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ABSTRACT
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Mathematical Sciences

Thesis for the degree of Doctor of Philosophy

RELATIVISTIC FLUID DYNAMICS AND ELECTROMAGNETIC
MEDIA

by Konstantinos Palapanidis

In this thesis we describe fluid media with electromagnetic properties in the con-
text of general relativity. Using the variational principle we derive the Einstein
equations from the Einstein-Hilbert action, the Euler-Lagrange equations for a mul-
ticomponent fluid and the Maxwell equations. We provide a covariant description
of linear electromagnetic media and we also discuss media with non linear electro-
magnetic properties. We also provide a formula that generalises the expression for
the Lagrangian of linear media, to that of non linear media and we discuss a set
of constraints for linear electromagnetic media in terms of the material derivative.
We discuss a model for a multifluid with general electromagnetic properties. We
also derive the limit for the single fluid ideal magnetohydrodynamics in general
relativistic context. In the final part we look into the linear stability of specific sys-
tems using the geometric optics method along with the notion of “fast” and “slow”
variables. Employing this method we reproduce a number of results in Newtonian
context, building gradually to the derivation of the magnetorotational instability.
Additionally, we discuss the vanishing magnetic field of this configuration. Subse-
quently, considering an unperturbed background spacetime we derive the charac-
teristic equations describing the relativistic inertial waves, the relativistic Rayleigh
shearing instability and the relativistic magnetorotational instability. Finally, by as-
suming a low velocity and flat metric limit of the relativistic equations we reproduce

the Newtonian characteristic equations.
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CHAPTER 1

Introduction

In this thesis we consider the theory of media with fluid and electromagnetic prop-
erties in the context of general relativity and examine the dynamical behaviour of
specific systems using the method of geometric optics. The purpose of this work is
to provide a description that is relevant for the modelling of specific aspects of as-
trophysical structures, such as neutron stars and their environments. We will firstly

discuss the properties of neutron stars and then outline the plan of our study.

Since their discovery in 1968 by J. Bell [1], neutron stars have been studied in great
depth and extent and today there are many models that describe them. Because
they exhibit extreme properties, the various models usually need to combine more
than one aspect of physics. The main goal of these theoretical models is to cover
and explain the phenomena that we observe. Additionally, observations of neutron
stars are continuously improved and refined and as a result there is a need for the
production of more accurate theoretical models.

Neutron stars are stellar objects which are formed when main sequence stars with
mass M 2 10M collapse. They have a radius that lies within the range of ~ 9—12
km [2, 3], while their mass ranges within ~ 1.2 — 2M, [2] (and references therein),

with the largest theoretically predicted mass ~ 2 —3M,, [4]. It is apparent that such
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masses and radii imply extremely high densities. In fact, neutron stars are known
to be the most dense objects in the universe, having core densities of the order of
10% g/cm?, a value that exceeds the standard nuclear saturation density (2.8 x 10
g/cm?®). Furthermore, their high compactness indicates that general relativistic ef-
fects are important and should be taken into to account.

Most, if not all, neutron stars rotate with periods, that vary depending on their
age, in the range between milliseconds and seconds. The rotation period of neu-
tron stars is almost constant, since they slow at a very small rate, and is measured
with very high precision. The typical rate at which a neutron star slows its ro-
tation, which is called spin down, is ~ 107!3s/s [5, 6]. Nevertheless, there have
been observed occasions where the star spins up for a brief period of time or, less
frequently, it spins-down. These incidents are called “glitch” and “anti-glitch” re-
spectively [7, 8, 9, 10, 11], and they are hypothesized to relate with the structure of
the neutron star. More specifically they may occur due to the rapid re-organization
of a solid crust, which is a part of the neutron star’s structure (as we will discuss
later). This phenomenon is called a starquake'. Alternatively, glitches indicate the
existence of superconducting and superfluid properties of matter in the bulk of the
neutron star [12, 13, 14].

The magnetic field of neutron stars is predicted (mainly by assuming that the star
is a magnetic dipole that radiates energy and by using the period and the spin down
of the neutron star) to range from 10 G to about 10 G. The latter value is charac-
teristic of a special kind of neutron stars, the magnetars. Furthermore, the magnetic
field of a magnetar indicates that a precise description of electromagnetism requires
the consideration of quantum electrodynamical corrections [15, 16, 17]. Empty space
may appear as an electromagnetic medium with properties different from the clas-
sical vacuum [18, 19, 20].

Despite the extensive research related to neutron stars, there is still some ambiguity
regarding their structure. However, it is widely accepted that there is stratification
of the phases of matter, which depends on the distance from the center of the star.
Following this assumption, there are four main regions in the interior of the star.
These are, from the outermost to the innermost: the outer crust, the inner crust, the
outer core and the inner core. Below we will briefly describe each of these regions
in order to provide some reasoning for the theoretical model that we will develop.
The outer crust is thought to be solid having a depth between 300 m and 500 m
and a mass of around 1% of the star’s mass [21]. It is composed of iron (°°Fe)

ions that form a body-centered cubic lattice and electrons [22], while the density

'When the re-organization takes place in the crust only, we use the term “crustquake” instead.



scales up to ~ 10! g/cm?. Since the crust has crystalline structure it is anticipated
that, in general, its matter possesses elastic and electromagnetic properties. The
elasticity theory in the context of general relativity has been introduced by Carter
in [23], while subsequent work has been done in [24, 25, 26]. The electromagnetic
properties of matter in a general relativistic context were formally introduced in [27]
as a continuation to the theory presented in [23]. It is worth noting that the two
theories, i.e. that of elasticity and that of electromagnetism in matter, have some
similarities in their mathematical formulation.

The inner crust lies beneath the outer crust and its density ranges between ~ 10!

g/cm? and ~ 10 g/cm?

. Here the neutrons are partially free and may exist in
superfluid state. Additionally, it is predicted that in the deepest layers of the inner
crust there is a peculiar phase of matter, the “pasta” phase [22, 28]. In this region
(where the “pasta” phase occurs) the nuclei acquire non-spherical shapes, resem-
bling rods and slabs which justifies the name, “pasta”. Furthermore, in this peculiar
phase the matter is theorized to exhibit liquid crystal behaviour [28]. Matter in
this state possesses both solid and liquid properties (and hence the name). Note
that liquid crystals are anisotropic in the sense that they behave as liquids towards
some direction in space and as solids towards some other direction?. The crystal
structure indicates that the matter in these regions may have, as in the outer crust,
electromagnetic properties different than those of vacuum.

The outer core comprises the largest part of the star and has a range of the order

3. In this region, neutron

of kilometres while the density is around ~ 10 g/cm
star matter is composed of superfluid neutrons, which is the main component, type-
IT superconducting protons and electrons. Superconductivity and superfluidity are
states of matter that normally (i.e. in laboratory experiments) occur at very low
temperatures, around 0 K, which is somewhat contradictory given the very high
temperatures of neutron stars (7' ~ 108 K). However, the corresponding Fermi tem-
perature of such dense matter is even higher, of the order of T ~ 10'2 K, and thus
the existence of the superconducting and superfluid states is expected.

Finally, the innermost part of a neutron star’s structure is the inner core which lies
at the centre and is usually considered to be smaller than the outer core. Here the
density is considered to be between ~ 10 g/cm?® and ~ 10® g/cm®. There are

many hypotheses regarding the phase and composition of the matter, and even the

2For example, a matter type of liquid crystals which could exist in a neutron star is the Smectics
A [28]. This kind of liquid crystal is structured in many separate layers. Each layer is composed of
elongated molecules, arranged (with the long side) perpendicular to the layer. It possesses liquid
properties along the layers, that is each layer behaves as a two-dimensional fluid. Also it possesses
solid (elastic) properties in the direction perpendicular to the layers, which means that different
layers cannot be mixed together [29].
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nature of matter [21]. Various models predict different compositions for the inner
core and use a variety of equations of state. This plethora of models explains the
difference between the possible densities. In general it has been theorised that mat-
ter in this region exists in phases that exhibit non-linear electromagnetic properties.
Such exotic states, as for example a ferromagnetic phase, are suggested to occur at
densities a few times the nuclear saturation density [30, 31, 32, 33].

In many cases, we consider the existence of disks consisting of gas and dust in the
proximity of neutron stars. These structures interact gravitationally and electromag-
netically with the star and may also produce accretion. The process of accretion has
been employed as an explanation for observed X-ray emission [34, 35]. Furthermore,
the interaction of the disk with the star’s magnetic field plays an important role,

since it may affect the stability and therefore the evolution of the disk [36].

With this motivation in mind, this thesis is structured in the following way. In
Chapter 2 we discuss the covariant geometrical framework of the relativistic fluid
model. We introduce the basic concepts of relativistic spacetime along with the
1+3 split, which we mainly use. We also discuss Eulerian and Lagrangian variations
and we introduce matter space. These mathematical tools provide the basis for the
description of the multicomponent fluid of the following chapter. We also discuss
Carter’s material derivative [23], a generalisation of the Lie derivative that is later
employed in the description of non-linear electromagnetic media.

In Chapter 3 we employ the variational principle to derive the Einstein equations
from the Einstein-Hilbert action, the Euler-Lagrange equations of a multicompo-
nent isotropic fluid and the electromagnetic field-equations. We also look into the
description of electromagnetism in linear and non-linear media, and discuss specific
cases. We provide a formula that generalises the Lagrangian expression of linear me-
dia to non-linear media and we discuss a set of constraints for linear electromagnetic
media in terms of the material derivative. Subsequently, combining the fluid and
electromagnetic theory we demonstrate a general model for a multicomponent fluid
medium with general electromagnetic properties. Finally, we look into the single
fluid ideal magnetohydrodynamics limit of the previously mentioned model, since
astrophysical processes in neutron star environments are usually described by this
limit.

In Chapter 4 we perform a linear perturbation analysis using plane waves in order
to examine the dynamical properties of various systems. We employ the geometric
optics method considering “fast” and “slow” quantities to calculate Newtonian and

relativistic instabilities. We discuss the choice of the observer and the stability cri-



terion. The latter investigates whether the plane wave solution exhibits oscillation
or exponential growth i.e. whether the linear perturbations are stable or unstable.
More specifically real values of the angular frequency of the plane wave imply sta-
bility while complex values imply unstable behaviour. In order to gain some insight
into the method we derive in Newtonian context the sound waves, the Alfvén waves,
and the continuous limit of Taylor-Rayleigh and Kelvin-Helmholtz instabilities. We
also consider configurations that model astrophysical disks and calculate the inertial
waves, the Rayleigh shearing instability and the magnetorotational instability. For
the latter, we also discuss the vanishing magnetic field limit. Considering an unper-
turbed background, we derive the characteristic equations describing the relativistic
inertial waves, the relativistic Rayleigh shearing instability and the relativistic mag-
netorotational instability. By considering a low velocity and flat metric limit of the
relativistic equations we reproduce the Newtonian characteristic equations.

Finally, in Chapter 5 we summarise the ideas of the thesis and discuss possible

extensions of the work.



Chapter 1. Introduction




CHAPTER 2

The covariant description

This chapter introduces the mathematical framework and tools used in subsequent
chapters. First we discuss spacetime concepts and the 143 decomposition, which
provides an intuitive covariant description of tensorial quantities. Then we discuss
Eulerian and Lagrangian variations which will be used in Chapter 3 to obtain the
equations of motion in the systems under consideration and finally we introduce
the concept of matter space and material derivative which are used for describing
multifluid systems. Since the notions presented here are extensively discussed in
literature, our discussion is brief and intended to serve as a basis for the subsequent

parts.

2.1 Spacetime concepts

In general relativity, we consider the spacetime, a 4-dimensional manifold M which
admits a metric tensor! g, with Lorentzian signature (—,+,+,+). The metric

tensor is a symmetric tensor i.e. gup = gpe, Which defines the invariant infinitesimal

!Note that Latin indices are abstract while Greek indices are concrete taking values it = 0,1, 2, 3.

7
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distance between two spacetime points through
ds? = ggp dz*da?, (2.1.1)

where 2% are spacetime coordinates®. The metric determinant, ¢, is non-singular i.e.

g # 0, and hence the inverse of the metric is defined via the identity
gab Gbe = 5[107 (212)

where ¢°, is the Kronecker delta is given by

1 =b
gh—y Thoe=b (2.1.3)
0, a#b

and the components of this tensor are the same in all coordinate systems. It follows
from the definition of the inverse that, ¢?° is a second rank tensor. The metric and
its inverse can be used to raise and lower indices of tensors. Assuming the vector
V¢ and the covector W,, we can lower and raise the indices using the relations
Vo = gapV? and We = g W, .

From the definition of the infinitesimal distance 2.1.1, we see that it can take positive,
negative or zero values. Therefore, the vectors can be characterized as spacelike if
Gap VAV > 0, as timelike if g,V 2V? < 0, and as null if g,,V2V? = 0. The integral
curves of vectors are characterized as spacelike, timelike or null according to the
vectors. Timelike curves can be parametrised by proper time 7 which is related to

the infinitesimal distance ds? through?
dr? = —ds”. (2.1.4)

The tangent vector to an observer’s timelike curve, i.e. the observer’s worldline

_d$“
-~ dr’

u(l

(2.1.5)

is the observer’s 4-velocity. Using equations (2.1.1) and (2.1.5) it follows that u%u, =
—1. The 4-velocity introduces a split of spacetime into space and time. Contracting

a tensor index with the 4—velocity projects this tensor along the 4-velocity and

2Note that indices that appear twice (one upstairs and one downstairs) are contracted. This
operation implies summation over the range of indices through V,W¢® = V,W* = VuW° + VW1 +
VaW?2 + VaW3

3We use geometrised units i.e. ¢ = G = 1. This means that all quantities have units that are
integer powers of length.
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therefore we obtain a temporal component of the tensor with respect to the observer.
We can also project tensors on the observer’ s instantaneous rest space, which is
orthogonal to the 4-velocity, using the projector tensor h,,, a symmetric tensor
defined through

Rab = Gap + UqUp. (2.1.6)

Quantities which are obtained by contraction with h,, are referred to as spatial. It
follows from the definition above that hg u® = 0, hy = 3 and habhbC = hge. The
projection tensor also serves as the metric of the observer’s local 3 dimensional co-
moving frame. The decomposition of tensors using the 4-velocity and the projection

tensor, are given for a vector VV* through

Ve =50v°t
= —uu, VP + VP (2.1.7)
=Vl v,
where VI = —V%, and V¢ = h%V*®. The formula is generalised for any tensor by

multiplying all indices by the Kronecker delta and then using equation (2.1.6) to

calculate the projected components.

We also introduce the Levi-Civita tensor €44, a totally antisymmetric tensor. In a

coordinate system x*, the components of this tensor are defined through

€wop = V=9 [Hvop], (2.1.8)

where

+1, pvop is an even permutation of 0123
jpwvop] =< —1, puvopis an odd permutation of 0123 , (2.1.9)

0, otherwise

is the totally antisymmetric symbol with [0123] = 1. The Levi-Civita tensor with

all indices up can be defined in two ways. Either by using the formula
Eapea€™d = 41, (2.1.10)

which implies that the components in the coordinate system x* are

1
E,uuap = \/—__g[/,LVO'p], (2111)



10 Chapter 2. The covariant description

or by raising the indices with the metric tensor

eabcd — gaegbfgcggdhﬁefgh, (2112)
which implies that
I (2.1.13)
or in general,
Eabcdeefgh _ _4!5[a85bf5095d]h’ (2.1.14)

which means that the components of the Levi-Civita tensor in the coordinate system

x* with indices upstairs is related to the totally antisymmetric symbol through

1
Mol = ———[uvop). (2.1.15)
V=
The difference in sign between equations (2.1.11) and (2.1.15) arises due to the indef-
initeness of the Lorentzian metric we use in general relativity. Here, as in most of
the literature we use equation (2.1.15).
We also define the three dimensional Levi-Civita tensor by contracting the four

dimensional Levi-Civita tensor with the observer’s 4-velocity u®. This leads to
€abe = udedabc- (2116>

We also have €,,.u® = 0 which follows from the total antisymmetry of €,,.4. Addi-
tionally, the four dimensional Levi-Civita tensor is referred to as the volume form

since it is related to the volume element of spacetime /—g.

A key notion of the geometric framework is the generalisation of the partial dif-
ferentiation on a curved spacetime is the covariant derivative V,. The covariant

derivative of a tensor T, “* is defined through

vaab... cd... amTab,,, cd... e Teb,,, cd... re. T cd... o

am bm~ ae...

L (2.1.17)
+ FcemTab... o + r emTab... oo +.. ’

where 'Y, . are the Christoffel symbols of the second kind,symmetric in the two lower

indices, obtained through

1
[y = 59" (Ocgab + Opac — Daghe) - (2.1.18)
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The definition above also implies that the metric tensor is constant with respect to
the covariant derivative, that is
Vagbe = 0. (2.1.19)

Furthermore, by applying the decomposition to the covariant derivative of a ten-
sor V.T,, - we get the time derivative (i.e. the total derivative® of the tensor
along the worldline of the observer with respect to the proper time [38]) and the
orthogonally projected covariant derivative of the tensor

cd d

and
?eTab... ed... _ hefvaab... cd..‘7 (2‘1‘21)

respectively. Various authors [38, 39], use the completely projected version of the
covariant derivative. That is, all free indices are contracted with the projection
tensor. The resulting tensor is a purely spatial quantity. Here, in analogy to the
definition (2.1.20) of the time derivative we contract with the projection tensor only

along the operator index.

We also introduce the Lie derivative, a differential operator that generalises the

notion of the directional derivative on manifolds that may not be flat [40]. The Lie

derivative® of a tensor T, ¥ along the vector V¢, denoted as £T,,

by

~ is given

‘£VTab.“ cd... _ VeaeTab,,, cd...
— Ty, “ 0V =T, 0V — ... (2.1.22)
+ Teb... cd...aave + Tae... Cd"'abVe 4+ ...,

Since we are using Christoffel symbols that are symmetric in the lower indices the
partial derivatives in the expression above may be substituted with the covariant
derivative.

Tensor quantities obtain different components when expressed in different coordinate

systems. Assuming a coordinate transformation x’* = z/* (z¥) the components V?*

“The total derivative mentioned here is the directional derivative of vector calculus, see [37].

SMany authors show the Lie derivative as (£T )amed'” in order to indicate the fact that the
indices refer to the operator as a whole rather than just to the differentiated tensor. This practise
is used for the covariant derivative as well. In this work, although we do not follow this practise,
we mean in both cases that the tensor rank refers to the whole tensor (i.e. the differential operator
and the differentiated quantity)
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of a vector in the coordinate system x* transform to the components V'? through

/
VP = @VV7 (2.1.23)
oxv

while for the components of the covector W, in the coordinate system x# transform
/
to IV, through )
v Ox
P al./p v

The transformation rules above hold for the components of any tensor. The upstairs

(2.1.24)

indices transform through equation (2.1.23) while the downstairs indices transform
according to equation (2.1.24). Extensive discussion on the concepts introduced in
this section may be found in [41, 42, 43, 44, 45, 46].

2.2 Eulerian and Lagrangian variations

Here we will briefly present the notion of Eulerian and Lagrangian variations [47, 48].
As shown in the following sections variations are employed to obtain the equations
of motion of the various physical systems we consider. Variations are also used to
linearise the differential equations governing a system in order to perform a stability
analysis.

Assuming a coordinate system x/ and a scalar field ¢(z*) the value of the field at a

point zf is ¢(xfy). Let ) be a point infinitesimally close to z§ such that
xh = zf + oxt, (2.2.1)

where dz# is the displacement between the two points. We calculate the value of the
field at z{ in two ways. The first way is to take a first order Taylor approximation

around zf

0
o) = d(ag) + a—ﬁb L ozt (2.2.2)

The second way is to assume that the value of the field at zf, i.e. ¢ is related to

the value at the initial point through

¢'(2h) = ¢(z5) + Ag(xp), (2.2.3)
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where A¢ denotes the difference between the quantities. Subtracting equation
(2.2.2) from equation (2.2.3) we get
1(oH p p 0¢ u
¢ (2Y) = ¢lar) = Ad(xp) — 52 ozt (2.2.4)
rH
Setting® ¢/ (z}) — ¢(2!) = d¢ and noting that the second term of the right hand side
of equation (2.2.4) is the Lie derivative of the field ¢ along the vector field £, with

components given by &* = dz#, the preceding equation becomes
Ap =0¢ + £¢9. (2.2.5)

In equation (2.2.5), d¢ is the Eulerian variation, representing the change of the
field at a specific point while A¢ is the Lagrangian variation which shows the total
change of the field between two points infinitesimally close, i.e. the change due to
the Eulerian variation plus the amount due to the Lie dragging of the field between

the two points induced by equation (2.2.1).

Note also that the Eulerian variation commutes with the partial differentiation op-

erator 0,,
5 (0a6) = 0 (56) . (2.26)

Also, the chain rule of differentiation for composite functions holds for § in the sense
that
of

S(f (V) = W(SV“, (2.2.7)

where f = f(V?) is some function and V' some vector. The chain rule holds for

the Lagrangian variation and the Lie derivative, as well [40].

2.3 The matter space description

Since we are interested in describing dynamics of media in spacetime we will follow
the matter space description which was initially introduced by Carter in [23, 27]. As
discussed in section 2.1 at each point of an observer’s worldline we can introduce a

3 dimensional rest space orthogonal to the 4-velocity at that point. With respect to

SHere we calculate §¢ at x4 while A¢ and the derivative are calculated at xf. Assuming that,
to linear order ¢’ () — ¢(af) = ¢'(zF) — ¢(xf)) we get that dp(xh) = dp(zf).
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an observer the energy-matter content exists in this 3D rest space. Therefore it is
reasonable to introduce a 3D space, the “matter space”, where the material media
exist. As we discuss matter space and spacetime are related, yet matter space can
be treated separately from spacetime. We assume a set of coordinates ¢ on matter
space with A = 1,2,3 (since matter space is 3 dimensional).

We assume that these coordinates are related to the spacetime coordinates x®

through a continuous map ¢ such that
q:x" g (x"). (2.3.1)

This map is not invertible and this fact has the following implication: Consider a
spacetime point which lies on a worldline of an observer. This point, according to
the map above, is mapped to a point on matter space. However, the contrary does
not hold. A point on matter space is not mapped to a specific point on spacetime,
since the map (2.3.1) is not invertible, but is rather mapped to any point of the ob-
server’s worldline. An extensive discussion of the rigorous mathematical framework
on matter space may be found in [23, 27]. We denote the quantities of matter space
using capital letter indices, and these quantities are considered to be scalars with
respect to spacetime. In this section, we assume for simplicity that the medium
consists of a single component. In the general case of many components there are
as many matter spaces and related matter space coordinate systems as the number
of components. The transformation between spacetime and matter space tensors is
performed by the Jacobian of the map (2.3.1), i.e. by the partial derivatives of the

matter space coordinates with respect to spacetime coordinates, given by

A _ an
a = oz

These transformation quantities” provide a projection of matter space tensors with

indices downstairs S, ... to the respective spatial tensors S, in spacetime, through
Sab... =€ AebB .o SAB...- (233)

A fundamental quantity, for the description of material media in matter space, is
the number density napc which represents the density of particles (or continuum
material in general) and in this work is considered to be conserved. The description

where number density is not conserved is provided in [50, 51]. The number den-

“In continuum mechanics these quantities are called “two-point tensors” since they have indices
in both manifolds [49].
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sity is a 3-form® in matter space (that is, a totally antisymmetric tensor of rank 3
with indices downstairs) and is a function of matter space coordinates only. The
corresponding spacetime quantity ng. is given by

A B_C
Nabe = NABC €, €, €. , (2.3.4)

which is a spacetime 3-form. We can show that this form is closed, that is
V[clnabc} = 07 (235)

by applying the covariant derivative to equation (2.3.4) and calculating the totally

antisymmetric part

v[dnabc} = V[d (nABCeaAebBGC]C) =

Jd (napc) eaAebBec}C +napcVia (eaAebBec]C) = (2.3.6)

Onapc
dqP e o ey P e’ + napcVia (e, e, Pe ) =0,

where for the first term in the second row we used the chain rule for derivatives after
we substituted the covariant with partial derivative (this substitution is permitted
since matter space quantities are scalars with respect to spacetime). This term van-
ishes because we have considered the antisymmetric part of four projection vectors,
each possessing three components in matter space. In any case, at least two of the
four capital letter indices will be the same (since, as we stated, the material indices
obtain three different values) and thus the term vanishes. For the second term we
work as follows: Since the expression is totally antisymmetric and the Christoffel
symbols, as given in equation (2.1.18), are symmetric in the two lower indices the
terms containing the Christoffel symbols vanish and so we can substitute the co-
variant derivative with the partial derivative. Using the definition of the projections
given by equation (2.3.2) and since the partial derivatives commute it is trivial to
show that this term vanishes as well®.

Multiplying and contracting the number density form with the Levi-Civita tensor

we get the number density current

n® = %Gdea Nbed, (2.3.7)

8For an intuitive geometrical description of differential forms, see [41].
9A similar calculation is shown in Appendix (A.1.4) for the derivation of one of Maxwell equa-
tions. Although the antisymmetric quantity in that case is a 2-form (the Faraday tensor) the

result is the same for the rank 3 totally antisymmetric quantity €l aAebB e C]C that appears in equa-

tion (2.3.6).
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which describes the material flow in spacetime. The number density current is
conserved in the sense that
V.n® =0, (2.3.8)

which is derived after multiplying equation (2.3.5) by the Levi-Civita tensor and
using equation (2.3.7). This implies that equations (2.3.5) and (2.3.8) are equivalent
statements of the conservation condition for the medium.

The number density current can be decomposed as
n® = nu®, ugu® = —1, (2.3.9)

where n is the scalar number density of the medium and u® the 4-velocity of the

medium. Multiplying this equation by €,,.¢ and contracting the first index we obtain
Nabe = NE€ghc, (2310>

where we used equations (2.3.7) and (A.1.1) for the left hand part and equation
(2.1.16) for the right hand part. This equation has the following implication. If
we consider the matter space 3-form npc/n and use the transformation (2.3.3) we
have

l7”LABC6(1A€bBecc = lnabc = €abe; (2.3.11)

n n
where we used for the last equality equation (2.3.10). This equation implies that
there is a 3-form in matter space €spc which transformed to spacetime, provides
through equation (2.3.3) the spatial Levi-Civita symbol. This result is anticipated
since in n-dimensions the n-forms differ only by a scalar quantity (see [42] for further
discussion). We proceed with the calculation of the Lie derivative of the matter space
coordinates with respect to the number density current. Using equations (2.3.7) and
(2.3.4) we get

1

£nqA =n" an - ?nBCD eade 6aAebBeccedD =0. <2312>

The last equality follows, as previously, from the fact that the expression is totally
antisymmetric and matter space indices are 3 dimensional. There will be at least
two projection tensors with same material index and thus the expression vanishes.
Equation (2.3.12) shows that the material coordinates are dragged along the flow

produced by the number density current. Using equation (2.3.9) we can show that



2.3. The matter space description 17

the projection vectors are orthogonal to the 4-velocity

ue, = 0. (2.3.13)

Expressing the Lie derivative, given in equation (2.1.22), of the projection vectors

4 along the 4-velocity with partial derivatives we get

fue, A = w00, +( )
= 0’ 0,00q" + (Dpq™) s (2.3.14)
=0, (u(’@bq ) 0,

which shows that the projection vectors are Lie dragged along the flow of u®, as
well. In the above, we used the commutating property of the partial derivative and
equation (2.3.13). Using the projection vectors it is possible to transform a general

spacetime tensorS® to matter space through
SAB — ¢ Ag, B gab-, (2.3.15)

The transformed quantity S4Z though, does not contain any information of the
temporal components of S%+. This is anticipated since according to equation
(2.3.13) the 4-velocity is orthogonal to the transformation vectors. Applying equa-
tion (2.3.15) to the metric tensor g2 (or to h® since only spatial components survive)
we get

RAB = ¢ Ae, By = e, Ae, Bn, (2.3.16)

a a

which is a symmetric second rank matter space tensor. The determinant of this

tensor is given by

1
det (h4P) = ge,wceDEFhADiﬁfEhCl““ (2.3.17)

and by substituting 4P from equation (2.3.16) we get

1
det (hAB) = —€ABCEDEFE€, Aed g° ebBe Egbee ¢ fFQCf

3 (2.3.18)
abe
3|€mbc6 17

where we used the transformation (2.3.3) for eapc and equation (A.1.7). Since the

determinant of AP is non-zero, this matter space tensor has an inverse hsp such
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that
hach®® =65, (2.3.19)

hAB can be perceived

where § P is the matter space Kronecker delta. The tensor
as the 3D metric of matter space since it is defined by the transformation of the
spacetime metric.

We may now introduce the vectors e,# defined through
e = e, Phapg™. (2.3.20)

These vectors are orthogonal to the e,# covectors which can be seen by substituting
equation (2.3.16) in equation (2.3.19)

hAC'e Ce Bgab — 5B
v . (2.3.21)
We can show that the vectors e ,* are orthogonal to u, since
uaeAa — uﬂethABgab — ubethAB =0, (2322)

and additionally they introduce the following transformations between spacetime

and matter space quantities

SAB... = GAaeBb . Sab.‘.a (2323)

and
S o pe b §AT (2.3.24)

These transformations provide the freedom of transforming tensors between matter
space and spacetime independently of the their type. It is possible to express the

e, co-vectors with respect to the vectors e ,* multiplying both sides of the definition

(2.3.20) by hP and g,

a

Jah*Pe = e . hacg™gah?

(2.3.25)
ebB = gabhABeAa.

Using the transformation (2.3.23) for gu, (or hgp), provides the matter space metric

with indices downstairs

hap = e4'eg’ gab = €4"eg’ b, (2.3.26)
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which is directly verified if we multiply by contraction on both sides A% and use
equations (2.3.21) and (2.3.25). In the same way, substituting the matter space
metric hap on the right-hand-side of equation (2.3.3) provides hg,. Note that sub-
stitution of either the projection tensor or the spacetime metric in equations (2.3.3)
and (2.3.23) provides the same matter space tensor. Using equations (2.3.3) and
(2.3.20) we can show that

e.Pe = e,%e,Chpeg” = haeg = h,". (2.3.27)

From the result above, we see that contraction of tensors e,” and e, with respect
to the matter space indices provides the projection tensor with mixed indices. In
comparison, contracting the spacetime indices of the same quantities, as seen in
equation (2.3.21) yields the matter space Kronecker delta.

We may now define the transformation of mixed tensors between matter space and
spacetime using both covariant and contravariant projection vector quantities via
the relations

S, =e, ey ... 8,5 (2.3.28)

and

G = efe,? 8,0 (23.29)

Finally, using the former of the two transformations for § ,% yields

h=e,tefs P =e, el (2.3.30)

a a a

which shows that the matter space Kronecker delta is transformed to the spacetime

projection tensor with mixed indices.

2.3.1 Variation of matter space quantities

In this section we demonstrate the Lagrangian and Eulerian variations (see section
2.2) of various quantities which are used for the derivation of the equations of mo-
tion for the medium. By definition, the Lagrangian variation of the matter space

coordinates is zero
Ag* =0, (2.3.31)
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which, combined with equation (2.2.5) yields

5qt = —€°V ", (2.3.32)

A

The Lagrangian variation of the projection vectors e,” vanishes as well

Ae,* = de,* + £ee,t = de,* + 0pe, + €, 0,E"
= 0, (6¢™) + £20.00q™ + (0uq™) (0u€") (2.3.33)
= 8, (6¢™) + 04 (€°Dpg™) = BuAg™ = 0,

where we have used equations (2.2.5), (2.2.6) and (2.3.31). For a material tensor

Sap.. that is a function of the matter space coordinates we then have

954s..

ASap.. = e

Ag® = 0. (2.3.34)

Using equations (2.3.3) and (2.3.33) it is straightforward by direct substitution to
show that the Lagrangian variation of the spacetime projection of Ssp . is zero as
well

AS,,.. = 0. (2.3.35)

Furthermore, if a spacetime tensor Sy has a vanishing Lie derivative along the ma-
terial flow and is orthogonal to the 4-velocity in all indices then it is uniquely related
to a “fixed” material tensor Ssp.... The orthogonality to the 4-velocity ensures that
the mapping from matter space to spacetime given by equations (2.3.3) and (2.3.23)
will be one to one. Applying the Lie derivative on both sides of transformation

(2.3.3) and using equation (2.3.14) we obtain

A B
£uSap.. =€, ey .. £u54B...

A_B c
=e,e," ... uV.Sap..,

(2.3.36)

where the second line follows from the fact that the material tensor S4p_ is a scalar
with respect to spacetime. Therefore, the vanishing of the Lie derivative implies that
the time derivative u°V.S4p... vanishes!® and thus the tensor does not change along
the flow of the 4-velocity. In that sense S, is “fixed” or “materially constant”. In
other words, a materially constant tensor is not functionally dependent on proper

time (i.e. does not change along the worldline of the observer) but depends only on

10The vanishing of the Lie derivative could also happen due the orthogonality of some of ¢, to
the u°V.Sap... term. However, considering the general case that holds for any tensor, the time
derivative has to vanish.
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the material coordinates. The converse, i.e that a matter space tensor depending
only on the matter space coordinates transforms to a Lie derived orthogonal to the
flow spacetime tensor, can be shown by building equation (2.3.36) backwards. In this
case the orthogonality of the spacetime tensor arises from the transformation (2.3.3).
A similar statement for the general case of mixed material and spacetime tensors
will be demonstrated in the next section where we will introduce a generalization of
the Lie derivative.

Using equations (2.2.5) and (2.3.7), the Eulerian variation of the number density
current is

1
on® = —£n" + An” = £+ A <§eab0dnbcd)

1 1
= —£5na + —' (Anbcd) Eade + —' (AEade) Nped
3 Y (2.3.37)

1
= nbvb§a - fbvbna 3 §nbcd€ab0d98tAgst

1
=n’VyE" — &Vyn® — n® (beb + 598t595t) ;

where we have used equations (A.1.9) and (A.1.13) from the Appendix. We see that
the Eulerian variation of the number density current is related to the variation of
the metric tensor as well as the infinitesimal displacement £*. This result is useful

for the derivation of the equations of motion for the medium [52].

2.4 Carter’s material derivative

In this section, we provide the notion of materially constant tensors with indices
upstairs. This serves as a generalisation of the Lie derived orthogonal spacetime
tensors with indices downstairs of the previous section and was introduced by Bran-
don Carter in [23] and [27]. We start with the Lie derivative and then demonstrate

1'! derivative for a mixed spacetime

the derivation of the formula for the materia
tensor. Our initial assumption is that for a covariant, completely orthogonal tensor
(ie. Sap.cu® = Sy u’ = ... = Sy u¢ =0), the material derivative, £, is equal
to the Lie derivative

£uSab.‘. - £usab.‘.7 (241)

11 Various authors use the term “convective derivative” instead of “material derivative”.
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which implies that for a scalar the material derivative is

£u¢ = u” a¢ = uava(b- (242)

Note that the material derivative is assumed to follow the Leibniz rule of differentia-
tion. As we show, the material derivative provides information about the dynamical
behaviour of quantities on matter space. The vanishing of the material derivative
of a spacetime tensor orthogonal to the 4-velocity, means that the respective mat-
ter space tensor obtained through equation (2.3.29) (we remind the reader that the
orthogonality ensures the mapping between matter space and spacetime is one to
one) is constant along the 4-velocity and vice versa. Intuitively, the Kronecker delta,
which is by definition a constant tensor, should be constant along the 4-velocity as
well. This implies that the projection of the Kronecker delta from matter space to

spacetime (i.e. the quantity h,” see equation (2.3.30)) should be materially constant
£.h," =0. (2.4.3)

We consider the equation above as a requirement for the material derivative and use
it as an assumption in the following calculations. To calculate the material derivative
of a mixed orthogonal tensor we start by working out the material derivative of the
projection tensor h®. The material derivative of the covariant projection tensor hgp
is

Luhab = 2V () + 2u(aty), (2.4.4)

and by using equations (2.4.3) and (2.4.4) we get

Luha” = £ (hach®) = hac B + BE B
hdahac£uh0b _ _hdath (2V(Cua) -+ ZU(a?:LC)) (245)
£,.h% = -2y — 9y (dyb)

The material derivative of an orthogonal mixed tensor is

£S5, = £ (Sac.h® ) (2.4.6)

where we used the orthogonal projection tensor to raise the indices. Combining the

above with equation (2.4.5) and applying Leibniz’s rule, we find that

£,8, b = UV, P+ G, V4 = S, (Ve — i) .. (2.47)

a...
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Therefore, we conclude that the material derivative of an orthogonal mixed tensor is
the Lie derivative for a mixed tensor minus the terms containing the 4-acceleration.
So far we have calculated the material derivative for an orthogonal mixed tensor.
Below we extend the definition so that it is applicable for any mixed spacetime
tensor. To do this we need to employ the tranformation vectors defined in section
2.3. Using equations (2.3.14), (2.4.1), (2.4.3) and (2.3.30) we get

‘£uhab =4, (eaAeAb)

(2.4.8)
= eaA£u€Ab =0,
which implies that the transformation vector is materially constant
fues = 0. (2.4.9)
Additionally, substituting the definition (2.1.6) in equation (2.4.8) yields
Wt = £.,6,.0 — £ugu’
Fuha’ = $u00" = F (2.4.10)

= _ua£uub - ub£uua =0,

and therefore the 4-velocity is materially constant. Using equation (2.4.7) to calcu-

late equation (2.4.9) we get

uVee, —e Veu' —e uu® =0

(2.4.11)
e =es Vou' + e fuu”,
while equation (2.1.22) used with covariant derivatives, implies that
uVee,* + e, Vut =0
(2.4.12)

A A c
e, = —e. Vu'.

To obtain the material derivative formula for a general tensor (not necessarily or-
thogonal to the observer’s 4-velocity) we first need to derive an equation similar
to (2.3.29) for a general spacetime tensor. This is possible by considering the pro-
jection vectors (2.3.2) and additionally one more, along the 4-velocity. These four
quantities'? which are denoted with éaA (where A= 0,1,2,3) are defined through

e =u, A=0, (2.4.13)

a

12These four tensors are also called “tetrad” since they define a basis of 4 independent vectors
at each point of spacetime [53, 54]. They are also sometimes refered to as “vierbein” or “vielbein”
for the case of n independent vectors.
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eA=e? A=A=123 (2.4.14)

and
ef=u",  A=0, (2.4.15)
ef=esf, A=A=123 (2.4.16)

Since the 4-velocity is orthogonal to the transformation quantities e,

and e”,,
equations (2.4.13-2.4.16) satisfy a condition similar to the orthogonality condition

given by equation (2.3.21) as follows

g e =00 A, B=1,2,3 (2.4.17)
elet=—0  A=0 o B=o. (2.4.18)

The minus sign in equation (2.4.18) arises from the fact that the 4-velocity is a
timelike vector. Using the previous definitions it is possible to rewrite equations
(2.4.11) and (2.4.12) using € * as

éA“ =e; Ve + € fuu’, (2.4.19)
and

¢t =~ Ve — e Mt (2.4.20)

It is obvious that for A = 0 we get, in both cases, the 4-acceleration 1, while for
A =1,2,3 we get equations (2.4.11, 2.4.12). Note that we have added the term
ul, in equation (2.4.20). This term does not alter equation (2.4.12) since it either
provides an identity for the 4-acceleration, or it vanishes.

We are now in a position to calculate the material derivative for a general spacetime

tensor S, *. We have

f.(S,. 0 e e, =8, e 08, 48, ¢ 08,0 (2.4.21)
S bé ag B
a A b )

where the first line equality follows from equation (2.4.2) since the quantity in the
parentheses is a scalar from the spacetime point of view. Substituting equations
(2.4.19) and (2.4.20) in the right-hand-side of the second line of the equation above
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we get
£ (S0 e e, =8, e 0, + 8,0 (6Vaut + & fuut) &P ...
+ 8, bE e (—éCBVbUC - écéucub> .
_ (2.4.22)
= (8.0 80 (Vo ).
—S, o (Ve +ubi,) .. ] e 2,7
where we have interchanged dummy indices a with ¢, and so finally we get
£.9,. =8+ 8. (Vou +igue) ... — S, (Vo +ubit) ... (2.4.23)

which is the formula for the material derivative of a general spacetime tensor.

The material derivative generalises the Lie derivative in terms of material constancy
according to the following argument, which is similar to the argument of the previ-
ous section. If S, > is an orthogonal tensor with vanishing material derivative then
the respective matter space tensor is materially constant along the worldlines of u®.
This arises, in analogy to equation (2.3.36), from equation (2.4.21). In this case the
projection vectors appearing in the equality are only those of matter space (i.e. e,4)
and the quantity in the parentheses on the left hand side is the matter space tensor
S, B+ Vanishing of the material derivative of the spacetime tensor (i.e the term

£.(5,) e e,” ... in the left hand side) implies that the time derivative of the

A
side) is vanishing as well. Considering that the worldlines of u® are parametrised

respective matter space tensor (i.e. the term u°V, (Sa_f"“é f‘ébB . > in right hand

by the proper time 7 then, from the matter space point of view, the matter space
tensor is independent of the proper time and thus it is materially constant (i.e. a

function of the material coordinates ¢ only).
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CHAPTER 3

Variational principle

Assuming a Lagrangian density which is a function of some scalar, vector or tensor
fields, the action of our system is given by the integral on all spacetime €2 of the

Lagrangian density under consideration

Itot = / Ltot\/_gd4$7 (301)
Q

where y/—gd*z is the invariant volume element at each point on  and g is the
determinant of the metric tensor. L is usually decomposed in a sum of Lagrangians
each related to some aspects of the system. In order to obtain the equations of
motion for the fields we demand that the Eulerian variation of the action is zero,
0lior = 0. It follows from equation (3.0.1) that

/ 0 (Liotv/—g) d*z = 0. (3.0.2)

27
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The Euler-Lagrange equtions for a scalar field [55], say ¢ = ¢ (z®) described by the
Lagrangian Ly = L4 (¢, V,¢) follow from equation (3.0.2) through

/ (%w + 9L 5va¢) V—=gd'z =0
Q

a%b ava(baﬁ oL (3.0.3)
¢ 9] b 4. .
/Q {875% - <V”‘ aw) o+ Vo (waaswﬂ Vogdiz =0,

where we used equation (2.2.6) and integrated by parts the second term in the first
line. Also, we have assumed that the independent variables of the Lagrangian are
the scalar field and its gradient V,¢. The integral above can be separated into

integrals, namely

L, L,
/Q(aqs —vawm) Spn/—gdx (3.0.4)

and

oL,
/Qva <0va¢5¢) V—gd'z. (3.0.5)

The latter integral contains the divergence of the varied field. Using the divergence

theorem [49] we transform this integral through

/Q (VadV%) /=g dia = / (6V ) ng/|h|d%z, (3.0.6)

o0

where 6V* = ;é:fﬁ@ 0f) denotes the 3-dimensional boundary of €2, n, is normal
to 02 boundary and \/W is the volume element of the boundary. According to
the divergence theorem we may choose any 3-surfaces enclosing 2. Assuming that
0f) extends to infinity and that the variations vanish at infinity, the above integral
vanishes identically. This means, through equation (3.0.3), that the integral (3.0.4)
has to vanish. Assuming that the variation of the action is independent of the
variations of the fields (i.e. d¢ in this case) the coefficient of the variation has to

vanish and therefore we get

0Ly o OLs

50~ Vagg. =0 (3.0.7)

which is the Euler-Lagrange equation for the scalar field ¢. This demonstrates the
idea of the variational principle for the simplest case, i.e. that of a scalar field.
Deriving equations for systems described by higher rank tensor fields, as in the

following sections, is straightforward.
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3.1 Einstein-Hilbert action

The Einstein-Hilbert action provides the equations of motion for a gravitational field
without sources i.e. those of vacuum spacetime. Starting with the Einstein-Hilbert
Lagrangian

Lry = R, (3.1.1)

where R = R,,g® is the Ricci scalar which is the trace of the Ricci tensor Ry, the

variation of the action is
/ § (Rv/=g) d*z = 0. (3.1.2)
Q
The integrated quantity is varied with respect to the metric tensor with indices

upstairs, which yields

§ (RV=5) = V=3 (9" 0Fan + Fus 0g™) + R g™ 5(/ =) (813)

In order to calculate the expression above we have to calculate the variations of the

Ricei tensor and the determinant of the metric.

3.1.1 Variation of the metric determinant

The quantity y/—g being a part of the volume element in equation (3.0.1), will
appear in any Lagrangian under consideration. To derive the variation of \/—g we

work as follows. The metric determinant g is given by
9= gan, A", (3.1.4)

where in this equation the summation convention of repeating indices does not hold.
b; denotes a specific index (any of them), while A% is the cofactor matrix of the

metric tensor given by
A" = gg*. (3.1.5)

Using equations (3.1.4) and (3.1.5) we get the intermediate result

dg b
—gg™, 3.1.6
9009 (3.1.6)
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and thus the derivative of /—g with respect to the metric is

9v=g 1\/_9 (3.1.7)

agab

It follows that the variation of \/—¢g with respect to g, is

Ov/—g
6(v—g) = D0 9§ = \/—gg“bégab. (3.1.8)

Using (2.1.2) and that 6 is constant the variation of the metric with indices down-

stairs is related to that with the indices upstairs through

5gab = —Yac Ybd 5ng- (319)

It also follows that the partial derivative of the metric with indices upstairs with

respect to the metric with indices downstairs is

agab
= —gegdb, 3.1.10
D0 g"g ( )

In the following section we proceed with the calculation of the variation of Christof-
fel symbols which is an intermediate step towards calculating the variation of the

Riemann tensor and eventually of the Ricci tensor.

3.1.2 The variation of the Christoffel symbols

Varying the definition (2.1.18) of the Christoffel symbols yields

1
) B :§5gad (Ocgab + Obgde — Oagee)

| (3.1.11)
+ §gad (0c09av + Op0gac — Oadgne) ,
and by using equations (2.1.18) and (3.1.9), after rearranging terms we get
1
0T = 59 (9:09us + 03guc = Dudgne — 217, 04y ) (3.1.12)

Adding and subtracting or/ ca 095, and or/ pa 097c to the previous equation we obtain

1
0Ty, = 59‘” (Vedgba + V0gea — Vadgue) , (3.1.13)
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which demonstrates the fact that the variation of the Christoffel symbols is a tensor.

3.1.3 The variation of the Ricci tensor

In order to derive the variation of the Ricci tensor R, we start with the Riemann
tensor R%,.,; defined by

Rabcd = acrabd - adrabc -+ Febd Paec — Febc Faed. (3114)

Working in normal coordinates the Christoffel symbols vanish (I'*,, = 0) and the
metric tensor is constant (0.9, = 0) at an arbitrary point P,. Then the Riemann

tensor acquires the following simpler form
Ry = 0"y — 0al'"y., (3.1.15)
while the variation is (since § commutes with the partial differentiation)
OR" g = 001"y — 0q0T'",.. (3.1.16)

Now since the variation of the Christoffel symbols is a tensor (see section 3.1.2) and
the partial derivative is equivalent to the covariant derivative in normal coordinates,

we obtain a tensor equation that holds in all coordinate systems

OR oy = VoI, — VoI, (3.1.17)
Contracting a and d we get the variation of the Ricci tensor

ORw = V.01¢, — Vol (3.1.18)

which is known as the “Palatini equation”. Substituting this result and equations

(3.1.8), (3.1.9) in (3.1.3) we have

1
§ (RV/=g) = —R™ 0ga + 5Rg“” 8gap + Ve (g7 6T, — g*oT%,) (3.1.19)
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and thus equation (3.1.2) obtains the following form

1
/ (§Rgab—Rab> 5gab /—gd4fL'
Q

(3.1.20)
-I—/ Ve (g* 0T, — g*oI",) /—gd'z = 0.

Q
The second term of the previous equation, using the divergence theorem, vanishes.
Finally, assuming that the integral is independent of the variation of the metric we

obtain the Einstein equations for vacuum spacetime
ab — pab 1 ab
G = R" — §Rg =0, (3.1.21)

where G is the Einstein tensor. Note also that the divergence of the Einstein tensor
vanishes (i.e. V,G% = 0) due the contracted Bianchi identity [56].

In the following sections we consider systems that contain matter and energy and
therefore we introduce additional terms to the Lagrangian. In those cases the
matter-energy counterpart of the Einstein tensor is the Einstein-Hilbert stress-
energy-momentum tensor', a symmetric second rank tensor denoted usually by 7.
This tensor contains all the information about the matter-energy part of the system

under consideration. In this case the Einstein equation becomes
G = 8nT™. (3.1.22)
From the vanishing of the divergence of the Einstein tensor we obtain
V. T =0, (3.1.23)

which provides a set of conservation equations for the material part of the system.

3.2 Hydrodynamics of multifluids

Here, following Carter’s formalism [57, 52], we will describe the dynamics of mul-
tifluid media. To do this we will employ the matter space description which was

introduced in section 2.3, generalizing it for many components. We will derive the

Various authors refer to this tensor as stress-energy or energy-momentum tensor. Here we
use these names interchangeably. Note that in all cases we refer to the Einstein-Hilbert energy
momentum tensor.
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stress-energy-momentum tensor and the equations of motion for a multicomponent
fluid focusing, for the sake of clarity, only on the hydrodynamic part of the medium.
As in the single component case we will introduce the fundamental quantities de-
scribing the medium. To distinguish the various components we introduce additional
indices denoted by the roman letters x,y,z that are evaluated in the range of the
components. For example, in the case of a medium consisting of protons and neu-
trons we will have x,y,z = p,n. The indices of the fluid’s components indices (i.e.
X,Y¥,...) are only labels for the fluid species and are shown upstairs or downstairs
interchangeably. In general, other choices for the components of the fluid can be
electrons, other elementary entities which collectively form fluids, or entropy. Fur-
thermore, Einstein summation convention does not hold for the component indices
and so any summation will be shown explicitly. Although entropy is intuitively
more abstract than the other components (which consist of particles and therefore
are pictured more clearly), it is considered, within this formulation, to be a com-
ponent of the medium. Such a consideration is justified since at the lengthscales
that hyrdodynamics apply, the entropy contained in a volume element in spacetime
may be considered as a fluid, similarly to the other components. Furthermore the
inclusion of entropy as a dynamical variable allows to describe systems that exhibit
heat transfer [57].

Assuming that there are as many matter spaces as there are components, the num-
ber density? form for each component n¥,. will be closed (see equation (2.3.5)).
Following the calculation of section 2.3 the respective number density 4-current for

each component n¢ is given by

1
a beda,,x X d
ng = —e*“ns and Ninpe = EdabeTs (3.2.1)

* 3l

and is related to the fluid’s 4-velocity u$ through

ne = nyu where uguy = —1. (3.2.2)

X Xx0 b

The 4-velocity of the x component is related to that of an other observer® u® frame
through

(SIS

Ui = Ux (ua + U)(:) ) and Tx = (1 - Ugvz)_ ) (323)

2Although entropy is not characterised by a “number”, contrary to the other material compo-
nents (where e.g. ‘proton number’ makes sense), we refer to n, in all cases as ‘number density’.

3This is an arbitrary observer introduced here to demonstrate the transformation between
frames.
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where v? is the relative spatial velocity between frames u® and u? (with u®v¥ = 0)
and -, is the Lorentz factor. Following equation (2.3.8) the number density current
is conserved for each component seperately

Vand = 0. (3.2.4)

X

The square of n is given by n? = —n?n¥ where we introduced the minus sign
to ensure that it is a positive quantity. In a similar manner, the contraction of
number density currents between different components is given by ni, = —ngnj.

The Eulerian variation of n¢ is given by equation (2.3.37)
1
ong = nZVbEff - §ivbni — ng <Vb§i + 590d59cd> . (3.2.5)

To describe the medium we assume a Lagrangian density Lz which is a function
of n2 and n2,. This implies that the medium is locally isotropic as there are no
preferred directions. The dependence on these invariants implies that we are looking
exclusively into the hydrodynamic part of the medium. Calculating variations with
respect to the number density currents we obtain the equations of motion for the
fluids and with respect to the metric tensor we obtain the energy momentum tensor
of the medium. The variation of Lgy/—g with respect the number density current

and the metric yields

s(v=ate = v=a 3 o+ (65 S s (320

ani agab agab

and by considering that the Lagrangian is a function of n? and nf(y the previous

result obtains the following form

OLr On? oce 2\ . o0v=g
0(v=9Lr) =vV=9) | 02 one + o, 8n;y ong + EFmégab
x e (3.2.7)

OLr O 1= OLp On2
+\/—_QZ<—F X+§Z a y)59ab.
x TFY

onZ gap ong, O0an

The reason behind the % factor in the coefficient of the metric variation is that

niy = ngx and each term should be considered once. Note that the % factor is not

introduced in the number density current variation, because niy should be taken
into account for each fluid component separately. Since we want to present a general

result valid for multiple equations of state, we have not yet determined the exact
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functional form of Lg. It is therefore useful to use the following quantities to denote

the partial derivatives of Lg

B =—-2— d AV =-— .
o2 an o2, (3.2.8)
Using these equations, the variation now reads
1
S(V=gLr) =v=g > | BnE+ > Agn | ont+ E\ﬁ—gﬁFgab(sgab
x e (3.2.9)
1 X G b 1 Xy, a, b
+ \/—gz (56 iy + 5 ZA ynxny> dGab-
x Ay
The momentum of each fluid component p¥ is defined through
. oL
He = %, (3.2.10)

where £ denotes the Lagrangian of the system under consideration (in the present
section we have £ = Lg). Therefore the momenta are given by equation (3.2.9)
through
=B+ ) Ay (3.2.11)
X7y
As we can see in the above expression, the momentum for a specific component does
not depend solely on the number density current of that component but there are
additional terms that are related to the rest of the components since they are coupled
through Ayy. This relation between the momenta and the number density currents
of other components is known as “entrainment” and shows that the momentum is
not aligned with the respective number density current [58, 59, 57, 60, 61]. Using
the momenta we are able to define a 3rd rank contravariant totally antisymmetric
tensor as we did for ng
plbe = edabe . (3.2.12)

Additionally, in the case one of the components is entropy then the related momen-

tum s is the temperature [52]. Equation (3.2.9) can be written

1
O(V=gLr) = V=g ) moni + 5v/=g <£Fg“" +) ui@) 0Gab, (3.2.13)
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and by using equation (3.2.5) to substitute dn? we get

1
0(V=9Lr) = 5V —9g (‘I’FQCd +) Mini> 0ged

+ V=g > (b Vs — i Ving — mnivigl) .

(3.2.14)

In the above expression, W is the generalized pressure of the multifluid, defined as
Up =Ly — s, (3.2.15)

After some manipulation in the last term of equation (3.2.14) (see section A.1.3)

the variation obtains the final form

1
0(V=9Lr) = 5V (‘I’FQCd +> Mini) 0ed

. (3.2.16)
FVEIY (1) + Vi ().
where fX is the force density for component {x} given by
£ =l (3:2.17)

and wy, is the vorticity of component {x}, a second rank, covariant, totally antisym-
metric tensor
wap = 2V, - (3.2.18)

Assuming that the variation of the Lagrangian is independent of £¢, and noting that
&2 are independent variables, the equations of motion for each species is given by

=0 (3.2.19)

a

The stress-energy-momentum tensor 7% for a Lagrangian density £ is obtained by

varying the Lagrangian with respect to the metric and is given by
2

N

Tab(sgab —

5 (V—ygL) . (3.2.20)
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For the system under consideration the above expression appears in the first term

in equation (3.2.16) and the respective tensor T2 is
Tab = \I/Fgab + Z ,uinf( (3221)

Finally, the last term of equation (3.2.16) is a divergence containing the infinitesimal
displacements £ and by transforming that part to a surface integral it will vanish,

according to the divergence theorem (see eq. (3.0.6)).

3.2.1 The case of a two-constituent single fluid

A special case of the multifluids discussed in the previous section is a single fluid
with two components. Since there are two constituents, the Lagrangian is a function
of the two number densities ny, where in this case x = {i,s} are assumed to be ions
and entropy. The fact that this is a single fluid means it is characterised by a single
4-velocity which is tangent to the worldlines of the medium’s particles. Therefore

the number density currents are given by

n = nuf, (3.2.22)
and

ng = ngu, (3.2.23)
where u¢ is the fluid’s 4-velocity (with ufu! = —1) and n;, n, are the ion number

density and entropy number density, respectively. As in the previous section we have

n? = —nnX and the conservation of number density currents, given by equation

(3.2.4). Additionally, since this fluid is characterised by a single 4-velocity we have
only one matter space. There is only one infinitesimal displacement £%, and the

variation on the number density current is given instead of equation (3.2.5) is given

by

1
ng = ny V" — EVyng — (Vbﬁb + §ng590d) : (3.2.24)

In this case since the two number density currents are aligned (parallel to u®) there

is no entrainment. Thus, the momenta using equation (3.2.10) are given by

1 = Bn (3.2.25)
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where B* is given by equation (3.2.8). The generalised pressure Wg is given by
equation (3.2.15). The variation of the Lagrangian for the two-constituent fluid is

given by

S aLe) = Vg (w + Zuini) o
B 1 (3.2.26)
PV (156 + L0 (G g ).

As in the previous section the last term vanishes, while the first term is the Einstein-
Hilbert energy momentum tensor of the fluid given by equation (3.2.21). The second
term, provides the equation of motion for the fluid. The f? is related to vorticity
through equation (3.2.17) and the vorticity in turn is given by equation (3.2.18).

Here we have only one equation of motion, given by
Y =0 (3.2.27)

since, as we mentioned before, there is only one £°.
It also worth mentioning the following aspect of the two-constituent single fluid.
Combining the number density currents conservation given by equation (3.2.4) for

n; and ng we get
n; Ny

V= — ==, (3.2.28)
ny Ng
It follows that )
n_ s
ni o N
ulV, (logn;) = uiV, (logng)
n. (3.2.29)
w'Vy(log— ) =0
U?VQ& =0,

1

which means that the ratio 7= is conserved along the fluid worldlines. The number
densities are physical quantities divided by volume, n; is ion particle number per
volume and ng is entropy per volume. It follows, the previously mentioned ratio is

entropy per particle number, which is also referred to as specific entropy? [48, 62].

4The definition here of specific entropy is different from the bibliography by a constant mul-
tiplicative factor, which is the fixed rest mass per baryon. Nevertheless, this difference does not
alter equation (3.2.29).
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The conservation of specific entropy > along uf
u'Ve2 =0, (3.2.30)

is referred to as the “adiabatic” [62, 41] or sometimes “isentropic” condition [48]. In

this thesis we will use the former.

3.3 Electromagnetism

In this section we will look into electromagnetism. We will first discuss linear me-
dia, describing the classical vacuum as the simplest case of a linear medium, the
isotropic media, and media with spontaneous excitation. We will also investigate
electromagnetism in non-linear media, by describing a general Lagrangian used in
quantum electrodynamics as a simple isotropic model of a non-linear medium. We
also we the material derivative to provide an expression for non-linear media that
resembles the respective of the linear case. Subsequently, we discuss the coupling
between electromagnetism and matter and how the electromagnetic and material

properties of a medium relate.

3.3.1 Electromagnetism in linear media

The electromagnetic field is described by the Faraday tensor Fj;, an antisymmetric

second rank tensor which is related to the 4-vector potential A, through®
Fab = VaAb - VbAa. (331)

The Faraday tensor may be defined with partial instead of covariant derivatives
because the Christoffel symbols are symmetric in the lower indices and cancel. The

Lagrangian of electromagnetism in linear media [63], is given by

. 1 »
‘C%}Ii/[ = _gxadeFachd + jFAa/’ (332)

5As we will show in section 3.3.6 the completely antisymmetric part of the covariant derivative
of Faraday tensor is vanishing. From a geometric point of view this means that the Faraday tensor
is a closed 2-form which implies that (at least) locally it is exact i.e. it may be written in terms of
a non-unique 4-vector as in equation (3.3.1). See [42] for a discussion on closed and exact forms.
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abed js the constitutive tensor which contains the information about the

where x
electrical and magnetic properties of the medium, jf is the “free 4-current”. This
Lagrangian is linear in the sense that the constitutive tensor is not a function of the
electromagnetic field (i.e. the Faraday tensor or the 4-vector potential). Additionaly
it is described by a sum of two terms, the first is source-free which means that it is
valid in the case where electromagnetic currents are absent while the second takes
into account currents. The currents are closely related to the material part of the
system, since they are moving particles carrying charge. In this section we discuss
only the first term because we would like to focus on the electromagnetic properties
of the medium in the case of absence of source terms. We deal with the currents in
section 3.4.1.

Similarly to the classical (non-covariant) description of electromagnetism in media
(64, 65, 66], we introduce the electromagnetic excitation tensor H% which is defined

through
OLpm

aF’ab .

This expression is similar to the definition (3.2.10) of momenta of the previous

H® = -2

(3.3.3)

section and provides a covariant constitutive relation between Fj, and H®. The
antisymmetry of the Faraday tensor indicates through the definition above that
the excitation tensor is antisymmetric as well. The definition (3.3.3) holds for all
materials, and is not limited to Lagrangians of the form (3.3.2)¢. Using the definition

(3.3.3) for the Lagrangian of linear media given in equation (3.3.2) we obtain

1
H® = §Xabchcd, (3.3.4)

which is the equation where linearity becomes obvious. The excitation tensor is
related linearly to the Faraday tensor through a multiplication factor which is the
constitutive tensor. Combining the definition (3.3.3) and the equaton above we may

write the Lagrangian given in equation (3.3.2) as

. 1 ]
Lhin — _ZH“bFab + jgAq. (3.3.5)
As shown in a following section, writing the Lagrangian of a system using the above
form is possible only in the linear case.
Following the classical description of electromagnetism we introduce an additional

field, the magnetisation-polarisation tensor M?, that is related to H% and F?

lin

6For that reason we use Lgy in the definition rather than £h1 which implies the linear case.
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through
H® = b 4 pped, (3.3.6)

This equation holds for all materials, both linear and non-linear [64, 65, 67, 68] and
can be interpreted in the following way. The excitation tensor will always contain
the linear vacuum part (described by the first term in equation 3.3.6) and a second
part, either linear or non-linear (described by the second term). The magnetisation-
polarisation tensor is also antisymmetric, following from the antisymmetry of F'®
and H®. Similarly the electromagnetic field the “free” current j2 is related to the

total j¢ and “bound” j§ currents through
3 =Jjr + Js- (3.3.7)

The term “bound”, as in classical electromagnetism, implies that the current is as-
sembled of a large number of microscopic currents. Each of them is confined to move
in a microscopic region of spacetime according to the properties of medium. Hence,
these microscopic currents do not flow freely in the medium, and from the macro-
scopic point of view their motion collectively appears as a macroscopic current, which
is referred to as the “bound” current. In contrast, the “free” current is free to flow
in the medium on a macroscopic scale and for that reason it is characterised as “free”.
As mentioned at the beginning of section 3.3.1 the constitutive tensor y**“¢ con-
tains all the information about the electric and magnetic properties of the medium
under consideration. We may obtain the constitutive tensor of the Lagrangian given

in equation (3.3.2) through

OH™ _ | 0*Lou

abed __ 9 — )
ach aFabach

X (3.3.8)

The equations above as discussed in a subsequent section also serve as definitions
for the non-linear constitutive tensor in non-linear electromagnetic media. We also
have the symmetries

Xabcd — _Xabdc’ (339)

and
Xabcd — _XbaCd, (3310)

which arise by the symmetries of F,;, and H* and equation (3.3.8). These two sym-

metries reduce the number of independent components of Y**“? to 36. Additionally
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the commutativity of partial differentiation

82[,5;]\/[ GQEEM

- , (3.3.11)

achbbaﬁjcal achdg-Fab

in definition (3.3.8) provides the following symmetry
X(lbcd — XCdaby (3312)

which reduces the independent components of the constitutive tensor to 21 [63].

Following equation (3.3.6) in the case of linear media we may write Y%/ as a sum

of two tensors
Xabcd — ngcd + gabcd’ (3313)

abed

a%¢d is the constitutive tensor for vacuum given by

where x

abed _ gacgbd _ gadgbc (3314)

0 Y

and ¢®? is the susceptibility tensor of the medium which has the same symmetries

as the constitutive tensor. Using equation (3.3.13), equation (3.3.4) becomes

1 1 1
EngCchd + §§adech _ Fab + 5gabchval’ (3315)

Hab —

where for the second equality we used the vacuum constitutive tensor given in equa-
tion (3.3.14). It follows that the magnetisation-polarisation tensor is related to the

Faraday tensor through the linear relation

1
M® = §§adech. (3.3.16)

3.3.2 The decomposition of electromagnetic quantities

Here we show the decomposition of the various electromagnetic quantities that have
been introduced are decomposed into temporal and spatial parts. The decomposition
of the Faraday tensor with respect to an observer with 4-velocity u,, into the electric

and magnetic parts is given by

Fab = 2u aEb + Eabcduch7 3.3.17
[a 0]
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where E, = Fu? is the electric field, B* = —%e“b“lub F.; is the magnetic field. In a

similar way, the excitation tensor decomposes as
Hap = 2Dy + €apequH, (3.3.18)

where D, = Hyub is the electric displacement and H¢ = —%eabedub H,., is called,
since we have already used the name “magnetic field” for B,, “magnetic intensity””.

In the same manner the magnetisation-polarisation tensor decomposes as

My, = 2 Py — €qpequM?, (3.3.19)

1 _abed
3 €

tion. Note here that there is a different sign in the definition of the magnetisation
compared with the definitions of the magnetic field and H® field. This sign differ-

ence arises from the fact that equations involving the magnetisation should resemble

where P, = M_yu® is the polarisation and M¢ = up M4 is the magnetisa-

the equations as treated in textbooks of classical electromagnetism [64, 65]. Addi-
tionally, all the decomposed fields in equations (3.3.17), (3.3.18), and (3.3.19) are
orthogonal to the observer’s 4-velocity. The orthogonality arises from the antisym-
metry of the tensors F,,, Hy, and My, respectively.

The 4-currents given in equation (3.3.7) decompose as

Ji = opu® + Jg, (3.3.20a)
Jjp = opu” + Jg, (3.3.20b)
Jj* =ou+ J°, (3.3.20¢)
where 6p = —u?j2 is the 'free’ charge density and J& = h?, jb is the spatially

projected 'free’ 3-current. The ’bound’ 7, and total ¢ charge densities and spatially
projected 3-currents are defined in a similar way. It follows from equation (3.3.7),

that the projected 3-currents are related through
J*=Jg+ Jg, (3.3.21a)

and
& =65+ 0p. (3.3.21b)

"There is an occasional conflict in the names of B® and H® due to the fact that the various
scientific communities use different names for the fields. For example in astrophysics B® is usually
the magnetic field while in experimental material physics the magnetic field is H¢.
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The constitutive tensor is also decomposed into temporal and spatial parts through,
Xabcd _ 4u[a5b}[cud] + 6ab eGCdeem + 2€abexe[cud] + 2u[ayb}e€e cd’ (3322>

where €% is defined through equation (2.1.16), and £% is the relativistic electric

permittivity tensor given by
£7¢ = —xyuy, (3.3.23)
M is the relativistic inverse magnetic permeability tensor given by

1
M = Zeaefeckmxef k. (3.3.24)

and X%, Y% are cross-permittivities given by

1
Xe = —§e“efxefcdud, (3.3.25)

and .
yee = éecefxa”ef . (3.3.26)

This decomposition is similar to the decomposition of the Riemann tensor into
“gravito-electric”, “gravito-magnetic” and mixed “gravito-electromagnetic” parts as
discussed in [69]. By contracting one free index of each (3.3.23)-(3.3.26) with the
4-velocity and using properties (3.3.9), (3.3.10), it is obvious to show that these
tensors are orthogonal to u®. Additionally, symmetry (3.3.12) implies that £ = £b2,
M® = Mb and Y = —X%. Using equation (3.3.22) with (3.3.17) and (3.3.18) we
obtain the decomposition of equation (3.3.4) which provides the relativistic relations
between the electric displacement and magnetic intensity with respect to the electric

and magnetic fields, in a form similar to that of ordinary electromagnetism,
D = EPEy + YPBy, (3.3.27)

and
H* = M®By, + X" E,. (3.3.28)

As it can be seen from the last two equations, the linear relation (3.3.4) allows
for possible coupling between the electric and the magnetic field through the cross-
permittivities Y and X%.
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Due to the symmetries given by equations (3.3.9), (3.3.10) and (3.3.12) there are
only two non-vanishing and independent traces of the constitutive tensor. These
are x 2 and x*°,. Using equation (3.3.22) the two traces in terms of the projected

tensors are
Xabad = gbd - 5aaubud + Maahbd - Mbd - Ead)yaeud - Eaedyaeub’ (3329)

where we also used the symmetry of the cross-permittivities Y = —&x%. The other

trace is given by
X, = 2(£% + M“). (3.3.30)

Note also that there are two scalar invariants of the Faraday tensor, namely I and
K given through
I =2F"F, = X" FyF.qg=4(B>— E?), (3.3.31)

where E? = E,E® and B? = B,B%, and

K = ¢ F,F.. = 8E,B". (3.3.32)

3.3.3 Linear media

In this section we demonstrate specific cases of linear media, namely the classi-
cal vacuum, the case of isotropic media and the case of media with spontaneous

excitation.

3.3.3.1 Classical vacuum

The simplest case of a linear medium is the classical vacuum. The Lagrangian
density is given by

1 1
%M = ——FabFab = _éngCdFachd- (3333)

4
where 2 is given by equation (3.3.14). As already implied in equation (3.3.15)

the excitation tensor is related to the Faraday tensor through

1
H™ = ox"Feg = ™. (3.3.34)
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Using equations (3.3.23)-(3.3.26) we find that the permittivity and permeability

tensors acquire the trivial form
£ = pab, (3.3.35)

M = b, (3.3.36)

As was anticipated, since there is no coupling between the electric and magnetic
field in vacuum, the cross-permittivities X, V$¢ vanish. Using equations (3.3.35)
and (3.3.36) we can show that the relations between the D* H® and E*, B* take
the familiar form

D* = E*, (3.3.37)

and
H* = B*. (3.3.38)

3.3.3.2 Isotropic media

Isotropic media are characterised by the scalar electrical permitivity € and the scalar
magnetic permeability p. Using this as starting point along with the form of excita-
tion fields in classical vacuum (which is the simplest isotropic medium) we can work
backwards to obtain the constitutive tensor. For an observer at rest with respect to

isotropic medium we have [64]
D* = eR", (3.3.39)

and
H* = uB*, (3.3.40)

where € and p are the scalar permittivity and permeability of the medium respec-

tively. Therefore the permittivity and permeability tensors should read
E? = eh, (3.3.41)

and

M = b, (3.3.42)

while the cross-permittivities are zero. It follows that £% = 3¢ and M? = 3u. The
constitutive tensor then, with the respect to the observer at rest, obtains the simple

form
Xabcd _ 4€u[ahb][cud] + m (hachbd . hadhbc) ) (3343)
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The two traces of the constitutive tensor become

2 = egh — 2eulu® + 2uh’?, (3.3.44)

a

and
X, = 6(c + p). (3.3.45)

3.3.3.3 Media with spontaneous excitation field

In the previous sections we discussed linear media which do not possess any spon-
taneous excitation field. This means, as can be seen from equation (3.3.4), that
in order for a medium to have non-zero excitation tensor there has to exist a non-
zero electromagnetic field. In this paragraph we consider media with a spontaneous
excitation field. This means there is a non-zero excitation tensor even if the Fara-
day tensor is vanishing. The spontaneous excitation field is formulated through an

additional term added to the Lagrangian (that shown in equation (3.3.2)) given by
Sp 1 ab
em = — 5 Ho Fa, (3.3.46)

where H2 is the spontaneous excitation field. The total Lagrangian for linear media
with spontaneous electromagnetic excitation is then given by Egﬁfp = Ly + L

Using the definition (3.3.3) we get for the excitation tensor the following expression

1
H® = H® + §Xabchcd, (3.3.47)

and by decomposing this equation we get additional terms for the spontaneous elec-
tric displacement D¢ and magnetic intensity H? in equations (3.3.27) and (3.3.28)
given in this case by

D" = D% + EVEy + V™ By, (3.3.48)

and
H = H* + M®B, + X E,. (3.3.49)

Pyroelectric media exhibit spontaneous electric displacement [66] and thus are de-
scribed by equation (3.3.48).
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3.3.4 Non-linear Electromagnetic Media

So far we looked into linear media where the theory is well established. In this
section we examine the electromagnetic properties of more general types of media.
The reason we introduce non-linear media is that in some cases, for example in
ferromagnetic materials, equation (3.3.4) does not hold. In these cases the excitation
tensor is related to the Faraday tensor through a non-linear relation and as a result
the constitutive tensor, still defined by (3.3.8), is not constant but a function of
the Faraday tensor. Starting from this point the question to ask is: Does equation
(3.3.5) still hold for a Lagrangian density describing a non-linear medium?

To work our way to the answer we first have to understand what equation (3.3.5)
implies. The source free part of this equation (i.e the part that does not include the

4-current) using definition (3.3.3) is

lin,f
1 och

z 3.3.50
9 aFab ab- ( )

lin,f
EEM -

This is very similar to the second term (the first term of the series would be the
Lagrangian evaluated at zero Fy,) of a Maclaurin series expansion for Egrlt}[f. The

difference is that the partial derivative dLmi /OF,; is not evaluated for any spe-

cific value of the Faraday tensor, and there is an extra factor ( %) not matching the
Maclaurin series. If this expression was indeed the second term of some approximat-
ing series for the Lagrangian we could assume that it holds exactly for linear media
(since the constitutive tensor is independent of F;, and the Lagrangian is quadratic
in F,, as given by equation (3.3.2)) while it could be a first order approximation for
non-linear media. Thus the generalisation to non-linear media would just be the in-
clusion of higher order terms of the expansion to the desired accuracy. Infinite series
are used in non-linear optics to express the magnetic intensity and electric displace-
ment [67, 68] where the various non-linear effects are incorporated in the various
terms of the expansion. However, in non-linear optics the Lagrangian formulation is
not used and the starting point is the previously mentioned series expansions that
serve as constitutive relations for the magnetic intensity and the electric displace-
ment. In this work, since we are interested in results that arise from first principles,
it is rather inconvenient to use the phenomenological treatment which is the usual
approach in non-linear optics. Moreover, equation (3.3.50) is not trivially gener-
alised to non-linear media (since it is not the largest term of some series expansion).

Therefore, providing here the respective expression for the Lagrangian in the case of
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non-linear media will give us some insight into how to manipulate these media. The

MacLaurin expansion for a general Lagrangian which is a function of the Faraday

tensor is
0L 1 0?’Lgm
L =L 0 F, o1 ap A | Fale
EM EM( )_'_ aFab 0 b 21 (‘9Fab8ch 0 e (3 3 51)
1 P Lry N

FoFegFep — ...,
0

T30 OF0F.0F,;

Using equation (A.2.40) in Appendix A.2 it follows that any Lagrangian can be
written as a function of the Faraday tensor and the derivatives with respect to the

Faraday tensor as

Lov=L0)+ —~Fp — — ——F,F,
o = L£00) + 5= Far = o1 55 G, Farlea 3.3.52)
L1 OLem popon -
31 OF0Foq0F, @ 7
or in compact form as
+00 N+1 N
(—1) 0N LM
Lev = Lem(0 FuF... . F.¢|. 3.
o= Lon(0) + 3 NI OFy0F,.. 0F., 2 9 (3.3.53)
N=1 N ~~ - N terms
N terms

In Appendix A.2 we show how the previous formula is derived for a single variable
function. Here we have considered the straightforward generalization of equation
(A.2.40) for tensor fields.® Equation (3.3.53) is the generalisation of equation (3.3.50)
for non-linear media. We would also like to mention here that equation (3.3.53) can
be used when we prefer to avoid the calculation of the derivatives for specified values
of the variables, in contrast with the Maclaurin series that restricts the derivative at
a specific point. It does require, though, the knowledge of the value of the function
at a specific point. Since we mainly calculate variations of the Lagrangian densities
the term Lgy(0) is not important and we will assume that it vanishes.

In the linear case the Lagrangian consists of, as stated previously, one term quadratic

in F,;,. In this special case, all terms except the first and second order derivatives in

8The idea behind this generalization, which might seem to contain a logical leap, is that the
Faraday tensor F,;, as any other tensor, using the abstract index notation behaves as a single
variable in the sense that the components do not appear explicitly as independent variables. We
only have the field “F”, and that is similar to having one variable. To give another example where
tensors are treated as a single variable function, we mention the formula for the Taylor expansion
of scalar functions of tensors, which is the same as the formula for single variable scalar functions
(see [70]).
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equation (3.3.51) vanish. As a result, the Lagrangian can be written by just using
the second term multiplied with a constant as shown in equation (3.3.5). Conversely,
if the Lagrangian density is not a quadratic monomial of the Faraday tensor ? then
there can not be a linear relation between the excitation and Faraday tensor as in
equation (3.3.4) and eventually the Lagrangian cannot be written as in the form of
equation (3.3.5).

In the analysis above we assumed a Lagrangian which is in general a function of F,
and expanded it in series with respect to that tensor. We could have assumed that
it is a function of the 4-vector potential and performed a similar expansion for it
as well. The reason we did not consider this option is that the 4-vector potential
is assumed in all cases to appear in the Lagrangian only as a source term, in the
form of the second term in the right hand side of equation (3.3.2) . Hence, non-
linearity as treated here is characterized entirely by the functional dependence of
the Lagrangian to the Faraday tensor. Finally, equations (3.3.3) and (3.3.6) imply

that in all cases the Lagrangian of electromagentism is of the form
Lem = Ly + Lovted, (3.3.54)

and as a consequence the magnetisation-polarisation tensor is defined through

aEMed

M® =2 .
OF

(3.3.55)

In the equations above, the Lyq part of the Lagrangian contains any terms that
are related to coupling between matter and the electromagnetic field including both

the linear and the non-linear cases.

3.3.4.1 The Quantum Electrodynamics Lagrangian

A simple example model of a non-linear Lagrangian is that of Quantum Electrody-
namics (QED). In the case of extremely intense electromagnetic fields, QED theory
provides corrections [71, 72] to the electromagnetic Lagrangian and as a result it
deviates from that given in equation (3.3.33). In that sense electromagnetism in
vacuum with the QED corrections can be perceived as a non-linear medium. Such

a Lagrangian will in general consist of £LEM plus a non-linear correction which we

9In general any Lagrangian that is a monomial power product of the Faraday tensor can be
treated in a way similar to that of the linear case. All these cases fall into the non-linear case
though as we consider that the linear case is strictly that of section 3.3.1.



3.3. Electromagnetism 51

denote as LM, That is

L&gp = LM + LTV (3.3.56)

Additionally, since the Lagrangian has to be Lorentz invariant [71] it will be a
function of the invariants of the Faraday tensor'® given by equations (3.3.31) and
(3.3.32). We have used the decomposition for the Faraday tensor, given by equation
(3.3.17), to derive the last equalities in terms of the electric and the magnetic field.
Using the definition of the excitation tensor (3.3.3) and equation (3.3.33) we get

(3.3.57)

g Lt (M%M oI oL aK)
270 ¢

oI oF, = 0K OF,

The derivatives of the Faraday invariants with respect to the Faraday tensor are

given by
oI
Yo = 2y, (3.3.58)
and oK
I 2e*U (3.3.59)

and by substituting equations (3.3.58) and (3.3.59) in equation (3.3.57) we get

1 OLEM oLEM
Ha abch —4 1 abed 1 abed F., 3.
X (s e ) Fu @300

The respective non-linear constitutive tensor, which is given by equation (3.3.8), is

ZL‘EM

P2LM
K>

XabspxgdnthpFnt 4 2

1 absp _cdnt
a1z Yo e Py

aoc aoc: 8
XQbE% = Xo bed — 8 [2
2 rEM
+2 oL
O0KOI
a‘C]laM abcd_l_ a‘C]laM abed
ar o oK ¢ |

(ngspecdnt+€absp cdnt) F, F (3361)

+

We proceed now with the calculation of the non-linear permittivity, permeability

and cross-permittivities. Using equations (3.3.23)-(3.3.26) we get

aﬁEM a2£EM a2£EM
o hab _ hab 4 1 EaEb BaBb
Eqen = " =8 =5 —h" — 6 { BIE T
—" (3.3.62)
“anor BB E BaEb)] ’

10Note that the classical vacuum part of the Lagrangian L9, is a linear function of the I
invariant. L% = —%I
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and
aﬁEM 82£EM a2£EM
ab _ pab ab a b a 17b
MG = h —8 8Ih 64{81283 BB
o b b (3.3.63)
+ oK (E“B*+ B E)},

for the permittivity and permeability. For the cross-permittivities we obtain

8‘CEM ab 62‘CIIEM arpb 82£EM a b
- (3.3.64)
1 arb _ papd
oK (E“E* - B“B )} :
and aEEM 82£EM 82£EM
1 ab 1 apb a b
Vi = 8 64{ Sp BB~ = BE
52LEM (3.3.65)
L_(E°E* - B°B%)|.
o108 | )}

As anticipated, the previous tensors have the symmetries described in section 3.3.2.
In a following section we will use a similar Lagrangian accounting for the material
part as well, to model an isotropic medium with non-linear electromagnetic proper-

ties.

3.3.5 Probing non-linear electromagnetic relations using the

material derivative

The present part is based on the analogy between Carter’s relativistic elasticity and
electromagnetism in matter [23]. Since both phenomena arise in the presence of a
material it makes sense to generalize the linear constitutive relations of electromag-
netism in a way similar to the generalization of general relativistic elasticity. In
all media, the excitation tensor is given, as stated previously, by equation (3.3.3).
Since in the non-linear case there is not a linear relation between the H,, and F,
we have to generalise equation (3.3.4) so it holds for all cases. In order to obtain a
relation between those quantities we start by assuming that the excitation tensor is

a function of the Faraday tensor. Thus, we have the following relation between the
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material derivatives of these tensors

0H 1

£chd - _Xab Cd£uFCd7 (3366)

H, = —=
Fo OF .4 2

where we used equation (3.3.8) to substitute the non-linear constitutive tensor. Of
course this relation should reduce to equation (3.3.4) in the case of the classical

vacuum. Additionally, calculating the derivatives of both sides of equation (3.3.6)

yields
‘£uHab = £uFab + <£uMab
1. 1, OM
§Xab d£uFCd = §X2b d£’uFCd + aTCd‘f’uFCd (3367)
1 1 1
o Xab “EoFea = SXap  FuFea + S5 “HouFa,

where we have substituted, in analogy to equation (3.3.8), the definition of the

susceptibility tensor
ced zaMab

Sab B aF1cd .

Equation (3.3.67) implies that for a non-linear medium the constitutive quantities

(3.3.68)

are still related through
Xab = Xop “ A+ s (3.3.69)

which is the same as equation (3.3.13). Using equations (3.3.17), (3.3.18) and
(3.3.22) we decompose equation (3.3.66) it into temporal and spatial parts. This
provides us with the following non-linear constitutive relations between the fields

D,, H* and the electric and magnetic fields
£.D0 = E, L. Ey + Vardou B* + OV B, (3.3.70)

and
£, HE = M 4, B+ X4 B+ OM*, B — 0H, (3.3.71)

where ©® = V,u® is the volume expansion expansion scalar which measures the
average separation between close distance observers [73]. It is straightforward to
show that, in absence of coupling between the electric displacement D, and the
magnetic field, as well as between the H* field and the electric field, these equations
reduce to

fuDa = E,"L, By, (3.3.72)

and
£,H =M £,B"+6 (M*,B"— H). (3.3.73)
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It is interesting that equation (3.3.72) simplifies more than equation (3.3.73), as
the latter contains terms related to ©. These peculiar terms exist due to the fact
that the 3D volume form €, is not materially constant along the worldlines of the
4-velocity. The non-linear relations (3.3.70) and (3.3.71) should of course satisfy
equations (3.3.27) and (3.3.28) in the case of a linear material. Substituting the
right-hand-side of the latter in the left-hand-side of the former we get

(£‘uga b) Eb + Ea b£uEb + (£uyab) Bb + yabifj;uBb

(3.3.74)
=£,"L.,Ey + Yt ,B" + OV B,
and
(M) B+ MO B (L) B X0 B =
M4 B+ X4 B, + OM*,B* — OH®, o
which reduce to
(£.6,") By + (£,Ya0 — OVa) B* =0, (3.3.76)
for the electric properties of the medium and
(£,M%) B+ (£,X*) B, —© (M“,B* — H*) = 0, (3.3.77)

for the magnetic properties of the medium. These two equations describe the evo-
lution of the decomposed constitutive tensors in terms of the material derivative for
the case of a linear medium. In case the coupling tensors V,, and X are zero the

previous equations simplify to

(£.8.°) By =0, (3.3.78)
for the electric properties of the medium and

(£.M%) B" =0, (3.3.79)

for its magnetic properties. If we assume that the above equations hold for all

electric and magnetic fields we get
£.8," =0, (3.3.80)

and

EK/u'/\/lab = Oa (3381)
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for the electric and magnetic properties, respectively. It is straightforward to show
that for the case of classical vacuum equations (3.3.35) and (3.3.36) satisfy the pre-

viously mentioned equations since the projection tensor h,’ is materially constant.

We should mention here the following. In this section we used the material deriva-
tive to produce a relation between the excitation tensor and the Faraday tensor in
analogy with the linear case. By choosing the material derivative for the calcula-
tion, we have ensured that equations (3.3.80) and (3.3.81) are satisfied for the case
of vacuum which provides some additional consistency to the argument. However,
we could have used any other derivative for which the chain rule of differentiation
holds and additionally the differentiated quantity is still a tensor. In these cases
though, we possibly have to make additional assumptions, such that the equations
inferred by that other derivative regarding the linear media —which will be equivalent
to equations (3.3.80) and (3.3.81)— hold.

3.3.6 The Maxwell equations

In this section we will derive the two Maxwell equations in covariant form. The first
Maxwell equation arises from the antisymmetry of the Faraday tensor (see Appendix
A.1.4) and is given by

VieFyg = 0. (3.3.82)

Since we assumed a symmetric Christoffel symbol this equation can be written with
a partial instead of a covariant derivative. The second Maxwell equation, is slightly
more complicated to derive, and arises by varying the Lagrangian with respect to the
vector potential A,. Following the variational derivation demonstrated in equation
(3.0.7) we assume a Lagrangian®! of the form Lgy(Fyp, As). The variation of this
Lagrangian yields

OLem OLem

6£EM = WabéFab + aAb

_ ,0Lem
=92 oF, §(VaAp) +

0A,

OLem
0A,

(3.3.83)

0Ap.

HFrom equation (3.3.1) for the Faraday tensor it follows that the variation with respect to Fyy,
as an independent field is equivalent to the variation with respect to the gradient of the 4-vector
potential. See [63] for an elaborate discussion on this matter.
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Now, the variation commutes with the covariant derivative (since it is a variation of

the electromagnetic field alone) and so we have

OLem OLgwm

5£EM — QaTabva(SAb + aAb 5Ab
DL DL DL (3.3.84)
= -2 A 2 A
{V“< OF ) o4, ]5 b+v”‘( 9Fy, b)’

where the last term is a divergence of a term that contains the variation. This
term vanishes after transformed to a boundary term (see equation (3.0.6)) as was
demonstrated in the beginning of this chapter. Additionally, the variation of the
action (see equation 3.0.2) is independent of the variation of A, and so the first

term vanishes as well, which means that

V. (—zaﬁEM) _ 9Leu (3.3.85)

0Fy, 0Ay "

which is the second Maxwell equation. As we have stated previously, we will consider
only cases where the dependence to the vector potential is described by a term of
the form jgA,. Substituting this function for the source term, and the definition

(3.3.3) of the excitation tensor, we get
Vo H® = j2, (3.3.86)
We find that the “free” current is covariantly conserved
Vaujr =0, (3.3.87)

which follows by application of the covariant derivative with the free index contracted
on equation (3.3.86). Projecting the Maxwell equations (3.3.82) and (3.3.86) along
and orthogonally to the observer’s 4-velocity we get the general relativistic coun-
terparts of the classical Maxwell equations. Equation (3.3.82) decomposes into the

relativistic Faraday equation
hap BY + €00 VP E® = —€,0ti° E® + BV uy — BoV 1, (3.3.88)
and relativistic Gauss law for the magnetic field

VB, = =" E,Vyu,, (3.3.89)
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while the second equation (3.3.86) decomposes into the relativistic Ampére law
hbDy — € VP H + J& = DV, — DoVPuy + eqpet® HE, (3.3.90)
and the relativistic Gauss law for the electric displacement
VD, — 6p = € H,V quy. (3.3.91)

In the equations above we have moved to the left-hand side the relativistic counter-
parts of the terms existing in classical equations while the right-hand side contains
terms that do not have classical equivalents. These extra terms contain the covariant

derivative of the 4-velocity and are of geometric origin.

3.4 Electromagnetism in multifluid media

Up to this point we have treated fluid dynamics and electromagnetism separately
in order to provide a clear description for both. In this section we combine electro-
magnetism in media with the multifluid description. The idea behind this synthesis
is that the medium, as we discussed in section 3.3, is related to the material part of
the system under consideration. Hence, our task is to present a model that accounts

for both electromagnetic and hydrodynamic phenomena of multifluids.

3.4.1 The Lagrangian source term jgA,

We will look into the coupling between electromagnetism and matter that arises
from the 4-current. Electromagentic currents consist of moving charged particles
and thus posses both fluid and electromagnetic properties.

We assume that each charged fluid component carries a single, either positive or
negative, unit of charge ( i.e. e or —e). Neutral fluid components such as neutrons
carry zero charge. For each component the unit of charge is shown as ¢.. For
example, if the system consists of protons and electrons the two components will
be ¢, = e and ¢. = —e respectively (if the system consists of neutrons we also have

¢n = 0). The free current of each species ji , is given by

JEx = @5, (3.4.1)
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while the total free 4-current is the sum of the above-stated currents
JE=D gk (3.4.2)

It is apparent through the previous two equations that for a two-component medium
with opposite charges, if ng = n§ (with x # y) then the total free 4-current vanishes.
Additionally, the number density current conservation given by equation (3.2.4)

ensures that ji is divergent-free

Vaujp = 0. (3.4.3)
We proceed with calculating the variation of the source term given by

= oA, (3.4.4)

with respect to n? and the metric tensor. The variation with respect to the 4-
potential has already been calculated in section 3.3.6 and provides the right-hand
side of the equation (3.3.86). We have

5( SErl(\:/[ _g) = Z [QX (571?(14@\/—_94- ngAaé\/__g” ) (345)

X

and using equations (3.2.5) and (3.1.8) we obtain the following expression

5§ (LEV=0) = V79 D (At Vil — ALV — 6 AnSViED) . (3.46)

where the last term of equation (3.2.5) cancels with the term which emerges from
the variation of the metric. We have already encountered an expression similar to
that of equation (3.4.6) in section 3.2. Using the same process we finally get for the

variation of the current term

0 ( gl(\:/l _g) =V =g Z (2§gQXniv[aAb])
i . (3.4.7)
+vV=9) WV, (5 )‘fn’cffaebechc) .

The last term is a vanishing boundary term while the first term contains the parts

of relativistic Lorentz force fl* for each charged component

fL7X = QXniFaba (348>

a
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which provides additional terms to the equations of motion (3.2.19) of the medium.

Collectively all these terms constitute the relativistic Lorentz force given by

L b
fo=> aniFu, (3.4.9)

3.4.2 An isotropic non-linear electromagnetic fluid medium

In this section we consider an isotropic, non-linear'? electromagnetic fluid medium.
An example of such a medium can be a part of the neutron star core where matter can
be treated as a multifluid while it may exhibit ferromagnetic behaviour at densities
a few times the nuclear saturation density [31, 30, 32, 33, 74]. Ferromagnetism is
usually treated microscopically since most of the properties related to it require a
quantum description. However, since our treatment is mesoscopic (by this we mean
that the scales are small enough that we can adequately refer to infinitesimal regions,
but not so small that quantum manipulation would be necessary) we will focus on
the non-linear electromagnetic behaviour of ferromagnetic media which appears at
larger scales. In order to do this we assume that the part of the Lagrangian describing
the electromagnetic properties has a similar role to the one describing the fluid in
section 3.2. So, in some sense it is an “equation of state” for the electromagnetic
properties of the medium just as Lg is perceived as the equation of state for the
fluid.

We assume that the system is described by a Lagrangian density L, which is
a function of the number density currents n¢, the Faraday tensor, the 4-vector
potential and the metric tensor. Additionally, as in sections 3.2 and 3.3.4.1 we
consider the case that the Lagrangian does not explicitly depend on these fields
but to the related scalar invariants in order the Lagrangian to be Lorentz invariant.

Thus, we have
£fer = £0EM + SEYK/[ + EF (ni, niy) + ENL ([, K, ni, niy, ny) R (3410)

where the last term is a function of the invariants I, K,n2,n},, Fyy,

fluid and electromagnetic properties of the medium. The quantity Fky is an invariant

coupling the

given by
Foy = Fynin?, (3.4.11)

12The analysis here applies to linear electromagnetic media, as well.
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which by using equation (3.2.3) is decomposed in the frame of u® as
Fy = 1%y [Ba (vg — v5) + eancvgvy B . (3.4.12)

This quantity obeys the symmetry Fy, = —F}x which implies that if x = y then it
vanishes. If the components x,y are comoving then it vanishes as well. Note the
components x,y related to this scalar should carry some charge for the expression
to be meaningful. Neutral components should not be able to interact directly with
the electromagnetic field.

In order to provide the complete set of equations for the system we first have to

manipulate the last in equation (3.4.10). From the definition (3.3.3) we get

1
Hab :ngdech

(3.4.13)

0Ly, OI  OLny OK 1 0Ly, OF
NI, NL 41 Z Z NL Oy |
oI OFy 0K OFy ' 24 0Fy OFy,
which by using equations (3.3.58) and (3.3.59) and the results of Appendix A.1.5
yield

1 1
Hab _ §ngCchd + ngbchcd +K Eadech + 5 E E ny nLanf(L <3414>
X XFy

where in the same fashion as in section 3.2 we defined the quantities

_4% _

4 0L, 0L,
ol '’ n oK '’

T- d Foy = —22%,
an v Py

(3.4.15)

that are similar to the quantities defined in equation (3.2.8). To obtain the hy-
drodynamical 4-momenta of the system we calculate the partial derivative of the

Lagrangian with respect to the number density current through

a

P = na on2  ona
L3 (At ) On2, 0Ly, OF, (3.4.16)
onZ, one  OFy 0Ong )

X#y
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where we considered only the terms of equation (3.4.10) that contain non vanishing

quantities. So the previous equation becomes

iy = (B + D7) my o Y [(AY + OV m o+ Py Fun] + el (3,417
XAy

The additional term involving Fi, in the previous equation arises from the contri-
bution of Fy, to the momentum. In analogy to section 3.2 D* and C*¥ are given

by

0L,

D* = -2 o and C¥ = 0Ly,

2 T a2
n2 onz,

(3.4.18)

Instead of considering two separate terms that contain the hydrodynamical informa-
tion in the Lagrangian we could have assumed only one. In that case the quantities
B* and D* as well as A and C* would have been merged. Following the cal-
culation of section 3.2 regarding the variation with respect to the number density
currents, the equations of motion for component x are given by equation (3.2.19).
The vorticity w¥, is calculated by equation (3.2.18) with respect to the momentum

given in equation (3.4.17). That is

2015V pAa) + 205V [0 (BX + D7)] + Z 2V, [nz} (AY + CXY)]
xZAy

(3.4.19)
+ Z 2V (Fa]C]:Xyn;) =0,
XF£Y
and by using equations (3.3.1) and (3.3.82) we get
o 090 55+ 90 [ 0
e (3.4.20)

+ ) 2F0 Vy (Fyng) =0.
XAy

Finally, we will consider the variations with respect to the metric tensor in order
to obtain the stress-energy-momentum tensor of the medium, which is given by
equation (3.2.20). Starting by calculating the derivative of L, with respect to the

metric we obtain

OLter  OLge OI  OLioy OK
Ogey 0L Ogauy =~ OK Ogu

3 (fL 02 1§~ 0L Oy O aFXy) (3:421)
OnZ gy 24 On2, 99w OFy Ogay )

X
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which by using the results of appendix A.1.5 we have

0Ly 1
> f = FF o+ 5 Z (B +D*) ngnl + Y (A +C¥) ngnl
Gab Ay (3.4.22)

“<

+ IF*“F® + nggab.

Note that the Fy, term does not appear as the related derivative vanishes. We
point out that a part of the variation with respect to the metric is given through
the number density current variation in equation (3.2.5). This part corresponds
to the subtracted quantity in the first term in the following equation. The energy

momentum tensor is therefore given by

fer _ <£fer . src Z /anc + ICK) gab + Fachc + QIFachC
(3.4.23)

+Z (B*+D*) ngnl, + Y (AY 4+C¥)nd
XAy

The first term as in section 3.2, corresponds to a generalized pressure of the system
through

\Ilfer = Efer - src Z uxna + }CK (3424)

We also observe that the coupling of the electric and magnetic field adds a term to the
pressure W,. Note that in both equations (3.4.23) and (3.4.24) we have subtracted
the L. term since, as it was found in section 3.4.1, it does not contribute to the

energy momentum tensor.

3.4.3 The ideal magnetohydrodynamic approximation

In this section we will discuss the ideal magnetohydrodynamic (MHD) approach.
According to the classical (Newtonian) theory the ideal MHD is a simplifying ap-
proximation for the description of plasmas [75, 76] which, among other cases, is
relevant in astrophysical configurations.

Assuming a two fluid plasma consisting of positive ions and negative electrons the
ideal MHD approximation follows, by imposing a set of simplifying assumptions.
The system is described by a single fluid and is perfectly conducting, which means

that the electric field with respect to the observer moving with the fluid vanishes. In
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the following sections, we start from the multifluid perspective and by introducing
a set of approximations we obtain the equations of single fluid ideal MHD, following
(77, 78].

3.4.3.1 Relativistic ideal MHD from the variational principle

To derive the single fluid ideal MHD we start by assuming that the system is de-
scribed by the Lagrangian

Lymp = Ly + Liv + Lr, (3.4.25)

where the first term is given by equation (3.3.33), while the source term for the
2

X

electromagnetic field i.e. Ly, introduces the 4-current. The fluid term Ly (n

) is
discussed in section 3.2 with x = {i,e, s}, i.e. positive ions, electrons and entropy.
We assume that ions and entropy form a single two-constituent fluid in the sense
of section 3.2.1, while the electrons are considered as a separate fluid. We have not
assumed any niy terms and therefore the fluids are not coupled through entrain-
ment. The number density currents for the ions and entropy are given by equations
(3.2.22) and (3.2.23) respectively, while for the electrons is given by equation (3.2.2).
Furthermore, this system is a special case of the one described in section 3.4.2 as we
see by comparing the Lagrangians (3.4.10) and (3.4.25).

As discussed previously the system is descirbed by the following system of equations.
We have the conservation laws for nf, n%, n? given by equation (3.2.4). Following
the definition (3.2.10) the momenta of the ions and entropy arise from the L35, Lr

and Lr parts of the Lagrangian respectively, and are given by
11y, = B'niug, + ¢ Aq, (3.4.26a)
1 = Bngul. (3.4.26b)
The momentum of the electrons is given by

1 = Bnoul + geAq, (3.4.27)

and is calculated by the L3}, Lr terms of the Lagrangian. The equations of motion

for the fluid are then given by

qin?V[bAa] + an[b (n;} Bl) + TLZS)V[b <TLZ] BS> = 0, (3428)
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for the ion-entropy fluid. Note that the equation above is essentially equation
(3.2.27) with the additional (first) term that accounts for the interaction between the
matter and the electromagnetic field. Similarly the equation of motion for electrons
is

4NtV A + iV (0 B) =0, (3.4.29)

Adding the two equation provides a single equation of motion for the system

X+ vy, (nly BY) +nbv, <n3} BS> + bV, (nZ] Be> —0, (3.4.30)

a]

where fI is the Lorentz force, given by equation (3.4.9). We also have the two
Maxwell equations (3.3.82) and (3.3.86). Additionally, the energy momentum tensor
of the system is given by

Tip = (E%M +Lr— ) un> g+ FF + ) (Bngnl) . (3.4.31)

As done in the previous sections, we can assign the generalised pressure of the system

as

It is useful here to separate the purely electromagnetic part from the fluid part of
the energy-momentum tensor. Note that this separation is not always possible!? as

for example in the energy-momentum tensor of section 3.4.2. The fluid part is

Tip, p = (ﬁF - un) g+ (Bngnk) (3.4.33)
while the electromagnetic part is
Thtup, e = Long™ + F©F,, (3.4.34)

which is the standard energy-momentum tensor for the vacuum case of the electro-

magnetic field [43]. Obviously, the fluid pressure is

UnieD, F = (EF — Z,u}c{nf() . (3.4.35)

13 Actually, this is the subject of the long standing Abraham-Minkowski controversy. For a brief
review see [79] and references therein.
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3.4.3.2 The single fluid approximation of electrons and ions

Up to this point we have not made any assumption for the system other than that
it consists of two fluids and has three components. Our purpose is to describe the
system in a way such that it is characterised by a single fluid with one 4-velocity. For
this reason we consider the following simplifications. We assume an observer with 4-
velocity u® such that the drift velocities (i.e. the velocities of the fluid components
with respect to u®) given in equation (3.2.3) are small compared to the speed of
light. This assumption, though, does not constrain the u* itself, which may still be
relativistic. This ‘low relative-velocity’ assumption implies that the Lorentz factors
are small i.e. that 7, ~ 1 and that vyvy >~ 0, where x, y are any of {i,e,s} and vy is
the magnitude of the drift-velocity vector v2.

Under these assumptions the fluid part of energy momentum tensor is given by

zﬁle/[bHD7 F = \IJMHD, Fgab + (ni,ui + Ng s + ne,ue) U'aub

(3.4.36)
+ [(ni,ui + nspds) Uia + neluevg] ub + [(ni,ui + nSPJS) Uib + ne:uevg] u®.

Contracting both indices with u® and using equation (3.4.35) we get the fluid energy

density puvup, F given by
punp, F = Tybip, pllas = —Lp. (3.4.37)
The fluid energy-momentum flux gy p in the frame of u® is given by [38]
dnip, P = _hng\c/fHD, pUs = (Nifli + Nsfhs) V' + Nefle Vs (3.4.38)

Since in ideal MHD the fluid under consideration is perfect, the fluid energy-momentum
tensor in the frame of u® should only contain the density and the isotropic pressure
terms. To implement this we assume that u® is comoving with the Landau-Lifshitz
frame [80], that is a frame where the above mentioned energy-momentum flux van-

ishes. Therefore, for this observer we have
(naps + nspts) v + nepevy =0, (3.4.39)
and thus the fluid energy momentum tensor takes the form of a perfect fluid

Tl(l/[bHD, r = Ynnb, rg™ + PMHD, putub. (3.4.40)



66 Chapter 3.  Variational principle

with energy density given by equation (3.4.37) and pressure given by (3.4.35). In
ideal MHD the plasma is usually assumed to be locally neutral [76, 75] and therefore
we have n, = n;. Furthermore, we have p; > u, which means that the chemical
potential of ions is much larger than that of electrons. This is a reasonable assump-
tion, when the electrons are not relativistic, as in most astrophysical systems. By
non-relativistic here, we mean that the electrons are not characterised by velocities
at the microscopic scale (i.e. at a scale that is much smaller than the scale of the
fluid element considered in the analysis above) that are comparable to the speed
of light. Additionally, this assumption is in agreement with the Newtonian theory
where the equivalent of the chemical potential is the mass.

Using these assumptions, in equation (3.4.39) we obtain

vt = —ﬁvs ~ 0, (3.4.41)
where we have used that ngus > 0. This inequality is justified since the entropy
density ng is positive and the related chemical potential is the absolute temperature,
which is also always positive. The equation above means that the drift velocity of
ions is approximately zero and therefore u{ ~ u®. The 4-current given by equation
(3.4.2) becomes

Jj* =en; (v —vd) ~ —eny. (3.4.42)

Furthermore, for the conservation laws of the number density currents of ions and

electrons given by equations (3.2.4) we have

Vi (0 + 1) =~ 2, (miu®) — V" s

Vo (n§+nl) =V, (nu*) =0,

where we have used the previously mentioned low drift velocity approximation, equa-
tion (3.4.41), we substituted v? from equation (3.4.42) and also used the 4-current
conservation law given by equation (3.3.87). Furthermore, equation (3.4.42) means
that the 4-current is orthogonal to the 4-velocity. This result states that within
the range of our approximations the two conservation laws for the number density
currents of ions and electrons can be approximately substituted by a one. Generally
in multifluid systems, the existence of a frame such that both the energy momentum
tensor and the conservation of number density current are those of a perfect single

fluid, is not guaranteed [77].
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3.4.3.3 The Ohm’s law for perfect conductors

The Ohm’s law for ideal MHD is also referred to as the “perfect conductivity” law for
the following reason. Ohm’s law for an observer moving with an electric conductor
is
Jr=<E}, (3.4.44)

where Jr and E are the projected spatial current and electric field with respect to
observer co-moving with the electric conductor and ¢ is the isotropic scalar electrical
conductivity'*. Assuming that ¢ — +o0, then in order to have a finite current, the
electric field necessarily is zero. Therefore, a medium with “perfect” (i.e. tending
to infinity) conductivity experiences zero electric field.
It is possible to begin with the derivation of the generalised Ohm’s law in relativistic
context and then derive the classical Ohm’s and perfect conductivity laws as simpli-
fying approach [81, 78, 77]. Although, as discussed in [78], this derivation of perfect
conductivity is less straightforward to obtain in relativity than in the Newtonian
context.
In this work, we regard the perfect conductivity law as an assumption of our system
given by

Fau’ = E, =0. (3.4.45)

where u® is the 4-velocity of the Landau-Lifshitz frame introduced in section 3.4.3.2
and F, is the electric field with respect to that frame. The condition above has the
following implications on the system. Using equations (3.3.33), (3.3.31), (3.4.34)
along with the decomposition of the Faraday tensor (3.3.17) we find that the elec-

tromagnetic part of the energy momentum tensor is given by

1
TN, v = 5329@ + B*>u*u” — B,B. (3.4.46)
The Faraday and Gauss law for the magnetic field given in equations (3.3.88) and
(3.3.89) become

hay B® — B°V ug + BoVou = 0, (3.4.47)

and
VB, = 0. (3.4.48)

14Tn general conductivity is anisotropic described by a second rank tensor, 2. Here we consider
the case that ¢ = ¢6
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The Ampére law given by equation (3.3.90) takes the form
Jo = €apcti’ B¢ + €. V' B, (3.4.49)
while the relativistic Gauss law for the electric field given by (3.3.91) is

6 = —e"B.V . (3.4.50)

3.4.3.4 The system of equations for single fluid relativistic ideal MHD

In the previous two sections we worked towards the single fluid approximation of
a multifluid and introduced the perfect conductivity law. Here we will complete
the description of the relativistic ideal MHD with the system of equations. The
collective energy-momentum tensor putting together the terms of equations (3.4.40)
and (3.4.46) is given by

1
o = (‘I’MHD, P+ 532) 9* + (pmup, ¥ + B?) u“u’ — B, B, (3.4.51)

Below we derive the conservation equation for pypp and the Euler equation of the
fluid. To do so we project equation (3.1.23) along and orthogonally to u® respectively.
Additionally, in the case the electromagnetic part of the energy-momentum tensor

is given by equation (3.4.34) we have (see Appendix section A.1.6 for the derivation)
Vo en = —Fad”, (3.4.52)

where, as mentioned before, the right-hand-side is the relativistic Lorentz force.
We substitute the equation above in the conservation equation (3.1.23) in order to

simplify the latter. It follows that the energy conservation is given by

pvmpF + Vau® (pvmpr + Yvmpr) = 0. (3.4.53)

This is the equivalent of the Newtonian continuity equation. The Euler equation is

given by
(pmmD.F + YvmD F) u’Viyu® + habvb‘PMHD,F — e J'BC = 0, (3.4.54)

and is analogous to the Newtonian Euler equation. Substituting the spatial current

J* from Maxwell equation (3.4.49) and after some manipulation the Euler equation
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takes the form

(pmmD.F + Yvnp ) u’Vyu + habvb‘lfMHD,F + B.BU'Vyu® + h* BV, B°

(3.4.55)
— B*BaVyu® — h% BV, B’ = 0.

The evolution of the magnetic field is given by equation (3.4.47), which serves as
the relativistic counterpart of the induction equation. The system of equations is
completed with adiabatic condition (3.2.30). The specific entropy X serves as an
equation of state and is assumed to be a function of the fluid energy density pamp,r
and the pressure Wyup p. The fact that the specific entropy is a function of both the
pressure and energy density is in agreement with the consideration of section 3.2.1
where the Lagrangian (which serves as an equation of state, as well) is a function
of two independent variables, namely the number density and entropy density. In
that sense we have chosen a different equation of state (namely 3J) but still with two
independent variables (the pressure and the energy density).

The system of equation is now complete. Euler equation and induction equation
have three independent components because they are orthogonal to the 4-velocity.
Therefore we have four equations with eight independent components in total for
eight unknowns, namely three components of the 4-velocity (note that the fourth
component is not independent of the rest due to the u*u, = —1 normalisation), three
components of the magnetic field, the fluid energy density and the fluid pressure.
In the following chapter we will use this set of equations in order to look into some
phenomena of ideal MHD, and we will eventually describe the the magnetorotational
instability [36].

Before moving on, it is worth noting that the Gauss law for the magnetic field
given by equation (3.4.48) should be satisfied identically and while the respective
law for the electric field (equation (3.4.50)) indicates a non-zero free-electric charge
of kinematic origin when the right-hand side of the respective equation is not van-
ishing. Also, it is evident we have not used the momentum conservation equation
(3.4.30) but instead we used the relativistic Euler equation (3.4.55) which is equiva-
lent. Additionally, instead of using the conservation law for the approximated single
fluid and the entropy density current given by equations (3.4.43) and (3.2.4) we use
the adiabatic condition (3.2.30). This condition is justified since entropy and ions

are co-moving, as is shown in section 3.2.1.
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CHAPTER 4

Perturbations

In this part we perform a first order perturbation analysis using the geometric optics
approach. This method is a special case of the “WKB” or “WKBJ” approximation,
after the physicists G. Wentzel, H. Kramers, L. Brillouin and mathematician H.
Jeffreys. It is also sometimes called the “two-timing” method [82, 83, 84]. Although
the name “geometric optics” seems to refer to optics, it is used in the context of
wave propagation in general, as well. In this chapter we look into various systems
which are not limited to electromagnetism so we use the method in a broader sense.
Assuming an initial background solution to the system under consideration this

analysis provides some insight into the stability of the system when perturbed.

4.1 The geometric optics approximation

In this section we introduce geometric optics in order to look into linear perturba-
tions. We introduce the notion of “fast” and “slow” quantities and discuss stability

criteria, as well.

71
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4.1.1 Zero and first order terms

To calculate first order perturbations for a system of equations, we assume for any

physical quantity, say V¢, a solution of the form
V*=V"4 6V, (4.1.1)

where V" is the background term. We assume that the first order perturbation,

V@ is given by the formal asymptotic expansion [82]

+oo
Mm:<§:§%)ei, (4.1.2)

q=0

o|tn

where 0, are small dimensionless book-keeping parameters such that

0<e<ikl, (4.1.3)

and V' are vector coefficients of the expansion!. The expression above may be

written as

SV = 5V’ E, (4.1.4)

describing a locally plane wave with amplitude V* (which is equal to the term in
the parenthesis in equation (4.1.2)) and phase S. The quantity & provides a relative
measure between the scale (i.e. magnitude) of the background terms and the scale

of the perturbed terms through
6V

~ 6, (4.1.5)
Vel

where |V*| and [0V *| are the norms of the respective quantities, while £ measures
how “fast” or “slow” the various quantities of the system are (as we will discuss in
the following section).

Substituting the solution (4.1.1) into the system of equations we get various orders
in terms of powers of § and £. It follows from inequality (4.1.3) that in descending

magnitude (i.e. from largest to smallest) these are

§08% > 1% > 5% > 5t > L.

> Smg—m > 5m+1§m > gmg—m—f—l > 5m+1gm+1 S (416)

Note that there is no Einstein summation for .
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Since we are employing the geometric optics approximation, we will consider only
two orders. The “zero order” (i.e. the 0°c°) also referred to as the “background”,
which is assumed to satisfy the system of equations alone, and “first-order” (i.e.
the 0'e” terms) also referred to as “perturbed order” or “linearised order”, which
again is assumed to satisfy the system of equations. Higher order terms in £ consist
“post-geometric optics” approximations, while higher orders in ¢ imply non-linear
perturbations [41, 82, 83].

In the following sections we will focus on the case where the metric is fixed and so
the metric perturbations are vanishing i.e. g,, = 0. This is usually referred to as the
Cowling approximation. This assumption is valid when the background spacetime
is curved but the origin of curvature is not due to the configuration we examine.
Therefore, perturbing the matter and electromagnetic field under consideration does
not introduce a perturbation in the metric. An example of a physical situation where
this assumption applies is the perturbation of a configuration (possibly a gas-dust
disc) in the proximity of a massive object (a neutron star, for example). We assume
that the curvature and any perturbation of spacetime at a point in the disk induced
by the disk itself is negligible compared to that induced by the presence of the

neutron star. In that sense

‘5%“” ~ 82, (4.1.7)
|gab|

4.1.2 “Fast” and “slow” quantities

In order to be able to describe more complicated configurations, we introduce the
“fast” and “slow” characterisation of the various quantities [82]. Within this formal-
ism all the quantities that appear in our equations are assumed to be either “fast”
or “slow” varying. We assume the existence of coordinates? z* such that a “slow”

component (in this coordinate basis) of some quantity is of the form?

VE= VS (e2”). (4.1.8)

2Note that Latin indices are abstract while Greek indices are concrete taking values 0. .. 3.
3Here we mean that a “slow” quantity is of the funtional form (4.1.8). This statement expressed
with mathematical rigor would read Vj = Vu (Ex"), i.e. that components V,; in this specific

coordinate basis have the functional dependence of “slow” functions, namely V), (éz*). Nevertheless
in physics literature the same statement is usually expressed as given in form (4.1.8) i.e. by using
the same symbol in both sides. In order to avoid introducing new symbols in equations (4.1.8),
(4.1.9) and (4.1.10) we use the latter.
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For the components of the “fast” varying quantities (in the same coordinate basis)

we have

Vi=V,(z"). (4.1.9)

Although we have used co-vectors as an example, the above formulas are directly
generalised for higher rank tensors. “Slow” quantities have components which are
functions of éx* while “fast” components do not obey that assumption. By intro-
ducing a coordinate system which satisfies the assumptions above, we are diverting
from the covariant approach which we have followed up to this point. To clarify
things regarding this diversion we discuss the various cases of “slow” quantities and
how they affect the covariance? of the various quantities.

The “most” covariant (or more precisely, closest to covariance) case is when all com-
ponents (with respect to a coordinate system) of some tensorial quantity is given by
either of the above forms and additionally this happens for a number of coordinate
systems. The reason behind the requirement “for a number of coordinate systems”
(rather than just one coordinate system) where the assumption holds is that it en-
sures (in some sense) the independence of the frame. In the extreme case where the
above forms hold for any coordinate system we have covariance.

In most cases some of the components of the tensorial quantities of the system are
“slow” with respect to some of the coordinates (in a given coordinate system) and
“fast” with respect to the rest coordinates (of the same coordinate system). In such

case a mixed “fast” and “slow” component has the functional form
V,=V,(&x",2"), v#p, (4.1.10)

while other components of the same tensorial quantity may have different “slow”
and “fast” dependence with respect to the coordinates. In the following sections we
work in a specific coordinate frame and we make assumptions about the “fast”-ness
and “slow”-ness of the various components of the quantities with respect to each of
the coordinates of the frame. The motivation behind this strategy, as will become
apparent subsequently, is that we try to make contact with the respective Newtonian
calculations which are carried out in specific frames. Additionally, choosing which
components are “fast” and “slow” is basically choosing in a qualitative manner the
background configuration. The only constraint on these choices is that they have to

make sense physically.

Below we discuss the physical intuition behind the notion of “fast” and “slow” de-

4By “covariance” here we refer to the property of tensors being independent of frames.
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pendence as well as some details of the formulation.

If we consider a small region of spacetime (sufficiently small for our linear pertur-
bation analysis to hold but large enough so that the hydrodynamic description is
still valid) then to the orders we are considering here i.e. 6% and §'c° the “slow”
components (given by equation (4.1.8)) are assumed to be approximately constant,
while the “fast” components (given by equation (4.1.9)) vary within this region. In
that sense, € provides a relative measure between the gradients of “slow” and “fast”

quantities. In analogy with equation (4.1.5) we would write

10 (“slow”)|

LA A N5 4.1.11
|ab(“fa,st”)| € ( )

Looking at the same idea from a different perspective, the “slow” components in-
troduce a lengthscale (and a timescale®) L such that they do not vary significantly

within a region characterised by this scale. Then ¢ is related to this scale through

1
TE (4.1.12)

The “fast” components, on the other hand, will vary within that region. In the
intuitive argument regarding the relation between the scales of the system and &
we have assumed, for simplicity, that the “slow” components are purely “slow” i.e.
have functional form given by equation (4.1.8). If we instead consider components
given by equation (4.1.10) the same argument regarding the lengthscale holds but
only for the coordinates there is an £z° functional dependence.

In general, background quantities (i.e. the quantities which are of zero order in §),
may have either “fast” or “slow” (or mixed given by equation (4.1.10)) components
depending on the specific system under consideration. Meanwhile, the barred quan-
tities (i.e. the first order in 0) and the phase S always have only purely “slow”
components (given by equation (4.1.8)).

4.1.2.1 Metric with “slow” components

The components of the metric are one of the three types mentioned above, since
the metric is a background quantity. Nevertheless, there are some implications on
the Christoffel symbols and subsequently on the covariant derivative that are worth

mentioning. The assumption that the background metric components are “slow”,

5Since we use geometrised units the respective timescale, which would be cL, is again L.
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means where the spacetime appears to be almost flat within the region that the
approximation (is valid in the coordinate system we have chosen).
A metric with purely “slow” components with functional dependence given in equa-

tion (4.1.8) implies for the Christoffel symbols, using equation (2.1.18),

1
I, (62%) =5 (22%) [Ogow (E2%) + Duflrp (£2) — Doy (627

1o (x") OX* 0ggy (X*) | 0X* Dgyp (X7)
99 drr  OX drv  OXX
_ 0X* gy, (X¥) (4.1.13)
oxe 0X*
_ 1 agmj (XH) agcrp (XH) agl/P (XH)
5 O (YR _
g9 >[ oX° aXV 0X°
=", (X",

where we have used the coordinate transformation X = ex®. Note that, in order

to avoid confusion, ‘0, denotes partial differentiation with respect to coordinates

x® while partial differentiation with respect to X is denoted with a?ca " The f“y )
components are of order unity since partial derivatives of any “slow” component
(given by equation (4.1.8)) with respect to X are of order unity. Thus, equation
(4.1.13) yields that the Christoffel symbols with respect to the 2 coordinates are
of order £. Equation (3.1.14) then implies that the components of the Riemann
tensor (in 2 coordinates) are of the order £2 and that means that the spacetime is
approximately flat.

The components of the covariant derivative (see definition (2.1.17)) of a co-vector is

given by

s - aVVS Mo s
VP =& (aX“ - PWVU) , (4.1.14)

where the component VJ is “slow” (i.e. having the functional form 4.1.8). For first

order perturbation terms, given in equation (4.1.4), we have

v,
oXn

VoV, =¢ ( — f;,,vg) it + ik, 6V, (4.1.15)

where k,, is the 4-wavevector defined through

S 08

which is normal to the constant S surfaces. The 4-wavevector is the 4-dimensional

generalisation of the 3-dimensional wavevector and denotes the direction of the plane
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wave in spacetime. Since the wavevector is a gradient of a scalar, the definition
above for the 4-wavevector is independent of the “slow”-ness or “fast“-ness of the
components of the metric. Additionally, the components of the 4-wavevector are
of order unity since they are partial derivatives with respect to X®. This implies,
through the approximation (4.1.12), that the wavelength of the plane wave is smaller
than the characteristic lengthscale L. Alternatively stated, there is enough space
for the plane wave to oscillate within L.

Finally, for the “fast” components of a co-vector we have

vt
oxH

vV, Vi= — &l VL. (4.1.17)

From equations (4.1.14) and (4.1.17) we observe that the components of the covariant
derivative of a co-vector, to order £°, is either zero or equal to the partial dif-
ferentiation with the same indices. Additionally, equation (4.1.15) implies that for
a first order perturbation co-vector it is equivalent (again to order £°) to substitute
the operator V,, with ik,. Although we have used co-vectors for the analysis above,

the generalisation to any kind of tensor is straightforward.

4.1.2.2 Metric with mixed “slow” and “fast” components

In the previous section we discussed the case where the metric components have
the functional form (4.1.8). Here we discuss the implications of a metric that may
have some components “slow” with respect to some coordinate(s) of the coordinate
system z® (i.e. the components are of the functional form 4.1.10). In this case only
some of the Christoffel symbols will be of order &, given in equation (4.1.13). The
remaining Christoffel symbols will be of order unity. This consideration, that the
metric has mixed “fast” and “slow” dependence means that we are restricted to a
specifically chosen spacetime. Although some Christoffel symbols are of order unity,
flat spacetime is still a possible choice. This is the case because flat spacetime may
be expressed in coordinate systems, such as the cylindrical polar coordinates, where
some of the Christoffel symbols are not zero.

Therefore, for the Christoffel symbols that are of order unity the components of the

covariant derivative of a co-vector are

S

S 78VV loa S
ViV =t~ TV (4.1.18)
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where the co-vector component V¥ has the functional form (4.1.8). The respective

equation when the co-vector component has the functional form (4.1.9) is

oV

f_ _
Valy = ozt

re, VL. (4.1.19)

Finally a first order perturbation co-vector we have

— 19,8V, + ik, 8V, (4.1.20)

where the 4-wavevector is given by the definition (4.1.16). The components of the
covariant derivative of a co-vector with components of mixed “slow” and “fast” de-
pendence along the coordinates, i.e. of the form (4.1.10), are given by equations
(4.1.18) or (4.1.19), depending on the “fast” or “slow”-ness of each co-vector com-
ponent along each of the coordinates.

In contrast to the previous section, we find that the components of the covariant
derivative may not be negligible since they contain Christoffel symbols of order unity.
Allowing the metric to have “fast” components has also the following implication.
A tensor quantity, say a vector with the index upstairs, that has all components and
with respect to all coordinates of the coordinate system “slow” (i.e. having the func-
tional form 4.1.8) may have “fast” components with respect to some coordinate(s)
when the index is lowered. This means that we should take into account the type
(i.e. which indices are upstairs and downstairs) of the various tensor quantities when

making the assumptions regarding the “fast” and “slow”-ness of the components.

4.1.3 The causality and stability criteria

In this section we discuss the causality and stability criteria arising by using the
geometric optics method. In the analysis below we consider that the fundamental
observer (in the sense of Chapter 3) is a background quantity and therefore denoted
as u?. The 4-wavevector given by definition (4.1.16) decomposes with respect to this

observer as

ky = k (vphug n /%a) , (4.1.21)

where vy}, is the phase velocity, k, is the spatial (i.e. l;:aug = () unit 3-wavevector
(i.e kok, =1 ), and k is the spatial wavenumber. The vector k- = ho%k, = kk, is

the spatial part of the wavevector that is usually mentioned in textbooks discussing
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wave propagation in optics and acoustics. [85]. The angular frequency of the plane
wave is given by
w = vpp k. (4.1.22)

The 4-wavevector is a spacelike or null vector [41] since it is normal to the S iso-
surfaces which are timelike or null. An S isosurface is timelike or null because,
by definition, it has everywhere the same value and for that reason there should
be a timelike separation between two distinct points on the surface. Conversely,
two points on a phase isosurface have to be causally connected (this is also called
the local causality condition [86]) in order for the surface to have the same value
everywhere. Using equations (4.1.21), (4.1.22), and that k, is spacelike or null i.e.

k.k* > 0 we get the causality criterion

(4.1.23)

When the 4-wavevector is null the wave is propagating with the speed of light. We
see that the phase velocity is less than or equal to the speed of light. This is in
contrast to Newtonian theory where the group velocity is constrained by the speed
of light. The derivation of a relativistic constraint involving the group velocity in
analogy with the Newtonian analysis discussed in [82], requires different considera-

tion of wave propagation and is beyond the scope of this thesis.

In order to provide the stability criterion we first have to explain the next steps
in the perturbation analysis. After considering the assumptions of the previous
sections, we obtain an algebraic system, which is a homogeneous system of lin-
ear equations with perturbation amplitudes serving as variables. The coefficient
matrix of this system contains only background quantities and components of the
4-wavevector. Since the solution of this system should not depend on specific values
of the perturbation amplitudes we demand that the determinant of the coefficient
matrix should be zero. By doing this we obtain the characteristic equation (this is

also referred to as the dispersion relation [87]) ,
P(w, k, background terms) = 0, (4.1.24)

which is a polynomial that relates the angular frequency, the 3-wavevector and the
rest of the background quantities.

Following the Newtonian theory [87] we consider that the independent variable of the
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characteristic polynomial is the angular frequency w and that the spatial wavenum-
ber k is real. This latter assumption, as will become obvious later, implies that any
instability we find is an absolute instability. A root of the characteristic polynomial
w, can be purely real, purely imaginary or complex. In order to get some intuition
of the relation between the type of the root and the linear stability of the system we
work as follows. Assuming that S(€z%) has derivatives in z* of all orders and using

equation (A.2.40) with respect to the X = £x* coordinates we get

oS 1 88 1 08
X% = By ' — Xbxe4+ ———— Xbxexd_— .
SXY) =500+ 557X ~ i oxoxe YOG (41.25)
_g(gH—ﬁb_i 05 bpe 808  pea_ a
- “oxet T atoxexet T argxexexdt Tt T

where 0 is the origin of the X* coordinates. Dividing the equation above by & and
using the definition (4.1.16) we obtain

S (zz*)  S(0) y EOky 4 . & Ok 4 .4 4.1.26

It follows, by keeping terms of order unity and larger, that the exponential part of

the perturbation terms given in equation (4.1.4) can by approximated through

i2
€

e's ~ cpete (4.1.27)

where ¢; is a constant which can be neglected®. Although the coordinates z% do
not have the properties of vectors (since they do not transform as vectors), we see
that up to order of unity the exponential part of the perturbation is approximated
by the relativistic analogue of a Newtonian plane wave. Note that, since k, is not

calculated at a specific point, the approximation above holds for any point.
Re

T

We assume a complex solution of the form w, = wX® + iw™ (where wi® and w™

are real) for the characteristic polynomial given by equation (4.1.24) and substitute
the decomposition given in equation (4.1.21) in the right-hand-side of the equation

above

exp [i (wiuz® + kyz®)] exp [—wi™ (uaz®)], (4.1.28)

T

where we also used equation (4.1.22) and the assumption that k is real. Since projec-
tion along the 4-velocity provides temporal components of the projected quantities

the right exponential is in some sense the equivalent of the Newtonian e iNewt

(where tnewt is the Newtonian time). Therefore, the term exp [—wﬁm (ua$“)] implies

6The ¢; constant appears only in equations of order 6'¢% and is multiplied by all terms. There-
fore it can be factored out.
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an exponential growth of the perturbation along the observer’s temporal part of the
coordinates if the exponent is positive and a decay if the exponent is negative. In
most cases the polynomial (4.1.24) has only real coefficients and therefore for every
complex root the respective complex conjugate of the root (i.e. wl = wle — ™ )
will also be a root [88]. It follows that in order to have a stable solution, that is to
avoid terms of exponential growth, the imaginary part of the angular frequency w™
has to vanish. This means that for stability the angular frequency should be

w2 >0

2
Uph 2 07

(4.1.29)

which in turn means that the system is stable when the polynomial given in equation
(4.1.24) has only real roots. The criterion above along with that given by inequality
(4.1.23) constrain the phase velocity through

0<vl <1 (4.1.30)

In the analysis we did not consider complex spatial wavenumbers. Considering such
would introduce terms of exponential growth or decay along the observer’s spatially
projected part of the coordinates. These kind of instabilities or decays would be the
equivalent of the Newtonian amplifying and evanescent waves [87] and are beyond
the scope of this thesis.

Finally, the instabilities we calculate with this method are local instabilities. This
means that the analysis and the results refer to a small region of spacetime where the
background solution is valid. Nevertheless, this can be any small spacetime region
around any point (of those that satisfy the background solution) and therefore the

results are in some sense holistic.

4.1.4 An intuitive argument regarding the choice of observer

Before we move on there is one more thing to discuss regarding geometric optics
and stability. The introduction of “fast” and “slow” components in specific coor-
dinate systems is frame dependent as discussed in section 4.1.2. A component of
a projected tensor with respect to some observer, say the energy density given in
equation (3.4.37), that is “slow” along some coordinate(s) may not be “slow” if it
is calculated with respect to another observer along the same coordinate(s) (in the

same coordinate system). Thus, the choice of observer matters in the characterisa-
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tion of stability for the system.

In order to avoid unphysical choices of observers we choose the observer co-moving
with the fluid, i.e. the fundamental observer u? (as in section 3.4.3.2). The intuitive
argument behind this consideration is the following. As we discussed in section 2.3
an observer co-moving with the fluid has “attached” a material element along their
worldline which consists of a specific number of particles. Therefore, an instability
with respect to this observer is transferred to the matter space and to the particles
consisting the material element. If instead we choose a different observer (i.e. one
that is not co-moving with the fluid) then the particles along their worldline do not
correspond to conserved material elements in matter space, and thus instabilities

might be related to the specific choice of this (not co-moving) observer.

4.2 A Newtonian interlude

Before proceeding to describe the application of the geometric optics method in a
relativistic context we will derive some well-known results in the Newtonian frame-
work. The reasons for this Newtonian interlude in an otherwise relativistic thesis are
two. Firstly, obtaining already known results provides more insight and understand-
ing of the method. This will help in providing a more accurate interpretation of the
results that we obtain in the relativistic context. Secondly, some of the known results
discussed in the following section are usually derived using different approaches. In
that sense it is interesting to show how to obtain these results using the geometric
optics method.

The covariant expression for the Euler equation of motion for a fluid in the Newto-
nian case contains the covariant derivative of the fluid velocity [40]. In this section
it is possible to assume that the Christoffel symbols will be of order of & but we
need to use coordinates where this assumption holds. As discussed previously this
assumption will not hold for any coordinate system (e.g. in cylindrical polar co-
ordinates). The following examples are either in Cartesian coordinates where the
Christoffel symbols vanish completely or in cylindrical coordinates where we have

retained the terms of at least the order of unity.



4.2. A Newtonian interlude 83

4.2.1 The Newtonian framework

The results we derive here are either in the context of hydrodynamics or magneto-
hydrodynamics [75]. The equations presented here are the Newtonian versions of
the equation discussed in section 3.4.3.4. The description of a single fluid in the
Newtonian framework employs the continuity equation given by

dp
a—l—pV-v%—(v-V)p:O, (4.2.1)
where v is the fluid velocity and p is the density. We also have the Euler (momentum
conservation) equation
% (v V)4 VP L VOB x (Vx B) =0
- v - v — _ —
ot p 47tp ’ (4.2.2)

~
MHD Lorentz force

where @ is the gravitational potential and B is the magnetic field and P is the
pressure. For a purely hydrodynamical system the MHD Lorentz force (i.e. the
under-braced term) vanishes. In order to describe MHD systems we have to intro-

duce one more equation, the magnetic field induction equation

B
aa_t —V x(vxB)=0. (4.2.3)

Additionally, the Gauss law for the magnetic field V - B = 0 should be identically
satisfied (so that it does not overdetermine the system). Obviously for pure hydro-

dynamic systems this equation is not needed. We also have the adiabatic condition

Ay, 9%

o= _ 2= . — 4.2.4
7 5 + (v-V)X =0, ( )

where Y is the specific entropy. The operator % is the Newtonian convective deriva-
tive. This equation means that the entropy is conserved along the flow lines which
happens in the case of adiabatic flows. We assume that the entropy is a function of
the pressure and the density

Y=X(Pp), (4.2.5)

that serves as an equation of state for the system. Applying the chain rule of

differentiation to the functional form of the specific entropy (4.2.5) and using the
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adiabatic condition we get

dx
— =0
dt
o8| dp 95| dp
oP|, dt — dp|pdt
dP/dt 9%/, (4.2.6)
dp/dt 82/8P|p
8_P _ 9% /0p|p
oply 82/8P|p'
The speed of sound is defined through
or
d=—, 4.2.7
5. (427)

and describes the speed of propagation for acoustic perturbations [62]. Using this

definition for speed of sound, equation (4.2.4) in terms of P and p becomes

oP 5 | Op
ot ot

— 4+ (v-V)P = ¢ —+(v-V)p1 = 0. (4.2.8)

4.2.2 Linear perturbations (Newtonian framework)

The linear perturbations in the Newtonian frame are formulated similarly to the
relativistic case, discussed in section 4.1. We substitute all quantities of the system
using equation (4.1.1). As previously mentioned, we assume that components of all
first order perturbation amplitudes are “slow”. Additionally, we assume that the
perturbation of the gravitational potential is zero (0® = 0). The components of
the background quantities are either “slow” or “fast” according to the system under

consideration. The phase of the plane wave is given by
S=c¢ck-r—uwt), (4.2.9)

where k is the wavevector, r is the position vector, w the frequency and t the time.
Following equation (4.1.4) and since the perturbations amplitudes of the various
quantities are “slow” (as discussed in section 4.1.2), the perturbation of the fluid
velocity is given by

dv = 0v (&t, &r) €'z, (4.2.10)
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The perturbations of the pressure and density and entropy are given by equivalent

expressions through

|t

Sp=6p(et,er)e's, (4.2.11)

and
5P = 0P (ct,er) €'z, (4.2.12)

Finally, the perturbation of the background magnetic field is given by
§B =3B (et er) €'~ (4.2.13)

The background terms (i.e. those of order §°€°) of the system are given by equations
(4.2.1)-(4.2.5) with the various quantities considered only in the §° order”. Keeping
terms of order 6'€° in the general case where all background quantities are “slow”,

the continuity equation (4.2.1) yields
—iwp+p(V-v,) +ip, (k-0)+i(vy-k)p+v-Vp, =0. (4.2.14)

Similarly, the Euler equation (4.2.2) obtains the following form

— o+ (B V) vy +i (v, k)0 + (v, - V) o — VP, +i=P
Py Po
p - 1 _ (4.2.15)
———B B B B —B B) =0.
T x (V x By) + pr x (V x By) + pra—l x (V x B)

~~
Perturbed MHD Lorentz force terms

The perturbed induction equation is

—iwB + B (V- v,) +iB,(k-v) — (B-V)v,— (B, V)0 + (v,- V) B =0.
(4.2.16)

Using the chain rule of differentiation the perturbation of equation (4.2.5) provides
a relation between the perturbation of the entropy and the perturbations of pressure

and density

0y = 0%, P + O%, op
) ap | p
po 0 (4.2.17)
s_ 0| 5, 0%
or |, Ip |p, '

"The background is basically equations (4.2.1)-(4.2.5) with all quantities subscripted zero



86 Chapter 4. Perturbations

In the equation above the partial derivatives are calculated at the values of the
background. This is justified because the specific entropy, a dependent variable of
the system, may have different perturbation values for different background values

of pressure and density. The perturbation of entropy conservation is given by

— WX +0-VE, +iv, - kX 4+ v,- VE =0

0%, = 0%, _ _ 0%,
(v, -k — P .VP) =2
i(v,-k w)(ap +appp>+('vv )813
PO 0 PO
)3 -
+(0-Vpy) —| +v,-VE=0 (4.2.18)
9p |p,

i(vy-k—w)(P—cp)+v-VP— v Vp,

_ P—cp )y
o * P—cp — 7, - -
+v,-V( Csp)+azo/aP’p0v v(@P

> B 0,
PO

i(vy-k—w)(P—cp)+0-VP — 0 Vp,— pv, - Vc?

P-p (azo ):O (42.19)
0

Tasyor), Y\ o
where we divided the second line by 0%,/0P]|, , used the definition of sound waves

hence

(4.2.7) and substituted equation (4.2.17). We also removed the gradients and partial
time derivatives of the perturbations of pressure and density. Since p and P are
scalars (no Christoffel symbols involved in the gradients) and are always “slow” (see
equations 4.2.11 and 4.2.12) the partial derivatives will always be of order &' and
therefore not considered. Furthermore, the speed of sound is a function of P, p and
the term 0%,/0P|, is a function of P (since it is calculated at the fixed value p,).
Using the chain rule, equation (4.2.19) takes the form

i(vy-k—w)(P—cp)+v-VP —c¢v-Vp,

oc? oc?
Y e YIS vJ et RN ¥
P (ap 7Y P (4.2.20)
P—cp [ 0°%,
T o%,joP], ( op? |, ) v - VE =0.
0 0

In this section we assumed that all background quantities have “fast” components
since this consideration provides the most general form of the perturbed (i.e. of

order §'&%) equations. If some of the components are “slow” in the system under
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consideration, the respective terms are of order &' and therefore vanish.

4.2.3 The elimination of sound waves

In the following sections we find that characteristic polynomials of the different con-
figurations include, expect for the terms specific to each configuration, additionally
terms related to sound waves. In order to investigate stability in many of these cases
we separate the solutions specific to the system from the sound waves. To do this

we bring the polynomial given in equation (4.1.24) to the form
Py (w, k, background terms) + c2P, (w, k, background terms) = 0, (4.2.21)

where P; and P are polynomials in w. We divide the equation above by ¢? (assuming
that the speed of sound is not zero) and multiply by vgh. The quantity defined
through M = wv,,/c is the “Mach number” [54, 82| and provides a comparison
between the speed of propagation of the plane wave and the speed of sound. Low
Mach numbers imply that the phase velocity is small compared to the speed of
sound, while large values imply the opposite. The characteristic polynomial now

has the form
M? Py (w, k, background terms) + v2, P (w, k, background terms) = 0, (4.2.22)
and by assuming M? ~ £ with o > 1, we obtain after eliminating the first term
v2, Py (w, k, background terms) = 0. (4.2.23)

This equation is the characteristic polynomial® with sound waves removed. This is
a reasonable approximation since most of the times sound waves are much faster
than the propagation speed of the rest modes and thus the exclusion of sound waves
does not alter the qualitative behaviour of the system regarding the stability.

The method we used here for eliminating sound waves has the advantage that it
can be directly used in relativistic context. In the Newtonian framework where the
various speeds of the system are not constrained, we would obtain equation (4.2.23)
by merely diving equation (4.2.21) by ¢ and then considering that ¢ — +o0,

instead of introducing the Mach number. In contrast, in relativity this consideration

8The factor vgh in equation (4.2.23) introduces two additional trivial w = 0 roots to the set of
solutions.
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is invalid because the speed of sound is constrained by the speed of light, ¢? < 1.
Since it is not possible to assign an arbitrarily large value to the speed of sound, we
assume that ¢ is large in comparison to the speed of wave propagation vy, (which

is constrained too, as shown in 4.1.30).

4.2.4 Newtonian applications of geometric optics (Cartesian

coordinates)

Using the perturbed equations from section 4.2.2 we derive some results known in
the literature by choosing appropriately the scale of variation for the background
quantities. We discuss sound waves, the Taylor-Rayleigh instability [89, 90], the
Kelvin-Helmholtz instability [89] and the Alfvén waves [75]. In the first three ex-
amples the magnetic field is zero since these are purely hydrodynamic phenomena.
However, the magnetic field enters in the derivation of the Alfvén waves. Working
in Cartesian coordinates in an orthonormal frame? the Cartesian coordinates are

(z,y,2). The V operator in the Cartesian orthonormal frame is given by
. .0
V= —+y—+2— (4.2.24)
z

where (2,9, 2) are the orthonormal basis vectors.

4.2.4.1 The sound waves

The simplest result we can produce using the geometric optics approximation is to
derive the sound waves for a single fluid at rest (v, = 0), where the background
pressure, density and gravitational potential are “slow” along all directions. Under

these assumptions equation (4.2.14) becomes
1Ky poUy + 1kypoUy + ik.py0, — iwp = 0, (4.2.25)
the components of the linearised Euler equation are

k, -
— Wi, +1—P =0, (4.2.26)
Lo

9An orthonormal frame is a frame where all basis vectors, say e; with ¢ = 1,2,3, are of unit
length (e; - e; = 1) and orthogonal to each other (e; - e; = d;5).
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k., -
— Wb, +i—2P =0, (4.2.27)
Po
Y
— WD, +i—P = 0. (4.2.28)
Po

for the z, y and z component respectively. The perturbed entropy conservation

(given in equation (4.2.20)) is
w (P —cZp) =0. (4.2.29)
The characteristic equation of the system above is
w’ (Zk* — w?) =0, (4.2.30)
which has a triple root w = 0 and additionally the solution
w? = k2. (4.2.31)

Using equation (4.1.22) this implies that the phase velocity of the perturbations
2

S

travel with the speed of sound v2, = ¢

4.2.4.2 The Taylor-Rayleigh instability

The Taylor-Rayleigh instability [90] arises when a fluid of some density is super-
imposed over a less dense fluid in the presence of a gravitational field that varies
(or when the fluids are accelerated) along the direction normal to the interface of
the fluids. Here we derive a single-fluid version of this instability where instead of
an interface with a discontinuity we have a density gradient. Following the original
derivation where the fluids are assumed to be at rest, the background velocity in
the present consideration is vanishing, i.e. v, = 0. The pressure and density and
gravitational potential are assumed “slow” in x,y directions and “fast” in the z di-
rection, i.e. P, = P, (ét,x,8y,2), po = po (€t,Ex, 8y, z) and O, = @, (&t, ex, £y, 2).

Assuming that the gravitational potential has a uniform gradient we have
Vo, = —g,, (4.2.32)

where g = —g,2, with g, > 0 the gravitational acceleration. The Euler equation
(4.2.2) for the background (we remind the reader that this is of order §°2°) yields
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the hydrostatic equilibrium equation

10P,
po 0z

— . (4.2.33)

As in the original work we also assume that the wavevector is orthogonal to the z-
axis and given by k = k,x + k,y. Under these assumptions the linearised continuity

equation (4.2.14) becomes

OPos 5= 0 (4.2.34)

(tkzpo) Uy + (ikypo) Uy + P

while the linearised Euler equation (4.2.15) becomes

ky =
— Wi, +1—P =0 (4.2.35)
Po
for the x component,
k. _
— iwby, +i—2P =0 (4.2.36)
Po
for the y component, and
— WU, — — p=20 4.2.37
iz = 5P ( )

for the z component. Similarly, entropy conservation equation (4.2.20) becomes

0P, 0 _
( - 035) ¥, — iwP + iwctp = 0. (4.2.38)

Setting the determinant of the coefficients of the system (4.2.34-4.2.38) to zero we

obtain the following characteristic equation

oP, dp P\ > OP, dp
2,4 _ 0 0po 5 o (O e (L9 a2 . 4.2.

along with the w = 0 solution. We are interested in the case where sound waves are
eliminated. Following the low Mach number argument of section 4.2.3 we obtain

the reduced characteristic equation

0P, Op
2 2 0 9Po
_ =0 4.2.40
(w P~ 52 82) ’ ( )
having the pair of solutions
o 1 OF, dpo

= s e (4.2.41)
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Using the background equation (4.2.33) the previous result becomes

W — 99 (4.2.42)

po 0z

and therefore, since p, > 0 always, the background equilibrium is unstable if % > 0,
which means that the instability occurs when the density is increasing opposite to
the direction of the Newtonian gravitational force (here gravity points towards the
negative z-direction), as in the original derivation by Rayleigh. The result we have
provided is qualitatively the same but not identical to that in [90]. The reason
behind this is that our analysis, as mentioned before, is local in the sense that
it describes a small region of space using continuous quantities while the original
calculation uses a discontinuous density field to describe two separate fluids. Apart
from that technical difference in the formulation we see that this kind of instability
can be formulated in Newtonian context with a single fluid using the geometric
optics approximation along with the “fast” and “slow” consideration of background

quantities.

4.2.4.3 The Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability occurs when two adjacent fluids with distinctive
interface, flow parallel to each other, uniformly, but in opposite directions. This
configuration has a velocity discontinuity across the interface and additionally is un-
stable. In this section we formulate the continuous version of the Kelvin-Helmholtz
instability using the geometric optics approximation. We assume that the back-
ground velocity is related to a scalar f, through v, = V f,. This scalar is of the form
fo = fo(ét,z,y,&z) and therefore the velocity has a “slow” z component and “fast”

2 and y components given through
Vo = 0fy/0z, (4.2.43)

and

Vo = 0o/ 0y, (4.2.44)

while v, , is of the order &. It follows by the commutativity of partial derivatives

that
avo,x o 8”0,@/ . a2f0

S = B = By (4.2.45)
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We also assume that Ov,,/0r = 0 = 0v,,/0y so that the fluid is incompressible
(i.e. V-wv, = 0). Additionally, we consider that all other background quantities
are “slow” along all directions, except for the gravitational potential which is &, =
®, (ét,x,y,éz). The reason that the gravitational potential has this form is that it
serves as balance term in the background Euler equation (4.2.2). The wavevector
has only a z component, k = kz. Under these assumptions, the linearised continuity
equation (4.2.14) becomes

1k, pov, —iwp = 0, (4.2.46)

the x component of the linearised Euler equation (4.2.15) is

vy
—W%+§;%=& (4.2.47)
the y component is
_, Ovgy _
— wby + ﬁ% =0, (4.2.48)
and the z component is
ko
—wv, +1—P =0. (4.2.49)

Finally, the perturbed entropy conservation equation is the same as in equation
(4.2.29). The characteristic equation (obtained by setting the determinant of the

coefficient matrix of the system above equal to zero) is given by

O, 5 OV
o 22\ [ 2 0e Wy \ _ 19
(w?* = 2k?) (w + 9y Ou ) 0 (4.2.50)

Eliminating the sound waves, the reduced characteristic polynomial (along with the

2 2
M_—<%£), (4.2.51)

where we used also equation (4.2.45). The solution for w implies that the configu-

double w = 0 root) is

ration is always unstable, since w? is always negative, provided there is shear in the
fluid velocity.
This result is the Kelvin-Helmholtz instability in a single fluid with shear. It is

similar to the Rayleigh shearing instability that we discuss in a following section.
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4.2.4.4 The Alfvén waves

Here we introduce the magnetic field and derive the characteristic equation for the
two types of Alfvén waves [75]. The one type of waves, the compressional mode
or the magnetosonic mode, consists of compression and de-compression of magnetic
field lines. These waves are similar to the sound waves in the sense that they are
disturbances of the magnetic pressure as the sound waves are disturbances of the
(thermodynamic) pressure P. The other type of waves is the shear mode or Alfvén
mode [91], which involves more complicated disturbances (e.g. shearing motion) of
the magnetic field lines!®. The system of equations are those of sections 4.2.1 and
4.2.2 including the terms related to the magnetic field.

We assume that the background fluid velocity vanishes and there is a background
“slow” magnetic field along the z-axis B, = B, (¢z,&y,£z) 2. The gravitational po-
tential, the pressure and the density are “slow” in the background along all directions
(i.e. Py = P, (ét,ex,ey,ez), po = po (€t,éx,8y,Ez) and &, = D, (&t, &z, &y, £2) ). To
the order 6'2° the continuity equation is the same as in the sound waves section

given by equation (4.2.25). The components of Euler equation (4.2.15) are

Bok. 5| . Boks

ky = , _
— WU, +1—P — i B, +1 B, =0, (4.2.52)
Po 47 p, 47 py
- ky5  Bik. 5 . Boky o
— Wi, +i—2P — i B, +1 YB., =0, 4.2.53
Y Po 47 o Y 47 p, ( )
and L
— Wb, +i—P =0, (4.2.54)
Po

for the z, y and z components respectively. The components of the perturbed

induction equation (4.2.16) are given by

— iBok,v, — iwB, = 0, (4.2.55)
for the x component,
— iByk, v, — iwB, = 0, (4.2.56)
for the y component, and
i Byky Uy + 1 Bok, v, — iwB, = 0, (4.2.57)

10The two modes are also called fast and slow respectively. We have not used this terminology
in order to avoid confusion with the notions of “fast” and “slow” quantities as they are introduced
in this chapter.
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for the z component. Finally, the perturbed entropy equation is the same as in
the derivation of sound waves, given in equation (4.2.29). Combining the equations

above, the characteristic equation of the system (along with a double w = 0 root) is
W — K (& 4+ 03) W + ER2R23] (0 — k203 =0, (4.2.58)

where v = B2/4mp, is the Alfvén velocity. The two modes, the compressional and
the shear, appear coupled because we have allowed non-zero pressure perturbations.
If the pressure perturbations vanish then the two modes are derived separately using

different assumption for each one. For the compressional mode we have the solution

1
wi = 3 [kz (vi+c2) £ \/k4 (v + 2)” — 4k2k203 2|, (4.2.59)
while for the shear mode we have
w? = vik?. (4.2.60)

If the wave is propagating only along the z direction i.e. k = k.2, then equation
(4.2.59) reduces to either equation (4.2.60) or to the purely acoustic mode along z
direction

w? = 2k2. (4.2.61)

The two solutions for w? given in equation (4.2.59) are both positive (the first term
is always larger or equal than the radical and additionally the radicand is always

positive) and therefore the system is always stable.

4.2.5 Newtonian applications of geometric optics (Cylindri-

cal polar coordinates)

In this section we discuss, in a cylindrical polar frame, the sound waves and the
inertial modes in a rotating fluid, the Rayleigh shearing instability [89, 90] and the
Magnetorotational instability [36]. We use an orthonormal frame R, 2, g?) and the
respective coordinates (R, z, ¢). Below in all cases we assume that all quantities are
axisymmetric i.e. they do not depend on the ¢ coordinate (though, we can still have

vector components along the qg)
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4.2.5.1 The sound waves (again) and the inertial modes of a rotating
fluid

In this section we derive the characteristic equation of the sound waves along with
the inertial modes for a fluid flowing around the z-axis. We assume that the fluid
velocity is v, = Q(ZR)R¢, where Q is the (“slow”) angular velocity of the fAuid!!.
We assume that the background density and pressure are “slow” along all directions
while the gravitational potential is of the form ®, = ®,(¢t, R,£z). The “fast”
dependence of the R coordinate in the gravitational potential provides a balance

force term in the R component of the background Euler equation (4.2.2)

0P,

O’R= .
OR

(4.2.62)

The equation above means that the centrifugal force is balanced by the gravity and
therefore it implies that the fluid is a Keplerian flow. It is the only equation of the
order 6°2°. The wavevector is k = kRR + k.2z. Using the vector calculus formulas
of section A.1.7 for axisymmetric configurations, the linearised continuity equation
(4.2.14) becomes

1
Po (E + ZkR) @R + Z-pokzq_}z - ’L(.Uﬁ =0. (4263)
0

The three components of the Euler equation (4.2.15) are

kn _
— iwlg — 20y + i—2P =0, (4.2.64)
Po
T
—iwv, +i—P =0, (4.2.65)
Po
and
QQ?_)R — z'w% = O, (4266)

for the R, z and ¢ components respectively. The perturbation of the entropy con-

servation equation is the same as in the Cartesian sound wave derivation, given by

equation (4.2.29). The system of equations contains the term RLO which appears

because the cylindrical coordinates are curvilinear and thus there are nonvanishing

Christoffel symbols. The characteristic equation of the above system is given by
1
—chw?’kR +iw [wh —w® (4Q° + K*2) + 4Q°Ck2] = 0. (4.2.67)

HSince in our analysis we do not consider perturbations on the anglular velocity Q or the R
coordinate we do not present this quantities with subscript zero or barred.
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Keeping the 1/R terms, the resulting characteristic polynomial is complex!?. In
order to avoid complex coefficients, we assume that R is large enough so that 1/R is
effectively zero. A suitable choice for this assumption is 1/R ~ &%, with 8 > 1. We
have chosen # > 1 rather than specifying g precisely because we want some freedom
regarding the order of 1/R. We have already made a similar choice for the Mach
number in section 4.2.3 and we intend to avoid the possibility that terms of the form
M R™ ~ gre=mbB (with n, m positive integers to be of order unity). Under this

simplification we get the w = 0 solution along with the characteristic equation
wh — (407 + k) w* + 42k = 0, (4.2.68)

The two positive solutions for w? are

1
Wi = 3 (492 + k%2 + \/ (492 + c2k2)* — 169%3@) : (4.2.69)
We observe that w is a combination of sound waves and the inertial modes of the
fluid. If we set 2 = 0 then we only get the sound wave solution w? = k%c2. In order
to obtain the inertial modes alone we eliminate the sound waves in equation (4.2.68)

following the method of section 4.2.3. The characteristic polynomial then becomes
k?w? — 40%k* = 0. (4.2.70)

Therefore the inertial modes are given by

k2
w? = 492k—;, (4.2.71)

and are always stable.

4.2.5.2 The Rayleigh shearing instability

The next is to examine the case where the background angular velocity is “fast”. We
assume that the fluid velocity is v, = Q(R)R¢, which is an differentially rotating,
axisymmetric flow. The density is “slow” with respect to all coordinates,the pressure
and gravitational potential are of the form P, = P, (ét, R, z) and &, = ® (&t, R, z).

12Tn general polynomials with complex coefficients may have real solutions which would imply
stability. Nevertheless our analysis, as discussed in section 4.1.3, is restricted to polynomials with
real coefficients.
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Using these assumptions the background equations to the order §°2° are the R and

z components of the Euler equation (4.2.2)

od, 10P
VPR=—24+ -2 4.2.72
=R+ o ok (42.72)
and 90, 10P
2= 4.2.73
0z + po 0z ( )

The rest of the background equations of section 4.2.1 are either of higher order in
¢ or vanishing. The reason we have considered a “fast” dependence with respect to
R and z for the pressure and gravitational potential is the following. We want to
be able to consider general flows for the background and therefore we need more
freedom in the force balance equation. This extra freedom is introduced by the
gradient of the pressure. In contrast, assuming that the pressure is “slow” along
the R coordinate (as we have done in section 4.2.5.1) implies a Keplerian flow and
therefore a specific functional form for Q(R).

We assume that the wavevector is the same as in the previous case. The linearised

continuity equation is given by equation (4.2.63). For the linearised Euler equations

we have | op )
— iwip — 20y — — —p + i P =0, 4.2.74
1 0P, k. -
— Wb, — ——2p+i=P =0, 4.2.75
p; Oz g Po ( )
and i
<2Q + Rﬁ) Up — wvy = 0, (4.2.76)

for the R, z and ¢ components respectively. The entropy conservation equation
(4.2.20) takes the form

P P, _
ZRO@R + %@Z —iwP +iwcp = 0. (4.2.77)

Note that the directional derivatives v, - V of scalars, as in equation (4.2.20), are
vanishing. This happens because the fluid velocity has a single component along g?)

and axisymmetric quantities do not have a ¢ dependence. The full characteristic
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equation (along with the root w = 0) is given by

1 (0P, P, \’
Wk — k2R%) G + | —w' + w2+ = < “kr — —Okz)
P

s\ 0z on (4.2.78)
1| ,(10F , 1 OF, (OF, 0F,
— — —iclk — —k, — —Fk =0,
* R {w (po gR ~ G'E * p? 0z \ OR 9z "
where x is the epicyclic frequency given by
ds?

2 =40° + 2RO—. 4.2.79
K + iR ( )

After removing the sound waves and assuming that terms multiplied by 1/R, are of
the same order as in the previous section i.e. 1/R, ~ &’ with 8 > 1, the reduced
characteristic equation is given by the first term of equation (4.2.78). The roots in
w are

]{72
2 2"z
w —H—k2,

which are stable provided that x> > 0. Another form of the Rayleigh stability

(4.2.80)

criterion for circular shearing flow is the following. If €2 > 0, then multiplying the
definition of the epicyclic frequency (4.2.79) by 1/ (2Q?R) we have

1d 2
QdR R
& (log Q) + i (log R*) > 0

df dR (4.2.81)
75 log (QR*) >0

d

e 2
T (R*Q) > 0.

0

4.2.5.3 The Magnetorotational Instability

In this section we introduce the magnetic field in the configuration of the previous
section and examine the stability of the system. It appears that the magnetic field
gives rise to a different kind of instability, the magnetorotational instability (MRI)
[36]. As in the Rayleigh shearing instability we assume that the background density
is “slow” along all directions while pressure and the gravitational potential are P, =
P,(ét,R,z) and ®, = & (&t,R,z). The fluid velocity is circular v, = Q(R)Re.
The background magnetic field is along the z and ¢ directions and has the form

~

B, = B, (ét,ER,&z) 2 + B, 4 (8t,ER, &%) ¢. Also, the wavevector is axisymmetric,
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k = krR+k,2. The main difference between this analysis and Balbus’ original paper
[36] is that we use the full continuity equation instead of V - v = 0. By using the
full continuity equation 4.2.1 we do not implicitly impose additional conditions on
the background and perturbed density. Also we avoid the assumption that isobaric
and isochoric surfaces coincide which may be somewhat restrictive.

The non-vanishing background equations are, as in the Rayleigh shearing instability,
the R and z components of the Euler equation (4.2.2). The z component is given

by equation (4.2.73) while for the R component we have

o, 10P, B,

PR = 1
R= Rt orR T R

(4.2.82)

where the last term appears due to the MHD Lorentz force. The linearised con-
tinuity equation and entropy conservation are same as in the Rayleigh shearing
instability, given by equation (4.2.63) and (4.2.77) respectively. The R component
of the linearised Euler equation (4.2.15) is

— i — 200, — (

1 8P0 1 Bikz .kfR D .szz D,

SR T R dns? 1

po OR Ry dmp; Po po (4.2.83)
0

B.kgr - B, 2 _
B, — +ikg | B, =0,
o 47, 47 p, (Ro ! R) i
the z component is
k,- 10P Bk, -
— W, +i—P — — —p+ i By = 0, (4.2.84)
Po p; 0z 4T po
and the ¢ component is
ds? 1 By 5 B.k, -
20+ Ry— | Up — twly — — Br—i B, =0. 4.2.85
( - OdR) VR T B o R T g, (42.85)

The components of the linearised induction equation (4.2.16) are

— iB,k,vp —iwBpr = 0, (4.2.86)
1 =
B, (E + Zk:R) Up —wB, = 0. (4.2.87)
0

and
dQ) - _
qugkR@R + iB¢kZ?72 — iszz17¢ — ROﬁBR — ind, = O, (4288)
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for the R,z and ¢ components respectively. The full characteristic polynomial (along

with a double w = 0 root) is given by

[w4k2 — w?k? (/12 + 2k2viz) + k23, (/4;2 407 + kQUAZ)} 2
k

— {w6 — Wt [HQ + k% (viz + vi¢) - (QUAZ + UA¢D

OF, OF,
- 28R a kRk + kR <p§k2UAZ (UAZ +UA(;§ )
+k2 (pg (v3, (vid)kf + K? — 4Q7%) + vy k2 + UA¢I€ ) )
w 0P, OP, 1 6P
= |4QK>va, k,— — > — | ko= 2 kv
%[ ”A¢( OR az)}ﬂ%( ) }

1 .

— Rpg {z (w2 — k:gviz)
0P, 0P, 0P,

Bty ST el
oR 92 = T TaR v

kR< ( (w —UAZk:2 + w? UAZ +(

)

OP,
2} + 2powSvavApk (4,000 k:2 +i—2k, — 3pow )

0z
P,
a@R k2 (UAZk2 +w )

P, P,
s 480 128 )

2
Vag 0P,
+ R2p2 {(UAZkZ + w?) {pouﬂ —k, (pokz (v?w +2¢2) P )] } =0,

+ povA¢ {4pOvaszA¢k +2

0

(4.2.89)

2 Bj.x
where vy, = ==

equation. We may simplify the expression by introducing the assumptions of the

previous sections. Eliminating the terms of order 1/R and 1/R? the last five lines of

and v}, =

equation (4.2.89) vanish. Additionally, if we eliminate the sound waves all lines of the
same equation vanish apart from the first. The simplified characteristic polynomial
now reads

K 2 2 2 2, 12

ﬁw — (K + 2k%0%,) w® + k2uy, (K2 — 497 + K*03,) =0, (4.2.90)
This characteristic equation is identical to the one derived in [92] (if we consider a
wavevector with z component only). It is a convex quadratic polynomial (since the
coefficient of w? is positive) in w?. The discriminant is k2 (k* + 16k*Q?v% ) which is
always positive and therefore the two roots of the polynomial are real. Additionally

the two w? roots are positive and thus the system is stable if the coefficient of w?
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is negative and the constant term is positive. The first condition implies that the
minimum of the polynomial occurs at positive w? and the second condition implies

2 = 0 axis at a positive value. These two

that the polynomial intersects the w
conditions read

K%+ 2k%03, >0, (4.2.91)

and
K? — 407 + k23, > 0. (4.2.92)

Of these two inequalities (provided that k?v3, > 0) we only need the second one be-
cause if it is satisfied, the first is satisfied as well. Using the definition of the epicyclic

frequency from equation (4.2.79) the stability condition obtains the following form

d$)?
dln R

+ k*3, >0, (4.2.93)

which is the one derived in [92]. Assuming then that k%v3%, goes to zero (since we
can either have a very small magnetic field or very small wavenumbers) the stability

criterion reads

d?
VRS (4.2.94)

This inequality implies that a disk is stable if the magnitude of €2 is radially increas-
ing outwards. However, for most physical configurations €2 decreases in magnitude
with respect to the radius and so the majority of realistic models should be unstable.
A peculiar and interesting aspect of this result is that for a vanishing magnetic field
equation (4.2.93) does not coincide with the Rayleigh shearing instability criterion
of the previous section as we would anticipate. Physically this means that an ar-
bitrarily small magnetic field would produce an instability in a configuration which
would be stable if the magnetic field had not be introduced at all, i.e because we
may have k2 > 0 but xk? — 40% < 0. In the following section, we will discuss this

issue.

4.2.5.4 The Rayleigh shearing instability limit of the MRI

The condition (4.2.94) arises by taking the limit k%03, — 0. Instead of taking this

limit after having calculated the condition we could assume that k*v3  is propor-

tional to some small bookkeeping number 0 < ( < 1 such that k203, — (k203 13

3To be more precise we assume that k%iz — flpﬁiz, assuming the tilded quantities are of
order unity and then we rename again k — k and v, — va,.
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where k? and v%, on the right hand side of the arrow are assumed to be of order

unity. The characteristic equation (4.2.90) then reads

5 w! — (K* 4 2Ck*03,) w” + ((cos® @) k*v}, (k* — 4% 4+ (k*0},) =0, (4.2.95)
cos? q
where k, = kcosq which is the direction cosine for k.. The equation above rear-

ranged in powers of ( becomes

(k%fgz cos” q) (* + k*v3, (k% cos® ¢ — 4% cos® ¢ — 2w?) ¢

2 4.2.96
+w2(w —m2>—0. ( )

cos? g

The above expansion in ( indicates that there are three cases to be considered. The
first case is when ¢ and (2 terms are not neglected so we have to keep all the terms
and the stability condition should be that given by inequality (4.2.93). The k?v3}, is
now included in the final criterion because we have made the assumption that this
term is of the same magnitude as the other terms.

The second case happens when the product of the Alfvén speed and the wavenumber
is such that the (? terms are sufficiently small to be omitted, but ¢ terms are not.

In this case equation (4.2.96) reduces to

1
cos? g

wh — (K* 4 2k%0%,) w? + (cos® ) k*v}, (K2 — 4Q%) = 0. (4.2.97)

The stability criterion for this characteristic equation is given by inequality (4.2.94)
i.e. that ultimately obtained in [92].

The third case happens when the product of the Alfvén speed and the wavenum-
ber is such that both the ¢? and the ( terms are negligible. In this instance the

characteristic equation yields

1
w? (w2 — ff) =0, (4.2.98)

which is the characteristic equation of the Rayleigh shearing instability given in

section 4.2.5.2 with the related stability criterion
K* > 0. (4.2.99)

In the following discussion we consider that the magnitude of the Alfvén speed is

controlled only by the magnitude of the magnetic field (i.e. the density is of order
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unity). Therefore, it appears that by considering the magnitude of the term k*v%,
in the characteristic equation (4.2.90) of the MRI it is possible to derive the Balbus
criterion if the magnetic field (or the wavenumber) is small (keeping ¢! terms but
not ¢?). A very small (tending to zero) magnetic field (or wavenumber) though,

reduces the criterion to the Rayleigh shearing instability criterion.

Another way of looking at this result is the following. Suppose there is a num-
ber ¢, which is the largest possible value of ¢ such that the terms proportional to ¢
vanish. For all values of { < (, the characteristic equation reduces to the Rayleigh
shearing equation (since the ¢? vanish as well). The value ¢, in other words is the
largest value for which ( is effectively zero.

For values (, < ¢ < /G (the right bound is the value such that (2 = () the
linear terms in ¢ do not vanish but the ¢? terms vanish. For this interval, namely
QC_*, \/z> (note here that the square root is larger than the number itself since
¢ < 1) the stability condition reduces to that derived by Balbus [36].

Further increase in ¢, i.e. { > \/a, implies that neither the ¢ nor the ¢? terms are
sufficiently small to be considered effectively zero. In this case the stability condition

is that given by inequality (4.2.93).

The analysis above has an interesting consequence. Although we have found three
qualitatively different intervals for ( it is possible to always find, for a given Alfvén
speed, a wavenumber such that k202 ~ ¢’ where ¢, < ¢’ < \/(,. It follows that
an Alfvén speed of the order, say, v, ~ (’% requires a wavenumber of the order
k% ~ ("8 with 8 € IR. A weak magnetic field (i.e. 3 > 0) requires a wavenumber
of at least the order unity to trigger the MRI instability (using the criterion 4.2.94).
In the opposite limit, a strong magnetic field (5 < 0) gives rises to the MRI (ac-
cording to criterion 4.2.94) provided that the wavenumber is sufficiently small.

Therefore, using criterion (4.2.93) for the case of an infinitesimal magnetic field,
requires large wavenumbers such that they could be unphysical. This is justified
in the same manner that wavenumbers (and frequencies) have some upper bound
defined by the microscopic properties of media in the case of sound waves. Roughly,
the wavelength (i.e. the inverse of wavenumber) cannot be less than the mean free
path of the particles consisting the medium. Assuming an upper finite limit for the
wavenumber k.. the stability of a configuration with a sufficiently small magnetic
field (such that k2, v3, < () is characterised by the Rayleigh shearing criterion

max

(4.2.99) rather than criterion (4.2.94).
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4.3 The relativistic framework

In this section we discuss using the geometric optics method to explore the relativis-
tic analogues of the sound waves and inertial waves, the Rayleigh shearing instability
and the MRI. We first present the system of equations and then we introduce the
frame and the metric. We derive the characteristic polynomials for each case and

discuss various limits.

4.3.1 The system of equations

The systems we are examining are single fluids in the context of relativistic hydrody-
namics or magnetohydrodynamics. In order to be able to compare to the Newtonian
cases we use the equations derived in section 3.4.3.4 and rename the symbols used

for the physical quantities. The energy conservation equation (3.4.53) is given by
u*Vap+ (p+ P)Vu® =0, (4.3.1)

where u® is 4-velocity of the observer co-moving with the fluid (normalised through
uu, = —1), p is the relativistic energy density and P is the relativistic pressure

with respect to this observer!'*. The relativistic Euler equation (3.4.55) is given by

(p+ P)ubVyu® + h**V, P
1+ BB U'Vyu® + h* BV, B® — B*Bau’Vyu® — h™ BV, B, = 0, (4.3.2)

~
relativisic MHD Lorentz force

where B® is the magnetic field with respect to the observer. The relativistic induc-

tion equation (3.4.47) is
h®uV By — B*'Vyu® + B*Vyu® = 0. (4.3.3)

Note that the Euler equation and induction equation are orthogonal to u® and
therefore these equations have three independent components each. The adiabatic
condition (3.2.30) becomes

u'V,2 = 0. (4.3.4)

4Note that in section 3.4.3.4 energy was denoted by pyup,r and pressure by Uymp p
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As in the Newtonian case we assume that the specific entropy ¥ is an equation of

state for the system of the form
Y=%(Pp). (4.3.5)

Writing the condition (4.3.4) in the form

dx
— =0, 4.3.6
dr ( )
where 7 is the proper time along the observer’s worldline, it follows, similarly to the
Newtonian derivation given in equation (4.2.6), that the relativistic speed of sound
is given by the definition (4.2.7). Using this definition along with equation (4.3.5)
equation (4.3.4) becomes

UV, P — 2 uVap = 0. (4.3.7)

4.3.2 Linear perturbations (relativistic framework)

Here we present the linear perturbations of the system of equations. Using equation
(4.1.1) we obtain the background and perturbed terms of the system of equations
(i.e. of the order §°2° and §'&° respectively). The background equations are obtained
by substituting all quantities with the respective subscripted zero quantities. As
discussed in section 4.1.2 scalar perturbations (such as P and p) are “slow” i.e
P = P(&z"), p = p(ézx”) and therefore the respective gradients are of order &'.
Assuming that the perturbation of the metric is vanishing the perturbed energy

conservation equation (4.3.1) is given by

U'Vapo + iufke + (p+ P) Voul + ik,u® (py + Py) + (po + Py) Vou* =0,  (4.3.8)
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where the 4-wavevector is defined through equation (4.1.16). The Euler equation
(4.3.2) becomes

(p+ P) ulNyul + (po + B) 0"Vyul + (po + Py) ulVyu

+i (po + Py) ulkyti® + uubV, Py + ulu’Vy Py 4 ih®ky P

+ 2B°BulVyul + BBVl + BLBuVyu® + i BS Boulkyu®

+ @ul BOV, BE + ula’ B°V, BE + h* BV, BS + he B°V, B¢ (4.3.9)
+ ih® Bk B¢ — B* B'ulVyut — B Bu"Vyul — Bul B'Vi°

— iBulk, B — B BallVyul — a*u) BEV B — ult, BSV .BY

— h® BV .By) — h?* BV By — ih?* B¢k By = 0,

where we have substituted the perturbation of the projection tensor through hq, =
UqUp + ugly. The terms including the magnetic field and perturbations of the mag-
netic field are related to the relativistic MHD Lorentz force. The perturbation of
the induction equation (4.3.3) is given by

U upuSV  BE + ultyusV  BE + h®uV By + hPulV By, + ihulk. By

_ _ (4.3.10)
— BVl — B!V — iBlkyu® + BVl + i Bk a + BIV 4 = 0.

In analogy with the Newtonian case, the perturbation of the specific entropy is
related to those of density and pressure through equation (4.2.17). Using this along
with the definition of the speed of sound (4.2.7), the perturbation of the adiabatic

conservation equation (4.3.4) becomes
w'Va2, + ikaugf] + ugvai =0

u (vaPO CsVapo) +Zkau0 (P Csp) +u0va (aEO/aP|po>

= 1 B
— Zuova (m) =0 (4311)

u’ (VaP0 - cgvapo) + ikgug (]5 - cgﬁ)
) - 0’
PO

_ P—cp o
a ap_ 2, .a D=7 a u 2 s a u 0
Uy U VaP = PUsVaCs azo/aﬂm%: (ap
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hence ~
u" (VoPy — GVapo) + ikquf (P — ¢3p)

oc? oc?
— pu? - V.Py + - Vap
° (ap p0> ’ ( dp PO) ’ (4.3.12)
P—cp 9?3,
+ > uV,.P, = 0.
820/8P|p0 ( oP? o 0
We also have the perturbation of the 4-velocity normalisation
uuy =0, (4.3.13)

which means that u* has three independent components. The orthogonality of the

magnetic field and the 4-velocity yield
ug By =0, (4.3.14)
for the background, and for the first order
"B+ ulB, = 0, (4.3.15)

imply that B% and B® have three independent components each. Therefore, as in
the Newtonian case, along with P and p, there are eight unknowns (i.e. barred
quantities).

Furthermore, the orthogonality of the non-linear Euler and induction equations to
the observer 4-velocity indicates that equations (4.3.9) and (4.3.10) have three in-
dependent components each. It is straightforward to show this result if we write the
orthogonality condition as u, f* = 0, where f¢ is the left-hand-side of either equation
(4.3.2) or (4.3.3). The first order perturbation of this equation is ulf® + @, f¢ =
where f¢ denotes the background left-hand-side terms of the equations and f? the
left-hand-side terms of either equation (4.3.9) or (4.3.10). Thus, in total we have,
along with equations (4.3.8) and (4.3.12) eight independent components in the sys-
tem of linearised equations.

In this section we have shown the equations in abstract index notation since they
hold in all coordinate frames. Nevertheless, in the following sections we find it

convenient introduce a coordinate frame and a specific metric.
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4.3.3 Relativistic applications of geometric optics

In this section, working in a coordinate basis with cylindrical polar coordinates ¥ =
(t, R, z,¢) we derive the relativistic equivalents of section 4.2.5 (i.e. sound waves
along with the inertial modes, the relativistic Rayleigh shearing instability and the
MRI). Additionally, we obtain limits of these results that approximate the respective
Newtonian ones. In analogy to the Newtonian consideration, we assume that all
quantities are axisymmetric, that is they do not have ¢ dependence. However, it is
possible to have vector components along the ¢ direction. The calculations and the
characteristic polynomials are calculated with Mathematica [93] using the RGTC
package [94].

4.3.3.1 The choice of metric, the plane wave, and the background ob-

server

Since we are working in axisymmetry, the background metric should satisfy this
assumption. In order to allow for some freedom for the background spacetime we

choose the following functional form of the metric

Guv = dla‘g [_gtt (R7 52:) » 91T (R7 &_‘Z> y 911 (R7 E_Z) y Yoo <R7 52)] ’ (4316)

which is a diagonal matrix with ggrr = g.. = gir > 0, g& > 0 and g4y > 0.
The components of the metric with indices upstairs (i.e. ¢"), since the above
matrix is diagonal, are given by a diagonal matrix with elements the inverses of g,

components. The Christoffel symbols to the order £° of this metric are!®

re. =1t :L% R:_l %
tR Rt Qgtt aR’ tt 29[1 aR’

1 0
TR, =T%, =T7,=-T% = S _angzl’ (4.3.17)
R R - 6 1 090

e, = =T, =— 2%
® " 29, OR' BT T 9RT 94, OR

5For brevity we suppressed the arguments of the metric components in the equation (4.3.17)
and we do the same in the following equations. In any case, if the “fast” and “slow” dependence
are to be considered different from those already assumed in equation (4.3.16) we will explicitly
state this.
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This metric describes a static, axially symmetric spacetime. It is in some sense the
Weyl metric [95, 96], if we choose the metric components appropriately. We have
chosen “fast” dependence of the components along the R direction and “slow” along
the z direction and this means that we focus on the radial direction of the various
configurations.

From a physical point of view, where the source of gravity is a large spherical mass
at the origin of the coordinate system, this consideration has the following implica-
tion. We are looking into a spacetime region around the equatorial plane, where the
dependence on z direction can be omitted. This kind of coordinate dependence in-
troduces a simplification in comparison to the Newtonian case (where we considered
fast dependence along both R and z coordinates). The logic behind this assump-
tion is that astrophysical disks, where the kind of instabilities we are examining are
most likely to occur, are usually thin (i.e. the R dimension is much larger than the

z dimension of the disk [97]) and mostly close to a region around the equatorial plane.

We also assume that the phase is of the form S = S (&t,&z), which means that

the 4-wavevector has only ¢ and z components

k, = (K, 0, k., 0) . (4.3.18)

Following the Newtonian analysis we introduce a background observer with a circular
velocity field
ut = (v,0,0,7Q), (4.3.19)

where the scalar 7 is calculated using the normalisation equation uju, = —1 and
the metric defined in equation (4.3.16) through

1

V= 4.3.20
N ( )

with Q the angular velocity'® of the fluid (with respect to an observer at rest at
infinity). Constant angular velocity implies uniform rotation. On the other hand,
“fast” dependence of €2 along the R coordinate suggests that the fluid is differentially
rotating (while “slow” dependence along R means that the differential rotation is of
order £').

The 4-wavevector is given through equation (4.3.18) with respect to the cylindrical

16 Although € is a quantity of the background, similarly to the Newtonian case, we do not show
this quantity with a zero subscript.
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coordinate frame. Nevertheless, the characteristic polynomial described in equa-
tion (4.1.24) requires the angular frequency and wavenumber with respect to the
background observer. Using the decomposition of k, given in equation (4.1.21) and
equations (4.3.18), (4.3.19) we find, by contraction with the 4-velocity, that k; is
related to the angular frequency through

w
ke = _; = —wy/gu — 22gge- (4.3.21)

To derive the respective relation for k, we use the definition of the spatial wavenum-
ber k? = h®k,ky (see section 4.1.3). The projection tensor, using the definition
(2.1.6) with indices upstairs, related to the background metric and observer is given
by

1 1 Q
911—9662  gut 0 0 it —gpp$2?
. 0 a0 0 (4.3.22)
© 0 0 L 0 a
0 grr1 o
P (TS %)
The definition of the spatial wavevector then yields
Q
kK = gir <k2 - wQM) . (4.3.23)
Gt

The components of the perturbation amplitude for the 4-velocity is given by

Q
gt — <~‘”ZLu¢ (ez”),u" (ez”) , @ (e2”) , u? (533”)) . (4.3.24)
tt

Also, we used equation (4.3.13) to eliminate the @' component of the perturbation

amplitude. For the magnetic field we have

B" = (B',B" (z2"), B* (e2") , B? (¢2")) , (4.3.25)

where the B! component may be eliminated using equation (4.3.15). Since this com-

ponent depends on background quantities it may be “fast” along the R direction.

17"The fact that the components @ and B* may be fast does not have any implication since these
components are not independent of the rest.
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4.3.3.2 Low velocity, flat metric, and the elimination of sound waves

As in the Newtonian case we may introduce simplifications to the characteristic
polynomial (4.1.24). In particular, it is possible to eliminate the sound waves in the
way discussed in section 4.2.3.
We further simplify the characteristic polynomial by assuming that the metric is flat.
We substitute the components of the background metric (4.3.16) and the respective
derivatives with those of the Minkowski metric 7, which in cylindrical coordinates
is

Nw = diag [-1,1,1, R?] . (4.3.26)
This consideration removes the implications of the curvature of spacetime and pro-
vides a reduced characteristic polynomial that is subject only to the laws of special
relativity.
Additionally, we may also consider a “low speed” approximation. Additionally, we
consider that the various velocities involved (in the most general case considered
here, these are the phase velocity vp,, the angular velocity 2 and the Alfvén veloc-
ity va,) are proportional to a small bookkeeping parameter (. As in section 4.2.5.4
we substitute the velocities through v, — C_vph, Q— C_Q and va, — C_UAZ, where the
tilde quantities are of order unity'®. By keeping various powers of ¢ we obtain dif-
ferent “low speed” limits of the characteristic equation. The rest of the background
quantities appearing in the characteristic polynomial are assumed to be of the order
unity. As we show in the following sections using these simplifying assumptions it

is possible to obtain the Newtonian results of section 4.2.5.

4.3.3.3 The relativistic sound waves and the inertial modes

In order to derive the sound waves and the inertial modes we assume that all the
background quantities are “slow” along all coordinates (i.e. Q = Q(ER), P, =
P, (ER,z), po = po (ER,£2)). Additionally this is a purely hydrodynamical configu-
ration and thus the magnetic field is zero. The background equations for this system

vanish identically except for the R component of the Euler equation (4.3.2)

G = ng;sqsa (4.3.27)

18As in section 4.2.5.4 to avoid crumbled expressions after introducing ¢ we have changed to
intermediate tilded quantities and then again to the original through opn — vpn, @ = Q, Vo, — va,.
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where the prime means differentiation with respect to the R coordinate. The equa-
tion above is in some sense the relativistic analogue of the Keplerian condition if
we assume that g, ~ 2P, With Pneywt the Newtonian graviational potential [41].

The perturbed continuity equation (4.3.8) becomes

P+ i+ Gu (2960971 + 9119,
(P + po) (911960691 + 9u (2960977 + 91195s) ] a® + ik, (P, + po) 0
201191960 (4.3.28)

P0+p0

u® + ivkp = 0,

+ iktg¢)¢)Q

The components of the perturbed Euler equation (4.3.9) are

9os G — 9tt9pe 26

ik, (P, + po) @™ + Q (P, + po)
grigi

0, (4.3.29)

ke

and

P ! 1\ _
B ¥ P VGhugr 4 sk, 990 (B, 4 ) a + ik (% - —) P=0, (4331
gu Ju it

for the R, z and ¢ components respectively. Note that the background equation

(4.3.27) implies that 4/ is vanishing

1
Y = =57" (gl — Ogl) = 0. (4.3.32)
The perturbation of the adiabatic condition (4.3.12) is
—cp+ P =0. (4.3.33)

Note that the gradients of scalars contracted with the background 4-velocity in
equation (4.3.12) vanish due to axisymmetry and stationarity.

The full characteristic polynomial using equations (4.3.20), (4.3.21), (4.3.23) and
(4.3.27) is given by

Q?%gr; (gfm))2 {gu [c2 (2k* + W) — 20%] — W* PP gy }

20202, a2 2 _ 122 25202 2 A (4'3'34)
+ 2w GT191 996 (W Cs) + 2w Cs Gtt Yoo 911 9pp = Y-
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In the absence of rotation (i.e. 2 = 0) we get the sound waves alone, w? = ¢?k%. On

the other hand the inertial waves are given by the polynomial

2
W’ [—2k29§,g§tg¢¢ + Q201190 (5) " + 2920196091190

y . . o (4.3.35)
— 911900 (9¢¢) ] + 2k°Q% 91194 (9¢¢) = 0.

Assuming that the metric components are given by the flat metric (4.3.26) and
taking the low velocity approximation of section 4.3.3.2 we obtain the following

polynomial in ¢
205w R? — 2040 + CPRP (w2 — 492) =0. (4.3.36)

The smallest degree polynomial in ¢ of the equation above that also includes w (that
is the (2 term in this case) reproduces exactly the Newtonian result of equation

(4.2.71) provided that the Newtonian wavevector has only a z component.

4.3.3.4 The relativistic Rayleigh shearing instability

To derive the relativistic Rayleigh shearing instability we assume that the angular
velocity of the fluid and the background pressure are “fast” along the R coordinate
(ie. Q=Q(R), P, = P, (R,£z)). The background density is assumed to be “slow”
along all directions (i.e. p, = p, (ER,€z)). As in the previous section the only non

vanishing background equation is the R component of equation (4.3.2)

1 1 1
QZg/ — g/ + P’.
2 (g0 — 2g40) o2 (90 — 2944) P+ po "

(4.3.37)

which is the relativistic counterpart of equation (4.2.72). As in the Newtonian case
the pressure gradient allows for some freedom in the choice of the profile of the
angular velocity. The perturbed continuity equation is same as in the previous
section and given by equation (4.3.28). The R and z components of the perturbed
Euler are also same, and therefore are given by equations (4.3.29) and (4.3.30),

respectively. The ¢ component is given by

|:(P0 + po) (gttly)l
Get

1 _
+ ik (72——) P =0,
Gt

+ yPg} af + z’kat@ (P + py) u®
g (4.3.38)
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where the partial derivative of v with respect to R coordinate is
/ 1 3 !/ 2/ /
T =757 (gtt — 0%,y — 2020 9¢¢) : (4.3.39)
The perturbed adiabatic condition takes the form
Plaf —ik,2yp + ikyyP = 0. (4.3.40)
The characteristic polynomial is, after we remove the sound waves

2
w? {—4k29?19t2t9¢¢ (Qtt - Q29¢¢) + 291960911 (gtt - 929¢¢) [Qthtgfw

+9; (gtt — 2QQg¢¢)} + grr [ngttg;(ﬁ + gy (gtt - 2929¢¢)] [gttg(/w (9w (4.3.41)
—30s6) + 9o (94 (96 + L 9s0) — 200919662 ] }
+A4k* Q9119 (9965 — 9oo9in) [t (906 + Q) — Qo] =0,

where we have used equations (4.3.20),(4.3.21),(4.3.23) and (4.3.37). The last of
these equations is used to eliminate the P; from the final expression. The full
polynomial can be found in appendix A.1.8. The flat metric and low velocity ap-

proximation discussed in section 4.3.3.2 for the polynomial above yield

¢° (K Q'R! 4 3w°Q'R?) 4 (WPRY) + (! (-2K0*Q°R? — Q) (43.42)
+ (2 (Kw? — 4k*Q%) — ¢ (2k*QRQY) = 0. h
The largest term in ¢ (i.e. ¢! term) alone does not provide a characteristic equation!®
in w. Therefore by additionally considering the ¢ term and eliminating the book-
keeping parameter (i.e. ( = 1) we obtain the result of equation (4.2.80) provided

that the Newtonian wavevector has only a z component.

4.3.3.5 The relativistic MRI

To obtain the relativistic magnetorotational instability we assume that the back-
ground magnetic field only has a z component which is also “slow” along the R and
z directions (i.e. BY = (0,0, B (éR,£z),0)). We do not consider a ¢ component
for the magnetic field as we did in the Newtonian case because we want to describe

the simplest possible configuration that reproduces the MRI. From an astrophysical

Y Here we mean that w does not explicitly appear in the (! term. Therefore it is not possible to
obtain a characteristic equation in w by considering this term alone.



4.83.  The relativistic framework 115

point of view (where the magnetic field is assumed to be a dipole originating from
the neutron star) this implies that we are examining a region at distance from the
star such that the z component of the magnetic field is much larger compared to the
other components. The fluid angular velocity €2, and the background pressure P,
are assumed to be “fast” along the R direction and “slow” along the z direction. The
background density p, is “slow” along both R and z. As in both previous sections

the only non vanishing background equation is the R component of equation (4.3.2)

/

ngqﬁqﬁ it I

209 — Pgop)  2(g — Pgps)  Po+ po
B:  29u9i; — 29°9ss91r + 911 (94 — V2g)y)
Py + po 2 (g1 — gps) ’

(4.3.43)

which is the relativistic analogue of equation (4.2.82). The perturbed continuity
equation for this system is given by equation (4.3.28). The R, z and ¢ components
of the linearised Euler equation (4.3.9) are

) z i . 9os i — Gets
ik [Py + po+ (B2)? gir] @ + 4Q [Py + po + (BZ)? gpp] =2 22200 ¢

grigs
/ —Q2 / _ B
90t oo (ﬁ—F P) _ ingzBR (4.3.44)
2911
B? =
+ g—lol [29}[ + '72911 (g;ft - QQQ:M;)} B* = 07

z

. . k.- B _
ik (Py+ po) W +i—P — —= [2¢7, + V911 (9, — X°gl,)] BT =0, (4.3.45)

agir 2911
and
/ 2\ 2 /
(Po + PO) (gtt’Y) + (Bo) (vguegrr) i VPUI R
it
e grrks o .
+1i(By) (7 gtt—l)u
VYt (4.3.46)
. s P 1Y 5
+ ZQ’}/kt@ [PO + Po + (B())ngf} U¢ + Zkt (72 - _) P
it it
zgllkt

(Vgu — 1) B* — iQB k.22 B =,

it it

+1iB

0

for the R, z and ¢ components, respectively, and +' is given by equation (4.3.39).
Similarly, the linearised induction equation (4.3.10) yields

—iBZk,a" +ivk,B" =0, (4.3.47)
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for the R component,

1 g, 9u | Ye g -
-B: (22 + 4 ﬂ) " + iOB k220 + ik, B* = 0, (4.3.48)
2 grr G Geo it

for the z component, and

— B2 (g — 1) W — iQB k2
gt Jit

(4.3.49)

+ - [=27 + 7 (g — 92)] B+ iyth%B¢ =0,

it

| —

for the ¢ component. The perturbed adiabatic conservation is given by equation
(4.3.40).

Using equation (4.3.43) to eliminate the P! term, along with equations (4.3.20),
(4.3.21), (4.3.23) and (4.3.43) the characteristic equation, having removed the sound

waves, is given by

4 (K = w?) 1190900 (91 — Pgg0)” [0 g2,0" + 0 (w0 — 25%) gungos?

+ (K = Kw?) g7 ] vk, + 971 { =20 03u VR, 909562 + 207 9ugds Vi, [ 207950 9452
2 (K + %) ghgho 2 + (07 — k%) (9)°| 01 — gigdy [—4w® (w* — 24%) g2, (o},
—1) 0 = 8K% g, Qg + 0, (2 (30 — K2) (g)” Q1 + 2 (K 4+ 3%K°
) GO+ (—2K" W+ o) (91)7) | 92 + SR (k2 — w?) ggas (03, — 1)
—2g, [2w® (—4K* + 2wk + w") Q% (vi, — 1) g0y + 2k (w* — k%) QR 9900
FR0R, G50 (K = w?) gl — (K = 20%) Qg5)) + girgo (8w” (K + ™k’
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) g (e~ 1) — (K4 ) g R0+ 08, (44 4
—k) (g;¢)2 OF 4 2 (k* 4 20K — w?) g,00s + (Kw® — k*) (ggt)2>] } V3,
— 2w G900 (9 — 900) (Vo — 1) 91 {20960 [20° 060,011 — (vA, — 1) g1] ©°
AR gavs, g1 — gu [4 (K + w*) Qgssvi,91r — w* (vR, — 1) (95627 + 91) ] }
— grgu {20 g0y (Vi, — 1) 91 [2Q%90603,97 — (vi, — 1) 93] ©°
+W29tt9§>¢ [8935(;5“/2&9/11 ((WQ - kQ) Qvizgln — w? (Uiz - 1) Q,) 0’
~4g (i, — 1) (QR,07r (9K + 4’ Qgp) — W (v}, — 1) Vgy,) O
+ (U/sz — 1)2 Ji (7w2g:¢¢ﬂ2 + (4k2 — wz) ggt)} O + 4k*givi dh; [(U/sz — 1) g;¢w2
49 (K~ ) aigle] + 02000 [S02003uhr (K2 +02) (v — 1) 02 & (K
+w’k? = 2w*) QuR,g7;) O + 2w gse (U3, — 1) (Qh,g0 ((8K + 11w?) Q%)
— (2K + w?) g,) — (vi, — 1) Q (WPgl, 0 + (2K + w?) g1,)) Q@+ w® (v,
—1)? (—3w2 (g(’w)2 0t —4 (2k2 + w2) ggtgwaQ + w? (ggt)gﬂ
03 [ (R = 1) gho (g1 + (4K 4+ ?) Q2g,) w? — 2945 (13,
—1) (299 g4, k% + 03, (977 ((10K* 4 3w?) g,y Q% + (w? — 4K) g3,)
—2K*QQ gl ) ) w* + 8095, va,91r ((—2k* + W’k + w?) Qo397
—k2w? (vi, — 1) Q)] } + gir { =20 ggeva,00 [22%9s0v3,001 — (vi, — 1) 9] ©°
W et G Vae [~ 8w 055V 91 Y + dgss (v, — 1) Q'
+2 (K + w?) Qu3,977) 92— (v3, — 1) g (Bw?dlsQ® + (2K* + 5w?) g,) | Q*
9950 VAs LKW G308, 97r2° + 2956 (v, — 1) ' (wPgpe
+ (w? — 4k?) g3,) w* + Qi g0 (W (BK® — 5w?) g, Q% + (—2k*
—9w’k* + w') g,)) U+ W (v3, — 1) <6w2 (9<Iﬁ¢)2 Q' + (3K + 5w?) 91,9580
+ (Th* + w?) (git)Qﬂ O+ dk*gy, (9¢¢ [0}, — 1) W'+ (= ) Uizglllg:ﬁ¢:|
+95900 (4955 (-2 Qi ! + B Q' + v}, (Fw'Q — 2 (K* + W’k
—w') Qi) @ = 294403, (Qi,00r (3K — Tw?) g4, Q°
+ (—5k* — 2w’k* + 3w*) g,) — (vi, — 1) ' (w® (K* — 3w?) g(;(z)Q2
(2K = w2 =) g1,)) Q- whid, (0, — 1) (2 (3K + 4w?) (g))" 0
+ (6k% + w?) gztg;(ﬁﬁz + (2k* — w?) (ggt)2>] + g (8K (QQviZw‘l
—w'Q — vy, (' + (W — k) D)) g5, — 203, (vi, (2 (K — 20°) QY gl K
57 (=K + 5w?k? + 20%) ¢, 0% + 3 (k* — £%?) g,))
—2k* (k* — 2w?) Q' g)5) gpo + w0k, (v, — 1) oy ((9K* + w?) g}, 22
+(w* = 3k%) gir)] } = 0,
(4.3.50)
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where vy, is the relativistic Alfvén velocity [98], defined through

B?)?
v, = 2( :) : (4.3.51)
(35) + Py + po

The full polynomial can be found in appendix A.1.8. The flat metric and low speed
limit yields the following polynomial in ¢

— RBWOOBuS ('8 + (k2R8w 3,0 + 2R%WO},00%) (' — 2R W Q" vy, Q¢
+ [ ROwvy 00 — ROWOuL,0° — R'w* (w? — 3Q%) vy, Y] ¢
+ Rw* vy, VP + 2RYOE,0° — 2K R* QM) w? — R*Qoy w*
+2k* ROQ50E wt — 6R*Q%03 w! — 2k R°Q%v} ,w?
+E RO (w? + Q%) vi,w?] (P + (42 RO Q) 0 — RPw' QP03 Q) ¢
[—RQQQUA Wb — 4R R*OM3 w! + 2R* QM wt + 4k RYQMW w?
=2k R*Q'y,w* + K R*Q? (w” — 3Q%) vi,w?] ¢
+ (RPw' Q0L — FPRWQ03,Q) ¢ + [RIQM,,ES — RPw* Q%o b
—R*Q? (w® 4+ Q%) vj k' — 2R'W? QML k" + R'Ww!'Q'? + w? QP &
+6R*W QMK 4 2R QP0F, k% 4 3R + w0}, | ¢ + (RPQPQw?
—E*R3Q%03, Qw? — 2K RPQP0}, Q) (7 + (—2R*Q%0} k° + 20203,k
AR W QPR kY — 2RWIOPE? — WP QK — wtQ?)
+ (Vi k® — 20?0}k + W'k — 4w QPR?) ¢
+ (2K* RO}, Q' — 2K° Rw*QQ) ¢* = 0.
(4.3.52)

Considering only the smallest power of ¢ (i.e. ¢(*) we obtain
w? —vi k* =0, (4.3.53)

which is the characteristic polynomial for the Alfvén waves. Retaining the ¢ term
as well and assuming ¢ = 1 we obtain the Newtonian MRI characteristic equation

(4.2.90) assuming for the Newtonian wavevector k, = k.
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4.3.3.6 A remark on the characteristic polynomials and a discussion on

more realistic models

In the previous sections we obtained the characteristic equations that provide infor-
mation on the stability of each system. More specifically, the full (general relativis-
tic) characteristic equations (i.e. including the sound waves) are of degree four in w
for the inertial waves (section 4.3.3.3) and the Rayleigh shearing instability (section
4.3.3.4). After we remove the sound waves, the polynomials are of degree two in w
for both cases. Regarding the MRI, the full characteristic equation is of degree six
in w while the reduced equation is of degree four.

The coefficients of the characteristic equations are too involved to be reduced ana-
lytically to general, physically intuitive conditions, similar the respective Newtonian
conditions obtained in section 4.2.5. However, the characteristic equations acquire
practical use, if instead of deriving general conditions, we consider specific forms for
the various background quantities involved. Using explicit functions or tabulated
results of numerical simulations we may investigate the stability of models in full
general relativity as long as these background solutions satisfy the “fast” and “slow”
assumptions we have imposed. Since our assumptions about the background are
general, there is substantial freedom regarding the background solutions that may
be probed as possible stable solutions of the system. Such solutions for astrophysical
disks are, for example, discussed in [97].

Apart from the investigation of stability in the context of general relativity it is
possible to obtain results in special relativity, as well. The fully special relativis-
tic polynomials are obtained by setting ( = 1 in equations (4.3.36), (4.3.42), and
(4.3.52). Furthermore, we may obtain post-Newtonian corrections by considering
the terms providing the Newtonian results, plus extra terms (i.e. higher powers of
() of the previously mentioned equations.

Moreover, in the applications of the general relativistic case in section 4.3.3 we
considered a static, axially symmetric spacetime of the form (4.3.16) as discussed in
[95, 96]. However, more realistic models of rotating configurations in general relativ-
ity would require the consideration of spacetime framedragging [48]. To implement
such physical process we need to consider a more general metric than that provided
in equation (4.3.16), which will contain off diagonal components. More specifically,
framedragging in our analysis introduces the off diagonal ¢, background metric
component, which may be chosen either “fast” or “slow” as discussed in section
4.1.2.2.
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CHAPTER 5

Conclusions

In this thesis we have examined the dynamical behaviour of electromagnetic fluid
media in the context of general relativity. In the first part, using the variational
approach, we derived the Einstein equations, the Euler-Lagrange equations for a
multicomponent fluid and the equations for the electromagnetic field. Starting with
the covariant description of electromagnetism in linear media we took steps towards
the non-linear case. In analogy with the expression for the Lagrangian used in lin-
ear media we provided the respective formula for non-linear media in terms of an
infinite series. The linear case is given by the first two terms of the series. We
also provided a set of propagation equations in terms of the material derivative for
the permittivity and permeability tensors. We continued with the description of a
model for a general fluid consisting of multiple components with possible non-linear
electromagnetic properties. Such a medium may be found in the crust or in the core
of a neutron star. This description is quite general and it allows the derivation of
the the single fluid ideal magnetohydrodynamic limit of the general medium. The
derivation parallels the Newtonian derivation of the same limit.

In the second part we examined the dynamical behaviour of systems relevant to
astrophysical environments. We performed a first order perturbation analysis using

the geometric optics method assuming that the perturbations have harmonic de-
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pendence, in the form of a plane wave. Additionally, in order to be able to model
various physical configurations we introduced the notion of “fast” and “slow” quan-
tities and we discussed the stability and causality criteria that constrain the phase
velocity of the plane waves. The method is general in the sense that we can model
various configurations and also is not limited to ideal MHD. It can also be applied in
Newtonian context and thus, in order to gain insight, we calculated the modes and
instabilities of specific Newtonian systems. More precisely, working in a Cartesian
framework we derived in pure hydrodynamical systems the sound waves, the con-
tinuous versions of the Taylor-Rayleigh and Kelvin-Helmholtz instabilities, and the
Alfvén waves in MHD. Taking a step towards more realistic astrophysical configura-
tions we worked in cylindrical polar coordinates and obtained the inertial waves, the
Rayleigh shearing instability and the magnetorotational instability. We also demon-
strated the vanishing magnetic field limit of the latter and argued the circumstances
under which it reduces to the Rayleigh shearing instability. Although this limit has
been discussed in literature [99, 100, 97], most of the times the arguments favouring
the difference between the vanishing magnetic field MRI and the Rayleigh shearing
instability are vague. In this work we provided a quantitative analysis of this limit,
using expansions of the MRI characteristic polynomial and discussed the various
possible cases. In that sense, we provided a clearer picture regarding the stability
condition in the vanishing magnetic field limit of the MRI. Subsequently, we con-
sidered an axisymmetric spacetime in cylindrical coordinates and worked out the
characteristic equations of the inertial waves, and the Rayleigh shearing and mag-
netorotational instabilities. We also demonstrated that these equations reduce to
the respective Newtonian results provided that the background metric is flat and
the various velocities of the system are small. This Newtonian-like limit of the
characteristic equations provide insight into the Newtonian behaviour of relativistic

systems.

The thesis would be incomplete if we did not mention the various paths that may
be followed starting with this work. Regarding the first part, it is possible to extend
the propagation equations of the permittivity and permeability tensors in order to
account for dependence on number density currents in addition to the electromag-
netic field. Also, following the long Abraham-Minkowski controversy on the essence
of the spatial electromagnetic flux vector it would be interesting to calculate the two
forms for the general medium presented here.

Regarding the second part, it would be interesting to look into the possibility of re-

garding the notion of “fast” and “slow” quantities in such a way that the calculations
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remain covariant, in the sense of a 1+3 decomposition. Additionally, we may extend
the existing relativistic approach to account for “fast” quantities along z axis. This
consideration will result in a characteristic polynomial that will be valid in regions
far from the equatorial plane. Furthermore, using a different coordinate system we
may obtain solutions in three spatial dimensions. Finally, since the geometric op-
tics method may be used in many physical configurations, it is possible to perform
a stability analysis of systems involving electromagnetic media and multifluids as

discussed in the first part of the thesis.
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APPENDIX A

Mathematical formulas

A.1 Definitions and additional calculations

A.1.1 Formulas for the Levi-Civita tensor

From equation (2.1.14), contracting a pair of indices yields
€ancac TP = =316, 6,25 1, (A.1.1)
while contracting two pairs leads to
€aped€ P! = —2!5[55;}1. (A.1.2)
For three pair contraction we have

Gabcd‘sabcq = _6§dq- (A13)
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For the spatial Levi-Civita tensor we have

€aee ™ = 3l hy,“h, (A.1.4)

]
while contracting one pair of indices implies
€ape€™ = Z!fz[behc}f7 (A.1.5)
while two pair contracting yields
apec™! = Qth, (A.1.6)
and finally contracting all indices provides

Capc€™ = 3. (A.1.7)

A.1.1.1 Lagrangian variation

The Lagrangian variation of the metric tensor is calculated starting with equation
(2.2.5)
Agab = é‘gab + a€fgab

= 5gab + gcvcgab + gcbvaéc + gacvbfC
= 6gab + vafb + nga
= b + 2V (u&p).

(A.1.8)

If £ is a Killing vector then the last term vanishes and the Lagrangian and Eulerian
variations for the metric are the same. Since the Lagrangian variation of the Kro-
necker delta is zero the variations of the metric with indices upstairs and downstairs
are related through

Ag? = —g% ¢" Agq. (A.1.9)
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A.1.2 The variation of the Levi-Civita tensor

To calculate the Eulerian variation of the Levi-Civita tensor we start with equations
(2.1.14) and (2.1.12)

5 (Eabcdeefgh) =0

EEfgh(;Eabcd = — €abed (5€pqrs) gpegqurggsh - Eabcdepqrsfs (gpegqu'rggsh)
1 A.1.10
5€abcd :Zeefgfﬁabcd (6€pqrs) gpegqurggs}L ( )
1

+ Eﬁefgheabcdepqrsé <gpegqurggsh) )

abed

we now multiply this expression with € and we contract the respective indices

and so we get

€€ qpea = —€cfgh (0€pgrs) gpegqurggs}L — €cfgh€pqrs) (gpegqurggw)

1 (A.1.11)

= 5 Cesohparsd (979 g"9g"") .

We now substitute the first term of equation (A.1.10) with the result of the previous

equation and we have

1

6€abcd - meabcdeefghepqrsfS (gpegqurggsh>

2
= E €abedCefghty fghgpmgenégmn

2

h
= - Z €abed€efgh emfg gendgmn

1

= 5 eabcdgmn 5gmn .

(A.1.12)

This formula is the same for the Lagrangian variation of the Levi-Civita tensor that
is

1
A‘Eabcd - §€abcdgmnAgmn' (All?))

A.1.3 The variation of multi-fluid Lagrangian

We will show the manipulation of the terms related to the infinitesimal spacetime
displacement in the variation of the Lagrangian for the multi-fluid. Starting with

equation (3.2.14) and omitting the summation symbol for clarity the terms in the
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brackets can be written as

SNV — &Ny — iVl =
Vi (1€ent) — pigeVunl &V =V (nsel) + nagtvyr. (AL
——

=0

The second term in the right-hand side vanishes due to the conservation of each fluid
number density current while the third and fifth in the right-hand side, by renaming
indices, are

—BEIV IV = —2€ne V. (A.1.15)

Finally, the first and fourth terms in the right-hand side of equation (A.1.15) using
equations (2.1.14), (2.3.4) and (3.2.12) is

1
Vs (pgenl) — Yy (13n3€l) = v, (§ufff n’éfaffi) : (A.1.16)

A.1.4 The first Maxwell equation

In order to derive the first Maxwell’s equation (3.3.82) we will use the definition of

the covariant derivative for a 2nd rank covariant tensor S,,. That is
chab - 8cSab - Fdachb - deCSad- (A117>
The left-hand part of equation (3.3.82) expands as

v[anC] = (vanc — VoFw — VyFue + ViFeg — Vb, + chab) . (A118)

|~

Using equation (A.1.17) and the antisymmetry of the Faraday tensor, this result is

equivalent to

1
V[anC] = 6 [Qaanc + 28cha + 285Fab +2 (Fdac o cha) Fya (A 1 19)

+2 (T4, = T9,) Fao +2 (T, = T%,) Fea] ,

and since the connection is symmetric the related terms cancel and we obtain

1
v[(1F1bc} = g (aanc + 8cha + 80Fab) : (A120>
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The Faraday tensor given in equation (3.3.1) can be written as
Fop = 0,4, — T, Ac — ObA, + T A = 0, Ay — ObA,. (A.1.21)
Substituting the previous equation in equation (A.1.20) we get
ViaEpg = % 0005 Ac — 0a0:Ap 4 040 Aq — 0p0a A + 0:0a Ay — 000 Aa],  (A1.22)
and finally, the commutativity of the partial differentiation yields

ViaFyg = 0. (A.1.23)

A.1.5 Calculation of derivatives of invariants

Here we will provide the derivatives of the invariants with respect to the fundamental
fields that were used in section 3.4.2. The second derivatives of the the electromag-
netic invariants I and K are (since the first are already given in equations 3.3.58)

and 3.3.59)
0*I

BT o =9 8"0‘17 (A.1.24)
and 25
T o = 2¢abed, (A.1.25)
For F, we have
aFXY as bc,d la,,b]
O, 004 ngny = ny'ny, (A.1.26)

while the second derivative with respect to the Faraday tensor vanishes. The deriva-
tives of the electromagnetic invariants I, K with respect to the number density cur-
rent are zero since these quantities depend only on the electromagnetic field. For

F¢, we have
OF,y

on¢

X

= chngéac = Fadn;l, <A127)
and for the second derivative we have

0°F

Srzont = F0,% = Fy, (A.1.28)
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while the second derivative with respect to number density current and the Faraday

tensor is )
0%F,,

ﬁngE)Fbc

The derivatives of I, K with respect to the the metric are

= 0,3, nds, = 5,lnd. (A.1.29)

ol 0
a5 Fs Fc
agab P dagab

(gscgpd i gsdgpc) — _4Fachc7 (A130)

where we have used the vacuum constitutive tensor given in equation (3.3.14) and
used equation (3.1.10). The derivative of the Levi-Civita tensor with respect to the

metric is obtained by a process similar to that of appendix A.1.2 given by

oK 1
= ——Kqg™. A.1.31
D0 59 (A.1.31)

Finally, the derivative of Fy, with respect to the metric is vanishing since number
density currents are defined with indices upstairs while the Faraday tensor is defined

with indices downstars.

A.1.6 Relation between the Lorenz force and the electro-

magnetic energy-momentum tensor in vacuum

Here we derive the VOTEM = —F,, 5% relation, where TEM is given by equation
(3.4.34). We have

1
VOTEM — P (—Fach —1 Cchdgab)
1
= —F,. (V'F}) — V', .F§ — Zga,,vb (FgF?)

1
= - ac.jc - FvabFac - §FCdVach
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where we substituted j* by the Maxwell equation (3.3.86)

1
= - acjc - FCd (Vcha + Evach)

1
- _Facjc - iFCd (chda - VcPwad + v(J,chd>

1
— _F.j — 5ch (VeFuq + VaFue + VoFLy) (A.1.32)
L3
= —laj = 5F Vo Fea

_ C
= —Lgc) -

The second term in the second to last line vanished because of the Maxwell equation
(3.3.82).

A.1.7 The axisymmetric Newtonian V operator in a cylin-

drical polar orthonormal frame

We consider the orthonormal basis vectors Ifi, z, quS and the respective coordinates
(R, z,¢). For the axissymetric quantities f(R,z), A = A (R,2) R+ A. (R, 2) % +
Ay (R, 2) ¢ and B = Bp (R, 2) R+ B. (R,z2) 2+ By (R, 2) ¢ we have

of »~ Of .

_ 9 p, 9f A.1.33
VIi=apB+ 5% ( )

1 0An  OA
. - R i A1.34
V-A RAR+6R+82’ ( )

C0A, . [0AR DA\ . [(0A, AN .
Vx A= 82R+(82 8R)¢+(8R+R s (A.1.35)
and 0B 9Br A,B
(A-V)B (AR L )R

4 (AR A B )¢ (A.1.36)

0B, 0B.\ .
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A.1.8 The full relativistic characteristic polyomials

The full characteristic equation (i.e. including the speed of sound) for the relativistic

Rayleigh shearing instability (of section 4.3.3.4) is given by

463193900 (& = K2¢2) (gu — gs0)” + 911 {ngft (915)” [0 (2 (48* + ?) — 5u?)
— V9o (3w + Kk — 40%)] + gudhs (90 (2 gugss (—2¢ (2K + w?) + K + 2w?)
+w? (2 +1) giy + w*Q (72 = 3) g34) + 2900966 (=291 (w* — k)

—w 0 (¢ = 1) 9o0) ] + Googi (2291900 (gu (w* — ¢ (2K + w%)) + 2 gg0)
—gu (9 (K — ¢0) + Qgugoo (c2 (07 — 4K%) +w?) + 20°Q"Cgg,) | }

+ 2w2gtt9¢¢9u (gtt Q 9¢¢) {QQ (C - 1) gttgqsqs + gtt [(Cz + 1) et — 292039@5]} = 0.
(A.1.37)

Similarly the full characteristic polynomial for the relativistic MRI (of section 4.3.3.5)

is given by

— UAZ {4w gtt [w2 (w2 + (w2 — 2k2) cg) g¢¢QQ + 2 (k2 — w2) (k:2c§

1—12
~0?) gue) o0 (90 — Pg00)” g3 + [2w4czg§i¢ (9)" Q8 + W’ guglogn (0 (1

—3¢2) gV + 4w oY QA+ (w? — (2K 4+ 5w?) ¢2) gyy) Q' + wPgngs, (— (K +w°
—6w?c?) (gs) 0 + (K2 = 5w? + (3K + 5w7) ) g,05502 + 2066 ((&

+1) Wl + (WP + (w0 — 4K%) ) gpy) Q@+ ((TK + w?) ¢ — 4w?) (g;t)2> 02

02 90 ( (K — W2 4 8w — 2 (4w + 3K%w?) @) (ghs)” O — (2K* — 2wk — 5u*
(" 4 6822) ) g0 + 20008 (0 (<R + % + (R — 30) 2) g2
b (R ) (20 4 ?) & - ) ) 2
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+ (K* — W’k + W' + (0! = 2k%0%) &) (ggt)2>
+g (0 (K — 9® + (9% + w?) ) g0 + (=K + 3w® + (w* — 3k%) &) g4y)
—4 (k" = 20%) Q (K¢, — w*) gosY') 9] 911
+202gu (910 — Q29s0) 911 2022955900 — 200954 (— s + 2022 gy V'Q
+ ¢ (49 + (K2 —w?) 91,)) Q° + g7gse ((K* — 8w?
+ (8K 4 3w?) ) ghs® — 4 (w* — K°¢2) gV QU+ (=K + 4w
+ (WP = 4K%) ¢2) gth) + 2 (W = KP) Giighs) g1 + 8w g [PV ggec?
+ (w? = K22) gu) 900 (9 — Pg00)” (9/11)2} - ﬁgﬂ [ Q2gsgc
+ (w? = K*2) gu] {4 (K = w?) gugss (gu — Pgas)” [(K — ) gu — w*Qgu4) g3
+ (2079559195680 — 200055 (207966 9552 + (K + 20%) g195587°
+ (w? = ?) (g{t)Q) 0% + 97,900 (— 9o (49060 K + (K — 3w7) Qgyy) O°
+2 (K + w?) 6,050 + (0 — k?) (9&)2) + 205 (K° = 20%) g4, 2"
+2 (K = w?) gos U+ (w0 — k%) gi) 9] 971 — 2 (9 — V90) 911 [207 95,902
201954 (20709662 — (2 +w?) g1,) @ + gigos (50 — 3k?) g,
4 (W = F2) gus Y+ 3 (K2 — %) gly) + 2 (I — w?) 6] air
—8 (k2 — w?) 02000 (90 — Q9us)” (9’11)2} — Wgu {4 (W = K°) 91190960 (91
~020,5)" W% + 200000 (916 — L000) 901 [g0e (2 = 1) G + (2 + 1) 1)
2029090 W* + 911 [—2w2029§§¢ (91)” Q"+ guglugh (72 — 3) wiyl,, Q2
W Sgas VY — (W + (0° = 4K7) ) g)
—Gi9s0 ((7“?2 — 4?4 307c2) (g5p) "
+2 (—k — 20 + 2 (2K + W) ) g + 2966 (¢ — 1) wgy 22
+ (2K + w?) & —w?) gl) Q+ (B — ) (gét)2> + Gudps (¢ +1) gyw?
—40 (w* = K*c7) goo¥ + (4K + w?) f — 5w?) gy, )|} = 0.
(A.1.38)
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A.2 An alternative form of Maclaurin series

In this section we present a Taylor-like series for a real single variable function.
Let f : R — R be a real analytic function. The MacLaurin series (Taylor series

around zo = 0) are !
+o00 én)

The MacLaurin series for the k-th derivative of f are given by

+o0 f(n-i-k)
F® () = Z <_0 x”) . (A.2.2)

n!
n=0

We will now calculate the following infinite series
1
A= fo+af® - 5x2f(2) R e AL
+oo k+1
-1
k=1

The manipulation of the previous expression is easier if we substitute equation
(A.2.2). Then we obtain

+oo (_1)k+1 +oo f(TH-k)
P ! !

n=0

(A.2.3)

'Here the subscripts denote the point where the function is evaluated i.e. fo = f(0) and the

superscripts the order of the derivative i.e. f®) = f*F)(z) = %. Note that fy = éo) = f(0).
Since we manipulate single variable functions we do not show the variable in some occasions.
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and we split the sum into three individual sums

n!

N—k n+k
(=" & (fo w
|
k 0

)

n=N-—k+1

(

!

(n+k)
n.

J/

Ao

n+k
fY

k—i—l +oo (
s (B

n!

J/

-~

Ay

Starting with the second term A, we have

AOI

WE

k

m=n+1

Mz

k

Il
—

sml—i—k

NE

e
Il

1s

>

k=1n

]

N—

D

k+1 <
1

Mz

k

Il
B

_1)k+L kN—k
(-1 Z(

k!

n=0

0

n+k
f

n!

k—i—l (5)
(m— x)-

Using now the property for double sums [101]

in

n=1 k=1

equation (A.2.4) takes the following form

||
M

s

S

N
N
N

2

k

1

2

1k

D

1

= (i Sl’““)

&)

C

fo

(s)

k:+1 s)
(s )

)
)

(A.2.5)

(A.2.6)

(A.2.7)

(A.2.8)
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fé”*k) )) i (fos x8>. (A.2.9)

Calculating the limit of the previous equation for N — 400 yields

N fos) +o0 fos)

s=1 s=1

So we have shown that

N _1)k+ kN—k

k=1 n=0

which by using equation (A.2.1) is found to take the value

We will now calculate the last term of equation (A.2.3). We assume that ‘ fo(nJrk)) <e
for all n, k where ¢ is assumed to be finite. We know that a series ) a(n) converges
if > |a(n)| converges. So, we will calculate the related absolute series (namely A}
and A)) for terms A; and A,. Starting with A; we have

(|G s (4
A JO  .m
Ay = Z k! u Z n t <
k=N-+1 n=0
. . o /] e (A.2.12)
PO Rl A DD el £
k=N+1 ) n=0 ’
The absolute value of z* for k € Z is given through
k " ,x >0 A
|2*| = 1)t w20 (A.2.13)

Since the expressions for positive and negative x are different we will consider them

separately. Starting with > 0 equation (A.2.12) becomes

(e (]
> A% (B ) = 3 (RE ) -
k=N+1 k=N+1 =0 (A.2.14)

5 )- (i)

k=N+1
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where T'(z) is the Gamma function and I'(n,x) is the upper incomplete Gamma

function. Using the series definition of the later [102]

n—1
e\ 2
I(n,z) =(n—1)le Z L (A.2.15)
s=0
equation (A.2.14) obtains the following form
(n+k)
oo }( k+1| fo N s
k n 2z —x
Z || Z o 2" | <ee*f[1l—e Z ik (A.2.16)
k=N+1 s=0
Similarly, equation (A.2.12) for z < 0 becomes
g (lenm g (187
2 @ IZ )] <
k=N-+1
k k +00 (_1)nxn
_ A2.17
3 (EE e - (a217
k=N-+1 n=0
+oo
—x (=D L, N ~N_N (N +1,—x)
ee ™ Y ( X =ee (=1 (-a) 1—W )
k=N-+1
and by using equation (A.2.15) we get
0o (n+k)
$ (I g (10
oY n!
k=N-+1 n=0

(A.2.18)

N S
—2z 1 —e® (_I)
s! '
s=0
Putting together the result of equations (A.2.16), (A.2.18) and (A.2.12) we get
oo k+1  fo© (n+k)
r (_1) k fO n
-3 (|EaS ()

k=N-+1 n=0
ge? (1 —e o3V = >0
s=0 g! =

2z (1—6552520%) <0

(A.2.19)



138 Appendiz A. Mathematical formulas

Taking now the limits of both sides of the previous piecewise equation as N — 400

v O([EDH S (A
a3 (S (f)]) -

k=N+1 n=0

im0 (562”3 (1 —e® Zi\;o xg—,)) ,x >0

limy o0 (66_235 (1 —e” Zio (_:!)5>> ,x <0
Both limits in the right-hand-side of equation (A.2.20) are zero and so we have

400 (_1)k+1 k—f—oo fén-‘rk)

k=N+1 n=0

we get

(A.2.20)

Note that since all terms in the left-hand-side of equation (A.2.21) are positive the
“<” symbol is dropped. We will now calculate the A} term

N _1)k+1 o0 (n+k)
(5 £ (5):

n=N-—k+1

A.2.22
N |(_1)k+1{ +00 ‘fén%)‘ ( )
DB B et A DD B et
k! n!
k=1 n=N—k+1
As before we consider first the case z > 0
N +00 (n+k)
[ o
Sl Y ()] <
k=1 n=N-—k+1 (A223)
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and by using equation (A.2.15) we get
N k+1} +00 ‘fénHC)I
S (e £ ()
k=1 n=N—k+1
N k N r N-k ¢
. x x 7\
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s N ok N /N om
ey (5) =22 ()
k=1 k=1 \m=k
N l‘k N m zm
o3 (1) -2 (S ()
k=1 m=1 \k=1
So after some manipulation we have
(n+k)
ey = (1)
k n
2\ X (e
k=1 ’ n=N—k+1 ) (A.2.25)
N k N m
. x 2m -1
<ery (1) -3 ().
k=1 m=1
We calculate equation (A.2.22) for z < 0
Z S <
k+1
N 400 )
ez( > ( ))
1 n=N—k+1 (A.2.26)
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and by using the definition of the incomplete Gamma function (A.2.15) we get

N k+1 +oo (n+k
kz:; ‘(_2 ‘ ‘mk|n:N2:kH ’ ‘ <
L (=) N e e VA
== ;( k! zk) _gkz:; (so fils! i >_ (A.2.27)
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= ge_m; <(_k1') xk> - €mZ:1 ((_1)71(3:” — 1)xm>

The piecewise inequality for A} using equations (A.2.25), (A.2.26) and (A.2.22) is

(e & (A
AQZkZ_;((k)! ! _NZ“( ))
cet SN 1( .> et (5 ¥ (A.2.28)
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Calculating the limit as N — 400 on both sides of equation (A.2.29) we find that

the right-hand-side limits are zero and thus

S (IED s (L
Nlirfookz TRy nl

n=N-—k+1

) — 0. (A.2.29)

We will now calculate the values of A; and A,. For A; we have
|Ay| < A (A.2.30)

and thus, we obtain

— —1)F k+oo fO(nJrk) n
(R e)

k=N+1

+00 I R
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Taking the limit as N — +o00 on both sides of the above equation and using equation

(A.2.21) we get
3 (( 2k+1xkz (fon' xn)>| —0. (A.2.32)

k=N+1 n=0

lim |A;] = lim
N—+o0 N—+o00

For A; we have
— A1l < Ay < A4 (A.2.33)
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k=N+1 n=0
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k=N+1 n=0

which is a condition that is in general true for any real number. Calculating the limit

and therefore,

(A.2.34)

as N — 400 of the previous inequality and using the result of equation (A.2.32) we

get
0< lim A; <0, (A.2.35)
N—+o00
and therefore
N—+o00

Similarly using the same arguments the value of Ay as N — 400 is

lim Ay = 0. (A.2.37)

N—+o0

Finally, we calculate the limit of equation (A.2.5) as N — 400 using equations
(A.2.11), (A.2.36) and (A.2.37)

i AT I A By A A A (4.238)

which reduces to
lim A= f(x), (A.2.39)

N—+o0

and by substituting A from the definition (A.2.3) we find

too s 4Vk+1
fl@)=fo+> (%f”%’f) . (A.2.40)
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A.2.1 Mathematical results of the modified MacLaurin se-

ries

Calculating the series given by equation (A.2.40) for arctan(z) and then calculating
for x = 1 we obtain in an analytic way the following BBP type formula [103] which

was originally obtained numerically in [104]

. (A.2.41)

*f (- 20N? + 21N +5
T = .
22N-1 32N3 1 48N2 + 22N +3

N=0

Additionally the error function er f(x) which is defined through

erf(z) = % /Ox e dt (A.2.42)

by using equation (A.2.40) obtains the following form
2 2 o= J}N
erf(x) = ﬁeﬂ Z {mHNl(x)} ) (A.2.43)

N=1

where Hy(z) are the Hermitte polynomials [102]. Using the Rodrigues’ formula for
the Hermitte polynomials given by

Hy(x) = (—1)¥e (eﬂQ) , (A.2.44)

daN

along with equation (A.2.40) we get the following identity

;il [%Hw(x)} =", (A.2.45)

which is a special case of an exponential generating function [102].
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