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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES
SCHOOL OF MATHEMATICAL SCIENCES

Master of Philosophy

by Nor Aliza Binti Abd Rahmin

Increasing population across all age groups has contributed to the increasing de-
mand for health care especially those that require surgeries, thus putting more
pressure on hospitals. The inability to provide adequate and e�cient treatment
as a result of resource constraints causes patients to wait longer for treatment.
Waiting for treatment due to unavailability of an operating theatre can result in
both deteriorating health and inconvenience. It is even more frustrating when the
scheduled operation is cancelled because some slots is used for emergency patients
or the scheduled operations are longer that planned. When such situation occurs,
some patients need to be rescheduled.

To resolve this problem, an operating theatre scheduling for emergency and
regular patients is considered. We consider the single operating theatre problem
across multiple days together with the multiple operating theatres problem on
a single day. The aim is to minimise the cost incurred when patients need to be
rescheduled as well as ensure minimal delay and rescheduling. We develop a model
and design an algorithm to schedule operations for patients, taking into account
their urgency. Patients’ urgency depends on their respective situation and changes
depend on several factors.

Tackling the problem of scheduling single operating theatre, we use a heuris-
tic method to provide a starting solution before applying local search and simu-
lating annealing. The schedule is updated daily to take into account variations
from planned durations and the arrival of emergency patients. The rescheduling
of patients may be necessary. We consider the priority of patients and ensure
that top priority patients be considered first in the scheduling and less important
patients can be rescheduled if necessary.

Under the local search technique, we swap every pair of patients if they
satisfy the conditions imposed. After the patients are swapped, we check the total
cost of the swap and compare it with the current cost. If the new total cost is
less than the current cost, the swap will be finalised. We then consider the next
patient until all remaining patients in the list are accounted for and we come out
with the new list of schedule.

Continuing from that, we utilise simulating annealing technique where we
calculate the di↵erence of the total cost (total new cost - total current cost), �
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between a pair of patients that we plan to swap. With this approach, as opposed
to the local search procedure, even when the di↵erence of the total cost is positive,
swapping might still take place but only with a certain probability.

Besides single operating theatre, we also consider the scheduling of multiple
operation theatres in a single day. Rather than using the algorithm technique, we
propose an integer programming model, the Zero-One Programming model and
develop an algorithm that utilises the model in scheduling multiple parallel OTs.
If a surgery runs longer that expected or an emergency patient arrived into the
system, patients can be moved between the available OTs to ensure that surgeries
can still be performed; or if the model decides it is better to reschedule therefore
the patients will be rescheduled to the next day.

In order to test the e�ciency of our models and look at the compatibility
of the models with our algorithm, data are generated with di↵erent parameters
to see if our proposed models have the ability to lower cost as well as prevent
delays and rescheduling. Moreover, we check the computational time of our algo-
rithm to ascertain whether it can provide solutions within a short amount of time.
Overall, our models show improvement in reducing cost and minimising delay and
rescheduling.
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Chapter 1

Introduction

1.1 Background

Combinatorial Optimization Problem (COP) is the most general of optimization

problems, whereby the goal is to find the best solution on a domain when the

domain is a finite number of feasible solutions. Nondeterministic polynomial hard

time problems (NP-hard problems) are the most important and interesting of these

problems. NP-hard problems refer to the class of decision problem that can be

solved in polynomial time in a nondeterministic Turing Machine.

It is very hard to predict the optimum solution in a nondeterministic ma-

chine because there are multiple possible outcomes for each data input. However,

algorithms can be designed to produce approximate optimal solutions. The usage

of algorithms to solve the COP is more e�cient and faster as discussed by Burke

and Kendall (2005), Grotschel and Lovász (1995) and Selman et al. (1992).

The application of COP are found in a variety of areas including the plan-

ning and management of operations and resources, investment planning, produc-

tion scheduling, transportation planning, communications network and health care

1



Chapter 1 Introduction 2

scheduling (see Yu (2013), Paschos (2013)). In recent years, health care system is

focused on a more e�cient health care scheduling to provide high quality services

with minimal possible costs .

Health care providers are facing more complicated challenges to produce

e�cient health care scheduling especially with the outbreak of new diseases, de-

mographic changes in the population and strict budget from the government (Hans

and Vanberkel (2012)). Research of health care problem focusing on the operat-

ing theatre (OT) scheduling problem has been widely conducted, for example by

Boldy (1976), Smith-Daniels et al. (1988), Pierskalla and Brailer (1994), Yang

et al. (2000), Litvak and Long (2000), Van Oostrum et al. (2008), Girotto et al.

(2010), Fei et al. (2010b), and Ghazalbash et al. (2012).

Surgeries performed in the operating theatre will instantly a↵ect patients’

life and well-being which makes the OT a resource with the highest demand in a

hospital. For a hospital, the OT account for more than 40% of its revenues and a

similar large part of its costs HFMA (2005). Hence the significant requirement of

equipment and labor for an OT, making it among the most expensive resources

in a hospital. An e�cient OT department thus significantly contributes to an

e�cient health care delivery system as a whole.

Determining minimum-cost sta�ng levels that provide adequate coverage

to meet emergency demand is a strategic problem (Hans and Vanberkel (2012)).

Due to costs, surgeries should not involve too much overtime as the cost of each

additional hour in the OT is greater than the cost of a regular working hour.

In general, scheduling of patients consists of two elements. The first is that

of elective patients where they are usually put into a waiting list for a period of

time before they undergo treatment. The second element is that of non-elective

patients or emergency patients that have to be treated immediately and pose a

considerable challenge because these patients arrive at random.
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Accordingly, suitable planning of operations matched with patients require-

ments of OT and surgeons will improve the e�ciency of the OT. However, real-

istically, patients arrive one by one and the treatment required by each patient

varies considerably. Moreover, scheduling decision must be made as patients ar-

rive. Some patients requires the OT more urgently that the others and this should

be reflected in the scheduling decision. We developed a way to systematically

order the way in which the patients are treated.

With the above in mind, this study focuses on online schedule problem of

emergency and regular patients, and reschedule for patients delayed at OT. We

will develop heuristics and metaheuristics algorithm to obtain solutions for this

online schedule problem.

1.2 Objectives

The objectives of this research are:

• To study the main elements of OT scheduling, namely the scheduling of

advance booking for elective patients and the order to treat these patients

according to patient’s type.

• To develop optimisation models for scheduling and rescheduling of emergency

patients and regular patients on a daily basis for single operating theatre

and for a single day for multiple operating theatres running in parallel. The

problem consists of patients arriving online into the system and testing our

data with di↵erent algorithms. The models developed will be able to schedule

emergency patients immediately and reschedule other patients by taking

into account the variations in operation duration, while minimising cost and

delay.
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• To design optimisation algorithms using Heuristic’s Technique, Local Search,

Simulated Annealing (traditional and updated) and Branch and Bound method

to improve scheduling and rescheduling process. The algorithms developed

will be e�cient to compute and able to produce good quality schedules.

• To test the models of OT scheduling using di↵erent parameters and data

types by generating multiple data sets and assessing the robustness of our

models and algorithms.

• To analyse computational test results to evaluate if our models achieve our

aims of minimising costs and reducing delay and rescheduling.

1.3 Overview of thesis

The remainder of this thesis is organised as follows. Chapter 2 provides an overview

of literature in Combinatorial Optimization Problem, health care problem focusing

on OT scheduling in hospitals. Moreover, the technicality of online scheduling and

the di↵erent methodologies for solving the problems in our research are explored.

In Chapter 3, we discuss about problem statements, introduce and examine the

di↵erent parts of the model, and review all the constraints in our problems. In

addition, our design of algorithm using heuristic, local search and simulated an-

nealing method is presented in chapter 3, together with computational experiment

and results. In Chapter 4, we consider scheduling of multiple operation theatres

in a single day. Finally, Chapter 5 contains the concluding remarks and future

works.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we will explore some of the basic ideas and review the literature

in relation to complexity theory, health care scheduling and e�cient algorithms.

First, a discussion of Combinatorial Optimization Problems (COP) and the related

theory such as NP -hard problems will be presented together with the application

of COP in health care. Next, we will delve wider into the hospital environment

and review past research that is linked to some of the health care practitioners that

use scheduling in their working environments especially nurses and physicians. We

will also explore in detail the di↵erent research in theatre scheduling problem. We

will then consider the literatures in relation to the method of solving the problems

where certain algorithms and methods will be reviewed. This literature review

will guide us to fill the gap in current research problems as well as to approach

certain well-known problems. Certain methods that have been discussed in other

problems are suitable to be extended to solve the problem of online scheduling.

Besides that, the aims and constraints of certain scheduling problems such as

5
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minimising tardiness, preventing delay and reducing costs can be used in relation

to our research in operation theatre scheduling and rescheduling.

2.2 Combinatorial Optimization Problem

Combinatorial Optimization Problem (COP) is a part of optimization problem to

find the best possible solution for the value of objective function (the function

is either minimised or maximised) while certain constraints associated with the

function are satisfied. To put it in simple terms, how do we obtain the best

solution under certain conditions.

An instance of a COP can formally be defined as a tuple (F, F, f, f 0) with

the following meaning:

F : the solution space (on which F and S are defined),

F : the feasibility predicate (or the set of solutions),

f : the objective function f: F ! R,

f
0 : the minimum.

The feasibility predicate F induces a set:

S : the set of feasible solutions: S = X 2 F : X satisfies F .

The goal is to find a feasible solution where the desired minimum of f is attained.

It is worth mentioning here that COP can be divided into two main com-

ponents. The first component is the search component (among the solution space

F, find a solution from the set S) and the second is the optimisation component

(among all solution in S, find one with the best quality). However, trivial cases

might occur from these two components. On one hand, the COP might become a
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pure search problem where it might be di�cult to find a solution at all or that all

solutions are the same in terms of quality (f is a constant function or that f 0 can

be chosen arbitrarily). The other is that the COP becomes a pure optimisation

problem where all the solution space can be feasible solutions or that it might be

di�cult to find solutions of high quality (F = S).

Under complexity theory, optimisation problems can be divided into two

classes, P and NP. P problem is the set of problems that can be solved in polyno-

mial time on a deterministic Turing machine. On the other hand, NP problem (the

NP stands for non-deterministic polynomial) is the set of problems that can be

solved in polynomial time on a non-deterministic Turing machine. An important

theoretical question in computer science (and by extension, Operations Research)

is whether P = NP. This problem is yet to be proven and it is widely believed that

P 6= NP (Neumann and Witt (2010)). It is one of the millennium problems of

The Clay Mathematics Institute which o↵ers $1 million for the solutions to these

problems (Cook (2017)).

An important subset of the NP problem is the NP-complete problem where

a problem ⇢ is said to be NP-complete if (i) ⇢ is in NP and (ii) every problem in

NP is reducible to ⇢ in polynomial time. Any problem that satisfies the second

condition is said to be NP-hard (even if the first condition is not met) (Leeuwen

(1990)). Another way to look at the second condition is that a problem is said to

be NP-hard if it is at least as hard as any other problem in NP. The NP-hardness

of a problem suggest that it is impossible to find an optimal solution without

the use of an essentially enumerative algorithm, for which computation times will

increase exponentially with problem size (Aarts and Lenstra (1997)).

As an alternative, an NP-hard problem means that it cannot be solved in

polynomial time and if a sub-problem is NP-hard, then the main problem is also
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NP-hard. However, NP-hard problems do not necessarily means they are NP-

problems. Many COP are NP-hard problems as presented by Michael and Johnson

(1979) and Ausiello (1999). COP has been applied in a wide variety of important

fields such as telecommunications, computer network, transportation, planning

and scheduling. A good first introductory reading on COP can be found in Wolsey

and Nemhauser (1999), Pardalos and Resende (2002) and Leung (2004).

In the instance where an interesting COP has been proved to be NP-hard,

there are several methods to approach and solve it. A perfect solution to the

problem is usually di�cult to find but a satisfactory solution is always beneficial.

One can argue on the tractability of the problem (di↵erent problems have di↵erent

computation time constraints) but the solution should be produced in reasonable

computational time. If given enough computational resources, we can check for

solutions in a longer time frame and it should produce at least one solution in a

sensible amount of time. However, it would be better to use these resources for

many problems rather than just one. There are many other methods to solve the

problems, the two most widely used and discussed are heuristics and approxima-

tion algorithms.

Heuristics are algorithms that produce good quality solutions (not optimal

or perfect), but su�cient enough for the intended purposes. Although heuristics

might not explore the entire search space but it is able to produce good solutions

within reasonable time. The combination of quality solution with reasonable time

makes heuristics one of the preferred method in optimisation (Mart́ı and Reinelt

(2011)). There are many heuristic methods that can be used to solve any partic-

ular problem which are very di↵erent from each other in terms of the algorithmic

approach or optimisation aim. Mart́ı and Reinelt (2011) listed several classes of

heuristics such as (1) Decomposition Methods, (2) Inductive Methods, (3) Re-

duction Methods, (4) Constructive Methods and (5) Local Search Methods. The

constructive and local search methods form the foundations of the metaheuristic
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procedures ((Aarts and Lenstra, 1997)). Constructive heuristics is the method

of generating a solution to a problem starting from zero (or empty solution) and

then extending the current solution until a complete solution is constructed. Local

search heuristics (or local improvement) starts with complete or feasible solution

of the problem and tries to improve it by local move. Each step of move will

continue moving from one solution to another with a better value until there is no

other way to improve it.

On the other hand, approximation algorithms are similar to heuristics but

they require polynomial run times and do not ensure finding an optimum solu-

tion. Under this method, we accept that finding the optimum solution to the

problem will be inaccessible, and tries to look for provable close to optimum solu-

tions. Provable solution quality and provable run-time bounds are the reasons that

make approximation algorithms mathematically robust when compared to heuris-

tics (Williamson and Shmoys (2011)). An algorithm is a factor ↵ approximation

(↵ -approximation algorithm) for a problem if and only if for every instance of the

problem it can find a solution within a factor ↵ of the optimum solution. If the

problem at hand is a minimization then ↵>1 and this definition implies that the

solution found by the algorithm is at most ↵ times the optimum solution. If the

problem is a maximization, ↵<1 and this definition guarantees that the approxi-

mate solution is at least ↵ times the optimum. Thus, a 1
2 -approximation algorithm

for a maximization problem is a polynomial-time algorithm that always returns a

solution whose value is at least half the optimal value (Williamson and Shmoys

(2011)).

Historically, COP can trace its roots in economic problems, where the main

aim is to plan and manage limited resources e�ciently (Morton and Pentico

(1993)). Since then, more technical applications that explain the economic needs

of e�cient resources planning were studied and modelled as combinatorial problem

(Yu (2013)). Some examples in relation to economic planning is the sequencing
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of machines, scheduling of production design and layout of production facilities.

Nowadays, discrete optimisation problems are thriving everywhere. They are used

in portfolio selection, investment planning, vehicle routing planning, scheduling of

trains and air planes, assignment of workers and revenue management (Yu (2013),

Paschos (2013)). The list is almost limitless. For the purpose of our research, we

will focus on the problems in health care.

In recent years, where resource management are more inter-connected, the

important problems in health care are also related to transportation (Schmid and

Doerner (2010)), building management (Bowers and Mould (2002)), personnel

management (Moz and Pato (2003), Gendreau et al. (2007)), medical equipments

(Guinet and Chaabane (2003)), facilities and related services. In addition, another

area that is studied in relation to health care is the delay problem in providing

health care especially in surgeries. Delay in surgeries not only increases costs

incurred to the hospital but also causes dissatisfaction to the patients. Motivated

by the need to e�ciently schedule elective surgeries while ensuring that the OT is

available should it be needed for emergency, this research looks into the possible

method of scheduling and tries to ascertain the best one to be implemented.

2.3 Scheduling

Given finite resources, the main aim is to ensure that all the resources are used

e�ciently and no wastage occurs. This is where scheduling and sequencing play

important roles especially in production planning. Sequencing and scheduling are

concerned with the optimal allocation of scarce resources to activities over time

(Lawler et al. (1993)).

It will never be possible to talk about scheduling without mentioning the idea

of sequencing since both are intertwined. In a more technical setting scheduling
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and sequencing involve jobs to be completed by machine in a certain order. In

technical term, scheduling is defined as assigning each operation of each job a

start time and a completion time on a time scale of machine within the precedence

relations. On the other hand, sequencing means that for each machine in the shop,

one has to establish the order in which the jobs waiting in the queue in front of

that particular machine have to be processed (Alharkan (2005)). In relation to

project management, Morton and Pentico (1993) defined scheduling as:

Scheduling is the process of organizing, choosing, and timing resource

usage to carry out all the activities necessary to produce the desired

outputs at the desired times, while satisfying a large number of time

and relationship constraints among the activities and the resources.

(Morton and Pentico (1993, p. 5))

As stated, scheduling will have the element of time involved in the decision-

making process. The aim of all schedules is to perform all the necessary tasks with

minimal time while using the least amount of resources. Some scheduling process

looks into reducing the tardiness of the tasks while minimising costs.

2.3.1 Classical Scheduling

The basic assumption in classical scheduling theory is that processing times of jobs

are constant. Herrmann (2006) stated that classical scheduling theory assumes a

static, finite set of jobs waiting to be scheduled onto a production system and little

consideration is given as to how this set may have arisen, its size, composition

or whether it is static. In terms of the process, classical models have considered

many di↵erent machine configurations from single stage, single machine to complex

job shop configurations with multiple potential routes, and parallel non-identical

machines at some or all processing stages.
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The theory of classical scheduling can be summarised as follows (Herrmann,

2006, p.304) :

The classic sequencing/scheduling problem involves a set of jobs and a

set of resources, where resources perform operations and each job re-

quires one or more operations for successful completion. Job sequences

for each resource (or equivalently, resource routes for each job) must

be determined such that some combination of objectives is optimized

and relevant constraints are satisfied. Common objectives include (i)

makespan minimization, (ii) flow time minimization, and (iii) mini-

mization of the number of tardy jobs. Example constraints include (i)

job preemption, (ii) precedence relationships, and (iii) each resource

can process at most one job at a time.

Early on, researchers tried to find the best possible rule to schedule n jobs on a

single machine when job j becomes available for processing at its release date rj

with processing time pj. Usually, these jobs will have some weight attached to it.

In essence, a job j usually has the following information associated with it (Leung

(2004)):

Processing Time (pij) - If job j requires processing on machine i, then pij rep-

resents the processing time of job j on machine i. The subscript i is omitted

if job j is only to be processed on one machine (any machine).

Release Date (rj) - The release date rj of job j is the time the job arrives at the

system, which is the earliest time at which job j can start its processing.

Due Date (duej) - The due date duej of job j represents the date the job is

expected to complete. Completion of a job after its due date is allowed, but

it will incur a cost.
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Deadline (duej) - The deadline duej of job j represents the hard deadline that

the job must respect; i.e., job j must be completed by duej.

Weight (wj) - The weight wj of job j reflects the importance of the job.

In addition, each job j will have its completion time, CTj. Extending from

that, the lateness of job j is defined as Latej = CTj � duej and the tardiness of

job j is defined as Tardij = max(Latej, 0). The unit penalty of job j is defined

as Uj = 1 if CTj > duej ; otherwise, Uj = 0.

In terms of the objective function, the function that is optimised is always

a function of the completion times of the jobs. The classical objective functions

that are usually utilised are as follows (Leung (2004)):

Makespan (CTmax) - The makespan is defined as max(CT1, ..., CTn).

Maximum Lateness (Latemax) - The maximum lateness is defined as

max(Late1, ..., Laten).

Total Weighted Completion Time (
P

wjCTj) - The total (unweighted) com-

pletion time is denoted by
P

CTj .

Total Weighted Tardiness (
P

wjTardij) - The total (unweighted) tardiness is

denoted by
P

Tardij.

Weighted Number of Tardy Jobs (
P

wjUj) - The total (unweighted) number

of tardy jobs is denoted by
P

Uj .

One of the popular methods to classify scheduling problems was introduced

by Graham et al. (1979) by using the ↵|�|� notation. The ↵ field describes the

machine environment and contains a single entry. The � field provides details of

job characteristics and scheduling constraints. It may contain multiple entries or
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no entry at all. The � field contains the objective function to optimize and it

usually contains a single entry.

For single machine scheduling, a number of e�cient algorithms have been de-

veloped to provide optimal solutions. The most notable are the work by Jackson

(1955, 1956) and Smith (1956). Jackson (1955) proposed that a well-known prob-

lem of minimizing the maximum lateness on a single machine can be solved in

O(nlog(n)) time by sorting the jobs in non-decreasing order of their due dates

due1  due2  ...  duen. This method of sequencing is called the earli-

est due date (EDD) rule or Jackson’s rule. Note that Jackson’s rule also pro-

duce the optimal schedule for the problem of minimising the maximum tardiness

Tardimax = max{0, Latemax} on a single machine.

As stated earlier, some jobs have certain weight associated with it. With

weighted jobs, the objective in the problems is to find a schedule to minimize
P

j wjCTj (average weighted completion time). The basic idea in this context is

to minimise the completion time
P

j CTj on a single machine with job j having a

processing time pj and that all jobs are available at time 0. Ordering the jobs using

the Shortest-Processing-Time (SPT) rule, where whenever a machine is free for

assignment, assigning job with the smallest processing time among all unassigned

jobs, will give an optimal schedule (Leung (2004)). With weighted jobs, the same

idea follows where the objective is to minimise
P

j wjCTj where jobs are scheduled

in non-decreasing order of the ratio pj/wj. This procedure also has a simple

optimality rule as stated by Smith (1956) (known as Smith’s rule).

As production processes evolve and become more complex over time, schedul-

ing techniques also evolve to accommodate the true nature of the processes. This

in turn creates other branches of scheduling theory and abandons the simplis-

tic nature of the classical scheduling theory as well as considers more demanding
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constraints that need to be achieved. However, the objectives of classical schedul-

ing such as minimising makespan, minimising total weighted completion time and

reducing tardiness remain the basis for many of the research.

Among the theories considered is how to schedule parallel identical machines

and parallel unrelated machines. For parallel identical machines, there are m

identical machines in parallel. Each job j requires a single operation and may be

processed on any one of the m machines. Besides that, there are the concept of

unrelated machines, where there are m machines in parallel, but each machine can

process the jobs at a di↵erent speed. Machine i can process job j at speed sij .

The time pij that job j spends on machine i is equal to pj/sij , assuming that job

j is completely processed on machine i .

In general, there are two decisions to be made in parallel-machine scheduling

problems. First is to assign jobs to the machine and second is to determine the

sequence of the jobs on each machine. Obtaining optimal solution to the problem

of scheduling parallel machine is not easy and researchers usually employ heuristic

algorithms to tackle this problem. In most heuristic algorithms, the list scheduling

method is the method of choice (Shim and Kim (2007)). Under the list scheduling

method, when a machine becomes available for processing a job, the jobs that can

be processed on the machine at the time is selected based on a certain priority

rule and scheduled on the machine. Similarly, when a job becomes available for

processing, a machine is selected according to a priority rule among those that

can process the job, and therefore the job is scheduled on the machine. Another

thing to consider in scheduling is the idea of unrelated pair of assignments - if the

completion time of jobs i and k remain unchanged when we reverse the order at

which they are scheduled, then the jobs are unrelated.

List scheduling is the most popular scheduling approach since it is simple
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and that any optimal schedule can be constructed by list scheduling with an ap-

propriately chosen list. Besides, since list scheduling requires no knowledge of

unscheduled jobs as well as of all jobs currently being processed, it is very power-

ful in online scheduling and especially so in online nonclairvoyance scheduling, in

which it remains a dominant heuristic (Leung (2004)).

2.3.2 Online Scheduling

In o↵-line scheduling, the problems are all deterministic where all information

regarding the jobs is available in advance. In this setting, the arrival of jobs and

the processing time are known and fixed. However, in real life, scheduling decisions

have to be made with incomplete or partial information.

In online scheduling, it is assumed that the arrival times of jobs are not

known in advance (jobs may arrive at any time) but once a job arrives all of the

data (i.e. processing times) are known. Usually, the main aim of the schedule is

to minimise total completion time or to minimise total tardiness or idle time, but

the aims varies from problem to problem. Online scheduling is very useful in our

research since information is reviewed at all time. There are many examples of

online scheduling in the literature such as Lu et al. (2003), Pruhs et al. (2004),

Anderson and Potts (2004), Liu et al. (2011), Potts and Strusevich (2009), Tao

et al. (2010) and Liu et al. (2011).

To put it into our scenario, we do not know which patients will arrive into

the system. Some patients are referred by doctors, and some patients arrive from

referral by the emergency department. Once a patient arrives, the time required

in the OT is known since most hospitals currently use software designed by com-

mercial surgical scheduling systems from electronic medical record vendor, where

the prediction is based upon a moving average of previous cases, based on surgeon

and procedure codes (Hosseini et al. (2015)). In some cases, the surgery is longer
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than expected, which causes the last patient to be delayed to the next day. Some

emergency patients need to be operated as soon as possible. At the end of each

day, we have new information about the patient’s priority (patient’s priority is

defined in the next chapter). Hence, our online scheduling planning procedure is

to update the existing schedule of the OT daily based on the patient’s priority.

2.3.3 Stochastic Scheduling

It is undoubtedly important that everybody involves in surgery should understand

that although we can largely predict what will happen during surgery, there will

always be some random elements present. Although surgeries may run smoothly,

undoubtedly there are times where incidents might occurs, especially if there is

any finding that might require some changes to the procedure that require extra

time.

Whenever there are one or more random features in a model, the first thing

to consider is whether it can be classified as a stochastic process. In particular,

stochastic scheduling is a problem where scarce resources must be allocated over

time to jobs with random features. In stochastic scheduling, the population of jobs

is assumed to be known, whereas the processing times of jobs are random variables.

Assignment of jobs and their processing times are modelled by specifying their

probability distributions (which are assumed to be known). The actual processing

times are known only after completion of the jobs.

In general, stochastic scheduling models can be classified into three broad cat-

egories: (i) models for scheduling a batch of stochastic jobs, (ii) multi-armed bandit

models, and (iii) models for scheduling queuing systems (Niño-Mora (2009)). Our

research is related to the third category where models in this category involves

the design of optimal service disciplines in queuing systems, where the set of jobs

to be completed, instead of being given at the start, arrives over time at random.
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In on-the-day scheduling, strictly speaking, not all jobs (patients) arrive over time

at random because the original schedule already existed. However, some patients

(emergency patients) do arrive at random. Also, sometimes there is a delay that

causes the scheduled patients to ’arrive’ again into the system. The arrival of the

emergency patients and the occurrence of delay (the time taken to complete the

surgeries) are what we consider as random.The assumptions will be expounded in

the next chapter.

Mancilla (2011) considered two problems of stochastic scheduling in OT.

The first problem is in sequencing and scheduling of surgeries in a single operating

room with the goal of minimising patient waiting time, OT idle time, and sta↵

overtime. The second problem is sequencing a single surgeon in parallel OTs.

While the surgeon is operating in one room, cleaning and set up procedures are

being done in the other. The goal is to produce a sequence and schedule that

minimise the surgeon’s idle time, OT sta↵ idle time, and sta↵ overtime in each OT.

In both problems, the approach taken is based on stochastic integer programming

and sample average approximation. In our study, we will consider the problem of

scheduling and re-scheduling patients in both single OT and multiple OTs with

the aim of minimising cost and delay.

2.4 Scheduling in Hospitals

Hospitals are an integral part of human health with the advances in medical sci-

ences. Hospitals are becoming more significant in providing services to patients in

part because of the specialisation of the di↵erent branches of hospital care. Proper

scheduling of all the components is vital in achieving their goals. Some of the pop-

ular components in scheduling problem are the scheduling of nurses, physicians,

outpatient clinics and OTs.
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2.4.1 Nurses

Currently, scheduling nurses is also related to OT and research into this area has

been published in several papers on rescheduling approach in nursing problem

(see Cheang et al. (2003) for a survey in this subject). In this area of research,

the term roster is used to define the set of all nurse schedules of the unit. For

example, Moz and Pato (2003) developed an integer multicommodity flow model

for the problem of Rerostering Nurse Schedules. They test the performance using

heuristic and integer optimizer package. The goal is to help head nurses in their

rescheduling task. They found that it is possible to obtain an optimal schedule in

reasonable computational time and that the heuristic results are also helpful when

the optimisation procedure is too time-consuming.

Focusing on the same problem, Moz and Pato (2004) extended the research

with harder constraints (such as labour contract rules and institutional require-

ment). Two new integer multicommodity flow formulations were developed where

the first aims at optimising a flow in an n-cardinality level network while the sec-

ond is the aggregation of the first. They proposed that the second formulation is

more suitable for the general cases and have better computational results. Moz and

Pato (2007) described constructive heuristics and applied several versions of ge-

netic algorithms such as random keys encoding, crossover and mutation operators,

and hybridisation to the nurse rerostering problem. Their main aim is to tackle

the problem of rebuilding nurse schedules when unexpected sta↵ absences arise.

They performed tests with real data and concluded that good quality solutions

can be achieved within the bound of the hospital.

From the nurses’ points of view, their preferences in taking days o↵ should

also be considered when rescheduling decision is made. Bard and Purnomo (2005)

solved the nurse preferences using a robust column generation procedure that

combines integer programming and heuristics. Their result made an improvement
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to the shift structure. They stated that good solutions can be obtained within a

few minutes in the majority of cases.

Yeh and Lin (2007) proposed a simulation and genetic algorithm to adjust

the nurses’ schedule at a hospital emergency department without hiring additional

sta↵ to minimise the patients’ queue time. They run a computational analysis

and make comparisons and found that appropriate adjustment to the schedule

will reduce patients’ queue time which increases the quality of patient-care and

satisfaction. This showed that a minor adjustment to the problem can greatly

increase the quality of the schedule with existing resources without the need of

additional sta↵ which suggest that even with limited resources, a better schedule

can always be achieved.

The main take from the problem of nurse scheduling is that when trying to

create a roster, the main constraints mostly lie with the rule of labour contract,

hospital administration’s rule and the preference of the nurse. Heuristics and meta-

heuristics have been researched and applied to this problem and have produced

mixed success. Other methods such as genetic algorithm and branch and bound

have also been successfully applied (Cheang et al. (2003)). We can deduce that

method like genetic algorithm is suitable to the nurse scheduling problem since

nurses have preferences that needs to be consider while producing the schedule.

In our research, we do no take into account these factors and only consider the

cost and type of patients. Our research will focus primarily on the patients.

2.4.2 Physicians

Unlike nurse rostering which has been extensively studied in the literature, max-

imizing satisfaction matters primarily in physician scheduling, as physician re-

tention is the most critical issue faced by hospital administrations (Carter and

Lapierre (2001)). In addition, while nurse schedules must adhere to collective
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union agreements, physician schedules are more flexible and driven by personal

preferences (Gunawan and Lau (2013)). There are several software packages that

are available to address this problem but the benefits from these packages are still

not fully reviewed.

Carter and Lapierre (2001) studied the problem of scheduling emergency

room physicians. They interviewed physicians in order to understand emergency

room scheduling problem. They stated that the real scheduling problem is di�cult

to assess because physicians’ working conditions are usually based on informal

mutual cooperation which is not documented. They proposed how to modify an

existing scheduling rules to develop techniques which produce better schedule and

reduce the time to create one.

Examining the same problem, Gendreau et al. (2007) proposed generic forms

of the constraints encountered and reviewed several possible solution techniques

that can be applied to the physician scheduling problems. The solutions consid-

ered are tabu search, column generation, mathematical programming and con-

straint programming. They discussed the suitability of each method depending on

the specific conditions and discussed the problems in performing computational

computations of solution techniques.

Gunawan and Lau (2013) analysed the problem of assigning master physi-

cian scheduling problem which included physician’s full range of duties such as

surgery, clinics and administration where the aim is to satisfy as many physicians’

preferences and duty requirements as possible. It involved assigning physician ac-

tivities to the appropriate time slots over a time horizon by taking into account

rostering and resource constraints together with physician preference. They pro-

posed mathematical programming models that represent di↵erent variants of this

problem. The models are tested using real cases and randomly generated prob-

lem. However, if the problem cannot be solved optimally within reasonable time
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by the exact method, heuristic algorithm (local search) is proposed which provided

computational results of local optimum.

Unlike nurse scheduling, the physician scheduling problem requires more cre-

ative solution that resulted in many heuristics approaches. This is mainly because

physician schedules are more flexible and primarily based on individual preferences

since physician retention is the most crucial issue faced by hospital administra-

tion (Carter and Lapierre (2001)). This issue of preference will not be considered

in our research since we will mostly only consider cost and patients’ type in our

scheduling constraints.

2.4.3 Outpatients

Operational Research has been exploited in health care settings since at least as

early as 1958, when it was applied to outpatient departments where waiting times

had been a frequent cause of complaints (Powell (2006)).

Some of the critical and important operational problems are in the hospi-

tal system. This system is related with patients’ expectations of the services they

received. Lorber (1975) suggested that medical personnel expect patients to be co-

operative and undemanding while they adhere to the hospital routines. If patients

do not conform to their expectation, they are labelled as ’problem patients’ and

may not be served properly. Although adequate care is given to these ’problem

patients’, the quality of service is minimum when compared to the superior care

given to the patients that followed hospital procedures without any complaints.

This situation should not occur and including these problematic patients into the

modelling as a factor is unethical. Only the patients’ type will be considered and

not their behaviour towards medical personnel. In our research, we assume all pa-

tients will be receiving equal quality of care and unpunctual or no-show patients

do not occur.
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Ho and Lau (1992) investigated the various rules for scheduling outpatients

appointments and their ability to minimise a weighted sum of medical personnel’s

and patients’ idle-time costs. They showed that idle times are a↵ected by the

probability of no-show, the coe�cient of variation of service times, and the number

of patients per clinical session. Theoretically, an appropriate scheduling rule can be

identified only if one knows the values of these parameters and the ratio between

the medical personnel’s and patients’ idle-time costs. The rules are evaluated

using simulation and the results are presented in the form of e�cient frontiers,

together with a simple procedure for identifying the best scheduling rule for given

environmental-parameter values. This suggests that if we know or can approximate

some of the factors such as service time or the number of patients per session, we

can schedule more e�ciently. Hence, we will study the service time (both expected

and actual) and the average number of patients per day in our research and try

to schedule both in one day and throughout the whole system e�ciently.

Klassen and Rohleder (1996) addressed the problem of scheduling patients

who call without knowing which type of patients may call later. The aim is to

compare various scheduling rules in order to minimise the waiting time of patients

and the idle time of the service provider. In order to reproduce the environ-

ment experienced by a typical family in an outpatient clinic, they interviewed the

receptionists at two clinics which served as basis for the parameter that were in-

corporated in the model. The purpose of the interviews was not to obtain specific

data but rather to understand what information is available to the receptionists

and try to ascertain which factors influence performance of the system. The inter-

view verified that the receptionists do have knowledge about the patients service

time characteristics which is used to di↵erentiate between patients and develop

various scheduling rules. Based on that and prior research, they developed a sim-

ulation model of dynamic medical outpatient environment. They suggested that

the best decision depends on the goals of particular clinic and the environment it
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encounters. They also stated that scheduling clients with low standard deviation

at the beginning of the session is one of the best rules. This finding suggests that

by identifying the factors that might influence scheduling decision, a more realistic

approach might be considered such as setting certain rules for the earlier patients

might be beneficial in some situation while other rules in another situation.

Cayirli and Veral (2003) reviewed the previous literature on appointment

scheduling for outpatient services and analysed appointment system which satis-

fied the objective of the system. They found that the practical e↵ect of the ap-

pointment system is very minimal and they urged that the gap between theory and

practice should be narrower in the future. For example, they suggested that future

research should develop easy-to-use heuristics that can be utilised to choose the

best appointment system for individual clinics and more empirical data should be

used to identify probability distribution that represent actual service time. They

also stated that there is a void in capturing the arrival patterns that incorporate

unpunctual patients, walk-ins, and emergencies. There is also a need to study

walk-in seasonality. In addition, they stress the need to use multiple measures

of performance to evaluate the appointment system which include “fairness” as a

factor and not only consider only cost as factor. These findings inform us that we

need to develop an easy-to-use heuristic which incorporate the probability distri-

bution of the arrival time and the service time. Most importantly, we will include

the arrival of emergencies in our model.

Huang et al. (2012) described a design of appointment system in outpatient

facilities where patient waiting time and waiting for physician idle time are con-

sidered and that it meets the scheduling policies without overbooking or double-

booking. They proposed an approach bases simulation which contains several steps

in obtaining the solution. First, data on the treatment times was collected to esti-

mate time parameters and distribution for each visit type. Then simulations were

run under any declared policy or constraints. Lastly the optimal schedule for each
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visit type was developed and then the patient arrival schedule was constructed.

They stated that the results can e↵ectively reduce patient waiting time as much

as 56% without significantly increasing physician idle time per patient and still

allow physician to see and schedule the same number of patients per clinic session.

However, one limitation for this approach is that patient no-show is not included

in the model.

In light of all these research, our research will focus on creating a system

which include patients’ type as a scheduling factor and the need to amend the

schedule to cater for the arrival of emergency patients that need immediate medical

attention. We will also measure the performance of our method based on several

criteria so that our method can address existing issues related to outpatients.

2.5 Theatre Scheduling Problem

In the previous section, we discussed some of the scheduling problems related to

the hospital environment which focussed on the hospital sta↵. Now we will discuss

the physical side of the hospital environment and go directly to the center of our

problem which is scheduling OT. Scheduling OT for elective surgery is a complex

task because many factors need to be taken into consideration such as surgeon

priorities, availability of nurses and anaesthetists and the availability of suitable

equipments. Surgeries are critical component in a hospital, not only for their

costs but also because of their direct impact on patient’s health. OT management

focuses on maximizing the number of surgical cases that can be done on a given

day and minimizing the required resources and related costs.

One of the major priorities of health care institutions are e↵ective schedul-

ing of OT while reducing their costs and maintaining high-quality services. Many
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researchers such as Cardoen et al. (2010), Augusto et al. (2010), Guinet and Chaa-

bane (2003), Jebali et al. (2006) and Dexter (2000) have carried out research in

scheduling OT to improve surgical scheduling whilst achieving the objectives of

the hospitals.

Early in the history of OT scheduling, most of the schedules are done man-

ually. This task is performed by a single clerk in small hospitals and by an in-

terdisciplinary team for large institutions. Later, in the late 1970s, optimal OT

scheduling was developed in order to eliminate the need to cancel surgery because

of insu�cient surgical beds. Ernst et al. (1977) were among the first to use com-

puter to produce OT schedule automatically. They developed a software program

that includes a particular day for sorting patient’s priority case, time and surgeon

priority and room preference before assigning procedure’s operation room. With

this method, they managed to consistently reduce discord among OT personnel.

Similar to this case, we will also consider patients’ priority case, having proven

that patients’ case has been included in the early literature which shows that it is

an important factor to consider.

The methods of advance scheduling patients and allocating scheduling on

surgical demand was reviewed by Magerlein and Martin (1978). They define ad-

vance scheduling as the process for determining which patients are to be scheduled

into a surgical suite on a particular day; allocation scheduling is the process of de-

termining the sequence of cases within an operating theatre on a particular date,

given that a slate of patients has been identified. Augusto et al. (2010) discussed in

their literature review (citing Jebali et al. (2004)) that depending on the OT type,

there are two surgery scheduling strategies, block scheduling and open schedul-

ing. The policy of block scheduling is to establish a timetable called the Master

Schedule and allocate the time slots to surgeons, group of surgeons or medical

specialities. In the open scheduling policy, patients are scheduled without any

speciality-related restriction. The authors considered the situation where patient
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recovery is allowed in operating room due to a crowded recovery room in their

open scheduling problem and developed a two-staged heuristic method to con-

struct weekly surgery schedule considering the availability of surgeons and places

in recovery room. In our research, we will consider the open scheduling policy in

the sense that patients are scheduled without any restriction on the type of the

surgery. This is because under the open scheduling system, the schedule is created

prior to the day of surgery. The schedule specifies which surgeries are assigned to

which OTs and their start time as opposed to the block-scheduling system, where

either individual or groups of surgeons are assigned blocks of OT time in a periodic

schedule (weekly or monthly). The surgeons may book cases into their assigned

blocks subject to the condition that the cases fit within the block time (Gupta

(2007)).

Dexter and Traub (2002) considered elective case scheduling where the aim

is to maximise the e�cient use of OT time by considering scheduling a new case

into the OT using two patient-scheduling rules namely Earliest Start Time and

Latest Start Time. Historical duration data is analysed to study the performance

of the rules. The di↵erence between the two rules were only a few minutes per

OT and that depending on the objective, either one should be used with some

restrictions in place. We will consider the feasibility of using any rule on the start

time or decide to stick with one particular rule.

Gerchak et al. (1996) discussed the problem of planning for elective surgery

when the capacity of OT is shared with emergency surgeries. They discussed

the problem of admitting elective surgeries when the OT is mostly used by the

emergency department. Admitting too many elective surgeries might worsen the

patient’s health, exceeding the hospital capacity and producing less productive

work. They did not consider patient’s priority in their model and their work is

extended by Min and Yih (2010b) which considered the e↵ect of patient priority

on the surgery schedule.
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Min and Yih (2010b) stated that patient priority should be considered in the

surgery schedule and that insu�cient consideration may result in an ine↵ective

schedule. They also suggested that the higher number of emergency patients

arriving and the duration of surgery also contribute to the ine�ciency of surgery

schedule. In their paper, a set of patients are selected from a waiting list at the

beginning of each period and the schedule is produced based on priority. They

made the decision of the number of patients to be scheduled based on trade-o↵

between the cost of surgery delay and the cost of overtime on that day.

Weinbroum et al. (2003) conducted an e�ciency study of OT use in a

metropolitan public hospital. They stated that the time OT not used for given

patients amounted to 5 days in a month which can be reduced. They attributed

several reasons as the cause of OT being unused such as surgeon unavailability

and inappropriate patient preparation. However, the main cause for time wastage

is the unavailability of room or sta↵ (59% of the time). Administrator will cancel

the use of OT because of insu�cient nursing or medical sta↵ or because the OT

was occupied by emergency operations. They also stated that inaccurate surgical

time prediction also contributed to ine�ciency. This suggests that we need to

consider how emergency arrival will disrupt a current schedule and the disruption

caused by inaccurate duration planning.

Bowers and Mould (2004) suggested that large uncertainty in orthopaedic

care means that much of the theatre time is not utilised. They developed simula-

tion to explore the balance between maximising the utilisation of theatre sessions,

avoiding too many overruns and ensuring a reasonable quality of care. They pro-

posed that if patients are willing to accept the possibility of their treatment being

cancelled (and also the probability of earlier treatment), greater throughputs can

be achieved. They also performed several approximations as alternatives to the

full simulation. They stated that although the results depends on assumptions

about the patient selection criteria, the sensitivity is not great and the mixing
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of elective and emergency patients appears to be robust. They suggested that

the simpler model is better to be implemented and more appropriate for practical

planning purposes. Similarly, we will focus on maximising the use of OT without

too many overtime and reducing costs of delays.

Calichman (2005) suggested that by analysing hospital’s bed use data, can-

cellations of surgeries can be minimised with a schedule that uses all available

surgical beds. The schedule is obtained by arranging surgical procedures on dif-

ferent days to minimise and balance the number of beds required each day. The

schedule obtained gained full use of the hospital’s bed and managed to prevent

up to 18 cancellations each week and increased revenue by 3%. They suggested

that the key for best possible OT schedule is to use the historical relationship that

exists between each surgical category and its length-of-stay distribution that is

hidden in the hospital data. This idea of using historical data will certainly be

a good way to assess the outcome of any method and we will be using generated

data based on real life situations to test our model.

Bhattacharyya et al. (2006) also considered the option of having specific OTs

for emergency patients only to reduce night-time cases and improve OT flow but

they only focused on the orthopaedic unit of a hospital where no elective cases

were scheduled in the unbooked trauma OT. They collected OT data time on

dynamic hip screw and closed femoral nailing (two common surgical cases) and

reviewed data on waitlist cases, surgical time, anaesthetic time, OT utilisation

and surgical compliance by retrospective analysis for two 1 year periods before

and after the unbooked trauma OT was introduced. They suggested that with

the availability of the unbooked trauma OT, the operating suite flow improved

by significantly reducing the number of hip fracture cases performed at night,

significantly reducing the number of orthopaedic waitlist cases that began after

5 PM, significantly reducing the number of elective cases which were bumped by

emergencies, and decreasing over-utilization. They also proposed that hospitals
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should establish or expand orthopaedic trauma block time. This idea of having

specific OT for use in case of emergency or unseen problems is good because when

emergency happens, any surgery can be performed immediately without the need

to disrupt existing schedule.

Wullink et al. (2007) analysed the best way to reserve OT time for emer-

gency surgery by comparing two approaches: assigning specific OT for emergency

patients and evenly reserving capacity in all elective OTs. They modelled real

situation using a discrete event simulation where the main outcome measured are

waiting time, sta↵ overtime and OT utilisation. They suggested that the second

approach, with emergency capacity allocated to all elective OTs, surpasses the

first approach on all outcome measures. They stated that the policy of allocating

OT capacity for emergency surgery to elective OTs requires the OT department

to be flexible and the OT to be equipped for all kinds of emergency surgery. This

shows that unlike Bhattacharyya et al. (2006), with emergency capacity allocated

to elective OT, better performance can be achieved and the only setback is the

need for OT department to be flexible and all OTs be equipped with the necessary

tools for all emergency surgeries.

Lamiri et al. (2008) proposed a stochastic OT planning model that specifi-

cally include both elective and emergency patients which minimises elective patient

related costs and overtime costs of OT. They assumed the operating time of all

elective cases are known and deterministic and considered the uncertainty in emer-

gency demand in their Monte Carlo optimisation method which includes Monte

Carlo simulation and Mixed Integer Programming. The computational results

suggested that the optimisation method provides solutions that converge to a real

optimal. They suggested that their planning model is useful for hospitals using a

blocked advanced scheduling system. Comparatively, we will consider approaching

the problem of emergency uncertainty by using probabilistic method to model the
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arrival of emergency but we will improvise by considering the probabilistic na-

ture of elective operating time in that actual duration might di↵er from planned

duration.

Wachtel and Dexter (2009) analysed the data from two surgical suites to

study the various factors that contributed to tardiness. The study found that

tardiness is related to the total duration of preceding cases. Tardiness per case in-

creases as the day progresses (because the total time increases) but for cases which

were scheduled 6 hours after the day starts, tardiness declines. They suggested

that tardiness is influenced by the total duration of preceding cases, expected

under-utilised time or over-utilised time at the end of the day and case duration

bias. The finding that total duration of preceding cases increases tardiness sug-

gests that total duration for the day should not be too long and that the biasness

in case duration can be prevented if the model included a realistic approach to

time.

Min and Yih (2010a) considered patient priority in scheduling elective surgery

with limited capacity. The trade-o↵s between the costs for overtime and costs of

postponement is analysed using stochastic dynamic programming model in decid-

ing the number of patients to include in the schedule. The results showed that

improvement is achieved when patient priority is considered in the schedule. By

considering patient priority, necessary surgery can be performed to those that

really need it first. Our research will primarily focus on similar idea where we

will include patient priority into our scheduling decision and compare di↵erent

methods to see which one is the best to reduce costs and rescheduling.

Since most research is focused on improving the schedule of OT, Basson et al.

(2006) conducted a study looking into surgical case cancellations. They conducted

a retrospective review of OT records to identify the causes of cancellations. They
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then conducted a stratified case control-control study of patients records to iden-

tify pre-existing factors that predict non-appearance of patients. A multivariate

analysis suggested that non-appearance can be predicted from the patient non-

compliance with clinic visits and other clinical procedures. They suggested that

non-compliant patients should be booked at the end of the OT day, when cancel-

lation e↵ects on the OT flow is minimal. Our research does not include any case

of patient’s non-appearance since any patient that requires surgery will be at the

hospital ready for the surgery and only rescheduling will occur.

Fei et al. (2010a) used open scheduling strategy to explore the possibility

of improving the e�ciency of OT. They developed a two-staged heuristic method

to construct weekly surgery schedules with an open scheduling strategy by taking

into account the availabilities of both surgeons and places in the recovery room.

First, the planning problem is solved to give the date of surgery for each patient

by a set-partitioning model solved by a column-generation-based-heuristic taking

into account the availability of OT and surgeons. Secondly, a daily scheduling

problem regarded as a two-staged hybrid low-shop model is devised to determine

the sequence of operations in each OT in each day, taking into account the avail-

ability of recovery beds. The second stage is solved by a hybrid genetic algorithm,

using a tabu search procedure as the local improvement operator. The results are

compared with several actual surgery schedules and the proposed method has less

idle time between surgical cases, higher utilisation rate and produces less overtime.

However, if there are unexpected numbers of emergency, rescheduling is nec-

essary to update the schedule (Vieira et al. (2003)). Resheduling in general has

been an area where many researches have been conducted especially in indus-

tries that are heavily related to scheduling such as airline industry (Clausen et al.

(2010)) and railway industry (Narayanaswami and Rangaraj (2011)). In the man-

ufacturing practice, Hall and Potts (2004) considered rescheduling problems where

the aim is to minimise some cost objective when some new jobs need to be inserted
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into the schedule without much disruption. They considered two classes of model.

The first is to minimise the scheduling cost of all the jobs and the second is to

minimise a total costs objective (both original cost measure and the cost of dis-

ruption). They provide either an e�cient algorithm or a proof that such algorithm

is unlikely to exist.

Erdem et al. (2012) developed a Mixed Integer Linear Programming (MILP)

for rescheduling elective patients upon the the arrival of emergency patients. Two

types of clinical units are considered which are the OTs and post-anaesthesia

care units (PACUs). The model considers the overtime cost of the clinical units,

the cost of postponing or preponing elective surgeries, and the cost of turning

down emergency patients. In certain cases when it is hard to find an optimal

solution, genetic algorithm is developed to e�ciently obtain the approximately

optimal solutions. They suggested that the two methodologies should be used

jointly to provide good and timely decisions in admitting emergency patients and

rescheduling elective patients.

All these literatures have provided many ideas for improvement for future

research. The main gap that we see is the idea of rescheduling patients when emer-

gency occurs during the day while minimising disruption on the elective schedule.

Like several of the literature, several criteria should be included in the scheduling

and rescheduling decision. Another central aspect is any method used should be

computational e�cient so that when emergency occurs, a new schedule can be

made in a short amount of time.

2.6 Methods of Solving

In this section, we will discuss some of the methods that are related to our re-

search. The principal theory of each method will be reviewed in general and where
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appropriate how the theory is used to construct our solutions will be discussed.

It should be stated clearly here the assumptions that underline our research. Our

research is based on the OT in general where non-life-threatening elective surgeries

are usually performed and not the OT in accident and emergency (A&E) where

some cases might need attention immediately. Emergencies in our research are

those that are non-fatal conditions and can be delayed.

2.6.1 Heuristics

The term heuristics stems from the Greek word heuriskein which means to find

or discover. It is used in the field of optimization to characterise a certain kind

of problem-solving methods (Mart́ı and Reinelt (2011)). When we are unable to

find a perfect solution, an approach that produces good quality solutions (but not

optimal) is sometimes used. Such method is usually called a heuristic. Heuristics

are especially suitable for problems arising in practice. The following is considered

as a prime description of heuristics.

A heuristic technique (or simply heuristic) is a method which seeks

good (i.e.near-optimal) solutions at a reasonable computation cost with-

out being able to guarantee optimality,and possibly not feasibility. Un-

fortunately, it may not even be possible to state how close to optimality

a particular heuristic solution is.

(Rayward-Smith et al. (1996, p.5))

Several heuristics methods have been proposed in the literature such as local

search, hill climbing, neighbourhood search and gready algorithm; and the theory

behind each method is explained in Burke and Kendall (2005).

Guinet and Chaabane (2003) considered a medium term horizon OT schedul-

ing problem where each patient needs particular surgical procedure which defines
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the human (surgeon) and material (equipment) resources to use as well as the in-

tervention duration. They proposed a two-step solution to this problem. First, an

OT planning is defined by assigning patients to OTs over the horizon. Next, each

loaded OT is scheduled individually in order to synchronise the various human

and material resources used. The problem is solved heuristically by proposing an

assignment model with resource capacity and time-window additive constraints.

The primal-dual heuristic integrates release and due date constraints with limited

capacity constraints which optimised OT overload and patient waiting time.

Krempels and Panchenko (2006) considered the problem of semi-automated

dialog-based system where a human planner is involved in the scheduling decision.

They proposed a heuristic technique to create proposals for the schedule. The

planner then acts as a sensor with the responsibility to identify changes as they

occur and integrate his knowledge and decision-making competence in the planning

proses. The planner will consider the interest and preference of the personnel

involved in the schedule, which will reduce non-acceptance. Introducing a human

planner in any model is aimed at making necessary changes that only a human

can execute but in our research, no human planner will be considered.

Beliën (2007) built the models with stochastic numbers of patient for each

operating room block and a stochastic length of stay for each operated patient

and developed a number of mixed integer programming based heuristics and a

metaheuristic (simulated annealing) to minimise the expected total bed shortage.

Again the themes of reasonable computational time and stochastic nature of the

factors will play an important part in our research.

Pradenas et al. (2012) considered the problem in weekly surgery scheduling

and surgeon assignment in a public hospital. Their study was divided into two

parts: first, surgeries were scheduled with support from a multi-knapsack mathe-

matical model and then surgeons were assigned using a search method based on
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chronological backtracking heuristic that possessed constraint programming prop-

erty. They argued that the heuristics was selected because backtracking heuristic

guarantees a solution or determines that there are no solutions. They showed that

the heuristic obtained a feasible solution for every assignment and on certain cases,

the algorithm had 38.90% more surgeries compared to manual procedure.

In this thesis, a ’good solution’ is one that does not cause too many patients

being delayed and minimises the costs of OT. The objective functions considered

are discussed later in the thesis. In terms of computational time, we do not impose

any limitation since our main objective is the minimisation of delays and costs.

However, if the time taken is too long, then perhaps a more e�cient method that

shows significant improvements can be developed later.

2.6.2 Metaheuristics

Metaheuristic is a general class of algorithms and techniques that are able to

provide a su�ciently good solution to an optimisation problem. The aim of using

metaheuristic techniques is to explore the search space and find a near-optimal

solution. There are many examples of metaheuristic such as local search, simulated

annealing, tabu search and genetic algorithms. Generally, metaheuristics produce

higher quality results than simple heuristics.

2.6.2.1 Local Search

Local Search is a method that explores the space of possible solutions sequen-

tially. The algorithm performs a series of moves on the initial solution to find a

local optimal solution. These moves are designed based on neighbourhood struc-

ture. In each iteration, if a better solution exists, then it is selected as a current
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solution. This procedure is continued until no better solutions can be found in the

neighbourhood of the current solution.

One of the most utilised local search method is the Variable Neighbourhood

Search. Burke and Kendall (2005) suggest the following as the basic Variable

Neighbourhood Search:

Initialisation

Select the set of neighbourhood structures Nl, for l = 1, ..., lmax, that will be used

in the descent; find an initial solution x (or apply the rules to a given x);

Repeat the following sequence until no improvement is obtained:

(1) Set l ! 1;

(2) Repeat the following steps until l = lmax:

(a) Exploration of neighbourhood.

Find the best neighbour x0 of x (x0 2 Nl(x));

(b) Move or not.

If the solution x
0 thus obtained is better than x, set x ! x

0 and l ! 1;

otherwise, set l ! l + 1;

In our research, based on the list of current patients, we swap a pair of pa-

tients based on certain conditions and then calculate the total cost of OT because

of the swapping. If the cost is below the cost of the current list, we accept the

swapping as a current solution. We iterate this procedure until we go through all

the patients list. The conditions considered and the full method is discussed in

chapter 4, section 3.6.

2.6.2.2 Simulated Annealing

The term simulated annealing (SA) originated from a process of cooling molten

metal. The procedure has been developed initially as an algorithm to simulate

the process of cooling and crystallization of materials in a heat bath, known as
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the annealing process as discussed by Metropolis et al. (1953) in thermodynam-

ics. Pirlot (1996) discussed that the idea of simulated annealing originated from

thermodynamics and metallurgy, whereby molten iron is cooled slowly enough

resulting to its tendency to solidify in a structure of a minimal energy. This an-

nealing process is the same as our local search strategy of updating the current

solution by a solution x randomly chosen in its neighbourhood if it is accepted.

Then gradually, the temperature is decreased which means that one becomes more

selective in accepting new solution.

Simulated annealing is a type of local search algorithm. Just like a local

search (descent algorithm), it starts with an initial solution mostly chosen at

random. A neighbour of this solution is then generated and the change in cost is

calculated. If there is a reduction in cost, the current solution is replaced by its

neighbour, otherwise the current solution stays. This process is repeated until no

further improvement is found in the neighbourhood of the current solution and

the algorithm terminates at a local minimum. Although a descent algorithm is

simple and quick to execute, the disadvantage of the method is that the local

minimum found may be far from any global minimum (Eglese (1990)). This can

be countered by starting the algorithm at di↵erent initial solutions and choose the

best of the local minimum found.

In simulated annealing, instead of sticking with this strategy, it avoids be-

coming trapped in a local optimum by sometimes accepting a neighbourhood move

which increases the value of f . The acceptance or rejection of an uphill move is

determined by a sequence of random numbers, but with a controlled probability.

The probability of accepting a move which causes an increase � in f is called the

acceptance function and is normally set to e
��/K , where � is the di↵erence of

total cost between a pair of patients we plan to swap (new costs - current costs),

and K is temperature.
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These choices must be made for any implementation of SA and constitute the

annealing or cooling schedule, (i) the initial value of the temperature parameter

K, (ii) a temperature function, K(t), to determine how the temperature is to be

changed, (iii) the number of iterations, N(t), to be performed at each temperature,

and (iv) a stopping criterion to terminate the algorithm.

Eglese (1990) proposed the following algorithm for the general simulated

annealing procedure.

Algorithm 2.1 Simulated Annealing Algorithm

1: Select an initial state i 2 S;

2: Select an initial temperature K > 0;

3: Set temperature change counter k = 0;

Repeat

4: Set repetition counter n = 0;

Repeat

5: Generate state j, a neighbour of i;

6: Calculate � = f(j)� f(i);

if � < 0 then i := j

else if random(0, 1) < e
��/K

then i := j;

n := n+ 1;

until n = N(k);

k := k + 1;

K := K(k);

until stopping criteria true.

2.6.2.3 Other Methods

There are also other methods widely used in solving combinatorial problems. Here

we discuss several of these methods.

1. Tabu Search

Tabu search is a method proposed by Fred Glover in 1986 in order to allow

hill climbing to overcome local optima. The main idea of tabu search is to continue
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the search whenever a local optimum is encountered by allowing non-improving

moves. A tabu list records recent history of the search, which are referred to as

tabu moves. Moving back to these previously visited solutions is forbidden under

tabu search.

Hertz et al. (1995) summarised the tabu search algorithm as follows.

Algorithm 2.2 Tabu Search Algorithm

1: Choose an initial solution i 2 S. Set i⇤ = i and k = 0.

2: Set k = k+ 1 and generate a subset V ⇤ should consist of solutions that either

satisfy the tabu conditions or at least one of the aspiration criteria hold.

3: Choose a best j in V
⇤ and set i = j.

4: If f(i) < f(i⇤) then set i⇤ = i.

5: Update tabu and aspiration conditions.

6: If a stopping condition is met then stop. Else go to Step 2.

2. Large Neighbourhood Search

Large Neighbourhood Search (LNS) is a method that uses heuristics to ex-

plore a complex neighbourhood. In LNS, an initial solution is gradually improved

by repeteadly destroying and improving the solution. LNS belongs to the class

of heuristics known as Very Large-Scale Neighbourhood Search (VLNS). Using

large neighborhoods makes it possible to find better candidate solutions in each

iteration and hence traverse a more promising search path (Pisinger and Ropke

(2010)).

In general, the larger the neighbourhood, the better is the quality of locally

optimal solutions, and the greater is the accuracy of the final solution obtained.

At the same time, the larger the neighbourhood, the longer it takes to search the

neighbourhood at each iteration (Ahuja et al. (2000)).

3. Ant Colony Optimisation
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Ant Colony Optimisation (ACO) is a metaheuristic optimization method

and a part of the Swarm Intelligence approach that search for optimal path in the

graph based on behaviour of ants seeking a path between their colony and source

of food. At the core of this behavior is the indirect communication between the

ants by means of chemical pheromone trails, which enables them to find short

paths between their nest and food sources (Blum (2005)).

The characteristic of ACO algorithms is their explicit use of elements of

previous solutions. The essential trait of ACO algorithms is the combination of

a priori information about the structure of a promising solution with a posterior

information about the structure of previously obtained good solutions (Maniezzo

et al. (2004)).

When searching for food, ants initially explore the area surrounding their

nest in a random manner and leave a chemical pheromone trail on the ground.

When choosing their way, they tend to choose paths marked by strong pheromone

concentrations. When an ant finds a food source, it evaluates the quantity and

the quality of the food and carries some of it back to the nest. During the return

trip, the quantity of pheromone that an ant leaves on the ground may depend on

the quantity and quality of the food. The pheromone trails will guide other ants

to the food source (Dorigo and Blum (2005)).

In general, the ACO approach attempts to solve an optimization problem by

iterating the following two steps (Blum (2005)):

• candidate solutions are constructed using a pheromone model, that is, a

parameterized probability distribution over the solution space;

• the candidate solutions are used to modify the pheromone values in a way

that is deemed to bias future sampling toward high-quality solutions.

4. Evolutionary Algorithms
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Evolutionary Algorithms (EA) try to solve complex problems by following

the processes of Darwinian evolution. The underlying idea in EA is that given a

population of individuals, the environmental factors cause natural selection (sur-

vival of the fittest), which causes a rise in the fitness of the population.

The theory of evolutionary algorithm can be summarised as follows (Eiben

and Smith, 2003, p.15);

Given a quality function to be maximised, we can randomly create a set

of candidate solutions, i.e., elements of the function’s domain, and ap-

ply the quality function as an abstract fitness measure - the higher the

better. Based on this fitness, some of the better candidates are chosen

to seed the next generation by applying recombination and/or muta-

tion to them. Recombination is an operator applied to two or more

selected candidates (the so-called parents) and results one or more new

candidates (the children). Mutation is applied to one candidate and

results in one new candidate. Executing recombination and mutation

leads to a set of new candidates (the o↵spring) that compete - based

on their fitness (and possibly age) - with the old ones for a place in the

next generation. This process can be iterated until a candidate with

su�cient quality (a solution) is found or a previously set computational

limit is reached.

Eiben and Smith (2003) stated that there are two fundamental forces that

form the basis of evolutionary systems:

• Variation operators (recombination and mutation) create the necessary di-

versity and thereby facilitate novelty.

• Selection acts as a force pushing quality.
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Algorithm 2.3 Evolutionary Algorithm

1: Generate an initial population P (0) and set i = 1;

2: Evaluate the fitness of each individual in P (0);

Repeat

3: Generate o↵spring from the parents using variation operators to form P (i);

4: Evaluate the fitness of each individuals in P (i);

5: Select parents from P (i) and P (i� 1) based on their fitness;

6: i = i+ 1;

until stopping criteria are satisfied.

2.6.3 Branch and Bound

Branch and bound is one of the methods of exact algorithm. It is a systematic

method for solving discrete and combinatorial optimization problems. The method

searches the complete space of solutions for a given problem looking for the best

solution and is used to find a value x that maximizes or minimizes the value of an

objective function f(x). It is able to compute a lower and an upper bound on the

optimal value over a given region. However, if the region is too big, exploring all

the possible alternatives to find the best solution might not be computationally

viable.

The rationale behind the branch and bound algorithm is to reduce

the number of alternatives that need to be considered by repeatedly par-

titioning the problem into a set of smaller sub-problems and using local

information in the form of bounds to eliminate those that can be shown

to be sub-optimal. (Burke and Kendall (2005, p.24))

The basic principle of a Branch and Bound algorithm with objective function

f(x) can be considered as follows:
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1. The solution space can be regarded as a tree where the leaves are the set of

all possible solutions.

2. Start from the root, then split the search space into smaller spaces and

optimise f(x) on these spaces. The method of splitting the spaces is called

”branching”. Branching alone can lead to the optimal solution but as stated

earlier, it might not be computationally viable.

3. To improve the method, the algorithm calculates a ”bound”, i.e. the best

solution from the sub-tree below the branch (or node). The bound is re-

calculated at every decision point of the algorithm. The best solution at

each decision point is considered as the benchmark.

4. The benchmark is then compared with the best solution at each level. If the

solution is worse than the benchmark, the whole sub-tree can be discarded.

this is known as ”pruning” the search space, i.e. eliminating the candidate

solutions that will not contain an optimal solution.

5. The pruning method usually reduces the search space by a large amount

(depending on where it occurs - the closer to the root the bigger).

6. Keep searching the remaining search space until the optimal solution is

found.

2.7 Discussion

Under the widely accepted assumption that if P 6= NP, it is impossible to have

algorithms that satisfy these three conditions of (i) finding optimal solution; (ii)

in polynomial time; (iii) for any instance. One or more of these requirements

must be relaxed in approaching an NP-hard problem. It is a tough problem that

requires careful formulation in order to be solved. As we have seen, there are many
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methods that can be used to solve these problems and each method has its own

advantages and disadvantages.

As we have seen in this chapter, the problem of scheduling in health care

management can be divided into several categories. In each category, there are

many approaches to solve the problems encountered each with a specific set of aims

and objectives. One common theme across the literature is that each problem is

unique and requires a specific solution to be resolved. There is no one optimal or

best method to tackle all the problems encountered. Health care providers need to

consider each decision that are made to ensure that the quality of services provided

are the best at the lowest possible costs while taking into account the needs and

preferences of medical personnel involved.

Many researches have been conducted in the field of scheduling in hospi-

tals especially in scheduling nurses, physicians and surgeons. Several researches

have also been carried out in scheduling walk-in patients in clinic and outpatient

department. Research predicting walk-ins, no-show, and service time has been

invaluable but research that looks into future arrival patterns and the disruption

caused by emergency arrival is also of value. Although online systems are more

common in practice but studies that consider realistic arrival patterns and future

arrivals are still needed to fully understand how the systems behaved. Our study

in particular tries to study how the system behaves when the arrival of emergency

patients disrupts current schedule.

In terms of performance measures, there are several criteria that are most

commonly used such as patient waiting time, system overtime, number of patients

seen and number of delayed patients which will also be used in our research. We

will also add another important measure which is cost since a key trade o↵ in

accepting patients is the between service provision revenue and costs that are

incurred from patient waiting time and provider overtime (Ahmadi-Javid et al.
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(2017)). Ahmadi-Javid et al. (2017) also argues that factors that should be taken

into account in scheduling patients are the demand of each patient group, priority

level, no show probability, revenue from each patient group, and preferences of

patients and physicians. For our research, we will consider priority level as one of

the defining factor in scheduling decision.

With regard to modelling approaches and solution methods, we will utilise

stochastic optimization in order to deal with the uncertainties inherent in patients

scheduling especially in predicting the random arrival of emergency patient and

the discrepancy between planning duration and actual duration of the surgeries.

Due to the inherent complexity of the problem, we will mainly use heuristics

and metaheuristics as our solution methods. The heuristic method is utilised

because it is more flexible than the exact method thus allowing the incorporation

of conditions that are di�cult to model and if used as part of a global procedure

guarantees to find the optimum solution of a problem Mart́ı and Reinelt (2011)).

In addition, metaheuristic is utilised because of its ability to guides a subordinate

heuristic by combining intelligently di↵erent concepts for exploring and exploiting

the search spaces using learning strategies to structure information in order to find

near-optimal solutions (Kelly (1996)). The methods employed will be discussed

in the relevant chapters. In order to ascertain the e↵ectiveness of our methods,

we will use random data simulation to generate relevant data and feed it to our

model.

In conclusion, our research will develop an online scheduling model in the

presence of the disruptive factor of emergency arrival while incorporating patient

priority level, random service time, random arrival of emergency, and the cost

associated with overtime usage and delays of patients. We approach this prob-

lem by employing heuristic, metaheuristic methods and specialist integer program

software. We then proceed to test our model by simulating several random data

and comparing the performance of our methods.



Chapter 3

Operating Theatre Scheduling

Problem

3.1 Background

Scheduling of OT is related to the scheduling of patients since it is based on the

expected duration of the surgeries performed. Duration of the surgeries will be

stochastic in nature when patients arrive because when we schedule the patients

into the di↵erent slots in the hospital system, the actual duration of the surgeries

usually di↵er from the planned time.

Another aspect that needs to be considered is that new patients arrive into

the system at all times, either regular patients or emergency patients. Regular

patients have a large time window since we can schedule them without the ur-

gency. On the other hand, emergency patients need to be scheduled as soon as

possible because they need immediate attention and any delay will cause patient

dissatisfaction. The scheduling of these emergency patients usually causes delay

in the system.

47
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There have been many research in relation to the delay caused by the arrival

of emergency patients. This problem is usually caused by the sharing of resources

between elective surgeries and emergency surgeries especially the OTs.

In our research, patient priority is one of the defining factor in producing the

schedule. A list of schedule (for elective surgery) already exists and the problem

here is to produce a new schedule when there is a delay and arrival of emergency

patients.

3.2 Problem Definition

We consider two types of important patient priority arriving online. Emergency

patients and regular patients arriving into the system after other patients have

been scheduled. We allocate the patients depending on their urgency priority

with operation time planned in advance but actual operation time are not known.

The planning and scheduling always reveal the time (assumed) for each patient,

but when the original schedule changes due to disruption, we need to reschedule

the patients in the system.

We allocate all patients and reschedule delay patients depending on their

cases using the heuristic method in time horizon every day. For an emergency

case, the time scheduled will be as soon as possible in the time horizon (Figure

3.1). Patients go through the operation process on a fixed day and fixed hour

depending on the planning duration.

Occasionally, actual duration for each patient is di↵erent compared to the

planning duration and emergency patients do arrive into the system. Therefore,

other patients must be reschedule at the end of the day. The decision whether to

extend the usage of OT or reschedule the last patient depends on the costs (cost of

overtime vs cost of reschedule). In order to avoid a lot of delay from occurring and
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patients being delayed several times, high penalty costs are imposed for long delays.

Hence, the model will try to schedule them as soon as possible to prevent high

overall costs. We do not impose any constraint associated with either delay time

or the number of delays. This means that patients can be delayed for several times

as long as the model deemed the costs is acceptable especially when compared to

the overtime cost. It will be highly costly if patients are delayed for too long and

cause an ine�cient scheduling of operation room. The goal are to ensure patients’

safety and optimal patient outcome, to decrease patient delays, to maximise the

e�ciency and minimise the cost of OT.

For example, in Figure 3.1, we have patients P1, ..., P5, slotted for operation

in Day 1 until the end of the time horizon for the day, Td. At the end of the day,

emergency patients and new patients arrive into the system. Before the next day,

we must prepare a new schedule with a new list of patients. Rearranging the list

will depend on the patient priority. In situation (i) of Figure 3.1, we set a duration

of Te, the slot of time for emergency patients or delayed emergency patients at

the beginning of the next day. When this happens, the slots for regular patients

will be delayed and the patients at the end of the time horizon will be delayed to

di↵erent days. Another situation that can occur is that emergency patients do not

arrive but the actual duration of the surgeries might be longer than the planned

duration because of their stochastic nature. In situation (ii) of Figure 3.1, we can

see that the actual duration for patients P1, P2 and P3 are longer than the planned

duration, hence the slots for patients P4 and P5 are no longer available hence they

need to be rescheduled.
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P1 P2 P3 P4 P5

The end of dayDay 1

Time HorizonTd

Time HorizonTd
Te

Delay

Next Day

P1 P2 P3 P4 P5

Time Horizon
P1

P2 P3
Delay 
P4,P5

Last patient

The end of day

Td

(i)

(ii)

Figure 3.1: Delay situation

Besides rescheduling the patients to di↵erent days, we can also decide to

perform the surgery with overtime usage of the OT. The decision is based on

the comparison of the overtime cost and rescheduling cost. Before that, we need

to make sure that the planning duration of the last patient will suit with the OT

overtime horizon. If the last patient planning duration is less than the OT overtime

horizon, we will calculate the overtime cost and compare it with the rescheduling

cost. If the overtime cost is less than the rescheduling cost, we continue with

overtime. The cost of each patient is di↵erent because it depends on the patient

type which we will explore later.
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3.3 The Model

A patient goes through the surgery process on a fixed day, at a fixed hour which we

plan with a daily schedule. The patient i 2 1, ..., L must be scheduled in operation

theatre during time horizon, T times units each day. We fix time horizon duration

for emergency patients every day. We have one period time and planning horizon

is D days. Decision variables are xid (constraint 6) and ydj (constraint 7).

Notation:

i: Patient

j: The index for band of time over time horizon

J : The number of planning time band after time horizon

L: The sum of patient

D: Planning Horizon Day

d: Day

Ti: The tardiness for patient i

T : Time Horizon

ti: The surgical duration for patient i

fj: Extra time allowed

Td: The sum for regularly time availability of operation room for day d in minutes

Ci: The cost for patient, i

n
a
i : Number of night patient i has spent in the hospital waiting for operation

n
h
i : Number of times patient i has been rescheduled

C
a
na
i
: The penalty for a patient spending n

a
i night in the hospital

C
h
nh
i
: The penalty for a patient being rescheduled n

h
i times

wd: Penalty day d

�i: Penalty for unit time for not treating the patient within ⌧i time units after
referred time

vj: The penalty operation theatre after Time horizon in time section j

ri: The refer time for each patient i

⌧i: Waiting time limit for patient i
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3.3.1 Objective function

The objective is to minimise the delays in treatment and overtime based on the

cost for every patient depending on their cases. We have three penalties in this

model:

1. Penalty for unit time for not treating the patient within ⌧ time after referred
time.

2. The Tardiness for each patient.

3. The Penalty for operation theatre after time horizon.

3.3.2 Constraints

We consider several constraints in our model, and the constraints are given as

follow:

1. Specify that the sum of time in OT can only accommodate a limited number

of surgical hours per day.

2. Each patient’s operation is processed only once. This means that no patients

will be processed more than once, and once it has been processed it will no

longer be considered in the model.

3. Cost for each patient incurred when the patient’s time is booked. This means

that if the patient has any costs associated with it at the booked time, it

will be included in the model.

4. The penalty of operation room is processed only once. This means that there

is no double charging of penalty.

5. The value of tardiness for each patient is positive. This means that the tar-

diness value will always be positive and no negative value will be considered.
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3.3.3 Decision Variables

The decision variable xid is the variable that shows if patient i is treated on day d

in time horizon Td. It will be 1 if it is treated on a particular day d, and 0 if the

patient has not been treated. Meanwhile, the decision variable ydj is the variable

that shows if the patient is treated on day d in time horizon section j. It will be

1 if the patient is treated on day d in time horizon section j and 0 if it has not

been treated. The variables are as follows:

1.

xid =

8
<

:
1 if surgical patient i is treated on day d

0 otherwise.

2.

ydj =

8
<

:
1 if surgical patient is treated on day d in time horizon section j

0 otherwise.

3.3.4 Mathematical model of the problem(O↵-line)

We begin by considering an o✏ine model where full knowledge of the data is

known.

minimize(P ) =
LX

i=1

�iTi +
DX

d=1

JX

j=1

vjydj (3.1)

subject to:

LX

i=1

tixid  Td +
JX

j=1

fjydj, 8d = 1, 2, . . . , D (3.2)

DX

d=1

xid = 1 8i = 1, 2, . . . , L (3.3)
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Ti �
DX

d=1

dxid � ri � ⌧i, 8i = 1, 2, . . . , L (3.4)

JX

j=1

ydj  1, 8d = 1, 2, . . . , D (3.5)

xid 2 {0, 1}, 8i = 1, 2, . . . , L, 8d = 1, 2, . . . , D (3.6)

ydj 2 {0, 1}, 8d = 1, 2, . . . , D, 8j = 1, 2, . . . , J (3.7)

The focus is to schedule the patients into the system using the heuristic technique

for initial solution. The algorithm is designed to consider patient priority and to

achieve the aim of minimum cost. However, the cost for each patient is calculated

di↵erently. Its function depends on the types of patients and types of delay.

3.3.5 Types of Patient

We have five types of patients in this problem. Each type carries with it a di↵erent

type of priority and costs. The order of priority is in decreasing order. As shown

in the priority list below, patients with the highest priority are delayed emergency

patients. This means that the model will always consider to schedule the delayed

emergency patients first, followed by emergency patients. New patients has the

lowest priority but once it is included in the system, the priority will change to

number 4.

1. Delayed Emergency Patients

2. Emergency Patients

3. Patients Delayed at Hospital

4. Regular Patients Booked and Rebooked

5. New Patients
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3.3.6 Cost Patient (On-line)

If all data are known and that the patients list does not change, we do not need

to update our model. However, emergency patients arrive online in the sense that

once they arrive, they will be included into the system. At the end of the day,

these emergency patients need to be scheduled into the OT slots. This will cause

the type of patients to change. Since the rescheduling of patients depends on

patients’ priority, it is important to include this in our model.

We augment Ti and define the cost for each patient as:

Ci =
h
�i max {(Ti � ri � ⌧i) , 0}+ C

a
na
i
+ C

h
nh
i

i
(3.8)

where �i is penalty for unit time for not treating the patient within ⌧i time units

after being referred. The notation ⌧i is the waiting time limit for every patient

after they are referred into the system. It is more general to allow patient i a

waiting time of up to time ⌧i without incurring a penalty, than to give the same

unpenalised waiting time to each patient. Therefore, the hospital can assign a

value of ⌧i depending on the type of treatment that patient i needs. Ti is the day

on which patient is treated and ri is referred time for each patient. If Ti is bigger

than ri + ⌧i, then we have linear penalty, �i. Otherwise, linear penalty is 0.

We have the penalty for patient delay at home, Ch
nh
i
which depends on delay’s

number, n
h
i and the penalty for patient delay at hospital, C

a
na
i
which depends

on delay’s number, na
i . For �i (Ti � ri � ⌧i) and C

h
nh
i
are just for non emergency

patients because the cost for emergency patients is zero and the patients go straight

into the hospital the soonest possible to get treatment. They cannot be delayed

at home and any delay will be delayed at the hospital.
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Every day, OT has time horizon less or equal to M minutes. We set di↵erent

rules depending on the case before the end of the day. We fix N minutes in time

horizon for the emergency case every day, and the priority is higher than the other

patients. The time N is less than M , N < M . We schedule the emergency case

as soon as possible to the next day (see Figure 3.1).

Sometimes, planning duration for a patient is di↵erent from the actual du-

ration. It might take a longer time. If the sum of duration time is greater than

M minutes, the overtime usage of OT will get the penalty depending on the slot

time after time horizon.

At the end of the day, if the balance time horizon is less than fifty per-

cent compared to the planned duration time for the next patients, we can decide

whether to continue with the surgery or reschedule to another day. If the patient

is already delayed at the hospital, we consider performing the surgery but we will

get the penalty and the cost for penalty using the OT. This will be compared

with the penalty if we delay at the hospital again. Therefore, decisions will be

made based on minimum penalty incurred. If the penalty of another delay at the

hospital is smaller, other patients must be rescheduled at the end of that day.

3.3.6.1 Overtime Costs

Notation

Ad: The sum of time of OT for day d

t
p
i : The surgical planning time duration of patient i

d: The day on which patient i is treated

cj: The slot time with the index j after time horizon greater than T

wd0 : The planning penalty for time horizon greater than T

vj: The penalty operation theatre after time horizon greater than T
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The planning penalty for time horizon greater than T :

w
0

d =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

v1 T < Ad + t
p
i  c1

v2 c1 < Ad + t
p
i  c2

v3 c2 < Ad + t
p
i  c3

v4 c3 < Ad + t
p
i  c4

v5 c4 < Ad + t
p
i  c5

v6 Ad + t
p
i > c5

The cost for overtime usage of OT, C:

C =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

0 Ad  T

v1 T < Ad  c1

v2 c1 < Ad  c2

v3 c2 < Ad  c3

v4 c3 < Ad  c4

v5 c4 < Ad  c5

v6 Ad > c5

The planning penalty for time horizon greater than T , w
0
d is the penalty in

the planning stage when it is decided that the surgery will be performed during

overtime usage of OT. However, since the surgery might be shorter or longer than

planned, the cost for overtime usage of OT, C is the actual cost calculated after

the surgery has finished. That is why the two variables show the same value. One

is calculated using the planning duration while the other is calculated using the

actual duration.
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We need to check the cost for patients and their penalty if they are delayed

again at the hospital. We also need to check the costs of overtime usage of the

OT. After both costs have been obtained, we compare and decide whether to treat

or reschedule the patients. For example, if the penalty for delay is v1 and the

cost of overtime is v2, then we decide to let the patient be delayed at the hospital

and reschedule the patient again. However, if the opposite occurs, the penalty for

delay is v2 and the cost of overtime is v1, then we decide to perform the surgery

with the overtime. Too much extra time will increase the costs as shown in Figure

3.2.

Td + f1 Td Td + f2 Td + f3 Td + f4 ……. 

COST 

…………… 

Duration of the slot  j  on day  d 

Figure 3.2: Duration after time horizon

3.4 Example of Heuristic Technique

As stated in the previous chapter, a heuristic technique (or simply heuristic) is a

method which seeks good solutions at a reasonable computation cost. We used
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heuristic as a first step in our research because a solution can be obtained with

reasonable computational e↵ort. In addition, the solution should be near optimal

(with high probability) and the likelihood for obtaining a bad solution (far from

optimal) should be low (Mart́ı and Reinelt (2011)). In this section we discuss the

heuristic used in our research.

We generate a simple data for 3 days with 23 total number of patients. The

waiting time limit for patient after they are referred into the system, ⌧i is 5 and

penalty for unit time for not treating the patient within the reasonable time is 15.

We set time horizon at 6 days in the system.

Again, the focus is on OT Scheduling Problem for emergency patient and

regular patient. Patients arrive online and we do not know exactly what type of

patients will arrive in the system. Every day, we schedule patient in the empty

slot in OT time horizon based on the current information available. The schedule

is updated daily to take into account the variations from planned durations and

then arrival of emergency patient.

A high number of emergency patient arriving into the system and operation

times longer than expected can make other patients being delayed at the hospital

or delay at home. At the end of each day, the system comes out with list of

schedule and rescheduled patients depending on their urgency.

Table 3.1 shows the list of patient when we generate planning duration which

has uniform distribution Tp ⇠ [30, 130] and the actual duration is the total of Tp

and Tdev, Tdev ⇠ [�20, 40], with an average of 4.5 regular patients of 1.5 emergency

patients every day arriving into the system. However, the type of patient depends

on how urgent the patient is. The number of type’s patient are 4 for regular

patient already in the system, 2 for new emergency patient and 5 for new regular

patient.
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Table 3.1: Simple Data for 3 days

Patient Refer Date Planning Duration Actual Duration Type of patient
1 -5 106 110 4
2 -5 89 47 4
3 -4 72 74 4
4 -4 113 103 4
5 -4 109 92 4
6 -3 106 106 4
7 -2 104 119 4
8 -2 112 53 4
9 -1 73 81 4
10 -1 106 125 4
11 1 41 66 2
12 1 110 123 5
13 1 76 104 5
14 1 46 68 5
15 1 95 85 5
16 2 113 110 5
17 2 78 63 5
18 2 64 60 5
19 3 67 59 2
20 3 89 84 2
21 3 69 65 2
22 3 46 67 2
23 3 40 11 5

Tables 3.2 and 3.3 shows the list of scheduled and rescheduled patients in the

system. The system has a list of initial solution with previously referred patients.

We schedule the patients using First Fit Bin Packing Strategy in the OT slots.

This means that the algorithm attempts to place the patients in the OT with the

first day that can accommodate the patient. If no day is found, it schedule on

a new day and puts the patients within the new day. Each day, we apply Daily

Scheduling Algorithm to treat the patient on that day, and calculate the costs for

each patient and calculate the number of delays if it has happened.

If it seems overtime will be needed, we compare the cost of overtime using OT

with the cost for patient and their penalty for delay at hospital to decide whether

to treat or reschedule this patient. Lastly, we introduce new emergency patients
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Table 3.2: List of Initial Schedule

Day Patient Planning Duration Refer Date Priority Type of patient
1 4 113 -4 4 4
1 8 112 -2 4 4
1 5 109 -4 4 4
2 1 106 -5 4 4
2 6 106 -3 4 4
2 10 106 -1 4 4
3 7 104 -2 4 4
3 2 89 -5 4 4
3 9 73 -1 4 4
3 3 72 -4 4 4
0 11 41 1 0 2
0 12 110 1 0 5
0 13 76 1 0 5
0 14 46 1 0 5
0 15 95 1 0 5
0 16 113 2 0 5
0 17 78 2 0 5
0 18 64 2 0 5
0 19 67 3 0 2
0 20 89 3 0 2
0 21 69 3 0 2
0 22 46 3 0 2
0 23 40 3 0 5

and new regular patients into the system at the end of this day and schedule into

the system using heuristic technique into the system.

We schedule or reschedule patient depending on the patient priority. The

priority value is the value used to represent the type of patients as stated in

section 3.3.5. This means that the model will always consider to schedule the

delayed emergency patients first and is follow by emergency patients. The priority

list for important patient such as delayed emergency and emergency patient are

1 and 2. We try to avoid moving those already booked on that day such as those

delayed several times at the hospital (type 3) and patients delayed several times

at home (type 4).

Lastly we have new patients (type 5). In this example, we fix the empty
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Table 3.3: List of patient in the system using heuristic technique

Day Patient Refer
Date

Type
of Pa-
tient

Planning
Dura-
tion

Actual
Dura-
tion

Delay
at Hos-
pital

Delay
at
Home

Cost

1 4 -4 4 113 103 0 0 0
1 8 -2 4 112 53 0 0 0
1 5 -4 4 109 92 0 0 0
2 11 1 2 41 66 0 0 0
2 1 -5 4 106 110 0 0 30
2 6 -3 4 106 106 0 0 0
2 10 -1 4 106 125 0 0 0
3 7 -2 4 104 119 0 0 0
3 2 -5 4 89 47 0 0 45
3 9 -1 4 73 81 0 0 0
3 3 -4 4 72 74 0 0 30
4 22 3 2 46 67 0 0 0
4 19 3 2 67 59 0 0 0
4 20 3 2 89 84 0 0 0
4 21 3 2 69 65 0 0 0
4 15 1 4 95 85 0 0 0
4 12 1 4 110 123 0 0 0
5 18 2 4 64 60 0 0 0
5 13 1 4 76 104 0 1 10
5 14 1 4 46 68 0 1 10
5 16 2 4 113 110 0 0 0
5 17 2 4 78 63 0 0 0
6 23 3 4 40 11 0 0 0

time slot for emergency patient in one day at 120 minutes and schedule emergency

patient to the next day or the worse is two days after they come to the hospital. 120

minutes is chosen because since we expect 1.5 emergency patients to arrive, and the

mean of the planning duration that follows a uniform distribution U ⇠ [30, 130] is

80, hence the amount allocated is 1.5⇥ 80 = 120. Moreover, Wullink et al. (2007)

showed that the policy of reserving capacity for emergency surgery in all elective

OTs led to an improvement in waiting times for emergency.

In this example, Table 3.3 shows patient 13 and 14 are delayed at home and

their cost are 10 for each. On day 4, all the emergency patients (patient 19, 20,

21, and 22) come to the hospital on day 3, we schedule into the system on the
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next day and reschedule regular patients treatment on day 4, 5 and 6.

The result achieved with our objective function is related with cost of OT,

cost when emergency patients are delayed at hospital, cost when patients are

delayed at hospital, cost when patients are delayed at home and cost when patients

are not treated within the reasonable time after they come to the system are

presented in Table 3.4.

Table 3.4: Cost of Operation in System OT

Total patient 23
Total cost 175
Cost of OT 50

Cost delay of emergency patient 0
Cost delay at hospital 0
Cost delay at home 20

3.4.1 Example of Manual Calculation

We will show some example in calculating the cost patient that is shown in Table

3.3. With reference to Equation 3.8, we set �i = 15 and ⌧i = 5 for all patients i.

Regular Patient :

(i) Patient 4:

C4 = 15⇥ max {(1� (�4)� 5) , 0}

= 15⇥ max {0, 0}

= 0

(3.9)

(ii) Patient 1:
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C1 = 15⇥ max {(2� (�5)� 5) , 0}

= 15⇥ max {2, 0}

= 15⇥ 2 = 30

(3.10)

Patient delayed at home :

(i) Patient 13: we set Ch
n1
13
= 10

C13 = [15⇥ max {(5� (1)� 5) , 0}] + 10

= [15⇥ max {�1, 0}] + 10

= [15⇥ 0] + 10 = 10

(3.11)

3.5 Online Procedure

The aim of Online Schedule Planning Procedure is to update the existing schedule

every day. We have an initial solution to start our heuristic technique. Each day,

a new schedule is created based on current information. The schedule is updated

daily to take into account the variations from planned durations and the arrival

of emergency patients. We allocate the patients depending on their urgency using

a heuristic method.

Algorithm 3.1 Online Procedure

1: Apply algorithm 3.2 to get initial schedule of patients

2: Initialize by setting the day counter as d = 1

3: Apply algorithm 3.3 to treat the patient on day d

4: Apply algorithm 3.4 to reschedule patient delay, schedule emergency and new

patient

5: Termination Test: If d < Planning Horizon Day, D, set d = d+ 1 and go to 3
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Under the online procedure in algorithm 3.1, we initialise the system with

previously referred patients. Algorithm 3.1 is the main algorithm because it in-

corporates several elements. Firstly, we need to get an initial solution based on

the current patient list and this is shown in algorithm 3.2.

When we have an initial solution, we then proceed to the second step of

algorithm 3.2 where we set the day = 1, the first day of our new schedule. Then

we go to step three and apply algorithm 3.3 to schedule the patient on day d

and then proceed to algorithm 3.4 to reschedule the patients with the arrival of

emergency patients, new patients and any patients that have been delayed. Step

five is basically a termination procedure where the algorithm will loop itself to

step three (with d = d+1) as long as the Planning Horizon Day, D is not reached.

Before we present the algorithm for the next step, this is the strategy to

create the list of patients in initial solution. For easy reference in each of the

algorithm, we define the following notations :

Notation:

S1: Delayed Emergency Patients

S2: Emergency Patients

S3: Patients Delayed at Hospital

S4: Regular Patients Booked and Rebooked

S5: Regular Patients

Ad: The sum of time of OT for day d

t
p
i : The surgical planning time duration of patient i

ti: The surgical duration of patient i

j: The index for band of time time horizon

d: The day d, the patient i is treated
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d
⇤: The following days of planning after the current day

cj: The slot time with the index j after time horizon greater than T

bi: The day patient i goes to hospital

ri: The refer time for each patient

n
a
i : Number of night patient i has spent in the hospital waiting for operation

n
h
i : Number of times patient i has been rescheduled

Ti: The day on which patient i is treated

C: Cost for overtime usage of OT

D: Planning horizon day

T
e: Fix time for emergency case in horizon day everyday

3.5.1 Algorithm Initial Scheduling

Algorithm 3.2 Initial Solution

1: Consider S5 by referring the data order. Only S5 are considered since this is

an initial schedule and the patients are referred to their referral date.

2: Schedule S5 to the available time slots using First Fit Bin Packing Strategy.

We schedule patients, S5 into the OT with patient that has the longest planned

duration first and followed by other S5 in descending order. We schedule until

all slots are filled in time horizon every day. If the slots are full on that day,

we schedule on the next day until all S5 are scheduled into the system.

3: We set number of delayed at home, nh
i and delayed when admitted to hospital,

n
a
i to zero

Under algorithm 3.2 we need to consider all the regular patients in the sys-

tem. We then schedule these patients using the First Fit Bin Packing Strategy.

In general, our problem is similar to the Dual Bin Packing Problem since we are

given a fixed number of OT with a fixed available usage time. Boyar and Favrholdt

(2003) stated that for Dual Bin Packing Problem, First Fit is better than Best
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Fit, which is better than Worst Fit. In scheduling the regular patients, we use

the strategy commonly known as longest serving time first where patients with

the longest planned duration will be scheduled first during the day to minimise

the possibility of overtime. When all the slots in the time horizon has been filled,

the remaining patients will be scheduled on the next day. Since this is an initial

solution, we set the number of patients delayed at home and at hospital at zero.

3.5.2 Algorithm Daily Schedule

In this Daily Schedule algorithm, we evaluate at day d. We treat patients in the

system in time horizon at day d for patients S1,or S2 or S3 or S4. Therefore, at

the end of day d, we will plan S1 and S3 to join the system and new patients, S5

and new emergency patients, S2 will be introduced into the system and they will

be schedules with reschedule algorithm. We also calculate the cost of a patient

in the system and how many times a patient is delayed if it happens. However,

for some cases the operation times is longer than expected and will need overtime

usage of OT. If this happen, we calculate the sum of time of OT for the day

including half of the planned time for the last patient of the day. If it is less than

the time horizon, we check the cost for patients and their penalty for delay at

hospital. Comparison will then be made with the cost of overtime usage of OT to

decide whether to treat at that day or to reschedule the patient to another day.
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Algorithm 3.3 Daily Schedule

1: Form a list L of patients that contains S1 in order from the longest to shortest

duration and gradually S2, S3 and S4 with Ti = d also ordered according to

arrival time and ⌧ , then longest to shortest duration

Set Ad = 0

2: Choose the next patient, i in list L. If there is no next patient in L, go to 7

3: If Ad + t
p
i  T , Ad = Ad + ti

If i 2 S1 or i 2 S2 or i 2 S3, na
i = d� bi

Calculate Ci =
h
�i max {(Ti � ri � ⌧) , 0}+ C

a
na
i
+ C

h
nh
i

i

Remove i from system and go to 2

4: If Ad + t
p
i /2  T , Ad = Ad + ti

If i 2 S1 or i 2 S2 or i 2 S3, na
i = d� bi

Calculate Ci =
h
�i max {(Ti � ri � ⌧) , 0}+ C

a
na
i
+ C

h
nh
i

i

Remove i from system and go to 2

5: If na
i � 1

If w
0
d � wd  C

a
na
i+1

� C
a
na
i

Ad = Ad + ti

If i 2 S1 or i 2 S2 or i 2 S3, na
i = d� bi

Calculate Ci =
h
�i max {(Ti � ri � ⌧) , 0}+ C

a
na
i
+ C

h
nh
i

i

Remove i from system and go to 2

else n
a
i = n

a
i + 1

If i 2 S2 then set S1 = S1 [ {i}, set Ti = 0, S2 = S2 \ {i} and go to 2

If i 2 S4 then set Ti = 0, S3 = S3 [ {i}, S4 = S4 \ {i}, if bi = 0

set bi = d and go to 2

6: else n
a
i = n

a
i + 1

If i 2 S2 then set S1 = S1 [ {i}, set Ti = 0, S2 = S2 \ {i} and go to 2

If i 2 S4 then set Ti = 0, S3 = S3 [ {i}, S4 = S4 \ {i}, if bi = 0 set bi = d

and go to 2

else go to 2

7: Calculate C, Cost for overtime using OT

8: For each new regular patient and is not an emergency patient,i, set S5 =

S5 [ {i},
ri = d and Ti = 0

For each new emergency patient,i set S2 = S2 [ {i}, ri = d + 1, Ti = 0 and

bi = d+ 1

Set nh
i = n

a
i = 0

9: Stop
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3.5.3 Algorithm Rescheduling

From the Daily Schedule algorithm, we will have patients leaving the system but

there will be patients that are delayed such as delayed emergency patients and

delayed at the hospital, patients S1 and S3. Furthermore, emergency patients

(S2) and new patients (S5) will also be introduced into the system. We schedule

new S2 and new S5 that we plan at day d+ 1. If delay occurs, we reschedule S1

and S3 into the system.

We design algorithm, with the aim to minimise the cost of a patient de-

pending on the priority of the patient . The idea of to prioritise is so that more

important patients such as delayed emergency and emergency patients can be

treated at the beginning of the day. Therefore, higher priority will be given to

patients delayed many times at home or hospitals, compared to the first-time de-

layed patients. So less important patients can rescheduled into next day. After

rearranging the schedules, other patients in the system that we plan at day d+ 1

might be delayed (S1 or S4). We will avoid moving patients that are already

booked and patients that have been delayed many time at the hospital. We cal-

culate how many times patients are delayed if it happens and calculate the total

cost for the system. Again, we use the first bin packing method in this algorithm.

The rescheduling algorithm is e�cient in the sense that it will schedule the

patients that need treatment most first and try to avoid moving those already

booked because it will cause more delays which will increase the cost. Since it

takes into account the urgency that is attached with patient priority, it will elimi-

nate the possibility that urgent patients do not receive the appropriate treatment

immediately.



Chapter 3 Operating Theatre Scheduling Problem 70

Algorithm 3.4 Reschedule

1: Set a day, d = d
⇤

2: Form again a list L of patient that contains S1 ordered depends on n
a
i then

by waiting time,

S2 is ordered how long by waiting time,

S3 with Ti = 0 ordered depends on n
a
i then by arrival time and ⌧ from the

refer time,

S4 with Ti = d ordered by longest to shortest duration

and S4 with Ti = 0 ordered depends on n
h
i then longest and shortest duration

and

S5, Ti = 0 also ordered according by arrival time and ⌧ , then longest to

shortest duration

Set Ap
d = 0

3: If L fully searched goto 7

else choose next patient i in list L

4: If i 2 S1 or i 2 S2, or d = d
⇤

If Ap
d + t

p
i  T , Ap

d = A
p
d + t

p
i , set Ti = d remove i from L and goto 5

else goto 6

else If Ap
d + t

p
i  T � T

e, Ap
d = A

p
d + t

p
i , set Ti = d remove i from L

and goto 5

else goto 6

5: If i 2 S5 then set S4 = S4 [ {i}, S5 = S5 \ {i}, End If

goto 3

6: If i 2 S4, with Ti = d, then set Ti = 0, nh
i = n

h
i + 1, End If

goto 3

7: If d < D, set d = d+ 1 and go to 2

At the end of horizon, treat all remain patients on day D + 1

8: Stop

3.6 Local Search Method

Local search method approach to hard combinatorial optimization problem is dis-

cussed by Burke and Kendall (2005). The basic idea of the local search method

is to consider the neighbour of the current solution and try to locate a better

solution. If we are able to locate a better solution, we then explore the neighbour
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of this particular solution. We iterate this procedure until no better solution can

be located and hence the current solution is accepted as the best solution.

One of the important issues when implementing a local search procedure is

how to pick initial solution as well as how to define neighbourhood and to select

neighbour of a given solution. This is particularly important because we might

get an optimal solution but only a local optima and not a global optima. A

local optima is a solution that is optimal within a neighbouring set of candidate

solutions. On the other hand, a global optima is the optimal solution among all

possible solutions. Crama et al. (1995) suggested that in many cases, finding an

initial solution is not di�cult but the choice of this starting solution may greatly

a↵ect the quality of the final outcome.

Some notations to be used in our local search method are defined below.

Notation:

C: Cost for overtime using Operation Theatre

di: The current day book

d
0
i : The day booked that patient’s knows(new and emergency patient are zero)

Tj: The current day for consider to treat it

bi: Patient come to the hospital

n
h
i : Number of times patient i has been rescheduled

n
h 0
i : The total number of times patient i has been rescheduled and the patient

knows their day’s booked

ri: The refer time for each patient

�i: Penalty for unit time for not treating the patient within ⌧ time units after

referred
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3.6.1 Cost For Local Search

We define a cost formula for the local search algorithm. The new cost for penalty

delay at home is di↵erent compared to the cost of the patient in the model at

section 3.3.6. The new cost now depends on �i, the variable that represents the

rescheduling decision of the patient. The variable is defined as follows:

C = �i max {(Tj � ri � ⌧, 0)}+ C
a
Tj�bi + C

h
nh
i +�i

C
h
nh
i
, n

h
i = n

h0

i + �i,

�i =

8
>>>>>><

>>>>>>:

0 d
0
i = 0

1 d
0
i 6= 0 & Tj 6= d

0
i

0 otherwise

C
a
Tj�bi =

8
>><

>>:

C
a
Tj�bi

Tj � bi > 0

0 otherwise

From the cost equation C above, we can see that the penalty cost for delayed

at home depends on �i where it is equal to one when the patients knows when

they are scheduled. However, when we apply the local search algorithm, the new

scheduled day is not the same as the day known to the patients. This means

that the patients will be delayed again and hence the number of times patient

i has been rescheduled will increase by 1. Once a patient enters the system, a

day is assigned where the surgery of the patient will be performed. If the day

is informed to the patient then the patient is considered to “know” their surgery

date. If the date changes to a later date, then the patient is considered to have

been rescheduled since they now have to wait longer. Every time a date changes, a

cost is incurred. If the date changes several times, more cost is incurred. However,

if the patient is not informed about the date, then any changes to the date will
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not a↵ect rescheduling cost. If the patients do not know when they are scheduled,

any changes in the schedule will not cause any delay.

Another factor that has changed is the penalty cost for patients that has

been delayed at the hospital. When we apply the local search algorithm, some

patients might be scheduled earlier hence no delay will occur and the cost is zero.

If the new schedule date is later than the day the patients arrive at the hospital,

then delay will occur and hence the delay cost will be incurred depending on how

long the patients is delayed.

3.6.2 Algorithm Local Search

Under the Local Search algorithm, we start with the heuristic technique as an

initial solution but we modify the reschedule algorithm (3.4) with an extra step

where we apply the local search algorithm after step 7. Following the previous

algorithms, at the end of each day, we schedule new patients into the system and

reschedule patients delay at hospital and home if any delay happens, where we use

heuristic technique as an initial solution.

Now, under the local search algorithm (3.5), we begin by swapping every pair

of patients if they satisfied the condition that we imposed. For example, we do

not swap patients on the same day. Any emergency patients can only be swapped

into the next day. Before we swap the patients, we need to check the sum of time

on the duration day. If emergency patients are swapped into the new day, the sum

of duration time must be less than or equal to T . If regular patients are swapped,

the sum of duration time must be less than or equal to T � T
e. If this condition

is satisfied, the pair of patients will be swapped.

After the patients are swapped, we check the total cost of the swap and

compare it with the current cost. If the new total cost is less than the current
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cost, the swap will be finalised. We then consider the next patient (going through

the same procedures) until all the balance patients in the list have been considered

and we come out with the new list of schedule for the next day.

Notation:

A
p
d⇡(i)

: The sum of planning time booked of operation room for day d⇡(i)

T : time horizon

Ti: The operation time for a patient i

Te: Fix time for emergency case in horizon day everyday

I: The total number of patient’s in order list

INPUT:

d
⇤: The following days of planning after the current day

d⇡(i): The day on which patient ⇡(i) is treated

t
p
⇡(i): The surgical planning time duration of patient ⇡(i)

b⇡(i): The day patient ⇡(i) goes to hospital

⇡(i): Patient that correspond to position i

i: Position of patient i in the list

i
⇤: Position of patient i after swap

j: Position of patient j in the list

j
⇤: Position of patient j after swap
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Algorithm 3.5 Local Search

0: Set i⇤ = I � 1 and j
⇤ = I

1: Set i = 1 and j = 2

2: If d⇡(i) = d
⇤

a) For emergency patients:

while d⇡(j) = d⇡(i), set j = j + 1

if j > I, go to 5

if(Ap
d⇡(i)

� t
p
⇡(i) + t

p
⇡(j)  T ) and (Ap

d⇡(j)
� t

p
⇡(j) + t

p
⇡(i)  T � T

e), go to 4

else go to 5

b) For regular patients:

while d⇡(j) = d⇡(i), set j = j + 1

if j > I, go to 5

if(Ap
d⇡(i)

� t
p
⇡(i) + t

p
⇡(j)  T � T

e) and (Ap
d⇡(j)

� t
p
⇡(j) + t

p
⇡(i)  T � T

e),

go to 4

else go to 5

3: Calculate TotalNewCost(i+ j) for Ti + Tj

if TotalNewCost(i+ j)�TotalCurrentCost(i+ j), go to 5

else TotalCurrentCost(i+ j) = TotalNewCost(i+ j)

Dummy = ⇡(i)

⇡(i) = ⇡(j)

⇡(j) = Dummy

set i⇤ = i and j
⇤ = j

end if

set j = j + 1

if j  I, go to 2

else set i = i+ 1 and j = i+ 1

if i < I, go to 2

else go to 1

4: Set j = j + 1

if i⇤ = i and j
⇤ = j, stop

if j  I, go to 2

else set i = i+ 1 and j = i+ 1

if i⇤ = i and j
⇤ = j, stop

if i < I, go to 2

else go to 1
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3.7 Simulated Annealing Method

The concepts of Simulated Annealing in Combinatorial Optimization were first

introduced independently by Kirkpatrick et al. (1983) and Cerny (1985) in the

early 1980s, and a thorough discussion can be found in Burke and Kendall (2005).

The idea is the thermal process to obtain low energy states of solids in a heat

bath. Kirkpatrick et al. (1983) discussed the two steps in the thermal process.

First, we increase the temperature of the heat bath to maximum value until the

solid melts and second, we decrease carefully the temperature of the heat bath

until the particles arrange themselves in the ground state of the solid.

In our research, we calculate the di↵erence of the total cost (total new cost

� total current cost), � between a pair of patients that we plan to swap. The

di↵erence between this procedure and the local search procedure is that even when

the di↵erence of the total cost is positive, the swapping might still happen but only

with a certain probability.

If � is less than or equal to zero, we swap the patients but if � is more than

zero, we swap with probability e
��/K , where K is the temperature and we have a

geometric cooling K = ↵K. The value used for ↵ is typically about 0.9 but this

value depends on us and di↵erent value of ↵ can be used such as 0.95 by Sier et al.

(1997) where they also use the simulated annealing procedure in the scheduling

surgical procedures.

Under this procedure , firstly we must obtain the initial temperature for the

process by calculating 20% from the initial swap. The initial swap is obtained by

using the previous local search method. After we calculate 20% from the initial

swap, we check what is the � maximum. By rearranging the probability e
��/K ,

we get the value of the initial temperature, K = ��/ln(0.2). The decision to

swap the patients will be done by comparing the probability obtained with each
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new value of K and � with a random number r 2 [0, 1]. If r is less than or equal

to the probability obtained, the patients are swapped but if r is more than the

probability obtained, the patients are not swapped.

The swapping pair of patients procedure will continue with smallerK because

of the geometric cooling and will stop when we reach the last temperature K that

we fix. The final temperature will be fix according to the initial temperature

such that, the cooling process will continue normally until the last temperature

according to the criteria that we fixed. At the end of procedure, we will come out

with a new list of scheduled patient that achieve our the objectives of our research.

3.7.1 Algorithm Simulated Annealing

We present two versions of simulated annealing algorithm. One is a traditional

algorithm that randomly search the solution space to find a better solution in

the neighbourhood until the algorithm terminates at a minimum. Under the tra-

ditional algorithm, a pair of patients is randomly chosen to be swap. We then

updated the algorithm where instead of choosing a pair of patient at random, we

systematically loops through the pairs of patients in the list. The notation and

symbols used are as follow:

Notation:

A
p
d: The sum of planning time booked of operation room for day d

T
e: Fix time for emergency case in horizon day everyday

Ti The operation time for a patient i

I The total number of patient’s in order list

Kpr Temperature

K
0
pr 0 or 1 measure of whether cooling is still ongoing



Chapter 3 Operating Theatre Scheduling Problem 78

� Repetition counter

INPUT:

d
⇤: The following days of planning after the current day

d⇡(i): The day on which patient ⇡(i) is treated

t
p
⇡(i): The surgical planning time duration of patient ⇡(i)

b⇡(i): The day patient ⇡(i) goes to hospital

⇡(i): Patient that correspond to position i

i: Position of patient i in the list

i
⇤: Position of patient i after swap

In the traditional algorithm 3.6, firstly (step 0) we set the list of patients,

the temperature to the initial temperature (Kpr = InitialKpr), and K
0
pr = 1 to

indicate the cooling has started. Next in step 1, we choose a pair of patient at

random and calculate the new temperature Kpr = ↵Kpr. The cooling will stop

once the temperature is less than the final temperature (Kpr < FinalKpr) and

which point we will set K 0
pr = 0 and the process is stopped. In step 2, we set the

repetition counter � = 0.

In step 3, we check to see if the pair of patient is schedule on the same day

and if so we will choose a di↵erent patient j at random that is not schedule on the

same day as patient i. Then we check to see if the patients are compatible to be

swap where we check if they will fit in the time horizon for the day. If the patients

are compatible to be swapped, in step 4 we calculate �, the di↵erence between

the new cost of swapping the patients with the current cost. If � is less than or

equal than zero, we swap the patients but if � is more than zero, we calculate

the probability e
��/Kpr and compare with a random number r 2 [0, 1] where the
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Algorithm 3.6 Traditional Simulating Annealing

0: Set a list with I patients, Tpr = InitialKpr and K 0
pr = 1

1: Choose random i and j, where i 6= j
Calculate Kpr = ↵Kpr , If Kpr < FinalKpr set K 0

pr = 0
2: Set repetition counter � = 0
3: While d⇡(j) = d⇡(i), choose a random j where d⇡(i) 6= d⇡(j)

if(Ap
d⇡(i)

� tp⇡(i) + tp⇡(j)  T ) and (Ap
d⇡(j)

� tp⇡(j) + tp⇡(i)  T ), go to 4

else go to 5
4: Calculate TotalNewCost(i+ j) for Ti + Tj

Calculate Delta = TotalNewCost(i+ j)� TotalCurrentCost(i+ j)
if Delta  0

TotalCurrentCost(i+ j) = TotalNewCost(i+ j)
Dummy = ⇡(i)
⇡(i) = ⇡(j)
⇡(j) = Dummy

else if Delta > 0 and K 0
pr = 1

Calculate Pro = e��/Kpr

Derive random number r 2 [0, 1]
if r  Pro
TotalCurrentCost(i+ j) = TotalNewCost(i+ j)
Dummy = ⇡(i)
⇡(i) = ⇡(j)
⇡(j) = Dummy

else go to 5
end if
else choose random i and j, where i 6= j

if �  20
update � = �+ 1, go to 3
else go to 1

5: if K 0
pr = 0, stop

else choose a random j
if �  20
update � = �+ 1, go to 3
else go to 1

patients will swapped only if r  e
��/Kpr . Otherwise we choose a di↵erent patient

j to be swapped and go back to step 3 while the repetition counter is ongoing.

In step 5, the algorithm is stopped once the cooling has stopped. Otherwise,

patients will be test to be swapped until the repetition counter is satisfied at which

point the algorithm goes back to step 1 where the temperature is gradually lowered

until it reaches the final temperature.

In the updated algorithm 3.7, firstly (step 0) we set the list of patients,
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the temperature to the initial temperature (Kpr = InitialKpr), and K
0
pr = 1 to

indicate the cooling has started. Next in step 1, we choose the first and second

patients in the list and calculate the new temperature Kpr = ↵Kpr. As in the

traditional algorithm, the cooling will stop once the temperature is less than the

final temperature (Kpr < FinalKpr) and which point we will set K 0
pr = 0 and the

process is stopped. In step 2 and 3, we check to see if the patients is schedule on

the same day, and if they are, the second patient is changed to the next patient in

the list until both the patients are not schedule in the same day. Then we check to

see if the patients are compatible to be swap where we check if they will fit in the

time horizon for the day. If the patients are compatible to be swapped, in step 4

we calculate �, the di↵erence between the new cost of swapping the patients with

the current cost. If � is less than or equal than zero, we swap the patients but

if � is more than zero, we calculate the probability e
��/Kpr and compare with a

random number r 2 [0, 1] where the patients will swapped only if r  e
��/Kpr .

Otherwise we choose the next patient in the list to be patient j to be swapped and

go back to step 2. If there is no other patient in the list, we change the patient i

to the next patient in the list and choose the next patient after that as patient j

and go back to step 2. Once we have gone through the list, we go back to step 1

to choose patient i and j.

In step 5, we check the current temperature and the algorithm is stopped

once the cooling has stopped. Otherwise, the algorithm goes back to step 1 where

the temperature is gradually lowered until it reaches the final temperature.
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Algorithm 3.7 Updated Simulating Annealing

0: Set i⇤ = I � 1 , j⇤ = I,
kpr = InitialKpr and K 0

pr = 1
1: Set i = 1, j = 2

Calculate Kpr = ↵Kpr , If Kpr < FinalKpr set K 0
pr = 0

2: If d⇡(i) = d⇤

while d⇡(j) = d⇡(i) and j  I, set j = j + 1
if j > I, go to 5

if(Ap
d⇡(i)

� tp⇡(i) + tp⇡(j)  T ) and (Ap
d⇡(j)

� tp⇡(j) + tp⇡(i)  T � T e), go to 4

else go to 5
3: While d⇡(j) = d⇡(i) and j  I, set j = j + 1

if j > I, go to 5
if(Ap

d⇡(i)
� tp⇡(i) + tp⇡(j)  T � T e) and (Ap

d⇡(j)
� tp⇡(j) + tp⇡(i)  T � T e), go to 4

else go to 5
4: Calculate TotalNewCost(i+ j) for Ti + Tj

Calculate Delta = TotalNewCost(i+ j)� TotalCurrentCost(i+ j)
if Delta  0

TotalCurrentCost(i+ j) = TotalNewCost(i+ j)
Dummy = ⇡(i)
⇡(i) = ⇡(j)
⇡(j) = Dummy
set i⇤ = i and j⇤ = j

else if Delta > 0 and K 0
pr = 1

Calculate Pro = e�Delta/Kpr

Derive random number r 2 [0, 1]
if r  Pro
TotalCurrentCost(i+ j) = TotalNewCost(i+ j)
Dummy = ⇡(i)
⇡(i) = ⇡(j)
⇡(j) = Dummy
set i⇤ = i and j⇤ = j

else go to 5
end if
set j = j + 1
if j  I, go to 2
else set i = i+ 1 and j = i+ 1

if i < I, go to 2
else go to 1

5: if i⇤ = i, j⇤ = j and K 0
pr = 0, stop

else set j = j + 1
if i⇤ = i, j⇤ = j and K 0

pr = 0, stop
if j  I, go to 2
else set i = i+ 1 and j = i+ 1
if i⇤ = i, j⇤ = j and K 0

pr = 0, stop
if i < I, go to 2
else go to 1
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3.8 Experimental Design

The main reason why we use generated data and not real data is because we want

to see how applicable our method is. By using generated data, we can create

di↵erent situations that might occur in di↵erent hospitals to get an idea whether

our algorithm will provide a schedule that achieve the stated aims and objectives.

We want to see if one of the algorithm outperforms the other whether in some or

all the data sets.

We can check the validity of our method by using di↵erent variation of data.

We are able to check the range of our data by covering the type of fine that are

imposed at some hospitals. We will be able to simulate the condition of which

patients arrive and how the decision on how to treat the patients are made (online)

between di↵erent hospitals because the rate of patients arriving into the system

vary every time in real life.

By changing the data, we will be able to look at how the algorithm is applied

to real hospital. The hospital can provide their real data and then compare the

results of our di↵erent algorithm to their current scheduling policy.

3.8.1 Example using Generated Data

We generate a variety of data using Uniform Distribution. The notation U ⇠ [a, b]

denotes that the data are randomly generated from a uniform distribution defined

on the interval [a, b]. The number of patients arriving each day has the sum of

the probability distribution function. The number of regular patients is usually

greater than the number of emergency patients.

Let nr be the number of regular patients arriving on a particular day and n
e be

the number of emergency patients arriving on a particular day:
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Example 1

Regular Patient: 4.5, Emergency Patient: 1.5, Tdev = [�20, 40]

P (nr) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0.02 if n
r = 0

0.06 if n
r = 1

0.10 if n
r = 2

0.15 if n
r = 3

0.20 if n
r = 4

0.20 if n
r = 5

0.10 if n
r = 6

0.06 if n
r = 7

0.05 if n
r = 8

0.03 if n
r = 9

0.03 if n
r = 10

0.00 if n
r
> 10

P (ne) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

0.25 if n
e = 0

0.30 if n
e = 1

0.25 if n
e = 2

0.10 if n
e = 3

0.10 if n
e = 4

0.00 if n
e
> 4

Example 2

Regular Patient: 4.0, Emergency Patient: 1.5, Tdev = [�20, 40]
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P (nr) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0.04 if n
r = 0

0.12 if n
r = 1

0.14 if n
r = 2

0.16 if n
r = 3

0.16 if n
r = 4

0.12 if n
r = 5

0.10 if n
r = 6

0.07 if n
r = 7

0.04 if n
r = 8

0.03 if n
r = 9

0.02 if n
r = 10

0.00 if n
r
> 10

P (ne) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

0.25 if n
e = 0

0.30 if n
e = 1

0.25 if n
e = 2

0.10 if n
e = 3

0.10 if n
e = 4

0.00 if n
e
> 4

Example 3

Regular Patient: 3.5, Emergency Patient: 1.5, Tdev = [�20, 40]
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P (nr) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0.04 if n
r = 0

0.15 if n
r = 1

0.20 if n
r = 2

0.18 if n
r = 3

0.14 if n
r = 4

0.10 if n
r = 5

0.08 if n
r = 6

0.05 if n
r = 7

0.03 if n
r = 8

0.02 if n
r = 9

0.01 if n
r = 10

0.00 if n
r
> 10

P (ne) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

0.25 if n
e = 0

0.30 if n
e = 1

0.25 if n
e = 2

0.10 if n
e = 3

0.10 if n
e = 4

0.00 if n
e
> 4

The mean number of regular patients arriving on a particular day is either 4.5, 4.0

or 3.5 (see example 1, 2 and 3) and the mean number emergency patients is 1.5.

The first step is to generate random data U ⇠ [0, 1] to get the number

of patients for emergency cases and regular patients daily. Next, we generate

the planning duration time for each patient. The planning duration has uniform

distribution Tp ⇠ [30, 130]. We assume the planning duration is between 30 to 130

minutes, with daily means of 6, 5.5 and 5, respectively.
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Lastly, we generate the actual duration time. The actual duration is the

total of Tp and Tdev, Tdev ⇠ [�20, 40]. This interval is chosen for Tdev because

the relative value is small, and the mean is also small. Otherwise the method of

estimation for the planning duration is not good if it has a large deviation. We

generate random data for one year.

Besides generating data with Tdev=[-20,40], we also generate data with Tdev=[-

25,35]. The results of our methods using the generated data is shown in Table 3.6,

Table 3.7, and Table 3.9.

3.9 Testing of Heuristics

In order to see what is the best heuristic technique to used as a sorting method,

we run a computational test of several heuristics to see which one performs the

best. We calculate the total cost, the delay at home, the delay at hospital and the

runtime of the algorithm. We decide to test four heuristics which are:

1. First-Come-First-Serve

2. Longest to Shortest Duration

3. Shortest to Longest Duration

4. Random sorting

The results are shown in Table 3.5. We can see that the sorting method

with the lowest total cost is the ’Longest to Shortest Duration’ with the total cost

of 1523905. Although this method has the highest number of delay at home, at

the same time it has a low delay at hospital reducing the total cost. In terms of

runtime, all methods have almost the same runtime which suggested that runtime

is not a↵ected by the methods.
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With this result, we decided to use the ’Longest to Shortest Duration’ sorting

method for our computational test using di↵erent parameter values.

Table 3.5: Results of Heuristics Testing

Sorting
Method

Total Cost Delay at
Home
(Cost/Day)

Delay at
Hospital
(Cost/Day)

Runtime
(seconds)

First-Come-
First-Serve

1548790 1780/160 2560/32 42

Longest to
Shortest
Duration

1523905 1910/173 1680/21 46

Shortest
to Longest
Duration

1589885 1390/137 1520/19 45

Random
Sorting

1525305 1570/147 2080/26 46

3.10 Computational Results

We present the computational results of our methods using the generated data.

For each average number of patients, we can see that there is no big di↵erence

between the number of patients which means that our data sets will be valid for

comparison. For easy comparison, we present several graphs comparing the total

cost for OT process in the system, cost of overtime for OT, cost for patients delay

at hospital, cost patients delay at home, average capacity utilization up to horizon

day and the number of patients left after horizon day.
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Table 3.6: Computational Results using Heuristic Technique

Average

pa-

tients

arrival

Number

of pa-

tients

Total

cost

Cost of

delay at

Hospi-

tal

Cost of

delay at

home

Cost of

OT

Average

% be-

tween

400 day

day

>

400

6 2541 750770 26940 326400 11300 96.4786835 81

6 2552 555185 31795 285960 12700 97.3051987 84

6 2659 760750 46645 350605 15500 97.8781281 107

6 2557 794165 25935 360720 10550 95.8176727 90

6 2519 371475 18585 200385 14100 97.878624 73

5.5 2476 159745 6820 122845 10910 97.0718842 71

5.5 2300 126335 5475 97165 12850 96.3473892 30

5.5 2313 156310 6545 127965 13550 97.4318085 30

5.5 2391 209555 9765 148360 14800 97.0723724 52

5.5 2379 211835 6880 161970 13000 97.3078232 43

5 2157 59995 4510 36560 12850 94.6749725 3

5 2154 43295 6195 16540 12550 96.6572876 3

5 2138 56320 6470 30240 12950 96.4885254 3

5 2125 37415 5475 16225 11950 94.1004868 3

5 2120 35640 4340 13515 13150 94.7203522 3
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Table 3.7: Computational Results using Local Search Method

Average

patient

arrival

Number

of pa-

tient

Total

cost

Cost

delay at

Hospi-

tal

Cost

delay at

home

Cost of

Oper-

ating

Theatre

Average %

between

400 day

day

>

400

6 2541 732055 25700 298465 10765 96.8909878 79

6 2552 554167 28635 273600 13864 96.6692794 85

6 2659 773520 36510 343800 14456 95.9759308 107

6 2557 438845 26658 336520 11880 96.5193586 89

6 2519 386504 15560 192546 14008 97.2272942 70

5.5 2476 788940 9425 165000 13500 97.1324717 71

5.5 2300 122450 4560 123465 12400 98.7826087 28

5.5 2313 124650 6246 125688 12550 98.7462173 29

5.5 2391 219600 7540 154624 17320 95.9471742 48

5.5 2379 214533 8235 154330 14205 97.9924717 42

5 2157 44620 4436 36050 13840 95.05698423 3

5 2154 44100 6075 16645 12990 95.17745642 3

5 2138 56318 5960 29945 11955 96.33461823 3

5 2125 36695 5290 16200 12100 94.84003935 2

5 2120 35840 4250 13495 11680 94.98768542 2
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Table 3.8: Computational Results using Traditional Simulated Annealing
Method

Average

patient

arrival

Number

of pa-

tient

Total

cost

Cost

delay at

Hospi-

tal

Cost

delay at

home

Cost of

Oper-

ating

Theatre

Average %

between

400 day

day

>

400

6 2541 689824 25500 301690 13650 96.562327 82

6 2552 559760 28355 288540 13520 94.458024 94

6 2659 711450 26500 373750 15388 95.756805 102

6 2557 559884 30824 277685 14486 94.678422 93

6 2519 378550 13382 194486 12558 96.814355 86

5.5 2476 225649 8655 169708 14358 95.894036 71

5.5 2300 159885 5890 120688 10644 96.367132 28

5.5 2313 184200 6445 136400 11345 97.011452 28

5.5 2391 219884 8324 150450 13800 96.988054 60

5.5 2379 207785 7945 155652 12639 97.073484 38

5 2157 61200 4862 19550 12990 94.456255 3

5 2154 60098 6278 18644 12678 95.340992 3

5 2138 45722 4956 18897 11980 96.982245 3

5 2125 42645 4460 17245 12208 95.345085 3

5 2120 38208 4405 14420 12055 95.967242 3
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Table 3.9: Computational Results using Updated Simulated Annealing
Method

Average

pa-

tients

arrival

Number

of pa-

tients

Total

cost

Cost of

delay at

Hospi-

tal

Cost of

delay at

home

Cost of

OT

Average

% be-

tween

400 day

day

>

400

6 2541 668685 22060 268810 12400 97.2368311 79

6 2552 520810 26560 223950 12360 95.3056727 81

6 2659 699730 25190 363865 14950 97.1324232 105

6 2557 568225 34095 261382 12455 96.8145723 89

6 2519 359850 11875 179990 13675 97.4527551 72

5.5 2476 159655 7430 130709 10450 97.3215581 69

5.5 2300 126300 4105 104250 12700 97.0824535 25

5.5 2313 154200 5015 118960 13000 97.3215842 25

5.5 2391 209550 6875 160165 13500 97.0723713 55

5.5 2379 208680 8970 147745 12800 97.2984525 40

5 2157 59800 4485 35940 12800 95.3891437 3

5 2154 42955 6142 16400 12450 94.9339125 3

5 2138 56300 6470 30200 12940 96.7410982 3

5 2125 37350 5460 16195 11920 95.2016239 3

5 2120 35450 4300 13450 13100 95.6973218 3
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Figure 3.3: Total cost with 6 average patients between the methods

Figure 3.4: Total cost with 5.5 average patients between the methods
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Figure 3.5: Total cost with 5 average patients between the methods

Figures 3.3, 3.4 and 3.5 show that there are no large di↵erences in the total

cost between the methods for each average number of patients. However, between

the data sets, it can be seen that there is a di↵erent in the total cost. Figure 3.4

and 3.5 show that the total cost are almost the same between the data sets for

each of the method.

Some di↵erences can only be seen in Figure 3.6 where in four of the data sets,

simulated annealing method shows some improvement compare to the other two

methods. This might suggests that as the average number of patients increases,

simulated annealing method might be able to reduces the total costs.

Interestingly, data set 4 in Figure 3.6 clearly shows that the total cost of

OT’s process in the system significantly decrease using the simulated annealing

method. It also has the highest total cost for heuristics and local search method

compared to the other data sets but surprisingly, the total costs for simulated

annealing method is lower than the total cost of simulated annealing in data set

1 and data set 2. This might suggests that as the total costs increases for average
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patients higher than 6, the simulated annealing method might be able to reduces

the cost significantly.

Although Tables 3.6, 3.7, 3.9 shows that the number of total patients between

the five data sets for each average number of patients to be almost the same, the

same cannot be said about the the the total cost of OT’s process in the system.

For example, in Figure 3.3, data set 5 contains a total of 2519 patients but the

total costs is only about 400000 for the three methods but on the other hand, data

set 1 contains a total of 2541 patients (a di↵erence of only 22 than data set 5) but

the total cost is about 700000 for all three methods.

Figure 3.6: Cost of OT with 6 average patients
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Figure 3.7: Cost of OT with 5.5 average patients

Figure 3.8: Cost of OT with 5 average patients

Figures 3.6, 3.7 and 3.8 show the cost of using OT over the time horizon.

Again there are not much di↵erences between the methods for each data sets but

in general simulated annealing method has a little bit improvement in reducing

the cost especially for 5.5 and 5 average patients. However, for 6 average patients
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(Figure 3.6), we can see that the simulated annealing method actually increases

the cost of OT for data sets 1 and 4 and the di↵erences when compared to the other

methods are quite substantial. This might suggest that there are many overtime

use of OT under the simulated annealing method. We can also see that the cost

for data set 4 in Figure 3.8 is the smallest compared to the other data sets but

the di↵erence is small.

Overall, all the data sets shows that the cost of using OT over the time

horizon are more or less the same with a value of around 12000 and the highest

is in data set 3 in figures 3.6 and the lowest is in data set 1 in figures 3.7. This

suggests that in term of the cost of using OT over the time horizon, there is

not much di↵erent. This might be because the duration time and the allocated

overtime usage are similar across the data sets.

Figure 3.9: Cost of delay at Hospital with 6 average patients



Chapter 3 Operating Theatre Scheduling Problem 97

Figure 3.10: Cost of delay at Hospital with 5.5 average patients

Figure 3.11: Cost of delay at Hospital with 5 average patients

Figures 3.9, 3.10 and 3.11 show that the cost of delay at hospital for the

data sets are varied. In Figure 3.9, we can see that there are sizable di↵erence

between simulated annealing and the other two methods especially in data set 3

where the di↵erence is about 20000. However, in data set 4, the cost under the
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simulated annealing method are much bigger (an increase of about 10000 compared

to the other method). Here the magnitude of the cost are big when compared to

the other two figures. The lowest cost of delay at hospital is achieved by the

simulated annealing method in data set 5 (the cost is 11875) and the highest is

with the heuristic and local search method in data set 3 (the cost is 46645).

In Figure 3.10, the simulated annealing method incur a larger cost in two of

the data sets but in the other data sets, simulated annealing method decreases the

cost of delay at hospital. However, here the magnitude of the cost is small. The

lowest cost of delay at hospital is achieved by the simulated annealing method in

data set 2 (the cost is 4105) and the highest is with the heuristic and local search

method in data set 4 (the cost is 9765).

In Figure 3.11, there are no big di↵erences between the methods and the

cost for the methods are about the same for each data set. Again the magnitude

of the cost is small and the range between the cost is also small with the lowest

cost is produced by data set 5 and the highest is produced by data set 3.

In can be concluded based on the cost of delay at hospital that the higher

the average number of patients, the cost of delay at hospital also increases. The

magnitude of the cost increases substantially even with a di↵erence of 0.5 average

patient. As we can see, when the average number of patients is 5.5, the cost is not

higher that 10000 but when the average number of patients is 6, the cost goes as

high up as 46000.
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Figure 3.12: Cost of delay at Home with 6 average patients

Figure 3.13: Cost of delay at Home with 5.5 average patients
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Figure 3.14: Cost of delay at Home with 5 average patients

Figures 3.12, 3.13 and 3.14 also show a varied data for the cost of delay at

home. In some data sets, simulated annealing decreases the costs but in other

data sets, it increases the cost (simulated annealing manages to reduce the cost in

all data sets except data set 3). Substantial di↵erences where simulated annealing

decreases the cost can be seen in figure 3.12 data set 4 where the simulated an-

nealing method reduces the cost by 100000 from around 350000 produced by the

other two methods.

In figure 3.13, the cost of delay at home is reduced by almost half of that in

figure 3.12 when the average number of patients reduces from 6 to 5.5. However,

here it seems that out of the 5 data sets, simulated annealing increases the cost of

delay at home in 3 of the data sets.

In figure 3.14 the cost are almost same for each data set and that the cost for

the data sets seems to be in two groups where in 2 data sets the cost is at around

30000 and the other at 15000. It seems that when the average number of patients

is 5, the three methods produce the same cost of delay at home. However, the
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magnitude of the cost is very small suggesting that when the average number of

patients is low, not many patients will be delayed at home.

Overall, it seems that the simulated annealing method is able to reduces the

cost when the average number of patients is six or more but the magnitude of

the cost will increase substantially. The cost doubled when the average number

of patients increases from 5.5 to 6 and if the trend is true, as the average number

of patients increases, the cost of delay at home will also increases. This suggests

that when there are more average patients, more patients will be delayed at home.

Figure 3.15: Average capacity Utilisation up to Horizon Day with 6 average
patients
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Figure 3.16: Average capacity Utilisation up to Horizon Day with 5.5 average
patients

Figure 3.17: Average capacity Utilisation up to Horizon Day with 5 average
patients

In figure 3.15, we can see that in 5 of the data sets, the average capacity

utilisation is higher for the simulated annealing method in only two of them where

the simulated annealing method manages to increase the utilisation by 1 percent
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but reduces the utilisation in the other 3. In data set 2, the simulated annealing

method reduces the utilisation by almost 2 percent.

In figure 3.16, simulated annealing method increases utilisation in only two

data sets and in data set 1, the increase is only about 0.2 percent whereas in data

set 2, it increases the utilisation by about 1 percent. In the other data sets, the

utilisation are about the same for all three methods.

In figure 3.17, simulated annealing method manages to increase the utilisa-

tion in four data sets except for data set 2 where it reduces utilisation by about 2

percent. In the other data sets, although there is an increase but the increase is

mixed with about 1 percent for data set 1, 0.5 percent for data set 3 and about 1

percent for data set 4 and 5.

Overall, there might technically be some di↵erence between the method but

since the scale is small, it could be said that the utilisation between the methods

are the same. However, since the value is close to 100, it can be said that our

methods are successful in utilising the OT.

Figure 3.18: Number of patient Left after Horizon Day with 6 average patients
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Figure 3.19: Number of patient Left after Horizon Day with 5.5 average
patients

Figure 3.20: Number of patient Left after Horizon Day with 5 average patients

Figure 3.18 shows no di↵erences between the methods in term of number of

patients left after horizon day where on average about 80 patients left after horizon

day.
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Figure 3.19 shows a varied data where in data sets 2 and 3, the number of

patients left is about 30 but in data set 1 the number number of patients left is

around 70. However the three methods produce almost the same results.

Figure 3.20 shows no di↵erence between the method for all data sets but the

number is only 3. This suggests that when the avererage number of patients is

small, the number of patients left will also be small.

3.11 Conclusion

In this chapter, we discuss the foundation of our research by defining the essential

models, parameters and assumptions. We start by looking at the problem we

want to tackle which is the order of scheduling of elective patients and what

happens when emergency patients arrive throughout the day. We explain the

delay conditions that might cause some patients to be rescheduled. We allocate all

patients and reschedule delay patients depending on their case using the heuristic

method in time horizon every day.

We then define the objectives of our research and the constraints considered.

We also define the types of patients priority and the cost function used. The

overtime cost function is presented to see how it a↵ects our scheduling decision

on whether to continue with the planned operations by doing overtime work or

reschedule the patients to the next day. We also present an example of a heuris-

tic technique and several examples of manual calculations of the cost for some

patients.

The algorithms used to schedule and reschedule patients are presented. The

first algorithm is the online procedure which included the algorithm for initial

scheduling which will schedule the regular patients into the system. Next, we

evaluate a particular day d where patients S1, or S2 or S3 or S4 are treated in
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time horizon. If overtime is required, we compare the cost and penalty of being

delayed at the hospital and decide whether to perform the surgery or reschedule

to the next day.

Rescheduling algorithm is then applied to schedule the delayed patients with

the aim of minimising the cost depending on the patients’ priority. Under this

algorithm, top priority patients such as patients that have been delayed several

times has higher priority than those that have only been delayed once which will

eliminate the possibility that urgent patients do not receive the appropriate treat-

ment as soon as possible.

We then present the local search algorithm where we start with an initial

solution from the heuristic technique, and then swap pair of patients. We swap

the patients to see if by swapping, the duration and cost can be reduced. Before

swapping we check sum of time on the duration day. After each swapping, the

cost is calculated and compared with the current cost. If the cost is less, the swap

is finalised.

Finally, we discuss the simulated annealing method where we calculate the

di↵erence of the total cost (total new cost � total current cost), � between a pair

of patients that we plan to swap. If the di↵erence of the total cost is positive, the

swapping might still happen but only with a certain probability. Besides that, if

� is more than zero, we swap with probability e
��/T , where T is the temperature

and we have a geometric cooling T = ↵T .

All the algorithms presented in this chapter will be utilised and tested with

di↵erent data sets to see the best algorithm that optimised our objective in the

next chapter. We wish to look for any significant di↵erence between the methods

and decide if one algorithm will be more preferred than the other.

In general, the simulating annealing method shows an improvement when

compared with heuristic method and local search method. However, these values
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are a↵ected by the average number of patients and on the nature of the data

sets itself. We can see the total cost is mostly made up of the cost of delay at

hospital and cost of delay at home whereas the cost of OT is about the same for

the di↵erent average number of patients. Also when the OT is busy (more than

average patients), more rescheduling is necessary.

The utilisation percentage of the OT seems to be about the same for the

di↵erent methods and it is very close to zero suggesting that there are no under

utilisation of OT by the methods. Besides that, the number of patients left after

time horizon is also a↵ected by the average number of patients but this is a natural

e↵ect of the high average number of patients. When there are more patients, we

would expect more delay and some patients do not get treated until after horizon

day.

Lastly, di↵erent data sets produce di↵erent results because each data set

contains di↵erent set of patients and are representative of the real data.



Chapter 4

On Day of Treatment Operating

Theatre Scheduling Problem

4.1 Background

A di↵erent aspect of the OT scheduling problem to consider is the scheduling of

multiple OTs running at the same time wherein patients can be booked into any of

the OTs depending on the patient’s priority and the surgeon’s speciality or avail-

ability of equipments. In this chapter, we are considering the schedule on the day

with the patients booked, emergency arrivals and variations from projected oper-

ation duration. The schedule on the day includes the order in which patients are

treated. If the emergency arrivals or variations in operation duration exceeds the

theatre slot length, the cost of either (or both) overtime or cancelling operations

will be calculated. In the previous chapter, the schedule is updated at the end of

the day. Whereas in this chapter, the schedule will be updated continuously every

time a surgery ends and upon arrival of emergency patients.

We begin our research by reviewing the work in the area of scheduling parallel

machines. The basic idea is that each OT can be considered as a machine with

108
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jobs to be completed and under di↵erent circumstances, the methods to optimally

schedule the OT will di↵er. Besides that, machines are available for processing

jobs all the time in the planning horizon which is similar to the scheduling of OT

where we assume OTs are available for surgeries in the time horizon. In addition

to that, a job cannot be interrupted once it is being processed, which is a similar

situation in OT occurences (surgery cannot be interrupted once it has begun).

Belouadah and Potts (1994) proposed a branch and bound algorithm in

scheduling identical parallel machines to minimise total weighted completion time.

They performed a Lagrangian relaxation using a noninteractive method which

allows derivative of a lower bound scheme at a modest computational expense.

Besides that, Hall et al. (2002) considered a deterministic scheduling of jobs on

several identical parallel machines with a common server using a variety of classical

scheduling objectives. They provided either a polynomial- or pseudo-polynomial-

time algorithm, or a proof of binary or unary NP-completeness for each problem.

In addition, Shim and Kim (2007) considered the scheduling of parallel ma-

chine with the aim of minimising total tardiness. They also proposed a branch

and bound algorithm and developed dominance properties and lower bounds as

well as upper bounds from a heuristic algorithm. Computational experiments to

evaluate the performance of the algorithm described in the article showed that

the algorithm could find optimal solutions for problems with up to 30 jobs and 5

machines in a reasonable amount of CPU time.

Moving on from identical parallel machines, we then review some work in the

area of unrelated parallel machines. For example, Liaw et al. (2003) presented a

branch-and-bound algorithm and e�cient lower and upper bounds are developed in

scheduling independent jobs on unrelated parallel machines to minimise the total

weighted tardiness. They showed that the branch-and-bound algorithm performs

well on problems with up to 18 jobs and 4 machines.
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Kim et al. (2003) presented search heuristics in batch scheduling of unrelated

parallel machines with the objective of minimising the total weighted tardiness.

They tested four search heuristics, earliest weighted due date (EWDD), shortest

weighted processing time (SWPT), two-level batch scheduling heuristics (TH) and

simulated annealing and found that TH and simulated annealing outperformed the

other two.

In a research closer to ours, Azadeh et al. (2014) considered the scheduling of

patients in emergency department laboratories having given priority to patients’

treatment as determined by the triage factor to minimise the total weighted com-

pletion time. By formulating the problem as an open shop scheduling problem,

they proposed a mixed integer linear programming model and developed a genetic

algorithm to solve the problem. Interestingly, they applied the response surface

methodology to find the optimum genetic algorithm parameters.

In the area of scheduling multiple OTs, Zhang et al. (2014) consider the

dynamic assignments of a given set of surgeries to multiple identical OTs where

surgeries have random durations and planned surgeon arrival times. The aim is to

minimise the total expected cost incurred by surgeon waiting, OT idling and OT

overtime where surgeries are assigned dynamically to OTs at surgery completion

events. They proposed an e�cient algorithm by combining a two-stage stochastic

programming approximation and two heuristics (a one-period look ahead method

and a multi-period look ahead method) to assess the cost. They showed that

the dynamic scheduling significantly improves static surgery scheduling and the

optimisation of the dynamic scheduling further improves the performance.

Besides that, Zhang and Xie (2015) proposed a discrete-event framework

to model the surgery schedule and to evaluate the sample path gradient of a

total cost incurred by surgeon waiting, OT idling and OR overtime. They used

appointment scheduling for a sequence of surgeries with random duration served
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by multiple identical OTs where the surgeries are assigned to OTs dynamically

on a first-come, first serve basis. They showed among others that the benefits

of dynamic assignment and proactive anticipation when determining appointment

times are generally high and that they increase with the number of OTs and

variable conditions. They emphasised the consideration of dynamic assignments

in the determination of arrival time for scheduling identical surgeries that are more

likely to switch OTs during the execution.

In addition, Zhao and Li (2013) considered the problem of scheduling elec-

tive surgery to multiple OTs in ambulatory surgical settings where the focus is on

the daily scheduling decisions such as the number of OTs to open, the allocation

of surgery-to-OT and the sequence of surgeries in each OT. The surgeries to be

scheduled are known in advance, belong to di↵erent types and each OT can only

perform certain surgeries. Here they assumed the setup times are sequence depen-

dent and both setup times and surgery duration are deterministic. They proposed

a Mixed Integer Nonlinear Programming (MINP) model and a Constraint Pro-

gramming (CP) model with the aim of minimising the sum of fixed costs and

overtime costs of the OTs. They suggested that the CP model is more e�cient

than the MINP model on computational time and solution quality.

4.2 Problem Definition

In this chapter, we consider the scheduling of multiple OTs in a single day only

and reschedule on the day as variations from projected operation durations and

emergency occur. Di↵erent amount of time due, di↵erent skills of the surgeons and

di↵erent theatres might be allocated into the system. A defining approach here

is to consider the random arrivals of emergency patients that take priority above

all other patients. In addition to that, we consider a group of theatres being used

have similar features and that all surgeries can take place in all OTs although we
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can bar certain patients from entering some OTs. Only a small number of OTs

are considered but with the ability to move patients to other OTs, more patients

can be served.

Once emergency patients arrive, emergencies need to be fitted in as soon as

possible or with priority over booked patient. This means that the patients already

scheduled into the slot will be moved to either the next slot or to a di↵erent OT.

If this happens, patients can be moved from one OT to another.

As mentioned before, the actual duration for each patient is likely to vary

from the planning duration. Therefore, other patients may need to be rescheduled

at the end of the day. The decision whether to extend the usage of OT or reschedule

the last patient depends on the costs. If the cost of overtime is lower than the cost

of rescheduling the patients to the next day, the overtime is utilised. Since we are

scheduling for only one day, patients that were already delayed from the previous

day will have a di↵erent cost associated with them in the model and this cost is

calculated when considering the usage of overtime.
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Figure 4.1: Initial situation

For example, as shown in Figure 4.1, at the beginning of the day we have a

list of patients and they need to be scheduled to di↵erent OTs according to their

respective criterion. We first feed the initial data into the scheduling algorithm and

it will produce an initial schedule for the day. Then the surgeries are done based

on the schedule. Since the actual duration for each surgery might be di↵erent

than the planning duration, at the end of each surgery, we check if there are any

emergency patients that have arrived into the system during the surgeries. If no

emergency patients arrived, the surgeries go on as scheduled. But if there are



Chapter 4 On Day of Treatment Operating Theatre Scheduling Problem 114

emergency patients, rescheduling is required so that the emergency patients can

be operated on immediately. The data associated with the emergency patients is

put into the list and then the data is fed into the scheduling algorithm to produce

a new schedule. This new schedule will cause some patients to be moved from one

OT to another to make way for the emergency patients.

In essence, we actually consider if rescheduling is required after the com-

pletion of every surgery provided that emergency patients arrive within the time

horizon. If there are no emergency patients, then the schedule will continue in the

original order. Beside that, due to the variations in surgery durations, reschedul-

ing is also required to ensure that patient that can fit into the available slots of

other OTs, if any, are scheduled to the new OTs to prevent overtime or delay.

At the end of the time horizon, rescheduling might cause overtime usage of

the OT. We need to decide whether to perform the surgery with overtime usage of

the OT or cancel the patients for the day and rebook them for another day. The

decision is based on the comparison of the overtime cost and rescheduling cost. If

the overtime cost is lower than rescheduling cost, overtime is utilised.

4.3 The Model

The surgery of n patients must be scheduled in m OTs, during time horizon for

one day. Each OT has di↵erent surgeons. There are also variations in the type

of equipments available in each OT. This means that some surgeries can only be

performed in some OTs.

We assume that the patients who are scheduled for a particular day have

already been hospitalized. We also consider priorities of patients based on their

weight by giving top priority patients a higher weight. We also have disruptions

from a small number of emergency patients, as some patients may be moved from
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one OT to another OT or surgeries are taking longer than the planning duration.

We reschedule as necessary when emergencies arrive into the system or operation

durations are di↵erent from predicted. Our objective is to minimise the cost of

the new schedule. The costs are penalty for patients not treated on the day and

penalty for schedule overrunning at OTs. Decision variable is xij and binary

variables are �j, zi1 and zi2.

The notations used that relate to the environment in this study are as follows:

i: Operation theatre

j: Patient

n: The number of patients (including emergency patients once they have ar-
rived)

m: The number of OT

T : time horizon

T1: The upper bound of theatre time for OT i after T time horizon

T2: The upper bound of theatre time for OT i after T1 time horizon

4.3.1 Objective function

Our objective is to minimise the costs of the new schedule.

The costs are given as follows:

1. Penalty for patient not treated on the day.

2. Penalty for schedule overrunning at OTs (small penalty and large penalty).

4.3.2 Decision and Binary Variables

The decision variables xij are the variables that show whether patient j is assigned

to one the OTs. It will be 1 if it is assigned to a particular OT and 0 in other
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OTs to signal that the patients have been assigned an OT therefore it cannot be

considered for the other OTs. The binary variables �j are the variable that show

if patient j is untreated or has been treated on the day being considered. It will

be 1 if the patient is untreated and 0 if it has been treated. The binary variables

zi1 and zi2 show the usage of overtime where zi1 will be 1 if overtime band 1 is

used and if overtime band 2 is used, zi2 will be 1. If overtime band 2 is used, the

variable zi1 will be 0 since overtime band 1 is included into zi2. Logically, overtime

band 2 cannot be used unless overtime band 1 has already been used.

The binary variables are zi1 and zi2.

xij =

8
>><

>>:

1 if patient j is assigned to operation theatre i

0 otherwise.

vj =

8
>><

>>:

1 if patient j untreated on the day being considered

0 otherwise.

zi1 =

8
>><

>>:

1 if theatre i completes its schedule in overtime band 1

0 otherwise.

zi2 =

8
>><

>>:

1 if theatre i completes its schedule in overtime band 2

0 otherwise.

4.3.3 Constraints

We consider several constraints in our model, the constraints are given as follows:

1. Each surgery is either assigned to exactly one OT or will be untreated for

the day.
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2. The overtime of OT, i.

3. Include at most one of the overtime bands.

4.3.4 Zero-One Programming Model

The notations used that relate to the variables in the integer programming model

are as follows:

wj: The weight of penalty patient j if patient j is not treated the day being
considered

�i1: The penalty of completion time for OT j after time horizon in time section
1, (T, T1]

�i2: The penalty of completion time for OT j after time horizon in time section
2, (T1, T2]

xij: Decision variable for patient j if assigned to operation theatre i

vj: Binary variable for patient j if untreated on the day being considered

zi1: Overtime band 1 of theatre i

zi2: Overtime band 2 of theatre i

min(P) =
nX

j=1

wj�j +
mX

i=1

(�i1zi1 + �i2zi2)

subject to

mX

i=1

xij + �j = 1, 8j = 1, 2, . . . , n (4.1)

nX

j=1

tijxij  T + (T1 � T )zi1 + (T2 � T )zi2, 8i = 1, 2, . . . ,m (4.2)

zi1 + zi2  1, 8i = 1, 2, . . . ,m (4.3)

xij 2 {0, 1}, 8i = 1, 2, . . . ,m, 8j = 1, 2, . . . , n(4.4)

zi1, zi2 2 {0, 1}, 8i = 1, 2, . . . ,m (4.5)

�j 2 {0, 1}, 8j = 1, 2, . . . , n (4.6)
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The objective is to minimise P where it has two components. The first com-

ponent is the cost if the patients are untreated on the day considered,
Pn

j=1 wj�j.

It is the product of patient j weight wj and the binary variable �j. As stated

earlier, the binary variable �j will be 1 if the patient is untreated and hence it

will be multiple by the weight and counted for every patient untreated. The more

patients untreated the larger the sum will be especially if the weight is big. The

second component is the cost of overtime usage,
Pm

i=1(�i1zi1 + �i2zi2). As stated

earlier, if overtime band 1 is used, the variable zi1 will be 1 and it will be mul-

tiplied by the overtime cost �i1. If overtime band 2 is used, the variables zi1 will

be 0 and zi2 will be 1 and it will be multiplied by the overtime cost �i2 since the

cost of overtime band 1 is already included into the overtime cost �i2.

The constraint
Pm

i=1 xij + �j = 1 ensures that the patient j is either as-

signed for surgery in one of the OTs or is delayed into the next. The constraint
Pn

j=1 tijxij  T + (T1 � T )zi1 + (T2 � T )zi2 ensures that the sum of the planning

durations for each patient in each OT is less than or equal to the available time

horizon T or if overtime is used, less than the overtime period and not more than

that. The constraint zi1+zi2  1 ensures that only one overtime band is activated

to prevent double counting of costs since the costs for overtime band 1 is already

included in overtime band 2. xij 2 {0, 1}, zi1, zi2 2 {0, 1} and �j 2 {0, 1} ensure

the variables will always take the value of either 1 or 0 as explained in the previous

section.

4.3.4.1 Overtime Costs

The penalty for time horizon greater than T :

� =

8
>><

>>:

�i1 T < Ci  T1

�i2 T1 < Ci  T2
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We schedule the number of patients, N at time horizon, T minutes inM OTs.

Some patients maybe moved from one OT to another OT because we reschedule

again when we have disruption from emergency patients coming into the system or

some patients have di↵erent (longer) actual durations from the predicted duration

time.

Some patients can also be cancelled from the list on the day because high-

priority emergency patients are scheduled into the slots. We fix T minutes in time

horizon every day. If the sum of the duration time is greater than T minutes, the

overtime usage of the OT will get a penalty depending on the slot time after time

horizon. Also, if a patient is cancelled from the scheduling list of the day, we get

a penalty.

4.4 Algorithm Design

The algorithm is designed to input and update all data before it is fed into the

Zero-One Programming (ZOP) model. Every time a trigger occurs (the end of

surgery or the arrival of emergency patient), the data is updated to reflect the

current situation in the OTs. Some surgeries could finish early which will free

up space for suitable patients or it could take longer than the planning duration

which might cause delay. The arrival of emergency patients that require instant

surgeries will trigger the algorithm to feed the current updated data into the ZOP

model, thus producing a new schedule that will include reassignment of patients

to a new OT or the delay of patients.

The notations used in the algorithm are as follows:

L: Set of patients

L
e: Set of arrived emergency patients

Lj: Set of patients assigned to operation theatre, j
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M : Set of operation theatres

⇡j(i): The sequence of patients’ for theatre, j

nj: The number of patients assigned to operation theatre, j

A: List of sum of time for each operation theatre for one day

tij: The actual surgical duration time of patient, i at operation theatre, j

t
p
ij: The planning surgical duration time of patient, i at operation theatre, j

ri: Release time for patient, i (this will be 0 for non-emergencies and the arrival
time for emergencies)

T
c: Change time

T
e: Arrival time for emergency patient

T
r: Removal time of patient from the list (Surgery End time)

Ci: Completion time of OT i is completed

�j1: The penalty of completion time for OT j after time horizon in time section
1, T < A  T1

�j2: The penalty of completion time for OT j after time horizon in time section
2, T1 < A  T2
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Algorithm 4.1 Parallel Scheduling Algorithm

1: Input the set of operation theatres M = {1, ...,m} and the set of patients

L = {1, ..., n}, together with ri, t
p
ji for j = 1, ...,m and wi, for i = 1, ..., n.

Set L = L, T
r = 0, vi = 1 and wi = wi for i 2 L , and zj1 = zj2 = 0.

2: If L 6= ;, solve the IP model Zero-One Programming Model

3: If L = ;, or if L 6= ; and xji = 0 for all j 2 L and i 2 M , then apply the

following:

Wait for the first arrival in the interval (T r
, T + T

r] and if there are none,

then go to 7.

If the first arrival is for patient i, then input ri, t
p
ji for j = 1, ...,m and

wi, and set L = L [ {i} , vi = 1, wi = wi, T
c = ri � T

r
, L = L [ {i} , T =

T � T
c
, T1 = T1 � T

c
, T2 = T2 � T

c and T
r = ri, and go to 2.

4: Apply the following for j = 1, ...,m.

Set nj =
P

i2L xji and Lj = {i 2 L|xji = 1} .

If Lj 6= 0, form a sequence ⇡j = (⇡j(1), ⇡j(2), ..., ⇡j(nj)) for the patients in

Lj such that w⇡j(1) � w⇡j(2) � ...w⇡j(nj).

If Lj 6= ;, set w⇡j(1) = 1, t
p
j0,⇡j(1)

= 1 for j0 2 M\{j}, and v⇡j(1) = 0.

5: Wait for the first patient among {⇡j(1)|j 2 M,Lj 6= ;} to complete surgery

or the next emergency patient to arrive, whichever event occurs first.

If the first event is the arrival of a new patient i, then input ri, t
p
ji for

j = 1, ...,m and wi, and set L = L [ {i} , vi = 1, wi = wi, T
c = ri � T

r
, and

T
r = ri.

If the first event is the completion of the operation for patient ⇡j(1) at time

C⇡j(1), then set T c = C⇡j(1) � T
r and T

r = C⇡j(1).

Set T = T � T
c
, T1 = T1 � T

c
, T2 = T2 � T

c.

6: For each j 2 M with Lj 6= ; and C⇡j(1) = T
r, set Lj = Lj\{⇡j(1)}; if

T + T
r
< C⇡j(1)  T1 + T

r, then set zj1 = 1; and if C⇡j(1) > T1 + T
r, then set

zj1 = 0 and zj2 = 1.

For each j 2 M with Lj 6= ; and C⇡j(1) > T
r, set tpj,⇡j(1)

= max{tpj,⇡j(1)
�T

c
, 0}.

Go to 2

7: Compute the total cost
P

i2L wivi +
P

j2M �j1zj1 + �j2zj2

In step 1, we must set the number of OTs available for surgeries. We then set

the number of patients available for surgeries with their arrival time and weight.

For each patient, their planning duration in each of the OTs available is known

and set. Once all the relevant data is available, a list of available patients for
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the day is now known. For the initial set up, we must set the removal time of

patient from the list (surgery End time) T r = 0 since no surgery has taken place.

In step 2, with the list containing all available data, we feed it into the Zero-One

Programming (ZOP) model and it will choose the OT for each patient for the day.

In step 3, if the list of patients is not empty but one or more OTs is empty

and available for surgery in the time horizon we will wait for the arrival of new

patient (emergency patient) in the interval between last patient removed and end

of time horizon. If a new patient arrives, we input the data for patient and update

the list before feeding it into the IP model. If no patient arrives, then the OT is

closed at the end of the time horizon.

In step 4, we will know the number of patients assigned to each OT. In

each OT, the list of patients is sorted according to their weight with highest

weight scheduled for surgery first. Once the surgery has started, the weight for

the patient and the planning duration in all other OTs are set to an arbitrary

large value to prevent interruption. Once a surgery has started it must continue

until it is completed. Once it has finished, the patient is removed from the list.

In step 5, we wait for the first surgeries among the OTs to finish or the next

emergency patient to arrive, whichever occurs first. If a new patient arrives during

the surgeries, it will trigger an update to the list to include the data for the new

patient and the updated list is fed into the IP model to produce a new schedule.

This new schedule will prioritise the new emergency patient above all other so the

patients will be booked for surgery after one the current surgeries has finished to

be bumped into the slot or to other OTs. On the other hand, if a surgery finishes

first, then the data in the list is also updated.

In step 6, after each trigger, patients that have finished surgery is removed

from the list and the time horizon is updated to reflect the available time left for

surgery. If the time horizon has been reached then overtime band is taken into
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consideration for usage. This will inform the IP model whether to schedule or

reschedule patients to the next day by calculating their costs.

Finally, in step 7, if there are no more surgeries scheduled, we calculate the

total cost.

4.5 Example of Linear Programming Solving

We generate example data sets for one day with 2 OTs and 12 total number

of patients, where 10 regular patients and 2 emergency patients arriving during

the day. We focus on the order in which patients are treated for OT Scheduling

Problem. The main challenge ocurs when emergency patients arrive online in the

system. Every day, we schedule patients in the empty slots of OT time horizon

based on the current information available. The schedule is updated every time a

surgery is completed and when the emergency patients arrive into the system. A

high number of emergency patients arriving into the system and operation times

longer than expected can make other patients move to another OT or they will be

cancelled on that day.

Table 4.1 shows the list of patients, L that are scheduled for the day (pa-

tients 1 to 10) and the emergency patients, Le that will arrive during the day.

Each patient has with them their planning duration and actual duration in each

OT and the weight wj. Table 4.2 shows the time horizon where if overtime is

required (T1 and T2), we set two horizon for overtime and the value of penalty of

overtime usage in this system.

With this list of patients, we feed the data into the IP model and it will

sort the patients into the OTs such that the patients are scheduled into the best
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Table 4.1: Example Data for 12 patients on one day.

Patient
Planning
Duration

Weight Actual
Duration

Emergency time
arrival

1 80 1000 10 100 1000 10
2 130 800 20 140 800 0
3 60 560 15 70 560 0
4 60 990 30 90 90 0
5 110 95 20 120 80 0
6 500 100 15 500 130 0
7 1000 90 40 1000 90 0
8 710 110 25 710 100 0
9 100 80 15 90 100 0
10 90 1000 40 130 1000 0
11 50 50 60 60 50 100
12 70 200 60 80 200 200

Table 4.2: Example Data for Services of Operation Theatre.

Time Horizon T 480 minutes
Upper bound 1 T1 550 minutes
Upper bound 2 T2 700 minutes
Cost Penalty 1 50
Cost Penalty 2 100

OTs that minimise costs and maximise the number of patients scheduled. The

output from the IP model is shown in Table 4.3. We can see that five patients

are scheduled in OT 1 and five patients are scheduled in OT 2 where the total

planning duration for OT 1 is 420 minutes and the total planning duration for OT

2 is 475.

Patients are sorted according to their respective weight to ensure that pa-

tients with higher weight will be operated first, since the weight represent the

urgency of the surgery. Once this is done, we will then have the schedule for the

day and the surgeries can start as shown in Table 4.4.

Once the surgeries are running in the OTs, we wait to see if any emergency

patient arrives, which will require us to reset the schedule. Also, we wait to see

if any surgery ends, which indicates that actual duration di↵ers from planning
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Table 4.3: List of Initial Schedule.

Patient
Operation
Theatre

Planning
Duration

Weight Actual
Duration

1 1 80 1000 10 100 1000
2 1 130 800 20 140 800
3 1 60 560 15 70 560
4 1 60 990 30 90 990
10 1 90 1000 40 130 1000

Total OT 1 420
5 2 110 95 20 120 80
6 2 500 100 15 500 130
7 2 1000 90 40 1000 90
8 2 710 110 25 710 100
9 2 100 80 15 90 100

Total OT 2 475

Table 4.4: Sorted based on weight.

Patient
OT ri

Planning
Duration

Weight Actual
Duration

10 1 0 90 1000 40 130 1000
4 1 0 60 990 30 90 990
2 1 0 130 800 20 140 800
3 1 0 60 560 15 70 560
1 1 0 80 1000 10 100 1000

Total 420

7 2 0 1000 90 40 1000 90
8 2 0 710 110 25 710 100
5 2 0 110 95 20 120 80
6 2 0 500 100 15 500 130
9 2 0 100 80 15 90 100

Total 475

duration. Some surgeries might be shorter than the planning duration or it might

take longer due to complication during the surgery. In our example in Table 4.5,

the first patient finishes after 90 minutes, which is patient 7 in OT 2. Following

this, Patient 7 is no longer considered for scheduling. However, Patient 10 is still

in surgery and continues in the schedule.

Hence at T c = 90, we adjust the remaining time available T = 390, T1 = 460
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and T2 = 610. From Table 4.6, we then continue with patient 8 in OT 2 since the

order of scheduling has not changed. However, for Patient 10 in OT 1, we greatly

increases the weight because as it has already started, it must be completed and

cannot be interrupted even with the arrival of an emergency patient. Hence the

surgery for Patient 8 starts.

Table 4.5: Operation Slot 1

Patient
OT ri

Planning
Duration

wi Slot 1 Time
start

10 1 0 90 1000 40 130 1000 continue
4 1 0 60 990 30 90 990
2 1 0 130 800 20 140 800
3 1 0 60 560 15 70 560
1 1 0 80 1000 10 100 1000

Total 420

7 2 0 1000 90 40 1000 90 Finish 90min
8 2 0 710 110 25 710 100
5 2 0 110 95 20 120 80
6 2 0 500 100 15 500 130
9 2 0 100 80 15 90 100

Total 475

Table 4.6: Next Operation Start

Patient
OT ri

Planning
Duration

wi
Actual
Duration

Slot 1 Time
start

10 1 0 40 2000 500 130 1000 continue 90min
4 1 0 60 990 30 90 990
2 1 0 130 800 20 140 800
3 1 0 60 560 15 70 560
1 1 0 80 1000 10 100 1000

Total 370

7 2 0 1000 90 40 1000 90 Finish
8 2 0 710 110 25 710 100 Start 90min
5 2 0 110 95 20 120 80
6 2 0 500 100 15 500 130
9 2 0 100 80 15 90 100

Total 385
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After T c = 90, the surgeries continue and similarly we wait for the arrival of

emergency patients. The example in Table 4.6 shows emergency patient 11 arrives

into the system at T
e = 100 minutes. The data associated with Patient 11 is

added into the system and we update T
c = 100, T = 380, T1 = 450 and T2 = 600

since the arrival of emergency will prompt us to input the new updated data into

our IP model and it will produce a new schedule as shown in Table 4.7.

Table 4.7: New Schedule after patient 11 arrived

Patient
OT ri

Planning
Duration

wi
Actual
Duration

Slot 1 Time
start

10 1 0 30 1000 500 130 1000 Continue 100min
11 1 10 50 50 60 60 50 New
4 1 0 60 990 30 90 990
2 1 0 130 800 20 140 800
3 1 0 60 560 15 70 560
1 1 0 80 1000 10 100 1000 Delay Delay

Total 330

7 2 0 1000 90 40 1000 90 Finish
8 2 0 710 100 500 710 100 Continue 100min
5 2 0 110 95 20 120 80
6 2 0 500 100 15 500 130
9 2 0 100 80 15 90 100

Total 375

In Table 4.7 we can see that Patient 11 is now scheduled right after patient

10 has finished surgery. In addition to this, the weight for patient 8 is updated

to 500 since the surgery is now in progress and cannot be interrupted. With the

addition of Patient 11, the IP model decides that Patient 1 will be delayed since

the planning duration now exceeds 380 if Patient 1 is included and the cost of

delay is lower than the cost of overtime.

After the new schedule is produced, the surgeries go on as planned and

without the arrival of emergency patients, the schedule is not updated and soon

arrives at 130 minutes where now the surgery for patient 10 is finished and hence

the schedule is updated where T
c = 130, T = 350, T1 = 420 and T2 = 570. Then
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the next surgery follows, where Patient 11 is operated in OT 1 and patient 8

continues without interruption as shown in Table 4.8

Table 4.8: Schedule at 130 minutes

Patient
OT ri

Planning
Duration

wi
Actual
Duration

Slot 1 Time
start

10 1 0 30 1000 500 130 1000 Finish
11 1 10 50 50 60 60 50 Start 130min
4 1 0 60 990 30 90 990
2 1 0 130 800 20 140 800
3 1 0 60 560 15 70 560
1 1 0 80 1000 10 100 1000 Delay Delay

Total 300

7 2 0 1000 90 40 1000 90 Finish
8 2 0 710 70 500 710 100 Continue 130min
5 2 0 110 95 20 120 80
6 2 0 500 100 15 500 130
9 2 0 100 80 15 90 100

Total 345

The surgeries continue without interruption until 190 minutes where surg-

eries for Patient 11 and Patient 8 are finished. Hence the schedule is updated

where T
c = 190, T = 290, T1 = 360 and T2 = 510. The next surgeries go on

as scheduled for Patient 4 in OT 1 and Patient 5 in OT 2 with the remaining

planning duration of 250 for OT 1 and 275 for OT 2. Next, at 200 minutes, Pa-

tient 12 arrives into the system and the list is updated with patient 12 data where

T
e = 200. Here the schedule is updated where T

c = 200, T = 280, T1 = 410 and

T1 = 560. The data is then fed into the IP model and we have a new schedule as

shown in Table 4.9.

We can see in Table 4.9 that Patient 12 is scheduled for surgery in OT 1

right after Patient 4 has finished. With the addition of Patient 12, the surgery for

Patient 3 will be delayed since the IP model has decided that the cost of delay

is lower than the cost of overtime. We can see that the arrival of Patient 12
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Table 4.9: New Schedule after patient 12 arrived

Patient
OT ri

Planning
Duration

wi
Actual
Duration

Slot 1 Time
start

10 1 0 30 1000 500 130 1000 Finish
11 1 0 50 50 60 60 50 Finish
4 1 0 50 990 550 90 990 Continue 200min
12 1 10 70 200 60 80 200 New
2 1 0 130 800 20 140 800
3 1 0 60 560 15 70 560 Delay Delay
1 1 0 80 1000 10 100 1000 Delay Delay

Total 250

7 2 0 1000 90 40 1000 90 Finish
8 2 0 710 60 500 710 100 Finish
5 2 0 100 85 500 120 80 Continue 200min
6 2 0 500 100 15 500 130
9 2 0 100 80 15 90 100

Total 265

increases the weight of patient 4 and Patient 5 are still undergoing surgery, to

prevent interruption.

Table 4.10: Schedule at 400 min

Patient
OT ri

Planning
Duration

wi
Actual
Duration

Slot 1 Time
start

10 1 0 30 1000 500 130 1000 Finish
11 1 0 50 50 60 60 50 Finish
4 1 0 10 990 500 90 990 Finish
12 1 0 70 200 60 80 200 Finish
2 1 0 90 800 20 140 800 Continue 400min
3 1 0 60 560 15 70 560 Delay Delay
1 1 0 80 1000 10 100 1000 Delay Delay

Total 90

7 2 0 1000 90 40 1000 90 Finish
8 2 0 710 60 500 710 100 Finish
5 2 0 100 85 20 120 80 Finish
6 2 0 500 10 500 500 130 Finish
9 2 0 100 80 15 90 100 Start 400min

Total 80
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The surgeries go on as scheduled until the time where a surgery finishes

where T
c
, T, T1, and T2 are reset and the next surgery started as schedule. For

example, in Table 4.10 at 400 minutes, Patient 6 surgery finishes and the schedule

is updated where T c = 400, T = 80, T1 = 150 and T1 = 300. Without the arrival of

any more emergency patients, the final schedule of the day is shown in Table 4.11

where the total duration for both OTs is 500 minutes with two patients delayed

to the next day, which are Patient 3 and Patient 1.

Table 4.11: After 400 min

Patient
OT ri

Planning
Duration

wi
Actual
Duration

Slot 1 Time
start

10 1 0 30 1000 500 130 1000 Finish
11 1 0 50 50 60 60 50 Finish
4 1 0 10 990 500 90 990 Finish
12 1 0 70 200 60 80 200 Finish
2 1 0 90 800 20 140 800 Finish
3 1 0 60 560 15 70 560 Delay Delay
1 1 0 80 1000 10 100 1000 Delay Delay

Total 500

7 2 0 1000 90 40 1000 90 Finish
8 2 0 710 60 500 710 100 Finish
5 2 0 100 85 20 120 80 Finish
6 2 0 500 10 500 500 130 Finish
9 2 0 100 80 15 90 100 Finish

Total 500
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4.6 Example using Generated Data

4.6.1 Data Generation Procedure

In order to test our ZOP model, we run a computational test with randomly-

generated data that test the robustness of our model in real life situation. This

is because the number of patients for each day and duration of their surgeries are

di↵erent. In addition to this, emergency patients arrive randomly and with dif-

ferent number each day. The generated data will simulate the variations between

planning durations and actual durations of surgeries. We will generate 10 sets of

data for each group of OTs being considered. The data generation procedure can

be summarised as follows:

1. Planned processing/operation times for elective patients i:

Generate a planned operation time t
p from the uniform distribution defined

on U [30, 120] for j = 1, . . . ,m with the following methods:

• generate a random number R from 1,2,3

• if R = 1, set tpji = t
p

• if R = 2, set tpji = t
p+ t

e where te is generated from the uniform distribution

U [10, 40]

• if R = 3, set tpji = 1000

If there is no j for which t
p
ji = t

p, randomly select j from 1, . . . ,m and reset

t
p
ji = t

p.

Keep generating patients i until the new value of tp is such that the sum of all

t
p values exceeds 480m–E, where E = 112.5m is the expected planned operation
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time for emergency patients (see below), in which case the process terminates

without the final patient i. We let E be the expected duration of emergency

surgeries. It is equal to the average processing time times 75 multiplied by 1.5m

(75 is the mean of U ⇠ [30, 120]). We set the limit on booking (total duration

time) to be 480m–E or some multiple of E.

2. Emergency patients:

• Generate the number of emergencies to be an integer from the uniform dis-

tribution defined on U [m, 2m].

• Then generate the emergency patients with same processing time distribu-

tion as elective patients.

• Generate arrival times for emergency patients from the uniform distribution

defined on U [1, 480].

3. Weight for patients:

Weight for patient i : wi is generated as follows:

• Elective patients: wi is an integer from the uniform distribution defined on

U [20, 80]

• Emergency patients: wi = 10,000

4. Actual processing/operation times for elective patients i:

Actual operation times for all i and j, tj,i are generated from the uniform

distribution on U [tpj,i � 20, tpj,i + 20]. We set T = 480, T1 = 540 and T2 = 600.

5. Penalties:
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We set the penalties into two bands, where the first is �j1 = 50 and the

second is �j2 = 200 for each overtime band being used. The values are the same

for all theatres.

4.6.2 Computational Test

To test the data, we change the data generation procedure. We want to see if the

di↵erent data types will a↵ect the outcome and decide on the following data:

Data Types:

• Original data generation procedure

• High number of emergency patients

• Low number of emergency patients

The outputs we produce are as follows:

Output Produced:

• Number of patients treated

• Number of patients untreated

• Total cost

• Time (second)

4.7 Computational Results

We present the computational results of our methods using the generated data.

We generate 10 data and present the results of each data and the average of all
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the data. We then change the parameter of the data generation procedure to

reflect di↵erent situation that might occurs. We generate data to reflect increase

and decrease in the number of emergency patients, and increase flexibility of the

OTs, where patients can be scheduled into more OTs (the number OTs that are

incompatible is reduced).

4.7.1 Results using Generated Data

Table 4.12: 2 OTs

Data Number
of Patients
Treated

Number
of Patients
Untreated

Total Cost Time (sec)

1 13 0 100 0.33

2 14 0 100 0.24

3 12 0 0 0.36

4 10 0 50 0.33

5 11 1 30 0.55

6 10 1 40 0.55

7 11 0 200 0.49

8 10 0 250 0.50

9 11 0 0 0.44

10 10 2 170 0.48

Average 11.2 0.4 94 0.43

From Table 4.12, there are around 11 patients on average across the data

sets. We can see that only in three data sets that there are untreated patients.

The total cost suggest that instead of rescheduling, the IP model decided to use

overtime to perform surgery. The average time is 0.44 seconds which suggest that

the IP model can be calculated in a very short amount of time.

From Table 4.13, there are around 23 patients on average across the data

sets. We can see that all data sets no patients were untreated. The is one data
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Table 4.13: 4 OTs

Data Number
of Patients
Treated

Number
of Patients
Untreated

Total Cost Time (sec)

1 25 0 0 0.39

2 22 0 0 0.39

3 23 0 50 0.39

4 22 0 50 0.39

5 20 0 0 0.23

6 25 0 0 0.49

7 22 0 50 0.27

8 23 0 50 0.91

9 25 0 50 0.44

10 22 0 300 0.42

Average 22.9 0 55 0.43

set which has a high total cost. The average time is 0.43 seconds which suggest

that even with more data the IP model works e�ciently.

Table 4.14: 6 OTs

Data Number
of Patients
Treated

Number
of Patients
Untreated

Total Cost Time (sec)

1 36 0 200 0.48

2 35 0 100 0.48

3 32 0 50 0.68

4 35 0 0 0.19

5 31 3 2140 0.65

6 31 3 2140 0.25

7 32 2 550 0.45

8 33 0 50 0.5

9 33 0 50 0.36

10 34 0 0 0.34

Average 33.2 0.8 528 0.44

From Table 4.14, there are around 33 patients on average across the data
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sets. In one data set the number of patients is 36. We can see that in three data

sets that there are untreated patients while the other data sets, all patients were

managed to be treated. The total cost is relatively high and in two data sets the

cost is 2140. The average time is 0.44 seconds which suggest that the IP model

performance does not diminished even with bigger data sets.

4.8 Conclusion

As expected, when there are more OTs, the cost will also increase and that the

output produced will also increased. However, our Zero-One-Programming model

manages to schedule and reschedule patients e�ciently.
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Conclusion and Future Plan

5.1 Concluding Remarks

Our research looks at Combinatorial Optimization Problem in scheduling patients

in the OT based on expected operation time using stochastic operation time when

the patient arrive into the system. Besides that, we consider online problem on

OT where new patients and emergency patients arrive into the system all the time.

We cannot predict the type of patients that will arrive into the system and

their operation time are not known precisely in advanced. We design the models

and developed the models with suitable data.

We generate the variation of data based on our problem when there is a

high number of emergency patient coming into the system and operation time are

longer than expected which can lead to disruption of previously booked patients

and necessary reschedule is needed. Our research are novel because the models

that we developed consider two cost, patient cost and OT cost which are di�cult

to incorporates into our model. These costs play an important role in producing

the schedule because sometimes going into overtime use of OTs might incurred less

137
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cost than scheduling patients to a di↵erent day and vice versa, Besides that, we try

to avoid repeated delay and cancellation of patients are not allowed. We achieved

this by introducing patient’s priority and these priority will change according to

the patient’s conditions. We try to schedule patients as soon as possible based on

their priority, where high priority patients will have precedent over other patients.

As the starting point, we schedule patients using simple heuristic technique

and develop local search procedure. However, local search procedure does not

produce any major improvement because our initial solution was reasonably good.

We proposed simulating annealing procedure to improve rescheduling process and

the results show an improvement in total cost, cost for delay cases and cost of

OT overtime compared with local search and simple heuristic technique. We

proposed both the traditional and updated simulated annealing method where in

the traditional method, patients are chosen at random to be swap while in the

updated version we go through the list in succession. Our variations of data sets

that we generate are good because nearly 96 percent achieved good e�ciency of

the surgery schedule.

In the problem of multiple OTs scheduling in a day, we considered the sched-

ule on the day with the patients booked, emergencies arriving and variations from

projected operation duration. The schedule on the day includes the order in which

patients are treated, and if the emergency arrivals or variations in operation du-

ration takes us over the theatre slot length the cost of either (or both) of overtime

or cancelling operations will be calculated. We actually consider if rescheduling

is required after every surgery because of longer duration than planned or there

are emergency patients that need surgery immediately. If rescheduling is required,

some patients might be moved to di↵erent OTs or cancelled on that day. Our

proposed model is able to capture both the arrival of emergency and the variation

in planning duration and accomodate the schedule accordingly.
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In general, the order in which patients are treated in multiple OTs do not

influenced the outcome greatly, but it seems that sorting by weight/duration seems

to generally do best in terms of cost without reducing the utilisation of the theatres.

More data variation is needed to produce a better conclusion.

5.2 Future Work

Build a new algorithm

We will test a new algorithm with di�cult parameters included in the model.

In this problem, the possible parameters we can consider are value of cost penalty,

range of data, and reasonable time for each patient after they are referred into the

system. We will:

1. Fixing the time from a week to 6 weeks for the emergency patient or regular

patient to be book into the slot in the OT.

2. Looking at di↵erent initial schedule and more complex cases for reschedule.

This require some changes to the parameters in the algorithm.

3. Looking at how much capacity should we allocate to regular patients and

emergency patients. We will consider time or some space in the OT slots for

booking emergency patient.

4. Exploring one of the parameter setting in the algorithm, like waiting time

of every patient after they come into the system using the same model.

5. Include the surgeon/doctor background experience to model the timing of

the duration as another variable.

Disruption Cases
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1. Generate di↵erent type of emergency situation and other real life scenar-

ios. For example, surgeon cancel operation slot, patient does not show up,

system breakdown and other possible disruption situation. We plan to see

how several version (parameter) models using the same data and how we

rearrange a new schedule.



Bibliography

Aarts, E. and Lenstra, J. K., editors. Local Search in Combinatorial Optimization.

John Wiley &amp; Sons, Inc., New York, NY, USA, 1st edition, 1997. ISBN

0471948225.

Ahmadi-Javid, A., Jalali, Z., and Klassen, K. J. Outpatient appointment systems

in healthcare: A review of optimization studies. European Journal of Operational

Research, 258(1):3 – 34, 2017. ISSN 0377-2217.

Ahuja, R., Orlin, J., and Sharma, D. Very large-scale neighborhood search. In-

ternational Transactions in Operational Research, 7(4-5):301–317, 2000. ISSN

1475-3995.

Alharkan, I. M. Algorithms for sequencing and scheduling. Avail-

able at http://faculty.ksu.edu.sa/ialharkan/IE428/Algorithms_for_

Sequencing_and_Scheduling1.pdf, 2005. Accessed: 2017-02-17.

Anderson, E. J. and Potts, C. N. Online scheduling of a single machine to minimize

total weighted completion time. Mathematics of Operations Research, 29(3):

686–697, 2004.

Augusto, V., Xie, X., and Perdomo, V. Operating theatre scheduling with patient

recovery in both operating rooms and recovery beds. Computers & Industrial

Engineering, 58(2):231–238, 2010.

141

http://www.sciencedirect.com/science/article/pii/S0377221716305239
http://www.sciencedirect.com/science/article/pii/S0377221716305239
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00201.x
http://faculty.ksu.edu.sa/ialharkan/IE428/Algorithms_for_Sequencing_and_Scheduling1.pdf
http://faculty.ksu.edu.sa/ialharkan/IE428/Algorithms_for_Sequencing_and_Scheduling1.pdf
http://faculty.ksu.edu.sa/ialharkan/IE428/Algorithms_for_Sequencing_and_Scheduling1.pdf


BIBLIOGRAPHY 142

Ausiello, G. Complexity and Approximability Properties: Combinatorial Optimiza-

tion Problems and Their Approximability Properties. Springer, 1999.

Azadeh, a., Hosseinabadi Farahani, M., Torabzadeh, S., and Baghersad, M.

Scheduling prioritized patients in emergency department laboratories. Computer

methods and programs in biomedicine, 117(2):61–70, 2014. ISSN 1872-7565.

Bard, J. F. and Purnomo, H. W. Preference scheduling for nurses using column

generation. European Journal of Operational Research, 164(2):510–534, 2005.

Basson, M. D., Butler, T. W., and Verma, H. Predicting patient nonappearance

for surgery as a scheduling strategy to optimize operating room utilization in

a veterans’ administration hospital. Anesthesiology, 104:826–834, 2006. ISSN

0039-6206.
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