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NON-RIGID REGISTRATION FOR MULTIMODALITY IMAGE FUSION  

USING PRIOR SHAPES  

 

By Zheng Cui 

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease that causes 

breathing difficulties. One possible course of treatment for severe COPD is lung volume 

reduction surgery (LVRS), which involves removing, or isolating, the lobe or lobes of 

the lung that are most affected by the disease. A fusion of the multi-slice computed 

tomography (MSCT) and ventilation (V) and perfusion (Q) single photon emission 

computed tomography (SPECT) modalities therefore represents a powerful tool to for 

COPD analysis and then for guiding the lung resection surgery.  

Due to reduced uptake of radioisotope at the location of lesion, the V and Q of a 

moderate COPD patient delineate photopenic regions, which are normally mis-

recognised as part of the background in the target SPECT scan. Non-rigid registration, 

which lacks displacement constraints, is therefore performed on MSCT scans with 

excessive deformations. Moreover, considering the low-resolution nature of functional 

imaging and highly deformable property of lungs, very few published algorithms are 

able to accommodate current clinical demands. The motivation of this project is to 
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develop a high-performance, statistical deformation model (SDM)-based non-rigid 

registration algorithm capable of achieving accurate alignment of lung MSCT and 

SPECT imaging. 

In this project, an innovative similarity registration method for volumetric shapes is 

proposed at the beginning. The method is based on the characteristic function, and 

intended to strike a desirable balance between performance and efficiency. Radial 

moments and spherical coordinate system-based cross-correlation are exploited here to 

obtain the optimal scaling, rotation and translation parameters within a reasonable time. 

Moreover, an iterative method is also employed to improve the robustness of the 

algorithm. Group shapes in the presence of significant noise and lung shapes extracted 

from a low-dose computed tomography database are employed in the validation 

experiments.  

In order to eliminate the influence of the weighting parameter for the statistical term, a 

novel MSCT/SPECT registration technique based on a parameter-reduced SDM is 

proposed in this thesis. The SDM is trained on prior lung shapes. In addition, the multi-

channel technique performs V/MSCT and Q/MSCT alignments simultaneously to 

derive the optimal deformations. Lung MSCT and SPECT imaging data from a real 

medical database, as well as the 4D extended cardiac-torso phantom, were employed in 

the experiments. The algorithm proposed here was validated to be capable of preventing 

excessive deformations, and of achieving accurate registration between the two 

imaging modalities. The deformations for MSCT/SPECT registration are finally used 

to warp lobe masks, which are then mapped onto SPECT images for lung lobe/SPECT 

fusion. 
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Chapter 1 

 

Introduction 

1.1 Background 

Chronic obstructive pulmonary disease (COPD), including chronic bronchitis and 

emphysema, is a significant global cause of morbidity and mortality that presents a 

serious healthcare burden [1]. According to a report from the World Health 

Organisation, over three million patients died in 2015 due to COPD and the mortality 

rate has continuously increased in the past few years. Despite many years of research, 

there are no current pharmacological therapies which significantly alter disease 

progression. One reason for this is that COPD is not a single disease entity, but a 

collection of disease phenotypes with a common aetiology and different 

pathophysiological processes [2]. 

Nevertheless, early diagnosis and treatment can effectively relieve the symptoms, 

enhance quality of life and lower the risk of death. Lung activity analysis can be used 

to identify lobes of the lung that are severely affected and are failing to deliver an 

appropriate fraction of total lung function. One possible course of treatment for severe 

COPD is lung volume reduction surgery (LVRS), which involves removing the parts 

of the lung that are most affected by the disease, often a whole lobe or more. This helps 

the body to increase the volume of the remaining lobes, thereby improving breathing 

[3]. In order for this procedure to be effective, it is necessary to know precisely which 

parts of the lung have been most affected by the disease and therefore which are the 

best candidates for removal. 
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Computed tomography (CT) scans are obtained with a combination of an X-ray tube 

and an arc sensor, which are deployed in a fanbeam geometry on either side of the 

patient and rotate rapidly together to acquire the cross-sectional images. The multi-slice 

computed tomography (MSCT) scanner was created to improve imaging resolution 

(512 × 512 voxels in the XY plane; 0.5mm between the slices along the Z axis) to 

support clinical diagnosis. The anatomical planes are illustrated in Figure 1.1. In 

addition, the MSCT scanner is able to capture multiple slices simultaneously, and then 

to provide fully three-dimensional imaging of lung structure, which allows the lung 

lobes and other structural features to be identified [4]. The optimal MSCT parameters 

for the delineation of the various structural features of the lung require suspended full 

 

Figure 1.1 Diagram of anatomical planes. The x-axis runs from left (positive number) to 

right (0). The y-axis runs from posterior (positive number) to anterior (0). The z-axis runs 

from head (positive number) to tail (0).  
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inspiration, as shown in Figure 1.2. In order to depict the internal structure more clearly, 

the dynamic range of the lung region is enhanced in Figure 1.2(c) and (d).  

 

  
a b 

  
c d 

Figure 1.2 MSCT is displayed in two views with the boundaries of lobes highlighted in yellow. 

(a) Coronal slice with labels for five lung lobes. (b) Sagittal slice of the right lung. The location 

of the slice plane is indicated by the red line in (a). (c) Coronal slice of the lung region in high 

dynamic range. (d) Sagittal slice of the lung region in high dynamic range. 

Nuclear medicine imaging techniques, such as single photon emission computed 

tomography (SPECT), require the injection of a gamma-emitting radioisotope into the 

patient. During the decay of the isotope, gamma-ray photons are emitted. The photons 

travel through a collimator and are detected by gamma cameras which are rotating 

https://en.wikipedia.org/wiki/Radioisotope
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around the patient for data acquisition [5]. The planar projection images collected at 

different angles are then used to reconstruct a true three-dimensional SPECT image to 

identify the radioactivity of the organ specimen [4]. As the collimator is designed to be 

in front of the camera to determine the propagating direction of the gamma-rays, the 

imaging quality (e.g. resolution and sensitivity) is significantly dependent on it. In order 

to improve the resolution, the range of incident angles is restricted by the collimator, 

whereas it sacrifices some image sensitivity due to the decrease in the flux (i.e. it allows 

fewer photons to go through the collimator) [6]. Selection of a collimator needs to trade 

off between resolution and sensitivity. In addition, SPECT imaging is always subjected 

to photon attenuation caused by the body tissues, through which the gamma-rays pass 

before getting to the camera. Another reason for attenuation is Compton scattering, 

which alters the photon’s directions of travel [4]. In this situation, numerous photons 

which fail to be detected by the camera result in lower signal-to-noise ratio and reduced 

contrast. On the other hand, the scattering of photons into the wrong detector leads to 

blurring of the image and loss of spatial resolution. Therefore, low-dose CT/SPECT 

matching (currently implemented by a CT/SPECT hybrid scanner) is employed for 

attenuation correction. The CT data forms a map of the different attenuation levels of 

the tissues in the body, and this map is then used to correct the SPECT image by ‘adding 

photon counts back’ or ‘subtracting photon counts’. 

For specific applications such as lung activity imaging, ventilation (V) and perfusion 

(Q) SPECT scans employ different medical isotopes and delivery methods to evaluate 

the circulation of air and blood in the lungs, e.g. the radionuclide Tc-99m (technetium) 

is injected into the patient for perfusion while Kr-81 (krypton gas) is inhaled by the 

patient for ventilation. As the overall SPECT scan time is approximate 20 minutes, it is 

not reasonable to ask the patient to hold his breath throughout. The low-dose CT and 
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SPECT scans are effectively acquired during free-breathing, which is at a different 

stage of the breathing cycle compared with the MSCT scans. The SPECT scan allows 

three-dimensional imaging (voxel size: 4.418mm3, 128 × 128 × 128  voxels per 

imaging matrix) of lung function, which makes it possible to identify regions of the 

lung that are not functioning as they should. As stated in [7], the areas of airway closure 

in the COPD patients are formed by the presence of emphysematous bulla and cysts. 

The deflation and compression of lung tissue contribute to the lung destruction and 

severe vessel and airway narrowing, which cause abnormal ventilation and perfusion 

within the lungs. SPECT V/Q images for normal and moderate COPD subjects are 

illustrated in Figure 1.3. 

The combination of the structural information from MSCT with the functional 

information from SPECT represents a powerful tool for the precise identification of 

regions of the lung that are optimal targets for lung resection surgery. In order to achieve 

this, it is therefore necessary to develop a tool that is able to compute the deformation 

required to align the structural and functional imaging information, and to apply these 

deformable fields to regions and features of the lung that have been identified. The 

broad requirements for such a tool are that it should be able to achieve sufficiently 

accurate registration between the imaging modalities, even in cases where the lung 

imaging data are acquired at a different state of inspiration. Also, a suitable method 

should strike a balance with the requirements for relatively high performance in terms 

of processing time, since, to be of any potential clinical value, the software would need 

to be integrated seamlessly into the radiologist’s workflow. 
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a b 

  
c d 

Figure 1.3 SPECT V and Q scans of normal and COPD subjects are displayed in coronal view. 

The trachea is visible in V (left subfigures) but not in Q (right subfigures).  (a) V image of a 

normal subject. (b) Q image of a normal subject. (c) V image of a COPD subject. (d) Q image 

of a COPD subject. Due to severe COPD, the right upper lobe shows photopenic regions in 

both (c) and (d) in comparison with the normal subject. 

1.2 Previous Work 

The hybrid low-dose CT and SPECT scanning technique was first proposed in [8], and 

then developed by [9] and [10]. A hybrid CT/SPECT-based registration method for 

brain images was proposed in [11], which employs CT to intervene MRI/SPECT 
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alignment. The alignment between MRI and SPECT is dependent on the result of CT 

and MRI registration, since CT and SPECT were assumed to be aligned during data 

acquisition. This hybrid technique manages to solve the problem of low-dose 

CT/SPECT registration, whilst it is based on the assumption that the patient remains 

stationary throughout the scanning process. In fact, motion of some organs (e.g. 

respiratory, cardiac, digestive and muscular organs) is inevitable and therefore the 

acquired data are always mismatched. 

In order to tackle the multi-modality (e.g. CT/SPECT) registration problem in software, 

the concept of four-dimensional (4D) imaging was proposed in [12] to represent the 

variations of three-dimensional imaging with the passage of time. The breathing 

protocol in 4D imaging can be established by respiratory gating or motion tracking 

techniques. This method aims to decrease the influence of artefacts. The method 

proposed in [13] intends to facilitate multi-modality registration by converting SPECT 

slices into CT-like images using a scatter window. The ITK diffeomorphic Demons 

method was then used to complete registration work. Furthermore, for the case that the 

isotope in the adjacent objects is more straightforward to detect, the methods reported 

in [14] performs registration for tumours based on the spine SPECT imaging. Similar 

methods were studied in [15] and [16] as well. A registration method for two-

dimensional hand X-ray images was proposed in [15]. It begins with rigid registration 

of the hand skeleton, followed by non-rigid registration of tissues surrounding the bones. 

The three-step SPECT/CT registration method proposed in [16] performs bone, surface 

and tissue registration sequentially using an extended Demons algorithm to achieve 

high performance. Nevertheless, this technique concentrates on the level-set 

representation of shapes and employs the distance map to calculate transformation 

parameters, which is based on accurate segmentation. In addition, intensity uncertainty 
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quantification was used to represent each voxel in [17]. Since the voxel mapping is 

independent of intensity, it overcomes the shortcoming that fluid-like registration 

methods (e.g. Demons) are not applicable to multi-modality image registration. A 

metric learning method was introduced in [18]. Gabor feature vectors were also 

produced by learning algorithm to boost the performance of cross-modality registration. 

Recently, a series of sophisticated local descriptors based on the features and textures 

have been studied in [19] and [20]. Euclidian and Riemannian distances are employed 

to measure the correspondence similarity respectively. 

Nevertheless, as few features can be extracted from SPECT imaging and landmark 

correspondence is practically unachievable, feature-based methods are not applicable 

to lung MSCT/SPECT alignment. In addition, lungs have a highly deformable nature 

and the MSCT and SPECT images are captured at a different state of inspiration. 

External rigid reference objects (e.g. bones and vessels) hardly contribute to the multi-

modality registration. On the other hand, prior knowledge-based methods are 

considered in the approach proposed in this thesis as non-learning methods only 

concentrate on the registration similarity, but fail to maintain the structural information 

during deformation. To the best of my knowledge, very few articles have been 

published to tackle the complicated lung MSCT/SPECT registration problem with prior 

knowledge. The motivation of this project is therefore to develop a high-performance, 

non-rigid registration algorithm capable of achieving accurate alignment of lung 

MSCT/SPECT imaging. 

1.3 Research Overview 

In terms of the intra-patient MSCT/SPECT registration, the main challenge is to prevent 

excessive deformation of the source image (i.e. MSCT), as the target image (i.e. SPECT) 



  9 

 

is usually deteriorated by artefacts and outliers (e.g. images containing tumour or lesion 

tissue can be considered as outliers) [21]. Therefore, the key technique exploited here 

aims to fuse lung MSCT and SPECT images for individuals based on a statistical 

deformation model (SDM) [22]. Compared with inter-subject alignment, intra-patient 

lung imaging registration can be developed using the rules of the respiratory pattern. In 

the lung database, the imaging data for each patient are comprised of MSCT scans, a 

pair of SPECT (V and Q) scans and low-dose CT scans (140kV, 2.5mA, 2.6rpm). As 

prior knowledge for investigating the rules of lung deformation associated with the 

respiratory pattern is very scarce, inter-subject information extracted from various 

subjects (e.g. healthy non-smoker, healthy smoker, mild COPD patient and moderate 

COPD patient) is employed here to train the SDM. Detailed participant information is 

listed in Table A-3 and A-4 of Appendix A. As the inter-subject information can only 

provide a global constraint against excessive deformation, rather than intra-patient 

voxel-wise regularisation, prior lung shapes represented by level-sets are employed for 

convenience. 

The prior lung shapes are pre-processed by the similarity registration method proposed 

in Chapter 2. In this chapter, the robustness of the registration method is enhanced by 

an iterative scheme. In each iteration, radial moments, cross-correlation and spherical 

coordinates are employed to accelerate convergence and avoid local minimum. The 

high performance in terms of registration accuracy, stability and convergence speed is 

validated by experiments in the presence of noise, as well as a batch-processing test 

using the lung database. Compared with state-of-the-art algorithms, the characteristic 

function (CF)-based method manages to strike a desirable balance between 

performance and efficiency. 
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The research into non-rigid registration begins with statistical modelling using principal 

component analysis (PCA). The shortcomings in previous methods, which make the 

deformation unreasonable and inflexible, are revealed in Chapter 3. The parameter-

reduced SDM is then proposed to end the controversy of the weighting parameter for 

the statistical term, and to properly regularise the deformable field based on prior shapes. 

In this chapter, single-modality images are employed to test the proposed algorithm and 

other state-of-the-art SDM-based methods for comparison. The outstanding 

performance achieved by the framework proposed here is demonstrated. 

In order to enrich the testing data and evaluation methods, a 4D extended cardiac-torso 

(XCAT) phantom and radionuclide multi-modality dosimetry package (RMDP) are 

employed in this thesis to generate synthetic lung imaging data and the ground-truth 

displacement. In Chapter 4, the process of phantom construction is explicitly introduced. 

It also highlights the procedure of adding artificial defects to normal phantoms, which 

is used to challenge the learning-based algorithms in the next chapter. 

In Chapter 5, the parameter-reduced SDM framework is extended for multi-modality 

image registration. Instead of the sum-of-squared distance (SSD) used for the 

evaluation of single-modality alignment, mutual information (MI), in conjunction with 

gradient-descent optimisation, constitutes the framework for multi-modality 

registration. In addition, a multi-channel registration method is reported in this chapter 

to improve the performance of lung MSCT/SPECT registration. It conducts a direct 

region-to-region registration, which is independent of non-lung landmarks that guide 

the registration algorithms. Simulations using the actual lung database and synthetic 

phantoms are performed, and the results are measured with different metrics to 

demonstrate the improvement achieved by the algorithm proposed here. 
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The entire research progression of the PhD project is illustrated in Figure 1.4 and 

summarised in Chapter 6. It highlights the breakthroughs and achievements made by 

the algorithm proposed in this thesis for medical imaging analysis, and emphasises the 

applied value of the algorithm with respect to computer vision and pattern recognition. 

It also states the promising work which is expected to be accomplished in the future to 

further improve the framework and then aid the diagnosis and treatment of pulmonary 

disease. 

 

 

  

 

Figure 1.4 Flow chart of research progression. Each step is described by a milestone, with the 

relevant data in parentheses. 
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Chapter 2 

 

Three-dimensional Shape Similarity Registration  

2.1 Introduction 

As a necessary initial step for non-rigid registration, similarity registration, which is 

performed by geometric transformation based on the similarity (e.g. scaling, rotation 

and translation), should be performed first to create the optimum conditions for the next 

non-rigid registration step. This helps improve the rate of convergence of the non-rigid 

registration algorithm and eliminates at least some of the potential local minimum into 

which the algorithm might otherwise fall. Previous research into shape registration 

based on particular shape representations (explicit and implicit descriptors, Laplace-

Beltrami spectral descriptors and point clouds), advanced optimisation methods 

(iterative closest point and cross-correlation) and classic similarity measurements (SSD 

and MI) has been conducted in the past few years. 

Feature-based methods are reported in [23] [24] [25], which employ explicit 

representations to describe key points, shape contour or surface information. Recent 

research into feature- and correspondence-based shape registration can be found in [26] 

and [27]. The algorithm proposed in [26] is motivated by retinex theory. It employs an 

adaptive smoothing method to preserve shape edges and corners. The Hough transform 

is developed in [27] to reduce the demand for computational memory with the intrinsic 

Hough and enhance registration accuracy using the minimum-entropy Hough. These 

methods simplify the calculation of transformation parameters but significantly rely on 

the feature description and landmark correspondence, which leads to inaccurate 
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registration when the shapes either contain various sub-shapes or have different Euler 

characteristics. 

Conversely, implicit representations, such as the signed distance function (SDF), 

concentrate on the description of shape regions. The SDF is frequently employed for 

shape registration in [28] and [29], since it is a desirable representation for two identical 

shapes in registration. However, it leads to infinity for the integral of the dissimilarity 

of two different shapes. Another implicit representation, characteristic function (CF), 

manages to overcome the shortcomings of SDF and is used in [30] and [31] to perform 

robust shape registration. 

Moreover, another shape representation method known as Laplace-Beltrami spectral 

descriptors is employed in [32] and [33] for shape analysis. This representation is 

independent of the shape’s orientation and transformation. This advantage is also 

inherited by the algorithm proposed in this chapter. The recent spectral shape descriptor 

was proposed in [34]. It employs a neural network to establish the shape spectrum and 

create learning-based binary shape descriptors. Although these sophisticated spectral 

descriptors improve the sensitivity and specificity for capturing features, they are 

significantly dependent on feature correspondence. 

Iterative closest point (ICP) was firstly proposed in [35] to optimise the rigid 

registration based on proper initial pose. It was then developed by [36] [37] [38]. The 

recent development of ICP is reported in [39], which is based on the point cloud with 

corresponding points. The transformation is refined iteratively by minimising the 

distance of geometrically similar groups of points. Similar point-set-based registration 

methods are studied in [40] and [41] to improve robustness. These aforementioned 

algorithms boost the processing speed and optimise the similarity metric, but the 

gradient-descent optimisation method always leads to a local minimum. In [29], cross-
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correlation is used to improve the robustness of shape registration, and it is 

demonstrated to be a possible solution to the local minimum problem. Also, cross-

correlation based on the fast Fourier transform (FFT) for shape registration is reported 

in [42] and [43]. 

As a similarity metric, SSD is widely used in shape registration as it is straightforward 

to measure the greyscale difference across the voxels at the same locations [30] [31]. 

Inspired by information theory, MI is proposed as a statistical registration technique 

and similarity metric. It is employed in [44] and [45] to calculate the optimal 

transformation parameters by maximising the MI between different shapes. Moreover, 

the scale-rotation-translation-compatible distance as an innovative metric is proposed 

in [46] to achieve scale-invariant registration. 

In previous work, the influence of noise has rarely been analysed, but the robustness of 

algorithms should be attached importance for practical applications. The challenge of 

the registration for the candidate shapes containing different sub-shapes, named here as 

group shapes, needs to be overcome. The main objective of this chapter is therefore to 

propose a robust and high-performance similarity registration method for volumetric 

shapes. It intends to address the concerns of registration for the group shapes even in 

the presence of noise. In addition, the desired similarity alignment method is required 

to achieve high registration accuracy and stability within a reasonable time. In this 

chapter, the CFs are employed to represent shapes. The technique proposed here is 

developed using an iterative scheme and radial moments. In each iteration, the cross-

correlation based on the spherical coordinate system is employed to accelerate 

convergence and avoid local minimum. Performance in terms of registration accuracy, 

stability and rate of convergence is validated by experiments on the group shapes in the 

presence of noise, as well as a lung shape database.  
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The contributions in this chapter are as follows: Firstly, an iterative method is 

introduced to improve the robustness, accuracy and stability of volumetric shape 

registration, especially for group shapes. Secondly, a method based on the spherical 

coordinate system is proposed to simplify the calculation of fine rotational angles and 

to guarantee the global optimum for each fine rotation. Thirdly, the robustness of 

registration algorithms is analysed in this chapter. 

This section is structured as follows: The relevant background materials are introduced 

in Section 2.2, followed by the methodology with mathematical derivations in Section 

2.3. The numerical results are presented in Section 2.4 to validate the improvement of 

robustness, performance and stability achieved by the algorithm proposed here. 

Conclusions and future work are finally summarised in Section 2.5. 

2.2 Theoretical Basis  

2.2.1 Rotation Theorems 

In [47], P. Davenport demonstrated that any orientation of a rigid body could be 

obtained by three rotations around three different non-orthogonal axes. Davenport 

rotation theorem was then extended to prove that a unique decomposition of a rotation 

into three rotations around three orthogonal axes is reliable. The decomposition is 

generalised as the Tait-Bryan rotations and employed in Section 2.3.2.2 to calculate 

rotation parameters. 

2.2.2 Representation of Volumetric Shapes 

In this chapter, CFs are used to represent shapes. The CF of a volumetric shape in the 

image domain 𝛺 is defined as 

 𝜙(𝑥, 𝑦, 𝑧) = {
1
0

           
(𝑥, 𝑦, 𝑧) ∈ 𝑆

(𝑥, 𝑦, 𝑧) ∈ 𝛺 − 𝑆
 (2.1) 
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where S denotes the inside region of the shape. 

2.3 Methodology 

Compared with rigid registration, which only considers rotation and translation, 

similarity registration expands the scope of application and is performed sequentially 

through scaling, rotation and translation. Based on the recent shape registration method 

proposed in [31], which effectively improves the robustness in a two-dimensional plane, 

the algorithm proposed here is developed in three-dimensional space for volumetric 

shape registration. Furthermore, some complicated issues such as computational 

complexity in three-dimensional space are resolved in this chapter to obtain outstanding 

performance. In summary, the method is extended as follows: 

 Extend the calculation of radial moments for three-dimensional shapes. 

 Employ PCA to perform a coarse registration. 

 Employ the spherical coordinate system to simplify the calculation of the 

rotational angle. 

 Employ a three-dimensional Fourier transform to calculate the optimal rotation 

and translation parameters based on a cross-correlation framework. 

In this chapter, 𝜙𝑡𝑎𝑟(𝑥, 𝑦, 𝑧) and 𝜙𝑠𝑟𝑐(𝑥, 𝑦, 𝑧) denote the CFs of the target and source 

shapes respectively. 𝑠 is used to denote the scaling parameter. As a rotation can be 

decomposed into three rotations around three orthogonal axes, 𝜑𝑧 , 𝜑𝑦  and 𝜑𝑥  here 

represent the fine rotation parameters around the three Cartesian axes, Z, Y and X 

respectively. Also, Δ𝑥, Δ𝑦 and Δ𝑧 denote the translations along the X, Y and Z axes 

respectively. The dissimilarity between registered source shape 𝜙𝑠𝑟𝑐
̅̅ ̅̅ ̅̅  and target shape 

𝜙𝑡𝑎𝑟 can be measured by the SSD.  
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 𝐸 = ∭ |𝜙𝑡𝑎𝑟(𝑥, 𝑦, 𝑧) − 𝜙𝑠𝑟𝑐
̅̅ ̅̅ ̅̅ (𝑥, 𝑦, 𝑧)|

2
d𝑥 d𝑦 d𝑧

𝛺
  (2.2) 

where 𝛺 is the image domain. The optimal transformation parameters can therefore be 

calculated by minimising the dissimilarity measurement in Eq. (2.2), i.e. 

 (𝑠̂, 𝜑𝑧̂ , 𝜑𝑦̂, 𝜑𝑥̂, 𝛥𝑥̂, 𝛥𝑦̂, 𝛥𝑧̂) = argmin
𝑠,𝜑𝑧,𝜑𝑦,𝜑𝑥,𝛥𝑥,𝛥𝑦,𝛥𝑧

𝐸 (2.3) 

where 𝑠̂, 𝜑𝑧̂ , 𝜑𝑦̂, 𝜑𝑥̂, 𝛥𝑥̂, 𝛥𝑦̂, 𝛥𝑧̂ are the estimated parameters for scaling, rotation and 

translation respectively.  

2.3.1 Coarse Registration 

In order to improve the computational efficiency and robustness of the algorithm, PCA-

based coarse registration is employed here to find the orthogonal axes and then the 

rotational angles. The coarse registration starts with alignment of the centroids of the 

target and source shapes to the origin of the coordinate system. Then, the method 

proposed here arranges for the first and second main axes of the shapes computed by 

PCA to coincide with the Z and Y axes (in the Cartesian coordinate system) respectively. 

The procedure of coarse registration is illustrated in Figure 2.1. 

Under some circumstances, the directions of the corresponding main axes might be 

reversed after coarse registration, as shown in Figure 2.1(b). The flipping problem can 

be resolved by the subsequent fine rotation, which employs an iterative method as 

described in Section 2.3.4. 

After centralisation and coarse rotation, the 𝜙𝑡𝑎𝑟 and 𝜙𝑠𝑟𝑐 are transformed to new poses, 

i.e. 

 𝜙𝑡𝑎𝑟  ̃(𝑥, 𝑦, 𝑧) = 𝜙𝑡𝑎𝑟(𝑥 − 𝑥𝑡, 𝑦 − 𝑦𝑡, 𝑧 − 𝑧𝑡) (2.4) 

 𝜙𝑠𝑟𝑐  ̃(𝑥, 𝑦, 𝑧) = 𝜙𝑠𝑟𝑐(𝑅𝑐(𝑥 − 𝑥𝑠, 𝑦 − 𝑦𝑠, 𝑧 − 𝑧𝑠)) (2.5) 
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where 𝑅𝑐 denotes the coarse rotation of the source shape using PCA, and (𝑥𝑡, 𝑦𝑡, 𝑧𝑡) 

and (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) are the centroids of the target and source shapes. The coarse registration 

also aids the shape CF mapping from the Cartesian to the spherical coordinate system 

in the subsequent calculation of fine rotational angles. 

 

  
a b 

Figure 2.1 The coarse registration is implemented by centralisation and coarse rotation. In 

order to highlight the coincidence, the coarse registration is presented with the modification 

that the two centroids are aligned but not translated to the origin of the coordinate system. (a) 

Initial poses before coarse registration. (b) Coarse registration results. 

2.3.2 Fine Registration 

2.3.2.1 Scaling 

The difference of radial moments is employed here to derive the scaling parameter. In 

comparison with geometric moments, which are used to calculate the scaling 

parameters along the X, Y and Z directions for shear transformation, radial moments 

are rotation-invariant and simplify the computation by offering a uniform scaling 

parameter for all directions in three-dimensional space. 

For two centralised volumetric shapes, 𝜙𝑡𝑎𝑟̃ , 𝜙𝑠𝑟𝑐
̃ , the radial moments are computed by 

Eq. (2.6) and Eq. (2.7), 

 𝑀𝑚
𝑡𝑎𝑟 = ∭ (√𝑥2 + 𝑦2 + 𝑧2)

𝑚
𝜙𝑡𝑎𝑟̃(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧

𝛺
 (2.6) 
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 𝑀𝑚
𝑠𝑟𝑐 = ∭ (√𝑥2 + 𝑦2 + 𝑧2)

𝑚
𝜙𝑠𝑟𝑐
̃ (𝑥, 𝑦, 𝑧)d𝑥 d𝑦 d𝑧

𝛺
 (2.7) 

where m denotes the number of moments. The target shape scaled by 1 𝑠⁄  is written as 

 𝑀𝑚

𝑡𝑎𝑟
𝑠⁄

= ∭ (√𝑥2 + 𝑦2 + 𝑧2)
𝑚

𝜙𝑡𝑎𝑟̃ (
𝑥

𝑠
,

𝑦

𝑠
,

𝑧

𝑠
) d𝑥 d𝑦 d𝑧

𝛺
 (2.8) 

By replacing the variables 𝑥 𝑠⁄ , 𝑦 𝑠⁄  and 𝑧 𝑠⁄  with X, Y and Z respectively, Eq. (2.8) can 

be rewritten as 

 𝑀𝑚

𝑡𝑎𝑟
𝑠⁄

= 𝑠𝑚+3 ∭ (√𝑋2 + 𝑌2 + 𝑍2)
𝑚

𝜙𝑡𝑎𝑟̃(𝑋, 𝑌, 𝑍) d𝑋 d𝑌 d𝑍
𝛺

= 𝑠𝑚+3𝑀𝑚
𝑡𝑎𝑟(2.9) 

The optimal scaling parameter is estimated by minimising the distance between these 

two radial moments, i.e. 

 𝑠̂ = argmin
𝑠

(𝐸𝑠𝑐𝑙(𝑠)) = argmin
𝑠

(∑ |𝑀𝑚
𝑠𝑟𝑐 − 𝑠𝑚+3𝑀𝑚

𝑡𝑎𝑟|2𝑀
𝑚=0 ) (2.10) 

Then, the derivative of 𝐸𝑠𝑐𝑙 with respect to 𝑠 should vanish: 

 
𝑑𝐸𝑠𝑐𝑙

𝑑𝑠
= ∑ 2(𝑚 + 3)[𝑠2𝑚+5(𝑀𝑚

𝑡𝑎𝑟)2 − 𝑠𝑚+2𝑀𝑚
𝑠𝑟𝑐𝑀𝑚

𝑡𝑎𝑟]𝑀
𝑚=0 = 0 (2.11) 

It is obvious that Eq.(2.11) is a polynomial equation with respect to 𝑠. In fact, only one 

solution, which is real and positive-valued, can be regarded as the desired scaling 

parameter. The remaining solutions are either complex or negative real-valued. 

2.3.2.2 Rotation 

In each iteration, the desired rotational angles can be estimated by minimising the cost 

function, 𝐸𝑟𝑜𝑡(𝜑𝑧 , 𝜑𝑦, 𝜑𝑥), which is similar to Eq. (2.2): 

 𝐸𝑟𝑜𝑡(𝜑𝑧, 𝜑𝑦, 𝜑𝑥) = ∭ |𝜙𝑠𝑟𝑐
̃ |

2
d𝑥 d𝑦 d𝑧

𝛺
+ ∭ |𝜙𝑡𝑎𝑟̃|

2
d𝑥 d𝑦 d𝑧

𝛺
− 2⟨𝜙𝑠𝑟𝑐

̃ ⋅

𝜙𝑡𝑎𝑟̃⟩  (2.12) 

where the 𝜑𝑧 , 𝜑𝑦, 𝜑𝑥 are rotational angles around the Z, Y and X axes, as defined by 

the Tait-Bryan rotations.  
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As the first and second terms on the right-hand side of the above equation are 

independent of the rotational angles, Eq. (2.12) is simplified as 

 𝐸𝑟𝑜𝑡(𝜑𝑧, 𝜑𝑦, 𝜑𝑥) = 𝐶 − 2𝛿 (2.13) 

 𝛿 = ∭ (𝜙𝑡𝑎𝑟̃(𝑥, 𝑦, 𝑧)𝜙𝑠𝑟𝑐
̃ (𝑅𝑓(𝑥, 𝑦, 𝑧))) d𝑥 d𝑦 d𝑧

𝛺
 (2.14) 

where 𝑅𝑓 denotes the fine rotation of the source shape. 

Therefore, minimising Eq. (2.12) is equivalent to maximising 𝛿 with respect to 𝜑𝑧 , 𝜑𝑦 

and 𝜑𝑥: 

 (𝜑𝑧̂ , 𝜑𝑦̂, 𝜑𝑥̂) = argmax
𝜑𝑧,𝜑𝑦,𝜑𝑥

(𝛿) (2.15) 

As the three rotation parameters have to be derived sequentially, a local minimum 

problem within the combination of three sequential rotations can be nearly overcome 

by a reliable computation order, which is from the first to the third main axis [30]. In 

Section 2.3.1, PCA-based coarse registration was performed to arrange for the first and 

second main axes of the shapes to coincide with the Z and Y axes respectively. 

Therefore, the order is determined as Z-Y-X, which is in accordance with from the first 

to the third main axis. 

In order to facilitate the calculation, the shape CFs are mapped to the spherical 

coordinate system, in which 𝑟, 𝜃 and 𝜑 representing radial distance, polar angle and 

azimuthal angle respectively are employed to define the locations of voxels. 𝜑 is the 

only variable to compute the rotational angle around an axis. Eq. (2.14) is therefore 

rewritten based on the spherical coordinate system as 

 𝛿(𝜑𝑧) = ∭ 𝜙𝑠1̃(𝑟, 𝜃, 𝜑)𝜙𝑡1̃(𝑟, 𝜃, 𝜑 − 𝜑𝑧)𝑟2 sin 𝜃 d𝑟d𝜃d𝜑
𝛺

 (2.16) 

 𝛿(𝜑𝑦) = ∭ 𝜙𝑠2̃(𝑟, 𝜃, 𝜑)𝜙𝑡2̃(𝑟, 𝜃, 𝜑 − 𝜑𝑦)𝑟2 sin 𝜃 d𝑟d𝜃d𝜑
𝛺

 (2.17) 



  22 

 

 𝛿(𝜑𝑥) = ∭ 𝜙𝑠3̃(𝑟, 𝜃, 𝜑)𝜙𝑡3̃(𝑟, 𝜃, 𝜑 − 𝜑𝑥)𝑟2 sin 𝜃 d𝑟d𝜃d𝜑
𝛺

 (2.18) 

where 𝜙𝑠1̃, 𝜙𝑠2̃ and 𝜙𝑠3̃ denote the mapped source shapes using the Z, Y and X axes as 

the zenith direction respectively. Similarly, 𝜙𝑡1̃ , 𝜙𝑡2̃  and 𝜙𝑡3̃  denote mapped target 

shapes after rotating around the Z, Y and X axes respectively. Eq. (2.16) is used as an 

example here to complete the following derivation.  

Given 𝜅𝑠1̃(𝑟, 𝜃, 𝜑) to substitute for 𝜙𝑠1̃(𝑟, 𝜃, 𝜑)𝑟2 sin 𝜃 for convenience, Eq. (2.16) is 

simplified to 

 𝛿(𝜑𝑧) = ∭ 𝜅𝑠1̃(𝑟, 𝜃, 𝜑)𝜙𝑡1̃(𝑟, 𝜃, 𝜑 − 𝜑𝑧)d𝑟d𝜃d𝜑
𝛺

 (2.19) 

Cross-correlation is employed here to derive the optimal 𝜑𝑧 which maximises 𝛿(𝜑𝑧). 

Given the Fourier transforms of 𝜅𝑠1̃(𝑟, 𝜃, 𝜑) and 𝜙𝑡1̃(𝑟, 𝜃, 𝜑), denoted by 𝛫𝑠1̃(𝜂, 𝜆, 𝜉) 

and 𝛷𝑡1̃(𝜂, 𝜆, 𝜉) respectively, the Fourier transform of 𝜙𝑡1̃(𝑟, 𝜃, 𝜑 − 𝜑𝑧) is therefore 

written as 

 ℱ (𝜙𝑡1̃(𝑟, 𝜃, 𝜑 − 𝜑𝑧)) =  𝛷𝑡1̃(𝜂, 𝜆, 𝜉)𝑒−𝑗𝜉𝜑𝑧 (2.20) 

where 𝜂, 𝜆 and 𝜉 are spatial frequencies in the spherical coordinate system. Based on 

Parseval’s theorem, 𝜑𝑧̂ can be calculated by 

 𝜑𝑧̂ = argmax
𝜑𝑧

(𝛿) 

= argmax
𝜑𝑧

(
1

2𝜋
∭ 𝛫𝑠1̃(𝜂, 𝜆, 𝜉)𝛷𝑡1̃

∗
(𝜂, 𝜆, 𝜉)𝑒𝑗𝜉𝜑𝑧 d𝜂d𝜆d𝜉) (2.21) 

where * denotes the complex conjugate. In this way, the optimal 𝜑𝑧 can be calculated 

based on the inverse Fourier transform. The value of 𝜑𝑧 corresponding to the maximum 

𝛿 can be straightforwardly investigated, as illustrated in Figure 2.2. 

Similarly, 𝜑𝑦̂ and 𝜑𝑥̂ are calculated respectively as  
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 𝜑𝑦̂ = argmax
𝜑𝑦

(
1

2𝜋
∭ 𝛫𝑠2̃(𝜂, 𝜆, 𝜉)𝛷𝑡2̃

∗
(𝜂, 𝜆, 𝜉)𝑒𝑗𝜉𝜑𝑦 d𝜂d𝜆d𝜉) (2.22) 

 𝜑𝑥̂ = argmax
𝜑𝑥

(
1

2𝜋
∭ 𝛫𝑠3̃(𝜂, 𝜆, 𝜉)𝛷𝑡3̃

∗
(𝜂, 𝜆, 𝜉)𝑒𝑗𝜉𝜑𝑥 d𝜂d𝜆d𝜉) (2.23) 

 

Figure 2.2 A plot for global cost 𝛿 with respect to rotation 𝜑𝑧. The  𝜑𝑧 corresponding to the 

maximum of 𝛿 is the optimal rotational angle. 

2.3.2.3 Translation 

Similar to Eq. (2.12), the first two terms on the right-hand side of Eq. (2.24) are 

translation-invariant. Minimising Eq. (2.24) is possible by maximising ⟨𝜙𝑠𝑟𝑐
̃ ⋅ 𝜙𝑡𝑎𝑟̃⟩ 

with respect to Δ𝑥, Δ𝑦 and Δ𝑧: 

 𝐸𝑡𝑟𝑎𝑛(Δ𝑥, Δ𝑦, Δ𝑧) = ∭ |𝜙𝑠𝑟𝑐
̃ |

2
d𝑥 d𝑦 d𝑧

𝛺
+ ∭ |𝜙𝑡𝑎𝑟̃|

2
d𝑥 d𝑦 d𝑧

𝛺
− 2⟨𝜙𝑠𝑟𝑐

̃ ⋅

𝜙𝑡𝑎𝑟̃⟩  (2.24) 

 ⟨𝜙𝑠𝑟𝑐
̃ ⋅ 𝜙𝑡𝑎𝑟̃⟩ = ∭ 𝜙𝑠𝑟𝑐

̃ (𝑥, 𝑦, 𝑧)𝜙𝑡𝑎𝑟̃(𝑥 − 𝛥𝑥, 𝑦 − 𝛥𝑦, 𝑧 − 𝛥𝑧)d𝑥 d𝑦 d𝑧
𝛺

 (2.25) 
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Given the Fourier transform of 𝜙𝑠𝑟𝑐
̃ (𝑥, 𝑦, 𝑧)  and 𝜙𝑡𝑎𝑟̃(𝑥, 𝑦, 𝑧) , denoted by 

𝛷𝑠𝑟𝑐
̃ (𝜂′, 𝜆′, 𝜉′)  and 𝛷𝑡𝑎𝑟̃(𝜂′, 𝜆′, 𝜉′)  respectively, the Fourier transform of 𝜙𝑡𝑎𝑟̃(𝑥 −

Δ𝑥, 𝑦 − Δ𝑦, 𝑧 − Δ𝑧) is therefore written as 

 ℱ (𝜙𝑡𝑎𝑟̃(𝑥 − 𝛥𝑥, 𝑦 − 𝛥𝑦, 𝑧 − 𝛥𝑧)) =  𝛷𝑡𝑎𝑟̃(𝜂′, 𝜆′, 𝜉′)𝑒−𝑗(𝜂′𝛥𝑥+𝜆′𝛥𝑦+𝜉′𝛥𝑧) (2.26) 

where 𝜂′, 𝜆′ and 𝜉′ are spatial frequencies in the Cartesian coordinate system. By using 

Parseval’s theorem, 𝛥𝑥̂, 𝛥𝑦̂ and 𝛥𝑧̂ are calculated by 

 (𝛥𝑥̂, 𝛥𝑦̂, 𝛥𝑧̂) =

argmax
𝛥𝑥,𝛥𝑦,𝛥𝑧

(
1

2𝜋
∭ 𝛷𝑠𝑟𝑐

̃ (𝜂′, 𝜆′, 𝜉′) 𝛷𝑡𝑎𝑟̃
∗
(𝜂′, 𝜆′, 𝜉′)𝑒𝑗(𝜂′𝛥𝑥+𝜆′𝛥𝑦+𝜉′𝛥𝑧)d𝜂′d𝜆′d𝜉′) (2.27) 

where * denotes the complex conjugate. 

2.3.3 Evaluation of Similarity Registration 

The similarity measurement is employed here to evaluate the performance of algorithms 

and to determine the iterative progression. In [30], a few evaluation methods were 

mentioned for measuring the regional similarity. In this chapter, these classic 

measurements are analysed before use. 

Firstly, the normalised inner product is used to evaluate the common region inside two 

registered shapes and is denoted by 

 𝐸𝐼𝑃 = ∭
𝜙𝑡𝑎𝑟(𝑥,𝑦,𝑧)𝜙𝑠𝑟𝑐

̅̅ ̅̅ ̅̅ ̅(𝑥,𝑦,𝑧)

‖𝜙𝑡𝑎𝑟(𝑥,𝑦,𝑧)‖2‖𝜙𝑠𝑟𝑐
̅̅ ̅̅ ̅̅ ̅(𝑥,𝑦,𝑧)‖

2

d𝑥 d𝑦 d𝑧
𝛺

 (2.28) 

where ‖∙‖2 denotes Euclidean norm, and 𝜙𝑡𝑎𝑟(𝑥, 𝑦, 𝑧) and 𝜙𝑠𝑟𝑐
̅̅ ̅̅ ̅̅ (𝑥, 𝑦, 𝑧) are the CFs of 

the target shape and registered source shape respectively.  

Furthermore, accuracy (𝐸𝐴𝑐), overlap (𝐸𝑂𝑣), sensitivity (𝐸𝑆𝑒), and specificity (𝐸𝑆𝑝) are 

selectable metrics for similarity measurement: 
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 𝐸𝐴𝑐 =
𝑉𝑐+𝑉𝑜

𝑉𝛺
   (2.29) 

 𝐸𝑂𝑣 =
𝑉𝑐

𝑉𝑐+𝑉𝑡+𝑉𝑟
 (2.30) 

 𝐸𝑆𝑒 =
𝑉𝑐

𝑉𝑐+𝑉𝑡
 (2.31) 

 𝐸𝑆𝑝 =
𝑉𝑜

𝑉𝑜+𝑉𝑟
 (2.32) 

𝑉Ω: the volume of the image domain 

𝑉𝑐:  the volume of the common region inside the two shapes 

𝑉𝑜:  the volume of the background region outside the two shapes 

𝑉𝑡:  the volume of the region inside the target shape but outside the registered source 

shape 

𝑉𝑟:  the volume of the region inside the registered source shape but outside the target 

shape 

Nevertheless, the definition of 𝐸𝐴𝑐  and 𝐸𝑆𝑝  are involved with 𝑉𝑜 , which means the 

background information inevitably affects the results obtained. In the case where the 

background occupies a considerable proportion of the whole image domain, the values 

of 𝐸𝐴𝑐  and 𝐸𝑆𝑝 are very close to unity, which causes these two measurements to be 

insensitive to the difference between the shapes being compared. 𝐸𝑆𝑒 concentrates on 

the common region in the target shape, but ignores the evaluation with respect to the 

registered source shape. 𝐸𝑆𝑒  is therefore inapplicable to the measurement of shape 

registration.  

𝐸𝑂𝑣 is a reliable measurement which is similar to 𝐸𝐼𝑃. It concentrates on the foreground 

information and evaluates the common region within two shapes. An iterative algorithm 

based on 𝐸𝑂𝑣  and 𝐸𝐼𝑃  manages to maximise the common region and minimise the 

individual regions simultaneously. 
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Furthermore, Hausdorff distance (𝐸𝐻𝐷), first proposed in [48], is used to measure the 

resemblance between two shapes, and the bidirectional Hausdorff distance between 

𝜙𝑡𝑎𝑟 and 𝜙𝑠𝑟𝑐
̅̅ ̅̅ ̅̅  is denoted by 

 𝐸𝐻𝐷(𝜙𝑡𝑎𝑟 , 𝜙𝑠𝑟𝑐
̅̅ ̅̅ ̅̅ ) = max (ℎ(𝜙𝑡𝑎𝑟 , 𝜙𝑠𝑟𝑐

̅̅ ̅̅ ̅̅ ), ℎ(𝜙𝑠𝑟𝑐
̅̅ ̅̅ ̅̅ , 𝜙𝑡𝑎𝑟)) (2.33) 

where 

 ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 − 𝑏‖ (2.34) 

Since it requires no explicit correspondence between A and B, Hausdorff distance is 

employed to robustly evaluate registration against tiny errors that are obtained with 

feature extraction and descriptors. In terms of shape registration, it is a promising metric 

and is adopted by this chapter. 

In this chapter, normalised inner product (𝐸𝐼𝑃), overlap (𝐸𝑂𝑣) and Hausdorff distance 

(𝐸𝐻𝐷) are employed to evaluate performance in the experiments. Higher 𝐸𝑂𝑣 and 𝐸𝐼𝑃 

and lower 𝐸𝐻𝐷 indicate superior registration accuracy. 

2.3.4 Iterative Algorithm 

In order to obtain the optimal parameters for scaling, rotation and translation, an 

iterative method is developed in this chapter. In comparison with the non-iterative 

method proposed in [30], the iterative method can effectively reduce the influence of 

sequential computation on the transformation parameters and then avoid converging to 

a local minimum. The registration starts with centralisation and coarse rotation. The 

optimal registration parameters for scaling, rotation and translation are then calculated 

iteratively. At the end of each iteration, the similarity of the registered shapes is 

evaluated by one of the methods mentioned in Section 2.3.3. The iterative process stops 
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when a certain condition is met. The entire process of registration proceeds as shown 

in Figure 2.3. 

 

Figure 2.3 Flow chart of the iterative shape registration procedure. 

The pseudo-code for programming is as follows: 

1) Perform centralisation and coarse rotations 

At iteration i: 

2) Solve the following equation 

∑ (𝑚 + 3)[𝑠𝑖
2𝑚+5(𝑀𝑚

𝑡𝑎𝑟)2 − 𝑠𝑖
𝑚+2(𝑀𝑚

𝑠𝑟𝑐)𝑖−1𝑀𝑚
𝑡𝑎𝑟]

𝑀

𝑚=0

= 0 

3) Find the following values 

𝜑𝑧̂𝑖
= argmax

𝜑𝑧

(
1

2𝜋
∭ (𝛫𝑠1̃(𝜂, 𝜆, 𝜉))

𝑖−1
𝛷𝑡1̃

∗
(𝜂, 𝜆, 𝜉)𝑒𝑗𝜉𝜑𝑧 d𝜂d𝜆d𝜉) 

𝜑𝑦̂𝑖
= argmax

𝜑𝑦

(
1

2𝜋
∭ (𝛫𝑠2̃(𝜂, 𝜆, 𝜉))

𝑖−1
𝛷𝑡2̃

∗
(𝜂, 𝜆, 𝜉)𝑒𝑗𝜉𝜑𝑦 d𝜂d𝜆d𝜉) 
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𝜑𝑥̂𝑖
= argmax

𝜑𝑥

(
1

2𝜋
∭ (𝛫𝑠3̃(𝜂, 𝜆, 𝜉))

𝑖−1
𝛷𝑡3̃

∗
(𝜂, 𝜆, 𝜉)𝑒𝑗𝜉𝜑𝑥 d𝜂d𝜆d𝜉) 

(𝛥𝑥̂𝑖 , 𝛥𝑦̂𝑖 , 𝛥𝑧̂𝑖)

= argmax
𝛥𝑥,𝛥𝑦,𝛥𝑧

(
1

2𝜋
∭ (𝛷𝑠𝑟𝑐

̃ (𝜂′, 𝜆′, 𝜉′))
𝑖−1

𝛷𝑡𝑎𝑟̃
∗
(𝜂′, 𝜆′, 𝜉′)𝑒𝑗(𝜂′𝛥𝑥+𝜆′𝛥𝑦+𝜉′𝛥𝑧)d𝜂′d𝜆′d𝜉′) 

4) Transform the source shape which was updated in iteration i-1. 

5) Evaluate the similarity of the two shapes by 𝐸𝐼𝑃 or 𝐸𝑂𝑣. 

6) Repeat steps 2-5, until the value of 𝐸𝐼𝑃 or 𝐸𝑂𝑣 is less than any one of the 

previous values.  

2.4 Experimental Results and Discussions 

In this section, a series of experiments are conducted to evaluate the performance of 

different registration methods. Before presenting the experimental results, it is 

necessary to mention some implementation issues at the beginning. 

Firstly, 𝑀 in Eq. (2.11) should be pre-set before calculating the scaling parameter. With 

the increase of 𝑀, the estimated scaling parameter tends to approach the true value, as 

shown in Figure 2.4. However, when it arrives at a certain value, the accuracy 

improvement is not substantial but time consumption increases dramatically. Thus, a 

proper trade-off needs to be made. 

Moreover, as the voxels in the Cartesian coordinate system are mapped to the spherical 

coordinate system to facilitate the calculation of rotational angles, the converted 

resolutions need to be negotiated. As stated in Section 2.3.2.2, only azimuthal angles 

are used to manipulate the rotation of shapes. An efficient solution is therefore to lower 

the resolutions with respect to the 𝑟 and 𝜃  axes whilst enhance the resolution with 

respect to the 𝜑 axis.  
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a b 

Figure 2.4 Three pairs of shapes and the corresponding estimated scaling parameters relative 

to the real values. (a) Three pairs of similar shapes (simple shapes, medical shapes and group 

shapes) are displayed in yellow (target shapes) and red (source shapes). (b) The absolute 

difference between real and estimated scaling parameters with the different numbers of 

moments used. 

The following experiments and comparisons are performed with three methods, two of 

which are the Matlab built-in function “imregister” and the algorithm proposed in [30], 

named as Algorithm 1 and Algorithm 2 respectively here. The “imregister” function as 

a comparable iterative alignment algorithm is included in the Matlab image processing 

toolbox. The method proposed in [30] is a state-of-the-art CF-based volumetric shape 

registration technique. It also employs phase-correlation and gradient descent 

optimisation method to investigate the transformation parameters, whereas it does not 
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conduct calculation iteratively. Moreover, ICP as a classic method is also included in 

Section 2.4.2 for comparison.  

All the experiments were implemented in Matlab 2017b on a PC workstation with an 

Intel Core i5 (3.2GHz) processor and 16 GB RAM. In this chapter, the target shapes 

are depicted in yellow while the source shapes are displayed in red for visual inspection. 

All the shapes are presented by their surfaces with suitable transparent effects to aid 

visualization. 

2.4.1 Registration for Group Shapes 

The experiments in this section were implemented to validate robustness and alignment 

accuracy for group shapes. The testing candidates are two three-dimensional clocks, as 

shown in Figure 2.5(a). It is apparent that their dials are different. One is composed of 

four numerical digits and a discrete frame whilst the other clock is made of twelve 

Roman numerals and a continuous frame. The numerical digits, Roman numerals, 

circular frame and hands are regarded as the sub-shapes of the clock shape. The 

registration is then performed by Algorithm 1, Algorithm 2 and the algorithm proposed 

here.  

These two clocks are initially placed overlapped. The alignment results are depicted in 

Figure 2.5(b-d). It is obvious that Algorithm 1 fails to register the group shapes since it 

tends to fall into a local minimum and terminate the registration prematurely, as shown 

in Figure 2.5(b). Algorithm 2 (shown in Figure 2.5(c)) also fails to register these two 

group shapes as the non-iterative technique cannot derive the optimal transformation 

parameters in one attempt. Conversely, the result shown in Figure 2.5(d) significantly 

demonstrates the power of the iterative scheme and the superior accuracy achieved by 

the method proposed here. 
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a b 

  

c d 

Figure 2.5 Registration of two clocks without noise. (a) The initial poses of two clock shapes. 

They are overlapped before registration. (b) The registration result of Algorithm 1. (c) The 

registration result of Algorithm 2. (d) The registration result of the proposed method. 

Salt and pepper noise, which is applicable to shapes (binary masks), is then added to 

one of the clock shapes to challenge the robustness of the algorithms. The two clocks 

are arranged separately without overlap. The results of the two registration tests in the 

presence of different signal-to-noise ratios (SNRs) are shown in Figure 2.6. It is 

demonstrated that the algorithm proposed here manages to register the two group 

shapes robustly. 
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a b 

Figure 2.6 Registration of two clocks in the presence of different SNRs. (a) SNR=20dB. (b) 

SNR=10dB. 

The following experiment is implemented to further validate the robustness of the 

different algorithms. As depicted in Figure 2.7, two identical clocks are deployed in the 

same pose. The target clock shape is deteriorated by adding salt and pepper noise with 

a specific SNR whilst the source clock shape is initially rotated 180 degrees around the 

axis which is orthogonal to the dial and passes through the centre of the shape. The 

error angles (relative to the ground-truth of 180 degrees) after registration are used to 

measure the alignment performance, especially in terms of rotation.  
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Figure 2.7 Two group shapes to be registered are displayed separately. The target (on the left-

hand side) has noise added to increase the difficulty of registration. The source (on the right-

hand side) is initially rotated by 180 degrees. 

For each test mode (i.e. tests with the fixed SNR for the target shape), ten alignment 

tests with random noise distributions are conducted. The results of eight test modes 

(SNR= -15, -10, -5, 0, 5, 10, 15, 20dB) are plotted in Figure 2.8. The shortcomings of 

Algorithm 1 are revealed again in the presence of noise. Since Algorithm 1 is very 

vulnerable to local minimum, the alignment tends to finish promptly with obtained 

rotational angles close to zero. Algorithm 2 is able to obtain desirable results when the 

 

Figure 2.8 Error angle graph with respect to different SNRs. The error angles of Algorithm 

1 and Algorithm 2 are depicted by a black dotted line and red dashed line respectively with 

their standard deviations. The error angles of the proposed algorithm are displayed with a 

blue solid line with its standard deviation. 
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SNR is not lower than 0dB. It is however not capable of aligning shapes under lower 

SNR conditions as the robustness is limited by the non-iterative solution. In contrast, 

the algorithm proposed here with an iterative method outperforms Algorithm 1 and 2 

in the presence of noise, even when the SNR is as low as -5dB.  

2.4.2 Registration for Lung Shapes in the Database 

In this section, the shapes provided by the lung low-dose CT database (subject details 

refer to Table A-1 and A-2 of Appendix A) are employed to further validate the speed, 

accuracy and stability of Algorithm 1, Algorithm 2, ICP and the algorithm proposed 

here. The database contains 33 left and 33 right lung shapes represented by their CFs. 

In the following experiments, the leave-one-out approach is employed, which means 

that each subject in the database is sequentially chosen as the target shape and the 

remaining 32 cases are regarded as the source shapes. Thus, the total number of 

registration tests performed by each method is 1056 for the left lung and 1056 for the 

right lung. Furthermore, in order to challenge their abilities against local optima, the 

initial orientations of the two lung shapes are set randomly. As mentioned in Section 

2.3.3, 𝐸𝑂𝑣, 𝐸𝐼𝑃 and 𝐸𝐻𝐷 are employed here to evaluate accuracy.  

2.4.2.1 Efficiency Evaluation 

As an important criterion, the efficiency of registration should be evaluated to guarantee 

that the algorithm can be applied to the general radiologist’s workflow without causing 

undue delay. The elapsed times using different registration algorithms are displayed in 

Figure 2.9 and Table 2.1. It is obvious that the CPU time consumed by the method 

proposed here is less than those of the other two iterative algorithms (Algorithm 1 and 

ICP are configured to their default settings), since the proposed method considerably 

simplifies the calculation of scaling and rotation parameters. However, it is admitted 

that the time consumption of the proposed algorithm (average 3.7 iterations and 4 



  35 

 

iterations for left lungs and right lungs respectively) is approximately three times that 

of Algorithm 2 due to the iterative nature of the method.  

 

 
a 

 
b 

Figure 2.9 Time consumption of 33 experimental patterns using four algorithms. (a) Average 

elapsed times of left lung registration. (b) Average elapsed times of right lung registration. 

Table 2.1 The average elapsed times using different methods 

 

 
Algorithm 1 

[sec] 

Algorithm 2 

 [sec] 

ICP 

[sec] 

Proposed 

[sec] 

Left lungs 19.08 0.74 3.55 2.64 

Right lungs 20.83 0.83 3.96 3.06 
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2.4.2.2 Accuracy and Stability Evaluation 

The experimental results in terms of registration accuracy are illustrated in Figures 2.10 

to 2.12. It is straightforward to see that the accuracies achieved by Algorithm 1 and ICP 

are much lower than those obtained by the other two methods since Algorithm 1 and 

ICP always fall into a local minimum when the alignment starts from an unfavourable 

pose, which is illustrated in Figure 2.13. Therefore, Algorithm 1 and ICP are not 

competent in shape registration with unfavourable or random initial poses. Conversely, 

the ability of overcoming the local minimum problem using Algorithm 2 and the 

proposed algorithm is validated in the batch-processing tests. Furthermore, compared 

with Algorithm 2, the algorithm proposed here develops the accuracy in the 

overwhelming majority of patterns.  

The average 𝐸𝑂𝑣 , 𝐸𝐼𝑃  and 𝐸𝐻𝐷  listed in Table 2.2 numerically demonstrate the 

improved accuracies are up to 7% and 11% for left and right lung alignments 

respectively. Further investigation about the source of improvement achieved by the 

proposed method can be performed by comparing the accuracies of Algorithm 2 and 

Proposed 1st.  The “proposed 1st” presents the results obtained by the proposed 

framework without iterative scheme. A certain of improvement after first iteration 

achieved by the proposed method can be observed (measured by 𝐸𝐻𝐷). Therefore, both 

spherical coordinate system-based cross-correlation and iterative technique are 

demonstrated to contribute to the improvement of registration performance. 
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a 

 
b 

Figure 2.10 The average 𝐸𝐼𝑃 obtained by four algorithms for 33 experimental patterns with 

random initial poses. (a) Results of left lung registration. (b) Results of right lung registration.  

 
a 
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b 

Figure 2.11 The average 𝐸𝑂𝑣 obtained by four algorithms for 33 experimental patterns with 

random initial poses. (a) Results of left lung registration. (b) Results of right lung registration.  

 
a 

 
b 

Figure 2.12 The average 𝐸𝐻𝐷 obtained by four algorithms for 33 experimental patterns with 

random initial poses. (a) Results of left lung registration. (b) Results of right lung registration.  
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a b 

Figure 2.13 An illustration of an unfavourable initial pose and the corresponding registration 

result using Algorithm 1 or ICP. (a) Two views of an unfavourable initial pose. (b) Two views 

of the registration result which converges to a local minimum. 

For similarity registration, the variations of lung shapes across different patients are the 

potential sources of variation in the final results, whereas statistical methods can be 

employed to further evaluate their performance. Lower standard deviations indicate that 

the results are insensitive to the variation of cases and rarely subjected to outliers. It is 

an important criterion for evaluating the performance of a registration technique. The 

standard deviations in Table 2.2 demonstrate that the algorithm proposed here 

substantially improves stabilities by up to 61% and 47% (measured by 𝐸𝑂𝑣 and 𝐸𝐼𝑃) for 

Table 2.2 The average 𝐸𝑂𝑣 , 𝐸𝐼𝑃  and 𝐸𝐻𝐷 , presented as mean±standard deviation (standard 

error) 

  Algorithm 1 Algorithm 2 ICP Proposed 1st Proposed 

Left 

𝐸𝑂𝑣 
0.38±0.13 

(0.02) 

0.67±0.07 

(0.01) 

0.48±0.11 

(0.02) 

0.66±0.04 

(0.01) 
0.68±0.04 

(0.01) 

𝐸𝐼𝑃 
0.55±0.13 

(0.02) 

0.80±0.05 

(0.01) 

0.66±0.09 

(0.02) 

0.80±0.03 

(0.01) 
0.82±0.03 

(0.01) 

𝐸𝐻𝐷 
15.91±3.92 

(0.68) 

8.73±2.84 

(0.49) 

11.80±3.52 

(0.61) 

8.51±1.92 

(0.33) 
8.13 ±1.77 

(0.31) 

Right 

𝐸𝑂𝑣 
0.46±0.10 

(0.02) 

0.65±0.08 

(0.01) 

0.49±0.11 

(0.02) 

0.66±0.05 

(0.01) 
0.66±0.04 

(0.01) 

𝐸𝐼𝑃 
0.63±0.09 

(0.02) 

0.79±0.06 

(0.01) 

0.66±0.09 

(0.02) 

0.80±0.04 

(0.01) 
0.80±0.03 

(0.01) 

𝐸𝐻𝐷 
14.49±3.35 

(0.58) 

9.18±2.57 

(0.45) 

12.18±3.65 

(0.63) 

8.77±2.11 

(0.37) 
8.20±1.82 

(0.32) 
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left and right lung alignments respectively in comparison with Algorithm 2. The 

standard error in Table 2.2 can be used to measure the distance between the sample data 

mean and the true population mean. Lower standard errors indicate that for unknown 

subjects the superior results obtained by the proposed method is convinced. 

2.5 Conclusions and Future Work  

In this chapter, a robust and high-performance three-dimensional shape registration 

algorithm has been proposed. It employs the CFs to represent shapes. The radial 

moments and cross-correlation are exploited to estimate the scaling and rotation 

parameters. Also, an iterative method is proposed to improve the overall performance. 

The entire programming and simulation is implemented in Matlab based on the 

mathematical derivations. 

The method proposed here was validated using two types of shapes: group shapes and 

lung shapes. The experiments on group shapes demonstrate its superior accuracy and 

robustness, even in the presence of noise. Over 2100 experiments on the lung shapes 

provided from a database demonstrate the excellent accuracy, stability and processing 

speed achieved by the method proposed here. In other words, the proposed similarity 

registration method is able to find the global optimum and has excellent performance 

in comparison with all the registration techniques investigated. Also, it strikes a 

significant balance between speed and performance, offering an innovative solution to 

the problem of volumetric shape registration. 

In future research, a mathematical proof of the proposed algorithm’s ability to find the 

global optimum can be investigated. The registered volumetric shapes can be employed 

to conduct statistical shape modelling in aid of prior shape-based image registration and 

segmentation. 
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Chapter 3 

 

Single-modality Image Registration Using Prior 

Shapes 

3.1 Introduction 

3.1.1 Non-rigid Registration 

Compared with rigid, similarity and affine registration, non-rigid registration is more 

complicated as it has a large number of degrees of freedom determined by the number 

of voxels in the image. In previous work, the transformation matrix for non-rigid 

registration has been derived using physical models or interpolation theory. A well-

known deformable method based on the diffusion model was first proposed in [49], and 

is known as ‘Demons’. The diffusion model is then augmented with an active force to 

increase the speed of convergence and therefore decrease the number of iterations [50]. 

On the other hand, B-spline-based Free-Form Deformation (FFD), which uses control 

points on the lattice to conduct the non-rigid alignment, is proposed in [51]. The FFD 

initially concentrates on the local deformation, and it is then refined by a hierarchical 

(global-to-local) method reported in [44]. The global-to-local registration is 

implemented by global rigid registration followed by local non-rigid alignment, which 

can obtain high accuracy with less processing time. In addition, since the deformations 

are conducted on local regions, the CPU and memory costs significantly decrease in 

accordance with time consumption. 

In non-rigid registration, the similarity measurement of two images is prioritised to 

achieve high accuracy whilst the deformations need to be regularised properly. The 

diffeomorphic method was developed in [52] [53] [54]. It has been demonstrated that 
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diffeomorphic methods manage to preserve the image topology using an invertible and 

differentiable mapping. This method is always employed to align the images involved 

in substantial deformations, but does not need to be considered if moderate deformation 

is expected for image alignment. In addition, since the velocity field is dependent on 

the fluid model, the obtained displacement only concentrates on the location in the field 

rather than anatomical information. The diffeomorphic method without contour 

regularisation is therefore undesirable for medical imaging research [53]. 

3.1.2 Registration Based on Prior Knowledge 

Regarding medical imaging analysis, the role of patient-specific prior knowledge is 

highlighted in [55]. Prior images obtained from previous diagnoses or research provide 

considerable anatomical information. Prior knowledge-based methods have therefore 

been studied as a way to enhance the performance of non-rigid registration.  

Prior knowledge represented by a joint intensity distribution is proposed in [56] and 

[57]. Kullback-Leibler (KL) divergence is employed to measure the distance between 

the prior distribution and the joint intensity distribution of two aligned images. The 

optimisation process is driven by minimising KL divergence followed by maximising 

MI across two images. However, the displacement guided by the prior distribution still 

concentrates on the alignment similarity while neglecting to regularise deformations of 

source image during registration. In order to address this concern, the statistical 

deformation model (SDM) was first proposed in [22] and then developed to solve 

specific medical imaging problems in [58] and [59]. In order to exploit the potential of 

prior images, the feature-based deformable field is established as an atlas to regularise 

the registration [60]. A similar technique has recently been developed by [61], and 

termed as semi-supervised method. In the training process, the initial atlas built by 

supervised registration is used to guide the unsupervised registration and then combined 
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with the new atlas for the SDM. Nevertheless, patient movement during data acquisition 

tends to add artefacts to prior images. If the prior images employed by the SDM are 

mismatched or of low-quality, the imperfect atlas would mislead subsequent 

registration. On the other hand, the implicit representation of prior knowledge was 

investigated in [62] and [63]. The prior shapes were represented by level-sets to 

delineate the lung region, which considerably reduces manual labour and computational 

cost. In addition, since almost all the methods suffer from an issue that the number of 

training subjects is far less than the dimension of deformation representation, shrinkage 

estimation, singular value decomposition and wavelet-based decomposition have been 

investigated to tackle the problem [62] [63] [64]. 

The main contribution in this chapter is to propose a parameter-reduced SDM-based 

non-rigid registration method. The new model proposed here ends the controversy of 

the weighting parameter for the statistical term and properly regularises the deformable 

field based on prior shapes. This chapter is structured as follows: The derivation of new 

model is stated in Section 3.2. Experimental data collection and necessary pre-

processing work is conducted in Section 3.3. The performance of the proposed method 

is evaluated in Section 3.4 with the necessary comparisons. Conclusions and future 

work are discussed in the last section. 

3.2 Methodology 

3.2.1 Statistical Deformation Model 

The prior lung shapes are segmented from MSCT scans and represented by their SDFs. 

Although the size of each lung varies considerably between individuals, the influence 

made by the scale variance can be eliminated by employing the similarity registration 

method (proposed in Chapter 2) to pre-process prior shapes at the beginning. 
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The processed prior shapes in the training set are denoted by {𝛸1, 𝛸2, 𝛸3, ⋯ , 𝛸𝑁}, where 

𝑁 denotes the number of training shapes. The mean prior shape represented by its SDF 

can be computed by  

 𝛸̅ =
1

𝑁
∑ 𝛸𝑖

𝑁
𝑖=1  (3.1) 

As concluded in [65], the mean shape is over-smooth and lacking in lung shape details. 

It is therefore not recommended to use the mean shape as the target for the SDM. One 

of the prior shapes which is the closest to the mean shape is chosen as the target for the 

remaining shapes in the training set. 

The non-rigid registration is then performed by the B-spline-based FFD method 

proposed in [51] to compute the deformations for each prior shape. Here, the 

deformation 𝒖 is represented by a three-component vector field (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) along X, 

Y and Z directions, which is the function of coordinates (i.e. (𝑥, 𝑦, 𝑧)). The PCA 

calculations are performed along X, Y and Z axes separately, whereas the notations in 

the subsequent derivations are written in vector form for convenience. The combination 

of deformations are denoted as {𝒖1, 𝒖2, 𝒖3, ⋯ , 𝒖𝑁−1}. The mean displacement 𝒖̅ can be 

calculated by 

 𝒖̅ =
1

𝑁−1
∑ 𝒖𝑖

𝑁−1
𝑖=1  (3.2) 

The mean-offset displacement matrices are reshaped to column vectors 

{𝝁1, 𝝁2, 𝝁3, ⋯ , 𝝁𝑁−1}, where 

 𝝁𝑖 = 𝒖𝑖 − 𝒖̅ (3.3) 

Assuming the variability of the displacement obeys the normal distribution, it is then 

generalised by PCA. The eigen-decomposition of the covariance matrix, 𝜮𝑐𝑜𝑣 , is 

computed by 
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 𝜮𝑐𝑜𝑣 =
1

𝑁−1
𝑭𝑭T = 𝑽𝑀𝜮𝑀𝑽𝑀

T (3.4) 

where 𝑀 denotes the number of voxels in the shape matrix. The column vectors in 𝑽𝑀 

and 𝜮𝑀 are eigenvectors and eigenvalues respectively and 𝑭 is an 𝑀 × (𝑁 − 1) matrix 

denoted by 

 𝑭 = [𝝁1, 𝝁2, 𝝁3, ⋯ , 𝝁𝑁−1] (3.5) 

As mentioned in the introduction, the issue that (𝑁 − 1) is far less than 𝑀 leads to two 

problems in the calculation. Firstly, for a 128×128×128 three-dimensional image, the 

magnitude of M is over 106. Therefore, it is extremely complicated to calculate the 

eigenvectors and eigenvalues of the covariance matrix, which is an 𝑀 × 𝑀  unitary 

matrix. Secondly, even though eigenvectors and eigenvalues are obtained, only the 

eigenvalues existing in the first (𝑁 − 1)  columns of 𝜮𝑀  are useful, as the other 

columns are all zeros [66].  

Given 𝑭T𝑭 (𝑁 − 1)⁄  instead of 𝑭𝑭T (𝑁 − 1)⁄ , the dimension of the new covariance 

matrix considerably decreases to (𝑁 − 1) × (𝑁 − 1). The decomposition is rewritten 

as 

 
1

𝑁−1
𝑭𝑇𝑭 = 𝑾𝑁−1𝜮𝑁−1𝑾𝑁−1

T (3.6) 

where 𝜮𝑁−1 = diag(𝜎1
2, 𝜎2

2, ⋯ 𝜎𝑁−1
2)  contains (𝑁 − 1)  eigenvalues corresponding 

to (𝑁 − 1)  non-zero eigenvalues in 𝜮𝑀 . Eigenvalues are the squared standard 

deviations. 𝑾𝑁−1 is then used to calculate the eigenvectors, 𝑽𝑁−1, as 

 𝑽𝑁−1 = 𝑭𝑾𝑁−1𝜮𝑛𝑜𝑟𝑚 (3.7) 

where 𝜮𝑛𝑜𝑟𝑚 is a diagonal matrix employed to normalise each column of 𝑭𝑾𝑁−1. 
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It is therefore possible to represent each deformable field by a dimension-reduced 

vector 𝝀𝑁−1, which comprises (𝑁 − 1) values of coordinates along eigenvectors. 

 𝒖model = 𝒖̅ + 𝑽𝑁−1𝝀𝑁−1 (3.8) 

3.2.2 Problems in Previous Work 

In the interest of capturing statistical information about deformations, the statistical 

term 𝑆(𝒖) derived from prior knowledge is added into the cost function 𝐸(𝒖), together 

with the similarity metric 𝐷(𝒖) and smoothing term 𝑅(𝒖). The general cost function is 

written as 

 𝐸(𝒖)  = (1 − 𝛼)𝐷(𝒖) + 𝛼((1 − 𝛽)𝑅(𝒖) + 𝛽𝑆(𝒖)) (3.9) 

where 𝛼 is used to adjust the weight of regularised terms in the cost function and 𝛽 is 

employed to balance the penalties given by smoothing and statistical terms.  

In the literature, such as [59] and [63], the distribution of prior deformations is 

estimated by a multivariate normal distribution: 

 𝑓(𝒖) = 𝑐 ∙ exp (−
1

2
(𝒖 − 𝒖̅)T𝜮𝑐𝑜𝑣

−1(𝒖 − 𝒖̅)) (3.10) 

where 𝑐 is a constant and 𝛴𝑐𝑜𝑣 is the covariance matrix. The statistical term 𝑆(𝒖) used 

in the cost function is represented in association with Eq. (3.10),  

 −ln(𝑓(𝒖)) ∝
1

2
(𝒖 − 𝒖̅)T𝜮𝑐𝑜𝑣

−1(𝒖 − 𝒖̅) = 𝑆(𝒖) (3.11) 

Nevertheless, two unsolved issues exist in this well-known framework. Firstly, in order 

to decrease the cost contribution, 𝑆(𝒖) penalises any displacement 𝒖 that is not in 

accordance with the mean, 𝒖̅ . However, by assuming that the deformations are 

associated with the normal distribution, any deformation within three standard 

deviations of the mean is conventionally acceptable. In addition, the empirically 
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determined weighting parameter 𝛽 cannot guarantee that the resulting displacement 𝒖 

falls into a reasonable range. In previous research, since it is challenging to investigate 

a proper weighting parameter which can rigorously confine the displacement, 𝛽 tends 

to be assigned roughly according to a specific case. 

3.2.3 Parameter-reduced SDM-based Registration 

In this part, single-modality image registration is used as an example for the derivation 

of the parameter-reduced SDM-based function. SSD is used as the similarity metric, 

and the distance between two images is calculated by 

 𝐷(𝒖) = ∫(𝐼𝑠𝑟𝑐(𝒙 + 𝒖(𝒙)) − 𝐼𝑡𝑎𝑟(𝒙))2d𝒙 (3.12) 

where  𝐼𝑡𝑎𝑟  and 𝐼𝑠𝑟𝑐  are the target and registered source images respectively. The 

desired transformation is normally derived by minimising 𝐷(𝒖) . The numerical 

solution is however always ill-posed since the derivation can neither guarantee a unique 

solution nor avoid twisted deformations. In the previous articles, the second-order 

derivative of deformations is employed in [67] and [68] as a smoothing constraint, 

while the sum of squared first-order derivatives reported in [5] and [63] is used to 

regularise the displacement. The sum of squared first-order derivatives is adopted here 

for convenience, and is denoted as 

 𝑅(𝒖) = ∫|𝛻𝒖(𝒙)|2d𝒙 (3.13) 

In Eq. (3.12), the displacement 𝒖  is replaced by a deformation function 𝑆(𝝀) 

manipulated by the SDM. The new similarity term is specified in Eq. (3.14). 

 𝐷(𝑆(𝝀)) = ∫ (𝐼𝑠𝑟𝑐(𝒙 + 𝑆(𝝀)) − 𝐼𝑡𝑎𝑟(𝒙))
2

d𝒙 (3.14) 

where 𝑆(𝝀) is a three-component vector and represented as: 

 𝑆(𝜆𝑥) = 𝑢𝑥̅̅ ̅ + ∑ 𝑉𝑥𝑖
∙ 𝑆𝑟𝑒𝑔(𝜆𝑥𝑖

) 𝐾
𝑖=1  (3.15) 
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 𝑆(𝜆𝑦) = 𝑢𝑦̅̅ ̅ + ∑ 𝑉𝑦𝑖
∙ 𝑆𝑟𝑒𝑔 (𝜆𝑦𝑖

)𝐾
𝑖=1  (3.16) 

 𝑆(𝜆𝑧) = 𝑢𝑧̅̅ ̅ + ∑ 𝑉𝑧𝑖
∙ 𝑆𝑟𝑒𝑔(𝜆𝑧𝑖

)𝐾
𝑖=1  (3.17) 

where 

 𝜆𝑥𝑖
= 𝑉𝑥𝑖

T ∙ (𝑢𝑥 − 𝑢𝑥̅̅ ̅) (3.18) 

 𝜆𝑦𝑖
= 𝑉𝑦𝑖

T ∙ (𝑢𝑦 − 𝑢𝑦̅̅ ̅) (3.19) 

 𝜆𝑧𝑖
= 𝑉𝑧𝑖

T ∙ (𝑢𝑧 − 𝑢𝑧̅̅ ̅) (3.20) 

 𝑆𝑟𝑒𝑔(λi)  = 𝐻 (|
𝜆𝑖

3𝜎𝑖
|

2

− 1) ∙ 𝑆𝑖𝑔𝑛(𝜆𝑖) ∙ 3𝜎𝑖 + 𝐻 (1 − |
𝜆𝑖

3𝜎𝑖
|

2

) ∙ 𝜆𝑖 (3.21) 

Here, 𝝈𝑖 (i.e. ( 𝜎𝑥𝑖
, 𝜎𝑦𝑖

, 𝜎𝑧𝑖
)) denote the standard deviation, which is the square root of 

the corresponding eigenvalue. 𝐾 is the number of eigenvectors used for regularisation. 

Each 𝝀𝑖 (i.e.( 𝜆𝑥𝑖
, 𝜆𝑦𝑖

, 𝜆𝑧𝑖
)) is regularised to guarantee that all the displacements fall 

into the range of 3𝝈𝑖 (i.e. obeying the Three-sigma Rule of the Gaussian distribution). 

The Heaviside function 𝐻(∙)  only penalises the 𝝀𝑖 which are outside of the 

aforementioned range. The sign function 𝑆𝑖𝑔𝑛(∙) is employed to retain the sign of each 

regularised 𝝀𝑖. The property of 𝑆𝑟𝑒𝑔(𝜆) with respect to 𝜆 is illustrated in Figure 3.1. 

 

Figure 3.1 Illustration of the function 𝑆𝑟𝑒𝑔(𝜆) with respect to 𝜆. 
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As stated in Section 3.2.1, the PCA calculations along three directions are conducted 

independently for convenience. Therefore, the available deformations represented by 

(𝜆𝑥, 𝜆𝑦, 𝜆𝑧) are limited in a box region (i.e. [−3𝜎𝑥, 3𝜎𝑥], [−3𝜎𝑦, 3𝜎𝑦], [−3𝜎𝑧 , 3𝜎𝑧] 

along X, Y and Z directions respectively) rather than an ellipsoid. 

The cost function is then updated in Eq. (3.22). 

 𝐸(𝝀) = (1 − 𝛼)𝐷(𝑆(𝝀)) + 𝛼𝑅(𝑆(𝝀)) (3.22) 

where 𝝀 is a function of coordinates 𝒙. The expected 𝝀 is obtained by minimising 𝐸(𝝀) 

through a gradient-descent technique: 

 𝝀̂ = argmin
𝝀

(𝐸(𝝀)) (3.23) 

The derivative of 𝐸(𝝀) with respect to 𝝀 is computed by using the chain rule: 

 
𝜕𝐸(𝝀)

𝜕𝝀
=

𝜕((1−𝛼)𝐷(𝑆)+𝛼𝑅(𝑆))

𝜕𝑆
∙

𝜕𝑆(𝝀)

𝜕𝝀
 (3.24) 

Nevertheless, the derivative of 𝑆(𝝀) does not exist if the argument of 𝐻(∙) or 𝑆𝑖𝑔𝑛(∙) 

is singular. 𝐻(∙) and 𝑆𝑖𝑔𝑛(∙) are regularised by Eq. (3.25) and Eq. (3.26) respectively 

[69], 

 𝐻(𝑝) =
1

2
(1 +

2

𝜋
tan−1 𝑝

𝜀
) (3.25) 

 𝑆𝑖𝑔𝑛(𝑞) =
2

𝜋
tan−1 𝑞

𝜀
 (3.26) 

and their derivatives are computed by 

 𝐻′(𝑝) =
𝜀

𝜋(𝜀2+𝑝2)
 (3.27) 

 𝑆𝑖𝑔𝑛′(𝑞) =
2𝜀

𝜋(𝜀2+𝑞2)
 (3.28) 

where 𝜀 is the regularising parameter.  
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Therefore, the derivative of 𝑆(𝝀) is computed as 

 
𝜕𝑆(𝝀) 

𝜕𝝀
= ∑ 𝑽𝑖 ∙ (

𝜀

𝜋(𝜀2+𝒑𝑖
2)

∙
2𝝀𝑖

(3𝝈𝑖)2 ∙ 𝑆𝑖𝑔𝑛(𝝀𝑖) ∙ 3𝝈𝑖 + 𝐻(𝒑𝑖) ∙
2𝜀

𝜋(𝜀2+𝝀𝑖
2)

∙ 3𝝈𝑖 +𝐾
𝑖=1

                      
𝜀

𝜋(𝜀2+(−𝒑𝑖)2)
∙ (−

2𝝀𝑖

(3𝝈𝑖)2
) ∙ 𝝀𝑖 + 𝐻(−𝒑𝑖)) (3.29) 

where 

 𝒑𝑖 = |
𝝀𝑖

3𝝈𝑖
|

2

− 1 (3.30) 

3.3 Data Collection and Pre-processing 

3.3.1 Data Collection 

In this section, 32 subjects are used for training and testing. The patients’ details are 

listed in Table A-3 and A-4 of Appendix A. The high-resolution lung shapes were 

segmented using the Apollo software (Vida Diagnostics Inc, Iowa, USA). The voxel 

dimensions of the MSCT scan are not fixed in the XY plane in order to guarantee that 

the size of each slice is 512 × 512, whilst the spacing between the slices (along the Z 

axis direction) is always fixed to 0.5mm. The size of the SPECT scan is 128 × 128 ×

128 voxels and the voxel dimensions are fixed at 4.478 mm3. In order to unify their 

dimensions, the MSCT scans can be down-sampled to match the 128 × 128 × 128 

voxels of the SPECT scans, but this sacrifices a lot of anatomical information. On the 

other hand, SPECT data can be up-scaled by using interpolation, but this strategy is not 

allowed since the value at each voxel represents the number of photons detected at that 

location. The actual voxel values in a SPECT scan are intended to be preserved and 

remain unaltered. Furthermore, as the resolution of the SPECT scan is very low, the 

required amount of interpolation would raise questions about the physical accuracy of 

the result. Therefore, down-sampling the MSCT scan is the only solution, even though 

some anatomical information is lost temporarily. Once the registration is completed, 
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the deformation field can be applied to map the structural information from the original 

MSCT data, such as the lobes, onto the SPECT image, thus circumventing the loss of 

anatomical information due to down-sampling.  

In the lung database, eight pairs of lung shapes are unavailable for modelling as they 

are incomplete, as shown in Figure 3.2. Due to the irreparable defects in data acquisition, 

two edged parts at the bottom of the lungs are clipped. In order to guarantee the 

performance of the SDM, the eight subjects are not considered in the training process, 

but left aside as unknown subjects for future testing. 

 

  
a b 

Figure 3.2 Two pairs of lung shapes in the database. (a) The edged parts at the bottom of the 

lungs (marked by a red circle) are clipped in the raw CT scans. (b) Completed lungs in the raw 

CT scans. 

3.3.2 Normality Test 

It is known that PCA is applicable only when the data for modelling are normally 

distributed [70]. In this part, a normality test is performed in 24 pairs of completed 

lungs, and the results are presented in a normal probability plot (NPP). NPP is widely 

used as an informal graphical technique to evaluate the normality of a dataset. It 
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presents a graph for the ordered observations from a dataset against the corresponding 

percentages from the normal distribution. Generally speaking, the distribution of 

sample data is approximately regarded as the normal distribution provided that the 

points form a fairly straight line. Departures from the line indicate the departures from 

normality. A more strict method to assess the near linearity of the plot is to calculate 

“correlation coefficient” for the ordered observations, which is equivalent to a formal 

Gaussianity test such as Shapiro-Wilk test. Here, Matlab built-in function ‘normplot’ is 

employed to plot the NPP. The NPPs of values for 24 𝝀s corresponding to the eight 

largest eigenvalues along the X, Y and Z directions are illustrated in Figure 3.3(a-c) 

respectively. It can be observed that most of data are located in the vicinity of the 

straight line, apart from some outliers deviating from the line pattern. It is therefore 

concluded that the variances of the prior shapes follow the normal distribution and they 

are applicable to PCA modelling. 

Here, 24 out of the 32 lung shapes are employed to train the SDM whereas the number 

of eigenmodes used for the SDM is determined by a ratio of the sum of the first 𝐾 

largest eigenvalues to the sum of all the eigenvalues. Provided that the cumulative ratio 

reaches up to 0.9-0.98, 𝐾 can be regarded as the number of dominant eigenmodes (NoE) 

for the SDM [71]. As depicted in Figure 3.4, due to independent calculations along X, 

Y and Z directions, it is straightforward to observe the difference in these three 

subfigures. The choice of 𝐾 needs to satisfy the aforementioned criterion on all three 

components. Since the cumulative ratios of five eigenvalues along three directions are 

all above 0.98, it is demonstrated that five or more eigenmodes are adequate to model 

the deformable field. 
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Figure 3.3 Normal probability plots of the first eight values of 24 𝝀s corresponding to the eight 

largest eigenvalues. (a)NPP of the first eight values of 24 𝝀s along the X direction. (b)NPP of 
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the first eight values of 24 𝝀s along the Y direction. (c)NPP of the first eight values of 24 𝝀s 

along the Z direction. 

 

 

  

 
 

Figure 3.4 Cumulative ratios for 23 eigenvalues along three directions. 

3.3.3 Transform to Reference Domain 

The training work starts with similarity registration to a target prior shape. Therefore, 

the established SDM is only applicable to the domain of the target prior shape, which 

is defined as a reference domain here. Before any SDM-based registration, the unknown 

target and source images, namely the testing images here, are required to be transformed 

to the reference domain [61]. The transformation parameters can be computed by 

similarity registration from any testing image to the target prior shape. 
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3.4 Experimental Results and Discussion 

In this section, the proposed parameter-reduced algorithm is validated using lung 

shapes and single-modality images. The following experiments are divided into two 

parts. Firstly, the proposed framework and a non-learning method are tested using 

synthetic defective lung shapes for comparison. Visual inspection is employed to 

evaluate their performance [72]. Secondly, two SPECT images are used to test two 

learning-based techniques. Normalised inner product (NIP) is employed for similarity 

measurement. 

3.4.1 Lung Shape Registration 

The experiments are performed over eight unknown subjects using a leave-one-out 

method. Before registration, one lung shape is chosen as the target, from which one of 

the lobes is manually removed. As shown in Figure 3.5, the right lower lobe of the 

target shape is removed. The aim is to align the remaining source lung shape to the 

defective target lung shape using NiftyReg and the method proposed here. As a widely 

used non-rigid registration method proposed in [73], the code for NiftyReg is freely 

 

Figure 3.5 The right lower lobe (highlighted in red) is removed from the target lung shape 

(shown in yellow) to create a synthetic defective lung shape (shown on the right).  
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available. Compared with the proposed method, NiftyReg does not employ prior 

knowledge to constrain the unreasonable deformations. In the following experiments, 

NiftyReg is configured using its defaults. The graphical results are illustrated in Figure 

3.6. All the lung shapes in this section are shown in posterior view. 

 

 

   

 a b c 

Figure 3.6 Lung shapes are shown in yellow for the target and blue for the source. (a) Initial 

poses of two lung shapes. (b) Registration using the NiftyReg method. (c) Registration using 

the proposed method with prior knowledge. 

By visual inspection, it is obvious that the SDM-based method manages to constrain 

excessive deformation. The lung shape is maintained during non-rigid registration. 

Conversely, the NiftyReg method fails in this test, as it concentrates on minimising the 

dissimilarity of the two shapes. In order to perform numerical comparisons, the right 

lower lobe, which is removed from the target lungs before registration, is used to 

calculate the lobar overlap after registration. The numerical results with respect to the 

mean lobar overlap of seven tests are listed in Table 3.1. The overlap achieved by the 

method proposed here is approximately three times higher than that of the NiftyReg 

method, which demonstrates that the proposed method can prevent excessive 

deformation and maintain a relatively reasonable lung shape during alignment. 
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Table 3.1 Average lobar overlap evaluation for eight test subjects using two methods. 

 SUB.1 SUB.2 SUB.3 SUB.4 SUB.5 SUB.6 SUB.7 SUB.8 

NiftyReg 0.1925 0.1949 0.1127 0.1760 0.1342 0.1207 0.1292 0.1350 

Proposed 0.5613 0.5505 0.3353 0.5059 0.3882 0.3305 0.4414 0.3946 

 

3.4.2 Single-modality Image Registration 

In this section, two perfusion SPECT images are employed to validate two learning-

based methods. The coronal-view slices of two subjects are displayed in Figure 3.7. 

Compared with a healthy subject (Figure 3.7(a)), it is straightforward to observe the 

reduced uptake region corresponding to the location of a lesion in Figure 3.7(b), which 

is a good example to test the performance of learning-based methods. The defective 

and the normal perfusion SPECT scans are regarded as the target and source images 

respectively for the following registration. 

 

  
a b 

Figure 3.7 Perfusion SPECT scans of healthy and a moderate COPD subjects. The light blue 

curves denote the actual lung shape boundaries. (a) SPECT image of the healthy subject. The 

intensities inside the lung region are bright and relatively uniform. (b) SPECT image of the 

COPD subject. The intensities in the right upper lung are relatively low because the tissue at 

this location is not active, resulting in reduced uptake of the radio-isotope. 
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The method proposed in [59] is used as a reference method for comparison, named Ref 

here. The main framework proposed by Ref is stated in Eq. (3.9), where the statistical 

term is added into the cost function together with the similarity metric and smoothing 

term. Gradient descent is employed to optimise the deformation. In Eq. (3.9) the 

parameter 𝛼 is empirically assigned a moderate value (i.e. 0.5) in both the Ref and 

proposed methods. Also, it is necessary to mention that 𝛽 influences the trend of the 

convergence curve significantly, as shown in Figure 3.8 (a). It is apparent that the 

 
a 

 
b 

Figure 3.8 (a) Convergence curves of the reference method with various 𝛽 and the proposed 

method (in black). NoE=22 (b) Convergence curves of the proposed method with various NoE. 
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method proposed here converges faster than the Ref method. As the degree of freedom 

of deformation is dependent on NoE, more displacement flexibility can be obtained 

with the increase of NoE, which contributes to superior registration accuracy (i.e. lower 

SSD), as shown in Figure 3.8 (b). 

As 𝛽  varies greatly with different images, the optimal 𝛽  is not expected to be 

investigated here. As illustrated in Table 3.2, the SSDs at convergence for the Ref 

method with 𝛽 ranging from 0.6 to 0.9 are sampled. These 𝛽 values produce SSDs that 

can be compared with the method proposed here. In the case that the two methods 

achieve the same SSD, the NIP, specified in Eq. (2.28), is employed to evaluate the 

registration accuracy. It is straightforward to observe that the NIP obtained by the 

method proposed here is always higher than that achieved by the Ref method. The 

experimental results demonstrate that the method is more flexible during deformation 

and therefore obtains superior alignment accuracy. 

Table 3.2 Evaluation of registration accuracy using the reference method, with 𝛽 ranging from 

0.6 to 0.9, and the proposed method. 

𝛽 SSD at convergence NIP (Ref) NIP (Proposed) 

0.6 2765 0.8489 0.8509 

0.65 2833 0.8487 0.8523 

0.7 2894 0.8492 0.8521 

0.75 2949 0.8497 0.8527 

0.8 2999 0.8502 0.8532 

0.85 3044 0.8505 0.8537 

0.9 3086 0.8510 0.8540 
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3.5 Conclusions and Future Work 

A non-rigid registration method based on SDM is exploited in this chapter. In order to 

overcome the shortcomings in previous work, a novel parameter-reduced registration 

method is proposed. In the new cost function, the SDM is encapsulated into the 

similarity metric and the smoothing term, which avoids using the empirically chosen 

weighting parameter for the statistical term. The proposed framework is validated to be 

capable of preventing excessive deformation and of regularising the deformation 

reasonably for registration of defective images. The experimental results demonstrate 

that the proposed framework outperforms a similar state-of-the-art method in terms of 

the convergence rate and registration accuracy. 

The method proposed here intends to solve the problem of single-modality image 

registration. It will be extended for multi-modality image fusion in Chapter 5. In the 

future, with more prior shapes added into the training set, the SDM will be established 

with more structural information and will obtain more flexibility to achieve higher 

performance.  
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Chapter 4 

 

Synthetic Data Collection 

4.1 Introduction 

Experimental data are very important for validating the performance of the proposed 

method. In fact, the lung SPECT scans provided by Southampton General Hospital 

were acquired without ground-truth boundaries for the lung region. An advanced 

software is therefore employed to synthesise the perfect intra-patient data for later use. 

In addition, apart from the result-oriented evaluation methods, such as the MI of the 

aligned images and the overlap of the aligned regions of interest (ROIs), which have 

been frequently used before, the process-oriented evaluation, such as the distance to the 

ground-truth displacement, is also a gold-standard to validate non-rigid registration.  

4D extended cardiac-torso (XCAT) phantom was initially developed to provide 

simulated human anatomy using non-uniform rational B-spline (NURBS) [74]. XCAT 

was originally named NCAT and created for nuclear medicine research, especially for 

SPECT and positron emission tomography (PET). It was then extended to the latest 

version, XCAT, for high-resolution anatomical imaging and advanced simulation of 

cardiac and respiratory motions, which are close to the scenario of real patients. The 

XCAT program is designed to produce different outputs in five different modes. 

According to the specific research purpose, modes 0 and 4 are used to generate body 

phantom data and the vector displacement (VD) of each voxel on the phantom 

respectively. 

In mode 0, the software is capable of synthesising two physical models: a three-

dimensional attenuation phantom with the distribution of attenuation coefficients for a 
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configured photon energy and a three-dimensional activity phantom with the 

distribution of emission radionuclide activity for the various organs. Each of these 

models is imaged by a voxelised phantom matrix with a customised resolution. As the 

phantom is mathematically defined, no error is introduced even though the phantom is 

generated at any resolution. The phantom data are stored in raw 32-bit floating point 

binary files (little endian) with no header. The voxelised phantom can be used in 

conjunction with analytical or Monte Carlo-based models of the imaging process to 

synthesise transmission (e.g. X-ray, CT) and emission (e.g. SPECT, PET) imaging data. 

In mode 4, the output vectors are constructed by the actual sampled points from the 

phantom objects and interpolated vectors from these sampled points. The interpolated 

vectors are computed by averaging neighbouring vectors. By increasing the number of 

actual sampled points, the accuracy of the vector output is improved accordingly. 

XCAT runs with a parameter file which is used to configure the synthesis process. In 

order to properly initialise the input distribution, the radionuclide multimodality 

dosimetry package (RMDP) is employed here in cooperation with XCAT. RMDP is 

intended to model the patient distribution using the International Commission on 

Radiological Protection lung model, which is used to calculate the absorbed dose in 

each lung per decay of radionuclide. In addition, RMDP offers an interactive window 

to add lesions and tumours to the phantom to simulate patients’ SPECT imaging. Also, 

phantom reconstruction is conducted by RMDP to obtain synthetic MSCT and SPECT 

scans. 

In this chapter, the procedure for constructing synthetic data is reported. It specifies the 

operating modes of XCAT, the configuration of simulated scanning parameters and the 

reconstruction of synthetic data using RMDP. Furthermore, it illustrates the method for 

adding artificial defects to the lungs. The structure of this chapter is as follows: The 
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modes of XCAT used in this chapter and the cooperation with RMDP are briefly 

introduced in Section 4.1. The procedure for creating the synthetic phantom data using 

XCAT and RMDP is specified in Section 4.2. The interactive method to add defects to 

the synthetic data is illustrated in Section 4.3. Conclusions finalise the chapter. 

4.2 Phantom Data Processing 

4.2.1 Phantom and VD Generation 

Before data construction, the breathing cycle is configured over five seconds, starting 

from maximum inspiration. The attenuation and activity phantoms are sampled with 

eight frames within one breathing cycle at even intervals, as shown in Figure 4.1. Since 

each XCAT simulation can only generate one type of activity phantom (synthetic V or 

Q), two simulations are performed to obtain the raw activity phantoms for synthetic V 

and Q data. In other words, the parameter files need to be separately configured twice 

by RMDP according to user-defined simulated scanning parameters, as listed in Table 

4.1.  

 

Figure 4.1 XCAT phantoms are sampled with eight frames within one breathing cycle. 
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Table 4.1 User-defined simulated scanning parameters for RMDP. 

 Synthetic V Synthetic Q 

Ventilation activity (MBq) 50 0 

Perfusion activity (MBq) 0 200 

Injection time (min) 0 0 

Scan time (min) 10 10 

No. of projections 120 120 

Seconds per view 100 100 

Camera sensitivity 

(cps/MBq) 
120 120 

 

The main differences between the two RMDP configuration parameter files are listed 

in Table 4.2. It is straightforward to observe that the “lung activity” parameters for 

synthetic V and Q are the same. In fact, as the lung activity imaging for ventilation 

SPECT is based on the detection of gamma-ray photons emitted from the airway tree, 

it is more reasonable to represent real lung activity by “airway tree activity” rather than 

by “lung activity”. Nevertheless, the XCAT airway tree model fails to delineate the 

terminal branches of the lung tree in detail, as shown in Figure 4.2. “Lung activity” is 

therefore configured to compensate for the distortion in lung activity presentation. 

VD is generated using another mode of XCAT. Each VD file reports the displacement 

of each imaging voxel from the first frame to one of the subsequent frames. The ground-

truth displacement is referred for validation in the next chapter. 
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Table 4.2 Organ activity parameters calculated by RMDP for XCAT phantom generation. 

 Synthetic V Synthetic Q 

Body activity 0.0159945 0.0586195 

Liver activity 0.0186639 0.312084 

Gall bladder activity 0.000000 0.312084 

Lung activity 0.435841  0.435841 

Stomach wall activity 0.0213334 0.000000 

Kidney activity 0.156287 0.000704156 

Airway tree activity 0.321665 0.000000 

 

 

Figure 4.2 XCAT lung tree model (template) used to generate phantoms. The terminal branches 

of the lung tree (i.e. bronchus) are rarely displayed, which results in the fact that the ventilation 

activity phantom has to be compensated by ‘lung activity’. 
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4.2.2 Phantom Post-processing 

4.2.2.1 Synthetic MSCT scans 

The attenuation phantom created by XCAT closely resembles the MSCT scan, but it is 

noise-free, as depicted in Figure 4.3(a). It is reported in [75] that the actual noise 

characteristics of CT obey the Poisson distribution, where the rate parameter varies with 

different CT scanners. Here, the Poisson distribution parameter is estimated according 

to the forthcoming MSCT scans. As shown in Figure 4.4, a part of the background is 

sampled from each MSCT scan. Assuming the mean noise histogram of all MSCT scans 

obeys the Poisson distribution, the rate parameter is calculated to be 0.0058 

(normalised), which is adopted to add noise to the ‘perfect’ attenuation phantoms. 

 

  
a b 

Figure 4.3 Synthetic MSCT data. (a) Synthetic attenuation phantom. (b) Synthetic MSCT data 

after segmentation, down-sampling and transforming to the reference domain. 

In order to enhance the performance of image registration, it is necessary to roughly 

segment the ROI first of all. As shown in Figure 4.3(a), a normal MSCT scan always 

contains irrelevant grey-scale information outside the lung region which needs to be 

removed. The method proposed in [76] can be employed for automatic lung 

segmentation. Furthermore, the segmented MSCT scans need to be down-sampled to 
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the same resolution (128 × 128 × 128) as the SPECT scans. One coronal-view slice 

with Poisson noise after transforming to the reference domain is shown in Figure 4.3(b). 

 

 

Figure 4.4 Flow chart for determination of the Poisson distribution parameter. A part of the 

background is sampled followed by the parameter estimation from the histogram. The red curve 

indicates the fitted curve of the Poisson distribution. 
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4.2.2.2 Synthetic SPECT scans 

The activity phantom created by XCAT presents a perfect distribution of activity. As 

shown in Figure 4.5(a) and (b), the activity is uniformly distributed in each organ. The 

RMDP is used to post-process the raw data [77]. This dosimetry package incorporates 

a toolkit to simulate realistic gamma camera image data, derived from this ‘perfect’ 

input. Clinically realistic count-rates and system sensitivities are used to apply noise 

distributions, along with modelling of photon transport, truncation and limited angular 

sampling of the imaging system. As shown in Table 4.1, the raw phantom is imaged in 

120 projections over 360 degrees of rotation, which resembles the actual functional 

imaging data acquired by two cameras over 60 phases. Then, the applicable real three-

dimensional synthetic data (functional imaging matrices) need to be reconstructed from 

the 120 projections. The reconstructed SPECT images (including Poisson noise) are 

displayed in Figure 4.5(c) and (d). 

Even though the boundaries of the lungs in SPECT imaging are very blurred, the 

properties of V and Q imaging make the minority of active organs visible (e.g. kidney 

and trachea in SPECT V and liver in SPECT Q), which greatly decreases the difficulty 

of segmentation. Coarsely segmented SPECT scans after transforming to the reference 

domain are shown in Figure 4.6. 

4.3 Artificial Defects 

The V and Q of a patient with moderate COPD may demonstrate photopenic regions, 

corresponding to reduced activity, and hence lower ventilation or perfusion, at the 

location of lesion, as shown in Figure 4.7. These abnormal SPECT images increase the 

challenge of alignment.  
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In order to effectively validate the performance of various methods in the next chapter, 

RMDP is employed to interactively add defects to the obtained phantoms. Here, the 

‘cold defect’ is chosen to add a photopenic region to synthetic V and Q. As shown in 

Figure 4.8, the torso transmission scans are displayed by three views. By adjusting the 

panels on the top, it is straightforward to set the locations of defects. Also, the size and 

activity of the synthetic lesion can be customised by dragging the scroll bars. Synthetic 

SPECT V and Q with defects are depicted in Figure 4.9. 

 

 

  
a b 

  
c d 

Figure 4.5 (a) Raw activity phantom for synthetic SPECT V. (b) Raw activity phantom for 

synthetic SPECT Q. (c) Reconstructed SPECT V image. (d) Reconstructed SPECT Q image. 
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a b 

Figure 4.6 Segmented results from synthetic SPECT data. (a) Segmented synthetic SPECT V. 

(b) Segmented synthetic SPECT Q. 

 

  
a b 

Figure 4.7 Abnormal SPECT V and Q images from a moderate COPD patient. The yellow 

contours show the boundaries of the lungs. A photopenic region (pointed out by the blue arrow) 

indicates the location of the lesion. (a) Defective SPECT V image. (b) Defective SPECT Q 

image. 
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Figure 4.8 RMDP interactive window is used to add defects to the phantoms. 

 

  
a b 

Figure 4.9 Abnormal synthetic SPECT V and Q images. The yellow contours show the 

boundaries of the lungs. A photopenic region (pointed out by the blue arrow) indicates the 

location of the defects. (a) Defective SPECT V image. (b) Defective SPECT Q image. 

4.4 Conclusions 

In order to enrich the experimental data and validation methods, XCAT and RMDP are 

employed here to synthesise the lung MSCT and SPECT scans and acquire the ground-

truth motion vector. By dividing one breathing cycle into eight frames, the intra-patient 

respiratory pattern is represented by eight phantoms using XCAT. RMDP manages to 

configure the parameter file, as well as convert the emission phantoms to synthetic data 

with ‘tumour’ information at a customised location. As XCAT data were used in 
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previous articles in aid of research into medical image processing algorithms, it is 

reasonable to assume that the obtained data can accommodate the needs of validation 

for the registration algorithms in this thesis. 
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Chapter 5 

 

Multi-modality Image Fusion Using Prior Shapes 

5.1 Introduction 

As multi-modality lung imaging is able to provide complementary physiological and 

pathophysiological information, the alignment of modalities plays an important role in 

clinical applications [78]. In order to develop the performance of multi-modality 

registration, recent research articles have concentrated on the analysis of structural 

information and similarity metrics. A structural representation is developed in [79] 

using a modified accelerated segment test algorithm. The improved structural 

representation is considered as another channel in the cost function. Similarly, the 

method proposed in [80] is based on the spiking cortical model and SSD is used to 

evaluate the similarity of the structural descriptors extracted from multi-modality 

images. A traditional deformation estimation method (e.g. free-form deformation) in 

conjunction with a global optimisation method (e.g. MI) is argued for in [81]. Since the 

global optimisation fails to precisely guide the local deformation, the hierarchical 

solution is employed in [81] together with a feature-learning method, which maps the 

feature representations from the original feature space to a common space. In terms of 

the similarity metrics, Log-Euclidean and self-similarity metrics are proposed in [82] 

and [83] respectively. The Log-Euclidean metric is an inversion invariant and similarity 

invariant metric, and is incorporated into a Gaussian-like penalty function. The self-

similarity metric is also based on structural information extracted from the images to 

be aligned. 
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MI has been demonstrated to be the best criterion for multi-modality image registration 

[84]. It was firstly proposed in [85], and then developed with a fluid model [86]. MI is 

widely used in medical image registration [14] [87] [88]. However, the disadvantages 

of MI are reported in [51], which argues that MI is dependent on the overlap of the two 

images and then proposes a modified metric, known as normalised mutual information. 

Furthermore, weighted mutual information, created with normalised pointwise mutual 

information and prior knowledge, is investigated in [89] to improve registration 

accuracy and stability. The latest MI-based multi-modality research can be found in [90] 

and [91]. In [90], it is argued that normal MI is insensitive to the image with local 

variations, and the useful spatial information is rarely captured to aid registration. A 

Harris corner detection-inspired algorithm is therefore studied to analyse the 

contributions made by each voxel’s intensity to the joint probability density function. 

It is proven that with the method proposed in [90] the alignment performance is boosted, 

and it can be applied to image-guided surgery. Similarly, the structural features and 

spatial neighbourhood information are incorporated into feature neighbourhood mutual 

information to perform accurate registration for clinical diagnosis [91]. 

In recent publications, very few algorithms concentrate on pulmonary multi-modality 

image registration, or intend to enhance multi-modality registration using prior 

knowledge. In this chapter, the parameter-reduced SDM framework reported in Chapter 

3 is extended for multi-modality registration. Instead of using SSD for the evaluation 

of single-modality alignment, MI as a similarity metric, in conjunction with gradient 

descent optimization, constitutes the framework for multi-modality registration. The 

experiments are performed using the actual lung database and synthetic phantoms, and 

the results are evaluated with various metrics. 
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The contributions of this chapter are as follows: Firstly, a multi-channel registration 

method is proposed to improve the performance of lung anatomical and functional 

imaging alignment. It conducts a direct MSCT/SPECT registration, which is 

independent of any aided features and landmarks. Secondly, the cost function for multi-

modality registration is upgraded based on the framework stated in Chapter 3. The 

parameter-reduced model for multi-modality fusion avoids unnecessary analysis for a 

weighting parameter and properly regularises the displacement based on the SDM. 

Thirdly, the synthetic imaging data and the ground-truth VD offered by the 4D extended 

cardiac-torso phantom together with RMDP are employed to validate the registration 

methods. 

This chapter is structured as follows:  The multi-channel registration algorithm is 

mathematically derived in Section 5.2. Evaluation methods are introduced in Section 

5.3, followed by the implementation issues noted in Section 5.4. The experimental 

results are compared with other state-of-the-art algorithms in Section 5.5 with in-depth 

discussion. Conclusions are finally written in Section 5.6. 

5.2 Methodology 

5.2.1 Multi-modality Image Alignment 

In this part, MI is employed to measure the similarity and to derive the solution for 

multi-modality image alignment. If 𝐼𝑡𝑎𝑟(𝒙) and 𝐼𝑠𝑟𝑐(𝒙 + 𝒖) are used to represent the 

target and registered source images, their MI can be calculated as 

 MI = 𝐸𝑛(𝐼𝑡𝑎𝑟 ) + 𝐸𝑛(𝐼𝑠𝑟𝑐) − 𝐸𝑛(𝐼𝑡𝑎𝑟 , 𝐼𝑠𝑟𝑐) = ∬ 𝑝(𝑎, 𝑏) log
𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
d𝑎 d𝑏 (5.1) 

where 𝑎 and 𝑏 are the greyscale values of 𝐼𝑡𝑎𝑟(𝒙) and 𝐼𝑠𝑟𝑐(𝒙 + 𝒖) respectively. The 

inverse MI is regarded as the similarity term and is denoted as 
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 𝐸𝑀𝐼 = − ∬ 𝑝(𝑎, 𝑏) log
𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
d𝑎 d𝑏 (5.2) 

In order to investigate the optimal displacement 𝒖 which minimises 𝐸𝑀𝐼, the derivative 

with respect to 𝒖 is calculated as 

 
𝜕𝐸𝑀𝐼

𝜕𝑢
= − ∬

𝜕

𝜕𝑢
(𝑝(𝑎, 𝑏) log

𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
) d𝑎 d𝑏 (5.3) 

After further investigation,  

 
𝜕𝐸𝑀𝐼

𝜕𝑢
= − ∬ (

𝜕𝑝(𝑎,𝑏)

𝜕𝑢
(1 + log

𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
) −

𝑝(𝑎,𝑏)

𝑝(𝑏)
∙

𝜕𝑝(𝑏)

𝜕𝑢
) d𝑎 d𝑏 (5.4) 

Since 

 ∬ (
𝑝(𝑎,𝑏)

𝑝(𝑏)
∙

𝜕𝑝(𝑏)

𝜕𝑢
) d𝑎 d𝑏 = ∫

∫ 𝑝(𝑎,𝑏)d𝑎

𝑝(𝑏)
∙

𝜕𝑝(𝑏)

𝜕𝑢
d𝑏 =

𝜕 ∫ 𝑝(𝑏)d𝑏

𝜕𝑢
= 0 (5.5) 

Eq. (5.4) can be simplified as, 

 
𝜕𝐸𝑀𝐼

𝜕𝒖
= − ∬

𝜕𝑝(𝑎,𝑏)

𝜕𝒖
∙ (1 + log

𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
) d𝑎 d𝑏 (5.6) 

where the joint probability distribution 𝑝(𝑎, 𝑏)  can be described by a function of 

𝐼𝑡𝑎𝑟(𝒙) and 𝐼𝑠𝑟𝑐(𝒙 + 𝒖) using kernel density estimation (KDE) in Eq. (5.7). Compared 

with histogram estimation, KDE addresses the concern that the estimation is 

significantly influenced by the bin size. 

 𝑝(𝑎, 𝑏) =
1

𝑉𝜎𝑡𝑎𝑟𝜎𝑠𝑟𝑐
∫ 𝐾 (

𝑎−𝐼𝑡𝑎𝑟(𝒙)

𝜎𝑡𝑎𝑟
,

𝑏−𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜎𝑠𝑟𝑐
) d𝒙 (5.7) 

The coefficient 𝑉 is the volume of the image (i.e. the number of total voxels in 𝐼𝑡𝑎𝑟 or 

𝐼𝑠𝑟𝑐). 𝜎𝑡𝑎𝑟 and 𝜎𝑠𝑟𝑐 are the kernel widths of  𝐼𝑡𝑎𝑟 and 𝐼𝑠𝑟𝑐 respectively. Their optimal 

values can be computed through the modified rule-of-thumb estimator [92], which is 

described as 

 𝜎 = 1.06 × min (𝜎̂(𝐼),
𝐼𝑄𝑅(I)

1.34
) × 𝑉−0.2 (5.8) 
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where 𝜎̂(∙) is the estimated standard deviation and 𝐼𝑄𝑅(∙) is the interquartile range. 

Here a Gaussian kernel is chosen to estimate the distribution and the kernel function 

𝐾(∙) is denoted as 

 𝐾(𝐴, 𝐵) =
1

2𝜋
exp (−

1

2
(𝐴2 + 𝐵2)) (5.9) 

The derivative of 𝑝 with respect to 𝒖 is then obtained as 

 
𝜕𝑝

𝜕𝒖
= 𝐶 ∙ ∫ 𝐾 (

𝑎−𝐼𝑡𝑎𝑟(𝒙)

𝜎𝑡𝑎𝑟
,

𝑏−𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜎𝑠𝑟𝑐
) ∙ (−

𝑏−𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜎𝑠𝑟𝑐
2 ) ∙ (−

𝜕𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜕𝒖
) d𝒙  (5.10) 

 𝐶 =
1

𝑉𝜎𝑡𝑎𝑟𝜎𝑠𝑟𝑐
 (5.11) 

By inserting Eq. (5.10) into Eq. (5.6), it is straightforward to derive the following 

equation: 

 
𝜕𝐸𝑀𝐼

𝜕𝒖
= 𝐶 ∙ ∫ ∬ 𝐾 (

𝑎−𝐼𝑡𝑎𝑟(𝒙)

𝜎𝑡𝑎𝑟
,

𝑏−𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜎𝑠𝑟𝑐
) ∙ (1 + log

𝑝(𝑎,𝑏)

𝑝(𝑎)𝑝(𝑏)
) d𝑎 (

𝐼𝑠𝑟𝑐(𝒙+𝒖)−𝑏

𝜎𝑠𝑟𝑐
2 ) d𝑏 ∙

                   (
𝜕𝐼𝑠𝑟𝑐(𝒙+𝒖)

𝜕𝒖
) d𝒙  (5.12) 

Finally, 𝒖 in Eq. (5.12) is replaced by 𝑆(𝝀) which is specified in Eq. (3.15)-Eq. (3.17), 

and Eq. (3.24) is then upgraded for multi-modality registration as follows: 

 
𝜕𝐸(𝝀)

𝜕𝝀
=

𝜕((1−𝛼)𝐸𝑀𝐼(𝑆)+𝛼𝑅(𝑆))

𝜕𝑆
∙

𝜕𝑆(𝝀)

𝜕𝝀
 (5.13) 

5.2.2 Multi-channel Image Alignment 

As different radio-isotopes (Kr-81 for ventilation and Tc-99m for perfusion) can emit 

gamma-rays at different energies, the signals from each isotope are separated at the 

receiver. In other words, SPECT V and Q can be acquired at the same time, and the two 

sets of imaging data are treated as being aligned automatically. Furthermore, two 

channels can contribute complimentary information in the case of impaired V or Q. 
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In this chapter, the multi-channel method is used to conduct registration between one 

down-sampled MSCT scan and two SPECT images simultaneously. The multi-channel 

cost function, 𝐸𝑉𝑄, derived by multivariate MI for three objects (MSCT, V and Q) can 

be simplified by the addition of two independent cost functions, 𝐸𝑉 and 𝐸𝑄: 

 𝐸𝑉𝑄 = (1 − 𝛼)[𝐸𝑉(𝑆(𝝀)) + 𝐸𝑄(𝑆(𝝀))] + 𝛼𝑅(𝑆(𝝀)) (5.14) 

where 𝐸𝑉  and 𝐸𝑄  denote two MI-based similarity terms for MSCT/V and MSCT/Q 

alignments respectively. The solution for the multi-channel method is therefore written 

in Eq. (5.15): 

 
𝜕𝐸

𝜕𝝀
=

𝜕((1−𝛼)[𝐸𝑉(𝑆)+𝐸𝑄(𝑆)]+𝛼𝑅(𝑆))

𝜕𝑆
∙

𝜕𝑆(𝝀)

𝜕𝝀
  (5.15) 

5.3 Evaluation of Registration Accuracy 

5.3.1 Mask Overlap Metric 

Based on accurate segmentation of the ROI, the mask overlap is widely used for 

registration evaluation. The mask of the source image, 𝜙𝑠𝑟𝑐(𝒙), is warped according to 

the deformation computed. The registration similarity can be measured by the 

normalised inner product (NIP) between the mask of the target image, 𝜙𝑡𝑎𝑟(𝒙), and the 

warped mask of the source image, 𝜙𝑠𝑟𝑐
̅̅ ̅̅ ̅̅ (𝒙). The calculation of NIP is the same as that 

of 𝐸𝐼𝑃 in Eq. (2.28). 

5.3.2 Vector Displacement Metric 

VD is used to evaluate the performance by considering the voxel-wise displacement 

[93]. In comparison with the mask overlap metric, it provides a more precise metric for 

evaluation. Given the ground-truth displacement 𝑻, the mean displacement error (MDE) 

is calculated as 
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 MDE =
∫‖ 𝑻−𝒖‖2d𝒙

𝑉
 (5.16) 

5.4 Implementation Issues 

Considering the differences between MSCT and SPECT imaging, it is advisable to 

reduce their divergence by histogram matching. As shown in Figure 5.1, the histogram 

of the down-sampled MSCT scan is modified to match that of the target SPECT scan. 

The actual MSCT and SPECT images are originally formatted as 16-bit unsigned 

integers. The maximum greyscale value of MSCT within the lung is around 324 (i.e. 

typical lung attenuation values are around -700 HU, and the lowest attenuation (that of 

air) has a value of -1024 HU) and that of SPECT is 200-300. However, employing 

hundreds of greyscales to calculate MI is computationally expensive and can rarely 

produce a tremendous improvement. Therefore, the greyscale ranges of MSCT and 

SPECT data are scaled to [0,50]  in practice. Furthermore, the synthetic MSCT 

represented by the normalised attenuation map also requires to be up-scaled for the 

computation of MI.  

The state-of-the-art method published in [59] is referred to here and named as Ref for 

convenience. Since the optimal weighting parameter 𝛽 varies across different scenarios, 

it should be investigated before starting the following experiments. Here the optimal 𝛽 

is retrieved using the overlap metric. In other words, 𝛽 is assigned a series of possible 

values within a possible range to conduct CT/SPECT registration. The value 

corresponding to the maximum overlap at convergence is adopted for 𝛽. In addition, 

since the parameter 𝛼 is irremovable in both Ref and the proposed methods and it varies 

with different cases, it is empirically assigned the same value (i.e. 0.5) for both methods 

in order to make the influence of 𝛼 equivalent to these two methods. 
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Figure 5.1 Histogram matching before non-rigid registration. (a-b) One coronal-view slice of 

SPECT V imaging and the corresponding lung region histogram. (c-d) One coronal-view slice 

of down-sampled MSCT imaging and the corresponding lung region histogram. (e-f) One 

coronal-view slice of matched down-sampled MSCT imaging and the corresponding lung 

region histogram. 

  
a b 

  
c d 

  

e f 
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In order to avoid local minimum issues associated with gradient descent and to 

accelerate convergence, the multi-resolution technique is employed here. At the 

coarsest-scale (lowest-resolution), with irrelevant local minima disappearing local 

minimum problems can be effectively overcome. Using low-resolution prior to finer 

scales helps achieve the global optimum [94]. The three resolutions applied here are 

32 × 32 × 32, 64 × 64 × 64 and 128 × 128 × 128. The deformations obtained from 

the lower resolution were up-scaled by cubic-spline interpolation and then regarded as 

the initial deformations for higher-resolution computation. The number of iterations is 

pre-set, and the calculation is terminated when they finish.  

5.5 Experimental Results and Discussions 

5.5.1 Multi-channel Registration Using Medical Imaging Data 

In this section, real lung imaging data are employed to validate the accuracy and 

stability of single-channel and multi-channel registration methods. As introduced 

before, each subject in the lung database is comprised of MSCT scans, a pair of SPECT 

(V and Q) scans and low-dose CT scans. SPECT and low-dose CT scans are acquired 

by a hybrid CT/SPECT scanner, and it is therefore assumed that SPECT and low-dose 

CT scans have been registered originally. The lung mask of the low-dose CT is 

segmented manually by clinical experts and regarded as the ground-truth mask for 

corresponding SPECT V and Q images. The ground-truth lung mask of the MSCT is 

segmented by the Apollo software (Vida Diagnostics Inc, Iowa, USA). 

As stated in Section 3.3.1, eight clipped subjects are chosen as testing data. Moreover, 

the remaining three moderate COPD subjects in database (Case 1, Case 28 and Case 

30) are also used for test. The remaining 21 subjects are employed to train the SDM. In 

the following experiments, each testing subject’s V/Q is set as the target, to which the 

11 down-sampled MSCT scans register individually (i.e. MSCT-V, MSCT-Q) and 
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simultaneously (i.e. MSCT-V&Q). Therefore, the tests are divided in two groups:  intra-

patient registration and inter-subject registration (namely cross-validation), as shown 

in Figure 5.2. The total number for V-MSCT, Q-MSCT and V&Q-MSCT alignment 

tests is 363. 

 

 

a 

 

b 

Figure 5.2 Experimental design with medical imaging data. (a) Diagram of intra-patient 

registration. (b) Diagram of inter-subject registration using Subject 1 as an example.  

Apart from the Ref method and the method proposed here, NiftyReg presented in [73] 

is also used for comparison. In single-channel experiments, NiftyReg is properly 

configured to achieve the best performance. Nevertheless, since NiftyReg cannot 

perform multi-channel registration, it is not applied to multi-channel simulation. 

The intra-patient and inter-subject registration results measured by NIP and average 

NIP respectively are displayed in Figure 5.3. The average NIP is calculated using the 

NIPs obtained from the tests with the same target image. In terms of intra-patient 

registration, since the SDM is employed to constrain the excessive deformation, the Ref 
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and proposed method apparently outperform NiftyReg in single-channel tests. 

Compared with the Ref method, the proposed algorithm achieves improved accuracy 

in both single-channel and multi-channel tests. In terms of the cross-validation, due to 

a relatively large difference between the target and source images, two learning-based 

methods’ performances slightly decrease under the influence of the regularised 

deformation. Nevertheless, the superior average NIPs are still obtained by the method 

proposed here. It is demonstrated that the proposed method manages not only to 

constrain the excessive deformation but also to provide a desired solution to general 

registration problems. 

For a moderate COPD patient, due to a defective region in the lung imaging, a non-

learning method such as NiftyReg inevitably regarded it as background and performed 

excessive deformations. The intra-patient registration results (for Case 15) using three 

single-channel (MSCT-Q) methods are exemplified in Figure 5.4(a), (c) and (e). The 

Ref and the proposed methods manage to constrain the deformations and achieve 

relatively reasonable results. However, as argued in Section 3.2.2, the Ref method tends 

to penalise any displacement, and thereby sacrifices flexibility. The drawbacks are 

illustrated by quivers in Figure 5.4(c). Certain horizontal displacements in the middle 

part of the right lung can be detected, whereas lesser deformations are expected since 

the target and source images at this location were almost aligned in their initial poses.  

The deformations are then used to map the lobes segmented from the MSCT scans onto 

the SPECT imaging. The fusion results are depicted in Figure 5.4(b), (d) and (f) for 

NiftyReg, Ref and the proposed method respectively. Through visual inspection, it is 

straightforward to observe the excessive deformation caused by NiftyReg and the 

unreasonable displacement caused by the Ref method. The advantages of the method 

proposed here are once again demonstrated by lobar lung fusion. 
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Figure 5.3 Single-/multi-channel intra-patient/inter-subject registration results are evaluated 

by NIP (left column) and average NIP (right column). 
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Figure 5.4 Single-channel registration results from the NiftyReg (Row 1), Ref (Row 2) and 

proposed (Row 3) methods. Blue contours indicate the ground-truth boundaries of the lung 

region in the SPECT scan (target). (a,c,e) Coronal view: yellow and red contours represent the 
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boundaries of the lung region in an MSCT scan (source) before and after deformation 

respectively. (b,d,f) Sagittal view: yellow and red contours represent the boundaries of the lung 

region before deformation and the lung lobes after deformation respectively. 

The numerical results for all tests are summarized by the average NIPs and standard 

deviations in Table 5.1. Compared with Ref, the proposed method provides more 

flexibility in non-rigid registration, which contributes to the improvement of cross-

validation accuracy by up to 4.1% and 1.9% for the single-channel and multi-channel 

techniques. Due to the more rigorous threshold to constrain the displacement, the 

alignment stability of the proposed multi-channel method is enhanced by up to 28%. 

What is more important is that the multi-channel techniques using Ref and the proposed 

algorithm are able to obtain the improved alignment accuracy by up to 2.2% and 1% 

respectively, in comparison with either V/CT or Q/CT single-channel registration. 

Table 5.1 The average NIP of single-channel and multi-channel registration obtained by 

different methods are presented as mean±standard deviation. 

  NiftyReg Ref Proposed 

Intra-

patient 

V/CT 0.809±0.024 0.839±0.027 0.862±0.020 

Q/CT 0.781±0.031 0.839±0.027 0.868±0.019 

V&Q/CT N/A 0.857±0.023 0.870±0.023 

Cross-

validation 

V/CT 0.806±0.022 0.809±0.050 0.835±0.035 

Q/CT 0.762±0.029 0.807±0.054 0.840±0.033 

V&Q/CT N/A 0.825±0.047 0.841±0.034 

 

5.5.2 Multi-modality Registration Using Synthetic Data 

As stated before, eight-frame phantoms are sampled in one breathing cycle. The MSCT 

(source image) at the first frame is intended to register the SPECT V and Q (target 
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images) at each remaining frame using the multi-channel technique. In order to increase 

the difficulty of registration, three test modes in terms of defective SPECT scans are 

implemented separately. The three combinations of SPECT images are arranged as: 

Mode 1: abnormal SPECT V (Figure 4.9(a)) and complete Q (Figure 4.6(b)),  

Mode 2: complete SPECT V (Figure 4.6(a)) and abnormal Q (Figure 4.9(b)),  

Mode 3: abnormal SPECT V (Figure 4.9(a))) and abnormal Q (Figure 4.9(b)).  

Seven alignment tests are conducted for each mode, and the experimental results are 

evaluated with mean displacement error (MDE in Eq. 5.12) and normalised inner 

product (NIP). In this section, Ref and the proposed method are compared in terms of 

registration accuracy and stability.  

The experimental results with respect to the three test modes are depicted in  

Figure 5.5. The average of MDE and NIP numerically demonstrate the superior 

registration performance achieved by the proposed method in these three test modes, as 

it obtains lower MDE and higher NIP. In terms of MDE, the algorithm proposed here 

decreases the average errors by up to 21%, 18% and 15% for modes 1, 2 and 3 

respectively since the new cost function allows more flexibility in deformation. The 

standard deviation of the registration results demonstrates that the stability of the 

proposed method is improved by up to 39% and 54% (measured by NIP when the 

number of dominant eigenmodes is over 5) for modes 1 and 3. By considering the 

standard errors in Figure 5.5, it is convincing that the proposed algorithm with a certain 

number of dominant eigenmodes (NoE) manages to constantly achieve high accuracy 

for the multi-modality image alignment work. 
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Figure 5.5 Two algorithms with different NoEs are applied to three test modes. The registration 

results are evaluated with MDE and NIP. 

With the increase of NoE, the registration stability of the proposed method improves 

accordingly, which is demonstrated by the standard deviations of MDE and NIP. 

Conversely, the similar improvement achieved by the Ref method is rarely detected as 
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this algorithm fails to provide an explicit boundary for deformations. The experiments 

firmly demonstrate the flaws that the weighting parameter is weak in striking a desirable 

balance between flexibility and boundary-finding in previous algorithms. 

In addition, experimental results with respect to seven different target patterns (sampled 

at frames 2 to 8 within one breathing cycle) are depicted in Figure 5.6. As illustrated in 

Figure 4.1, the volumes of the lungs at frames 2 and 8 are the most similar to that at 

frame 1, whilst the lungs have the largest deformations at frame 5. From the MDE 

results shown in Figure 5.6, it is straightforward to notice that the method proposed 

here manages to slightly enhance performance in test no. 1, 2, 6 and 7, whereas it greatly 

outperforms the Ref method in test no. 4 and 5 (NoE=15 and 10). As clinical SPECT 

imaging is acquired by tidal breathing, the actual MSCT/SPECT registration is more 

likely to resemble test no. 4 or 5. Therefore, high performance of the proposed method 

on large-deformation alignment indicates desirable results in practical application. Also, 

the NIP results demonstrate that the method proposed here is superior in all registration 

cases. 

Nevertheless, by comparing the average of MDE and NIP along each column of  

Figure 5.5, it can be noted that the registration performance of the proposed framework 

slightly decreases with the increment of NoE. As the SDM is trained from the lung 

shapes extracted from different patients at the state of maximum inspiration, the 

shortcomings of this inter-subject model are manifested in intra-patient registration. In 

other words, in the case where five dominant eigenmodes are adequate to globally 

constrain the deformations, the extra eigenmodes regularised by the inter-subject model 

may decrease the intra-patient registration accuracy. Nevertheless, comparing the three 

sub-figures in the left column of Figure 5.6, it can be observed that the performance 

gap between the two compared methods in test no. 4 and 5 is enlarged with more 
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eigenmodes employed. Thus, the influence of the inter-subject SDM can be further 

analysed. The MDE results in Figure 5.6 demonstrate that the negative influence on the 

algorithm proposed here is more prominent for small-deformation alignment, and 

considerably reduced for large-deformation registration. It is therefore convincing that, 

in actual MSCT/SPECT alignment, the registration accuracy will be barely deteriorated 

with more eigenmodes considered in the SDM, while a greater enhancement to 

registration stability is obtained. 
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Figure 5.6 (a,c,e) Registration results evaluated with MDE for different NoEs. (b,d,f) 

Registration results evaluated with NIP for different NoEs. The results are the average of three 

test modes. 
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5.6 Conclusions 

In this chapter, an innovative non-rigid registration method has been proposed for lung 

MSCT/SPECT image alignment. The novel technique concentrates on the lung region 

and conducts direct registration through two MSCT/SPECT channels simultaneously. 

Furthermore, the cost function based on parameter-reduced SDM is extended with MI 

to address the concerns of multi-modality registration. The proposed framework is 

validated to be capable of preventing excessive deformation for the registration 

involved in the images with defects. 

The method proposed here and two widely-used non-rigid registration methods are 

tested using the lung database and synthetic phantoms. The numerical results evaluated 

by NIP and MDE demonstrate that the multi-channel method is able to improve 

registration accuracy and decrease variability in comparison with the single-channel 

framework, as it can take more relevant information into consideration. The proposed 

method with inter-subject prior knowledge outperforms other similar learning-based 

and non-learning-based methods investigated here, in terms of inter-subject multi-

modality registration, and it is also demonstrated to achieve tremendous improvement 

with respect to registration accuracy and stability for intra-patient alignment, even in 

the case where the lung is scanned at a different state of inspiration. The desirable fusion 

of lung lobes onto SPECT imaging is validated to be achievable by accurate 

MSCT/SPECT alignment. 
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Chapter 6 

 

Conclusions and Future Work 

6.1 Conclusions 

This thesis presents the research work on the topic of multi-modality image fusion for 

the diagnosis and treatment of COPD. In order to provide a guiding tool for LVRS, a 

novel multi-modality fusion method was studied and improved. At the beginning, 

similarity registration was developed to pre-process the prior lung shapes, which are 

then employed to train the SDM.  A learning-based non-rigid registration method was 

improved using a parameter-reduced function to avoid the adjustment of the weighting 

parameter for the statistical term. The multi-channel registration method is proposed to 

conduct direct MSCT/SPECT registration. The deformations are finally employed to 

map the lobes onto the functional imaging for image fusion. 

Compared with non-iterative methods, the iterative similarity registration algorithm 

proposed in Chapter 2 achieves higher alignment accuracy and stability within a 

reasonable time. Furthermore, the proposed method is independent of structural 

correspondence but concentrates on the shape region (i.e. representing shapes using 

CFs) to save the time and labour of feature extraction. The method proposed here strikes 

a balance between performance and processing time, which significantly improves 

efficiency and the scope of application. The proposed robust and high-performance 

method manages not only to pre-process the prior lung shapes for subsequent use by 

the SDM, but also to solve universal shape registration problems, even in the presence 

of noise. 
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A non-rigid registration technique was studied to achieve high alignment accuracy. In 

terms of medical image registration, high similarity measured by SSD or MI is not a 

gold-standard due to underlying excessive deformations. In order to maintain structural 

information through non-linear transformation, numerous learning-based methods were 

proposed to address the concerns. Nevertheless, the introduction of the penalised term 

inevitably leads to an extra-investigation of the corresponding weighting parameter. 

This shortcoming is overcome thoroughly by means of the parameter-reduced 

alignment technique proposed in Chapter 3. It was demonstrated that the parameter-

reduced SDM-based method can prevent excessive deformation and achieve superior 

performance. 

In order to enrich the experimental data and provide the ground-truth VD of each voxel 

for the evaluation of registration, XCAT was employed to generate torso phantoms and 

the displacement of each voxel. In fact, NCAT was considered initially as it is licence-

free. However, the VD created by NCAT is incorrect and relevant technical support is 

no longer available. XCAT was therefore selected to accomplish the synthetic data 

collection in Chapter 4. The parameter-reduced SDM technique was extended to tackle 

the multi-modality registration problem based on MI in Chapter 5. The multi-channel 

method proposed here incorporates complimentary SPECT V/Q imaging information 

into the cost function to effectively improve the registration accuracy and stability. 

The intra-patient registration investigated in this thesis is expected to be regularised by 

intra-patient prior knowledge. However, due to the limited number of prior shapes, the 

inter-subject lung shapes were used to train the SDM. The lung shapes were 

transformed using similarity registration to eliminate the influence of scale and initial 

orientation. This PCA-based learning procedure is based on the assumption that the 

variations of lungs are normally distributed. The fusion of lobes onto SPECT images 
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demonstrated the reliability and validity of the proposed non-rigid registration method 

using inter-subject knowledge. In summary, this thesis proposes a novel technique to 

significantly improve the performance of the learning-based registration framework, 

which is exemplified by the SDM here. Also, multi-modality image fusion lays a solid 

foundation for lobar lung activity analysis, which can support the formulation of a 

therapeutic schedule for the COPD patients. 

6.2 Future Work 

This thesis proposes an algorithm for accurate multi-modality image registration. 

Considering the clinical application, the limitation of prior lung data for the SDM and 

the limited research into functional imaging analysis, it is convincing to say that the 

following three topics will be promising for future investigations. 

In terms of clinical application, lung activity analysis is of vital importance, as it can be 

used to guide LVRS in detail. The image fusion achieved by the method proposed in 

this thesis is able to map lobe information (e.g. boundaries and fissures) onto SPECT 

imaging. Automatic classification is expected to be conducted on the SPECT imaging 

in each lung lobe to identify any lobes that need to be removed. Classification-based 

diagnosis has become a popular technique in medical image analysis and saves 

considerable time and efforts from radiologists and surgeons.  

As discussed in Section 5.5.2, the SDM trained with inter-subject data cannot perfectly 

regularise the intra-patient deformation. On one hand, the limited number of patients 

negatively influences the generalisation of the diversity of lung shapes. On the other 

hand, each subject only has one frame data within one breathing cycle (i.e. the frame at 

maximum inspiration), which scarcely contributes to the statistical model of intra-

patient deformations. In order to improve the performance of prior knowledge-based 
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methods in the future, a respiratory model for intra-patient registration estimated by one 

frame MSCT scan will need to be investigated. 

In addition, as feature-based multi-modality registration methods have received lots of 

attention recently, it is worthwhile to conduct research into the structural information 

provided by functional imaging. In fact, none of the publications to date have 

investigated the structural information probably extracted from SPECT imaging as 

functional imaging is always low-resolution and obtained during tidal breathing. 

However, there is the potential that structural information such as key points, texture 

and intensity features may be obtained by a new functional imaging technique or 

extracted by innovative algorithms. 
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Appendix A 

 

Case Index and Demographic Data  

Table A-1: Case index of the low-dose CT masks used in Chapter 2. 

Case Index Subject ID Patient State 

Case 1 BRUCI 003 Emphysema 2 

Case 2 BRUCI 007 Healthy Smoker 

Case 3 BRUCI 008 Healthy Smoker 

Case 4 BRUCI 009 Healthy 

Case 5 BRUCI 014 Healthy 

Case 6 BRUCI 015 Healthy 

Case 7 BRUCI 016 Healthy Smoker 

Case 8 BRUCI 018 Healthy 

Case 9 BRUCI 020 Healthy 

Case 10 BRUCI 021 Healthy Smoker 

Case 11 BRUCI 022 Emphysema 1 

Case 12 BRUCI 024 Healthy Smoker 

Case 13 BRUCI 027 Healthy Smoker 

Case 14 BRUCI 028 Emphysema 1 

Case 15 BRUCI 032 Healthy 

Case 16 BRUCI 033 Emphysema 2 

Case 17 BRUCI 036 Emphysema 2 

Case 18 BRUCI 037 Emphysema 1 

Case 19 BRUCI 038 Healthy Smoker 

Case 20 BRUCI 040 Healthy 

Case 21 BRUCI 041 Healthy 

Case 22 BRUCI 042 Healthy 

Case 23 BRUCI 043 Healthy 

Case 24 BRUCI 045 Emphysema 1 

Case 25 BRUCI 049 Healthy Smoker 

Case 26 BRUCI 051 Emphysema 1 

Case 27 BRUCI 062 Emphysema 1 

Case 28 BRUCI 072 Emphysema 1 

Case 29 BRUCI 076 Emphysema 1 

Case 30 BRUCI 081 Emphysema 2 

Case 31 BRUCI 085 Emphysema 2 

Case 32 BRUCI 089 Emphysema 1 

Case 33 BRUCI 090 Healthy Smoker 

 



 100 

 

Healthy: healthy people without smoking habit. 

Healthy Smoker: healthy people with smoking habit.  

Emphysema 1: unhealthy people with mild COPD.  

Emphysema 2: unhealthy people with moderate COPD. 

 

 

Table A-2: Demographic data for the sample population in Table A-1. FEV1pp, FEV1/FVC 

and DLCO are presented as mean±standard deviation. 

 

Variables 
COPD 

(number=14) 

Healthy non-smokers 

(number =9) 

Healthy smokers 

(number =10) 

Gender (number) F(5) M(9) F(3) M(6) F(6) M(4) 

Age (year)* 62(15) 47(29) 52(24) 

FEV1pp (%) 83.23±14.15 107.61±13.33 107.19±15.14 

FEV1/FVC(%) 60.13±7.44 80.93±3.63 76.26±3.59 

DLCO 

(ml/min/mmHg) 
85.79±13.48 96.96±14.12 89.70±13.55 

 

F=Female, M=Male.  

FEV1=Forced Expiratory Volume in the first second.  

FEV1pp=actual_FEV1/average_FEV1.  

FVC= Forced Vital Capacity.  

DLCO= Diffusing capacity of the Lung for carbon monoxide (CO). 

* Values are not normally distributed and are shown as median (range)  

https://en.wikipedia.org/wiki/MmHg
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Table A-3: Case index of the MSCT/low-dose CT/SPECT images and masks used in Chapter 

3 and 5. 

Case Index Subject ID Patient State 

Case 1 BRUCI 003 Emphysema 2 

Case 2 BRUCI 007 Healthy Smoker 

Case 3 BRUCI 008 Healthy Smoker 

Case 4 BRUCI 009 Healthy 

Case 5 BRUCI 014 Healthy 

Case 6 BRUCI 015 Healthy 

Case 7 BRUCI 016 Healthy Smoker 

Case 8 BRUCI 018 Healthy Smoker 

Case 9 BRUCI 021 Healthy Smoker 

Case 10 BRUCI 022 Emphysema 1 

Case 11 BRUCI 024 Healthy Smoker 

Case 12 BRUCI 027 Healthy Smoker 

Case 13 BRUCI 028 Emphysema 1 

Case 14 BRUCI 032 Healthy 

Case 15 BRUCI 036 Emphysema 2 

Case 16 BRUCI 037 Emphysema 1 

Case 17 BRUCI 038 Healthy Smoker 

Case 18 BRUCI 040 Healthy 

Case 19 BRUCI 041 Healthy 

Case 20 BRUCI 042 Healthy 

Case 21 BRUCI 043 Healthy 

Case 22 BRUCI 044 Healthy 

Case 23 BRUCI 045 Emphysema 1 

Case 24 BRUCI 049 Healthy Smoker 

Case 25 BRUCI 051 Emphysema 1 

Case 26 BRUCI 062 Emphysema 1 

Case 27 BRUCI 076 Emphysema 1 

Case 28 BRUCI 081 Emphysema 2 

Case 29 BRUCI 084 Emphysema 1 

Case 30 BRUCI 085 Emphysema 2 

Case 31 BRUCI 089 Emphysema 1 

Case 32 BRUCI 090 Healthy Smoker 

 

Healthy: healthy people without smoking habit. 

Healthy Smoker: healthy people with smoking habit.  

Emphysema 1: unhealthy people with mild COPD.  

Emphysema 2: unhealthy people with moderate COPD. 

Lung shapes from the highlighted cases were clipped (incomplete) during raw data 

acquisition. 
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Table A-4: Demographic data for the sample population in Table A-3. FEV1pp, FEV1/FVC 

and DLCO are presented as mean±standard deviation. 

 

Variables 
COPD 

(number=13) 

Healthy non-smokers 

(number =9) 

Healthy smokers 

(number =10) 

Gender (number) F(4) M(9) F(2) M(7) F(6) M(4) 

Age (year)* 61(19) 47(29) 52(24) 

FEV1pp (%) 85.08±14.55 106.71±12.22 107.19±15.14 

FEV1/FVC(%) 60.69±7.46 81.81±3.93 76.26±3.59 

DLCO 

(ml/min/mmHg) 
85.38±13.68 79.86±11.63 89.70±13.55 

 

F=Female, M=Male.  

FEV1=Forced Expiratory Volume in the first second.  

FEV1pp=actual_FEV1/average_FEV1.  

FVC= Forced Vital Capacity.  

DLCO= Diffusing capacity of the Lung for carbon monoxide (CO). 

* Values are not normally distributed and are shown as median (range)  

https://en.wikipedia.org/wiki/MmHg
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