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Abstract

The concept of relative convergence, which requires the ratio of two time series to converge

to unity in the long run, explains convergent behavior when series share commonly divergent

stochastic or deterministic trend components. Relative convergence of this type does not neces-

sarily hold when series share common time decay patterns measured by evaporating rather than

divergent trend behavior. To capture convergent behavior in panel data that do not involve

stochastic or divergent deterministic trends, we introduce the notion of weak σ-convergence,

whereby cross section variation in the panel decreases over time. The paper formalizes this

concept and proposes a simple-to-implement linear trend regression test of the null of no σ-

convergence. Asymptotic properties for the test are developed under general regularity con-

ditions and various data generating processes. Simulations show that the test has good size

control and discriminatory power. The method is applied to examine whether the idiosyncratic

components of 46 disaggregate personal consumption expenditure (PCE) price inflation items

σ-converge over time, finding strong evidence of weak σ-convergence in these data. In a second

application, the method is used to test whether experimental data in ultimatum games converge

over successive rounds, again finding evidence in favor of weak σ-convergence. A third appli-

cation studies convergence and divergence in US States unemployment data over the period

2001-2016.
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“The real test of a tendency to convergence would be in showing a consistent diminution

of variance”, Hotelling (1933), cited in Friedman (1992)

1 Introduction

The notion of convergence is a prominent element in many branches of economic analysis. In

macroeconomics and financial economics, for instance, the influence of transitory (as distinct from

persistent) shocks on an equilibrium system diminishes over time. The effects of such shocks is

ultimately eliminated when the system is stable, absorbs their impact, and restores an equilibrium

position. In microeconomics, particularly in experiments involving economic behavior, heteroge-

neous subject outcomes may be expected under certain conditions to converge to some point (or a

set of points) or to diverge when those conditions fail. The object of much research in experimental

economics is to determine by econometric analysis whether or not predictions from game theory,

finance, or micro theory hold up in experimental data. While the general idea of convergence

in economic behavior is well-understood in broad terms in economics, empirical analysis requires

more specific formulation and embodiment of the concept of convergence over time to facilitate

econometric testing.

The idea of cointegration as it developed in the 1980s for studying co-movement among nonsta-

tionary trending time series bears an important general relationship to convergence. Cointegrated

series match one another in the sense that over the long run some linear relationship of them is

a stationary rather than a nonstationary time series. But while the cointegration concept has

proved extraordinarily useful in practical time series work, cointegration itself does not explain

trends in the component variables. These are embodied implicitly in the system’s unit roots and

deterministic drifts.

The empirical task of determining convergence among time series has moved in a distinct direc-

tion from the theory and application of cointegration in the last two decades. Convergence studies

flourished particularly in cross country economic growth analyses during the 1990s when economists

became focused on long run behavioral comparisons of variables such as real per capita GDP across

countries and the potential existence of growth convergence clubs where countries might be grouped

according to the long run characteristics of their GDP or consumption behavior. This research led

to several new concepts, including ‘conditional convergence’and ‘absolute convergence’as well as

specific measures such as σ(sigma)-convergence for evaluating convergence characteristics in prac-

tical work —see Barro (1991), Barro and Sala-I-Martin (1991, 1992), Evans (1996, 1998), and the

overview by Durlauf and Quah (1999), among many others in what is now a large literature.

The σ-convergence concept measures gaps among time series by examining whether cross sec-

tional variation decreases over time, as would be anticipated if two series converge. Conditional
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convergence interestingly requires divergence among the growth rates to ensure catch up and con-

vergence in levels. Thus, for poor countries to catch up with rich countries, poor countries need to

grow faster than rich countries. Econometric detection of convergence therefore has to deal with

this subtlety in the data. To address this diffi culty Phillips and Sul (2007, hereafter PS) used

the concept of ‘relative convergence’and developed a simple econometric regression test to assess

this mode of convergence. Two series converge relatively over time when the time series share the

same stochastic or deterministic trend elements in the long run, so that the ratio of the two series

eventually converge to unity.

The PS regression trend test for convergence has been popular in applications. But neither

conditional nor relative convergence concepts are well suited to characterize convergence among

time series that do not have (common) divergent deterministic or stochastic trend elements such

as polynomial time trends or integrated time series. Instead, many economic time series, especially

after differencing (such as growth rates), do not display evidence of deterministic growth or the

random wandering behavior that is the primary characteristic of integrated data. In addition,

much laboratory experimental data are non-integrated by virtue of their construction in terms

of bounded responses, and much macro data during the so-called Great Moderation from the

mid 1980s show less evidence of persistent trend behavior. Researchers interested in empirical

convergence properties of such times series need an alternative approach that accommodates panels

of asymptotically stationary or weakly dependent series, where the concept of convergence involves

an explicit time decay function that may be common across series in the panel.

The present paper seeks to address that need by working directly with convergence issues in

a panel of non-divergent trending time series and by developing an empirical test for convergence

that is suited to such panels. Interestingly, the original concept of σ−convergence that is based on
cross section sample variation is suitable for analyzing such panels for convergence properties in the

data and our work builds on this concept by developing a simple regression test procedure. The

main contributions of the paper are fourfold: (i) we introduce a concept of weak σ−convergence
whereby cross section variation in the panel decreases over time; (ii) we propose a simple linear

trend regression test to assess evidence for such convergence; (iii) we develop an asymptotic theory

for inference with this test in practical work; and (iv) we provide empirical applications of the

new procedure to personal consumption expenditure price index data, to US States unemployment

data, and to experimental data involving ultimatum games.

There are two major differences between the approach used in PS, which is based on the so-called

logt regression, and the trend decay regressions advocated in the present paper for asymptotically

weakly dependent data. First, the logt regression approach uses sample cross sectional variation in

the relative transition curves and a logarithmic trend regression for detection of convergence. By

3



contrast, the method proposed here uses linear trend regression to detect trend decay in the sam-

ple cross section variation after the elimination of common components. This objective matches

precisely the ‘real test’ of ‘showing a consistent diminution of variance’ suggested originally by

Hotelling (1933) and cited in the header of this article. One of the advantages of linear trend re-

gression in addition to its obvious simplicity in practice is that the sign of the fitted slope coeffi cient

captures trend decay even though the regression is misspecified.

Second, the asymptotic properties of the two procedures are very different. Trend regression is

used in the present paper as a detective device in an intentionally misspecified regression so that

test outcomes signal convergence or divergence of cross section averages over time by virtue of the

sign behavior of the trend slope coeffi cient and its associated t-test statistic. This behavior in turn

reflects the nature of the dominant trend or trend decay that is present in the data. The asymptotic

properties of these misspecified trend regression statistics are of some independent interest, but it

is their effectiveness in detecting trend decay convergence that is the primary focus of the present

paper.

The remainder of the paper is organized as follows. The next section provides a non-technical

introduction to convergence testing. The section briefly reviews existing tests for convergence,

explains the need for a new concept of the Hotelling type that is useful in economic, social and

experimental applications, and provides the simple linear trend regression mechanism that is pro-

posed in this paper for testing convergence. Also this section provides a formal development of

the concept of weak σ−convergence, discusses various matters of formulation and interpretation in
the context of several prototypical decay function models of convergence, and introduces the linear

trend regression approach and an associated t-ratio test of convergence designed for practical im-

plementation. Section 3 derives asymptotic theory for the proposed test under null and alternative

hypotheses (of both convergence and divergence). Several new technical results on power function

trend regression asymptotics are obtained in these derivations, which are of wider relevance than

the concerns of the present paper. Section 4 reports some numerical calculations to demonstrate the

contrasting test behavior under these two alternatives. Section 5 reports the results of Monte Carlo

simulations to assess the finite sample performance of the test procedure. Section 6 illustrates the

use of the new test in three empirical applications. Section 7 concludes. Technical derivations and

proofs are in the Appendix. Supplementary materials (intended for online reference) that include

the proofs of supporting lemmas and further numerical calculations and simulations are given in

Appendix S. Stata and Gauss codes for the methods introduced in this paper are available at the

author websites.
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2 Empirical Motivation and Modeling Preliminaries

2.1 Testing and Definition of Weak σ−Convergence

As indicated in the quotation by Hotelling (1933) that heads this article, the notion of σ-convergence

has been conceptually well understood since the early twentieth century. The concept is naturally

appealing in many contexts, such as the US States unemployment rate example just studied where

there is a direct focus on cross section variation and its behavior over time. At present, however,

there is no convenient and statistically rigorous test or asymptotic theory available for inference

concerning σ−convergence. Evans (1996) used cross sectional variance primarily to test divergence,
and Evans and Karras (1996), and Hobijn and Franses (2000) tested σ−convergence by considering
differences between dyadic pairs of yit rather than cross section variance or standard deviation.

To craft a suitably general concept of convergence, we may consider that the panel data of

interest, yit, can be decomposed into common and idiosyncratic components.

yit = θ′iFt + ai + yoit = θ′iFt + xit. (1)

We seek to examine σ−convergence in the panel idiosyncratic components xit following the extrac-
tion of any common factors Ft using standard methods.1 In an investigation of trends in volatility

of individual stocks, for example, Campbell et al. (2001) used a panel model with a common trend

factor of the form (1), tested for the presence of a strict linear trend using Vogelsang’s (1998) robust

t test, and examined convergence characteristics among the residual components xit. Our approach

formalizes the concept of decay in cross sectional variation over time without requiring a specific

linear trend decay mechanism.

Let x̄.t := n−1
∑n

i=1 xit, and define x̃it := xit− x̄.t.We start with the following high level defini-
tion of weak σ−convergence that captures the key notion of a ‘consistent diminution of cross section
variation’over time. Primitive conditions that justify this formulation and provide a foundation

for asymptotic theory are provided in Section 3.

Definition (Weak σ−convergence): Let Kx
nt = 1

n

∑n
i=1 x̃

2
it. The panel xit is said to σ−converge

weakly if the following conditions hold

(i) plimn→∞K
x
nt = K̄x

t <∞, a.s. for all t
(ii) plimt→∞K̄

x
t = a ∈ [0,∞),

(iii) lim supT→∞ γT
(
K̄x
t , t; cT

)
< 0 a.s.,

(2)

1 Importantly, the probability limit of the cross sectional variance of yit as n→∞ is itself random. Indeed, we have

plimn→∞K
y
nt = σ2a + σ2θF

2
t + plimn→∞Kx

nt, which embodies the time series random common factor component Ft

and the cross section common factor process K̄x
t = plimn→∞Kx

nt. Thus, the limiting cross section average dispersion

plimn→∞K
y
ntof yit may fluctuate over time according to the trajectories of

(
Ft, K̄

x
t

)
.
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where γT
(
K̄x
t , t; cT

)
:= 1

cT

∑T
t=1

˜̄Kx
t t̃ is a time series sample covariance of K̄

x
t with a linear time

trend t normalized by some suitable increasing sequence cT →∞.

The simple idea involved in testing weak σ−convergence is to assess by a trend regression
whether cross section dispersion declines over time. Since the mechanism of decline is not formulated

in an explicit data generating process, the test is performed via a linear time trend regression of

the following fitted form

Kx
nt = ânT + φ̂nT t+ ût. (3)

In this regression a simple robust t−ratio test is conducted to assess whether the fitted slope
coeffi cient φ̂nT is significantly less than zero, using a Newey-West type HAC estimator for the

variance of φ̂nT . Detailed discussion and asymptotic justification for this procedure are provided

in Sections 3 and 5.

2.2 Existing Tests and Weak σ−Convergence

A typical formulation of β−convergence in terms of cross sectional growth regression can be written
as

T−1 (xiT − xi0) = â+ β̂xi0 + z′iϕ̂+ residuali, i = 1, ..., n, (4)

where T−1 (xiT − xi0) is the long run average, xi0 is initial log level real incomes, and zi is a vector
of auxiliary covariates. The regression permits tests for a significantly negative slope coeffi cient

β̂ in the fitted equation. Significance in this coeffi cient suggests that countries with higher initial

incomes have lower average growth rates facilitating catch-up by less developed economies with

lower initial incomes. However, when ϕ̂ differs significantly from zero, the limiting outcomes for

countries i and j may differ. Evans (1996) explained why growth regressions like (4) provide valid

guidance regarding convergence only under strict conditions. Furthermore, as implied by Hotelling

(1933) and Friedman (1992), the study of β−convergence does not provide a definitive test of a
tendency to convergence in terms of a sustained ‘diminution of variance’.

A formal test of σ−convergence requires a well-defined concept and associated econometric
machinery for inference. Quah (1996) defined σ−convergence in terms of the cross section variance
Kx
nt by the condition

Kx
nt ≤ Kx

nt−1 for all t. (5)

Evidently, the definition (5) partly accords with Hotelling’s suggestion but does not require ‘con-

sistent diminution in variance’. Moreover, the temporal monotonicity of (5) is restrictive in most

applications because it does not allow for subperiod fluctuation or short-period temporal divergence.

In place of (5), the notion of weak σ−convergence given above introduces a weaker condition that
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focuses on the asymptotic behavior of the sample covariance

Ĉov (Kx
nt, t) = T−1

∑T

t=1
K̃x
ntt̃ < 0, (6)

where K̃x
nt = Kx

nt − T−1
∑T

t=1K
x
nt, and t̃ = t− T−1

∑T
t=1 t.

A further existing test involves the idea of relative convergence. Phillips and Sul (2007) formu-

lated a nonlinear panel model of the form

xit = bitθt, for t = 1, ..., T ; i = 1, ..., n, (7)

where bit is the ith individual slope coeffi cient at time t, which may be interpreted as a time varying

loading coeffi cient attached to a common trend function θt, which may involve deterministic and

stochastic trends. Individual countries share in the common trend driver θt to a greater or lesser

extent over time depending on the loading coeffi cient bit. This formulation accommodates many

different generating mechanisms and allows for a convenient ‘relative convergence’concept, which

is defined as

plimt→∞
xit
xjt

= 1 for any i 6= j. (8)

The relative convergence condition may be tested using an empirical least squares regression of the

following form involving a ‘ln t’regressor

ln (H1/Ht)− 2 ln ln t = â+ γ̂ ln t+ ût, (9)

where Ht = n−1
∑n

i=1 (hit − 1)2 and hit = xit/(n
−1∑n

i=1 xit) is the relative income of country i. If

the estimate γ̂ is significantly positive, then this ‘logt test’provides evidence supporting relative

convergence. The test is primarily useful in contexts where the panel data involve stochastic and

deterministic trends such as θt that may originate in common technological, educational, multi-

national, and trade-related drivers of growth.

When panel observations involve stochastic or deterministic trends, the relative convergence

does not imply the weak σ−convergence. Consider, for instance, the simple panel model

xit = ai + bitt+ εitt
−β with bit = b+ εit

−1/2 (10)

where εit ∼ iid
(
0, σ2ε

)
over (i, t) , εi ∼ iid

(
0, σ2ε

)
, and the components (ai, εi, εit) are all indepen-

dent. It is easy to see that relative convergence holds but not weak σ−convergence. Only when bit
converges b faster than t, (or bit = b + εit

−a with a > 1), the weak σ−convergence holds. Hence
under the presence of distinct trending behavior, the weak σ−convergence is more restrictive than
the relative convergence. Meanwhile when the data do not involve such trends as θt, then the con-

cept of relative convergence in (8) is far less useful. For instance, relative convergence as indicated

by (8) may not even exist in the case of panel data whose elements converge to zero.
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2.3 Modeling Weak σ−Convergence with Decay Functions

To fix ideas and develop a framework for asymptotic analysis and testing we introduce an explicit

modeling framework for the panel xit. Following PS, we use a power law time decay function, which

is a convenient formulation to study weak σ−convergence.2 Here we consider cases where additive
heterogeneous and exogenous shocks enter the panel xit and how these shocks are neutralized over

time under convergence. There are two convenient ways to accommodate such weak σ−convergence
behavior: temporal shocks may influence only the mean level; and shocks may directly affect the

cross sectional variance of the panel xit. Combining these two mechanisms leads to the following

model.3

xit = ai + µit
−α + εitt

−β, (11)

were ai is the mean of xit, µi is an initial (period 1) shock to the ith unit, and εit has zero mean and

variance Eε2it = σ2ε,i. The power decay parameter α > 0 and, as earlier, the idiosyncratic components

(ai, µi) are iid with finite support and are independent of the εit. Define ãi = ai− n−1
∑n

i=1 ai and

similarly let µ̃i and ε̃it be deviations from their cross sectional means. Then the cross sectional

variation of xit in this case can be broken down into the following components.

Kx
nt = σ2a,n + 2σaµ,nt

−α + σ2µ,nt
−2α + σ2ε,ntt

−2β + en,t, (12)

where σ2a,n = n−1
∑n

i=1 ã
2
i , σ

2
ε,nt = n−1

∑n
i=1 ε̃

2
it, σaµ,n = n−1

∑n
i=1 ãiµ̃i, σ

2
µ,n = n−1

∑n
i=1 µ̃

2
i and

en,t = 2n−1t−β
∑n

i=1 ãiε̃it + 2n−1t−α−β
∑n

i=1 µ̃iε̃it →p 0 as n→∞.
The statistical properties of the cross sectional dispersion of xit hinge on the specific values

of µi and β. In the following analysis, we consider the following three cases based on potential

restrictions placed on µi and β.

Model M1 M2 M3

Restriction β = 0 µi = 0 n/a

The outcomes for the sample cross section variation in these models may be summarized as follows:

Kx
nt = an + ηn,t + εn,t, (13)

2Other decay functions are possible. For example, for c ∈ R the exponential function ec/t → 1 as t→∞ is useful

in capturing multiplicative decay, and the geometric function ρt with |ρ| < 1 is useful in capturing faster forms of

decay than power laws.
3This formulation does not include a remainder term of smaller order. For instance, if β = 0 and α = 1/3, then

xit may take the more general form xit = ai +µit
−1/3 +

∑p
j=2 µjit

−j/3 + εit that involves higher order (smaller decay

terms). In this event, the dominating decay term of xit is µit
−1/3, and other terms can be written in residual form

so that xit = ai + µit
−1/3 + εit + op

(
t−1/3

)
and smaller terms may be ignored in the development and asymptotics.

Similarly, if µi = 0 and β = 1/3, then xit may take the more general form xit = ai + εitt
−1/3 +

∑q
j=2 εitt

−j/3,

or simply xit = ai + εitt
−1/3 + op

(
t−1/3

)
, where the smaller order terms may again be ignored in the subsequent

development and asymptotic theory.
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where

an =


σ2a,n + σ2ε,nT for M1,

σ2a,n for M2,

σ2a,n for M3,

ηn,t =


2σaµ,nt

−α + σ2µ,nt
−2α for M1,

σ2ε,nT t
−2β for M2,

2σaµ,nt
−α + σ2µ,nt

−2α + σ2ε,nT t
−2β for M3,

(14)

and

εn,t =


2n−1

∑n
i=1 ãiε̃it + 2n−1

∑n
i=1 µ̃iε̃itt

−α +
(
σ2ε,nt − σ2ε,nT

)
for M1,

2n−1
∑n

i=1 ãiε̃itt
−β +

(
σ2ε,nt − σ2ε,nT

)
t−2β for M2,

2n−1
∑n

i=1 ãiε̃itt
−β + 2n−1

∑n
i=1 µ̃iε̃itt

−α−β +
(
σ2ε,nt − σ2ε,nT

)
t−2β for M3.

(15)

We now discuss the differences in the temporal evolution of these models. From (13), the temporal

decay character of the sample cross section variation Kx
nt is embodied in the component ηn,t.

Evidently from (14), the temporal evolution of ηn,t depends eventually on the dominant element

as t→∞ among the terms that are present in ηn,t for each model. This behavior is determined by

the signs of the power parameters (α, β) , their relative strengths, and the various coeffi cient values

in (14) and their asymptotic behavior.

Model M2 is the simplest as µi = 0 for all i and there is only a single term in ηn,t. The slope

coeffi cient on t−2β in ηnt is σ
2
ε,nT as shown in (14), which depends on both n and T. Variation

therefore reduces as t→∞ whenever β > 0 and σ2ε,nT > 0. This behavior does not depend on the

n/T ratio because σ2ε,nT →p σ
2
ε when (n, T ) → ∞ irrespective of the relative divergence rates of

(n, T ).

The other models have multiple terms whose behavior can be more complex. In M1 β = 0,

which implies that temporal effects on the system manifest through the component ai + µit
−α,

which evolves according to µit
−α as t → ∞.4 The two terms

(
2σaµ,nt

−α, σ2µ,nt
−2α) that appear in

ηn,t for M1 have coeffi cients that depend on n and the asymptotic behavior of the dominant term is

impacted by whether σaµ,n → 0. By further analysis of these terms, it is shown later (in Theorem

1 and in the ensuing discussion) that the dominating behavior is also influenced by the magnitude

of the decay rate α > 0 and the asymptotic behavior of the n/T ratio. The explanation is that the

error term εn,t in (15) involves weighted cross section sample averages of the errors εit and the scaled

errors εitt−α. The magnitude of these terms depends on n, T, and α. Thus, the convergence behavior

of Kx
nt in this case evidently hinges on the sign of α and the relative importance of each of these

terms, which in turn depends on the n/T ratio. Similar considerations influence the asymptotic

behavior in model M3.

When there is only constant cross section variation in the panel, as occurs for instance when

xit = a + µt−α + εit and σ2ε,nt = n−1
∑n

i=1 ε̃
2
it →p σ

2
ε > 0, then K̄x

t = σ2ε and there is no weak

4The decay function µit
−α may be regarded as an evaporating trend factor component with idiosyncratic loadings

µi.
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σ−convergence over time. In fact, the cross section mean and variation are constant for each t so
that the sample covariation

∑T
t=1

˜̄Kx
t t̃ = 0 and the upper limit lim supT→∞ γT

(
K̄x
t , t; cT

)
= 0 a.s. In

such cases there is panel mean weak convergence of the form xit ⇒ a+εi∞ where the weak limit has

constant variation σ2ε over time. Thus, even though the variation does not shrink over time, we get

individual element panel convergence in mean up to a homogeneously varying error. To eliminate

such trivial cases, we henceforth assume that σ2a,n →p σ
2
a > 0 and σ2µ,n →p σ

2
µ > 0. If α < 0,

then xit is σ−divergent. In this case, the t−2α term eventually dominates the t−α term for large t.5

This domination may also hold when α > 0 if E (aiµi) = 0, as then σaµ = plimn→∞σaµ,n = 0 and

σaµ,nt
−α = Op

(
n−1/2t−α

)
= op

(
t−2α

)
uniformly in t ≤ T provided T 2α/n → 0. When σaµ 6= 0,

the sign of σαµ is also relevant in assessing convergence or divergence of variation. For instance, if

α > 0 and σaµ < 0, the t−α term dominates the t−2α term as t → ∞ and Kx
nt increases over time

and eventually stabilizes to fluctuate around σ2a + σ2ε as n, T →∞.
Model M3 nests M1 and M2, and is particularly convenient for our theoretical development. In

practice, simpler models like M1 or M2 may often provide useful characterizations. For instance,

when common components are eliminated as in the US personal consumption expenditure item

inflation rate and US State unemployment examples given in Section 6, M2 may characterize

dynamic behavior that leads to weak σ-convergence or divergence. When no common element is

eliminated, as in the Ultimatum game example of Section 6.2, M1 may be helpful in describing

mean level convergence in the panel.

2.4 Testing and Application of Weak σ−Convergence

2.4.1 Direct Nonlinear Regression

An obvious initial possibility for testing weak σ−convergence is to run a nonlinear regression based
on the form of the implied decay function of Knt given in (12) and carry out tests on the coeffi -

cients and the sign of the power trend parameters. The parameters of interest are σ2a, α, β, σ
2
µ

and σ2ε . If these parameters were identifiable and estimable using nonlinear least squares, testing

weak σ−convergence might be possible by this type of direct model specification, fitting, and test-
ing. However, the parameters are not all identifiable or asymptotically identifiable in view of the

multifold identification problem that is present in models with multiple power trend parameters.

Readers are referred to Baek, Cho and Phillips (2015) and Cho and Phillips (2015) for a recent

study of this multifold identification problem, and more general issues of identification and testing

analysis in time series models with power trends of the type that appear in (13).

5When σaµ < 0 and α < 0, the variation Kx
t may follow a U−shaped time path if |σaµ| > σ2µ. In such cases, K

x
t

may initially decrease before beginning to increase over time. When |σaµ| ≤ σ2µ, then K
x
t increases monotonically

over time.
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Even if restrictions were imposed to ensure that all parameters were identified in a direct model

specification of convergence, formulation of a suitable null hypothesis presents further diffi culties.

Our interest centres on the possible presence of weak σ−convergence, which holds in the model
when β > 0 and α > 0. Hence, the conditions for weak σ−convergence are themselves multifold,
which further complicates testing. Further, it is well known that nonlinear estimation of the power

trend parameters α and β is inconsistent when α, β > 0.25 because of weakness in the signal that

is transmitted from a decay trend regressor (see Malinvaud, 1970, Wu, 1981, Phillips, 2007, and

Lemma 1 below). Finally, a parametric nonlinear regression approach relies on a given specification,

whereas in practical work the nature of data and its generating mechanism across section and

over time are generally so complex that any given model will be misspecified. In consequence,

econometric tests based on the direct application of nonlinear regression to a given model will

suffer from specification bias resulting in size distortion. It is therefore of considerable interest and

importance in applications to be able to provide a convergence test without providing a complete

model specification for the panel.

In view of these manifold diffi culties involved in direct model specification and testing, we pursue

a convenient alternative approach to test for weak σ−convergence. The idea is to employ a simple
linear trend regression that is capable of distinguishing convergence from divergence, even though

a linear trend regression is misspecified under the convergence hypothesis. In fact, a linear trend

may be interpreted as a form of spurious trend under the convergence hypothesis. Yet this type of

empirical regression provides asymptotically revealing information about convergence, as we now

explain, just as spurious regressions typically reveal the presence of trend in the data through the

use of another coordinate system (Phillips, 1998, 2005a).

2.4.2 Linear Trend Regression

The idea is to run a least squares regression of cross section sample variation6 Knt on a linear trend

giving, as indicated earlier in (3), the fitted regression

Knt = ânT + φ̂nT t+ ût, t = 1, ..., T (16)

where ût is the fitted residual, and to perform a simple significance test on the fitted trend slope

coeffi cient φ̂nT . This regression enables us to test the key defining property of weak σ−convergence.
In particular, according to the definition, if plimn→∞Knt exists and Knt is a decreasing function

of t, then weak σ−convergence holds. In this event, in terms of the regression (16), we expect the
slope coeffi cient φ̂nT to be significantly negative, whereas if φ̂nT is not significantly different from

zero or is greater than zero, then the null of no σ−convergence cannot be rejected.
6 In what follows we remove the variable name affi x and write Kx

nt simply as Knt.
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In order to construct a valid significance test, allowance must be made for the fact that the model

(16) is generally misspecified. Indeed, when Knt satisfies a trend decay model such as (12), the

regression may be considered spurious although, as is shown below, the asymptotic behavior of the

fitted regression differs from that of a conventional spurious regression (Phillips, 1986). Nonetheless,

a robust test of significance must allow for the presence of serially correlated and heteroskedastic

residuals. Further, as we will show under certain regularity conditions, the corresponding robust

t-ratio statistic tφ̂nT diverges to negative infinity in the presence of weak σ−convergence, so that
this simple regression t-test is consistent.

The misspecification implicit in the trend regression (16) complicates the asymptotic properties

of the estimates and the t-ratio statistic, so that the limit behavior of both φ̂nT and tφ̂nT depends

on the values of α and β and the relative sample sizes n and T. This limit behavior is examined

next.

3 Asymptotic Properties

This section provides asymptotic properties of the suggested test in the previous section. We start

with asymptotics for the slope coeffi cient estimator φ̂nT and then develop the limit theory for the

t-ratio statistic. To proceed in the analysis we impose the following conditions on the components

of the system given by model M3 in (11), which is convenient to use in what follows because it

subsumes models M1 and M2.

Assumption A: (i) The model error term, εit, is independently distributed over i with uniform

fourth moments, supi E
(
ε4it
)
< ∞, and is strictly stationary over t with autocovariance sequence

γi (h) = E (εitεit+h) satisfying the summability condition
∑∞

h=1 h |γi (h)| < ∞ and with long run

variance Ω2e =
∑∞

h=−∞ γi (h) > 0.

(ii) The slope coeffi cients, ai and µi, are cross sectionally independent and have uniformly

bounded second moments.

(iii) Eaiεjt = Eµiεjt = Eεitεjt = 0 for all i, j, and t, with i 6= j .

The cross section independence over i and stationarity over t in (i) are restrictive but are also fairly

common. It seems likely that both conditions may be considerably relaxed and cross sectional

dependence in εit and some heterogeneity over t may permitted, for example under suitable uniform

integrability moment and mixing conditions that assure the validity of our methods. For simplicity

we do not pursue these extension details in the present work.

In what follows it is useful to note that as T → ∞ sums of reciprocal powers of the integers
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have the following asymptotic form (see Lemma 1 in the Appendix)

τT (λ) =
∑T

t=1
t−λ =


1

1− λT
1−λ +O (1) if λ < 1,

lnT +O (1) if λ = 1,

ζ (λ) = O (1) if λ > 1.

As is well known, τT (λ) is O (1) for λ > 1, has a representation by Euler-Maclaurin summation

in terms of Bernoulli numbers, and can be simply bounded. Lemma 1 provides more detail about

the Riemann zeta function limit ζ (λ) and the various asymptotic representations of τT (λ) , which

turn out to be useful in our asymptotic development.

The least squares coeffi cient φ̂nT in the trend regression (16) can be decomposed into determin-

istic and random component parts as follows. We use the general framework for the sample cross

section variation Kx
nt given by (13) - (15). We may write ηn,t as

ηn,t = ηt + ξn,t = ηt +Op

(
n−1/2

)
, (17)

where ηt is the n−probability limit of ηn,t, specifically

ηt =


2σaµt

−α + σ2µt
−2α for M1,

σ2ε t
−2β for M2,

2σaµt
−α + σ2µt

−2α + σ2ε t
−2β for M3,

(18)

where σaµ = plimn→∞σaµ,n, σ2µ = plimn→∞σ2µ,n, and σ
2
ε = plimn→∞σ2ε,nT . We further define the

quantities

ξaµ,n : = σaµ,n − σaµ = n−1
∑n

i=1
(ãiµ̃i − σaµ) = Op

(
n−1/2

)
, (19)

ξσ,n : = σ2µ,n − σ2µ = n−1
∑n

i=1

(
µ̃2i − σ2µ

)
= Op

(
n−1/2

)
, (20)

so that the residual in (17) can be written as ξn,t := 2ξaµ,nt
−α + ξσ,nt

−2α = Op
(
n−1/2

)
uniformly

in t for all α > 0 for M1.

Setting atT = t̃/
(∑T

s=1 s̃
2
)
and using (17), the trend regression coeffi cient φ̂nT in (16) can be

decomposed into three components as follows

φ̂nT =
∑T

t=1
atT η̃t +

∑T

t=1
atT ξ̃n,t +

∑T

t=1
atT ε̃n,t =: IA + IB + IC , (21)

where η̃t = bt̃−λ, ξ̃n,t = ξn,t−T−1
∑T

t=1 ξnt, ε̃n,t = εn,t−T−1
∑T

t=1 εnt and λ represents the relevant

decay parameter, and b is the corresponding coeffi cient in that term. The first term IA is a purely

deterministic term and depends only on the parameter λ. The second and third terms are random

terms with zero means. If either of the second or third terms becomes dominant, then the sign of
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φ̂nT is ambiguous, prevents a clear test conclusion. The glossary given in the Table C array (22)

below summarizes the required conditions for first term dominance in (21).

Cases

Models σaµ 6= 0 σaµ = 0

M1 T
n → 0 with α ≥ 1

2 ;or α < 1
2

T
n → 0 with α ≥ 1

2 ; or T 2α

n → 0 with α < 1
2

M2 n.a. no restriction

M3 no restriction T/n→ 0

Table C: Restrictions on the T/n Ratio in Various Cases

(22)

In M2, the first term in (21) dominates other terms, so that no restriction on the T/n ratio is

required. In M1 and M3, when σaµ = 0, the term 2σaµt
−α is absent from IA, but the term

2σaµ,nt
−α is present in IB, which may dominate IA if T/n 9 0. When σaµ 6= 0, the T/n ratio

condition depends on the value of α in M1. When σaµ 6= 0, no rate condition on the T/n ratio is

required in model M3.

The values that λ and b take in the three model cases M1-M3 are summarized in the Table M

below.

Case M1 M2 M3

b λ b λ b λ

α, β > 0,and σaµ 6= 0 2σaµ α σ2ε 2β 2σaµ for α, σ2ε for 2β min [α, 2β]

α, β > 0,and σaµ = 0 σ2µ 2α σ2ε 2β σ2µ for 2α, σ2ε for 2β min [2α, 2β]

α < 0 or β < 0 σ2µ 2α σ2ε 2β σ2µ for 2α, σ2ε for 2β min [2α, 2β]

Table M: Parameter Specifications for Models M1 - M3

As is apparent in the table, for model M3 there are two possible sources of decay (or divergence)

and the relevant value of the parameter λ is determined by the majorizing force. These possibilities

are accounted for in the proofs of the results that follow.

It is convenient to define the conditional order-rate element

OTλ = −


LλT

−1−λ if λ < 1,

6T−2 lnT if λ = 1,

6ζ (λ)T−2 if λ > 1.

(23)

where Lλ = 6λ[(2− λ) (1− λ)]−1. The limit behavior of φ̂nT in the regression equation (16) is

characterized more easily in terms of OTλ in the following result. Since the linear trend regression
(16) is typically misspecified, interest centers on the asymptotic behavior of φ̂nT under the various
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potential models of data generation, the possible values of the rate parameters (α, β) in the trend

decay functions of M1, M2, and M3, and the sample size divergence rates n, T →∞.
Since the empirical trend regression equation (16) is generally misspecified when λ 6= 0, the key

point of interest is whether the fitted coeffi cient φ̂nT and its associated t-ratio in regression (16)

have asymptotically distinguishable behavior that reveal weak σ−convergence in the data. When
the deterministic component (IA =

∑T
t=1 atT ηt) of φ̂nT dominates (21) as it typically does, it turns

out that there is identifiable behavior in the sign of φ̂nT and this property is used as the basis of a

convergence test. More formally, we can state the regression limit theory as follows.

Theorem 1 (Linear Trend Regression Limit Behavior)

Under assumption A and as (n, T ) → ∞ jointly, the limit behavior of the fitted coeffi -

cient φ̂nT in regression (16) is characterized in the following results.

(i) Under weak σ−convergence (with λ > 0 and b > 0), then φ̂nT = b × OTλ < 0 for
1
n + T

n → 0 and the respective values of λ given in Table M.

(ii) Under σ−divergence (with λ > 0 and b < 0), then φ̂nT = b×OTλ > 0 for 1
n+T

n → 0;

or φ̂nT = b×LλT−1−λ > 0 if λ < 0 with no restriction on the n/T ratio as (n, T )→∞.

(iii) Under the null hypothesis of neither convergence nor divergence (λ = 0), then

φ̂nT = Op
(
n−1/2T−3/2

)
, irrespective of the n/T ratio.

In establishing the results of the theorem, the proof examines the components of (21) to assess

the main contribution to the asymptotic behavior of φ̂nT . The proof of the theorem in Appendix

provides detailed calculations and examines the various cases implied by the different parameter

configurations.

With the asymptotic behavior of φ̂nT in hand, limit theory can be developed for the corre-

sponding t-ratio in the regression (16), which takes the following standard form for the time trend

regressor case, viz.,

tφ̂nT
=

φ̂nT√
Ω̂2u/

∑T
t=1 t̃

2

, (24)

where Ω̂2u is a typical long run variance estimate based on the residuals ût = Kx
nt− ânT − φ̂nT t from

(16), such as the Bartlett-Newey-West (BNW) estimate

Ω̂2u =
1

T

∑T

t=1
û2t + 2

1

T

∑L

`=1
ϑ`L

∑T−`

t=1
ûtût+`, (25)

where ϑ`L are the Bartlett lag kernel weights and the lag truncation parameter L = bT κc for some
small κ > 0.
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We use the robust form of the test statistic given in (24) which employs a standard long run

variance estimate Ω̂2u constructed by lag kernel methods as in (25) from the regression residuals

ût = Knt− ânT − φ̂nT t. Since the trend regression equation is misspecified, Ω̂2u does not consistently

estimate the long run variance Ω2e of the errors εit in models M1,M2, or M3 as n, T →∞ unless the

parameters α = β = 0 in those models and there is no decay function in the generating model. That

special case is taken as the null hypothesis of no convergence or divergence, viz., H0 : α = β = 0,

under which consistency Ω̂2u →p Ω2e follows by standard methods.

The primary focus of interest in testing is not the null H0 : α = β = 0 but the alternative

hypothesis HA : α 6= 0 or β 6= 0 under which there is convergence or divergence in the cross section

sample variation. Under HA, the linear trend regression specification is no longer maintained and
the relevant asymptotic behavior is that of the long run variance estimate Ω̂2u under misspecification

of the trend regression. To capture the misspecification effect, it is convenient to decompose the

regression residual into two primary components as

ût =
(
η̃n,t − φ̂nT t̃

)
+ ε̃nT =: M̃nt + ε̃nT , (26)

where η̃n,t = ηn,t − T−1
∑T

t=1 ηn,t and ε̃nt = εnt − T−1
∑T

t=1 εnt. Using (17)-(20) we have ηn,t =

ηt + ξn,t = ηt +Op
(
n−1/2

)
uniformly in t for all α > 0 for M1 and M3. Then,

η̃n,t = η̃t + ξ̃n,t = bt̃−λ + ξ̃n,t,

using the simplified summary notation of Table M. More specifically, from Lemma 5 in the Appen-

dix, we have

ξ̃n,t =


2ξaµ,nt̃

−α + ξµ,nt̃
−2α = op

(
t̃−2α

)
for M1,

ξσ,nt̃
−2β = op

(
t̃−2β

)
for M2,

2ξaµ,nt̃
−α + ξµ,nt̃

−2α + ξσ,nt̃
−2β = op

(
min

(
t̃−2α, t̃−2β

))
for M3,

(27)

which may be expressed in the simple form that ξ̃n,t = op (η̃t) uniformly in t as n/T → ∞. Since
the trend regression coeffi cient φ̂nT satisfies the decomposition (21), we find that

M̃nt = η̃n,t − φ̂nT t̃ = η̃t + ξ̃n,t − (IA + IB + IC) t̃

= η̃t − IAt̃+ ξ̃n,t − t̃ (IB + IC)

= m̃t +Rnt,

with deterministic part m̃t = η̃t− IAt̃ and random part Rnt = ξ̃n,t− t̃ (IB + IC) . As n/T →∞, we
show in the Appendix in the proof of Theorem 1 that IA dominates IB and IC for all three models;

and, from above, ξ̃n,t = op (η̃t) uniformly in t as n/T →∞. It follows that Rnt = op (m̃t) uniformly

in t ≤ T as n/T →∞.
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Under model M2, the term M̃nt in (26) always dominates the second term asymptotically in

the behavior of Ω̂2u as (n, T ) → ∞, irrespective of the n/T ratio. In models M1 and M3, M̃nt

continues to dominate the behavior of Ω̂2u as (n, T ) → ∞ provided n/T → ∞. Thus, M̃nt can be

rewritten

M̃nt = b

[
t̃−λ − t̃

(∑T

t=1
t̃t̃−λ

)(∑T

t=1
t̃2
)−1]

+Rnt, (28)

where Rnt is a smaller order term. Thus, when M̃nt dominates the behavior of Ω̂2u as (n, T )→∞,
the asymptotic behavior of the t-ratio is determined as follows

tφ̂nT
=

φ̂nT√
Ω̂2u/

∑T
t=1 t̃

2

∼ φ̂nT√
Ω2M/

∑T
t=1 t̃

2
=

(
b
∑T

t=1 t̃t̃
−λ
)(∑T

t=1 t̃
2
)−1/2

√
Ω2M

, (29)

making the t-ratio a function of only λ, κ, and T asymptotically when n/T → ∞. In (29) the
quantity Ω2M is constructed in the usual manner as a long run variance estimate, viz.,

Ω2M =
1

T

∑T

t=1
m̃2
t +

2

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
m̃tm̃t+`, (30)

as in (30) with lag truncation parameter L; and, being a function of m̃t, Ω2M is a deterministic

function of t.

Different lag truncation rules may be employed in (30) and other forms of t-ratio may be

used in which different robust standard errors are used in (29), including heteroskedastic and

autocorrelation robust (HAR) forms such as fixed-b and trend IV approaches (e.g., Kiefer and

Vogelsang, 2002; Sun, 2004, 2018; Bunzel and Vogelsang, 2005; Phillips 2005b.)7 The asymptotic

equivalence in (29) is established in the proof of the following result which gives the asymptotic

behavior of tφ̂nT under the null and alternative hypotheses.

7For example, instead of the simple t-ratio (29), one may consider alternative formulae such as

tHAC = φ̂nT

( T∑
t=1

t̃2
)−1

T Ω̂2
M

(
T∑
t=1

t̃2
)−1−1/2

which employ the HAC estimate

Ω̂2
M =

1

T

∑T

t=1
p̃2t +

2

T

∑M

`=1

∑T−`

t=1

(
1− `

M + 1

)
p̃tp̃t+`

formed from the components pt = ûtt and p̃t = pt − T−1
∑T
t=1 pt, or HAR estimates such as fixed-b methods with

M = bT for some fixed b ∈ (0, 1) in Ω̂2
M . We do not report results here with alternate versions such as tHAC and tHAR

since our findings indicate that overall the standard formula given in (29) provides better finite sample performance.

Detailed analytic and simulation results for these cases are provided in Kong, Phillips and Sul (2017).

17



Theorem 2 (Asymptotic Properties of the tφ̂nT ratio)

Under Assumption A, the t-ratio statistic tφ̂nT in the empirical regression (16) has the

following asymptotic behavior as n, T →∞ :

(i) Under weak σ−convergence (λ > 0 and b > 0) and when n/T →∞,

lim
n,T→∞

tφ̂nT
= −τ∗λ =


−∞ if 0 < λ < 1,

−
√

6/κ2 if λ = 1,

−Z (λ)
√

3 if 1 < λ <∞,
−
√

3 if λ→∞.

(31)

where κ > 0 is defined by the lag truncation parameter L = bT κc in the long run
variance estimator (25). The function Z (λ) := ζ (λ)

(∑∞
t=1 t

−λζ (λ, t)
)−1/2

> 1 for all

λ > 1, where ζ (λ) =
∑∞

t=1 t
−λ and ζ (λ, t) =

∑∞
s=1 (s+ t)−λ are the Riemann and

Hurwitz zeta functions, respectively.

(ii) Under σ−divergence, as n, T →∞,

lim
n,T→∞

tφ̂nT
=

{
+∞ if λ < 0 regardless of the n/T ratio,

τ∗λ if σaµ < 0 with λ > 0 and n/T →∞.
(32)

(iii) Under the null hypothesis H0 : λ = 0 (neither convergence nor divergence), as

n, T →∞ irrespective of the n/T ratio,

tφ̂nT
→d N (0, 1) . (33)

As indicated in (31) and (32), the precise limit behavior of the t-ratio statistic depends on the

parameter λ, the lag truncation constant κ > 0 in L = bT κc, and certain other constants when
λ ≥ 1. When the Bartlett-Newey-West estimate is used in constructing Ω̂2u, the constant κ is

commonly set to 1/3.

Theorem 2 (ii) defines t-ratio behavior under σ−divergence when λ < 0 and the limit theory

is expected. For when λ ∈ {2α, 2β} and is negative, the dominant term is either t−2α or t−2β,

so that cross section variation diverges permanently and the t-ratio is positive and increasing as

n, T →∞. Theorem 2 (ii) also shows that when λ > 0 and σaµ < 0, the behavior of the t ratio is a

mirror image of part (i). Theorem 2 (iii) gives the standard result for a correctly specified model

with weakly dependent errors. Thus, when α = β = 0, the trend regression is well defined as a

simple model with a slope coeffi cient of zero, and the t-ratio is asymptotically N (0, 1) by standard

nonparametrically studentized limit theory.
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Theorem 2 (i) is the key result of most relevance in empirical studies of convergence. The

explicit limit behavior shown in (31) derives from the fact that the t-ratio takes asymptotically the

deterministic form (29), whose limit form can be well characterized. As long as the deterministic

component in the estimator φ̂nT is dominant, the results given in (31) hold. Remarkably, the t-

ratio is completely free of nuisance parameters in the limit because the scale parameter b appears

in both numerator and denominator of the t-ratio and thereby cancels, making the limiting form of

the t-ratio a function only of the value of λ and the bandwidth parameter κ used in the construction

of the long run variance estimate. This property makes the test statistic especially convenient and

auspicious for practical work.

As shown in Theorem 2, one sided critical values from the standard normal distribution N (0, 1)

are used in testing to detect convergence (tφ̂nT significantly negative) and divergence (tφ̂nT signifi-

cantly positive) from the null of fluctuating variation. When a 5% one-sided test is used, the critical

value of the test for convergence is −1.65. Then, even if λ→∞ and convergence is extremely fast

(making convergence in the data extremely hard to detect because of the effective small sample

property of the convergence behavior), the maximum value of the t-ratio tφ̂nT is −
√

3 = −1.73,

which is significant at the 5% level. Hence, although the the t-test is not consistent in this case,

it is still capable of detecting convergence with high probability asymptotically even under these

diffi cult conditions. When λ ∈ (0, 1) , the test is consistent for convergence behavior and when

λ < 0 the test is consistent for divergence as (n, T ) → ∞ irrespective of the behavior of the ratio

n/T.

Before we discuss the size and power properties of the t-ratio test, we make the following remarks

about the implications of the above results for practical work on convergence testing.

Remark 1: (The Effects of Violation of the T/n Rate Requirement) Since Theorem 2

requires the rate condition T/n→ 0, it is naturally of interest to explore the consequences for the

test when this condition is violated. First, from (22) and Theorem 1 it is evident that M2 does not

require any T/n ratio requirement. So there are no adverse consequences for panel applications

where this model is relevant. As shown in Section 6, with the exception of the experimental data

application, the weak σ−convergence test is often performed after eliminating common components,
which makes M2 the most relevant model in such cases.

Models M1 or M3 are typically more relevant for raw panel analyses in which common compo-

nents are not present or cannot be eliminated and there is no strong trending behavior in the data,

as distinct from possible trend decay in cross section variation. If λ < 0 in M1 or M3, as Theorem

2 indicates, the condition T/n → 0 is not binding in this case either. Only when the conditions

in (22) hold — for example when the idiosyncratic elements (αi, µi) are uncorrelated (σaµ = 0) —

does the T/n ratio become relevant in influencing the asymptotic theory. As discussed later in the
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numerical simulation findings, when σaµ = 0 the decay rate follows t−2α (rather than t−α) in (14)

and discriminatory power in testing for convergence may be attenuated by the faster convergence

rate because this deterministic component may be dominated by the random component variation

when n is not large relative to T.

Remark 2: (A Different Decay Function) Instead of the power decay function t−λ other

formulations are possible, such as the geometric decay function ρt mentioned in footnote 2. To be

specific, suppose

xit = ai + µiρ
t + εit.

Since limt→∞ ρt/t−λ = 0 for any λ > 0, geometric decay is faster. In earlier work, Kong and Sul

(2013) showed that the main finding in Theorem 2 changes little in this event. In particular, the

boundary limit of the t-ratio, ±
√

3, is the same with the geometric decay function ρt. Importantly,

the rate condition T/n → 0 is likely to be more important for good test behavior in this case, for

the reasons given above.

Remark 3: (Sub-convergent Clubs) As Phillips and Sul (2007) showed, convergence fails

when there are multiple sub-convergent clubs and special methods are needed to identify club con-

vergence. As in that work, classifying club membership becomes a feature of considerable empirical

interest in practical work. When panel data include distinct stochastic trends the nonstationarity

in the data assists in identifying club membership. However, if there are no distinct trends, it is

much more challenging to sort individuals into multiple clubs, even when the decay function is

known. Using model M3, for instance, a simple case of two sub-convergent clubs (G and Gc, say)

involves a modified formulation of the type

xit =

{
0 + µGit

−α + εitt
−β for i ∈ G

1 + µGcit
−α + εitt

−β for i ∈ Gc
.

If i ∈ G, then Exit converges zero, while if i /∈ G, Exit converges to unity. In this case xit is
σ−divergent, even though individual groups of the data do converge. To identify club membership,
one may consider running a linear regression of xit on t−α for each i and use some classification

method to subsequently group the estimates. However if α > 1/2, least squares regression is

inconsistent since
∑T

t=1 t
−2α is convergent as T → ∞ and time series signal strength is too weak

for consistent estimation. Hence, a different approach is needed to identify club membership.

One possibility is to combine the methods of this paper with newly developed panel classification

procedures, such as those in Su, Shi and Phillips (2016) that involve penalized regression to shrink

the coeffi cient estimates towards empirically supported groupings. This is an interesting topic with

substantial empirical relevance that we leave for future study.
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Remark 4: (Power Trend Regression) As is apparent in the statement of the theorem,

discriminating behavior in the fitted slope coeffi cient φ̂nT (and, as we will see, test consistency)

typically requires the rate condition n/T → ∞. This condition ensures that the sample cross
section variation has stabilized suffi ciently (for large enough n) to facilitate the identification of

trend decay or divergence in the variation over time (for large T ). It is of some interest whether

this rate condition might be relaxed if a more flexible power trend regression of the form

Knt = ânT + φ̂nT t
ψ + ût, t = 1, ..., T, and some given ψ > 0, (34)

were used in place of the linear trend regression equation (16). In fact, as discussed in Appendix S,

use of a power trend regressor tψ in the empirical regression instead of a simple linear trend does

not lead to different rate requirements regarding (n, T ) . Simulations with various values of the

exponent parameter ψ confirmed that there is also no reason based on finite sample performance

to use a value of ψ different from unity in the empirical regression.

4 Numerical Calculations

To demonstrate the contrasting test behavior under the alternatives of convergence and divergence,

we report the following numerical calculations. These and the Monte Carlo simulations of the next

section are designed to enable assessment of the size and power properties of the convergence test

in relation to the magnitude of the decay parameter and sample size (n, T ) configurations.

When n→∞ the probability limit of Knt under M1 - M3 is the following deterministic function

of t

plimn→∞Knt = Kt = a+ ηt = a+ bt−λ, (35)

for some non-zero constants a and b. We calculate the t-ratio under this asymptotic (n → ∞)
deterministic DGP (35) for various sample sizes T and refer to it as the t∞T -ratio. Figure 1 shows

how t∞T behaves for various values of λ. In the vicinity of λ ∼ 0, Panel A of Figure 1 shows that

t∞T → ±∞ as T →∞, according as λ ≶ 0. The distinction between the two alternatives is strongly

evident, even for T = 100. Panel B of Figure 1, shows the behavior of t∞T as λ increases for various

values of T. The approach of t∞T to the asymptote −
√

3 as λ→∞ is clearly evident and becomes

stronger as T increases.

To explore behavior of the test in the vicinity λ ∼ 0, Figure 2 plots the density of the t-ratio for

various values of α in model M1 with n = 1000 and T = 100. We set σaµ = 0, σ2µ = 1, κ = 1/3 and

use draws of εit ∼ iidN
(
0, σ2ε

)
, µi ∼ iidN

(
0, σ2µ

)
, and ai ∼ iidN

(
0, σ2a

)
with 50,000 replications.

Evidently for α = 0.5 the density lies almost completely to the left of the 5% critical value −1.65

even for the moderate time series sample size T = 100. For α = 0.3, 0.4, the distribution shifts
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further to the left and the test is even more powerful, whereas for α ≥ 0.5, the distribution moves

to the right and the rejection frequency starts to decline. Test power continues to decline as α

departs further from 0.5. The same pattern applies as n or T increases.
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Figure 3 shows the power function over a range of α values for different n, with T = 50, σ2µ = 4,

σ2ε = 1, and 100, 000 replications. Rapid movements in the power function occur around α = 0 as

the model parameter changes from a divergent alternative through the null hypothesis (α = 0) to

a convergent alternative. Observe that for moderate values of α with α < 1 (equivalently λ < 2)

the power function is close to unity. But when λ ≥ 2, the convergence rate is fast and, as discussed

above, the discriminatory power of the test is reduced because of an effective small sample problem.

Indeed, for Model M1 with λ = 2 (i.e. α = 1) the half life in mean levels is just one period and the

half life in the variation is less than one period8

As is apparent in Figure 3, the test rejection frequency changes rapidly from the nominal 5%

at the null where α = 0 to virtually 100% for even small departures from the null. This behavior

in the power function is sensitive, at least in the immediate vicinity of α = 0 to the extent of cross

section averaging. To demonstrate, Figure 4 magnifies the region around α = 0 from Figure 3 to

reveal the extent of this sensitivity to the cross section sample size n. Evidently, with greater cross

section information as n increases, the distinction between the null and the alternative becomes

more sharply defined, increasing test power as expected.

Similar features to those discussed above apply for tests based on data generated by models M2

and M3. These findings are given in the Appendix S as supplementary material to this paper.

5 Monte Carlo Simulations

We investigate the finite sample performance of the trend regression test of convergence and diver-

gence using the following data generating process

yit = ai + θiFt + µit
−α + εitt

−β,

where

ai ∼ iidN
(
0, σ2a

)
, µi ∼ iidN (0, 1) ,

εit = ρiεit−1 + vit, vit ∼ iidN (0, 1) , ρi ∼ U [0, 0.5] ,

and θi ∼ iidN (0, 1) or θi = 1 for all i. The fixed parameter settings are: σa ∈ [1, 2, 5, 10] , and

α, β ∈ [−0.1, 0, 0.1, 0.5] . The experimental design for each model and restrictions on the parameter

8The mean level in model M1 has the form E (xit) = a+µt−α →
t→∞

a, when α > 0. Then E (xi1 − xi2) = µ
(
1− 2−α

)
= 2−α (2α − 1)E (xi1 − xi∞) = E (xi1 − xi∞) /2 for α = 1 and the half life in mean level from t = 1 is just one

period when α = 1. The limiting variation when n→∞ has the form K∞,t = b+ ψt−2α, so that

K∞,1 −K∞,2 = ψ
(
1− 2−2α

)
= 2−2α

(
22α − 1

)
(K∞,1 −K∞,∞)

= (3/4) (K∞,1 −K∞,∞) ,

and the half life in the variation K∞,t from t = 1 is less than one period.
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values are as follows:

Model M1: (β = 0) We take the case where θi = 1 for all i as the case θi 6= θj for i 6= j is

considered in Model 2. This model is useful in studying panel data convergence when cross sectional

dependence is homogeneous (here via the common factor Ft). We consider two cases depending on

the value of σaµ, one case with σaµ = 0.45 and the other case with σaµ = 0. Comparison of these

cases highlights the impact of σaµ on test performance where asymptotics are known to be affected

through the differing values of the rate parameter λ (see Table M).

Model M2: (α = 0) Two cases are considered. In the first case θi = 1 for all i, whereas in the

second case θi is generated from iidN (0, 1) and idiosyncratic components must be estimated to

eliminate common factor Ft. More specifically, we use estimates of xit defined by

x̂it = yit − θ̂iF̂t,

where θ̂i and F̂t are obtained by principal component methods.9 In this experiment, the number of

common factors is assumed to be known. Bai and Ng (2002) showed that the number of common

factors can be sharply determined by suitable information criteria when sample sizes of n and T

are moderate and this was confirmed in our simulations in the present case, so these results are not

reported.

Model M3: (α = β) For brevity, we consider only the case α = β. Simulation results for other

cases are available online10. As in Model M1, we consider two cases depending on the value of σaµ.

9Let Cit = θ′iFt and x̂it = yit − Ĉit where Ĉit = θ̂
′
iF̂t. From Bai (2003), Ĉit − Cit = Op

(
m−1nT

)
where mnT =

min
[√

n,
√
T
]
, and so the estimation error Ĉit−Cit →p 0 as mnT →∞ can be treated as an asymptotically negligible

component. Then weak σ−convergence of x̂it = xit − (Ĉit − Cit) implies weak σ−convergence of xit from condition

(ii) in (2). Let Knt (x̂) = n−1
∑n
i=1 x̂

2
it, assume that xit is weak σ−convergent, and set K̄x

t = plimn→∞Kx
nt and a =

plimt→∞K̄x
t ∈ [0,∞). Then

1

n

∑n

i=1
x̂2it =

1

n

∑n

i=1
x2it +

1

n

∑n

i=1

(
Ĉit − Cit

)2
− 2

1

n

∑n

i=1
xit
(
Ĉit − Cit

)
=

1

n

∑n

i=1
x2it +

1

n

∑n

i=1

(
Ĉit − Cit

)2
+ op (1) ,

and the three conditions of (2) are all satisfied regardless of the relative size of n and T. First, take the case where

n > T. We have at most

1

n

∑n

i=1

(
Ĉit − Cit

)2
= Op

(
T−1

)
,

1

n

∑n

i=1
xit
(
Ĉit − Cit

)
= Op

(
n−1/2

)
,

and then plimn→∞Knt (x̂) = K̄t (x) + Op
(
T−1

)
< ∞. Hence, the first and second conditions of (2) are satisfied

and the final condition holds by the weak σ−convergence of xit since Ĉit − Cit = op (1) . When n ≤ T we have

n−1
∑n
i=1 x̂

2
it = n−1

∑n
i=1 x

2
it +Op

(
n−1/2

)
, and all three conditions of (2) again hold.

10www.utdallas.edu/~d.sul/papers/Monte_res_9_17.xls
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Table 1 reports size and power of the one-sided convergence test in model M1 with settings

κ = 1/3 and L = int(T κ) in the long run variance calculation. When α < 0 or β < 0, the size of the

one-sided test is expected to be zero and this is confirmed in Table 1 (with α = −0.1) and in Table 2

(with β = −0.1) for model M2. Moreover, test size in M1 and M2 is very similar, again as expected

because of the null hypothesis setting α = β = 0. The Table 1 results show that test power is

dependent on σaµ. When σaµ 6= 0, the test is consistent when (n, T )→∞ irrespective of the n/T

ratio if α < 0.5, as demonstrated in the Appendix. Otherwise, test power increases with n but

may decrease as T increases with n fixed. For example, when α = 0.3, 0.5 and σaµ = 0, test power

decreases as T increases for any fixed n. This is explained by the fact that when σaµ = 0 the decay

parameter λ = 2α > 0.5 in these experiments, so that convergence is faster and discriminatory

power is correspondingly reduced as T increases with n fixed. On the other hand, when σaµ 6= 0,

the power of the test increases as T increases.

Table 2 shows test size in model M2, which is comparable with that of Table 1 for model M1.

When β = −0.1, the test size is virtually zero, which is expected for the one-sided test because the

t-ratio tends to infinity in this case and large positive values of the statistic are expected. When

β = 0, there is some mild size distortion for small T, which does not seem to rise or fall as n

increases, but which diminishes quickly as T increases. Test size does not seem sensitive to σ2a
or when estimated idiosyncratic elements are estimated, which perhaps to be expected given the

robust limit theory in Theorem 2.

Table 3 reports test power for model M2. Interestingly, power is smaller for β = 0.1 than when

β = 0.5. The test statistic densities reveal (see Figure S1) that as β increases the variance of the

t-ratio decreases but at the same time the mean of the t-ratio decreases in absolute value. This

reduction in variance of the test statistic seems to affect finite sample power performance more than

reduction in mean. Also, Table 3 shows that test power decreases as the variance of ai increases,

which is explained by the fact that as σ2a increases there is greater fluctuation in the panel data level

for all t, and this induced noise reduces discriminatory power in the test. When θi ∼ iidN (0, 1) and

idiosyncratic components are estimated, test power is similar to the fixed θi = 1 case. In general,

the findings show that as long as β < 1 test power increases with T for fixed n and increases as n

increases for fixed T.

Table 4 shows test power for model M3. Test size is not reported in this case because the results

are very similar to those of models M1 and M2 and we report only the case where α = β as the

results are similar for other cases. The main finding is that test power increases as n increases

regardless of the value of σaµ and generally increases as T increases for fixed n. The exception

occurs when σaµ = 0 and α = β = 0.5 where there is evidence of a minor attenuation in power

as T increases, which is explained as earlier by the fact that when σaµ = 0 the decay parameter
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λ = 2α > 0.5 and test discriminatory power is reduced because of the faster convergence rate and

the implied small sample effect as T increases with n fixed.

6 Empirical Examples

We provide three empirical applications of the proposed test. The first data set is a balanced

panel consisting of 46 disaggregated personal consumption expenditure (PCE) items. The second

application involves a balanced pseudo-panel data set. The proposed test remains valid in pseudo-

panels as long as the sample cross sectional variation approximates well the true cross sectional

variance in each time period. The third example shows how the cross sectional dispersion of state

level unemployment rates changed over a period that includes the subprime mortgage crisis.

6.1 Weak σ−Convergence with 46 PCE inflation Rates

Here we report an interesting empirical finding about weak σ−convergence with 46 disaggregate
PCE inflation rates. The source of the data is the annual PCE (Table 2.4.4) obtained from the

Bureau of Economic Analysis and our full data set covers 46 disaggregated series over the period

1978 to 2016.

Following the common factor literature, we assume that the PCE inflation rates have a static

factor structure of the form

πit = ai + θ′iFt + πoit, (36)

with common factors Ft, factor loadings θi, individual series fixed effects ai, and idiosyncratic

inflation rate πoit. Our main concern is whether or not the idiosyncratic components of the 46

disaggregated PCE inflation rates manifest weak σ−convergence over time. We start by estimating
the number of the static common factors using Bai and Ng’s (2002) IC2 criterion (up to a potential

maximum of 8 factors). One factor is found over the entire sample period from 1979 to 2016 (loosing

one sample observation in the conversion to inflation rates) after prewhitening and standardization.

Next, we obtain estimates of the idiosyncratic components by using principal components.11

Figure 5 plots the PCE average inflation rates (shown by the heavy dark blue line) for the

46 disaggregated series and the sample variance of the estimated idiosyncratic components (thin

11 In determining the number of the common factors, we standardize the sample observations for each i (dividing

πit by its standard deviation for each i) before calculating the IC2 criterion and estimating the common factors.

Let F̂t be the principal component estimates obtained from the standardized sample. Once the common factors are

estimated, the factor loadings are estimated by regression of the original sample data, πit, on a constant and F̂t (36)

for each i. The final estimated idiosyncratic components are calculated by taking residuals π̂rit = πit − θ̂
′
iF̂t, so that

fixed effects are embodied in π̂rit. That is, π̂
r
it = ai + πoit + θ′iFt − θ̂

′
iF̂t.
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pink line with solid circles) over the period 1979 - 2016. Evidently, the cross sectional variance is

generally decreasing over this time period but with some fluctuations.

Table 5 reports the weak σ−convergence test results with the whole sample (from 1979 to

2016) and two subsamples (before and after 1992). For the sample after 1992, the null of no

σ−convergence is rejected even at the 2.5% level. Two different lag truncation parameter settings

(L = 3, 6) were used in the construction of the long run variance estimates used in the tests and, as

is apparent in the table, the test outcomes and evidence for σ−convergence in the data are robust
to lag choice. The selected common factor dimension (k) is also varied from 1 to 3, and again all

cases support evidence for σ−convergence.
Test results for the sample prior to 1992 and for the entire sample are different. It is well known

that inflation rates reached a peak in the early1980s and displayed time series wandering character-

istics over the 1980s. Common factors to inflation rates estimated for the 1980s therefore tend to

behave rather like random walks and, using the entire sample of data, it is hard to reject the null

of a unit root in the inflation rates. If the series are integrated, then the null of no σ−convergence
should not be rejected, as discussed earlier in the paper. Application of the convergence test con-

firms this intuition. As is evident from Table 5, irrespective of the choice of k and L, the null of

no σ−convergence is not rejected in any case for the subsample from 1979 to 1992. On the other

hand, for the full sample regressions over 1979-2016, the t-ratios are less than the right side critical

value -1.65 for k = 1, 2, supporting the conclusion that inflation rates in the PCE are converging

overall over the entire period.
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Figure 5: Cross Sectional Means and Variances of 46 PCE items

Table 6 shows the trend regression test results with samples dating from various starting years

(each sample taken through to 2016), with various lag parameter settings of L, and with k = 3. As
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the starting year rises the number of time series observations T declines. But even with the sample

size reductions that this recursion involves, the null of no σ−convergence is rejected in all cases.
These results support the overall conclusion of convergence in PCE inflation rates over this period.

6.2 Convergence in Ultimatum Games

One of the most studied games in experimental economics is the ultimatum game. A standard

ultimatum game consists of two players: a leader (proposer) and a follower (responder). The leader

offers a portion (x) of a fixed pie (money) to the follower. If the offer is accepted, then the pie is

divided as proposed. Otherwise, both players receive nothing. The game theory prediction on the

optimal offer is near zero since all positive offers are expected to be accepted. Since the pioneering

study by Güth, Schmittberger and Schwartz (1982), more than 2,000 experimental studies have

shown that leaders usually offer around 40% of the pie, and offers lower than 30% of the pie are

often rejected. See Güth (1995), Bearden (2001), Chaudhuri (2011), Cooper and Kagel (2013),

Cooper and Dutcher (2011) for surveys of this literature.

A natural question is whether offers tend to converge over rounds in repeated games. We use

the experimental data from Ho and Su (2009) to examine evidence for the convergence. Ho and Su

ran 24 rounds of Ultimatum games with 4 sections. Each section had between 15 and 21 subjects,

and each subject played the game 24 times. For each round subjects were randomly matched with

others. So one subject could be a follower in one round, but become a leader in another round. For

each round, there are three players in the Ho-Su experiment: one leader and two followers. From

their data, we form a pseudo panel of 25 subjects over 24 rounds. Figure 6 shows the cross sectional

average and variance over rounds. Interestingly, the offer fraction seems to follow a slow decaying

function: initial offers were slightly higher than 40%, but with more rounds the offers seem to fall

and stabilize slightly above 30%. Cross sectional variation clearly fluctuates but is evidently slowly

decreasing over time.

We ran trend regressions with the cross sectional variance from these data. The results are

reported in Table 7 and allow for various starting points in the regression. When the initialization

is set at the round 1 game, the point estimate is φ̂nT = −0.087 with t-ratios tφ̂nT (L) ≤ −4.299 for

all values L ∈ {1, 3, 5, 7} of the lag truncation parameter. The null hypothesis of no σ−convergence
is therefore rejected even at the 0.1% level. This finding confirms that as the ultimatum game

is repeated, cross section variation in the offer rates declines. In further investigation, the trend

regression was performed with initializations set at later rounds of the game. Due to the high peak

in the variance at round 6, the point estimates φ̂nT remain close to the same level −0.09 until the

6th round sample observations are discarded. Commencing from later initializations, the regression

point estimates drop to −0.05 and show evidence of some further decline thereafter. Nonetheless,
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the t-ratios all lead to rejections of the null of no σ−convergence at close to the 1% level.
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Figure 6: Cross Sectional Average and Variance

(Data from Ho & Su (2009))

6.3 Divergence and Convergence in US State Unemployment rates

Figure 7 (upper panel) shows national unemployment rate data for the US over 2001:M1 to 2016:M7.

The figure also plots the monthly sample cross section variance of unemployment rates in the 48

contiguous US States. The data are obtained from the Bureau of Labor Statistics.

The focus of economic interest concerns the behavior of State unemployment rates over the whole

period and certain subperiods, particularly those preceding and following the subprime mortgage

crisis. The periods prior to, during, and following the subprime mortgage crisis are of special

interest because of the onset and impact of the great recession coupled with the distinct time series

behavior in unemployment rates in these subperiods.

Evidently, the temporal patterns of the national unemployment rate and the cross section

variation of State unemployment rates show some stability over 2001-2007. Both rise sharply

during the crisis, and both fall steadily in the crisis aftermath. These patterns suggest a period of

stationary fluctuations in unemployment rates, followed by divergence during the crisis, followed

then by a steady decline in variation with convergence to pre-crisis levels. The tests we develop
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provide a quantitative analysis to buttress this descriptive commentary on the divergence and

convergence of unemployment rates over this 15 year period.

The offi cial period of the recession precipitated by the subprime mortgage crisis is December

2007 to June 2009 (the gray-shaded area in the figure). Over this period, cross section variation

in State unemployment rates rose rapidly from a range of 4.6% (high: Michigan 7.3%; low: South

Dakota 2.7%) in December 2007 to more than twice that figure reaching 10.7% in June 2009

(high: Michigan 14.9%; low: Nevada 4.2%). Almost immediately following the recession, cross

section variation in unemployment rates started to decline and continued to do so until the national

unemployment rate reached pre-crisis levels.

The top panel of the figure reports the t-ratio statistics tφ̂ = 0.416, 11.50,−21.95 for the pre-

crisis, mid-crisis and post-crisis periods, which are exogenously determined according to the offi cial

period of the recession shown in the shaded region. As explained below, t statistics outside the

standard normal critical values signal variation divergence in the right tail, variation convergence in

the left tail, and stable variation within standard (0, 1) critical values centred on the origin. Even

with the relatively short time series trajectories available in the three subperiods, the empirical

results strongly confirm the heuristic visual evidence in the data trajectories of a rapid divergence

from a stable period to 2007, followed by a steady decline in variation after mid 2009.

The lower Panel B of Figure 7 provides plots of recursive calculations of the same robust t ratio

statistics computed from linear trend regressions with various rolling window (WD) widths. Three

cases are shown in the figure, corresponding to 37, 41, and 49 month rolling window widths. The

starting date of the window (when WD = 49) is detailed in the upper horizontal axis and the end

date is located on the lower horizontal axis.

As the rolling window width increases, the t-ratio recursion pattern becomes smoother and the

absolute value of the t-ratio also tends to decrease. To magnify the scale of the recursive plot,

the upper pane of Panel B shows the t-ratio recursion for WD = 49, constraining realized values

to the interval [−3, 3]. The upper and lower 5% critical values of ±1.65 appear as dotted lines in

the figure on the right hand axis scale. These recursive tests enable the data to determine break

dates where stability changes to divergence (February, 2008) and subsequently to convergence (May

2012) in terms of first crossing times of the critical values (c.f., Phillips, Wu, Yu, 2011; Phillips,

Shi, Yu, 2015). Evidently, the recursive regression tests lead to broadly similar conclusions to

those in which the break dates are given exogenously by the offi cial dates of the recession, although

the endogenously determined dates delay both the onset of the crisis impact on the divergence of

unemployment rate variation and the onset of the decline in variation and convergence.
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Panel A: Variance of US Unemployment Rates (with t-ratio

convergence tests for the pre-, mid- and post- crisis periods)
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Figure 7: Impact of the Subprime Mortgage Crisis on Unemployment rates

across 48 contiguous United States
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7 Conclusion

Concepts of convergence have proved useful in studying economic phenomena at both micro and

macro levels and have wider applications in the social, medical, and natural sciences. Of particular

interest in empirical work is whether given data across a body of individual units show a tendency

toward convergence in the sense of a persistent diminution in their variation over time, an idea

that was clearly articulated by Hotelling (1933) in the header to this article. The concept of weak

σ−convergence introduced in the present paper gives analytic characterization to this concept and,
more importantly for implementation, one that is amenable to convenient econometric testing. The

approach relies on a simple linear trend regression which is correctly specified only when the data

is subject to no change or evolution over time, but which leads to a statistical test of convergence

that has discriminatory power when there is either diminution or dilation of variation over time.

When a system is disturbed and cross section variation is affected, the convergence test is an

empirical mechanism for assessing whether the disturbances influence the system over time in a

directional manner that diminishes or raises variance. In the event that there is no directional

impact, the slope coeffi cient in the trend regression is zero and the test does not register any

evolutionary change. But if the disturbances are neutralized and variation is reduced over time,

the estimated slope coeffi cient is negative and the test registers diminution in variance even when

the precise mechanism is unknown. When the directional impact is positive and variation rises over

time, the estimated slope coeffi cient is positive and the test registers rising variation. Asymptotic

theory in the paper justifies this simple approach to testing convergence and divergence in panel

data when the underlying stochastic processes are unknown but fall within some general categories

of models with evaporating or dilating trends in variation.

The methodology applies whether or not the observed data are cross sectionally dependent,

under general regularity conditions for which a law of large numbers holds. Moreover, the data

may be drawn from panels or pseudo-panels where observations may relate to different individuals

or cross sectional units in each time period. The main technical requirement on the panel is that

the respective sample sizes (n, T )→∞ and that n
T →∞, although the latter rate condition is not

always required. Simulations show that the methods provide good discriminatory power in most

cases of convergence and divergence, even when the time series sample and cross section sample

sizes are of comparable size.
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Appendix

The following lemmas are useful in establishing Theorems 1 and 2. All proofs including proofs of

Theorem 1 and 2 are given in the online supplement by Kong, Phillips and Sul (2018), and rely

on certain properties of infinite series and standard limit theory methods (e.g., Phillips and Solo,

1992).

Lemma 1

Finite series of sums of powers of integers have the following asymptotic forms as T →
∞

τT (α) =
∑T

t=1
t−α =


1

1− αT
1−α +O (1) if α < 1,

lnT +O (1) if α = 1,

ZT (α) = O (1) if α > 1,

HT (α, `) =
∑T

t=0
(t+ `)−α =


1

1− α (T + `)1−α +O (1) if α < 1,

ln (T + `)− ln `+O (1) if α = 1,

ζT (α, `) = O (1) if α > 1,

where, for α > 1, ` ≥ 1,

ZT (α) → ζ (α) =
∑∞

t=1

1

tα
=

1

α− 1
+

1

2
+ ∆α,

ζT (α, `) → ζ (α, `) =
∑∞

t=0

1

(t+ `)α
=

1

`α
+

1

(1 + `)α

(
1

2
+

1 + `

α− 1

)
+ ∆α,`.

with ∆α and ∆α,` are smaller order terms, which are defined in the supplementary

appendix, and where ζ (α, `) ≤ ζ (α) for all integer ` ≥ 1.

Lemma 2

Define t̃ = t− T−1
∑T

t=1 t, t̃
−α = t−α − T−1

∑T
t=1 t

−α, TT (1, α) =
∑T

t=1 t̃t̃
−α, ST (α) =∑T

t=1 t̃
−αt̃−α, and BT (α) = 1

T

∑T
t=1

[
t̃−α − t̃

(∑
t̃2
)−1∑

t̃t̃−α
]2
. Then, as T →∞, we

have

TT (1, α) =


− α

2 (α− 2) (α− 1)
T 2−α +O

(
T 1−α

)
if α < 1,

−1

2
T lnT +O (T ) if α = 1,

−1

2
ζ (α)T +O (1) if α > 1,

ST (α) =


α2

(α− 1)2 (1− 2α)
T 1−2α +O (1) if α < 1/2,

lnT +O (1) if α = 1/2,

ζ (2α) +O
(
T−1

)
if α > 1/2,
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and

BT (α) =


α2

(α− 1)2 (1− 2α)
T−2α +O

(
T−1

)
if α < 1/2,

T−1 lnT +O
(
T−1

)
if α = 1/2,

T−1ζ (2α) + o
(
T−1

)
if α > 1/2,

=


O
(
T−2α

)
if α < 1/2,

O
(
T−1 lnT

)
if α = 1/2,

O
(
T−1

)
if α > 1/2.

Lemma 3:

Let vit be cross section independent over i and covariance stationary over t with mean

zero and autocovariogram γh,v,i = E (vitvit+h) satisfying the summability condition

∞∑
h=1

h
∣∣γh,v,i∣∣ <∞, (37)

for all i. Suppose bi ∼ iid
(
0, σ2b

)
. Then∑T

t=1
vitt
−α = Op

(
[τT (2α)]1/2

)
,∑T

t=1
vitt̃t

−α = Op

(
T [τT (2α)]1/2

)
,∑T

t=1
bit̃t
−α = Op (TT (1, α)) .

Lemma 4:

Let mt = t−λ − t
(∑T

t=1 t̃t̃
−λ
)(∑T

t=1 t̃
2
)−1

and L = bT κc for some κ ∈ (0, 1) . Then

for λ > 0

G (T, λ) :=
1

T

∑L

`=1

∑T−`

t=1

(
1− `

L+ 1

)
m̃tm̃t+`

=



O
(
T−2λ+κ

)
if λ < 1/2,

O
(
T κ−1 lnT

)
if λ = 1/2,

O
(
T κ−1

)
if 1/2 < λ < 1/ (1 + κ) ,

O
(
T−λ+κ−λκ

)
if 1/ (1 + κ) ≤ λ < 1,

κ2

2 T
−1 ln2 T +O

(
T−2 lnT

)
if λ = 1,

T−1
{∑∞

t=1 t
−λζ (λ, `)− ζ (2λ)

}
if λ > 1,

where m̃t = mt − 1
T−`

∑T−`
s=1 ms, m̃t+` = mt+` − 1

T−`
∑T−`

s=1 ms+`, ζ (λ, `) is the Hurwitz

zeta function and ζ (2λ) is the Riemann zeta function

Lemma 5

Suppose bi ∼ iid
(
b, σ2b

)
. Let ξb,n = n−1

∑n
i=1(bi−b). Then as n, t→∞ with n/T →∞,

we have
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ξb,nt̃
−α = op

(
t̃−2α

)
. (38)

which may be expressed in the simple form that ξ̃n,t = op (η̃t) uniformly in t as n/T →∞. .
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Table 1: Size and Power of the Test in M1

σaµ α σ2a T\n 25 50 100 200 500 1000

Size 0 0 1 25 0.105 0.111 0.109 0.113 0.104 0.117

50 0.091 0.090 0.089 0.092 0.091 0.091

100 0.070 0.074 0.075 0.076 0.072 0.071

200 0.069 0.072 0.066 0.063 0.067 0.070

0 -0.1 1 25 0.012 0.005 0.000 0.000 0.000 0.000

50 0.002 0.000 0.000 0.000 0.000 0.000

100 0.000 0.000 0.000 0.000 0.000 0.000

200 0.000 0.000 0.000 0.000 0.000 0.000

Power 0 0.3 2 25 0.268 0.360 0.489 0.644 0.881 0.970

50 0.272 0.345 0.479 0.625 0.884 0.979

100 0.263 0.342 0.462 0.635 0.882 0.981

200 0.259 0.340 0.465 0.637 0.876 0.982

0.45 0.3 2 25 0.526 0.704 0.892 0.982 1.000 1.000

50 0.580 0.781 0.941 0.993 1.000 1.000

100 0.635 0.841 0.973 0.999 1.000 1.000

200 0.705 0.898 0.989 1.000 1.000 1.000

0 0.5 2 25 0.276 0.336 0.431 0.565 0.778 0.915

50 0.221 0.296 0.362 0.495 0.712 0.863

100 0.212 0.241 0.296 0.417 0.612 0.806

200 0.180 0.211 0.279 0.348 0.522 0.712

0.45 0.5 2 25 0.564 0.742 0.896 0.983 1.000 1.000

50 0.555 0.760 0.917 0.988 1.000 1.000

100 0.575 0.764 0.929 0.994 1.000 1.000

200 0.555 0.773 0.938 0.994 1.000 1.000
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Table 2: Size of the Test in M2

θi β σ2a T\n 25 50 100 200 500 1000

1 0 1 25 0.103 0.116 0.111 0.107 0.105 0.110

50 0.082 0.098 0.085 0.092 0.091 0.091

100 0.077 0.074 0.076 0.087 0.069 0.074

200 0.072 0.063 0.067 0.064 0.076 0.067

1 -0.1 1 25 0.004 0.001 0.000 0.000 0.000 0.000

50 0.000 0.000 0.000 0.000 0.000 0.000

100 0.000 0.000 0.000 0.000 0.000 0.000

200 0.000 0.000 0.000 0.000 0.000 0.000

1 0 5 25 0.119 0.113 0.119 0.114 0.115 0.114

50 0.095 0.096 0.094 0.100 0.093 0.099

100 0.082 0.085 0.082 0.080 0.087 0.082

200 0.066 0.068 0.067 0.077 0.069 0.071

1 -0.1 5 25 0.018 0.006 0.002 0.000 0.000 0.000

50 0.005 0.001 0.000 0.000 0.000 0.000

100 0.001 0.000 0.000 0.000 0.000 0.000

200 0.000 0.000 0.000 0.000 0.000 0.000

iidN (0.5, 1) 0 1 25 0.106 0.102 0.100 0.100 0.106 0.115

50 0.083 0.085 0.086 0.092 0.091 0.091

100 0.077 0.078 0.076 0.074 0.074 0.075

200 0.065 0.065 0.068 0.066 0.061 0.068
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Table 3: Power of the Test in M2

θi β σ2a T\n 25 50 100 200 500 1000

1 0.1 1 25 0.452 0.623 0.815 0.958 0.999 1.000

50 0.574 0.786 0.943 0.997 1.000 1.000

100 0.752 0.937 0.996 1.000 1.000 1.000

200 0.907 0.991 1.000 1.000 1.000 1.000

1 0.5 1 25 0.934 0.992 1.000 1.000 1.000 1.000

50 0.967 0.998 1.000 1.000 1.000 1.000

100 0.984 1.000 1.000 1.000 1.000 1.000

200 0.992 1.000 1.000 1.000 1.000 1.000

1 0.1 5 25 0.181 0.207 0.247 0.307 0.461 0.618

50 0.165 0.211 0.282 0.368 0.580 0.790

100 0.193 0.240 0.334 0.479 0.744 0.933

200 0.224 0.297 0.426 0.647 0.916 0.992

1 0.5 5 25 0.335 0.417 0.544 0.697 0.911 0.989

50 0.352 0.452 0.589 0.782 0.950 0.996

100 0.375 0.485 0.625 0.815 0.974 0.999

200 0.393 0.518 0.681 0.853 0.986 0.999

iidN (0.5, 1) 0.1 1 25 0.419 0.567 0.753 0.914 0.993 1.000

50 0.560 0.765 0.934 0.995 1.000 1.000

100 0.738 0.931 0.995 1.000 1.000 1.000

200 0.905 0.990 1.000 1.000 1.000 1.000

iidN (0.5, 1) 0.5 1 25 0.908 0.987 1.000 1.000 1.000 1.000

50 0.950 0.997 1.000 1.000 1.000 1.000

100 0.975 0.999 1.000 1.000 1.000 1.000

200 0.991 0.999 1.000 1.000 1.000 1.000
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Table 4: Power of the test in M3

σaµ α = β σ2a T\n 25 50 100 200 500 1000

0 0.3 2 25 0.799 0.932 0.993 1.000 1.000 1.000

50 0.856 0.965 0.997 1.000 1.000 1.000

100 0.880 0.972 0.999 1.000 1.000 1.000

200 0.880 0.966 0.998 1.000 1.000 1.000

0.45 0.3 2 25 0.958 0.998 1.000 1.000 1.000 1.000

50 0.991 1.000 1.000 1.000 1.000 1.000

100 0.997 1.000 1.000 1.000 1.000 1.000

200 0.999 1.000 1.000 1.000 1.000 1.000

0 0.5 2 25 0.834 0.949 0.994 1.000 1.000 1.000

50 0.829 0.936 0.987 1.000 1.000 1.000

100 0.806 0.906 0.976 0.999 1.000 1.000

200 0.763 0.867 0.949 0.992 1.000 1.000

0.45 0.5 2 25 0.990 1.000 1.000 1.000 1.000 1.000

50 0.996 1.000 1.000 1.000 1.000 1.000

100 0.997 1.000 1.000 1.000 1.000 1.000

200 0.998 1.000 1.000 1.000 1.000 1.000

Table 5: Evidence of weak σ−convergence
among personal consumption expenditure price inflation items

Factor number Whole Sample From 1979 to 1992 From 1992 to 2016

k φ̂nT tφ̂nT
(3) tφ̂nT

(6) φ̂nT tφ̂nT
(3) tφ̂nT

(6) φ̂nT tφ̂nT
(3) tφ̂nT

(6)

1 -1.243 -3.724 -3.646 -3.321 -1.644 -1.546 -1.049 -2.172 -2.498

2 -0.627 -2.950 -3.214 -0.055 -0.039 -0.037 -1.140 -2.556 -2.914

3 -0.352 -1.514 -1.481 1.585 1.351 1.267 -1.263 -2.868 -3.324

Notes: k stands for the number of the common factors; tφ̂nT (3) and tφ̂nT (6) are the t-ratios

computed with L = 3, 6 truncation lags in the long run variance estimates.
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Table 6: Trend Regressions with Various Starting Years (PCE data)

Starting Year φ̂nT tφ̂nT
(3) tφ̂nT

(4) tφ̂nT
(5) tφ̂nT

(6)

1979 -1.243 -3.724 -3.789 -3.631 -3.646

1981 -0.732 -3.107 -3.594 -3.481 -3.716

1983 -0.763 -2.861 -3.28 -3.179 -3.385

1985 -0.548 -1.919 -2.221 -2.110 -2.202

1987 -0.669 -2.128 -2.528 -2.425 -2.505

1989 -0.662 -1.820 -2.182 -2.090 -2.155

1991 -0.908 -2.173 -2.531 -2.423 -2.535

1992 -1.049 -2.172 -2.507 -2.450 -2.498

Table 7: Trend Regression Results for Ultimatum Game data with Various Starting Rounds

Starting Rounds φ̂nT × 100 tφ̂nT
(1) tφ̂nT

(3) tφ̂nT
(5) tφ̂nT

(7)

1 -0.087 -4.299 -4.698 -5.034 -5.362

2 -0.090 -4.082 -4.472 -4.769 -4.975

3 -0.085 -3.543 -3.829 -4.246 -4.526

4 -0.086 -3.285 -3.539 -3.885 -4.124

5 -0.090 -3.133 -3.258 -3.518 -3.713

6 -0.096 -2.908 -2.917 -3.105 -3.269

7 -0.050 -3.153 -3.309 -3.914 -4.402

8 -0.028 -2.231 -2.296 -2.872 -3.210

9 -0.031 -2.256 -2.325 -2.891 -3.223

10 -0.037 -2.329 -2.426 -3.042 -3.283
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