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Abstract 

The Western English Channel is a seasonally stratified temperate coastal sea where a subsurface 

chlorophyll maximum (SCM) is typically detectable within the seasonal thermocline. The SCM often 

develops as a thin layer (< 5 m) that may contain elevated concentrations of phytoplankton (subsurface 

chlorophyll maximum thin layer; SCMTL). During summer 2013 a study was conducted offshore of 

Falmouth, UK to assess spatial and short-term temporal variability in SCM thickness in relation to 

water column structure and physical conditions and to evaluate any associated changes in 

phytoplankton community structure. SCMTL were observed in 18 of 52 vertical profiles, typically 

characterised by higher chlorophyll concentrations than broader SCM. SCMTL were generally 

associated with a ‘stepped’ thermocline, likely representing the presence of one or more shallow mixed 

layers forming above/within the seasonal thermocline, and related to increased stratification and 

stability compared to broader SCM. Pseudo-nitzschia was almost exclusively the dominant diatom 

taxon in SCM, yet statistically distinct differences in community structure existed between SCMTL 
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and broader SCM. Within the phytoplankton, the distinction was largely due to a greater biomass of 

Proboscia alata and other rhizosolenid diatoms, and the dinoflagellate Ceratium lineatum in 

SCMTL, and a smaller population of the diatom Chaetoceros spp. There was also a distinction 

amongst heterotrophic dinoflagellates, with enhanced biomass of Gyrodinium spp. in SCMTL and a 

reduction in Diplopsalis lenticula. We propose that this observed difference resulted from 

promotion of phytoplankton better adapted to environmental conditions more specific to SCMTL 

compared to broader SCM. With more intense and prolonged stratification projected for the NW 

European shelf, there may be increased prevalence of SCMTL and the associated larger-sized 

specialised taxa, with implications for increased carbon export. This study adds to a growing body 

of evidence of the importance of SCMTL in coastal and shelf seas, and highlights the requirement 

for improved understanding of physical forcing, and the ecology and physiology of key taxa, 

particularly as predicted changes in stratification could alter the role of SCM phytoplankton in a 

future influenced by climate change. 

 

Non-standard abbreviations: SCMTL – Subsurface chlorophyll maximum thin layer 

Graphical Abst 

 

 

Keywords: Western English Channel · Subsurface chlorophyll maximum · Thin layers · 
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1. Introduction 

Subsurface chlorophyll maxima (SCM) are commonly identified in the seasonally stratified waters of 

temperate and high latitude coastal and shelf seas (Cullen, 1982, Holligan et al., 1984a, Martin et al., 

2010). The introduction of continuous in vivo fluorometry fifty years ago (Lorenzen, 1966) allowed 

these structures to be recognised and increasing deployment of AUVs, towed undulators and 

autonomous profilers over the past two decades has demonstrated their ubiquity in shelf seas (Wang 

and Goodman, 2009, Martin et al., 2010, Sullivan et al., 2010). SCM are commonly observed within 

the seasonal thermocline that represents an interface at which both light availability and nutrient 

concentration are sufficient to support phytoplankton growth in a stratified water column (Holligan and 

Harbour, 1977, Holligan et al., 1984a, Sharples et al., 2001). 

 

SCM vary widely in thickness, but in coastal and shelf seas they often occur as thin layers (SCMTL: < 

5 m thick following the definition of Dekshenieks et al. (2001), with a horizontal extent of up to 

several kilometres and duration from a few hours to a few weeks (Bjørnsen and Nielsen, 1991, 

Dekshenieks et al., 2001, Durham and Stocker, 2012). Whilst methods for continuous measurement of 

chlorophyll in the subsurface have allowed for the consistent detection of SCMTL in a variety of 

coastal environments (Bjørnsen and Nielsen, 1991, Rines et al., 2010, Churnside and Marchbanks, 

2015), they remain greatly under-sampled by conventional techniques, such as CTD rosette systems, so 

that their taxonomic composition is less well described.  

 

Current trends of increasing ocean stratification due to warming (Bindoff et al., 2007) and localised 

freshening (Lyman et al., 2010) are predicted to develop further in future projections (Capotondi et al., 

2012). Biogeochemical models predict a decrease in primary production and export of particulate 

organic carbon with increasing stratification (Steinacher et al., 2010). However, these models are 

highly simplified, not accurately replicating the phytoplankton community or the physics within the 

marine ecosystem, and their predictions have been challenged by studies conducted in stratified regions 
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of the modern ocean and by palaeoceanographic evidence (Kemp et al., 2006, Kemp and Villareal, 

2013, Kemp and Villareal, 2018). SCM development is promoted in stratified waters, so it is important 

to improve our understanding of SCM ecology in the shelf seas, in particular because these regions of 

the marine environment are highly significant for global biogeochemical cycling and trophic dynamics 

(Muller-Karger et al., 2005, Jahnke, 2010, Simpson and Sharples, 2012). Moreover, shelf seas are of 

great socio-economic importance, since their phytoplankton form the base of food chains that support 

over 90 % of global fish catches (Pauly et al., 2002). Here we focus on a region of the NW European 

continental shelf, where more intense and persistent seasonal stratification has specifically been 

projected (Lowe et al., 2009, Sharples et al., 2013, Tinker et al., 2016).  

 

There have been few detailed studies of SCM communities in the NW European shelf seas. Some 

SCM appear to be abundant in small cells (< 20 μm), such as <10 μm naked flagellates (Holligan et al., 

1984b) and cyanobacteria (Hickman et al., 2009, Sharples et al., 2009), but on other occasions high 

abundances of much larger cells (> 50 μm), such as rhizosolenid diatoms have been reported (Holligan 

and Harbour, 1977, Weston et al., 2005). The occurrence of rhizosolenid diatoms, in particular, may be 

significant, since they are known to contribute massive flux to the sea floor (Sancetta et al., 1991, 

Kemp et al., 2000). It is therefore important to establish an understanding of community structure 

within SCMTL and broader SCM, as different taxa may have particular roles for biogeochemical 

processes, such as carbon transfer to depth, or to higher trophic levels and, consequently, for our 

predictions of how shelf sea ecosystems will respond to future climate change. 

 

The Western English Channel has been routinely surveyed for over a century (Southward et al., 2005) 

and time series measurements have been made at a number of locations, most notably stations L4 and 

E1 (Fig. 1) via the Western English Channel Observatory (WCO) (Harris, 2010, Smyth et al., 2015). 

Weekly water samples from a depth of 10 m from L4 have formed the basis for several studies of 

phytoplankton community dynamics (Widdicombe et al., 2010, Smyth et al., 2015). However, there 
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has been little sampling of the SCM, although water column profiles of chlorophyll-fluorescence 

collected by the WCO from both L4 and E1 show that SCM are a recurrent feature of the summer 

stratification (at typical depths of 20 – 30 m), and studies of CO2 fluxes have implicated the SCM in 

CO2 uptake (Kitidis et al., 2012). Further afield, isolated studies have identified intense SCMTL in the 

southern Celtic Sea/ Western Channel (Sharples et al., 2001). 

 

Motivated by these recent observations of a widespread SCM (SCMTL and broader SCM) in the 

Western English Channel, the aim of this paper is to present the first detailed study of SCMTL and 

broader SCM in the region. To test our main hypothesis that SCMTL community structure is distinct 

from that of broader SCM, we assess spatial and short-term temporal variation in phytoplankton 

community structure with regard to similarities/differences in community structure between SCMTL 

and broader SCM, and we compare to that of surface and bottom waters. We also investigate 

variability in vertical chlorophyll structure to evaluate controls on the occurrence of SCMTL compared 

to broader SCM, and relate their development to water column structure and physical conditions. 

 

2. Methods 

2.1. Sampling 

The study was conducted offshore of Falmouth, UK (Fig. 1) during the summer of 2013, between the 

24
th
 of June and 4

th
 of July, in seasonally stratified waters, with characteristic high sea surface 

temperatures (12.5 - 15C; data not shown). The study area ranged from being in very close proximity 

to the tidal mixing front to over 30 km offshore, thus representative of a range of conditions. Note that 

we use the term tidal mixing front in reference to the frontal boundary that separated shallower mixed 

inshore waters from deeper stratified waters further offshore, as described by Holligan and Harbour 

(1977). Sampling strategy combined repeat sampling of individual stations, as well as a series of 

inshore – offshore transects (Fig. 1). Transects were completed in approximately 1.5 - 4 hours, with the 

exception of the 25
th
 June transect completed in approximately 6 hours. Repeat stations were chosen 
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based on past data revealing their location to be far enough away from the tidal mixing front to be 

permanently stratified in June/July, but also within a reasonable travel distance to enable regular 

sampling. These repeat stations were sampled on a daily basis (weather permitting) and in one instance 

an hourly basis. A SeaBird SBE19plus V2 conductivity, temperature, depth (CTD) probe mounted 

with a Wet Labs ECO FLNTU fluorometer was used to collect vertical water column profiles of 

temperature, salinity and chlorophyll-fluorescence at 52 stratified sites in the Western English Channel 

(Fig. 1). The configuration of the CTD package allowed for slow descent/ascent rates without slowing 

sensor responses, thus improving dynamic accuracy and allowing small scale structure to be resolved. 

Specifically, the CTD system was typically deployed at a descent/ascent rate of 0.01 - 0.1 m s
-1

 (rate 

slowed on approach to SCM), with a data acquisition rate of 2 Hz. This CTD casting protocol was 

designed for very high resolution profiling, which in combination with a generally calm sea state 

allowed SCMTL as thin as 0.04 m to be resolved (Fig. S1) (thickness was measured at half maximum 

intensity of the chlorophyll peak – see 2.5, below). In addition, CTD upcasts and downcasts were 

consistently similar, indicating no significant disruption of SCM chlorophyll structure by the CTD. 

Niskin bottles used to sample this small vertical extent of the water column were 50.8 cm tall and the 

approximate midpoint of these bottles was aligned with the fluorometer, so we could be confident, with 

the CTD casting strategy, that the bottle samples included material from the narrow peaks. 

 

Current velocity was measured with a hull mounted RDI Workhorse 600 kHz Acoustic Doppler 

Current Profiler (ADCP) and wind speed measurements were taken from the WCO L4 autonomous 

buoy situated at 50 15.000 N, 004 13.000 W (PML 2013), approximately 40 km from the sampling 

area. Vertical profiles of buoyancy frequency, a measure of stratification, were computed from CTD 

data using SBE data processing software, where the buoyancy frequency was calculated using the 

Fofonoff adiabatic levelling method (Bray and Fofonoff, 1981).   
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Figure 1. Study area in the Western English Channel where sampling occurred between the 24th of June and the 4th of July 

2013. The blue cross indicates the location of Falmouth and the WCO stations L4 and E1 are marked with blue diamonds. 

Circles indicate where broader SCM were detected and triangles indicate where SCMTL were detected. Red symbols 

indicate sites where discrete samples analysed for phytoplankton were collected and white symbols represent sites where 

only a CTD profile and ADCP data was collected.  Repeat sampling stations 1 and 2 are circled and all sites that were 

sampled for phytoplankton analysis are labelled with their site number and sample ID. Site numbers (1 to 52) were allocated 

in chronological order to the 52 stratified sites profiled during the study, and sample IDs were allocated to sites where 
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discrete samples were collected for phytoplankton analysis. An upper case sample ID indicates sampling of a SCMTL and a 

lower case ID indicates sampling of a broader SCM. Transects travelled during the sampling period are shown in the 

miniature transect maps, where a dashed black line indicates a transect travelled and site numbers included in each transect 

are given in order of distance from shore. 

 

Water samples were collected from the SCM at 12 sites (Fig. S1) typically using a CTD Niskin rosette 

system (6 x 5 L Niskin bottles), but in one case using a custom made horizontal sampler consisting of 

three 50 ml syringes spaced approximately 20 cm apart, acting as a multiple ‘slurp gun’ (analysis 

performed on water sample from the middle syringe). The slurp gun was similar in design to the 

gradient sampler of Bjørnsen and Nielsen (1991), and was mounted on the CTD rosette frame. Water 

samples were also collected from the surface and bottom waters at 4 of the 12 sites (Fig. S1) using the 

CTD Niskin rosette system. Water samples were analysed for chlorophyll concentration, the 

Fluorescence Induction and Relaxation (FIRe) parameter of Fv/Fm, a measure of photosynthetic 

efficiency (Kolber et al., 1988), and for phytoplankton identification, enumeration and biomass 

determination. 

  

2.2. Determination of chlorophyll concentration  

Samples for chlorophyll analysis were collected by filtering 50 ml of water sample through 25 mm 

Whatman GF/F filters immediately after collection. To assess the relative contributions of < 10 µm and 

> 10 µm phytoplankton to total chlorophyll, water samples were passed through Whatman track-etched 

polycarbonate membrane with a pore size of 10 µm before being passed through a GF/F filter. These 

filters were stored in a -20 C freezer until analysis, which was conducted as soon as possible on return 

to the lab to avoid error associated with pigment degradation at -20 C (Graff and Rynearson, 2011). 

Chlorophyll was extracted in 90 % acetone via sonication and concentrations determined using a 

Turner Designs 10AU fluorometer (Welschmeyer, 1994). Chlorophyll values measured on the water 

samples were used to calibrate the fluorometer mounted on the CTD. Determining chlorophyll 

concentrations also allowed identification of where water samples were collected within the SCM, 

confirming all samples were collected from/very near to the depth of maximal chlorophyll, i.e. relative 
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sampling depth within SCM was consistent (Fig. S1). Therefore, we could be confident that any 

differences in community structure observed within SCM of different sampling casts were not simply a 

function of the relative depth of sampling within the SCM.  

 

2.3. Assessment of photophysiology using FIRe measurements 

Measurements of Fv/Fm were collected for SCM, bottom water and surface samples by decanting 5 

ml (which was first dark adapted by storing in the dark for at least 25 minutes) into a cuvette that 

was analysed in the Satlantic bench top FIRe instrument. The FIRe protocol given in Bibby et al. 

(2008) was followed. Thirty unique iterations from the same sample were averaged, the sample 

delay was set at 1000 msec and the gain set at between 50 – 70 % of the sensor’s saturation. Raw 

FIRe data was processed to generate the parameters of Fm and Fo (maximum and minimal 

fluorescence yield) based on the biophysical model of Kolber et al. (1988) using MATLAB 

R2013a. The parameter of Fv/Fm was calculated using equation 1, which includes blank correction, 

for which 0.7 µm filtered seawater was analysed at the start and end of each day: 

 

  

  
  

                                        

                  
                   (1) 

 

2.4. Phytoplankton identification, enumeration and biomass determination 

Samples for phytoplankton analysis were collected by decanting 50 ml of water sample into a darkened 

glass bottle and preserving in acidic Lugol’s iodine to a final concentration of 1 % (analysis thus did 

not consider coccolithophorids). For analysis, 10 ml of preserved sample was settled in a sedimentation 

chamber for 24 hours and cells then identified and counted using a Brunel SP951 inverted trinocular 

light microscope (Utermöhl, 1958). Individual cells were counted in all cases, whether they be part of a 

colony/chain or solitary. Also, cells were counted irrespective of trophic status because although 

phytoplankton are traditionally regarded to derive nutrition through obligate photoautotrophy, some 

dinoflagellate and ciliate taxa are known to be mixotrophic or heterotrophic, and are routinely included 
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in phytoplankton counts (Olenina et al., 2006, Widdicombe et al., 2010). Therefore, the use of the term 

phytoplankton encompasses photosynthesising microscopic algae, including mixotrophs, and 

heterotrophic dinoflagellates and ciliates. Numerically dominant taxa/groups (> 50 cells per ml) were 

counted along a single middle transect under 100x or 250x magnification depending on cell size. 

Cryptophytes (> 8 μm) and unidentified small naked dinoflagellates (10 – 20 μm and 20 – 25 μm) were 

also counted along a single middle transect at 250x magnification. All other cells ≥ 10 μm were 

counted at 100x magnification during examination of the entire chamber base plate. A complete list of 

phytoplankton taxa/groups identified by microscopy is presented in Table S1, with the authority 

provided where appropriate (Guiry and Guiry, 2018). It was not possible to identify most nano-

phytoplankton < 10 μm or any pico-phytoplankton, so the chlorophyll concentrations of the < 10 µm 

and > 10µm phytoplankton fractions of all samples analysed for phytoplankton were determined.  

 

Cells were identified to a species level where possible, but when species could not be differentiated 

accurately with optical microscopy, cells were identified to the genus level, e.g. Chaetoceros spp. 

(thought to be mostly Chaetoceros brevis and Chaetoceros debilis). Any remaining unidentified 

diatoms were grouped as pennate or centric according to size (Table S1). Unidentified dinoflagellates 

and ciliates were also grouped according to size and with reference to cell wall structure where 

appropriate (e.g. 10 – 20 μm and 20 – 25 µm naked dinoflagellates, 10 – 30 μm armoured 

dinoflagellates, and small (< 20 μm), medium (20 – 40 μm) and large (> 40 μm) aloricate ciliates). 

Some genera were classified into size categories, including Pleurosigma, Thalassiosira, 

Protoperidinium and Rhizosolenia (Table S1). In the case of Rhizosolenia, small diameter cells 

appeared to be mainly Rhizosolenia setigera, and medium and large diameter cells appeared to be a 

mix of Rhizosolenia imbricata and Rhizosolenia styliformis. Note that we use the term rhizosolenids 

more generally in the text to encompass genera within the family Rhizosoleniaceae, including 

Rhizosolenia, Proboscia, Guinardia and Dactyliosolen. 
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Cell biovolume was calculated for each taxon/taxon size category/group using geometric shapes and 

formulae of Olenina et al. (2006). Dimensions of at least 30 cells per taxon/taxon size category/group 

(only less when rare) were measured with the open source software ‘ImageJ’. Cell biovolume was 

converted to cell carbon biomass using the carbon - biovolume relationships of Menden-Deuer and 

Lessard (2000).  

 

2.5. Definition of Subsurface Chlorophyll Maximum Thin Layers and chlorophyll intensity ratio 

To distinguish a SCMTL from a broader SCM three specific criteria were used, which were based 

upon three requirements developed by Dekshenieks et al. (2001) and subsequently adopted by other 

reviews (Durham and Stocker, 2012). These were: (1) The vertical thickness of the thin layer is less 

than 5 m, where thickness was measured at half maximum intensity of the chlorophyll signal; (2) The 

peak chlorophyll concentration is at least three times greater than the background intensity values, 

where background values were defined as values taken from the bottom mixed layer; and (3) The thin 

layer is present as a persistent feature, existing in at least two repeated CTD casts. To determine if a 

SCM adhered to the second requirement the ratio of peak chlorophyll concentration to background 

chlorophyll concentration was determined and is referred to hereafter as the chlorophyll intensity ratio. 

 

2.6. Statistical analysis 

Two multiple linear regression analyses were performed using SigmaPlot 12.5 software to identify 

predictors of the SCM characteristics thickness and chlorophyll intensity ratio from a database of 

environmental data that included the physical forcing parameters of buoyancy frequency, current 

velocity and wind speed. Phytoplankton community structure was investigated using PRIMER v6 

software (Clarke and Warwick, 2001, Clarke and Gorley, 2006). Statistical analysis was conducted on 

carbon biomass data as biomass provides a more accurate representation of community structure than 

abundance when the community consists of taxa spanning a range of different sizes, and because 

biomass is a more biogeochemically relevant property (Paasche, 1960). Biomass data for each 
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taxon/taxon size category/group identified within the Lugol’s preserved water samples (Table S1) was 

standardised by dividing individual biomass values by the total biomass (inclusive of autotrophs, 

mixotrophs and heterotrophs) identified for a given sample, then normalised by performing a square 

root transformation to moderate the influence of dominant taxa/groups (e.g. Pseudo-nitzschia) on 

similarity between samples. To explore similarity of community structure among SCMTL and broader 

SCM a cluster analysis with SIMPROF (Similarity Profile Analysis; significance level at 0.05) was 

performed, using the Bray-Curtis index as the measure of similarity. SCM that were most similar and 

significantly different from other SCM were grouped into clusters, and a SIMPER (Similarity 

Percentage Analysis) was performed to investigate similarities within clusters and dissimilarities 

between clusters. A second SIMPER analysis was conducted to further investigate the community 

structure dissimilarity apparent between SCMTL and broader SCM, whereby all SCMTL samples > 68 

% similar were grouped to compare to broader SCM samples that were > 68 % similar. A post hoc 

analysis of similarity (one-way ANOSIM) was applied to determine the level of separation between 

SCMTL and broader SCM samples (given by global R value, where values close to 0 indicate no 

separation and values close to 1 indicate high separation), and a non-metric multi-dimensional scaling 

(nMDS) plot was used to visually display the separation between samples. Samples with greater 

community resemblances were spatially closer than ones that were less similar. The stress level of the 

nMDS plot is a measurement of how accurate a representation the ordination is, where a value below 

0.2 is considered to indicate a good fit (Zuur et al., 2007). 

 

3. Results 

3.1. Distribution and characteristics of SCMTL and broader SCM 

A total of 52 profiles were collected between 24
th
 June and 4

th
 July, with 18 profiles constituting 

SCMTL meeting the criteria outlined above (Fig. 1 and S1; details provided in Table S2). Broader 

SCM ranged in thickness from the 5 m threshold to over 20 m, while SCMTL ranged down to less than 

10 cm, with most SCMTL being less than 3 m (12 of 18 SCMTL observed) (Fig. 2 and S1). Maximum 
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chlorophyll concentrations ranged from 1.1 – 4.5 μg L
-1

 for SCMTL and 0.9 – 3.6 μg L
-1

 for broader 

SCM (Fig. S1; data in Table S2), while chlorophyll intensity ratios ranged from 4.9 to 10.7 for SCMTL 

and were generally between 1.3 and 10.5 for broader SCM. Despite similar ranges, 72 % of SCMTL 

intensity ratios were > 8, whereas 70 % of intensity ratios for broader SCM were < 8 (Fig. 2). The 

depth of maximal chlorophyll for all SCMTL and broader SCM was shallower than 35 m, with the 

majority of broader SCM (30 of 34) being 10 – 25 m deep and the majority of SCMTL (12 of 18) 

being 20 – 25 m deep (Fig. 3). SCM depth generally varied according to water column depth, with 

shallower SCM occurring in shallower water columns and vice versa (Fig. S1; data in Table S2). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Chlorophyll intensity ratio and thickness of chlorophyll maxima at all 52 stratified sites profiled in the Western 

English Channel. Red bars represent SCMTL and yellow bars represent all other/broader SCM. Depth profiles featured are 

example ‘end members’:- an intense and thin SCMTL, and a less intense, broad SCM.     
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Figure 3. Depth of chlorophyll peak (at maximal intensity) at all stratified sites profiled during study of the Western English 

Channel. The hatched section of the stacked bars represents broad SCM and the block grey section represents SCMTL.  

 

3.2. SCM relation to water column structure and physical forcing  

3.2.1. Association with the thermocline 

All SCMTL and broader SCM were closely associated with the base of the thermocline (Figs. 4, 5, 6 

and S1) (also the pycnocline since density variability was dominated by temperature; data not shown). 

The thermocline took on three main forms, which will be referred to as (1) Gradual (one thermocline 

present, exhibiting a temperature change of < 1 ˚C over 3 m); (2) Simple steep (one thermocline 

present, exhibiting a temperature change of > 1 ˚C over 3 m); and (3) Stepped (two thermoclines 

present separating three layers of mixed water, where the lower thermocline typically exhibited a 

temperature change of > 1 ˚C over 3 m) (Fig. 4). The difference in temperature between the surface 

and bottom waters at each site (an indication of the level of stratification) ranged from 0.73 C to 4.00 

C (Fig. S1; data in Table S2). SCMTL were most commonly associated with a stepped thermocline 

(14 of 18 SCMTL observed), and larger differences in temperature (14 of 18 SCMTL profiles had a 

surface to bottom temperature difference of > 3 C). Whereas broader SCM were mostly associated 
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with a gradual thermocline (22 of 34 broader SCM observed) spanning smaller differences in 

temperature (30 of 34 broader SCM profiles had a surface to bottom temperature difference of < 3 C). 

A gradual thermocline was often observed at sites furthest inshore, i.e. in closest proximity to the tidal 

front. Additionally, chlorophyll peaks with higher chlorophyll concentrations, whether they were 

SCMTL or broader SCM, were associated with a greater surface to bottom temperature difference 

(Figs. 5, 6 and S1; data in Table S2). 

 

 

 

 

 

 

 

 

Figure 4. Example profiles illustrating the types of thermocline observed: 1. Gradual (site 22 profiled on the 28
th

 June); 

2. Simple steep (site 6 profiled on the 25
th

 June); 3. Stepped (site 25 profiled on the 29
th

 June). 
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Figure 5. Temperature and chlorophyll profiles collected at repeat station 1 (profile dates and times given). Profiles in 

column one show water column temperature and chlorophyll structure from day to day during the survey, profiles in 

column two were all collected on the 26
th

 June and profiles in column three were all collected on the 29
th

 June at hourly 

intervals. Site numbers given in the top right hand corner of each plot, with sample IDs included in brackets, where an 

upper case ID indicates a SCMTL and a lower case ID indicates a broader SCM. The green line represents chlorophyll 

concentration determined from CTD chlorophyll-fluorescence, the blue dashed line represents temperature, red circles 

where Niskin water samples were collected and the red X where a slurp gun sample was collected.  
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Figure 6. Temperature and chlorophyll profiles of stratified sites profiled along seven transects travelled during the 

survey period as indicated in Fig. 1. Site numbers given in the top right hand corner of each plot, with sample IDs in 

brackets, and profiles at repeat station 1 (R1) and repeat station 2 (R2) are indicated. Upper case sample IDs indicate 

SCMTL and lower case IDs indicate broader SCM. SCM thickness, SCM maximum chlorophyll and surface to bottom 

temperature difference (ΔT) for each profile is also given. Plots for each transect are shown in order of location from 

shore, moving offshore as arrows indicate. Therefore, these profiles represent a range of conditions, from near frontal to 

well established stratification. Dates and profiling times for each site are given. The green line represents chlorophyll 

concentration determined from CTD chlorophyll-fluorescence, the blue dashed line represents temperature, red circles 

where Niskin water bottle samples were collected and the red X where a slurp gun sample was collected. 
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3.2.2. Repeat stations 

At repeat station 1 (Fig. 1; sampled frequently from 24
th
 June to 4

th
 July) thermocline form was quite 

variable from day to day over the survey period, being a gradual, simple steep and stepped 

thermocline, with apparent progression in that order (Fig. 5). Thermocline depth (at base of 

thermocline) ranged from approximately 15 m to 27 m and the difference in temperature between the 

surface and bottom waters ranged from 2.57 – 4.00 C (Fig. 5; Table S2). By contrast, an hourly time 

series over 8 hours at repeat station 1 on 29
th
 June (site 23 – 30) showed the thermocline to remain 

stepped, at a depth of approximately 24 m, with a surface to bottom water temperature difference 

ranging only 3.52 – 4.00 C (Fig. 5; Table S2). At repeat station 2 (Fig. 1) thermocline structure was 

also variable, taking on a steep and stepped form, ranging in depth from approximately 20 m to 30 m, 

with a surface to bottom temperature difference ranging between 2.22 – 3.25 C (Fig. 6; Table S2). At 

both repeat stations the characteristics of the chlorophyll peak changed along with the characteristics of 

the thermocline, with sharper SCM associated with a stepped thermocline and a greater surface to 

bottom temperature difference.  

 

3.2.3. Inshore – offshore transects 

The depth and strength of the thermocline varied moving inshore to offshore. Along each transect 

travelled it was generally the case that the thermocline deepened as the water column depth increased, 

and the furthest inshore sites consistently had the lowest surface to bottom temperature differences 

(Fig. 6; Table S2). Chlorophyll structure varied along transects also, where chlorophyll peaks of the 

furthest inshore sites had the lowest chlorophyll concentrations and greater peak chlorophyll 

concentrations were generally associated with larger surface to bottom temperature differences (Fig. 6). 

 

3.2.4. SCM relation to strength of stratification (buoyancy frequency) 

All 52 profiles exhibited a buoyancy frequency maximum located within the thermocline, which 

ranged from 0.0001 to 0.0042 rad
2 
s

-2
. The magnitude of buoyancy frequency and SCM chlorophyll 
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intensity ratio were positively correlated (Fig. 7a), while a negative correlation was evident between 

maximum buoyancy frequency and SCM thickness (Fig. 7b). Multiple linear regression analysis 

demonstrated buoyancy frequency to be a significant predictor of chlorophyll intensity ratio (p < 

0.001) and thickness (p < 0.001) (Table 1). Maximum buoyancy frequency values for profiles that 

exhibited a SCMTL were always above 0.001 rad
2 
s

-2
 and reached as high as 0.0042 rad

2 
s

-2
, indicating 

SCMTL occurred when stratification was strongest (as previously recognised through analysis of 

surface to bottom water temperature difference, a basic metric for stratification strength). 

 

3.2.5. SCM relation to current velocity 

Water column averaged current velocity averaged over the duration of the CTD profiling process (~ 15 

minutes) ranged from 0.06 to 0.73 m s
-1

, with no relationship with chlorophyll intensity ratio (Fig. 7c) 

or thickness (Fig. 7d), suggesting current velocity was not a key influencing factor in the development 

of SCMTL. However, current velocity data acquired at repeat station 1 over the hourly time series on 

the 29
th
 June did reveal SCMTL to be thinnest (0.04 – 2.2 m) during lower current velocities (0.16 – 

0.31 m s
-1

), and broadest (4.5 m) during maximum current velocities of the time series (0.38 – 0.43 m 

s
-1

) (Table S2). Additionally all SCMTL observed at repeat station 1 occurred approaching and during 

the first three days of neap tides (Table S2). These observations indicate low current velocities were 

not a requirement for SCMTL, but do suggest some influence of current velocity over SCM structure. 

    

3.2.6. SCM relation to wind speed 

Wind speeds obtained 30 – 90 mins before each CTD profile ranged from 1.54 – 13.88 m s
-1

. Wind 

speed was not a significant predictor of chlorophyll intensity ratio (Fig. 7e) or thickness (Fig. 7f). 

However, all SCMTL occurred when wind speed was less than 8 m s
-1

, suggesting lower wind speeds 

may have been more favourable for the development of SCMTL. 
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Figure 7. Relationship of SCM chlorophyll intensity ratio and thickness with buoyancy frequency (a) & (b), current 

velocity (c) & (d), and wind speed (e) & (f). Red crosses represent SCMTL, black circles represent other/broader SCM. 

p values determined by multiple regression analysis are given identifying significant predictors of intensity ratio and 

thickness (further details of multiple linear regression analyses given in Table 1). For panels (a), (b), (e) and (f) n = 52, 

and for panels (c) and (d) n = 50 (Table S2 for details of missing values).  

 

 

 

Table 1. Significant physical forcing predictors of the SCM characteristics chlorophyll intensity ratio and thickness, as 

determined by multiple linear regression analysis. 
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Thickness 

R
2
 = 0.30 
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-4.01 

 

 

< 0.001 
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3.3. Phytoplankton community structure and photophysiology 

3.3.1. Overall water column community structure 

At the four stratified sites where surface, SCM and deep waters were sampled, community structure 

was broadly similar throughout the water column (Fig. 8; sites 12, 14, 19, 25; sample IDs d, e, B, F). 

The community was a mixed assemblage, primarily of diatoms and dinoflagellates, with > 70 % of the 

biomass contributed by just seven taxa/groups. These were the diatoms Pseudo-nitzschia spp. and 

Chaetoceros spp., with Proboscia alata/Rhizosolenia spp. locally important, and the dinoflagellates 

Ceratium lineatum, Protoperidinium spp., Diplopsalis lenticula and small (10 – 25 μm) naked 

dinoflagellates (genus/species not identified) (Fig. 8). Within the diatoms, Pseudo-nitzschia spp. were 

generally dominant except in the furthest offshore sites where rhizosolenids dominated. Within the 

rhizosolenid diatoms, Proboscia alata (3 – 8 μm diameter) was dominant, with significant amounts 

also (mainly in the offshore sites) of Rhizosolenia spp., most likely R. styliformis and R. imbricata. 

Size-fractionated chlorophyll measurements confirmed that pigmented cells > 10 µm contributed most 

of the chlorophyll in all samples: specifically, between 64 – 80 % in SCM samples (65 – 79 % for 

broader SCM and 64 – 80 % for SCMTL), 62 – 79 % in bottom water samples, and 52 – 72 % in 

surface samples. 
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Figure 8. Community structure within the surface, SCM and bottom waters at four stratified sites (letters in brackets are 

sample IDs; Table S2): Percentage contribution of diatoms, dinoflagellates, flagellates and ciliates to carbon biomass 

identified by microscopy, where diatoms are indicated by blue colouration and dinoflagellates by red colouration (NB 

naked dinoflagellates are small (10-25μm) naked dinoflagellates not identified to genus/species).  
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Figure 9. Community structure within SCMTL and broader SCM: Percentage contribution of (a) the diatoms, 

dinoflagellates, flagellates and ciliates to total carbon biomass identified by microscopy; (b) diatom taxa/groups to total 

diatom carbon biomass; (c) dinoflagellate taxa/groups to total dinoflagellate carbon biomass (NB naked dinoflagellates 

refer to small (10 - 25μm) naked dinoflagellates that were not identified to genus/species). 
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3.3.2. Overall water column photosynthetic community health 

To establish photosynthetic functionality of the community sampled within the SCM, surface waters 

and bottom waters we assessed Fv/Fm values (Table S3). All Fv/Fm values were ≥ 0.28 indicating that 

there was photosynthetic functionality at all three depths sampled in the water column. More 

specifically, Fv/Fm increased from surface waters (mean and standard deviation of 0.34 ± 0.04; 

samples taken from 1.5 – 2 m depth) to the SCM (0.45 ± 0.03 for all SCM) and bottom waters (0.44 ± 

0.06), indicating that the photosynthesising proportion of the community had a greater photosynthetic 

energy conversion efficiency in the SCM and bottom waters than in the surface. 

 

3.3.3. SCMTL community structure  

The community within SCMTL was predominantly diatoms and dinoflagellates, which contributed 23 

– 75 % and 20 – 76 % of carbon biomass respectively (Fig. 9a). Ciliates (Fig. S2 o1 - o5) and 

flagellates (predominantly cryptophytes; Fig. S2 n) combined contributed less than 4 % of biomass, 

with the exception of SCMTL A (furthest offshore) where they contributed 11.6 % (Fig. 9a). 

 

The diatom population was generally dominated by Pseudo-nitzschia spp. (Fig. S2 b1 - b3), typically 

contributing over 68 % of diatom carbon biomass (Fig. 9b). The exceptions were SCMTL A and G, 

where Proboscia alata/Rhizosolenia spp. (Fig. S2 a1 - a2) dominated, contributing 85.2 % and 47.0 % 

respectively, with Pseudo-nitzschia spp. only contributing 12.2 % and 29.4 % respectively. In SCMTL 

B – F Proboscia alata/Rhizosolenia spp. contributed 9 - 22 % of diatom biomass. Other rhizosolenid 

diatoms, namely Guinardia flaccida and G. delicatula, were, barring one occurrence, found only in 

SCMTL samples, but in low abundance (< 2.5 % of diatom biomass), with the exception of SCMTL G 

where G. flaccida contributed 16.8 % to diatom biomass. Chaetoceros spp. (Fig. S2 c1 - c4) was also a 

noteworthy contributor, responsible for up to 8.4 % of diatom biomass (Fig. 9b).  
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A mix of autotrophs, heterotrophs and mixotrophs made considerable contributions to dinoflagellate 

carbon biomass within SCMTL (Fig. 9c). Small (10 – 25 μm) naked dinoflagellates (genus/species not 

identified) (Fig. S2 j1 - j3) contributed 20.3 – 94.7 %, making the highest biomass contribution of the 

dinoflagellate population within SCMTL A – D. Ceratium lineatum (Fig. S2 d) and Gyrodinium spp. 

(Fig. S2 m) generally contributed substantially also, typically 4.5 – 37.0 % and 4.6 – 25.6 % 

respectively. Ceratium lineatum was the most dominant taxon in SCMTL E – F and Gyrodinium spp. 

in SCMTL G. Other key contributors of dinoflagellate biomass were Protoperidinium spp. (up to 20.8 

%), Prorocentrum micans (up to 14.5 %), Diplopsalis lenticula (up to 7.6 %), Scrippsiella trochoidea 

(up to 7.0 %) and Dinophysis acuminata (up to 5.3 %) (Fig. 9c; Fig S2).  

 

3.3.4. Comparison of community structure between SCMTL and broader SCM 

The community within broader SCM was also a mixed assemblage primarily of diatoms and 

dinoflagellates, contributing 37.4 - 66.6 % and 19.8 – 61.7 % respectively. Flagellate and ciliate 

biomass contribution was low, between 0.06 – 0.44 % and 0.7 – 13.2 % respectively (Fig. 9a).  

 

The overall diatom assemblage in broader SCM was similar to that of SCMTL with Pseudo-nitzschia 

spp. dominant, contributing 50.1 – 85.6 % of diatom biomass, but with different relative contributions 

of Chaetoceros spp. and Proboscia alata/Rhizosolenia spp. (Fig. 9b). The key difference was that 

rhizosolenids were a substantial component of SCMTL (9.4 – 89.3 %) but had a minimal presence in 

broader SCM (0.4 – 3.7 %) (except for broader SCM b, furthest offshore, where rhizosolenids 

contributed 28.7 %). By contrast Chaetoceros spp. contributed more in broader SCM (13.3 – 27.5 %), 

with minimal presence in SCMTL (0 - 8.4 %) (Fig. 9b). The diatom Guinardia spp. was almost 

exclusively found in SCMTL (Table S1). 

 

The dinoflagellate composition of broader SCM was also broadly similar to that of SCMTL (Fig. 9c), 

but with some key differences. Small (10 – 25 μm) naked dinoflagellates made a considerable 
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contribution to dinoflagellate biomass, between 27.7 – 57.3 %, commonly making the largest biomass 

contribution of the dinoflagellate community (broader SCM a – c, e). Ceratium lineatum, Scrippsiella 

trochoidea, Prorocentrum micans, Dinophysis acuminata, Protoperidinium spp., Gyrodinium spp. and 

Diplopsalis lenticula remained important contributors of carbon biomass, but the contribution of some 

of these dinoflagellates was quite different in broader SCM compared with SCMTL. Most notably, 

when present Diplopsalis lenticula made a contribution of 14.9 – 35.2 % to dinoflagellate biomass in 

broader SCM compared with only 2.2 - 7.6 % in SCMTL, and Ceratium lineatum generally 

contributed more in SCMTL, responsible for 4.5 – 37 % of dinoflagellate biomass, compared with 1.3 

– 21.4 % in broader SCM (Fig. 9c).  

 

3.3.5. Statistical analyses of SCMTL and broader SCM community structure  

Cluster analysis combined with SIMPROF analysis of carbon biomass from SCMTL and broader SCM 

distinguished six significant clusters of samples (p < 0.05; Fig. 10). A SIMPER analysis identified the 

taxa/groups responsible for the similarity within clusters (full results in Table S4). Samples from 

SCMTL A and G, and broader SCM b were all individually distinct and therefore placed in their own 

clusters. Cluster 1 only included the sample from SCMTL A, sampled at the most south westerly and 

furthest offshore site, approximately 40 – 50 km distant from all other sites sampled for phytoplankton. 

Cluster 4 only included the sample from SCMTL G, sampled at repeat station 1 on 3
rd

 July. Cluster 6 

only included the sample from broader SCM b, sampled at the second most southern site of the study, 

approximately 30 km from repeat station 1. Cluster 2 included samples from SCMTL B, E and F 

located at or within 15 km of repeat station 1, and had an average similarity of 82.0 %, with the largest 

contributions to group similarity made by Pseudo-nitzschia spp. (18.1 %), Ceratium lineatum (11.7 %) 

and 10 - 20 μm naked dinoflagellates (10.4 %). Cluster 3 included samples from SCMTL C and D, part 

of the 28
th
 June transect, both located within 10 km of repeat station 1, and had an average similarity of 

73.5 %, almost half of which was contributed by Pseudo-nitzschia spp. (27.2 %), Proboscia alata (10.5 

%) and 10 - 20 μm naked dinoflagellates (10.4 %). Cluster 5 included the samples from broader SCM 
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a, c-e located at or within 15 km of repeat station 1, and had an average similarity of 72.2 %, a majority 

contributed by only Pseudo-nitzschia spp., (22.5 %) 10 - 20 μm naked dinoflagellates (13.3 %) and 

Chaetoceros spp. (9.5 %).  

 

Community structure of cluster 1 and 6 was most dissimilar from the other clusters, between 62.5 - 

70.6 % and 41.5 – 45.8 % respectively, and 50.8 % dissimilar from each other. Dissimilarity between 

cluster groups 2 through 5 was 29.1 – 43.2 % (Table S4). The SIMPER analysis also identified the 

taxa/groups responsible for the dissimilarity between clusters (Table S4).  

 

From the cluster analysis with SIMPROF, phytoplankton community structure dissimilarity 

between SCMTL in clusters 2, 3, 4 and broader SCM in cluster 5 was apparent at a similarity level 

of 68 % (Fig. 10). An ANOSIM analysis comparing groups containing samples that were > 68 % 

similar identified groups to be well separated, with a global R of 0.77, and confirmed a significant 

difference in community structure between SCMTL and broader SCM (p = 0.001). An nMDS plot 

provided a 2D spatial representation of the separation between SCMTL and broader SCM based on 

phytoplankton biomass values. A stress level of 0.01 indicated the ordination to be an accurate 

representation of similarity among samples (Fig. 11). SIMPER analysis identified the largest 

contributors to dissimilarity between these SCMTL and broader SCM to be Proboscia alata (8.7 

%), Diplopsalis lenticula (7.6 %), Ceratium lineatum (6.3 %), Gyrodinium (5.2 %) and Chaetoceros 

(5.0 %) (Table 2; full list in Table S4). Further statistical investigation assessing the purely 

autotrophic community identified a similar distinction in community structure between SCMTL (B 

- F) and broader SCM (a, c - e), with 35 % of the dissimilarity owing to increased Proboscia alata 

biomass but reduced Chaetoceros spp. biomass in SCMTL compared to broader SCM (Fig. S3 and 

Table S5).   
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Figure 10. Cluster analysis of community structure within SCMTL and broader SCM sampled during the study, based on 

carbon biomass values. Red branches indicate no significant difference (p > 0.05) in community structure between linked 

SCMTL/broader SCM as determined by SIMPROF analysis. SCMTL that were > 68 % similar are indicated. 

 

3.3.6. Temporal changes in community structure at repeat station 1 

At repeat station 1, an initially broad SCM observed between the 24
th

 to the 26
th

 June transitioned to 

a SCMTL thereafter (Fig. 5), and an associated temporal variation in community structure was 

identified. From the 28th to the 29th June (SCMTL E – F within cluster 2) the community was not 

statistically different, but by the 3rd of July (SCMTL G) a significant shift in community structure 

had occurred. This was largely due to a further increase in the Proboscia alata population 

(accounted for 14.1 % of the dissimilarity) and the development of a notable population of the large 

rhizosolenid diatom Guinardia flaccida (accountable for 13.3 % of the dissimilarity) (Fig 9 and 10; 

Table S4). Assessment of the autotrophic population alone identified the same significant shift in 

community structure caused by increases of Proboscia alata and Guinardia flaccida biomass (Fig. 

S3 and Table S5).  
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Fig. 11. nMDS plot representing the similarity in community structure between SCMTL and broader SCM samples at a 68 

% similarity level based on carbon biomass values. Circular data points represent SCMTL and triangular data points 

represent broader SCM.  

 

 

Table 2. The top five greatest contributors to the significant dissimilarity in community structure between SCMTL 

(cluster 2, 3 and 4) and broader SCM (cluster 5), as determined by a SIMPER analysis. Average percentage dissimilarity 

between SCMTL and broader SCM samples, and percentage contribution of these taxa to this dissimilarity is given.  or – 

symbols indicate if the taxon contributed more or less in SCMTL compared to broader SCM. Average cell volumes of the 

different taxa are also indicated. The full table of results provided by SIMPER analysis is given in Table S4.  

 

Phytoplankton taxa 

(avg. cell volume, μm
3
) 

Dissimilarity (%) 

SCMTL 

vs 

broader SCM 

Proboscia alata (9600) 8.73  

Ceratium lineatum (15200) 6.25  

Gyrodinium spp. (15195) 5.24 + 

Chaetoceros spp. (650) 5.03 – 

Diplopsalis lenticula (14900) 7.55 – 

Cumulative contribution (%) 32.80  

Average dissimilarity (%) 34.87  
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4. Discussion 

4.1. SCM relation to water column structure and physical forcing 

All SCM occurred within the thermocline (Figs. 5, 6, S1), consistent with previous findings in the 

Western English Channel (Pingree et al., 1978, Holligan et al., 1984b, Sharples et al., 2001), as well as 

further afield (Dekshenieks et al., 2001, Sullivan et al., 2005, Hickman et al., 2012). The temperature 

structure appeared to have a governing influence over the nature of the SCM. SCMTL were generally 

associated with a stepped thermocline (14 of 18 instances), located at the sharp lower step, and with 

greater surface to bottom temperature differences. Stepped thermoclines (Fig. 4-3) may form when a 

sustained episode of strong winds is succeeded by a prolonged calm period, followed by a renewed 

windy period that mixes the uppermost warm waters and produces the new surface mixed layer and 

associated (upper) thermocline (Beer, 1983). Alternatively, stepped thermoclines may form in response 

to internal waves that propagate along the thermocline density interface, and induce shear and mixing 

(Orlanski and Bryan, 1969, Dale et al., 2006). The lower (main/seasonal) thermocline represents a 

layer of sustained stratification that has been stable for a significant time interval and, when 

temporarily protected from wind mixing by the presence of the shallower thermocline above, may 

promote the development of the SCMTL. Lateral intrusions in the thermocline have been described 

(Pedersen, 1994, Richardson et al., 2003, Steinbuck et al., 2010), which can also result in a stepped 

thermocline. However, there was no additional evidence within our dataset to support a lateral 

intrusion. Broader SCM were generally associated with more gradual or gentler temperature gradients 

(Fig. 4-1), indicative of weaker stratification with dispersal of phytoplankton over a broader depth 

range (Donaghay and Osborn, 1997). This relationship between thermal structure and chlorophyll is 

particularly evident at repeat station 1, where daily sampling demonstrated how SCM structure evolved 

as thermocline structure transitioned over time (Fig. 5). 

 

Profiling along inshore-offshore transects (Fig. 6) revealed that the broadest SCM of the transects 

generally formed near to the tidal mixing front and at the sites furthest offshore from the tidal mixing 
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front, associated with smaller surface to bottom temperature differences. In the vicinity of the tidal 

mixing front, waters were shallower and therefore there would be a greater influence of tidally 

generated turbulence on stratification (Pingree, 1975), thus accounting for the weakest stratification 

observed, and by association, the broader and least intense SCM. The temperature profiles suggest that 

the tidal mixing front approached repeat station 1 during spring tides, and retracted again during neaps 

due to spring-neap adjustment (Pedersen, 1994, Sharples, 2008). The strongest stratification and most 

likely conditions for SCMTL formation close to repeat station 1 thus occurred on approach to and 

during neap tides. The outermost sites of the survey area were less influenced by the front and perhaps 

relatively more strongly affected by ambient weather conditions, particularly the prevailing 

southwesterly winds (Pingree, 1980, PML, 2013). Increased wind driven turbulence could account for 

the slightly weaker stratification and broader SCM at these sites.  

 

All SCM were associated with a vertical buoyancy frequency maximum (Fig. 7a-b), where turbulent 

mixing would be reduced relative to the surface and bottom mixed layers (Fernando, 1991, Simpson 

and Sharples, 2012). SCMTL were specifically associated with stronger stratification (Fig. 7a-b), 

providing further evidence for this requirement for SCMTL formation. These findings are consistent 

with several studies that have used turbulence probes to show that chlorophyll maxima do not form in 

regions of the water column where turbulent mixing is high, but rather SCM occur at depths between 

turbulent energy dissipation maxima (Sharples et al., 2001, Alldredge et al., 2002, Wang and 

Goodman, 2009). The vertical extent of turbulence minima within the water column could therefore 

have played a role in governing the thickness of SCM, with SCMTL developing when the region of 

minimal turbulent energy dissipation became particularly focused. 

 

Other possible mechanisms by which turbulence may control SCM include (1) chlorophyll dispersal by 

turbulent vertical diffusion (Donaghay and Osborn, 1997, Cowles et al., 1998); (2) increased 

phytoplankton settling velocity promoted by intensification of turbulence (Ruiz et al., 2004), causing 
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accumulation of cells in low turbulence regions below a turbulence maximum; and (3) enhanced 

nutrient supply from the bottom mixed layer to the thermocline driven by turbulence, promoting 

chlorophyll synthesis (Sharples et al., 2001, Rippeth et al., 2009, Williams et al., 2013). 

 

In shelf seas two main sources of turbulence are wind and tides (Pingree, 1975). To gauge the relative 

influence of these sources of turbulence on the SCM, the relationships between current velocity and 

wind speed to SCM chlorophyll intensity ratio and thickness were investigated (Fig. 7c-f). No 

relationship between wind speed and SCM thickness or chlorophyll intensity ratio was found. 

However, all SCMTL occurred when wind speeds were less than 8 m s
-1

, perhaps suggesting that 

SCMTL form and persist in weaker winds, potentially preventing any significant erosion of the main 

thermocline and dispersion of the chlorophyll peak. This finding is in agreement with that of McManus 

et al. (2012), who reported the most persistent SCMTL during periods of strong stratification and light 

winds. No relationship was identified between current velocity and SCM thickness or chlorophyll 

intensity ratio, although it is acknowledged that a longer measurement period would be required to 

capture the variability over a semi-diurnal tidal cycle (Rippeth, 2005). Nevertheless, the time series 

data at repeat station 1 did demonstrate some influence of current velocity on SCMTL structure and 

formation. During the hourly time series on the 29
th

 June there was a general trend of increasing 

SCMTL thickness with increasing current velocity (Table S2). A similar relationship was also 

observed in the southern Celtic Sea/ Western Channel by Sharples et al. (2001), who documented a 

thin layer to persist over current velocities of approximately 0.2 – 0.6 m s
-1

, but increase in thickness 

from approximately < 1 to 4 m with increasing velocity. Internal waves have been documented to 

modulate the thickness of SCM also (Steinbuck et al., 2010), but data available were not suitable for 

the assessment of effects of possible internal waves on SCM characteristics. 

 

4.2. Phytoplankton community structure and photophysiology 
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The community within surface waters, the SCM and deep waters for four stratified sites consistently 

had photosynthetic functionality (Table S3) and was broadly similar in composition, with > 35 % of 

biomass consistently contributed by the diatoms Pseudo-nitzschia spp., Chaetoceros spp. and 

rhizosolenids (locally), and the dinoflagellate Ceratium lineatum (Fig. 8). Thus, the SCM 

phytoplankton population could have been seeded from surface phytoplankton that sank to the 

thermocline at the onset of stratification. However, higher Fv/Fm measurements for SCM samples 

compared to surface samples (Table S3) suggest that the phytoplankton within the SCM were not 

senescent cells settling and accumulating, but rather were photosynthetically healthier than those in the 

surface. The SCM was therefore likely a region of enhanced productivity and growth. This finding is 

consistent with many studies that have demonstrated phytoplankton can thrive within a chlorophyll 

maximum (Parslow et al., 2001, Sullivan et al., 2010, Hickman et al., 2012), through being 

photophysiologically well adapted to the low light SCM environment (Moore et al., 2006, Hickman et 

al., 2009). Below the thermocline, Fv/Fm values similar to that measured for SCM samples in 

combination with strong tidal flows and associated turbulence (Pingree, 1975, Pingree, 1980, Simpson 

and Sharples, 2012), indicates the presence of photosynthetically active cells that had been recently 

mixed out of the SCM. 

 

Phytoplankton growth within the SCM was likely sustained/promoted by vertical flux of nutrients from 

bottom waters (Sharples et al., 2001, Rippeth et al., 2009, Williams et al., 2013). Maintenance of these 

phytoplankton within the thermocline may have been facilitated by alterations in cell buoyancy 

associated with the local environmental conditions (Alldredge et al., 2002) and/or modulation of cell 

sinking velocity associated with the transition in turbulent energy levels between surface waters and 

the thermocline (Ruiz et al., 2004). In addition, phytoplankton buoyancy regulation and motility may 

have played an important role in maintenance of the SCM. Diatoms were prevalent in the SCM and, 

although non-motile, are capable of regulating their buoyancy, with near-neutral buoyancy evident in 

many taxa (Waite et al., 1997, Erga et al., 2015), and positive buoyancy observed in rhizosolenids 
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(Moore and Villareal, 1996) and in some coastal taxa life stages (Waite and Harrison, 1992). 

Dinoflagellates were also key in the SCM community, thus convergent swimming may have 

contributed to SCM development and intensification (Durham and Stocker, 2012, Cullen, 2015). It has 

been suggested that motility may explain the observed co-existence of dinoflagellates and diatoms 

within SCM, as it can act to compensate for some of the more modest physiological disadvantages of 

dinoflagellates compared to diatoms (Ross and Sharples, 2007). Specifically, motility can provide 

dinoflagellates with the means to respond to resource gradients within the thermocline and avoid 

entrainment into bottom waters.   

 

In detail there were some significant differences between the communities of the SCMTL as compared 

with those of the surface, deep and broader SCM. For example, the rhizosolenid diatom Guinardia spp. 

was not identified in surface or bottom water samples, and in fact typically only occurred within 

SCMTL. These differences are discussed in more detail below. Spatial variation in overall 

phytoplankton community structure was limited, but indicated some changes offshore. Most notably, 

the two most southerly sites sampled, site 15 (SCMTL A) and site 6 (broader SCM b), were 60 – 70 % 

and 40 – 50 % dissimilar to other SCMTL and broader SCM, with a reduction in Pseudo-nitzschia 

and an increase in rhizosolenids being the principal differences. Although limited to two sites, this 

may suggest transition from a coastal flora to that of the more open shelf. 

 

4.3. The ubiquity of Pseudo-nitzschia 

Pseudo-nitzschia spp. was generally the most dominant diatom taxon in SCMTL and broader SCM 

sampled during the study (typically >70 % of diatom biomass; Fig. 9b), the main exception being the 

furthest offshore site (A). This cosmopolitan genus is commonly reported within SCM in many 

different coastal locations globally (Trainer et al., 2012), and is recorded annually in the Western 

English Channel (Holligan and Harbour, 1977, Widdicombe et al., 2010, Downes-Tettmar et al., 

2013). Pseudo-nitzschia species local to the Western English Channel include Pseudo-nitzschia 
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pungens and Pseudo-nitzschia delicatissima, both of which can produce the neurotoxin domoic acid 

(Mos, 2001), a potential means of refuge from predation (Durham and Stocker, 2012). This capability 

to deter grazing along with other adaptations of the genus, including high division rates (e.g. 1.20 div d
-

1
 (Pan et al., 1993)) and phenotypic plasticity (Marchetti et al., 2006) may explain the observed 

dominance of Pseudo-nitzschia. 

 

4.4. Key differences in community structure between broader SCM and SCMTL 

The phytoplankton community structure within SCMTL (group 2/cluster 2, 3 and 4) was statistically 

distinct from that identified for broader SCM (group 3/cluster 5) (Figs. 9, 10, 11; Table 2 and S4). This 

distinction was caused by a significant difference in the biomass of a mix of autotrophic diatoms, and 

mixotrophic and heterotrophic dinoflagellates in SCMTL relative to broader SCM. 

 

4.4.1. Autotrophs 

The most significant differences in the diatom floras of the SCMTL were the increased abundance of 

Proboscia alata, and reduced significance of Chaetoceros spp. (Table 2 and Table S5). Temporally, 

our repeat station (R1) surveys indicated further increases of Proboscia alata biomass with persistence 

of the SCMTL. Of the rhizosolenids, Proboscia alata was the most significant contributor, but there 

were important contributions also by Rhizosolenia spp. (mainly R. imbricata and R. styliformis), 

particularly in more offshore sites (A, B, C). On one occasion at repeat station 1 (G) Guinardia 

flaccida also contributed substantially. Elsewhere Guinardia spp. were typically only found in the 

SCMTL, albeit as a minor component.  

 

4.4.2. Mixotrophs and heterotrophs 

Within the dinoflagellates, the principal difference was the relative importance of Ceratium lineatum 

and Gyrodinium spp. in the SCMTL and of Diplopsalis lenticula within the broader SCM (Table 2). 

Ceratium lineatum is primarily photosynthetic, although mixotrophy through phagotrophy of ciliates 
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has been documented in other species from the same genus (Smalley et al., 2003). Species within this 

genus are strong swimmers, with swimming speeds of up to 280 µm s
-1

 documented (Nielsen, 1991, 

Baek et al., 2009). Ceratium lineatum is also a relatively large dinoflagellate, armoured with an 

elongate spine and horns, and is avoided as prey by small copepods (Verity and Paffenhofer, 1996). 

Gyrodinium spp. and Diplopsalis lenticula, on the other hand, are heterotrophic with a preference for 

spherical prey typically autotrophic dinoflagellate/flagellates (Hansen, 1992), and diatom prey 

(Naustvoll, 1998) respectively. Gyrodinium spp. have been found to require relatively high prey 

concentrations in order to grow (1000 – 4000 cells ml
-1

) (Hansen, 1992), consistent with higher 

SCMTL concentrations. On the other hand, Diplopsalis lenticula growth has been recorded in prey 

concentrations of just 30 cells ml
-1

 (Naustvoll, 1998). Gyrodinium spp., similar to Ceratium spp., are 

strong swimmers, with speeds in excess of 200 µm s
-1

 documented (Kamykowski et al., 1992), but 

peridinoid dinoflagellates like Diplopsalis lenticula have slower swimming speeds, typically in the 

range of approximately 60 – 150 µm s
-1

 (Levandowsky and Kaneta, 1987, Kamykowski et al., 1989, 

Kamykowski et al., 1992). Protoperidinium spp., another heterotrophic dinoflagellate and documented 

to have a high grazing potential (Gribble et al., 2007), with a predilection for medium to large 

phytoplankton (Buskey, 1997, Menden-Deuer et al., 2005, Gribble et al., 2007), was also a more 

persistent minor component of the SCMTL.  

 

4.4.3. Scenarios for the distinction in community structure between SCMTL and broader SCM 

The principle differences in SCMTL and broader SCM community structure identified (as summarised 

in Table 2) could reflect two scenarios: (1) promotion or selection of different phytoplankton within 

SCMTL compared to broader SCM (species succession) relating to environmental conditions 

associated with SCMTL; or (2) local lateral advection introducing ‘external’ phytoplankton to the 

SCM community. In our study area, possible mechanisms for lateral advection relate to frontal 

dynamics. For example, instabilities associated with the along-front jet can lead to entrainment of 

water from the mixed side of the front into the thermocline, potentially providing a lateral supply of 
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nutrients and phytoplankton (Pingree, 1978, Pingree et al., 1979, Mork, 1981). However, such a 

mechanism is unlikely to be a major driver of the distinction in community structure observed because 

SCMTL typically occurred at locations further offshore and away from the front. On the other hand, 

phytoplankton within SCMTL appeared to be thriving, suggesting that they have adaptations suited to 

this niche that promote growth, as well as offsetting potential inhibiting factors, such as enhanced self-

shading (Shigesada and Okubo, 1981, Carter et al., 1987) and increased grazing pressure associated 

with the more concentrated nature of SCMTL.  

 

4.5. Adaptations of the SCMTL taxa 

All three taxa (Proboscia alata, Ceratium lineatum and Gyrodinium spp.) that made a significantly 

increased contribution to the community within SCMTL compared to broader SCM were large, with 

relatively high aspect ratios. If photosynthetic cells were horizontally orientated within SCMTL 

(Malkiel et al., 1999, Talapatra et al., 2013), they could have enhanced their light absorption 

(McFarland et al., 2016, Nayak et al., 2018) and by association potentially their growth. Large size also 

makes ingestion difficult for many predators (Smetacek, 2001, Hamm and Smetacek, 2007), and 

large chains, such as those formed by Proboscia alata (Sukhanova et al., 2006), can reduce 

encounter rates and cause avoidance by small grazers (Beardall et al., 2009). Ceratium lineatum is 

known to be avoided by calanoid copepods (Verity and Paffenhofer, 1996) and localised episodes 

of anoxia have been attributed to Ceratium species when in high biomass (Trainer et al., 2010), a 

potential mechanism for limiting predation pressure when aggregated in a SCMTL.  

 

Ecologically, both Proboscia alata and Rhizosolenia styliformis are known to be characteristic of the 

‘Fall Dump’ diatom taxa that are adapted to grow and accumulate significant biomass in summer 

stratified conditions (Kemp et al., 2000). Proboscia alata has previously been recorded as a dominant 

component of SCM in the North Sea (Weston et al., 2005) and Celtic Sea (Gribble et al., 2007). 

Furthermore, intense annually recurrent summer blooms of Proboscia alata similarly associated with 
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the thermocline at depths of 20 – 30 m are documented in a possibly analogous hydrographic setting 

with similar water depths on the Bering Sea shelf (Sukhanova et al., 2006). Typically, rhizosolenid 

mechanisms for growth at depth in stratified waters include the ability to grow in low light conditions 

(Goldman and McGillicuddy, 2003) and/or buoyancy regulation (Moore and Villareal, 1996, Woods 

and Villareal, 2008). 

 

A further attribute of P. alata and other rhizosolenids, and Ceratium lineatum is that they have 

adaptations suited to environments with intermittent nutrient supply. Established diatom traits 

including the vacuole that enables nutrient storage (Dortch, 1982, Raven, 1997) and luxury uptake 

of nutrients (Sunda and Huntsman, 1995), could further enable P. alata to exploit the episodic 

nitrate supply from the bottom layer to the thermocline characteristic of shelf seas (Sharples et al., 

2001, Rippeth et al., 2009, Williams et al., 2013). P. alata nutrient acquisition could also be 

enhanced in chains compared to single cells (Beardall et al., 2009). The ecology of Ceratium 

lineatum is not reported in detail, but the close relative Ceratium furca may undertake luxury 

nutrient uptake and is also known to feed through phagotrophy only in nutrient limited conditions 

(Baek et al., 2008), both strategies that would allow populations to subsist, pending nutrient input. 

Finally, based on documented swimming speeds previously detailed, both Ceratium lineatum and 

Gyrodinium spp. may have superior swimming abilities relative to Diplopsalis lenticula, which 

could have allowed the former to respond more rapidly to desirable environmental cues. 

 

4.6. SCM phytoplankton in a changing climate 

Future climate projections show increased intensity and duration of stratification in UK shelf seas 

(Lowe et al., 2009, Holt et al., 2010, Tinker et al., 2016). Increased stratification intensity will reduce 

the diapycnal nutrient flux (Sharples et al., 2013) and hence nutrient concentrations of open ocean 

waters transported onto the shelf (Holt et al., 2012), which could likely effect phytoplankton growth 

and primary production. Similarly, increased temperature could also affect growth and primary 
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production among other metabolic processes (Eppley, 1972, Raven and Geider, 1988, Moisan et al., 

2002). Freshening, and changes in wind intensity and circulation have also been predicted to occur 

across the shelf (Lowe et al., 2009, Holt et al., 2016, Tinker et al., 2016), all of which could also 

influence SCM communities. The effects of climate change on the shelf seas are therefore subject to 

complex interactions and feedbacks among changing factors (Lowe et al., 2009, Tinker et al., 2016). 

Our results suggest that increased stratification could lead to increased incidence of SCMTL and the 

associated larger celled diatoms and dinoflagellates (Table 2). Such changes could alter trophic 

interactions, and potentially contribute to enhanced carbon flow to higher trophic levels and increased 

carbon transfer to the sediment since rhizosolenid diatoms, in particular, are known to be efficient 

exporters of carbon in stratified regions (Sancetta et al. 1991; Kemp et al. 2006; Kemp and Villareal 

2013). Furthermore, a recent critique of current views of ocean productivity proposes a wider range 

of diatoms are adapted to grow in stratified waters (Kemp and Villareal, 2018). Some projections 

propose a shift to smaller cells in more stratified oceans (Finkel et al., 2010), but our results 

suggest, rather, that larger celled phytoplankton may be selected for with greater stratification. 

 

5. Conclusion  

Subsurface chlorophyll maximum thin layers (SCMTL) were identified in 18 of the 52 water column 

profiles collected over an 11 day period in 2013 in the Western English Channel, adding to a growing 

body of evidence for the recurring and persistent nature of these features in coastal and shelf seas. 

SCMTL were as thin as 10 cm, and typically had higher maximum chlorophyll concentrations and 

chlorophyll intensity ratios than broader SCM, suggesting that SCMTL are distinctive, both by vertical 

scale and by chlorophyll concentration. Water column structure and physical forcing had an apparent 

governing influence on the chlorophyll structure of SCM. SCM were closely associated with the 

thermocline, with SCMTL most associated with the sharp lower step of a strong stepped thermocline. 

A relationship between SCMTL and stronger stratification (greater buoyancy frequencies), suggests 

this factor to be a prerequisite for the development and persistence of SCMTL.  
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This study also presents the first detailed investigation of the comparative phytoplankton community 

structure within SCMTL, broader SCM and the surrounding water column in the NW European shelf 

seas. Where the whole water column was sampled, phytoplankton community composition was 

broadly similar with depth. However, there were some key differences in community structure 

within SCMTL compared to broader SCM. The distinction in community structure was largely due 

to a greater population of Proboscia alata, other rhizosolenid diatoms, Ceratium lineatum and 

Gyrodinium spp., and a smaller population of Chaetoceros spp. and Diplopsalis lenticula in 

SCMTL, suggested to relate to environmental conditions more specific to SCMTL. Our results 

suggest that enhanced stratification in the future could lead to increased prevalence of SCMTL, which 

may in turn promote higher abundances of these larger-sized specialised SCMTL diatoms and 

dinoflagellates. This may influence trophic dynamics, and the resulting biogeochemical 

implications may be significant. An improved understanding of SCMTL phytoplankton will 

therefore be necessary if we are to effectively assess the impacts of climate warming in the coastal and 

shelf environment. This will require further investigation of the physical forcing factors, and the 

physiology and ecology of key taxa associated with SCMTL.  
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HIGHLIGHTS 
 
Biological & physical survey of summer stratified shelf sea: Western English Channel 
(84) 
 
Phytoplankton community structure of subsurface chlorophyll maxima (SCM) assessed 
(81) 
 
SCM thin layers (< 5 m thick) occur with greatest stratification (64) 
 
SCM thin layers have distinct phytoplankton community structure from broader SCM 
(80) 
 
SCM thin layers may expand in importance with predicted increase in stratification 
(82) 
 
 

 

 




