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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

by Ahmed YASHAR

This thesis covers the dynamic modelling of un-cracked and cracked rotating beams.

Accordingly, a new model of a rotating cracked beam is developed using the finite element

and the Rayleigh-Ritz method to characterise and analyse its dynamic behaviour. The

effect of various parameters are investigated, such as rotational speed, hub ratio and

slenderness ratio. In addition, the critical speed, buckling speed and veering phenomena

are identified. The numerical results produced are shown to be in good agreement with

models based on finite element representations.

In addition to the theoretical investigations, experimental validation is presented. A test

rig was designed and manufactured with a changeable rotating hub mount for different

test requirements. Moreover, the rig was conceived to incorporate capabilities such as

applying variable rotational speed using a variable frequency driver and provide vertical

base excitation input to the centre of rotation of the hub. The tests were performed using

random excitation at the root of the rotating cantilever beam to excite the flapwise modes

of the beam. The responses were then measured optically using a high-speed camera, and

the images were post-processed using a digital image correlation (DIC) method. This

non-invasive optical method was used to extract the temporal deflection of the beam.

The frequency response functions are then obtained from the measured responses. The

estimated modal frequencies were compared with numerical simulations to validate the

Rayleigh-Ritz and FE numerical models at various rotational speeds. Furthermore, an

experimental crack detection was implemented and the results showed a good match to

the introduced actual crack location and depth. The crack detection approach on the

rotating cracked beam uses the fundamental and second natural frequencies.

For vibration control of the rotating beam, a real-time velocity feedback control was

applied using a remote single optical high-speed camera. An electromagnetic actuator

was designed and mounted on the rotating hub to apply a feedback force on the rotating

beam. The results for vibration control of the rotating beam show significant active

damping and reduction in the amplitude of the first resonance over a wide range of

rotational speeds.
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Chapter 1

Introduction

Throughout modern history, turbomachinery remains a highly relevant mechanism in

rotating structures, such as wind turbines, helicopter blades and gas turbines. These

devices are essential in daily life supporting cities with power generation or use in trans-

portation, such as helicopters and aeroplanes. Typically, turbomachines comprise a

number of high speed rotating blades, nominally identical and dynamically balanced.

The operation of such machines can give rise to safety and durability issues. For ex-

ample, in the helicopter case flying a massive engine with sharp blades above buildings

could seriously endanger peoples lives. To overcome these problems, the possible fail-

ure of these devices must be considered and carefully eliminated or minimised to avoid

human and material losses. For these reasons, health monitoring and vibration con-

trol of rotating systems are constantly being developed and the pace of the growth in

the research in this area increases with improvements in computing capacity as well as

instrumentation and data acquisition from installed systems.

One of the most critical areas in health monitoring of a rotating structure is crack

detection, which is a cause for catastrophe and sudden collapse in turbomachinery ap-

plications. It is essential to understand how the crack occurs, to prevent or deal with it

using detection techniques. In addition to the manufacture or operational error, cracks

can occur due to environmental reasons such as erosion and corrosion or due to the fa-

tigue. Erosion occurs because of the physical impact of small solid particles such as sand

Castorrini et al. (2016), also according to Han et al. (2018) the leading edge of the blade

is more subjected to this type of damage. Corrosion takes place because of a chemical

reaction between moisture and metal blades Davis (2000) and this kind of damage can

occur anywhere in the helicopter body. According to the type of metal, both erosion and

corrosion can cause cracks on the blade surface. Besides, there are non-environmental

causes of cracks, such as accidents or fatigue. Accidents can be caused by misusing the

device mentioned above or by the fatigue of a material produced by frequently applied

loads on the blades from opposing directions Chen et al. (2013). In addition, the blades

can be subjected to variable forces in both direction and amplitude. As a result, each

1



2 Chapter 1 Introduction

Figure 1.1: Applications of rotating beams. Wind turbine REpower 5M in the
North Sea off the coast of Belgium Hillewaert (2008). A General Electric J85-
GE-17A turbojet engine (1970) Acharya (2008). Bell 206 Jetranger helicopter
Field (2006).

taking off and landing decreases the lifespan of a helicopter blade and increases the crack

probability.

Linear Elastic Fracture Mechanics 43

For the higher-order terms, Am is the amplitude and  is a dimensionless function of θ for
the mth term. The higher-order terms depend on geometry, but the solution for any given config-
uration contains a leading term that is proportional to .As r → 0, the leading term approaches
infinity, but the other terms remain finite or approach zero. Thus, stress near the crack tip varies
with , regardless of the configuration of the cracked body. It can also be shown that displace-
ment near the crack tip varies with . Equation (2.36) describes a stress singularity, since stress
is asymptotic to r = 0. The basis of this relationship is explored in more detail in Appendix 2.3.

There are three types of loading that a crack can experience, as Figure 2.14 illustrates. Mode
I loading, where the principal load is applied normal to the crack plane, tends to open the crack.
Mode II corresponds to in-plane shear loading and tends to slide one crack face with respect to
the other. Mode III refers to out-of-plane shear. A cracked body can be loaded in any one of these
modes, or a combination of two or three modes.

2.6.1 THE STRESS INTENSITY FACTOR

Each mode of loading produces the  singularity at the crack tip, but the proportionality constants
k and fij depend on the mode. It is convenient at this point to replace k by the stress intensity factor
K, where . The stress intensity factor is usually given a subscript to denote the mode of
loading, i.e., KI, KII, or KIII. Thus, the stress fields ahead of a crack tip in an isotropic linear elastic

FIGURE 2.13 Definition of the coordinate axis
ahead of a crack tip. The z direction is normal to
the page.

FIGURE 2.14 The three modes of loading that can be applied to a crack.

gij m( )

1 r

1 r
r

1 r

K k= 2π

1656_C02.fm  Page 43  Thursday, April 14, 2005  6:28 PM

Figure 1.2: Crack modes. (Anderson, 2005)

The characteristic and behaviour of typical cracks can be very different but typically are

characterised according to three main factors, which are type, location and the depth

of the crack. Crack types are either opening, sliding and tearing Anderson (2005) as
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shown in Figure 1.2. These types give different behaviour depending on the direction

of the crack relative to the direction of any applied force. In addition to these modes,

there are two different variables that change the effect of the crack, firstly, the location

of the crack according to the attached structure or fixed points, for example, in the

wind turbine the centre of rotation. When the crack is near the root, the effect increases

because of the moment principle. When the distance from the tip of the blade to the

crack is longer, the effect of the crack becomes greater. The second variable is the depth

of the crack Liu and Jiang (2014). The deeper cracks impact more than the shallow

ones.

In accordance with this information, crack detection is a complicated procedure because

there are different types, sizes, directions and orientations of the cracks. This is why

there are numerous methods to detect blade cracks, each approach designed to inspect

specific types of these defects. One of the earliest methods is x-ray pictures, which

inspects damages and cracks, though cracks smaller than half an inch were impossible

to detect with this method G. P. Engels and Thomas (1993). The second method is

Magnetic Flux Preventive (MFP); this method is perfect to examine even tiny faults (in

all the types of cracks) on the surface of a metallic blade. However, magnetic flux does

not work on non-magnetic blades such as titanium and aluminium G. P. Engels and

Thomas (1993). The third method is Cockpit Blade Inspection Method (CBIM) Centro

de Publicaciones (2006); the process involves pressurising the inner hollow of the rotor

blades with nitrogen. When a crack is present, the pressure is lost and this indicates on

the cockpit display. This method is used in Sikorsky S-61 Series helicopters Figure 1.3.

The first two methods (X-Ray Pictures and Magnetic Flux Preventive) can be applied

in special laboratories that have the necessary equipment. The third method (Blade

Inspection Method) has the advantage of a real-time indicator that can detect hairline

fractures while the helicopter is on a mission.

Furthermore, according to Marks et al. (2017) the structural health monitoring (SHM)

techniques typically applied for helicopters and wind turbines can detect defects long

before they have influenced the performance of the system. Moreover, acoustic emis-

sion (AE) considers one of the powerful mechanisms for detecting the source of energy

release from the structure, such as due to fatigue crack initiation, growth or corrosion.

The advantage of this technique is in passive monitoring, which does not require external

excitation to detect and identify damage. However, the disadvantage of this technique

is that other acoustic signals exist, such as vibration or due to noise from the gear-

box, which can be incorrectly interpreted as a defect (Baxter et al. (2007)). Moreover,

the health and usage monitoring system (HUMS) has received considerable attention

recently for increasing the mission safety and the equipment reliability in addition to

reducing the maintenance costs. However, this system is based on monitoring the gear-

box and the usage of the helicopter (Pawar and Ganguli (2007)). As a result, detection

of cracks is of very great importance especially their location and orientation, since the
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symptoms can be different for each case. Most of these techniques are based on an in-

depth analysis of the signal from different locations of the vehicle. The signal processing

is based on analysing this data for comparison against a pattern of the signals recorded

for the healthy state of the structure. Then, the changes in these patterns are studied

constantly and remotely with consideration of the structure’s age. For example, Dervilis

et al. (2014) used damage diagnosis of a wind turbine based on pattern recognition.

Figure 1.3: Sikorsky S-61L Chen (2012)

This thesis presents a new approach to investigate and analyse the vibrational behaviour

of rotating cantilever beams with and without cracks, which can be representative for

example of helicopter blades or wind turbines blades, using optical measurements. The

numerical results of the developed models will be illustrated and compared with the

results reproduced from previously published work.

A model of uniform cross-section cantilever beam will be considered and the free and

forced vibration characteristics will be calculated. In addition, the effect of the angular

rotational speed will be considered, by comparing the natural frequencies with respect

to the rotational speed.

Subsequently, a numerical model of the crack will be introduced into the rotating system

and the same analysis will be performed on the cracked system. The outcome of this

will be compared with the theoretical results obtained from FEM and the Rayleigh-Ritz

method, to validate the models developed and to compare the method with a wide range

of published literature on the vibration of rotating beams, crack modelling and analysis

of rotating cracked beams and blades.

The design of an experimental test rig will be presented for comparison to the theoretical

predictions. In addition to the open crack, a bilinear or breathing crack will be modelled

for time-domain simulations using FEM. The experimental results will be acquired using
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a high-speed camera and three types of recently developed digital image processing

methods.

Finally, two applications will be presented based on the model developed in the last part

of this thesis, which is to do with crack identification and active vibration control of the

rotating beam. The crack location and depth detection will be based on the experimental

measurement and theoretical updated model. Regarding vibration control, a simulation

model in addition to the experimental test will be performed using velocity feedback.

The latter based on non-contacting optical measurements and electromagnetic force

application.

1.1 The aims and objectives of this research

In general, the aims of this research are; firstly, to determine via modelling the dynamic

behaviour of cracked and un-cracked rotating beams. Secondly, to identify the crack, if

it exists, from changes in the free and forced vibration characteristics. Thirdly, to apply

a suitable non-invasive method to measure the natural frequencies of the rotating beam

using optical measurements instead of using typical accelerometer sensors. Finally, the

project aims to apply active control methods to reduce or minimise the vibration of the

rotating beam.

The first objective covers the characterisation and analysis. This will require the devel-

opment of a new approach, using both the Finite Element Method and the Rayleigh-Ritz

method using method of variational energy principles for rotating cracked beams, con-

sidering the additional flexibility and centrifugal stiffening due to the crack and rotation,

respectively. Moreover, the gyroscopic effect will be included to simulate most of the

actual applied loads to structure.

For crack identification, the model of a crack is introduced to the rotating beam model.

The model should accurately represent the effect of different crack location, depth and

orientation. In addition, calculation of the second and third modes are required besides

the fundamental mode to identify the crack. These results will be compared with the

un-cracked beam and the difference will lead to a potential identification methodology

for the crack, its depth and its location.

Typical vibration instrumentation such as accelerometers have disadvantages for rotat-

ing systems, mainly due to the wiring and the extra mass. Therefore optical measure-

ment techniques will be applied to provide accurate and non-intrusive measurements for

validation of the model, the crack identification and also active control.

Active vibration control of a rotating beam will be considered. Using optical measure-

ment the velocity feedback control method will be implemented on the non-rotating and

rotating beam. Generally, rotating beams can be controlled passively by limiting the
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rotational speed range, adding mass/damping and changing the profile design. Alter-

natively, active control can be used by employing sensors and actuators to control the

vibration by providing control forces in order to reduce undesirable vibrations or add

damping, etc.

1.2 The structure of the thesis

This thesis is organized into eight chapters. The scope of each chapter is provided as

follows.

Chapter 2 presents the literature survey, which reviews the relevant methods that are

currently used for modelling a rotating beam, either cracked or uncracked. In addition,

the relevant optical measurement methods are presented including a brief description of

the relevant digital image processing techniques such as digital image correlation. Fur-

thermore, experimental work covering vibration measurement and crack detection are

mentioned.

Chapter 3 covers the main methods for modelling a rotating beam, firstly by a sim-

ple force equilibrium method and then using Hamilton’s principle. In addition, various

numerical methods to solve the resulting partial differential equations are shown in de-

tail, using either the finite element or Rayleigh-Ritz method. Then, the modelling of a

rotating cracked beam element is developed with a massless spring connecting the two

segments of the beam and incorporating this within the FE model. Likewise, the crack is

also introduced into the Rayleigh-Ritz approach, as a reduction in the potential energy

of the system due to the additional flexibility of the crack.

In chapter 4 the results of simulations using the main two numerical modelling ap-

proaches are shown, focusing on various aspects such as comparing the two approximate

methods. Moreover, the effects of different parameters such as rotational speed, hub

radius and slenderness ratio on the natural frequency speed curves are illustrated. The

explanation of how they affect the results are described. Moreover, the effect of an open

crack and a bilinear crack are illustrated.

Chapter 5 presents an overview of the experimental design, which is subsequently

manufactured with specific dimensions, and a mechanism to measure the vibration of

the flapwise and chordwise vibrations of the rotating beam with and without crack.

Furthermore, the results are obtained for different beam dimensions using high speed

cameras in different configurations. Three different image processing methods namely

digital image correlation (DIC), marker detection and colour blob detection are evalu-

ated and contrasted. Moreover, the natural frequency results are then compared with

the simulation results.



Chapter 1 Introduction 7

Chapter 6 applies an optical measurement method and image processing to detect and

identify the location and depth of a crack in a rotating beam. The method developed

is based on experimentally measuring the two lowest natural frequencies of the rotating

beam at different rotational speeds and generating natural frequency versus rotational

speed curves. Then, comparing these curves with the corresponding ones obtained from

a numerical two-dimensional parametric study, the parameters of which are the crack

location and depth, an updated Rayleigh-Ritz model is used to identify the optimum fit

for identification of the crack properties.

Chapter 7 applies active vibration control on a rotating beam. The active control

strategy is velocity feedback. Firstly, a simulation model is developed and tested to

reduce the amplitude of the vibration during the rotation of the beam. Then, a novel

experimental test is performed using a high speed camera, as a sensor, and an electro-

magnetic actuator after modifying the earlier test rig for this application. Active control

is applied at different rotational speeds and behaviour of the open and close-loop system

is analysed to obtain the gain margin and the phase margin of the system for stability

analysis.

In chapter 8, the overall conclusions and suggestions for future work are provided.

1.3 The contributions to date

This thesis includes numerical and experimental contributions to the field of the vibration

modelling and control of rotating beams with and without cracks.

• The numerical contribution starts with models of a rotating cantilever beam us-

ing a Rayleigh-Ritz method, with a special trial function to reduce the numerical

errors. In addition, a new rotating open and bilinear cracked finite element is

developed, using an energy method and the principle of fracture mechanics. Fur-

thermore, the gyroscopic coupling effect, which couples the stretch and bending

motion of the chordwise vibration, is considered in this new rotating cracked beam

model. Moreover, a novel model of a cracked cantilever beam is developed by sub-

tracting the effect of the crack from the total potential energy of the intact rotating

cantilever beam utilizing the Rayleigh-Ritz method.

• The experimental contribution to date is the design and manufacturing of a test rig

with a multi functional rotating hub. The rig has the ability to test a beam up to a

controllable speed of 24000 rpm and apply an excitation through the rotating shaft

to the base of the rotating cantilever beam. Furthermore, the flapwise vibration
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can be measured using an optical high speed camera. In addition, the rig possesses

the ability to perform an active vibration test using an electromagnetic actuator.

• The experiment uses recently available optical measurements for the non-invasive

or remote measurement of the vibration, comprising three different types of digital

image processing. The experimental and simulation results were compared to verify

the results.

• Active vibration control of rotating beam based on real time, remote optical mea-

surement and velocity feedback.

This study has a potential impact and application in the development of a health mon-

itoring and vibration control system for rotating structures, such as wind turbines or

helicopter blades.



Chapter 2

Literature review

Rotating beams play a significant role in the design of various engineering applications

such as gas turbine blades, helicopter propellers and wind turbines. Cracks are the most

common defects in these structures that might lead to increased vibration, which can

eventually destroy the structure. Investigations are often made regarding the vibrational

behaviour of a cracked rotating blade, which includes crack identification and detection

methods so that consecutive damage could be prevented or reduced.

This chapter will concentrate on studies, which investigate the area of rotating cracked

beams. Three main aspects that deal with modelling a rotating beam structure with

and without cracks will be discussed in the first three sections, which include modelling

of rotating beams, modelling of cracks and modelling of rotating cracked beams.

In addition, the digital image correlation is used to measure the vibration without con-

tact with the vibrating object. The method can determine the vibration of the rotating

structure. Furthermore, several experimental results and procedures will be explained

in the final section.

2.1 Vibration of rotating homogeneous cantilever beams

The main two well-known beam theories are Timoshenko and Euler-Bernoulli. The main

assumptions are based on small displacement of linear vibration. These assumptions can

be listed in three main points for the Timoshenko beam theory;

• The material in the plane, which is perpendicular to the longitudinal axis before

deformation, will remain in the plane during deformation.

• The displacement along the unloaded direction is zero (plane strain assumption).

9
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• Along any cross-section the displacement in the loaded direction is the same, which

means there is no stretch in the thickness of the beam.

Regarding Euler-Bernoulli beam, the additional assumption is that the shear deforma-

tions are negligible if the beam is long and thin so that the aspect ratio (length to

thickness) is greater than 10 Inman and Tech (2006). Intact rotating beams are gener-

ally simplified as being a one dimensional Euler-Bernoulli or Timoshenko beam subjected

to centrifugal forces.The stretching causes additional stiffness to the bending stiffness

of the structure, with certain consequences in the variation of the natural frequencies

and the mode shapes. Numerous published studies have looked into the effect of the

rotational speed on the natural vibration of rotating cantilever beams, which will be

briefly presented below.

Various studies deal with modelling and developing mathematical expressions to de-

scribe vibration of rotating beams. Rubinstein and Stadter (1972) studied the vibration

of rotating simply supported-free uniform beams and found that the natural frequencies

of bending vibration tended to increase above those for the non-rotating beams due to

the centrifugal effect. Bhat (1986) applied the Rayleigh Ritz method for modelling a

cantilever rotating beam (fixed-free) with a tip mass, using beam characteristic orthog-

onal polynomials to evaluate the natural frequencies of the flexural modes. However,

both studies only considered the lateral vibration of cantilever beams, which is in the

flapwise motion.

Subsequently, a significant improvement in describing the vibration of rotating beams

were proposed by Yoo and Shin (1998), where a new set of coordinates was introduced

based on stretching and bending deformation using energy methods. Cai et al. (2004),

Chung and Yoo (2002) and Yang et al. (2004) expressed the linear partial differential

equations for the flapwise, chordwise and stretch motions of a rotating beam, which

consist of a non-cartesian variable to describe the elastic (stretch) deformation as shown

in Figure 2.1, and two Cartesian variables (chord-wise and flap-wise deformations). All

of the displacements in the three directions are linear and Chung and Yoo (2002) used a

finite element method, derived from Hamiltonian’s principle, which was also used by Kim

et al. (2013), to investigate the free vibration characteristics of rotating beams for the

axial, chordwise and flapwise motion. The new coordinates introduce the coupling effect

between the chordwise and the longitudinal vibration, which significantly changes the

vibration behaviour by veering between chordwise bending and longitudinal stretched

modes. In contrast, Zhao and Wu (2017) indicate that the Coriolis term does not

significantly affect the chordwise bending frequency of a rotating beam without crack.

Advanced investigations subsequently have been developed to study rotating beams

with specific profile and shapes. Rao and Gupta (2001) included the effects of twist,

offset, speed of rotation and taper ratios on the natural frequencies and mode shapes

of a rotating twisted and tapered beam using a finite element method. However, an



Chapter 2 Literature review 11

important contribution is the application of the dynamic stiffness method (DSM) by

Banerjee et al. (2006), which extended the analysis to a wider context at the same

time as providing accurate results using the Frobenius method. The method formulated

the dynamic stiffness matrix for the dynamic analysis of rotating tapered beams. The

dynamic stiffness method has all the features of the finite element method, nevertheless

the DSM allows an exact vibration analysis of structures to be possible.

Simultaneously, another group of research has worked on optimizing beam profile shape

or dimensions to adjust the natural frequencies, which could increase the working life

of the blades or the rotating structures. Yoo et al. (2006) introduced an optimisation

method for rotating cantilever beams to satisfy certain modal characteristics, result-

ing in the beam profiles as shown in Figure 2.2. The shape optimization was per-

formed to increase the fundamental frequency of the beam. Ozdemir and Kaya (2006)

investigated the vibration characteristics of rotating tapered cantilevers following both

Euler-Bernoulli and Timoshenko beam theory from a differential transformation method

(DTM). This investigation led to finding an inverse relationship between the taper ratio

and non-dimensional natural frequency, as shown in Figure 2.3, where the taper ratio

is 1 − Af

Ab
with Af and Ab being the free end area and the area of the cantilever base,

respectively. In practice, for example, wind turbines or helicopter blades are not uniform

beams and they are considered to have a taper ratio. Again, their study was also limited

to flapwise direction motion. However, Mazanoglu and Guler (2017) proposed a flapwise

and chordwise flexural vibration analysis for centrifugally stiffened for the axial direction

tapered beam. The axially functionally graded (AFG) model was simulated using the

Rayleigh-Ritz method and compared with solid FE model built in FE simulation soft-

ware. The model simulated different boundary conditions. The Rayleigh-Ritz method

also can be adapted for composite material using a different structural theory. An ex-

ample is the Classical Laminated Plate Theory Chai (1994), where the free vibration

of beams on different support conditions were studied. Another reported study used a

first-order shear deformation theory (FSDT) Oliveri and Milazzo (2018). Here in these

two theories the change in mass density and the elasticity of the material were necessary

in order to formulate the problem for its solution using the Rayleigh-Ritz method.

In addition to modelling and optimisation, the frequency and time domain responses

were investigated to study the behaviour of the rotating cantilever beam under various

operating conditions. Chung and Yoo (2002) studied the time response of rotating beams

during start-up, steady speed and decreasing speed. With two different patterns of

running machine (smooth running and non-smooth running), as shown in Figure 2.4, the

results led the investigators to conclude that working under a smooth running condition

causes a large reduction in the vibration of the rotating beam. Obviously, from all of

these different research results, which include modelling, optimising and analysis, the

conclusions are consistent in that increasing the rotational speed leads to an increase in

the natural frequencies of vibration for rotating cantilever beams.
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Fig. 2. Description of the deformation of the beam.

modulus of the beam material; I is the area moment of inertia of the beam cross-section; � is the mass
per unit volume; A is the cross-section area. The parameter � is the external rotating moment acted on
the 9xed end of the beam. The parameter � is the angular rotation of the large motion of the beam.

Fig. 2 illustrates the deformation at an arbitrary point P0 of the beam, where x is the location of
P0 when not deformed. After the deformation, P0 moves to the point P. The location vector of the
point P in the O–X0Y0 system is represented by rP, and is given by

rP =�(r0 + r1); (1)

where � is the direction cosine matrix that is the O–XY system with respect to the O–X0Y0 system,
and is given by �= [cos �−sin �

sin � cos � ]. The vector r0 is the location vector of the point P0 in the O–XY
system and its coordinate is given by [x; 0]T, where the superscript T indicates the transpose of a
vector or matrix; and r1 is the deformation vector of P0 in the O–XY system and its coordinate is
represented by [u1; u2]T, which can be written as [10,11,13]
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where w1 is the axial extension quantity and w2 is the transverse displacement. For a slender beam,
the transverse displacement w2 is generally much larger than the axial extension quantity w1, thus it
is reasonable to take w2 = u2. The parameter wc =− 1

2

∫ x
0 (@w2=@�)2 d� is the second-order coupling

term that is the axial shrinking quantity caused by the transverse displacement w2. In the ZOAC
model, the small deformation assumption in the structural dynamics is adopted, so u1 =w1 is taken,
i.e., wc is not taken into account in the modeling. Because the object of the structural dynamics is

Figure 2.1: Description of the deformation of a rotating beam.
u1, u2, w1 represent the deformation in the X direction, Y direction and non-
Cartesian stretch direction. (Cai et al., 2004)

constraints are now given as follows:
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Figure 2.2: The optimisation research of rotating cantilever beams (Yoo et al.,
2006).
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Figure 2.3: The inverse relationship between the taper ratio and the six low-
est non-dimensional natural frequencies. Hub ratio= 0 (Ozdemir and Kaya,
2006). The taper ratio is the function of the change of the beam area at the tip
compared to the base area.
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Figure 5. Pro"les of the dimensionless rotating speed c for the dimensionless time q: (a) the smooth pro"le and
(b) the non-smooth pro"le.

Figure 6. Deformation time histories at m"1 for the smooth rotating speed pro"le: (a) the dimensionless stretch
deformation s/¸; (b) the dimensionless chordwise deformation v/¸; and (c) the dimensionless #apwise deformation
w/¸.

Furthermore, assume that no force is applied in the chordwise direction but the unit
impulsive pressure is applied in the #apwise direction.

Time histories of the deformations at the free end, i.e., at m"1 are computed when the
rotating speed is prescribed. Figures 6 and 7 show the time histories of the deformation for
the smooth and non-smooth pro"les respectively. Note that the non-smooth speed pro"le
incurs larger vibration in the chordwise motion than the smooth one. Since the non-smooth
speed pro"le yields a discontinuous rotating acceleration, the pro"le is equivalent to
a sudden change in the applied load. Therefore, when the beam rotates with the smooth
speed pro"le, a large amount of vibration is reduced. On the other hand, when, at the initial
time, the unit impulsive pressure is applied to the rotating beam in the #apwise direction,
the amplitude of the #apwise vibration is in#uenced by the rotating speed. Figures 6(c) and
7(c) illustrate that the amplitude of the #apwise vibration decreases, remains constant and
then increases, as the rotating speed increases, remains constant and decreases. It is also
observed that the period of vibration seems to be inversely proportional to the rotating
speed. Note that the smoothness of the rotating speed pro"le makes no signi"cant di!erence
in the #apwise deformations, as shown in Figures 6(c) and 7(c).

ROTATING CANTILEVER BEAM 159

Figure 2.4: Profiles of the dimensionless rotating speed γ for the dimensionless
time τ : (a) the smooth profile and (b) the non-smooth profile (Chung and Yoo,
2002). The forms lead to reduced vibration during operation of speed up and
slowing down of the rotational speed.

2.2 Crack modelling

A decrease in the natural frequencies occurs in cracked beams because of the additional

flexibility that is brought forth due to the presence of cracks. Countless researchers have

looked into the modelling of cracks. In general, these models are based on crack modes,

which are three in type namely opening, sliding and tearing as shown in Figure 1.2

(Anderson, 2005). These modes depend on the location and orientation of the crack

according to the forces, which are applied to the structure.

The analysis of the local flexibility of the cracked area in the structural element has been

computed by relating the flexibility to the crack stress intensity factor (SIF), which shows

the stress intensity near to the tip of a crack that occurs due to remote loads or residual

stresses. According to this principle, a method was developed for the calculation of the

SIF based on local bending stiffness Schijve (2004), which is the inverse of the local

flexibility of a cracked beam that can be determined theoretically. The stress intensity

factor can be obtained from (2.1),

K = σ
√
πaF (2.1)

where σ, F and a represent the applied stress, correction factor from the geometry change

and crack length, respectively. This concept was applied subsequently by numerous

researchers. Anifantis and Dimarogonas (1984) extended the Paris equation principle,

which is used to determine the deflection of a cracked member, to calculate the deflection

of cracked elements in the buckling of a cracked beam. A similar approach was used by

Gounaris and Dimarogonas (1988) to develop a single cracked element consistent matrix

for an Euler-Bernoulli beam; the ability of this research was limited in finding the crack

size when the location of the crack is known by measuring the amplitude of vibration .

Qian et al. (1990) developed a finite element model of a cracked cantilever beam with

an edge-crack, by deriving an element stiffness matrix of a beam with a crack from an

integration of the stress intensity factors, which shows a very good agreement with the

experimental results. However, this work was restricted to in-plane vibration, which did
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not include the tearing mode of vibration. Another publication by Chondros et al. (1998)

studied a continuous cracked beam vibration theory for the lateral vibration of cracked

Euler-Bernoulli beams with single/double edge open cracks. They also compared the

results of a double edge for the crack with experimental results. Multi cracked beams

can also be modelled using their technique. Various applications used different cross

sectional area or structural design that needs a number of stress intensity factors. Zheng

and Kessissoglou (2004) determined the natural frequencies and mode shapes of cracked

rectangular and circular cross sectional beams using the finite element method based on

fracture mechanics principles. An overall additional flexibility matrix was added to the

flexibility matrix of the corresponding intact beam element to obtain the total flexibility

matrix of the cracked beam.

Regarding structural design, Ibrahim et al. (2013) investigated the effects of crack depth

and crack location on the in-plane free vibration of cracked frame structures numerically

using the Finite Element Method. The results of this research show clear relationships

between the crack location and crack depth versus natural frequencies and concluded

that an inverse relationship existed between the crack depth ratio and the natural fre-

quencies. Moreover, the closer the crack is to the fixed end of the beam, the larger is the

crack effect on the natural frequencies. Similar effects were studied by Panigrahi and

Parhi (2009) and the results were compared with solid models built using FE software,

as shown in Figure 2.5.

Further investigations were discovered where determining the crack depth using open

crack models lead to an underestimation of the actual depth of the crack, which could

be a reason to ignore the seriousness of the crack. Therefore, the breathing or closing

crack was studied to mitigate this issue. The breathing or closing crack was studied

by Vigneshwaran and Behera (2014) using Castigiliano’s theorem and strain energy

release rate (SERR) to calculate the influence coefficients, which were later used to find

the stiffness of the cracked beam. To simplify the non-linearity of a closing crack the

breathing crack beam can be modelled as a piecewise linear system (bilinear breathing

crack). Chondros et al. (2001) followed this simple bilinear beam approach with only

two states, either fully open or fully closed, as shown in Figure 2.6. It was also assumed

that the undeformed state of the beam is a transition period from the open state to

closed state. Simulation of a bilinear crack was represented as a time variable stiffness

crack Ruotolo et al. (1996), where the properties of a crack are changing with time. In

addition, the time variation was represented as a square-wave function. The equation

of motion becomes,

Mü+Du̇+ (K − δKf(t))u = R (2.2)

where M , D and K represent mass matrix, damping matrix, stiffness matrix and f(t)

is represented by a square wave as shown in Figure 2.7. The upper and lower side of

the wave represent opening and closing movement of the crack. Actual or physical crack

face contact were studied by Chati et al. (1997). This approach is more realistic from
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the physical means than the time variable stiffness. The study of either the fully open

and fully closed crack state was defined depending on the slope of the left and right hand

side of the crack. Furthermore, SDOF and two DOF models of a bilinear crack were

identified to determine the first two lower bilinear frequencies as given in Equations 2.3

and 2.4 and shown in Figures 2.8 and 2.9.

Ω0 =
2ω1ω2

ω1 + ω2
−→ SDOF (2.3)

Ω1 =
2ω11ω21

ω11 + ω21
Ω2 =

2ω12ω22

ω12 + ω22
−→ 2DOF (2.4)

where Ω0, Ω1 and Ω2 represent the fundamental bilinear frequency of SDOF system,

the first lower bilinear frequency of the two DOF system and the second lowest bilinear

frequency of two DOF lumped mass system respectively. ω1 and ω2 are the fundamental

natural frequencies for a SDOF system with a single and double spring respectively.

Finally, ω11, ω12, ω21 and ω22 are the fundamental and second natural frequency for the

first mass and the fundamental and second natural frequency for the second mass respec-

tively Chati et al. (1997). This model was built to understand the essential nonlinear

dynamics of the cracked beam.

According to these studies, cracks can be modelled by the following two steps, firstly by

using the stress intensity factors, which are based on the principles of fracture mechanics

and secondly by applying the Paris equation to calculate the deflection of the cracked

elements. Using these steps, the equation of motion for cracked beams can be formulated.

The cracks are divided into three types: opening, sliding and tearing as shown in Fig-

ure 1.2(Anderson, 2005). These types are dependent on the load direction. However,

the most important factors, which reduce the natural frequencies, are the crack depth

and its location.

Cracks can be modelled based on:

1. The boundary relationships between crack sides (l:left and r:right). Considering

(a) Continuity of vertical displacement, vl = vr

(b) Discontinuity of the slope or cross section relation, v̀l = v̀r+ fracture term,

where =̀ partial derivative with respect to x, where x is the length along the

beam.

(c) Equilibrium of vertical bending moment, Ml = Mr

(d) Equilibrium of shear force. Sl = Sr

The continuity refers to equal values on both sides of the crack. Regarding dis-

continuity, this is where stress intensity factors will be added to the equation’s
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right-hand side to become equal with the left side as in point (b) (Karaagac et al.,

2009; Ibrahim et al., 2013).

2. An additional local flexibility by considering the crack as a massless spring. Here

the flexibility of the beam will be calculated first, then the extra flexibility that is

generated by the crack will be added to the beam’s flexibility. (Qian et al., 1990;

Vigneshwaran and Behera, 2014)

3. The elasto-plastic crack, being similar to the previous two methods, with the only

difference is to consider the plastic zone in the calculation. (Krawczuk et al., 2000)

4. Bilinear crack or breathing crack, which is variable with time. A bilinear-type

breathing crack is either fully open or fully closed as illustrated. The response

develops as a function of time as shown in Figure 2.6. (Chondros et al., 2001)

14th National Conference on Machines and Mechanisms (NaCoMM09), 
NIT, Durgapur, India, December 17-18, 2009  NaCoMM-2009-DVAMIP5 
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frequency ω ,the relative location of the crack β  and 
the local stiffness matrix K  which in turn is a function 
of relative crack depth 1( / )a W . 
 
4 Experimental Set-up 
 
An experimental set-up used for performing the experi-
ments is shown in schematic diagram. A number of tests 
are conducted on Steel specimen (800mmx50mmx6mm) 
with a transverse crack for determining the natural fre-
quencies and mode shapes for different crack depths. 
Experimental results of amplitude of transverse vibra-
tion at various locations along the length of the beam are 
recorded by positioning the vibration pick-up and tuning 
the vibration generator at the corresponding resonant 
frequencies.  
 

 
 
Fig. 2:Schematic diagram of experimental set-up. 
 
1. Cracked Cantilever beam          2.Vibration pick-up 
3.Vibration meter             4.Amplifier&Signal Generator 
5.Electro Dynamic Exciter 
 

5 Finite Element Analysis of Beam 

The finite element analysis of cracked and uncracked 
beam had carried out with the help of Ansys [17] pack-
age the cracked beam was model as solid beam and it is 
meshed with help of tetrahedral solid elements. The 
cracked was taken as very fine cut. In the crack zone 
mesh has been properly refined. The convergent test of 
all the results was carried out. 

 

Fig. 3: Cracked Beam meshed with solid elements 

7  Results                                             
All the first natural frequency results obtain in theoreti-
cal, experimental and finite element analysis of cracked 
cantilever beam in hertz for different depth and differ-
ent position of crack from fixed end are given below in 
Table 1 and Table 2.                                                         
Table-1: Analysis results of beam part-I 

                                  

 

Fig. 4: 3D plot of FEM results for cracked beam 

Depth of 
crack(mm) 

Position of the crack along the length 
from the fixed end (mm) 

100 300 

Th 

(Hz) 

 

FEM 

(Hz) 

Exp 

(Hz) 

Th 

(Hz) 

FEM 

(Hz) 

Exp 

(Hz) 

0(without 
crack) 

6.37 6.41 6.38 6.37 6.41 6.38 

2 
6.20 6.26 6.24 6.25 6.30 6.28 

4 
6.06 6.10 6.07 6.15 6.22 6.16 

Figure 2.5: Cracked beam meshed with solid element. (Panigrahi and Parhi,
2009)

Figure 2.6: Lateral motion of a simply supported beam with a breathing crack
at the mid-span initially bent in its first mode, where t, w refer to time and
vibration amplitude, respectively. Chondros et al. (2001)
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Fig. 2. The square-wave function and its approximation. 

In particular, it is evident that the assumption of 
a square-wave type stiffness variation (fundamental 
frequency equal to the forcing frequency) is incorrect. 
This is especially noticeable when the forcing 
frequency is equal to 50~. Indeed, in this case thef(t) 
function imposes that the crack changes its state 
(open to closed and vice versa) only once per cycle. 
Instead the Krawczuk and Ostachowicz’s solution of 
the time response, shown in Fig. 8, is inconsistent 
with this statement. This is due to the fact that the 
functionf(t) modelling the stiffness does not consider 
either the out-of-phase relation between forcing term 
and structural response, or the fact that the 
non-linear nature of the system may cause appreci- 

A Compressive half cycle (K=K “) 

/ 
/ 
/ 
/ 

able distortion in the response waveform due to the 
higher harmonic components which in turn influence 
the activation of the crack. 

This point is very important because, when the 
forcing frequency is close to $0, fo0, &00, etc., 
significant superharmonic content in the response 
spectra is manifest. For example, if the forcing 
frequency is equal to awO, the response contains 
harmonic components at ioO, w. and so on, while the 
square wave function developed as in eqn (18) does 
not contain the harmonic term relative to w. . Instead 
this aspect has been taken into account by Shen and 
Chu in Ref. [9], limiting the validity of the 
closed-form solution to low frequency excitation for 
which the superharmonic effect can be neglected. 

4. EQUATION OF MOTION 

When the crack closes and its interfaces are 
completely in contact with each other, the dynamic 
response can be determined directly as that of the 
untracked beam. However, when the crack opens the 
stiffness matrix of the cracked element should be 
introduced in replacement at the appropriate rows 
and columns of the general stiffness matrix. 

Under the action of the excitation force R, 
alternate crack opening and closing causes the 
equations of motion of the cracked beam to be 
non-linear: 

Fig. 3. Crack opening-closing process. Mii+Di+Ku=R, (21) 

Figure 2.7: The dotted line represents an approximation to the square wave
(Ruotolo et al., 1996)

Figure 2.8: The SDOF bilinear system Chati et al. (1997)

Figure 2.9: The two DOF bilinear system Chati et al. (1997).

2.3 Vibration of rotating cracked cantilever beams

The probability that cracks occur becomes much higher in dynamic structures, especially

when the structures are rotating objects because of physical impacts or friction with

other objects or cyclic loading. Therefore the investigations into cracked blades or

rotating beams were carried out from as early as the 1970s, yet some failure cases were

reported during the 1950s Bachschmid et al. (2010).

Most researchers built their models based on the local flexibility, correlated to the crack

geometry. Chen and Shen (1997) and Lien-Wen and Chiung-Lu (1988) investigated the
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vibration and stability of thick rotating blades with a single crack by considering the

transverse shear deformation effect and the rotary inertia effect. Numerous research has

been concentrated on rotating cracked shafts Papadopoulos and Dimarogonas (1987);

Sekhar and Prabhu (1998); Silani et al. (2013) deal with axial and lateral coupling

vibration of cracked rotating shaft, health monitoring in rotors and detecting cracks in

rotating shafts, respectively.

Kim and Kim (2003) numerically simulated a rotating cantilever beam with a breathing

crack. The local flexibility matrix was determined by a mechanical fracture approach.

This study mentioned the importance of modelling breathing cracks, since for an open

cracked beam the outcome revealed a frequency reduction and underestimated the crack

depth due to neglecting the influence of opening and closing of the crack. However,

most research carried out before Chung and Yoo (2002) have modelled rotating beams

without considering the effect of the gyroscopic coupling between the longitudinal and

chordwise vibrations.

Furthermore, statistical methods have been used to identify cracked rotating beams.

Banerjee and Pohit (2014) studied the crack detection (location and size) on a rotating

cantilever beam based on fractal dimension (FD), which is a statistic of a geometrical

ratio, as shown in Figure 2.10. The main focus of their study was to extract damage

from measuring the fractal dimension between two successive points on the mode shape,

as shown in Figure 2.10(c) for a rotating cracked beam.

Silani et al. (2013) studied vibration analysis of rotating systems having cracks by mod-

ifying the integration limits of the flexibility matrix of the crack, which provides more

accurate results. The research provided a dynamic response of a rotor with an open and

closed crack using the frequency/time domain approach and it is considered as a basis

for producing an on-line monitoring system. However, modelling needs to be modified

so it fits on rotating blades or beams.

According to the authors, not much investigation has been made into the area of rotating

cracked beams, ”from the literature review, it is evident not much work has been carried

out on cracked rotating beams.”(Banerjee and Pohit, 2014). In addition, ”compared with

enormous research on vibration analysis of intact rotating beams, less attention has been

focused on the vibration characteristics of cracked rotating beams.” (Cheng et al., 2011).

From the previous two papers, that were published in 2011 and 2014, it is evident that

a lot of research might still be applicable in this area and still needs to be developed.
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Distance of fixed end 
from rotational axis 
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Fig. 2 Rotating cantilever beam

                                  
  
Fig. 3. Finite element modelling of the cracked beam                Fig. 4. The first three mode shapes of cracked beams for rotational speed 100 rad/s

2.2 Fractal Dimension (FD) method

Fractal Dimension (FD) has become an efficient tool to extract damage information from mode shapes 
data. Damage induces changes in the dynamic properties of a structure causing irregularity of local mode shape. 
This irregularity produces abrupt peak composed of high-magnitude estimates of FD, with the position and 
magnitude of the peak indicating the location and severity of the damage in a quantitative manner. Among the 
various waveforms of fractal dimensions available, the Katz’s fractal dimension is used as a quantitative measure of 
the local variation of geometry complexity of the mode shape in the space domain, due to its easy and simple 
implementation.
The Fractal Dimension ((D) of a curve may be defined as

10

10

log ( L )D
log ( d )

(8)

where L is the length of the curve or sum of distances between successive points and d is the diameter estimated as 
the distance between the first point of the sequence and the point of the sequence that provides the furthest distance. 
Mathematically,

N 1

i 1
L dist( i,i 1 ) (9)

d max.distance(1,i ) (10)

(a) Beam dimensions.
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(b) Finite element modelling of the cracked beam
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(c) The first three mode shapes of cracked beams
for rotational speed 100 rad/sec

Figure 2.10: Modelling and results of a rotating cracked cantilever beam (Baner-
jee and Pohit, 2014)

2.4 Digital image correlation method

Digital Image Correlation (DIC) is a full-field image analysis method, non-intrusive,

based on grey value digital images, which is easy to implement. Powerful optical metrol-

ogy can thus determine the outline and measure the deformations of an object under

load in two or three dimensions.

The elementary principle of DIC is the tracking (or matching) of the same spots (or

pixels) between the two pictures taken before and after deformation. In order to calculate

the displacements of point P, a square reference subset of (2M + 1) × (2M + 1) pixels

centred at point P (x0, y0) from the reference image is selected and used to track its

corresponding location in the deformed image, where M refer to the minimum numbers

of pixels for each point or spot is a number varying from different software and also

depends on the test specimen size. A square subset, rather than an individual pixel,

is selected for matching since the subset comprising a wider variation in grey values
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Figure 2.11: Basic principle of subset-based DIC method: tracking the same
pixel point in the reference and deformed image determine its displacement
vector Pan et al. (2009).

distinguishes itself from other subsets, and can, therefore, be more uniquely recognised

in the distorted image as shown in Figure 2.11.

One of the most important advantages of this method is its ability to measure the vi-

bration without attaching sensors to the system, especially in the high-speed rotating

system where attaching extra sensors such as accelerometer are not viable due to con-

necting the wiring. Even for wireless sensors, the mass of sensors could be considerable

and affect the vibration of the system.

Due to the rapid increase in the image recording speed and quality, recently the digital

image correlation methods have become accessible and applicable in numerous vibration

analysis. For example, Hagara et al. (2015) performed experimental modal analysis of

the vibration of plates using high-speed digital image correlation. The block diagram for

a test setup is shown in Figure 2.12, where an impact hammer is used to excite the object

and two high-speed cameras feed a stereo image to the data acquisition system. Cameras

are set to 2000s frame per second (sample per second) to measure response approximately

between 0 and 1000 Hz. It is worth mentioning that a stereo camera system is usually

employed to measure 3D displacement. This system has the capability to detect out of

plane displacement. Nevertheless, a single camera system can be applied to assess the

lateral oscillation of the beam as in Romaszko et al. (2015), where the camera is set up

perpendicular to the plane of motion. Furthermore, Molina-Viedma et al. (2018) used

a combination of digital image correlation and a motion magnification algorithm. This

was performed in order to provide numerical information in the magnified videos and

perform DIC mode shape characterisation at high frequencies, through increasing the

amplitude of the displacements. Furthermore, the phase change in the different scale

magnified video frames were used to extract the motion of the structure. Utilizing an

edge detection approach, this method allows a full field motion study to be carried out

without special coating of the structure with point or other markers Yang et al. (2017).

However, due to the multi post-processing stages this method limited to the optical

vibration measurement and not suitable for real-time control applications.
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Figure 2.12: Block scheme for correlation system Q-450 Dantec Dynamics used
for the purposes of experimental modal analysis Hagara et al. (2015).

2.5 Experimental work on crack detection

Experimental studies have been performed by numerous researchers to validate the nu-

merical results. Selected works are listed below, which would give an idea about specimen

selection and test setup. Cantilever non-rotating beams are usually chosen as specimens

in examining the effects of cracks. Excitation methods vary between hammer impact and

using electrodynamic shakers, which are typically attached to the base of the cantilever

beam. Roving accelerometer or hammer positions are used in a procedure to estimate

the mode shapes. Chondros et al. (2001) studied a breathing crack and assumed two

states for the cracked beam (fully open crack and fully closed crack). The experimental

model was built as a prismatic beam made of aluminium. A sharp notch was placed at

the mid-span with a perpendicular orientation to the longitudinal axis and the longest

length of the cross section, i.e. the height of the beam. One end of the beam was fixed

to the shaker table, and the other end was set free. Thirty specimens were set up with

crack depths ranging from 5 to 60% of the beam thickness. A similar test was performed

with simply supported beams. The analysis based on the effect of crack depth on the

natural frequency are shown in Figure 2.13.

Vakil Baghmisheh et al. (2012) carried out six beam experiments with different crack

positions and depths. The crack was created using a 0.5mm thickness saw. The di-

mension of the beam was 820mm length, 20mm width and 10mm thickness, made of

aluminium with density 2700 kg.m−3 . The beam was fixed free. Hammer testing was

performed by hitting at 90mm distance from the fixed end and the dynamic response

was measured by an accelerometer placed at 650mm from the fixed end. The results

were obtained using a FFT analyser. Figure 2.14 shows the experimental results of the

frequency response with and without crack.

Nahvi and Jabbari (2005) studied crack detection using experimental modal data and an

FE model. The cracked beam modelled was 290mm length, 22.5×13mm cross-section,
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Figure 3. Lowest transverse natural frequency ratio for a simply supported beam with a surface crack at
mid-span, versus the crack depth ratio a"a/h. Analytical results: (a) continuous crack model, equation (13); (b)
breathing crack, equation (28). Experimental results: s open crack; d, breathing crack.

to ensure the transition of the beam dynamic behaviour from that with a closed crack to
that with an open crack. Experimental results were in agreement with the breathing crack
behaviour, equation (28). Measurements were taken for crack depths up to 40% of the
width height, since for larger depths the cracks were partly open due to the crack formation
procedure followed. Then, the cracks were forced open and #exural vibration tests were
repeated. Experimental results comply with the open crack theory, equation (13).
Measurements with open cracks were taken for crack depths up to 60% of the width height,
which is of importance for engineering applications. For both sets of measurements the
experimental points are averages from tests but the spread of frequency measurements
about the points was very small.

6. CONCLUSIONS

Most of the researchers in the literature cited assumed in their work that the crack in
a structural element is open and remains open during vibration. This assumption was made
to avoid the complexities arising from the non-linear characteristics presented by
introducing a breathing crack. With the consistent one-dimensional cracked beam theory
used, an analytical approach to the bi-linear dynamic problem of the cracked beam has
been developed here. The crack was modelled as a continuous #exibility by using the
displacement "eld in the vicinity of the crack, found with fracture mechanics methods. The
e!ect of the breathing crack on the natural frequencies of vibration of a simply supported
beam was studied by solving piecewise linear equations and appropriate continuity
conditions. The method developed here leads directly to a new di!erential equation and

VIBRATION OF BEAM WITH BREATHING CRACK 65

Figure 2.13: Natural frequency versus crack depth ratio a
h where a = crack

depth, h = cross section hight
(a) continous crack model,
(b) breathing crack,
(white circle) experimental result of open crack,
(black circle) experimental result of breathing crack.
(Chondros et al., 2001)

2800 kg.m−3 density, 0.3 Poisson’s ratio, 175 GPa Young’s modulus. An impact hammer

test was performed using a 8202 B&K hammer and an accelerometer (PCB Triaxial ICP).

Nahvi and Jabbari (2005) used the first two natural frequencies to identify the crack in

the beam. To obtain the best results the beam was excited at various points along the

length, as shown in Figure 2.15. The test was repeated eight times.

The previous three research attempts repeatedly implemented a classic method using

force excitation and acquisition of the accelerometer data. Nevertheless, recently re-

searchers tend to use visual methods, since it is non-intrusive. To be exact, there is no

additional mass due to attaching an accelerometer. Moreover, there is no necessity to

use a roving hammer or accelerometer, owing to full-field imaging. Even more, the en-

vironment of the test could avoid connecting the test specimen to the analyser by wires

such as moving parts, for example blades or the propeller of turbines. The digital image

correlation was used in research as mentioned previously in section 2.4 by Romaszko

et al. (2015); Hagara et al. (2015).
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Fig. 9. Frequency response of a cantilevered beam.

Using the ME’scopeTM software, experimental modal data (nat-
ural frequencies) can be obtained by a curve fitting method using
the results of a set of frequency response function (FRF) measure-
ments. ME’scopeTM contains three built-in curve-fitting methods:
Quadrature Fit, Peak Fit, and Polynomial Fit [19]. We  used the Poly-
nomial Fit to extract the accurate natural frequencies of the beam
[19]. The frequency response of the beam is shown in Fig. 9 and
the results of natural frequency measurements for six experimen-
tal cases are shown in Table 5. After frequency measurements, four
lower natural frequencies are used for fault diagnosis, and the crack

Table 5
Measured natural frequencies for six experimental cases.

loc (mm)  dep (mm) f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz)

30 1 11.494 72.106 201.994 395.861
30  2 11.472 72.035 201.919 395.859
30 3 11.369 71.736 201.618 395.790

600 1 11.509 72.105 201.977 395.732
600 2 11.494 71.925 201.734 395.300
600 3 11.470 71.642 201.379 394.578

location and depth are estimated. The estimation results are shown
in Tables 6 and 7. The maximum, average and minimum of the
estimation errors are presented in Table 8.

The simulation results (test natural frequencies obtained from
the model) are better than the experimental ones, because of some
modeling errors, experimental uncertainties, and measurement
errors. In fact, our assumption of a rigid cantilever mounting is likely
to cause modeling errors.

To investigate the sensitivity of the suggested method to the
severity of crack and its position, we applied it to six damage cases
obtained by combining two different crack positions and three dif-
ferent crack depths. It is found that estimation error is reduced by
increasing the crack depth for the same locations (Tables 6 and 7).
Deviations in the natural frequencies due to the crack are larger
for deeper cracks, consequently these deviations become larger
than experimental noise. Also by increasing the distance of the
crack from the cantilevered end of the beam, the estimation error
is decreasing for similar crack depth.

The average values of experimental location and depth estima-
tion errors are (9.24%, 8.56%) for the PS–NM, however, they are
(9.64%, 9.50%), (10.89%, 10.89%), (11.53%, 11.64%) using GA–NM,

Table 6
Crack location and depth estimation results for experimental data.

Test point Exact value (mm)  Estimation results (mm)

loc dep PSO PS–NM

loc Error dep Error loc Error dep Error

1 30 1 34.5 15.00% 0.86 −14.00% 33.7 12.33% 0.88 −12.00%
2  30 2 33.4 11.33% 1.77 −11.50% 32.9 9.67% 1.84 −8.00%
3 30 3 32.9  9.67% 2.71 −9.67% 32.1 7.00% 2.81 −6.33%
4  600 1 670.8 11.80% 0.89 −11.00% 662.5 10.42% 0.9 −10.00%
5  600 2 662.9 10.48% 2.21 10.50% 655.6 9.27% 2.18 9.00%
6  600 3 642.2 7.03% 3.26 8.67% 640.4 6.73% 3.18 6.00%

Table 7
Crack location and depth estimation results for experimental data.

Test point Exact value (mm)  Estimation results (mm)

loc dep NN GA–NM

loc Error dep Error loc Error dep Error

1 30 1 34.7 15.67% 1.15 15.00% 33.9 13.00% 0.88 −12.00%
2  30 2 33.9 13.00% 2.24 12.00% 33.1 10.33% 1.81 −9.50%
3  30 3 33.2 10.67% 3.31 10.33% 32.4 8.00% 2.74 −8.67%
4 600  1 671.6 11.93% 1.12 12.00% 662.6 10.43% 0.9 −10.00%
5  600 2 663.8 10.63% 2.23 11.50% 655.8 9.30% 2.19 9.50%
6  600 3 643.8 7.30% 2.73 −9.00% 640.8 6.80% 3.22 7.33%

Table 8
Maximum, average and minimum estimation error for experimental data.

GA–NM NN PSO PS–NM

loc dep loc dep loc dep loc dep

Max. 13.00% 12.00% 15.67% 15.00% 15.00% 14.00% 12.33% 12.00%
Ave. 9.64% 9.50% 11.53% 11.64% 10.89% 10.89% 9.24% 8.56%
Min.  6.80% 7.33% 7.30% 9.00% 7.03% 8.67% 6.73% 6.00%

Figure 2.14: Frequency response of
a cantlever beam with and without
crack. (Vakil Baghmisheh et al.,
2012)

are closer to each other when crack location is in element 5. Hence, for the first approximation,
crack is located in any place on element 5; i.e., in the interval between 130 and 140mm from the
fixed end of the beam.

ARTICLE IN PRESS

Fig. 9. Schematic representation of the beam, points of excitation and point of accelerometer attachment.

Fig. 10. FRF diagrams of the beam: (a) uncracked beam; (b) cracked beam.

H. Nahvi, M. Jabbari / International Journal of Mechanical Sciences 47 (2005) 1477–14971490

Figure 2.15: Diagram represen-
tation of the beam, attachment
points of excitation and accelerom-
eter. (Nahvi and Jabbari, 2005)

Conclusion

An overview of the dynamic behaviour of a rotating cantilever beam with and without

crack provides a picture of the studies that focused on two main aspects that will con-

tribute to developing a new model of a rotating cracked cantilever beam. These aspects

are the modelling of a rotating beam and modelling of a cracked beam.

Each topic is well established, however in the case of studying rotating cracked beams

there is a lack of publications and many gaps are observed, such as considering the gy-

roscopic effect, which was introduced to the rotating intact beam after 2002. Regarding

the effect of cracks, open and breathing cracks are modelled and studied carefully in

non-rotating structures. In rotating structures, most research which deals with cracked

rotating structures discount the effect of stretch vibration and thus the coupling of modes

in the chordwise vibration. Nevertheless, investigation into rotating cracked beams still

needs to be extended as mentioned in Section 2.3.

Therefore, an aim of the research is to investigate the vibrational behaviour and control

of rotating beams with and without cracks. The primary contribution of this study

thus far is on introducing a crack modelled using fractional mechanics principles to

the rotating beam possessing three-dimensional described vibration (including flapwise,

chordwise and stretched vibration). Also, the gyroscopic effect is considered which cou-

ples the chordwise and stretch modes together. In addition to the crack, introducing a

new method of measuring will be applied using a digital image correlation method, which

is a non-invasive and remote measuring method. This study has a potential future ap-

plication in remote and non-invasive real-time health monitoring of rotating structures,

such as wind turbines or even in high speed rotating helicopter blades especially with the

vast improvement in camera sensors and computational speed. The next chapter covers

the original developments in modelling the intact and cracked rotating beam pursued

and developed in this study.





Chapter 3

Modelling of a rotating beam

with and without crack

3.1 Introduction

This chapter will provide an introduction to the modelling of a rotating cracked cantilever

beam. In general, beams have three main types of vibration which are extensional,

torsional and bending. Similarly, rotating cantilever beams can possess these three main

types of vibration. However, the focus of this thesis is on the bending and stretch modes.

As shown in Figure 3.1, the first type of motion is the flapwise motion, which is a lateral

bending motion perpendicular to the plane of rotation, i.e. out of the plane of rotation.

The second type of motion is the chordwise vibration, which is also bending motion

conversely it is parallel to the plane of rotation. While the third type of motion is called

a stretch, which occurs radial along the longitudinal axis of the beam. The rotational

motion applies a radially centrifugal force on the beam. This additional force tends to

stretch the beam in the axial direction and increase the beam natural frequencies.

In the first part of this chapter three different modelling approaches are developed for

a rotating beam. The equation of flapwise vibration of the rotating cantilever beam is

used first, employing a simple force equilibrium equation. This method is simple and

straightforward to use to formulate a model, but the representation of the motion is

limited to the flapwise vibration. Therefore, a more general description of the three-

dimensional motion of the flapwise and chordwise vibration of the rotating beam will be

derived using Lagrange’s equations as in Chung and Yoo (2002).

The equations of motion for the rotating beam will be solved numerically using a finite

element method (FEM). Regarding FEM, two types of rotating beam elements will be

generated. The first one is an element with two degrees of freedom at each node used

for the flapwise motion and the second model is one having three degrees of freedom at

25
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the nodes used for the chordwise vibration. This difference is related to the coupling of

chordwise and stretch motion and is independent of the flapwise motion. These elements

will be explained in detail in section 3.2.1.

Subsequently, a new three dimensional model of a rotating beam is developed utilizing

a variational method (Rayleigh-Ritz). The model proposed is based on a combination

of the shape functions for the static deflection of a tip loaded cantilever beam. Later,

the corresponding stiffness and mass matrices are obtained.

Next, the additional local flexibility that is generated by an open crack will be included

in the mathematical dynamic formulation by applying fracture mechanics’ principles.

The open crack is modelled as a massless spring, which creates a relationship between

the strain energy and the applied force on the structure as discussed by Dimarogonas

(1996); Zheng and Kessissoglou (2004).

Finally, the additional flexibility in the proposed model that is generated from the crack

is introduced to the system by subtracting the effect of the crack from the total potential

energy of the system when using Rayleigh Ritz method. This is instead of the typical

crack modelling, which considers two intact segments in the left and right of the crack

and the total potential energy of the system are obtained by summation the energy of

the intact parts and the massless spring.
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Figure 3.1: Rotating cantilever beam configuration.
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3.2 Modelling of a rotating uncracked cantilever beam

A rotating beam is considered as a homogeneous Euler-Bernoulli, uniform and isotropic

cantilever beam of a length L, with a cross sectional area A, Young’s modulus of elasticity

E and mass density ρ. It is attached to a rigid hub with radius r about an axis through

point O as shown in Figure 3.1. The cantilever beam and the rigid hub are rotating

about the vertical axis z with angular velocity Ω. The cantilever beam’s length is along

the x axis. The chordwise vibration occurs in the xy plane, parallel to the plane of

rotation, and flapwise vibration in the xz plane, perpendicular to the plane of rotation.

This coordinate system (xyz) rotates with the hub. According to many researchers (Kim

et al., 2013; Lima, 2012; Cheng et al., 2011), rotating cantilever beams can possess two

main types of vibration. The first one is the flapwise motion, which is perpendicular to

the plane of rotation and the second one is in the chordwise direction, which is parallel

to the plane of rotation, as shown in Figure 3.1.

The equation of motion for the lateral flapwise vibration of the beam subjected to an

axial force can be written as;(Rao, 2007)

ρA
∂2w

∂t2
+

∂2

∂x2

(
EI

∂2w

∂x2

)
− ∂

∂x

(
P
∂w

∂x

)
= f(x, t) (3.1)

where ρ, A, E, I, w, P and f represent the mass density, cross sectional area, modulus of

elasticity, second moment of area, transverse displacement, longitudinal axial force and

transverse lateral distributed force, respectively. For free vibration and uniform cross

section, Equation 3.1 can be rewritten as

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
− ∂

∂x

(
P
∂w

∂x

)
= 0 (3.2)

For a rotating beam, the axial force P is due to and equal to the centrifugal force in

Figure 3.2 and can be obtained from,

P (x) =

∫ L

x
ρAΩ2(x+ r)dx = ρAΩ2{r(L− x)− 1

2
(L2 − x2)} (3.3)

The equation of motion for the transverse vibration of the rotating beam can be obtained

by substituting Equation 3.3 into Equation 3.2;

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
− ρAΩ2 ∂

∂x

{
[r(L− x)− 1

2
(L2 − x2)]

∂w

∂x

}
= 0 (3.4)

For the free vibration of the rotating beam, a harmonic solution of the following form

is assumed.

w(x, t) = W (x) cos(ωt− φ) (3.5)
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where W , ω, φ are the amplitude, angular frequency and the phase of the vibration.

Substituting the solution, Equation 3.5, into Equation 3.4 yields,

− ρAWω2 + EI
d4W

dx4
− 1

2
ρAΩ2 d

dx

{
[r(L− x)− 1

2
(L2 − x2)]

dW

dx

}
= 0 (3.6)

and the boundary conditions assumed are

W (x) =
dW (x)

dx
= 0 , x = 0

d2W (x)

dx2
=
d3W (x)

dx3
= 0 , x = L (3.7)
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Figure 3.2: Lateral vibration of the beam subjected to an axial force P (x)

The exact solution of Equation 3.6 is difficult to obtain analytically due to the inclusion

of centrifugal force and the term d
dx(x2 dw

dx ). Nevertheless, an approximate method using

a numerical method such as the finite element method or the Rayleigh-Ritz method can

be used to solve this equation, as will be explained in detail in the next two sections.

3.2.1 An energy method using Chung and Yoo (2002)’s approach

Obtaining the equation of motion for the rotating cantilever beam using the continuous

system is already known. However, the result of this method is particular for the flapwise

vibration. In order to calculate both the flapwise and chordwise vibration, it is necessary

to use a general method that enables one to describe the system in three dimensions.

Most recent research (Chung and Yoo, 2002; Kim et al., 2013; Lima, 2012) follows an

energy method, which is firstly an evaluation of the displacement and the velocity of

the deflection. Then, calculation of both the Lagrangian functional and work done on

the system is used to derive the equations of motion, as explained later by applying an

extended Hamilton principle (Chung and Yoo, 2002). Finally, the equations of motion

can be solved by one of the numerical approximations.
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The extended Hamilton’s principle, which is based on the kinetic energy, potential energy

and the work done on the system, will be used to derive the differential equations of

motion. This principle can be expressed mathematically as

S =

∫ tf

ti

(L+W)dt = 0 (3.8)

where S is defined as the action integral (Thomsen, 2003), ti, tf represent the initial and

final time, respectively. L is known as Lagrangian functional or the Lagrangian density

function, and W represents the work done on the system by non-conservative forces.

The Lagrangian functional L is related to both kinetic KE and potential energy PE

and is given by the following equation,

L = KE − PE (3.9)

Replacing Equation 3.9 into Equation 3.8 and also taking into account that the vari-

ational and integration operators are interchangeable, Hamiltons principle can also be

stated as ∫ tf

ti

(δKE − δPE + δW)dt = 0 (3.10)

To estimate the kinetic energy of a mechanical system, the velocity field of the system

needs to be evaluated first, which requires a description of the velocity at any specific

point through a set of generalised coordinates. Let VQ represents the velocity vector of

any specific point Q in a mechanical system, the kinetic energy can then be expressed

as follows

KE =
1

2

∫ L

0
ρA V T

Q VQ dx (3.11)

where ρ and A are the material density and the cross-section area. The superscript T

denotes the transpose. It can easily be evaluated knowing the strain and stress fields of

the system. With ε as the strain field and σ as the stress field, the potential energy is

then estimated as,

PE =
1

2

∫ L

0

∫

A
εTσdx (3.12)

The strain field is derived from the displacement field via the Green’s tensor, while the

stress field is evaluated using the strains and the widely known elastic constants from

the generalized Hooke’s law.

According to Kim et al. (2013), the displacement of point Q to Q′, as shown in Figure 3.3,

can be expressed in terms of the component displacements ux, uy and uz where they

correspond to the axial, chordwise and flapwise deformations, respectively. There is a

geometrical relation between the length of the beam before and after the deformation

as given in Hh (1995) by
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x+ s =

∫ x+ux

0

[
1 +

(
∂uy
∂η

)2

+

(
∂uz
∂η

)2
] 1

2

dη (3.13)

where s represents the change in beam’s length (stretch) and η is a dummy variable.

The velocity of the point Q in Figure 3.4, can also be found from,

VQ = (u̇− Ωuy)i + [v̇ + Ω(r + x+ ux)]j + ẇk (3.14)
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Figure 3.3: Configuration of a rotating cantilever beam.
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Figure 3.4: Top view of the system, showing the relation between the angular
and linear velocity.

Following the result by Kim et al Kim et al. (2013), leads to a set of nonlinear partial

differential equations. After simplifying the differential equations and linearisation by
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neglecting higher order terms in the displacements, the following linear partial differen-

tial equations can be obtained,

ρA

(
∂2s

∂t2
− 2Ω

∂v

∂t
− Ω2s− Ω̇v

)
− EA∂

2s

∂x2
= ρAΩ2(a+ x) (3.15)

ρA

(
∂2v

∂t2
− 2Ω

∂s

∂t
− Ω2v − Ω̇s

)
+ EIz

∂4v

∂x4
− ρAΩ2 ∂

∂x

(
r(L− x) +

1

2
(L2 − x2)]

∂v

∂x

)
= pv

(3.16)

ρA
∂2w

∂t2
+ EIy

∂4w

∂x4
− ρAΩ2 ∂

∂x

(
[r(L− x) +

1

2
(L2 − x2)]

∂w

∂x

)
= pw (3.17)

where pv and pw are the applied forces per unit length along the beam in the y and z

directions and Iy, Iz are the second moment of area about the y and z directions. It

is interesting that Equation 3.15 and Equation 3.16 are coupled together, while Equa-

tion 3.17 is independent of the other two. The boundary conditions from Equation 3.7

are given by

s = v = w =
∂v

∂x
=
∂w

∂x
= 0 , x = 0,

∂s

∂x
=
∂2v

∂x2
=
∂2v

∂x2
=
∂3v

∂x3
=
∂3w

∂x3
= 0 , x = L. (3.18)

A solution which satisfies the governing equation of motion together with the bound-

ary conditions at every point over the domain is known as a strong form of solution.

Conversely, a weak form of solution satisfies the conditions in an integral sense.

Following this step, the weak forms need to be obtained from the strong forms that are

given by the partial differential equations and the corresponding boundary conditions.

To derive the weak forms for the equation of motions for the Euler-Bernoulli beam,

Eqs.(3.15)-(3.17) are multiplied by the weighting functions s̄, v̄ and w̄ respectively,

summed and integrated over the length L as follows.

For the chordwise

ρA

∫ L

0

[
s̄

(
∂2s

∂t2
− 2Ω

∂v

∂t
− Ω2s− Ω̇v

)
+ v̄

(
∂2v

∂t2
− 2Ω

∂s

∂t
− Ω2v − Ω̇s

)]
dx

+

∫ L

0

(
EA

∂s̄

∂x

∂s

∂x
+ EI

∂2v̄

∂x2

∂2v

∂x2

)
dx

+ ρAΩ2

∫ L

0

[
r(L− x) +

1

2
(L2 − x2)

]
∂v̄

∂x

∂v

∂x
dx

=

∫ L

0
{ρAΩ2(r + x)s̄+ [pv − ρAΩ̄(r + x)]v̄}dx (3.19)
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and for the flapwise

ρA

∫ L

0
w̄
∂2w

∂t2
dx+ EIy

∫ L

0

∂2w̄

∂x2

∂2w

∂x2
dx

+ ρAΩ2

∫ L

0

[
r(L− x) +

1

2
(L2 − x2)

]
∂w̄

∂x

∂w

∂x
dx

=

∫ L

0
w̄pwdx (3.20)

The displacements and weighting functions are now approximated by the shape functions

as

s̄ = (d̄sve )TNs; s = NT
s d

sv
e

v̄ = (d̄sve )TNv; v = NT
v d

sv
e

w̄ = (d̄we )TNw;w = NT
w d

w
e (3.21)

dsve = {se, ve, θe, se+1, ve+1, θe+1}T (3.22)

dwe = {we, ψe, we+1, ψe+1}T (3.23)

where dsve and dwe are the element displacement vector for the chordwise and flapwise

motion, respectively. d̄sve and d̄we are arbitrary vectors with the same dimensions of dsve

and dwe correspondingly. Finally Ns,Nv and Nw represent the trial shape functions.

Introducing these approximate solutions (3.21) in the weak equations given by Equa-

tion 3.19 and Equation 3.20, the integrations produce equations which can also be written

in a matrix form. This yields the discretized equations for the chordwise and flapwise

motion as,

N∑

e=1

(d̄sve )T {msv
e d̈

sv
e +2Ωgsve ḋ

sv
e +[ksve +Ω2(ssve −msv

e )+Ω̇gsve ]dsve } =
N∑

e=1

(d̄sve )T f sve (3.24)

N∑

e=1

(d̄we )T [mw
e d̈

w
e + (kwe + Ω2swe )dwe ] =

N∑

e=1

(d̄we )T fwe (3.25)

where msv
e , gsve , ksve and ssve are the element mass, the element gyroscopic, the element

stiffness and the element motion-induced stiffness matrices for the chordwise motion.

Meanwhile, mw
e , kwe and swe are same factors for flapwise motion. fsve and fwe are the

element load vectors for the chordwise and flapwise motions.
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The weak form requires the conversion of the continuous system to the discrete elements,

which can have degrees of freedom and can be solved by a finite element method or by

given shape functions using the Rayleigh-Ritz method. However, the next step is to

represent the system dynamics by a system of matrices and convert the weak form to

the equations of motion based on the mass and stiffness matrices.

Modelling of the beam element is widely known and mentioned in numerous textbooks

(Rao, 2005; Jochems et al., 2002). One of the significant tasks in producing the element

matrix is the element’s degrees of freedom at each node. Therefore, the beam elements

can be split into two cases. The first type of beam elements have two degrees of freedom

at each node, and they are the lateral displacement and slope. This type of beam

element is more suitable for flapwise vibration, which comprises vertical movement of

the cantilever beam above and under the plane of rotation. The second type of beam

element has three degrees of freedom according to the shape function for the element,

the movement left and right in the ZX plane; in addition, it has axial movement i.e.

longitudinal deformation. These two types of elements share the property that both of

them have two nodes. These two types of elements will be discussed in detail in the next

two sections.

Solving the system of differential equations using the finite element methods requires

discretization of the beam into n numbers of two-noded elements as shown in Figure 4.1,

where the numbers above and below of the beam in Figure 4.1 refer to the number of

the elements and nodes respectively, while s, v and w represent three DOFs of each

node of the element and they refer to the stretch, chordwise and flapwise direction of

deflection. The finite element shape function for both the flapwise and the chordwise

deformation can be expressed as a cubic polynomial as they are the consequence of the

bending moment and shear force. Whereas the stretch deformation can be expressed as

a linear polynomial as a result of an assumed longitudinal force only.

Figure 3.5: Configuration of the elements in the finite element method.
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According to the previous qualitative description the finite element shape functions

assumed are

s = a1 + a2x

v = a3 + a4x+ a5x
2 + a6x

3

w = a7 + a8x+ a9x
2 + a10x

3 (3.26)

where ai are the constant coefficients related to the deformation and slope at each node.

These deformations are se for stretch, ve for chordwise and we for flapwise also θe and

ψe represents slopes in chordwise and flapwise, respectively as shown in Figure 3.6. Note

that the subscript e refers to the element.
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(a) The chordwise motion.
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(b) The flapwise motion.

Figure 3.6: Finite element for the chordwise (three degrees of freedom for each
node) and flapwise motions (two degrees of freedom for each node).

Ns = {(xe+1 − x)/he, 0, 0, (x− xe)/he, 0, 0}T . (3.27)

Nv = {0, (x− x(e+1))
2(2x− 3xe + x(e+1))/h

3
e, (x− xe)(x− x(e+1))

2/h2
e,

0,−(x− xe)2(2x+ xe − 3x(e+1))/h
3
e, (x− xe)2(x− x(e+1))/h

2
e}T . (3.28)

Nw = {(x− x(e+1))
2(2x− 3xe + x(e+1))/h

3
e, (x− xe)(x− x(e+1))

2/h2
e,

− (x− xe)2(2x+ xe − 3x(e+1))/h
3
e, (x− xe)2(x− x(e+1))/h

2
e}T . (3.29)

where he represents the element size he = x(e+1) − xe.

In order to determine an approximate solution for equations (3.15)-(3.17), the weak forms

given by equations (3.19)-(3.20) are discretized using the two-noded beam elements
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defined above. After discretizing the domain [0, L] into sub domains [xe, xe+1], e =

1, 2, . . . , N, as shown in Figure 4.1, and then building the finite element global matrices

using for the chordwise,

msv
e = ρA

∫ xe+1

xe

(NsN
T
s +NvN

T
v )dx, (3.30)

gsve = ρA

∫ xe+1

xe

(NvN
T
s +NsN

T
v )dx, (3.31)

ksve =

∫ xe+1

xe

(
EA

dNs

dx

dNT
s

dx
+ EIz

d2Nv

dx2

d2NT
v

dx2

)
dx, (3.32)

ssve = ρA

∫ xe+1

xe

[
r(L− x) +

1

2
(L2 − x2)

]
dNv

dx

dNT
v

dx
dx, (3.33)

fsve =

∫ xe+1

xe

{ρAΩ2(r + x)Ns + [pv − ρAΩ̇(r + x)]Nv}dx, (3.34)

and for the flapwise

mw
e = ρA

∫ xe+1

xe

NwN
T
w dx, (3.35)

kwe = EIy

∫ xe+1

xe

d2Nw

dx2

d2NT
w

dx2
dx, (3.36)

swe = ρA

∫ xe+1

xe

[
r(L− x) +

1

2
(L2 − x2)

]
dNw

dx

dNT
w

dx
dx, (3.37)

fwe = pw

∫ xe+1

xe

Nwdx, (3.38)

where msv
e , gsve , ksve and ssve are the element mass, the element gyroscopic term, the

element stiffness and the element motion-induced stiffness matrices for the chordwise

motion. Meanwhile, mw
e , kwe and swe are the same parameters for the flapwise motion.

fsve and fwe are the element load vectors for the chordwise and flapwise motions.

Introduction of equations (3.26)-(3.35) into equations (3.19)-(3.20) yields the discretized

equations. The discretized equation for the chordwise is therefore,

Msvd̈sv + 2ΩGsvḋsv + [Ksv + Ω2(Ssv −Mcv) + Ω̇Gsv]dsv = fsv (3.39)

and for the flapwise it is

Mwd̈w + (Kw + Ω2Sw)dw = fw (3.40)
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3.2.2 Variational method (Rayleigh Ritz method) for chordwise and

flapwise vibration

The Rayleigh-Ritz method is based on the idea that a closer estimate to the lowest

eigen function can be obtained by superposing a number of admissible trial functions,

which are typically a set of polynomial equations that satisfy the boundary conditions

of the beam. If the assumed functions are suitably chosen, this method provides an

approximate value for the fundamental frequencies and corresponding mode shapes. An

arbitrary number of functions can be used, and the number of frequencies that can be

obtained is equal to the number of trial functions used. A large series of admissible

trial functions, although involving more computational work, generally leads to more

accurate results.

N represents the admissible functions and the subscript letter w refers to the the flapwise

direction. The admissible function Rw is assumed as a vector, which is a result of

the constant Ritz coefficients that satisfy the boundary conditions βw1,w2,w3,...,wn and

the shape functions Yw1,w2,w3,...,wn of the static deformation shapes of a non-rotating

uncracked cantilever beam that is subjected to a concentrated load on the free end. n

represent the number of shape functions used. The admissible and shape functions can

be expressed as Equation 3.41 and Equation 3.42 respectively.

Rw(x) = [βw1 βw2 βw3 .. βwn]




Yw1(x)

Yw2(x)

Yw3(x)

:

Ywn(x)




(3.41)

Ywn(x) =
(x
L

)(n−1)
(−Lx2

2
+
x3

6

)
(3.42)

Introducing the approximate solutions given by equation 3.21 and substituting into the

weak equations given by equation 3.19 and 3.20, the equations of motion can also be

written in a matrix form, yielding the discretised equations for the flapwise motion as

(d̄w)T [Mwd̈w + (Kw + Ω2Sw)dw] = (d̄w)T fw (3.43)

where Mw, Kw and Sw are the mass, stiffness and motion-induced stiffness matrices for

the flapwise motion. fw is the load vector for the flapwise motion. The subscript letters

w denote the flapwise direction and the matrix terms are
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Mw = ρA

∫ L

0
RwR

T
wdx, (3.44)

Kw = EIy

∫ L

0

d2Rw
dx2

d2RTw
dx2

dx, (3.45)

Sw = ρA

∫ L

0

[
r(L− x) +

1

2
(L2 − x2)

]
dRw
dx

dRTw
dx

dx, (3.46)

fw = pw

∫ L

0
Rwdx, (3.47)

According to Chung and Yoo Chung and Yoo (2002), the chordwise vibration is coupled

with the longitudinal or extensional vibration due to a gyroscopic effect and they are

both uncoupled with the flapwise vibration. Furthermore, the chordwise vibration can

be written as Chung and Yoo (2002),

( ¯dsv)
T {Msvd̈sv + 2ΩGsvḋsv + [Ksv + Ω2(Ssv −Msv) + Ω̇Gsv]dsv} = ( ¯dsv)

T
fsv (3.48)

where subscript letters s and v represent stretch and chordwise directions respectively.

Msv, Ksv, Gsv, Ssv and fsv are the corresponding mass, stiffness, gyroscopic, rotational

stiffness and external force matrices.

Msv = ρA

∫ L

0
(RsR

T
s +RvR

T
v )dx, (3.49)

Gsv = ρA

∫ L

0
(RvR

T
s +RsR

T
v )dx, (3.50)

Ksv =

∫ L

0

(
EA

dRs
dx

dRTs
dx

+ EIz
d2Rv
dx2

d2RTv
dx2

)
dx, (3.51)

Ssv = ρA

∫ L

0

[
r(L− x) +

1

2
(L2 − x2)

]
dRv
dx

dRTv
dx

dx, (3.52)

fsv =

∫ L

0
{ρAΩ2(r + x)Rs + [pv − ρAΩ̇(r + x)]Rv}dx, (3.53)

where the static deflection function for the chordwise bending and longitudinal vibration

can be expressed similar to the flapwise admissible Equation 3.41 and shape functions

equation Equation 3.42 and the chordwise bending admissible and shape functions equa-

tions become Equation 3.54 and Equation 3.55 respectively. The chordwise longitudinal

admissible and shape functions become Equation 3.56 and Equation 3.57 respectively.

Rv(x) = [βv1 βv2 βv3 .. βvn]




Yv1(x)

Yv2(x)

Yv3(x)

:

Yvn(x)




(3.54)
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Yvn(x) =
(x
L

)n−1
(−Lx2

2
+
x3

6

)
(3.55)

Rs(x) = [βs1 βs2 βs3 .. βsn]




Ys1(x)

Ys2(x)

Ys3(x)

:

Ysn(x)




(3.56)

Ysn(x) =
(x
L

)n−1 (x
L

)
(3.57)

3.3 Crack modelling

3.3.1 Crack modelling using the Finite Element Method

According to fracture mechanics theory, an open crack in a structure can be considered

as a source of additional local flexibility because of the increase in the strain energy in

the area surrounding the crack tip. The idea of substituting massless springs instead of

a crack is to create the relationship between the strain energy and the applied loads as

shown in Figure 3.7. The flexibility coefficients are stated in terms of stress intensity

factors (SIF).

Applying Castigliono’s theorem, the linear elastic deflections are determined based on

the partial derivatives of the energy (Silani et al., 2013; Zheng and Kessissoglou, 2004).

In Figure 3.8, the generalized loading conditions is shown for a beam with a rectangular

cross section and an open edge surface crack. The beam is loaded statically with an axial

force, P1, shear forces, P2 and P3, bending moments, P4 and P5, and torsional torque,

P6. However, determining the additional flexibility can be achieved using Hooke’s law,

which introduces the stiffness that relates the force acting and the resulting deflection

displacement. The flexibility can also be calculated from this law using equation (3.58).

cij =
∂δi
∂Pj

, (i, j = 1, 2, 3). (3.58)

In this equation cij , δi, Πc and Pi represent the additional flexibility, the displacement,

the additional strain energy and the effective loads respectively, and can be obtained

from Castiglione’s second theorem.
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Figure 3.7: Modelling the crack as a massless torsional spring.

Figure 3.8: Beam with an open crack under generalized loading condition.

δi =
∂Πc

∂Pi
(3.59)

Πc =

∫

Ac

JdA (3.60)

where Ac is the effective crack area and J is the strain energy release rate function

expressed as (Tada et al., 2000a).

J =
1

E′



(

n∑

i=1

κIi

)2

+

(
n∑

i=1

κIIi

)2

+

(
n∑

i=1

κIIIi

)2

 (3.61)

For plane stress problem (Zheng and Kessissoglou (2004)) E′ = E and for the plane

strain problem E′ = E/(1− µ2) , κs are the stress intensity factors (SIF) due to forces.
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I, II, III represent the modes of the crack namely opening, sliding and tearing respec-

tively, and i = 1, 2, 3, ..., n related to the applied loads on the beam P1, P2, P3, ..., Pn. In

this study, the in-plane vibration beam model is developed. The applied forces are shown

in Figure 3.9. Rearranging Equation 3.61 to match the case of the in-plane vibration

Ibrahim et al. (2013), yields

Figure 3.9: Beam with an open crack under in-plane loads condition

J =
1

E′

[
(κI1 + κI2 + κI3)2 + (κII2)2

]
. (3.62)

where according to Ozturk et al. (2016) the SIF for each force and mode becomes

κI1 =
P1

bh

√
πξF1 (3.63)

κI2 =
3P2Lc
bh2

√
πξFI (3.64)

κI3 =
6P3

bh2

√
πξFI (3.65)

κII2 =
P2

bh

√
πξFII (3.66)

where ξ is the crack depth, Fi is the correction factors of the SIF. Notice that a is the

final crack depth, whereas ξ is the depth within the process of going from zero crack

depth to final depth a, which is the maximum crack depth.
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F1 =

√
2

πξ
tan

πξ

2

0.752 + 2.02ξ + 0.37
[
1− sin

(
πξ
2

)]3

√
cos
(
πξ
2

) (3.67)

FI =

√
2

πξ
tan

πξ

2

0.923 + 0.199
[
1− sin

(
πξ
2

)]4

√
cos
(
πξ
2

) (3.68)

FII = (3ξ − 2ξ2)
1.122− 0.561ξ + 0.085ξ2 + 0.18ξ3

√
1− ξ (3.69)

Substituting Equations 3.59 to 3.67 into Equation 3.58, yields,

cij =
∂2

E′∂Pi∂Pj

∫ a

o

[
P1

bh

√
πξF1 +

3P2Lc
bh2

√
πξFI +

6P3

bh2

√
πξFI

]2

+

[
P2

bh

√
πξFII

]2

dξ

(3.70)

where cij is the additional flexibility that results from the existence of a crack.

One considers the additional local flexibility due to the existence of the crack by updat-

ing the global stiffness matrix of the uncracked rotating beam. The updated stiffness

matrix is calculated by replacing the corresponding terms in the uncracked beam stiff-

ness element where the crack is introduced. The stiffness of the cracked element is

obtained by adding the local flexibility cij due to the crack to the flexibility of the intact

beam element. This is then used to find the local stiffness of the cracked element and

substituted into the original stiffness matrix.

N∑

e=1

(d̄sve )T {msv
e d̈

sv
e +2Ωgsve ḋ

sv
e +[kcsve +Ω2(ssve −msv

e )+Ω̇gsve ]dsve } =
N∑

e=1

(d̄sve )T f sve (3.71)

N∑

e=1

(d̄we )T [mw
e d̈

w
e + (kcwe + Ω2swe )dwe ] =

N∑

e=1

(d̄we )T fwe (3.72)

where kc represent the stiffness of a cracked beam.

As a result, in this chapter all the main equations of motion are derived. Firstly, the

equation of motion for the flapwise vibration are developed from the continuous system

approach (force equilibrium) as in Equation 3.6. Secondly, the equations of motion for

both the flapwise and chordwise are derived using an energy method, which is a general

method for this situation and it is based on the Hamiltonian principle as in Equation 3.15

to Equation 3.17. Moreover, new equations of motion for the cracked rotating beam are
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developed by modelling a linear open crack using fracture mechanic principles. The

additional flexibility, which is generated by the crack, is calculated using the strain

energy release rate as in Equation 3.61, then Castigliono’s theorem Equation 3.60. The

final formulae for the cracked rotating beam are Equation 3.71 for the chordwise and

Equation 3.72 for flapwise.

In this section, the crack element will be developed from fracture mechanics, which is

explained in section 3.3. The flexibility can be calculated by substituting (3.59) into

(3.58).

cij =
∂2Π

∂Pi∂Pj
(3.73)

where cij , Π and Pi,j are the flexibility, the displacement and the effective loads, respec-

tively. The displacement Πc and Πi for the cracked and intact element respectively are

equal to

Πc =
b

E

∫ a

0
(κI1 + κI2 + κI3)2 + (κII2)2da (3.74)

Πi =
P 2

3L

2EI
+
P3P2L

2

2EI
+
P 2

2L
3

6EI
+
P 2

1L

2EA
(3.75)

The total flexibility coefficient for crack element is

cij = ciij + ccij (3.76)

The element stiffness matrix of the crack element can be found from the equation,

kc = T T c−1 T (3.77)

where T represents the transformation matrix, which is obtained from the equilibrium

condition see Figure 3.10.

[P1l P2l P3l P1r P2r P3r]
T = T [P1r P2r P3r]

T (3.78)

For flapwise vibration the transformation matrix is equal to

T =

[
−1 −l 1 0

0 −1 0 1

]T
, (3.79)

for chordwise vibration the transformation matrix is equal to
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Figure 3.10: Applied force on the chordwise cracked element. Subscripts r, l
refer to the right and left hand ends of the element.

T =



−1 0 0 1 0 0

0 −1 l 0 1 0

0 0 −1 0 0 1




T

(3.80)

where l represents the element length.

3.3.2 Introduction of a crack in the Rayleigh-Ritz model

Regarding fracture mechanics theory, an open crack in a structure can be considered as

a source of additional local flexibility because of the increase in the strain energy in the

area surrounding the crack tip. The idea of substituting massless springs instead of a

crack is to create the relation between the strain energy and the applied loads as shown

in Figure (3.11).

 

Figure 3.11: Modelling the crack using a massless torsional spring. The potential
energy of the rotational massless spring is subtracted from the total potential
energy of the intact beam using the rotations on the faces of the opening crack.
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The typical method of modelling a cracked beam is based on dividing the beam into two

segments and building a relationship between two sides using the compatibility condi-

tions. The transverse displacement, bending moment and shear force are equal through

the cracked edge. Nevertheless, the presence of the crack introduces a discontinuity or

change in the slope of the beam, which is proportional to the bending moment that is

transmitted through the cracked section. For the axial vibration, it is assumed that the

tensile force is the same through the cracked segments. However, the axial displacement

is proportional to the transmitted force through the crack, and it is proportional to

the tensile force. The bending and axial discontinuity can be expressed as presented in

Fernández-Sáez et al. (1999) and Ibrahim et al. (2013).

Θ2 = Θ1 + ∆Θ, ∆Θ = Cv,wP3 (3.81)

s2 = s1 + ∆s, ∆s = CsP1 (3.82)

where ∆Θ, C, P3 represent slope discontinuity, flexibility constant and the bending

moment transmitted through the crack section. ∆s and P1 represent the discontinuity

of axial displacement and tensile force respectively. The flexibility constant is dependent

on the geometrical dimension of the cross section and can be derived from the stress

intensity factor κc (SIF).

κc = σ
√
πaF

(a
h

)
(3.83)

here σ, a, h and F are the stress according to the bending moment or tensile force,

crack depth, beam thickness and correction factor respectively. F depends on the crack’s

mode and force configurations. The stress σ and the correction factor F for the bending

moment and opening mode can be obtained from Zheng and Kessissoglou (2004); Eroglu

and Tufekci (2016). P1, P2 and P3 refer to the longitudinal load, shear load and bending

moment respectively (see Figure 3.9). The subscripts I and II are for the opening and

sliding modes of crack.

σP3 =
6P3

bh2
(3.84)

FIP3 =

√
2

πξ
tan

πξ

2

0.923 + 0.199
[
1− sin

(
πξ
2

)]4

√
cos
(
πξ
2

) (3.85)

The effect of the sliding mode is neglected in this study due to its very small effect relative

to the opening bending moment mode. For shorter and thicker beam this sliding mode

becomes more considerable defect. The stress and error function in Equation 3.86 to
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Equation 3.88 are for the sliding mode.

σIP2 =
3P2

bh2
(3.86)

σIIP2 =
3P2

bh
(3.87)

FIIP2 = (3ξ − 2ξ2)
1.122− 0.561ξ + 0.085ξ2 + 0.18ξ3

√
1− ξ (3.88)

where b represents the beam width and the crack depth to thickness ratio ξ = (a/h),

while for the tensile and opening mode, are

σP1 =
P1

bh
(3.89)

FIP1 =

√
2

πξ
tan

πξ

2

0.752 + 2.02ξ + 0.37
[
1− sin

(
πξ
2

)]3

√
cos
(
πξ
2

) (3.90)

These error functions, reported by Tada et al. (2000b), are accurate to better than 0.5%

for any crack depth ratio ξ. The total strain energy of the elastic deformation of the

crack is given by,

PEtotal =

∫

Ac

J dAc (3.91)

where J is the elastic energy available per unit increase in the crack surface area. The

width of the crack is fixed i.e. dAc = b da and the integration is applied along the depth

of the crack which is a.

J =
κ2
c

E
(3.92)

Substituting equations 3.83-3.92 into equation 3.91, yields

PEP3 =

(
3πP 2

3 h

EI

)∫ a

0

( a
h2

)
F 2
IP3

da (3.93)

PEP1 =
πP 2

1 h

EA

∫ a

0

( a
h2

)
F 2
IP1

da (3.94)

where PEP3 is the strain energy due to the bending and PEP1 is the tensile strain energy

due to tension. Utilizing Castigliano’s theorem (Chondros and Dimarogonas (1998)), the

change in the rotation angle ∆Θ and the change in the stretch length ∆s corresponding

to the applied moment and longitudinal force can be expressed as,

∆Θ =
∂PEP3

∂P3
(3.95)

∆s =
∂PEP1

∂P1
(3.96)
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Finally, the additional flexibility in flapwise Cw, chordwise Cv and stretch Cs directions

due to the presence of the opening crack can be expressed as

Cv = Cw =
∆Θ

P3
(3.97)

Cs =
∆s

P1
(3.98)

According to this approach, an admissible function of the non-rotating intact beam

satisfies the boundary conditions and it is used directly without any modification. The

potential energy of the system is modified to include the effect of the extra flexibility

due to the existence of the crack.

The potential energy of the non rotating intact beam can be expressed as,

PEP3−intact−nonrotate =
EI

2

∫ L

0

d2Rv,w
dx2

d2RTv,w
dx2

dx (3.99)

PEP1−intact−nonrotate =
EA

2

∫ L

0
RsR

T
s dx (3.100)

The additional potential energy due to the centrifugal effect on the intact beam can be

written as,

PEcentrifugal =
1

2
Ω2ρA

∫ L

0
(r(L− x) +

1

2
(L2 − x2)

dRv,w
dx

dRTv,w
dx

dx (3.101)

Finally, the presence of additional flexibility due to the crack can be represented by a

massless rotational spring and the corresponding potential energy in the spring has two

components, which can be expressed as (Afshari and Inman (2012)),

PEP3−crack =
1

2
(∆Θ)P3 =

1

2
EICv,w

(
d2Rv,w
dx2

d2RTv,w
dx2

)
(3.102)

PEP2−crack =
1

2
(∆s)P1 =

1

2
EACs(RsR

T
s ) (3.103)

The kinetic energy of the system KE is equal to the kinetic energy of the beam itself,

i.e.

KEflapwise =
1

2
ρA

∫ L

0
Rw R

T
wdx (3.104)

KEchordwise =
1

2
ρA

∫ L

0
(RsR

T
s +Rv R

T
v )dx (3.105)

The Rayleigh-Ritz method can now be employed after determining the kinetic and po-

tential energies of the system.
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When applying the mode shapes of the uncracked beam as the admissible functions

for the Rayleigh-Ritz approximation, the maximum strain energy needs to be altered

to account for the reduction of the energy as a result of the presence of the crack.

This energy reduction is proportional to the amount of additional flexibility due to the

rotational spring. As a result, the total potential energy of the cracked rotating beam is

equal to the summation of the potential energy of the uncracked beam and the additional

potential energy due to the centrifugal force with subtraction of the potential energy of

the massless rotating spring representing the crack.

PEtotal = PEintact−nonrotate + PEcentrifugal − PEcrack (3.106)

Substituting equations 3.99-3.100, 3.101 and 3.102-3.103 into equation 3.106 provides

the total strain energy of the system for the flapwise vibration and the equations 3.104-

3.105 gives the kinetic energy. These two energies were subsequently used to calculate

the flapwise and chordwise natural frequency of the rotating cracked cantilever beam.

3.4 Summary of the modelling approaches

In this chapter, a rotating cracked beam was modelled using force equilibrium for the

flapwise motion. Using this model the equations of motion were derived by applying

Hamilton’s principle for both the flapwise and chordwise vibration. Then, the residual

weight function is applied to convert the equations of motion to a weak form. The

discretised system can then be solved using two approximate methods, which are the

finite element and the Rayleigh Ritz methods.

The finite elements chosen are based on two different types of beam elements; the first

type have two degrees of freedom at each node, which are the lateral displacement and

slope. The second element type have three degrees of freedom at each node, which are

the longitudinal and lateral displacements and the slope. In the Rayleigh Ritz method,

the entire beam is selected as a one domain and the static deflection of a tip loaded

cantilever beam is selected as shape functions terms for the admissible functions for the

bending mode and axial deformation for the stretch mode.

Regarding the crack modelling, in the finite element model the crack is presented as a

connection between the two segments comprising beam elements. The assumption of this

connection is built upon continuity in the shear force, bending moment and the lateral

deformation of the two cracked edges. The formulation given have follows from analysis

previously presented from static analysis. However, the effect of the crack appears in

the discontinuities of the slope. On the other hand, the crack is introduced into the

intact beam by applying the Rayleigh Ritz method. The additional flexibility due to

the crack is subtracted from the total potential energy of the intact rotating beam. The
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most significant advantage of this approach is that the beam shape functions due to the

crack are unchanged and correspond to a series of functions based on the deformation

of tip loaded intact cantilever beam.

The numerical solution for these model will be presented in detail in the following chap-

ter, including the comparison between the two approaches, which are the FE model and

the Rayleigh Ritz implementation. Their relative accuracy, computational effect and

limitations will be presented and discussed.



Chapter 4

Numerical results

In this chapter numerical results will be presented using both the finite element mod-

els and the Rayleigh-Ritz method, which were developed and derived in the previous

chapter. The numerical simulations will start with defining the dimensions of the beam.

Then the results for uncracked non-rotating and rotating beams will be shown. Next,

the results for an open cracked rotating beam will be presented. Finally, the simulations

of a bilinear cracked beam will be given and discussed with conclusions. Various pa-

rameter studies will be undertaken and explained. For the convenience of the discussion

and for the sake of comparison with results in the literature, the following dimensionless

parameters will be introduced.

δ =
r

L
, α =

√
AL2

Iz
, γ =

Ω

ωn1

, $ =
ω

ωn1

, (4.1)

where δ, α, γ, $ and ωn1 represent the hub ratio, the slenderness ratio, the angular

speed ratio, the frequency ratio and the fundamental natural frequency of an identical

but non-rotating cantilever beam, respectively.

4.1 Simulation model properties

The dimensions and properties of material were selected to simplify the analysis, as

given in Figure 4.1 and Table 4.1, where the value of α is set to 70 to compare with the

previously published study by Chung and Yoo (2002). This value of α is based on the

dimensionless relationship between the cross section and the length of the beam. The

beam cross section was chosen to be square, and the beam length long enough so that

the beam would satisfy EulerBernoulli beam theory. In addition, changing the value of α

for a fixed length of the beam means a change in the thickness of the beam when having

the rectangular cross section. For example, multiplying α by 2 for the fixed length of

49
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the beam means reducing the height of the beam to half. In contrast, dividing the α by

2 means increasing the height of the beam to the double for the same beam length.

Whilst the main focus of this chapter is a presentation of the results of the newly

developed models, at the end of the chapter there is some coverage of a simple model

for a breathing crack for completeness.

Figure 4.1: Configuration of a rotating cantilever beam.

property quantitiy

beam length(L) 0.5m
height(h) 0.0247m
width(b) 0.0247m

density(ρ) 2770 kg.m−3

elasticity(E) 7.1×1010 Pa
poison ratio(v) 0.33

Table 4.1: Model properties of the square section beam

4.2 Beam without crack

The numerical results for a rotating intact cantilever beam are examined first. Table 4.2

reproduces results from Chung and Yoo (2002), where one can see how the first four

natural frequencies for a stationary beam are converging with increased number of ele-

ments in the FEM model. Similar convergence can be observed using the Rayleigh-Ritz

method when increasing the number of shape functions, as given in Table 4.3. Notice

that, the number of frequencies is equal to the number of trial functions in the Rayleigh-

Ritz method. For example, in Table 4.3 when the number of trial functions is equal to 1

only the fundamental natural frequency is calculated. Also, for the number of elements

greater than 10 in the FEM model and the number of functions greater than 3 in the

Rayleigh-Ritz method, the results for the fundamental natural frequency are in good

agreement. The time is included for a MATLAB calculation for relative comparison

only. In addition, for the stationary non-rotating square section cantilever beam the

first seven flapwise frequencies are equal to the first nine chordwise frequencies, except



Chapter 4 Numerical results 51

for the fourth and eighth, since for a stationary beam the chordwise bending and axial

vibration is uncoupled, as shown in Table 4.4.

No. of elements 1st 2nd 3rd 4th Time(sec)

5 1 6.270 17.610 34.789 0.2145
10 1 6.267 17.552 34.419 0.4277
20 1 6.267 17.548 34.388 0.6343
40 1 6.267 17.547 34.386 0.8337
60 1 6.267 17.547 34.386 1.0508
80 1 6.267 17.547 34.386 1.2996
100 1 6.267 17.547 34.386 1.4671

Exact 1 6.267 17.547 34.386

Table 4.2: Convergence of the dimensionless natural frequencies for the non-
rotating intact cantilever beam using FEM

No. of trial functions 1st 2nd 3rd 4th Time(sec)

2 1 7.629 0 0 0.0659
3 1 6.315 26.985 0 0.0767
4 1 6.292 18.077 66.200 0.0876
5 1 6.269 17.908 36.754 0.0929
6 1 6.267 17.571 36.233 0.1035
7 1 6.267 17.550 34.515 0.1085
8 1 6.267 17.547 34.427 0.1230
9 1 6.267 17.547 34.388 0.1428

Exact 1 6.267 17.547 34.386

Table 4.3: Convergence of the dimensionless natural frequencies $ for the non-
rotating intact cantilever beam using the Rayleigh-Ritz method

No. Frequency Chordwise Flapwise

1st 1 1
2nd 6.267 6.267
3rd 17.547 17.547
4th 31.328 -
5th 34.386 34.387
6th 56.858 56.860
7th 86.005 86.004
8th 95.245 -
9th 122.855 122.837

Table 4.4: Dimensionless natural frequencies $ of the non-rotating intact square
section cantilever beam using the Rayleigh-Ritz method

Regarding the mode shapes, the comparison between this work and that by Chung

and Yoo (2002) also shows an excellent agreement for various rotational speeds. The

comparison is done by applying the Modal Assurance Criterion (MAC), which is a
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statistical indicator of the correlation in the mode shapes. The general formula for the

MAC, as given in Pastor et al. (2012)

MAC(r, q) =
|{QA}Tr {QX}q|2

({QA}Tr {QA}r)({QX}Tq ){QX}q
(4.2)

where {QX}q and {QA}r represent the respective eigenvectors coming from the FEM in

Chung and Yoo (2002) method and corresponding point position of this work (Rayleigh

Ritz), respectively, and the superscript T refers to the transpose of the the vector matrix.

When the MAC is 1, there is a perfect agreement and a MAC of 0, means there is no

correlation between the two results.

In the MAC plot, given in Figure 4.2, the abscissa axis represents the mode shapes

calculated by the Rayleigh-Ritz Method, and the ordinate axis represents the mode

shapes calculated by the FE model. The red squares show the matching modes. When

the cantilever beam is non-rotating, the MAC for the chordwise vibration is shown in

Figure 4.3. The 4th and 8th modes represent the longitudinal vibration likewise when

the beam is rotating γ = Ω
ω1

= 7.11 the 4th and 7th similar effect can be observed at

γ = 14.22 and γ = 28.44.
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(a) MAC in flapwise vibration at γ=0
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(b) MAC in flapwise vibration at γ=7.11
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(c) MAC in flapwise vibration at γ=14.22
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(d) MAC in flapwise vibration at γ=28.44

Figure 4.2: The MAC plots for the flapwise vibration at non-rotating γ = 0 and
for rotating speeds ratio γ = 7.11, 14.22 and 28.44 (γ = Ω

ωn1
)
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(a) MAC for the chordwise vibration at γ=0
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(b) MAC in chordwise vibration at γ=7.11
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(c) MAC in chordwise vibration at γ=14.22
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(d) MAC in chordwise vibration at γ=28.44

Figure 4.3: The MAC plots for the chordwise vibration at non-rotating γ = 0
and for rotating speeds γ = Ω

ωn1
= 7.11, 14.22 and 28.44
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4.2.1 Flapwise vibration of a rotating cantilever beam

Flapwise vibration is described in chapter 3 as the vibration that appears in a plane per-

pendicular to the plane of rotation. Nevertheless, this vibration is affected by numerous

parameters, such as the rotational speed, hub ratio and beam slenderness. All of these

factors produce variations in the natural frequency of the rotating cantilever beam.

Table 4.5 shows a comparison between the results obtained by the Rayleigh-Ritz method

with results reproduced from Chung and Yoo (2002), and the solid finite element model

assembled using the commercial FE software ANSYS. Substantial agreement in the final

results is achieved and the accuracy of Rayleigh-Ritz method is validated. The maximum

percentage error between the finite element (Chung and Yoo, 2002) and present work

(Rayleigh-Ritz method) is equal to 0.006% at zero speed for the flapwise vibration. This

error value becomes less for γ within the range of 0 - 2.844 non-dimensional rotational

speed.

As shown in Figure 4.4, increasing the rotational speed leads to an increase in the dimen-

sionless natural frequency, due to the tension that is generated from centrifugal forces.

Note that the natural frequencies for the flapwise vibration monotonically increase with

rotating speed.

In additional to the rotational speed, there is another parameter, which significantly

affects the natural frequencies of the rotating cantilever beam, which is the hub ratio.

The increase in the hub ratio for a fixed length cantilever leads to an increase in the

natural frequencies due to a proportional relationship between the stiffness and the

centrifugal force as shown in Figure 4.5.

Finally, from Table 4.6, one can see the slenderness ratio α has a negligible effect on

the dimensionless natural frequency of the flapwise vibration, where the results are

divided by the fundamental natural frequency of the non-rotating beam with the same

slenderness dimensions.
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frequency ω̄
γ Chung and Yoo 2002 ANSYS RRM Error %

0 1.000 1.001 1.000 0.006
0.284 1.047 1.048 1.047 0.000
0.569 1.177 1.177 1.177 0.000
0.853 1.364 1.364 1.364 0.002
1.138 1.588 1.588 1.588 0.000
1.422 1.834 1.833 1.834 0.000
1.706 2.093 2.091 2.093 0.001
1.991 2.360 2.357 2.360 0.000
2.275 2.633 2.629 2.633 0.000
2.560 2.908 2.903 2.908 0.001
2.844 3.186 3.180 3.186 0.000

Table 4.5: Comparison between different methods for the fundamental natural
frequency of the flapwise vibration (Chung and Yoo (2002), FE using ANSYS
and Rayleigh-Ritz model)
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Figure 4.4: First five natural frequencies of flapwise vibration of a rotating
cantilever beam
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Figure 4.5: The effect of the hub ratio (δ)on the dimensionless fundamental
natural frequency ($) for three rotational speeds (γ).

γ α = 17.5 α = 35 α = 70 α = 140 α = 280.5

0 1.000 1.000 1.000 1.000 1.000
2.844 3.186 3.186 3.186 3.186 3.186
5.688 6.006 6.006 6.006 6.006 6.006
8.532 8.844 8.844 8.844 8.844 8.843
11.38 11.685 11.684 11.685 11.684 11.685
22.753 23.065 23.063 23.065 23.063 23.065
25.597 25.916 25.914 25.916 25.914 25.916
28.441 28.763 28.766 28.763 28.766 28.763

Table 4.6: The effect of the slenderness ratio on the flapwise vibration for various
non-denominational rotational speeds γ.
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4.2.2 Chordwise vibration of a rotating cantilever beam

Chordwise vibration, described in chapter 3, is the vibration that takes place in a plane

parallel to the plane of rotation. However, this vibration and the corresponding natural

frequency is affected by numerous factors, for instance, the rotational speed of the beam,

the hub ratio and the slenderness ratio. Furthermore, there are several different critical

behaviours of the rotating cantilever beam such as veering phenomena, critical speed

and buckling speed.

Table 4.7 illustrates a very good agreement in the fundamental dimensionless natural

frequency for the chordwise vibration calculated by this study, the work by Chung and

Yoo (2002) and an FEM model using ANSYS, for α = 70 and various values of hub

ratio δ and speed ratio γ. The maximum percentage error between this work and the

previous one Chung and Yoo (2002), is equal to 1.264 at δ = 1 and γ = 0.569.

Regarding the rotational speed, as in flapwise vibration, the natural frequencies are

changing with the changes in the angular velocity. Seemingly in Figure 4.6(a), the ex-

istence of the gyroscopic coupling influences the bending and stretching modes created

by a rotational motion, which results in the veering phenomena in the natural frequency

versus speed plot. The veering phenomena occurs when the natural frequency of two

different modes become closer to each other. In chordwise vibration, the veering phe-

nomena arises due to coupling of bending and stretching modes. For example, when

roughly γ = 7.5 the 3rd and 4th natural frequencies veer together for a slenderness ratio

of α = 70 while the 5th and 6th natural frequencies veer at about γ for slenderness ratio

of α = 17.5 (see Figure 4.6).

Figure 4.7, shows in detail the veering points for the lower natural frequencies. The cir-

cles V1, V2 and V3 indicate the veering phenomena. The 3rd, 5th and 6th dimensionless

natural frequencies correspond to the modes that are veering from being primarily bend-

ing vibration to longitudinal vibration in V1 and V3, as illustrated in Figure 4.7(b) to

Figure 4.7(j). For example the 3rd frequency is veering from the third mode shape of

bending vibration as in Figure 4.7(b) to the first mode of stretch vibration as in Fig-

ure 4.7(c). However, the 4th and the 6th are veering from longitudinal vibration to

bending vibration at V1 and V2. For instance, the 4th dimensionless natural frequency

is veering from the first mode of longitudinal vibration as in Figure 4.7(d) to the 3rd

dimensionless natural frequency of the bending mode as in Figure 4.7(e).

Another noticeable fact is the existence of potential instability, when the fundamental

natural frequency of the chordwise vibration reduces to zero. This speed can be defined

as the critical speed or buckling speed as discussed in Lima (2012); Chung and Yoo

(2002).

Considering the slenderness of the beam, Figure 4.6(b) shows how the values of the slen-

derness ratio affects the rotating beam. Increasing the slenderness leads to an increased
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chance of veering at low frequencies, since the beam becomes thinner and more able

to bend than to stretch. While decreasing the slenderness ratio means a thicker cross

section and the probability of veering at low frequencies is reduced.

Finally, the most significant feature is the resonance issue and the matching between

the rotational speed and the fundamental natural frequency of the chordwise vibration.

The rotational speed γ and chordwise dimensionless fundamental natural frequency $

become equal when γ is approximately equal to 1.1 in Figure 4.8(a). This problem is not

apparent in the flapwise vibration when inspecting Figure 4.8(b). An additional factor

that plays a part in increasing the natural frequency is the hub ratio δ, which enhances

the radius of the hub, leading to an increase in the natural frequencies as shown in

Figure 4.9. One can also see that increasing the hub ratio eliminates the critical speed

issue, as illustrated in Figure 4.9 where the figure shows the relationship between the

rotational speed and dimensionless fundamental frequencies. Each of these coloured

curves represent the fundamental frequency for a different hub ratio. When the hub is

removed, i.e. the hub ratio is equal to δ = 0, the intersection occurs with the Ω = γ

line which represents the dimensionless natural frequency being equal to the rotational

speed, occurs again at around γ = 1.1.

δ γ ANSYS Chung and Yoo 2002 RRM Error %

0 0.569 1.028 1.029 1.029 0
2.844 1.422 1.413 1.413 0
14.219 2.264 2.088 2.088 0.008

1 0.569 1.248 1.235 1.250 1.264
2.844 3.744 3.711 3.711 0
14.219 13.157 11.745 11.740 0.043

5 0.569 1.883 1.889 1.889 0
2.844 7.819 7.754 7.754 0.006
14.219 37.885 21.101 21.086 0.068

Table 4.7: Comparison between different prediction methods for the chordwise
fundamental natural frequencies. δ, γ represent the hub ratio ( rL) and the
rotational speed ratio Ω

ωn1
respectively. RRM=Rayleigh Ritz Method
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(a) Chordwise vibration of a rotating cantilever beam at α = 70
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(b) Chordwise vibration of a rotating cantilever beam at α = 17.5

Figure 4.6: Chordwise vibration of a rotating cantilever beam showing the effect
of rotational speed for different values of the slenderness ratio.
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(b) Mode shape at point 1 γ=2
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(c) Mode shape at point 2 γ=8
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(d) Mode shape at point 3 γ=2
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(e) Mode shape at point 4 γ=8
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(f) Mode shape at point 5 γ=10
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(g) Mode shape at point 6 γ=16
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(h) Mode shape at point 7 γ=4
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(i) Mode shape at point 8 γ=10
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(j) Mode shape at point 9 γ=16

Figure 4.7: Mode shapes before and after veering. x-axis and y-axis represent
the position along the length of the beam and the chordwise displacement,
respectively. Figures (b), (e), (f), (h) and (j) show the mode shapes of bending
vibration while Figures (c), (d), (g) and (i) show the mode shaped of longitudinal
vibration.
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(a) Rotating speed and chordwise natural frequency at δ = 0
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(b) Rotating speed and flapwise natural frequency at δ = 0

Figure 4.8: Natural frequency versus rotating speed at hub ratio δ = 0 showing
the critical speed for the chordwise vibration (a), which is not the case in flapwise
vibration (b).
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Figure 4.9: The effect of the hub ratio (δ) on the dimensionless chordwise fun-
damental natural frequency ($) for different rotational speed ratio (γ)
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4.2.3 Time and frequency domain analysis

Subsequently, the time domain response of the base harmonically excited for a rotating

intact cantilever beam has been calculated for flapwise and chordwise vibration, as

shown in Figures 4.10 and 4.11, respectively. It can be seen in the first initial part

of the time domain response that the beam undergoes a transient response, whilst the

second part shows the beam has reached steady state response. In addition, the direct

frequency response was calculated and is shown in Figure 4.12 for flapwise vibration

and Figure 4.13 for chordwise vibration. These simulation results were calculated for a

rectangular cross section beam with specifications L = 300mm, b = 15mm, h = 2mm,

ρ = 2770 kg/m3, E = 7.1 × 1010Pa and applying Rayleigh damping for the first two

lower frequencies, assuming ζ = 0.01 as a damping ratio. Figure 4.14 shows the results

of the frequency response calculated from a transfer function with harmonic input and

from the time domain by using ’ode45’ function in MATLAB with step sine input. The

symbols (*) refer to the step sine response in the time domain using the amplitude of

the steady state results for each excited frequency.

Figures 4.15 and 4.16 show the effect of the rotational speed on the lowest three natural

frequencies of the flapwise and chordwise mode of the cantilever beam respectively.

Increasing the rotational speed leads to an increase in the natural frequency of the

rotating cantilever beam, due to the centrifugal force, which increases the stiffness of

the beam (as was shown in the second term of the equation (3.40)). However, this

increase in the chordwise natural frequency is less than shown previously due to the

cross sectional profile (2mm width and 15mm hight for the chordwise versus 15mm

width and 2mm height in flapwise) and the gyroscopic effect of the chordwise motion.

The response amplitude increases or decreases, for the particular excitation frequency,

depending upon the closeness or remoteness of the excitation frequency from the reso-

nance frequencies. For example, Figure 4.17 shows the time domain response for the free

end of a rotating intact cantilever beam, when the base excitation frequency is 10Hz.

Increasing the rotational speed from 0 rpm to 1000 rpm helps to reduce the vibration

amplitude. This is because the increase in the natural frequency increases the separation

between the excitation frequency and the resonance.
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Figure 4.10: Time domain response of the free end of a flapwise vibration beam
for a 30Hz flapwise base excitation and 1000 rpm rotating speed.
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Figure 4.11: Time domain response of the free end of a chordwise vibration
beam for a 30Hz chordwise base excitation and 1000 rpm rotating speed.
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Figure 4.12: Frequency response for the flapwise vibration of the free end of
the rotating cantlever beam at 1000 rpm.
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Figure 4.13: Frequency response for the chordwise vibration of the free end of
the rotating cantilever beam at 1000 rpm.
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Figure 4.14: Frequency response of the free end of the uncracked rotating can-
tilever beam. The black solid line represents the direct FRF, where the blue
stars represent the amplitude of the steady state response calculated from the
time domain response.

10-1 100 101 102 103

Frequency(Hz)

10-6

10-4

10-2

100

102

D
ire

ct
 F

R
F

 d
is

p.
(m

)/
fo

rc
e(

N
)

0 RPM
500 RPM
1000 RPM

Figure 4.15: Frequency response for the flapwise of the free end of a base excited
uncracked cantilever beam for different rotational speeds. Increased rotational
speed leads to an increase in the resonance frequencies.
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Figure 4.16: Frequency response for the chordwise of the free end of a base
excited uncracked cantilever beam for different rotational speeds. Increased
rotational speed leads to an increase in the resonance frequencies
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(a) Time domain response of a rotating uncracked cantilever beam at non-rotating, 500 and 1000 rpm respectively,
when excited by a base excitation at 10Hz.
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Increase in rotational speed leads to an increase in the natural frequencies. In addition, the increase in the speed
caused a reduction in the response amplitude for the 10Hz base exitation, due to a shift in the resonance frequency.

Figure 4.17: Time and frequency domain for the flapwise rotating beam with
base excitation.
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4.3 Beam with a crack using the finite element method

A finite element model of a cracked beam was simulated using the formulation given in

equations (3.71) and (3.72). The cracked beam model utilizes a cantilever beam with a

crack on a single edge. In order to compare the results, a solid finite element model was

assembled in a commercial FE code ANSYS. The model is presented in Figure 4.18. In

Figure 4.19 the numerical simulations are shown for the beam with a crack at its midpoint

for two different crack depths. The two set of results for the natural frequencies are in

excellent agreement.

There are numerous factors that affect the natural frequencies related to cracks, for

example, the depth of the crack, its location and the orientation of the crack according

to the direction of the loads (see Ibrahim et al. (2013)). Figure 4.19 shows that when the

crack depth is equal to half the beam thickness, i.e. a = h/2, the dimensionless natural

frequencies for a crack at the root of the beam drops to 0.78, while for a crack depth

less than a = h/3 the frequency ratio is about 0.91. A deeper crack leads to a greater

reduction in the frequency than a shallow one because of the additional flexibility, as

expected.

Examining the effect of the crack location, it appears that when the crack is close to

the root of the beam, i.e. close to the end, which is attached to the hub, the effect of

the crack becomes more significant and conversely this effect reduces when the crack is

closer to the free end. This results from the bending moment being greatest at the fixed

end. In addition, the crack effect vanishes or is negligible at some frequencies when it is

located at a node of the higher order modes. This becomes evident in the results for the

second and higher modes. Table 4.8 shows the agreement between the present work and

an ANSYS FE model using solid elements. The maximum percentage error is 0.33% for

the fundamental natural frequency at γ = 0 and 0.66% for the second natural frequency

for the non-rotating beam.

Considering the influence of the two main parameters, the crack location and the ro-

tational speed in one graph Figure 4.20, where one can observe a clear picture of how

the crack reduces the natural frequency. In addition, it can give a pre-estimation of

the possible crack location. To assist the identification of the crack location the results

are shown using the same two parameters in a 3D plot of the second relative natural

frequency as shown in Figure 4.21.

Utilizing the fundamental natural frequency chart in Figure 4.20 side by side with the

second natural frequency in Figure 4.21, a better estimation of the crack location can be

provided when the crack occurs in the second half of the beam, where the fundamental

frequency has a low sensitivity to the crack location. Figures 4.22 and 4.23 clearly show

the sensitivity of the two lowest natural frequencies of a rotating beam with respect to

the crack location for a fixed rotational speed.
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Figure 4.18: A FE model of a cracked beam
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Figure 4.19: Comparison between the present FE work and an ANSYS FE
model (solid elements) for the fundamental frequency ratio of the cracked non-
rotating cantilever beam
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1st $ 2nd $
γ present work ANSYS Error % present work ANSYS Error %

0.000 0.966 0.969 0.335 5.476 5.512 0.661
0.284 1.016 1.019 0.269 5.526 5.561 0.629
0.569 1.153 1.154 0.136 5.675 5.706 0.542
0.853 1.348 1.350 0.160 5.914 5.937 0.395
1.138 1.579 1.580 0.049 6.232 6.249 0.257
1.422 1.830 1.829 0.023 6.619 6.626 0.113
1.706 2.092 2.091 0.070 7.061 7.060 0.026
1.991 2.362 2.359 0.105 7.549 7.538 0.150
2.275 2.636 2.632 0.134 8.073 8.052 0.262
2.560 2.913 2.908 0.163 8.626 8.595 0.360
2.844 3.191 3.185 0.189 9.202 9.161 0.445

Table 4.8: Comparison between the present work and an ANSYS FE model for
a single edge cracked rotating beam. The dimensions of the beam are 0.5m,
0.0247m and 0.0247m for the length, height and base, respectively. The crack
is located at the middle of the beam with depth equal to 0.5 of the height of
the beam.
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Figure 4.20: The first natural frequency ratio as a function of the crack location
and rotational speed. The crack depth a is half of the beam thickness i.e.
a = h/2
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Figure 4.21: The second natural frequency ratio as a function of the crack
location and rotational speed. The crack depth a is half of the beam thickness
a = h/2
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Figure 4.22: The effect of the crack’s depth and location on the first natural
frequency ratio. The dimensionless speed γ = Ω/ωn1 = 2.844 for the two crack
depths.(red line: a = h
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2 ).
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Figure 4.23: The effect of the crack’s depth and location on the second natural
frequency ratio. The dimensionless speed γ = Ω/ωn1 = 2.844 for the two crack
depths.(red line: a = h

3 ), (blue line: a = h
2 ).
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4.4 Beam with an open crack modelled using the Rayleigh

Ritz method

The numerical results for the newly developed simple model are compared with the

previously illustrated FE model in section 4.3. The results are also compared with a

solid 3D element model assembled and solved using ANSYS. The solid model was built

using a mesh of hexahedral solid elements (3073 nodes and 1453 elements) with a fine

sized mesh around the crack tip as shown in Figure 4.24. The frequency ratio for the

natural frequencies of the rotating cracked beam for different fixed rotational speeds

against the fundamental frequency of the uncracked beam are shown in Figure 4.25.

The natural frequencies all increase as the rotational speed increases. The estimated

values using the Rayleigh-Ritz method show good agreement with the values from the

one dimensional FE model with a maximum error less than 0.5% in the third mode.

  

Centre of rotation 

Crack location 

Free end  

Figure 4.24: Rotating cracked cantilever beam modelled using 3D hexahedral
FE elements in ANSYS.

Figure 5.7 shows the effect of the crack location on the natural frequencies of the rotating

beam. The closer the crack is to the hub supporting the cantilever beam, the greater the

reduction in the natural frequencies. Moreover, when the crack is located at a modal

node, its effect becomes less evident, as shown for the second and third modes in Figure

5.7. The maximum error occurs in the first mode when the crack is located at the root

(fixed end) of the rotating beam.

In addition to the natural frequency comparison, the mode shapes of the cracked rotating

blades were evaluated and compared with the corresponding modes using the finite

element model. Figures 4.27 show the Modal Assurance Criterion (MAC) between the

results of the present work and the one dimensional FE model. The diagonal white

squares indicate the good agreement between the mode shapes using the two approaches.
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Figure 4.25: Lowest three flapwise natural frequencies of a rotating cracked
beam versus the rotational speed. Crack location ratio is 0.075 of the beam
length, crack depth ratio is 0.5 of the beam thickness. The maximum error is
about 0.5% in the third mode.
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Figure 4.26: Frequency versus crack location as a ratio of crack position divided
by beam length for the lowest three flapwise frequencies of a rotating cracked
beam, for three different rotational speeds ((a) non-rotating, (b) for 500 rpm
and (c) for 1000 rpm) and crack depth ratio ξ is 0.5. Solid and dashed lines
refer to the proposed method and FEM results, respectively. The error bars are
1% difference.
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Figure 4.27: MAC diagrams for the lowest six modes from FE and the Rayleigh
Ritz method the flapwise vibration of the rotating cracked beam. The crack
location ratio is 0.075 and the crack depth ratio is 0.5 and rotational speeds (a)
non-rotating, (b) 500 rpm and (c) 1000 rpm.

Regarding chordwise vibration, similar comparison was made for the lowest three natural

frequencies with a model built using one-dimensional beam finite elements Yashar et al.

(2016) and a solid finite element model using ANSYS. The frequency ratio between

the natural frequency of the rotating cracked beam for different fixed rotational speeds

against the fundamental frequency of the uncracked beam are shown in Figure 4.28. The

estimated values using the Rayleigh-Ritz method show good agreement with the values

obtained from one dimensional FE models having a maximum error of less than 0.77%

in the third mode.

Furthermore, the crack location versus the natural frequency was compared in the chord-

wise vibration with the FE model and shows good agreement with a maximum error

less than 1% for the at first natural frequency when the crack is close to the root of the

cantilever beam. Likewise, the mode shapes of the chordwise vibration cracked rotating

beams were evaluated and compared with the corresponding modes produced from the

finite element model. Figure 4.30 shows the Modal Assurance Criterion (MAC) between

the results of the proposed method and the FE model. The diagonal white squares

indicate the good agreement for the mode shape matching between the two approaches.

Figure 4.31 shows the flapwise and chordwise natural frequency ratios versus rotational

speed for the same cross sectional dimensions and identical crack location and depth.

The chordwise vibration shows less sensitivity to the rotational speed than the flapwise

vibration, due to the gyroscopic coupling effect in the chordwise vibration.

The coupling between bending and longitudinal displacements in the chordwise plane

leads to a veering phenomena in the natural frequency versus rotational speed graph as

can be seen in Figure 4.32. In the third lowest natural frequency, the bending chordwise

mode natural frequency veers to become a stretch mode at the speed of 5900 rpm. The

fourth is veering from bending to stretch at a rotational speed of 3800 rpm, then veering
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from stretch to bending again at a speed 5900 rpm. A similar phenomena appears in

the fifth to seventh natural frequencies at the rotational speeds of 2800, 2050 and 1450

rpm respectively.
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Figure 4.28: Lowest three chordwise natural frequencies of a rotating cracked
beam versus the rotational speed. The crack location ratio is 0.075 of the beam
length, the crack depth ratio is 0.5 of the beam thickness. The maximum error
is about 0.77% in the third mode.
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Figure 4.29: Natural frequency versus crack location for the lowest three chord-
wise natural frequencies of a rotating cracked beam at three different rotational
speeds ((a) non-rotating, (b) for 500 rpm and (c) for 1000 rpm) and crack depth
ratio ξ is 0.5. Solid and dashed lines refer to the proposed method and FEM
respectively. The error bars are of 1% difference.
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Figure 4.30: MAC diagrams for the lowest six modes of the chordwise vibration
of the rotating cracked beam. The crack location ratio is 0.075 and the crack
ratio is 0.5 and rotational speeds (a) non-rotating, (b) 500 rpm and (c) 1000
rpm.



82 Chapter 4 Numerical results

0 200 400 600 800 1000
Rotating speed RPM

0

10

20

30

40

50

60

70
F

re
qu

en
cy

 r
at

io
 (
ω

/ ω
1 

in
ta

ct
 n

on
ro

ta
tin

g
)

ω
1
 flapwise

ω
1
 chordwise

ω
2
 flapwise

ω
2
 chordwise

ω
3
 flapwise

ω
3
 chordwise

Figure 4.31: Lowest three flapwise and chordwise natural frequencies of a ro-
tating cracked beam versus the rotational speed of the same cross sectional
dimension. The crack location ratio is 0.075 and the crack depth ratio is 0.5
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Figure 4.32: The veering of the bending and stretching natural frequencies at
high rotational speed in the chordwise plane for the rotating cracked beam. The
seven lowest natural frequencies are shown, where s represents stretching and b
represents bending modes. The crack location ratio is 0.075 of the beam length
and the depth ratio is 0.5 of the beam thickness.
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4.5 Beam with a breathing crack (Bilinear crack)- an al-

ternative formulation

A breathing crack is also often described as being a fatigue, closing crack or bilinear crack

Vigneshwaran and Behera (2014); Yan et al. (2013); Andreaus et al. (2007); Chatterjee

(2010); Friswell and Penny (1992). It is a type of crack, which changes its stiffness

according to the load applied to the structure. For example, when the crack is under

a tensile load, it is fully open and the beam has minimum bending stiffness, conversely

when the crack is subjected to a compression load, it is fully closed and the beam behaves

as an intact system. The behaviour in the fundamental mode of a beam with a breathing

crack can be representing as a SDOF system as illustrated in Figure 4.33 below.
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Figure 4.33: SDOF bilinear system, where kc = ka + kb, kt = ka.

When the displacement is positive, i.e. x > 0, the equivalent stiffness of the system is

equal to the total stiffness kc = ka + kb. In contrast, the stiffness of the system is equal

to kt = ka which represents the stiffness of the system,

mẍ+ cẋ+ ktx = 0, x > 0 (4.3)

mẍ+ cẋ+ kax = 0, x < 0 (4.4)

According to this definition, the frequency of the free vibration of the mass and hence

beam is changing during one half cycle of oscillation between ω1 and ω2, where ω1 =
√

kt
m

and ω2 =
√

ka
m . The bilinear frequency of the system can be calculated by finding the

time of one complete cycle of the period of oscillation, which is the combination of the

upper half cycle and lower half cycle as shown in Figures 4.34 and 4.35 below.
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t1 =
2π

ω1
, t2 =

2π

ω2
, (4.5)

ωbilinear =
2π

tbilinear
(4.6)

=
2ω1ω2

ω1 + ω2
(4.7)

ωbilinear represents the bilinear frequency of the system Yan et al. (2013); Douka and

Hadjileontiadis (2005)

Regarding the response in the frequency domain, a significant difference between the

opening and the closing stiffness leads to multiple harmonic frequencies, which can be

used in detecting bilinear cracks. For example, a frequency response for a SDOF system

should have one peak, which represents the resonance of the system. However, when

the bilinear effect occurs, harmonic frequencies will appear in the frequency domain in

addition to the main resonance frequency of the system, as can be seen in Figure 4.36.

Due to the non-linear effect, the procedure to extract the step frequency response in

Figure 4.36 was based on applying a sine displacement excitation on the base and eval-

uating the displacement response. Then, the amplitude of the main response frequency

is obtained by using a single term Fourier series fit of the time domain after removing

the transient duration. These steps are repeated at the different excitation frequencies

starting from 0.005 Hz to 1 Hz. Also, the response is obtained at different excitation

amplitudes corresponding 0.01, 1, 50 and 100 mm.

This type of bilinear pattern, known as a homogeneous system, where the response

amplitude is proportional to the amplitude of the input excitation. For example, Fig-

ure 4.36 shows the response of a nonlinear system for the various input amplitudes and

the ratio between the output and the input is remained fixed.

The same principle for representing the cracked rotating cantilever beam with a bilinear

crack, that behaves as either fully opened or as fully closed during vibration according

to the direction of motion of the beam was investigated and shown in Figure 4.37, (see

Bovsunovsky and Surace (2015)).

Figure 4.39 shows the base excitation FRF comparison of a rotating intact cantilever

beam with a linear open crack and breathing crack. The bilinear curve lays in between

the frequency behaviour of the open crack and the intact beam frequency curves. The

first resonance frequency for the intact beam, with open crack and beam with bilinear

crack are approximately 25.66Hz, 25.23Hz and 25.5, respectively. Obviously, the bilinear

frequency for the first resonance follows equation (4.7). However, this result does not

reveal the harmonic frequencies of the bilinear crack due to the small effect of the crack.

A significant bilinear crack most likely causes several harmonic frequencies, as can be
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Figure 4.34: SDOF bilinear system under free vibration.
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Figure 4.35: Blue and orange lines represent the stiffness and amplitude of a
bilinear SDOF system respectively.

seen in Figure 4.39. The first resonance occurs at about 39.5Hz, which leads to a

harmonic at 79Hz which is twice the fundamental frequency.

Comparison of the time domain response of the free end of a rotating cantilever beam

for an intact, open cracked and bilinear cracked is shown in Figure 4.40. Obviously, the
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Figure 4.36: SDOF bilinear system frequency response function for base excita-
tion. This system vibrates with several harmonics generated from the bilinear
stiffness. However, the output amplitude is directly related to the input ampli-
tude. The amplitude of the frequency response remains unaltered for various
input amplitudes. This figure is the simulation of simple mass spring system
response to the base excitation where X represents the displacement of the the
base and Y is the displacement of the mass. This result is obtained from the time
domain. The mass, stiffness of open crack, stiffness close crack and damping
are 1 Kg, 1 N/m, 2 N/m and 0.01 N.s/m, respectively.

bilinear crack shows unsymmetrical displacement around the static equilibrium position.
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Figure 4.37: A Cantilever beam with breathing crack. According to the direction
of motion, the state of the crack switches between fully opened of fully closed.
Bovsunovsky and Surace (2015)
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Figure 4.38: Comparison of the FRF for three types of rotating cantilever beam.
The first curve is for an intact beam, the second curve for a beam with an open
crack and the third for a beam with breathing crack. The bilinear crack FRF
is obtained from time domain simulation of the forced base vibration. All three
FRFs are determined for the rotating cantilever with a free end. The beam
dimensions are 300mm, 15mm and 2mm for the length, width and thickness,
respectively. and the rotational speed is 1000 rpm. The crack is located at 0.25
of the beam length from the root and the depth is in 0.55 of the beam thickness.
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Figure 4.39: Comparison of the FRF for three types of rotating cantilever beam.
The first curve for an intact beam, the second curve for a beam with an open
crack and the third for a beam with a breathing crack. The bilinear crack FRF is
obtained from the time domain simulation of the forced base vibration. All the
three FRFs are determined for the rotating cantilever with a free end. The beam
dimensions are 300mm, 15mm and 4mm for the length, width and thickness,
respectively and the rotational speed is 1000 rpm. The crack is located at 0.25
of the beam length from the root and the depth is in 0.55 of the beam thickness.
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Figure 4.40: Time domain response comparison for an intact beam, beam with
an open crack and a beam with a bilinear crack displacement at the free end
of the rotating cantilever beam. Rotational speed=1000 rpm and the base
excitation is at 40Hz. The crack located at 0.25 of the beam length from the
root and the depth in 0.55 of the beam thickness.
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4.6 Conclusions

The simulation of rotating beam with and without crack were presented and discussed

in this chapter using both the finite element and Rayleigh-Ritz methods. The effect of

various parameters on the natural frequencies are illustrated such as rotating speed, hub

ratio and slenderness ratio. In addition, the critical points of the system are identified

for example the critical speed, buckling speed and veering phenomena. Furthermore, the

effect of cracks are investigated at various positions and depth. To sum up the following

conclusions can be drawn from the present results:

Flapwise motion:

• The natural frequencies monotonically increase with increasing rotational speed.

• No critical angular speed arises, where the critical speed is reached when any

natural frequency equals the rotational speed.

• An increase in the hub ratio increases the natural frequencies.

Chordwise motion:

• The natural frequencies do not increase monotonically due to the gyroscopic cou-

pling.

• A critical rotational speed can occur i.e. the fundamental natural frequency of the

rotating beam becomes equal to the rotational speed frequency.

• The existence of a buckling speed is evident, when the natural frequency of the

beam reduces to zero with increasing the rotational speed.

• Slenderness and hub ratio have a significant effect on the critical rotational speed,

since the thinner beam tends to bend more than stretch.

Cracked beam vibration:

• The crack location has a significant effect on the natural frequencies. The closer

the crack is to the hub, the lower are the natural frequencies.

• There is an inverse relationship between the crack depth and the natural frequency.

• When a crack is located at one of the nodes of vibration of a particular mode then

the frequency of that mode is unaffected.

• Treating a bilinear crack as an open crack could be lead to an underestimation of

the depth of the crack. The bilinear crack reveals shallow depth if it considered as

an open crack.
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• The appearance of superharmonic and subharmonic in the frequency domain could

be an indication of bilinear crack existence on the beam.

• The natural frequency of a bilinear cracked beam lies between the natural fre-

quency of an open cracked beam, with the same dimension and depth, and the

natural frequency of the identical but intact beam.

Finally, the results of the new simplified model for a rotating cracked beam was compared

with both solid and the one dimensional FE model. The new approach was accurate and

showed a good agreement, especially for the lowest three modes of the vibration, with

FE numerical models using one-dimensional beam and solid elements. The maximum

natural frequency error between the method proposed and FE was less than 0.5% for

the flapwise and less than 0.77% for the chordwise. Furthermore, the predicted vibra-

tion mode shapes matched well with corresponding mode shapes evaluated using the

FE model as shown with MAC plots. The bending vibration in the chordwise direction

showed less sensitivity to the rotational speed than the bending vibration in the flap-

wise direction due to the gyroscopic coupling. Moreover, a veering phenomena clearly

appeared in the higher natural frequencies for the chordwise vibration due to gyroscopic

coupling at high rotational speeds.

The next chapter deals with the experimental vibration measurements for the rotating

beam with and without crack using optical sensors and different digital image processing

methods to verify the simulation results that were presented in this chapter.





Chapter 5

Experimental setup and results

After modelling of a rotating beam with and without crack in Chapter 3, illustrated

by the simulation results in Chapter 4, the numerical results will now be validated

experimentally. The results and comparison will then be discussed in detail. Measuring

the natural frequencies and the mode shapes of a cracked rotational beam can have

challenges, due to potentially the high rotational speed of the beam. Measuring the

natural frequencies using wired sensors, such as accelerometers, is difficult to apply in

this case. However, using wireless accelerometers can also affect the results due to mass

loading. To overcome these problems, a non-intrusive optical method is applied using

a high speed camera with the aid of digital image processing. This approach has many

advantages; the most significant one is the remote non-contacting acquisition of the data.

In this chapter, first the experimental design will be described in detail. Then, the prop-

erties and dimensions of the specimen will be discussed. Next, three methods of digital

image processing (DIP), which are namely digital image correlation (DIC), Marker detec-

tion and Colour blob detection, will be explained and contrasted to show the advantages

and disadvantages of each approach and the suitable corresponding test method. Follow-

ing this, four different configurations for the camera setup will be discussed. The choice

of using speckles or markers also will be highlighted, to demonstrate suitable markers

for various image processing techniques.

The experimental test setup for the non-rotating and rotating beam will be explained

using the mathematical relationship between the different test parameters, such as op-

tical sensor size, the area of the field of view and image magnification. Then, the

experimental results will be processed for different test setups and image processing ap-

proaches. The results of the non-rotating beam will be presented first. Three different

acquisition systems are validated for the image processing methods with comparison to

accelerometer measurements. Subsequently, the results for the rotating beam with and

without crack will be presented. Various tests were performed to measure the natural

frequencies and mode shapes. In addition, the results will be compared with the model

93
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that was developed in Chapter 3. Finally, the overall results will be briefly listed in the

conclusions.

5.1 Experimental design

An experimental test rig was designed incorporating a controllable high rotational speed

and vertical base excitation. The foundation of the design should be rigid enough to

avoid frequency interference between the specimen and the foundation. To achieve these

requirements, a test rig was designed as shown in Figure 5.1. This design comprises four

main parts. A steel foundation, a high-speed air-cooled controllable motor, a rotating

hub and a rotating beam.

The rotating hub assembly allows the introduction of a vertical excitation to the base

of the rotational beam as shown in the Figure 5.2, where the four shafts can slide in the

linear bearings. This vertical excitation was achieved using an electrodynamic shaker,

which excites the beam in a flapwise direction at its base.

The rotating hub is connected to the high speed motor by a belt to reduce the transmis-

sion of vibration generated by the motor. Also, the motor is clamped to the foundation

using a 3D printed plastic clamp for the same reason. The motor can provide a speed

range between 0-24000 rpm using a variable frequency drive (VFD) to control the rota-

tional speed as shown in Figure 5.3.

This design was optimised using FE vibration analysis in simulation software. The

main component of the rig foundation is based on standard mild steel channel 150mm×
90mm×24mm. These dimensions are fixed. The length of the Bridge, Side1, Side2 and

the angle cut of the Side1 and Side2 as shown in Figure 5.1 were selected as variables

in the optimisation process. The optimisation used is based on a single calculation

of the modes over a matrix of the parameter values. The mechanical drawing and

assembly of the Bridge, Side1 and Side2 can be found in Appendix A. The main design

is built using SolidWorks, then the geometry file imported into ANSYS software. The

mentioned variables lengths are selected as parameter sets (for more information see

Chen and Liu (2014)) and the change step in the lengths set to 5 mm, then the lengths

obtained from the maximum fundamental frequency. The estimated test beam natural

frequencies, covering the fundamental, second and third modes are between 8-500Hz.

The fundamental natural frequency of the test rig foundation after optimisation is about

850Hz, which is much higher than the specimens’ frequencies. The fundamental mode

of the test rig is shown in Figure 5.4.

Furthermore, the test rig was designed and manufactured with a changeable rotating

hub mount for different test requirements. Figure 5.5 shows two different applications

for the test rig. The camera off the system in Figure 5.5(a) using this test rig to be
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used with the variable high-speed camera without considering the size of the camera.

Furthermore, this configuration permits the use of an advanced application such as real-

time measurement and control. However, using a reflecting mirror limits the array of

the measurement points on the beam. This is due to the need for constantly processing

rotating images with respect to the camera field of view.

The second configuration in Figure 5.5(b), shows the camera mount on the rotating

hub. This configuration is suitable for performing tests with a smaller camera and is

more accurate to directly capture the markers. Furthermore, more information can be

extracted from the images such as flapwise, chordwise and torsional deflections. However,

due to limited space for the camera, the acquisition images are recorded in the memory

of the camera and are then post processed after performing the test.

The technical information and mechanical draw of the test rig design can be found in

the appendix A.

Rotating beam
Rotating hub

Foundation
Electrodynamic shaker

Belt

Motor

Side2

Side1

Bridge

Figure 5.1: Experimental test rig
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Figure 5.2: Rotating hub assembly

1. Main cover to clamp the beam,

2. Main rotational ball bearing ”6009/C3” (high speed),

3. Linear bearings LM8UU,

4. Sliding shafts 8mm,

5. Linear bearing holder,

6. Small ball bearing (to connect with shaker),

7. bottom cover,

8. M6 nuts.
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Figure 5.3: 0.8kw er11 air-cooled spindle motor and 1.5kw inverter drive ”vari-
able frequency drive (vfd)”.



98 Chapter 5 Experimental setup and results

Figure 5.4: Fundamental natural frequency of the experimental test rig founda-
tion.
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Motor

Rotating hubRotating beam

Foundation
Electrodynamic shaker

High-speed camera
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Figure 5.5: The test rig with two different test configurations. (a) the test rig
with a single camera and a reflecting mirror and (b) the test rig with an on hub
camera

5.2 Specimen properties

Three specimens of different lengths were used in the tests. The specifications of these

specimens are listed in Table 5.1, together with the three natural frequencies. These

dimensions were selected to prevent interference between the vibration of the specimen

and the rig. Moreover, the length of the beams was selected based on the size of the

camera sensor.

Specimen No.1 No.2 No.3 No.4 Units

Width 15 15 15 mm
Thickness 2 2 2 mm
Length 400 330 300 mm
Material Aluminium Aluminium Aluminium
1st freq 10.2 18.2 Hz
2nd freq 64.0 113.8 Hz
3rd freq 179.3 318.8 Hz

Table 5.1: Cantilever specimen dimensions and predicted natural frequencies.
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Figure 5.6: The manufactured test rig.

5.3 Digital image processing

There are numerous digital image processing methods to extract the information from

the image. In this section, the three main types of image processing method will be

described. These are digital image correlation, marker detection and blob area detection

methods. The main reason for using three different methods is related to the advantages

and the conveniences of each method with the specific applications. For example, the

image correlation method (DIC) is more likely to be used in finding the strain of the

surface of the object since the estimation of the rate of change of the surface displacement

is more accurately measured. However, it is difficult to apply (DIC) for later control

applications due to the processing delay.
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5.3.1 Digital image correlation

Digital Image Correlation (DIC) is a pattern tracking method and it is designed to

recognise and track a special density of grey levels Helfrick et al. (2011). To achieve this,

specimens are typically painted with two contrasting colours such as black and white as

shown in the Figure 5.11(a) (see section 5.5 for more information). This pattern should

be random and the size of the black points should not be less than three pixels to avoid

pixel aliasing. Three different markers were used instead of the speckles for the purpose

of tracking the tags using a simple MATLAB image processing algorithm. This was in

addition to using a commercial DIC software package for comparison of the results.

Figure 5.7 shows the digital image correlation steps, where Figure 5.7(a) shows the

unprocessed image including the markers. Figure 5.7(b) illustrates the image of the

second marker, which is selected for detection. Figure 5.7(c) shows the cross correlation

result between the unprocessed image and the image of the marker. The white spot is

the identified position for maximum correlation of the image.

Different approaches were used to extract the information from the image. The main

procedure of DIC starts with applying a Gaussian filter to reduce pixel aliasing and noise.

The latter is generated from the pixels’ different sensitivity. Then, the main image was

divided into the small subsets; each subset will correlate with the pattern image (target).

The maximum correlation results refer to the best match between the location in the

image and the target. However, the difference between the commercial software starts

after the first matching point. The algorithm in MatchID tends to apply interpolation

between higher correlated subsets to accurately locate the target in the image. These

options are limited in the MATLAB image processing toolbox and required extra coding.

The interpolation algorithms in MatchID used either a least-square based approach (Ap-

proximated NSSD, Normalized sum of the squared differences and zero-normalized sum

of squared differences) or Cross-correlation based. Examples of the cross-correlation

include normalized cross correlation and zero-normalized cross-correlation. For more

information see MatchID (2016). Each of the algorithms have advantages and disad-

vantages according to the light condition, speckle size, optical sensor sensitivity and

processing time.

5.3.2 Marker detection

The process of marker detection is based on detecting specific geometrical shapes such

as a circle, square, pentagon or hexagon, etc. In this study, a single or a group of circles

is selected as a marker and the algorithm of the Circular Hough Transform (CHT) Song

et al. (2014) is applied as the detector. The purpose of the technique is to find circles

for imperfect image inputs and return the positions of the centres of the circles.
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(a) (b)

(c)

Figure 5.7: Digital image correlation process. (a) the original field of view, (b)
the marker and (c) shows the result of two dimensional digital image correlation.
The white circular area represents the point of best correlation between the
original image and the marker.

In general, a circle can be defined by three parameters Xc, Yc and Rc. The first two

parameters specify the centre of the circle while the third one represents the radius of

the circle. The designed markers are with known parameters as shown in Figure 5.8.

However, the deflection of the beam will change the position of the circle centres within

the field of view. As a result, the radius Rc of the circles is still constant during the

position change of the marker. The fixed radius will reduce the unknown parameters to

two, which are the parameters of the centres.

The procedure for detecting the centres of these circles can be explained in three steps

Luo (1998)

• Converting the input image into a binary image using an edge detecting filter.

• Generate a circle from each edge with known radius.

• Using votes to the number of intersections of the generated circles and the higher

intersected point, which represents the centre of the circle.

5.3.3 Colour blob detection

This approach is based on recognizing and detecting the area with different levels of the

grey colour. This method is faster than the previous two approaches, especially if the

tracking object has a significant different level of the grey colour from the surrounding.

The procedure is firstly applied by a 2D Gaussian filter, to smoother and remove the

pixel noise from the image. Then, a threshold is applied to the image to separate the

high level of grey from the low level. The image produced becomes binary such as black

and white. Then, the centre of the black colour is determined if selected as a tracking

target by summation of the black pixels at x position and divided into the number of

pixels. The same process is applied for the y detection. The resulting mean values for

x and y represent the centre of the black marker area, as shown in Figure 5.9
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Marker image Marker image
 after edge filter apply 

Circle generate at the edge 
of the markerand detect the center

Figure 5.8: Circle detection procedure. After applying an edge filter a number
of circles will be generated from the pixels of the edges with radius equal to the
radius of the circles to be detected. The intersection of the circles generated
becomes a centre candidate. The actual centres are selected according to the
number of intersections. In this figure, the white circles represent the actual
markers and the red circles are the generated circles used to detect the centre.
Only the upper circles are illustrated in this figure for simplicity.

Figure 5.9: The colour blob detection procedure. The steps from left to the
right are started by loading the image, then applying a 2D Gaussian filter to
remove pixel noise. Then, one applies a threshold to separate the high and
low grey level. Finally, obtain the centre of the markers, which are required by
determining the mean value for the x and y.

5.4 Camera set up procedures

The test setup is based on, firstly, the measurement equipment capability which depends

upon the frame rate and resolution of the camera sensor. Secondly, it is a function of

the frequency range, which depends upon the rotational speed and measured frequencies

and thirdly, the field test area.

For flapwise vibration of a non-rotating beam, the test configurations shown in Figure

5.10 are applicable. However, the most suitable arrangement is Figure 5.10(a), which
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was used previously for non-rotating beams by Romaszko et al. (2015). A single high-

speed camera is set perpendicular to the plane of motion. This arrangement allows the

camera to capture the lateral vibration of the beam with minimum equipment.

For the rotating beam the first two setups are difficult to apply. In setup (a), the

rotational speed is much lower than the frequencies of the beam. Therefore, more than

one camera should be used to avoid frequency aliasing. For the second setup, Figure

5.10(b), the same sampling problem occurs, which requires a high-resolution camera to

analyse the field of view and increasing the resolution can lead to a decrease in the image

frame or sampling rate. In addition, using two cameras can increase the complexity of

information and extracting information from the two images due to extra unnecessary

data. The third and fourth setups, in Figure 5.10(c) and Figure 5.10(d), are considered

for the rotating beam case, because of the continuous capture and minimum field of view

area used. The images obtained from the latter also use a rotating frame of reference,

which is the same speed as the rotating beam itself.

Rotating beam 

Rotating hub 

View frame 

Camera 

Rotating beam 

Rotating hub 

Camera 1 Camera 2 

View frame 

Rotating beam 
Rotating hub 

Marker

r 

Camera 

View frame 

Mirror Rotating beam 
Rotating hub 

Marker 

View frame 

Camera 

a b

c d

Figure 5.10: Types of camera setup: (a) single camera perpendicular to the
plane of the lateral displacement, (b) stereo vision system for 3D imaging, two
cameras with arbitrary setup angle, (c) single camera with a reflecting mirror
that targets one or more markers along the beam and (d) a single camera fixed
to the centre of rotation, targeting one or several markers along the beam.
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5.5 Speckles or markers

Digital image processing, which is used in this research, is a pattern tracking method

and it is designed to recognise and track a special density of grey levels. To achieve

this, usually the specimen is painted with two contrasting colours such as black and

white as shown in the Figure 5.11(a). This pattern should be random and the size of

the black points should not be less than three pixels. Herein, three different markers

were used instead of the speckles for the purpose of tracking the tags using digital image

correlation and a simple MATLAB image processing algorithm. These three markers

are 10mm in diameter black circles, three 2mm in diameter black points and a pattern

of 2mm in diameter set of five black points as shown in Figure 5.11(b-d). The corre-

sponding test configuration for the non rotating beam shown in Figure 5.12,Figure 5.13

and Figure 5.14, respectively.

In addition, to the speckles and markers, LED diodes can be use as traceable targets.

An advantage of using LED is to create a significant grey level difference between the

target and the background. Furthermore, the LED sources are usually made in standard

geometrical shapes which can be recognised when using a circle detection method (see

Section 5.3.2). These two advantages could be used to improve the processing speed,

especially when used with a blob detection method (see Section 5.3.3). However, LEDs

also have disadvantages such as adding extra mass and required a wired powering, which

is not suitable for the direct application onto the rotating beam.
 

 

 

  

a b c d 
 

Figure 5.11: Speckle pattern (a), 10mm diameter black circle (b), three 2mm
diameter black circles (d) and five 2mm diameter black circles (e).

Figure 5.12: Marker 1 , 10mm diameter circle black single circle.
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Figure 5.13: Marker 2 , 2mm diameter circle three black circles.

Figure 5.14: Marker 3 , 2mm diameter pattern of five black circles distributed
along the beam.

5.6 Experimental test setup

5.6.1 Non-rotating beam

Experiments were first carried out for a non-rotating beam using DIC to compare the

results with those obtained using accelerometers. For the DIC system setup, two LED

lights were used with a Motion Pro X3 Plus high-speed camera. For the acquisition and

recording of the data Motion Studio software (reference) was used. Simultaneously, on

the other hand, the accelerometer and impact hammer were connected to the LMS test

lab.

In this test, only flapwise or lateral displacement of the beam was measured. For this

reason, only one camera is required. The camera is installed perpendicular to the plane

containing the beam movement as explained in section 5.4 in Figure 5.10. The camera

captured the motion in the XY plane when it was fixed at a perpendicular distance Z

from this XY plane.

According to the DIC method, the minimum number of pixels per black speckle should

be at least a 3x3 pixels array in the image. In addition, at least 3 speckles per subset are

required to guarantee reasonable matching precision Pan et al. (2009). However, in this

experiment the thickness of the beam is 2mm. The magnification is also the relationship

between the object size on the beam and the image size on the sensor. The equivalent

length to the number of the pixels is equal to 2.27 pixels/mm. For this reason, a large

marker is used instead of a group of speckles as mentioned in Section 5.5. The sensor

size, field of view (FOV), magnification and the distance from the object are obtained
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from Equations 5.1 to 5.4.

Sensor size =pixels number × size of each pixel (5.1)

Sensor size =1024 pixels number × 12µmsize of each pixel = 12.288mm

FOV =
Sensor size×Distance to object

focal length
(5.2)

Magnification =
Sensor size

FOV
(5.3)

Magnification =
12.288mmSensor size

450mmFOV
= 0.0273

Distance from the object =
FOV × Lens focal length

Sensor size
(5.4)

The equivalent length to the number of the pixels is equal to 2.27 pixels/mm. For the

test setup, the calculation steps are shown in Table 5.2

Motion Pro X3 Plus Photron SA3 units

Pixel equivalent in mm

pixels 1024 1024 pixel
pixel size 12 17 µm
sensor size 12.288 17.408 mm

Magnification factor

Field of view 450 450 mm
magnification 0.027306667 0.03868444

Lens Focal length(mm) Distance from the object

Sigma f2.8 105mm 3845.215 2714.269 mm
AF NIKKOR 50mm 1831.055 1292.509 mm

Speckle size

Pixel size on beam 0.439453125 0.439453125 mm
Minimum speckle size 1.318359375 1.318359375 mm

Table 5.2: DIC calculation for the sensor size, magnification, distance from the
object and speckle size.
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LED lights 

Test rig and spacemen  High speed camera  LMS PC1 for DIC  PC2 for LMS 

Figure 5.15: Experimental test rig set up showing the rig, camera and data
acquisition system.

5.6.2 Rotating beam

Flapwise vibration is out of the rotational plane of motion of the beam. In addition, a

rotating beam covers a circular area with a diameter equal to twice that of the rotating

beam length and hub radius. This motion can be captured by setting up the high-speed

camera perpendicular to the plane of vibration as shown in Figure 5.10(a). However,

this method is limited to only being applicable when the maximum frequency of the

vibration to be measured is less than twice the rotational speed of the beam in order

to obey the Nyquist sampling rate. The second method uses a stereo vision system.

Nevertheless, a larger area needs a larger number of pixels for accurate measurement.

This problem becomes significant when a longer beam is used. Two high-speed cameras

capturing the beam from two different angles, then matching these two images will

reveal the deflection of the beam. Nevertheless, using a single high-speed camera with

a reflecting mirror at the centre of rotation solves both aforementioned problems of the

sampling rate and image resolution, as shown in Figures 5.10(c) and 5.10(d).
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5.7 Experimental results

5.7.1 Results for the nonrotating beam

Vibration measurements performed for a non-rotating beam are used for comparison be-

tween the results from the image processing methods and the ones obtained using beam

mounted accelerometers. The frequency response function of a non-rotating cantilever

beam was measured using a simple impact hammer test using a hammer (PCB 5800B3

with sensitivity 207.287 mV/N). The frequency response function of the non-rotating

beam was measured using an accelerometer (PCB 3035BG sensitivity=103.90 mV/m/s2)

and the results were compared with simultaneous recordings using a high-speed camera

(MotionPro X3 plus, 50mm lens at 800 frames per second). The camera was setup as

shown in Figure 5.10(a).

MATLAB image processing toolbox was used to locate the displacement of a marker by

using the circle detection method as shown in Figure 5.16, where specimen 1 was used.

This program is limited to large displacements and therefore the data becomes very

noisy for small displacements. However, there are several commercial software packages

for DIC which are able to tackle this issue using the average grey level and sub-pixels

for locating objects. MatchID was employed in this work to post-process the data. This

software is based on pattern detecting using DIC, which selects the markers and the

search area as shown in Figure 5.17. The program will track the pattern through the

sequence of images. Then, the displacement result can be plotted as a function of time

as shown in Figure 5.18. Figure 5.19 shows the comparison of the measured results for

three different methods such as using an accelerometer (LMS), digital image processing

using a circle detection method (MATLAB) and digital image correlation (MatchID).

The second test was performed using specimen 2, with five point marker patterns to

check again the matching of the three methods, which are DIP circle detection, DIC and

using an accelerometer. The results of digital image processing using marker detection

method is shown in Figure 5.20. Similar to the first test, the DIC software shows

the displacement as a function of time presented in Figure 5.21. Furthermore, the

comparison between the results is shown in Figure 5.22.

Figure 5.19 and Figure 5.20 shows the comparison between the accelerometer measure-

ment and the optical sensor results. The accelerometer data was converted to displace-

ment amplitudes. Its curve tends to start from a higher amplitude due to this conversion

from acceleration to displacement. The high value of the displacement at 0 Hz is due

to the division by 0, according to Equation 5.5. At higher frequency, the accuracy of

the optical sensors will reduce as the displacement amplitudes are low. Furthermore, in

contrast the method DIC using MatchID shows a better performance in measuring the

displacement than the DIP using the circle detection method.
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Figure 5.16: MATLAB results by an using image processing toolbox. In the
first row the red circles refer to the marker detection points. The field of view
is cropped to small search areas to speed up the image processing. The second
row shows recorded time domain decay from a hammer input. The third row
shows the transfer receptance measured for the three points.
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Figure 5.17: MatchID software showing the selected marker and the search area.
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Figure 5.18: Displacement as a function of time obtained from the selected point
using MatchID software
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Figure 5.19: Comparison between the transfer receptance results using an ac-
celerometer (LMS), the digital image processing DIP (MATLAB) and the digital
image correlation DIC (MatchID) methods for specimen No.1. Beam length is
400mm, the hammer input at 100mm away from the fixed end and the output
at 300mm from the fixed end. The fundamental natural frequency is 8.14 Hz,
the second natural frequency is 55.54 Hz and the third natural frequency is 153
Hz.
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Figure 5.20: Specimen No.2 using MATLAB code for the displacement identifi-
cation. Five point markers were used to increase the accuracy. In addition, an
LED trigger was used to trigger the high-speed camera at the hammer impact.
The dimensions of the beam are 200mm, 15mm and 2mm for the length, width
and thickness, respectively.

.

Figure 5.21: Specimen No.2 MatchID software processed results showing the
vibration displacement impulse response versus time.
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Figure 5.22: Comparison of the results using an accelerometer (LMS), DIP circle
detection method (MATLAB) and DIC (MatchID) methods for specimen No.2.
The beam length is 300mm, the hammer input is at 50mm from the fixed end
and the output measured at 200mm away from the fixed end. The fundamental
natural frequency is 16.04 Hz, and the second natural frequency is 105 Hz.
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Since the accelerations are measured in g, the results are scaled and the sensitivity of the

accelerometer are also included. LMS software calculates the accelerance, the transfer

function between the acceleration and force (accelerationforce ) where the DIC calculates the

receptance, the transfer function between the displacement and force (displacementforce ) as

shown in Figure 5.23 . To convert accelerance of Ga(jw) to the receptance Gr(jw),

 

system 
Impact force (N) Acceleration (g) 

system 
Impact force (N) Displacement (mm) 

LMS test lab 

DIP 

Figure 5.23: Measured output data is acceleration for LMS test lab and dis-
placement for the DIP method.

Gr(jw) = Ga(jw)× 1

−ω2
(5.5)

x

F
(
m

N
) =

ẍ

F
(
g

N
)× 9.81 m

s2

−ω2
(5.6)

5.7.2 Results for the rotating beam

For the rotating beam, a single camera with a mirror, as shown in Figure 5.5(a) and

Figure 5.10(c), was used to measure the vibration. The reflected image can reveal

both the rotational speed and the beam deflection as a function of time in Figure 5.24.

Converting the marker position from the Cartesian system to the Polar system and by

taking the FFT of the time history, the fundamental and second resonance frequencies

can be obtained as shown in Figure 5.25. The maximum percentage of the error between

the theoretical predictions Yashar et al. (2016) and experimental results for the first and

second resonances are less than 5% as illustrated in Figure 5.26. The differences between

the analytical and the experimentally estimated natural frequencies are partly due to the

uncertain boundary conditions in the experimental rig. Theoretically a fixed end was

assumed, but here in the experimental test the beam constraint was dependent upon the

clamped edges and applied bolt force. This factor led to a reduction in the estimated

frequencies from the experimental results when compared to the theoretical results.

Utilizing two different systems is not efficient due to signal misalignment as well as due

to having different sampling rates between the two systems, which requires subsequent

data interpolation. This issue was resolved using the same camera to capture both the

input signal as well the output signal. As shown in the block diagram in Figure 5.28,
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Centre of rotation  

Field of view Detecting markers and the centre 

of rotation 

Calculating the change in the radius 
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og time  

Figure 5.24: The camera off the hub test procedure. The marker is attached
to the rotating beam and the camera is fixed on the tripod pointed to the
mirror which reflecting the motion of the marker during the test. The rotational
speed can be estimated from the motion of the marker around the centre of
the rotation, while the change in the radius of the marker position reveals the
response of the beam at the marker attached point.

another marker was placed at the centre of rotation. This method is used for random

vibration tests to compare between the accelerometers and the response obtained from

markers as shown in Figure 5.29.

The camera on hub method has a great advantage due to less complexity in extracting

information for the images and have the capability to measure more than one measure-

ment point along the rotating beam. The field of view of the camera is directly on the

markers as shown in Figure 5.30(a). Furthermore, the chordwise and torsional vibration

can be measured by using this method shown in Figure 5.30(b). As a result of measuring

more than one point, using the camera on hub, the mode shapes of the beam can also

be obtained. Figure 5.32 shows the fundamental and second mode shapes of the beam.

These mode shapes were obtained from the experimental measurement in the frequency

domain utilising the Nyquist circle fit to increase the accuracy.

The measured mode shapes are compared with the estimated ones corresponding to two

different rotational speeds for the intact beam using the MAC method and the results

are shown in Figure 5.33. For a rotating beam with a crack located at the length ratio

equal to 0.103 and the depth ratio equal to 0.375, the results are shown in Figure 5.34.

The MAC result shows over 99.5% of match between the theoretical and experimental

mode shapes for the fundamental and second modes.

Similar to the theoretical study, the effect of the crack on the rotating beam shows a

reduction in the natural frequency for the fundamental and second modes. Figure 6.7

shows the measured frequencies for different rotational speeds for the intact and cracked

rotating beam with dimensions 330mm, 15mm and 2mm for the length, width and

thickness respectively. The crack was located at 24.5mm from the root of the beam with

a crack depth 1.1mm.
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Figure 5.25: Frequency response function (transmissibility) of a can-
tilever aluminium beam with cross section (height=2mm, width=15mm and
length=330mm), rotating at different speeds (150, 396 and 587).
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Figure 5.26: Comparison of the measured fundamental and second natural fre-
quency of flapwise vibration versus a theoretical model using the Rayleigh-Ritz
approach Yashar et al. (2016)
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Figure 5.27: Experimental test set up for a single camera with a mirror on
the hub. Two different systems were used for data acquisition; LMS lab test
connected to an accelerometer to measure the excitation and digital high speed
camera to measure the response of the beam.
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Figure 5.28: Experimental test set up with a single camera on the hub. Addi-
tional marker is placed on the centre of the rotation and a single camera is used
to measure the excitation and response of the beam.
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Figure 5.29: Single camera on hub is used to measure the FRF between
the output marker and input marker (blue solid line) and output of the ac-
celerometer and the input marker (red doted line) for the non rotating beam
(length=330mm).
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(a) Single excitation and response configuration for the
marker. The deflection of the marker in the vertical direc-
tion represent the flapwise and in the horizontal direction
represent chordwise.

(b) Single excitation multi response measurment
points configuration.

Figure 5.30: The marker configuration on the rotating beam. These images are
samples from the high-speed camera record.
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Figure 5.31: The transmissibility and coherence measurements for a rotating
beam with six measurement points along the beam. The rotational speed is
373.11 rpm.



120 Chapter 5 Experimental setup and results

0 0.2 0.4 0.6 0.8 1
Beam length ratio

0

10

20

30

40

50
121.399 rpm
156.579 rpm
279.034 rpm
462.564 rpm

(a) First mode shape of the rotating beam.
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(b) Second mode shape of the rotating beam.

Figure 5.32: Experimental mode shapes of the rotating beam measured using
digital image processing. The dimensions of the beam are 330mm, 15mm and
2mm for the length, width and thickness, respectively. The markers are attached
at positions corresponding to the length ratios of 0.21, 0.33, 0.45, 0.57, 0.69 and
0.98 from the root of the rotating beam.
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(a) MAC comparison between experiment and the
RayleighRitz method for the fundemental and second
mode shapes of the rotating beam at 147.37 rpm.

Flapwise vibration at Ω =396.5991

0.5 1 1.5 2 2.5

(Rayleigh Ritz)

0.5

1

1.5

2

2.5

E
xp

er
im

en
ta

l r
es

ul
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) MAC comparison between experiment and the
RayleighRitz method for the fundemental and second
mode shapes of the rotating beam at 396.59 rpm.

Figure 5.33: MAC comparison between experiment and the Rayleigh-Ritz pre-
diction method. The dimensions of the beam are 330mm, 15mm and 2mm for
the length, width and thickness respectively. The mode shape predictions are
evaluated using the Rayleigh-Ritz method at the same point as the attached
markers along the length, at ratios of 0.21, 0.33, 0.45, 0.57, 0.69 and 0.98 from
the root of the rotating beam.
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(a) MAC comparison between experiment and the
RayleighRitz method for the fundemental and second
mode shapes of the rotating beam at 147.37 rpm.
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(b) MAC comparison between experiment and the
RayleighRitz method for the fundemental and second
mode shapes of the rotating beam at 396.59 rpm.

Figure 5.34: MAC comparison between experiment and the Rayleigh-Ritz
method. The dimensions of the beam are 330mm, 15mm and 2mm for the
length, width and thickness respectively. The estimated response at points
which are the same as the attached marker points at the length ratios of 0.21,
0.33, 0.45, 0.57, 0.69 and 0.98 from the root of the rotating beam. The crack is
located at 34 mm from the root of the beam and its depth is 0.75 mm.
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Figure 5.35: The fundamental and second flapwise natural frequencies measured
using a high-speed camera for a rotating beam with and without crack. The
length of the beam is 330mm and the cross section is 15mm wide and 2mm
thick. The crack is located at 25.5mm from the root of the beam and the crack
depth is 1.1mm.
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5.8 Conclusions

The experimental measurement using possible alternative optical systems is presented

in this chapter. The first sections of this chapter explained the test rig design and

its capability in performing different types of configuration according to the required

measurements. Then, the properties and dimensions of the used specimens are listed.

The test rig and the specimens were designed and manufactured in dimensions and

materials selected specially to avoid the interference between the resonance of the three

lower modes of the rotating beam with the resonance of the test rig. Then, three different

image processing approaches namely DIC, marker detection and colour blub detection

are explained and illustrated in detail.

The first two image processing methods, which are the DIC and marker detection, are

used in a post-processing procedure while the third method (colour blob detection) is

more likely to be used in real-time applications. Moreover, the optical methods could be

considered in four different camera setups. In this chapter, three different cameras setups

used are shown in Figure 5.10(a) for a non-rotating beam test and in Figure 5.10(c),(d)

for a rotating beam. Furthermore, the markers were used instead of speckles due to the

simplicity and the ability to extract information from the image using marker detection

as well as digital image correlation. The magnification, marker size and the distance

of the lens from the beam are also illustrated and expressed for two different camera

sensors and lenses. Before performing a test on the rotating beam, a non-rotating test

was performed to verify the optical methods’ accuracy using a simple impact hammer

test with accelerometer measurement. The results of three different methods namely

DIC, marker detection and accelerometer data analysed using the LMS test lab show

good agreement, especially for the lower frequencies. The optical methods measure the

displacement of the markers on the beam as a function of the time. The higher the

amplitude, the better the measurement accuracy is from the optical measurements.

Regarding a rotating beam, a single camera with mirror is used first with a single marker

to measure the response of the beam and an accelerometer attached at the centre of the

rotation to measure the input excitation. This configuration can be used with different

types of high-speed cameras regardless of the size of the cameras due to attaching the

camera on the mount separate from the test rig. Although this method has the advantage

of measuring high vibration frequencies, it has a signal alignment issue due to using more

than one piece of equipment in the measuring set up. However, subsequently, a camera

attached to the hub configuration was used. This method is limited by the size of the

camera because of the camera is mounted on the rotating hub. In contrast to the first

configuration, this method has the advantage of using multi-measurement points along

the beam and the simple steps to extract the information from the images. Moreover,

as a result of multi-point measurements, the mode shapes can be obtained from the
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measurements. Furthermore, the excitation and the response markers are captured

from the single camera, so there is no misalignment or delay in the signals obtained.

The increase in the rotational speed leads to the increase in the natural frequencies of

the rotating beam as estimated from the simulation model in Chapter 4. In addition, the

existence of the crack leads to a decrease in the natural frequencies of the rotating beam.

Furthermore, the mode shapes of the experimental test and the prediction model are

compared using MAC and the results show good agreement between the corresponding

modes. The results for the natural frequencies from the experimental test are less than

those estimated from the simulation model. The maximum percentage error between

the simulation model and the experimental measurement is less than 5%. This error is

most highly due to the uncertainty in the boundary conditions of the attached beam,

such as strictly not fully clamped condition, and the damping in the system. Model

updating will be discussed in the next chapter to obtain more accurate results from the

simulation model.





Chapter 6

Crack detection

6.1 Introduction

The majority of existing vibration instrumentation used for vibration measurements

on rotating objects is typically through an electrical connection using slip rings wired

to an acquisition system. These connections have significant disadvantages, such as

inherent low signal to noise ratio and the potentially unreliable electrical connections.

An optical high-speed camera in conjunction with digital image processing is used herein

to overcome these issues and monitor the health of a rotating system during operation.

Numerous studies Barad et al. (2013); Satpute et al. (2017); Mazanoglu and Sabuncu

(2012) have investigated crack identification of non-rotating elements using various dy-

namic characteristic based techniques, such as natural frequency changes. Generally,

these methods are based on detecting the crack location and depth from the lowest or-

der natural frequencies, typically three frequencies for a cracked beam. Subsequently,

the point of intersection for these three frequencies on a crack location and depth chart

can identify the crack. Alternatively, Nguyen et al. Nguyen (2014) used the sudden

change in the slope of the three-dimensional mode shapes as an indicator for the crack

location and depth. In addition to changes in the natural frequencies, anti-resonance

frequency shifting has also been used to identify multiple crack positions Douka et al.

(2004). These reported studies are limited to non-rotating beams. In contrast, the anal-

ysis and identification for rotating cracked beams are relatively scarce in the literature

Banerjee and Pohit (2014); Cheng et al. (2011). Masoud and Al-Said (2009) proposed

an algorithm for crack detection in a rotating Timoshenko beam. The algorithm is

based on firstly detecting the crack depth then locating the crack position along the

beam. Further, the crack location was then confirmed by applying the same algorithm

at different rotational speeds.

125
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The objective of this chapter is to describe an experimental method to determine the

crack location and depth using a contactless optical method, namely digital image corre-

lation (DIC). Various on hub camera configurations are proposed in the previous chapter

to measure the vibration of a rotating beam and tested on a non-rotating beam to verify

the measured values. This was then followed by measurements on a rotating beam at

different rotational speeds. Subsequently, model updating is applied to the intact rotat-

ing beam results in order to characterise and capture the boundary conditions at the

attached end more accurately. Later, an updated model is then used with the measured

fundamental and second natural frequencies of the cracked rotating beam to identify

a crack, which has been deliberately introduced. The crack detection method is then

tested by comparing the two lowest natural frequencies from the updated simulation

model and the actual cracked beam. The natural frequency-speed curve generated from

the actual model is then optimised to find the best combination of crack depth, location

and rotational speed curve.

6.2 Rotating beam measurements

For the rotating beam, the captured footage can reveal both the rotational speed and

the beam deflection as a function of time. The rotational speed is obtained from track-

ing the background of the images and the beam deflection from the markers’ position

according to the field of view image frame, which is fixed in the process. The measured

displacement is converted from the image pixels to actual displacement in mm.

The fundamental and second resonance frequencies can be estimated from the power

spectral density (PSD) of the time history, as shown in Figure 6.1.

The values of the measured natural frequencies marked with circles in Figure 6.4 are

lower than the predicted numerical results Yashar et al. (2018) marked with a dotted line

for a cantilever beam. This difference in the natural frequencies is due to the flexibility

at the end of the beam attached to the rotational hub and the approximate clamped

edge boundary conditions.

In order to subsequently use the numerical model for assisting with the crack detection,

it is necessary to update the simulation boundary conditions at the hub in order to

improve the accuracy of the numerical model.
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Figure 6.1: Frequency response function (transmissibility) of a non-cracked
cantilever aluminium beam with rectangular cross section (height=2mm,
width=15mm and length=330mm), rotating at three different speeds (150, 396
and 587rpm). Random excitation is applied at the centre of rotation of the can-
tilever beam and the response is measured at 70mm from the root of the beam.
A Go Pro hero 4 black camera is used with images acquired at 240 frames per
second, a shutter speed of 1/960s and an equivalent ISO of 100.

6.2.1 Model updating

The first and second natural frequencies of the intact rotating beam were measured

for different rotational speeds and were used to update the boundary conditions in

the simulation model. Typically, in structural dynamics, the experimentally measured

frequencies are lower than predicted ones due to the additional flexibility in the physical

boundary conditions. To update the model, a linear and torsional spring were added

to represent the constrained end of the cantilever, representing the additional flexibility

due to the complex mechanism of the rotating hub and linear bearings and replacing

the fully built in conditions.

The theoretical admissible function Y (x) of the rotating cracked beam, which is based

on static deformation of cantilever beam under a concentrated load applied at the free

end, can be expressed as Yashar et al. (2018);

Ywn(x) =
(x
L

)n−1 1

EI

(−Lx2

2
+
x3

6

)
(6.1)
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where L, x, n, E and I represent the beam length, distance from the root of beam to

the location of the lateral deflection, order of the shape function, Young’s modulus of

elasticity and the second moment of area, respectively.

In the updated model the end attached to the rotating hub, which is considered to be

at a point, is constrained by a linear and a rotational spring and the second end is free,

as illustrated in Figure 6.2.

Fixed Free Free 

Linear spring (k𝐿)
 + 

Rotational spring (k𝑇)

Figure 6.2: The boundary conditions of the beam, initial theoretical model and
updated model to fit to the experimental test beam.

The corresponding updated admissible function for predictions of the rotating cracked

beam can be expressed from the resulting tip load static flexibility shape function Wang

and Yang (2011);

Ywn(x) =
(x
L

)n−1
(

1

EI

[−Lx2

2
+
x3

6

]
− xL

kT
+

1

kL

)
; (6.2)

where kL and kT represent the linear and torsional spring stiffnesses respectively at the

attached end of the rotating beam.

A genetic algorithm was used to obtain the two stiffness parameters that minimise

the error between the experimental intact beam frequency-speed curve and the curve

obtained from simulation model as expressed by the error function.

errorstiffness =

Ωn∑

Ω=Ω1

|f1s(kL, kT )− f1e|
f1e

+
|f2s(kL, kT )− f2e|

f2e
(6.3)

Here f1 and f2 are the first and second natural frequencies of the rotating intact beam,

Ω1,2,3,...,n represent the speeds at which the natural frequencies are estimated and the

subscripts s and e refer to the simulation and the experimental values, respectively. Here

a genetic algorithm was used due to its capability in finding the global minimum for the

error in terms of the two unknown stiffnesses.
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6.3 Crack detection using a frequency-speed curve

Crack detection herein is based on a frequency change using the experimental measure-

ments and numerical model predictions. The crack detection process is divided into two

main steps. Firstly, the simulation model boundary conditions were updated using the

experimentally measured first two natural frequencies of the uncracked rotating beam as

mentioned in Section 6.2.1. Secondly, the comparison was made between the measured

frequencies of the rotating cracked beam and the updated simulation model results for

a cracked rotating beam.

The frequencies of a cracked rotating beam were measured for various rotational speeds

and the experimental natural frequencies versus rotational speed curves were generated.

From the updated simulation model, a two-dimensional parametric study was performed

to generate the frequency change due to different crack location and crack depth. Then,

a comparison was made between the experimental curves and corresponding theoretical

curves. This comparison was obtained using the MATLAB Optimization Toolbox.

A genetic algorithm was used to find the global minimum error. In general, this algo-

rithm was inspired from the Darwinian evolution theory which is based on the mutation

in the new generation and natural selection as a filter Vakil-Baghmisheh et al. (2008);

Mehrjoo et al. (2013). Figure 6.3 illustrates the procedure to obtain the crack location

and depth. The search area was limited to the actual beam length and the crack depth

between 0 to a maximum crack depth ratio of 0.60 of the beam thickness in order to

find the best fit crack location and depth.

The procedure starts by generating a population of about 70 elements. Each element

contains one chromosome which is a pair comprising the crack location and depth. The

search minimises the error between the experimental and updated simulation model

curves for the natural frequencies versus rotational speed. The two parametric chromo-

somes namely the crack location and depth, are given in Equation 6.4. The elements

that produce minimum error will survive to the next iteration and will produce a new

generation. The crossover fraction set to 0.8 and the uniform mutation with rate 0.01 are

setted as a default of the Matlab optimisation toolbox. The chromosomes of the fitted

elements are retained, whilst the rest of the elements will be discarded. The iteration

loop will stop when the maximum stall generation reaches 20 and the function tolerance

selected is equal to 1× 10−5.

errorcrack =

Ωn∑

Ω=Ω1

|f1s(CL, CD)− f1e|
f1e

+
|f2s(CL, CD)− f2e|

f2e
(6.4)

Here CL and CD represent the crack location ratio xc
l and the crack depth ratio; the

latter is equal to the crack depth divided by the beam thickness.
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Generate initial population  

Chromosomes  {𝑪𝑳, 𝑪𝑫} 

Population  

Find {𝒇𝟏𝒔 , 𝒇𝟐𝒔} from 

simulation for each 

chromosome 

𝒆𝒓𝒓𝒐𝒓𝒄𝒓𝒂𝒄𝒌 Sort population  Convergence check  
Select the best 

chromosomes and 

discard the rest  

Reproduction  

Mutation  

{𝒇𝟏𝒆, 𝒇𝟐𝒆} 

From experimental  

Display results 

Figure 6.3: The procedure for obtaining the crack location and depth based on
a genetic algorithm.

6.4 Crack detection experimental validation

The experimental tests were performed to validate the proposed crack detection method

with two aluminium beams. The material properties were the density of 2633 kg.m−3

and modulus of elasticity 71 GPa. The geometric dimensions of both beams were 330

mm length, 15 mm width and 2 mm thickness. A crack with 0.75 mm depth was

introduced to the first beam at a distance 34 mm away from the end constrained by the

rotating hub. For the second beam a deeper crack with 1.1 mm depth was introduced

at a distance 24.5 mm away from the end constrained by the rotating hub The test

procedure, results and discussion will be presented in the next three sections.

6.4.1 Case 1

The intact natural frequencies of the first beam was measured first to update the model

by adding equivalent linear and torsional springs to the boundary conditions at the

cantilever attached end. The stiffness of the springs determined by minimising the error

using Equation 6.3.

The numerical values for the linear and torsional spring stiffnesses were investigated.

The estimated and best fit linear spring kL is almost constant with rotational speed and

is equal to 166.4 kN.m−1. However, the best fit torsional stiffness kT is not constant,

being a function of the rotational speed and varying linearly from 45 Nm at a rotational
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speed of 150 rpm, increasing up to 50.7 N m at a speed of 510 rpm, ie about 10%

variation.

Substituting kL and kT for the intact beam in Equation 6.2 produces a closer numerical

intact beam model to the experimental measurements, as illustrated in Figure 6.4 for

the rotating intact beam.
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Figure 6.4: Comparison of the fundamental and second natural frequencies of
the flapwise vibration between the experimental results and theoretical results
using a Rayleigh-Ritz approach Yashar et al. (2018). The length of the beam
is 330mm and the cross section is 15mm wide and 2mm thick. The solid curve
refers to an experimental data fit. The dotted curve is for the numerical simula-
tion assuming a fully fixed base for the beam. The dash-dotted curve represents
the updated simulation results.

After introducing the crack to the first beam, the effect of the crack can be observed in

Figure 6.5. The measured results for the intact beam marked with ”o” and cracked beam

marked with ”x”. For example, at the rotational speed of 202 rpm the first and second

natural frequencies of the intact beam are 13.64Hz and 82.76Hz, while the corresponding

natural frequencies of the cracked beam are 13.56 Hz and 82.53, Hz respectively. This

reduction was predicted previously Yashar et al. (2018) due to the additional local

flexibility from the edges of the crack.

Finally, using a genetic algorithm with two chromosome parameters namely the crack

location and crack depth a global minimum for Equation 6.4 was determined. The min-

imum error indicates a closer match for the predicted fundamental and second natural

frequencies versus speed curves to the experimental results. In this validation test, the

lowest value of the error function was 0.0312 and the value of the crack location and

depth were accurately estimated and found to be 34.32 mm and 0.762 mm, respectively.

The actual crack location and crack depth were 34 mm and 0.75 mm, respectively.
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Figure 6.5: The fundamental and second lowest natural frequencies are mea-
sured using a high-speed camera for a rotating beam with and without crack.
The beam length is 330 mm and the cross section is 15 mm wide and 2 mm
thickness. The crack is located at 34 mm from the root of the beam and the
crack depth was 0.75 mm.

6.4.2 Case 2

A test was then repeated and assessed the applicability of the procedure on a second

beam having the same geometrical dimensions and physical properties. The estimated

and best fit linear spring kL is almost constant with rotational speed and identical to case

1 being equal to 166.4 kN.m−1. The best fit for the torsional stiffness kT is not constant,

being a function of the rotational speed and varying from 65.41 Nm at a rotational speed

of 150 rpm decreasing down to 56.54 Nm at a speed of 510 rpm. However, the deeper

crack introduced to this beam was at 24.50 mm thus closer to the root of the beam with

a depth equal to 1.1 mm. The equivalent linear and torsional springs were determined

from the difference between the simulation and experimental results for the intact beam

as shown in Figure 6.6. The natural frequencies measured for the cracked beam and the

reduction was significant, as shown in Figure 6.7, due to the size and location of the

crack. The estimated crack location from the frequency-speed curve fitting was at 24.62

mm with a depth equal to 1.07 mm. The difference between the actual and estimated

crack location is 0.12 mm and the difference for the crack depth is 0.03 mm.
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Figure 6.6: Comparison of the experimental results with numerical simulation
using an updated uncracked beam model with translation and rotational springs
at the root of the beam.
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Figure 6.7: The fundamental and second lowest natural frequencies measured
using a high-speed camera for a rotating beam with and without crack. The
length of the beam is 330 mm and the cross section is 15 mm wide and 2 mm
thick. The crack is located at 25.5 mm from the root of the beam and the crack
depth is 1.1 mm.
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6.4.3 Discussion

Theoretically, the closer the crack is to the root and the deeper that the crack is, the

more accurate the detection results should be, due to the greater effect of the crack on the

natural frequencies. However, the experimental results show a slightly increased error in

the estimated crack depth for the closer and deeper crack. The error between the actual

and estimated crack depth is 0.018 mm. This error could be related to the experimental

error in measuring the natural frequency or due to the multi post processing of the

data including digital image correlation, Nyquist circle fitting, model updating and the

optimization process in determining the boundary conditions.

In this study, the model updating is based on comparing the experimental and esti-

mated uncracked beam frequencies. However, for the sake of evaluating the accuracy

of the updated method, a new simulation was performed applied to the cracked beam

based on the comparing the measured cracked with the actual crack location and depth

substituted into the model. The results obtained for first beam are shown in Figure 6.8

and the maximum error is less than (0.52%) between the two estimations, i.e the update

based on intact measured and cracked measured. Figure 6.8 shows the results for the

second beam and the maximum error is about (1.34%) between the two estimations.

The results of this test show a higher error in the updated second beam, and this reveals

the slightly higher error in identification of the crack in the second case due to the crack

depth, which is close to the limitation of the crack modelling assumption. The maxi-

mum numerically valid allowed crack depth ratio is 0.6 for the derived expressions and

in this experiment it is 0.55. Also another factor which might affect the test such as the

change in the boundary conditions of the clamped end of the beam in addition to the

aforementioned factors. One would expect that the clamping force in the attachment

of the beams tested would produce some variability. In practice, this might well be the

cause of the slight of difference in the estimated rotational spring stiffness at the root of

the beam.
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Figure 6.8: The comparison between the actual and two different estimated
results using updated intact and cracked beams for the fundamental and second
lowest natural frequencies of a rotating cracked beam. The length of the beam
was 330 mm and the cross section was 15 mm wide and 2 mm thick. The crack
located at 34 mm from the root of the beam and the crack depth was 0.75 mm.
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Figure 6.9: The comparison between the actual and two different estimated
results using updated intact and cracked beams for the fundamental and second
natural frequencies of a rotating cracked beam. The length of the beam is 330
mm and the cross section is 15 mm wide and 2 mm thick. The crack was located
at 25.5 mm from the root of the beam and the crack depth is 1.1 mm.

6.5 Robustness of the detection method

The reliability of the proposed crack identification method was investigated using a

Monte-Carlo simulation(MCS). This simulation was used to determine the sensitivity
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of the crack location and depth identification on a rotating beam. The simulation was

performed for different combinations of normalised random crack location and depth in

the updated rotating cracked beam model. The same dimensions, boundary conditions

and material properties were used for each case.

The simulation was repeated for 100 samples for each of four specified crack locations

along the beam and these locations were selected at fixed positions corresponding to

points where the ratios of the positions to the length of the beam are 0.1, 0.3, 0.6 and

0.9 from the supported end of the beam.

Figure 6.10 shows the simulated and estimated crack locations and depth for all four

locations. The closer that the introduced crack is to the fixed end, the more accurate

were the estimated results due to the greater effect of the crack on the reduction of the

natural frequencies. In contrast, the crack identification becomes difficult when a crack

is located closer to the free end due to the smaller reduction in the natural frequencies.

For example, a crack at a location ratio of 0.9 shows in Figure 6.10 an increased error in

the crack identification. The optimisation algorithm had difficulty in determining both

simultaneously the exact location and depth due to the flat area in the global minimum

of the optimisation surface.

Figure 6.11 show an increase in the standard deviation of the error in the crack depth

ratio and location ratio respectively for cracks located closer to the free end of the

rotating beam.

Regarding the effect of the crack depth, a deeper crack is more accurately estimated due

to the greater reduction in the natural frequencies. Figure 6.12 shows the comparison of

the standard deviation for the two sets of the crack depth. In both figures, for the crack

depth ranging between 0.36-0.39 of the beam thickness, the identification procedure

produces smaller error for the standard deviation compared to the case for larger cracks

in the depth range of 0.4-0.46.
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Figure 6.10: The simulated crack ”◦” and estimated crack ”×” for four dif-
ferent crack locations at position equal to 0.1, 0.3, 0.6 and 0.9 of the beam
length. These results obtained from simulated frequency-speed curves for the
two natural frequencies for the rotational speed range between 160 rpm to 510
rpm.
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Figure 6.11: The standard deviation of the normalised difference between the
actual and estimated crack depth (a) and crack location (b), where the value of
the standard deviation increases when the crack is located close to the free end
of the rotating cantilever beam.
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Figure 6.12: The standard deviation of the normalised difference between the
actual and estimated crack depth (a) and crack location (b), where the value of
the standard deviation decreases when the introduced crack is deeper. CLR =
crack location divided by beam length.
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6.6 Conclusions

Using the previous developed optical methods in Chapter 5, the measurement technique

was applied to rotating intact and cracked beams in order to produce a crack detection

identification. This method estimate a crack location and depth in a rotating cracked

beam using the predicted natural frequency-speed curves. The frequency-speed curves

of the intact beam were initially used to update a numerical model for the boundary

conditions at the root of the beam. Then, the numerical frequency-speed curves of

the cracked beam were used to identify the crack. The experimentally detected crack

location and depth are found to be in good agreement with the actual crack location

and depth. This method shows a sensitivity to the boundary conditions changed at the

clamped end of the rotating cantilever beam due to the model updating step.

Finally, Monte-Carlo simulations were performed to check the robustness of the frequency-

speed crack detection method and identify how accurately the crack location and depth

can be determined. The method was subsequently shown to be more accurate in de-

tecting the location and depth of the crack when a crack is deeper or located close to

the supported end of the rotating cantilever beam. The next chapter will be deal with

active vibration control of the rotating beam using the optical measurement procedure.

This has the potential to reduce the vibration response, increasing the fatigue life or

reducing the accrue of failure.





Chapter 7

Active vibration control of a

rotating beam using the

developed model and optical

measurement

7.1 Introduction

Vibration control of rotating beams plays an essential role in aviation and space applica-

tions for better performance and increased stability. Numerous investigations deal with

vibration control of beams using passive modification, such as using tuned mass dampers

and eddy current dampers Sodano et al. (2005); Younesian et al. (2006, 2008); Cheng

and Oh (2009); Yan et al. (2012). In addition to passive control, active vibration control

has been widely used for control, where actuators and sensors are employed typically to

generate velocity feedback using inertial actuators by Rohlfing et al. (2016); Camperi

et al. (2016) and piezoelectric actuators by Xue and Tang (2008).

In passive control, the change in the response of the structure can be obtained by

modifying the system properties such as damping and stiffness. In active control, the

structural response is controlled by adding control forces to the structure using sensors

and actuators. Although the extra added equipment may increase the cost of the system,

the system’s performance however in vibration suppression is significantly improved

when compared with passive control.

This chapter presents an application of the developed rotating beam model from Chap-

ter 3 in conjunction with the optical vibration measurement technique in Chapter 5 to

active vibration control of a rotating beam. A simple velocity feedback system is devel-

oped. It comprises a collocated electromagnetic force actuator and a hi-speed camera.

141
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The latter is used as a velocity sensor and implemented to suppress the response of the

rotating beam by means of actuator applied active damping. The colour blob detection

method (see Section 5.3.3) is used to extract the displacement from the images as a

function of time. This information is subsequently differentiated in real time to obtain

the velocity of the beam. The simulation model for the active control system, based on

velocity feedback, and the model of the rotating beam, developed in (see Chapter 3.2),

is used for the simulations. In an ideal velocity feedback loop, the collocated sensor-

actuator guarantees unconditional stability Rohlfing et al. (2016) if the dynamics of the

actuator is not included. In the experimental test, different factors affect the stability,

especially the sampling frequency and feedback gain.

7.2 Active control simulation

The simulation model of the rotating beam with vibration control is based on veloc-

ity feedback as shown in Figure 7.1 The system based on the developed FE model in

Chapter 3, where M, C, K and S represent the mass, damping, stiffness and rotational

stiffness matrices for a rotating beam that has been divided into five beam elements.

Each element has two nodes and each node has two degrees of freedom, which are the

vertical displacement and slope as shown in Figure 7.2. Fp(t) and Fm(t) represent the

excitation forces at the base of the beam and the controller feedback force. The mea-

surement point and the actuator collocated at the third node, where the sensor measures

the vertical velocity of the node and the actuator applies a vertical force. The dynamic

equation of the system with the control is

Mẅ(t) + Kw(t) + Cẇ(t) = Fm(t) + Fp(t) (7.1)

The velocity feedback is activated by the manual switch. The signal of the feedback

depends on the gain and actuator transfer function. The actuator is made of a permanent

neodymium magnet and electromagnetic coil. The generated force by the actuator,

which is shown in Figure 7.3, can be expressed using Lorentz law. The current i flows

in a conductor Lm in a magnetic flux density of Bm, which produces a control force Fm

given by Equation 7.2

Fm = BmLmi (7.2)

The applied current is chosen to be proportional to the velocity therefore the current

can be expressed as,

i = −hmẇ (7.3)

where hm is the velocity to current conversion constant. The relation between the force

and the velocity can be written as,

Fm = BmLmhmẇ (7.4)
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The characteristic of the actuator is measured by applying a 300 mA current to the coil

and measuring the force generated between the magnet and the coil, which was equal

to 0.39 N when the distance between the coil and magnet is 4 mm. Substituting these

values in Equation 7.2 produces results for the value of BmLm which is equal to 1.3

T.H−1.

By substituting Equation 7.4 into Equation 7.1 the dynamic equation of the system

becomes,

Mẅ(t) + Kw(t) + (C +BmLmhm)ẇ(t) = Fp(t) (7.5)
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Figure 7.1: The Simulink diagram of the system with velocity feedback. The
manual switch is placed to select between open-loop and closed-loop systems.
The Mux is used to select the specific degree of freedom to apply the force or
to measure the velocity/displacement.

The amplitude of transmisibility and phase obtained from simulation of the open-loop

and closed-loop response of the system are shown in Figures 7.4,7.5 and 7.6 for a non-

rotating beam and for two rotational speeds of 250 rpm and 500 rpm, respectively. Active

control shows a significant reduction in the transmisibility amplitude. Here, open-loop

is the system under base excitation with no active control and closed-loop is the system

under base excitation with active control.
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Figure 7.2: The finite element model representation of a rotating beam. The
first node is attached to the rotating hub. The vertical displacement in the third
node is attached to the actuator.
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Figure 7.3: The actuator used for the vibration control. (a) The test rig with
attached mirror and actuator, (b) The configuration of the actuator components
and (c) the actuator with magnet and coil attached to the rotating beam.
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Figure 7.4: The simulated transmisibility of the non-rotating beam. The first
(15 Hz) and second (95 Hz) resonance of the beam without control represented
by the solid line. The dashed and dotted lines represent the close-loop system
with the velocity feedback gains equal to 0.5 and 1, respectively.
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Figure 7.5: The simulated transmisibility of a beam rotating at 250 rpm. The
first (15.6 Hz) and second (95.8 Hz) resonance of the beam without control
represented by the solid line. The dashed and dotted lines represent the close-
loop system with the velocity feedback gains equal to 0.5 and 1, respectively.
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Figure 7.6: The simulated transmisibility of a beam rotating at 500 rpm. The
first (17.6 Hz) and second (97.6 Hz) resonance of the beam without control
represented by the solid line. The dashed and dotted lines represent the close-
loop system with the velocity feedback gains equal to 0.5 and 1, respectively.
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7.3 Experimental validation

The test rig was updated for the active control test. The new modification was designed

and simulated using SolidWorks software and manufactured using a 3D printer. Basi-

cally, the new mount consists of an electromagnetic actuator and a marker holder in

addition to the reflection mirror.

The electromagnetic actuator comprises of two parts; a neodymium magnet ring and an

electromagnetic coil. The direction and amount of current that passes through the coil

defines the force direction and quantity between the coil and the magnet.

The distance between the coil and the magnet is about 4mm. The relationship between

the current and the force of the magnet is about LmBm = 1.3 T.H−1 as described in

Section 7.2 . The dimensions of the magnet are 20mm, 10mm and 5.2mm for the outer

diameter, height and inner diameter, respectively. The pulling force of the magnet is

approximately 100 N.

Furthermore, two LED lights were attached on the actuator as markers. One of the

LEDs is connected to the coil, which is attached to the beam and the second one is

directly attached to the magnet to represent the base excitation motion. The LEDs are

selected with two different colours to separate the displacements by using digital image

processing.

A copper ring with a carbon brush is used as a slip ring to connect the coil of the

actuator, which is on the rotating part, to the amplifier which is on the non moving

part.

The test setup in this chapter is similar to the single camera with the mirror in Fig-

ure 5.10(c) that was described in Chapter 5. However, the previous test was used to

measure the vibration of the beam. In this test, the measured signal is used as a veloc-

ity feedback to excite the actuator in order to apply a control force to the beam. The

controller can reduce the amplitude of the vibration by damping the amplitude of the

fundamental or higher frequency resonance of the beam.

In order to control the beam in real time, the camera should be connected to the data

image processing unit directly and the images should be processed fast enough to reduce

the effect of any delay in the feedback system. A high speed camera was used in this

test, with a modified lens to reduce the image distortion and to cover the required field

of view.

The lens of the camera should be in alignment with the centre of the rotation to reduce

the distortion. A LabVIEW block diagram was assembled to assist with aligning the

camera with the centre of rotation. This program uses the rotating markers by collecting

62 points each second and from the collected point clouds a circle which is fitted to
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determine the centre and the radius of the circle. Then, the radius is changed by

varying the location and angle of the camera and the minimum radius represents the

best alignment between the camera and the centre of the rotating beam. After locating

and fixing the camera, another LabVIEW block diagram was implemented and used to

measure and control the vibration of the beam.

The test setup is shown in the Figure 7.9, where the camera is fixed on a tripod and it

is about 2m away from the test rig.

SOLIDWORKS Educational Product. For Instructional Use Only

Figure 7.7: Modified hub for vibration control test.
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Figure 7.8: Modification on the rotating hub mount. The rotating hub comprise
an electromagnetic actuator, mirror, two LEDs as markers and a slip ring to
connect the actuator to the amplifier.
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Figure 7.9: Test setup for the rotating beam control using an optical system
and velocity feedback.
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7.3.1 Vibration control of a non-rotating beam

A pre-test was performed first for a non-rotating beam in order to verify the optical

measurement. An accelerometer was attached to the base of the beam to measure the

excitation and another accelerometer attached to the marker to measure the response

of the beam at the same point of the marker. Figure 7.10 shows the agreement between

the results from the accelerometer and the optical system for a beam of 300 mm length,

15 mm wide and 2 mm thick. The accelerometer and the marker are at 70 mm from

the root of the beam. The camera was set to 640 × 480 pixels, 100 fps, ISO 100 and a

shutter speed of 1/8000 s. The transmisibility using the optical measurements is marked

with a solid line and the one obtained from accelerometer measurement is marked with

a dashed line.

After verifying the optical system measurement, a closed-loop control with velocity feed-

back was applied to the beam. Figure 7.11 shows the result of the amplitude of the

transmissibility for a non-rotating cantilever beam for the open-loop (marked solid line)

and the closed-loop system (marked with dotted line). The active vibration control

shows about 17dB reduction in the first resonance amplitude. The next step was to

apply the active vibration control on the rotating beam.
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Figure 7.10: Comparison of the transmissibility between optical measurements
and accelerometer result. The dimensions of the beam are 300mm, 15mm and
2mm for the length, width and thickness respectively.



154
Chapter 7 Active vibration control of a rotating beam using the developed model and

optical measurement

0 5 10 15 20 25 30
Frequency (Hz)

-20

0

20
T

ra
ns

m
is

si
bi

lit
y 

(d
B

)
Without control
With control

0 5 10 15 20 25 30
Frequency (Hz)

-200

-100

0

100

P
ha

se

Without control
With control

Figure 7.11: The non-rotating beam vibration with and without control.The
dimensions of the beam is 320mm, 15mm and 2mm for the length, width and
thickness respectively.

7.3.2 Vibration control of the rotating beam at different rotational

speeds

An experimental vibration control test was performed on a rotating beam for a number

of different rotational speeds. The optical measurements for the rotating beam without

control, i.e. open-loop, using electromagnetic shaker excitation at the root of the beam

and the response at 70 mm from the root of the beam were obtained. As explained

previously in Chapter 4, an increase in the rotational speed leads to an increase of the

natural frequencies as shown in Figure 7.12.

Figure 7.13 shows the transmissibility of the rotating beam at different rotational speeds

under active velocity feedback control. The results show a significant reduction in dB for

the peak response in the first resonance of the rotating beam, especially when compared

to the non-rotating beam without control. The velocity feedback gain was kept fixed.
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Figure 7.12: The transmissibility and phase angle for the rotating beam vibra-
tion without control. Open-loop diagram between the base excitation and the
beam response at 70mm from the root of the beam.
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Figure 7.13: The transmissibility and phase angle for the rotating beam vibra-
tion with active velocity feedback control. The closed-loop diagram between the
base excitation and the beam response at 70mm from the root of the beam.
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7.3.3 Signal to noise ratio (SNR)

The measurement for the rotating beam becomes more difficult due to the camera align-

ment, light setting, background noise interference and additional noise from the rota-

tional and moving parts such as the ball and linear bearings. However, to improve the

quality of the signal, fine tuning was applied by using the alignment aid shown in the

LabVIEW block diagram, which was developed according to the least squares circle fit

algorithm and by increasing the camera shutter speed to reduce the background noise.

Figure 7.14 shows the noise level in the measured signal. The signal to noise ratio mea-

sured between the test signal and the camera noise was obtained for the non rotating

beam and then for the rotating beam. After applying Equation 7.6 the results were

23.96 dB and 22.23 dB respectively.

SNR =

√
1
N

∑N
n=1 |signaln|2√

1
N

∑N
n=1 |noisen|2

(7.6)
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Figure 7.14: The time domain result of optical displacement measurement for
a beam in nonrotating, rotating and rotating with base excitation. This test is
performed to measure signal to noise ratio (SNR).

7.3.4 Stability analysis for different rotational speeds

For stability, the system shown in Figure 7.15 is considered where G(s) and H(s) rep-

resent the rotating beam system and the controller transfer function respectively. The
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closed-loop system response can be expressed as Equation 7.7. The value of the denom-

inator becomes zero when the value of G(s)H(s) is equal to -1 and the system becomes

unstable when G(s)H(s) encircles point (-1,0) is encircled. Herein, the gain margin and

phase margin are important indicators to measure the robust stability of the closed-loop

system.

The gain margin represents the maximum gain value in which the system can have before

reaching instability. An open-loop transfer function between the controller actuator

input and the beam velocity was measured. The results are shown in the Figure 7.16

where by increasing the rotational speed the gain margin increases due to the reduction

in the response peak amplitude with increased the rotational speed. The actual gain

margins are measured from the circular curve fit to the Nyquist plot of G(s)H(s) as

shown in Figure 7.16. These results can be presented as a function of the rotational

speed as shown in Figure 7.17. Regarding the phase margin, the values are infinity

except for the non-rotating beam case where the phase margin is 100.65 degrees.
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Figure 7.15: The system block diagram for the rotating beam and controller
closed-loop. where G(s) and H(s) represent the transfer function of the plant
and controller respectively.

Closed− loop TF =
G(s)

1 +G(s)H(s)
(7.7)
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Figure 7.16: The circular curve fit for the Nyquist plot of the different rotational
speed of the open-loop between the actuator excitation and beam response at
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Figure 7.17: The gain margin for the active velocity feedback control of the
rotating beam as a function of the rotational speed. These results are extracted
from the circular curve fit to the Nyquist plot of the open-loop between the
actuator excitation and beam response at the same position 70mm from the
root of the beam. The increasing rotational speed of the beam leads to an
increase in the gain margin of the controller.
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7.4 Conclusions

In this chapter, an active control using velocity feedback was presented for the non-

rotating and then the rotating beam, the latter at different rotational speeds. A simula-

tion study was first established for the system using MATLAB Simulink. The estimated

transmissibility shows a significant reduction in the fundamental and second resonance

of the system after application of the feedback control. Furthermore, the estimated

natural frequencies show the same pattern as discussed in the previous chapters where

the resonance frequencies increase when the rotational speed increases. In addition to

the simulation, experiments were performed using a high speed camera with a reflecting

mirror of the image of the beam and its markers as a response sensor. The sampling

frequency of the sensor was set to 100 fps. However, since the processing speed is lim-

ited to about 60 fps the active control targeted the fundamental resonance only . A

new method of real time active control using a high speed camera shows a significant

reduction in the resonance peak level of the transmissibility function. The use of optical

measurements in real time control using camera is novel and is the main contribution of

this chapter.



Chapter 8

Overall conclusions and

suggestions for future work

In this chapter, a summary of the thesis is presented, which includes the main findings

and contributions of research work done. In addition, the limitations of the current work

are described. Finally, some possible points for future work and research in this area

are provided.

8.1 Summary of the thesis

In this thesis, the main aim was to study the dynamic behaviour of a rotating beam. For

this reason, the modelling of a rotating beam with and without crack is presented using

force equilibrium and Hamilton’s principle. Then, two approximate numerical methods

were used to solve the equations of motion. The methods being namely the finite element

and the Rayleigh-Ritz methods. The models were simulated to study the effect and

variation of many factors on the natural frequencies. The factors considered included the

rotational speed, beam slenderness and hub ratio. Furthermore, the important features

in the results such as the critical speed, buckling speed and veering phenomena were

identified. The simulation results were divided into two categories for the flapwise and

the chordwise vibration, where they refer to the out of the plane and in-plane vibration

(rotating plane).

The behaviour of the beam simulated under different rotational speeds revealed the

general increase in the natural frequencies with the increased rotational speed. The

slenderness ratio did not affect the dimensionless natural frequencies for flapwise vibra-

tion. In contrast, the dimensionless natural frequencies for chordwise vibration increase

when the slenderness ratio increases. Furthermore, the diameter of the hub significantly

161



162 Chapter 8 Overall conclusions and suggestions for future work

affects the natural frequencies. The larger the hub radius, the greater the increase in

the natural frequencies for both the flapwise and chordwise vibration.

Regarding critical feature behaviour, the simulation shows the interference between the

natural frequency and the rotational speeds for chordwise vibration where this is not

the case in the flapwise vibrations. Moreover, a buckling speed appears in the chordwise

vibration due to the decrease in the fundamental natural frequency of the beam at high

rotational speeds. Finally, a veering phenomenon was observed wherein the chordwise

vibration of the rotating beam at high rotational speeds leads to veering in the natural

frequencies and the modes changing order from being previously bending to axial defor-

mation. This behaviour is a result of a coupling effect between the chordwise bending

and longitudinal vibration.

The simulation results showed a good match between the two numerical methods re-

garding the natural frequencies and mode shapes. The results were in good agreement

with a 3D FE model assembled using solid elements and solved in commercial software

such as SolidWorks and ANSYS.

In the experimental work, a test rig was designed and manufactured to test a rotating

beam and its measured response using optical measurements. Three different image

processing methods, namely digital image correlation, marker detect and blob detect,

were utilised to extract the dynamic deflection data from the sequence of images. The

new approach showed the capability of estimating the natural frequencies and mode

shapes for the flapwise vibration of the rotating beam. The optical method applied is

non-invasive with remote sensing of the vibration for a wide range of rotational speed

representing one of the main goals of this research. Moreover, a new crack detection

method was developed and validated based on a natural frequency-speed curve. The

robustness of the method was assessed using Monte Carlo simulation (MCS). Finally,

real-time active vibration control of the rotating beam was undertaken and completed

using velocity feedback. This involved the measurements using a high-speed camera and

image processing. The control results produced a significant reduction in the flapwise

vibration over a wide range of rotational speeds. The crack detection and rotating beam

control can be considered as applications of the developed numerical model and optical

measurement capabilities.

8.2 Limitations of the current work

The limitation of the study can be divided into three main areas namely modelling, sim-

ulation and experimental implementation. Regarding modelling, the three main types

of vibration which are flapwise bending, chordwise bending and longitudinal stretch are

covered in Chapter 3. However, for modelling more realistic rotating beams, the model

should include torsional deformation and vibration. In addition, the crack modelling
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covers the two modes, which are opening and sliding. For torsional vibration it will

be necessary to include the tearing mode of the crack, which might be associated with

torsional vibration. The breathing or bilinear crack is briefly covered in this thesis and

can be developed for future analysis. In addition, the breathing type of crack has not

been applied yet in the Rayleigh-Ritz modelling approach.

Although the chapter containing experimental validation covers the optical measurement

of the flapwise vibration of the rotating beam, the tests were limited to the measurement

of the response in the first two resonances of the rotating beam. This was due to a

limitation in the frame rate of the camera. Furthermore, the chordwise test did not

contribute as it would require an additional upgrade to the test rig’s design, which was

limited in the time available for this study.

The optical measurement was partially limited to the finite number of markers along

the beam. While using a speckle pattern with digital image correlation, it would be

possible to obtain a full-field measurement of the rotating beam. In this research, the

markers were used to reduce the complexity of the system and to use different image

processing methods for which the speckle pattern approach is not suitable. Also, for full-

field measurements, at least two compatible and preferably identical high-speed cameras

are required to obtain the out of plane vibration.

The closed-loop response used for active vibration control shows a significant reduction in

the first resonance of the rotating beam. Nevertheless, the sampling rate for the camera

is insufficient to cover the first two beam resonances. The image processing added a

delay to the feedback and limited the level of the active damping to the frequency range

up to the first resonance only. The crack detection method was also limited to using the

lowest two natural frequencies due to the limitation in the experimental measurements.

8.3 Future work

The work that has been presented in this thesis covers the theoretical formulation and

experimental validation method for modelling a rotating beam with and without a crack.

In addition, two applications based on the developed model has been illustrated, which

are the crack identification and active control of rotating beam. Further improvements to

the method and the experimental investigation may result from research work regarding

the following issues:

The proposed model can be improved by including the torsional vibration, especially if

the model extended to cover plate or wide beams, which is more like to represent blades.

Likewise, tapered beams which functionally change in cross-section along the beam as in

Mazanoglu and Guler (2017). In addition, crack modelling in the Rayleigh-Ritz model

can be extended to the breathing or bilinear cracks. Furthermore, the third mode of the
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crack, which is tearing mode should be added when the torsional vibration is observed

for representation of the crack.

Concerning experimental work, the speckles can be used with the dual camera to perform

full-field vibration analysis. In addition, it is necessary to use more than one camera to

measure the 3D displacement of the beam or at least the out of plane vibration of the

beam. Moreover, to improve the sensitivity of the optical measurement, a combination

of DIC with motion magnification algorithm can be applied in a nonrotating beam by

Molina-Viedma et al. (2018). Furthermore, a new design is required for the test rig

to include the chordwise vibration test. Additionally, an extra actuator is essential to

perform torsional vibration.

The crack identification method based on mode shape changes can be applied to the

present measurement method, since multi-measurement points are obtained. In addition,

a real-time crack detection method can be developed based on the optical blob detection

method, which is fast in terms of image processing speed.

Different passive and active vibration control strategies can be applied to reduce the

vibration, for example, eddy current damper method Yan et al. (2012) or tuned mass

damper Sodano et al. (2005) for passive control. For active control, different actuators

can be used such as piezoelectric actuators Xue and Tang (2008) and inertial actuators

Rohlfing et al. (2016). Active control can also be used to reduce the effect of the presence

of any crack especially if the vibration is excessive and potentially damaging.
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Figure A.1: Test rig: Foundation.
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Figure A.4: Test rig: Main cover
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Figure A.6: Test rig: 8mm shaft



172 Appendix A Design

10
.1

2.
20

15
4:

1

TO
P_

C
O

V
ER

A

A
H

M
E

D
 Y

A
S

H
A

R

X
X

X
/X

X
X

1
1

IS
V

R

X
X

X
X

X
X

X
X

1 
of

 1

X
X

X
X

1.
6

X
X

X
X

N
E

IL
 F

E
R

G
U

S
O

N
M

IL
D

 S
TE

E
L

X
X

X
X

M
A

R
Y

A
M

 T
E

H
R

A
N

I

A
H

M
E

D
 Y

A
S

H
A

R

S
E

C
TI

O
N

 E

 0
.8

0 

0.
2

0.
4

 R

 0
.8

0 

 

 R
0.

4
0.

2 

 3
7.

1 

 5.0 

 15.00 4 PLACES  

 1
0.

55
 4

 P
LA

C
E

S
 

  4
 P

LA
C

E
S

 
 

 R
20

  4
 P

LA
C

E
S

 

5.
8

5.
0

 
 

8.
5  18.55 

1.
50

 1
8.

55
 

8.
0

 5.0  4 PLACES 

2.
00

 5
.0

  4
 P

la
ce

s 

 
 R

 7
.8

 B
O

TH
 S

ID
E

S
 4

 P
LA

C
E

S
  

 7.50 BOTH SIDES  

E

E

AL
L 

D
IM

EN
SI

O
N

S 
IN

 m
m

 U
N

LE
SS

 

O
TH

E
R

W
IS

E
 S

TA
TE

D

N
o 

O
FF

R
E

V
IS

IO
N

D
R

A
W

IN
G

 N
U

M
B

E
R

A
S

S
E

M
B

LY
 N

U
M

B
E

R
S

H
E

E
T

TI
TL

E

So
ut

ha
m

pt
on

U
N

IV
E

R
SI

TY
 O

F

A
3

Fa
cu

lt
y 

of
 E

ng
in

ee
ri

ng
 a

nd
 th

e 
E

nv
ir

on
m

en
t

TH
E

 IN
FO

R
M

A
TI

O
N

 C
O

N
TA

IN
E

D
 IN

 T
H

IS
 D

O
C

U
M

E
N

T 
IS

 

D
O

 N
O

T 
C

O
P

Y
 W

IT
H

O
U

T 
W

R
IT

TE
N

 P
E

R
M

IS
S

IO
N

.

S
U

R
FA

C
E

 F
IN

IS
H

TE
X

TU
R

E
M

A
TE

R
IA

L
S

U
P

E
R

V
IS

O
R

P
R

O
JE

C
T IF
 IN

 D
O

U
B

T 
P

LE
A

S
E

 A
S

K

A
LL

 O
V

E
R

 U
N

LE
S

S
 

TH
E

 P
R

O
P

E
R

TY
 O

F 
TH

E
 U

N
IV

E
R

S
IT

Y
 O

F 
S

O
U

TH
A

M
P

TO
N

 

O
TH

E
R

W
IS

E
 S

TA
TE

D
D

R
A

W
N

 B
Y

D
E

S
IG

N
E

D
 B

Y

D
A

TE
S

C
A

LE
D

E
P

A
R

TM
E

N
T

E
D

M
C

 J
O

B
 N

o

R
E

M
O

V
E

 A
LL

 S
H

A
R

P
 E

D
G

E
S

TO
LE

R
A

N
C

E
S

 U
N

LE
S

S
 

O
TH

ER
W

IS
E 

 S
TA

TE
D

D
O

 N
O

T 
S

C
A

LE
LI

NE
AR

 D
IM

EN
SI

ON
S

X 
= 

+/
- 0

.5
m

m
X.

X 
= 

+/
- 0

.2
5m

m
X.

XX
 =

 +
/- 

0.
1m

m
 AN

GU
LA

R 
DI

M
EN

SI
ON

S
X 

= 
+/

- 0
.5

m
m

X.
X 

= 
+/

- 0
.2

5m
m

Figure A.7: Test rig: Top cover



Appendix A Design 173

1:
2

A
H

M
E

D
 Y

A
S

H
A

R

BR
ID

G
E

A

A
H

M
E

D
 Y

A
S

H
A

R

 
1

1

06
.0

2.
20

16

X
X

X
X

X
X

X
X

1 
of

 1

X
X

X
X

1.
6

X
X

X
X

N
E

IL
 F

E
R

G
U

S
O

N
M

IL
D

 S
TE

E
L

X
X

X
X

IS
V

R

M
A

R
Y

A
M

 T
E

H
R

A
N

I

N
O

TE
: M

A
TE

R
IA

L 
= 

M
IL

D
 S

TE
E

L 
C

H
A

N
N

E
L 

15
0X

90
X

24
  

AL
L 

D
IM

EN
SI

O
N

S 
IN

 m
m

 U
N

LE
SS

 

O
TH

E
R

W
IS

E
 S

TA
TE

D

N
o 

O
FF

R
E

V
IS

IO
N

D
R

A
W

IN
G

 N
U

M
B

E
R

A
S

S
E

M
B

LY
 N

U
M

B
E

R
S

H
E

E
T

TI
TL

E

So
ut

ha
m

pt
on

U
N

IV
E

R
SI

TY
 O

F

A
3

Fa
cu

lt
y 

of
 E

ng
in

ee
ri

ng
 a

nd
 th

e 
E

nv
ir

on
m

en
t

TH
E

 IN
FO

R
M

A
TI

O
N

 C
O

N
TA

IN
E

D
 IN

 T
H

IS
 D

O
C

U
M

E
N

T 
IS

 

D
O

 N
O

T 
C

O
P

Y
 W

IT
H

O
U

T 
W

R
IT

TE
N

 P
E

R
M

IS
S

IO
N

.

S
U

R
FA

C
E

 F
IN

IS
H

TE
X

TU
R

E
M

A
TE

R
IA

L
S

U
P

E
R

V
IS

O
R

P
R

O
JE

C
T IF
 IN

 D
O

U
B

T 
P

LE
A

S
E

 A
S

K

A
LL

 O
V

E
R

 U
N

LE
S

S
 

TH
E

 P
R

O
P

E
R

TY
 O

F 
TH

E
 U

N
IV

E
R

S
IT

Y
 O

F 
S

O
U

TH
A

M
P

TO
N

 

O
TH

E
R

W
IS

E
 S

TA
TE

D
D

R
A

W
N

 B
Y

D
E

S
IG

N
E

D
 B

Y

D
A

TE
S

C
A

LE
D

E
P

A
R

TM
E

N
T

E
D

M
C

 J
O

B
 N

o

R
E

M
O

V
E

 A
LL

 S
H

A
R

P
 E

D
G

E
S

TO
LE

R
A

N
C

E
S

 U
N

LE
S

S
 

O
TH

ER
W

IS
E 

 S
TA

TE
D

D
O

 N
O

T 
S

C
A

LE
LI

NE
AR

 D
IM

EN
SI

ON
S

X 
= 

+/
- 0

.5
m

m
X.

X 
= 

+/
- 0

.2
5m

m
X.

XX
 =

 +
/- 

0.
1m

m
 AN

GU
LA

R 
DI

M
EN

SI
ON

S
X 

= 
+/

- 0
.5

m
m

X.
X 

= 
+/

- 0
.2

5m
m

 75 

 7
5 

75
   

 P
R

E
S

S
 F

IT
 

W
IT

H
 M

A
IN

 B
E

A
R

IN
G

 6
00

9/
C

3
-S

E
E

 'H
U

B
' S

U
B

A
S

S
E

M
B

LY
 

W
O

R
K

 O
R

D
E

R
 R

E
F.

 N
o.

 5
41

31
5.

01

 150 

 R
12

, A
S

 S
U

P
P

LI
E

D
 

AS SUPPLIED

 1
50

 
A

S
 S

U
P

P
LI

E
D

 90 

 1
2 

A
S

 S
U

P
P

LI
E

D
, T

Y
P

.

6.5
AS SUPPLIED
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Figure A.9: Test rig: Side1
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Figure A.10: Test rig: Side2
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ZAILA TECHNICAL DATA
input voltage: 100­240V AC, 10­18V DC
power draw: 40 watts (power factor corrected)
dim range: 0­100% (onboard dimmer)
control: wireless or wired DMX
focus range: 10°­ 80°
focusing method: holographic film lenses
UV: none
warm­up time: none (instant on)
lamp life: 60,000 hours
color spectrum: continuous
compatible shutter speeds: all (flicker­free*)

PHOTOMETRICS

DIMENSIONS

BEAM SPREADS

weight: 5 lbs. (2.3 kg)
construction: machined aluminum
finish: anodized
mount: yoke (w/baby pin or bolt)
operating position: any
tilt control (with yoke): friction
cooling: passive (no fans)
power cable: 10'
power connector: NEMA 5­15P
compliance: ETL & CE
warranty: two years
country of origin: USA

*flicker­free up to 5000 FPS for full dim range & at any speed at 100%

Ni la , Inc . 723 Wes t Woodbury Rd . A l tadena , CA 91001 818­392­8370 N i la . com
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MotionPro X3 and X3PLUS

Features

Redlake's MotionPro® X3 high-speed motion camera combines excellent resolution to frame rate
performance, along with the advanced features you require for accurate high-speed motion
analysis on your PC or Mac laptop or desktop computer. The enhanced sensitivity of the
MotionPro® X3 combined with 1000 fps at 1280 x 1024 is perfect for research and development
laboratory environments.  The NEW PLUS option (available on monochrome cameras only) uses
SmartCapture technology to effectively double the frame rate to 2000 fps at full resolution while
preserving the total length of record time. 

The X3 and X3PLUS cameras feature uses the latest Gigabit ethernet along with USB2.0 for easy
interface. They also feature live video for continuous monitoring.

With the MotionPro®, camera integration could not be simpler. Just install the software, connect
one or more X series cameras to USB 2.0 or ethernet ports (or both), and you are ready to capture
high-speed digital imagery. Control the camera with the feature-rich MotionPro® X software or use
the LabVIEW™ or MATLAB® plug-in to integrate it into a larger experiment setup. To create your
own control software, an SDK is included.

The extensive image processing algorithms include binning (2x2, 3x3, and 4x4), filtering, advanced color control, and programmable
LUT enable you to maximize the image quality under various lighting conditions.

Flexible recording options allow the user to capture pre-selected number of frames before and/or after receiving a trigger. Double-
exposure mode, with a 100 nanoseconds inter-frame time, is perfect for motion analysis on objects moving at very high speeds.
Memory may be divided into multiple sessions with or without automatic download to assure no event is missed.

Applications: Microscopy, Ballistics and Munitions esting, Biomechanical research, Fluid dynamics research (PIV), Off-board vehicle
impact testing

Up to 1280 x 1024 resolution
color or mono

High resolution allows fine detail to be captured even at high frame rates

Fast frame rates from 1000 fps at
full resolution to over 64,000 fps at
reduced resolution

Perfect for capturing movies of fast dynamics of a process or event

NEW PLUS option to effectively
double the frame rate and memory
size (Mono only)

Allows twice the time resolution while preserving the total length of record time

Gigabit Ethernet and USB2.0 Operate camera from remote locations via Gigabit Ethernet while using USB 2.0 for local
monitoring

100 nanosecond inter-frame time in
double exposure mode

perform particle imaging velocimetry (PIV) measurements to study fast moving fluids

iPod and PDA compatibility Store movies on to iPod (video) for quick review. Control the camera operation remotely and
wirelessly via PDA interface

Benefits

Sample Frame Rates (@ Max. Horizontal resolution of 1280)
Vertical Resolution X3 (fps) X3PLUS frame rate* (fps)

1024 1000 2000
768 >1300 >2600
512 2000 4000
256 4000 8000
128 8000 16,000
64 16,000 32,000
32 32,000 64,000
16 64,000 128,000

Note: Horizontal resolution does not affect frame rate performance. *PLUS option is available for monochrome versions only. Effective frame rate is shown for X3PLUS.

Accessories
X Timing
Hub

8 independently adjustable CMOS level outputs, 2 inputs; USB
interface

X Data
Acquisition
System

16 analog inputs and 4 analog outputs, USB interface

USB
Repeater

For use up to 15m

Spectral Range
X3 Mono Relative Spectral Response

0%
10%
20%
30%
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400 500 600 700 800 900 1000 1100
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MotionPro X3 and X3PLUS Performance Specifications
CMOS Imager

Sensor Array Area Array with 12µm x 12µm pixels, color or monochrome

Image Resolution Up to 1280 x 1024

Dynamic Range 59 dB at sensor

Memory and Record Rates

On-board Storage 4 GB; with PLUS option, the memory is effectively doubled

Recording Rates X3: Selectable, up to 64,000 fps
X3PLUS (optional): Selectable, up to 128,000 fps

Playback Rates User selectable

Camera Control

Shutter Global Electronic Shutter variable from 1µs, optional 100 nanosecond exposure*

Exposure modes Single, Double, XDR (eXtended Dynamic Range)

Trigger Frame Variable position from start to the maximum available frame capacity

Trigger Mode CMOS level (3.3v) via BNC connectors

Time Stamp Each frame

Software

Control Software MotionPro X; Windows 2000/XP, Mac OS X** (10.3 or later)

Image Processing
Algorithms

Binning, filtering, advance color control, and programmable LUT

Plug-ins LabVIEW™ for PC; MATLAB® for PC and Mac; Twain Driver for PC and Mac

File Formats TIFF, BMP, PNG, MRF, MCF, AVI, BLD, MPEG, and MOV (Mac only)

Mechanical Description

Camera Dimensions 3.7 in (95 mm) H x 3.7 in (95 mm) W x 6.4 in (162 mm) L

Camera Weight 4.2 lbs (1.9 kg)

Camera to PC Interface USB 2.0; Dual USB 2.0&Gigabit Ethernet (optional)

Camera Cable Lengths 5m (USB2.0); Longer cable lengths (not supplied) may be used with GigE

Lens Compatibility 1” C-mount

Lens Mount C-mount, F-mount adapter (optional)

Synchronization

Synchronization
(USB Hub Optional)

All cameras are synchronized with each other using an external sync pulse on 3.3v CMOS BNC
connector

Environmental

Camera Power +24 vdc (100-240 VAC, 50-60 Hz ac/dc convertor)

Operating Temperature +5°C to +40°C Ambient (0°F to 122°F)

Emission/Safety CE approved, FCC Class B compliant, UL listed

Input/Output

Trig In (BNC)
Sync In (BNC)
Sync Out (BNC)
USB 2.0 (LEMO)
Gigabit Ethernet
Live Out (BNC) RS170 (NTSC/PAL)
DC Power (LEMO)

*Enquire with factory
**GigE interface is not supported under Mac.
Specifications are subject to change.

Distributed by DEL Imaging Systems
1781 Highland Avenue, Cheshire, CT  06410 
Phone: (203) 250-1545  www.delimaging.com
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TSRL: CAMERAS, LENSES and LIGHTING 

October 2014 

AF NIKKOR 50mm 

Specifications 

Focal length: 50mm 

Maximum aperture: f/1.8 

Type of lens: D-type AF Nikkor lens having built-in CPU and Nikon bayonet mount 

Lens construction: 6 elements in 5 groups 

Picture angle: 46° (38° with IX240 system cameras, 31°30´ with Nikon Digital Camera D1) 

Distance information: Output to camera body 

Focusing: Autofocus with Nikon autofocus cameras (except F3AF); manually via separate focus ring 

Shooting distance scale: Graduated in meters and feet from 0.45m (1.75 ft) to infinity (∞) 

Closest focus distance: 0.45m (1.5 ft.) 

Aperture scale: f/1.8 to f/22 on both standard and aperture-direct-readout scales 

Diaphragm: Fully automatic 

Exposure measurement: Via full-aperture method with cameras having CPU interface system; via 
stop-down method for other cameras 

Attachment size: 52mm (P = 0.75mm) 

Dimensions: Approx. 63.5mm dia. x 39mm extension from the camera’s lens mounting flange 

Weight: Approx. 155g (5.5 oz) 

S, LENSES and LIGH
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MODEL 3035BG

OUTLINE/INSTALLATION DRAWING, MODELS 
3035B & 3035BG LIVM ACCELEROMETERS

MOUNTING SURFACE PREPARATION: 3035BG
SELECT OR PREPARE A FLAT AREA OF AT LEAST 
Ø.250, FLAT TO .001 TIR. CLEAN TO REMOVE 
CONTAMINANTS. APPLY ADHESIVE TO SURFACE OR 
TO ACCELEROMETER AND PRESS TOGETHE INTIL 
ADHESIVE SETS.

MOUNTING PORT PREPARATION: 3035B
SELECT OR PREPARE A FLAT AREA OF AT LEAST 
Ø.250, FLAT TO .001 TIR.
AT THE CENTER, DRILL #38 (Ø.101) X .150 DEEP,  MIN. 
TAP 5-40 UNC-2B X .125 DEEP, MIN.

MODELS 3035B, 3035BG

127-3035B/G

.281 HEX

MOUNTING SURFACE

ACTUAL SIZE

5-40 THREAD

.50

ARROW INDICATES SENSE AND 
DIRECTION OF ACCELERATION FOR 
POSITIVE GOING OUTPUT SIGNAL

5-44  CONNECTOR

.10

.33

Ø.24

1. WEIGHT: 2.5 GRAMS.

2. MOUNTING TORQUE ON .281 HEX: 8 TO LB.-INCHES.

INSTRUMENTS, INC.

TITLE

CHECKED

SHEET OF

DWG NO.

USED ON

ECN

MAT'L

DATE

NEXT ASSEMBLY

PART NO.

REV

APPROVED

DRAWN

DATE

SCALE

CHATSWORTH,  CA.

3/4/04

R.A.N.C.

C

12/02/02

4X

11

N/A

MODEL 3035B

.33

MOUNTING SURFACE

Ø .24
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2 

SPECIFICATIONS 
MODEL 3035B & 3035BG LIVM ACCELEROMETERs 

 
SPECIFICATION VALUE UNITS 
 
 
PHYSICAL 
WEIGHT 2.5 grams 
SIZE, HEX x HEIGHT .281 x .33 inches 
MOUNTING PROVISION, 3035B 5-40 integral stud  
MOUNTING PROVISION, 3035BG flat surface for adhesive mount  
CONNECTOR, RADIALLY MOUNTED 5-44 coaxial 
MATERIAL, HOUSING AND CONNECTOR 300 series stainless steel 
 
PERFORMANCE 
SENSITIVITY, ± 10%   [1] 100 mV/g 
RANGE F.S. FOR ± 5 VOLTS OUTPUT ± 50 g 
FREQUENCY RANGE, ± 5% 0.5 to 10k Hz 
RESONANT FREQUENCY, NOM. 45 kHz 
EQUIVALENT ELECTRICAL NOISE FLOOR .007 g rms 
LINEARITY  [2] ± 1% % F.S. 
TRANSVERSE SENSITIVITY, MAX. 5 % 
STRAIN SENSITIVITY .002 g/µε @ 250µε 
 
ENVIRONMENTAL 
MAXIMUM VIBRATION/SHOCK 600/3000 ± g pk 
TEMPERATURE RANGE -60 to +300 °F 
SEAL, HERMETIC Glass-to-metal and welds 
COEFFIEICNT OF THERMAL SENSITIVITY .04 %/°F 
 
 
ELECTRICAL 
SUPPLY CURRENT [3] 2 to 20 mA 
SUPPLY COMPLIANCE VOLTAGE RANGE +18 to +30 volts 
OUTPUT IMPEDANCE, TYP. 100 ohms 
BIAS VOLTAGE, +10.5 VOLTS NOM. +9 to +12 Vdc 
DISCHARGE TIME CONSTANT, NOM. 0.5 seconds 
OUTPUT SIGNAL POLARITY  
     FOR ACCELERATION TOWARD TOP positive 
CASE GROUNDING case is grounded to  
 electrical power ground 
 
 
 
[1]  Measured at 100 Hz, 1g rms per ISA RP 37.2. 
[2]  Measured using zero-based best straight-line method, % of full scale (F.S.) or any lesser range. 
[3]  Do not apply power to this device without current limiting, 20 mA MAX. To do so will destroy the integral IC      
      amplifier. 
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REV ECN DESCRIPTION BY/DATE CHK APPR 

l 0 .63 ~/ #10-32 UNF-2B 
/ THREADED HOLE 

/' 

A 4902 R.A. 12/18/07 C~ C~ INITIAL RELEASE 

-.---- /I II 

.~ ~~~ 

~R~~~~_~_N_D_L_E ________ -------~~~ 

I~~I (

ACCELERATION COMPENSATED 

DVNAPULSE 
~==========LJJJ 

2.53 

j r ~'r __ ~~~~~FORCESENSOR 
r I I PERMANENTLY ATTACHED -.-----+-_" __ A DO NOT ATTEMPT REMOVAL 

4~ ~ 
~ 0.75 ~ ~SUPPLIEDIMPACTTIPS 

.25 MODELS 6250A, P & PS 

RUBBERIZED GRIP 

BNC COAXIAL 
CONNECTOR 

,...., 

~_~--------------------------------------8.71 ---------------------------------------~~ 

MODEL NO. SENSITIVITY 

5800B2 100 mV/LbF 
5800B3 50 mV/LbF 
5800B4 10 mV/LbF 
5800B5 5 mV/LbF 

1. HEAD WEIGHT - 100 GRAMS, TOTAL 
WEIGHT-220 GRAMS 

MASTE·R 
ONLY IF IN RED 

SCALE 1 X HEV _ ID~~E REV BLOCK I
ECN 

_ 

DATE 6/17/00 PART NO, 

UHAvy~ IGH;;'K":'u ~ MAI'L 

N.C. I (...~ 
Co ,~_ _ NcXI A::;:ScMI:ILY IU::;cU ON 

CHATSWORTH, CA. 

ITLE DWG NO, 

OUTLINE/INSTALLATION DRAWING, 
IMPULSE HAMMER SERIES 58008 127-58008 

SHEET 1 OF 1 
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Model Number DOC NO

5800B5 PS5800B5

REV A, ECN 11034, 06/25/14

This family also includes:

• ACCELERATION COMPENSATED Model Sensitivity (mV/Lb) Range (Lb. Force) Max.Force (Lb. Force) Discharge T.C. (sec)
• EXCELLENT LINEARITY 5800B1 500 10 200 5
• INTERCHANGABLE IMPACT TIPS 5800B2 100 50 1000 20

5800B3 50 100 1000 50
5800B4 10 500 1000 170
5801B4 10 500 6000 170
5801B5 5 1,000 8000 300
5801B6 1 5,000 8000 1700

Refer to the performance specifications of the products in this family for detailed description.

PHYSICAL Supplied Accessories:
Weight, Head 3.5 oz 100 grams 1) Accredited calibration certificate (ISO 17025)
Connector BNC BNC 2) Impact tips: 1X Model 6250A (aluminum), 1X Model 6250P (plastic), 1X model 6250PS (soft plastic)
Head Material Stainless Steel Stainless Steel
Handle Material Fiberglass Fiberglass Notes:
Impact Tips Material Aluminum / Plastic Aluminum / Plastic [1] Percent of full scale or any lesser range, Zero based best-fit straight line method. 
Sensing Element Material Quartz Quartz [2] In the interest of constant product improvement, we reserve the right to change specifications without notice.

Mode Compression Compression

PERFORMANCE
Sensitivity, ± 10 % 5 mV/LbF 1.1 mV/N
Range 1,000 Lbs. Force 4448 N
Maximum Force 2,000 Lbs. Force 8896 N
Linearity [1] ±1 % Full Scale ±1 % Full Scale
Resonant Frequency 75 kHz 75 kHz
Stiffness, Force Sensor 11.4 Lb/μin 2.0 kN/μm

ELECTRICAL
Output Voltage F.S ±5 V ±5 V
Output Impedance, Max 100 Ω 100 Ω
Bias Voltage 7 to 12 VDC 7 to 12 VDC
Compliance Voltage Range 18 to 30 VDC 18 to 30 VDC
Supply Current Range 2 to 20 mA 2 to 20 mA
Discharge Time Constant, Nom 300 Sec 300 Sec

Units on the line drawing are in inches, units in brackets are in millimeters. Refer to 127-5800B for more information.

    PERFORMANCE SPECIFICATION
 IMPULSE HAMMER

ENGLISH SI

21592 Marilla Street, Chatsworth, California 91311  Phone: 818.700.7818  Fax:818.700.7880 www.dytran.com   
For permission to reprint this content, please contact info@dytran.com 

Full Range  

TYPICAL LINEARITY 
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Line Full Scale Output 
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Fernández-Sáez, J., Rubio, L., and Navarro, C. (1999). Approximate calculation of the

fundamental frequency for bending vibrations of cracked beams. Journal of Sound

and Vibration, 225(2):345–352.

Field, M. (2006). Helicopter. https://commons.wikimedia.org/wiki/File:LAPD Bell

206 Jetranger.jpg. (accessed April 25, 2018).

Friswell, M. I. and Penny, J. E. T. (1992). a Simple Nonlinear Model of a Cracked Beam.

G. P. Engels and Thomas, M. C. (1993). Helicopter blade crack detection system.

Gounaris, G. and Dimarogonas, A. (1988). A finite element of a cracked prismatic beam

for structural analysis. Computers and Structures, 28(3):309–313.

https://commons.wikimedia.org/wiki/File:LAPD_Bell_206_Jetranger.jpg
https://commons.wikimedia.org/wiki/File:LAPD_Bell_206_Jetranger.jpg


190 BIBLIOGRAPHY

Hagara, M., Huady, R., Lengvarský, P., and Pavelka, P. (2015). Analysis of Reliability of

Modal Parameters Estimation Using High-speed Digital Image Correlation Method.

3(6):190–194.

Han, W., Kim, J., and Kim, B. (2018). Effects of contamination and erosion at the

leading edge of blade tip airfoils on the annual energy production of wind turbines.

Renewable Energy, 115:817–823.

Helfrick, M. N., Niezrecki, C., Avitabile, P., and Schmidt, T. (2011). 3D digital image

correlation methods for full-field vibration measurement. Mechanical Systems and

Signal Processing, 25(3):917–927.

Hh, Y. (1995). Dynamics of flexible beams undergoing overall motions. Journal of Sound

and Vibration, 181(2):261–278.

Hillewaert, H. (2008). Wind turbine.

Ibrahim, A. M., Ozturk, H., and Sabuncu, M. (2013). Vibration analysis of cracked

frame structures. Structural Engineering and Mechanics, 45(1):33–52.

Inman, D. J. and Tech, V. (2006). Vibration with Control. Wiley, Chichester.

Jochems, C. E. A., Van der Valk, J. B. F., Stafleu, F. R., and Baumans, V. (2002). The

use of fetal bovine serum: Ethical or scientific problem?
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