'wait' to preserve synchronisation with an event that takes a longer

time to arrive. When the media stream is analogue voice telephony, a similar argument

holds true, even if the underlying mechanisms are different.

This problem could be fixed to some extent by introducing some additional buffering of

the events and media streams at the receiver, but as the time taken for events to arrive is

potentially unbounded, then some finite buffering would not be always guaranteed to

fix the problem. In fact any significant buffering would introduce a far worse problem

by destroying the interactive nature of the system, which is vital for real-time

collaboration.

Instead, synchronisation in this framework relies on the real-time nature of the

mechanisms used to capture or infer, transport and display the events, and to encode,

transport and display the media streams. If this is done in real-time, then the events and

media streams will be presented to users in near synchronisation. Although the

synchronisation is implicit, it should be sufficient to be perceived by humans as being

synchronised. An added bonus of not explicitly synchronising events and media is that

it means the events can be totally independent of the technology chosen to encode and

transport the media streams.

As mentioned in section 4.3, each state change packet contains a timestamp. However,

as shown here, such timestamps are of limited use dming live collaboration, since each

state change packet is normally presented to participants as soon at it arrives at a

consumer. As will be mentioned in the next section, timestamps do have a use in live

76

sessions for perfonning sanity checking and determining things like network transit

times.

The primary purpose of timestamps is in fact for the accurate archiving and replay of

collaboration sessions. If producer generated timestamps were not used, then an

archiving consumer would have to timestamp state change packets as it received them.

This would be inaccurate because the timestamps would include the time taken to

generate the packet and also the network transit time. For this reason it is better to use

timestamps generated by producers.

4.7 Timestamp Generation and Format

This framework has different distributed producers generating state change packets

with timestamps. Clearly there needs to be some common shared time between

components, otherwise the timestamps may be inaccurate relative to each other.

Therefore all components in the framework must be time synchronised to a common

clock. Clock synchronisation may also be required for accurate synchronisation of

multiple media streams during archiving.

The most sensible common time to use is UTC (Coordinated Universal Time, fOlmerly

known as GMT). Time synchronisation can easily be achieved by running a standard

NTP (Network Time Protocol) [MiI92] client on each component, which is capable of

synchronisation typically with an accuracy in the order of a few milliseconds, which

should be sufficient accuracy for most conceivable applications of this framework.

Forcing all components to use UTC makes the framework independent of local time

zones, which otherwise would complicate matters during sessions in which the

constituent sites spanned multiple time zones.

The framework uses absolute timestamps. One possible format for such timestamps

could be an integer that records the time as a number of milliseconds since midnight

UTC January 1st 1970, which is the format in which most computer systems record

their time, and many programming languages provide functions to obtain this value

directly. This is by no means the only suitable format for absolute timestamps and in

the implementation discussed in chapter 5, a different but equivalent format is used for

compatibility with an existing ontology.

77

The alternative to using absolute timestamps would be to use timestamps relative to the

start of the collaboration session. The drawback of using relative timestamps is that

each site joined to the collaboration session would need to have a shared knowledge of

when the session started, which might not always be the case. Furthermore, using

absolute timestamps means that each timestamp records the full date and time at which

each event occUlTed, which provides more information than a relative timestamp.

In the case where the media streams are being recorded, the component recording the

media streams also needs to record the UTe time it started recording the media streams

to enable synchronisation of events and the media streams during replay. When

replaying an archived meeting, it can use this as an offset to synchronise the archived

state change packets with the media streams.

Having both producers and consumers synchronised to a common clock means that the

network transit time for each non-inferred state change packet can easily be

determined. This is achieved by calculating the difference between the timestamp and

the consumer's current clock time. For inferred events, this calculated time would also

include the time taken for the inference process, since an inferred event would most

likely reuse the timestamp from the event it was inferred from. In either case, if the

calculated difference was found to be excessive, then this could be flagged to an

operator for further investigation. The most likely causes would be network congestion

or excessive processor load on the inference engine. If a negative difference was

calculated, or a very large positive value (i.e. much greater than any plausible network

transit time and rule firing time), then it would most likely mean that either the

producer or consumer, or even both, were not synchronised to UTe.

4.8 Detailed Description of Framework Components

This section completes the chapter by giving a detailed description of the framework

components, drawing on the discussion in the previous sections. Figure 4.2 shows the

complete set of framework components.

4.8.1 Producers

Producers are typically simple devices that capture basic meeting events. These devices

can be lightweight and embedded and have very simple, one off, configuration

requirements. Typically the only configuration a device will need is its location

78

1--,

Collaborating Site

Tuple Space
Discovery

Server

Producers

,
'- - - - - - - --

basic
events

Tuple Space
Server

basic
events inferred

events

Inference
Engine

I

basic and
inferred
events

Figure 4.2, The Framework Components

Consumers

query

response

triples for
archiving

, - , ,
,- -,

Triplestore

79

(represented as single URI), and a multicast address and port on which it listens for

tuple space discovery announcements (see section 4.8.3).

Each device is programmed before deployment to generate state change packets

containing RDF triples describing the events they capture. The device location is used

to feed into the triple generation process so that the location of each event is specified,

which is potentially useful for the inference process. The triples generated by producers

conform to a pre-shared OWL ontology, so that they can be understood by consumers,

and in particular the inference engine. Producers are also responsible for taking each

batch of triples they generate that describes a state change and packaging them as a

tuple and publishing them to the tuple space bound to the current collaboration session.

An example of a producer could be a digital audio mixer used to generate events that

describe microphone activity (from which events describing who is speaking could be

inferred). Such a specialist device is likely to need to be connected to a host PC to carry

out the functions of generating the triples and publishing them to the tuple space.

4.8.2 Tuple Space Server

The tuple space server is responsible for implementing the shared buffer that provides

the tuple space functionality. Producers and consumers may connect to this server to

access the tuple space. Each collaboration session requires an instance of a tuple space

to be running on the server.

4.8.3 Tuple Space Discovery Server

It would not be practical to manually instruct each producer and consumer at each

collaboration site of the tuple space bound to each collaboration session. For this

reason, this framework uses a dynamic tuple space discovery mechanism, the principles

of which are taken directly from the EQUIP tuple space implementation [Gre02]. The

discovery mechanism works by having each collaboration site run a tuple space

discovery server. The discovery server sends out discovery messages every few

seconds on a site local multicast group. The address and port is known to each producer

and consumer at the site as it is included as part of their initial configuration, and each

producer and consumer at a given site subscribes to this multicast group.

80

Whenever a collaboration session starts, as pmt of session establishment, the person

operating the session at each site inputs the tuple space parameters into the discovery

server (a tuple space discovery server should have a user interface to achieve this). This

server then broadcasts them as discovery messages. Each discovery message identifies

the tuple space bound to the current collaboration session. On receipt of such a

message, all producers and consumers at the site join the tuple space specified by the

parameters.

When the collaboration session ends, the operator inputs into server that the session has

ended. At this point, each message multicast from the server instructs each producer

and consumer to disconnect from the tuple space.

Since multicast is unreliable, the potential exists that a discovery message may not

reach all producers and consumer at a site. This is not a problem, since the server sends

out repeat messages every few seconds, so if a message is lost, another one will be

broadcast a few seconds later.

In an environment where multicast is not available, dynamic discovery can be achieved

by having a tuple space server at each collaboration site, which runs a default discovery

tuple space. Producers and consumers join the default discovery tuple space and

discovery messages are published as tuples.

4.8.4 Inference Engine

For each collaboration session there runs an instance of a forward chaining rule-based

inference engine. This is joined to the tuple space for the collaboration session and acts

as both a consumer and producer, subscribing to basic meeting events and inferring

higher level events from them and publishing these to the tuple space.

Each instance of the inference engine is joined to a specific instance of the tuple space,

and this joining persists between individual collaboration sessions. This means that the

inference engine does not have to dynamically discover the tuple space for each

collaboration session, but instead can be told this in a one off configuration step. The

number of instances of the inference engine and the tuple space running at the same

time determines how many collaboration sessions may take place in parallel.

81

The inference engine is pre-configured to subscribe to all the different known non­

inferred event types generated by the producers. It adds the triples from these events

into its own internal triplestore, which represents its know ledge of the current

collaboration session. (To avoid confusion with external triplestores, this internal

triplestore shall be referred to as a knowledgebase.)

The inference engine has pre-authored, domain specific inference rules that fire in real­

time when a matching pattern of triples is found in its knowledge base. These rules then

generate triples that represent higher-level events. These triples are added to its

knowledge base, and as with other producers, are also packaged as tuples and published

to the tuple space for the benefit of other consumers. In addition to using pure rules

based inference, the inference engine also queries an external triplestore whenever it

has gaps in its knowledge that prevent it from making a specific inference.

For example, in the implementation described in the next chapter, one of the inferences

is that there is a person present in a specific seating position of a specific meeting room.

This inference is made as the result of a number of rules firing after there is an iButton

sign in event. The presence of the sign in event in the knowledgebase triggers a rule

that queries the triplestore for the seating position and room location of the iButton

reader. This new information in tum triggers another rule that queries the triplestore to

determine the person who owns the iButton. The presence of this ownership and

location information in the knowledgebase then causes another rule to fire which

combines this knowledge to infer that the particular person is present at that seating

position of that meeting room. Full details of the inference process are described in

chapter 6.

The inference engine is also responsible for archiving events to the external triplestore.

This is a sensible choice because at the end of a collaboration session its

knowledgebase contains the complete set of tIiples that represent all the events from the

collaboration session, both basic and inferred. Since an inference engine is not suited

for persistent storage, all the triples in its knowledgebase are transferred to the external

triplestore once the collaboration session has finished. All triples are then deleted from

the knowledge base, leaving the inference engine ready for a new collaboration session.

82

Once the triples representing a collaboration session are added to the external

triplestore, these could then be accessed by replay clients through suitable queries.

4.8.5 External Triplestore

In essence the external triplestore is a persistent repository of knowledge, represented

as triples that may be queried and added to as required. It is difficult to generalise about

what kinds of knowledge the triplestore must contain to be useful, as it is largely

domain specific. In the implementation described in the next chapter, the triplestore is

predominantly used for looking up where components are located in a location

hierarchy, as this was found to lead to useful inferences. E.g. if an iButton reader is

located in a specific seating location, then it is reasonable to infer that the person who

just signed into that reader is sitting in that seating location. The triplestore is also

queried by consumers to resolve URIs to human readable names where required for

display purposes, so it is likely that the triplestore will need to contain this type of

knowledge too.

How the triplestore is initialised and maintained is beyond the scope of the framework,

but it is possible that automated techniques such as those used in CS AKTiveSpace (see

section 2.4.1) could be used to extract knowledge from existing sources, in conjunction

with some hand authoring of information not already available in an electronic form.

This framework assumes that there is a single triplestore and that it remains at a fixed

location. All components that need to query the triplestore (i.e. the inference engine and

consumers) are given the location of the triplestore as part of their initial configuration.

The specific mechanism for querying the triplestore is not defined by this framework.

4.8.6 Consumers

Consumers are typically some form of application for displaying events in a human

understandable form. The application may be interactive, for example displaying

information in the form of hyperlinks. Consumers, however, do not necessarily have to

be applications responsible for display. For example, the inference engine acts a

consumer too.

Consumers subscribe to the specific event type(s) that they are able to handle, and parse

the serialised RDF from received state change packets into triples. In the case of a

83

display application, these triples are converted into a human understandable form and

displayed in real-time. Pmt of the consumer's process of converting triples into a

human understandable form may include queries to the triplestore to resolve URIs into

a human readable fonn.

Consumers may run on devices such as a standard PC, wireless PDA or even a mobile

phone. In general consumers may be more complex than producers, since they have to

perfOlm more tasks, including parsing RDF, user interface functions and queries to the

triplestore. Furthermore, a consumer may need to handle multiple event types, which

further adds to the complexity.

4.9 Summary

This chapter has presented a generic framework for the automatic semantic annotation

of distributed real-time collaboration activities. Each semantic annotation is an event

represented as two state changes, allowing live creation and transpOlt of events. It has

been explained that explicit synchronisation of annotations with the media streams

would be difficult in the general case, and that implicit synchronisation is sufficient for

real-time collaboration.

The framework consists of producers and consumers that communicate using a shared

tuple space. This enables reliable, loosely coupled pub/sub communication and also

supports late joining consumers. An inference engine that exhibits both producer and

consumer functionality is used to automatically infer further collaboration events from

those captured by other producers. This inference engine uses an external triplestore as

a source of additional knowledge that feeds into the inference process.

84

5 Implementation

This chapter describes a proof of concept implementation of the framework presented

in the previous chapter. The annotation functionality of the implementation is based on

the Access Grid scenario from chapter 3. An ontology is presented that represents

concepts such as events, time, locations and people, a significant portion of which was

reused from existing ontologies. A third party inference engine was used and a number

of inference rules were created. In addition to this, three producers were created for

capturing and publishing events from collaboration sessions. A single consumer was

also created for displaying attendance lists and speaker identification data.

5.1 Overview of End-User Functionality

The functionality chosen for implementation was based on a subset of that described in

the scenario presented in section 3.9. This subset was real-time speaker identification

and dynamically updated attendance lists.

The implemented system described in this chapter also differs from the scenario by not

implementing video window highlighting. Window highlighting was not implemented

as it was decided that this would prove to be mainly an exercise in modifying vic, and

would not have much relevance to the semantic annotation framework. A replay

function was also omitted from the implementation since this was a feature that had

already been provided by the CoAKTinG meeting replay tool (see section 2.2.7).

Furthermore, at the time of writing the author is employed on a project called Memetic

[MemOS] developing the CoAKTinG meeting replay tool to support automated and

semi automated annotation of recorded Access Grid meetings. Inference will be one of

the techniques used in Memetic for achieving this.

The implemented system is presented to participants at each site as a dynamically

updated list of sites and names of current participants. This list is displayed on the main

projection screen at each site in the session. The list consists of a number of headings,

each one being the name of a site that is currently pari of the Access Glid session. As

sites join or leave, appropriate site headings are automatically added or removed. The

purpose of the site headings are so that all participants know exactly which sites are in

8S

the session at any particular moment. Below each heading is a list of the names of each

participant at that specific site. Entries in this list are automatically added or removed

as individual participants join or leave the meeting. When a participant speaks, their

entry in the list is highlighted to indicate they are speaking. This list is intended to

increase participant awareness by explicitly listing session participants and to make it

easier to identify who is speaking. The system is also able to determine when a meeting

is in session at each individual Access Grid room, which could for example, be used to

display the status of the Access Grid node on a screen outside the room.

From the perspective of the participants, all they need to do extra to achieve this

functionality is to carry around a personal iButton and use this to sign into a reader

which is located in every seating position. Behind the scenes, the system automatically

generates an RDF description of each session, which is then archived in a triplestore.

Although the implementation is based around an Access Grid scenario, it is fairly

general purpose and could equally be applied to group-to-group telephone audio

conferences or other group-to-group conferencing technologies.

5.2 Overview of System

A diagram of the overall system architecture is shown in Figure 5.1. The entire system

was implemented in Java and an overview of some of these components is given in the

following sections.

5.2.1 Producers

The system required each meeting room to be equipped with the following producers:

• iButton Reader Producer. There needed to be an iButton reader located at

each seating position, each of which was connected to a host PC at each site that

was responsible for publishing annotations that described the sign in and sign

out events at each iButton reader.

86

--:

I

Collaborating
Site

Display to
participants

Display Panel
Consumer

Discovery
messages

Session Information
Producer

+

EQUIP discovery
server

Gentner AP400
Audio Mixer

Microphone
Activity

Producer

1 __ .___ _ _ _ _ _ __ _ _ _ _ __ _ ___ . ____ . _______ ._

1
1- _ ._ . ___ _

I
[- - - --

JDBC

Jena
persistent model

(mySQL DB)

HTTP

\
AKT

T riplestore

tuples

JDBC

from file

tuples
tuples

Equip4j server

tuples

Jena inference
engine

other
bootstrapping
knowledge

Figure 5.1, Overview of implemented system.

tuples

iButton
Readers

serial link

iButton Reader
Producer

from
file

Inference
rules

,... -,
I I
I l--I
I I 1
I I

I
t

87

It Microphone Activity Producer. Individual microphones were located at each

seating position, and these fed into a digital microphone mixer connected via a

seliallink to a host Pc. The host PC was responsible for publishing annotations

when sound was detected past a certain threshold at each individual

microphone.

It Session Information Producer. The session infonnation producer was

responsible for publishing annotations that stated when the meeting room had

joined an Access Grid session. This information was manually entered by the

node operator, but this could have been achieved automatically by integrating it

with the Access Grid session handling software. The session information

producer also ran a tuple space discovery server, which enabled the other

components to join the correct tuple space.

5.2.2 Inference Engine

Central to the system was the inference engine. There was a single instance shared in a

session, which subscribed to the events generated by the producers. It had a number of

forward chaining inference rules, which it used in conjunction with queries to an

external triplestore to generate the participant list and the speaker identification

annotations.

In order to allow the display application to generate a participant list, the inference

engine took iButton reader events and firstly queried the triplestore to resolve the

iButton ID from the event to the URI for the person who owned that iButton. It also

performed a further query to determine the seating location in which the iButton reader

was located. Once these queries had been made this caused a further rule to fire, which

inferred that the person who owned the iButton must be present at that particular

seating location, and an annotation to that effect was published to the tuple space.

The inference engine also inferred participant speaking events. It did this by receiving

microphone activity events and querying the triplestore to determine which seating

position the microphone was located in. Once the seating location had been determined,

a further rule fired, which used knowledge about who was sitting in that seating

location to infer that the person had made a verbal comment, and an annotation to that

88

effect was published. The full details of the inference process are discussed at length in

chapter 6.

5.2.3 Consumers

The system had just a single consumer application, an instance of which ran at each

site. This was the display panel application that was responsible for displaying the list

of sites and participants, and the speaker identification data.

In order to allow the display panel application to display a list of connected site names,

it subscribed to the room-mapping events from the session infOlmation producers. On

receiving each event, it queried the triplestore to obtain a human readable name for

each collaboration site, and then displayed the site name in the list.

In order to display the participant list, the display application subscribed to the person

present events generated by the inference engine. On receipt of a person present event

the display application queried the triplestore to obtain a human readable name for the

person that event referred to, and then displayed the name in the list.

In order to display the speaker identification events, the display application subscribed

to the speaker identification events generated by the inference engine. On receipt of an

event, it highlighted the name of the appropriate person in the list, and when the event

ended, it removed the highlighting from that person's name.

5.3 Speaker Identification Technique

As speaker identification was an important aspect of the implementation, some

consideration is given here for the chosen technique, which also proved to be somewhat

novel.

Numerous techniques exist for text independent automatic speaker identification,

consisting of either speech pattern matching (e.g. [BetOO]) or Sound Source

Localisation (SSL) techniques (e.g. [Cut02]). The drawback of pattern matching

techniques is that they require users to supply a sample of their voice in advance and

when in use typically require at least one or two seconds of speech before being able to

produce a result and are therefore are not suitable for real-time applications or short

89

utterances. The techniques also cannot handle two people speaking at once, which is a

common occunence in meetings.

For this reason SSL techniques were favoured here, and are particularly suited to

meeting rooms, as participants tend to stay seated in the same location for the duration

of a meeting. One of the drawbacks of SSL is that it normally requires expensive

microphone anays. The author has however discovered that it is possible to do basic

SSL by exploiting a feature of the standard audio hardware that the majority of Access

Grid nodes use.

Each room-based Access Grid node is equipped with an echo-cancelling digital audio

mixer, usually manufactured by Gentner. These Gentner products can be controlled and

monitored via the serial port of a PC allowing real-time access to the audio levels and

gating status of each microphone. When a microphone is gated on, it means that the

level it has picked up is above some specified threshold. Likewise, when gated off, it

means that the level is below a certain threshold.

Most Access Grid nodes use a Gentner AP400, which has four microphone inputs.

Initially it was hoped to do SSL by looking at the relative audio levels on each of the

microphones. Unfortunately after some experimentation it was found that hardware

limitations in the Gentner unit meant that it was only possible to access the audio level

one microphone at a time, with a 0.2 second delay between accessing each microphone,

and that this amount of delay was too large to do SSL using this technique. The gating

status of the microphones, however, proved to be more useful. The Gentner hardware

allows the status of all four microphones to be reported simultaneously once every 0.2

seconds, which is sufficiently fast to be useful. Furthermore, by default the AP400 has

a feature called First Mic Priority mode enabled, which has a useful side effect,

explained as follows. Its main purpose is to help maintain good speech intelligibility by

ensuring that only one microphone gates on when a person speaks. It achieves this by

determining the audio levels received by all the microphones when the first microphone

gates on and this audio level is then used as the ambient level for all other microphones.

The useful side effect of this is that if each participant has a microphone in front of

them, then only the microphone in front of the person speaking will gate on. This

means that the gating status of the microphones accurately reflects who is speaking at

any moment in time. The author has confirmed this experimentally. Additionally, if
90

more than one person speaks at a time, then a microphone will gate on for each person

speaking.

Performing SSL by giving each participant a tabletop microphone may sound obvious,

but without First Mic Priority mode the technique is not reliable. The author conducted

experiments with the mode switched off and found that usually two or more

microphones gated on when only one person spoke and that increasing the gating

threshold simply meant that quieter speakers were unable to gate their microphone on.

The advantage of performing SSL in this way is that it requires no additional hardware

for Access Grid nodes. The main drawback is that the maximum number of participants

is limited to the number of microphones, although similar Gentner products (e.g.

AP800) deployed at other Access Grid nodes support up to eight microphones, and

multiple Gentner units can be daisy chained to provide more microphone inputs.

Another weakness is that sounds other than speech can gate a microphone on (e.g. a

door slamming), but it is likely that in most sessions this would not occur frequently

enough to cause significant generation of inconect speaker identification data. This

weakness could be overcome by using a technique to determine if an audio signal is

speech or non-speech (e.g. [Tur02]).

5.3.1 The need for inference

At this stage it may appear as if the AP400 is performing all the functions required for

full speaker identification. However, the only information the AP400 asserts is the

identity of the microphone that is cunently gating on. Clearly this information on its

own does not identify the actual participant who spoke, as it says nothing about any

participant. In fact the AP400 has absolutely no knowledge about the participants and

no knowledge about where its microphones are located.

Inference is therefore required to take the basic microphone gating knowledge from the

AP400 and combine this information with other external knowledge about the locations

of the microphones and the locations of the participants. Only once all this knowledge

is taken into account by the inference process is it possible to make the explicit

assertion stating which participant is cunently speaking. In the implementation

described here, four facts are needed to make the inference about who is cunently

speaking:

91

1. The identity of the microphone that is currently gated on

2. The identity of the person signed into a specific iButton reader

3. The seating position of that iButton reader

4. The seating position of the microphone

It is possible to see that only the first of these four facts comes from AP400, with the

rest coming from the iButton reader and the external triplestore. The full inference

process is described in detail in chapter 6.

5.4 Ontology

The key first step in implementing a system within this framework was to author the

ontology for the various components to use. One of the many benefits of taking an

approach based around the Semantic Web was that it facilitated easy reuse of

ontologies. For this implementation, it was chosen to reuse ontologies wherever

possible as this would reduce implementation effort and promote interoperability with

existing tools.

5.4.1 Ontologies Chosen for Reuse

There are numerous existing Semantic Web ontologies, meaning that some

consideration needed to be given to the ontologies that would be reused to form the

basis of the implementation here.

The implementation required representations of concepts such as events, time, locations

and people. Appropriate ontologies for representing these were found to be the

ontologies from the CoAKTinG and AKT projects (see sections 2.2.7 and 2.4.1). The

CoAKTinG ontology was originally created for the offline semantic annotation of

recordings of synchronous collaboration activities and already had representations for

things such as distributed collaboration sessions and people speaking. This ontology in

tum reused a number of elements from the AKT Support and Portal ontologies to

provide a representation for entities such as events, time, locations and people. The

CoAKTinG ontology is given in Appendix D.

The representation of locations in the AKT Portal ontology, was however rather basic

and did not provide any means to define the relationship between locations or spaces.

92

For this reason an additional location ontology was reused from the Signage Project

[Mi104] to represent locations and the interrelationships between them. The Signage

location ontology is given in Appendix E. Its use of hierarchical spaces enabled useful

inferences to be made. For example, through a hierarchy specifying devices located in

seating positions and seating positions located in rooms, it is possible to infer when two

devices are located in the same room or in the same seating position, even though these

explicit relationships are not specified. For example, consider the following list of basic

facts that describe part of a meeting room:

1. iButton reader A is located in seating position 1

2. iButton reader B is located in seating position 2

3. Microphone X is located in seating position 1

4. Seating position 1 is located in room Y

5. Seating position 2 is located in room Y

Its possible to see that in addition to the explicit facts, several further facts can be

inferred. For example, fact 1 and 3 can be combined to infer that iButton reader A is

co-located with microphone X in the same seating position. Facts 1,2,4 and 5 can be

combined to infer that iButton readers A and B are located in the same room. As will

be shown in chapter 6, these inferences are used as part of the process to determine

when people are co-located or when people are sitting in front specific microphones,

which are used respectively to infer when there is a meeting taking place and which

participant is currently speaking.

Therefore using this representation and combining it with inference has removed the

need to explicitly specify all the relationships between the locations. It also means that

the configuration can be less application specific, for example another application

could combine facts 4 and 5 to infer that seating positions 1 and 2 were in the same

room. Fm1hermore, any changes to the device locations require only a single

relationship to be modified, thus ensuring that the maintenance of the configuration is

straightforward.

An additional advantage of using the AKT, CoAKTinG and Signage ontologies was

that their creators were research colleagues of the author, which promoted discussion

93

about issues such as design rationale and allowed the potential for input into future

developments for these ontologies.

The ontologies described here were by no means the only suitable basis for this

implementation. For example, the MINDSW AP conference ontology [Min04] has a

representation of events, time, people, sub-events, attendees and location and the

eBiquity Group [eBi04] have published similar ontologies too.

Since there was some reuse of existing ontologies in the implementation described in

this chapter, a simple namespace mechanism will be used when describing ontology

terms so the origin of each term is clear. Any term prefixed with the namespace 'live'

(short for 'live collaboration ontology') is an original contribution by the author. All

telms with other namespaces have been reused from existing ontologies. The live

collaboration ontology is given in Appendix C.

5.4.2 Events and Time

Since events and time were key to the system, the discussion shall begin on this topic.

It is fairly clear that a sensible way to structure the ontology would be to have a

superclass representing a generic event and to subclass this event into specific event

types. This is exactly what the CoAKTinG ontology does, taking a representation of an

event from the AKT Portal ontology (referred to here as 'portal') and subclassing it into

a number of specific event types.

Figure 5.2 shows the structure of the portal:Event class and the parts that it inherits

from the AKT Support ontology (referred to here as 'support'). In essence, portal:Event

is something that can have a beginning time, an end time, a location and any number of

sub-events. An event can also have a 'main agent' and 'other agents involved'

specified, which can, for example, be used respectively to specify the chair and other

participants of a meeting.

portal:Event gets its ability to express a beginning time and an end time by sub classing

support:Temporal-Thing, which possesses a support:has-time-interval property, which

has a range of support:Time-Interval. support:Time-Interval represents a time interval

by having a support:begins-at-time-point property and support:ends-at-time-point

property, both of which have a range of suppol1:Time-Point.

94

support Temporal-Thing

subClassOf portal:has-sub-event

supporthas-time-interval

I ~
portal Event

supportbeqins-at-time-point
portal:has-main-aqent

support Time-Interval

/ (portal:has-other-aqents-involved

I supportend-at-time-point
portal:Generic-Agent

supportTime-Point
portal:has-Iocation

support:year -of -.j integer

supportmonth-of -1 integer

supportday-of --1 integer

_--.JII"I integer
supporthour-of - 1

supportminute-of

support second-of ___ ~ integer

0011
0 df --~ meetlng:ml Isecon -0 ~~

portal:Location

Figure 5.2, The portion of the AKT ontology representing events and time.
95

Although it may seem more intuitive to use two separate classes to represent an event

in live collaboration (i.e. one to represent the beginning of an event and one to

represent the end of the event), using portal:Event and only defining the end time once

it is known achieves the same overall function. Furthermore, when archiving events, it

is more intuitive having a single class representing an event.

It is for these reasons that the pOlial:Event was chosen as the superclass for all events in

this implementation. The class required no further extensions to be suitable for use in

this implementation.

5.4.3 Location

Location was also an important part of the ontology, as it played a key role in a number

of inferences. The base concept of location was taken from two sources, the AKT

Portal ontology and the Signage Project location ontology (namespace abbreviated to

'location' here), and was extended by the author to meet the specific needs of the proof

of concept implementation. Figure 5.3 shows the location ontology used in the

implementation.

In the Signage ontology, the most general type of location is a location:Abstract-Space.

Specific types of location subclass this, such as 10cation:Room and location:Work­

Area. In the AKT portal ontology, the most general type of location is portal:Location,

which is subclassed into specific location types such as portal:Country and

pOlial:Geographical-Region. portal:Location is the range of the portal:has-Iocation

property of portal:Event.

So that events could use locations defined by the Signage location ontology, and to

make the Signage concept of location interoperable with the AKT Portal concept of

location in general, the author asserted in the live collaboration ontology that

10cation:Abstract-Space was owl:equivalentClass to portal:Location.

From the names it may not seem that 10cation:Abstract-Space and portal:Location were

semantically equivalent concepts, so that declaring them as equivalent classes was not a

valid thing to do. The author however argues that both classes are in fact semantically

equivalent. In fact, in the English language the terms space and location are somewhat

96

location:is-Iocated-in

live:has­
collaboration-site-name

location:Abstract-Space

equivalentClass

portal:Location

Iive:Device-Position

subClassOf

location:Room

subClassOf

location:Meeting­
Room

subClassOf

live:Seating­
Position

Figure 5.3, The location portion of the ontology

subClassOf

subClassOf

live:iButton-Reader­
Position

live:Microphone­
Position

97

ambiguous, as a space can mean either a volume or area and a location can either be a

specific point in space or a whole area such as a city (which arguably actually occupies

a volume). This ambiguity is reflected in the Signage ontology by a 10cation:Room and

a 10cation:Work-Area both being subclasses of 10cation:Abstract-Space, while the

former is arguably a volume and the latter is arguably an area. Similarly, although few

specific subclasses of portal:Location exist, a room, or an entire country would both be

valid subclasses.

To help overcome these ambiguities, the author defines a location:Abstract-Space and

portal:Location as "any space, either in two or three dimensions where it is possible to

define the boundaries (at any given moment of time)". This definition should also be

used whenever the author uses the terms 'space' or 'location'. Note that although it is

possible to define the boundaries of the space, these boundaries need not be explicitly

defined somewhere in order to refer to that space, all that matters is that the boundaries

can be defined. In the case of a specific point in space, this can be thought of as a

bounded space of zero volume.

5.4.3.1 Location Types

The final ontology has knowledge of five different location types, these are a room, a

meeting room, a seating position, an iButton reader position and a microphone position.

All the location types are subclasses of 10cation:Abstract-Space and are explained in

this section.

The concept of room is taken directly from the Signage ontology and is represented by

the class 10cation:Room. This is used as a generic representation of any type of room.

The concept of meeting room is also taken directly from the Signage ontology and is

represented by the class 10cation:Meeting-Room, which is a subclass of 10cation:Room.

This is used to represent any room whose primary purpose is for holding meetings, and

was the representation chosen for Access Grid enabled rooms. It could be argued that

the representation of an Access Grid enabled room should be represented by a class

more specific than a generic meeting room (e.g. with a class like Access-Grid-Room),

as this would give the potential for inferences that used knowledge that the room was

Access Glid capable. While this is certainly true, the author feels that a genelic meeting

room is sufficient specialisation for this system. Furthermore, a better way of

98

representing specific collaboration technologies available at that meeting room would

be to represent them as properties of that meeting room, as that would allow a meeting

room to support more than one type of collaboration technology, which is often the

case.

Since the Signage and AKT ontologies had no representation of a seating position,

iButton reader position or microphone position, these were added in the live

collaboration ontology. A seating position is represented by the live:Seating-Position

class. This is used to represent each individual seating location in a meeting room, i.e.

the location occupied by a single meeting participant.

The final two new location classes defined were live:iButton-Reader-Position and

live:Microphone-Position which are used to represent the locations the respective

devices, i.e. the space occupied by the physical device. The classes both subclassed a

generic class called live:Device-Position, which in tum subclassed 10cation:Abstract­

Space.

5.4.3.2 Abstract-Space Properties

The 10cation:Abstract-Space class had two propelties which were useful to this

implementation. One of which was already defined in the Signage ontology and the

other of which was a new property defined in the live collaboration ontology.

The first property was location:is-Iocated-in, which had a domain and range of

10cation:Abstract-Space. This is used to specify that one space is located in another

space, for example a room being located in a building. In this implementation, this

property was used to specify that a particular iButton reader position or microphone

position is located in a particular seating position, and that a seating position is located

in a particular meeting room. This property is clearly transitive, that is if, for example,

microphone position A is located in seating position B, and seating position B is

located in meeting room C, then A must also be located in C. At the time of

implementation, the Signage ontology did not declare location:is-Iocated-in as an

owl:transitiveProperty, so this was rectified by declaring this property as transitive in

the live collaboration ontology. This allowed precisely the kind of transitive location

based inferences as described above. At the time of writing, the CUlTent version of the

Signage ontology now incorporates this transitive property definition too.

99

The second property was live:has-collaboration-site-name which was a new propelty

defined in the live collaboration ontology. This property was a literal stling value and

was used to represent a human readable name for an individual collaboration site,

which for example may be used as the text for a site heading in the display panel

application. This name should make sense in the context of an Access Grid (or other

type collaboration session). An example of a name would be 'Southampton University,

ECS'. The most likely subclass of 10cation:Abstract-Space this property would be used

with is a 10cation:Meeting-Room, as that is the actual collaboration site. Note that this

property does not provide a name for the meeting room itself, but for the site that the

Access Glid node located in that room represents in an Access Grid session.

Rather that giving live:has-collaboration-site-name a domain of 10cation:Abstract­

Space, it may seem more appropriate to restrict its domain to 10cation:Meeting-Room,

as that is typically what is used to represent a collaboration site. Although that is the

case for this implementation, doing so would remove the possibility of other spaces

being sites of collaboration. For example, desktop versions of the access grid exist, so a

desk could have a collaboration site name and although unlikely, its not out of the

question for somewhere like a corridor or garden to be a collaboration site. By leaving

the domain to be very general, this effectively allows any type of location: Abstract­

Space to be a collaboration site.

5.4.4 Personal Identification

The pOltion of the ontology that relates to the identification of individual session

participants is relatively simple and is shown in Figure 5.4.

The concept of person (i.e. the representation of people taking part in a collaboration

session) is taken from the AKT portal ontology using the class pOltal:Person. The

Portal ontology defines a number of properties on portal:Person, but the only one used

by this implementation was portal:full-name, which specified the person's full name as

a human readable string. This was used when displaying the names of participants in

the display panel application.

100

portal: Generic-Agent

subClassOf

portal:Legal-Agent

subClassOf

portal:full-name

string

live:has-personal­
identifier

I ive: Personal-Identifier

subClassOf

live:iButton

live :has-button-id

\
B

Figure 5.4, The section of the ontology for personal identification.

101

People identify themselves using iButtons, so these needed to be represented in the

ontology. As no suitable representations were in the existing ontologies, a

representation was added to the live collaboration ontology. This was achieved by

firstly creating the geneIic superclass live:Personal-Identifier to represent all forms of

tangible identifiers like iButtons that could be used to uniquely identify a person. This

is then subc1assed as live:iButton which is the class that represents an iButton. This

class has a single literal string property live:has-button-id which actually records the

unique ID of the iButton.

In order to tie an iButton (or any other personal identifier) to its owner, the live

collaboration ontology also defined the propelty live:has-personal-identifier, which has

a domain of portal:Person and a range of live:Personal-Identifier, making it possible to

associate one or more instances of a live:Personal-Identifier with a person.

5.4.5 Event Types

With the rest of the elements of the ontology in place, the final part of the ontology is

the portion that represents the specific event types used by the system. As with the

other parts of the system, a number of the events were reused from existing ontologies.

Figure 5.5 shows the portions of the event ontology reused from existing ontologies

and Figure 5.6 shows the new portion of the ontology created specifically for the

implementation.

5.4.5.1 Events From Existing Ontologies

A single event type is taken from the AKT pOltal ontology, namely portal:Meeting­

Taking-Place. This is used to represent when co-located people are collaborating, such

as the activity that takes place at each of the sites participating in an Access Grid

session. The use of this class in this way (i.e. to represent the activity that takes place at

each site dming distIibuted collaboration) was first shown by the CoAKTinG ontology.

A representation for a real-time distIibuted collaboration session is taken from

meeting:Distributed-Gathering. This is used to tie together each of the individual

portal:Meeting-Taking-Place events in order to form a representation of a distributed

collaboration session. This is achieved by using the meeting:has-Iocal-event property

(which is a sub property of portal:has-sub-event), to specify each of the local meetings

102

f-'

o
w

~ ____ portal:has-main-
~ agent

portal:Generic­
Agent

!
subClassOf

portal:Legal-Agent

subClassOf

portal:has-other­
agents-involved

portal:Location

portal:meeting-
~ organiser

portal:Person

portal:meeting­
attendee

portal :has-sub-event

portal:Event

portal:has-Iocation \

portal:sender-of­
information

~ subClassOf _ portal:Generalized
-Transfer

subClassOf subClassOf

t
subClassOf

portal:Meeting­
Taking-Place

portal:Social­
Gathering ~

subClassOf

meeting:has-Iocal­
event

meeting:D istributed
-Gathering

portal:lnformation­
Transfer-Event

subClassOf

meeting:Making-a­
Verbal-Comment

Figure 5.5, Event types reused from the AKT and CoAKTinG ontologies.

subClassOf

live:Personal­
Identifier-Event

portal:Event

\
subClassOf

live:Generic­
Agent-Present

subClassOf

subClassOf

live:Joined-To­
Session

live:Microphone­
Active

subClassOf

live:personal­
identifier -used

Iive:Personal­
Identifier

subClassOf

live:iButton-Signed-ln

live:id-of­
ibutton-used

Figure 5.6, The ontology representing the new event types.

Iive:Legal­
Agent-Present

i
subClassOf

live:Person­
Present

104

that make up the distributed gathering. The main purpose of these two events is to

record who is at each site and which sites are in the collaboration session.

The CoAKTinG meeting ontology also has a representation for people speaking,

meeting:Making-a-Verbal-Comment, and this was used for the same purpose in this

implementation.

5.4.5.2 New Event Types

The first new event type required is to explicitly represent the notion of an individual

meeting room being part of a collaboration session. This event is live:Joined-To­

Session. The primary purpose of this event is during live sessions, to enable

participants to tell when another site has joined the session, even when nobody has yet

signed in at that site. It uses the inherited portal:has-location property to record the

room location joined to the session. This event does not record any explicit session

identifier, as it is implicit from the scope of the tuple space.

The next event type is used as a generic representation for any action involving a

live:Personal-Identifier. This event is live:Personal-Identifier-Event, which is used as a

base class for events such as people signing in or out using some form of personal

identifier such as an iButton. The event defines a live:has-personal-identifier property

which has a range of live:Personal-Identifier. This is used to specify the particular

instance of a personal identifier used in the event. The event is subclassed by a class

called live:iButton-Signed-In, which represents when an iButton is signed in. An

live:iButton-Signed-In event begins when the iButton is signed in and ends when the

iButton is signed out.

Since any device generating an live:iButton-Signed-In event would not normally have

knowledge of the URI of the iButton that the event represents, an additional property

called live:id-of-ibutton-used is defined for an live:iButton-Signed-In event. This is a

literal value for recording the 64 bit iButton ID as a string of hexadecimal digits. This

allows generation of these events without having to first determine the URI of the

iButton.

105

The event of a person being present in a collaboration session is represented by the

live:Person-Present class, which is an event that starts when the person joins the session

(indicated by signing in with an iButton) and ends when the person leaves the session

(by signing out). The person the event refers to is represented by the pOltal:has-main­

agent property inherited from portal:Event. For a live:Person-Present event, this

property has an owl:allValuesFrom restriction limiting it to be values from the class

portal :Person.

Since in the AKT ontology, portal:Person is a subclass of portal:Legal-Agent, which in

tum is a subclass of portal:Generic-Agent, it was chosen to mirror this class hierarchy

above the live:Person-Present event. This meant defining a new class called

live:Generic-Agent-Present, which was subclassed another new class called live:Legal­

Agent-Present. The live: Person-Present class then subclassed live:Legal-Agent­

Present. This was done to maximise the potential for any future interoperability with

the AKT ontology.

The final new event type was live:Microphone-Active, which was used to represent

when a microphone gates on. This event, along with live Person-Present is used as a

basis for inferring meeting:Making-a-Verbal-Comment events.

5.5 Tuple Space

The tuple space was a key component of the implementation, as it provided the core

communications service used by all the other components. The chosen tuple space

implementation was EQUIP [Gre02], which was originally implemented for use in the

EQUATOR Interdisciplinary Research Collaboration [EQU04]. As well as tuple space

functionality, the full version of EQUIP also has a general event system and support for

Collaborative Virtual Environments (CVEs), like Massive-3 [GreOO], with features

such as 3D rendering. This full version of EQUIP has interfaces in both Java and C++.

Since much of the complexity of the full version of EQUIP was not required, the much

simpler Equip4j [Equ04b] was used as the basis for the proof of concept system. It is a

Java only subset of EQUIP that has a simpler mechanism for defining data items and

does not support 3D rendering, which was not required anyway.

106

Numerous other tuple space implementations exist, many of which are also Java based,

such as TSpaces [TSp04] and JavaSpaces[Jav04]. These would have been just as

suitable for providing the tuple space functionality, but EQUIP was chosen as it was

designed specifically for supporting real-time collaboration. Furthermore, the author,

although not a project member, worked with EQUATOR researchers. This meant that

there was potential for technical support if required and also for influencing future

EQUIP developments.

The data sharing service in Equip4j, which is used to publish tuples is referred to as a

data~Tace. This is provided by dataspace servers, which are identified with URLs of

the form "equip:llhost:port/name". Tuples are persistent for the lifetime of the

dataspace, or until they are deleted by their owner. Equip4j also supports non-persistent

tuples called tuple events. Both persistent and non-persistent tuples were used in the

proof of concept implementation.

Each tuple consists of a number of ordered values, which are instances of the

equip. runtime. ValueBase Java class, which is subclassed to be container classes for

Java native types such as Strings, ints and arrays. Persistent tuples also have a unique

identifier so they can be referenced by their owners, to allow functions like deletion.

Subscriptions to particular tuples are based on exactly matching the values held within

the tuple against a template tuple. Wildcard values can be specified by using a Java null

value. A convention in EQUIP is that the first value in the tuple should always be a

pseudo class name for the tuple to say what type of tuple it is so, for example, different

applications can share the same dataspace and only subscribe to the type of tuples

intended for them. The EQUIP convention for a pseudo class name is a dotted

hierarchical string such as "bpjOOr.meeting.Event", although this syntax is not

enforced.

5.5.1 Events as EQUIP Tuples

Each collaboration event is represented using two tuples, which represent the two

individual state changes that make up the event. The state change representing the

beginning of the event is published as a persistent tuple, while the end of the event is

published as a non-persistent tuple event. Once an event has ended, the producer that

generated the event deletes the beginning tuple for the event. This means that events

107

persist in the dataspace for as long as they are still active, so that any late joining

consumer is able to determine the current session state. There is no need to make the

state change representing the end of the event persistent, since any consumer joining

after the event has ended will have no knowledge of the event. In this implementation

deleting events that are no longer active was preferable to making them persist for the

duration of the collaboration session, as otherwise a late joining consumer could have

potentially been swamped with inactive events when it first tried to join the session.

There may be cases where consumers may need to display a history of the session, in

which case making inactive events persistent is required, but this was not the case for

the proof of concept implementation.

Each tuple used in the implementation contained three values:

• The first value was the pseudo tuple class name string, needed for EQUIP

compliance. This was chosen to be "bpjOOr.meeting.Event".

• The second value was a URI represented as a Java String. This URI specified

the RDF type of the event that the tuple represented, e.g. for a iButton-Signed­

In event the string was:

.. http://www.ecs.soton.ac.uk/~bpjOOr/ontologies/live-meeting-20040319-1 # iB utton-Signed-In"

This type URI was specified both for tuples that represent the beginning of an

event and the end of an event.

• The third value in the tuple was another String that contained the full

seriaIisation of all the RDF triples that described the state change that the tuple

represented. This serialisation was in N-Triples [BecOI], since this was a very

simple form for producers to generate directly without the need for using any

external software libraries, as would otherwise have been the case if say full

XML seriaIisation syntax had been used. For example, the full seliaIisation of

an iButton-Signed-In event would be as follows: (note that the namespaces in

this example have been abbreviated for readability)

108

myns:signinevent1 rdf:type live:iButton-Signed-ln .

myns:signinevent1 supporthas-time-interval myns:timeinterval1

myns:signinevent1 portal:has-Iocation mylocs:sotonuni-B59-3241-seat1-reader1 .

mylocs:sotonuni-B59-3241-seat1-reader1 rdf:type live:iButton-Reader-Position .

myns:signinevent1 live:id-of-ibutton-used "02000009EA6FD301" .

myns:timeinterval1 rdf:type support:Time-lnterval .

myns:timeinterval1 support:begins-at-time-point myns:timepoint1 .

myns:timepoint1 support year-of "2004" .

myns:timepoint1 support month-of "10" .

myns:timepoint1 supportday-of "26" .

myns:timepoint1 supporthour-of "21" .

myns:timepoint1 support minute-of "6" .

myns:timepoint1 support second-of "26" .

myns:timepoint1 meeting:millisecond-of "209" .

Explicitly stating the event type as a separate value in the tuples made it

straightforward for consumers to subscribe only to tuples that represented the types of

events they were able to handle. If this was not done, then the full serialisation of each

event would have needed to be parsed to by consumers to determine the event type.

Subscriptions therefore had the following template: the first value was always the string

"bpjOOr.meeting.Event" (as this is the EQUIP tuple type), the second value was the full

URI of the event type the subscription was for and third value was always null to act as

a wildcard that matched all RDF models.

5.5.2 Dataspace Discovery Mechanism

Equip4j also has a useful built in mechanism to allow dataspace clients (i.e. producers

and consumers) to automatically discover specific dataspace instances. This discovery

mechanism was used in the proof of concept implementation to enable producers and

consumers to automatically join the correct dataspace for the current collaboration

seSSIOn.

The discovery mechanism works by having a discovery server running at each local

network. The server sends out discovery messages to a predetermined local multicast

group and each dataspace client is pre-configured to subscribe to this group. When the

clients are required to connect to a particular dataspace, the server sends out a

discovery message every few seconds informing the clients of the dataspace URL they

109

should connect to. Similarly when the clients are required to disconnect, the server

sends out messages informing the clients of this. How this discovery mechanism is

used in this proof of concept application is discussed further in section 5.6.l.

5.6 Producers

Producers are responsible for captming or inferring collaboration events and publishing

them to the tuple space mapped to the session. A producer typically consists of some

specialist hardware connected to a PC, or may be purely software based. Excluding the

inference engine, the implementation used three different types of producers. These

were: the Session Information Producer, the iButton Reader Producer and the

Microphone Activity Producer. These are discussed in detail in the following sections.

5.6.1 Session Information Producer

A single instance of the session information producer runs at each collaborating site.

This is a purely software-based producer whose purpose is to generate the live:Joined­

To-Session events. The producer software is atypical in that it also runs the discovery

server for the EQUIP dataspace.

The software runs as a basic command line application, which takes keyboard input

directly from the Access Grid node operator. In order to instruct the producer that the

Access Grid node has now joined the current Access Grid session (i.e. has entered the

correct virtual venue for the meeting), the operator simply types in the URL that

specifies the dataspace bound to the current session. This instructs the producer to join

the dataspace specified by the URL, generate a Joined-To-Session event, and publish it

to the dataspace as a persistent tuple. It also instructs the dataspace discovery server it

runs to start multicasting discovery messages, instructing all the other producers and

consumers at the site to join the correct dataspace for that session.

When the Access Grid session is over, the node operator instructs the producer of this

by simply entering the string 'end'. This causes the producer to delete the original tuple

it published and to publish a further non-persistent tuple asserting an end-time on the

Joined-To-Session event; the producer then leaves the dataspace. The discovery server

then stops multicasting the discovery messages and starts multicasting messages

instructing the other producers and consumers to leave the dataspace.

110

Clearly there is scope for automating this process with tighter integration with the

Access Grid software (e.g. to automatically share the dataspace URL between sites and

determine when the Access Grid session begins and ends), but this basic system was

sufficient for the proof of concept system. It also had the advantage of being general

purpose enough to be used with other collaboration technologies, such as telephone

conferencing.

Each instance of this producer type has a very simple one off configuration, which is in

the form of a text file. This file simply specifies the multicast group for dataspace

discovery, and a URI which identifies the instance of Meeting-Room the Access Grid

node is located in. This URI is used to provide the value for the has-location property

of the Joined-To-Session event.

5.6.2 Microphone Activity Producer

The purpose of the microphone activity producer is to generate the Microphone-Active

events that occur as a result of a participant speaking in front of a microphone. An

instance of this producer runs at each collaborating site.

In terms of hardware, the producer consists of four tabletop microphones connected to

a Gentner AP400 echo cancelling digital audio mixer. The AP400 is then connected to

a PC using an RS232 link. Each microphone is positioned at a fixed seating location

around a table in the meeting room. Since the AP400 supports a maximum of four

microphones, so this limits the total number of seating locations to four also, although

as discussed in section 5.3 other hardware solutions are available that support more

microphones than this.

The producer software on the PC repeatedly polls the mixer for the gating status of the

microphones. Each time it detects that a microphone's gating status has changed from

off to on, it creates a Microphone-Active event, with the location property set to the

Microphone-Position of the microphone that gated on. It then publishes this event to

the dataspace as a persistent tuple. When the microphone gates off, the producer then

deletes the previous tuple and publishes a non-persistent tuple asserting the end time of

the event.

111

This producer is configured using a text file, which specifies the dataspace discovery

multicast group and the four URIs that specify the Microphone-Position of each

microphone.

5.6.3 iButton Reader Producer

The purpose of the iButton reader producer is to generate the iButton-Signed-In events

that correspond to individual people signing in or signing out using their personal

iButtons.

In terms of hardware, the producer consists of four individual iButton readers

connected to a Pc. An iButton reader is installed next to the microphone at each seating

location. Similarly to the microphones, more than four iButton readers may be used if

additional hardware is installed.

The producer software on the PC repeatedly polls the readers and detects when an

iButton has been pushed into one of the readers and what the ID of the iButton is.

When such a 'sign-in' occurs, the producer generates an iButton-Signed-In event, with

the value of the id-of-ibutton-used property set to the iButton ID, and the has-location

property set to the URI of the iButton-Reader-Position. This event is then published to

the dataspace as a persistent tuple. The producer stores in memory the IDs of each of

the iButtons currently signed in, so that when one of the already 'signed-in' iButtons is

pushed into a reader again, it can determine that it is now a sign out event. When this

occurs it deletes the previous tuple from the dataspace and then publishes a non­

persistent tuple asserting the end time on the event.

This producer is configured using a text file, which specifies the dataspace discovery

multicast group and the four URIs that specify the iButton-Reader-Position of each of

the iButton readers.

5.7 Inference Engine and Triplestore

Both the inference engine and triplestore were implemented using the Jena 2.0

Semantic Web framework for Java [Jen04], developed by HP Labs. The framework

provides an extensive range of features, which include:

• RDF parsing and serialisation.

112

• RDFS, DAML+OIL and OWL ontology handling.

• Support for persistent models in relational databases.

• Built in inference rules to allow automatic ontology-based entailments.

• A general purpose rule-based inference engine that supports user defined

forward and backward chaining inference rules.

Its support for persistent models, OWL language based entailments and its general

purpose rule engine are the features that made Jena 2.0 particularly suited to

implementing the inference engine and triplestore. This section will give a technical

description of these two components. To improve readability, a full description of the

inference rules and logic used in the proof of concept implementation will be omitted

from this section and discussed in chapter 6.

5.7.1 Overview of Relevant Jena Functionality

RDF graphs in Jena are called models. These act as a store for triples and may have

triples added or removed. The triplestore is implemented as a Jena persistent model,

held in a MySQL [MYS04] relational database. The particular model type used was a

Jena OntModel, which is an ontology aware model, that when queried will return

triples entailed from the ontologies, as well as triples that are explicitly part of the

model. Jena provides an RDQL (RDF Data Query Language) [RDQ03] query interface

for persistent models, which are accessed using JDBC (Java Database Connectivity).

The inference engine was implemented using the Jena general purpose rule engine,

configured to run in forward chaining mode. The inference functionality is exposed as a

model (called an InfModel) to which is bound a rule-based reasoner. Each rule consists

of a list of body terms (premises) and a list of head terms (conclusions). Each term can

be either a triple pattern or a call to an external piece of Java code called a 'builtin',

which can be used to perform boolean tests or some other function.

For example, the rule given below is used to infer that if there is a Person-Present event

and a Meeting-Taking-Place in that room, then that person should be added as a

meeting participant. In addition to triple patterns, the rule also uses the builtins

'noValue', 'eventNotInMeeting' and 'print'. The complete rule set is given in

Appendix F.

113

[addPersonToMeeting:

(?a rdf:type live: Person-Present) ,

(?a portal:has-location ?loc),

(?loc location:is located-in ?room),

(?room rdf:type location:Meeting-Room),

(?meeting rdf:type portal:Meeting-Taking-Place),

(?meeting portal:has-location ?room),

(?meeting support:has-time-interval ?time),

noValue(?time support:ends-at time-point),

eventNotlnMeeting(?a) ,

(?a support:has-time-interval ?pptime),

noValue(?pptime support:ends-at time-point),

(?a portal:has-main-agent ?person),

->

print ("addPersonToMeeting has fired"),

(?meeting portal:has-sub-event ?a),

(?meeting portal:meeting-attendee person)

A specific rule fires when all the triple patterns in its body term match with triples

already in the InfModel. When the body contains any builtins, all these must also return

true before the rule will fire. When a rule fires, each of the triples defined by the triple

patterns in the head terms are added to the InfModel. If the head contains any builtins,

their Java code is run also. It is often the case that the new triples defined by a rule

firing will in tum cause further rules to fire. This cascade of rule firing continues until

no more rules can fire. Clearly care must be taken to avoid writing rules that will loop

indefinitely. If triples are added directly to the InfModel using the Jena API, this can

also trigger further rule firings. The forward chaining rule engine is implemented using

the RETE algorithm [For82], which is optimised for such incremental changes.

5.7.2 Triplestore

The purpose of the tliplestore was to provide additional knowledge that can be used as

part of the inference process. It was also used by the display panel application to

resolve URIs into human readable names.

A one-off initialisation of the triplestore was performed by populating it with the

ontologies described in section 5.4, and some example instance knowledge required for

the inference process. The instance knowledge to initialise the triplestore took the form

114

of a number of hand authored tliples specified using Notation-3 in a text file and some

further triples automatically obtained by directly querying the AKT tIiplestore. FUlther

details of this instance knowledge are discussed in section 6.5.

Since some of the initialisation knowledge was obtained from the AKT triplestore, it

may seem more sensible to have used that tliplestore directly as the system triplestore,

and add the example instance knowledge to that triplestore. This would have been

entirely possible, but it was chosen to use a Jena persistent model since it had much

more support for generating OWL language entailments in response to queries.

Furthermore, running a pIivate instance of a triplestore made it quick and easy to assert

and un-assert tIiples during development.

5.7.3 Inference Engine

The inference engine was an unusual component in that it acted simultaneously as both

a producer and a consumer. In its consumer role, it joins the Equip4j dataspace for a

collaboration session and SUbsclibes to all the event types generated by the other

producers, i.e. Joined-To-Session, iButton-Signed-In, and Microphone-Active. As the

other producers publish tuples to the dataspace, the inference engine receives these

tuples as soon as they are published and adds the tIiples they contain directly to its

InfModeI. Adding these triples may satisfy the conditions for the one or more rules to

fire, which may in tum assert more tIiples, potentially causing further rules to fire.

The producer role is achieved as follows. Whenever a rule fires that infers a new event,

in addition to the triples describing the event being added to the InfModel, they are also

published to the dataspace Gust as other producers do) using a special builtin created

specifically for this purpose.

5.7.3.1 Archiving

At the end of a collaboration session, the InfModel contains a full description of all the

session events (both captured and infelTed). At this point a rule fires which calls a

builtin to upload the triples to the triplestore in order to archive the session. As some of

the triples in the InfModel will have originated from the triplestore, the builtin checks

each tIiple to see if it is already in the triplestore. This avoids uploading duplicates.

Once all the triples have been successfully uploaded to the triplestore, the builtin clears

the InfModel so that it is ready for use when a new collaboration session begins.

115

5.7.3.2 Configuration

The bulk of the inference engine configuration consisted of the set of rules it used.

These were hand authored. In order that it could access the triplestore, it also needed to

be configured with the URL, username and password to access the MySQL database.

The inference engine did not use the EQUIP discovery mechanism used by the other

components as it is intended that each instance the inference engine should be

permanently bound to a given dataspace. Instead of using the discovery mechanism, the

dataspace URL is simply passed to the inference engine when it is first run.

5.8 Consumers

The only pure consumer application implemented was the participant display panel. An

instance of this consumer was intended to run at each site. It consisted of a single

window designed to be displayed to participants at each site using the Access Grid

projection screen. It was responsible for displaying the names of the individual sites

currently joined to the session and the names of the people currently participating at

that site. This information was updated in real-time to reflect changes in the session

state, such as participants joining or leaving. Whenever a participant spoke, their name

was highlighted in yellow to aid with speaker identification. Figure 5.7 shows a

screenshot of the participant display panel, indicating that Benjamin Juby is currently

speaking. Figure 5.8 shows a mock up of how the display panel would appear with the

video windows in a running meeting.

The participant display panel functionality was achieved by the application subscribing

to Joined-To-Session, Person-Present and Making-a-Verbal-Comment events. After

some consideration, it was decided that the best way to handle the incoming triples was

to again use another instance of the Jena generic rule engine. The alternative would

have been to use the Jena API directly, which would have proved to be somewhat

fiddly compared to using the rules engine. Unlike the inference engine, where rules

were primarily used to infer higher level knowledge about the session, here the rules

were used as a convenient way of matching on specific patterns of triples and invoking

appropriate custom builtins to render the text in the display panel.

116

EJ Participant Display Panel

Manchester University

Tony Smith
Susan Gibson
Will Bolton

Southampton University, ECS

David De Roure
Be.njamin Juby
Mike Davies
Jane Kelly

Cardiff Univelisity

Claire Thomas
Tim Hunt
James Clark
Don Jones

Oxford Univ.ersity

Kevin Snencer
Sarah Hill
Tom Morley

Figure 5.7, The Participant Display Panel

117

Southampton U~y."lty, Eel

~Pl!-.
Be~"~ ~ --
CardmUI)I r.lty

~.TtItImI,

1m """
OXfordUnl ,..1ty

t<M!S~
s.nn ..
1'*11Mor1I(t

.­
.......
00

Figure 5.8, The participant display panel in a running meeting

The display panel consumer had its own InfModel to which the triples were added as

they anived in the tuples. When the addition of new triples caused the terms in a rule

body to match the triples in the InfModel, the rule fired, calling an appropliate builtin

to update the text displayed.

There were two different types of rules. The first type queried the triplestore to obtain

human readable text for resources (e.g. site names and participant names). The second

type was responsible for displaying and updating the text in the display panel.

Like the inference engine, the bulk of the display panel application configuration

consisted of the set of rules it used, and these were hand authored. In order that it may

access the triplestore, it also needed to be configured with the URL, usemame and

password to access the MySQL database. As it used the EQUIP discovery mechanism,

it also was provided with the dataspace discovery multicast group.

5.9 Summary

This chapter described an implementation of the semantic annotation framework

presented in chapter 4. The annotation functionality was based on the Access Grid

scenario from chapter 3, and consisted of dynamically updated attendance lists

combined with speaker identification. A novel technique was described for automated

speaker identification that used existing Access Grid hardware.

An ontology was created to represent concepts such as events, time, location and

people. A significant portion of this ontology was reused from existing ontologies,

which reduced implementation effort and promoted potential interoperability. Three

producers and a single consumer were created and these communicated by publishing

sets of RDF triples to an EQUIP dataspace. EQUIP had the advantage of being

specifically designed for supporting real-time collaboration and also had a useful

discovery mechanism.

The inference engine and triplestore were provided by lena, and a number of rules were

created to desclibe the inference logic. In addition to the generic rules based inference,

lena's support for OWL entailments meant that some location inferences could be

performed without the need for authoring extra rules. Reuse of instance data was also

demonstrated by reusing participant name information from the AKT triplestore.
119

6 Details of the Inference Process

This chapter describes in detail the inference process used by the proof of concept

system. It starts by giving a full description of each of the rules used by the inference

engine. An explanation is then given of each Jena buitltin used as part of the inference

process. These builtins allowed Java code to be called directly from within inference

rules. Then a description is given of the bootstrapping know ledge that the inference

process required and the chapter then finishes with a step-by-step walkthrough of an

example collaboration session, showing how individual rules fire as a result of meeting

room events.

6.1 Creation of Rule Set

The process that resulted in the creation of the rule set began with mental run-throughs

of hypothetical collaboration sessions. In these run-throughs the different key

sequences in which the events could be generated by the producers at the beginning and

end of collaboration sessions were noted. After this, the inferences that could be made

from these states were noted too.

This resulted in a set of logic which highlighted a number of key session states and the

inferences that could be made from these. This logic was then used to help determine

the rule set required, with the rules being one possible formal definition of this logic.

When creating the rules, the key design decision that had to be made was to either use a

relatively small number of complex rules or to use a larger number of simpler rules. In

the former case, there would be more tests in the rule bodies and more triples would be

asserted by each rule, whereas in the latter case the rules would have fewer tests and

would assert fewer triples, instead using cascading firing of rules where possible to

make complex assertions.

Here the decision was to use multiple short rules where possible, as otherwise it would

have resulted in some functionality being replicated between rules. Hence by avoiding

this replication of functionality using multiple simpler rules made the rule set shorter

(in terms of lines of code) and easier to modify during development, as changes to

120

functionality could often be achieved by modifying a single rule, rather than multiple

ones.

6.2 Classification of Rule Types

Overall there were three distinct types of rules used by the inference engine:

.. The first type of rule are those whose head action is to query the triplestore for

further triples and add these triples to the InfModel (see section 5.7.1), which

may in tum allow further rules to fire. A new builtin was created for querying

the triplestore in this way. An example of when such a rule may be used is when

details of a new iButton are added to the InfModel as the result of an iButton­

Signed-In event and the triplestore must be queried to determine who the

iButton belongs to before further rules may fire.

.. The second, and most common type of rule, are those which infer new triples

from those triples already in the InfModel. An example of this type of rule is

one that infers a Person-Present event from an iButton-Signed-In event and the

iButton ownership information obtained from the triplestore.

.. The third and final type only occurs once, and that is to archive to the triples tore

at the end of a session.

As has already been mentioned, builtins were used as not all the inference engine

functions could be achieved purely by using triple patterns in rules. In this

implementation, the builtins were used for two key purposes:

.. Performing logic tests in rule bodies that could not be expressed as simple triple

patterns.

.. Carrying out actions that rules alone could not perform (e.g. publishing inferred

triples to the EQUIP dataspace and querying and uploading to the triplestore).

6.3 Inference Rules

This section gives a full descliption of each of the twenty inference rules used by the

system, arranged using the classifications from the previous section. Each rule is named

121

in bold, with the description following its name. The full text listing of the rules, as

passed to the Jena rule parser are given in Appendix F. Each rule has been numbered in

brackets and this corresponds to the numbering of the rules given in the appendix,

enabling the reader to easily locate the listings for specific rules.

6.3.1 Rules That Query The Triplestore

Get Locations On Sign In (1)

This rule queries the triplestore the first time there is an iButton-Signed-In event at a

particular iButton reader. This is done to determine the Seating-Position and Meeting­

Room in which the iButton reader is located. Since is-located-in was declared to be a

transitive property, a single query to the triplestore returns both the Seating-Position

and Meeting-Room. This information is added to the reasoner's knowledgebase and is

used in future inferences to, for example, determine the Seating-Position of a Person­

Present event and to infer when participants are in the same Meeting-Room.

Get Locations On Microphone Active (2)

This rule is similar to 'Get Locations On Sign In' and queries the triplestore the first

time there is a Microphone-Active event at a particular microphone. This is done to

determine the Seating-Position and Meeting-Room in which the microphone is located.

This information is used when Making-a-Verbal-Comment events are inferred to

determine who made to comment (by using knowledge about which participant is in

that Seating-Location) and to specify the Meeting-Room in which the verbal comment

was made.

iButton ID To URI (3)

The purpose of this rule is to query the triplestore when there is an iButton-Signed-In

event to resolve the ID of the iButton used to a URI that represents the specific iButton.

iButton To Person (4)

This rule fires after 'iButton ID To URI' has fired and queries the triplestore again to

determine the person that specific iButton belongs to.

122

6.3.2 RuJes That Assert New Triples

Create Person Present (5)

When there has been an iButton-Signed-In event and the relevant rules for querying the

triplestore have fired, this rule then fires and is responsible for inferring a Person­

Present event. It does this by mapping the iButton ID to the person who owns it and

creating a Person-Present event for that person. As Person-Present events are one of the

event types that the display panel application subscribes to, the rule also publishes the

new inferred event to the EQUIP dataspace.

Create Single Meeting In One Room (6)

This rule fires when there are no other meetings in progress and a total of two Person­

Present events in a single Meeting-Room. Given that there are two people in the

Meeting-Room, it infers that there is a Meeting-Taking-Place in that Meeting-Room.

Create Meetings In Two Rooms (7)

If there are no other meetings in progress and there are a total of two Person-Present

events, but in different Meeting-Rooms, then a Meeting-Taking-Place must be created

for both Meeting-Rooms. This rule is responsible for inferring this. From the scope of

the dataspace, it is implicit that both the participants are part of the same collaboration

session and although there is only one participant present at each site, they are in a

meeting with each other. Hence meetings are created even though there is only one

participant at each Meeting-Room.

Add Person To Meeting (8)

This rule fires when there is a Meeting-Taking-Place at a specific Meeting-Room and

there is a Person-Present event at that room that is not currently part of the meeting.

This can either be due to the meeting being created after the Person-Present event (e.g.

when Create Single Meeting In One Room fires) or when a person joins a meeting that

is already in progress. This rule adds the Person-Present event to the Meeting-Taking­

Place as a sub-event and also adds the person as a meeting-attendee.

Create Distributed Gathering (9)

This rule fires once there are two instances of Meeting-Taking-Place events. It infers

that a Distributed-Gathering should be created now there are two meetings in session

123

and that both those meetings should be added to the Distributed-Gathering as local

events. Note that there can only ever be one Meeting-Taking-Place at a given Meeting­

Room and that from the scope of the dataspace, it is implicit that both the meetings are

part of the same collaboration session, hence the inference of a Distributed-Gathering is

a valid one.

Create Additional Meeting (10)

Once at least one meeting is in progress, this rule fires to create a further new Meeting­

Taking-Place whenever the first participant signs in at a new site. In a similar way to

'Create Meetings In Two Rooms', this rule infers a meeting at the new site even though

there is only a single participant at that site, since this rule only ever fires after there is

at least one other Meeting-Taking-Place. Note that this rule will only ever fire after an

initial meeting or meetings have been created by either 'Create Single Meeting In One

Room' or 'Create Meetings In Two Rooms'.

Add Meeting To Distributed Gathering (11)

When there is a Distributed-Gathering in session and a new Meeting-Taking-Place is

created, this rule fires and adds the Meeting-Taking-Place to the Distributed-Gatheling

by asserting that it is a local event of the Distributed-Gathering.

Handle Sign Out (12)

When somebody signs out of a meeting using their iButton, this rule is responsible for

asserting an end time on the Person-Present event that represented the person being

present at the meeting. This shows that the person is no longer present at the meeting.

As the display panel application subscribes to Person-Present events, this rule also

publishes the end time to the dataspace.

End Meeting During Distributed Gathering (13)

This rule fires when there is a Distributed-Gathering in session and all the people have

signed out of a meeting at a particular site. Since there are no more participants at that

particular meeting, this rule asserts an end time on that Meeting-Taking-Place to

indicate that it has now finished.

124

End Distributed Gathering (14)

This rule fires when all but one of the meetings in a Distributed-Gathering have ended.

Since there is only one meeting still in session, the Distributed-Gathering must have

ended, so this rule asserts an end time on the Distributed-Gathering to indicate this.

End Meeting After Distributed Gathering (15)

Since one meeting will still be in session (i.e. the last site with people still signed in)

after a Distributed-Gathering has ended, this rule is responsible for ending this last

meeting by asserting an end time on the Meeting-Taking-Place once enough people

have signed out. Unlike 'End Meeting During Distributed Gathering', which ended the

meeting once it had zero participants, this rule ends a meeting once it has one

participant left. This is because as there are no other meetings in session (and hence

participants) to collaborate with, so the final meeting must be over once it is down to its

last participant.

End Meeting Before Distributed Gathering (16)

This rule handles the unusual case where a collaboration session has just a single

meeting (i.e. at just one site) and a Distributed-Gathering has not yet formed (and may

never form if other sites do not join) and then enough participants sign out of this

meeting for it to end. Like 'End Meeting After Distributed Gathering', this rule will

end this single meeting once it has just one participant left and it does this by asserting

an end time on the Meeting-Taking-Place. Note that the only reason this rule is separate

to 'End Meeting After Distributed Gathering' is that it is not possible in a single rule to

specify the logic required (at least not without creating a specific builtin) to match on

the distinct cases of either there being no Distributed-Gathering whatsoever, or there

being a Distributed-Gathering, but that has now ended. This is why two rules were

required to perform such similar tasks.

Create Verbal Comment In Meeting (17)

This rule is responsible for inferring a Making-a-Verbal-Comment event from

Microphone-Active and Person-Present events. It does this by matching on the Person­

Present event that is-located-in the same Seating-Position that the Microphone-Position

is-located-in. It then matches on the has-main-agent property of the Person-Present

event to determine who made the verbal comment. When this rule asserts a new

Making-a-Verbal-Comment event, it also adds the event as a sub-event of the meeting
125

the participant is in. As the display panel application subscribes to Making-a-Verbal­

Comment events, this rule also publishes the new inferred event to the dataspace.

Create Verbal Comment Outside Meeting (18)

This rule is identical to 'Create Verbal Comment In Meeting', except that it only fires

when a verbal comment is made when there is a Person-Present, but no Meeting­

Taking-Place, and hence a Making-a-Verbal-Comment event is inferred, but is not

specified as a sub-event of any meeting. There are only two scenarios where there can

be a Person-Present event and no meeting. These are when the person is the very first to

sign into a session or is the very last to sign out of a session. In both these scenarios,

there will only be one participant present in the entire collaboration session, so it could

be argued that there is no need to infer verbal comments in this situation as there is

nobody else for the participant to speak to. While this is certainly true, the author feels

that recording verbal comments in this situation is still potentially useful. For example,

if the audio and video from a session were also being recorded, then a lone participant

may wish to make a comment purely for the recording to perhaps serve as an

introduction or a wrap up. In this situation having these comments annotated would

clearly be useful.

Handle Microphone Active End (19)

The purpose of this rule is to assert an end time on a Making-a-Verbal-Comment event

once the underlying Microphone-Active event from which it was inferred has ended.

This shows that the verbal comment has finished being made. As the display panel

application subscribes to Making-a-Verbal-Comment events, this rule also publishes

the end time to the dataspace.

6.3.3 Rule To Archive The Session

Archive Session (20)

The purpose of this rule is to archive a collaboration session to the external triplestore

once the session has ended. This rule determines a session is over once the very last

participant signs out of the session. When this rule fires it calls a builtin which uploads

the entire contents of the reasoner's knowledgebase to the triplestore and also clears the

knowledgebase of triples, so it is ready for the next session.

126

6.4 Jena Builtins

The majOlity of the functionality of the Inference Engine was achieved through rules

that had triple patterns in the rule bodies and asserted new triples in the rule heads.

Unfortunately, not all the functionality described in the section 6.3 could be achieved

purely by matching triple patterns in rule bodies and asserting new triples based on

these patterns in rule heads. Fortunately Jena allows Java code to be called directly

from within rules using builtins (see section 5.7.3 for more details). A number of

builtins were created by the author to achieve specialist functions, and these were used

along with a number of standard builtins that already came with the Jena distribution.

These builtins are described here.

6.4.1 Standard J ena Builtins

This section describes how the standard predefined builtins that came as part of the

Jena distribution were used.

noValue

This builtin takes two arguments: x and p, and returns true if there is no known triple

(x, p, *) in the reasoner's knowledge base (where * represents a wildcard). It is used in

a number of ways in this proof of concept application.

Firstly, it is used as a check before querying the triplestore to ensure that it has not

already been queried for the same information, thus eliminating redundant queries.

Secondly, it is used to tell if an end time is asserted on an event. This is used to

determine if an event is still active or not.

Thirdly, it is used as a way to prevent some rules firing twice because it can check if

triples are present that have been asserted when the rule fired. This is needed because

some rules such as 'Create Meetings In Two Rooms' that match on two events of the

same type can fire on the same set of data twice, with the events in a different order.

127

notEqual

This builtin takes two resources as an argument and returns true when those resources

are not equal. This is used in the rules that match on two different events of the same

type to ensure that the rule does not just match on a single event twice.

print

The print builtin simply prints out text to the standard output. This text can either be the

URI of a resource, a literal or any other string defined by the user. This proved to be

extremely useful for debugging. The final set of the rules uses this builtin in each rule

to show when each rule has fired by displaying an appropriate message.

6.4.2 New Builtins

This section describes the new builtins created by the author and how they were used.

The discussion is partitioned into two sub-sections that handle respectively the builtins

that performed logic tests and those builtins that performed other kinds of actions.

6.4.2.1 Logic Tests

noValue3

This builtin was identical to the Jena predefined no Value builtin, except that it took

three, rather than two arguments. This meant that it could match on all three values of a

triple, rather than just the subject and predicate. This was used to determine if a

Distributed-Gathering had already formed, by checking if there were any resources of

type Distributed-Gathering. Note that at the time of writing, the current version of Jena

(version 2.1) now supports this with the standard noValue builtin.

noMeetingAtPhysLoc

This builtin takes the URI of a room location and returns true only if there is not

currently a meeting in session at that location. What is meant by there being no meeting

in session is that, within scope of current collaboration session, there has never been a

meeting or there has been one but it has now ended. This is, for example, used in the

rules that infer new meetings to check that there is not already a meeting in the room

where they are about to infer a new meeting.

128

eventN otInMeeting

This builtin takes the URI of any event that can be a sub-event of a meeting and retums

true only if that event is not cunently a sub-event of any meeting (i.e. is not part of a

meeting). This builtin is used in all rules that make inferences from Person-Present

events (such as those that infer new meetings) and it ensures that rules only fire on

Person-Present events that are not already sub-events of a meeting, since we would not

wish to infer a new meeting from Person-Present events that are already sub-events of

existing meetings.

eventNotInDistGath

This builtin takes the URI of any event that can be a local-event of a Distlibuted­

Gathering and retums true if that event is not currently a local-event of any Distributed­

Gathering. This builtin is used in 'Add Meeting To Distributed Gathering' to determine

when a meeting is not cunently part of a Distributed-Gathering.

participantsPresent

This builtin is used to determine if the number of participants present at a specific

meeting is above or below some specified threshold. It takes three arguments, the first

it the URI of the Meeting-Taking-Place to be tested, the second is the test to be

performed, which is either "<=" (less than or equal to) or ">" (greater than), and the

third is a number, which specifies the participant threshold. For example, the following

call will return true only when the number of participants present in the meeting

specified by ?meeting is less than or equal to one:

participantsPresent(?meeting. "<=". "1"'

This builtin is used in the rules for ending meetings to determine when the number of

participants in the meeting has reached the threshold for ending the meeting.

onlyOneMeetingInSession

This builtin takes no arguments and returns true only when there is currently one

meeting in progress. This is used in the 'End Distributed Gatheling' rule as part of the

logic for determining when a Distributed-Gathering should be ended.

129

eventHasMostRecentEndTime

This builtin is used to detennine if a particular event that has ended has the most recent

end time out of a specified set of events. It takes a vmiable number of arguments. The

first argument is the URI of a Time-Point to be tested, the second argument specifies

the event type, which can be used to specify a Person-Present event or a Meeting­

Taking-Place event. The third argument is only used when the event type is Person­

Present and specifies a room location, which limits set of events to be tested. In this

case, the builtin will only return true when there are no Person-Present events at that

room with a more recent end time. When the event type is Meeting-Taking-Place, the

builtin returns true when there are no Meeting-Taking-Place events in the reasoner's

knowledgebase that have a more recent end time than the time being tested

(irrespective of location).

When invoked for a Person-Present event, this builtin is used in all the rules that end

meetings. Once the number of participants has reached the required threshold for the

meeting to end (as tested by the participantsPresent builtin), then the

eventHasMostRecentEndTime builtin is used to ensure that the rule matches on the

most recent Participant-Present event to have ended, as it is the end time of this event

that is taken as the end time for the meeting.

When invoked for a Meeting-Taking-Place event, this builtin is used in the rule 'End

Distributed Gathering', and it ensures that the rule matches on the most recent meeting

to have ended, as it is this end time that is taken as the end time for the Distributed­

Gathering.

6.4.2.2 Actions

query Triples tore

This builtin allows the external triplestore to be queried from within rules. It takes three

arguments which specify a triple pattern. In the triple pattern, one or two of the

arguments will be variables and the rest are resources or literals. The variables are

treated like wildcards and it queries the triplestore for all triples that match the triple

pattern. The triples returned by the query are added directly to the reasoner's

know ledge base.

130

makeResource

The makeResource builtin takes a single variable as an argument, to which it binds an

automatically generated unique URI. This is used whenever a new event is inferred,

with the automatically generated URI used to represent the new resource.

publishToDataspace

The publishToDataspace builtin is used to publish infelTed triples to the EQUIP

dataspace as tuples or tuple events. It is a rather complex builtin that takes a variable

number of arguments and is stateful between calls. It is called multiple times in a rule

head to build up a tuple or tuple event before publishing it to the dataspace. Although it

takes a variable number of arguments, the first argument is always a literal string,

which specifies the type of operation to be performed.

The first call is always used to specify whether a tuple or tuple event is required. This

operation type is specified by the string "TUPLE_TYPE" and the valid types are

"TUPLE" (for the beginning of a meeting event) or "TUPLE_EVENT" (for the end of a

meeting event). For example the following call specifies a tuple:

publishToDataspace ("TUPLE_TYPE", "TUPLE")

The second call is used to specify the RDF type of the event that the tuple or tuple

event represents (this is done to enable consumers to subscribe to the tuples or tuple

events). For example, the following call specifies that the tuple contains a Person­

Present event:

publishToDataspace("EVENT_TYPE", live: Person-Present)

The next calls are then used to add the triples that represent the meeting event to the

tuple or tuple event. For example, the following two calls specify that the resource

bound to ?pp_even t has an RDF type of Person-Present and a location of the

resource bound to ? loca tion.

publishToDataspace("ADD_TRIPLE", ?pp_event, rdf:type, live:Person­

Present)

131

publishToDataspace("ADD_TRIPLE", ?pp_event, portal:has-location,

?location)

Finally, once the tuple or tuple event has been created through successive calls to the

builtin, it is published with the following call:

publishToDataspace("PUBLISH")

Additionally, if the builtin has just been used to publish the end of a meeting event, the

associated tuple that specifies the beginning of the event needs to be deleted. This is

achieved by calling publishToDataspace with "DELETE" as the first argument and the

URI of the event as the second argument. For example the following call will delete the

tuple that that represented the beginning of the Person-Present event that is bound to

?pp_event.

publishToDataspace("DELETE", ?pp_event)

getMostRecentTimePoint

This builtin takes three arguments. The first two are URIs of instances of support:Time­

Point and the third is a variable to which the most recent of the two time points is

bound. This buitltin is used in rules such as 'Create Distributed Gathering', where two

events are used to infer an instance of a new single event (e.g. the presence of two

meetings is used to infer that a single Distributed-Gathering is happening). In such a

case then the new inferred event (e.g. Distributed-Gathering) needs to be given a time

point which specifies when the event begun, and this time point should be the time

point from the most recently created event from which it was inferred. E.g. a

Distributed-Gathering starts as soon as the second meeting (i.e. most recent) is created,

so should therefore take the beginning time point from that meeting, and not the earlier

first meeting.

archiveSession

This builtin takes no arguments and when called uploads the entire contents of the

reasoner's knowledgebase to the triplestore and also clears the knowledgebase of

triples, so that it is ready for the next session. When uploading the triples, it checks

each triple to see if the triplestore already contains that triple, since some of the triples

132

in the knowledgebase will have originally come from the triplestore. This ensures that

duplicate triples are not added to the triplestore.

6.5 Bootstrapping Knowledge

In addition to the inference rules, the system also required some explicit

'bootstrapping' knowledge to seed the inference process. This described the specific set

of instances (e.g. people, meeting rooms etc.) that the system had knowledge of. All

this knowledge was hand authored, apart from the human readable names for

participants, which were automatically extracted from the CS AKTiveSpace triplestore.

This bootstrapping knowledge was held in the triplestore component of the system and

consisted of the following types of information:

• Information to map an iButton ID on to a specific person. For example, tliples

that specify the iButton that belongs to Benjamin Juby are shown below in

Notation-3.

ecsinfo:person-03435 live:has-personal-identifier myibuttons:bpjOOr .

myibuttons:bpjOOr rdf:type live:iButton .

myibuttons:bpjOOr live:has-ibutton-id "02000009EA6FD301 " .

• Human readable names for participants, which were used in the display panel

application. For example:

ecsinfo:person-03435 portal:full-name "Benjamin Juby" .

• Information about each Meeting-Room, specifying that the resource is of RDF

type Meeting-Room and a human readable collaboration site name for use by

the display panel application. For example, the following triples represent this

information about the Southampton University, Electronics and Computer

Science Access Grid room:

mylocs:sotonuni-B59-3241 rdf:type location:Meeting-Room .

mylocs:sotonuni-B59-3241 live:has-collaboration-site-name "Southampton ECS" .

133

• Information about each Seating-Position in each Meeting-Room, specifying its

RDF type and which Meeting-Room it is located in. For example:

mylocs:sotonuni-B59-3241-seat1 rdf:type live:Seating-Position .

mylocs:sotonuni-B59-3241-seat1 location:is-Iocated-in mylocs:sotonuni-B59-3241 .

• Information about each iButton-Reader-Position, specifying its RDF type and

which Seating-Position it is located in. For example:

mylocs:sotonuni-B59-3241-seat1-reader1 rdf:type live:iButton-Reader-Position .

mylocs:sotonuni-B59-3241-seat1-reader1 location:is-Iocated-in mylocs:sotonuni-B59-3241-seat1 .

• Information about each Microphone-Position, specifying its RDF type and

which Seating-Position it is located in. For example:

mylocs:sotonuni-B59-3241-seat1-mic1 rdf:type live:Microphone-Position .

mylocs:sotonuni-B59-3241-seat1-mic1 location:is-Iocated-in mylocs:sotonuni-B59-3241-seat1 .

6.6 Walkthrough of an Example Meeting

To demonstrate the inference process in action, this section gives a step-by-step

walkthrough of a simple example fictional collaboration session. The example features

three sites called A, Band C. Table 6.1 shows the events that occur in the session and

the rules that fire as a consequence of those events. Table 6.2 then gives some actual

examples of the triples that are generated at certain points in the meeting. A full

description of the processes taking place is given in section 6.6.1 after the tables. In

order to be understood, the tables first require some explanation.

Time is represented vertically on table 6.1, with time progressing down the page. Each

basic (i.e. non-inferred) meeting room event is represented by an individual row in

table 6.1. Note that the time interval between rows need not be equal. The room

location of each event is indicated by which column it is in. The rightmost column then

shows which inference rules fire, and in what order, as a result of the event. The

following events are represented in the table 6.1:

• join - This represents the beginning of a Ioined-To-Session event.

• leave - This represents the end of a Ioined-To-Session event.
134

• in - This represents the beginning of an iButton-Signed-In event (i.e. the act of

signing in). The number after the event shows the number of the seating

position at which the sign-in occurred.

• out - This represents the end of an iButton-Signed-In event (i.e. the act of

signing out). The number after the event shows the number of the seating

position at which the sign-out occUlTed.

• on - This represents the beginning of a Microphone-Active event. The number

after the event shows the number of the seating position at which the

microphone is located.

• off - This represents the end of a Microphone-Active event. The number after

the event shows the number of the seating position at which the microphone is

located.

Any event or rule firing shown in table 6.1 written in bold, with a following number

in superscript, has a corresponding numbered section in table 6.2. Each of these

numbered sections in table 6.2 gives an example of the actual triples that are

generated as a result of that event occurring or rule firing. Please note that this

numbering has no relation to the numbering assigned to the individual rules when

they were described in section 6.3.

Time Site A Site B Site C Firing Rules
..
Jom

..
Jom

..
Jom

in 1 Get Locations On Sign In

iButton ID To URI

iButton To Person

Create Person Present

in 21 Get Locations On Sign In2

iButton ID To URJ3

iButton To Person4

Create Person PresentS

Create Single Meeting In One Room6

Add Person To Meeting7

135

Add Person To Meeting

in 1 Get Locations On Sign In

iButton ID To URI

iButton To Person

Create Person Present

Create Additional Meeting

Add Person To Meeting

Create Distributed GatheringS

in 2 Get Locations On Sign In

iButton ID To URI

iButton To Person

Create Person Present

Add Person To Meeting

in 1 Get Locations On Sign In

iButton ID To URI

iButton To Person

Create Person Present

Create Additional Meeting

Add Person To Meeting

Add Meeting To Distributed Gatheling

on 2 Get Locations On Microphone Active

Create Verbal Comment In Meeting

off 2 Handle Microphone Active End

on 2 Create Verbal Comment In Meeting

off 2 Handle Microphone Acti ve End

out 1 Handle Sign Out

out 1 Handle Sign Out

out 1 Handle Sign Out

End Meeting During Distributed Gathering

out 2 Handle Sign Out

End Meeting During Distributed Gathering

End Distributed Gathering

End Meeting After Distributed Gathering

out 29 Handle Sign oueo

136

Archive Session

leave

leave

leave

Table 6.1, A timeline of an example collaboration session showing rule firings.

1. Triples added by the 'in2' event

myns:signinevent1 rdf:type live:iButton-Signed-ln .

myns:signinevent1 support:has-time-interval myns:timeinterval1 .

myns:signinevent1 portal:has-Iocation mylocs:sotonuni-B59-3241-seat1-reader1 .

mylocs:sotonuni-B59-3241-seat1-reader1 rdf:type live:iButton-Reader-Position .

myns:signinevent1 live:id-of-ibutton-used "02000009EA6FD301" .

myns:timeinterval1 rdf:type support:Time-lnterval .

myns:timeinterval1 support:begins-at-time-point myns:timepoint1

myns:timepoint1 support:year-of "2004" .

myns:timepoint1 support:month-of "10" .

myns:timepoint1 support:day-of "26" .

myns:timepoint1 support:hour-of "21" .

myns:timepoint1 support:minute-of "6" .

myns:timepoint1 support:second-of "26" .

myns:timepoint1 meeting:millisecond-of "209" .

2. Triples added by the 'Get Locations On Sign In' rule firing

mylocs:sotonuni-B59-3241-seat1-reader1 location:is-Iocated-in mylocs:sotonuni-B59-3241-seat1 .

mylocs:sotonuni-B59-3241-seat1 location:is-Iocated-in mylocs:sotonuni-B59-3241 .

3. Triples added by the 'iButton ID To URI' rule firing

myibuttons:bpjOOr live:has-ibutton-id "02000009EA6FD301" .

4. Triples added by the 'iButton To Person' rule firing

ecsinfo:person-03435 live:has-personal-identifier myibuttons:bpjOOr .

5. Triples added by the 'Create Person Present' rule firing

mynamespace:ppevent1 rdf:type Iive:Person-Present .

mynamespace:ppevent1 portal:has-Iocation mylocations:sotonuni-B59-3241-seat1-reader1 .

mynamespace:ppevent1 support:has-time-interval mynamespace:timeinterval2 .

mynamespace:timeinterval2 rdf:type support:Time-lnterval .

mynamespace:timeinterval2 support:begins-at-time-point mynamespace:timepoint1 .

mynamespace:ppevent1 portal:has-main-agent ecsinfo:person-03435 .

6. Triples added by the 'Create Single Meeting In One Room' rule firing

mynamespace:meeting1 rdf:type portal:Meeting-Taking-Place .

mynamespace:meeting1 support:has-time-interval mynamespace:timeinterval3 .

137

mynamespace:timeinterval3 rdf:type support:Time-lnterval .

mynamespace:timeinterval3 support:begins-at-time-point mynamespace:timepoint1 .

mynamespace:meeting1 portal:has-Iocation mylocations:sotonuni-B59-3241 .

7. Triples added by the 'Add Person To Meeting' rule firing

mynamespace:meeting1 portal:has-sub-event mynamespace:ppevent1 .

mynamespace:meeting1 portal:meeting-attendee ecsinfo:person-03435 .

8. Triples added by the 'Create Distributed Gathering' rule firing

mynamespace:distgath1 rdf:type meeting:Distributed-Gathering .

mynamespace:distgath1 support:has-time-interval mynamespace:timeinterval4 .

mynamespace:timeinterval4 rdf:type support:Time-lnterval .

mynamespace:timeinterval4 support:begins-at-time-point mynamespace:timepoint2 .

mynamespace:distgath1 meeting:has-Iocal-event mynamespace:meeting1 .

mynamespace:distgath1 meeting:has-Iocal-event mynamespace:meeting1 .

9. Triples added by the 'out 2' event

mynamespace:signinevent1 support:ends-at-time-point mynamespace:timepoint3 .

mynamespace:timepoint3 support:year-of "2004" .

mynamespace:timepoint3 support:month-of "10" .

mynamespace:timepoint3 support:day-of "26" .

mynamespace:timepoint3 support:hour-of "21" .

mynamespace:timepoint3 support:minute-of "47" .

mynamespace:timepoint3 support:second-of "32" .

mynamespace:timepoint3 meeting:millisecond-of "77" .

10. Triples added by the 'Handle Sign Out' rule firing

mynamespace:timeinterval2 support:ends-at-time-point mynamespace:timepoint3

Table 6.2, Examples of triples generated at specific points in the meeting.

6.6.1 Full Description of the Processes Taking Place

The session starts by each site asselting a Joined-To-Session begin event. This does not

trigger any rules, but does enable the display panel application to show that sites are

joined to the collaboration session, even if there are no participants present yet.

The first sign-in is at site A, and this triggers 'Get Locations On Sign In' which queries

the triplestore for the Seating-Position and Meeting-Room that the iButton-Reader­

Position is located in. This information is used in future inferences. 'iButton ID To

URI' also fires and this quelies the triplestore, to resolve the iButton ID to the iButton

it belongs to. The presence of this new iButton in the know ledgebase then triggers

'iButton To Person' which queries the triplestore for the person who owns that iButton.

After this query, the presence of this new person then triggers 'Create Person Present',

138

which asserts a Person-Present event. This pattern of rule firings occurs whenever a

person slgns-lD.

The second sign-in is at site A also, and after the standard sign-in rule firings, 'Create

Single Meeting In One Room' then fires as a result of there being two Person-Present

events in the same Meeting-Room (the location information asselted by 'Get Locations

On Sign In' contributed to this inference). This rule asserts a Meeting-Taking-Place at

site A. As both Person-Present events at site A are not yet sub-events of the Meeting­

Taking-Place, 'Add Person To Meeting' fires twice to add both Person-Present events

to the meeting.

The next sign-in is at site B, and after the standard sign-in rule firings, 'Create

Additional Meeting' fires to create a new meeting at site B and then 'Add Person To

Meeting' fires to add the person at site B to the newly created meeting. As there are

now two meetings, 'Create Distributed Gathering' fires to create a Distributed­

Gathering containing those meetings.

The next sign-in is at site B also, and after the standard sign-in rule firings, 'Add

Person To Meeting' fires to add the new person to the meeting already taking place at

site B.

The next sign in is at site C, and after the standard sign-in rule filings, 'Create

Additional Meeting' fires to create a new meeting at site C, then 'Add Person To

Meeting' adds that person to the new meeting. 'Add Meeting To Distributed Gathering'

then fires to add the newly created meeting to the Distributed-Gathering that is already

taking place between site A and site B.

There is then a Microphone-Active begin event at seating position #2 at site A. As this

is the first Microphone-Active event at that particular microphone, 'Get Locations On

Microphone Active' fires which queries the triplestore for the Seating-Position and

Meeting-Room that the Microphone-Position is located in. 'Create Verbal Comment In

Meeting' then fires, which infers from the location information asserted by 'Get

Locations On Microphone Active' and 'Get Locations On Sign In' that the person

sitting at seating position #2 has started Making-a-Verbal-Comment.

139

The Microphone-Active event then ends, causing 'Handle Microphone Active End' to

fire. The sole purpose of this rule is to publish the end time on the Making-a-Verbal­

Comment to the dataspace for the benefit of consumers.

There is then another Microphone-Active begin event at seating position #2, and as this

event has occurred at that position before, 'Get Locations On Microphone Active' does

not fire, as the triplestore has already been queried for the Seating-Position that the

Microphone-Position is located in.

The first sign-out event is at site A, and this simply causes 'Handle Sign Out' , which

asserts an end time on the associated Person-Present event. The same happens for the

next sign out at site B.

There is then another sign-out at site C, which causes 'Handle Sign Out' to fire. As

there are no longer any participants in the meeting at site C, 'End Meeting During

Distributed Gathering' fires to end this meeting.

The next sign-out is at site B, which causes 'Handle Sign Out' to fire. As there are no

longer any participants in the meeting at site B, 'End Meeting During Distributed

Gathering' fires to end this meeting. Furthermore as there is now only a single meeting

at site A, 'End Distributed Gathering' fires to end the Distributed-Gathering. Since

there is no longer a Distributed-Gathering in session, the criteria for ending a meeting

now is that it should be ended once there is only one participant left (compared to zero

participants left when there is a distributed gathering). As the meeting at site A has only

one participant left, 'End Meeting After Distributed Gathering' fires to end this final

meeting.

The final sign-out is at site A, which causes 'Handle Sign Out' to fire. Since there are

now no participants in the session, 'Archive Session' fires.

6.7 Summary

This chapter has provided a detailed descliption of the rules used by the inference

engine in the proof of concept implementation of the framework from chapter 4. The

most common rule type were those that inferred new triples from those already

asserted, but rules were also required to query and upload to the triplestore. The
140

implemented Jena builtins were also discussed, as these were required to catTy out

functions that pure rules were not capable of. These functions fell into the categories of

either logic tests or actions such as querying the triplestore or publishing to the

dataspace.

There now remains two more chapters; the next chapter provides a discussion based

evaluation of the framework and implementation and the final chapter presents the

overall conclusions for the thesis.

141

7 Evaluation

This chapter presents a discussion-based qualitative analysis of the system framework

and implementation. It starts with a discussion on the performance and then presents an

evaluation of the system. The performance discussion helps justify the building of the

prototype system as it uncovers some real-time performance features that could not be

accurately predicted without implementing a real system. The evaluation then focuses

on the semantic features, as this is where the majority of the novel work has been. The

criteria used to evaluate the systems in the literature review, will also be applied here.

The tools and technologies used to perform the implementation are also evaluated.

It was decided not to perform a user-based evaluation of the system, as this would have

mainly evaluated the functionality that was passed on to session participants. While

such an evaluation would be useful for evaluating the human factors, the key

contributions of the implementation were infrastructure based. The system

demonstrated a general purpose architecture that was capable of using inference in real­

rime to combine facts obtained from multiple sources of knowledge as would be found

in the Semantic Web. This key contribution would not have been evaluated by a user

tlial.

7.1 Performance

The speed performance of the implemented system was examined on a qualitative

level. Initially the system was found to be extremely slow. Specifically, responses to

queries to the triplestore (i.e. the Jena persistent model) were found to take in the order

of a minute. Clearly this would not have been practical for a system intended to

respond in near real-time. The reason for the slow response time was found to be due to

the ontology level entailments being computed by the persistent model on-the-fly at

query time.

These entailments were the transitive closure of rdf:type and also the properties

declared as owl:TransitiveProperty. The transitive closure of rdf:type meant that for

each query for the type of a class, the Jena model would not only return the type

142

explicitly declared in the ontology, but would also work out all the other superclasses

the class was implicitly an instance of.

The transitive property declaration on the location:is-located-in property meant that

every time the persistent model was queried to find out which instance of

10cation:Abstract-Space another instance of Abstract-Space was located in, it would

also compute and return all the other instances of Abstract-Space higher up the location

hierarchy too.

Both these types of entailments could potentially be useful, although in the

implemented system, only the owl:TransitiveProperty entailments were harnessed, as

these reduced the amount of location information that had to be explicitly added to the

triplestore and also resulted in fewer queries to the triplestore. The rdf:type entailments

could have been used to allow more generic rules to have been written that would

match on instances of classes of several different types (providing they shared a

common superclass), for example allowing rules to fire on any instance of

10cation:Room, rather than the more specific 10cation:Meeting-Room.

In order to speed up the query response time, the system persistent model was modified

to not work out any entailments at query time, but instead to pre-compute the transitive

property entailments when the triplestore was initialised. This was achieved by making

a query for all triples that had an location:is-located-in property. This query returned all

the entailed triples as well as the explicitly specified ones. These returned triples were

then placed back into the triplestore.

After this single modification, the performance of the system improved dramatically. In

terms of human perception, queries to the triplestore were performed near

instantaneously and the display panel application pelformed without any perceivable

lag, meaning that the rule-based inferences were being performed in near real-time, as

was Oliginally intended.

7.2 Semantic Aspects

The system shall be evaluated against the criteria taken directly from the motivational

discussion in chapter 3. These criteria are inference, interoperability, reuse,

143

extensibility and indexing, since these are arguably the key value-added features the

semantic approach provides over non-semantic approaches.

7.2.1 Inference

Clearly inference was a central feature of the system. It was demonstrated on two

different levels, namely generic rules based inference and language based entailments.

The approach was able to combine knowledge from multiple sources and then assert

facts that were otherwise only implicit from the input provided by the producers and

the triplestore. Some of these asselted facts were then in tum be combined using

inference again to assert fmther facts. This meant that the information generated by the

consumers or held in the triplestore could be very basic and therefore simple to create.

Yet despite this information being basic, meaningful and relatively complex

functionality was built up through using inference.

For example, apart from the tuple space discovery address, the only configuration

iButton readers required was a single URI. From this single URI and the ID of an

iButton pushed into the reader, rules based inference was able to take these facts and

combine them with another fact from the external triplestore that stated who owned that

iButton. Each of these facts in isolation were very simple to generate, but had only very

limited meaning. However, the inference process was able to use these simple facts to

make the meaningful assertion that there was a specific, identified person located at

that iButton reader.

From this inference, further meaningful inferences could be made. For example, it then

allowed inferences to be made about when that person was speaking. As described in

section 5.3.1, facts about the microphone being active, the seating position the

microphone was located in, the seating position the iButton reader was located in were

combined with the already infelTed fact about the specific person being located at that

iButton reader. These first three facts had only very limited meaning on their own, and

yet though inference, these basic facts could be combined with another infelTed fact to

make a meaningful assertion about a specific person speaking.

Similarly, the inferred facts about participants being present were combined with facts

about their seating positions and the relationship of those seating positions to a specific

meeting room. This was used to determine when the number of participants was above

144

a certain threshold and therefore make the inference about there being a meeting taking

place between those people in that meeting room. Furthermore, transitive property

entailments from the OWL language meant that the indirect relationship about the

iButton readers being located in a meeting room (i.e. only specified in the

bootstrapping knowledge through their relationship to seating positions) appeared as an

explicit relationship when querying the triplestore. This resulted in fewer queries to the

triplestore, as instead of querying for the iButton reader's seating position and then

querying for the room which that seating position was located in, a single direct query

could instead be made for the iButton reader's meeting room. This also simplified the

inference rules, since instead of having to specify extra body terms to match on an

indirect relationship, they could instead match on the direct relationship between an

iButton reader and its meeting room.

Therefore it is possible to see that through using inference, meaningful functionality

has been built up from very simple facts that are straightforward for devices to generate

or to specify in an external triplestore. Even though each of the basic facts had very

limited meaning when examined in isolation, combining them with inference meant

that meaningful facts were obtained.

Looking specifically at the bootstrapping knowledge in the triplestore, using inference

had clear advantages. It removed the need to explicitly specify all the relationships

between all resource instances. This enabled the bootstrapping knowledge to potentially

be more general purpose, as it did not need to assert all the specific relationships that

were used by the implemented system. For example the triplestore only needed to

specify the location of each meeting room device relative to a seating location, but the

system was still able to use this information to make inferences about devices being

located next to each other or in the same meeting room. Furthermore, when moving a

device to a different location, updating the triplestore knowledge to reflect this would

be very simple as only a single relationship would have to be altered.

As the Semantic Web becomes more distributed, its possible to envisage moving

beyond a single tliplestore to provide bootstrapping knowledge. With multiple

distributed sources of bootstrapping knowledge, it would likely be the case that

publishers of this information may not know all the explicit relationships between

system resources, thus the ability to infer these relationships is an attractive feature.
145

Furthermore, though enabling fewer relationships to be specified in fewer components,

it could potentially reduce the chances of contradictory relationships being accidentally

specified. Inference therefore also has the potential to simplify maintaining consistency

between multiple knowledge sources.

7.2.2 Interoperability and Reuse

The system provided excellent interoperability due to common ontologies being shared

by the different components. Interoperability with an independent external component

was demonstrated by the system using knowledge about the names of participants held

in the CS AKTive Space triplestore. This knowledge was automatically obtained from

this triplestore and was added to the other bootstrapping knowledge used by the system.

The knowledge pulled out of this triplestore did not need any modification and

integrated seamlessly with the other bootstrapping knowledge despite the fact that the

CS AKTive Space triplestore was developed independently.

Interoperability between the diverse components within the system was also

demonstrated. The system consisted of varied producers, consumers, an inference

engine and a triplestore. Through the use of RDF and a shared ontology, the

information that originated from each component was completely interoperable with

the other components in its native form. For example, the inference engine needed to

draw no distinction between facts asserted by producers and facts obtained from the

triplestore, despite these components having very different roles in the system.

The use of formally defined ontologies would also aid other external systems in

interoperating with the proof of concept system, giving a clear specification of the

vocabulary that the external system would have to use if it, say, wanted to reuse the

information held in the triplestore. In fact because the proof of concept system reused

the ontology from the CoAKTinG project, it meant that the CoAKTinG meeting replay

tool would be able to use the annotations generated by the system.

Furthermore, had it been required to integrate the system with a component that used a

different external ontology, this could have been achieved quite simply and rather

elegantly by creating a new mapping ontology to map terms in the external ontology to

terms in the existing ontologies.

146

The system demonstrated reuse on two different levels, namely ontology level reuse

and instance level reuse. At the ontology level, it came from reusing the AKT,

CoAKTinG and Signage location ontologies, which not only significantly reduced the

amount effort to create an ontology for the implementation, but also potentially allowed

straightforward interoperability with existing tools.

At the instance level, it came from reusing the name information held in the CS

AKTive Space triplestore, which reduced the amount of effort required when

specifying knowledge required by the system. Admittedly the instance level reuse was

on a fairly small scale as it was just restricted to people's names. However, a more

complex application could potentially reuse more information about people, or other

resources such as projects.

7.2.3 Extensibility

The architecture was well suited to being extended. The main ways in which it is

possible to envisage the system being extended are through the addition of new

producers and event types, or the addition of new consumers for either displaying new

events or existing events in a different form.

By using inference to enable the bootstrapping knowledge to record only a small

number of explicit relationships between resources, it means that the addition of new

components such as producers would require only minimal changes to this knowledge,

since their relationship to the other components can be inferred, rather than having to

be explicitly stated. Similarly, the existing producers would not have to be modified, as

they do not need to have any knowledge of the other components in order to generate

their simple, isolated facts. The pub/sub model of a tuples pace also means that there is

no need for producers and consumers to be aware of the existence of each other in

order to communicate.

Furthermore, the ability of inference to enable the knowledge within the system to be

distlibuted (see section 7.2.1) also means that new sources of bootstrapping knowledge

could be easily 'bolted on' without having to explicitly integrate it with the existing

bootstrapping knowledge.

147

The standard OWL extensibility mechanism that allows anybody to import an existing

ontology and add new terms is well suited to allowing people to define new event

types. New rules may also easily be added to the rule set of the inference engine to

handle or generate new event types. An open issue, however, is who performs

extensions or modifications to the rule set. While anybody is free to add producers,

consumers or extend the ontologies, the rules reside on a centralised inference engine

and may only be modified by those people with administrative rights for the engine.

This is a limitation to truly open extensibility, as many extensions to the system would

require modification of the rules and clearly only trusted people may be allowed to

modify the rule set.

7.2.4 Indexing

As stated in chapter 5, a feature for replaying indexed video from meetings was not

implemented since this feature had already been implemented by the CoAKTinG

meeting replay tool, and is currently being actively developed by the author for the

Memetic project. The ability of the implementation presented in this thesis to be able to

automatically generate annotations (which can then be used as indices) was a vital

feature, since the existing CoAKTinG tool relied heavily on labour intensive manual

annotation.

The annotations generated in the implementation were ideal for use as indices, since

they were timestamped with both start and end times that identified the precise portions

of the meeting where the events occurred. The use of UTC timestamps also meant that

the system would work for meetings distributed across timezones.

The chosen annotation types were also well suited to providing meaningful indices to

meetings. For example, participant tracking would allow a replay start at the point

when a particular participant joined the meeting. Alternatively, if a participant had to

leave the meeting mid session, they could later easily locate that point in a meeting

recording and start the replay from there to catch up on what they missed. Similarly,

speaker identification information presented as a timeline makes it straightforward to

jump to sections where a specific participant was the primary speaker. Indeed during

initial discussions, end users on the Memetic project have stated that they would like to

use annotations about who was in a meeting and who was speaking as indices for

recorded meetings.

148

Furthermore, by using the formally defined ontology for the annotations, the index can

be used by computers as well as people. This could potentially be used to automatically

edit meetings or re-purpose material. For example, long meetings sometimes have

intentional coffee breaks etc. where the meeting stops for the participants to leave and

then later resume the meeting. A video recording component may be left running

during these breaks. Using annotations about when the meeting was in session, an

automated editing component could remove these sections of the video from the

recording.

Its possible to envisage automated re-purposing being of use in domains like television

news, where the production team may wish to locate specific sections of meetings

between politicians etc. for inclusion in broadcast news items.

7.3 Criteria from Literature Review

Section 2.2 of the literature review reviewed a number of existing systems according to

a set of criteria. Of those criteria, two have not been discussed yet in this evaluation and

it is useful for them to be applied to the proof of concept system and be discussed here.

These criteria are support for live processing and degree of automation.

7.3.1 Support for Live Processing

The system had excellent support for live processing, which meant that the value added

by the system could be taken advantage of during live collaboration sessions, as well as

after sessions. The qualitative testing has shown that the tuple space, inference engine

and triplestore each perform in near real-time, the net result of which is that the display

panel application could display useful information to session participants in near real­

time.

One area in which live processing has not been explored is for building up an index of

the session on-the-fly in a replay client. This could be used to replay earlier sections of

a collaboration session still in progress to help late joining participants or refresh group

memory after a digression, in a similar way to the Where Were We system [Min93],

which used hand authored index marks.

149

In order to achieve on-the-fly indexing, a replay client would join the tuple space and

subscribe to all the different events it requires to build up an index on-the-fly. In this

case, it would be preferable not to delete events from the tuple space once they have

ended, as this would allow a late joining replay client to obtain a full session history.

7.3.2 Degree of Automation

The system supported a high degree of automation, especially from the perspective of

session participants, leaving them free to focus on the collaboration and not have to

make any significant effort to author annotations. The only additional task that the

system required participants to do was to use a personal iButton to sign into or sign out

of the session. It is easy to envisage other biometric participant identification and

location tracking techniques such as face recognition that would no longer make it

necessary for participants to cany iButtons and explicitly sign in or out.

The system operator (e.g. the Access Grid node operator) also had to perform only very

simple tasks to initialise the system and then later teardown a session. It is possible to

envisage these functions being integrated directly into the software that handles the

videoconferencing session meaning that they could all be done automatically when the

operator starts up and tears down the videoconferencing session.

The system did require some hand initialisation of its bootstrapping knowledge, for

example to specify information about seating, microphone and iButton reader positions

and also to specify the iButton that belonged to each person. In a deployed system this

knowledge would also have to be maintained, for example being updated when new

personnel joined or when meeting room layout was changed. Some of this knowledge

could be obtained from existing sources, as was demonstrated with the participant

names taken from the CS AKTive Space triplestore, but it is unlikely that all the

bootstrapping knowledge could be obtained from existing sources. For example

information about a meeting room layout is not something normally specified in

existing information sources.

7.4 Tools and Technologies

This section discusses the tools and technologies used to implement the proof of

concept system and discusses any strengths or weaknesses exposed in the

implementation.

150

7.4.1 RDF(S) and OWL

Using RDF(S) and OWL proved to be a good choice. One of the key benefits provided

over other knowledge representation formats was integration with the Semantic Web.

This provided massive potential for reuse of ontology and instance data, and this reuse

of ontologies and instance data was demonstrated in the proof of concept system.

Only a small subset of the features of OWL were required by the system, nor did the

implementation expose any features that were missing from RDF(S) or OWL. The

extensibility mechanism of OWL was seen to work well, allowing multiple existing

ontologies to be easily imported into the live collaboration ontology by just specifying

the URIs, and also allowing classes to be extended through the RDFS inhelitance

mechanism. The use of owl:equivalentClass was also demonstrated to successfully

integrate the Signage location ontology and the AKT Portal ontology. Additionally, the

use of owl:transitiveProperty was used to reduce the amount of bootstrapping

knowledge that needed to be hand authored, and also reduce the number of triplestore

quenes.

7.4.2 Ontologies

In addition to the creation of a new ontology, the implementation saw the reuse of the

AKT Support, AKT Portal, CoAKTinG meeting and Signage location ontologies.

One area of the live collaboration ontology that warrants further discussion was the

chosen representation for the locations of iButton readers and microphones. This

representation was based on an extension of the Signage location ontology. The

Signage ontology was created in such a way that there was some degree of duality

between the concept of location and the physical object that defined that location. For

example a building can either be thought of as physical object consisting of bricks and

mortar, or as some form or enclosed space. While this duality is intuitive for things

such as buildings or rooms, it is not intuitive for things such as iButton readers and

microphones. This means that the classes iButton-Reader-Position and Microphone­

Position, proved to be counter intuitive representations.

It would have been more intuitive to use classes that represented the physical devices,

rather than their positions. A more sensible representation may have been to define a

class called Device and subclass it into the classes iButton-Reader and Microphone.
151

These would then represent the actual physical devices, rather than their location. This

representation could then be tied into the existing Signage ontology by giving the

Device class an is-located-in property with a range of Abstract-Space. Furthermore the

Event class could be extended with a new property such as device-of-Oligin, to record

the device that generated the event.

One particular feature from that AKT support ontology that was not ideal was its

representation of time. It was a highly verbose format that (including the CoAKTinG

milliseconds extension) used seven instances of owl:DatatypeProperty to specify a

single point in time. The main effect of this was that it led to the inference rules

containing a fairly large number of terms when having to match against time points or

assert new ones. A better representation would have been a single numeric timestamp

to represent a point in time. It was chosen to use the AKT representation of time as it

would potentially allow easier interoperability with other AKT tools, and in particular

the CoAKTinG meeting replay tool.

7.4.3 Jena

The lena 2 framework has been shown to be a powerful framework with many useful

features. In particular, its support for rules based inference, OWL entailments and

remote queries to persistent models were central to the proof of concept system.

The benefit of the rules based approach to inference was that it allowed logic to be

simply and compactly specified that would otherwise have been very awkward to

specify using the lena API directly. Furthermore, the RETE algorithm used by the rules

engine was ideal as it was optimised for precisely the kind of incremental updates to the

knowledgebase that the proof of concept system used.

Conversely, the main drawback of the rules based approach was that there were some

functions that it was very awkward or impossible to implement using rules alone, such

as determining how many participants were present in a meeting or which time point

out of a pair was the most recent. However, lena's support for builtins in rules that

could call regular lava code meant that these could be used whenever pure rules could

not. Builtins were an especially powerful feature, that not only allowed complex logic

functions to be performed, but also allow calls to external code, which could be used to

perform tasks such as publishing EQUIP tuples or querying the triplestore. Therefore

152

the rules engine in Jena allowed a hyblid approach in which rules could be seamlessly

integrated with calls to Java code, giving the 'best of both worlds'.

The support for language based entailments was a useful feature, but its performance

was too slow for these to be computed at query time and a workaround had to be done

to pre-compute these. Cleary a useful addition to Jena's functionality would be an

inbuilt facility for pre-computing entailments. When the entailments were pre­

computed, the persistent model appeared to perform well and responded to queries in

near real-time.

7.4.4 EQUIP

Equip4j (and a tuple space model in general) proved to be a good choice for

implementing the event communications infrastructure. Its speed performance appeared

to be very good and did not introduce any appreciable delay in the system. Using tuples

meant that each event type could be directly exposed as a separate tuple field, allowing

subscriptions to be straightforward. Furthermore the pub/sub model of a tuple space

allowed the knowledge producers to be loosely coupled with the knowledge consumers,

which would allow easy addition of new producers or consumers.

The tuple persistence mechanism of EQUIP was also a useful feature, as it allowed late

joining consumers to retrieve the current meeting state. If inactive events were not

deleted, it could also be used to allow a late joining consumer to retlieve the entire

meeting history, which could be used by a replay client (as discussed in section 7.3.1).

The multicast based discovery mechanism was another handy feature and further

promoted the loose coupled and dynamic nature of the system. One drawback was that

it relied on local multicast being available, which is not a feature present on all

networks. However, if multicast wasn't available, a local unicast only dataspace could

have been used instead to perform a similar function.

Clearly as EQUIP was not originally designed for use in Semantic Web applications it

is not ontologically aware and treats the data it carries as opaque values. One potential

extension to EQUIP could be to extend its SUbSCliption mechanism to understand the

RDF class hierarchy, allowing a subscription to a single event type to also

automatically subscribe to all subclasses of that event also.

153

7.5 Other Issues

This section discusses a number of open issues that the implementation exposed. In

particular these issues were error handling and Quality of Service.

7.5.1 Error Handling

One of the drawbacks of the approach taken during the implementation was that the

final system was intolerant to celiain kinds of errors. Specifically, it was unable to

elegantly handle the cases when a query to the triplestore returned no results, or

returned information that was incorrect. Assuming that the producers and inference

rules were correctly written, the infonnation in the triplestore was the weak link. The

system had a requirement that all external knowledge it needed was held in the

tliplestore, and that this know ledge contained no errors. In a prototype system, this

requirement was not unrealistic, but in a deployment situation it may not be realistic to

expect that a triplestore would not contain any missing information or incorrect

knowledge.

Missing information was a problem, as it could cause the inference process to halt,

since the required information would not be present to infer other knowledge from.

Incorrect information was also a problem, as it led to false inferences.

In the case of incorrect information, it would be difficult for an application to

automatically determine that the information was incorrect, and even harder to

automatically correct the information. An approach that could help identify incorrect

information would be to query multiple tliplestores. If the triplestores were not

initialised from the same sources, then it may be possible to identify incorrect

knowledge by looking for contradictions between the knowledge obtained from the

different stores.

Missing information was straightforward to detect during a collaboration session, but

like incorrect information, would be difficult to automatically correct. In the

implementation, some basic functionality was created to handle some types of missing

information. For example, when a query to resolve an iButton to the person who owned

it returned no results, then a new instance of a person was automatically generated.

154

This meant that the inference process could continue, even if there was no other

information about that person, such as their name.

It would also have been possible to implement further functionality that flagged such an

occunence to the node operator or to the participant concerned. This would then allow

them to input further information about that new person instance, such as their name. If

that person already had an entry in the triplestore, then it could be manually declared as

owl:sameAs the automatically created instance.

This approach of creating a new resource when a query returned no results was not

suitable for all query types in the implementation. For example, it was not suitable for

location queries, since generating a new instance of Meeting-Room or Seating-Position,

would not have helped with inferences about people or devices being located in the

same seating positions or meeting rooms.

7.5.2 Quality of Service

The system framework assumed that the underlying network provided only best effort

Quality of Service (QoS). While this fitted in well with the cunent Internet, its was far

from ideal as it is preferable in a live session that each event has a defined time by

which it must arrive. This can't be achieved with best effort QoS, unless late data is

dropped, which is not acceptable in this framework. Initially it may appear that

incorporating an existing QoS framework such as IntServ [Bla98] or DiffServ [Bra94]

would provide a straightforward solution. However, different event types require a

different QoS and this is something that existing QoS frameworks do not provide. For

example real-time speaker identification data has fairly tight synchronisation

requirements and should not be delayed for more than, say, a few hundred

milliseconds, whereas participant sign-in data has much looser requirements where it

could be delayed by several seconds and still be of use. It is difficult to see how these

mixed requirements could be achieved using existing QoS frameworks.

7.6 Summary

This penultimate chapter has presented a qualitative discussion-based evaluation of the

semantic annotation framework and implementation. This evaluation can be

summarised as follows:

155

.. The time pelfonnance of the implementation was qualitatively evaluated as near

real-time, although the entailment features of Jena were not found to work in

real-time. A built in Jena feature for pre-computing entailments would be

useful. Overall it was shown that real-time inferencing during live collaboration

was practical.

.. The Semantic Web based approach provided excellent features for inference,

interoperability, reuse, extensibility and indexing. A significant p0l1ion of the

system ontology was reused from existing applications, which reduced

implementation effort and also allowed potential easy interoperability with

existing tools that used those ontologies.

.. The rules based approach to the inference was a convenient fonnat for

specifying complex inference logic, but was limited in the types of logic it

could specify. These limitations were overcome by invoking Java code directly

from rules, which meant that compact, but powerful rules could be written.

.. The implementation used a small subset of OWL and RDF(S) and did not

expose any shortcomings in the languages. OWL's support for transitive

properties meant that automatic entailments could be used to reduce the amount

of system bootstrapping knowledge required and also resulted in fewer queries

to the triplestore.

.. Overall the existing ontologies used appeared to be good basis for the live

collaboration ontology. The chosen location based representation of meeting

room devices proved to be counter intuitive and an alternative representation

was discussed. The representation of time taken from the AKT support ontology

also was found to be verbose and awkward to work with when writing inference

rules.

.. A weakness of the framework was that it required the infonnation in the

triplestore to be complete and correct, which may not be the case in real-world

situations. Missing infonnation could cause the inference process to halt and

incorrect infonnation could lead to false inferences.

156

• A tuple space model was shown to be an appropriate basis for the

communications infrastructure. Tuples proved to be a convenient way of

packaging RDF descriptions of collaboration events, and a pub/sub model was

ideal for the framework. Furthermore, the persistent nature of tuples was useful

for supporting late joining clients.

/& The differing nature of the event types means that QoS requirements for the

framework are non-trivial and would not be adequately handled by existing QoS

frameworks. This is an area for further study.

157

8 Conclusions

This final chapter presents the overall conclusions from the thesis. It starts by giving a

detailed breakdown of the contributions within this thesis and then discusses the

potential for future work. Finally, open research issues that are relevant to this thesis

are considered.

8.1 Contributions

The core contribution of this thesis has been the application of Semantic Web

technologies to the domain of distributed real-time collaboration. This has been

demonstrated by the development of a conceptual framework for automated live

semantic annotation of distributed collaboration sessions, and a successful proof of

concept implementation that was compliant to this framework. The remainder of this

section gives a detailed chapter by chapter breakdown of the individual contributions

that have gone to make up this overall outcome.

The literature review in chapter 2 identified a number of existing systems that

supported some form of annotation of collaboration activities. It identified a number of

desirable characteristics for systems of this type, which were support for machine

processable semantics, live processing and automation. The review established that not

one system fully provided all these features. A particular collective shortcoming

exposed was a lack of machine processable semantics, limiting the scope for automated

further processing. Additionally, the review of existing work in the domain of the

Semantic Web exposed the fact that Semantic Web technologies have yet to be applied

to the domain of the synchronous collaboration. The review also identified literature

that described the concept of a mediated space and the potential for mediated

interactions to be even more effective than face-to-face interactions.

Chapter 3 motivated the need for live semantic annotation of collaboration sessions. It

did this by firstly identifying the benefits of providing additional information in the

form of annotations and then discussing the advantage of a semantic approach, enabling

significant potential for interoperability, reuse, extensibility and automation through

inference.

158

A study of IRC use in telephone conferences was undertaken and it showed that live

temporal annotation of collaboration sessions was useful to session participants, as was

archiving the annotations for later use. The study was used along with experiences of

using the Access Grid to establish a list of key event types that could make useful

annotations and were common to many types of synchronous collaboration activities.

The problems of speaker identification and participant tracking in the Access Grid were

identified and a scenario was described where these were overcome by semantic

annotations to provide dynamically updated attendance lists and speaker highlighting.

The scenario also described other annotation types and how they could be integrated

other Semantic Web services. It was also established that these weaknesses of the

Access Grid were common to other video and audio conferencing technologies and that

they would also benefit from these forms of semantic annotations.

Chapter 4 developed the conceptual framework and the result was a general purpose

architecture on which to base implementations of systems for performing real-time

semantic annotation of live distributed collaboration sessions. It identified the role of

producers for the generation of annotations and consumers as sinks for annotations,

performing functions such as display. The need for an inference engine was established

and it was argued that it would make sense for this to be a single component shared

between sites in a given collaboration session. The need for a triplestore was also

established to meet the dual requirements of providing additional knowledge for the

inference process and providing storage for archiving annotations. The interaction

mechanism between the producers and consumers was identified as needing to support

communications that were pub/sub, real-time, reliable, multipoint and persistent and it

was shown that these requirements map well to a tuple space.

It was established that live annotations needed to be represented as a pair of state

change packets and it was shown how such packets could be packaged as tuples. The

real-time requirements for the annotations were also discussed and it was argued that

these were fairly flexible. It was also identified that due to the differing natures of the

annotation and media streams, explicit synchronisation of these streams would be a

very challenging task.

159

Chapter 5 described the implementation of a proof of concept system that was

compliant to the conceptual architecture. The implementation was based on some of the

functionality from the motivational scenario presented in chapter 3.

It identified the specific producers and consumers required and also developed a novel

speaker identification technique for use in the Access Grid. The basic events that

needed to be generated by the producers were determined and the inferences that could

be made from them were identified. This was used to develop a detailed OWL ontology

that formally specified the different annotations within the system and also enabled

automatic entailments about location information. Furthennore, the effort in creating

the system ontology was greatly reduced by identifying appropriate sections of existing

ontologies and reusing them. Appropriate choices of existing software were also

identified to provide the tuple space, inference engine and triplestore functions.

The implementation also demonstrated a display panel based consumer, which was

capable of displaying the names of the connected sites and the names of the participants

at those sites. This list updated in real-time to reflect changes to the makeup of the

session and also to highlight the name of the current speaker.

Chapter 6 identified the logic required for the inferences, fonnally expressed as a set of

inference rules, categorised by the type of operation the rules performed. The tests and

actions that could not be performed by rules alone were established, and Jena builtins

were created to implement these functions.

The categories of knowledge required to bootstrap the inference process for the proof

of concept implementation were also determined and a small set of instances were

created to enable the system to be tested. Reuse within the Semantic Web was

demonstrated by obtaining some of this instance knowledge by querying the CS

AKTiveSpace triplestore.

Finally, chapter 7 provided a discussion based evaluation of the conceptual framework

and proof of concept implementation. A finding of particular interest was that the

entailment features of Jena worked too slowly to allow real-time processing. This

prompted the creation of a workaround for pre-computing certain entailments to enable

160

real-time processing. Despite this limitation, the implementation demonstrated that

real-time inferencing was practical.

The framework and implementation were found to have good support for inference,

interoperability, reuse, automation and the chosen tools and technologies were found to

be suitable. Missing or incorrect information in the triplestore was identified as a

potential source for errors and techniques for minimising the impact of this were

described.

8.2 Future Work

This section discusses a number of possible extensions to the work presented in this

thesis.

8.2.1 Event Types and Inferences

One way of extending the work in this thesis would be to add further event types to the

live collaboration ontology and create the appropriate producers, consumers and rules

for handling them. Examples could be agenda items, slide transitions or hand authored

text notes (e.g. taken on PDAs, see section 2.2.3). It would also be useful to try and

harness any personal diary information (see section 2.4.4) to, for example, display a list

of participants still expected to arrive.

Another useful inference would be to try and determine how formal or important a

collaboration session is. This information could be used, for example, to display 'Do

Not Disturb' on a screen outside the room of a formal meeting or could be used to

automatically determine the level of intrusiveness [Ram04] that participants are willing

to accept from sources such as mobile phones or Instant Messenger clients. Such a

'meeting importance' measure could possibly be derived from the job rank of the

participants involved (which could be automatically obtained from the CS AKTive

Space triplestore). For example in an academic setting, meetings primarily made up of

postgraduate students and research assistants tend to be less formal (or more tolerant of

interruptions) than those made up of higher ranking members of staff, like professors or

heads of departments.

A further useful feature could be to extend the CS AKTiveSpace Communities of

Practice work to flag to session participants which other people in the session are in

161

their COP, and also show how they are linked to the individuals in their COP. Clearly

this may often yield many uninteresting results, since people will usually already know

who is working closely with them. However, the interesting results would be the ones

where people share a COP but work in different fields or physical locations, as they

may not be aware that they share a COP. It might be possible to automatically

determine which results are interesting by looking for such indirect links between COP

members.

One type of inferencing that has not been explored so far is offline inferencing after a

meeting has ended to help improve the meeting archive. Offline inferencing could be

used to perform inferences that are too complex to be performed in real-time or ones

that simply need access to the entire meeting record. An example of offline inference

would be to determine who the primary speaker in a meeting was, which could be used

when searching meeting records. Furthermore, as the framework currently stands, there

is no ability to exploit knowledge generated in previous meetings (for either real-time

or offline inferencing). This might potentially be a valuable source of knowledge to

feed into the inference process and is one that would be worthwhile exploring further.

8.2.2 Security

Another important infrastructure feature that so far has not been discussed is security.

There may be times when a distributed meeting must be kept private so that unwanted

'snoopers' on the Internet cannot eavesdrop on the session content. Videoconferencing

tools like Access Grid allow their media streams to be encrypted to prevent snooping,

but clearly the addition of un-encrypted shared semantic annotations would be a weak

point, giving the potential for snoopers to obtain some information about the session.

Furthermore the pub/sub architecture means that any producer can join the tuple space

and start publishing events. Clearly without any access controls an unauthorised

producer could join the session and start publishing events which might either be

unwanted or be deliberately incorrect to sabotage the session.

The most obvious solution to this would be to make the tuple space encrypted. This is a

feature not currently supported by EQUIP. One way this could be achieved would be to

extend EQUIP to support a symmetric encryption algorithm, meaning that all producers

and consumers could only join a session's tuple space by using a pre-shared key. As it

would be impractical for the operator at each site to configure each producer and

162

consumer with the key, EQUIP's tuple space discovery mechanism could be extended

to multicast the key (entered by the operator into the Session Information Producer) as

well the dataspace URL. Although this multi casted infOlmation would only be local to

each site, it could still be snooped, so this traffic could also be encrypted with a

different pre-shared key, which each producer and consumer at a site could be pre­

configured in a one off configuration step, in a similar way as they are already pre­

configured to use a certain local multicast address for discovery.

8.2.3 Consumer Functionality

The proof of concept implementation only used a relatively simple consumer that

passively displayed information to session participants. There is significant scope for

extending consumer functionality to go beyond this. In particular, consumers could be

created that ran on the personal laptops of session participants. This would be feasible

as it is now commonplace for meeting rooms to be equipped with wireless networks

and for participants to take laptops with them. Giving each participant a personal

consumer would mean that the consumers could be interactive and could also

personalise the information they displayed. An interactive consumer could, for

example, provide a hypertext interface, allowing a participant to click on another

participant's name and be presented with further information about that participant,

such as contact details, job title or publications they have authored. All this information

could be obtained by the consumer querying the CS AKTive Space triplestore.

Personalisation could, for example, be used to highlight participants who are in the

laptop owner's community of practice.

A drawback of potentially making consumers mobile is that the automated EQUIP

dataspace discovery mechanism is not well suited to mobile devices, since the multicast

address for discovery might be different in every meeting room. The most

straightforward workaround for this would be to have the laptop user either manually

enter the discovery address when joining the session (it could be displayed on the wall

of the meeting room), or have them just enter the session dataspace URL directly.

The speaker identification functionality in the proof of concept application could also

be further extended. As it cUlTently stands, it only identifies the speaker by name and

does not provide any additional cues to help identify which vic video window the

speaker is located in. A useful extension would be to add window highlighting to vic,

163

which could be used to easily draw attention to the window that contained the cunent

speaker.

To highlight just the window that the speaker is depicted in is actually a very

challenging task, since Access Grid sites typically transmit four simultaneous video

feeds and determining which of those video window(s) the speaker is located is non

trivial and would either require complex computer vision techniques or knowledge of

where the camera is pointing combined with participant location information to

detennine who was in each shot.

A much simpler solution would be to highlight every video window from the site where

the speaker is located, as this would still provide useful visual cues. This could be

achieved by modifying vic to become a consumer. The vic feature for allowing

individual video windows to be named could be used to specify the room URI for each

video stream so that vic would know which windows to highlight. To ensure that the

window names could still be read by humans, vic could also be modified to query the

triplestore to resolve the room URIs into human readable names for display purposes.

8.3 Research Issues

This final section closes the thesis by discussing a number of open research issues

relevant to this work.

8.3.1 Real Time Performance Issues

Testing of the proof of concept implementation revealed that lena was not capable of

computing its ontology based entailments in real-time. While not conclusive, this hints

at a more fundamental potential problem for real-time Semantic Web applications. The

complex interwoven nature of knowledge (at both instance and ontology level) within

the Semantic Web could mean that real-time processing of this knowledge may at times

be a challenging requirement. Ironically it is this potential for expressing complex

interwoven relationships that is arguably one of the great strengths of the Semantic

Web, enabling the Network Effect to answer new kinds of questions.

It could be argued that the inevitable increases in computing predicted by Moore's Law

provide a straightforward solution to potential real-time performance problems.

However, if the Semantic Web takes off, it is likely that the volume and complexity of

164

knowledge it has to offer will continue to expand at an ever increasing rate, which

could more than offset any increases in computing power.

The proof of concept implementation in this thesis overcame poor query perfonnance

by explicitly representing knowledge that otherwise would have only been implicit

from the combination of the ontology and instance data. However, while this approach

worked well for a relatively small scale application, such an approach would not scale

well for the massive amounts of knowledge that the Semantic Web may one day

contain. When dealing with knowledge on this scale, the total amount of implicit

information becomes virtually limitless, making it totally infeasible to pre-compute and

store. Therefore totally new techniques may have to be developed to enable the

valuable implicit information in the Semantic Web to be harnessed in real-time.

8.3.2 Triplestore Architecture

The system architecture in this thesis was based around a single, centralised triplestore.

This was a simple architecture to work with and is one that has been used in other

applications such as CS AKTiveSpace. However this does not provide a massively

scalable solution, and as De Roure and Hendler [DeR04] have stated, it is likely that the

Semantic Web will evolve to use multiple triplestores and eventually many self­

organising distributed RDF servers. Going beyond a single centrally managed

triplestore is not only a challenge for architecture presented in this thesis, but also for

the Semantic Web in general.

A particularly important issue is that of discovery; with a single triplestore, all

components that need to use it can be simply pre-configured with its location. When the

number of knowledge sources increases this becomes increasingly impractical, and

when dealing with knowledge on the scale of the web, becomes virtually impossible.

A distributed Semantic Web introduces further problems of correctness and

consistency. Without central management there is nothing to stop incorrect information

being placed on the Semantic Web (either accidentally or deliberately), and with

multiple knowledge sources it is also possible that contradicting knowledge may be

published.

165

It was discussed in section 7.5.1 that the proof of concept implementation was not able

to deal with incon-ect or contradictory knowledge from the triplestore and at this stage

it is not clear how it could be extended to robustly handle such cases. Resolving this

issue may partly come down to trust. If knowledge is only taken from trusted sources,

then it may potentially be more reliable than using un-trusted sources. This might be

achieved through using digital signatures to sign statements, however as it would be

difficult to explicitly specify all trusted sources, and it is likely that a 'web of trust'

[GolO3] may emerge where, for example, if A trusts Band B trusts C, then A also can

trust C, even though it is not explicitly stated.

166

Title of \,I·lG RDF Core VV G
date of meeting 30/08/02 23108102 16/08102 09/08/02 26/07/02
num ber of participants on phone 12 13 9 12 10
num ber of participatns in IRC 9 6 5 7 9
dur-ation of teleconference 99 80 138 110 87
total number oflRC entries 278 365,-- 252 573 376 --_ __ - --

Optional Zakim bot and RSSagent features used
list participants in telcon x x x x x
manually identify' telcon participants x x x x x
muting telcon participant x x
identif.ying audiO sources x x
disconnect telcon participant x
dismiss Zakim bot
geographically locate dialing code
queuing to speak x x x x x
speaker time limit
agenda tr-acking x x
future reminder ('ping')
suibe nomination x x
highlight action items x x
query for conference passcode x
Identify' participants sharing phone x x

Mise data sent in IRe
comments x x x x x
scribing x x x x x
Stdtus (e g back in 5 mins) x x x
URLs to agenda x x
URLs to ernail x x x x x
URLs to mls!:. documents x x x x

ageneja iterTI s x x x x x
agenda item r-esults x x x x
action item s x x x x x
discussing vl/ho VI/ill be scribe x x x x
indicatino technical Droblems x x

\·VebOnt WG
26/09/02 19/09/02 12109/02 05/09/02

23 19 24 29
15 14 14 14
96 123 95 105

288 172 431 158

x x x x
x x x x
x x

x x

x x x x

x x x

x x x
x

x

- ,---

x x
x x

x x x
x x x
x x x x
x x x
x x x
x x
x jx
x x x

x

mean
29/08/02

22 17.3
15 10.8
94 102 7

447 334 :J

total I

x 10
x 10
x 5
x 5

1
0
0

x 10
0

x 6
0

X Ei
:J

2 .,
L

total
x 8
x 7
x 7
x 6
x 10
x I:J

x 9

Ix 7
x Co u

7
3

>
"t:I
"t:I
~

= Q..
~

>
I

o
~

"'"'" ~
~

8
9
~ w
(1

~ -~
"t:I
=­o
= (C

(l
o = ~
~ = /":)
~
rJ:J

Appendix B - IRC log ofRDF Core Working Group Telcon

Log from telcon held on 16/08/2002

All names have been replaced with fictitious ones to ensure anonymity. The original log is
publicly available on the web at http://www.w3.org/2002/08/16-rdfcore-irc

13:59:39 [RRSAgent]
RRSAgent has joined #rdfcore

14:01 :02 Dsmith]
jsmith has joined #rdfcore

14:01 :34 [MikeJones]
MikeJones has joined #rdfcore

14:02:00 [MikeJones]
Zakim, what's the passcode?

14:02:01 [Zakim]
sorry, MikeJones, I don't know what conference this is

14:02:04 [MikeJones]
Zakim, this is RDF

14:02:06 [Zakim]
ok, MikeJones

14:02:12 [MikeJones]
agenda?

14:02:34 [MikeJones]
agenda + 16Aug http://lists.w3.org/Archives/Public/w3c-rdfcore-wg/2002AugI0144.html

14:02:36 [ad]
zakim, who is here?

14:02:37 [Zakim]
On the phone I see ??P1 0, Davis, DaveW, GeorgeD, ??P14

14:02:38 [Zakim]
On IRe I see MikeJones, jsmith, RRSAgent, Zakim, ad, rch, Adam, logger_1

14:03:07 [Zakim]
+DaveP

14:03:15 [MikeJones]
DaveP?

14:03:21 [Adam]
zakim, DaveP is Adam

14:03:23 [Zakim]
+Adam; got it

14:03:25 [MikeJones]
ah

14:03:36 [Adam]
zakim, who is muted

14:03:37 [Zakim]
Adam, you need to end that query with '?'

14:03:38 [Zakim]
+MikeJ

14:03:39 [Adam]
zakim, who is muted?

14:03:40 [Zakim]
I see no one muted

14:03:47 [ad]
zakim, ??P10 is SimonR

14:03:48 [Zakim]
+SimonR; got it

14:03:57 [ad]
zakim, ??P14 is GavinK

168

14:03:58 [Zakim]
+GavinK; got it

14:04:24 [Zakim]
+John_Smith

14:04:37 [MikeJones]
Zakim, pick a scribe

14:04:38 [Zakim]
Not knowing who is chairing or who scribed recently, I propose MikeJ

14:04:40 [MikeJones]
Zakim, pick a scribe

14:04:41 [Zakim]
Not knowing who is chairing or who scribed recently, I propose DaveW

14:04:55 [jsmith]
John Smith is scribing

14:05:01 [MikeJones]
MikeJones has changed the topic to: RDFCore 16Aug. scribe: JohnS

14:05:14 [MikeJones]
Zakim, who's on the phone?

14:05:15 [Zakim]
On the phone I see SimonR, Davis, DaveW, GeorgeD, GavinK, Adam, MikeJ,
John_Smith

14:05:16 [Adam]
zakim, who is here?

14:05:17 [ad]
zakim, who is here?

14:05: 17 [Zakim]
On the phone I see SimonR, Davis, DaveW, GeorgeD, GavinK, Adam, MikeJ,
John_Smith

14:05:18 [Zakim]
On the phone I see SimonR, Davis, DaveW, GeorgeD, GavinK, Adam, MikeJ,
John_Smith

14:05:20 [Zakim]
On IRC I see MikeJones, jsmith, RRSAgent, Zakim, ad, rch, Adam, logger_1

14:06:00 [jsmith]
regrets: Pete, Mark, Anne Bolton, Nick, Alan Thompson, Dan Harris

14:06:29 [jsmith]
Will Davis proposes WG sing happy birthday to Will

14:06:30 [Adam]
zakim, mute Adam

14:06:31 [Zakim]
Adam should now be muted

14:06:56 [jsmith]
next telecon same time next week

14:07:08 [jsmith]
no other agenda changes

14:07:21 [MikeJones]
Zakim, pick a scribe

14:07:23 [ad]
zakim, pick a victim.

14:07:23 [Zakim]
Not knowing who is chairing or who scribed recently, I propose Davis

14:07:24 [Zakim]
I don't understand 'pick a victim.', ad. Try Imsg Zakim help

14:07:26 [MikeJones]
Zakim, pick a scribe

14:07:28 [Zakim]
Not knowing who is chairing or who scribed recently, I propose Davis

14:07:30 [MikeJones]
Zakim, pick a scribe

14:07:32 [Zakim]
Not knowing who is chairing or who scribed recently, I propose DaveW

14:07:34 [MikeJones]

169

Zakim, pick a scribe
14:07:35 [Zakim]

Not knowing who is chairing or who scribed recently, I propose GavinK
14:08:34 [MikeJones]

Zakim, pick a scribe
14:08:35 [Zakim]

Not knowing who is chairing or who scribed recently, I propose DaveW
14:08:37 [MikeJones]

Zakim, pick a scribe
14:08:38 [Zakim]

Not knowing who is chairing or who scribed recently, I propose John_Smith
14:08:40 [MikeJones]

Zakim, pick a scribe
14:08:42 [Zakim]

Not knowing who is chairing or who scribed recently, I propose Adam (muted)
14:08:44 [jsmith]

Eric Miller will scribe next week if he's here (babysitting)
14:09:05 [jsmith]

reviewing action list
14:09:29 [jsmith]

minutes of July 19 missing?
14:09:30 [Adam]

zakim, unmute Adam
14:09:31 [Zakim]

Adam should no longer be muted
14:10:05 [MikeJones]

19 July IRe log: http://www.w3.org/2002/07/19-rdfcore-irc#T14-54-10
14:10:35 [jsmith]

Adam: split between 2 authors with IRe access vs. time
14:10:55 [ad]

http://www.w3.org/2002/07/19-rdfcore-irc.html
14:10:57 [jsmith]

IRe log was submitted and accepted as minutes
14:11 :40 [jsmith]

approval of last week's minutes postponed due to late availability
14:12:00 [jsmith]

Brian will check IRe log against his action list
14:12:27 [MikeJones]

Zakim, who's talking?
14:12:28 [Adam]

zakim, drop Adam
14:12:29 [Zakim]

Adam is being disconnected
14:12:29 [Zakim]

-Adam
14:12:31 [jsmith]

reviewing long list state of completed actions
14: 12:37 [rch_]

rch_ has joined #rdfcore
14:12:38 [Zakim]

MikeJones, listening for 10 seconds I heard sound from the following: MikeJ (29%)
14:13:34 [jsmith]

no objections to actions being closed off
14:13:35 [MikeJones]

=== 8: daml:collection test case - volunteer to complete
14:14:08 [jsmith]

MikeJ has anyone implemented parseType="Literal"?
14:14:11 [jsmith]

rch: ARP has
14:14:38 [jsmith]

DaveW: validator produces ntriples
14:14:59 [jsmith]

170

ACTION: rch to complete test case
14:15:04 [Zakim]

+Adam
14:15:38 Usmith]

item 9:
14:16:23 Usmith]

MikeJ: dark triple request from WebOnt may have gone away
14:16:45 [Adam]

Should note that there is active discussion on www-rdf-Iogic about layering amongst
Williams, Fuller and other WG members

14:16:51 Usmith]
ACTION: rch ask SWCG to check priority of dark triples requirement

14:16:55 Usmith]
item 10:

14:17:25 Usmith]
ad: wanted to confirm with rch as series editor

14:17:34 Usmith]
ad: additional pubrules cleanups, etc.

14:17:38 [MikeJones]
validator looks buggy w.r.t. parseType="Literal"

14:17:46 Usmith]
rch: go ahead

14:18:34 Usmith]
ad: WG previously approved publication

14:18:45 Usmith]
ACTION: ad publish GUIDE

14:18:55 Usmith]
additional regrets: Stan

14:19:13 Usmith]
rch: on 19th, discussed detailed review of individual documents

14:19:26 Usmith]
ad: WG didn't get to this

14:20:17 Usmith]
ad: editors indicated that they would all need to include material on datatypes - more
than an editorial change for last call - need to integrate and review schedule

14:20:40 Usmith]
ad: would require 2 reviews: current and with datatypes

14:22:01 Usmith]
Will: PRIMER doesn't yet address parseType="Collection" since it hasn't appeared in
SYNTAX yet

14:22:42 Usmith]
Will: newer draft of July 25 on server now

14:23:14 [MikeJones]
"on the server"". which server? where?

14:23:16 Usmith]
Adam: more work needed before review - would like another week

14:23:49 [MikeJones]

14:23:50 [MikeJones]
* new Primer version Will Davis (Thu, Jul 25 2002)
http://lists.w3.org/Archives/Public/w3c-rdfcore-wg/2002JuI/0156.htm I

14:23:59 Usmith]
review SCHEMA week of August 30

14:24:08 Usmith]
PRIMER also August 30

14:25:01 [MikeJones]
0156 -> http://www.w3.org/2001/09/rdfprimer/rdf-primer-20020725.html

14:25:49 [Zakim]
+Chris_Moore

14:26:48 Usmith]
Chris: Model Theory waiting for data type resolution

171

Appendix C - The Live Collaboration Ontology

<?xml version='l.0' encoding='ISO-8859-1'?>

<!DOCTYPE owl [

<!ENTITYowl ''http://www.w3.org/2002/07/owl#''>

<!ENTITY rdf ''http://www.w3.org/1999/02/22-rdf-syntax-ns#''>

<!ENTITY rdfs ''http://www.w3.org/2000/01/rdf-schema#''>

<!ENTITY xsd ''http://www.w3.org/2000/10/XMLSchema#''>

<!ENTITY dc ''http://purl.org/dc/elements/l.l/''>

<!ENTITY dct ''http://purl.org/dc/terms/''>

<!ENTITY support ''http://www.aktors.org/ontology/support#''>

<!ENTITY portal ''http://www.aktors.org/ontology/portal#''>

<!ENTITY meeting

.. http://www.ecs.soton.ac.uk/-krp/coakting/rdf/meeting-20030606-2#">

<!ENTITY location ''http://signage.ecs.soton.ac.uk/location#''>

<!ENTITY live .. http://www.ecs.soton.ac.uk/-bpjOOr/ontologies/live­

meeting-20040319 1#">

<!ENTITY base .. http://www.ecs.soton.ac.uk/-bpjOOr/ontologies/live­

meeting-20040319-1#">

J >

<rdf:RDF xmlns:owl="&owl;"

xmlns:rdf="&rdf;"

xmlns:rdfs="&rdfs;"

xmlns:dc="&dc;"

xmlns:dct="&dct;"

xmlns:xsd="&xsd;"

xmlns:support="&support;"

xmlns:portal="&portal;"

xmlns:meeting="&meeting;"

xmlns:live="&live;"

xml:base="&base;">

<owl:Ontology rdf:about="">

<owl:versionInfo>1.2</owl:versionInfo>

<rdfs:comment>The live collaboration ontology by Ben

Juby</rdfs:comment>

<!-- import the CoAKTinG and Signage Location ontologies -->

172

<! CoAKTinG ontology already imports the AKT ontologies, so no

need to explicitly import them -->

<owl: imports

rdf: resource=" http://www.ecs.soton.ac . uk/ -krp/ coakting /rdf/meeting-

20030606-2#"/>

<owl: imports

rdf:resource=''http://signage.ecs.soton.ac.uk/location#"/>

<dc:creator>Ben Juby (bpjOOr@ecs.soton.ac.uk)</dc:creator>

<dct:created>2004-03-19</dct:created>

</owl:Ontology>

<!-- Personal Identifiers -->

<owl:Class rdf:ID="Personal-Identifier">

<rdfs:label>Personal Identifier</rdfs:label>

<rdfs:comment>A generic class for tangible identifiers like

iButtons and RFID tags that uniquely identify a person</rdfs:comment>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:Class rdf:ID="iButton">

<rdfs: label>iButton</rdfs: label>

<rdfs:comment>A representation of an iButton</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Personal-Identifier"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="has-button-id">

<rdfs:label>has button id</rdfs:label>

<rdfs:comment>The 64 bit iButton ID represented as a string of

hexadecimal digits</rdfs:comment>

<rdfs:domain rdf:resource="#iButton"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:DatatypeProperty>

<!-- Extend portal:Person to include a Personal-Identifier (eg an

iButton) -->

<owl:ObjectProperty rdf:ID="has-personal-identifier">

<rdfs:label>has personal identifier</rdfs:label>

173

<rdfs:comment>a personal identifier (e.g. iButton) that uniquely

belongs to the person</rdfs:comment>

<rdfs:domain rdf:resource="&portal;Person"/>

<rdfs:range rdf:resource="#Personal-Identifier"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:ObjectProperty>

<!-- new types of Event -->

<owl:Class rdf:ID="Personal-Identifier-Event">

<rdfs:label>Personal Identifier Event</rdfs:label>

<rdfs:comment>Any event that involes a personal

identifier</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Event"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="personal-identifier-used">

<rdfs:label>personal identifier used</rdfs:label>

<rdfs:comment>Records the instance of personal identifier used in

the event, if known</rdfs:comment>

<rdfs:domain rdf:resource="#Personal-Identifier-Event"/>

<rdfs:range rdf:resource="#Personal-Identifier"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="iButton-Signed-In">

<rdfs:label>iButton Signed In</rdfs:label>

<rdfs:comment>Represents an iButton being 'signed

in' </rdfs:comment>

<rdfs:subClassOf rdf:resource="#Personal-Identifier-Event"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="&portal;has-location" />

<owl:allValuesFrom rdf:resource="#iButton-Reader-Position" />

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="id-of-ibutton-used">

<rdfs:label>id of ibutton used</rdfs:label>

174

<rdfs:comment>Records the 64 bit hex ID of the iButton used in the

event</rdfs:comment>

<rdfs:domain rdf:resource="#iButton-Signed-In"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Generic-Agent-Present">

<rdfs:label>Generic Agent Present</rdfs:label>

<rdfs:comment>Represents a Generic Agent being present in a

collaboration session</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Event"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:Class rdf:ID="Legal-Agent-Present">

<rdfs:label>Legal Agent Present</rdfs:label>

<rdfs:comment>Represents a Legal Agent being present in a

collaboration session</rdfs:comment>

<rdfs:subClassOf rdf:resource="Generic-Agent-Present"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="&portal;has-main-agent" />

<owl:allValuesFrom rdf:resource="&portal;Legal-Agent" />

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:Class rdf:ID="Person-Present">

<rdfs:label>Person Present</rdfs:label>

<rdfs:comment>Represents a Person being present in a collaboration

session</rdfs:comment>

<rdfs:subClassOf rdf:resource="Legal-Agent-Present"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="&portal;has-main-agent" />

<owl:allValuesFrom rdf:resource="&portal;Person" />

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

175

<owl:Class rdf:ID="Microphone-Active">

<rdfs:label>Microphone Active</rdfs:label>

<rdfs:comment>An event to indicate that a microphone is gated

on</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Event"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="&portal;has-Iocation" />

<owl:aIIValuesFrorn rdf:resource="#Microphone-Position" />

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:Class rdf:ID="Joined-To-Session">

<rdfs:label>Joined To Session</rdfs:label>

<rdfs:comment>An event that represents when a physical location is

currently joined to a distributed collaboration session</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Event"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<!-- Extensions to the Signage Location ontology ->

<!-- Extend location:Abstract-Space to say that it is equivalent to

portal:Location -->

<rdf:Description rdf:about="&location;Abstract-Space">

<owl:equivalentClass rdf:resource="&portal;Location"/>

</rdf:Description>

<!-- Declare location:is-Iocated-in property as transitive ->

<rdf:Description rdf:about="&location;is-Iocated-in">

<rdf:type rdf:resource="&owl;TransitiveProperty" />

</rdf:Description>

<!-- Declare location:adjacent-to as owl:SymrnetricProperty -->

<rdf:Description rdf:about="&location;adjacent to">

<rdf:type rdf:resource="&owl;SymmetricProperty" />

176

</rdf:Description>

<!-- Extend location:Abstract-Space to have a property that records

a collaboration site name -->

<owl:DatatypeProperty rdf:ID="has-collaboration-site-name">

<rdfs:label>has collaboration site name</rdfs:label>

<rdfs:comment>The name of the site that is shown to people at

others sites e.g. "Southampton ECS"</rdfs:comment>

<rdfs:domain rdf:resource="&location;Abstract-Space"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:DatatypeProperty>

<!-- new types of location:Abstract-Space -->

<owl:Class rdf:ID="Device-Position">

<rdfs: label>Device-Position</rdfs: label>

<rdfs:comment>the location of any device</rdfs:comment>

<rdfs:subClassOf rdf:resource="&location;Abstract-Space" />

</owl:Class>

<owl:Class rdf:ID="iButton-Reader-Position">

<rdfs: label>iButton-Reader-Position</rdfs: label>

<rdfs:comment>the location of an iButton reader</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Device-Position" />

</owl:Class>

<owl:Class rdf:ID="Microphone-Position">

<rdfs: label>Microphone-Position</rdfs: label>

<rdfs:comment>the location of a microphone</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Device-Position" />

</owl:Class>

<owl:Class rdf:ID="Seating-Position">

<rdfs:label>Seating-Position</rdfs:label>

<rdfs:comment>a specific seating position in a meeting

room</rdfs:comment>

<rdfs:subClassOf rdf:resource="&location;Abstract-Space" />

</owl:Class>

</rdf:RDF>

177

Appendix D - The CoAKTinG Ontology

<?xml version='l.O' encoding='ISO-8859-1'?>

<!DOCTYPE owl [

<!ENTITYowl ''http://www.w3.org/2002/07/owl#''>

<!ENTITY rdf ''http://www.w3.org/1999/02/22-rdf-syntax-ns#''>

<!ENTITY rdfs ''http://www.w3.org/2000/01/rdf-schema#''>

<!ENTITY xsd ''http://www.w3.org/2000/10/XMLSchema#''>

<!ENTITY dc ''http://purl.org/dc/elements/1.1/''>

<!ENTITY dct ''http://purl.org/dc/terms/''>

<!ENTITY support ''http://www.aktors.org/ontology/support#''>

<!ENTITY portal ''http://www.aktors.org/ontology/portal#''>

<!-- ENTITY meeting ''http://www.aktors.org/ontology/meeting#'' -->

<!ENTITY meeting

.. http://www.ecs.soton.ac.uk/-krp/coakting/rdf/meeting-20030606-2#">

<!-- ENTITY base ''http://www.aktors.org/ontology/meeting'' -->

<!ENTITY base .. http://www.ecs.soton.ac.uk/-krp/coakting/rdf/meeting-

20030606-2">

1 >

<! CoAKTinG meeting ontology added above, and as namespace below -->

<rdf:RDF xmlns:owl="&owl;"

xmlns:rdf="&rdf;"

xmlns:rdfs="&rdfs;"

xmlns:dc="&dc;"

xmlns:dct="&dct;"

xmlns:xsd="&xsd;"

xmlns:support="&support;"

xmlns:portal="&portal;"

xmlns:meeting="&meeting;"

xml:base="&base;">

<owl:Ontology rdf:about="&base;">

<rdfs:label xml:lang="en">CoAKTinG Meeting Ontology.</rdfs:label>

<dc:title xml:lang="en">CoAKTinG Meeting Ontology.</dc:title>

<dc:description xml:lang="en">The CoAKTinG Meeting Ontology has

been designed to support the CoAKTinG project and tools, extending the

AKT Reference Ontology.</dc:description>

<dc:creator>CoAKTinG Project</dc:creator>

<dc:creator>Kevin R. Page</dc:creator>

178

<dct:created>2003-06-02</dct:created>

<owl:versionlnfo>O.2</owl:versionlnfo>

<owl: imports

rdf:resource=''http://www.aktors.org/ontology/portal''/>

</owl:Ontology>

<!-- add milliseconds to TimePoints -->

<owl:DatatypeProperty rdf:ID="millisecond-of">

<rdfs:label xml:lang="en">millisecond of</rdfs:label>

<rdfs:domain rdf:resource="&support;Time-Point"/>

<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:DatatypeProperty>

<owl:Class rdf:about="&support;Time-Point">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#millisecond-of"/>

<owl:maxCardinality

rdf:datatype="&xsd;nonNegativelnteger">l</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<!-- a new subsclass of Event to represent meetings which

concurrently take place in several locations -->

<owl:Class rdf:ID="Distributed-Gathering">

<rdfs:label>Distributed Gathering</rdfs:label>

<rdfs:comment>Gatherings that take place in more than one physical

location.</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Social-Gathering"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

<!-- a Distributed Gathering must have one or more constituent

Events -->

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#has-local-event"/>

<owl:minCardinality

rdf:datatype="&xsd;nonNegativelnteger">l</owl:minCardinality>

179

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="has-local-event">

<rdfs:subPropertyOf rdf:resource="&portal;has-sub-event"/>

<rdfs:domain rdf:resource="#Distributed-Gathering"/>

<rdfs:range rdf:resource="&portal;Social-Gathering"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:ObjectProperty>

<'-- Information-Exhibition is a subclass of Information-Transfer­

Event, which

is used to express the exhibition / display of an Information­

Bearing-Object,

e.g. the presentation of slides or documents in a meeting -->

<owl:Class rdf:ID="Information-Exhibition">

<rdfs:label>Information Exhibition</rdfs:label>

<rdfs:comment>Information Exhibition expresses the display of an

Information-Bearing-Object, e.g. the presentation of slides or

documents in a meeting.</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Information-Transfer­

Event"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="has-information-object">

<rdfs:domain rdf:resource="#Information-Exhibition"/>

<rdfs:range rdf:resource="&portal;Information-Bearing-Object"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:ObjectProperty>

<! - Define a class to describe Compound Information Objects, e.g. a

presentation that includes multiple slides, video etc. -->

<owl:Class rdf:ID="Compound-Information-Object">

<rdfs:label>Compound Information Object</rdfs:label>

<rdfs:comment>Compound Information Objects describe Information

Bearing Objects that are constructed from a collection of further

Information Bearing Objects. e.g. a presentation containing several

slides and a video.</rdfs:comment>

180

<rdfs:subClassOf rdf:resource="&portal;Information-Bearing­

Object"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="has-component">

<rdfs:domain rdf:resource="#Compound-Information-Object"/>

<rdfs:range rdf:resource="&portal;Information-Bearing-Object"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Presentation">

<rdfs: label>Presentation</rdfs: label>

<rdfs:comment>e.g. a PowerPoint presentation</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Compound-Information-Object"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:Class rdf:ID="Slide">

<rdfs:label>Slide</rdfs:label>

<rdfs:comment>A slide within a presentation</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Information-Bearing-

Object"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="has-rendered-uri">

<rdfs:label xml:lang="en">has rendering</rdfs:label>

<rdfs:comment xml:lang="en">The location of a rendering of an

Information Bearing Object. e.g. a JPEG rendering of a

Slide.</rdfs:comment>

<rdfs:domain rdf:resource="&portal;Information-Bearing-Object"/>

<!-- rdfs:range rdf:resource="&portal;Information-Bearing-Object"/

->

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:ObjectProperty>

<!-- Verbal comment Event -->

<owl:Class rdf:ID="Making-a-Verbal-Comment">

<rdfs:label>Verbal Comment</rdfs:label>

181

<rdfs:comment>An Event to bind when a Person makes a comment (e.g.

in a meeting) .</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Information-Transfer­

Event"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="&portal;sender-of information"

/>

<owl:allValuesFrom rdf:resource="&portal;Person" />

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="has transcription">

<rdfs:label xml:lang="en">has transcription</rdfs:label>

<rdfs:comment xml:lang="en">The transcription of an event, e.g.

the minutes of a meeting, or the video recording of a

presentation.</rdfs:comment>

<rdfs:domain rdf:resource="&portal;Event"/>

<rdfs:range rdf:resource="&portal;Information-Bearing-Object"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:ObjectProperty>

<! - The has start-time and has-end-time are expected to map to the

creation and last

modified times of Compendium nodes ->

<owl:Class rdf:ID="Creating-a-Compendium-Node">

<rdfs:label xml:lang="en">creating a compendium node</rdfs:label>

<rdfs:comment xml:lang="en">This event marks when a Compendium

node was created e.g. when compendium is used to minute a

meeting.</rdfs:comment>

<rdfs:subClassOf rdf:resource="&portal;Information-Transfer­

Event"/>

<rdfs:isDefinedBy rdf:resource="&base;"/>

<rdfs:subClassOf>

<owl:Restriction>

182

<owl:onProperty rdf:resource="&portal;sender-of-information"

/>

<owl:allValuesFrom rdf:resource="&portal;Person" />

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="&meeting;has-compendium-node" />

<owl:allValuesFrom rdf:resource="&portal;Person" />

<owl:minCardinality

rdf:datatype="&xsd;nonNegativelnteger">l</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="has-compendium-node">

<rdfs:label xml:lang="en">has Compendium node</rdfs:label>

<rdfs:comment xml:lang="en">A Compendium node being created.

Currently the resource is expected to be within the XML output from

Compendium, rather than a class/instance in the knowledge

base.</rdfs:comment>

<rdfs:domain rdf:resource="&meeting;Creating-a-Compendium-Node"/>

<!-- rdfs:range rdf:resource="&meeting;Agumentation"/ -->

<rdfs:isDefinedBy rdf:resource="&base;"/>

</owl:ObjectProperty>

</rdf:RDF>

183

Appendix E - The Signage Location Ontology

<?xml version="l.O"?>

<!DOCTYPE owl [

J>

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY

<!ENTITY

<!ENTITY

<!ENTITY

<!ENTITY

<!ENTITY

<!ENTITY

xsd

owl

dc

dct

akt

akts

base

"http://www.w3.org/2001/XMLSchema#">

"http://www.w3.org/2002/07/owl#">

"http://purl.org/dc/elements/l.l/">

"http://purl.org/dc/terms/">

"http://www.aktors.org/ontology/portal#">

"http://www.aktors.org/ontology/support#">

"http://signage.ecs.soton.ac.uk/location#">

<rdf:RDF xmlns:rdf="&rdf;"

xmlns:rdfs="&rdfs;"

xmlns:xsd="&xsd;"

xmlns:owl="&owl;"

xmlns:dc="&dc;"

xmlns:dct="&dct;"

xmlns:akt="&akt;"

xmlns:akts="&akts;"

xml:base="&base;">

<owl:Ontology rdf:about="">

<rdfs:label>Building Ontology</rdfs:label>

<dc:title xml:lang="en">Building Ontology</dc:title>

<dc:description xml:lang="en">The Building Ontology has been

designed to describe the structure, contents and occupants of a

building, in order support a number of pervasive computing

applications.</dc:description>

<dc:creator>Signage Project

(http://signage.ecs.soton.ac.uk/)</dc:creator>

<dc:creator>Ian Millard (icm02r@ecs.soton.ac.uk)</dc:creator>

<dct:created>2004-01 19</dct:created>

<owl:versionInfo>O.l</owl:versionInfo>

</owl:Ontology>

184

<! Abstract space, and associated properties -->

<owl:Class rdf:ID="Abstract-Space">

<rdfs: label>Abstract-Space</rdfs: label>

<rdfs:comment>This is a high-level abstraction of any abstract

space</rdfs:comment>

</owl:Class>

<owl:ObjectProperty rdf:ID="is-located-in">

<rdfs:label>is-located-in</rdfs:label>

<rdfs:comment>This property is to be used to describe an Abstract­

Space which is located within another,</rdfs:comment>

<rdfs:domain rdf:resource="#Abstract-Space" />

<rdfs:range rdf:resource="#Abstract-Space" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="is-part-of">

<rdfs:label>is-part-of</rdfs:label>

<rdfs:comment>This property is to be used to describe an Abstract­

Space which forms part of another</rdfs:comment>

<rdfs:domain rdf:resource="#Abstract-Space" />

<rdfs:range rdf:resource="#Abstract-Space" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="is-owned-by">

<rdfs:label>is-owned-by</rdfs:label>

<rdfs:comment>This property is to be used to describe the owning

Organization of the Abstract Space</rdfs:comment>

<rdfs:domain rdf:resource="#Abstract-Space" />

<rdfs:range rdf:resource="&akt;Organization" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="has-usual-occupant">

<rdfs:label>has-usual-occupant</rdfs:label>

<rdfs:comment>This property is to be used to describe the usual

occupant of an Abstract-Space</rdfs:comment>

<rdfs:domain rdf:resource="#Abstract-Space" />

<rdfs:range rdf:resource="&akt;Person" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="adjacent-to">

185

<rdfs:label>adjacent to</rdfs:label>

<rdfs:comment>This property indicates that one Abstract Space is

adjacent to another</rdfs:comment>

<rdfs:domain rdf:resource="#Abstract-Space" />

<rdfs:range rdf:resource="#Abstract-Space" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="adjacent-on-north-side">

<rdfs: label>adjacent-on-north-side</rdfs: label>

<rdfs:comment>This property is to be used to describe another

adjacent Abstract Space which is to the North</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="#adjacent-to" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="adjacent-on-south-side">

<rdfs: label>adjacent-on-south-side</rdfs: label>

<rdfs:comment>This property is to be used to describe another

adjacent Abstract Space which is to the South</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="#adjacent-to" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="adjacent-on-east-side">

<rdfs:label>adjacent-on-east-side</rdfs:label>

<rdfs:comment>This property is to be used to describe another

adjacent Abstract Space which is to the East</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="#adjacent-to" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="adjacent-on-west side">

<rdfs:label>adjacent-on-west-side</rdfs:label>

<rdfs:comment>This property is to be used to describe another

adjacent Abstract Space which is to the West</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="#adjacent-to" />

</owl:ObjectProperty>

<!-- Enclosed space, and associated properties -->

<owl:Class rdf:ID="Enclosed-Space">

<rdfs: label>Enclosed-Space</rdfs: label>

<rdfs:comment>This is a high-level abstraction of any enclosed or

bounded space (such as a building or room) which constrians movement

from one space to another</rdfs:comment>

186

<rdfs:subClassOf rdf:resource="#Abstract-Space" />

</owl:Class>

<owl:ObjectProperty rdf:ID="permits-access-to">

<rdfs:label>permits-access-to</rdfs:label>

<rdfs:comment>This property is to be used to describe a connection

(such as a door) which permits access between two Enclosed­

Spaces</rdfs:comment>

<rdfs:domain rdf:resource="#Enclosed-Space" />

<rdfs:range rdf:resource="#Abstract-Space" />

</owl:ObjectProperty>

<!-- A building -->

<owl:Class rdf:ID="Building">

<rdfs: label>Building</rdfs: label>

<rdfs:comment>This class is used to represent a

Building</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Enclosed-Space" />

</owl:Class>

<owl:ObjectProperty rdf:ID="has-postal-address">

<rdfs:label>has-postal-address</rdfs:label>

<rdfs:comment>This property denotes that a Building is located at

a particular Postal-Address</rdfs:comment>

<rdfs:domain rdf:resource="#Building" />

<rdfs:range rdf:resource="&akt;Postal-Address" />

</owl:ObjectProperty>

<!-- A floor in a building ->

<owl:Class rdf:ID="Floor">

<rdfs:label>Floor</rdfs:label>

<rdfs:comment>This class is used to represent a Floor in a

Building</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Enclosed-Space" />

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-part-of" />

<owl:aIIValuesFrom rdf:resource="#Building" />

</owl:Restriction>

</rdfs:subClassOf>

187

</owl:Class>

<! - A Room on a Floor of a Building -->

<owl:Class rdf:ID="Room">

<rdfs: label>Room</rdfs: label>

<rdfs:comment>This class is used to represent a Room on a Floor in

a Building</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Enclosed-Space" I>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-part-of" I>

<owl:aIIValuesFrom rdf:resource="#Floor" I>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<!-- Types of room -->

<owl:Class rdf:ID="Office">

<rdfs: label>Office</rdfs: label>

<rdfs:comment>This class is used to represent an Office, usually

inhabited by a small number of people</rdfs:cornment>

<rdfs:subClassOf rdf:resource="#Room" I>

</owl:Class>

<owl:Class rdf:ID="Laboratory">

<rdfs:label>Office</rdfs:label>

<rdfs:comment>This class is used to represent a Laboratory,

usually inhabited by a large number of people</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Room" I>

</owl:Class>

<owl:Class rdf:ID="Meeting-Room">

<rdfs:label>Meeting-Room</rdfs:label>

<rdfs:comment>This class is used to represent a room used for

meetings</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Room" I>

</owl:Class>

<!-- A Corridoor -->

188

<owl:Class rdf:ID="Corridoor">

<rdfs: label>Corridoor</rdfs: label>

<rdfs:comment>This class is used to represent a corridoor, on a

Floor of a Building</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Enclosed-Space" />

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-part-of" />

<owl:allValuesFrom rdf:resource="#Floor" />

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<!- Floor-Traversing-Spaces -->

<owl:Class rdf:ID="Floor-Traversing-Space">

<rdfs: label>Floor-Traversing-Space</rdfs: label>

<rdfs:comment>This class is used to represent a space which

traverses Floors</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Enclosed-Space" />

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-part-of" />

<owl:allValuesFrom rdf:resource="#Building" />

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Stairs">

<rdfs:label>Stairs</rdfs:label>

<rdfs:comment>This class is used to represent Stairs, which

traverse between Floors</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Floor-Traversing-Space" />

</owl:Class>

<owl:Class rdf:ID="Lift">

<rdfs:label>Lift</rdfs:label>

<rdfs:comment>This class is used to represent a lift, which

traverses between Floors</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Floor-Traversing-Space" />

</owl:Class>

189

<!- A Partitioned-Space -->

<owl:Class rdf:ID="Partitioned-Space">

<rdfs: label>Partitioned-Space</rdfs: label>

<rdfs:comment>This class is used to represent a partitioned space

In a Building. This is an Enclosed-Space, like a room, but which may

permit communication between Partitioned-Spaces</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Enclosed-Space" />

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-part-of" />

<owl:allValuesFrom rdf:resource="#Enclosed-Space" />

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<!-- Work area -->

<owl:Class rdf:ID="Work-Area">

<rdfs: label>Work-Area</rdfs: label>

<rdfs:comment>This class is used to represent a localised area in

which someone works, such as a desk, laboratory bench, machine in a

workshop etc</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Abstract-Space" />

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-located-in" />

<owl:allValuesFrom rdf:resource="#Abstract-Space" />

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

</rdf:RDF>

190

Appendix F - The Inference Rules

1 - Get Locations On Sign In

[getLocationsOnSignIn:

Ilquery for the things that an iButton reader is-located-in

(?sign_in rdf:type live:iButton-Signed-In),

(?sign_in portal:has location ?reader_loc),

noValue(?reader_loc, location:is located-in)

->

print ("getLocationsOnSignIn has fired"),

queryTriplestore(?reader_loc, location:is-located-in, ?loc)

2 - Get Locations On Microphone Active

[getLocationsOnMicrophoneActive:

Ilquery for the things that a microphone position is located-in

(?mic active rdf:type live:Microphone-Active),

(?mic active portal:has-location ?mic-pos),

noValue(?mic-pos, location:is-located-in)

->

print("getLocationsOnMicrophoneActive has fired"),

queryTriplestore(?mic_pos, location:is-located-in, ?loc)

3 - iButton ID To URI

[iButtonIDToURI:

Ilresolves an iButton ID to its URI

(?a live:id-of-ibutton-used ?id)

->

print("iButtonIDToURI has fired"),

191

3 continued:

queryTriplestore(?ibutton, live:has ibutton-id, ?id),

4 - iButton To Person

[iButtonToPerson:

Ilresolves the URI of an iButton to a person

(?ibutton rdf:type live:iButton)

->

print ("iButtonToPerson has fired "),

queryTriplestore (?person, live:has-personal-identifier, ?ibutton)

5 - Create Person Present

[createPersonPresent:

(?a rdf:type live:iButton-Signed-In),

(?a portal:has-location ?location),

(?a live:id-of ibutton-used ?id),

(?a support:has-time-interval ?time_int),

(?time_int support:begins-at-time-point ?begin_time),

(?person live:has-personal-identifier ?ibutton),

(?ibutton live:has-ibutton-id ?id),

makeResource(?pp_event) ,

makeResource(?time)

->

print("createPersonPresent has fired"),

(?pp_event, rdf:type live: Person-Present) ,

(?pp_event, portal:has-location ?location),

(?pp_event support:has-time-interval ?time),

(?time rdf:type support:Time-Interval),

(?time support:begins-at-time-point ?begin_time),

192

5 continued:

(?pp_event, portal:has-main-agent ?person),

publishToDataspace("TUPLE_TYPE", "TUPLE"),

publishToDataspace("EVENT_TYPE", live:Person-Present) ,

publishToDataspace ("ADD_TRIPLE", ?pp_event, rdf: type, live: Person­

Present) ,

publishToDataspace("ADD_TRIPLE", ?pp_event, portal:has-location,

?location) ,

publishToDataspace("ADD_TRIPLE", ?pp_event support:has-time-interval

?time) ,

publishToDataspace("ADD_TRIPLE", ?time rdf:type support:Time­

Interval) ,

publishToDataspace("ADD_TRIPLE", ?time support:begins-at-time-point

?begin_time) ,

publishToDataspace("ADD_TRIPLE", ?pp_event, portal:has-main-agent

?person) ,

publishToDataspace (" PUBLISH")

6 - Create Single Meeting In One Room

[createSingleMeetingInOneRoom:

(?a rdf:type live: Person-Present) ,

(?b rdf:type live: Person-Present) ,

notEqual (?a, ?b) ,

//check that both events have the same room location

//this location should be an ibutton reader

(?a portal:has-location ?loc_a),

(?b portal:has-location ?loc_b),

//3store will have already been queried when getLocations fired

(?loc a location:is located-in ?room),

(?loc_b location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),

noMeetingAtPhysLoc(?room) ,

193

6 continued:

//check that both person present events are not in a meeting

eventNotlnMeeting(?a) ,

eventNotlnMeeting(?b) ,

//get time intervals and start times

(?a support:has-time-interval ?time_a),

(?b support:has-time-interval ?time b) ,

(?time_a support:begins-at-time-point ?begin_a),

(?time_b support:begins-at-time-point ?begin_b),

//check that the PP events are still active

nOValue(?time a support:ends-at-time-point),

noValue(?time_b support:ends-at-time-point),

getMostRecentTimePoint(?begin_a, ?begin_b, ?most_recent),

//get 'main agents'

(?a portal:has-main-agent ?person_a),

(?b portal:has-main-agent ?person_b),

makeResource(?meeting) ,

makeResource(?time) ,

//check that this rule hasn't fired before

//but with data the other way round

noValue (?b live:csmior-has-fired),

->

print ("createSingleMeetinglnOneRoom has fired"),

//create a Meeting-Taking-Place

//add person to meeting rule will

//then fire to add the Person-Present events

//create a new meeting taking place

(?meeting rdf:type portal:Meeting-Taking-Place) ,

//create appropriate start time

(?meeting support:has-time-interval ?time),

194

6 continued:

(?time rdf:type support:Time-Interval),

III want the most recent sign in need to test

(?time support:begins-at-time-point ?most_recent),

Iialso need to add room location

(?meeting portal:has-Iocation ?room),

Ilassert some a unique triple to say rule has fired

(?a live:csmior-has fired "fired")

7 - Create Meetings In Two Rooms

[createMeetingslnTwoRooms:

(?a rdf:type live: Person-Present) ,

(?b rdf:type live: Person-Present) ,

notEqual (?a, ?b) ,

Ilcheck that the room locations are different

Iithis location should be an ibutton reader

(?a portal:has-Iocation ?loc_a),

(?b portal:has location ?loc_b),

113store will have already been queried when getLocations fired

(?loc_a location:is-Iocated-in ?room_a),

(?loc b location:is-Iocated-in ?room_b),

(?room_a rdf:type location:Meeting-Room),

(?room_b rdf:type location:Meeting-Room),

notEqual(?room_a,?room_b) ,

noMeetingAtPhysLoc(?room_a) ,

noMeetingAtPhysLoc(?room_b) ,

Ilcheck that both person present events are not in a meeting

Iithis test is needed because if Person-Present event a or b

Ilwere already part of meetings that were finished then this

Ilrule would still fire

eventNotlnMeeting(?a) ,

195

7 continued:

eventNotlnMeeting(?b) ,

//get time intervals and start times

(?a support:has-time-interval ?timeint_a),

(?b support:has-time-interval ?timeint_b),

(?timeint_a support:begins-at-time-point ?begin_a),

(?timeint_b support:begins-at time-point ?begin_b),

//check that the PP events are still active

noValue(?timeint_a support:ends-at-time-point)

noValue(?timeint_b support:ends-at time-point)

getMostRecentTimePoint(?begin_a, ?begin_b, ?most_recent),

//get 'main agents'

(?a portal:has-main-agent ?person_a),

(?b portal:has-main-agent ?person_b),

//create new resouces to become meetings and time intervals

makeResource(?meeting_a) ,

makeResource(?meeting_b) ,

makeResource(?time_a) ,

makeResource(?time_b) ,

//check that this rule hasn't fired before

//but with data the other way round

noValue (?b live:cmitr-has-fired)

->

print("createMeetingslnTwoRooms has fired"),

//create a 2 instances of Meeting-Taking-Place

//add person to meeting rule will

//then fire to add the Person-Present events

//create 2 new meetings taking place

(?meeting_a rdf:type portal:Meeting-Taking-Place),

196

7 continued:

(?meeting_b rdf:type portal:Meeting-Taking-Place),

Ilcreate appropriate start times

(?meeting_a support:has time-interval ?time_a),

(?meeting_b support:has-time-interval ?time_b),

(?time_a rdf:type support:Time-Interval),

(?time_b rdf:type support:Time-Interval),

III want the most recent sign in - need to test

(?time_a support:begins-at-time-point ?most_recent),

(?time_b support:begins-at-time-point ?most_recent),

Iladd the agent present as sub events of the meetings

II (?meeting_a portal:has-sub-event ?a),

II (?meeting_b portal:has-sub-event ?b),

Iladd participants to the social gathering

II {?meeting_a portal:meeting-attendee person_a),

II {?meeting_b portal:meeting-attendee person_b),

Iialso need to add room location

(?meeting_a portal:has-Iocation ?room_a),

(?meeting_b portal:has-Iocation ?room_b),

Ilassert some a unique triple to say rule has fired

(?a live:cmitr-has-fired "fired")

8 - Add Person To Meeting

[addPersonToMeeting:

(?a rdf:type live:Person-Present),

Iithis location should be an ibutton reader

(?a portal:has location ?loc),

113store will have already been queried when getLocations fired

(?loc location:is located-in ?room),

(?room rdf:type location:Meeting-Room),

197

8 continued:

//match on a meeting currently in session in the meeting room

(?meeting rdf:type portal:Meeting-Taking-Place) ,

(?meeting portal:has-Iocation ?room),

(?meeting support:has-time-interval ?time),

noValue(?time support:ends-at-time-point),

//check that the person present event is not already in a meeting

eventNotInMeeting(?a) ,

//check that pp event is still active

(?a support:has-time-interval ?pptime),

noValue(?pptime support:ends-at-time-point),

//get 'main agent'

(?a portal:has-main-agent ?person),

->

print("addPersonToMeeting has fired"),

//add the person present to the meeting

(?meeting portal:has-sub-event ?a),

//add participant to the meeting

(?meeting portal:meeting-attendee person)

9 - Create Distributed Gathering

[createDistributedGathering:

//match on two different meetings taking place

(?meeting_a rdf:type portal:Meeting-Taking-Place),

(?meeting_b rdf:type portal:Meeting-Taking-Place),

notEqual(?meeting_a,?meeting_b) ,

//check there is not already an instance of Distributed Gathering

noValue3(?existing_dist_gath, rdf:type, meeting:Distributed­

Gathering) ,

198

9 continued:

Ilget time intervals and start times

(?meeting_a support:has-time-interval ?time_a),

{?meeting_b support:has-time-interval ?time_b) ,

(?time_a support:begins-at time-point ?begin_a),

(?time_b support:begins-at time-point ?begin_b),

Ilcheck that the meetings are still in session

noValue{?time_a support:ends-at-time-point),

noValue{?time_b support:ends-at-time-point),

getMostRecentTimePoint{?begin_a, ?begin_b, ?most_recent),

makeResource{?dist_gath) ,

makeResource{?time) ,

Ilcheck that this rule hasnlt fired before

Ilbut with data the other way round

noValue (?meeting_b live:cdg-has fired)

->

print {"create distributed gathering has fired"),

(?dist_gath rdf:type meeting: Distributed-Gathering) ,

Ilcreate appropriate start time

(?dist_gath support:has-time-interval ?time),

(?time rdf:type support:Time-Interval),

III want the start time of the most recent meeting

(?time support:begins-at-time-point ?most_recent),

Iladd the meetings as local events of the distributed gathering

(?dist_gath meeting:has-local-event ?meeting_a),

(?dist_gath meeting:has-local-event ?meeting_b),

(?meeting_a live:cdg-has fired "fired")

199

10 - Create Additional Meeting

[createAdditionalMeet

(?a rdf:type live:Person-Present) ,

Iithis rule should only fire when there

Iialready is at least on meeting in session

(?existing_meeting rdf:type portal:Meeting-Taking-Place)

(?existing_meeting support:has-time-interval ?existing_time),

noValue(?existing_time support:ends-at-time-point),

Iithis location should be an ibutton reader

(?a portal:has-location ?loc),

113store will have already been queried when getLocations fired

(?loc location:is-located-in ?room),

(?room rdf:type 10cation:Meeting-Room),

Ilcheck that no meeting is currently in session in the room

noMeetingAtPhysLoc(?room) ,

Ilcheck that the person present event is not

Iialready in a meeting, this is in case it is part

Ilof a meeting that has finished

eventNotlnMeeting(?a) ,

Ilget time interval and start time

(?a support:has-time-interval ?time_a),

(?time_a support:begins-at-time-point ?begin_time) ,

Ilget 'main agent'

(?a portal:has-main-agent ?person),

makeResource(?meeting) ,

makeResource(?time) ,

Ilcheck that this rule hasn't fired before on the same

Ilperson present event

noValue(?a live:cam-has fired)

->

200

10 continued:

print ("createAdditionalMeeting has fired").

Ilcreate a Meeting-Taking-Place containing the Person-Present

(?meeting rdf:type portal:Meeting-Taking-Place) .

Ilcreate appropriate start time

(?meeting support:has-time-interval ?time).

(?time rdf:type support:Time-Interval).

(?time support:begins-at-time-point ?begin_time).

Iialso need to add room location

(?meeting portal:has location ?room).

Ilassert a unique triple so we know this rule has already fired

(?a live:cam-has-fired "fired")

11 - Add Meeting To Distributed Gathering

[addMeetingToDistGath:

(?meeting rdf:type portal:Meeting-Taking-Place) •

Ilmatch on a distributed gathering

(?dist_gath rdf:type meeting: Distributed-Gathering) •

Ilcheck that the meeting is not already

Ilpart of a distributed gathering

eventNotlnDistGath(?meeting)

->

print("addMeetingToDistGath has fired").

Iladd the meeting to the distributed gathering

(?dist_gath meeting:has-Iocal-event ?meeting)

201

12 - Handle Sign Out

[handleSignOut:

//match on an iButton-Signed-In that has an end time

(?sign_in rdf:type live:iButton-Signed-In),

(?sign_in support:has time-interval ?time_int),

(?time_int support:ends-at-time-point ?end_time),

(?sign_in live:id-of ibutton-used ?id),

//ibutton will have already been resolved to a uri

//and resolved to a person when the corresponding sign_in ocurred

(?person live:has-personal-identifier ?ibutton),

(?ibutton live:has-ibutton-id ?id),

//get the corresponding Person-Present event

(?pp_event rdf:type live: Person-Present) ,

(?pp_event portal:has-main-agent ?person),

(?pp_event support:has time-interval ?pp_time),

//check that the PP event is still active

noValue(?pp_time support:ends-at time-point),

//check this rule hasn't already fired on this sign out

noValue(?sign_in live:hso-has-fired)

->

print("handleSignOut has fired"),

//assert the end time on the person present event

(?pp_time support:ends-at-time-point ?end_time),

publishToDataspace("TUPLE_TYPE", "TUPLE_EVENT"),

publishToDataspace("EVENT_TYPE", live: Person-Present) ,

publishToDataspace("ADD_TRIPLE", ?pp_time, support:ends-at-time-point,

?end_time) ,

publishToDataspace("PUBLISH") ,

202

12 continued:

Ilfinal delete the tuple for the start of the event

publishToDataspace("DELETE". ?pp_event).

Ilensure that this rule only fires once per sign out

Ilby asserting a triple that says this rule has fired

(?sign_in live:hso-has-fired "fired")

13 - End Meeting During Distributed Gathering

[endMeetingDuringDistGath:

(?pp_event rdf:type live: Person-Present) .

(?pp_event support:has time-interval ?pp_timeint).

(?pp_timeint support:ends-at-time-point ?pp_end_time).

(?pp_event portal:has-Iocation ?loc).

(?loc location:is-located-in ?room).

(?room rdf:type location:Meeting-Room).

Iineed this to match as otherwise rule will fire before all of

lithe sign out event has been added

(?pp_end_time. support:year-of. ?year).

(?pp_end_time. support:month-of. ?month).

(?pp_end_time. support:day-of. ?day).

(?pp_end_time. support:hour-of. ?hour).

(?pp_end_time. support:minute-of. ?minute).

(?pp_end_time. support:second-of. ?second).

(?pp_end_time. meeting:millisecond-of. ?milli).

Ilcheck that the pp event is the most recent one - as that is

lithe end time we need

eventHasMostRecentEndTime(?pp_end_time. live: Person-Present. ?room).

Ilcheck that the distributed gathering is still in session

(?dist_gath rdf:type meeting:Distributed-Gathering).

(?dist_gath support:has-time-interval ?timeint).

noValue(?timeint support:ends-at time-point).

Ilmatch when a meeting is in session at the location

203

13 continued:

(?meeting rdf:type portal:Meeting-Taking-Place) ,

{?meeting portal:has-location ?room) ,

(?meeting support:has time-interval ?meet_timeint),

noValue{?meet timeint support:ends-at-time-point),

Ilensure that pp_event is from this current meeting and not an

Ilearlier finished one that was in the same location

(?meeting portal:has sub-event ?pp_event),

Iisee if there are no more participants at the meeting

Iinumber must be quoted

participantsPresent{?meeting, "<=", "0"),

->

print {"endMeetingDuringDistGath has fired"),

Ilassert an end time on the meeting

(?meet_timeint support:ends-at-time-point ?pp_end_time)

14 - End Distributed Gathering

[endDistGath:

(?meeting_finished rdf:type portal:Meeting-Taking-Place),

(?meeting_finished support:has-time-interval ?meet_timeint),

(?meet_timeint support:ends-at-time-point ?end_time),

Ilcheck that the meeting_finished is the most recent one - as

Iithat is the end time we need

eventHasMostRecentEndTime(?end_time, portal:Meeting-Taking-Place),

{?dist_gath rdf:type meeting:Distributed-Gathering) ,

(?dist_gath support:has-time-interval ?timeint),

noValue{?timeint support:ends-at-time-point),

(?dist_gath meeting:has-local-event ?meeting_finished),

onlyOneMeetinglnSession() ,

Ilmatch on the details of the final active meeting

204

14 continued:

(?meet tive rdf:type portal:Meeting-Taking-Place),

(?meeting_active support:has-time-interval ?meet_active_timeint),

noValue{?meet_active_timeint support:ends-at-time-point),

Ilcheck that the final active meeting has more than one

Ilparticipant

Ilotherwise we need the special case to fire

IlparticipantsPresent{?meeting_active, n>n ,nl n),

->

print {nendDistGath has fired n),

(?timeint support:ends-at-time-point ?end_time)

15 - End Meeting After Distributed Gathering

[endMeetingAfterDistGath:

(?pp_event rdf:type live: Person-Present) ,

(?pp_event support:has-time interval ?pp_timeint),

(?pp_timeint support:ends-at-time-point ?pp_end_time),

(?pp_event portal:has location ?loc),

(?loc location:is located-in ?room),

(?room rdf:type location:Meeting-Room),

Iineed this to match as otherwise rule will fire before all of

lithe sign out event has been added

(?pp_end_time, support:year-of, ?year),

(?pp_end_time, support:month-of, ?month),

{?pp_end_time, support:day-of, ?day) ,

(?pp_end_time, support:hour-of, ?hour),

(?pp_end_time, support:minute-of, ?minute),

(?pp_end_time, support: second-of, ?second),

(?pp_end_time, meeting:millisecond-of, ?milli),

Ilcheck that the pp event is the most recent one - as that is

lithe end time we need

205

15 continued:

eventHasMostRecentEndTime(?pp_end_time, live:Person-Present,?room),

//match on a meeting still in session

(?meeting rdf:type portal:Meeting-Taking-Place) ,

(?meeting support:has-time-interval ?meet_timeint),

nOValue(?meet_timeint support:ends-at-time-point),

//ensure that pp_event is from this current meeting and not an

//earlier finished one that was in the same location

(?meeting portal:has-sub-event ?pp_event),

//check that there has been a distributed gathering and that it

//has ended

(?dist_gath rdf:type meeting:Distributed-Gathering) ,

(?dist_gath support:has time-interval ?dist_gath_timeint),

(?dist_gath_timeint support:ends-at-time-point ?dist_gath_end_time),

//match when we are down to the last meeting participant

participantsPresent(?meeting,"<=", "1")

->

print ("endMeetingAfterDistGath has fired"),

//assert an end time on the meeting

(?meet_timeint support:ends-at-time-point ?pp_end_time)

16 - End Meeting Before Distributed Gathering

[endMeetingBeforeDistGath:

(?pp_event rdf:type live: Person-Present) ,

(?pp_event support:has-time-interval ?pp_timeint),

(?pp_timeint support:ends-at-time-point ?pp_end_time),

(?pp_event portal:has-location ?loc),

(?loc location:is located-in ?room),

(?room rdf:type location:Meeting-Room),

206

16 continued:

Iineed this to match as otherwise rule will fire before all of

lithe sign out event has been added

(?pp_end_time, support:year-of, ?year),

(?pp_end_time, support:month-of, ?month),

{?pp_end_time, support:day-of, ?day) ,

(?pp_end_time, support:hour-of, ?hour),

(?pp_end_time, support:minute-of, ?minute),

(?pp_end_time, support: second-of, ?second),

(?pp_end_time, meeting:millisecond-of, ?milli),

Ilcheck that the pp event is the most recent one - as that is

lithe end time we need

eventHasMostRecentEndTime{?pp_end_time, live: Person-Present, ?room) ,

/Imatch on a meeting still in session

(?meeting rdf:type portal:Meeting-Taking-Place) ,

(?meeting support:has-time-interval ?meet_timeint),

noValue{?meet_timeint support:ends-at-time-point),

Ilensure that pp_event is from this current meeting and not an

I/earlier finished one that was in the same location

(?meeting portal:has-sub-event ?pp_event),

Ilcheck that there has not yet been a distributed gathering

noValue3{?dist_gath rdf:type meeting:Distributed-Gathering),

//match when we are down to the last meeting participant

participantsPresent{?meeting, "<=", "1"),

->

print {"endMeetingBeforeDistGath has fired"),

Ilassert an end time on the meeting

{?meet_timeint support:ends-at-time-point ?pp_end_timel

207

17 - Create Verbal Comment In Meeting

[createVerbalCommentInMeeting:

Ilmatch on an active Microphone-Active event

(?mic_act rdf:type live:Microphone-Active),

Illoc is a microphone-position

(?mic_act portal:has-location ?loc),

(?mic_act support:has time-interval ?timeint),

nOValue{?timeint support:ends-at-time-point),

Ilget the room location of the

(?loc location:is-located-in ?room),

(?room rdf:type location:Meeting-Room),

Ilget the ibutton reader located In the same seating position

lias the microphone

(?loc location:is-located-in ?seat-pos),

{?seat-pos rdf:type live:Seating-Position) ,

(?ibut_read_pos location:is-located-in ?seat_pos),

(?ibut_read_pos rdf:type live:iButton-Reader-Position),

Ilget the person seating in that seating position

(?pp_event rdf:type live: Person-Present) ,

(?pp_event portal:has location ?ibut_read-pos),

(?pp_event portal:has-main-agent ?person),

(?pp_event support:has-time-interval ?pp_timeint),

noValue(?pp_timeint support:ends-at-time-point),

Ilget the meeting that the pp_event is part of

(?meeting portal:has-sub-event ?pp_event)

Ilcreate a resource to become the verbal comment

makeResource{?vc)

->

print{"createVerbalCommentInMeeting has fired")

(?vc rdf:type meeting:Making-a-Verbal-Comment) ,

(?vc support:has-time-interval ?timeint),

(?vc portal:sender-of-information ?person),

(?vc portal:has location ?room),

208

17 continued:

Iiset this verbal comment as a subevent of the meeting its part of

(?meeting portal:has sub-event ?vc) ,

publishToDataspace{"TUPLE_TYPE", "TUPLE"),

publishToDataspace ("EVENT_TYPE", meeting: Making-a-Verbal-Comment) ,

publishToDataspace{"ADD_TRIPLE", ?vc, rdf:type, meeting:Making-a­

Verbal-Comment) ,

publishToDataspace{"ADD_TRIPLE", ?vc, portal:sender-of-information,

?person) ,

publishToDataspace ("ADD_TRIPLE", ?vc, support: has-time-interval,

?timeint) ,

publishToDataspace{"PUBLISH")

18 - Create Verbal Comment Outside Meeting

[createVerbaICommentOutsideMeeting:

Ilmatch on an active Microphone-Active event

(?mic_act rdf:type live:Microphone-Active),

Illoc is a microphone-position

(?mic_act portal:has location ?loc),

(?mic_act support:has-time-interval ?timeint),

nOValue{?timeint support:ends-at-time-point),

Ilget the room location of the

(?loc location:is located-in ?room),

(?room rdf:type location:Meeting-Room),

Ilget the ibutton reader located in the same seating position as

lithe microphone

(?loc location:is-Iocated-in ?seat-pos),

(?seat_pos rdf:type live:Seat position) ,

(?ibut_read-pos location:is-Iocated-in ?seat_pos),

(?ibut_read-pos rdf:type live:iButton-Reader-Position),

Ilget the person sitting in that seating position

(?pp_event rdf:type live: Person-Present) ,

209

18 continued:

(?pp_event portal:has-location ?ibut_read_pos),

(?pp_event portal:has-main-agent ?person),

(?pp_event support:has time-interval ?pp_timeint),

noValue(?pp_timeint support:ends-at-time-point),

//check that there is no meeting in session

noMeetingAtPhysLoc(?room) ,

//create a resource to become the verbal comment

makeResource(?vc)

->

print ("createVerbalCommentOutsideMeeting has fired"),

(?vc rdf:type meeting:Making-a-Verbal-Comment),

(?vc support:has-time-interval ?timeint),

(?vc portal:sender-of-information ?person),

(?vc portal:has-location ?room) ,

publishToDataspace ("TUPLE_TYPE", "TUPLE"),

publishToDataspace("EVENT_TYPE", meeting:Making-a-Verbal-Comment),

publishToDataspace("ADD_TRIPLE", ?vc, rdf:type, meeting:Making-a­

Verbal-Commen t) ,

publishToDataspace("ADD_TRIPLE", ?vc, portal:sender-of-information,

?person) ,

publishToDataspace("ADD_TRIPLE", ?vc, support:has-time-interval,

?timeint) ,

publishToDataspace("PUBLISH")

19 - Handle Microphone Active End

[handleMicrophoneActiveEnd:

(?mic_act rdf:type live:Microphone-Active),

(?mic act support:has time-interval ?timeint),

(?timeint support:ends-at time-point ?end) ,

210

19 continued:

(?vc rdf:type meeting:Making-a-Verbal-Comment) ,

(?vc support:has-time-interval ?timeint),

->

print("handleMicrophoneActiveEnd has fired"),

(?timeint support:ends-at-time-point ?end)

publishToDataspace ("TUPLE_TYPE", "TUPLE_EVENT"),

publishToDataspace ("EVENT_TYPE", meeting: Making-a-Verbal-Comment) ,

publishToDataspace("ADD_TRIPLE", ?timeint, support:ends-at-time-point,

?end) ,

publishToDataspace("PUBLISH") ,

Ilfinally delete the tuple for the start of the event

publishToDataspace("DELETE", ?vc)

20 - Archive Session

[archiveSession:

(?pp_event rdf:type live: Person-Present) ,

(?pp_event support:has-time-interval ?pp_timeint),

(?pp_timeint support:ends-at-time-point ?pp_end_time),

(?pp_event portal:has-location ?loc),

(?loc location:is located-in ?room),

(?room rdf:type location:Meeting-Room),

noMeetingAtPhysLoc(?room) ,

->

print ("archiveSession has fired"),

archiveSession ()

211

9 References

[Acc04] The Access Grid,

http://www.accessgrid.org/, 2004. (verified 31st January 2005)

[Ack87] S. Acker and S. Levitt, "Designing videoconference facilities for improved

eye contact", Journal of Broadcasting & Electronic Media, 31(2), ppI81-191, 1987.

[AKT04] The AKT Reference Ontology, http://www.aktors.org/publications/ontology/,

2002. (verified 31st January 2005)

[Ala03] Harith Alani, Srinandan Dasmahapatra, Kieron O'Hara, and

Nigel Shadbolt, "Identifying communities of practice through

ontology network analysis", IEEE Intelligent Systems 18(2), pp. 18-25,2003.

[Ama04] The Amaya Web Editor/Browser,

http://www.w3.org/Amaya/, 2004. (verified 31st January 2005)

[Ann04] The Annozilla plug-in,

http://annozilla.mozdev.org/, 2004. (verified 31st January 2005)

[Bac04] Bachler, M., Buckingham Shum, S., Chen-Burger, J., Dalton, J., De Roure, D.,

Eisenstadt, M., Komzak, J., Michaelides, D., Page, K., Potter, S., Shadbolt, N., Tate,

A., "Collaborative Tools in the Semantic Grid", GGFll - The Eleventh Global Grid

Forum, Honolulu, Hawaii, USA, June 6-10,2004.

[BeaOl] Richard Beales, Don Cruickshank, David De Roure, Nick Gibbins, Ben Juby,

Danius Michaelides and Kevin Page, "The Pipeline of Enrichment: Supporting Link

Creation for Continuous Metadata", In The Proceedings of the 7th International

Workshop on Open Hypermedia Systems, pp. 47-58, 2001.

[BecOl] Dave Beckett, "N-Triples", 2001,

http://www.w3.org/2001lsw/RDFCore/ntriples/ (verified 31st January 2005)

212

[Bec04] Dave Beckett (editor), "RDF/XML Syntax Specification (Revised)", W3C

Recommendation, 10 February 2004

[Ber98] T.Berners-Lee, R. Fielding and L. Masinter. "Uniform Resource Identifiers

(URI): Generic Syntax", RFC 2396, August 1998.

[BerOl]Tim Berners-Lee, James Hendler, Ora Lassila, "The Semantic Web", Scientific

American, May 2001.

[Ber04] Tim Berners-Lee, "Notation3", July 2004,

http://www.w3.orglDesignIssues/Notation3.html (verified 31st January 2005)

[BetOO] M. Bett, R. Gross, H. Yu, X. Zhu, Y. Pan, J. Yang and A. Waibel. "Multi modal

Meeting Tracker". In Proc. RIA02000 (Recherche d'Information Assistee par

Ordinateur), Paris, France, April 2000.

[Bla98] S. Blake, D. Black, M. Carlson, E. Davies, E. Davies, Z. Wang and W. Weiss.

"An Architecture for Differentiated Services", RFC 2475, December 1998.

[Bly93] S. A. Bly, S. R. Harrison, S. Irwin, "Media Spaces: bringing people together in

a video, audio, and computing environment", Communications of the ACM, 36(1), pp.

28-46, 1993.

[Bra94] R. Braden, D. Clark and S. Shenker. "Integrated Services in the Internet

Architecture: an Overview", RFC 1633, June 1994.

[Bri04] Dan Brickley, R.V. Guha, eds. "RDF Vocabulary Description Language 1.0:

RDF Schema", W3C Recommendation, 10 February 2004.

[Bri05] Dan Brickley and Libby Miller, "The FOAF Vocabulary Specification", 3
rd

June 2005, http://xmlns.comifoaf/O.lI (verified 20th June 2005)

213

[Bux97] W. Buxton, A. Sellen, M. Sheasby, "Interfaces for Multiparty

Videoconferences", In K.E. Finn, AJ. Sellen, & S.B. Wilbur (Eds), Video-mediated

communication, pp. 385-400, 1997, New Jersey: Lawrence Erbaum Associates.

[Car89] Nicholas Caniero and David Gelernter, "Linda in Context", Communications

of The ACM, 32(4), pp. 444-458, April 1989.

[Chi03] Patrick Chiu, Qiong Liu, John Boreczky, Jonathan Foote, Tohru Fuse, Don

Kimber, Surapong Lertsithichai, and Chunyuan Liao "Manipulating and annotating

slides in a multi-display environment", In Proc. INTERACT '03, pp. 583-590,

September 1, 2003.

[Chi99a] P. Chiu, A. Kapuskar, S. Reitmeier, and L. Wilcox. "Meeting Capture in a

Media Enriched Conference Room". In Proceedings of the Second International

Workshop on Cooperative Buildings (CoBuild'99), Lecture Notes in Computer

Science, Vol. 1670 Springer-Verlag, pp. 79-88,1999.

[Chi99b] P. Chiu, A. Kapuskar, S. Reitmeier and L. Wilcox. "NoteLook: Taking Notes

in Meetings with Digital Video and Ink", In Proc. 7th ACM Conference on Multimedia,

1999.

[Cir04] Fabio Ciravegna, Sam Chapman, Alexiei Dingli and Yorick Wilks, "Learning

to Harvest Information for the Semantic Web", in Proc. 1st European Semantic Web

Symposium, Heraklion, Greece, May 10-12,2004.

[Cor91] D. Corkhill, "Blackboard Systems", AI Expert, 6(9), pp 40-47, September

1991.

[CruOl] Don Cruickshank, Luc Moreau, David De Roure, "Architectural Design of a

Multi-Agent System for Handling Metadata Streams", In Proc. Fifth International

Conference on Autonomous Agents, pp 505-512, 2001.

[Cut02] Ross Cutler, Yong Rui, Anoop Gupta, JJ Cadiz, Ivan Tashev, Li-wei He, Alex

Colburn, Zhengyou Zhang, Zicheng Liu, Steve Silverberg. "Distributed Meetings: A

214

Meeting Capture and Broadcasting System", In Proc. 10th ACM Conference on

Multimedia, 2002.

[Dea04] M. Dean, G. Schreiber, eds. "OWL Web Ontology Language Reference",

W3C Recommendation, 10 Feb 2004.

[Den04] Laurent Denoue, Gurminder Singh, Arijit Das, "Taking Notes on PDAs with

Shared Text Input", In Proc. ED-Media 2004, June 21, 2004.

[DeR04]De Roure, D. and Hendler, J.A., "E-Science: the Grid and the Semantic Web",

IEEE Intelligent Systems, 19(1), pp 65-71,2004.

[Dou92] P. Dourish and S. Bly, "Portholes: Supporting Awareness in a Distributed

Work Group", Proceedings of the Conference on Human Factors in Computing

Systems, Monterey, CA, pp 541-547,1992.

[eBi04] eBiquity: RGB Ontologies, http://ebiquity.umbc.edu/v2.1I0ntology/, 2004.

[Eng62] Douglas C. Engelbart. "Augmenting Human Intellect: A Conceptual

Framework". Summary Report AFOSR-3223 under Contract AF 49(638)-1024, SRI

Project 3578 for Air Force Office of Scientific Research, Stanford Research Institute,

Menlo Park, Ca., October 1962.

[Eng75] Douglas C. Engelbart. "NLS Teleconferencing Features: The Journal, and

Shared-Screen Telephoning". In Proceedings of the COMPCON Conference, pp. 173-

176,1975.

[EQU04] The EQUATOR Interdisciplinary Research Collaboration,

http://www.equator.ac.uk. 2004. (verified 31st January 2005)

[Equ04b] Equip4j,

http://www.crg.cs.nott.ac.ukl-cmglEquator/. 2004 (verified 31 st January 2005)

[Fl097] Floyd, S., Jacobson, V., Liu, c., McCanne, S., and Zhang, L., "A Reliable

Multicast Framework for Light-weight Sessions and Application Level Framing",

IEEE/ACM Transactions on Networking, 5(6), pp. 784-803, December 1997.
215

[FOA05a] "The FOAF-a-Matic", http://www.ldodds.comlfoaflfoaf-a-matic.html

(verified 20th June 2005)

[FOA05b] "FOAF Explorer", http://xmI.mfd-consult.dk/foaf/explorer/ (verified 20th

June 2005)

[For82] C. L. Forgy, "RETE: A Fast AlgOlithm for the Many Patterns/Many Objects

Match Problem", Artificial Intelligence, 19(1), pp. 17-37, 1982.

[Go103] Jennifer Golbeck, Bijan Parsia, and James Hendler, "Trust Networks on the

Semantic Web", In Proc. Cooperative Intelligent Agents 2003, Helsinki, Finland,

August 2003.

[Go086] G. O. Goodman, M. J. Abel, "Collaboration research in SCL", In Proc. The

1986 ACM Conference on Computer-Supported Cooperative Work, Austin Texas, pp

246-251, Dec 3-6,1986.

[GreOO] Chris Greenhalgh, Jim Purbrick, Dave Snowdon, "Inside MASSIVE-3:

Flexible Support for Data Consistency and World Structuring", In Proc. Third

International Conference on Collaborative Virtual Environments, pp 119-127, San

Francisco, California, 2000.

[Gre02] Chris Greenhalgh, "EQUIP: An Extensible Platform For Distributed

Collaboration", In Proc. WACE 2002, Edinburgh, UK, 2002.

[Gro03] Paul Grosso, Eve Maler, Jonathan Marsh, Norman Walsh, eds. "XPointer

Framework", W3C Recommendation, 25 March 2003.

[Gut96] C. Gutwin, S. Greenberg, "Workspace Awareness For Groupware", In Proc.

CHI '96, pp 208-209, 1996.

[Gut97] C. Gutwin "Workspace Awareness in Real-Time Distributed Groupware",

Ph.D. Thesis, University of Calgary, Canada, 1997.

216

[Har03] Harris, Stephen and Gibbins, Nicholas, "3store: Efficient Bulk RDF Storage",

In Proc. 1st Intemational Workshop on Practical and Scalable Semantic Web Systems,

Sanibel Island, FlOlida, USA. ppl-15, 2003.

[HiI81] S. R. Hiltz and M. Turoff, "The evolution of user behavior in a computerized

conferencing system", Communications of the ACM, 24(11), pp. 739-751,1981.

[Ho1l92] Jim Hollan and Scott Stometta. "Beyond Being There". In Proc. ACM

CHI'92, pp. 119-125, 1992.

[Hua03] K. Huang, M. M. Trivedi, "Video arrays for real-time tracking of person, head,

and face in an intelligent room," Machine Vision and Applications, 14(2), pp. 103-111,

June 2003.

[iBu04] iButton - Contact Memory, http://www.ibutton.com/. 2004. (verified 31st

January 2005)

[Jav04], JavaSpaces, http://java.sun.com/developer/products/jinilindex.jsp, 2004.

(verified 31st January 2005)

[Jen04] The Jena Semantic Web Framework,

http://jena.sourceforge.netl, 2004. (verified 31st January 2005)

[Jub03] Benjamin Juby and David De Roure, "Real-Time Speaker Identification and

Participant Tracking in The Access Grid", In Proc. 4th Annual Postgraduate

Symposium on the Convergence of Telecommunications, Networking and

Broadcasting (PG Net 2003) ,pp. 313-319, Liverpool, UK, June 2003.

[KahOl] Jose Kahan, Marja-Riitta Koivunen, Eric Prud'Hommeaux, and Ralph R.

Swick, "Annotea: An Open RDF Infrastructure for Shared Web Annotations",

in Proc. of the WWWlO Intemational Conference, Hong Kong, May 2001.

[Koi03] Marja-Riitta Koivunen, Ralph Swick, Eric Prud'hommeaux, "Annotea Shared

Bookmarks", In Proc. of the KCAP 2003 workshop on knowledge markup & semantic

annotation, Sanibel, FlOlida, October 2003.
217

[Kot04] Alan Kotok, Ralph Swick, "The Zakim IRC Teleconference Agent",

http://www.w3.org/2001112/zakim-irc-boLhtml, 2004. (verified 31st January 2005)

[Man97] A. Mane, "Group space: The role of video in multipoint videoconferencing

and its implication for design", In K.E. Finn, AJ. Sellen, & S.B. Wilbur (Eds), Video­

mediated communication, pp. 401-414,1997, New Jersey: Lawrence Erbaum

Associates.

[Mar99] W. Mark."Turning pervasive computing into mediated spaces", IBM Systems

Journal, 38(4), pp 677-692, 1999.

[MemOS] The Memetic Project, http://www.memetic-vre.neti(viewed 25th June 2005)

[MikOO] Mikic I., Kohsia H., Tlivedi M., "Activity monitoring and summarization for

an intelligent meeting room" Proceedings IEEE Workshop on Human Motion, Austin

Texas, December 2000.

[Mil68] R. B. Miller, "Response time in man-computer conversational transactions", In

Proc. AFIPS Fall Joint Computer Conference, Vol. 33, pp 267-277, 1968.

[Mil92] D. Mills "Network Time Protocol (Version 3) Specification, Implementation

and Analysis", RFC 1305, March 1992.

[Mi104] I.C. Millard, D.C. De Roure, N.R. Shadbolt, "The use of ontologies in

contextually aware environments", In Proc. First International Workshop on

Advanced Context Modelling, Reasoning and Management, Nottingham, UK, pp.42-

47,2004

[Min93] ScotL L. Minneman, Steve. R Harrison, "Where Were We: making and using

near-synchronous, pre-narritive video", In Proceedings of ACM Multimedia '93, pp.

207-214, 1993.

218

[Min04] MINDSWAP Conference Ontology,

http://www.mindswap.org/~golbeckiweb/www04photo.owl, 2004. (verified 31st

January 2005)

[MYS04] The MySQL Database Server,

http://www.mysql.com/. 2004. (verified 31st January 2005)

[PagOI] Kevin Page, Ben Juby, Richard Beales and David De Roure, "Continuous

Metadata". In Proc. 2nd Annual Postgraduate Symposium on The Convergence of

Telecommunications, Networking & Broadcasting (PGNET 2001), pp.265-269,

Liverpool, UK, 200l.

[Pay02a] Payne, T. R. and Miller, L., "Calendars, Schedules and the Semantic Web".

ECRIM News(51), pp. 16-17,2002.

[Pay02b] Payne, T. R., Singh, R. and Sycara, K., "Calendar Agents on the Semantic

Web", IEEE Intelligent Systems 17(3), pp. 84-86,2002.

[Ram04] S. D. Ramchum, B. Deitch, M. K. Thompson, D. C. De Roure, N. R.

Jennings, and M. Luck, "Minimising Intrusiveness in Pervasive Computing

Environments using Multi-Agent Negotiation", In Proc. First Annual International

Conference on Mobile and Ubiquitous Systems: Networking and Services

(MobiQuitous'04), pp. 364-372, Boston, Massachusetts, 2004.

[RDQ03] Hewlett-Packard Labs, RDQL - RDF data query language,

http://www.hpl.hp.com/semweb/rdql.htm. 2003. (verified 31st January 2005)

[Rod91] T. A. Rodden. "A Survey of CSCW Systems", Interacting with Computers,

3(3), pp 319-353, 1991.

[SegOO] Bill Segall, David Arnold, Julian Boot, Michael Henderson and Ted Phelps

"Content Based Routing with Elvin4", In Proc. AUUG2K, Canberra, Australia, June

2000.

219

[SeI92] Sellen, A., Buxton, W. & Amott, J. "Using spatial cues to improve

videoconferencing", in Proc. CHI '92, pp 651-652, 1992.

[Sch03] Ronald Schroeter, Jane Hunter, Douglas Kosovic, "Vannotea - A

Collaborative Video Indexing, Annotation and Discussion System For Broadband

Networks" In Proc. KCAP 2003 workshop on knowledge markup & semantic

annotation, Sanibel, Florida, October 2003.

[sch04] schraefel, m. c., Shadbolt, N. R., Gibbins, N., Glaser, H. and Harris, S. "CS

AKTive Space: Representing Computer Science in the Semantic Web," In Proc. 2004

World Wide Web Conf., ACM Press, 2004.

[Ste86] M. Stefik, D. G. Bobrow, S. Lanning, D. Tatar, G. Foster, "WYSIWIS revised:

early experiences with multi-user interfaces", In Proc. The 1986 ACM Conference on

Computer-Supported Cooperative Work, Austin Texas, pp 276-290, Dec 3-6, 1986.

[Ste87] M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning and L. Suchman,

"Beyond The Chalkboard: Computer support for collaboration and problem solving in

meetings", Communications of the ACM, 30(1), pp. 32-47, 1987.

[Swi04] Ralph Swick, "The RRSAgent IRC Bot Description",

http://www.w3.org/2002/03/RRSAgent, 2004. (verified 31st January 2005)

[TSp04] TSpaces - Intelligent Connectionware,

http://www.almaden.ibm.com/cs/TSpaces/. 2004. (verified 31st January 2005)

[Tur02] O. Turk, O. Sayli, H. Dutagaci, L. Arslan, "A Sound Source Classification

System Based on Subband Processing", In Proc. 7th International Conference on

Spoken Language Processing, September 2002.

[Ver97] R. Veltegaal, "Conversational Awareness in Multiparty VMC", Extended

Abstracts of ACM CHI' 97 Conference on Human Factors in Computing Systems,

Atlanta, GA, 1997.

220

[Ver98] R. Vertegaal ,H. Vons ,R. Slagter, "Look Who's Talking: The GAZE

Groupware System", In Proc. CHI '98, pp 293-294, April 1998.

[Wai03] Alex Waibel, Tanja Schultz, Michael Bett, Mathias Denecke, Robert Malkin,

Ivica Rogina, Rainer Stiefelhagen, lie Yang "SmaRT: The Smart Meeting Room Task

at ISL", In Proc. IEEE International Conference on Accoustics, Speech and Signal

Processing, pp. 752-755, Hong Kong, April 2003.

[Yam96] Yamaashi, K., Cooperstock, l., Narine, T. & Buxton, W. "Beating the

limitations of camera-monitor mediated telepresence with extra eyes". In Proceeding

of CHI '96, pp 50-57, 1996.

221

