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Abstract A transect of paleoshelf cores from Maryland and New Jersey contains an ~0.19- to 1.61-m-thick
interval with reduced percentages of carbonate during the onset of the Paleocene-Eocene Thermal
Maximum (PETM). Outer paleoshelf cores are barren of nannofossils and correspond to two minor
disconformities. Middle paleoshelf cores contain a mixture of samples devoid of nannofossils and those with
rare specimens characterized by significant dissolution (i.e., etching). The magnitude of the decrease in
carbonate cannot be explained by dilution by clastic material or dissolution resulting from the oxidation of
organic matter during early diagenesis. The observed preservation pattern implies a shoaling of the
calcite compensation depth and lysocline to the middle shelf. This reduced carbonate interval is observed
during the onset of the PETM on other continental margins raising the possibility that extreme shoaling of the
calcite compensation depth and lysocline was a global signal, which is more significant than in previous
estimates for the PETM. An alternative scenario is that shoaling was restricted to the northwest Atlantic,
enhanced by regional and local factors (eutrophication from rivers and microbial activity associated with
warming) that exacerbated the impact of acidification on the shelf.

1. Introduction

Modern marine and terrestrial environments are undergoing unprecedented rates of change as a result of
human activities, exerting enormous pressure on ecosystems (e.g., Jackson et al., 2001; Jackson, 2008;
Pandolfi et al., 2003). One of the most pervasive threats for marine organisms is ocean acidification resulting
from air-to-sea transfer of anthropogenic CO2 (e.g., Doney et al., 2009; Orr et al., 2005). More than a quarter of
the CO2 released into the atmosphere is absorbed by the ocean, lowering its pH and carbonate ion concen-
tration (CO3

2�), hence the CaCO3 saturation state. When saturation with respect to aragonite and calcite
decreases below a certain level, calcifying organisms have more diffculty forming shells. Acidification is
already impacting corals and is predicted to affect plankton such as coccolithophorids and foraminifera near
the base of the food chain, as well as molluscs, in the next century (Fabry et al., 2008; Gattuso et al., 1998;
Gazeau et al., 2007; Kleypas et al., 2006; Leclercq et al., 2000; Orr et al., 2005).

Greenhouse gas-driven abrupt warming events in deep time provide vital information about how the Earth
and oceans will respond to climate change in coming centuries (e.g., see Honisch et al., 2012; Kump et al.,
2009), including the ability of organisms to adapt to decreasing carbonate saturation. An ~200,000-year-long
transient warming event approximately 56 milion years before present, the Paleocene-Eocene Thermal
Maximum (PETM), is viewed as possibly the best ancient model for the impact of future global warming
and associated environmental change. The PETM involved a 5–8 °C warming of the surface and deep oceans
(Kennett & Stott, 1991; Thomas & Shackleton, 1996; Zachos et al., 2003; 2005). This warming was driven by
input of up to 10,000 Pg of CO2 (e.g., (Dickens et al., 1995; Dickens, 2011; Gutjahr et al., 2017; Panchuk et al.,
2008; Zeebe et al., 2009) with a significant portion released in less than10,000 years (Cui et al., 2011; Röhl et al.,
2007; Turner et al., 2017), as suggested by the magnitude and duration of the onset of the carbon isotope
excursion (CIE). As such, the average rate of input of fossil carbon at the onset of the PETMwas nearly an order
of magnitude slower than it is today (e.g., Cui et al., 2011; Honisch et al., 2012; Ridgwell & Schmidt, 2010;
Zeebe et al., 2016). Regardless, the sequence of the carbon cycle, climatic and environmental changes, and
how they impacted organisms over the long term, provides important lessons for the future.
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Warming and changes in nutrient distribution during the PETM had profound impacts on life in the oceans
from plankton to reef builders (e.g., Bralower, 2002; Crouch et al., 2001; Gibbs, Bown, et al., 2006; Kelly et al.,
1996, 1998; Raffi et al., 2009; Sluijs et al., 2007; Scheibner & Speijer, 2008a). Most of the carbon input at the
onset of the event ended up in the deep ocean causing significant decreases in calcite saturation and at least
a 2-km shoaling (Zachos et al., 2005) of the lysocline and calcite compensation depth (CCD). The lysocline is
defined as the depth interval over which wt. % CaCO3 drops below 80 wt. % (Broecker & Peng, 1982) and
calcitic microfossil preservation in pelagic sediments declines due to dissolution (Berger, 1971). The top of
the lysocline coincides with the depth below which calcite becomes undersaturated (Broecker & Peng,
1982). The CCD is the base of the lysocline, below which wt. % CaCO3 is negligible, which for practical
reasons is often defined as <10 or 20 wt. %, and typically where calcite is about 20% undersaturated
(Broecker & Peng, 1982). Deep ocean acidification during the PETM is a hypothesized driver of the most sig-
nificant deep-sea benthic foraminiferal extinction event in the last 90 million years (e.g., Thomas, 1998, 2007).

The impact of acidification during the PETM was dependent on both the quantity and rate of carbon released
into the atmosphere (e.g., Cui et al., 2011; Gutjahr et al., 2017; Honisch et al., 2012). The surface ocean response
is predicted to be relatively rapid, with amagnitude that depends heavily on the rate of input (Zeebe & Zachos,
2013). High-magnitude fluxes over decades and centuries in simulations lead to significant reductions in sur-
face saturation state, but the same quantity of carbon released over 103–104 years has diminished impacts
because of the ameliorating effects of biological pumping, mixing, seafloor dissolution, and the addition of
alkalinity to the ocean from continental weathering (Archer et al., 1997; Kump et al., 2009; Walker & Kasting,
1992). Accordingly, surface ocean saturation would have decreased by a comparable amount to future satura-
tion projections only with carbon input rate near the maximum expected for the PETM (Honisch et al., 2012;
Ridgwell & Schmidt, 2010) or with short intervals of rapid carbon release (Frieling et al., 2016).

Because seafloor dissolution removes biogenic carbonate needed for analysis of assemblages and proxies,
current evidence for surface ocean acidification in the PETM is elusive. Malformation and thinning of a small
subgroup of calcareous nannoplankton species has been proposed as evidence for acidification (e.g.,
Bralower & Self-Trail, 2016; O’Dea et al., 2014; Raffi et al., 2009). Moreover, B/Ca and δ11B isotope analyses
of mixed-layer and thermocline dwelling planktic foraminifera, which provide a measure of ocean pH, sug-
gest a moderate (0.2–0.4) decrease in pH over the peak of the CIE (Babila et al., 2016; Gutjahr et al., 2017;
Penman et al., 2014), consistent with the lack of a widespread acidification response among planktonic
calcifiers. However, as a result of the absence of carbonate, B/Ca and δ11B isotope records likely omit the first
~1–2 kyr of the PETM when the impacts of acidification are likely to be most severe.

The response of the deep ocean is slower than the surface ocean given the slow rate of turnover. Moreover,
the total amount of CO2 is critical: simulations show that the saturation state reached a minimum at about
20 kyr after the onset of the event, at the end of carbon addition in the simulation, then slowly recovered
(Cui et al., 2011; Gutjahr et al., 2017; Turner & Ridgwell, 2016). Deep-sea PETM sections, the focus of most
paleoclimate investigations (e.g., Kennett & Stott, 1991; Zachos et al., 2003), are often condensed and char-
acterized by bioturbation and winnowing, which obscures interpretations of shifts in the lysocline and CCD
(e.g., Bralower et al., 2014). Sections deposited on the continental paleoshelf are, by comparison, more
expanded and often include the vital earliest part of the event (e.g., John et al., 2008; Stassen et al., 2015).
Even if more prone to breaks in deposition (e.g., erosional unconformities), PETM shelf sections generally
have well-preserved fossil materials (Gibbs et al., 2013; O’Dea et al., 2014) and high sedimentation rates
and therefore are more likely to record changes in ocean chemistry and biology that occurred over millennia
at the onset of the event.

Here we investigate the dissolution history of the shallow ocean at paleoshelf sites from the U.S. Atlantic
Coastal Plain that offer high temporal resolution along with high-fidelity biotic and geochemical proxy
records of the earliest PETM. We explore the significance of an interval nearly devoid of carbonate at the base
of the CIE that occurs across most of the shelf and is also found at sites on other continental margins.

2. Material and Methods

Sections from the subsurface of the Atlantic Coastal Plain from New Jersey and Maryland provide a transect
from innermost shelf depths of ~50 m (Self-Trail et al., 2017) to outer shelf depths of ~150 m (Stassen et al.,
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2015). Here we investigate the onset of the PETM in three cores from New Jersey, including Bass River (BR),
Millville (MV), and Wilson Lake (WL; (Cramer et al., 1999; John et al., 2008; Sluijs et al., 2007; Wright &
Schaller, 2013) and three cores from Maryland, including Cambridge Dorchester Airport (Cam-Dor [CD]),
Howards Tract (HT Core 2), and South Dover Bridge (SDB; Self-Trail et al., 2012; Figure 1 and Table 1). The
study interval includes the transition from upper Paleocene glauconite-rich quartz sands of the
Vincentown and Aquia formations to the silty-clay and clay of the Marlboro Clay (Cramer et al., 1999;
Gibson et al., 1993, 2000; Harris et al., 2010). The sections are highly expanded with sedimentation rates in
the early part of the PETM up to 50 cm/kyr (John et al., 2008; Self-Trail et al., 2017; Stassen et al., 2012).
Samples were examined every 5 to 25 cm across the interval just below and within the onset of the CIE
and at lower resolution in the upper part of the event.

Figure 1. Map showing location of study sections on the Atlantic Coastal Plain.

Table 1
Depths of Key Intervals in Paleoshelf Sections Including Depths of Peak and Minimum δ13C Values, Excursion Magnitude, Base and Top of the LCI, Base of the Marlboro
Clay, and Base and Top of the Interval With Reddish Color (See Text for More Information)

Section Peak δ13 (m) Μin. δ13 (m) CIE Magn. (per mil) Base LCI (m) Top LCI (m) Base Marlboro Clay (m) Base red interval (m) Top red interval (m)

BR 357.55 356.94 �2.93 357.29 357.1 357.2
WL 109.95 107.5 �5.16 109.85 109.42 109.85
MV 273.85 271.84 �4.53 273.68 273.54 274.14
CD 224.22 222.05 �3.15 224.0 222.39 224.15 224.12 223.34
SDB 204.5 201.0 �3.15 203.93 202.4 203.91 203.99 202.81
HT 200.42 199.89 �10.61 200.31 198.42 200.41 200.41 199.03
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2.1. Biostratigraphy

The distribution of stratigraphically significant taxa in BR, WL, and SDB is
based on previous studies (Bralower & Self-Trail, 2016; Gibbs, Bralower,
et al., 2006; Self-Trail et al., 2012) and on additional observations of sam-
ples from BR. Smear slides were prepared using standard techniques and
viewed in a light microscope at magnification of 1,250X. We compile the
acmes of Calciosolenia aperta and Hornibrookina arca in the latest
Paleocene and the first occurrences of the excursion nannoplankton in
the early Eocene, including Rhomboaster spp., malformed Discoaster multi-
radiatus and D. salisburgensis (stage T2I of Bralower and Self-Trail, 2016),
Discoaster salisburgensis var. anartios, D. salisburgensis var. villosus, D. salis-
burgensis var. araneus, and D. salisburgensis var. acutus (Table 2).

2.2. Nannofossil Preservation

Counts of coccolith shield preservation are key to our interpretation. We observed the first 100 coccolith spe-
cimens in the light microscope and distinguished those that have entire rims not characterized by etching or
fragmentation from those that are only partially preserved as a result of dissolution or possibly abrasion by
bottom currents. We term this measure the whole shield index (WSI). Images of coccoliths with entire and
partial rims used to calculate the WSI are shown in supporting information Figure S1. The higher the index,
the better the coccolith preservation. We did not include nannolith genera such as Discoaster, Fasciculithus,
and Sphenolithus, which are generally more resistant to dissolution. Where coccoliths are rare, we counted
all specimens in five slide traverses, roughly 250 fields of view at 1,250X magnification.

2.3. Carbon Isotopes and Percent Carbonate

Bulk CaCO3 C-isotope and % CaCO3 data exist for most of the study sections (Cramer et al., 1999; John et al.,
2008; Lyons et al., 2018; Self-Trail et al., 2012, 2017; Wright & Schaller, 2013. We measured % CaCO3 on sam-
ples from the CD and HT sections and provide additional measurements of carbonate from samples from
SDB. Carbonate analyses were carried out on a UIC Inc. coulometrics Coulometer at the University of
California Santa Cruz with a precision of ±0.05%. Results largely represent calcite but also likely include side-
rite where the latter mineral is abundant. Percent total organic carbon (TOC) measurements were carried out
on a UIC Inc. Coulometer and a Costech ECS4010 Elemental Analyzer at Penn State with a precision of ±0.1.
Stable isotope analysis of bulk carbonate of samples from CD and HT was carried out on a Kiel/MAT253 at the
University of California Santa Cruz. Analytical precision based on replicate analyses of standards was better
than ±0.05‰ for δ13C. All values are reported relative to vPDB. To provide ocean-wide context for the
paleoshelf data set, we compiled % CaCO3 and bulk carbonate C-isotope data at all available PETM sections
from the deep sea and continental paleoshelf and paleoslope sites from the margins of the Tethys and the
South Pacific (Pangaea Supplement Table). We estimated percent dissolution based on peak % CaCO3 prior
to the PETM combined with the lowest % CaCO3 during the dissolution event following Broecker (1995; see
supporting information).

2.4. Mineralogy

We observed abundant framboidal pyrite and other iron phases in all smear slides and grains of siderite in
many. We counted the number of specimens in five smear slide traverses at 1,250X magnification to deter-
mine changes in abundance (see supporting information). Framboids and associated particles were observed
in a FEI Nova NanoSEM 630 FE scanning electron microscope.

2.5. Grain Size

We measured the grain size of sediments from an extended interval in the CD, HT, and WL sections to deter-
mine how the sedimentology of samples impacts the carbonate record. Samples were disaggregated in
water on a shaker table overnight and ultrasonicated before introduction into a Malvern Mastersizer 3000
particle sizer. Continuous sample aspiration allowed us to evaluate how flocculation impacted analysis; all
analyses were run until D50 values were constant for multiple analyses. Samples were reanalyzed where
there are abrupt shifts in records that could result from incomplete disaggregation.

Table 2
Depth of Datums (in m)

Bass South Dover Wilson
River Bridge Lake

Base Rhomboaster spp. 356.95 200.1 106.38
Base D. salis. var. acutus 357.01 199.8 105.46
Base D. salis. var. araneus 357.12 199.9 104.25
Base D. salis. var. vilosus 357.12 200.1 106.68
Base D. salis. var. anartios 357.12 200.9 107.9
Base T2I D. multiradiatus 357.2 202.7 109.23
Base T2I D. salisburgensis 357.2 202.1 108.91
Peak Hornibrookina arca 357.74 204.8 110.16
Peak Calciosolenia aperta 359.24 206.0 110.51

10.1029/2018PA003382Paleoceanography and Paleoclimatology

BRALOWER ET AL. 4



3. Results

We present bulk carbonate carbon isotope data for the CD and HT sections. Carbon isotopes from CD shows a
gradual decline from 0.64‰ at 224.22m to�3.16‰ at 222.07 m (Figure 2). Values remain low for the remain-
der of the study section. The record from HT shows a gradual decrease from 0.14‰ at 200.53 m to�11.61‰
at 199.89 m (Figure 2); after a minor increase, values decrease further to �13.34‰ at 199.34 m. This 13.5‰
shift is likely a result of the occurrence of siderite (Figure 5, Plates 11–18, and supporting information,
Figure S2). Bulk carbonate isotope data for all other sections have been published elsewhere: BR and WL
(John et al., 2008), MV (Wright & Schaller, 2013), and SDB (Self-Trail et al., 2012).

Carbonate content of samples from the New Jersey and Maryland paleoshelf sections is less than 20%
(Figure 2). Average values for the Aquia and Vincentown Formations at the base of the study interval range
from 2% (WL) to 12% (SDB). All of the study sites from Maryland and New Jersey show a prominent interval
in which carbonate decreases to close to 0% during the onset of the CIE (Figure 2) at the base of the
Marlboro Clay. This is termed the low carbonate interval (LCI). Minimum % CaCO3 in the LCI are 0% in all
sections, but each section has sporadic samples with higher % CaCO3 (up to 2.75% at HT). Definition of
the base of the LCI is based on the stratigraphically lowermost level of 0% CaCO3, except at BR where it
is based on the decrease in % CaCO3. The top of the LCI is defined by the recovery of CaCO3 values and
is somewhat subjective, especially at BR, SDB, and HT. The thickness of the LCI varies from 0.19 m at BR
(357.1 to 357.29 m) up to 1.61 m at CD (222.39 to 224.0 m; Table 1). The transition of the LCI with surround-
ing sediments is relatively abrupt, corresponding to <10 cm in all sections. In all sections, samples immedi-
ately above the LCI contain higher % CaCO3 than those immediately below it (Figure 2). Unpaired t tests
show a highly significant difference between CaCO3 values in the LCI and surrounding sediments in all
sections except HT (Table 3).

Figure 2. Definition of the low carbonate interval (LCI) shown in shaded gray area based on carbonate (green dashed curve) and the whole shield index (WSI; red
curve) in the six study sites plotted with the bulk carbonate δ13C curves (blue dashed curve). Small green ticks represent the base of the Marlboro Clay. Red ticks
represent the base and the top of the interval with common hematite.
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Samples from the LCI contain rare, heavily etched nannofossils indicative of dissolution, and we estimate the
WSI from limited number of specimens. Where coccoliths are absent (often where % CaCO3 is 0), the WSI is
assumed to be 0%. The sections show relatively constant or slightly increasing WSI values below the CIE with
values mostly less than 60% and a marked increase at the top of the LCI (Figure 2) with values between 60%
and 80%. Samples directly above the LCI have higher WSI values, indicating preservation that is superior to
directly below it. This trend has also been observed in previous fragmentation counts at WL (Gibbs,
Bralower, et al., 2006). The WSI shows more intersample variability than carbonate records for two reasons:
(1) minor changes in etching of samples can lead to wholesale changes in the WSI that do not correspond
to significant changes in carbonate and (2) the WSI data are generally higher in resolution than the
carbonate data.

Data from CD, HT, and WL show a gradual decline in average grain size across the transition from the Aquia
and Vincentown Formations to the overlying Marlboro Clay (Figure 7). The LCI shows gradually increasing
grain size in all three sections from bottom to top but is not significantly coarser than surrounding levels.

The LCI lies above the acmes of C. aperta and H. arca at BR, SDB, and WL (Table 2 and Figure 3). At BR the first
occurrences (FOs) of malformedD.multiradiatus andD. salisburgensis (T2I) and ofD. salisburgensis var. anartios
and D.salisburgensis var. araneus all lie within the LCI; the former two datums lie at 357.2 m, and the latter two
datums lie at 357.12m (Table 2 and Figure 3). At SDB, the FO ofmalformedD. multiradiatus (T2I) lies within the
expanded dissolution zone but here and at WL, the other datums are distributed over a 2- (SDB) to 5-m (WL)
interval. Thus, we interpret two minor disconformities at 357.2 and 357.12 m within the LCI at BR.

Pyrite framboids are common in all sections but generally more abundant at CD and HT than elsewhere
(Figures 4, 5, Plates 1–3, and 6, Plates 1–6). There is a noticeable increase in the abundance of framboids at
the top of the LCI in all sections except for BR. These materials are often partially altered to hematite (reddish
color) and, possibly, jarosite (yellow to orange color; Figure 5, Plates 4 and 5, and supporting
information Figures 3 and 4). In the three Maryland sections, the LCI begins close to the transition to sediment
with reddish hue (Figure 2), which appears to represent an increase in the abundance of finely disseminated
hematite (Figure 5, Plates 9 and 10). However, the LCI extends several decimeters above the reddish interval.
The three New Jersey sections have less finely disseminated hematite. The sample from the peak of the LCI at
BR contains abundant quartz. In all sections the abundance of framboids decreases slightly near the base of
the LCI and increases toward the top, although the exact timing of these changes relative to the boundaries
of the LCI varies from section to section (Figure 4). Smear slide observations show that foraminiferal chambers
are often the site of framboid growth (Figure 5, Plates 6 and 7). Numerous samples at WL, and especially HT,
have abundant siderite (Figure 5; Plates 11–18; Self-Trail et al., 2017); this mineral is relatively rare in the other

Table 3
Unpaired t Tests of Composition of Samples From LCI Compared to Samples Outside the LCI

Value
Wilson Lake Bass River Millville CamDor SDB HT-2

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

CaCO3 LCI 0 0 1.83 1.79 0.46 0.31 0.14 0.24 0.16 0.58 1.15 0.81
CaCO3 NLCI 3.64 2.75 8.38 2.77 3.6 1.19 4.65 2.29 10.03 4.17 2.37 2.63
P value 0.0025* 0.0002* 0.0001* 0.0001* 0.0001* 0.1028
TOC LCI 0.48 0.13 NA 0.48 0.05 0.62 0.19 0.47 0.16 0.65 0.2
TOC NLCI 0.33 0.15 NA 0.42 0.11 0.73 0.32 0.26 0.13 0.52 0.23
P value 0.0326 NA 0.2195 0.1781 0.0003* 0.1536
Pyrite LCI 373 349.33 149.67 79.12 417.67 204.57 414.65 745.46 182.71 197.96 574.11 220.02
Pyrite NLCI 168.75 170.26 84.65 86.49 489.17 172.69 492.9 357.92 205.86 199.8 868.92 479.29
P value 0.1094 0.2255 0.4466 0.6732 0.357 0.0155
Pyr. Oxidation LCI 39.2 34.8 74.5 11 66.83 8.28 29.08 15.09 33.83 26.21 24.38 7.85
Pyr. Oxidation NLCI 28.83 15.77 67.83 14.37 43.88 14.61 38.69 22.85 19 4.66 22.93 5.68
P value 0.335 0.4568 0.0049* 0.2314 0.0413 0.6168
Siderite LCI 16.17 21.25 2 2.65 0.67 0.82 0 0 0.33 0.82 452.89 466.15
Siderite NLCI 18.08 17.04 9.5 16.55 1 1.51 1.46 3.45 1.87 3.38 51.71 89.52
P value 0.8381 0.447 0.6355 0.1403 0.2921 0.0014*

Note. P values shown in bold are significant; values shown with asterisks are very significant. LCI = low carbonate interval; NLCI = non-low carbonate interval
(intervals analyzed shown in Figure 2).
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sections (supporting information Figure 2). Unpaired t tests do not show consistent, statistically significant
differences in the abundance and oxidation of pyrite, the abundance of siderite, or %TOC between the LCI
and surrounding samples (Table 3). The LCI shows significantly higher %TOC at WL and SDB and
significantly higher abundance of siderite at HT; it also shows lower abundance of pyrite and more
oxidized pyrite at MV and SDB. There is considerable variation in grain size between the three sections; the
LCI is coarsest at CD and finest at WL. At all sites the LCI has grain size intermediate between the Aquia
and the upper part of the Marlboro Clay (Figure 7); at CD the interval shows a slight coarsening upward
trend and a sharp drop in grain size 30 cm above the LCI.

4. Discussion

Calcium carbonate deposition is highly sensitive to input of CO2; thus, the onset of the PETM is marked by a
sharp decrease in carbonate in marine sedimentary archives (e.g., Honisch et al., 2012; Zachos et al., 2005). Yet
the paucity or absence of carbonate makes understanding dissolution an elusive topic. Where minor or mod-
erate carbonate remains, these materials provide clues to the processes that controlled dissolution. However,
where extensive dissolution has led to the removal of most, if not all, carbonate, the extent and causes of dis-
solution are much more difficult to constrain.

4.1. The WSI: A Measure of Dissolution

The percentage of foraminifera that are broken or fragmented, the foraminiferal fragmentation index, here-
after referred to as the FFI, is well established as a measure of dissolution on the seafloor and during burial
(e.g., Thunell, 1976). The FFI requires samples to be washed and thus is relatively labor intensive. Moreover,
disaggregation of indurated sedimentary rocks increases the FFI. The WSI is determined on smear slides,
which involve less preparation; such slides can be made on relatively indurated materials that

Figure 3. Stratigraphy of the low carbonate interval at Bass River, Wilson Lake, and South Dover Bridge. Included are the
bulk carbonate isotope stratigraphy and significant biostratigraphic events including the acme of Calciosolenia aperta
(C) and the acme of Hornibrookina arca (H). Also shown are the base stage T2I D. salisburgensis (T2s), base T2I D. multira-
diatus (T2m), base D. salisburgensis var. araneus (Ar), and base D. salisburgensis var. anartios (An; all defined by Bralower &
Self Trail, 2016), and base Rhomboaster spp. (R). Datums compiled in Table 2. Shaded grey area is the low carbonate interval.
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disaggregate in water. A comparable measure was previously employed by Gibbs, Bralower, et al. (2006) and
Self-Trail and Seefelt (2005) from various coastal plain cores to assess changes in nannofossil preservation.

The WSI is thus proposed as a measure of dissolution at the seafloor during the PETM through early burial.
Although some of the partial specimens could be a result of abrasion on the seafloor during the deposition
of the coarser-grained Aquia and Vincentown formations, dissolution is most likely responsible for the major-
ity of the incomplete coccoliths in the lower energy Marlboro Clay. The WSI shows an abrupt decrease to zero
in the LCI at all sections but shows more variability throughout this interval at HT and WL (Figure 2). In these
sections, minor increases in the WSI within the LCI reflect samples with rare nannofossils suggesting sporadic
carbonate preservation. The occurrence of sporadic, heavily etched nannofossils in these sections and the
gradual changes in WSI at the base and top of the LCI in most sections strongly indicate dissolution as the
major control on WSI values.

4.2. Origin of the Low Carbonate Interval

In this section we explore several hypotheses for the origin of the LCI at the six study sites. A correlative event
is present in the Ancora and Clayton cores, which were also located on the New Jersey middle paleoshelf
(Pangaea Supplement Table). Assuming that carbonate production rates did not change across the LCI, an
assumption that is difficult to evaluate, the decrease in % CaCO3 suggests reduced biogenic carbonate accu-
mulation of up to 100% (Pangaea Supplement Table). A significant part of the carbonate decrease may result
from dilution by terrigenous material corresponding to the pulse of mud that swept across the shelf at the
onset of the PETM. Alternatively, the LCI may represent an episode of dissolution on the outer and middle
paleoshelf coincident with the onset of the event. This dissolution may be regional or part of a global event,
and it may be associated with shoaling of the CCD and lysocline to paleoshelf depths or removal of CaCO3

during early burial diagenesis. Here we weigh evidence for each of these possibilities (or some combination
of them) and test them with the global data set.

Figure 4. Abundance of pyrite framboids in five slide traverses (plotted in red; note the different scale for CD and HT) plotted with total organic carbon (% in light
blue) and bulk carbonate δ13C curves (dark blue dashed line). Shaded gray area is the LCI.
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Figure 5. Plates 1–18: Brightfield light photographs except those indicated. 1. Pyrite framboids, sample HT 201.76 m. 2. Pyrite framboids inside a chamber sample HT
201.76 m. 3. Pyrite framboids, sample HT 201.76 m. 4. Oxidized pyrite framboids, sample WL 110.3 m. 5. Oxidized pyrite framboids, sample BR 356.80 m. 6. Pyrite
framboids inside a foraminifer chamber, sample BR 357.10 m. 7. Pyrite framboids inside a foraminifer chamber in cross-polarized light, sample HT 202.43 m. 8. Finely
dispersed pyrite, sample HT 202.43 m. 9 and 10. Hematite, sample HT 205.77 m. 11. Siderite with internal pyrite framboid, sample WL 107.29 m. 12. Siderite with
remnants of internal pyrite frambiod WL 105.77 m. 13. Siderite with oxidized internal pyrite framboid, sample WL 106.68 m. 14. Siderite, sample WL 110.03 m. 15.
Siderite, sample WL 110.03 m. 16. Siderite grain with internal etching, sample HT 196.90 m. 17. Siderite grain with internal etching, sample HT 199.74 m. 18. Siderite
grain with internal etching, sample HT 199.74 m. Scale bar bottom right is 5 μm.
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4.2.1. The Impact of Dilution on Interpretation of the LCI
The onset of the PETM coincided with a transgression (e.g., Sluijs et al., 2008) changing sedimentation
patterns across the shelf. Typically, transgressive system tracts lead to sediment starvation on the middle
and outer shelf as the locus of deposition moves landward (e.g., Loutit et al., 1988). However, the deposi-
tion of the Marlboro Clay involved a massive pulse of mud and fine silt at the front of a coastal delta in
the Salisbury Embayment (e.g., Kopp et al., 2009; Self-Trail et al., 2017) and it is likely that sediment
supply increased across the shelf. Thus, we begin by considering the possibility that the LCI at the base
of the Marlboro Clay represents dilution of the flux of planktonic and benthic microfossils by
clastic material.

In all records, grain size decreases below the base of the LCI and there is not a distinct grain size anomaly in
this interval that might be expected for a pulse of terrigenous materials (Figure 7); the silty grain size at CD
and HT compared to surrounding intervals is likely a result of the near-complete absence of coccoliths.
Moreover, biostratigraphy suggests that the LCI represents a substantial amount of time (Figure 3), in contrast
to some interpretations of the onset of the CIE (Kent et al., 2017; Wright & Schaller, 2013).

Dilution with terrigenous material should cause a decrease in the content of biogenic materials, including
organic carbon and carbonate. Unpaired t tests do not show a significant difference between the Corg con-
tent of sediments in the LCI and those surrounding it. Dilution can only explain these similarities if the pro-
duction of Corg increased in the LCI as has been proposed by (John et al., 2008). Although the onset of the
PETM corresponded to eutrophication (e.g., Gibbs, Bralower, et al., 2006; Sluijs et al., 2007), there is no evi-
dence that the LCI was unique from the remainder of the PETM in terms of productivity. Carbonate is signifi-
cantly lower in the LCI in all sections except for HT than in surrounding intervals (Table 3). Dilution can
potentially explain much or all of the decrease in %CaCO3, but, crucially, it does not support dissolution coin-
cident with the drop in the WSI.

Other microfossil groups do not show decreases that would be expected with dilution. Dinoflagellates are
found throughout the LCI at BR and WL (Sluijs et al., 2008), and agglutinated benthic foraminifera are com-
mon in samples from SDB and WL (Robinson & Spivey, this volume; Stassen et al., 2015). The occurrence of
agglutinated but not calcareous benthic foraminifera also indicates that the LCI resulted primarily from dis-
solution of carbonate rather than sediment dilution.

Figure 6. Plates 1–6: Scanning electronmicrographs of framboidal pyrite. 1. Sample CD 222.39m. 2–6. Sample CD 222.35m. Scale bars at bottom right of each figure.
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Although the character of individual records is expected to differ due to local variations in sedimentation and
erosion (Trampush & Hajek, 2017), the broad similarity of carbonate trends across the shelf suggests that the
association between the loss of carbonate and the C-isotope excursion is robust. Increased clastic sediment
flux may have contributed to reduced % CaCO3 in these sections; however, the presence of the LCI in the
most distal location (BR), which should be least impacted by dilution effects, suggests that the loss of carbo-
nate was shelf wide and may have been independent of clastic supply. While the impact of clastic dilution
cannot be ruled out, dilution is generally inconsistent with the absence of changes in the concentration of
Corg. This absence of calcareous benthic foraminifera in most sediments, combined with the presence of
agglutinated benthic foraminifera and the decline in the WSI, is strong evidence that dissolution, not dilution,
is the main cause of the LCI.
4.2.2. Evidence for Carbonate Dissolution During Diagenesis and After Core Recovery
Dissolution of carbonate may have occurred along with the oxidation of organic matter during early burial
(Froelich et al., 1979). The onset of the PETM is associated with an increase in surface ocean productivity
on the paleoshelf (Gibbs, Bralower, et al., 2006; Self-Trail et al., 2012) and possibly an increase in the flux of
organic matter to the seafloor from either allochthonous or contemporaneous sources (Schneider-Mor &
Bowen, 2013). Thus, there is potential for dissolution of organic matter during early diagenesis. To dissolve
10 wt% CaCO3 solely from organic matter oxidation during diagenesis, 1.2 wt% of organic carbon would need
to be oxidized to CO2. While this is not impossible, most sites contain<1% TOC for the entire record, and only
two of five sections show a statistically significant increase in % TOC in the LCI compared to surrounding units

Figure 7. Grain size of samples from CamDor, Howards Tract and Wilson Lake plotted versus depth. Data are presented as
density plots of grain size. Note grain size is plotted on logarithmic scale. Color density scale for each plot is shown at right.
Box indicates location of the LCI.
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with excellent carbonate preservation (Figure 4 and Table 3). For carbonate in the LCI to be dissolved from
organic matter oxidation alone, %TOC would need to double within the LCI through an increase in produc-
tivity or preservation and then effectively be respired to CO2 within the sediments. Our records do not pro-
vide sufficient evidence (i.e., hypoxia or high productivity) to explain increased organic matter delivery to and
oxidation within sediments localized in the LCI. Moreover, there is no evidence for a distinct source of more
reactive organic material coincident with the LCI (Lyons et al., 2018; Schneider-Mor & Bowen, 2013). While it is
not impossible, we rule out organic matter oxidation during diagenesis as a probable cause for carbonate dis-
solution on the shelf. Bioturbation tends to buffer pore water alkalinity, and this could limit dissolution during
early burial (Panchuk et al., 2008). Another possibility is that freshwater input lowered sulfate concentrations
thereby decreasing calcite saturation during sulfate reduction (e.g., Meister, 2013). However, the normal mar-
ine fauna and flora on either side of the dissolution zone is evidence for typical marine salinity sulfate levels,
and the shallowest shelf section at Mattawoman Creek-Billingsley Road, presumably with the largest fresh-
water influence, contains moderately well preserved carbonate (Self-Trail et al., 2017) in this interval.

Oxidation of pyrite can lead to dissolution of carbonate (e.g., Aller, 1988). Hematite, and possibly jarosite,
replaced whole framboids and grew on framboid rims (Figure 5, Plates 4, 5, 9, and 10) indicating that oxida-
tion has occurred. The presence of abundant framboids with clear evidence for oxidation raises the possibility
that dissolution could have occurred long after deposition through interaction with oxidizing groundwaters,
or after drilling and core recovery, which has previously been documented from coastal plain sediments
(Seefelt et al., 2015; Self-Trail & Seefelt, 2005). The Aquia Formation is a regional aquifer, and the Marlboro
Clay is known to be an aquiclude (Andreasen et al., 2013); even silty samples from the LCI in Maryland
(Figure 7) were dry when recovered. Nevertheless, two pieces of evidence suggest that pyrite oxidation
has led to CaCO3 dissolution: (1) clusters of pyrite framboids appear to have grownwithin foraminiferal cham-
bers (Figure 5, Plates 6 and 7) that subsequently dissolved (Figure 5, Plate 4) and (2) the proportion of oxi-
dized framboids is lower in slides made immediately after coring at CD than those made after several
years of core storage (supporting information Figure 4). However, other evidence suggests that this dissolu-
tion is limited: (1) most slides from the LCI prepared immediately after coring also are void of nannofossils at
CD, as they are at HT and SDB; (2) there are numerous samples with significant amounts of oxidized fram-
boids and well-preserved nannofossils and numerous LCI samples with unaltered pyrite (Figure 5, Plates 1–
3 and 8, and supporting information Figures S4, and S5); and (3) the most oxidized framboids occur at BR
(Table 3), which arguably has the best carbonate preservation. The reddish colored interval in the three
Maryland study sections appears to represent finely disseminated hematite (Figures 2 and 5, Plates 9 and
10). This hematite could be detrital in origin or derived via oxidation of finely disseminated pyrite.
However, the boundaries of the reddish interval and the LCI do not correlate (Figure 2 and Table 1). In sum-
mary, it is highly likely that oxidation of organic matter and pyrite led to at least some carbonate dissolution;
however, the available evidence indicates that these diagenetic processes are not unique to the LCI. Thus, in
the following, we consider primary origins for the LCI.
4.2.3. Evidence for CCD and Lysocline Shoaling
In the modern ocean, the lysocline and CCD occur at depths well below the shelf-slope break; incursions onto
the continental shelf have rarely been documented in Earth history (an exception is the study of
Pennsylvanian cyclothems by Heckel et al., 1994). Except on carbonate platforms, CaCO3 percentages on
continental shelves are significantly lower than in the deep sea, so assigning a lysocline depth is challenging.
Moreover, coccoliths in upper Paleocene paleoshelf sediments are generally moderately fragmented, possi-
bly due to abrasion in the high-energy conditions. However, there is further decline in both %CaCO3 and WSI
values in the LCI (Figure 2) and we use the coincidence of the decreases to define the lysocline and CCD on
this PETM paleoshelf. For this discussion, we choose 90% dissolution to define the CCD.

Twominor disconformities coincide with upper part of the LCI at the outer paleoshelf BR site. The upper 8 cm
of the LCI at this location is equivalent to ~3 m at SDB and ~5 m at WL (Table 2 and Figure 3). This highly
condensed section could be a result of sequestration of sediment on the inner shelf during the PETM trans-
gression (Harris et al., 2010). Sequestration of detrital sediment on the inner shelf would result in a highly
condensed, but still continuous, section on the outer shelf dominated by the biogenic sediment fraction.
However, sea level remained high for most of the PETM and the BR section appears complete for much of
the peak and early recovery parts of the event (Stassen et al., 2015). The disconformities at 357.2 and
357.12 m are associated with the middle of the LCI (357.29 to 357.10 m) at BR and carbonate content
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increases at the top of the interval. The only completely barren samples are
found in the middle of the LCI (at 357.19 and 357.22 m); all other samples
in this interval are moderately etched. This suggests that dissolution was
syndepositional (see Bralower et al., 2014, for terminology); postdeposi-
tional, diagenetic burndown dissolution would be signified by a disconfor-
mity below the barren interval at the base of the LCI. We interpret the
apparent disconformities at this outer shelf location (140–150-m water
depth) as the result of dissolution at the seafloor in the lowermost part
of the lysocline or below the CCD.

The LCI in the middle shelf sections at MV, WL, CD, HT, and SDB (120–130-
mwater depth) is not associated with apparent hiatuses. Like BR, this inter-
val ranges from 78% to 100% dissolution with sporadic samples with heav-
ily etched nannoplankton (supporting information Figure S5). Thus, we
also interpret dissolution in these sections to have occurred in the lower
part of the lysocline or below the CCD.
4.2.4. The Case for Global Shoaling of the CCD and Lysocline to the
Continental Shelf
Next, we integrate results from the shelf transect to carbonate data from a
global database of PETM sections (Pangaea Supplement Table) to deter-
mine if the proposed CCD and lysocline shoaling of the paleoshelf of the
Atlantic Coastal Plain is part of a global trend. The global data set shows
90%–100% dissolution at sites from a broad range of paleodepths
(Figure 8 and Pangaea Supplement Table). All complete sections below
2,500-m paleodepth are marked by 100% dissolution (dark blue symbols in
Figure 8). Moreover, paleoshelf and paleoslope sites from Egypt, Italy,
Nigeria, Spain, and Tanzania ranging from 100 to 1,500-m paleo-water-
depth, similar to or much deeper than the sites investigated on the

Atlantic Coastal Plain, are also characterized by ~100% dissolution during part of the CIE (Alegret et al.,
2009; Aze et al., 2014; Dupuis et al., 2003; Frieling et al., 2017; Giusberti et al., 2007; Lu et al., 1998; Schmitz
et al., 1997; green symbols in Figure 8). The LCI in Nigerian and Tanzanian sections has been attributed to
temperatures during the height of the PETM that exceeded the tolerance of planktonic calcifiers (Aze et al.,
2014 Frieling et al., 2014, 2017). Our results suggest that dissolution could have also contributed. Shallow
water communities in carbonate platforms including coralgal reefs showed significant decline in the
Paleocene-Eocene boundary interval, also likely largely due to heat stress (Scheibner & Speijer, 2008a).
However, eutrophication and acidification during the PETM also may have played a role (Scheibner &
Speijer, 2008b). The only paleoshelf section that is expanded without apparent dissolution is Site 1172 on
the Tasman Rise where bulk Ca data show a slight increase during the PETM suggesting a lack of dissolution
(Sluijs et al., 2011). However, samples through the PETM are barren of nannofossils and foraminifera suggest-
ing dissolution, possibly associated with shoaling of the lysocline, and reprecipitation.

Evidence for>90% dissolution, the threshold that we use to define the CCD, from another group of sites ran-
ging from 1,100 to 2,400-m paleodepth is less clear, however (light blue symbols in Figure 8 denotes sites
with<90% dissolution). Carbonate values above zero during the onset of the PETM (and dissolution percen-
tages 71%–90%) may be a result of the combination of slow sedimentation, bioturbation, and possibly win-
nowing, which could have masked a thin 90%–100% dissolution zone (e.g., Bralower et al., 2014). At other
oceanic sites, including Sites 401, 689, and 738, the base of the event was incompletely recovered by coring
as it was at deeper Site 1409 (Pangaea Supplement Table). Some land sections in this depth range contain
expanded PETM records but with complications. At an expanded paleoslope section from the continental
margin of New Zealand (Mead Stream; 78% dissolution), the PETM lies above a faulted interval and the pub-
lished records (Hollis et al., 2005; Slotnick et al., 2012) may contain a gap at the base of the event.

Although previous studies have used these sites to constrain the upward migration of the lysocline and CCD
to below 1,000 m or so (Alegret et al., 2009; Colosimo et al., 2006; Giusberti et al., 2007; Panchuk et al., 2008;
Zachos et al., 2005; Zeebe et al., 2009), expected variability of carbonate contents even below the CCD

Figure 8. Percent dissolution (calculated after Broecker, 1995) plotted
against paleodepth (see Pangaea Supplement Table for sources of paleo-
depth interpretation). Dashed line represents 90% dissolution signifying the
lower limit of the CCD. Green are shelf sections, dark blue are sections with
>90% dissolution interpreted as lying below the CCD, and light blue are sites
characterized by <90% dissolution as a result of bioturbation, incomplete
core recovery at the base of the PETM, or faulted outcrop (Mead). See text for
discussion. Sites: BR-Bass River, CD-CamDor, HT-Howards Tract, MV-Millville,
SDB-South Dover Bridge, WL-Wilson Lake, AL-Alemedilla, Spain, ZU-Zumaya,
Spain; FO-Forada, Italy; TZ-Tanzania Core TDP-14, Egypt-Duwi Section,
Mead Stream, NZ.
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(Broecker & Peng, 1982) indicates that shoaling of the lysocline and CCD to shelf depths on a global basis dur-
ing the onset of the PETM was entirely possible. That the lysocline could rise onto the shelf is certainly feasi-
ble, given the limited seafloor area between 1,000 m and the shelf-slope break, and the low wt. % CaCO3 of
siliciclastic-dominated shelf sediments, relative to deep sea sediments (Berger & Winterer, 1974); the resili-
ence to CCD shoaling depends directly on the additional seafloor area and carbonate material exposed to
corrosive waters as the CCD shoals (Delaney & Boyle, 1988). If the lysocline and CCD were to have risen to
1,000-m depth, an incrementally small addition of carbon would elevate it beyond the shelf-slope break
where larger increases in shelf area per unit shoaling depth arise (i.e., the hypsometric curve is shallower).
This would retard further shoaling depths on a global basis, but because the shelf covers so much area, a sub-
stantial amount of carbon would be required for the CCD to reach themiddle shelf globally. Global shoaling is
only projected for emission at the upper end of estimates for the PETM and a volcanic source of carbon (e.g.,
Gutjahr et al., 2017; Panchuk et al., 2008).

The rapid pulse of CO2 injection required for CCD and lysocline shoaling to shelf depths may have resulted in
a brief phase of surface ocean acidification. The B/Ca record from BR includes samples from the LCI but not
from the level with 0% CaCO3 (Babila et al., 2016). Moreover, thinning of coccoliths, interpreted as the poten-
tial response to surface ocean acidification, is observed in a sample from BR immediately below the LCI
(O’Dea et al., 2014). Thus, it is possible that dissolution has erased the level that recorded the peak surface
acidification response at BR and elsewhere.

In conclusion, the global data set, including sections from the deep ocean and other shelf sites, is consistent
with shoaling of the lysocline and CCD to shelf depths. However, we stress that this is not the only
possible interpretation of the data. The condensed record of deep ocean sites and the paucity of
complete records allow for other explanations; as discussed, alternative interpretations also exist for shelf
records. Thus, in the next section, we explore a different model whereby shoaling was a regional, not a
global phenomenon.
4.2.5. The Case for Regional CCD and Lysocline Shoaling to the Continental Shelf
Eutrophication on modern shelves resulting from excessive nutrient input from rivers causes elevated micro-
bial degradation of organic matter, leading to a combination of hypoxia and undersaturation in subsurface
waters (e.g., Cai et al., 2011; Feely et al., 2008; Mathis et al., 2011) and also in the top few centimeters of
the sediment column. Thus, there is a continuum between dissolution resulting from changes in saturation
in bottom waters and in the sediment column during early diagenesis. Environments during the onset of
the PETM on the paleoshelf of the Atlantic Coastal Plain were eutrophic (Gibbs, Bralower, et al., 2006;
Lippert & Zachos, 2007; Sluijs et al., 2007; Stassen et al., 2015). Moreover, there is evidence that extreme
warming during the onset of the PETM increased microbial activity (Bowen, 2013; Kopp et al., 2009). We pos-
tulate that ocean acidification on the paleoshelf of the Atlantic Coastal Plain could have been a regional phe-
nomenon, resulting from the combination of a rapid pulse of CO2 at the onset of the PETM and fluvially
induced eutrophication. Taken a step further, the patchy distribution of carbonate both stratigraphically
and geographically in the middle shelf sections is possibly a result of spatial and temporal variations in the
intensity of these local and regional factors that impacted saturation. For example, the thicker LCI in the
Maryland sections might be a response to their proximity to freshwater sources. Distinguishing between
regional and global models for CCD and lysocline shoaling will require further study of key sections at high
resolution with a multiproxy approach, including paleontological and proxy data.

5. Conclusions

Our investigation reveals a low carbonate interval within the onset of the PETM that extends across the mid-
dle and outer paleoshelf of the Salisbury Embayment on themid-Atlantic shelf. This interval is associated with
minor disconformities in the outer paleoshelf section and patchy carbonate preservation in middle
paleoshelf sections. The low carbonate interval cannot be primarily explained by sediment dilution or focus-
ing in the inner shelf or by diagenetic oxidation of organic matter or pyrite. We postulate that the CCD and
lysocline shoaled to the middle shelf. The extent of shoaling of these surfaces is greater than in previous esti-
mates but generally consistent with global compilations of carbonate data, given stratigraphic uncertainty.
We propose two possible models, the first that shoaling was a global phenomenon involving rates of CO2

addition exceeding those of published simulations with more modest shoalings. An alternative scenario
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involves regional factors such as strong upwelling or eutrophication due to input of nutrients from rivers and
intensified microbial activity due to warming that may have exacerbated the impact of acidification in the
shallow oceans.
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