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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
School of Electronics and Computer Science

Doctor of Philosophy

NON-RIGID REGISTRATION FOR MULTIMODALITY IMAGE FUSION
USING PRIOR SHAPES

By Zheng Cui

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease that causes
breathing difficulties. One possible course of treatment for severe COPD is lung volume
reduction surgery (LVRS), which involves removing, or isolating, the lobe or lobes of
the lung that are most affected by the disease. A fusion of the multi-slice computed
tomography (MSCT) and ventilation (V) and perfusion (Q) single photon emission
computed tomography (SPECT) modalities therefore represents a powerful tool to for

COPD analysis and then for guiding the lung resection surgery.

Due to reduced uptake of radioisotope at the location of lesion, the V and Q of a
moderate COPD patient delineate photopenic regions, which are normally mis-
recognised as part of the background in the target SPECT scan. Non-rigid registration,
which lacks displacement constraints, is therefore performed on MSCT scans with
excessive deformations. Moreover, considering the low-resolution nature of functional
imaging and highly deformable property of lungs, very few published algorithms are

able to accommodate current clinical demands. The motivation of this project is to



develop a high-performance, statistical deformation model (SDM)-based non-rigid
registration algorithm capable of achieving accurate alignment of lung MSCT and

SPECT imaging.

In this project, an innovative similarity registration method for volumetric shapes is
proposed at the beginning. The method is based on the characteristic function, and
intended to strike a desirable balance between performance and efficiency. Radial
moments and spherical coordinate system-based cross-correlation are exploited here to
obtain the optimal scaling, rotation and translation parameters within a reasonable time.
Moreover, an iterative method is also employed to improve the robustness of the
algorithm. Group shapes in the presence of significant noise and lung shapes extracted
from a low-dose computed tomography database are employed in the validation

experiments.

In order to eliminate the influence of the weighting parameter for the statistical term, a
novel MSCT/SPECT registration technique based on a parameter-reduced SDM is
proposed in this thesis. The SDM is trained on prior lung shapes. In addition, the multi-
channel technique performs V/MSCT and Q/MSCT alignments simultaneously to
derive the optimal deformations. Lung MSCT and SPECT imaging data from a real
medical database, as well as the 4D extended cardiac-torso phantom, were employed in
the experiments. The algorithm proposed here was validated to be capable of preventing
excessive deformations, and of achieving accurate registration between the two
imaging modalities. The deformations for MSCT/SPECT registration are finally used
to warp lobe masks, which are then mapped onto SPECT images for lung lobe/SPECT

fusion.
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Chapter 1

Introduction

1.1 Background

Chronic obstructive pulmonary disease (COPD), including chronic bronchitis and
emphysema, is a significant global cause of morbidity and mortality that presents a
serious healthcare burden [1]. According to a report from the World Health
Organisation, over three million patients died in 2015 due to COPD and the mortality
rate has continuously increased in the past few years. Despite many years of research,
there are no current pharmacological therapies which significantly alter disease
progression. One reason for this is that COPD is not a single disease entity, but a
collection of disease phenotypes with a common aetiology and different

pathophysiological processes [2].

Nevertheless, early diagnosis and treatment can effectively relieve the symptoms,
enhance quality of life and lower the risk of death. Lung activity analysis can be used
to identify lobes of the lung that are severely affected and are failing to deliver an
appropriate fraction of total lung function. One possible course of treatment for severe
COPD is lung volume reduction surgery (LVRS), which involves removing the parts
of the lung that are most affected by the disease, often a whole lobe or more. This helps
the body to increase the volume of the remaining lobes, thereby improving breathing
[3]. In order for this procedure to be effective, it is necessary to know precisely which
parts of the lung have been most affected by the disease and therefore which are the

best candidates for removal.



Computed tomography (CT) scans are obtained with a combination of an X-ray tube
and an arc sensor, which are deployed in a fanbeam geometry on either side of the
patient and rotate rapidly together to acquire the cross-sectional images. The multi-slice
computed tomography (MSCT) scanner was created to improve imaging resolution
(512 x 512 voxels in the XY plane; 0.5mm between the slices along the Z axis) to
support clinical diagnosis. The anatomical planes are illustrated in Figure 1.1. In
addition, the MSCT scanner is able to capture multiple slices simultaneously, and then
to provide fully three-dimensional imaging of lung structure, which allows the lung
lobes and other structural features to be identified [4]. The optimal MSCT parameters

for the delineation of the various structural features of the lung require suspended full

460 —
Coronal plane
% Transverse plane
N
0~
0

Figure 1.1 Diagram of anatomical planes. The x-axis runs from left (positive number) to
right (0). The y-axis runs from posterior (positive number) to anterior (0). The z-axis runs
from head (positive number) to tail (0).



inspiration, as shown in Figure 1.2. In order to depict the internal structure more clearly,

the dynamic range of the lung region is enhanced in Figure 1.2(c) and (d).

c

Figure 1.2 MSCT is displayed in two views with the boundaries of lobes highlighted in yellow.
(a) Coronal slice with labels for five lung lobes. (b) Sagittal slice of the right lung. The location
of the slice plane is indicated by the red line in (a). (c) Coronal slice of the lung region in high
dynamic range. (d) Sagittal slice of the lung region in high dynamic range.

Nuclear medicine imaging techniques, such as single photon emission computed
tomography (SPECT), require the injection of a gamma-emitting radioisotope into the

patient. During the decay of the isotope, gamma-ray photons are emitted. The photons

travel through a collimator and are detected by gamma cameras which are rotating


https://en.wikipedia.org/wiki/Radioisotope

around the patient for data acquisition [5]. The planar projection images collected at
different angles are then used to reconstruct a true three-dimensional SPECT image to
identify the radioactivity of the organ specimen [4]. As the collimator is designed to be
in front of the camera to determine the propagating direction of the gamma-rays, the
imaging quality (e.g. resolution and sensitivity) is significantly dependent on it. In order
to improve the resolution, the range of incident angles is restricted by the collimator,
whereas it sacrifices some image sensitivity due to the decrease in the flux (i.e. it allows
fewer photons to go through the collimator) [6]. Selection of a collimator needs to trade
off between resolution and sensitivity. In addition, SPECT imaging is always subjected
to photon attenuation caused by the body tissues, through which the gamma-rays pass
before getting to the camera. Another reason for attenuation is Compton scattering,
which alters the photon’s directions of travel [4]. In this situation, numerous photons
which fail to be detected by the camera result in lower signal-to-noise ratio and reduced
contrast. On the other hand, the scattering of photons into the wrong detector leads to
blurring of the image and loss of spatial resolution. Therefore, low-dose CT/SPECT
matching (currently implemented by a CT/SPECT hybrid scanner) is employed for
attenuation correction. The CT data forms a map of the different attenuation levels of
the tissues in the body, and this map is then used to correct the SPECT image by ‘adding

photon counts back’ or ‘subtracting photon counts’.

For specific applications such as lung activity imaging, ventilation (V) and perfusion
(Q) SPECT scans employ different medical isotopes and delivery methods to evaluate
the circulation of air and blood in the lungs, e.g. the radionuclide Tc-99m (technetium)
is injected into the patient for perfusion while Kr-81 (krypton gas) is inhaled by the
patient for ventilation. As the overall SPECT scan time is approximate 20 minutes, it is

not reasonable to ask the patient to hold his breath throughout. The low-dose CT and



SPECT scans are effectively acquired during free-breathing, which is at a different
stage of the breathing cycle compared with the MSCT scans. The SPECT scan allows
three-dimensional imaging (voxel size: 4.418mm3, 128 x 128 x 128 voxels per
imaging matrix) of lung function, which makes it possible to identify regions of the
lung that are not functioning as they should. As stated in [7], the areas of airway closure
in the COPD patients are formed by the presence of emphysematous bulla and cysts.
The deflation and compression of lung tissue contribute to the lung destruction and
severe vessel and airway narrowing, which cause abnormal ventilation and perfusion
within the lungs. SPECT V/Q images for normal and moderate COPD subjects are

illustrated in Figure 1.3.

The combination of the structural information from MSCT with the functional
information from SPECT represents a powerful tool for the precise identification of
regions of the lung that are optimal targets for lung resection surgery. In order to achieve
this, it is therefore necessary to develop a tool that is able to compute the deformation
required to align the structural and functional imaging information, and to apply these
deformable fields to regions and features of the lung that have been identified. The
broad requirements for such a tool are that it should be able to achieve sufficiently
accurate registration between the imaging modalities, even in cases where the lung
imaging data are acquired at a different state of inspiration. Also, a suitable method
should strike a balance with the requirements for relatively high performance in terms
of processing time, since, to be of any potential clinical value, the software would need

to be integrated seamlessly into the radiologist’s workflow.
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Figure 1.3 SPECT V and Q scans of normal and COPD subjects are displayed in coronal view.
The trachea is visible in V (left subfigures) but not in Q (right subfigures). (a) V image of a
normal subject. (b) Q image of a normal subject. (c) V image of a COPD subject. (d) Q image
of a COPD subject. Due to severe COPD, the right upper lobe shows photopenic regions in
both (c) and (d) in comparison with the normal subject.

1.2 Previous Work

The hybrid low-dose CT and SPECT scanning technique was first proposed in [8], and
then developed by [9] and [10]. A hybrid CT/SPECT-based registration method for

brain images was proposed in [11], which employs CT to intervene MRI/SPECT



alignment. The alignment between MRI and SPECT is dependent on the result of CT
and MRI registration, since CT and SPECT were assumed to be aligned during data
acquisition. This hybrid technique manages to solve the problem of low-dose
CT/SPECT registration, whilst it is based on the assumption that the patient remains
stationary throughout the scanning process. In fact, motion of some organs (e.g.
respiratory, cardiac, digestive and muscular organs) is inevitable and therefore the

acquired data are always mismatched.

In order to tackle the multi-modality (e.g. CT/SPECT) registration problem in software,
the concept of four-dimensional (4D) imaging was proposed in [12] to represent the
variations of three-dimensional imaging with the passage of time. The breathing
protocol in 4D imaging can be established by respiratory gating or motion tracking
techniques. This method aims to decrease the influence of artefacts. The method
proposed in [13] intends to facilitate multi-modality registration by converting SPECT
slices into CT-like images using a scatter window. The ITK diffeomorphic Demons
method was then used to complete registration work. Furthermore, for the case that the
isotope in the adjacent objects is more straightforward to detect, the methods reported
in [14] performs registration for tumours based on the spine SPECT imaging. Similar
methods were studied in [15] and [16] as well. A registration method for two-
dimensional hand X-ray images was proposed in [15]. It begins with rigid registration
of the hand skeleton, followed by non-rigid registration of tissues surrounding the bones.
The three-step SPECT/CT registration method proposed in [16] performs bone, surface
and tissue registration sequentially using an extended Demons algorithm to achieve
high performance. Nevertheless, this technique concentrates on the level-set
representation of shapes and employs the distance map to calculate transformation

parameters, which is based on accurate segmentation. In addition, intensity uncertainty



quantification was used to represent each voxel in [17]. Since the voxel mapping is
independent of intensity, it overcomes the shortcoming that fluid-like registration
methods (e.g. Demons) are not applicable to multi-modality image registration. A
metric learning method was introduced in [18]. Gabor feature vectors were also
produced by learning algorithm to boost the performance of cross-modality registration.
Recently, a series of sophisticated local descriptors based on the features and textures
have been studied in [19] and [20]. Euclidian and Riemannian distances are employed

to measure the correspondence similarity respectively.

Nevertheless, as few features can be extracted from SPECT imaging and landmark
correspondence is practically unachievable, feature-based methods are not applicable
to lung MSCT/SPECT alignment. In addition, lungs have a highly deformable nature
and the MSCT and SPECT images are captured at a different state of inspiration.
External rigid reference objects (e.g. bones and vessels) hardly contribute to the multi-
modality registration. On the other hand, prior knowledge-based methods are
considered in the approach proposed in this thesis as non-learning methods only
concentrate on the registration similarity, but fail to maintain the structural information
during deformation. To the best of my knowledge, very few articles have been
published to tackle the complicated lung MSCT/SPECT registration problem with prior
knowledge. The motivation of this project is therefore to develop a high-performance,
non-rigid registration algorithm capable of achieving accurate alignment of lung

MSCT/SPECT imaging.

1.3 Research Overview

In terms of the intra-patient MSCT/SPECT registration, the main challenge is to prevent

excessive deformation of the source image (i.e. MSCT), as the target image (i.e. SPECT)



is usually deteriorated by artefacts and outliers (e.g. images containing tumour or lesion
tissue can be considered as outliers) [21]. Therefore, the key technique exploited here
aims to fuse lung MSCT and SPECT images for individuals based on a statistical
deformation model (SDM) [22]. Compared with inter-subject alignment, intra-patient
lung imaging registration can be developed using the rules of the respiratory pattern. In
the lung database, the imaging data for each patient are comprised of MSCT scans, a
pair of SPECT (V and Q) scans and low-dose CT scans (140kV, 2.5mA, 2.6rpm). As
prior knowledge for investigating the rules of lung deformation associated with the
respiratory pattern is very scarce, inter-subject information extracted from various
subjects (e.g. healthy non-smoker, healthy smoker, mild COPD patient and moderate
COPD patient) is employed here to train the SDM. Detailed participant information is
listed in Table A-3 and A-4 of Appendix A. As the inter-subject information can only
provide a global constraint against excessive deformation, rather than intra-patient
voxel-wise regularisation, prior lung shapes represented by level-sets are employed for

convenience.

The prior lung shapes are pre-processed by the similarity registration method proposed
in Chapter 2. In this chapter, the robustness of the registration method is enhanced by
an iterative scheme. In each iteration, radial moments, cross-correlation and spherical
coordinates are employed to accelerate convergence and avoid local minimum. The
high performance in terms of registration accuracy, stability and convergence speed is
validated by experiments in the presence of noise, as well as a batch-processing test
using the lung database. Compared with state-of-the-art algorithms, the characteristic
function (CF)-based method manages to strike a desirable balance between

performance and efficiency.



The research into non-rigid registration begins with statistical modelling using principal
component analysis (PCA). The shortcomings in previous methods, which make the
deformation unreasonable and inflexible, are revealed in Chapter 3. The parameter-
reduced SDM is then proposed to end the controversy of the weighting parameter for
the statistical term, and to properly regularise the deformable field based on prior shapes.
In this chapter, single-modality images are employed to test the proposed algorithm and
other state-of-the-art SDM-based methods for comparison. The outstanding

performance achieved by the framework proposed here is demonstrated.

In order to enrich the testing data and evaluation methods, a 4D extended cardiac-torso
(XCAT) phantom and radionuclide multi-modality dosimetry package (RMDP) are
employed in this thesis to generate synthetic lung imaging data and the ground-truth
displacement. In Chapter 4, the process of phantom construction is explicitly introduced.
It also highlights the procedure of adding artificial defects to normal phantoms, which

is used to challenge the learning-based algorithms in the next chapter.

In Chapter 5, the parameter-reduced SDM framework is extended for multi-modality
image registration. Instead of the sum-of-squared distance (SSD) used for the
evaluation of single-modality alignment, mutual information (M), in conjunction with
gradient-descent optimisation, constitutes the framework for multi-modality
registration. In addition, a multi-channel registration method is reported in this chapter
to improve the performance of lung MSCT/SPECT registration. It conducts a direct
region-to-region registration, which is independent of non-lung landmarks that guide
the registration algorithms. Simulations using the actual lung database and synthetic
phantoms are performed, and the results are measured with different metrics to

demonstrate the improvement achieved by the algorithm proposed here.
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The entire research progression of the PhD project is illustrated in Figure 1.4 and
summarised in Chapter 6. It highlights the breakthroughs and achievements made by
the algorithm proposed in this thesis for medical imaging analysis, and emphasises the
applied value of the algorithm with respect to computer vision and pattern recognition.
It also states the promising work which is expected to be accomplished in the future to
further improve the framework and then aid the diagnosis and treatment of pulmonary

disease.

Shape similarity Non-rigid shape Statistical deformation
registration registration model (SDM)
(Low-dose CT lung shapes) (MSCT lung masks) (Inter-subject deformations)

MSCT/SPECT registration Single-modality registration
based on non-parametric SDM based on non-parametric SDM
(Real and synthetic (Real lung masks

MSCT/SPECT scans) and SPECT data)

Lung lobe/SPECT fusion
(intra-patient real
MSCT/SPECT scans)

Figure 1.4 Flow chart of research progression. Each step is described by a milestone, with the
relevant data in parentheses.
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Chapter 2

Three-dimensional Shape Similarity Registration

2.1 Introduction

As a necessary initial step for non-rigid registration, similarity registration, which is
performed by geometric transformation based on the similarity (e.g. scaling, rotation
and translation), should be performed first to create the optimum conditions for the next
non-rigid registration step. This helps improve the rate of convergence of the non-rigid
registration algorithm and eliminates at least some of the potential local minimum into
which the algorithm might otherwise fall. Previous research into shape registration
based on particular shape representations (explicit and implicit descriptors, Laplace-
Beltrami spectral descriptors and point clouds), advanced optimisation methods
(iterative closest point and cross-correlation) and classic similarity measurements (SSD

and MI) has been conducted in the past few years.

Feature-based methods are reported in [23] [24] [25], which employ explicit
representations to describe key points, shape contour or surface information. Recent
research into feature- and correspondence-based shape registration can be found in [26]
and [27]. The algorithm proposed in [26] is motivated by retinex theory. It employs an
adaptive smoothing method to preserve shape edges and corners. The Hough transform
is developed in [27] to reduce the demand for computational memory with the intrinsic
Hough and enhance registration accuracy using the minimum-entropy Hough. These
methods simplify the calculation of transformation parameters but significantly rely on

the feature description and landmark correspondence, which leads to inaccurate

13



registration when the shapes either contain various sub-shapes or have different Euler

characteristics.

Conversely, implicit representations, such as the signed distance function (SDF),
concentrate on the description of shape regions. The SDF is frequently employed for
shape registration in [28] and [29], since it is a desirable representation for two identical
shapes in registration. However, it leads to infinity for the integral of the dissimilarity
of two different shapes. Another implicit representation, characteristic function (CF),
manages to overcome the shortcomings of SDF and is used in [30] and [31] to perform

robust shape registration.

Moreover, another shape representation method known as Laplace-Beltrami spectral
descriptors is employed in [32] and [33] for shape analysis. This representation is
independent of the shape’s orientation and transformation. This advantage is also
inherited by the algorithm proposed in this chapter. The recent spectral shape descriptor
was proposed in [34]. It employs a neural network to establish the shape spectrum and
create learning-based binary shape descriptors. Although these sophisticated spectral
descriptors improve the sensitivity and specificity for capturing features, they are

significantly dependent on feature correspondence.

Iterative closest point (ICP) was firstly proposed in [35] to optimise the rigid
registration based on proper initial pose. It was then developed by [36] [37] [38]. The
recent development of ICP is reported in [39], which is based on the point cloud with
corresponding points. The transformation is refined iteratively by minimising the
distance of geometrically similar groups of points. Similar point-set-based registration
methods are studied in [40] and [41] to improve robustness. These aforementioned
algorithms boost the processing speed and optimise the similarity metric, but the

gradient-descent optimisation method always leads to a local minimum. In [29], cross-
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correlation is used to improve the robustness of shape registration, and it is
demonstrated to be a possible solution to the local minimum problem. Also, cross-
correlation based on the fast Fourier transform (FFT) for shape registration is reported

in [42] and [43].

As a similarity metric, SSD is widely used in shape registration as it is straightforward
to measure the greyscale difference across the voxels at the same locations [30] [31].
Inspired by information theory, M1 is proposed as a statistical registration technique
and similarity metric. It is employed in [44] and [45] to calculate the optimal
transformation parameters by maximising the M1 between different shapes. Moreover,
the scale-rotation-translation-compatible distance as an innovative metric is proposed

in [46] to achieve scale-invariant registration.

In previous work, the influence of noise has rarely been analysed, but the robustness of
algorithms should be attached importance for practical applications. The challenge of
the registration for the candidate shapes containing different sub-shapes, named here as
group shapes, needs to be overcome. The main objective of this chapter is therefore to
propose a robust and high-performance similarity registration method for volumetric
shapes. It intends to address the concerns of registration for the group shapes even in
the presence of noise. In addition, the desired similarity alignment method is required
to achieve high registration accuracy and stability within a reasonable time. In this
chapter, the CFs are employed to represent shapes. The technique proposed here is
developed using an iterative scheme and radial moments. In each iteration, the cross-
correlation based on the spherical coordinate system is employed to accelerate
convergence and avoid local minimum. Performance in terms of registration accuracy,
stability and rate of convergence is validated by experiments on the group shapes in the

presence of noise, as well as a lung shape database.
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The contributions in this chapter are as follows: Firstly, an iterative method is
introduced to improve the robustness, accuracy and stability of volumetric shape
registration, especially for group shapes. Secondly, a method based on the spherical
coordinate system is proposed to simplify the calculation of fine rotational angles and
to guarantee the global optimum for each fine rotation. Thirdly, the robustness of

registration algorithms is analysed in this chapter.

This section is structured as follows: The relevant background materials are introduced
in Section 2.2, followed by the methodology with mathematical derivations in Section
2.3. The numerical results are presented in Section 2.4 to validate the improvement of
robustness, performance and stability achieved by the algorithm proposed here.

Conclusions and future work are finally summarised in Section 2.5.

2.2 Theoretical Basis
2.2.1 Rotation Theorems

In [47], P. Davenport demonstrated that any orientation of a rigid body could be
obtained by three rotations around three different non-orthogonal axes. Davenport
rotation theorem was then extended to prove that a unique decomposition of a rotation
into three rotations around three orthogonal axes is reliable. The decomposition is
generalised as the Tait-Bryan rotations and employed in Section 2.3.2.2 to calculate

rotation parameters.

2.2.2 Representation of Volumetric Shapes

In this chapter, CFs are used to represent shapes. The CF of a volumetric shape in the

image domain 2 is defined as

1 (x,y,z) €S

Plxy.2) = {O (x,y,2)€EN-S (2.1)
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where S denotes the inside region of the shape.

2.3 Methodology

Compared with rigid registration, which only considers rotation and translation,
similarity registration expands the scope of application and is performed sequentially
through scaling, rotation and translation. Based on the recent shape registration method
proposed in [31], which effectively improves the robustness in a two-dimensional plane,
the algorithm proposed here is developed in three-dimensional space for volumetric
shape registration. Furthermore, some complicated issues such as computational
complexity in three-dimensional space are resolved in this chapter to obtain outstanding

performance. In summary, the method is extended as follows:

Extend the calculation of radial moments for three-dimensional shapes.

e Employ PCA to perform a coarse registration.

e Employ the spherical coordinate system to simplify the calculation of the
rotational angle.

e Employ a three-dimensional Fourier transform to calculate the optimal rotation

and translation parameters based on a cross-correlation framework.

In this chapter, ¢.-(x, v, z) and ¢,.(x, y, z) denote the CFs of the target and source
shapes respectively. s is used to denote the scaling parameter. As a rotation can be
decomposed into three rotations around three orthogonal axes, ¢,, ¢, and ¢, here
represent the fine rotation parameters around the three Cartesian axes, Z, Y and X
respectively. Also, Ax, Ay and Az denote the translations along the X, Y and Z axes
respectively. The dissimilarity between registered source shape ¢, and target shape

¢dtar Can be measured by the SSD.
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E = fff_{) |¢tar(xr y; Z) - m(x; y; Z)lzdx dy dZ (22)

where 2 is the image domain. The optimal transformation parameters can therefore be

calculated by minimising the dissimilarity measurement in Eq. (2.2), i.e.

(ﬁ' s By P ax, Z} ZE) N sQ (;lr(%rrl‘i)?AMZE (23)
YW ZIPY P X » ”

where 3, @;, @y, @y, Ax, Ay, Az are the estimated parameters for scaling, rotation and

translation respectively.

2.3.1 Coarse Registration

In order to improve the computational efficiency and robustness of the algorithm, PCA-
based coarse registration is employed here to find the orthogonal axes and then the
rotational angles. The coarse registration starts with alignment of the centroids of the
target and source shapes to the origin of the coordinate system. Then, the method
proposed here arranges for the first and second main axes of the shapes computed by
PCA to coincide with the Z and Y axes (in the Cartesian coordinate system) respectively.

The procedure of coarse registration is illustrated in Figure 2.1.

Under some circumstances, the directions of the corresponding main axes might be
reversed after coarse registration, as shown in Figure 2.1(b). The flipping problem can
be resolved by the subsequent fine rotation, which employs an iterative method as

described in Section 2.3.4.

After centralisation and coarse rotation, the ¢4, and ¢, are transformed to new poses,

i.e.
Gtar 0,V,2) = Prar(X — X0, Y — Y1, 2 — Z¢) (2.4)

6;“:"(35: Y Z) = ¢src(Rc(x — XY — Yss Z — Zs)) (2-5)
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where R denotes the coarse rotation of the source shape using PCA, and (x;, y;, z;)
and (xs, ys, zs) are the centroids of the target and source shapes. The coarse registration
also aids the shape CF mapping from the Cartesian to the spherical coordinate system

in the subsequent calculation of fine rotational angles.

1%t main axis
(yellow ‘eight’)

250

2]
% 150
sk i d i s 3 nd main axi T—
200~ 1%t main axis 2" main axis P & 2% main axis 2 main axis
2 . 0 ‘eight’) & 1 ;
% 150 ; |]|‘ 100 ‘(yellow eight’) py [red ‘eight’)
N A £ g
100 /50
o 2" main/axis 50 )
50 j /100
A Al / : s
0l i £ 150 0.l 15t main axis
250 g 15t main axis / 250,00 ™ (red ‘eight’)
150 G o /‘200 Y-axis 150 = 0
< ] a0 > . 100, 50
100 ~__ / % 200 1%
50 7 250 250 Y-axis
X-axis 0
a b

Figure 2.1 The coarse registration is implemented by centralisation and coarse rotation. In
order to highlight the coincidence, the coarse registration is presented with the modification
that the two centroids are aligned but not translated to the origin of the coordinate system. (a)
Initial poses before coarse registration. (b) Coarse registration results.

2.3.2 Fine Registration
2.3.2.1 Scaling

The difference of radial moments is employed here to derive the scaling parameter. In
comparison with geometric moments, which are used to calculate the scaling
parameters along the X, Y and Z directions for shear transformation, radial moments
are rotation-invariant and simplify the computation by offering a uniform scaling

parameter for all directions in three-dimensional space.

For two centralised volumetric shapes, ¢,4r, $s ¢, the radial moments are computed by

Eq. (2.6) and Eq. (2.7),

meer = fff. (\/m)m@;(x,y,z) dx dy dz (2.6)
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Mgre = [ff, (V2 F32 +22) e (x, v, 2)dx dy dz 27)

where m denotes the number of moments. The target shape scaled by 1/s is written as

tar m 7
M B =, (A ) B (A ey 28

By replacing the variables x/s, y/s and z/s with X, Y and Z respectively, Eg. (2.8) can

be rewritten as

t —_—
My 5= 5™ f[, (VXZH Y2+ 22)" Brgy (XY, 2) dX dV dZ = 5™ MigT(2.9)

The optimal scaling parameter is estimated by minimising the distance between these

two radial moments, i.e.
$ = argmin(Es¢(s)) = argmin(TM_o|MsT¢ — s™+3MEaT|2) (2.10)
N N
Then, the derivative of E,.; with respect to s should vanish:

Lol =y o 2(m + 3)[s2S(MET)? — sTRMIMET] =0 (211)

It is obvious that Eq.(2.11) is a polynomial equation with respect to s. In fact, only one

solution, which is real and positive-valued, can be regarded as the desired scaling

parameter. The remaining solutions are either complex or negative real-valued.

2.3.2.2 Rotation

In each iteration, the desired rotational angles can be estimated by minimising the cost

function, E,¢ (@2, ¢y, 9, ), which is similar to Eq. (2.2):

Erot (02 0y 0x) = [II,, |Gare| dx dy dz + [If, |Prar| dx dy dz — 2(drere -
Prar) (2.12)

where the ¢, ¢,, ¢, are rotational angles around the Z, Y and X axes, as defined by

the Tait-Bryan rotations.
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As the first and second terms on the right-hand side of the above equation are

independent of the rotational angles, Eq. (2.12) is simplified as
Erot((pz' Py, <px) =C—-26 (2.13)

6 = JIf, (ear Cey e (Rr (5,3, 2)) ) e dy dz 2.1
where Ry denotes the fine rotation of the source shape.

Therefore, minimising Eq. (2.12) is equivalent to maximising & with respect to ¢, ¢,,

and ¢,:

(@, Dy, @) = argmax(9) (2.15)
(Pz"Pyv‘Px

As the three rotation parameters have to be derived sequentially, a local minimum
problem within the combination of three sequential rotations can be nearly overcome
by a reliable computation order, which is from the first to the third main axis [30]. In
Section 2.3.1, PCA-based coarse registration was performed to arrange for the first and
second main axes of the shapes to coincide with the Z and Y axes respectively.
Therefore, the order is determined as Z-Y-X, which is in accordance with from the first

to the third main axis.

In order to facilitate the calculation, the shape CFs are mapped to the spherical
coordinate system, in which r, 6 and ¢ representing radial distance, polar angle and
azimuthal angle respectively are employed to define the locations of voxels. ¢ is the
only variable to compute the rotational angle around an axis. Eq. (2.14) is therefore

rewritten based on the spherical coordinate system as

§(9) = [If, ¢s1(r,6,9)b1(r,6,9 — @, )r*sin 6 drdode (2.16)

8(0y) = [If, 21,6, 0)b0z(,6,9 — 9, )r?sin6 drdodp  (2.17)
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5(0) = [If, $ss(r,6,0)bes(r,6,0 — pIr?sinf drdody  (2.18)

where ¢, ¢, and ¢.; denote the mapped source shapes using the Z, Y and X axes as

the zenith direction respectively. Similarly, ¢.;, ¢, and ¢.; denote mapped target
shapes after rotating around the Z, Y and X axes respectively. Eq. (2.16) is used as an

example here to complete the following derivation.

Given 55 (1, 8, @) to substitute for ¢4, (1, 8, @)r? sin @ for convenience, Eq. (2.16) is

simplified to

§(p2) = [If, ©1(r,0,0)$e1(r, 6,9 — ¢,)drdode (2.19)

Cross-correlation is employed here to derive the optimal ¢, which maximises §(¢,).
Given the Fourier transforms of ic,; (1, 8, @) and ¢, (7, 6, @), denoted by Ky, (n, 1, &)

and &, (n, A, §) respectively, the Fourier transform of ¢, (r, 6,9 — @,) is therefore

written as

F(fa(r,0,0 — 0,)) = B, 4, §)e 02 (2.20)

where n, A and ¢ are spatial frequencies in the spherical coordinate system. Based on

Parseval’s theorem, {, can be calculated by

{p, = argmax(6)
Pz

= argmax (= [Jf K (1,4, )Pz (1,4, £)e07 dydade) (2.21)
Pz

where * denotes the complex conjugate. In this way, the optimal ¢, can be calculated
based on the inverse Fourier transform. The value of ¢, corresponding to the maximum

& can be straightforwardly investigated, as illustrated in Figure 2.2.

Similarly, @;, and @, are calculated respectively as
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@y = argmax (= [If Ky (0,2, OB, (0,2, /%7 dydads)  (222)

Py

7 = argmax (= [If Koy (0, 1,5 (0,2, O dndade)  (2.29)
Px

Cost Function &

0 1 2 3 4 5 6
Rotational Angle qiz (radian)

Figure 2.2 A plot for global cost § with respect to rotation ¢,. The ¢, corresponding to the
maximum of § is the optimal rotational angle.

2.3.2.3 Translation

Similar to Eq. (2.12), the first two terms on the right-hand side of Eq. (2.24) are
translation-invariant. Minimising Eq. (2.24) is possible by maximising (¢;C . gbmr)

with respect to Ax, Ay and Az:

Etran(8%,8,82) = [[f |are| dx dy dz + [[[, |Prar| dx dy dz — 2(¢rerc -
Brar) (2.24)

(Bsre * Prar) = JII, bsre(x, ¥, 2)Prar(x — Ax,y — Ay, z — Az)dx dy dz (2.25)
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Given the Fourier transform of ¢g.(x,v,z) and ¢.q-(x,y,2z) , denoted by
b (', A, &) and @, (', A, &) respectively, the Fourier transform of g, (x —

Ax,y — Ay, z — Az) is therefore written as
F (Gear (x — A2,y = Ay, 2 = 42)) = g (n, X', §) e IWAXI8Y+6102) (2,26)

where 1, A" and &' are spatial frequencies in the Cartesian coordinate system. By using

Parseval’s theorem, Ax, Ay and Az are calculated by

(&5, 52) =

argmax (= [[f Gorc (', 1, €) By (', 2, €S MR dydrde)  (2.27)

Ax,Ay,Az

where * denotes the complex conjugate.

2.3.3 Evaluation of Similarity Registration

The similarity measurement is employed here to evaluate the performance of algorithms
and to determine the iterative progression. In [30], a few evaluation methods were
mentioned for measuring the regional similarity. In this chapter, these classic

measurements are analysed before use.

Firstly, the normalised inner product is used to evaluate the common region inside two

registered shapes and is denoted by

—_ ¢tar (x’y'z)ﬁ(x,%z)
Ewp = fﬂﬂ lpearCey.Dlz||psrc(xy.2)], dx dy dz (2.28)

where [|-]|, denotes Euclidean norm, and ¢,,-(x,y, z) and ¢, (x, v, z) are the CFs of

the target shape and registered source shape respectively.

Furthermore, accuracy (E4.), overlap (Ey,,), sensitivity (Es,.), and specificity (E,) are

selectable metrics for similarity measurement:
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By = - (229)
Eoy = VC+II::+VT (2.30)
Ese = (2.31)
sp = Vo‘jfvr (2.32)

Vq: the volume of the image domain

V.. the volume of the common region inside the two shapes

V,: the volume of the background region outside the two shapes

V;: the volume of the region inside the target shape but outside the registered source
shape

V.. the volume of the region inside the registered source shape but outside the target

shape

Nevertheless, the definition of E,. and Eg, are involved with V,, which means the
background information inevitably affects the results obtained. In the case where the
background occupies a considerable proportion of the whole image domain, the values
of E4. and Eg,, are very close to unity, which causes these two measurements to be
insensitive to the difference between the shapes being compared. Es, concentrates on
the common region in the target shape, but ignores the evaluation with respect to the
registered source shape. Eg, is therefore inapplicable to the measurement of shape

registration.

E,, 1s areliable measurement which is similar to E;p. It concentrates on the foreground
information and evaluates the common region within two shapes. An iterative algorithm
based on E,, and E;» manages to maximise the common region and minimise the

individual regions simultaneously.

25



Furthermore, Hausdorff distance (Eyp), first proposed in [48], is used to measure the
resemblance between two shapes, and the bidirectional Hausdorff distance between

Orar aNd Pg,-c is denoted by

Enp(rars Psre) = max (A(bear Bore)s h(@sres Bear)) (2:33)
where
h(A,B) = max min|la — b| (2.34)

Since it requires no explicit correspondence between A and B, Hausdorff distance is
employed to robustly evaluate registration against tiny errors that are obtained with
feature extraction and descriptors. In terms of shape registration, it is a promising metric

and is adopted by this chapter.

In this chapter, normalised inner product (E,p), overlap (E,,,) and Hausdorff distance
(Eyp) are employed to evaluate performance in the experiments. Higher E,,, and E;p

and lower Eyp indicate superior registration accuracy.

2.3.4 lterative Algorithm

In order to obtain the optimal parameters for scaling, rotation and translation, an
iterative method is developed in this chapter. In comparison with the non-iterative
method proposed in [30], the iterative method can effectively reduce the influence of
sequential computation on the transformation parameters and then avoid converging to
a local minimum. The registration starts with centralisation and coarse rotation. The
optimal registration parameters for scaling, rotation and translation are then calculated
iteratively. At the end of each iteration, the similarity of the registered shapes is

evaluated by one of the methods mentioned in Section 2.3.3. The iterative process stops
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when a certain condition is met. The entire process of registration proceeds as shown

in Figure 2.3.

Derive scaling,
rotation and Transform
translation source shape
parameters

Centralisation
and coarse
rotation

Evaluate
registration
similarity

Similarity is
developed?

Finish

Figure 2.3 Flow chart of the iterative shape registration procedure.

The pseudo-code for programming is as follows:

1) Perform centralisation and coarse rotations

At iteration i:

2) Solve the following equation
M
D+ D52 (M) = 52 (M) 1 MET] = 0
m=0

3) Find the following values

1 __ —_ .
$z; = argmax (2_ .UJ (Ksl(n. A, f)) Dy (n,4,8)et9z dndﬂdf)
Pz T i—1

1 __ —_— .
75, = argmax (o [[[ (Tan.2.0),_ ' 1.2,00% anaiac)

y
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7z, = argmax (o [[[ (n.2,9)),_ 80" 0.2,00e75%+ dnazae)

Px
(Z;Cii Zl}’i) Z\Zl)

1 — —_— )
= argmax (% .fff ((DSTC(UI’ AI, fl)) (ptar (7]’: A,, f')e](n"‘x”m“f’ﬂz)dn'dl’df’)
i-1

Ax,Ay,Az
4) Transform the source shape which was updated in iteration i-1.
5) Evaluate the similarity of the two shapes by E;p or E,,,.

6) Repeat steps 2-5, until the value of E;p or Ey,, is less than any one of the

previous values.

2.4 Experimental Results and Discussions

In this section, a series of experiments are conducted to evaluate the performance of
different registration methods. Before presenting the experimental results, it is

necessary to mention some implementation issues at the beginning.

Firstly, M in Eq. (2.11) should be pre-set before calculating the scaling parameter. With
the increase of M, the estimated scaling parameter tends to approach the true value, as
shown in Figure 2.4. However, when it arrives at a certain value, the accuracy
improvement is not substantial but time consumption increases dramatically. Thus, a

proper trade-off needs to be made.

Moreover, as the voxels in the Cartesian coordinate system are mapped to the spherical
coordinate system to facilitate the calculation of rotational angles, the converted
resolutions need to be negotiated. As stated in Section 2.3.2.2, only azimuthal angles
are used to manipulate the rotation of shapes. An efficient solution is therefore to lower
the resolutions with respect to the r and 6 axes whilst enhance the resolution with

respect to the ¢ axis.
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Figure 2.4 Three pairs of shapes and the corresponding estimated scaling parameters relative
to the real values. (a) Three pairs of similar shapes (simple shapes, medical shapes and group
shapes) are displayed in yellow (target shapes) and red (source shapes). (b) The absolute
difference between real and estimated scaling parameters with the different numbers of
moments used.

The following experiments and comparisons are performed with three methods, two of
which are the Matlab built-in function “imregister” and the algorithm proposed in [30],
named as Algorithm 1 and Algorithm 2 respectively here. The “imregister” function as
a comparable iterative alignment algorithm is included in the Matlab image processing
toolbox. The method proposed in [30] is a state-of-the-art CF-based volumetric shape

registration technique. It also employs phase-correlation and gradient descent

optimisation method to investigate the transformation parameters, whereas it does not
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conduct calculation iteratively. Moreover, ICP as a classic method is also included in

Section 2.4.2 for comparison.

All the experiments were implemented in Matlab 2017b on a PC workstation with an
Intel Core i5 (3.2GHz) processor and 16 GB RAM. In this chapter, the target shapes
are depicted in yellow while the source shapes are displayed in red for visual inspection.
All the shapes are presented by their surfaces with suitable transparent effects to aid

visualization.

2.4.1 Registration for Group Shapes

The experiments in this section were implemented to validate robustness and alignment
accuracy for group shapes. The testing candidates are two three-dimensional clocks, as
shown in Figure 2.5(a). It is apparent that their dials are different. One is composed of
four numerical digits and a discrete frame whilst the other clock is made of twelve
Roman numerals and a continuous frame. The numerical digits, Roman numerals,
circular frame and hands are regarded as the sub-shapes of the clock shape. The
registration is then performed by Algorithm 1, Algorithm 2 and the algorithm proposed

here.

These two clocks are initially placed overlapped. The alignment results are depicted in
Figure 2.5(b-d). It is obvious that Algorithm 1 fails to register the group shapes since it
tends to fall into a local minimum and terminate the registration prematurely, as shown
in Figure 2.5(b). Algorithm 2 (shown in Figure 2.5(c)) also fails to register these two
group shapes as the non-iterative technique cannot derive the optimal transformation
parameters in one attempt. Conversely, the result shown in Figure 2.5(d) significantly
demonstrates the power of the iterative scheme and the superior accuracy achieved by

the method proposed here.
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Figure 2.5 Registration of two clocks without noise. (a) The initial poses of two clock shapes.
They are overlapped before registration. (b) The registration result of Algorithm 1. (c) The
registration result of Algorithm 2. (d) The registration result of the proposed method.

Salt and pepper noise, which is applicable to shapes (binary masks), is then added to
one of the clock shapes to challenge the robustness of the algorithms. The two clocks
are arranged separately without overlap. The results of the two registration tests in the
presence of different signal-to-noise ratios (SNRs) are shown in Figure 2.6. It is

demonstrated that the algorithm proposed here manages to register the two group

shapes robustly.
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Figure 2.6 Registration of two clocks in the presence of different SNRs. (a) SNR=20dB. (b)
SNR=10dB.

The following experiment is implemented to further validate the robustness of the
different algorithms. As depicted in Figure 2.7, two identical clocks are deployed in the
same pose. The target clock shape is deteriorated by adding salt and pepper noise with
a specific SNR whilst the source clock shape is initially rotated 180 degrees around the
axis which is orthogonal to the dial and passes through the centre of the shape. The
error angles (relative to the ground-truth of 180 degrees) after registration are used to

measure the alignment performance, especially in terms of rotation.
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Figure 2.7 Two group shapes to be registered are displayed separately. The target (on the left-
hand side) has noise added to increase the difficulty of registration. The source (on the right-
hand side) is initially rotated by 180 degrees.

For each test mode (i.e. tests with the fixed SNR for the target shape), ten alignment
tests with random noise distributions are conducted. The results of eight test modes
(SNR=-15, -10, -5, 0, 5, 10, 15, 20dB) are plotted in Figure 2.8. The shortcomings of
Algorithm 1 are revealed again in the presence of noise. Since Algorithm 1 is very

vulnerable to local minimum, the alignment tends to finish promptly with obtained

rotational angles close to zero. Algorithm 2 is able to obtain desirable results when the
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Figure 2.8 Error angle graph with respect to different SNRs. The error angles of Algorithm
1 and Algorithm 2 are depicted by a black dotted line and red dashed line respectively with
their standard deviations. The error angles of the proposed algorithm are displayed with a
blue solid line with its standard deviation.
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SNR is not lower than 0dB. It is however not capable of aligning shapes under lower
SNR conditions as the robustness is limited by the non-iterative solution. In contrast,
the algorithm proposed here with an iterative method outperforms Algorithm 1 and 2

in the presence of noise, even when the SNR is as low as -5dB.

2.4.2 Registration for Lung Shapes in the Database

In this section, the shapes provided by the lung low-dose CT database (subject details
refer to Table A-1 and A-2 of Appendix A) are employed to further validate the speed,
accuracy and stability of Algorithm 1, Algorithm 2, ICP and the algorithm proposed
here. The database contains 33 left and 33 right lung shapes represented by their CFs.
In the following experiments, the leave-one-out approach is employed, which means
that each subject in the database is sequentially chosen as the target shape and the
remaining 32 cases are regarded as the source shapes. Thus, the total number of
registration tests performed by each method is 1056 for the left lung and 1056 for the
right lung. Furthermore, in order to challenge their abilities against local optima, the
initial orientations of the two lung shapes are set randomly. As mentioned in Section

2.3.3, Eyy, E;p and Eyp are employed here to evaluate accuracy.

2.4.2.1 Efficiency Evaluation

As an important criterion, the efficiency of registration should be evaluated to guarantee
that the algorithm can be applied to the general radiologist’s workflow without causing
undue delay. The elapsed times using different registration algorithms are displayed in
Figure 2.9 and Table 2.1. It is obvious that the CPU time consumed by the method
proposed here is less than those of the other two iterative algorithms (Algorithm 1 and
ICP are configured to their default settings), since the proposed method considerably
simplifies the calculation of scaling and rotation parameters. However, it is admitted

that the time consumption of the proposed algorithm (average 3.7 iterations and 4
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iterations for left lungs and right lungs respectively) is approximately three times that

of Algorithm 2 due to the iterative nature of the method.
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Figure 2.9 Time consumption of 33 experimental patterns using four algorithms. (a) Average
elapsed times of left lung registration. (b) Average elapsed times of right lung registration.

Table 2.1 The average elapsed times using different methods

Algorithm1  Algorithm 2 ICP Proposed
[sec] [sec] [sec] [sec]
Left lungs 19.08 0.74 3.55 2.64
Right lungs 20.83 0.83 3.96 3.06
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2.4.2.2 Accuracy and Stability Evaluation

The experimental results in terms of registration accuracy are illustrated in Figures 2.10
to 2.12. It is straightforward to see that the accuracies achieved by Algorithm 1 and ICP
are much lower than those obtained by the other two methods since Algorithm 1 and
ICP always fall into a local minimum when the alignment starts from an unfavourable
pose, which is illustrated in Figure 2.13. Therefore, Algorithm 1 and ICP are not
competent in shape registration with unfavourable or random initial poses. Conversely,
the ability of overcoming the local minimum problem using Algorithm 2 and the
proposed algorithm is validated in the batch-processing tests. Furthermore, compared
with Algorithm 2, the algorithm proposed here develops the accuracy in the

overwhelming majority of patterns.

The average E,,, E;p and Eyp listed in Table 2.2 numerically demonstrate the
improved accuracies are up to 7% and 11% for left and right lung alignments
respectively. Further investigation about the source of improvement achieved by the
proposed method can be performed by comparing the accuracies of Algorithm 2 and
Proposed 1%. The “proposed 1%’ presents the results obtained by the proposed
framework without iterative scheme. A certain of improvement after first iteration
achieved by the proposed method can be observed (measured by E ). Therefore, both
spherical coordinate system-based cross-correlation and iterative technique are

demonstrated to contribute to the improvement of registration performance.
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Figure 2.10 The average E;p obtained by four algorithms for 33 experimental patterns with
random initial poses. (a) Results of left lung registration. (b) Results of right lung registration.

l=Algorithm 1--Algorithm 2 - ICP =+-Proposed Algorithm|
1 T T

0.8r i

04\ s e ANV NA

0.2

av

0 5 10 15 20 25 30 35
Pattern Index
a

37



~+Algorithm 1-+Algorithm 2+ ICP-Proposed Algorithm
1 T T .

0.8 ]

0.6
w 04l \J\/JM/,IM-W.

ov

0 5 10 15 20 25 30 35
Pattern Index
b

Figure 2.11 The average E,,, obtained by four algorithms for 33 experimental patterns with
random initial poses. (a) Results of left lung registration. (b) Results of right lung registration.
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Figure 2.12 The average Eyp obtained by four algorithms for 33 experimental patterns with
random initial poses. (a) Results of left lung registration. (b) Results of right lung registration.
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Figure 2.13 An illustration of an unfavourable initial pose and the corresponding registration
result using Algorithm 1 or ICP. (a) Two views of an unfavourable initial pose. (b) Two views
of the registration result which converges to a local minimum.

For similarity registration, the variations of lung shapes across different patients are the
potential sources of variation in the final results, whereas statistical methods can be
employed to further evaluate their performance. Lower standard deviations indicate that
the results are insensitive to the variation of cases and rarely subjected to outliers. It is
an important criterion for evaluating the performance of a registration technique. The

standard deviations in Table 2.2 demonstrate that the algorithm proposed here

substantially improves stabilities by up to 61% and 47% (measured by E,,, and E,p) for

Table 2.2 The average E,,, E;p and Eyp, presented as meanzstandard deviation (standard

error)
Algorithm 1 Algorithm 2 ICP Proposed 1 Proposed
E 0.3840.13  0.6740.07 0.48#0.11  0.6640.04  0.6840.04
ov (0.02) (0.01) (0.02) (0.01) (0.01)
Left E 0.5540.13  0.80#0.05 0.66#0.09  0.80#0.03  0.8240.03
Ip (0.02) (0.01) (0.02) (0.01) (0.01)
i 15.9143.92  8.73%2.84 11.80#3.52 851#1.92  8.13#.77
HD (0.68) (0.49) (0.62) (0.33) (0.31)
E 0.4640.10  0.6540.08  0.49#0.11  0.6640.05  0.6630.04
ov (0.02) (0.01) (0.02) (0.01) (0.01)
Right E 0.63#.09 0.7940.06  0.66#0.09  0.80#0.04  0.8040.03
9t Ee | (0.02) (0.01) (0.02) (0.01) (0.01)
E 14494335 9.18#.57 12.1843.65 8.77#.11  8.20+1.82
HD (0.58) (0.45) (0.63) (0.37) (0.32)

39



left and right lung alignments respectively in comparison with Algorithm 2. The
standard error in Table 2.2 can be used to measure the distance between the sample data
mean and the true population mean. Lower standard errors indicate that for unknown

subjects the superior results obtained by the proposed method is convinced.

2.5 Conclusions and Future Work

In this chapter, a robust and high-performance three-dimensional shape registration
algorithm has been proposed. It employs the CFs to represent shapes. The radial
moments and cross-correlation are exploited to estimate the scaling and rotation
parameters. Also, an iterative method is proposed to improve the overall performance.
The entire programming and simulation is implemented in Matlab based on the

mathematical derivations.

The method proposed here was validated using two types of shapes: group shapes and
lung shapes. The experiments on group shapes demonstrate its superior accuracy and
robustness, even in the presence of noise. Over 2100 experiments on the lung shapes
provided from a database demonstrate the excellent accuracy, stability and processing
speed achieved by the method proposed here. In other words, the proposed similarity
registration method is able to find the global optimum and has excellent performance
in comparison with all the registration techniques investigated. Also, it strikes a
significant balance between speed and performance, offering an innovative solution to

the problem of volumetric shape registration.

In future research, a mathematical proof of the proposed algorithm’s ability to find the
global optimum can be investigated. The registered volumetric shapes can be employed
to conduct statistical shape modelling in aid of prior shape-based image registration and

segmentation.
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Chapter 3

Single-modality Image Registration Using Prior
Shapes

3.1 Introduction
3.1.1 Non-rigid Registration

Compared with rigid, similarity and affine registration, non-rigid registration is more
complicated as it has a large number of degrees of freedom determined by the number
of voxels in the image. In previous work, the transformation matrix for non-rigid
registration has been derived using physical models or interpolation theory. A well-
known deformable method based on the diffusion model was first proposed in [49], and
is known as ‘Demons’. The diffusion model is then augmented with an active force to
increase the speed of convergence and therefore decrease the number of iterations [50].
On the other hand, B-spline-based Free-Form Deformation (FFD), which uses control
points on the lattice to conduct the non-rigid alignment, is proposed in [51]. The FFD
initially concentrates on the local deformation, and it is then refined by a hierarchical
(global-to-local) method reported in [44]. The global-to-local registration is
implemented by global rigid registration followed by local non-rigid alignment, which
can obtain high accuracy with less processing time. In addition, since the deformations
are conducted on local regions, the CPU and memory costs significantly decrease in

accordance with time consumption.

In non-rigid registration, the similarity measurement of two images is prioritised to
achieve high accuracy whilst the deformations need to be regularised properly. The

diffeomorphic method was developed in [52] [53] [54]. It has been demonstrated that
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diffeomorphic methods manage to preserve the image topology using an invertible and
differentiable mapping. This method is always employed to align the images involved
in substantial deformations, but does not need to be considered if moderate deformation
is expected for image alignment. In addition, since the velocity field is dependent on
the fluid model, the obtained displacement only concentrates on the location in the field
rather than anatomical information. The diffeomorphic method without contour

regularisation is therefore undesirable for medical imaging research [53].

3.1.2 Registration Based on Prior Knowledge

Regarding medical imaging analysis, the role of patient-specific prior knowledge is
highlighted in [55]. Prior images obtained from previous diagnoses or research provide
considerable anatomical information. Prior knowledge-based methods have therefore

been studied as a way to enhance the performance of non-rigid registration.

Prior knowledge represented by a joint intensity distribution is proposed in [56] and
[57]. Kullback-Leibler (KL) divergence is employed to measure the distance between
the prior distribution and the joint intensity distribution of two aligned images. The
optimisation process is driven by minimising KL divergence followed by maximising
M1 across two images. However, the displacement guided by the prior distribution still
concentrates on the alignment similarity while neglecting to regularise deformations of
source image during registration. In order to address this concern, the statistical
deformation model (SDM) was first proposed in [22] and then developed to solve
specific medical imaging problems in [58] and [59]. In order to exploit the potential of
prior images, the feature-based deformable field is established as an atlas to regularise
the registration [60]. A similar technique has recently been developed by [61], and
termed as semi-supervised method. In the training process, the initial atlas built by

supervised registration is used to guide the unsupervised registration and then combined
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with the new atlas for the SDM. Nevertheless, patient movement during data acquisition
tends to add artefacts to prior images. If the prior images employed by the SDM are
mismatched or of low-quality, the imperfect atlas would mislead subsequent
registration. On the other hand, the implicit representation of prior knowledge was
investigated in [62] and [63]. The prior shapes were represented by level-sets to
delineate the lung region, which considerably reduces manual labour and computational
cost. In addition, since almost all the methods suffer from an issue that the number of
training subjects is far less than the dimension of deformation representation, shrinkage
estimation, singular value decomposition and wavelet-based decomposition have been

investigated to tackle the problem [62] [63] [64].

The main contribution in this chapter is to propose a parameter-reduced SDM-based
non-rigid registration method. The new model proposed here ends the controversy of
the weighting parameter for the statistical term and properly regularises the deformable
field based on prior shapes. This chapter is structured as follows: The derivation of new
model is stated in Section 3.2. Experimental data collection and necessary pre-
processing work is conducted in Section 3.3. The performance of the proposed method
is evaluated in Section 3.4 with the necessary comparisons. Conclusions and future

work are discussed in the last section.

3.2 Methodology
3.2.1 Statistical Deformation Model

The prior lung shapes are segmented from MSCT scans and represented by their SDFs.
Although the size of each lung varies considerably between individuals, the influence
made by the scale variance can be eliminated by employing the similarity registration

method (proposed in Chapter 2) to pre-process prior shapes at the beginning.
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The processed prior shapes in the training set are denoted by {X;, X;, X5, ---, Xy}, where
N denotes the number of training shapes. The mean prior shape represented by its SDF

can be computed by
X=—3N X (3.1)

As concluded in [65], the mean shape is over-smooth and lacking in lung shape details.
It is therefore not recommended to use the mean shape as the target for the SDM. One
of the prior shapes which is the closest to the mean shape is chosen as the target for the

remaining shapes in the training set.

The non-rigid registration is then performed by the B-spline-based FFD method
proposed in [51] to compute the deformations for each prior shape. Here, the
deformation w is represented by a three-component vector field (ux, uy,uz) along X,
Y and Z directions, which is the function of coordinates (i.e. (x,y,z)). The PCA
calculations are performed along X, Y and Z axes separately, whereas the notations in
the subsequent derivations are written in vector form for convenience. The combination
of deformations are denoted as {u,, u,, us, -+, uy_,}. The mean displacement u can be

calculated by
u=-——¥ty (3.2)
The mean-offset displacement matrices are reshaped to column vectors
{ty, o p3, -, uy—1}, Where
Bi=u;—u (3.3)

Assuming the variability of the displacement obeys the normal distribution, it is then
generalised by PCA. The eigen-decomposition of the covariance matrix, X.,,, IS

computed by
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1
Zeov =~ FFT = VyEyVy' (3.4)

where M denotes the number of voxels in the shape matrix. The column vectors in V,
and X', are eigenvectors and eigenvalues respectively and F isan M x (N — 1) matrix

denoted by

F=[p,pp, 013, iy-1] (3.5)
As mentioned in the introduction, the issue that (N — 1) is far less than M leads to two
problems in the calculation. Firstly, for a 128x128x<128 three-dimensional image, the
magnitude of M is over 10°. Therefore, it is extremely complicated to calculate the
eigenvectors and eigenvalues of the covariance matrix, which is an M x M unitary
matrix. Secondly, even though eigenvectors and eigenvalues are obtained, only the
eigenvalues existing in the first (N — 1) columns of X, are useful, as the other

columns are all zeros [66].

Given FTF/(N — 1) instead of FFT/(N — 1), the dimension of the new covariance
matrix considerably decreases to (N — 1) X (N — 1). The decomposition is rewritten

as
ﬁFTF = WN—lz"N—le—lT (3.6)

where Xy_; = diag(o,2, 0,2, - oy_12) contains (N — 1) eigenvalues corresponding
to (N —1) non-zero eigenvalues in X,,. Eigenvalues are the squared standard

deviations. W _, is then used to calculate the eigenvectors, Vy_,, as
V-1 = FWy_1Z10rm (3.7)

where X, 1S a diagonal matrix employed to normalise each column of FW,_;.
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It is therefore possible to represent each deformable field by a dimension-reduced

vector Ay_;, which comprises (N — 1) values of coordinates along eigenvectors.

Umodel = U+ Vy_14y_1 (3.8)
3.2.2 Problems in Previous Work
In the interest of capturing statistical information about deformations, the statistical
term S(w) derived from prior knowledge is added into the cost function E (u), together
with the similarity metric D (u) and smoothing term R (u). The general cost function is

written as

E(u) =(1-a)D(u) + a((l —F)R(u) + ,BS(u)) (3.9

where «a is used to adjust the weight of regularised terms in the cost function and g is

employed to balance the penalties given by smoothing and statistical terms.

In the literature, such as [59] and [63], the distribution of prior deformations is

estimated by a multivariate normal distribution:

F0) = c-exp (=2 (= 0)"Z, " (- W) (310)

where c is a constant and X, is the covariance matrix. The statistical term S(u) used

in the cost function is represented in association with Eq. (3.10),
—In(f(w)) o< 5 (U — W) oy (u — T) = S(w) (3.11)

Nevertheless, two unsolved issues exist in this well-known framework. Firstly, in order
to decrease the cost contribution, S(u) penalises any displacement u that is not in
accordance with the mean, u. However, by assuming that the deformations are
associated with the normal distribution, any deformation within three standard

deviations of the mean is conventionally acceptable. In addition, the empirically
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determined weighting parameter 8 cannot guarantee that the resulting displacement u
falls into a reasonable range. In previous research, since it is challenging to investigate
a proper weighting parameter which can rigorously confine the displacement, £ tends

to be assigned roughly according to a specific case.

3.2.3 Parameter-reduced SDM-based Registration

In this part, single-modality image registration is used as an example for the derivation
of the parameter-reduced SDM-based function. SSD is used as the similarity metric,

and the distance between two images is calculated by

D(w) = [(Usre(x + u(x)) = Iar (x))?dx (3.12)
where I, and Ig,.. are the target and registered source images respectively. The
desired transformation is normally derived by minimising D(u). The numerical
solution is however always ill-posed since the derivation can neither guarantee a unique
solution nor avoid twisted deformations. In the previous articles, the second-order
derivative of deformations is employed in [67] and [68] as a smoothing constraint,
while the sum of squared first-order derivatives reported in [5] and [63] is used to
regularise the displacement. The sum of squared first-order derivatives is adopted here
for convenience, and is denoted as

R(w) = [|Vu(x)|?*dx (3.13)

In Eg. (3.12), the displacement u is replaced by a deformation function S(4)

manipulated by the SDM. The new similarity term is specified in Eq. (3.14).
2
D(S@)) = J (Iore (2t + S()) = liar (%)) dx (3.14)
where S(A) is a three-component vector and represented as:
S(Ayx) =1y + Zf:l Vxl’ ) Sreg(/lxi) (3.15)
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S()LY) =uy + 25:1 Vyi *Sreg (lyi) (3.16)

S(A;) = + X1 Vy; * Sreg(z;) (3.17)
where
Dy =V, (ur — ) (3.18)
Ay, = VyiT (uy - 1) (3.19)
Ay =V, (4 — ) (3.20)

A |2 . A |2
Sreg() = H (|;| - 1) - Sign(A) - 30, + H (1 - 4] ) A, (3.21)

Here, o; (i.e. ( oy, Ty, 0,;)) denote the standard deviation, which is the square root of
the corresponding eigenvalue. K is the number of eigenvectors used for regularisation.

Each 4; (i.e.(/lxi,)lyi,/lzi)) is regularised to guarantee that all the displacements fall

into the range of 3a; (i.e. obeying the Three-sigma Rule of the Gaussian distribution).
The Heaviside function H(-) only penalises the A; which are outside of the
aforementioned range. The sign function Sign(-) is employed to retain the sign of each

regularised 4;. The property of S,..,(4) with respect to 4 is illustrated in Figure 3.1.

4 Sreg (/1)

30 f------>

—30 30 p)

—30

Figure 3.1 lllustration of the function S,..,(4) with respect to 4.
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As stated in Section 3.2.1, the PCA calculations along three directions are conducted

independently for convenience. Therefore, the available deformations represented by
(Ax, 1y, 2,) are limited in a box region (i.e. [-30y,30,], [-30,,30,], [-30,,30,]

along X, Y and Z directions respectively) rather than an ellipsoid.
The cost function is then updated in Eq. (3.22).
E() =1 -a)D(S@)) +aR(5()) (3.22)

where 4 is a function of coordinates x. The expected 4 is obtained by minimising E (1)

through a gradient-descent technique:
A= argmin(E(2)) (3.23)
2

The derivative of E(4) with respect to A is computed by using the chain rule:

9E() _ 9((1-a)D(S)+aR(S)) 3s(2)
7 as EY

(3.24)

Nevertheless, the derivative of S(4) does not exist if the argument of H(-) or Sign(-)
is singular. H () and Sign(-) are regularised by Eq. (3.25) and Eq. (3.26) respectively

[69],
H(p) =1(1+2tan"2) (3.25)

Sign(q) = %tan‘lg (3.26)

and their derivatives are computed by

&
m(e2+p?)

H'(p) = (3.27)

2&
n(e2+q?)

Sign'(q) = (3.28)

where ¢ is the regularising parameter.
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Therefore, the derivative of S(4) is computed as

as(a
S() Z l-(n(gzj-pz) (3 )2 Slgn(),) 30-1+H(pl) Z—Hz) 30’l+
&
n(£2+(_m)2)'( Go )2) A+ H(= p1)> (3.29)
where
= |3al (3.30)

3.3 Data Collection and Pre-processing
3.3.1 Data Collection

In this section, 32 subjects are used for training and testing. The patients’ details are
listed in Table A-3 and A-4 of Appendix A. The high-resolution lung shapes were
segmented using the Apollo software (Vida Diagnostics Inc, lowa, USA). The voxel
dimensions of the MSCT scan are not fixed in the XY plane in order to guarantee that
the size of each slice is 512 x 512, whilst the spacing between the slices (along the Z
axis direction) is always fixed to 0.5mm. The size of the SPECT scan is 128 X 128 x
128 voxels and the voxel dimensions are fixed at 4.478 mm?. In order to unify their
dimensions, the MSCT scans can be down-sampled to match the 128 x 128 x 128
voxels of the SPECT scans, but this sacrifices a lot of anatomical information. On the
other hand, SPECT data can be up-scaled by using interpolation, but this strategy is not
allowed since the value at each voxel represents the number of photons detected at that
location. The actual voxel values in a SPECT scan are intended to be preserved and
remain unaltered. Furthermore, as the resolution of the SPECT scan is very low, the
required amount of interpolation would raise questions about the physical accuracy of
the result. Therefore, down-sampling the MSCT scan is the only solution, even though

some anatomical information is lost temporarily. Once the registration is completed,
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the deformation field can be applied to map the structural information from the original
MSCT data, such as the lobes, onto the SPECT image, thus circumventing the loss of

anatomical information due to down-sampling.

In the lung database, eight pairs of lung shapes are unavailable for modelling as they
are incomplete, as shown in Figure 3.2. Due to the irreparable defects in data acquisition,
two edged parts at the bottom of the lungs are clipped. In order to guarantee the
performance of the SDM, the eight subjects are not considered in the training process,

but left aside as unknown subjects for future testing.

Figure 3.2 Two pairs of lung shapes in the database. (a) The edged parts at the bottom of the
lungs (marked by a red circle) are clipped in the raw CT scans. (b) Completed lungs in the raw
CT scans.

3.3.2 Normality Test

It is known that PCA is applicable only when the data for modelling are normally
distributed [70]. In this part, a normality test is performed in 24 pairs of completed
lungs, and the results are presented in a normal probability plot (NPP). NPP is widely

used as an informal graphical technique to evaluate the normality of a dataset. It
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presents a graph for the ordered observations from a dataset against the corresponding
percentages from the normal distribution. Generally speaking, the distribution of
sample data is approximately regarded as the normal distribution provided that the
points form a fairly straight line. Departures from the line indicate the departures from
normality. A more strict method to assess the near linearity of the plot is to calculate
“correlation coefficient” for the ordered observations, which is equivalent to a formal
Gaussianity test such as Shapiro-Wilk test. Here, Matlab built-in function ‘normplot’ is
employed to plot the NPP. The NPPs of values for 24 As corresponding to the eight
largest eigenvalues along the X, Y and Z directions are illustrated in Figure 3.3(a-c)
respectively. It can be observed that most of data are located in the vicinity of the
straight line, apart from some outliers deviating from the line pattern. It is therefore
concluded that the variances of the prior shapes follow the normal distribution and they

are applicable to PCA modelling.

Here, 24 out of the 32 lung shapes are employed to train the SDM whereas the number
of eigenmodes used for the SDM is determined by a ratio of the sum of the first K
largest eigenvalues to the sum of all the eigenvalues. Provided that the cumulative ratio
reaches up to 0.9-0.98, K can be regarded as the number of dominant eigenmodes (NoOE)
for the SDM [71]. As depicted in Figure 3.4, due to independent calculations along X,
Y and Z directions, it is straightforward to observe the difference in these three
subfigures. The choice of K needs to satisfy the aforementioned criterion on all three
components. Since the cumulative ratios of five eigenvalues along three directions are
all above 0.98, it is demonstrated that five or more eigenmodes are adequate to model

the deformable field.
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Figure 3.3 Normal probability plots of the first eight values of 24 s corresponding to the eight
largest eigenvalues. (2)NPP of the first eight values of 24 4s along the X direction. (b)NPP of
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the first eight values of 24 As along the Y direction. (C)NPP of the first eight values of 24 4s
along the Z direction.
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Figure 3.4 Cumulative ratios for 23 eigenvalues along three directions.

3.3.3 Transform to Reference Domain

The training work starts with similarity registration to a target prior shape. Therefore,
the established SDM is only applicable to the domain of the target prior shape, which
is defined as a reference domain here. Before any SDM-based registration, the unknown
target and source images, namely the testing images here, are required to be transformed
to the reference domain [61]. The transformation parameters can be computed by

similarity registration from any testing image to the target prior shape.
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3.4 Experimental Results and Discussion

In this section, the proposed parameter-reduced algorithm is validated using lung
shapes and single-modality images. The following experiments are divided into two
parts. Firstly, the proposed framework and a non-learning method are tested using
synthetic defective lung shapes for comparison. Visual inspection is employed to
evaluate their performance [72]. Secondly, two SPECT images are used to test two
learning-based techniques. Normalised inner product (NIP) is employed for similarity

measurement.

3.4.1 Lung Shape Registration

The experiments are performed over eight unknown subjects using a leave-one-out
method. Before registration, one lung shape is chosen as the target, from which one of
the lobes is manually removed. As shown in Figure 3.5, the right lower lobe of the
target shape is removed. The aim is to align the remaining source lung shape to the
defective target lung shape using NiftyReg and the method proposed here. As a widely

used non-rigid registration method proposed in [73], the code for NiftyReg is freely

Figure 3.5 The right lower lobe (highlighted in red) is removed from the target lung shape
(shown in yellow) to create a synthetic defective lung shape (shown on the right).
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available. Compared with the proposed method, NiftyReg does not employ prior
knowledge to constrain the unreasonable deformations. In the following experiments,
NiftyReg is configured using its defaults. The graphical results are illustrated in Figure

3.6. All the lung shapes in this section are shown in posterior view.

Figure 3.6 Lung shapes are shown in yellow for the target and blue for the source. (a) Initial
poses of two lung shapes. (b) Registration using the NiftyReg method. (c) Registration using
the proposed method with prior knowledge.

By visual inspection, it is obvious that the SDM-based method manages to constrain
excessive deformation. The lung shape is maintained during non-rigid registration.
Conversely, the NiftyReg method fails in this test, as it concentrates on minimising the
dissimilarity of the two shapes. In order to perform numerical comparisons, the right
lower lobe, which is removed from the target lungs before registration, is used to
calculate the lobar overlap after registration. The numerical results with respect to the
mean lobar overlap of seven tests are listed in Table 3.1. The overlap achieved by the
method proposed here is approximately three times higher than that of the NiftyReg
method, which demonstrates that the proposed method can prevent excessive

deformation and maintain a relatively reasonable lung shape during alignment.
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Table 3.1 Average lobar overlap evaluation for eight test subjects using two methods.

SuB.1 SuB.2 SUB.3 SuUB4 SUBS5 SUB.6 SUB.7 SUB.8

NiftyReg | 0.1925 0.1949 0.1127 0.1760 0.1342 0.1207 0.1292 0.1350

Proposed | 0.5613 0.5505 0.3353 0.5059 0.3882 0.3305 0.4414 0.3946

3.4.2 Single-modality Image Registration

In this section, two perfusion SPECT images are employed to validate two learning-
based methods. The coronal-view slices of two subjects are displayed in Figure 3.7.
Compared with a healthy subject (Figure 3.7(a)), it is straightforward to observe the
reduced uptake region corresponding to the location of a lesion in Figure 3.7(b), which
is a good example to test the performance of learning-based methods. The defective
and the normal perfusion SPECT scans are regarded as the target and source images

respectively for the following registration.

0 50 100

a

150 150

0 50 100
b
Figure 3.7 Perfusion SPECT scans of healthy and a moderate COPD subjects. The light blue
curves denote the actual lung shape boundaries. (a) SPECT image of the healthy subject. The
intensities inside the lung region are bright and relatively uniform. (b) SPECT image of the

COPD subject. The intensities in the right upper lung are relatively low because the tissue at
this location is not active, resulting in reduced uptake of the radio-isotope.
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The method proposed in [59] is used as a reference method for comparison, named Ref
here. The main framework proposed by Ref is stated in Eq. (3.9), where the statistical
term is added into the cost function together with the similarity metric and smoothing
term. Gradient descent is employed to optimise the deformation. In Eq. (3.9) the
parameter « is empirically assigned a moderate value (i.e. 0.5) in both the Ref and
proposed methods. Also, it is necessary to mention that 8 influences the trend of the

convergence curve significantly, as shown in Figure 3.8 (a). It is apparent that the
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Figure 3.8 (a) Convergence curves of the reference method with various § and the proposed
method (in black). NoE=22 (b) Convergence curves of the proposed method with various NoE.
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method proposed here converges faster than the Ref method. As the degree of freedom
of deformation is dependent on NoE, more displacement flexibility can be obtained
with the increase of NoE, which contributes to superior registration accuracy (i.e. lower

SSD), as shown in Figure 3.8 (b).

As B varies greatly with different images, the optimal S is not expected to be
investigated here. As illustrated in Table 3.2, the SSDs at convergence for the Ref
method with g ranging from 0.6 to 0.9 are sampled. These £ values produce SSDs that
can be compared with the method proposed here. In the case that the two methods
achieve the same SSD, the NIP, specified in Eq. (2.28), is employed to evaluate the
registration accuracy. It is straightforward to observe that the NIP obtained by the
method proposed here is always higher than that achieved by the Ref method. The
experimental results demonstrate that the method is more flexible during deformation

and therefore obtains superior alignment accuracy.

Table 3.2 Evaluation of registration accuracy using the reference method, with £ ranging from
0.6 to 0.9, and the proposed method.

B SSD at convergence NIP (Ref) NIP (Proposed)
0.6 2765 0.8489 0.8509
0.65 2833 0.8487 0.8523
0.7 2894 0.8492 0.8521
0.75 2949 0.8497 0.8527
0.8 2999 0.8502 0.8532
0.85 3044 0.8505 0.8537
0.9 3086 0.8510 0.8540
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3.5 Conclusions and Future Work

A non-rigid registration method based on SDM is exploited in this chapter. In order to
overcome the shortcomings in previous work, a novel parameter-reduced registration
method is proposed. In the new cost function, the SDM is encapsulated into the
similarity metric and the smoothing term, which avoids using the empirically chosen
weighting parameter for the statistical term. The proposed framework is validated to be
capable of preventing excessive deformation and of regularising the deformation
reasonably for registration of defective images. The experimental results demonstrate
that the proposed framework outperforms a similar state-of-the-art method in terms of

the convergence rate and registration accuracy.

The method proposed here intends to solve the problem of single-modality image
registration. It will be extended for multi-modality image fusion in Chapter 5. In the
future, with more prior shapes added into the training set, the SDM will be established
with more structural information and will obtain more flexibility to achieve higher

performance.
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Chapter 4

Synthetic Data Collection

4.1 Introduction

Experimental data are very important for validating the performance of the proposed
method. In fact, the lung SPECT scans provided by Southampton General Hospital
were acquired without ground-truth boundaries for the lung region. An advanced
software is therefore employed to synthesise the perfect intra-patient data for later use.
In addition, apart from the result-oriented evaluation methods, such as the M1 of the
aligned images and the overlap of the aligned regions of interest (ROIs), which have
been frequently used before, the process-oriented evaluation, such as the distance to the

ground-truth displacement, is also a gold-standard to validate non-rigid registration.

4D extended cardiac-torso (XCAT) phantom was initially developed to provide
simulated human anatomy using non-uniform rational B-spline (NURBS) [74]. XCAT
was originally named NCAT and created for nuclear medicine research, especially for
SPECT and positron emission tomography (PET). It was then extended to the latest
version, XCAT, for high-resolution anatomical imaging and advanced simulation of
cardiac and respiratory motions, which are close to the scenario of real patients. The
XCAT program is designed to produce different outputs in five different modes.
According to the specific research purpose, modes 0 and 4 are used to generate body
phantom data and the vector displacement (VD) of each voxel on the phantom

respectively.

In mode 0, the software is capable of synthesising two physical models: a three-

dimensional attenuation phantom with the distribution of attenuation coefficients for a
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configured photon energy and a three-dimensional activity phantom with the
distribution of emission radionuclide activity for the various organs. Each of these
models is imaged by a voxelised phantom matrix with a customised resolution. As the
phantom is mathematically defined, no error is introduced even though the phantom is
generated at any resolution. The phantom data are stored in raw 32-bit floating point
binary files (little endian) with no header. The voxelised phantom can be used in
conjunction with analytical or Monte Carlo-based models of the imaging process to

synthesise transmission (e.g. X-ray, CT) and emission (e.g. SPECT, PET) imaging data.

In mode 4, the output vectors are constructed by the actual sampled points from the
phantom objects and interpolated vectors from these sampled points. The interpolated
vectors are computed by averaging neighbouring vectors. By increasing the number of

actual sampled points, the accuracy of the vector output is improved accordingly.

XCAT runs with a parameter file which is used to configure the synthesis process. In
order to properly initialise the input distribution, the radionuclide multimodality
dosimetry package (RMDP) is employed here in cooperation with XCAT. RMDP is
intended to model the patient distribution using the International Commission on
Radiological Protection lung model, which is used to calculate the absorbed dose in
each lung per decay of radionuclide. In addition, RMDP offers an interactive window
to add lesions and tumours to the phantom to simulate patients’ SPECT imaging. Also,
phantom reconstruction is conducted by RMDP to obtain synthetic MSCT and SPECT

Scans.

In this chapter, the procedure for constructing synthetic data is reported. It specifies the
operating modes of XCAT, the configuration of simulated scanning parameters and the
reconstruction of synthetic data using RMDP. Furthermore, it illustrates the method for

adding artificial defects to the lungs. The structure of this chapter is as follows: The
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modes of XCAT used in this chapter and the cooperation with RMDP are briefly
introduced in Section 4.1. The procedure for creating the synthetic phantom data using
XCAT and RMDRP is specified in Section 4.2. The interactive method to add defects to

the synthetic data is illustrated in Section 4.3. Conclusions finalise the chapter.

4.2 Phantom Data Processing
4.2.1 Phantom and VD Generation

Before data construction, the breathing cycle is configured over five seconds, starting
from maximum inspiration. The attenuation and activity phantoms are sampled with
eight frames within one breathing cycle at even intervals, as shown in Figure 4.1. Since
each XCAT simulation can only generate one type of activity phantom (synthetic V or
Q), two simulations are performed to obtain the raw activity phantoms for synthetic V
and Q data. In other words, the parameter files need to be separately configured twice
by RMDP according to user-defined simulated scanning parameters, as listed in Table

4.1.

3000 \ |

Frame 1

2800

Frame 3 Frame 7

Air volume(ml)
N
[e)}
o
o

2400

2200 | | | | | 1
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Figure 4.1 XCAT phantoms are sampled with eight frames within one breathing cycle.
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Table 4.1 User-defined simulated scanning parameters for RMDP.

Synthetic V Synthetic Q
Ventilation activity (MBQq) 50 0
Perfusion activity (MBQq) 0 200
Injection time (min) 0 0
Scan time (min) 10 10
No. of projections 120 120
Seconds per view 100 100
Carrzi:; /sl\e/lnésg)lwty 120 120

The main differences between the two RMDP configuration parameter files are listed
in Table 4.2. It is straightforward to observe that the “lung activity” parameters for
synthetic V and Q are the same. In fact, as the lung activity imaging for ventilation
SPECT is based on the detection of gamma-ray photons emitted from the airway tree,
it is more reasonable to represent real lung activity by “airway tree activity” rather than
by “lung activity”. Nevertheless, the XCAT airway tree model fails to delineate the
terminal branches of the lung tree in detail, as shown in Figure 4.2. “Lung activity” is

therefore configured to compensate for the distortion in lung activity presentation.

VD is generated using another mode of XCAT. Each VD file reports the displacement
of each imaging voxel from the first frame to one of the subsequent frames. The ground-

truth displacement is referred for validation in the next chapter.
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Table 4.2 Organ activity parameters calculated by RMDP for XCAT phantom generation.

Synthetic V Synthetic Q
Body activity 0.0159945 0.0586195
Liver activity 0.0186639 0.312084
Gall bladder activity 0.000000 0.312084
Lung activity 0.435841 0.435841
Stomach wall activity 0.0213334 0.000000

Kidney activity 0.156287 0.000704156
Airway tree activity 0.321665 0.000000

Figure 4.2 XCAT lung tree model (template) used to generate phantoms. The terminal branches
of the lung tree (i.e. bronchus) are rarely displayed, which results in the fact that the ventilation
activity phantom has to be compensated by ‘lung activity’.
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4.2.2 Phantom Post-processing
4.2.2.1 Synthetic MSCT scans

The attenuation phantom created by XCAT closely resembles the MSCT scan, but it is
noise-free, as depicted in Figure 4.3(a). It is reported in [75] that the actual noise
characteristics of CT obey the Poisson distribution, where the rate parameter varies with
different CT scanners. Here, the Poisson distribution parameter is estimated according
to the forthcoming MSCT scans. As shown in Figure 4.4, a part of the background is
sampled from each MSCT scan. Assuming the mean noise histogram of all MSCT scans
obeys the Poisson distribution, the rate parameter is calculated to be 0.0058

(normalised), which is adopted to add noise to the ‘perfect’ attenuation phantoms.

)

Figure 4.3 Synthetic MSCT data. (a) Synthetic attenuation phantom. (b) Synthetic MSCT data
after segmentation, down-sampling and transforming to the reference domain.

b

In order to enhance the performance of image registration, it is necessary to roughly
segment the ROI first of all. As shown in Figure 4.3(a), a normal MSCT scan always
contains irrelevant grey-scale information outside the lung region which needs to be
removed. The method proposed in [76] can be employed for automatic lung

segmentation. Furthermore, the segmented MSCT scans need to be down-sampled to
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the same resolution (128 x 128 x 128) as the SPECT scans. One coronal-view slice

with Poisson noise after transforming to the reference domain is shown in Figure 4.3(b).

Number of voxels
N

—_

0
0 0.005 0.01 0.015 0.02 0.025
Normalised greyscale

Figure 4.4 Flow chart for determination of the Poisson distribution parameter. A part of the
background is sampled followed by the parameter estimation from the histogram. The red curve
indicates the fitted curve of the Poisson distribution.
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4.2.2.2 Synthetic SPECT scans

The activity phantom created by XCAT presents a perfect distribution of activity. As
shown in Figure 4.5(a) and (b), the activity is uniformly distributed in each organ. The
RMDP is used to post-process the raw data [77]. This dosimetry package incorporates
a toolkit to simulate realistic gamma camera image data, derived from this ‘perfect’
input. Clinically realistic count-rates and system sensitivities are used to apply noise
distributions, along with modelling of photon transport, truncation and limited angular
sampling of the imaging system. As shown in Table 4.1, the raw phantom is imaged in
120 projections over 360 degrees of rotation, which resembles the actual functional
imaging data acquired by two cameras over 60 phases. Then, the applicable real three-
dimensional synthetic data (functional imaging matrices) need to be reconstructed from
the 120 projections. The reconstructed SPECT images (including Poisson noise) are

displayed in Figure 4.5(c) and (d).

Even though the boundaries of the lungs in SPECT imaging are very blurred, the
properties of VV and Q imaging make the minority of active organs visible (e.g. kidney
and trachea in SPECT V and liver in SPECT Q), which greatly decreases the difficulty
of segmentation. Coarsely segmented SPECT scans after transforming to the reference

domain are shown in Figure 4.6.

4.3 Artificial Defects

The V and Q of a patient with moderate COPD may demonstrate photopenic regions,
corresponding to reduced activity, and hence lower ventilation or perfusion, at the
location of lesion, as shown in Figure 4.7. These abnormal SPECT images increase the

challenge of alignment.
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In order to effectively validate the performance of various methods in the next chapter,
RMDP is employed to interactively add defects to the obtained phantoms. Here, the
‘cold defect’ is chosen to add a photopenic region to synthetic V and Q. As shown in
Figure 4.8, the torso transmission scans are displayed by three views. By adjusting the
panels on the top, it is straightforward to set the locations of defects. Also, the size and
activity of the synthetic lesion can be customised by dragging the scroll bars. Synthetic

SPECT V and Q with defects are depicted in Figure 4.9.

c d

Figure 4.5 (a) Raw activity phantom for synthetic SPECT V. (b) Raw activity phantom for
synthetic SPECT Q. (c) Reconstructed SPECT V image. (d) Reconstructed SPECT Q image.
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a b

Figure 4.6 Segmented results from synthetic SPECT data. (a) Segmented synthetic SPECT V.
(b) Segmented synthetic SPECT Q.

b

Figure 4.7 Abnormal SPECT V and Q images from a moderate COPD patient. The yellow
contours show the boundaries of the lungs. A photopenic region (pointed out by the blue arrow)
indicates the location of the lesion. (a) Defective SPECT V image. (b) Defective SPECT Q
image.
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Figure 4.8 RMDP interactive window is used to add defects to the phantoms.

Figure 4.9 Abnormal synthetic SPECT V and Q images. The yellow contours show the
boundaries of the lungs. A photopenic region (pointed out by the blue arrow) indicates the
location of the defects. (a) Defective SPECT V image. (b) Defective SPECT Q image.

4.4 Conclusions

In order to enrich the experimental data and validation methods, XCAT and RMDP are
employed here to synthesise the lung MSCT and SPECT scans and acquire the ground-
truth motion vector. By dividing one breathing cycle into eight frames, the intra-patient
respiratory pattern is represented by eight phantoms using XCAT. RMDP manages to
configure the parameter file, as well as convert the emission phantoms to synthetic data

with ‘tumour’ information at a customised location. As XCAT data were used in
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previous articles in aid of research into medical image processing algorithms, it is
reasonable to assume that the obtained data can accommodate the needs of validation

for the registration algorithms in this thesis.
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Chapter 5

Multi-modality Image Fusion Using Prior Shapes

5.1 Introduction

As multi-modality lung imaging is able to provide complementary physiological and
pathophysiological information, the alignment of modalities plays an important role in
clinical applications [78]. In order to develop the performance of multi-modality
registration, recent research articles have concentrated on the analysis of structural
information and similarity metrics. A structural representation is developed in [79]
using a modified accelerated segment test algorithm. The improved structural
representation is considered as another channel in the cost function. Similarly, the
method proposed in [80] is based on the spiking cortical model and SSD is used to
evaluate the similarity of the structural descriptors extracted from multi-modality
images. A traditional deformation estimation method (e.g. free-form deformation) in
conjunction with a global optimisation method (e.g. M1) is argued for in [81]. Since the
global optimisation fails to precisely guide the local deformation, the hierarchical
solution is employed in [81] together with a feature-learning method, which maps the
feature representations from the original feature space to a common space. In terms of
the similarity metrics, Log-Euclidean and self-similarity metrics are proposed in [82]
and [83] respectively. The Log-Euclidean metric is an inversion invariant and similarity
invariant metric, and is incorporated into a Gaussian-like penalty function. The self-
similarity metric is also based on structural information extracted from the images to

be aligned.
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M1 has been demonstrated to be the best criterion for multi-modality image registration
[84]. It was firstly proposed in [85], and then developed with a fluid model [86]. M1 is
widely used in medical image registration [14] [87] [88]. However, the disadvantages
of Ml are reported in [51], which argues that M1 is dependent on the overlap of the two
images and then proposes a modified metric, known as normalised mutual information.
Furthermore, weighted mutual information, created with normalised pointwise mutual
information and prior knowledge, is investigated in [89] to improve registration
accuracy and stability. The latest MI-based multi-modality research can be found in [90]
and [91]. In [90], it is argued that normal MI is insensitive to the image with local
variations, and the useful spatial information is rarely captured to aid registration. A
Harris corner detection-inspired algorithm is therefore studied to analyse the
contributions made by each voxel’s intensity to the joint probability density function.
It is proven that with the method proposed in [90] the alignment performance is boosted,
and it can be applied to image-guided surgery. Similarly, the structural features and
spatial neighbourhood information are incorporated into feature neighbourhood mutual

information to perform accurate registration for clinical diagnosis [91].

In recent publications, very few algorithms concentrate on pulmonary multi-modality
image registration, or intend to enhance multi-modality registration using prior
knowledge. In this chapter, the parameter-reduced SDM framework reported in Chapter
3 is extended for multi-modality registration. Instead of using SSD for the evaluation
of single-modality alignment, MI as a similarity metric, in conjunction with gradient
descent optimization, constitutes the framework for multi-modality registration. The
experiments are performed using the actual lung database and synthetic phantoms, and

the results are evaluated with various metrics.
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The contributions of this chapter are as follows: Firstly, a multi-channel registration
method is proposed to improve the performance of lung anatomical and functional
imaging alignment. It conducts a direct MSCT/SPECT registration, which is
independent of any aided features and landmarks. Secondly, the cost function for multi-
modality registration is upgraded based on the framework stated in Chapter 3. The
parameter-reduced model for multi-modality fusion avoids unnecessary analysis for a
weighting parameter and properly regularises the displacement based on the SDM.
Thirdly, the synthetic imaging data and the ground-truth VD offered by the 4D extended
cardiac-torso phantom together with RMDP are employed to validate the registration

methods.

This chapter is structured as follows: The multi-channel registration algorithm is
mathematically derived in Section 5.2. Evaluation methods are introduced in Section
5.3, followed by the implementation issues noted in Section 5.4. The experimental
results are compared with other state-of-the-art algorithms in Section 5.5 with in-depth

discussion. Conclusions are finally written in Section 5.6.

5.2 Methodology
5.2.1 Multi-modality Image Alignment

In this part, Ml is employed to measure the similarity and to derive the solution for
multi-modality image alignment. If I;,,-(x) and I,,.(x + w) are used to represent the

target and registered source images, their MI can be calculated as

,b
MI = En(legr ) + Enllsr) = En(lear , lsve) = Jf p(a, b) log L5 da db (5.1)

where a and b are the greyscale values of I;,,-(x) and Ig..(x + u) respectively. The

inverse M1 is regarded as the similarity term and is denoted as
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,b
Eyi = — [[ p(a,b) log 22 da db (5.2)

In order to investigate the optimal displacement u which minimises E,;, the derivative

with respect to u is calculated as

O0E (a,b)
P = —ff 2 (p(a,b)logpfa;‘p(b))dadb (5.3)

After further investigation,

9Emr _ dp(a,b) p(ab) \ _plab) ap(b)
au 'U( u (1 +logp(a)p(b)) p(b) ou )da db (5'4)

Since

p(a,b) 9p(b) Ip(ab)da ap) ;. 9 [pb)db _
ff ( p(b) ou )d db = f p(b) ou db = ou =0 (5'5)

Eq. (5.4) can be simplified as,

9Emr _ _ (r9pab) p(a,b)
P - L (1 +log £ (b)) da db (5.6)

where the joint probability distribution p(a, b) can be described by a function of
ltqr(x) and I (x + u) using kernel density estimation (KDE) in Eq. (5.7). Compared
with histogram estimation, KDE addresses the concern that the estimation is

significantly influenced by the bin size.

p(a’ b) — 1 J‘K (a_ltar(x) ) b—Isrc(x+u)) dx (57)

Votarosrc Otar Osrc

The coefficient V is the volume of the image (i.e. the number of total voxels in I,,, or
Isrc)- Orqr @Nd o5, are the kernel widths of I;,, and I, respectively. Their optimal
values can be computed through the modified rule-of-thumb estimator [92], which is

described as

o = 1.06 X min (6(1),1(1”;2)) x V=02 (5.8)

78



where & (+) is the estimated standard deviation and IQR(-) is the interquartile range.

Here a Gaussian kernel is chosen to estimate the distribution and the kernel function

K (+) is denoted as
K(A,B) = —exp (— ~ (4% + BZ)) (5.9)

The derivative of p with respect to u is then obtained as

a_z —c-[K (a—ltw(x)’b—lsrc(xm)) , (_ b—z_(x+u)) _ (_ w) dx (5.10)

2
0 Otar Osrc Osrc ou

c=—21 (5.11)

VotarOsrc

By inserting Eq. (5.10) into Eq. (5.6), it is straightforward to derive the following

equation:

9EmI _ c-[[[K (a_ltar(x),b_lsrc(x*'u)) ) (1 + log p(a,b) )da (Isrc(x+u)—b) db -

ou Otar Osrc p(a)p(b) Osrc?

(azsrg(fu)) dx (5.12)

Finally, w in Eq. (5.12) is replaced by S(4) which is specified in Eq. (3.15)-Eq. (3.17),

and Eq. (3.24) is then upgraded for multi-modality registration as follows:

0E() _ a((1-a)Epm(S)+aR(S)) 95
ar as 9

(5.13)

5.2.2 Multi-channel Image Alignment

As different radio-isotopes (Kr-81 for ventilation and Tc-99m for perfusion) can emit
gamma-rays at different energies, the signals from each isotope are separated at the
receiver. In other words, SPECT V and Q can be acquired at the same time, and the two
sets of imaging data are treated as being aligned automatically. Furthermore, two

channels can contribute complimentary information in the case of impaired V or Q.
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In this chapter, the multi-channel method is used to conduct registration between one
down-sampled MSCT scan and two SPECT images simultaneously. The multi-channel
cost function, Ey, derived by multivariate Ml for three objects (MSCT, V and Q) can

be simplified by the addition of two independent cost functions, E, and Ej:

Evo = (1 = )[E/(SD) + Eo(S(D)] + aR(S(A)) (5.14)

where Ey, and E, denote two Ml-based similarity terms for MSCT/V and MSCT/Q

alignments respectively. The solution for the multi-channel method is therefore written

in Eq. (5.15):

o8 _ 0((-a)[By($)+Eq()]+aR()) as)
YR as aa

(5.15)

5.3 Evaluation of Registration Accuracy
5.3.1 Mask Overlap Metric

Based on accurate segmentation of the ROI, the mask overlap is widely used for
registration evaluation. The mask of the source image, ¢.,.(x), is warped according to
the deformation computed. The registration similarity can be measured by the
normalised inner product (NIP) between the mask of the target image, ¢.4,(x), and the
warped mask of the source image, ¢.,.(x). The calculation of NIP is the same as that

of E;p in Eq. (2.28).

5.3.2 Vector Displacement Metric

VD is used to evaluate the performance by considering the voxel-wise displacement
[93]. In comparison with the mask overlap metric, it provides a more precise metric for
evaluation. Given the ground-truth displacement T, the mean displacement error (MDE)

is calculated as
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JIl T—ulldx
14

MDE = (5.16)

5.4 Implementation Issues

Considering the differences between MSCT and SPECT imaging, it is advisable to
reduce their divergence by histogram matching. As shown in Figure 5.1, the histogram

of the down-sampled MSCT scan is modified to match that of the target SPECT scan.

The actual MSCT and SPECT images are originally formatted as 16-bit unsigned
integers. The maximum greyscale value of MSCT within the lung is around 324 (i.e.
typical lung attenuation values are around -700 HU, and the lowest attenuation (that of
air) has a value of -1024 HU) and that of SPECT is 200-300. However, employing
hundreds of greyscales to calculate MI is computationally expensive and can rarely
produce a tremendous improvement. Therefore, the greyscale ranges of MSCT and
SPECT data are scaled to [0,50] in practice. Furthermore, the synthetic MSCT
represented by the normalised attenuation map also requires to be up-scaled for the

computation of MI.

The state-of-the-art method published in [59] is referred to here and named as Ref for
convenience. Since the optimal weighting parameter 8 varies across different scenarios,
it should be investigated before starting the following experiments. Here the optimal g
is retrieved using the overlap metric. In other words, g is assigned a series of possible
values within a possible range to conduct CT/SPECT registration. The value
corresponding to the maximum overlap at convergence is adopted for 8. In addition,
since the parameter « is irremovable in both Ref and the proposed methods and it varies
with different cases, it is empirically assigned the same value (i.e. 0.5) for both methods

in order to make the influence of a equivalent to these two methods.
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Figure 5.1 Histogram matching before non-rigid registration. (a-b) One coronal-view slice of
SPECT V imaging and the corresponding lung region histogram. (c-d) One coronal-view slice
of down-sampled MSCT imaging and the corresponding lung region histogram. (e-f) One
coronal-view slice of matched down-sampled MSCT imaging and the corresponding lung

region histogram.
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In order to avoid local minimum issues associated with gradient descent and to
accelerate convergence, the multi-resolution technique is employed here. At the
coarsest-scale (lowest-resolution), with irrelevant local minima disappearing local
minimum problems can be effectively overcome. Using low-resolution prior to finer
scales helps achieve the global optimum [94]. The three resolutions applied here are
32 X 32 X 32,64 X 64 X 64 and 128 x 128 x 128. The deformations obtained from
the lower resolution were up-scaled by cubic-spline interpolation and then regarded as
the initial deformations for higher-resolution computation. The number of iterations is

pre-set, and the calculation is terminated when they finish.

5.5 Experimental Results and Discussions
5.5.1 Multi-channel Registration Using Medical Imaging Data

In this section, real lung imaging data are employed to validate the accuracy and
stability of single-channel and multi-channel registration methods. As introduced
before, each subject in the lung database is comprised of MSCT scans, a pair of SPECT
(V and Q) scans and low-dose CT scans. SPECT and low-dose CT scans are acquired
by a hybrid CT/SPECT scanner, and it is therefore assumed that SPECT and low-dose
CT scans have been registered originally. The lung mask of the low-dose CT is
segmented manually by clinical experts and regarded as the ground-truth mask for
corresponding SPECT V and Q images. The ground-truth lung mask of the MSCT is

segmented by the Apollo software (Vida Diagnostics Inc, lowa, USA).

As stated in Section 3.3.1, eight clipped subjects are chosen as testing data. Moreover,
the remaining three moderate COPD subjects in database (Case 1, Case 28 and Case
30) are also used for test. The remaining 21 subjects are employed to train the SDM. In
the following experiments, each testing subject’s V/Q is set as the target, to which the

11 down-sampled MSCT scans register individually (i.e. MSCT-V, MSCT-Q) and
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simultaneously (i.e. MSCT-V&Q). Therefore, the tests are divided in two groups: intra-
patient registration and inter-subject registration (namely cross-validation), as shown
in Figure 5.2. The total number for V-MSCT, Q-MSCT and V&Q-MSCT alignment

tests is 363.

Subject 1 Subject 2 Subject 11

Target
image(s)

\I/ AU/ \\/

Source MSCT MSCT secee MSCT

image B
g Subject 1 Subject 2 Subject 11
a
Subject 2 Subject 3 Subject 11
Target cceee
image(s)

\I/ AL/ \|/

Source MSCT MSCT cecoe MSCT

image ) . .
Subject 1 Subject 1 Subject 1

b
Figure 5.2 Experimental design with medical imaging data. (a) Diagram of intra-patient

registration. (b) Diagram of inter-subject registration using Subject 1 as an example.

Apart from the Ref method and the method proposed here, NiftyReg presented in [73]
is also used for comparison. In single-channel experiments, NiftyReg is properly
configured to achieve the best performance. Nevertheless, since NiftyReg cannot

perform multi-channel registration, it is not applied to multi-channel simulation.

The intra-patient and inter-subject registration results measured by NIP and average
NIP respectively are displayed in Figure 5.3. The average NIP is calculated using the
NIPs obtained from the tests with the same target image. In terms of intra-patient

registration, since the SDM is employed to constrain the excessive deformation, the Ref
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and proposed method apparently outperform NiftyReg in single-channel tests.
Compared with the Ref method, the proposed algorithm achieves improved accuracy
in both single-channel and multi-channel tests. In terms of the cross-validation, due to
a relatively large difference between the target and source images, two learning-based
methods’ performances slightly decrease under the influence of the regularised
deformation. Nevertheless, the superior average NIPs are still obtained by the method
proposed here. It is demonstrated that the proposed method manages not only to
constrain the excessive deformation but also to provide a desired solution to general

registration problems.

For a moderate COPD patient, due to a defective region in the lung imaging, a non-
learning method such as NiftyReg inevitably regarded it as background and performed
excessive deformations. The intra-patient registration results (for Case 15) using three
single-channel (MSCT-Q) methods are exemplified in Figure 5.4(a), (c) and (e). The
Ref and the proposed methods manage to constrain the deformations and achieve
relatively reasonable results. However, as argued in Section 3.2.2, the Ref method tends
to penalise any displacement, and thereby sacrifices flexibility. The drawbacks are
illustrated by quivers in Figure 5.4(c). Certain horizontal displacements in the middle
part of the right lung can be detected, whereas lesser deformations are expected since

the target and source images at this location were almost aligned in their initial poses.

The deformations are then used to map the lobes segmented from the MSCT scans onto
the SPECT imaging. The fusion results are depicted in Figure 5.4(b), (d) and (f) for
NiftyReg, Ref and the proposed method respectively. Through visual inspection, it is
straightforward to observe the excessive deformation caused by NiftyReg and the
unreasonable displacement caused by the Ref method. The advantages of the method

proposed here are once again demonstrated by lobar lung fusion.
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Figure 5.3 Single-/multi-channel intra-patient/inter-subject registration results are evaluated
by NIP (left column) and average NIP (right column).
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Figure 5.4 Single-channel registration results from the NiftyReg (Row 1), Ref (Row 2) and
proposed (Row 3) methods. Blue contours indicate the ground-truth boundaries of the lung
region in the SPECT scan (target). (a,c,e) Coronal view: yellow and red contours represent the
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boundaries of the lung region in an MSCT scan (source) before and after deformation
respectively. (b,d,f) Sagittal view: yellow and red contours represent the boundaries of the lung
region before deformation and the lung lobes after deformation respectively.

The numerical results for all tests are summarized by the average NIPs and standard
deviations in Table 5.1. Compared with Ref, the proposed method provides more
flexibility in non-rigid registration, which contributes to the improvement of cross-
validation accuracy by up to 4.1% and 1.9% for the single-channel and multi-channel
techniques. Due to the more rigorous threshold to constrain the displacement, the
alignment stability of the proposed multi-channel method is enhanced by up to 28%.
What is more important is that the multi-channel techniques using Ref and the proposed
algorithm are able to obtain the improved alignment accuracy by up to 2.2% and 1%

respectively, in comparison with either V/CT or Q/CT single-channel registration.

Table 5.1 The average NIP of single-channel and multi-channel registration obtained by
different methods are presented as meanzstandard deviation.

NiftyReg Ref Proposed

VICT 0.80940.024 0.83940.027 0.86240.020

Intra-
patient Q/CT 0.78140.031 0.83940.027 0.86840.019
V&QICT N/A 0.85740.023 0.87040.023
VICT 0.80640.022 0.80940.050 0.83540.035

Cross-
validation Q/CT 0.76240.029 0.80740.054 0.84040.033
V&QI/CT N/A 0.82540.047 0.84140.034

5.5.2 Multi-modality Registration Using Synthetic Data

As stated before, eight-frame phantoms are sampled in one breathing cycle. The MSCT

(source image) at the first frame is intended to register the SPECT V and Q (target
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images) at each remaining frame using the multi-channel technique. In order to increase
the difficulty of registration, three test modes in terms of defective SPECT scans are

implemented separately. The three combinations of SPECT images are arranged as:

Mode 1: abnormal SPECT V (Figure 4.9(a)) and complete Q (Figure 4.6(b)),
Mode 2: complete SPECT V (Figure 4.6(a)) and abnormal Q (Figure 4.9(b)),

Mode 3: abnormal SPECT V (Figure 4.9(a))) and abnormal Q (Figure 4.9(b)).

Seven alignment tests are conducted for each mode, and the experimental results are
evaluated with mean displacement error (MDE in Eq. 5.12) and normalised inner
product (NIP). In this section, Ref and the proposed method are compared in terms of

registration accuracy and stability.

The experimental results with respect to the three test modes are depicted in
Figure 5.5. The average of MDE and NIP numerically demonstrate the superior
registration performance achieved by the proposed method in these three test modes, as
it obtains lower MDE and higher NIP. In terms of MDE, the algorithm proposed here
decreases the average errors by up to 21%, 18% and 15% for modes 1, 2 and 3
respectively since the new cost function allows more flexibility in deformation. The
standard deviation of the registration results demonstrates that the stability of the
proposed method is improved by up to 39% and 54% (measured by NIP when the
number of dominant eigenmodes is over 5) for modes 1 and 3. By considering the
standard errors in Figure 5.5, it is convincing that the proposed algorithm with a certain
number of dominant eigenmodes (NOE) manages to constantly achieve high accuracy

for the multi-modality image alignment work.
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Figure 5.5 Two algorithms with different NoEs are applied to three test modes. The registration
results are evaluated with MDE and NIP.

With the increase of NOE, the registration stability of the proposed method improves
accordingly, which is demonstrated by the standard deviations of MDE and NIP.

Conversely, the similar improvement achieved by the Ref method is rarely detected as
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this algorithm fails to provide an explicit boundary for deformations. The experiments
firmly demonstrate the flaws that the weighting parameter is weak in striking a desirable

balance between flexibility and boundary-finding in previous algorithms.

In addition, experimental results with respect to seven different target patterns (sampled
at frames 2 to 8 within one breathing cycle) are depicted in Figure 5.6. As illustrated in
Figure 4.1, the volumes of the lungs at frames 2 and 8 are the most similar to that at
frame 1, whilst the lungs have the largest deformations at frame 5. From the MDE
results shown in Figure 5.6, it is straightforward to notice that the method proposed
here manages to slightly enhance performance intest no. 1, 2, 6 and 7, whereas it greatly
outperforms the Ref method in test no. 4 and 5 (NoE=15 and 10). As clinical SPECT
imaging is acquired by tidal breathing, the actual MSCT/SPECT registration is more
likely to resemble test no. 4 or 5. Therefore, high performance of the proposed method
on large-deformation alignment indicates desirable results in practical application. Also,
the NIP results demonstrate that the method proposed here is superior in all registration

Cases.

Nevertheless, by comparing the average of MDE and NIP along each column of
Figure 5.5, it can be noted that the registration performance of the proposed framework
slightly decreases with the increment of NoE. As the SDM is trained from the lung
shapes extracted from different patients at the state of maximum inspiration, the
shortcomings of this inter-subject model are manifested in intra-patient registration. In
other words, in the case where five dominant eigenmodes are adequate to globally
constrain the deformations, the extra eigenmodes regularised by the inter-subject model
may decrease the intra-patient registration accuracy. Nevertheless, comparing the three
sub-figures in the left column of Figure 5.6, it can be observed that the performance

gap between the two compared methods in test no. 4 and 5 is enlarged with more
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eigenmodes employed. Thus, the influence of the inter-subject SDM can be further
analysed. The MDE results in Figure 5.6 demonstrate that the negative influence on the
algorithm proposed here is more prominent for small-deformation alignment, and
considerably reduced for large-deformation registration. It is therefore convincing that,
in actual MSCT/SPECT alignment, the registration accuracy will be barely deteriorated
with more eigenmodes considered in the SDM, while a greater enhancement to

registration stability is obtained.
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Figure 5.6 (a,c,e) Registration results evaluated with MDE for different NoEs. (b,d,f)
Registration results evaluated with NIP for different NoEs. The results are the average of three
test modes.
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5.6 Conclusions

In this chapter, an innovative non-rigid registration method has been proposed for lung
MSCT/SPECT image alignment. The novel technique concentrates on the lung region
and conducts direct registration through two MSCT/SPECT channels simultaneously.
Furthermore, the cost function based on parameter-reduced SDM is extended with Ml
to address the concerns of multi-modality registration. The proposed framework is
validated to be capable of preventing excessive deformation for the registration

involved in the images with defects.

The method proposed here and two widely-used non-rigid registration methods are
tested using the lung database and synthetic phantoms. The numerical results evaluated
by NIP and MDE demonstrate that the multi-channel method is able to improve
registration accuracy and decrease variability in comparison with the single-channel
framework, as it can take more relevant information into consideration. The proposed
method with inter-subject prior knowledge outperforms other similar learning-based
and non-learning-based methods investigated here, in terms of inter-subject multi-
modality registration, and it is also demonstrated to achieve tremendous improvement
with respect to registration accuracy and stability for intra-patient alignment, even in
the case where the lung is scanned at a different state of inspiration. The desirable fusion
of lung lobes onto SPECT imaging is validated to be achievable by accurate

MSCT/SPECT alignment.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presents the research work on the topic of multi-modality image fusion for
the diagnosis and treatment of COPD. In order to provide a guiding tool for LVRS, a
novel multi-modality fusion method was studied and improved. At the beginning,
similarity registration was developed to pre-process the prior lung shapes, which are
then employed to train the SDM. A learning-based non-rigid registration method was
improved using a parameter-reduced function to avoid the adjustment of the weighting
parameter for the statistical term. The multi-channel registration method is proposed to
conduct direct MSCT/SPECT registration. The deformations are finally employed to

map the lobes onto the functional imaging for image fusion.

Compared with non-iterative methods, the iterative similarity registration algorithm
proposed in Chapter 2 achieves higher alignment accuracy and stability within a
reasonable time. Furthermore, the proposed method is independent of structural
correspondence but concentrates on the shape region (i.e. representing shapes using
CFs) to save the time and labour of feature extraction. The method proposed here strikes
a balance between performance and processing time, which significantly improves
efficiency and the scope of application. The proposed robust and high-performance
method manages not only to pre-process the prior lung shapes for subsequent use by
the SDM, but also to solve universal shape registration problems, even in the presence

of noise.
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A non-rigid registration technique was studied to achieve high alignment accuracy. In
terms of medical image registration, high similarity measured by SSD or Ml is not a
gold-standard due to underlying excessive deformations. In order to maintain structural
information through non-linear transformation, numerous learning-based methods were
proposed to address the concerns. Nevertheless, the introduction of the penalised term
inevitably leads to an extra-investigation of the corresponding weighting parameter.
This shortcoming is overcome thoroughly by means of the parameter-reduced
alignment technique proposed in Chapter 3. It was demonstrated that the parameter-
reduced SDM-based method can prevent excessive deformation and achieve superior

performance.

In order to enrich the experimental data and provide the ground-truth VD of each voxel
for the evaluation of registration, XCAT was employed to generate torso phantoms and
the displacement of each voxel. In fact, NCAT was considered initially as it is licence-
free. However, the VD created by NCAT is incorrect and relevant technical support is
no longer available. XCAT was therefore selected to accomplish the synthetic data
collection in Chapter 4. The parameter-reduced SDM technique was extended to tackle
the multi-modality registration problem based on Ml in Chapter 5. The multi-channel
method proposed here incorporates complimentary SPECT V/Q imaging information

into the cost function to effectively improve the registration accuracy and stability.

The intra-patient registration investigated in this thesis is expected to be regularised by
intra-patient prior knowledge. However, due to the limited number of prior shapes, the
inter-subject lung shapes were used to train the SDM. The lung shapes were
transformed using similarity registration to eliminate the influence of scale and initial
orientation. This PCA-based learning procedure is based on the assumption that the

variations of lungs are normally distributed. The fusion of lobes onto SPECT images
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demonstrated the reliability and validity of the proposed non-rigid registration method
using inter-subject knowledge. In summary, this thesis proposes a novel technique to
significantly improve the performance of the learning-based registration framework,
which is exemplified by the SDM here. Also, multi-modality image fusion lays a solid
foundation for lobar lung activity analysis, which can support the formulation of a

therapeutic schedule for the COPD patients.

6.2 Future Work

This thesis proposes an algorithm for accurate multi-modality image registration.
Considering the clinical application, the limitation of prior lung data for the SDM and
the limited research into functional imaging analysis, it is convincing to say that the

following three topics will be promising for future investigations.

In terms of clinical application, lung activity analysis is of vital importance, as it can be
used to guide LVRS in detail. The image fusion achieved by the method proposed in
this thesis is able to map lobe information (e.g. boundaries and fissures) onto SPECT
imaging. Automatic classification is expected to be conducted on the SPECT imaging
in each lung lobe to identify any lobes that need to be removed. Classification-based
diagnosis has become a popular technique in medical image analysis and saves

considerable time and efforts from radiologists and surgeons.

As discussed in Section 5.5.2, the SDM trained with inter-subject data cannot perfectly
regularise the intra-patient deformation. On one hand, the limited number of patients
negatively influences the generalisation of the diversity of lung shapes. On the other
hand, each subject only has one frame data within one breathing cycle (i.e. the frame at
maximum inspiration), which scarcely contributes to the statistical model of intra-

patient deformations. In order to improve the performance of prior knowledge-based

97



methods in the future, a respiratory model for intra-patient registration estimated by one

frame MSCT scan will need to be investigated.

In addition, as feature-based multi-modality registration methods have received lots of
attention recently, it is worthwhile to conduct research into the structural information
provided by functional imaging. In fact, none of the publications to date have
investigated the structural information probably extracted from SPECT imaging as
functional imaging is always low-resolution and obtained during tidal breathing.
However, there is the potential that structural information such as key points, texture
and intensity features may be obtained by a new functional imaging technique or

extracted by innovative algorithms.
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Appendix A

Case Index and Demographic Data

Table A-1: Case index of the low-dose CT masks used in Chapter 2.

Case Index | Subject ID | Patient State
Case 1l BRUCI 003 | Emphysema 2
Case 2 BRUCI 007 | Healthy Smoker
Case 3 BRUCI 008 | Healthy Smoker
Case 4 BRUCI 009 | Healthy

Case 5 BRUCI 014 | Healthy

Case 6 BRUCI 015 | Healthy

Case 7 BRUCI 016 | Healthy Smoker
Case 8 BRUCI 018 | Healthy

Case 9 BRUCI 020 | Healthy

Case 10 BRUCI 021 | Healthy Smoker
Case 11 BRUCI 022 | Emphysema 1
Case 12 BRUCI 024 | Healthy Smoker
Case 13 BRUCI 027 | Healthy Smoker
Case 14 BRUCI 028 | Emphysema 1
Case 15 BRUCI 032 | Healthy

Case 16 BRUCI 033 | Emphysema 2
Case 17 BRUCI 036 | Emphysema 2
Case 18 BRUCI 037 | Emphysema 1
Case 19 BRUCI 038 | Healthy Smoker
Case 20 BRUCI 040 | Healthy

Case 21 BRUCI 041 | Healthy

Case 22 BRUCI 042 | Healthy

Case 23 BRUCI 043 | Healthy

Case 24 BRUCI 045 | Emphysema 1
Case 25 BRUCI 049 | Healthy Smoker
Case 26 BRUCI 051 | Emphysema 1
Case 27 BRUCI 062 | Emphysema 1
Case 28 BRUCI 072 | Emphysema 1
Case 29 BRUCI 076 | Emphysema 1
Case 30 BRUCI 081 | Emphysema 2
Case 31 BRUCI 085 | Emphysema 2
Case 32 BRUCI 089 | Emphysema 1
Case 33 BRUCI 090 | Healthy Smoker
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Healthy: healthy people without smoking habit.
Healthy Smoker: healthy people with smoking habit.
Emphysema 1: unhealthy people with mild COPD.
Emphysema 2: unhealthy people with moderate COPD.

Table A-2: Demographic data for the sample population in Table A-1. FEV 1y, FEV1/FVC
and DLCO are presented as meanzstandard deviation.

Variables COPD Healthy non-smokers Healthy smokers
(number=14) (number =9) (number =10)
Gender (number) F(5) M(9) F(3) M(6) F(6) M(4)
Age (year)” 62(15) 47(29) 52(24)
FEV1pp (%) 83.23+14.15 107.61+13.33 107.19+15.14
FEV1/FVC(%) 60.1347.44 80.9343.63 76.2643.59
DLCO 85.79413.48 96.96+14.12 80.70413.55
(ml/min/mmHg)

F=Female, M=Male.

FEV1=Forced Expiratory Volume in the first second.
FEV1pp=actual FEVi/average FEV..

FVC= Forced Vital Capacity.

DLCO-= Diffusing capacity of the Lung for carbon monoxide (CO).

“Values are not normally distributed and are shown as median (range)
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Table A-3: Case index of the MSCT/low-dose CT/SPECT images and masks used in Chapter

3and 5.
Case Index | Subject ID | Patient State
Case 1l BRUCI 003 | Emphysema 2
Case 2 BRUCI 007 | Healthy Smoker
Case 3 BRUCI 008 | Healthy Smoker
Case 4 BRUCI 009 | Healthy
Case 5 BRUCI 014 | Healthy
Case 6 BRUCI 015 | Healthy
Case 7 BRUCI 016 | Healthy Smoker
Case 8 BRUCI 018 | Healthy Smoker
Case 9 BRUCI 021 | Healthy Smoker
Case 10 BRUCI 022 | Emphysema 1
Case 11 BRUCI 024 | Healthy Smoker
Case 12 BRUCI 027 | Healthy Smoker
Case 13 BRUCI 028 | Emphysema 1
Case 14 BRUCI 032 | Healthy
Case 15 BRUCI 036 | Emphysema 2
Case 16 BRUCI 037 | Emphysema 1
Case 17 BRUCI 038 | Healthy Smoker
Case 18 BRUCI 040 | Healthy
Case 19 BRUCI 041 | Healthy
Case 20 BRUCI 042 | Healthy
Case 21 BRUCI 043 | Healthy
Case 22 BRUCI 044 | Healthy
Case 23 BRUCI 045 | Emphysema 1
Case 24 BRUCI 049 | Healthy Smoker
Case 25 BRUCI 051 | Emphysema 1
Case 26 BRUCI 062 | Emphysema 1
Case 27 BRUCI 076 | Emphysema 1
Case 28 BRUCI 081 | Emphysema 2
Case 29 BRUCI 084 | Emphysema 1
Case 30 BRUCI 085 | Emphysema 2
Case 31 BRUCI 089 | Emphysema 1
Case 32 BRUCI 090 | Healthy Smoker

Healthy: healthy people without smoking habit.
Healthy Smoker: healthy people with smoking habit.
Emphysema 1: unhealthy people with mild COPD.
Emphysema 2: unhealthy people with moderate COPD.

Lung shapes from the highlighted cases were clipped (incomplete) during raw data

acquisition.
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Table A-4: Demographic data for the sample population in Table A-3. FEV 1y, FEV1/FVC
and DLCO are presented as meanzstandard deviation.

Variables COPD Healthy non-smokers Healthy smokers
(number=13) (number =9) (number =10)
Gender (number) F(4) M(9) F(2) M(7) F(6) M(4)
Age (year)” 61(19) 47(29) 52(24)
FEV1pp (%) 85.08+14.55 106.71+12.22 107.19+15.14
FEV1/FVC(%) 60.69+7.46 81.8143.93 76.2643.59
DLCO 85.38+13.68 79.86:11.63 89.70+13.55
(ml/min/mmHg)

F=Female, M=Male.

FEV1=Forced Expiratory Volume in the first second.
FEV1pp=actual_FEVi/average FEV:.

FVC= Forced Vital Capacity.

DLCO= Diffusing capacity of the Lung for carbon monoxide (CO).

“Values are not normally distributed and are shown as median (range)
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