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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES
SCHOOL OF MATHEMATICAL SCIENCES

Master of Philosophy

by Nor Aliza Binti Abd Rahmin

Increasing population across all age groups has contributed to the increasing de-
mand for health care especially those that require surgeries, thus putting more
pressure on hospitals. The inability to provide adequate and efficient treatment
as a result of resource constraints causes patients to wait longer for treatment.
Waiting for treatment due to unavailability of an operating theatre can result in
both deteriorating health and inconvenience. It is even more frustrating when the
scheduled operation is cancelled because some slots is used for emergency patients
or the scheduled operations are longer that planned. When such situation occurs,
some patients need to be rescheduled.

To resolve this problem, an operating theatre scheduling for emergency and
regular patients is considered. We consider the single operating theatre problem
across multiple days together with the multiple operating theatres problem on
a single day. The aim is to minimise the cost incurred when patients need to be
rescheduled as well as ensure minimal delay and rescheduling. We develop a model
and design an algorithm to schedule operations for patients, taking into account
their urgency. Patients’ urgency depends on their respective situation and changes
depend on several factors.

Tackling the problem of scheduling single operating theatre, we use a heuris-
tic method to provide a starting solution before applying local search and simu-
lating annealing. The schedule is updated daily to take into account variations
from planned durations and the arrival of emergency patients. The rescheduling
of patients may be necessary. We consider the priority of patients and ensure
that top priority patients be considered first in the scheduling and less important
patients can be rescheduled if necessary.

Under the local search technique, we swap every pair of patients if they
satisfy the conditions imposed. After the patients are swapped, we check the total
cost of the swap and compare it with the current cost. If the new total cost is
less than the current cost, the swap will be finalised. We then consider the next
patient until all remaining patients in the list are accounted for and we come out
with the new list of schedule.

Continuing from that, we utilise simulating annealing technique where we
calculate the difference of the total cost (total new cost - total current cost), A
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between a pair of patients that we plan to swap. With this approach, as opposed
to the local search procedure, even when the difference of the total cost is positive,
swapping might still take place but only with a certain probability.

Besides single operating theatre, we also consider the scheduling of multiple
operation theatres in a single day. Rather than using the algorithm technique, we
propose an integer programming model, the Zero-One Programming model and
develop an algorithm that utilises the model in scheduling multiple parallel OTs.
If a surgery runs longer that expected or an emergency patient arrived into the
system, patients can be moved between the available OTs to ensure that surgeries
can still be performed; or if the model decides it is better to reschedule therefore
the patients will be rescheduled to the next day.

In order to test the efficiency of our models and look at the compatibility
of the models with our algorithm, data are generated with different parameters
to see if our proposed models have the ability to lower cost as well as prevent
delays and rescheduling. Moreover, we check the computational time of our algo-
rithm to ascertain whether it can provide solutions within a short amount of time.
Overall, our models show improvement in reducing cost and minimising delay and
rescheduling.
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Chapter 1

Introduction

1.1 Background

Combinatorial Optimization Problem (COP) is the most general of optimization
problems, whereby the goal is to find the best solution on a domain when the
domain is a finite number of feasible solutions. Nondeterministic polynomial hard
time problems (NP-hard problems) are the most important and interesting of these
problems. NP-hard problems refer to the class of decision problem that can be

solved in polynomial time in a nondeterministic Turing Machine.

It is very hard to predict the optimum solution in a nondeterministic ma-
chine because there are multiple possible outcomes for each data input. However,
algorithms can be designed to produce approximate optimal solutions. The usage
of algorithms to solve the COP is more efficient and faster as discussed by Burke

and Kendall (2005), |Grotschel and Lovasz (1995) and [Selman et al.| (1992).

The application of COP are found in a variety of areas including the plan-
ning and management of operations and resources, investment planning, produc-

tion scheduling, transportation planning, communications network and health care
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scheduling (see Yu (2013), Paschos (2013)). In recent years, health care system is
focused on a more efficient health care scheduling to provide high quality services

with minimal possible costs .

Health care providers are facing more complicated challenges to produce
efficient health care scheduling especially with the outbreak of new diseases, de-
mographic changes in the population and strict budget from the government (Hans
and Vanberkel| (2012)). Research of health care problem focusing on the operat-
ing theatre (OT) scheduling problem has been widely conducted, for example by
Boldy (1976), [Smith-Daniels et al. (1988), |Pierskalla and Brailer| (1994), Yang
et al. (2000), Litvak and Long (2000), Van Oostrum et al. (2008), |Girotto et al.
(2010), |Fei et al. (2010b)), and Ghazalbash et al. (2012).

Surgeries performed in the operating theatre will instantly affect patients’
life and well-being which makes the OT a resource with the highest demand in a
hospital. For a hospital, the OT account for more than 40% of its revenues and a
similar large part of its costs HFMA| (2005). Hence the significant requirement, of
equipment and labor for an OT, making it among the most expensive resources
in a hospital. An efficient OT department thus significantly contributes to an

efficient health care delivery system as a whole.

Determining minimum-cost staffing levels that provide adequate coverage
to meet emergency demand is a strategic problem (Hans and Vanberkel| (2012)).
Due to costs, surgeries should not involve too much overtime as the cost of each

additional hour in the OT is greater than the cost of a regular working hour.

In general, scheduling of patients consists of two elements. The first is that
of elective patients where they are usually put into a waiting list for a period of
time before they undergo treatment. The second element is that of non-elective
patients or emergency patients that have to be treated immediately and pose a

considerable challenge because these patients arrive at random.
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Accordingly, suitable planning of operations matched with patients require-
ments of OT and surgeons will improve the efficiency of the OT. However, real-
istically, patients arrive one by one and the treatment required by each patient
varies considerably. Moreover, scheduling decision must be made as patients ar-
rive. Some patients requires the OT more urgently that the others and this should
be reflected in the scheduling decision. We developed a way to systematically

order the way in which the patients are treated.

With the above in mind, this study focuses on online schedule problem of
emergency and regular patients, and reschedule for patients delayed at OT. We
will develop heuristics and metaheuristics algorithm to obtain solutions for this

online schedule problem.

1.2 Objectives

The objectives of this research are:

e To study the main elements of OT scheduling, namely the scheduling of
advance booking for elective patients and the order to treat these patients

according to patient’s type.

e To develop optimisation models for scheduling and rescheduling of emergency
patients and regular patients on a daily basis for single operating theatre
and for a single day for multiple operating theatres running in parallel. The
problem consists of patients arriving online into the system and testing our
data with different algorithms. The models developed will be able to schedule
emergency patients immediately and reschedule other patients by taking
into account the variations in operation duration, while minimising cost and

delay.
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e To design optimisation algorithms using Heuristic’s Technique, Local Search,
Simulated Annealing (traditional and updated) and Branch and Bound method
to improve scheduling and rescheduling process. The algorithms developed

will be efficient to compute and able to produce good quality schedules.

e To test the models of OT scheduling using different parameters and data
types by generating multiple data sets and assessing the robustness of our

models and algorithms.

e To analyse computational test results to evaluate if our models achieve our

aims of minimising costs and reducing delay and rescheduling.

1.3 Overview of thesis

The remainder of this thesis is organised as follows. Chapter 2 provides an overview
of literature in Combinatorial Optimization Problem, health care problem focusing
on OT scheduling in hospitals. Moreover, the technicality of online scheduling and
the different methodologies for solving the problems in our research are explored.
In Chapter 3, we discuss about problem statements, introduce and examine the
different parts of the model, and review all the constraints in our problems. In
addition, our design of algorithm using heuristic, local search and simulated an-
nealing method is presented in chapter 3, together with computational experiment
and results. In Chapter 4, we consider scheduling of multiple operation theatres
in a single day. Finally, Chapter 5 contains the concluding remarks and future

works.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we will explore some of the basic ideas and review the literature
in relation to complexity theory, health care scheduling and efficient algorithms.
First, a discussion of Combinatorial Optimization Problems (COP) and the related
theory such as N P-hard problems will be presented together with the application
of COP in health care. Next, we will delve wider into the hospital environment
and review past research that is linked to some of the health care practitioners that
use scheduling in their working environments especially nurses and physicians. We
will also explore in detail the different research in theatre scheduling problem. We
will then consider the literatures in relation to the method of solving the problems
where certain algorithms and methods will be reviewed. This literature review
will guide us to fill the gap in current research problems as well as to approach
certain well-known problems. Certain methods that have been discussed in other
problems are suitable to be extended to solve the problem of online scheduling.

Besides that, the aims and constraints of certain scheduling problems such as
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minimising tardiness, preventing delay and reducing costs can be used in relation

to our research in operation theatre scheduling and rescheduling.

2.2 Combinatorial Optimization Problem

Combinatorial Optimization Problem (COP) is a part of optimization problem to
find the best possible solution for the value of objective function (the function
is either minimised or maximised) while certain constraints associated with the
function are satisfied. To put it in simple terms, how do we obtain the best

solution under certain conditions.

An instance of a COP can formally be defined as a tuple (F, F, f, f') with

the following meaning;:

IF : the solution space (on which F and S are defined),
F' : the feasibility predicate (or the set of solutions),
f : the objective function f: F — R,

f: the minimum.
The feasibility predicate F' induces a set:
S : the set of feasible solutions: S = X € F : X satisfies F.

The goal is to find a feasible solution where the desired minimum of f is attained.

It is worth mentioning here that COP can be divided into two main com-
ponents. The first component is the search component (among the solution space
IF, find a solution from the set S) and the second is the optimisation component
(among all solution in S, find one with the best quality). However, trivial cases

might occur from these two components. On one hand, the COP might become a
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pure search problem where it might be difficult to find a solution at all or that all
solutions are the same in terms of quality (f is a constant function or that f’ can
be chosen arbitrarily). The other is that the COP becomes a pure optimisation
problem where all the solution space can be feasible solutions or that it might be

difficult to find solutions of high quality (F = S5).

Under complexity theory, optimisation problems can be divided into two
classes, P and NP. P problem is the set of problems that can be solved in polyno-
mial time on a deterministic Turing machine. On the other hand, NP problem (the
NP stands for non-deterministic polynomial) is the set of problems that can be
solved in polynomial time on a non-deterministic Turing machine. An important
theoretical question in computer science (and by extension, Operations Research)
is whether P = NP. This problem is yet to be proven and it is widely believed that
P # NP (Neumann and Witt (2010)). It is one of the millennium problems of
The Clay Mathematics Institute which offers $1 million for the solutions to these
problems (Cook| (2017)).

An important subset of the NP problem is the NP-complete problem where
a problem p is said to be NP-complete if (i) p is in NP and (ii) every problem in
NP is reducible to p in polynomial time. Any problem that satisfies the second
condition is said to be NP-hard (even if the first condition is not met) (Leeuwen
(1990)). Another way to look at the second condition is that a problem is said to
be NP-hard if it is at least as hard as any other problem in NP. The NP-hardness
of a problem suggest that it is impossible to find an optimal solution without
the use of an essentially enumerative algorithm, for which computation times will

increase exponentially with problem size (Aarts and Lenstra (1997)).

As an alternative, an NP-hard problem means that it cannot be solved in

polynomial time and if a sub-problem is NP-hard, then the main problem is also
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NP-hard. However, NP-hard problems do not necessarily means they are NP-
problems. Many COP are NP-hard problems as presented by Michael and Johnson
(1979) and Ausiello| (1999). COP has been applied in a wide variety of important
fields such as telecommunications, computer network, transportation, planning
and scheduling. A good first introductory reading on COP can be found in [Wolsey
and Nemhauser| (1999), Pardalos and Resende| (2002) and |Leung (2004).

In the instance where an interesting COP has been proved to be NP-hard,
there are several methods to approach and solve it. A perfect solution to the
problem is usually difficult to find but a satisfactory solution is always beneficial.
One can argue on the tractability of the problem (different problems have different
computation time constraints) but the solution should be produced in reasonable
computational time. If given enough computational resources, we can check for
solutions in a longer time frame and it should produce at least one solution in a
sensible amount of time. However, it would be better to use these resources for
many problems rather than just one. There are many other methods to solve the
problems, the two most widely used and discussed are heuristics and approxima-

tion algorithms.

Heuristics are algorithms that produce good quality solutions (not optimal
or perfect), but sufficient enough for the intended purposes. Although heuristics
might not explore the entire search space but it is able to produce good solutions
within reasonable time. The combination of quality solution with reasonable time
makes heuristics one of the preferred method in optimisation (Marti and Reinelt
(2011)). There are many heuristic methods that can be used to solve any partic-
ular problem which are very different from each other in terms of the algorithmic
approach or optimisation aim. |Marti and Reinelt (2011) listed several classes of
heuristics such as (1) Decomposition Methods, (2) Inductive Methods, (3) Re-
duction Methods, (4) Constructive Methods and (5) Local Search Methods. The

constructive and local search methods form the foundations of the metaheuristic
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procedures ((Aarts and Lenstra, 1997)). Constructive heuristics is the method
of generating a solution to a problem starting from zero (or empty solution) and
then extending the current solution until a complete solution is constructed. Local
search heuristics (or local improvement) starts with complete or feasible solution
of the problem and tries to improve it by local move. Each step of move will
continue moving from one solution to another with a better value until there is no

other way to improve it.

On the other hand, approximation algorithms are similar to heuristics but
they require polynomial run times and do not ensure finding an optimum solu-
tion. Under this method, we accept that finding the optimum solution to the
problem will be inaccessible, and tries to look for provable close to optimum solu-
tions. Provable solution quality and provable run-time bounds are the reasons that
make approximation algorithms mathematically robust when compared to heuris-
tics (Williamson and Shmoys| (2011)). An algorithm is a factor « approximation
(v -approximation algorithm) for a problem if and only if for every instance of the
problem it can find a solution within a factor a of the optimum solution. If the
problem at hand is a minimization then a>1 and this definition implies that the
solution found by the algorithm is at most « times the optimum solution. If the
problem is a maximization, a<1 and this definition guarantees that the approxi-
mate solution is at least o times the optimum. Thus, a %—approximation algorithm
for a maximization problem is a polynomial-time algorithm that always returns a
solution whose value is at least half the optimal value (Williamson and Shmoys

(2011)).

Historically, COP can trace its roots in economic problems, where the main
aim is to plan and manage limited resources efficiently (Morton and Pentico
(1993)). Since then, more technical applications that explain the economic needs
of efficient resources planning were studied and modelled as combinatorial problem

(Yu (2013)). Some examples in relation to economic planning is the sequencing
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of machines, scheduling of production design and layout of production facilities.
Nowadays, discrete optimisation problems are thriving everywhere. They are used
in portfolio selection, investment planning, vehicle routing planning, scheduling of
trains and air planes, assignment of workers and revenue management ([Yu (2013),
Paschos| (2013)). The list is almost limitless. For the purpose of our research, we

will focus on the problems in health care.

In recent years, where resource management are more inter-connected, the
important problems in health care are also related to transportation (Schmid and
Doerner (2010)), building management (Bowers and Mould (2002)), personnel
management (Moz and Pato (2003), |Gendreau et al. (2007)), medical equipments
(Guinet and Chaabane| (2003)), facilities and related services. In addition, another
area that is studied in relation to health care is the delay problem in providing
health care especially in surgeries. Delay in surgeries not only increases costs
incurred to the hospital but also causes dissatisfaction to the patients. Motivated
by the need to efficiently schedule elective surgeries while ensuring that the OT is
available should it be needed for emergency, this research looks into the possible

method of scheduling and tries to ascertain the best one to be implemented.

2.3 Scheduling

Given finite resources, the main aim is to ensure that all the resources are used
efficiently and no wastage occurs. This is where scheduling and sequencing play
important roles especially in production planning. Sequencing and scheduling are
concerned with the optimal allocation of scarce resources to activities over time

(Lawler et al. (1993)).

It will never be possible to talk about scheduling without mentioning the idea

of sequencing since both are intertwined. In a more technical setting scheduling
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and sequencing involve jobs to be completed by machine in a certain order. In
technical term, scheduling is defined as assigning each operation of each job a
start time and a completion time on a time scale of machine within the precedence
relations. On the other hand, sequencing means that for each machine in the shop,
one has to establish the order in which the jobs waiting in the queue in front of
that particular machine have to be processed (Alharkan (2005)). In relation to

project management, [Morton and Pentico (1993) defined scheduling as:

Scheduling is the process of organizing, choosing, and timing resource
usage to carry out all the activities necessary to produce the desired
outputs at the desired times, while satisfying a large number of time
and relationship constraints among the activities and the resources.

(Morton and Pentico (1993, p. 5))

As stated, scheduling will have the element of time involved in the decision-
making process. The aim of all schedules is to perform all the necessary tasks with
minimal time while using the least amount of resources. Some scheduling process

looks into reducing the tardiness of the tasks while minimising costs.

2.3.1 Classical Scheduling

The basic assumption in classical scheduling theory is that processing times of jobs
are constant. Herrmann| (2006) stated that classical scheduling theory assumes a
static, finite set of jobs waiting to be scheduled onto a production system and little
consideration is given as to how this set may have arisen, its size, composition
or whether it is static. In terms of the process, classical models have considered
many different machine configurations from single stage, single machine to complex
job shop configurations with multiple potential routes, and parallel non-identical

machines at some or all processing stages.
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The theory of classical scheduling can be summarised as follows (Herrmann,

2006, p.304) :

The classic sequencing/scheduling problem involves a set of jobs and a
set of resources, where resources perform operations and each job re-
quires one or more operations for successful completion. Job sequences
for each resource (or equivalently, resource routes for each job) must
be determined such that some combination of objectives is optimized
and relevant constraints are satisfied. Common objectives include (i)
makespan minimization, (ii) flow time minimization, and (iii) mini-
mization of the number of tardy jobs. Example constraints include (i)
job preemption, (i) precedence relationships, and (iii) each resource

can process at most one job at a time.

Early on, researchers tried to find the best possible rule to schedule n jobs on a
single machine when job j becomes available for processing at its release date r;
with processing time p;. Usually, these jobs will have some weight attached to it.
In essence, a job j usually has the following information associated with it (Leung

(2004)):

Processing Time (p;;) - If job j requires processing on machine 7, then p;; rep-
resents the processing time of job 7 on machine ¢. The subscript ¢ is omitted

if job j is only to be processed on one machine (any machine).

Release Date (r;) - The release date r; of job j is the time the job arrives at the

system, which is the earliest time at which job j can start its processing.

Due Date (due;) - The due date due; of job j represents the date the job is
expected to complete. Completion of a job after its due date is allowed, but

it will incur a cost.
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Deadline (due;) - The deadline due; of job j represents the hard deadline that

the job must respect; i.e., job 7 must be completed by due;.

Weight (w,) - The weight w; of job j reflects the importance of the job.

In addition, each job j will have its completion time, CT}. Extending from
that, the lateness of job j is defined as Late; = C'T; — due; and the tardiness of
job j is defined as T'ardi; = max(Late;,0). The unit penalty of job j is defined

as U; = 1 if CT; > due; ; otherwise, U; = 0.

In terms of the objective function, the function that is optimised is always
a function of the completion times of the jobs. The classical objective functions

that are usually utilised are as follows (Leung (2004)):

Makespan (C7T),q:) - The makespan is defined as max(CTy,...,CT,).

Maximum Lateness (Late,, ;) - The maximum lateness is defined as

maz(Latey, ..., Late,).

Total Weighted Completion Time () w;CT;) - The total (unweighted) com-

pletion time is denoted by > CT} .

Total Weighted Tardiness (> w;Tardi;) - The total (unweighted) tardiness is
denoted by > Tardi;.

Weighted Number of Tardy Jobs (> w;U;) - The total (unweighted) number
of tardy jobs is denoted by > U; .

One of the popular methods to classify scheduling problems was introduced
by (Graham et al.| (1979) by using the «|g|y notation. The « field describes the
machine environment and contains a single entry. The ( field provides details of

job characteristics and scheduling constraints. It may contain multiple entries or
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no entry at all. The ~ field contains the objective function to optimize and it

usually contains a single entry.

For single machine scheduling, a number of efficient algorithms have been de-
veloped to provide optimal solutions. The most notable are the work by |[Jackson
(1955, 1956) and [Smith (1956). |Jackson| (1955) proposed that a well-known prob-
lem of minimizing the maximum lateness on a single machine can be solved in
O(nlog(n)) time by sorting the jobs in non-decreasing order of their due dates
due; < duey < ... < due,. This method of sequencing is called the earli-
est due date (EDD) rule or Jackson’s rule. Note that Jackson’s rule also pro-
duce the optimal schedule for the problem of minimising the maximum tardiness

Tardime,: = max{0, Late,,.. } on a single machine.

As stated earlier, some jobs have certain weight associated with it. With
weighted jobs, the objective in the problems is to find a schedule to minimize
> w;CT} (average weighted completion time). The basic idea in this context is
to minimise the completion time ) i CTj on a single machine with job j having a
processing time p; and that all jobs are available at time 0. Ordering the jobs using
the Shortest-Processing-Time (SPT) rule, where whenever a machine is free for
assignment, assigning job with the smallest processing time among all unassigned
jobs, will give an optimal schedule (Leung (2004)). With weighted jobs, the same
idea follows where the objective is to minimise ) ; w;CT}; where jobs are scheduled
in non-decreasing order of the ratio p;/w;. This procedure also has a simple

optimality rule as stated by Smith| (1956) (known as Smith’s rule).

As production processes evolve and become more complex over time, schedul-
ing techniques also evolve to accommodate the true nature of the processes. This
in turn creates other branches of scheduling theory and abandons the simplis-

tic nature of the classical scheduling theory as well as considers more demanding
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constraints that need to be achieved. However, the objectives of classical schedul-
ing such as minimising makespan, minimising total weighted completion time and

reducing tardiness remain the basis for many of the research.

Among the theories considered is how to schedule parallel identical machines
and parallel unrelated machines. For parallel identical machines, there are m
identical machines in parallel. Each job j requires a single operation and may be
processed on any one of the m machines. Besides that, there are the concept of
unrelated machines, where there are m machines in parallel, but each machine can
process the jobs at a different speed. Machine 7 can process job j at speed s;; .
The time p;; that job j spends on machine 4 is equal to p;/s;; , assuming that job

7 is completely processed on machine ¢ .

In general, there are two decisions to be made in parallel-machine scheduling
problems. First is to assign jobs to the machine and second is to determine the
sequence of the jobs on each machine. Obtaining optimal solution to the problem
of scheduling parallel machine is not easy and researchers usually employ heuristic
algorithms to tackle this problem. In most heuristic algorithms, the list scheduling
method is the method of choice (Shim and Kim|(2007)). Under the list scheduling
method, when a machine becomes available for processing a job, the jobs that can
be processed on the machine at the time is selected based on a certain priority
rule and scheduled on the machine. Similarly, when a job becomes available for
processing, a machine is selected according to a priority rule among those that
can process the job, and therefore the job is scheduled on the machine. Another
thing to consider in scheduling is the idea of unrelated pair of assignments - if the
completion time of jobs ¢ and k£ remain unchanged when we reverse the order at

which they are scheduled, then the jobs are unrelated.

List scheduling is the most popular scheduling approach since it is simple
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and that any optimal schedule can be constructed by list scheduling with an ap-
propriately chosen list. Besides, since list scheduling requires no knowledge of
unscheduled jobs as well as of all jobs currently being processed, it is very power-
ful in online scheduling and especially so in online nonclairvoyance scheduling, in

which it remains a dominant heuristic (Leung (2004)).

2.3.2 Online Scheduling

In off-line scheduling, the problems are all deterministic where all information
regarding the jobs is available in advance. In this setting, the arrival of jobs and
the processing time are known and fixed. However, in real life, scheduling decisions

have to be made with incomplete or partial information.

In online scheduling, it is assumed that the arrival times of jobs are not
known in advance (jobs may arrive at any time) but once a job arrives all of the
data (i.e. processing times) are known. Usually, the main aim of the schedule is
to minimise total completion time or to minimise total tardiness or idle time, but
the aims varies from problem to problem. Online scheduling is very useful in our
research since information is reviewed at all time. There are many examples of
online scheduling in the literature such as |Lu et al. (2003), Pruhs et al. (2004),
Anderson and Potts| (2004), Liu et al. (2011), [Potts and Strusevich (2009), Tao
et al. (2010) and [Liu et al.| (2011).

To put it into our scenario, we do not know which patients will arrive into
the system. Some patients are referred by doctors, and some patients arrive from
referral by the emergency department. Once a patient arrives, the time required
in the OT is known since most hospitals currently use software designed by com-
mercial surgical scheduling systems from electronic medical record vendor, where
the prediction is based upon a moving average of previous cases, based on surgeon

and procedure codes (Hosseini et al. (2015)). In some cases, the surgery is longer



Chapter 2 Literature Review 17

than expected, which causes the last patient to be delayed to the next day. Some
emergency patients need to be operated as soon as possible. At the end of each
day, we have new information about the patient’s priority (patient’s priority is
defined in the next chapter). Hence, our online scheduling planning procedure is

to update the existing schedule of the OT daily based on the patient’s priority.

2.3.3 Stochastic Scheduling

It is undoubtedly important that everybody involves in surgery should understand
that although we can largely predict what will happen during surgery, there will
always be some random elements present. Although surgeries may run smoothly,
undoubtedly there are times where incidents might occurs, especially if there is
any finding that might require some changes to the procedure that require extra

time.

Whenever there are one or more random features in a model, the first thing
to consider is whether it can be classified as a stochastic process. In particular,
stochastic scheduling is a problem where scarce resources must be allocated over
time to jobs with random features. In stochastic scheduling, the population of jobs
is assumed to be known, whereas the processing times of jobs are random variables.
Assignment of jobs and their processing times are modelled by specifying their
probability distributions (which are assumed to be known). The actual processing

times are known only after completion of the jobs.

In general, stochastic scheduling models can be classified into three broad cat-
egories: (i) models for scheduling a batch of stochastic jobs, (ii) multi-armed bandit
models, and (iii) models for scheduling queuing systems (Nino-Mora (2009)). Our
research is related to the third category where models in this category involves
the design of optimal service disciplines in queuing systems, where the set of jobs

to be completed, instead of being given at the start, arrives over time at random.
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In on-the-day scheduling, strictly speaking, not all jobs (patients) arrive over time
at random because the original schedule already existed. However, some patients
(emergency patients) do arrive at random. Also, sometimes there is a delay that
causes the scheduled patients to 'arrive’ again into the system. The arrival of the
emergency patients and the occurrence of delay (the time taken to complete the
surgeries) are what we consider as random.The assumptions will be expounded in

the next chapter.

Mancilla| (2011) considered two problems of stochastic scheduling in OT.
The first problem is in sequencing and scheduling of surgeries in a single operating
room with the goal of minimising patient waiting time, OT idle time, and staff
overtime. The second problem is sequencing a single surgeon in parallel OTs.
While the surgeon is operating in one room, cleaning and set up procedures are
being done in the other. The goal is to produce a sequence and schedule that
minimise the surgeon’s idle time, OT staff idle time, and staff overtime in each OT.
In both problems, the approach taken is based on stochastic integer programming
and sample average approximation. In our study, we will consider the problem of
scheduling and re-scheduling patients in both single OT and multiple OTs with

the aim of minimising cost and delay.

2.4 Scheduling in Hospitals

Hospitals are an integral part of human health with the advances in medical sci-
ences. Hospitals are becoming more significant in providing services to patients in
part because of the specialisation of the different branches of hospital care. Proper
scheduling of all the components is vital in achieving their goals. Some of the pop-
ular components in scheduling problem are the scheduling of nurses, physicians,

outpatient clinics and OTs.
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2.4.1 Nurses

Currently, scheduling nurses is also related to OT and research into this area has
been published in several papers on rescheduling approach in nursing problem
(see (Cheang et al. (2003) for a survey in this subject). In this area of research,
the term roster is used to define the set of all nurse schedules of the unit. For
example, Moz and Pato (2003) developed an integer multicommodity flow model
for the problem of Rerostering Nurse Schedules. They test the performance using
heuristic and integer optimizer package. The goal is to help head nurses in their
rescheduling task. They found that it is possible to obtain an optimal schedule in
reasonable computational time and that the heuristic results are also helpful when

the optimisation procedure is too time-consuming.

Focusing on the same problem, Moz and Pato (2004) extended the research
with harder constraints (such as labour contract rules and institutional require-
ment). Two new integer multicommodity flow formulations were developed where
the first aims at optimising a flow in an n-cardinality level network while the sec-
ond is the aggregation of the first. They proposed that the second formulation is
more suitable for the general cases and have better computational results. Moz and
Pato (2007) described constructive heuristics and applied several versions of ge-
netic algorithms such as random keys encoding, crossover and mutation operators,
and hybridisation to the nurse rerostering problem. Their main aim is to tackle
the problem of rebuilding nurse schedules when unexpected staff absences arise.
They performed tests with real data and concluded that good quality solutions

can be achieved within the bound of the hospital.

From the nurses’ points of view, their preferences in taking days off should
also be considered when rescheduling decision is made. Bard and Purnomo| (2005)
solved the nurse preferences using a robust column generation procedure that

combines integer programming and heuristics. Their result made an improvement
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to the shift structure. They stated that good solutions can be obtained within a

few minutes in the majority of cases.

Yeh and Lin (2007) proposed a simulation and genetic algorithm to adjust
the nurses’ schedule at a hospital emergency department without hiring additional
staff to minimise the patients’ queue time. They run a computational analysis
and make comparisons and found that appropriate adjustment to the schedule
will reduce patients’ queue time which increases the quality of patient-care and
satisfaction. This showed that a minor adjustment to the problem can greatly
increase the quality of the schedule with existing resources without the need of
additional staff which suggest that even with limited resources, a better schedule

can always be achieved.

The main take from the problem of nurse scheduling is that when trying to
create a roster, the main constraints mostly lie with the rule of labour contract,
hospital administration’s rule and the preference of the nurse. Heuristics and meta-
heuristics have been researched and applied to this problem and have produced
mixed success. Other methods such as genetic algorithm and branch and bound
have also been successfully applied (Cheang et al.| (2003)). We can deduce that
method like genetic algorithm is suitable to the nurse scheduling problem since
nurses have preferences that needs to be consider while producing the schedule.
In our research, we do no take into account these factors and only consider the

cost and type of patients. Our research will focus primarily on the patients.

2.4.2 Physicians

Unlike nurse rostering which has been extensively studied in the literature, max-
imizing satisfaction matters primarily in physician scheduling, as physician re-
tention is the most critical issue faced by hospital administrations (Carter and

Lapierre (2001)). In addition, while nurse schedules must adhere to collective
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union agreements, physician schedules are more flexible and driven by personal
preferences (Gunawan and Laul (2013)). There are several software packages that
are available to address this problem but the benefits from these packages are still

not fully reviewed.

Carter and Lapierre (2001) studied the problem of scheduling emergency
room physicians. They interviewed physicians in order to understand emergency
room scheduling problem. They stated that the real scheduling problem is difficult
to assess because physicians’ working conditions are usually based on informal
mutual cooperation which is not documented. They proposed how to modify an
existing scheduling rules to develop techniques which produce better schedule and

reduce the time to create one.

Examining the same problem, Gendreau et al.| (2007) proposed generic forms
of the constraints encountered and reviewed several possible solution techniques
that can be applied to the physician scheduling problems. The solutions consid-
ered are tabu search, column generation, mathematical programming and con-
straint programming. They discussed the suitability of each method depending on
the specific conditions and discussed the problems in performing computational

computations of solution techniques.

Gunawan and Lau| (2013) analysed the problem of assigning master physi-
cian scheduling problem which included physician’s full range of duties such as
surgery, clinics and administration where the aim is to satisfy as many physicians’
preferences and duty requirements as possible. It involved assigning physician ac-
tivities to the appropriate time slots over a time horizon by taking into account
rostering and resource constraints together with physician preference. They pro-
posed mathematical programming models that represent different variants of this
problem. The models are tested using real cases and randomly generated prob-

lem. However, if the problem cannot be solved optimally within reasonable time
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by the exact method, heuristic algorithm (local search) is proposed which provided

computational results of local optimum.

Unlike nurse scheduling, the physician scheduling problem requires more cre-
ative solution that resulted in many heuristics approaches. This is mainly because
physician schedules are more flexible and primarily based on individual preferences
since physician retention is the most crucial issue faced by hospital administra-
tion (Carter and Lapierre (2001)). This issue of preference will not be considered
in our research since we will mostly only consider cost and patients’ type in our

scheduling constraints.

2.4.3 Outpatients

Operational Research has been exploited in health care settings since at least as
early as 1958, when it was applied to outpatient departments where waiting times

had been a frequent cause of complaints (Powell (2006)).

Some of the critical and important operational problems are in the hospi-
tal system. This system is related with patients’ expectations of the services they
received. Lorber (1975) suggested that medical personnel expect patients to be co-
operative and undemanding while they adhere to the hospital routines. If patients
do not conform to their expectation, they are labelled as 'problem patients’ and
may not be served properly. Although adequate care is given to these 'problem
patients’, the quality of service is minimum when compared to the superior care
given to the patients that followed hospital procedures without any complaints.
This situation should not occur and including these problematic patients into the
modelling as a factor is unethical. Only the patients’ type will be considered and
not their behaviour towards medical personnel. In our research, we assume all pa-
tients will be receiving equal quality of care and unpunctual or no-show patients

do not occur.
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Ho and Lau (1992) investigated the various rules for scheduling outpatients
appointments and their ability to minimise a weighted sum of medical personnel’s
and patients’ idle-time costs. They showed that idle times are affected by the
probability of no-show, the coefficient of variation of service times, and the number
of patients per clinical session. Theoretically, an appropriate scheduling rule can be
identified only if one knows the values of these parameters and the ratio between
the medical personnel’s and patients’ idle-time costs. The rules are evaluated
using simulation and the results are presented in the form of efficient frontiers,
together with a simple procedure for identifying the best scheduling rule for given
environmental-parameter values. This suggests that if we know or can approximate
some of the factors such as service time or the number of patients per session, we
can schedule more efficiently. Hence, we will study the service time (both expected
and actual) and the average number of patients per day in our research and try

to schedule both in one day and throughout the whole system efficiently.

Klassen and Rohleder| (1996) addressed the problem of scheduling patients
who call without knowing which type of patients may call later. The aim is to
compare various scheduling rules in order to minimise the waiting time of patients
and the idle time of the service provider. In order to reproduce the environ-
ment experienced by a typical family in an outpatient clinic, they interviewed the
receptionists at two clinics which served as basis for the parameter that were in-
corporated in the model. The purpose of the interviews was not to obtain specific
data but rather to understand what information is available to the receptionists
and try to ascertain which factors influence performance of the system. The inter-
view verified that the receptionists do have knowledge about the patients service
time characteristics which is used to differentiate between patients and develop
various scheduling rules. Based on that and prior research, they developed a sim-
ulation model of dynamic medical outpatient environment. They suggested that

the best decision depends on the goals of particular clinic and the environment it
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encounters. They also stated that scheduling clients with low standard deviation
at the beginning of the session is one of the best rules. This finding suggests that
by identifying the factors that might influence scheduling decision, a more realistic
approach might be considered such as setting certain rules for the earlier patients

might be beneficial in some situation while other rules in another situation.

Cayirli and Veral (2003) reviewed the previous literature on appointment
scheduling for outpatient services and analysed appointment system which satis-
fied the objective of the system. They found that the practical effect of the ap-
pointment system is very minimal and they urged that the gap between theory and
practice should be narrower in the future. For example, they suggested that future
research should develop easy-to-use heuristics that can be utilised to choose the
best appointment system for individual clinics and more empirical data should be
used to identify probability distribution that represent actual service time. They
also stated that there is a void in capturing the arrival patterns that incorporate
unpunctual patients, walk-ins, and emergencies. There is also a need to study
walk-in seasonality. In addition, they stress the need to use multiple measures
of performance to evaluate the appointment system which include “fairness” as a
factor and not only consider only cost as factor. These findings inform us that we
need to develop an easy-to-use heuristic which incorporate the probability distri-
bution of the arrival time and the service time. Most importantly, we will include

the arrival of emergencies in our model.

Huang et al. (2012) described a design of appointment system in outpatient
facilities where patient waiting time and waiting for physician idle time are con-
sidered and that it meets the scheduling policies without overbooking or double-
booking. They proposed an approach bases simulation which contains several steps
in obtaining the solution. First, data on the treatment times was collected to esti-
mate time parameters and distribution for each visit type. Then simulations were

run under any declared policy or constraints. Lastly the optimal schedule for each
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visit type was developed and then the patient arrival schedule was constructed.
They stated that the results can effectively reduce patient waiting time as much
as 56% without significantly increasing physician idle time per patient and still
allow physician to see and schedule the same number of patients per clinic session.
However, one limitation for this approach is that patient no-show is not included

in the model.

In light of all these research, our research will focus on creating a system
which include patients’ type as a scheduling factor and the need to amend the
schedule to cater for the arrival of emergency patients that need immediate medical
attention. We will also measure the performance of our method based on several

criteria so that our method can address existing issues related to outpatients.

2.5 Theatre Scheduling Problem

In the previous section, we discussed some of the scheduling problems related to
the hospital environment which focussed on the hospital staff. Now we will discuss
the physical side of the hospital environment and go directly to the center of our
problem which is scheduling OT. Scheduling OT for elective surgery is a complex
task because many factors need to be taken into consideration such as surgeon
priorities, availability of nurses and anaesthetists and the availability of suitable
equipments. Surgeries are critical component in a hospital, not only for their
costs but also because of their direct impact on patient’s health. OT management
focuses on maximizing the number of surgical cases that can be done on a given

day and minimizing the required resources and related costs.

One of the major priorities of health care institutions are effective schedul-

ing of OT while reducing their costs and maintaining high-quality services. Many
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researchers such as|/Cardoen et al.| (2010), Augusto et al. (2010), |Guinet and Chaa-
bane (2003), |Jebali et al. (2006) and [Dexter| (2000) have carried out research in
scheduling OT to improve surgical scheduling whilst achieving the objectives of

the hospitals.

Early in the history of OT scheduling, most of the schedules are done man-
ually. This task is performed by a single clerk in small hospitals and by an in-
terdisciplinary team for large institutions. Later, in the late 1970s, optimal OT
scheduling was developed in order to eliminate the need to cancel surgery because
of insufficient surgical beds. |Ernst et al. (1977) were among the first to use com-
puter to produce OT schedule automatically. They developed a software program
that includes a particular day for sorting patient’s priority case, time and surgeon
priority and room preference before assigning procedure’s operation room. With
this method, they managed to consistently reduce discord among OT personnel.
Similar to this case, we will also consider patients’ priority case, having proven
that patients’ case has been included in the early literature which shows that it is

an important factor to consider.

The methods of advance scheduling patients and allocating scheduling on
surgical demand was reviewed by Magerlein and Martin (1978). They define ad-
vance scheduling as the process for determining which patients are to be scheduled
into a surgical suite on a particular day; allocation scheduling is the process of de-
termining the sequence of cases within an operating theatre on a particular date,
given that a slate of patients has been identified. |Augusto et al. (2010) discussed in
their literature review (citing |Jebali et al. (2004)) that depending on the OT type,
there are two surgery scheduling strategies, block scheduling and open schedul-
ing. The policy of block scheduling is to establish a timetable called the Master
Schedule and allocate the time slots to surgeons, group of surgeons or medical
specialities. In the open scheduling policy, patients are scheduled without any

speciality-related restriction. The authors considered the situation where patient
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recovery is allowed in operating room due to a crowded recovery room in their
open scheduling problem and developed a two-staged heuristic method to con-
struct weekly surgery schedule considering the availability of surgeons and places
in recovery room. In our research, we will consider the open scheduling policy in
the sense that patients are scheduled without any restriction on the type of the
surgery. This is because under the open scheduling system, the schedule is created
prior to the day of surgery. The schedule specifies which surgeries are assigned to
which OTs and their start time as opposed to the block-scheduling system, where
either individual or groups of surgeons are assigned blocks of OT time in a periodic
schedule (weekly or monthly). The surgeons may book cases into their assigned
blocks subject to the condition that the cases fit within the block time (Gupta
(2007)).

Dexter and Traub (2002) considered elective case scheduling where the aim
is to maximise the efficient use of OT time by considering scheduling a new case
into the OT using two patient-scheduling rules namely Earliest Start Time and
Latest Start Time. Historical duration data is analysed to study the performance
of the rules. The difference between the two rules were only a few minutes per
OT and that depending on the objective, either one should be used with some
restrictions in place. We will consider the feasibility of using any rule on the start

time or decide to stick with one particular rule.

Gerchak et al. (1996) discussed the problem of planning for elective surgery
when the capacity of OT is shared with emergency surgeries. They discussed
the problem of admitting elective surgeries when the OT is mostly used by the
emergency department. Admitting too many elective surgeries might worsen the
patient’s health, exceeding the hospital capacity and producing less productive
work. They did not consider patient’s priority in their model and their work is
extended by Min and Yih (2010b) which considered the effect of patient priority

on the surgery schedule.
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Min and Yih (2010b)) stated that patient priority should be considered in the
surgery schedule and that insufficient consideration may result in an ineffective
schedule. They also suggested that the higher number of emergency patients
arriving and the duration of surgery also contribute to the inefficiency of surgery
schedule. In their paper, a set of patients are selected from a waiting list at the
beginning of each period and the schedule is produced based on priority. They
made the decision of the number of patients to be scheduled based on trade-off

between the cost of surgery delay and the cost of overtime on that day.

Weinbroum et al. (2003) conducted an efficiency study of OT use in a
metropolitan public hospital. They stated that the time OT not used for given
patients amounted to 5 days in a month which can be reduced. They attributed
several reasons as the cause of OT being unused such as surgeon unavailability
and inappropriate patient preparation. However, the main cause for time wastage
is the unavailability of room or staff (59% of the time). Administrator will cancel
the use of OT because of insufficient nursing or medical staff or because the OT
was occupied by emergency operations. They also stated that inaccurate surgical
time prediction also contributed to inefficiency. This suggests that we need to
consider how emergency arrival will disrupt a current schedule and the disruption

caused by inaccurate duration planning.

Bowers and Mould| (2004) suggested that large uncertainty in orthopaedic
care means that much of the theatre time is not utilised. They developed simula-
tion to explore the balance between maximising the utilisation of theatre sessions,
avoiding too many overruns and ensuring a reasonable quality of care. They pro-
posed that if patients are willing to accept the possibility of their treatment being
cancelled (and also the probability of earlier treatment), greater throughputs can
be achieved. They also performed several approximations as alternatives to the
full simulation. They stated that although the results depends on assumptions

about the patient selection criteria, the sensitivity is not great and the mixing
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of elective and emergency patients appears to be robust. They suggested that
the simpler model is better to be implemented and more appropriate for practical
planning purposes. Similarly, we will focus on maximising the use of OT without

too many overtime and reducing costs of delays.

Calichman (2005) suggested that by analysing hospital’s bed use data, can-
cellations of surgeries can be minimised with a schedule that uses all available
surgical beds. The schedule is obtained by arranging surgical procedures on dif-
ferent days to minimise and balance the number of beds required each day. The
schedule obtained gained full use of the hospital’s bed and managed to prevent
up to 18 cancellations each week and increased revenue by 3%. They suggested
that the key for best possible OT schedule is to use the historical relationship that
exists between each surgical category and its length-of-stay distribution that is
hidden in the hospital data. This idea of using historical data will certainly be
a good way to assess the outcome of any method and we will be using generated

data based on real life situations to test our model.

Bhattacharyya et al. (2006) also considered the option of having specific OT's
for emergency patients only to reduce night-time cases and improve OT flow but
they only focused on the orthopaedic unit of a hospital where no elective cases
were scheduled in the unbooked trauma OT. They collected OT data time on
dynamic hip screw and closed femoral nailing (two common surgical cases) and
reviewed data on waitlist cases, surgical time, anaesthetic time, OT utilisation
and surgical compliance by retrospective analysis for two 1 year periods before
and after the unbooked trauma OT was introduced. They suggested that with
the availability of the unbooked trauma OT, the operating suite flow improved
by significantly reducing the number of hip fracture cases performed at night,
significantly reducing the number of orthopaedic waitlist cases that began after
5 PM, significantly reducing the number of elective cases which were bumped by

emergencies, and decreasing over-utilization. They also proposed that hospitals
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should establish or expand orthopaedic trauma block time. This idea of having
specific OT for use in case of emergency or unseen problems is good because when
emergency happens, any surgery can be performed immediately without the need

to disrupt existing schedule.

Wullink et al. (2007) analysed the best way to reserve OT time for emer-
gency surgery by comparing two approaches: assigning specific OT for emergency
patients and evenly reserving capacity in all elective OTs. They modelled real
situation using a discrete event simulation where the main outcome measured are
waiting time, staff overtime and OT utilisation. They suggested that the second
approach, with emergency capacity allocated to all elective OTs, surpasses the
first approach on all outcome measures. They stated that the policy of allocating
OT capacity for emergency surgery to elective OTs requires the OT department
to be flexible and the OT to be equipped for all kinds of emergency surgery. This
shows that unlike Bhattacharyya et al. (2006), with emergency capacity allocated
to elective OT, better performance can be achieved and the only setback is the
need for OT department to be flexible and all OT's be equipped with the necessary

tools for all emergency surgeries.

Lamiri et al.| (2008) proposed a stochastic OT planning model that specifi-
cally include both elective and emergency patients which minimises elective patient
related costs and overtime costs of OT. They assumed the operating time of all
elective cases are known and deterministic and considered the uncertainty in emer-
gency demand in their Monte Carlo optimisation method which includes Monte
Carlo simulation and Mixed Integer Programming. The computational results
suggested that the optimisation method provides solutions that converge to a real
optimal. They suggested that their planning model is useful for hospitals using a
blocked advanced scheduling system. Comparatively, we will consider approaching

the problem of emergency uncertainty by using probabilistic method to model the
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arrival of emergency but we will improvise by considering the probabilistic na-
ture of elective operating time in that actual duration might differ from planned

duration.

Wachtel and Dexter| (2009) analysed the data from two surgical suites to
study the various factors that contributed to tardiness. The study found that
tardiness is related to the total duration of preceding cases. Tardiness per case in-
creases as the day progresses (because the total time increases) but for cases which
were scheduled 6 hours after the day starts, tardiness declines. They suggested
that tardiness is influenced by the total duration of preceding cases, expected
under-utilised time or over-utilised time at the end of the day and case duration
bias. The finding that total duration of preceding cases increases tardiness sug-
gests that total duration for the day should not be too long and that the biasness
in case duration can be prevented if the model included a realistic approach to

time.

Min and Yih (2010a) considered patient priority in scheduling elective surgery
with limited capacity. The trade-offs between the costs for overtime and costs of
postponement is analysed using stochastic dynamic programming model in decid-
ing the number of patients to include in the schedule. The results showed that
improvement is achieved when patient priority is considered in the schedule. By
considering patient priority, necessary surgery can be performed to those that
really need it first. Our research will primarily focus on similar idea where we
will include patient priority into our scheduling decision and compare different

methods to see which one is the best to reduce costs and rescheduling.

Since most research is focused on improving the schedule of OT,|Basson et al.
(2006) conducted a study looking into surgical case cancellations. They conducted

a retrospective review of OT records to identify the causes of cancellations. They
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then conducted a stratified case control-control study of patients records to iden-
tify pre-existing factors that predict non-appearance of patients. A multivariate
analysis suggested that non-appearance can be predicted from the patient non-
compliance with clinic visits and other clinical procedures. They suggested that
non-compliant patients should be booked at the end of the OT day, when cancel-
lation effects on the OT flow is minimal. Our research does not include any case
of patient’s non-appearance since any patient that requires surgery will be at the

hospital ready for the surgery and only rescheduling will occur.

Fei et al. (2010a) used open scheduling strategy to explore the possibility
of improving the efficiency of OT. They developed a two-staged heuristic method
to construct weekly surgery schedules with an open scheduling strategy by taking
into account the availabilities of both surgeons and places in the recovery room.
First, the planning problem is solved to give the date of surgery for each patient
by a set-partitioning model solved by a column-generation-based-heuristic taking
into account the availability of OT and surgeons. Secondly, a daily scheduling
problem regarded as a two-staged hybrid low-shop model is devised to determine
the sequence of operations in each OT in each day, taking into account the avail-
ability of recovery beds. The second stage is solved by a hybrid genetic algorithm,
using a tabu search procedure as the local improvement operator. The results are
compared with several actual surgery schedules and the proposed method has less

idle time between surgical cases, higher utilisation rate and produces less overtime.

However, if there are unexpected numbers of emergency, rescheduling is nec-
essary to update the schedule (Vieira et al. (2003)). Resheduling in general has
been an area where many researches have been conducted especially in indus-
tries that are heavily related to scheduling such as airline industry (Clausen et al.
(2010)) and railway industry (Narayanaswami and Rangaraj (2011)). In the man-
ufacturing practice, Hall and Potts (2004) considered rescheduling problems where

the aim is to minimise some cost objective when some new jobs need to be inserted
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into the schedule without much disruption. They considered two classes of model.
The first is to minimise the scheduling cost of all the jobs and the second is to
minimise a total costs objective (both original cost measure and the cost of dis-
ruption). They provide either an efficient algorithm or a proof that such algorithm

is unlikely to exist.

Erdem et al. (2012) developed a Mixed Integer Linear Programming (MILP)
for rescheduling elective patients upon the the arrival of emergency patients. Two
types of clinical units are considered which are the OTs and post-anaesthesia
care units (PACUs). The model considers the overtime cost of the clinical units,
the cost of postponing or preponing elective surgeries, and the cost of turning
down emergency patients. In certain cases when it is hard to find an optimal
solution, genetic algorithm is developed to efficiently obtain the approximately
optimal solutions. They suggested that the two methodologies should be used
jointly to provide good and timely decisions in admitting emergency patients and

rescheduling elective patients.

All these literatures have provided many ideas for improvement for future
research. The main gap that we see is the idea of rescheduling patients when emer-
gency occurs during the day while minimising disruption on the elective schedule.
Like several of the literature, several criteria should be included in the scheduling
and rescheduling decision. Another central aspect is any method used should be
computational efficient so that when emergency occurs, a new schedule can be

made in a short amount of time.

2.6 Methods of Solving

In this section, we will discuss some of the methods that are related to our re-

search. The principal theory of each method will be reviewed in general and where
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appropriate how the theory is used to construct our solutions will be discussed.
It should be stated clearly here the assumptions that underline our research. Our
research is based on the OT in general where non-life-threatening elective surgeries
are usually performed and not the OT in accident and emergency (A&E) where
some cases might need attention immediately. Emergencies in our research are

those that are non-fatal conditions and can be delayed.

2.6.1 Heuristics

The term heuristics stems from the Greek word heuriskein which means to find
or discover. It is used in the field of optimization to characterise a certain kind
of problem-solving methods (Marti and Reinelt| (2011)). When we are unable to
find a perfect solution, an approach that produces good quality solutions (but not
optimal) is sometimes used. Such method is usually called a heuristic. Heuristics
are especially suitable for problems arising in practice. The following is considered

as a prime description of heuristics.

A heuristic technique (or simply heuristic) is a method which seeks
good (i.e.near-optimal) solutions at a reasonable computation cost with-
out being able to guarantee optimality,and possibly not feasibility. Un-
fortunately, it may not even be possible to state how close to optimality

a particular heuristic solution is.

(Rayward-Smith et al.| (1996, p.5))

Several heuristics methods have been proposed in the literature such as local
search, hill climbing, neighbourhood search and gready algorithm; and the theory
behind each method is explained in Burke and Kendall (2005).

Guinet and Chaabane (2003) considered a medium term horizon OT schedul-

ing problem where each patient needs particular surgical procedure which defines
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the human (surgeon) and material (equipment) resources to use as well as the in-
tervention duration. They proposed a two-step solution to this problem. First, an
OT planning is defined by assigning patients to OTs over the horizon. Next, each
loaded OT is scheduled individually in order to synchronise the various human
and material resources used. The problem is solved heuristically by proposing an
assignment model with resource capacity and time-window additive constraints.
The primal-dual heuristic integrates release and due date constraints with limited

capacity constraints which optimised OT overload and patient waiting time.

Krempels and Panchenko| (2006) considered the problem of semi-automated
dialog-based system where a human planner is involved in the scheduling decision.
They proposed a heuristic technique to create proposals for the schedule. The
planner then acts as a sensor with the responsibility to identify changes as they
occur and integrate his knowledge and decision-making competence in the planning
proses. The planner will consider the interest and preference of the personnel
involved in the schedule, which will reduce non-acceptance. Introducing a human
planner in any model is aimed at making necessary changes that only a human

can execute but in our research, no human planner will be considered.

Belién| (2007) built the models with stochastic numbers of patient for each
operating room block and a stochastic length of stay for each operated patient
and developed a number of mixed integer programming based heuristics and a
metaheuristic (simulated annealing) to minimise the expected total bed shortage.
Again the themes of reasonable computational time and stochastic nature of the

factors will play an important part in our research.

Pradenas et al. (2012) considered the problem in weekly surgery scheduling
and surgeon assignment in a public hospital. Their study was divided into two
parts: first, surgeries were scheduled with support from a multi-knapsack mathe-

matical model and then surgeons were assigned using a search method based on
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chronological backtracking heuristic that possessed constraint programming prop-
erty. They argued that the heuristics was selected because backtracking heuristic
guarantees a solution or determines that there are no solutions. They showed that
the heuristic obtained a feasible solution for every assignment and on certain cases,

the algorithm had 38.90% more surgeries compared to manual procedure.

In this thesis, a 'good solution’ is one that does not cause too many patients
being delayed and minimises the costs of OT. The objective functions considered
are discussed later in the thesis. In terms of computational time, we do not impose
any limitation since our main objective is the minimisation of delays and costs.
However, if the time taken is too long, then perhaps a more efficient method that

shows significant improvements can be developed later.

2.6.2 Metaheuristics

Metaheuristic is a general class of algorithms and techniques that are able to
provide a sufficiently good solution to an optimisation problem. The aim of using
metaheuristic techniques is to explore the search space and find a near-optimal
solution. There are many examples of metaheuristic such as local search, simulated
annealing, tabu search and genetic algorithms. Generally, metaheuristics produce

higher quality results than simple heuristics.

2.6.2.1 Local Search

Local Search is a method that explores the space of possible solutions sequen-
tially. The algorithm performs a series of moves on the initial solution to find a
local optimal solution. These moves are designed based on neighbourhood struc-

ture. In each iteration, if a better solution exists, then it is selected as a current
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solution. This procedure is continued until no better solutions can be found in the

neighbourhood of the current solution.

One of the most utilised local search method is the Variable Neighbourhood
Search. [Burke and Kendall| (2005) suggest the following as the basic Variable
Neighbourhood Search:

Initialisation
Select the set of neighbourhood structures N, for [ =1, ..., [,,42, that will be used
in the descent; find an initial solution x (or apply the rules to a given z);
Repeat the following sequence until no improvement is obtained:
(1) Set I — 1;
(2) Repeat the following steps until I = 4,
(a) Exploration of neighbourhood.
Find the best neighbour z’ of z (' € Ny));
(b) Move or not.
If the solution ' thus obtained is better than z, set + — 2’ and | — 1;

otherwise, set [ — [ + 1;

In our research, based on the list of current patients, we swap a pair of pa-
tients based on certain conditions and then calculate the total cost of OT because
of the swapping. If the cost is below the cost of the current list, we accept the
swapping as a current solution. We iterate this procedure until we go through all
the patients list. The conditions considered and the full method is discussed in

chapter 4, section [3.6]

2.6.2.2 Simulated Annealing

The term simulated annealing (SA) originated from a process of cooling molten
metal. The procedure has been developed initially as an algorithm to simulate

the process of cooling and crystallization of materials in a heat bath, known as
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the annealing process as discussed by Metropolis et al.| (1953) in thermodynam-
ics. |Pirlot (1996) discussed that the idea of simulated annealing originated from
thermodynamics and metallurgy, whereby molten iron is cooled slowly enough
resulting to its tendency to solidify in a structure of a minimal energy. This an-
nealing process is the same as our local search strategy of updating the current
solution by a solution x randomly chosen in its neighbourhood if it is accepted.
Then gradually, the temperature is decreased which means that one becomes more

selective in accepting new solution.

Simulated annealing is a type of local search algorithm. Just like a local
search (descent algorithm), it starts with an initial solution mostly chosen at
random. A neighbour of this solution is then generated and the change in cost is
calculated. If there is a reduction in cost, the current solution is replaced by its
neighbour, otherwise the current solution stays. This process is repeated until no
further improvement is found in the neighbourhood of the current solution and
the algorithm terminates at a local minimum. Although a descent algorithm is
simple and quick to execute, the disadvantage of the method is that the local
minimum found may be far from any global minimum (Eglese (1990)). This can
be countered by starting the algorithm at different initial solutions and choose the

best of the local minimum found.

In simulated annealing, instead of sticking with this strategy, it avoids be-
coming trapped in a local optimum by sometimes accepting a neighbourhood move
which increases the value of f. The acceptance or rejection of an uphill move is
determined by a sequence of random numbers, but with a controlled probability.
The probability of accepting a move which causes an increase A in f is called the

A/K swhere A is the difference of

acceptance function and is normally set to e~
total cost between a pair of patients we plan to swap (new costs - current costs),

and K is temperature.
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These choices must be made for any implementation of SA and constitute the
annealing or cooling schedule, (i) the initial value of the temperature parameter
K, (ii) a temperature function, K (¢), to determine how the temperature is to be
changed, (iii) the number of iterations, N(t), to be performed at each temperature,

and (iv) a stopping criterion to terminate the algorithm.

Eglese (1990) proposed the following algorithm for the general simulated

annealing procedure.

Algorithm 2.1 Simulated Annealing Algorithm

1: Select an initial state i € S,

2: Select an initial temperature K > 0;

3: Set temperature change counter k£ = 0;
Repeat

4: Set repetition counter n = 0;
Repeat

5: Generate state j, a neighbour of i;

6: Calculate A = f(j) — f(2);
if A <0theni:=j
else if random(0,1) < e
n:=n+1;
until n = N(k);
k:=k+1;
K = K(k);

until stopping criteria true.

“A/K then i = j;

2.6.2.3 Other Methods

There are also other methods widely used in solving combinatorial problems. Here
we discuss several of these methods.

1. Tabu Search

Tabu search is a method proposed by Fred Glover in 1986 in order to allow

hill climbing to overcome local optima. The main idea of tabu search is to continue
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the search whenever a local optimum is encountered by allowing non-improving
moves. A tabu list records recent history of the search, which are referred to as
tabu moves. Moving back to these previously visited solutions is forbidden under

tabu search.

Hertz et al. (1995) summarised the tabu search algorithm as follows.

Algorithm 2.2 Tabu Search Algorithm

1: Choose an initial solution 7 € S. Set ix = ¢ and k = 0.

2: Set k =k + 1 and generate a subset VV* should consist of solutions that either
satisfy the tabu conditions or at least one of the aspiration criteria hold.
Choose a best j in V* and set ¢ = j.

If f(i) < f(i*) then set ix = i.

Update tabu and aspiration conditions.

If a stopping condition is met then stop. Else go to Step 2.

2. Large Neighbourhood Search

Large Neighbourhood Search (LNS) is a method that uses heuristics to ex-
plore a complex neighbourhood. In LNS, an initial solution is gradually improved
by repeteadly destroying and improving the solution. LNS belongs to the class
of heuristics known as Very Large-Scale Neighbourhood Search (VLNS). Using
large neighborhoods makes it possible to find better candidate solutions in each
iteration and hence traverse a more promising search path (Pisinger and Ropke

(2010)).

In general, the larger the neighbourhood, the better is the quality of locally
optimal solutions, and the greater is the accuracy of the final solution obtained.
At the same time, the larger the neighbourhood, the longer it takes to search the

neighbourhood at each iteration (Ahuja et al. (2000)).

3. Ant Colony Optimisation
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Ant Colony Optimisation (ACO) is a metaheuristic optimization method
and a part of the Swarm Intelligence approach that search for optimal path in the
graph based on behaviour of ants seeking a path between their colony and source
of food. At the core of this behavior is the indirect communication between the
ants by means of chemical pheromone trails, which enables them to find short

paths between their nest and food sources (Blum (2005)).

The characteristic of ACO algorithms is their explicit use of elements of
previous solutions. The essential trait of ACO algorithms is the combination of
a priori information about the structure of a promising solution with a posterior
information about the structure of previously obtained good solutions (Maniezzo

et al. (2004)).

When searching for food, ants initially explore the area surrounding their
nest in a random manner and leave a chemical pheromone trail on the ground.
When choosing their way, they tend to choose paths marked by strong pheromone
concentrations. When an ant finds a food source, it evaluates the quantity and
the quality of the food and carries some of it back to the nest. During the return
trip, the quantity of pheromone that an ant leaves on the ground may depend on
the quantity and quality of the food. The pheromone trails will guide other ants
to the food source (Dorigo and Blum/ (2005)).

In general, the ACO approach attempts to solve an optimization problem by
iterating the following two steps (Blum (2005)):
e candidate solutions are constructed using a pheromone model, that is, a

parameterized probability distribution over the solution space;

e the candidate solutions are used to modify the pheromone values in a way

that is deemed to bias future sampling toward high-quality solutions.

4. Evolutionary Algorithms
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Evolutionary Algorithms (EA) try to solve complex problems by following
the processes of Darwinian evolution. The underlying idea in EA is that given a
population of individuals, the environmental factors cause natural selection (sur-

vival of the fittest), which causes a rise in the fitness of the population.

The theory of evolutionary algorithm can be summarised as follows (Eiben

and Smith, 2003, p.15);

Given a quality function to be maximised, we can randomly create a set
of candidate solutions, i.e., elements of the function’s domain, and ap-
ply the quality function as an abstract fitness measure - the higher the
better. Based on this fitness, some of the better candidates are chosen
to seed the next generation by applying recombination and/or muta-
tion to them. Recombination is an operator applied to two or more
selected candidates (the so-called parents) and results one or more new
candidates (the children). Mutation is applied to one candidate and
results in one new candidate. Executing recombination and mutation
leads to a set of new candidates (the offspring) that compete - based
on their fitness (and possibly age) - with the old ones for a place in the
next generation. This process can be iterated until a candidate with
sufficient quality (a solution) is found or a previously set computational

limit is reached.

Eiben and Smith (2003) stated that there are two fundamental forces that

form the basis of evolutionary systems:

e Variation operators (recombination and mutation) create the necessary di-

versity and thereby facilitate novelty.

e Selection acts as a force pushing quality.
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Algorithm 2.3 Evolutionary Algorithm

1: Generate an initial population P(0) and set i = 1;

2: Evaluate the fitness of each individual in P(0);

Repeat

Generate offspring from the parents using variation operators to form P(i);
Evaluate the fitness of each individuals in P(i);

Select parents from P(i) and P(i — 1) based on their fitness;

1=1+1;

until stopping criteria are satisfied.

2.6.3 Branch and Bound

Branch and bound is one of the methods of exact algorithm. It is a systematic
method for solving discrete and combinatorial optimization problems. The method
searches the complete space of solutions for a given problem looking for the best
solution and is used to find a value x that maximizes or minimizes the value of an
objective function f(z). It is able to compute a lower and an upper bound on the
optimal value over a given region. However, if the region is too big, exploring all
the possible alternatives to find the best solution might not be computationally

viable.

The rationale behind the branch and bound algorithm is to reduce
the number of alternatives that need to be considered by repeatedly par-
titioning the problem into a set of smaller sub-problems and using local
information in the form of bounds to eliminate those that can be shown

to be sub-optimal. (Burke and Kendall (2005, p.24))

The basic principle of a Branch and Bound algorithm with objective function

f(z) can be considered as follows:
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1. The solution space can be regarded as a tree where the leaves are the set of

all possible solutions.

2. Start from the root, then split the search space into smaller spaces and
optimise f(z) on these spaces. The method of splitting the spaces is called
"branching”. Branching alone can lead to the optimal solution but as stated

earlier, it might not be computationally viable.

3. To improve the method, the algorithm calculates a "bound”, i.e. the best
solution from the sub-tree below the branch (or node). The bound is re-
calculated at every decision point of the algorithm. The best solution at

each decision point is considered as the benchmark.

4. The benchmark is then compared with the best solution at each level. If the
solution is worse than the benchmark, the whole sub-tree can be discarded.
this is known as ”"pruning” the search space, i.e. eliminating the candidate

solutions that will not contain an optimal solution.

5. The pruning method usually reduces the search space by a large amount

(depending on where it occurs - the closer to the root the bigger).

6. Keep searching the remaining search space until the optimal solution is

found.

2.7 Discussion

Under the widely accepted assumption that if P # NP, it is impossible to have
algorithms that satisfy these three conditions of (i) finding optimal solution; (ii)
in polynomial time; (iii) for any instance. Omne or more of these requirements
must be relaxed in approaching an NP-hard problem. It is a tough problem that

requires careful formulation in order to be solved. As we have seen, there are many
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methods that can be used to solve these problems and each method has its own

advantages and disadvantages.

As we have seen in this chapter, the problem of scheduling in health care
management can be divided into several categories. In each category, there are
many approaches to solve the problems encountered each with a specific set of aims
and objectives. One common theme across the literature is that each problem is
unique and requires a specific solution to be resolved. There is no one optimal or
best method to tackle all the problems encountered. Health care providers need to
consider each decision that are made to ensure that the quality of services provided
are the best at the lowest possible costs while taking into account the needs and

preferences of medical personnel involved.

Many researches have been conducted in the field of scheduling in hospi-
tals especially in scheduling nurses, physicians and surgeons. Several researches
have also been carried out in scheduling walk-in patients in clinic and outpatient
department. Research predicting walk-ins, no-show, and service time has been
invaluable but research that looks into future arrival patterns and the disruption
caused by emergency arrival is also of value. Although online systems are more
common in practice but studies that consider realistic arrival patterns and future
arrivals are still needed to fully understand how the systems behaved. Our study
in particular tries to study how the system behaves when the arrival of emergency

patients disrupts current schedule.

In terms of performance measures, there are several criteria that are most
commonly used such as patient waiting time, system overtime, number of patients
seen and number of delayed patients which will also be used in our research. We
will also add another important measure which is cost since a key trade off in
accepting patients is the between service provision revenue and costs that are

incurred from patient waiting time and provider overtime (Ahmadi-Javid et al.
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(2017)). |Ahmadi-Javid et al. (2017) also argues that factors that should be taken
into account in scheduling patients are the demand of each patient group, priority
level, no show probability, revenue from each patient group, and preferences of
patients and physicians. For our research, we will consider priority level as one of

the defining factor in scheduling decision.

With regard to modelling approaches and solution methods, we will utilise
stochastic optimization in order to deal with the uncertainties inherent in patients
scheduling especially in predicting the random arrival of emergency patient and
the discrepancy between planning duration and actual duration of the surgeries.
Due to the inherent complexity of the problem, we will mainly use heuristics
and metaheuristics as our solution methods. The heuristic method is utilised
because it is more flexible than the exact method thus allowing the incorporation
of conditions that are difficult to model and if used as part of a global procedure
guarantees to find the optimum solution of a problem Marti and Reinelt (2011)).
In addition, metaheuristic is utilised because of its ability to guides a subordinate
heuristic by combining intelligently different concepts for exploring and exploiting
the search spaces using learning strategies to structure information in order to find
near-optimal solutions (Kelly| (1996)). The methods employed will be discussed
in the relevant chapters. In order to ascertain the effectiveness of our methods,
we will use random data simulation to generate relevant data and feed it to our

model.

In conclusion, our research will develop an online scheduling model in the
presence of the disruptive factor of emergency arrival while incorporating patient
priority level, random service time, random arrival of emergency, and the cost
associated with overtime usage and delays of patients. We approach this prob-
lem by employing heuristic, metaheuristic methods and specialist integer program
software. We then proceed to test our model by simulating several random data

and comparing the performance of our methods.



Chapter 3

Operating Theatre Scheduling
Problem

3.1 Background

Scheduling of OT is related to the scheduling of patients since it is based on the
expected duration of the surgeries performed. Duration of the surgeries will be
stochastic in nature when patients arrive because when we schedule the patients
into the different slots in the hospital system, the actual duration of the surgeries

usually differ from the planned time.

Another aspect that needs to be considered is that new patients arrive into
the system at all times, either regular patients or emergency patients. Regular
patients have a large time window since we can schedule them without the ur-
gency. On the other hand, emergency patients need to be scheduled as soon as
possible because they need immediate attention and any delay will cause patient
dissatisfaction. The scheduling of these emergency patients usually causes delay

in the system.

47
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There have been many research in relation to the delay caused by the arrival
of emergency patients. This problem is usually caused by the sharing of resources

between elective surgeries and emergency surgeries especially the OTs.

In our research, patient priority is one of the defining factor in producing the
schedule. A list of schedule (for elective surgery) already exists and the problem
here is to produce a new schedule when there is a delay and arrival of emergency

patients.

3.2 Problem Definition

We consider two types of important patient priority arriving online. Emergency
patients and regular patients arriving into the system after other patients have
been scheduled. We allocate the patients depending on their urgency priority
with operation time planned in advance but actual operation time are not known.
The planning and scheduling always reveal the time (assumed) for each patient,
but when the original schedule changes due to disruption, we need to reschedule

the patients in the system.

We allocate all patients and reschedule delay patients depending on their
cases using the heuristic method in time horizon every day. For an emergency
case, the time scheduled will be as soon as possible in the time horizon (Figure
. Patients go through the operation process on a fixed day and fixed hour

depending on the planning duration.

Occasionally, actual duration for each patient is different compared to the
planning duration and emergency patients do arrive into the system. Therefore,
other patients must be reschedule at the end of the day. The decision whether to
extend the usage of OT or reschedule the last patient depends on the costs (cost of

overtime vs cost of reschedule). In order to avoid a lot of delay from occurring and
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patients being delayed several times, high penalty costs are imposed for long delays.
Hence, the model will try to schedule them as soon as possible to prevent high
overall costs. We do not impose any constraint associated with either delay time
or the number of delays. This means that patients can be delayed for several times
as long as the model deemed the costs is acceptable especially when compared to
the overtime cost. It will be highly costly if patients are delayed for too long and
cause an inefficient scheduling of operation room. The goal are to ensure patients’
safety and optimal patient outcome, to decrease patient delays, to maximise the

efficiency and minimise the cost of OT.

For example, in Figure [3.1, we have patients Py, ..., Ps, slotted for operation
in Day 1 until the end of the time horizon for the day, T,;. At the end of the day,
emergency patients and new patients arrive into the system. Before the next day,
we must prepare a new schedule with a new list of patients. Rearranging the list
will depend on the patient priority. In situation (i) of Figure [3.1] we set a duration
of T,, the slot of time for emergency patients or delayed emergency patients at
the beginning of the next day. When this happens, the slots for regular patients
will be delayed and the patients at the end of the time horizon will be delayed to
different days. Another situation that can occur is that emergency patients do not
arrive but the actual duration of the surgeries might be longer than the planned
duration because of their stochastic nature. In situation (ii) of Figure [3.1] we can
see that the actual duration for patients P, P, and P; are longer than the planned
duration, hence the slots for patients P, and Ps; are no longer available hence they

need to be rescheduled.
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Day 1 The end of day
4
P1 P2 P3 P4 PS5
Td - Time Horizon
Next Day
—|—> Delay
T, Ty - Time Horizon
The end of day
P2 P3
< >< > v Delay
.. | P4,P5
(ii) P1 | P2 P3 | P4 | P5 |
<> T Ty " Time Horizon
P1

Last patient

FI1GURE 3.1: Delay situation

Besides rescheduling the patients to different days, we can also decide to
perform the surgery with overtime usage of the OT. The decision is based on
the comparison of the overtime cost and rescheduling cost. Before that, we need
to make sure that the planning duration of the last patient will suit with the OT
overtime horizon. If the last patient planning duration is less than the OT overtime
horizon, we will calculate the overtime cost and compare it with the rescheduling
cost. If the overtime cost is less than the rescheduling cost, we continue with
overtime. The cost of each patient is different because it depends on the patient

type which we will explore later.



Chapter 3 Operating Theatre Scheduling Problem 51

3.3 The Model

A patient goes through the surgery process on a fixed day, at a fixed hour which we

plan with a daily schedule. The patient ¢« € 1, ..., L must be scheduled in operation

theatre during time horizon, 7" times units each day. We fix time horizon duration

for emergency patients every day. We have one period time and planning horizon

is D days. Decision variables are x;4 (constraint 6) and y,; (constraint 7).

Notation:
1. Patient
j: The index for band of time over time horizon
J: The number of planning time band after time horizon
L:  The sum of patient
D:  Planning Horizon Day
d: Day
T;:  The tardiness for patient i
T:  Time Horizon
t;: The surgical duration for patient ¢
fj+ Extra time allowed
T;:  The sum for regularly time availability of operation room for day d in minutes
C;: The cost for patient, ¢
n¢:  Number of night patient ¢ has spent in the hospital waiting for operation
nf:  Number of times patient i has been rescheduled
C’,‘jgz The penalty for a patient spending n{ night in the hospital
C’Z? The penalty for a patient being rescheduled n” times
wg:  Penalty day d
A;:  Penalty for unit time for not treating the patient within 7; time units after
referred time
v;:  The penalty operation theatre after Time horizon in time section j
r;:  The refer time for each patient ¢
7;:  Waiting time limit for patient ¢
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3.3.1 Objective function

The objective is to minimise the delays in treatment and overtime based on the
cost for every patient depending on their cases. We have three penalties in this
model:
1. Penalty for unit time for not treating the patient within 7 time after referred
time.
2. The Tardiness for each patient.

3. The Penalty for operation theatre after time horizon.

3.3.2 Constraints

We consider several constraints in our model, and the constraints are given as

follow:

1. Specify that the sum of time in OT can only accommodate a limited number

of surgical hours per day.

2. Each patient’s operation is processed only once. This means that no patients
will be processed more than once, and once it has been processed it will no

longer be considered in the model.

3. Cost for each patient incurred when the patient’s time is booked. This means
that if the patient has any costs associated with it at the booked time, it

will be included in the model.

4. The penalty of operation room is processed only once. This means that there

is no double charging of penalty.

5. The value of tardiness for each patient is positive. This means that the tar-

diness value will always be positive and no negative value will be considered.
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3.3.3 Decision Variables

The decision variable x;4 is the variable that shows if patient i is treated on day d
in time horizon Ty. It will be 1 if it is treated on a particular day d, and 0 if the
patient has not been treated. Meanwhile, the decision variable ygq; is the variable
that shows if the patient is treated on day d in time horizon section j. It will be
1 if the patient is treated on day d in time horizon section j and 0 if it has not

been treated. The variables are as follows:

1 if surgical patient i is treated on day d
Tid =
0 otherwise.

1 if surgical patient is treated on day d in time horizon section j
Yaj =
0 otherwise.

3.3.4 Mathematical model of the problem(Off-line)

We begin by considering an offline model where full knowledge of the data is

known.
L D J
minimize(P) = > AT +> > vjyy (3.1)
i=1 d=1 j=1
subject to:
L J
i=1 j=1

D
D wg=1 Vi=1,2,...,L (3.3)
d=1
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D
T, > ) drig—ri— 7, Vi=1,2,...,L  (34)
d=1
J
> yg <1, Vd=1,2,...,D  (3.5)
j=1
2ia € {0,1}, Vi=12...,L, Yd=12..D  (36)
v € {0,1}, Vd=1,2,....D, Vj=12....0 (3.7

The focus is to schedule the patients into the system using the heuristic technique
for initial solution. The algorithm is designed to consider patient priority and to
achieve the aim of minimum cost. However, the cost for each patient is calculated

differently. Its function depends on the types of patients and types of delay.

3.3.5 Types of Patient

We have five types of patients in this problem. Each type carries with it a different
type of priority and costs. The order of priority is in decreasing order. As shown
in the priority list below, patients with the highest priority are delayed emergency
patients. This means that the model will always consider to schedule the delayed
emergency patients first, followed by emergency patients. New patients has the
lowest priority but once it is included in the system, the priority will change to

number 4.

1. Delayed Emergency Patients

2. Emergency Patients

3. Patients Delayed at Hospital

4. Regular Patients Booked and Rebooked

5. New Patients
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3.3.6 Cost Patient (On-line)

If all data are known and that the patients list does not change, we do not need
to update our model. However, emergency patients arrive online in the sense that
once they arrive, they will be included into the system. At the end of the day,
these emergency patients need to be scheduled into the OT slots. This will cause
the type of patients to change. Since the rescheduling of patients depends on

patients’ priority, it is important to include this in our model.

We augment 7T; and define the cost for each patient as:

C;, = [Ai maz{(T; —r; — 7:),0} + CS‘; + C’Zh (3.8)

where A; is penalty for unit time for not treating the patient within 7; time units
after being referred. The notation 7; is the waiting time limit for every patient
after they are referred into the system. It is more general to allow patient i a
waiting time of up to time 7; without incurring a penalty, than to give the same
unpenalised waiting time to each patient. Therefore, the hospital can assign a
value of 7; depending on the type of treatment that patient ¢ needs. T; is the day
on which patient is treated and r; is referred time for each patient. If T; is bigger

than r; + 7;, then we have linear penalty, A;. Otherwise, linear penalty is 0.

We have the penalty for patient delay at home, CZ? which depends on delay’s
number, n? and the penalty for patient delay at hospital, C’f;g which depends
on delay’s number, n¢. For A; (T; —r; — 7;) and C’T}l’? are just for non emergency
patients because the cost for emergency patients is zero and the patients go straight
into the hospital the soonest possible to get treatment. They cannot be delayed

at home and any delay will be delayed at the hospital.
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Every day, OT has time horizon less or equal to M minutes. We set different
rules depending on the case before the end of the day. We fix N minutes in time
horizon for the emergency case every day, and the priority is higher than the other
patients. The time N is less than M, N < M. We schedule the emergency case

as soon as possible to the next day (see Figure [3.1).

Sometimes, planning duration for a patient is different from the actual du-
ration. It might take a longer time. If the sum of duration time is greater than
M minutes, the overtime usage of OT will get the penalty depending on the slot

time after time horizon.

At the end of the day, if the balance time horizon is less than fifty per-
cent compared to the planned duration time for the next patients, we can decide
whether to continue with the surgery or reschedule to another day. If the patient
is already delayed at the hospital, we consider performing the surgery but we will
get the penalty and the cost for penalty using the OT. This will be compared
with the penalty if we delay at the hospital again. Therefore, decisions will be
made based on minimum penalty incurred. If the penalty of another delay at the

hospital is smaller, other patients must be rescheduled at the end of that day.

3.3.6.1 Overtime Costs

Notation

Ag: The sum of time of OT for day d
t. The surgical planning time duration of patient 4

d:  The day on which patient 7 is treated

¢;:  The slot time with the index j after time horizon greater than 7T’
wy:  The planning penalty for time horizon greater than T

v;:  The penalty operation theatre after time horizon greater than 7’
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The planning penalty for time horizon greater than T
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T<Ag+t <c¢
o < Ag+t' <c
o < Ag+ 1t <cy
3 <Ag+th <
4 < Ag+ 1t <cs
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The cost for overtime usage of OT, C"
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The planning penalty for time horizon greater than T, w; is the penalty in

the planning stage when it is decided that the surgery will be performed during

overtime usage of OT. However, since

planned, the cost for overtime usage of OT, C' is the actual cost calculated after
the surgery has finished. That is why the two variables show the same value. One

is calculated using the planning duration while the other is calculated using the

actual duration.

A <T

T<A; <¢
e < Ag < e
o < Ag < c3
3 < Ag < cy
ey < Ag < cs

Ad>C5

the surgery might be shorter or longer than
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We need to check the cost for patients and their penalty if they are delayed
again at the hospital. We also need to check the costs of overtime usage of the
OT. After both costs have been obtained, we compare and decide whether to treat
or reschedule the patients. For example, if the penalty for delay is v; and the
cost of overtime is v,, then we decide to let the patient be delayed at the hospital
and reschedule the patient again. However, if the opposite occurs, the penalty for
delay is vy and the cost of overtime is vy, then we decide to perform the surgery
with the overtime. Too much extra time will increase the costs as shown in Figure

5.2

cost

Ty Ty+f Ty+f, Ty+fy To+f, ..

Duration of the slot j onday d

FIGURE 3.2: Duration after time horizon

3.4 Example of Heuristic Technique

As stated in the previous chapter, a heuristic technique (or simply heuristic) is a

method which seeks good solutions at a reasonable computation cost. We used
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heuristic as a first step in our research because a solution can be obtained with
reasonable computational effort. In addition, the solution should be near optimal
(with high probability) and the likelihood for obtaining a bad solution (far from
optimal) should be low (Marti and Reinelt| (2011)). In this section we discuss the

heuristic used in our research.

We generate a simple data for 3 days with 23 total number of patients. The
waiting time limit for patient after they are referred into the system, 7; is 5 and
penalty for unit time for not treating the patient within the reasonable time is 15.

We set time horizon at 6 days in the system.

Again, the focus is on OT Scheduling Problem for emergency patient and
regular patient. Patients arrive online and we do not know exactly what type of
patients will arrive in the system. Every day, we schedule patient in the empty
slot in OT time horizon based on the current information available. The schedule
is updated daily to take into account the variations from planned durations and

then arrival of emergency patient.

A high number of emergency patient arriving into the system and operation
times longer than expected can make other patients being delayed at the hospital
or delay at home. At the end of each day, the system comes out with list of

schedule and rescheduled patients depending on their urgency.

Table|3.1|shows the list of patient when we generate planning duration which
has uniform distribution 7}, ~ [30,130] and the actual duration is the total of T,
and Tyey, Tgen ~ [—20,40], with an average of 4.5 regular patients of 1.5 emergency
patients every day arriving into the system. However, the type of patient depends
on how urgent the patient is. The number of type’s patient are 4 for regular
patient already in the system, 2 for new emergency patient and 5 for new regular

patient.
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TABLE 3.1: Simple Data for 3 days

Patient | Refer Date | Planning Duration | Actual Duration | Type of patient
1 -5 106 110 4
2 -5 89 47 4
3 -4 72 74 4
4 -4 113 103 4
5 -4 109 92 4
6 -3 106 106 4
7 -2 104 119 4
8 -2 112 53 4
9 -1 73 81 4
10 -1 106 125 4
11 1 41 66 2
12 1 110 123 5
13 1 76 104 5
14 1 46 68 )
15 1 95 85 )
16 2 113 110 5
17 2 78 63 5
18 2 64 60 )
19 3 67 59 2
20 3 89 84 2
21 3 69 65 2
22 3 46 67 2
23 3 40 11 5

Tables 3.2/ and |3.3|shows the list of scheduled and rescheduled patients in the
system. The system has a list of initial solution with previously referred patients.
We schedule the patients using First Fit Bin Packing Strategy in the OT slots.
This means that the algorithm attempts to place the patients in the OT with the
first day that can accommodate the patient. If no day is found, it schedule on
a new day and puts the patients within the new day. Each day, we apply Daily
Scheduling Algorithm to treat the patient on that day, and calculate the costs for

each patient and calculate the number of delays if it has happened.

If it seems overtime will be needed, we compare the cost of overtime using OT
with the cost for patient and their penalty for delay at hospital to decide whether

to treat or reschedule this patient. Lastly, we introduce new emergency patients
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TABLE 3.2: List of Initial Schedule

Day | Patient | Planning Duration | Refer Date | Priority | Type of patient
1 4 113 -4 4 4
1 8 112 -2 4 4
1 5 109 -4 4 4
2 1 106 -5 4 4
2 6 106 -3 4 4
2 10 106 -1 4 4
3 7 104 -2 4 4
3 2 89 -5 4 4
3 9 73 -1 4 4
3 3 72 -4 4 4
0 11 41 1 0 2
0 12 110 1 0 5
0 13 76 1 0 5
0 14 46 1 0 5
0 15 95 1 0 5
0 16 113 2 0 5
0 17 78 2 0 5
0 18 64 2 0 5
0 19 67 3 0 2
0 20 89 3 0 2
0 21 69 3 0 2
0 22 46 3 0 2
0 23 40 3 0 5

and new regular patients into the system at the end of this day and schedule into

the system using heuristic technique into the system.

We schedule or reschedule patient depending on the patient priority. The
priority value is the value used to represent the type of patients as stated in
section 3.3.5. This means that the model will always consider to schedule the
delayed emergency patients first and is follow by emergency patients. The priority
list for important patient such as delayed emergency and emergency patient are
1 and 2. We try to avoid moving those already booked on that day such as those
delayed several times at the hospital (type 3) and patients delayed several times

at home (type 4).

Lastly we have new patients (type 5). In this example, we fix the empty
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TABLE 3.3: List of patient in the system using heuristic technique
Day | Patient | Refer | Type Planning | Actual Delay Delay Cost
Date | of Pa- | Dura- Dura- at Hos- | at
tient tion tion pital Home

1 4 -4 4 113 103 0 0 0
1 8 -2 4 112 53 0 0 0
1 5 -4 4 109 92 0 0 0
2 11 1 2 41 66 0 0 0
2 1 -5 4 106 110 0 0 30
2 6 -3 4 106 106 0 0 0
2 10 -1 4 106 125 0 0 0
3 7 -2 4 104 119 0 0 0
3 2 ) 4 89 47 0 0 45
3 9 -1 4 73 81 0 0 0
3 3 -4 4 72 74 0 0 30
4 22 3 2 46 67 0 0 0
4 19 3 2 67 59 0 0 0
4 20 3 2 89 84 0 0 0
4 21 3 2 69 65 0 0 0
4 15 1 4 95 85 0 0 0
4 12 1 4 110 123 0 0 0
D 18 2 4 64 60 0 0 0
5 13 1 4 76 104 0 1 10
5 14 1 4 46 68 0 1 10
5 16 2 4 113 110 0 0 0
5t 17 2 4 78 63 0 0 0
6 23 3 4 40 11 0 0 0

time slot for emergency patient in one day at 120 minutes and schedule emergency

patient to the next day or the worse is two days after they come to the hospital. 120

minutes is chosen because since we expect 1.5 emergency patients to arrive, and the

mean of the planning duration that follows a uniform distribution U ~ [30, 130] is

80, hence the amount allocated is 1.5 x 80 = 120. Moreover, Wullink et al. (2007)

showed that the policy of reserving capacity for emergency surgery in all elective

OTs led to an improvement in waiting times for emergency.

In this example, Table [3.3| shows patient 13 and 14 are delayed at home and

their cost are 10 for each. On day 4, all the emergency patients (patient 19, 20,

21, and 22) come to the hospital on day 3, we schedule into the system on the
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next day and reschedule regular patients treatment on day 4, 5 and 6.

The result achieved with our objective function is related with cost of OT,
cost when emergency patients are delayed at hospital, cost when patients are
delayed at hospital, cost when patients are delayed at home and cost when patients
are not treated within the reasonable time after they come to the system are

presented in Table

TABLE 3.4: Cost of Operation in System OT

Total patient 23
Total cost 175
Cost of OT 50
Cost delay of emergency patient | 0
Cost delay at hospital 0
Cost delay at home 20

3.4.1 Example of Manual Calculation

We will show some example in calculating the cost patient that is shown in Table

[3.3] With reference to Equation we set A; = 15 and 7; = 5 for all patients 1.
Regular Patient :

(i) Patient 4:

Cy =15 x maz{(1l — (—4) —5),0}
=15 x maz{0,0} (3.9)

=0

(ii) Patient 1:
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Cy =15 x maz{(2 —(=5) —5),0}
=15 x maz{2,0} (3.10)

=15x2=30

Patient delayed at home :

(i) Patient 13: we set C", =10
13

Ci3 = [15 x maz{(5— (1) —5),0}] + 10
= [15 x maz{—1,0}] + 10 (3.11)

— [15 % 0] + 10 = 10

3.5 Online Procedure

The aim of Online Schedule Planning Procedure is to update the existing schedule
every day. We have an initial solution to start our heuristic technique. Each day,
a new schedule is created based on current information. The schedule is updated
daily to take into account the variations from planned durations and the arrival
of emergency patients. We allocate the patients depending on their urgency using

a heuristic method.

Algorithm 3.1 Online Procedure

Apply algorithm to get initial schedule of patients

Initialize by setting the day counter as d = 1

Apply algorithm to treat the patient on day d

Apply algorithm to reschedule patient delay, schedule emergency and new

patient
5: Termination Test: If d < Planning Horizon Day, D, set d = d+ 1 and go to 3
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Under the online procedure in algorithm [3.1] we initialise the system with
previously referred patients. Algorithm is the main algorithm because it in-
corporates several elements. Firstly, we need to get an initial solution based on

the current patient list and this is shown in algorithm

When we have an initial solution, we then proceed to the second step of
algorithm where we set the day = 1, the first day of our new schedule. Then
we go to step three and apply algorithm to schedule the patient on day d
and then proceed to algorithm to reschedule the patients with the arrival of
emergency patients, new patients and any patients that have been delayed. Step
five is basically a termination procedure where the algorithm will loop itself to

step three (with d = d+1) as long as the Planning Horizon Day, D is not reached.

Before we present the algorithm for the next step, this is the strategy to
create the list of patients in initial solution. For easy reference in each of the

algorithm, we define the following notations :

Notation:

S1:  Delayed Emergency Patients

S2:  Emergency Patients

S3:  Patients Delayed at Hospital

S4:  Regular Patients Booked and Rebooked

S5:  Regular Patients

Ag: The sum of time of OT for day d

t?: The surgical planning time duration of patient ¢
t;: The surgical duration of patient ¢

j: The index for band of time time horizon

d:  The day d, the patient 7 is treated
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d*:

3

=

v 2

ER

The following days of planning after the current day

The slot time with the index j after time horizon greater than T’

The day patient ¢ goes to hospital

The refer time for each patient

Number of night patient ¢ has spent in the hospital waiting for operation
Number of times patient ¢ has been rescheduled

The day on which patient ¢ is treated

Cost for overtime usage of OT

Planning horizon day

Fix time for emergency case in horizon day everyday

3.5.1 Algorithm Initial Scheduling

Algorithm 3.2 Initial Solution

1: Consider S5 by referring the data order. Only S5 are considered since this is

an initial schedule and the patients are referred to their referral date.
Schedule S5 to the available time slots using First Fit Bin Packing Strategy.
We schedule patients, S5 into the OT with patient that has the longest planned
duration first and followed by other S5 in descending order. We schedule until
all slots are filled in time horizon every day. If the slots are full on that day,
we schedule on the next day until all S5 are scheduled into the system.

We set number of delayed at home, n” and delayed when admitted to hospital,

n; to zero

Under algorithm we need to consider all the regular patients in the sys-

tem. We then schedule these patients using the First Fit Bin Packing Strategy.

In general, our problem is similar to the Dual Bin Packing Problem since we are

given a fixed number of OT with a fixed available usage time. |Boyar and Favrholdt

(2003) stated that for Dual Bin Packing Problem, First Fit is better than Best
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Fit, which is better than Worst Fit. In scheduling the regular patients, we use
the strategy commonly known as longest serving time first where patients with
the longest planned duration will be scheduled first during the day to minimise
the possibility of overtime. When all the slots in the time horizon has been filled,
the remaining patients will be scheduled on the next day. Since this is an initial

solution, we set the number of patients delayed at home and at hospital at zero.

3.5.2 Algorithm Daily Schedule

In this Daily Schedule algorithm, we evaluate at day d. We treat patients in the
system in time horizon at day d for patients S1,or S2 or S3 or S4. Therefore, at
the end of day d, we will plan S1 and S3 to join the system and new patients, S5
and new emergency patients, S2 will be introduced into the system and they will
be schedules with reschedule algorithm. We also calculate the cost of a patient
in the system and how many times a patient is delayed if it happens. However,
for some cases the operation times is longer than expected and will need overtime
usage of OT. If this happen, we calculate the sum of time of OT for the day
including half of the planned time for the last patient of the day. If it is less than
the time horizon, we check the cost for patients and their penalty for delay at
hospital. Comparison will then be made with the cost of overtime usage of OT to

decide whether to treat at that day or to reschedule the patient to another day.
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Algorithm 3.3 Daily Schedule

1:

Form a list L of patients that contains S1 in order from the longest to shortest

duration and gradually S2, S3 and S4 with T; = d also ordered according to

arrival time and 7, then longest to shortest duration

Set Ad =0

Choose the next patient, ¢ in list L. If there is no next patient in L, go to 7

If Ag+t7 < T, Ag= Aa+t;
IfieSlorieS2orie S3, nt=d—1
Calculate C; = [Ai maz {(T; —r; = 7),0} + Cja + C’Zh}
Remove ¢ from system and go to 2 Z
IfAg+t7/2<T, Ay= Ag+1;
IfieSlorieS2o0rie S3, nt=d—1
Calculate C; = [Ai maz {(T; —r; = 7),0} + Cja + CZ?}

Remove ¢ from system and go to 2

Ifnd>1
Ifw; —ws < Ca — Ca
Ai=As+
IfieSlorieS2orie S3, nt=d—1
Calculate C; = [Ai maz {(T; —r; = 7),0} + Cja + ch,
Remove i from system and go to 2 Z
else n =nf +1
If i € S2 then set S1 = S1U{i}, set T; =0, 52 = 52 \ {i} and go to 2
If i € S4 then set 7; =0, S3 = S3U{i}, S4 =54\ {i},ifb;=0
set b; = d and go to 2
else n =nf +1

If i € S2 then set S1 = S1U{i}, set T; =0, S2 =52 \ {i} and go to 2

If i € S4 then set T; = 0, S3 = S3U {i}, 54 = S4 \{i}, if b = 0 set b, = d

and go to 2
else go to 2

Calculate C, Cost for overtime using OT

For each new regular patient and is not an emergency patient,i, set S5 =

S5U {i},
ri=dand T, =0

For each new emergency patient,i set S2 = S2U {i}, r;, =d+ 1, T; = 0 and

Set nf =n¢ =0

Stop




Chapter 3 Operating Theatre Scheduling Problem 69

3.5.3 Algorithm Rescheduling

From the Daily Schedule algorithm, we will have patients leaving the system but
there will be patients that are delayed such as delayed emergency patients and
delayed at the hospital, patients S1 and S3. Furthermore, emergency patients
(52) and new patients (S5) will also be introduced into the system. We schedule
new S2 and new S5 that we plan at day d + 1. If delay occurs, we reschedule S1

and S3 into the system.

We design algorithm, with the aim to minimise the cost of a patient de-
pending on the priority of the patient . The idea of to prioritise is so that more
important patients such as delayed emergency and emergency patients can be
treated at the beginning of the day. Therefore, higher priority will be given to
patients delayed many times at home or hospitals, compared to the first-time de-
layed patients. So less important patients can rescheduled into next day. After
rearranging the schedules, other patients in the system that we plan at day d + 1
might be delayed (S1 or S4). We will avoid moving patients that are already
booked and patients that have been delayed many time at the hospital. We cal-
culate how many times patients are delayed if it happens and calculate the total

cost for the system. Again, we use the first bin packing method in this algorithm.

The rescheduling algorithm is efficient in the sense that it will schedule the
patients that need treatment most first and try to avoid moving those already
booked because it will cause more delays which will increase the cost. Since it
takes into account the urgency that is attached with patient priority, it will elimi-
nate the possibility that urgent patients do not receive the appropriate treatment

immediately.
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Algorithm 3.4 Reschedule

1: Set a day, d = d*
2: Form again a list L of patient that contains S1 ordered depends on n{ then
by waiting time,
S2 is ordered how long by waiting time,
S3 with T; = 0 ordered depends on n{ then by arrival time and 7 from the
refer time,
S4 with T; = d ordered by longest to shortest duration
and S4 with T; = 0 ordered depends on n then longest and shortest duration
and
S5, T; = 0 also ordered according by arrival time and 7, then longest to
shortest duration
Set AH =0
3: If L fully searched goto 7
else choose next patient ¢ in list L
4: If1€Slorie S2,ord=d*
If A +? < T, A = AP + t7) set T; = d remove ¢ from L and goto 5
else goto 6
else If A+t < T —T°, A = AN + 17, set T; = d remove i from L
and goto 5
else goto 6
5. If ¢ € S5 then set S4 = S4U {i}, S5 =55\ {i}, End If
goto 3
6: If i € S4, with T; = d, then set T; = 0, n! = n” + 1, End If
goto 3
7. Ifd< D,set d=d+ 1 and go to 2
At the end of horizon, treat all remain patients on day D + 1
8: Stop

3.6 Local Search Method

Local search method approach to hard combinatorial optimization problem is dis-
cussed by Burke and Kendall (2005). The basic idea of the local search method
is to consider the neighbour of the current solution and try to locate a better

solution. If we are able to locate a better solution, we then explore the neighbour
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of this particular solution. We iterate this procedure until no better solution can

be located and hence the current solution is accepted as the best solution.

One of the important issues when implementing a local search procedure is
how to pick initial solution as well as how to define neighbourhood and to select
neighbour of a given solution. This is particularly important because we might
get an optimal solution but only a local optima and not a global optima. A
local optima is a solution that is optimal within a neighbouring set of candidate
solutions. On the other hand, a global optima is the optimal solution among all
possible solutions. (Crama et al. (1995) suggested that in many cases, finding an
initial solution is not difficult but the choice of this starting solution may greatly

affect the quality of the final outcome.
Some notations to be used in our local search method are defined below.

Notation:

C:  Cost for overtime using Operation Theatre

d;:  The current day book

The day booked that patient’s knows(new and emergency patient are zero)
The current day for consider to treat it

b;:  Patient come to the hospital

n;:  Number of times patient ¢ has been rescheduled

nt’: The total number of times patient 7 has been rescheduled and the patient

knows their day’s booked
r;: The refer time for each patient

A;:  Penalty for unit time for not treating the patient within 7 time units after

referred
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3.6.1 Cost For Local Search

We define a cost formula for the local search algorithm. The new cost for penalty
delay at home is different compared to the cost of the patient in the model at
section 3.3.6. The new cost now depends on ¢;, the variable that represents the

rescheduling decision of the patient. The variable is defined as follows:

C'=Aymaz {(Tj —ri = 7,0)} + CF_y, + Chu s,

h h _ K

0 d=0

=31 d#£0 & Tj#d

0 otherwise
\

75 1j—0i>0

Tj—b; —
0 otherwise

From the cost equation C' above, we can see that the penalty cost for delayed
at home depends on 9; where it is equal to one when the patients knows when
they are scheduled. However, when we apply the local search algorithm, the new
scheduled day is not the same as the day known to the patients. This means
that the patients will be delayed again and hence the number of times patient
7 has been rescheduled will increase by 1. Once a patient enters the system, a
day is assigned where the surgery of the patient will be performed. If the day
is informed to the patient then the patient is considered to “know” their surgery
date. If the date changes to a later date, then the patient is considered to have
been rescheduled since they now have to wait longer. Every time a date changes, a
cost is incurred. If the date changes several times, more cost is incurred. However,

if the patient is not informed about the date, then any changes to the date will
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not affect rescheduling cost. If the patients do not know when they are scheduled,

any changes in the schedule will not cause any delay.

Another factor that has changed is the penalty cost for patients that has
been delayed at the hospital. When we apply the local search algorithm, some
patients might be scheduled earlier hence no delay will occur and the cost is zero.
If the new schedule date is later than the day the patients arrive at the hospital,
then delay will occur and hence the delay cost will be incurred depending on how

long the patients is delayed.

3.6.2 Algorithm Local Search

Under the Local Search algorithm, we start with the heuristic technique as an
initial solution but we modify the reschedule algorithm with an extra step
where we apply the local search algorithm after step 7. Following the previous
algorithms, at the end of each day, we schedule new patients into the system and
reschedule patients delay at hospital and home if any delay happens, where we use

heuristic technique as an initial solution.

Now, under the local search algorithm (3.5)), we begin by swapping every pair
of patients if they satisfied the condition that we imposed. For example, we do
not swap patients on the same day. Any emergency patients can only be swapped
into the next day. Before we swap the patients, we need to check the sum of time
on the duration day. If emergency patients are swapped into the new day, the sum
of duration time must be less than or equal to T'. If regular patients are swapped,
the sum of duration time must be less than or equal to T"— T*°. If this condition

is satisfied, the pair of patients will be swapped.

After the patients are swapped, we check the total cost of the swap and

compare it with the current cost. If the new total cost is less than the current
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cost, the swap will be finalised. We then consider the next patient (going through
the same procedures) until all the balance patients in the list have been considered

and we come out with the new list of schedule for the next day.

Notation:

Ap

driy’ The sum of planning time booked of operation room for day d

T:  time horizon
T;:  The operation time for a patient ¢
T.: Fix time for emergency case in horizon day everyday

I:  The total number of patient’s in order list
INPUT:

d*:  The following days of planning after the current day

d¢;:  The day on which patient 7 (i) is treated
t7@:  The surgical planning time duration of patient (i)
bz¢):  The day patient (i) goes to hospital
7(i):  Patient that correspond to position i

1:  Position of patient ¢ in the list
1*: Position of patient ¢ after swap
j: Position of patient j in the list

7*: Position of patient j after swap



Chapter 3 Operating Theatre Scheduling Problem 75

Algorithm 3.5 Local Search
0: Set i* =1 —1and j* =1
1: Set i =1and j =2
2 If driiy = d*

a) For emergency patients:

while dw(j) = dﬂ(i), set j =7+1
if j>1 gotob
(AP p p p p p e
lf(Adﬁm —ta Tt <T) and (Adw(a» =ttty <T —T°), go to 4
else go to 5
b) For regular patients:
while dﬂ(j) = dﬂ(i), set j = ] +1
if7>1,gotoh
: p p p
go to 4

7) )
else go to 5
3. Calculate Total NewCost(i + j) for T; + T;
if Total NewCost(i + j)>TotalCurrentCost(i + j), go to 5
else TotalCurrentCost(i + j) = Total NewCost(i + j)
Dummy = 7 (i)
(i) = m(j)
7(7) = Dummy
set i* =4 and j* = j
end if
set j=7+1
if 7 <1, goto2
elseset i =14+ 1and j=7+1
if1 <1, goto?2
else go to 1
4: Set j=j5+1
if ©* =17 and j* = j, stop
if j <1, goto?2
elseset it =i+1and j =171+1
if ©* =17 and j* = j, stop
if1 <1, goto?2

else go to 1
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3.7 Simulated Annealing Method

The concepts of Simulated Annealing in Combinatorial Optimization were first
introduced independently by Kirkpatrick et al. (1983) and |Cerny| (1985) in the
early 1980s, and a thorough discussion can be found in |[Burke and Kendall (2005).
The idea is the thermal process to obtain low energy states of solids in a heat
bath. [Kirkpatrick et al.| (1983) discussed the two steps in the thermal process.
First, we increase the temperature of the heat bath to maximum value until the
solid melts and second, we decrease carefully the temperature of the heat bath

until the particles arrange themselves in the ground state of the solid.

In our research, we calculate the difference of the total cost (total new cost
— total current cost), A between a pair of patients that we plan to swap. The
difference between this procedure and the local search procedure is that even when
the difference of the total cost is positive, the swapping might still happen but only

with a certain probability.

If A is less than or equal to zero, we swap the patients but if A is more than
zero, we swap with probability e /% where K is the temperature and we have a
geometric cooling K = a/. The value used for « is typically about 0.9 but this
value depends on us and different value of o can be used such as 0.95 by [Sier et al.
(1997) where they also use the simulated annealing procedure in the scheduling

surgical procedures.

Under this procedure , firstly we must obtain the initial temperature for the
process by calculating 20% from the initial swap. The initial swap is obtained by
using the previous local search method. After we calculate 20% from the initial
swap, we check what is the A maximum. By rearranging the probability e=2/%

we get the value of the initial temperature, K = —A/in(0.2). The decision to

swap the patients will be done by comparing the probability obtained with each
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new value of K and A with a random number r € [0, 1]. If 7 is less than or equal
to the probability obtained, the patients are swapped but if 7 is more than the

probability obtained, the patients are not swapped.

The swapping pair of patients procedure will continue with smaller K because
of the geometric cooling and will stop when we reach the last temperature K that
we fix. The final temperature will be fix according to the initial temperature
such that, the cooling process will continue normally until the last temperature
according to the criteria that we fixed. At the end of procedure, we will come out

with a new list of scheduled patient that achieve our the objectives of our research.

3.7.1 Algorithm Simulated Annealing

We present two versions of simulated annealing algorithm. One is a traditional
algorithm that randomly search the solution space to find a better solution in
the neighbourhood until the algorithm terminates at a minimum. Under the tra-
ditional algorithm, a pair of patients is randomly chosen to be swap. We then
updated the algorithm where instead of choosing a pair of patient at random, we
systematically loops through the pairs of patients in the list. The notation and

symbols used are as follow:

Notation:

AP The sum of planning time booked of operation room for day d
T¢.  Fix time for emergency case in horizon day everyday
T;  The operation time for a patient 7
I The total number of patient’s in order list
K, Temperature

K,.  0or 1 measure of whether cooling is still ongoing
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I'  Repetition counter
INPUT:

d*:  The following days of planning after the current day
d=¢:  The day on which patient 7 (i) is treated
tr :  The surgical planning time duration of patient (1)
bzt):  The day patient 7(i) goes to hospital
7(i):  Patient that correspond to position i

1:  Position of patient ¢ in the list

1*:  Position of patient ¢ after swap

In the traditional algorithm firstly (step 0) we set the list of patients,
the temperature to the initial temperature (K, = Initial K}, ), and K, = 1 to
indicate the cooling has started. Next in step 1, we choose a pair of patient at
random and calculate the new temperature K, = ok,,. The cooling will stop
once the temperature is less than the final temperature (K, < Finalk,,) and
which point we will set K, = 0 and the process is stopped. In step 2, we set the

repetition counter I' = 0.

In step 3, we check to see if the pair of patient is schedule on the same day
and if so we will choose a different patient j at random that is not schedule on the
same day as patient 7. Then we check to see if the patients are compatible to be
swap where we check if they will fit in the time horizon for the day. If the patients
are compatible to be swapped, in step 4 we calculate A, the difference between
the new cost of swapping the patients with the current cost. If A is less than or
equal than zero, we swap the patients but if A is more than zero, we calculate

—A/Kpr

the probability e and compare with a random number r € [0, 1] where the
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Algorithm 3.6 Traditional Simulating Annealing

0: Set a list with I patients, T}, = Initial K and K, =1
1: Choose random ¢ and j, where ¢ # j
Calculate K, = o), , If K, < FinalK, set K;,w =0
2: Set repetition counter I' = 0
3: While dy(;) = dy(;), choose a random j where d(;) # dr(j)
if(AZﬂ(i) — ti(i) + t’;(j) <T) and (Asﬂ(j) — tz(j) + ti(i) <T), goto4
else go to 5
4: Calculate T'otal NewCost(i + j) for T; + T
Calculate Delta = TotalNewCost(i + j) — TotalCurrentCost(i + j)
if Delta <0
TotalCurrentCost(i + j) = Total NewCost(i + j)
Dummy = 7 (i)
7(i) = 7(7)
7(j) = Dummy
else if Delta >0 and K, =1
“A/Kpr

Calculate Pro=-e
Derive random number 7 € [0, 1]
if r < Pro
TotalCurrentCost(i + j) = Total NewCost(i + j)
Dummy = 7 (i)
(i) = 7(j)
m(j) = Dummy
else go to 5
end if
else choose random 4 and j, where i # j
if ' <20
update ' =T+ 1, go to 3
else go to 1
5. if K, = 0, stop
else choose a random j
it ' <20
update I'=T+1, go to 3
else go to 1

A/Kpr

patients will swapped only if r < e~ Otherwise we choose a different patient

J to be swapped and go back to step 3 while the repetition counter is ongoing.

In step 5, the algorithm is stopped once the cooling has stopped. Otherwise,
patients will be test to be swapped until the repetition counter is satisfied at which
point the algorithm goes back to step 1 where the temperature is gradually lowered

until it reaches the final temperature.

In the updated algorithm firstly (step 0) we set the list of patients,
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the temperature to the initial temperature (K, = Initial K}, ), and K, = 1 to
indicate the cooling has started. Next in step 1, we choose the first and second
patients in the list and calculate the new temperature K, = of,. As in the
traditional algorithm, the cooling will stop once the temperature is less than the
final temperature (K, < FinalK,,) and which point we will set K =0 and the
process is stopped. In step 2 and 3, we check to see if the patients is schedule on
the same day, and if they are, the second patient is changed to the next patient in
the list until both the patients are not schedule in the same day. Then we check to
see if the patients are compatible to be swap where we check if they will fit in the
time horizon for the day. If the patients are compatible to be swapped, in step 4
we calculate A, the difference between the new cost of swapping the patients with
the current cost. If A is less than or equal than zero, we swap the patients but

—A/Kpr

if A is more than zero, we calculate the probability e and compare with a

random number r € [0,1] where the patients will swapped only if r < e=8/Kpr,
Otherwise we choose the next patient in the list to be patient j to be swapped and
go back to step 2. If there is no other patient in the list, we change the patient ¢
to the next patient in the list and choose the next patient after that as patient j

and go back to step 2. Once we have gone through the list, we go back to step 1

to choose patient ¢ and j.

In step 5, we check the current temperature and the algorithm is stopped
once the cooling has stopped. Otherwise, the algorithm goes back to step 1 where

the temperature is gradually lowered until it reaches the final temperature.
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Algorithm 3.7 Updated Simulating Annealing
0: Seti* =1—-1,5*=1,
kpr = Initial Ky and K, =1
1: Seti=1, j=2
Calculate K, = or > If Ky < Final Ky, set KI’JT =0
2: If dﬂ.(l) =d*
while dﬂ(j) = dﬁ(z) and j <I,set j=7+1
ifj>1,g0tobh
if(AG, ) — ) Tlngy < T) and (Ag_
else go to 5
3: While dr(j)y = dyy and j < I, set j=j+1
ifj>1,g0tob
if(AG , —thg tthg ST =T and (A =17+t <T —T°), goto4
else go to 5
4: Calculate T'otalNewCost(i + j) for T; + T
Calculate Delta = TotalNewCost(i + j) — TotalCurrentCost(i + j)
if Delta <0
TotalCurrentCost(i + j) = Total NewCost(i + j)
Dummy = 7 (i)
(i) = 7(j)
w(j) = Dummy
set i* =17 and j* =7
else if Delta > 0 and K}, =1
—Delta/Kpr

)—tﬁ(j)%—tfr(i)ST—Te),gotoél

Calculate Pro=-e
Derive random number 7 € [0, 1]
if r < Pro
TotalCurrentCost(i + j) = Total NewCost(i + j)
Dummy = 7 (i)
(i) = 7(j)
w(j) = Dummy
set i* =7 and j* =3
else go to 5
end if
set j=7+1
if <1, goto?2
elseset t=¢+1and j=7+1
if i <1, goto?2
else go to 1
5. if i* =i, j* = j and K, = 0, stop
elseset j=35+1
if i* =i, j* = j and K, = 0, stop
if <1, goto?2
elseseti=i+1land j=7+1
if i* =i, j* = j and K, = 0, stop
ift <1I,goto2
else go to 1
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3.8 Experimental Design

The main reason why we use generated data and not real data is because we want
to see how applicable our method is. By using generated data, we can create
different situations that might occur in different hospitals to get an idea whether
our algorithm will provide a schedule that achieve the stated aims and objectives.
We want to see if one of the algorithm outperforms the other whether in some or

all the data sets.

We can check the validity of our method by using different variation of data.
We are able to check the range of our data by covering the type of fine that are
imposed at some hospitals. We will be able to simulate the condition of which
patients arrive and how the decision on how to treat the patients are made (online)
between different hospitals because the rate of patients arriving into the system

vary every time in real life.

By changing the data, we will be able to look at how the algorithm is applied
to real hospital. The hospital can provide their real data and then compare the

results of our different algorithm to their current scheduling policy.

3.8.1 Example using Generated Data

We generate a variety of data using Uniform Distribution. The notation U ~ [a, 0]
denotes that the data are randomly generated from a uniform distribution defined
on the interval [a,b]. The number of patients arriving each day has the sum of
the probability distribution function. The number of regular patients is usually

greater than the number of emergency patients.

Let n” be the number of regular patients arriving on a particular day and n® be

the number of emergency patients arriving on a particular day:
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Example 1

Regular Patient: 4.5, Emergency Patient: 1.5, T,., = [—20, 40]

0.02 ifn" =0
0.06 ifn" =1
0.10 if n" =2
0.15 ifn" =3
0.20 if n" =4
P(nr) = 020 ifn" =5
0.10 ifn" =6
0.06 ifn" =7
0.05 ifn" =8
0.03 ifn" =9
0.03 if n" =10
\ 0.00 ¢f n" > 10
¢
0.25 if n®=0
0.30 ifn®=1
P(ne) = 0.25 if n®=2
0.10 if n®=3
0.10 if n®=4
0.00 if n®>4

Example 2

Regular Patient: 4.0, Emergency Patient: 1.5, Ty, = [—20,40]
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0.04 ifn" =0
0.12 ifn" =1
0.14 ifn" =2
0.16 if n" =3
0.16 ifn" =4
P(n) — 0.12 ifn" =5
0.10 «f n" =6
0.07 ifn" =7
0.04 ifn" =S8
0.03 ifn" =9
0.02 +f n" =10
0.00 if n" > 10
¢
0.25 if n°=0
0.30 ifn®=1
Plne) = 0.25 if n®=2
0.10 if n° =3
0.10 if n®=4
0.00 if n®>4

Example 3

Regular Patient: 3.5, Emergency Patient: 1.5, Ty, = [—20,40]
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0.04 ifn" =0
0.15 ifn" =1
0.20 if n" =2
0.18 ifn" =3
0.14 ifn" =4
P(n) — 0.10 ifn" =5
0.08 ifn" =6
0.05 ifn" =7
0.03 if n” =8
0.02 ifn" =9
0.01 ¢f n" =10
0.00 if n" > 10
¢
0.25 if n°=0
0.30 ifn®=1
Pl — 0.25 if n® =2
0.10 if n° =3
0.10 if n° =4
0.00 if n®> 4

\

The mean number of regular patients arriving on a particular day is either 4.5, 4.0

or 3.5 (see example 1, 2 and 3) and the mean number emergency patients is 1.5.

The first step is to generate random data U ~ [0,1] to get the number
of patients for emergency cases and regular patients daily. Next, we generate
the planning duration time for each patient. The planning duration has uniform
distribution T}, ~ [30, 130]. We assume the planning duration is between 30 to 130

minutes, with daily means of 6, 5.5 and 5, respectively.
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Lastly, we generate the actual duration time. The actual duration is the
total of T}, and Tjyep, Tyer ~ [—20,40]. This interval is chosen for T, because
the relative value is small, and the mean is also small. Otherwise the method of
estimation for the planning duration is not good if it has a large deviation. We

generate random data for one year.

Besides generating data with T}, =[-20,40], we also generate data with 7., =|-
25,35]. The results of our methods using the generated data is shown in Table 3.6

Table [3.7, and Table [3.9

3.9 Testing of Heuristics

In order to see what is the best heuristic technique to used as a sorting method,
we run a computational test of several heuristics to see which one performs the
best. We calculate the total cost, the delay at home, the delay at hospital and the

runtime of the algorithm. We decide to test four heuristics which are:

1. First-Come-First-Serve
2. Longest to Shortest Duration
3. Shortest to Longest Duration

4. Random sorting

The results are shown in Table [3.5] We can see that the sorting method
with the lowest total cost is the "Longest to Shortest Duration’ with the total cost
of 1523905. Although this method has the highest number of delay at home, at
the same time it has a low delay at hospital reducing the total cost. In terms of
runtime, all methods have almost the same runtime which suggested that runtime

is not affected by the methods.
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With this result, we decided to use the 'Longest to Shortest Duration’ sorting

method for our computational test using different parameter values.

TABLE 3.5: Results of Heuristics Testing

Sorting Total Cost | Delay at | Delay at | Runtime

Method Home Hospital (seconds)
(Cost/Day) | (Cost/Day)

First-Come- | 1548790 1780/160 2560/32 42

First-Serve

Longest  to | 1523905 1910/173 1680/21 46

Shortest

Duration

Shortest 1589885 1390/137 1520/19 45

to  Longest

Duration

Random 1525305 1570/147 2080/26 46

Sorting

3.10 Computational Results

We present the computational results of our methods using the generated data.

For each average number of patients, we can see that there is no big difference

between the number of patients which means that our data sets will be valid for

comparison. For easy comparison, we present several graphs comparing the total

cost for OT process in the system, cost of overtime for OT, cost for patients delay

at hospital, cost patients delay at home, average capacity utilization up to horizon

day and the number of patients left after horizon day.
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TABLE 3.6: Computational Results using Heuristic Technique

Average | Number| Total | Cost of | Cost of | Cost of | Average day

pa- of pa- | cost delay at | delay at | OT %  be- >

tients tients Hospi- home tween 400

arrival tal 400 day
6 2541 | 750770 | 26940 326400 11300 | 96.4786835 | 81
6 2552 | 555185 | 31795 285960 12700 | 97.3051987 | &4
6 2659 | 760750 | 46645 350605 15500 | 97.8781281 | 107
6 2557 | 794165 | 25935 360720 10550 | 95.8176727 | 90
6 2519 | 371475 | 18585 200385 14100 97.878624 73
5.5 2476 | 159745 6820 122845 10910 | 97.0718842 | 71
5.5 2300 | 126335 5475 97165 12850 | 96.3473892 | 30
5.5 2313 | 156310 6545 127965 13550 | 97.4318085 | 30
5.5 2391 | 209555 9765 148360 14800 | 97.0723724 | 52
5.5 2379 | 211835 6880 161970 13000 | 97.3078232 | 43
5 2157 59995 4510 36560 12850 | 94.6749725 3
5 2154 43295 6195 16540 12550 | 96.6572876 3
5 2138 56320 6470 30240 12950 | 96.4885254 3
5 2125 37415 5475 16225 11950 | 94.1004868 3
5 2120 35640 4340 13515 13150 | 94.7203522 3
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TABLE 3.7: Computational Results using Local Search Method
Average | Number| Total Cost Cost Cost of | Average % | day
patient | of pa- | cost delay at | delay at | Oper- between >
arrival | tient Hospi- home ating 400 day 400
tal Theatre

6 2541 732055 | 25700 298465 | 10765 96.8909878 | 79
6 2552 554167 | 28635 273600 | 13864 96.6692794 | 85
6 2659 773520 | 36510 343800 | 14456 95.9759308 | 107
6 2557 438845 | 26658 336520 | 11880 96.5193586 | 89
6 2519 386504 | 15560 192546 | 14008 97.2272942 | 70
5.5 2476 788940 | 9425 165000 | 13500 97.1324717 | 71
5.5 2300 122450 | 4560 123465 | 12400 98.7826087 | 28
5.5 2313 124650 | 6246 125688 | 12550 98.7462173 | 29
5.5 2391 219600 | 7540 154624 | 17320 95.9471742 | 48
5.5 2379 214533 | 8235 154330 | 14205 97.9924717 | 42
5 2157 44620 4436 36050 13840 95.05698423| 3
5 2154 44100 6075 16645 12990 95.17745642| 3
5 2138 56318 5960 29945 11955 96.33461823| 3
5 2125 36695 5290 16200 12100 94.84003935| 2
5 2120 35840 4250 13495 11680 94.98768542| 2
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TABLE 3.8: Computational Results using Traditional Simulated Annealing
Method
Average | Number| Total Cost Cost Cost of | Average % | day

patient | of pa- | cost delay at | delay at | Oper- between >
arrival | tient Hospi- home ating 400 day 400
tal Theatre
6 2541 689824 | 25500 301690 | 13650 96.562327 | 82
6 2552 559760 | 28355 288540 | 13520 94.458024 | 94
6 2659 711450 | 26500 373750 | 15388 95.756805 | 102
6 2557 559884 | 30824 277685 | 14486 94.678422 | 93
6 2519 378550 | 13382 194486 | 12558 96.814355 | 86
5.5 2476 225649 | 8655 169708 | 14358 95.894036 | 71
5.5 2300 159885 | 5890 120688 | 10644 96.367132 | 28
5.5 2313 184200 | 6445 136400 | 11345 97.011452 | 28
5.5 2391 219884 | 8324 150450 | 13800 96.988054 | 60
5.5 2379 207785 | 7945 155652 | 12639 97.073484 | 38
5 2157 61200 4862 19550 12990 94.456255 | 3
5 2154 60098 6278 18644 12678 95.340992 | 3
5 2138 45722 4956 18897 11980 96.982245 | 3
5 2125 42645 4460 17245 12208 95.345085 | 3
5 2120 38208 4405 14420 12055 95.967242 | 3
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TABLE 3.9: Computational Results using Updated Simulated Annealing
Method

Average | Number| Total | Cost of | Cost of | Cost of | Average day

pa- of pa- | cost delay at | delay at | OT %  be- >
tients tients Hospi- home tween 400
arrival tal 400 day
6 2541 | 668685 | 22060 268810 12400 | 97.2368311 | 79
6 2552 | 520810 | 26560 223950 12360 | 95.3056727 | 81
6 2659 | 699730 | 25190 363865 14950 | 97.1324232 | 105
6 2557 | 568225 | 34095 261382 12455 | 96.8145723 | 89
6 2519 | 359850 | 11875 179990 13675 | 97.4527551 | 72

5.5 2476 | 159655 7430 130709 10450 | 97.3215581 | 69

5.5 2300 | 126300 | 4105 104250 12700 | 97.0824535 | 25

5.9 2313 | 154200 5015 118960 13000 | 97.3215842 | 25

5.5 2391 | 209550 6875 160165 13500 | 97.0723713 | 55

5.5 2379 | 208680 8970 147745 12800 | 97.2984525 | 40

5 2157 29800 4485 35940 12800 | 95.3891437 3
) 2154 42955 6142 16400 12450 | 94.9339125 3
) 2138 26300 6470 30200 12940 | 96.7410982 3
) 2125 37350 5460 16195 11920 | 95.2016239 3

5 2120 35450 4300 13450 13100 | 95.6973218 3
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Total Cost of Operating Theatre's Process in the System with 6
average patients
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Ficure 3.3: Total cost with 6 average patients between the methods
Total Cost of Operating Theatre's Process in the System with 5.5
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FIGURE 3.4: Total cost with 5.5 average patients between the methods
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Total Cost of Operating Theatre's Process in the System with 5
average patients
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FiGurke 3.5: Total cost with 5 average patients between the methods

Figures [3.3] [3.4] and [3.5] show that there are no large differences in the total
cost between the methods for each average number of patients. However, between
the data sets, it can be seen that there is a different in the total cost. Figure (3.4
and [3.5] show that the total cost are almost the same between the data sets for

each of the method.

Some differences can only be seen in Figure|3.6|where in four of the data sets,
simulated annealing method shows some improvement compare to the other two
methods. This might suggests that as the average number of patients increases,

simulated annealing method might be able to reduces the total costs.

Interestingly, data set 4 in Figure |3.6| clearly shows that the total cost of
OT’s process in the system significantly decrease using the simulated annealing
method. It also has the highest total cost for heuristics and local search method
compared to the other data sets but surprisingly, the total costs for simulated
annealing method is lower than the total cost of simulated annealing in data set

1 and data set 2. This might suggests that as the total costs increases for average
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patients higher than 6, the simulated annealing method might be able to reduces

the cost significantly.

Although Tables shows that the number of total patients between
the five data sets for each average number of patients to be almost the same, the
same cannot be said about the the the total cost of OT’s process in the system.
For example, in Figure [3.3] data set 5 contains a total of 2519 patients but the
total costs is only about 400000 for the three methods but on the other hand, data
set 1 contains a total of 2541 patients (a difference of only 22 than data set 5) but

the total cost is about 700000 for all three methods.

Cost of Operating Theatre with 6 average patients
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FIGURE 3.6: Cost of OT with 6 average patients
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Cost of Operating Theatre with 5.5 average patients
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FiGURE 3.7: Cost of OT with 5.5 average patients
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FIGURE 3.8: Cost of OT with 5 average patients

Figures and 3.8 show the cost of using OT over the time horizon.
Again there are not much differences between the methods for each data sets but
in general simulated annealing method has a little bit improvement in reducing

the cost especially for 5.5 and 5 average patients. However, for 6 average patients
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(Figure , we can see that the simulated annealing method actually increases
the cost of OT for data sets 1 and 4 and the differences when compared to the other
methods are quite substantial. This might suggest that there are many overtime
use of OT under the simulated annealing method. We can also see that the cost
for data set 4 in Figure is the smallest compared to the other data sets but

the difference is small.

Overall, all the data sets shows that the cost of using OT over the time
horizon are more or less the same with a value of around 12000 and the highest
is in data set 3 in figures [3.6] and the lowest is in data set 1 in figures [3.7] This
suggests that in term of the cost of using OT over the time horizon, there is
not much different. This might be because the duration time and the allocated

overtime usage are similar across the data sets.
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FiGURE 3.9: Cost of delay at Hospital with 6 average patients
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Cost of Delay at Hospital
with 5.5 average patients
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FiGURE 3.10: Cost of delay at Hospital with 5.5 average patients
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FiGurk 3.11: Cost of delay at Hospital with 5 average patients

Figures [3.10] and [3.11] show that the cost of delay at hospital for the

data sets are varied. In Figure |3.9, we can see that there are sizable difference
between simulated annealing and the other two methods especially in data set 3

where the difference is about 20000. However, in data set 4, the cost under the
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simulated annealing method are much bigger (an increase of about 10000 compared
to the other method). Here the magnitude of the cost are big when compared to
the other two figures. The lowest cost of delay at hospital is achieved by the
simulated annealing method in data set 5 (the cost is 11875) and the highest is

with the heuristic and local search method in data set 3 (the cost is 46645).

In Figure the simulated annealing method incur a larger cost in two of
the data sets but in the other data sets, simulated annealing method decreases the
cost of delay at hospital. However, here the magnitude of the cost is small. The
lowest cost of delay at hospital is achieved by the simulated annealing method in
data set 2 (the cost is 4105) and the highest is with the heuristic and local search

method in data set 4 (the cost is 9765).

In Figure |3.11] there are no big differences between the methods and the
cost for the methods are about the same for each data set. Again the magnitude
of the cost is small and the range between the cost is also small with the lowest

cost is produced by data set 5 and the highest is produced by data set 3.

In can be concluded based on the cost of delay at hospital that the higher
the average number of patients, the cost of delay at hospital also increases. The
magnitude of the cost increases substantially even with a difference of 0.5 average
patient. As we can see, when the average number of patients is 5.5, the cost is not
higher that 10000 but when the average number of patients is 6, the cost goes as
high up as 46000.
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Cost of Delay at Home
with 6 average patients
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FI1GURE 3.12: Cost of delay at Home with 6 average patients
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F1GURE 3.13: Cost of delay at Home with 5.5 average patients
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Cost of Delay at Home
with 5 average patients
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FIGURE 3.14: Cost of delay at Home with 5 average patients

Figures [3.12| [3.13] and [3.14] also show a varied data for the cost of delay at

home. In some data sets, simulated annealing decreases the costs but in other
data sets, it increases the cost (simulated annealing manages to reduce the cost in
all data sets except data set 3). Substantial differences where simulated annealing
decreases the cost can be seen in figure data set 4 where the simulated an-
nealing method reduces the cost by 100000 from around 350000 produced by the

other two methods.

In figure the cost of delay at home is reduced by almost half of that in
figure when the average number of patients reduces from 6 to 5.5. However,
here it seems that out of the 5 data sets, simulated annealing increases the cost of

delay at home in 3 of the data sets.

In figure the cost are almost same for each data set and that the cost for
the data sets seems to be in two groups where in 2 data sets the cost is at around
30000 and the other at 15000. It seems that when the average number of patients

is 5, the three methods produce the same cost of delay at home. However, the
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magnitude of the cost is very small suggesting that when the average number of

patients is low, not many patients will be delayed at home.

Overall, it seems that the simulated annealing method is able to reduces the
cost when the average number of patients is six or more but the magnitude of
the cost will increase substantially. The cost doubled when the average number
of patients increases from 5.5 to 6 and if the trend is true, as the average number
of patients increases, the cost of delay at home will also increases. This suggests

that when there are more average patients, more patients will be delayed at home.
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FIGURE 3.15: Average capacity Utilisation up to Horizon Day with 6 average
patients
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Average Capacity Utilization up to Horizon Day
with 5.5 average patients
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FIGURE 3.16: Average capacity Utilisation up to Horizon Day with 5.5 average
patients
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FIGURE 3.17: Average capacity Utilisation up to Horizon Day with 5 average
patients

In figure [3.15] we can see that in 5 of the data sets, the average capacity
utilisation is higher for the simulated annealing method in only two of them where

the simulated annealing method manages to increase the utilisation by 1 percent
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but reduces the utilisation in the other 3. In data set 2, the simulated annealing

method reduces the utilisation by almost 2 percent.

In figure simulated annealing method increases utilisation in only two
data sets and in data set 1, the increase is only about 0.2 percent whereas in data
set 2, it increases the utilisation by about 1 percent. In the other data sets, the

utilisation are about the same for all three methods.

In figure [3.17, simulated annealing method manages to increase the utilisa-
tion in four data sets except for data set 2 where it reduces utilisation by about 2
percent. In the other data sets, although there is an increase but the increase is
mixed with about 1 percent for data set 1, 0.5 percent for data set 3 and about 1

percent for data set 4 and 5.

Overall, there might technically be some difference between the method but
since the scale is small, it could be said that the utilisation between the methods
are the same. However, since the value is close to 100, it can be said that our

methods are successful in utilising the OT.
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FIGURE 3.18: Number of patient Left after Horizon Day with 6 average patients
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1

FIGURE 3.19: Number of patient Left after Horizon Day with 5.5 average
patients
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FIGURE 3.20: Number of patient Left after Horizon Day with 5 average patients

Figure |3.18 shows no differences between the methods in term of number of
patients left after horizon day where on average about 80 patients left after horizon

day.
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Figure shows a varied data where in data sets 2 and 3, the number of
patients left is about 30 but in data set 1 the number number of patients left is

around 70. However the three methods produce almost the same results.

Figure shows no difference between the method for all data sets but the
number is only 3. This suggests that when the avererage number of patients is

small, the number of patients left will also be small.

3.11 Conclusion

In this chapter, we discuss the foundation of our research by defining the essential
models, parameters and assumptions. We start by looking at the problem we
want to tackle which is the order of scheduling of elective patients and what
happens when emergency patients arrive throughout the day. We explain the
delay conditions that might cause some patients to be rescheduled. We allocate all
patients and reschedule delay patients depending on their case using the heuristic

method in time horizon every day.

We then define the objectives of our research and the constraints considered.
We also define the types of patients priority and the cost function used. The
overtime cost function is presented to see how it affects our scheduling decision
on whether to continue with the planned operations by doing overtime work or
reschedule the patients to the next day. We also present an example of a heuris-
tic technique and several examples of manual calculations of the cost for some

patients.

The algorithms used to schedule and reschedule patients are presented. The
first algorithm is the online procedure which included the algorithm for initial
scheduling which will schedule the regular patients into the system. Next, we

evaluate a particular day d where patients S1, or S2 or S3 or S4 are treated in
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time horizon. If overtime is required, we compare the cost and penalty of being
delayed at the hospital and decide whether to perform the surgery or reschedule

to the next day.

Rescheduling algorithm is then applied to schedule the delayed patients with
the aim of minimising the cost depending on the patients’ priority. Under this
algorithm, top priority patients such as patients that have been delayed several
times has higher priority than those that have only been delayed once which will
eliminate the possibility that urgent patients do not receive the appropriate treat-

ment as soon as possible.

We then present the local search algorithm where we start with an initial
solution from the heuristic technique, and then swap pair of patients. We swap
the patients to see if by swapping, the duration and cost can be reduced. Before
swapping we check sum of time on the duration day. After each swapping, the
cost is calculated and compared with the current cost. If the cost is less, the swap

is finalised.

Finally, we discuss the simulated annealing method where we calculate the
difference of the total cost (total new cost — total current cost), A between a pair
of patients that we plan to swap. If the difference of the total cost is positive, the
swapping might still happen but only with a certain probability. Besides that, if
A is more than zero, we swap with probability e=2/", where T is the temperature

and we have a geometric cooling 7' = oT'.

All the algorithms presented in this chapter will be utilised and tested with
different data sets to see the best algorithm that optimised our objective in the
next chapter. We wish to look for any significant difference between the methods

and decide if one algorithm will be more preferred than the other.

In general, the simulating annealing method shows an improvement when

compared with heuristic method and local search method. However, these values
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are affected by the average number of patients and on the nature of the data
sets itself. We can see the total cost is mostly made up of the cost of delay at
hospital and cost of delay at home whereas the cost of OT is about the same for
the different average number of patients. Also when the OT is busy (more than

average patients), more rescheduling is necessary.

The utilisation percentage of the OT seems to be about the same for the
different methods and it is very close to zero suggesting that there are no under
utilisation of OT by the methods. Besides that, the number of patients left after
time horizon is also affected by the average number of patients but this is a natural
effect of the high average number of patients. When there are more patients, we
would expect more delay and some patients do not get treated until after horizon

day.

Lastly, different data sets produce different results because each data set

contains different set of patients and are representative of the real data.



Chapter 4

On Day of Treatment Operating
Theatre Scheduling Problem

4.1 Background

A different aspect of the OT scheduling problem to consider is the scheduling of
multiple OTs running at the same time wherein patients can be booked into any of
the OTs depending on the patient’s priority and the surgeon’s speciality or avail-
ability of equipments. In this chapter, we are considering the schedule on the day
with the patients booked, emergency arrivals and variations from projected oper-
ation duration. The schedule on the day includes the order in which patients are
treated. If the emergency arrivals or variations in operation duration exceeds the
theatre slot length, the cost of either (or both) overtime or cancelling operations
will be calculated. In the previous chapter, the schedule is updated at the end of
the day. Whereas in this chapter, the schedule will be updated continuously every

time a surgery ends and upon arrival of emergency patients.

We begin our research by reviewing the work in the area of scheduling parallel
machines. The basic idea is that each OT can be considered as a machine with

108
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jobs to be completed and under different circumstances, the methods to optimally
schedule the OT will differ. Besides that, machines are available for processing
jobs all the time in the planning horizon which is similar to the scheduling of OT
where we assume OTs are available for surgeries in the time horizon. In addition
to that, a job cannot be interrupted once it is being processed, which is a similar

situation in OT occurences (surgery cannot be interrupted once it has begun).

Belouadah and Potts| (1994) proposed a branch and bound algorithm in
scheduling identical parallel machines to minimise total weighted completion time.
They performed a Lagrangian relaxation using a noninteractive method which
allows derivative of a lower bound scheme at a modest computational expense.
Besides that, Hall et al. (2002) considered a deterministic scheduling of jobs on
several identical parallel machines with a common server using a variety of classical
scheduling objectives. They provided either a polynomial- or pseudo-polynomial-

time algorithm, or a proof of binary or unary NP-completeness for each problem.

In addition, Shim and Kim| (2007) considered the scheduling of parallel ma-
chine with the aim of minimising total tardiness. They also proposed a branch
and bound algorithm and developed dominance properties and lower bounds as
well as upper bounds from a heuristic algorithm. Computational experiments to
evaluate the performance of the algorithm described in the article showed that
the algorithm could find optimal solutions for problems with up to 30 jobs and 5

machines in a reasonable amount of CPU time.

Moving on from identical parallel machines, we then review some work in the
area of unrelated parallel machines. For example, Liaw et al. (2003) presented a
branch-and-bound algorithm and efficient lower and upper bounds are developed in
scheduling independent jobs on unrelated parallel machines to minimise the total
weighted tardiness. They showed that the branch-and-bound algorithm performs

well on problems with up to 18 jobs and 4 machines.
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Kim et al. (2003) presented search heuristics in batch scheduling of unrelated
parallel machines with the objective of minimising the total weighted tardiness.
They tested four search heuristics, earliest weighted due date (EWDD), shortest
weighted processing time (SWPT), two-level batch scheduling heuristics (TH) and
simulated annealing and found that TH and simulated annealing outperformed the

other two.

In a research closer to ours,|Azadeh et al. (2014) considered the scheduling of
patients in emergency department laboratories having given priority to patients’
treatment as determined by the triage factor to minimise the total weighted com-
pletion time. By formulating the problem as an open shop scheduling problem,
they proposed a mixed integer linear programming model and developed a genetic
algorithm to solve the problem. Interestingly, they applied the response surface

methodology to find the optimum genetic algorithm parameters.

In the area of scheduling multiple OTs, Zhang et al.| (2014) consider the
dynamic assignments of a given set of surgeries to multiple identical OTs where
surgeries have random durations and planned surgeon arrival times. The aim is to
minimise the total expected cost incurred by surgeon waiting, OT idling and OT
overtime where surgeries are assigned dynamically to OTs at surgery completion
events. They proposed an efficient algorithm by combining a two-stage stochastic
programming approximation and two heuristics (a one-period look ahead method
and a multi-period look ahead method) to assess the cost. They showed that
the dynamic scheduling significantly improves static surgery scheduling and the

optimisation of the dynamic scheduling further improves the performance.

Besides that, Zhang and Xie (2015) proposed a discrete-event framework
to model the surgery schedule and to evaluate the sample path gradient of a
total cost incurred by surgeon waiting, OT idling and OR overtime. They used

appointment scheduling for a sequence of surgeries with random duration served
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by multiple identical OTs where the surgeries are assigned to OTs dynamically
on a first-come, first serve basis. They showed among others that the benefits
of dynamic assignment and proactive anticipation when determining appointment
times are generally high and that they increase with the number of OTs and
variable conditions. They emphasised the consideration of dynamic assignments
in the determination of arrival time for scheduling identical surgeries that are more

likely to switch OTs during the execution.

In addition, [Zhao and Li (2013) considered the problem of scheduling elec-
tive surgery to multiple OTs in ambulatory surgical settings where the focus is on
the daily scheduling decisions such as the number of OTs to open, the allocation
of surgery-to-OT and the sequence of surgeries in each OT. The surgeries to be
scheduled are known in advance, belong to different types and each OT can only
perform certain surgeries. Here they assumed the setup times are sequence depen-
dent and both setup times and surgery duration are deterministic. They proposed
a Mixed Integer Nonlinear Programming (MINP) model and a Constraint Pro-
gramming (CP) model with the aim of minimising the sum of fixed costs and
overtime costs of the OTs. They suggested that the CP model is more efficient

than the MINP model on computational time and solution quality.

4.2 Problem Definition

In this chapter, we consider the scheduling of multiple OTs in a single day only
and reschedule on the day as variations from projected operation durations and
emergency occur. Different amount of time due, different skills of the surgeons and
different theatres might be allocated into the system. A defining approach here
is to consider the random arrivals of emergency patients that take priority above
all other patients. In addition to that, we consider a group of theatres being used

have similar features and that all surgeries can take place in all OTs although we
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can bar certain patients from entering some OTs. Only a small number of OTs
are considered but with the ability to move patients to other OTs, more patients

can be served.

Once emergency patients arrive, emergencies need to be fitted in as soon as
possible or with priority over booked patient. This means that the patients already
scheduled into the slot will be moved to either the next slot or to a different OT.

If this happens, patients can be moved from one OT to another.

As mentioned before, the actual duration for each patient is likely to vary
from the planning duration. Therefore, other patients may need to be rescheduled
at the end of the day. The decision whether to extend the usage of OT or reschedule
the last patient depends on the costs. If the cost of overtime is lower than the cost
of rescheduling the patients to the next day, the overtime is utilised. Since we are
scheduling for only one day, patients that were already delayed from the previous
day will have a different cost associated with them in the model and this cost is

calculated when considering the usage of overtime.
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FIGURE 4.1: Initial situation

For example, as shown in Figure at the beginning of the day we have a
list of patients and they need to be scheduled to different OTs according to their
respective criterion. We first feed the initial data into the scheduling algorithm and
it will produce an initial schedule for the day. Then the surgeries are done based
on the schedule. Since the actual duration for each surgery might be different
than the planning duration, at the end of each surgery, we check if there are any
emergency patients that have arrived into the system during the surgeries. If no

emergency patients arrived, the surgeries go on as scheduled. But if there are
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emergency patients, rescheduling is required so that the emergency patients can
be operated on immediately. The data associated with the emergency patients is
put into the list and then the data is fed into the scheduling algorithm to produce
a new schedule. This new schedule will cause some patients to be moved from one

OT to another to make way for the emergency patients.

In essence, we actually consider if rescheduling is required after the com-
pletion of every surgery provided that emergency patients arrive within the time
horizon. If there are no emergency patients, then the schedule will continue in the
original order. Beside that, due to the variations in surgery durations, reschedul-
ing is also required to ensure that patient that can fit into the available slots of

other OTs, if any, are scheduled to the new OTs to prevent overtime or delay.

At the end of the time horizon, rescheduling might cause overtime usage of
the OT. We need to decide whether to perform the surgery with overtime usage of
the OT or cancel the patients for the day and rebook them for another day. The
decision is based on the comparison of the overtime cost and rescheduling cost. If

the overtime cost is lower than rescheduling cost, overtime is utilised.

4.3 The Model

The surgery of n patients must be scheduled in m OTs, during time horizon for
one day. Each OT has different surgeons. There are also variations in the type
of equipments available in each OT. This means that some surgeries can only be

performed in some OTs.

We assume that the patients who are scheduled for a particular day have
already been hospitalized. We also consider priorities of patients based on their
weight by giving top priority patients a higher weight. We also have disruptions

from a small number of emergency patients, as some patients may be moved from
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one OT to another OT or surgeries are taking longer than the planning duration.
We reschedule as necessary when emergencies arrive into the system or operation
durations are different from predicted. Our objective is to minimise the cost of
the new schedule. The costs are penalty for patients not treated on the day and
penalty for schedule overrunning at OTs. Decision variable is x;; and binary

variables are v;, z;; and z;s.
The notations used that relate to the environment in this study are as follows:

1. Operation theatre
j:  Patient

n:  The number of patients (including emergency patients once they have ar-
rived)

The number of OT
T:  time horizon
Ti:  The upper bound of theatre time for OT ¢ after T time horizon

T5:  The upper bound of theatre time for OT ¢ after T} time horizon

4.3.1 Objective function

Our objective is to minimise the costs of the new schedule.

The costs are given as follows:

1. Penalty for patient not treated on the day.

2. Penalty for schedule overrunning at OTs (small penalty and large penalty).

4.3.2 Decision and Binary Variables

The decision variables z;; are the variables that show whether patient j is assigned

to one the OTs. It will be 1 if it is assigned to a particular OT and 0 in other
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OTs to signal that the patients have been assigned an OT therefore it cannot be
considered for the other OTs. The binary variables v; are the variable that show
if patient j is untreated or has been treated on the day being considered. It will
be 1 if the patient is untreated and 0 if it has been treated. The binary variables
z;1 and z;, show the usage of overtime where z;; will be 1 if overtime band 1 is
used and if overtime band 2 is used, z;; will be 1. If overtime band 2 is used, the
variable z;; will be 0 since overtime band 1 is included into z;5. Logically, overtime

band 2 cannot be used unless overtime band 1 has already been used.

The binary variables are z;; and 2.

1 if patient j is assigned to operation theatre ¢
Tij =
0 otherwise.
;
1 if patient j untreated on the day being considered
v; = 4
0 otherwise.
;
1 if theatre ¢ completes its schedule in overtime band 1
Zil =
0 otherwise.
)
1 if theatre ¢ completes its schedule in overtime band 2
Zi2 =
0 otherwise.

4.3.3 Constraints

We consider several constraints in our model, the constraints are given as follows:

1. Each surgery is either assigned to exactly one OT or will be untreated for

the day.
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2. The overtime of OT, i.

3. Include at most one of the overtime bands.

4.3.4 Zero-One Programming Model

The notations used that relate to the variables in the integer programming model

are as follows:

w;:  The weight of penalty patient j if patient j is not treated the day being
considered

Bi1: The penalty of completion time for OT j after time horizon in time section
17 <T7 Tl]

Bio: The penalty of completion time for OT j after time horizon in time section
27 (Tb TQ]

x;;:  Decision variable for patient j if assigned to operation theatre i

;i Binary variable for patient j if untreated on the day being considered

zi1:  Overtime band 1 of theatre ¢

zio:  Overtime band 2 of theatre ¢

subject to

min(P) = ijvj + Z(ﬁuzil + Bizziz)

=1 i=1
Z$ij+vj:1a Vj:1,2,-.-,n (41)
i—1

Ztijxij S T + (T1 - T)Zﬂ + (T2 - T)Zig, Vi = 1, 2, oo, (42)

j=1

Zil—l—Ziggl, \V/i:172,...,m (43)
zi; € {0,1}, Vi=1,2,....m,  Vj=1,2,... n(44)
Zil, Zio € {0, 1}, Vi = 1,2, oo, (45)

v; € {0,1}, Vi=1,2,....n (4.6)
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The objective is to minimise P where it has two components. The first com-
ponent is the cost if the patients are untreated on the day considered, Z?Zl W;V;.
It is the product of patient j weight w; and the binary variable v;. As stated
earlier, the binary variable v; will be 1 if the patient is untreated and hence it
will be multiple by the weight and counted for every patient untreated. The more
patients untreated the larger the sum will be especially if the weight is big. The
second component is the cost of overtime usage, Y " (Bi1zi1 + Biozi2). As stated
earlier, if overtime band 1 is used, the variable z;; will be 1 and it will be mul-
tiplied by the overtime cost (;;. If overtime band 2 is used, the variables z;; will
be 0 and z;, will be 1 and it will be multiplied by the overtime cost ;2 since the

cost of overtime band 1 is already included into the overtime cost Ss.

The constraint » " x;; + v; = 1 ensures that the patient j is either as-
signed for surgery in one of the OTs or is delayed into the next. The constraint
> iy tijwiy < T+ (Th — T)zin + (Ty — T)zip ensures that the sum of the planning
durations for each patient in each OT is less than or equal to the available time
horizon T or if overtime is used, less than the overtime period and not more than
that. The constraint z;; + z;2 < 1 ensures that only one overtime band is activated
to prevent double counting of costs since the costs for overtime band 1 is already
included in overtime band 2. x;; € {0,1}, 21,22 € {0,1} and v; € {0,1} ensure
the variables will always take the value of either 1 or 0 as explained in the previous

section.

4.3.4.1 Overtime Costs

The penalty for time horizon greater than 7"

Bn T <C;<Ty

Bio Th < C; <Th
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We schedule the number of patients, N at time horizon, 7" minutes in M OTs.
Some patients maybe moved from one OT to another OT because we reschedule
again when we have disruption from emergency patients coming into the system or
some patients have different (longer) actual durations from the predicted duration

time.

Some patients can also be cancelled from the list on the day because high-
priority emergency patients are scheduled into the slots. We fix 7" minutes in time
horizon every day. If the sum of the duration time is greater than 7" minutes, the
overtime usage of the OT will get a penalty depending on the slot time after time
horizon. Also, if a patient is cancelled from the scheduling list of the day, we get

a penalty.

4.4 Algorithm Design

The algorithm is designed to input and update all data before it is fed into the
Zero-One Programming (ZOP) model. Every time a trigger occurs (the end of
surgery or the arrival of emergency patient), the data is updated to reflect the
current situation in the OTs. Some surgeries could finish early which will free
up space for suitable patients or it could take longer than the planning duration
which might cause delay. The arrival of emergency patients that require instant
surgeries will trigger the algorithm to feed the current updated data into the ZOP
model, thus producing a new schedule that will include reassignment of patients

to a new OT or the delay of patients.
The notations used in the algorithm are as follows:

L:  Set of patients
L¢:  Set of arrived emergency patients

Lj:  Set of patients assigned to operation theatre, j
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Te:
Te:
Tr:
5]'15

5]'21

Set of operation theatres

The sequence of patients’ for theatre, j

The number of patients assigned to operation theatre, j

List of sum of time for each operation theatre for one day

The actual surgical duration time of patient, ¢ at operation theatre, j
The planning surgical duration time of patient, ¢ at operation theatre, j

Release time for patient, i (this will be 0 for non-emergencies and the arrival
time for emergencies)

Change time

Arrival time for emergency patient

Removal time of patient from the list (Surgery End time)
Completion time of OT ¢ is completed

The penalty of completion time for OT j after time horizon in time section
1, T< A <7

The penalty of completion time for OT j after time horizon in time section
2, T < A < T
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Algorithm 4.1 Parallel Scheduling Algorithm
1: Input the set of operation theatres M = {1,...,m} and the set of patients

L =1{1,...,n}, together with ri,tﬁi for j=1,...,m and w;, fori =1, ...,n.

Set L =L,T" =0,7;, =1 and w; = w; for i € L , and Zj; = Zjo = 0.

2: If L # (), solve the IP model Zero-One Programming Model

3 If L =0,0rif L # 0 and z;; = 0 for all j € L and ¢ € M, then apply the
following;:

Wait for the first arrival in the interval (77,7 4+ T"] and if there are none,
then go to 7.

If the first arrival is for patient i, then input Ti,tgi for j = 1,...,m and
w;, and set L = LU {i}, 7, = 1, w; = w;, T =r; —T",L = LU{i},T =
T-TTy=T,—TTo, =T, —T¢and T" = r;, and go to 2.

4: Apply the following for j =1, ..., m.

Set n; => ., xjand L; = {i € L|zj; = 1} .

If L; # 0, form a sequence m; = (m;(1),7;(2),...,m;(n;)) for the patients in
L; such that wy, (1) > Wr;2) 2 - Wrj(n;)-

If Lj # 0, set w1y = oo,t?mNU = oo for j' € M\{j}, and 7,1y = 0.

5. Wait for the first patient among {;(1)|j € M, L; # (0} to complete surgery
or the next emergency patient to arrive, whichever event occurs first.

If the first event is the arrival of a new patient ¢, then input ri,tgi for
j=1,...,mand w;, and set L = LU {i},v; = 1,w; = w;,T* =r; —T", and
T =r;.

If the first event is the completion of the operation for patient 7;(1) at time
Cr,q1), then set T¢ = Cr 1y = T" and T" = Cr,1)-

Set T=T-T Ty =T, —T Ty, =T, —T*.

6: For each j € M with L; # 0 and Cy,y = 17, set L; = Lj\{m;(1)}; if
T+T" < C’ﬂj(l) <T,+1T", then set z;; = 1; and if Cﬂj(l) > Ty + 1", then set
Zj1 = 0 and Zj = 1.

For each j € M with L; # () and Cr; 1y > 17, set tiﬂj(l) = max{tﬁﬂj(l) —T¢,0}.

Go to 2

7. Compute the total cost >, 7 Wi0; + Y.y BnZjn + BjaZjo

In step 1, we must set the number of OTs available for surgeries. We then set
the number of patients available for surgeries with their arrival time and weight.
For each patient, their planning duration in each of the OTs available is known

and set. Once all the relevant data is available, a list of available patients for
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the day is now known. For the initial set up, we must set the removal time of
patient from the list (surgery End time) 7" = 0 since no surgery has taken place.
In step 2, with the list containing all available data, we feed it into the Zero-One

Programming (ZOP) model and it will choose the OT for each patient for the day.

In step 3, if the list of patients is not empty but one or more OTs is empty
and available for surgery in the time horizon we will wait for the arrival of new
patient (emergency patient) in the interval between last patient removed and end
of time horizon. If a new patient arrives, we input the data for patient and update
the list before feeding it into the IP model. If no patient arrives, then the OT is

closed at the end of the time horizon.

In step 4, we will know the number of patients assigned to each OT. In
each OT, the list of patients is sorted according to their weight with highest
weight scheduled for surgery first. Once the surgery has started, the weight for
the patient and the planning duration in all other OTs are set to an arbitrary
large value to prevent interruption. Once a surgery has started it must continue

until it is completed. Once it has finished, the patient is removed from the list.

In step 5, we wait for the first surgeries among the OTs to finish or the next
emergency patient to arrive, whichever occurs first. If a new patient arrives during
the surgeries, it will trigger an update to the list to include the data for the new
patient and the updated list is fed into the IP model to produce a new schedule.
This new schedule will prioritise the new emergency patient above all other so the
patients will be booked for surgery after one the current surgeries has finished to
be bumped into the slot or to other OTs. On the other hand, if a surgery finishes

first, then the data in the list is also updated.

In step 6, after each trigger, patients that have finished surgery is removed
from the list and the time horizon is updated to reflect the available time left for

surgery. If the time horizon has been reached then overtime band is taken into
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consideration for usage. This will inform the IP model whether to schedule or

reschedule patients to the next day by calculating their costs.

Finally, in step 7, if there are no more surgeries scheduled, we calculate the

total cost.

4.5 Example of Linear Programming Solving

We generate example data sets for one day with 2 OTs and 12 total number
of patients, where 10 regular patients and 2 emergency patients arriving during
the day. We focus on the order in which patients are treated for OT Scheduling
Problem. The main challenge ocurs when emergency patients arrive online in the
system. Every day, we schedule patients in the empty slots of OT time horizon
based on the current information available. The schedule is updated every time a
surgery is completed and when the emergency patients arrive into the system. A
high number of emergency patients arriving into the system and operation times
longer than expected can make other patients move to another OT or they will be

cancelled on that day.

Table shows the list of patients, L that are scheduled for the day (pa-
tients 1 to 10) and the emergency patients, L¢ that will arrive during the day.
Each patient has with them their planning duration and actual duration in each
OT and the weight w;. Table shows the time horizon where if overtime is
required (7} and T3), we set two horizon for overtime and the value of penalty of

overtime usage in this system.

With this list of patients, we feed the data into the IP model and it will

sort the patients into the OTs such that the patients are scheduled into the best
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TABLE 4.1: Example Data for 12 patients on one day.

Patient Planni.ng Weight Actua! Em.ergency time
Duration Duration arrival

1 80 1000 10 100 1000 | 10

2 130 800 20 140 800 0

3 60 560 15 70 560 0

4 60 990 30 90 90 0

5 110 95 20 120 80 0

6 500 100 15 500 130 0

7 1000 90 40 1000 90 0

8 710 110 25 710 100 0

9 100 80 15 90 100 0

10 90 1000 40 130 1000 |0

11 50 50 60 60 50 100

12 70 200 60 80 200 200

TABLE 4.2: Example Data for Services of Operation Theatre.

Time Horizon T | 480 minutes
Upper bound 1 7 | 550 minutes
Upper bound 2 7T, | 700 minutes

Cost Penalty 1 50

Cost Penalty 2 100

OTs that minimise costs and maximise the number of patients scheduled. The
output from the IP model is shown in Table We can see that five patients
are scheduled in OT 1 and five patients are scheduled in OT 2 where the total
planning duration for OT 1 is 420 minutes and the total planning duration for OT
2 is 475.

Patients are sorted according to their respective weight to ensure that pa-
tients with higher weight will be operated first, since the weight represent the
urgency of the surgery. Once this is done, we will then have the schedule for the

day and the surgeries can start as shown in Table [4.4]

Once the surgeries are running in the OTs, we wait to see if any emergency
patient arrives, which will require us to reset the schedule. Also, we wait to see

if any surgery ends, which indicates that actual duration differs from planning
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TABLE 4.3: List of Initial Schedule.

. Operation Planni.ng Weight Actua.l
Patient Theatre Duration Duration

1 1 80 1000 10 100 1000
2 1 130 800 20 140 800
3 1 60 560 15 70 560
4 1 60 990 30 90 990
10 1 90 1000 40 130 1000

Total OT 1 420

) 2 110 95 20 120 80
6 2 500 100 15 500 130
7 2 1000 90 40 1000 90
8 2 710 110 25 710 100
9 2 100 80 15 90 100

Total OT 2 475
TABLE 4.4: Sorted based on weight.
. OT r Planni.ng Weight Actua}
Patient Duration Duration

10 1 0 90 1000 40 130 1000

4 1 0 60 990 30 90 990

2 1 0 130 800 20 140 800

3 1 0 60 560 15 70 560

1 1 0 80 1000 10 100 1000

Total 420

7 2 0 1000 90 40 1000 90

8 2 0 710 110 25 710 100

5 2 0 110 95 20 120 80

6 2 0 500 100 15 500 130

9 2 0 100 80 15 90 100

Total 475

duration. Some surgeries might be shorter than the planning duration or it might
take longer due to complication during the surgery. In our example in Table [4.5]
the first patient finishes after 90 minutes, which is patient 7 in OT 2. Following
this, Patient 7 is no longer considered for scheduling. However, Patient 10 is still

in surgery and continues in the schedule.

Hence at T° = 90, we adjust the remaining time available 7" = 390, T} = 460
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and Ty = 610. From Table [4.6] we then continue with patient 8 in OT 2 since the
order of scheduling has not changed. However, for Patient 10 in OT 1, we greatly
increases the weight because as it has already started, it must be completed and
cannot be interrupted even with the arrival of an emergency patient. Hence the

surgery for Patient 8 starts.

TABLE 4.5: Operation Slot 1

. Planning , Time
Patient OT | i Duration i Slot 1 start
10 1 0 90 | 1000 40 | 130 1000 | continue
4 1 0 60 | 990 30 90 990
2 1 0 130 | 800 20 | 140 800
3 1 0 60 | 560 15 70 560
1 1 0 80 | 1000 10 | 100 1000
Total 420
7 2 0 1000| 90 40 | 1000 90 Finish | 90min
8 2 0 710 | 110 25 | 710 100
5 2 0 110 | 95 20 | 120 80
6 2 0 500 | 100 15 | 500 130
9 2 0 100 | 80 15 90 100
Total 475
TABLE 4.6: Next Operation Start
, Planning , Actual Time
Patient OT | i Duration = Duration Slot 1 start
10 1 0 40 2000 | 500 | 130 1000 | continue| 90min
4 1 0 60 990 30 90 990
2 1 0 130 800 20 | 140 800
3 1 0 60 560 15 70 560
1 1 0 80 1000 10 | 100 1000
Total 370
7 2 0 1000 | 90 40 | 1000 | 90 Finish
8 2 0 710 110 25 | 710 100 Start 90min
5 2 0 110 95 20 | 120 80
6 2 0 500 100 15 | 500 130
9 2 0 100 80 15 90 100
Total 385
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After T¢ = 90, the surgeries continue and similarly we wait for the arrival of
emergency patients. The example in Table shows emergency patient 11 arrives
into the system at 7° = 100 minutes. The data associated with Patient 11 is
added into the system and we update T¢ = 100, T' = 380, 77 = 450 and T, = 600
since the arrival of emergency will prompt us to input the new updated data into
our IP model and it will produce a new schedule as shown in Table [4.7]

TABLE 4.7: New Schedule after patient 11 arrived

‘ Planning ‘ Actual Time

Patient OT | Ts Duration i Duration Slot 1 start

10 1 0 30 1000 | 500 | 130 1000 | Continue | 100min

11 1 10 50 50 60 | 60 20 New

4 1 0 60 990 30 | 90 990

2 1 0 130 800 20 | 140 800

3 1 0 60 560 15 | 70 560

1 1 0 80 1000 10 | 100 1000 Delay Delay

Total 330

7 2 0 1000 90 40 | 1000 90 Finish
8 2 0 710 100 500 | 710 100 | Continue | 100min
5 2 0 110 95 20 | 120 80
6 2 0 500 100 15 | 500 130
9 2 0 100 80 15 | 90 100
Total 375

In Table we can see that Patient 11 is now scheduled right after patient
10 has finished surgery. In addition to this, the weight for patient 8 is updated
to 500 since the surgery is now in progress and cannot be interrupted. With the
addition of Patient 11, the IP model decides that Patient 1 will be delayed since
the planning duration now exceeds 380 if Patient 1 is included and the cost of

delay is lower than the cost of overtime.

After the new schedule is produced, the surgeries go on as planned and
without the arrival of emergency patients, the schedule is not updated and soon
arrives at 130 minutes where now the surgery for patient 10 is finished and hence

the schedule is updated where T° = 130, T' = 350, T} = 420 and 75 = 570. Then
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the next surgery follows, where Patient 11 is operated in OT 1 and patient 8

continues without interruption as shown in Table

TABLE 4.8: Schedule at 130 minutes

, Planning , Actual Time
Patient OT | 7i Duration i Duration Slot 1 start
10 1 0 30 1000| 500 | 130 1000 | Finish
11 1 10 50 50 60 | 60 50 Start 130min
4 1 0 60 990 30 | 90 990
2 1 0 130 800 20 | 140 800
3 1 0 60 560 15 | 70 560
1 1 0 80 1000 10 | 100 1000 Delay Delay

Total 300

7 2 0 1000 | 90 40 | 1000 | 90 Finish
8 2 0 710 70 500 | 710 100 Continue | 130min
5 2 0 110 95 20 | 120 80
6 2 0 500 100 15 | 500 130
9 2 0 100 80 15 90 100
Total 345

The surgeries continue without interruption until 190 minutes where surg-
eries for Patient 11 and Patient 8 are finished. Hence the schedule is updated
where T° = 190, T' = 290, T} = 360 and 75 = 510. The next surgeries go on
as scheduled for Patient 4 in OT 1 and Patient 5 in OT 2 with the remaining
planning duration of 250 for OT 1 and 275 for OT 2. Next, at 200 minutes, Pa-
tient 12 arrives into the system and the list is updated with patient 12 data where
T¢ = 200. Here the schedule is updated where T°¢ = 200, T = 280, T} = 410 and
T = 560. The data is then fed into the IP model and we have a new schedule as

shown in Table 4.9

We can see in Table that Patient 12 is scheduled for surgery in OT 1
right after Patient 4 has finished. With the addition of Patient 12, the surgery for
Patient 3 will be delayed since the IP model has decided that the cost of delay

is lower than the cost of overtime. We can see that the arrival of Patient 12
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TABLE 4.9: New Schedule after patient 12 arrived
A Planning A Actual Time
Patient OT | Ti Duration i Duration Slot 1 start
10 1 0 30 1000| 500 | 130 1000 | Finish
11 1 0 50 50 60 | 60 50 Finish
4 1 0 50 990 550 | 90 990 | Continue | 200min
12 1 10 70 200 60 80 200 | New
2 1 0 130 800 20 | 140 800
3 1 0 60 560 15 70 560 Delay Delay
1 1 0 80 1000 10 | 100 1000 | Delay Delay
Total 250
7 2 0 1000 | 90 40 | 1000 | 90 Finish
8 2 0 710 60 500 | 710 100 | Finish
5 2 0 100 85 500 | 120 80 Continue | 200min
6 2 0 500 100 15 | 500 130
9 2 0 100 80 15 90 100
Total 265

increases the weight of patient 4 and Patient 5 are still undergoing surgery, to

prevent interruption.

TABLE 4.10: Schedule at 400 min

, Planning , Actual Time
Patient OT | 7i Duration i Duration Slot 1 start
10 1 0 30 1000| 500 | 130 1000 | Finish
11 1 0 50 50 60 | 60 50 Finish
4 1 0 10 990 500 | 90 990 | Finish
12 1 0 70 200 60 | 80 200 | Finish
2 1 0 90 800 20 | 140 800 | Continue | 400min
3 1 0 60 560 15 | 70 560 Delay Delay
1 1 0 80 1000 10 | 100 1000 | Delay Delay
Total 90
7 2 0 1000 | 90 40 | 1000 | 90 Finish
8 2 0 710 60 500 | 710 100 | Finish
5 2 0 100 85 20 | 120 80 Finish
6 2 0 500 10 500 | 500 130 | Finish
9 2 0 100 80 15 | 90 100 Start 400min
Total 80
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The surgeries go on as scheduled until the time where a surgery finishes
where T, T, Ty, and T, are reset and the next surgery started as schedule. For
example, in Table at 400 minutes, Patient 6 surgery finishes and the schedule
is updated where T = 400, T' = 80, T} = 150 and 77 = 300. Without the arrival of
any more emergency patients, the final schedule of the day is shown in Table
where the total duration for both OTs is 500 minutes with two patients delayed

to the next day, which are Patient 3 and Patient 1.

TABLE 4.11: After 400 min

, Planning , Actual Time
Patient OT | i Duration i Duration Slot 1 start
10 1 0 30 1000 | 500 | 130 1000 | Finish
11 1 0 50 50 60 | 60 50 Finish
4 1 0 10 990 500 | 90 990 | Finish
12 1 0 70 200 60 | 80 200 | Finish
2 1 0 90 800 20 | 140 800 | Finish
3 1 0 60 560 15 70 560 Delay Delay
1 1 0 80 1000 10 | 100 1000 | Delay Delay
Total 500
7 2 0 1000 | 90 40 | 1000 | 90 Finish
8 2 0 710 60 500 | 710 100 | Finish
5 2 0 100 85 20 | 120 80 Finish
6 2 0 500 10 500 | 500 130 | Finish
9 2 0 100 80 15 | 90 100 | Finish
Total 500
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4.6 Example using Generated Data

4.6.1 Data Generation Procedure

In order to test our ZOP model, we run a computational test with randomly-
generated data that test the robustness of our model in real life situation. This
is because the number of patients for each day and duration of their surgeries are
different. In addition to this, emergency patients arrive randomly and with dif-
ferent number each day. The generated data will simulate the variations between
planning durations and actual durations of surgeries. We will generate 10 sets of
data for each group of OTs being considered. The data generation procedure can

be summarised as follows:

1. Planned processing/operation times for elective patients i:

Generate a planned operation time t* from the uniform distribution defined

on U[30,120] for j = 1,...,m with the following methods:

e generate a random number R from 1,2,3
o if R=1,set t}, =1t

o if R =2 set tfi = tP 4+ t° where t¢ is generated from the uniform distribution

U[10, 40]

e if R =3, set t}; = 1000

If there is no j for which tfi = tP, randomly select j from 1,...,m and reset

thy =P

Keep generating patients ¢ until the new value of tP is such that the sum of all

t? values exceeds 480m—FE, where E = 112.5m is the expected planned operation
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time for emergency patients (see below), in which case the process terminates
without the final patient 7. We let E be the expected duration of emergency
surgeries. It is equal to the average processing time times 75 multiplied by 1.5m
(75 is the mean of U ~ [30,120]). We set the limit on booking (total duration

time) to be 480m—FE or some multiple of FE.

2. Emergency patients:

e Generate the number of emergencies to be an integer from the uniform dis-

tribution defined on U[m, 2m)].

e Then generate the emergency patients with same processing time distribu-

tion as elective patients.

e Generate arrival times for emergency patients from the uniform distribution

defined on U1, 480].

3. Weight for patients:
Weight for patient 7 : w; is generated as follows:
e Elective patients: w; is an integer from the uniform distribution defined on
U120, 80]

e FEmergency patients: w; = 10,000

4. Actual processing/operation times for elective patients i:

Actual operation times for all 7+ and j, ¢;; are generated from the uniform

distribution on U[t], — 20,#;, + 20]. We set T' = 480, T'1 = 540 and T2 = 600.

’ ]71

5. Penalties:
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We set the penalties into two bands, where the first is 8;; = 50 and the
second is Bj2 = 200 for each overtime band being used. The values are the same

for all theatres.

4.6.2 Computational Test

To test the data, we change the data generation procedure. We want to see if the

different data types will affect the outcome and decide on the following data:

Data Types:

e Original data generation procedure
e High number of emergency patients

e Low number of emergency patients

The outputs we produce are as follows:

Output Produced:

Number of patients treated

Number of patients untreated

Total cost

e Time (second)

4.7 Computational Results

We present the computational results of our methods using the generated data.

We generate 10 data and present the results of each data and the average of all



Chapter 4 On Day of Treatment Operating Theatre Scheduling Problem 134

the data. We then change the parameter of the data generation procedure to
reflect different situation that might occurs. We generate data to reflect increase
and decrease in the number of emergency patients, and increase flexibility of the
OTs, where patients can be scheduled into more OTs (the number OTs that are

incompatible is reduced).

4.7.1 Results using Generated Data

TABLE 4.12: 2 OTs

Data Number Number Total Cost | Time (sec)

of Patients | of Patients

Treated Untreated
1 13 0 100 0.33
2 14 0 100 0.24
3 12 0 0 0.36
4 10 0 50 0.33
5 11 1 30 0.55
6 10 1 40 0.55
7 11 0 200 0.49
8 10 0 250 0.50
9 11 0 0 0.44
10 10 2 170 0.48
Average 11.2 0.4 94 0.43

From Table there are around 11 patients on average across the data
sets. We can see that only in three data sets that there are untreated patients.
The total cost suggest that instead of rescheduling, the IP model decided to use
overtime to perform surgery. The average time is 0.44 seconds which suggest that

the IP model can be calculated in a very short amount of time.

From Table there are around 23 patients on average across the data

sets. We can see that all data sets no patients were untreated. The is one data



Chapter 4 On Day of Treatment Operating Theatre Scheduling Problem

135

TABLE 4.13: 4 OTs

Data Number Number Total Cost | Time (sec)

of Patients | of Patients

Treated Untreated
1 25 0 0 0.39
2 22 0 0.39
3 23 0 50 0.39
4 22 0 50 0.39
5 20 0 0.23
6 25 0 0 0.49
7 22 0 50 0.27
8 23 0 50 0.91
9 25 0 50 0.44
10 22 0 300 0.42
Average 22.9 0 55 0.43

set which has a high total cost. The average time is 0.43 seconds which suggest

that even with more data the IP model works efficiently.

TABLE 4.14: 6 OTs

Data Number Number Total Cost | Time (sec)
of Patients | of Patients
Treated Untreated
1 36 0 200 0.48
2 35 0 100 0.48
3 32 0 50 0.68
4 35 0 0 0.19
5 31 3 2140 0.65
6 31 3 2140 0.25
7 32 2 550 0.45
8 33 0 50 0.5
9 33 0 50 0.36
10 34 0 0 0.34
Average 33.2 0.8 528 0.44

From Table there are

around 33 patients on average across the data
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sets. In one data set the number of patients is 36. We can see that in three data
sets that there are untreated patients while the other data sets, all patients were
managed to be treated. The total cost is relatively high and in two data sets the
cost is 2140. The average time is 0.44 seconds which suggest that the IP model

performance does not diminished even with bigger data sets.

4.8 Conclusion

As expected, when there are more OTs, the cost will also increase and that the
output produced will also increased. However, our Zero-One-Programming model

manages to schedule and reschedule patients efficiently.



Chapter 5

Conclusion and Future Plan

5.1 Concluding Remarks

Our research looks at Combinatorial Optimization Problem in scheduling patients
in the OT based on expected operation time using stochastic operation time when
the patient arrive into the system. Besides that, we consider online problem on

OT where new patients and emergency patients arrive into the system all the time.

We cannot predict the type of patients that will arrive into the system and
their operation time are not known precisely in advanced. We design the models

and developed the models with suitable data.

We generate the variation of data based on our problem when there is a
high number of emergency patient coming into the system and operation time are
longer than expected which can lead to disruption of previously booked patients
and necessary reschedule is needed. Our research are novel because the models
that we developed consider two cost, patient cost and OT cost which are difficult
to incorporates into our model. These costs play an important role in producing

the schedule because sometimes going into overtime use of OTs might incurred less
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cost than scheduling patients to a different day and vice versa, Besides that, we try
to avoid repeated delay and cancellation of patients are not allowed. We achieved
this by introducing patient’s priority and these priority will change according to
the patient’s conditions. We try to schedule patients as soon as possible based on

their priority, where high priority patients will have precedent over other patients.

As the starting point, we schedule patients using simple heuristic technique
and develop local search procedure. However, local search procedure does not
produce any major improvement because our initial solution was reasonably good.
We proposed simulating annealing procedure to improve rescheduling process and
the results show an improvement in total cost, cost for delay cases and cost of
OT overtime compared with local search and simple heuristic technique. We
proposed both the traditional and updated simulated annealing method where in
the traditional method, patients are chosen at random to be swap while in the
updated version we go through the list in succession. Our variations of data sets
that we generate are good because nearly 96 percent achieved good efficiency of

the surgery schedule.

In the problem of multiple OT's scheduling in a day, we considered the sched-
ule on the day with the patients booked, emergencies arriving and variations from
projected operation duration. The schedule on the day includes the order in which
patients are treated, and if the emergency arrivals or variations in operation du-
ration takes us over the theatre slot length the cost of either (or both) of overtime
or cancelling operations will be calculated. We actually consider if rescheduling
is required after every surgery because of longer duration than planned or there
are emergency patients that need surgery immediately. If rescheduling is required,
some patients might be moved to different OTs or cancelled on that day. Our
proposed model is able to capture both the arrival of emergency and the variation

in planning duration and accomodate the schedule accordingly.
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In general, the order in which patients are treated in multiple OTs do not
influenced the outcome greatly, but it seems that sorting by weight /duration seems
to generally do best in terms of cost without reducing the utilisation of the theatres.

More data variation is needed to produce a better conclusion.

5.2 Future Work

Build a new algorithm

We will test a new algorithm with difficult parameters included in the model.
In this problem, the possible parameters we can consider are value of cost penalty,
range of data, and reasonable time for each patient after they are referred into the

system. We will:
1. Fixing the time from a week to 6 weeks for the emergency patient or regular
patient to be book into the slot in the OT.

2. Looking at different initial schedule and more complex cases for reschedule.

This require some changes to the parameters in the algorithm.

3. Looking at how much capacity should we allocate to regular patients and
emergency patients. We will consider time or some space in the OT slots for

booking emergency patient.

4. Exploring one of the parameter setting in the algorithm, like waiting time

of every patient after they come into the system using the same model.

5. Include the surgeon/doctor background experience to model the timing of

the duration as another variable.

Disruption Cases
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1. Generate different type of emergency situation and other real life scenar-
ios. For example, surgeon cancel operation slot, patient does not show up,
system breakdown and other possible disruption situation. We plan to see
how several version (parameter) models using the same data and how we

rearrange a new schedule.
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