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ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Mathematical Sciences

Thesis for the degree of Doctor of Philosophy

RELATIVISTIC FLUID DYNAMICS AND ELECTROMAGNETIC
MEDIA

by Konstantinos Palapanidis

In this thesis we describe fluid media with electromagnetic properties in the con-
text of general relativity. Using the variational principle we derive the Einstein
equations from the Einstein-Hilbert action, the Euler-Lagrange equations for a mul-
ticomponent fluid and the Maxwell equations. We provide a covariant description
of linear electromagnetic media and we also discuss media with non linear electro-
magnetic properties. We also provide a formula that generalises the expression for
the Lagrangian of linear media, to that of non linear media and we discuss a set
of constraints for linear electromagnetic media in terms of the material derivative.
We discuss a model for a multifluid with general electromagnetic properties. We
also derive the limit for the single fluid ideal magnetohydrodynamics in general
relativistic context. In the final part we look into the linear stability of specific sys-
tems using the geometric optics method along with the notion of “fast” and “slow”
variables. Employing this method we reproduce a number of results in Newtonian
context, building gradually to the derivation of the magnetorotational instability.
Additionally, we discuss the vanishing magnetic field of this configuration. Subse-
quently, considering an unperturbed background spacetime we derive the charac-
teristic equations describing the relativistic inertial waves, the relativistic Rayleigh
shearing instability and the relativistic magnetorotational instability. Finally, by as-
suming a low velocity and flat metric limit of the relativistic equations we reproduce
the Newtonian characteristic equations.
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CHAPTER 1

Introduction

In this thesis we consider the theory of media with fluid and electromagnetic prop-
erties in the context of general relativity and examine the dynamical behaviour of
specific systems using the method of geometric optics. The purpose of this work is
to provide a description that is relevant for the modelling of specific aspects of as-
trophysical structures, such as neutron stars and their environments. We will firstly
discuss the properties of neutron stars and then outline the plan of our study.

Since their discovery in 1968 by J. Bell [1], neutron stars have been studied in great
depth and extent and today there are many models that describe them. Because
they exhibit extreme properties, the various models usually need to combine more
than one aspect of physics. The main goal of these theoretical models is to cover
and explain the phenomena that we observe. Additionally, observations of neutron
stars are continuously improved and refined and as a result there is a need for the
production of more accurate theoretical models.
Neutron stars are stellar objects which are formed when main sequence stars with
mass M & 10M� collapse. They have a radius that lies within the range of ∼ 9−12

km [2, 3], while their mass ranges within ∼ 1.2− 2M� [2] (and references therein),
with the largest theoretically predicted mass ∼ 2−3M� [4]. It is apparent that such

1



2 Chapter 1. Introduction

masses and radii imply extremely high densities. In fact, neutron stars are known
to be the most dense objects in the universe, having core densities of the order of
1015 g/cm3, a value that exceeds the standard nuclear saturation density (2.8× 1014

g/cm3). Furthermore, their high compactness indicates that general relativistic ef-
fects are important and should be taken into to account.
Most, if not all, neutron stars rotate with periods, that vary depending on their
age, in the range between milliseconds and seconds. The rotation period of neu-
tron stars is almost constant, since they slow at a very small rate, and is measured
with very high precision. The typical rate at which a neutron star slows its ro-
tation, which is called spin down, is ∼ 10−13s/s [5, 6]. Nevertheless, there have
been observed occasions where the star spins up for a brief period of time or, less
frequently, it spins-down. These incidents are called “glitch” and “anti-glitch” re-
spectively [7, 8, 9, 10, 11], and they are hypothesized to relate with the structure of
the neutron star. More specifically they may occur due to the rapid re-organization
of a solid crust, which is a part of the neutron star’s structure (as we will discuss
later). This phenomenon is called a starquake1. Alternatively, glitches indicate the
existence of superconducting and superfluid properties of matter in the bulk of the
neutron star [12, 13, 14].
The magnetic field of neutron stars is predicted (mainly by assuming that the star
is a magnetic dipole that radiates energy and by using the period and the spin down
of the neutron star) to range from 108 G to about 1015 G. The latter value is charac-
teristic of a special kind of neutron stars, the magnetars. Furthermore, the magnetic
field of a magnetar indicates that a precise description of electromagnetism requires
the consideration of quantum electrodynamical corrections [15, 16, 17]. Empty space
may appear as an electromagnetic medium with properties different from the clas-
sical vacuum [18, 19, 20].
Despite the extensive research related to neutron stars, there is still some ambiguity
regarding their structure. However, it is widely accepted that there is stratification
of the phases of matter, which depends on the distance from the center of the star.
Following this assumption, there are four main regions in the interior of the star.
These are, from the outermost to the innermost: the outer crust, the inner crust, the
outer core and the inner core. Below we will briefly describe each of these regions
in order to provide some reasoning for the theoretical model that we will develop.
The outer crust is thought to be solid having a depth between 300 m and 500 m
and a mass of around 1% of the star’s mass [21]. It is composed of iron (56Fe)
ions that form a body-centered cubic lattice and electrons [22], while the density

1When the re-organization takes place in the crust only, we use the term “crustquake” instead.
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scales up to ∼ 1011 g/cm3. Since the crust has crystalline structure it is anticipated
that, in general, its matter possesses elastic and electromagnetic properties. The
elasticity theory in the context of general relativity has been introduced by Carter
in [23], while subsequent work has been done in [24, 25, 26]. The electromagnetic
properties of matter in a general relativistic context were formally introduced in [27]
as a continuation to the theory presented in [23]. It is worth noting that the two
theories, i.e. that of elasticity and that of electromagnetism in matter, have some
similarities in their mathematical formulation.
The inner crust lies beneath the outer crust and its density ranges between ∼ 1011

g/cm3 and ∼ 1014 g/cm3. Here the neutrons are partially free and may exist in
superfluid state. Additionally, it is predicted that in the deepest layers of the inner
crust there is a peculiar phase of matter, the “pasta” phase [22, 28]. In this region
(where the “pasta” phase occurs) the nuclei acquire non-spherical shapes, resem-
bling rods and slabs which justifies the name, “pasta”. Furthermore, in this peculiar
phase the matter is theorized to exhibit liquid crystal behaviour [28]. Matter in
this state possesses both solid and liquid properties (and hence the name). Note
that liquid crystals are anisotropic in the sense that they behave as liquids towards
some direction in space and as solids towards some other direction2. The crystal
structure indicates that the matter in these regions may have, as in the outer crust,
electromagnetic properties different than those of vacuum.
The outer core comprises the largest part of the star and has a range of the order
of kilometres while the density is around ∼ 1014 g/cm3. In this region, neutron
star matter is composed of superfluid neutrons, which is the main component, type-
II superconducting protons and electrons. Superconductivity and superfluidity are
states of matter that normally (i.e. in laboratory experiments) occur at very low
temperatures, around 0 K, which is somewhat contradictory given the very high
temperatures of neutron stars (T ∼ 108 K). However, the corresponding Fermi tem-
perature of such dense matter is even higher, of the order of TF ∼ 1012 K, and thus
the existence of the superconducting and superfluid states is expected.
Finally, the innermost part of a neutron star’s structure is the inner core which lies
at the centre and is usually considered to be smaller than the outer core. Here the
density is considered to be between ∼ 1014 g/cm3 and ∼ 1015 g/cm3. There are
many hypotheses regarding the phase and composition of the matter, and even the

2For example, a matter type of liquid crystals which could exist in a neutron star is the Smectics
A [28]. This kind of liquid crystal is structured in many separate layers. Each layer is composed of
elongated molecules, arranged (with the long side) perpendicular to the layer. It possesses liquid
properties along the layers, that is each layer behaves as a two-dimensional fluid. Also it possesses
solid (elastic) properties in the direction perpendicular to the layers, which means that different
layers cannot be mixed together [29].
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nature of matter [21]. Various models predict different compositions for the inner
core and use a variety of equations of state. This plethora of models explains the
difference between the possible densities. In general it has been theorised that mat-
ter in this region exists in phases that exhibit non-linear electromagnetic properties.
Such exotic states, as for example a ferromagnetic phase, are suggested to occur at
densities a few times the nuclear saturation density [30, 31, 32, 33].
In many cases, we consider the existence of disks consisting of gas and dust in the
proximity of neutron stars. These structures interact gravitationally and electromag-
netically with the star and may also produce accretion. The process of accretion has
been employed as an explanation for observed X-ray emission [34, 35]. Furthermore,
the interaction of the disk with the star’s magnetic field plays an important role,
since it may affect the stability and therefore the evolution of the disk [36].

With this motivation in mind, this thesis is structured in the following way. In
Chapter 2 we discuss the covariant geometrical framework of the relativistic fluid
model. We introduce the basic concepts of relativistic spacetime along with the
1+3 split, which we mainly use. We also discuss Eulerian and Lagrangian variations
and we introduce matter space. These mathematical tools provide the basis for the
description of the multicomponent fluid of the following chapter. We also discuss
Carter’s material derivative [23], a generalisation of the Lie derivative that is later
employed in the description of non-linear electromagnetic media.
In Chapter 3 we employ the variational principle to derive the Einstein equations
from the Einstein-Hilbert action, the Euler-Lagrange equations of a multicompo-
nent isotropic fluid and the electromagnetic field-equations. We also look into the
description of electromagnetism in linear and non-linear media, and discuss specific
cases. We provide a formula that generalises the Lagrangian expression of linear me-
dia to non-linear media and we discuss a set of constraints for linear electromagnetic
media in terms of the material derivative. Subsequently, combining the fluid and
electromagnetic theory we demonstrate a general model for a multicomponent fluid
medium with general electromagnetic properties. Finally, we look into the single
fluid ideal magnetohydrodynamics limit of the previously mentioned model, since
astrophysical processes in neutron star environments are usually described by this
limit.
In Chapter 4 we perform a linear perturbation analysis using plane waves in order
to examine the dynamical properties of various systems. We employ the geometric
optics method considering “fast” and “slow” quantities to calculate Newtonian and
relativistic instabilities. We discuss the choice of the observer and the stability cri-
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terion. The latter investigates whether the plane wave solution exhibits oscillation
or exponential growth i.e. whether the linear perturbations are stable or unstable.
More specifically real values of the angular frequency of the plane wave imply sta-
bility while complex values imply unstable behaviour. In order to gain some insight
into the method we derive in Newtonian context the sound waves, the Alfvén waves,
and the continuous limit of Taylor-Rayleigh and Kelvin-Helmholtz instabilities. We
also consider configurations that model astrophysical disks and calculate the inertial
waves, the Rayleigh shearing instability and the magnetorotational instability. For
the latter, we also discuss the vanishing magnetic field limit. Considering an unper-
turbed background, we derive the characteristic equations describing the relativistic
inertial waves, the relativistic Rayleigh shearing instability and the relativistic mag-
netorotational instability. By considering a low velocity and flat metric limit of the
relativistic equations we reproduce the Newtonian characteristic equations.
Finally, in Chapter 5 we summarise the ideas of the thesis and discuss possible
extensions of the work.
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CHAPTER 2

The covariant description

This chapter introduces the mathematical framework and tools used in subsequent
chapters. First we discuss spacetime concepts and the 1+3 decomposition, which
provides an intuitive covariant description of tensorial quantities. Then we discuss
Eulerian and Lagrangian variations which will be used in Chapter 3 to obtain the
equations of motion in the systems under consideration and finally we introduce
the concept of matter space and material derivative which are used for describing
multifluid systems. Since the notions presented here are extensively discussed in
literature, our discussion is brief and intended to serve as a basis for the subsequent
parts.

2.1 Spacetime concepts

In general relativity, we consider the spacetime, a 4-dimensional manifold M which
admits a metric tensor1 gab with Lorentzian signature (−,+,+,+). The metric
tensor is a symmetric tensor i.e. gab = gba, which defines the invariant infinitesimal

1Note that Latin indices are abstract while Greek indices are concrete taking values µ = 0, 1, 2, 3.

7



8 Chapter 2. The covariant description

distance between two spacetime points through

ds2 = gab dxadxb, (2.1.1)

where xa are spacetime coordinates2. The metric determinant, g, is non-singular i.e.
g 6= 0, and hence the inverse of the metric is defined via the identity

gab gbc = δac, (2.1.2)

where δac is the Kronecker delta is given by

δ b
a =

{
+1, a = b

0, a 6= b
, (2.1.3)

and the components of this tensor are the same in all coordinate systems. It follows
from the definition of the inverse that, gab is a second rank tensor. The metric and
its inverse can be used to raise and lower indices of tensors. Assuming the vector
V a and the covector Wa, we can lower and raise the indices using the relations
Va = gabV

b and W a = gabWb .
From the definition of the infinitesimal distance 2.1.1, we see that it can take positive,
negative or zero values. Therefore, the vectors can be characterized as spacelike if
gab V

aV b > 0, as timelike if gabV aV b < 0, and as null if gabV aV b = 0. The integral
curves of vectors are characterized as spacelike, timelike or null according to the
vectors. Timelike curves can be parametrised by proper time τ which is related to
the infinitesimal distance ds2 through3

dτ 2 = −ds2. (2.1.4)

The tangent vector to an observer’s timelike curve, i.e. the observer’s worldline

ua =
dxa

dτ
, (2.1.5)

is the observer’s 4-velocity. Using equations (2.1.1) and (2.1.5) it follows that uaua =

−1. The 4-velocity introduces a split of spacetime into space and time. Contracting
a tensor index with the 4−velocity projects this tensor along the 4-velocity and

2Note that indices that appear twice (one upstairs and one downstairs) are contracted. This
operation implies summation over the range of indices through VaW

a = VµW
µ = V0W

0+V1W
1+

V2W
2 + V3W

3

3We use geometrised units i.e. c = G = 1. This means that all quantities have units that are
integer powers of length.



2.1. Spacetime concepts 9

therefore we obtain a temporal component of the tensor with respect to the observer.
We can also project tensors on the observer’ s instantaneous rest space, which is
orthogonal to the 4-velocity, using the projector tensor hab, a symmetric tensor
defined through

hab = gab + uaub. (2.1.6)

Quantities which are obtained by contraction with hab are referred to as spatial. It
follows from the definition above that habu

b = 0, h a
a = 3 and habh

b
c = hac. The

projection tensor also serves as the metric of the observer’s local 3 dimensional co-
moving frame. The decomposition of tensors using the 4-velocity and the projection
tensor, are given for a vector V a through

V a = δabV
b

= −uaubV
b + ha

bV
b

= V ‖ua + V a
⊥ ,

(2.1.7)

where V ‖ = −V aua and V a
⊥ = ha

bV
b. The formula is generalised for any tensor by

multiplying all indices by the Kronecker delta and then using equation (2.1.6) to
calculate the projected components.

We also introduce the Levi-Civita tensor εabcd, a totally antisymmetric tensor. In a
coordinate system xµ, the components of this tensor are defined through

εµνσρ =
√
−g [µνσρ] , (2.1.8)

where

[µνσρ] =


+1, µνσρ is an even permutation of 0123
−1, µνσρ is an odd permutation of 0123
0, otherwise

, (2.1.9)

is the totally antisymmetric symbol with [0123] = 1. The Levi-Civita tensor with
all indices up can be defined in two ways. Either by using the formula

εabcdε
abcd = 4!, (2.1.10)

which implies that the components in the coordinate system xµ are

εµνσρ =
1√
−g

[µνσρ], (2.1.11)
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or by raising the indices with the metric tensor

εabcd = gaegbfgcggdhεefgh, (2.1.12)

which implies that
εabcdε

abcd = −4!, (2.1.13)

or in general,
εabcdε

efgh = −4!δ e
[a δ

f
b δ g

c δ h
d] , (2.1.14)

which means that the components of the Levi-Civita tensor in the coordinate system
xµ with indices upstairs is related to the totally antisymmetric symbol through

εµνσρ = − 1√
−g

[µνσρ]. (2.1.15)

The difference in sign between equations (2.1.11) and (2.1.15) arises due to the indef-
initeness of the Lorentzian metric we use in general relativity. Here, as in most of
the literature we use equation (2.1.15).
We also define the three dimensional Levi-Civita tensor by contracting the four
dimensional Levi-Civita tensor with the observer’s 4-velocity ua. This leads to

εabc = udεdabc. (2.1.16)

We also have εabcu
c = 0 which follows from the total antisymmetry of εabcd. Addi-

tionally, the four dimensional Levi-Civita tensor is referred to as the volume form
since it is related to the volume element of spacetime

√
−g.

A key notion of the geometric framework is the generalisation of the partial dif-
ferentiation on a curved spacetime is the covariant derivative ∇a. The covariant
derivative of a tensor T cd...

ab... is defined through

∇mT
cd...

ab... = ∂mT
cd...

ab... − Γe
amT

cd...
eb... − Γe

bmT
cd...

ae... − . . .

+ Γc
emT

ed...
ab... + Γd

emT
ce...

ab... + . . . ,
(2.1.17)

where Γa
bc are the Christoffel symbols of the second kind,symmetric in the two lower

indices, obtained through

Γa
bc =

1

2
gad (∂cgdb + ∂bgdc − ∂dgbc) . (2.1.18)
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The definition above also implies that the metric tensor is constant with respect to
the covariant derivative, that is

∇agbc = 0. (2.1.19)

Furthermore, by applying the decomposition to the covariant derivative of a ten-
sor ∇eT

cd...
ab... we get the time derivative (i.e. the total derivative4 of the tensor

along the worldline of the observer with respect to the proper time [38]) and the
orthogonally projected covariant derivative of the tensor

Ṫ cd...
ab... =

d
dτ

T cd...
ab... = ue∇eT

cd...
ab... , (2.1.20)

and
∇̄eT

cd...
ab... = h f

e ∇fT
cd...

ab... , (2.1.21)

respectively. Various authors [38, 39], use the completely projected version of the
covariant derivative. That is, all free indices are contracted with the projection
tensor. The resulting tensor is a purely spatial quantity. Here, in analogy to the
definition (2.1.20) of the time derivative we contract with the projection tensor only
along the operator index.

We also introduce the Lie derivative, a differential operator that generalises the
notion of the directional derivative on manifolds that may not be flat [40]. The Lie
derivative5 of a tensor T cd...

ab... along the vector V a, denoted as £V T
cd...

ab... is given
by

£V T
cd...

ab... = V e∂eT
cd...

ab...

− T ed...
ab... ∂eV

a − T ce...
ab... ∂eV

a − . . .

+ T cd...
eb... ∂aV

e + T cd...
ae... ∂bV

e + . . . .

(2.1.22)

Since we are using Christoffel symbols that are symmetric in the lower indices the
partial derivatives in the expression above may be substituted with the covariant
derivative.
Tensor quantities obtain different components when expressed in different coordinate
systems. Assuming a coordinate transformation x′µ = x′µ (xν) the components V ρ

4The total derivative mentioned here is the directional derivative of vector calculus, see [37].
5Many authors show the Lie derivative as (£V T )

cd...
ab... in order to indicate the fact that the

indices refer to the operator as a whole rather than just to the differentiated tensor. This practise
is used for the covariant derivative as well. In this work, although we do not follow this practise,
we mean in both cases that the tensor rank refers to the whole tensor (i.e. the differential operator
and the differentiated quantity)
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of a vector in the coordinate system xµ transform to the components V ′ρ through

V ′ρ =
∂x′ρ

∂xν
V ν , (2.1.23)

while for the components of the covector Wρ in the coordinate system xµ transform
to W ′

ρ through

V ′
ρ =

∂xν

∂x′ρVν . (2.1.24)

The transformation rules above hold for the components of any tensor. The upstairs
indices transform through equation (2.1.23) while the downstairs indices transform
according to equation (2.1.24). Extensive discussion on the concepts introduced in
this section may be found in [41, 42, 43, 44, 45, 46].

2.2 Eulerian and Lagrangian variations

Here we will briefly present the notion of Eulerian and Lagrangian variations [47, 48].
As shown in the following sections variations are employed to obtain the equations
of motion of the various physical systems we consider. Variations are also used to
linearise the differential equations governing a system in order to perform a stability
analysis.
Assuming a coordinate system xµ and a scalar field φ(xµ) the value of the field at a
point xµ

0 is φ(xµ
0). Let xµ

1 be a point infinitesimally close to xµ
0 such that

xµ
1 = xµ

0 + δxµ, (2.2.1)

where δxµ is the displacement between the two points. We calculate the value of the
field at xµ

1 in two ways. The first way is to take a first order Taylor approximation
around xµ

0

φ(xµ
1) = φ(xµ

0) +
∂φ

∂xµ

∣∣∣∣
xµ=xµ

0

δxµ. (2.2.2)

The second way is to assume that the value of the field at xµ
1 , i.e. φ′ is related to

the value at the initial point through

φ′(xµ
1) = φ(xµ

0) + ∆φ(xµ
0), (2.2.3)
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where ∆φ denotes the difference between the quantities. Subtracting equation
(2.2.2) from equation (2.2.3) we get

φ′(xµ
1)− φ(xµ

1) = ∆φ(xµ
0)−

∂φ

∂xµ

∣∣∣∣
xµ=xµ

0

δxµ. (2.2.4)

Setting6 φ′(xµ
1)−φ(xµ

1) ≡ δφ and noting that the second term of the right hand side
of equation (2.2.4) is the Lie derivative of the field φ along the vector field ξa, with
components given by ξµ ≡ δxµ, the preceding equation becomes

∆φ = δφ+ £ξφ. (2.2.5)

In equation (2.2.5), δφ is the Eulerian variation, representing the change of the
field at a specific point while ∆φ is the Lagrangian variation which shows the total
change of the field between two points infinitesimally close, i.e. the change due to
the Eulerian variation plus the amount due to the Lie dragging of the field between
the two points induced by equation (2.2.1).

Note also that the Eulerian variation commutes with the partial differentiation op-
erator ∂a,

δ (∂aφ) = ∂a (δφ) . (2.2.6)

Also, the chain rule of differentiation for composite functions holds for δ in the sense
that

δ (f (V a)) =
∂f

∂V a
δV a, (2.2.7)

where f = f (V a) is some function and V a some vector. The chain rule holds for
the Lagrangian variation and the Lie derivative, as well [40].

2.3 The matter space description

Since we are interested in describing dynamics of media in spacetime we will follow
the matter space description which was initially introduced by Carter in [23, 27]. As
discussed in section 2.1 at each point of an observer’s worldline we can introduce a
3 dimensional rest space orthogonal to the 4-velocity at that point. With respect to

6Here we calculate δφ at xµ
1 while ∆φ and the derivative are calculated at xµ

0 . Assuming that,
to linear order φ′(xµ

1 )− φ(xµ
1 ) = φ′(xµ

0 )− φ(xµ
0 ) we get that δφ(xµ

0 ) = δφ(xµ
1 ).
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an observer the energy-matter content exists in this 3D rest space. Therefore it is
reasonable to introduce a 3D space, the “matter space”, where the material media
exist. As we discuss matter space and spacetime are related, yet matter space can
be treated separately from spacetime. We assume a set of coordinates qA on matter
space with A = 1, 2, 3 (since matter space is 3 dimensional).
We assume that these coordinates are related to the spacetime coordinates xa

through a continuous map q such that

q : xa 7→ qA(xa). (2.3.1)

This map is not invertible and this fact has the following implication: Consider a
spacetime point which lies on a worldline of an observer. This point, according to
the map above, is mapped to a point on matter space. However, the contrary does
not hold. A point on matter space is not mapped to a specific point on spacetime,
since the map (2.3.1) is not invertible, but is rather mapped to any point of the ob-
server’s worldline. An extensive discussion of the rigorous mathematical framework
on matter space may be found in [23, 27]. We denote the quantities of matter space
using capital letter indices, and these quantities are considered to be scalars with
respect to spacetime. In this section, we assume for simplicity that the medium
consists of a single component. In the general case of many components there are
as many matter spaces and related matter space coordinate systems as the number
of components. The transformation between spacetime and matter space tensors is
performed by the Jacobian of the map (2.3.1), i.e. by the partial derivatives of the
matter space coordinates with respect to spacetime coordinates, given by

e A
a =

∂qA

∂xa
= ∂aq

A = ∇aq
A. (2.3.2)

These transformation quantities7 provide a projection of matter space tensors with
indices downstairs SAB... to the respective spatial tensors Sab... in spacetime, through

Sab... = e A
a e B

b . . . SAB.... (2.3.3)

A fundamental quantity, for the description of material media in matter space, is
the number density nABC which represents the density of particles (or continuum
material in general) and in this work is considered to be conserved. The description
where number density is not conserved is provided in [50, 51]. The number den-

7In continuum mechanics these quantities are called “two-point tensors” since they have indices
in both manifolds [49].
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sity is a 3-form8 in matter space (that is, a totally antisymmetric tensor of rank 3
with indices downstairs) and is a function of matter space coordinates only. The
corresponding spacetime quantity nabc is given by

nabc = nABC e A
a e B

b e C
c , (2.3.4)

which is a spacetime 3-form. We can show that this form is closed, that is

∇[dnabc] = 0, (2.3.5)

by applying the covariant derivative to equation (2.3.4) and calculating the totally
antisymmetric part

∇[dnabc] = ∇[d

(
nABCe

A
a e B

b e C
c]

)
=

∂[d (nABC) e
A

a e B
b e C

c] + nABC∇[d

(
e A
a e B

b e C
c]

)
=

∂nABC

∂qD
e D
[d e A

a e B
b e C

c] + nABC∇[d

(
e A
a e B

b e C
c]

)
= 0,

(2.3.6)

where for the first term in the second row we used the chain rule for derivatives after
we substituted the covariant with partial derivative (this substitution is permitted
since matter space quantities are scalars with respect to spacetime). This term van-
ishes because we have considered the antisymmetric part of four projection vectors,
each possessing three components in matter space. In any case, at least two of the
four capital letter indices will be the same (since, as we stated, the material indices
obtain three different values) and thus the term vanishes. For the second term we
work as follows: Since the expression is totally antisymmetric and the Christoffel
symbols, as given in equation (2.1.18), are symmetric in the two lower indices the
terms containing the Christoffel symbols vanish and so we can substitute the co-
variant derivative with the partial derivative. Using the definition of the projections
given by equation (2.3.2) and since the partial derivatives commute it is trivial to
show that this term vanishes as well9.
Multiplying and contracting the number density form with the Levi-Civita tensor
we get the number density current

na =
1

3!
εbcda nbcd, (2.3.7)

8For an intuitive geometrical description of differential forms, see [41].
9A similar calculation is shown in Appendix (A.1.4) for the derivation of one of Maxwell equa-

tions. Although the antisymmetric quantity in that case is a 2-form (the Faraday tensor) the
result is the same for the rank 3 totally antisymmetric quantity e A

[a e B
b e C

c] that appears in equa-
tion (2.3.6).
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which describes the material flow in spacetime. The number density current is
conserved in the sense that

∇an
a = 0, (2.3.8)

which is derived after multiplying equation (2.3.5) by the Levi-Civita tensor and
using equation (2.3.7). This implies that equations (2.3.5) and (2.3.8) are equivalent
statements of the conservation condition for the medium.
The number density current can be decomposed as

na = nua, uau
a = −1, (2.3.9)

where n is the scalar number density of the medium and ua the 4-velocity of the
medium. Multiplying this equation by εabcd and contracting the first index we obtain

nabc = nεabc, (2.3.10)

where we used equations (2.3.7) and (A.1.1) for the left hand part and equation
(2.1.16) for the right hand part. This equation has the following implication. If
we consider the matter space 3-form nABC/n and use the transformation (2.3.3) we
have

1

n
nABCe

A
a e B

b e C
c =

1

n
nabc = εabc, (2.3.11)

where we used for the last equality equation (2.3.10). This equation implies that
there is a 3-form in matter space εABC which transformed to spacetime, provides
through equation (2.3.3) the spatial Levi-Civita symbol. This result is anticipated
since in n-dimensions the n-forms differ only by a scalar quantity (see [42] for further
discussion). We proceed with the calculation of the Lie derivative of the matter space
coordinates with respect to the number density current. Using equations (2.3.7) and
(2.3.4) we get

£nq
A = na∂aq

A =
1

3!
nBCD εabcd e A

a e B
b e C

c e D
d = 0. (2.3.12)

The last equality follows, as previously, from the fact that the expression is totally
antisymmetric and matter space indices are 3 dimensional. There will be at least
two projection tensors with same material index and thus the expression vanishes.
Equation (2.3.12) shows that the material coordinates are dragged along the flow
produced by the number density current. Using equation (2.3.9) we can show that
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the projection vectors are orthogonal to the 4-velocity

uae A
a = 0. (2.3.13)

Expressing the Lie derivative, given in equation (2.1.22), of the projection vectors
e A
a along the 4-velocity with partial derivatives we get

£ue
A

a = ub∂b∂aq
A +

(
∂bq

A
)
∂au

b

= ub∂a∂bq
A +

(
∂bq

A
)
∂au

b =

= ∂a
(
ub∂bq

A
)
= 0,

(2.3.14)

which shows that the projection vectors are Lie dragged along the flow of ua, as
well. In the above, we used the commutating property of the partial derivative and
equation (2.3.13). Using the projection vectors it is possible to transform a general
spacetime tensorSab... to matter space through

SAB... = e A
a e B

b . . . Sab.... (2.3.15)

The transformed quantity SAB... though, does not contain any information of the
temporal components of Sab.... This is anticipated since according to equation
(2.3.13) the 4-velocity is orthogonal to the transformation vectors. Applying equa-
tion (2.3.15) to the metric tensor gab (or to hab since only spatial components survive)
we get

hAB = e A
a e B

b gab = e A
a e B

b hab, (2.3.16)

which is a symmetric second rank matter space tensor. The determinant of this
tensor is given by

det
(
hAB

)
=

1

3!
εABCεDEFh

ADhBEhCF , (2.3.17)

and by substituting hAB from equation (2.3.16) we get

det
(
hAB

)
=

1

3!
εABCεDEF e

A
a e D

d gade B
b e E

e gbee C
c e F

f gcf

=
1

3!
εabcε

abc = 1,
(2.3.18)

where we used the transformation (2.3.3) for εABC and equation (A.1.7). Since the
determinant of hAB is non-zero, this matter space tensor has an inverse hAB such
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that
hACh

CB = δ B
A , (2.3.19)

where δ B
A is the matter space Kronecker delta. The tensor hAB can be perceived

as the 3D metric of matter space since it is defined by the transformation of the
spacetime metric.
We may now introduce the vectors e A

a defined through

e a
A = e B

b hABg
ab. (2.3.20)

These vectors are orthogonal to the e A
a covectors which can be seen by substituting

equation (2.3.16) in equation (2.3.19)

hACe
C

a e B
b gab = δ B

A

e b
A e B

b = δ B
A .

(2.3.21)

We can show that the vectors e a
A are orthogonal to ua since

uae
a

A = uae
B

b hABg
ab = ube B

b hAB = 0, (2.3.22)

and additionally they introduce the following transformations between spacetime
and matter space quantities

SAB... = e a
A e b

B . . . Sab..., (2.3.23)

and
Sab... = e a

A e b
B . . . SAB.... (2.3.24)

These transformations provide the freedom of transforming tensors between matter
space and spacetime independently of the their type. It is possible to express the
e A
a co-vectors with respect to the vectors e a

A multiplying both sides of the definition
(2.3.20) by hAB and gab

gabh
ABe a

A = e C
c hACg

acgabh
AB

e B
b = gabh

ABe a
A .

(2.3.25)

Using the transformation (2.3.23) for gab (or hab), provides the matter space metric
with indices downstairs

hAB = e a
A e b

B gab = e a
A e b

B hab, (2.3.26)
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which is directly verified if we multiply by contraction on both sides hBC and use
equations (2.3.21) and (2.3.25). In the same way, substituting the matter space
metric hAB on the right-hand-side of equation (2.3.3) provides hab. Note that sub-
stitution of either the projection tensor or the spacetime metric in equations (2.3.3)
and (2.3.23) provides the same matter space tensor. Using equations (2.3.3) and
(2.3.20) we can show that

e B
a e b

B = e B
a e C

c hBCg
bc = hacg

bc = h b
a . (2.3.27)

From the result above, we see that contraction of tensors e A
a and e b

B with respect
to the matter space indices provides the projection tensor with mixed indices. In
comparison, contracting the spacetime indices of the same quantities, as seen in
equation (2.3.21) yields the matter space Kronecker delta.
We may now define the transformation of mixed tensors between matter space and
spacetime using both covariant and contravariant projection vector quantities via
the relations

S b...
a... = e A

a e b
B . . . S B...

A... , (2.3.28)

and
S B...
A... = e a

A e B
b . . . S b...

a... . (2.3.29)

Finally, using the former of the two transformations for δ B
A yields

h b
a = e A

a e b
B δ B

A = e A
a e b

A , (2.3.30)

which shows that the matter space Kronecker delta is transformed to the spacetime
projection tensor with mixed indices.

2.3.1 Variation of matter space quantities

In this section we demonstrate the Lagrangian and Eulerian variations (see section
2.2) of various quantities which are used for the derivation of the equations of mo-
tion for the medium. By definition, the Lagrangian variation of the matter space
coordinates is zero

∆qA = 0, (2.3.31)
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which, combined with equation (2.2.5) yields

δqA = −ξa∇aq
A, (2.3.32)

The Lagrangian variation of the projection vectors e A
a vanishes as well

∆e A
a = δe A

a + £ξe
A

a = δe A
a + ξb∂be

A
a + e A

b ∂aξ
b

= ∂a
(
δqA
)
+ ξb∂a∂bq

A +
(
∂bq

A
) (

∂aξ
b
)

= ∂a
(
δqA
)
+ ∂a

(
ξb∂bq

A
)
= ∂a∆qA = 0,

(2.3.33)

where we have used equations (2.2.5), (2.2.6) and (2.3.31). For a material tensor
SAB... that is a function of the matter space coordinates we then have

∆SAB... =
∂SAB...

∂qC
∆qC = 0. (2.3.34)

Using equations (2.3.3) and (2.3.33) it is straightforward by direct substitution to
show that the Lagrangian variation of the spacetime projection of SAB... is zero as
well

∆Sab... = 0. (2.3.35)

Furthermore, if a spacetime tensor Sab... has a vanishing Lie derivative along the ma-
terial flow and is orthogonal to the 4-velocity in all indices then it is uniquely related
to a “fixed” material tensor SAB.... The orthogonality to the 4-velocity ensures that
the mapping from matter space to spacetime given by equations (2.3.3) and (2.3.23)
will be one to one. Applying the Lie derivative on both sides of transformation
(2.3.3) and using equation (2.3.14) we obtain

£uSab... = e A
a e B

b . . . £uSAB...

= e A
a e B

b . . . uc∇cSAB...,
(2.3.36)

where the second line follows from the fact that the material tensor SAB... is a scalar
with respect to spacetime. Therefore, the vanishing of the Lie derivative implies that
the time derivative uc∇cSAB... vanishes10 and thus the tensor does not change along
the flow of the 4-velocity. In that sense Sab... is “fixed” or “materially constant”. In
other words, a materially constant tensor is not functionally dependent on proper
time (i.e. does not change along the worldline of the observer) but depends only on

10The vanishing of the Lie derivative could also happen due the orthogonality of some of e A
a to

the uc∇cSAB... term. However, considering the general case that holds for any tensor, the time
derivative has to vanish.
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the material coordinates. The converse, i.e that a matter space tensor depending
only on the matter space coordinates transforms to a Lie derived orthogonal to the
flow spacetime tensor, can be shown by building equation (2.3.36) backwards. In this
case the orthogonality of the spacetime tensor arises from the transformation (2.3.3).
A similar statement for the general case of mixed material and spacetime tensors
will be demonstrated in the next section where we will introduce a generalization of
the Lie derivative.
Using equations (2.2.5) and (2.3.7), the Eulerian variation of the number density
current is

δna = −£ξn
a +∆na = −£ξn

a +∆

(
1

3!
εabcdnbcd

)
= −£ξn

a +
1

3!
(∆nbcd) ε

abcd +
1

3!

(
∆εabcd

)
nbcd

= nb∇bξ
a − ξb∇bn

a − 1

3!
· 1
2
nbcdε

abcdgst∆gst

= nb∇bξ
a − ξb∇bn

a − na

(
∇bξ

b +
1

2
gstδgst

)
,

(2.3.37)

where we have used equations (A.1.9) and (A.1.13) from the Appendix. We see that
the Eulerian variation of the number density current is related to the variation of
the metric tensor as well as the infinitesimal displacement ξa. This result is useful
for the derivation of the equations of motion for the medium [52].

2.4 Carter’s material derivative

In this section, we provide the notion of materially constant tensors with indices
upstairs. This serves as a generalisation of the Lie derived orthogonal spacetime
tensors with indices downstairs of the previous section and was introduced by Bran-
don Carter in [23] and [27]. We start with the Lie derivative and then demonstrate
the derivation of the formula for the material11 derivative for a mixed spacetime
tensor. Our initial assumption is that for a covariant, completely orthogonal tensor
( i.e. Sab...cu

a = Sab...cu
b = . . . = Sab...cu

c = 0), the material derivative, /£, is equal
to the Lie derivative

/£uSab... = £uSab..., (2.4.1)

11 Various authors use the term “convective derivative” instead of “material derivative”.
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which implies that for a scalar the material derivative is

/£uφ = ua∂aφ = ua∇aφ. (2.4.2)

Note that the material derivative is assumed to follow the Leibniz rule of differentia-
tion. As we show, the material derivative provides information about the dynamical
behaviour of quantities on matter space. The vanishing of the material derivative
of a spacetime tensor orthogonal to the 4-velocity, means that the respective mat-
ter space tensor obtained through equation (2.3.29) (we remind the reader that the
orthogonality ensures the mapping between matter space and spacetime is one to
one) is constant along the 4-velocity and vice versa. Intuitively, the Kronecker delta,
which is by definition a constant tensor, should be constant along the 4-velocity as
well. This implies that the projection of the Kronecker delta from matter space to
spacetime (i.e. the quantity h b

a see equation (2.3.30)) should be materially constant

/£uh
b

a = 0. (2.4.3)

We consider the equation above as a requirement for the material derivative and use
it as an assumption in the following calculations. To calculate the material derivative
of a mixed orthogonal tensor we start by working out the material derivative of the
projection tensor hab. The material derivative of the covariant projection tensor hab

is
/£uhab = 2∇(aub) + 2u(au̇b), (2.4.4)

and by using equations (2.4.3) and (2.4.4) we get

/£uh
b

a = /£u

(
hach

cb
)
= hac /£uh

cb + hcb /£uhac

hdahac /£uh
cb = −hdahcb

(
2∇(cua) + 2u(au̇c)

)
/£uh

db = −2∇(dub) − 2u(du̇b).

(2.4.5)

The material derivative of an orthogonal mixed tensor is

/£uS
b...

a... = /£u

(
Sac...h

cb . . .
)
, (2.4.6)

where we used the orthogonal projection tensor to raise the indices. Combining the
above with equation (2.4.5) and applying Leibniz’s rule, we find that

/£uS
b...

a... = uc∇cS
b...

a... + S b...
c... ∇au

c + . . .− S c...
a...

(
∇cu

b − ubu̇c

)
. . . . (2.4.7)
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Therefore, we conclude that the material derivative of an orthogonal mixed tensor is
the Lie derivative for a mixed tensor minus the terms containing the 4-acceleration.
So far we have calculated the material derivative for an orthogonal mixed tensor.
Below we extend the definition so that it is applicable for any mixed spacetime
tensor. To do this we need to employ the tranformation vectors defined in section
2.3. Using equations (2.3.14), (2.4.1), (2.4.3) and (2.3.30) we get

/£uh
b

a = /£u

(
e A
a e b

A

)
= e A

a /£ue
b

A = 0,
(2.4.8)

which implies that the transformation vector is materially constant

/£ue
b

A = 0. (2.4.9)

Additionally, substituting the definition (2.1.6) in equation (2.4.8) yields

/£uh
b

a = /£uδ
b

a − /£uuau
b

= −ua /£uu
b − ub /£uua = 0,

(2.4.10)

and therefore the 4-velocity is materially constant. Using equation (2.4.7) to calcu-
late equation (2.4.9) we get

uc∇ce
a

A − e c
A ∇cu

a − e c
A u̇cu

a = 0

ė a
A = e c

A ∇cu
a + e c

A u̇cu
a,

(2.4.11)

while equation (2.1.22) used with covariant derivatives, implies that

uc∇ce
A

a + e A
c ∇au

c = 0

ė A
a = −e A

c ∇au
c.

(2.4.12)

To obtain the material derivative formula for a general tensor (not necessarily or-
thogonal to the observer’s 4-velocity) we first need to derive an equation similar
to (2.3.29) for a general spacetime tensor. This is possible by considering the pro-
jection vectors (2.3.2) and additionally one more, along the 4-velocity. These four
quantities12 which are denoted with ẽ Â

a (where Â = 0, 1, 2, 3) are defined through

ẽ Â
a = ua, Â = 0, (2.4.13)

12These four tensors are also called “tetrad” since they define a basis of 4 independent vectors
at each point of spacetime [53, 54]. They are also sometimes refered to as “vierbein” or “vielbein”
for the case of n independent vectors.
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ẽ Â
a = e A

a , Â = A = 1, 2, 3 (2.4.14)

and
ẽ a
Â

= ua, Â = 0, (2.4.15)

ẽ a
Â

= e a
A , Â = A = 1, 2, 3. (2.4.16)

Since the 4-velocity is orthogonal to the transformation quantities e A
a and eaA,

equations (2.4.13-2.4.16) satisfy a condition similar to the orthogonality condition
given by equation (2.3.21) as follows

ẽ Â
a ẽ a

B̂
= δ B̂

Â
, Â, B̂ = 1, 2, 3 (2.4.17)

ẽ Â
a ẽ a

B̂
= −δ B̂

Â
, Â = 0 or B̂ = 0. (2.4.18)

The minus sign in equation (2.4.18) arises from the fact that the 4-velocity is a
timelike vector. Using the previous definitions it is possible to rewrite equations
(2.4.11) and (2.4.12) using ẽ a

Â
as

˙̃e a
Â

= ẽ c
Â
∇cu

a + ẽ c
Â
u̇cu

a, (2.4.19)

and
˙̃e Â
a = −ẽ Â

c ∇au
c − ẽ Â

c ucu̇a. (2.4.20)

It is obvious that for Â = 0 we get, in both cases, the 4-acceleration u̇a while for
Â = 1, 2, 3 we get equations (2.4.11, 2.4.12). Note that we have added the term
ucu̇a in equation (2.4.20). This term does not alter equation (2.4.12) since it either
provides an identity for the 4-acceleration, or it vanishes.
We are now in a position to calculate the material derivative for a general spacetime
tensor S b...

a... . We have

/£u

(
S b...
a... ẽ a

Â
ẽ B̂
b . . .

)
= uc∇c

(
S b...
a... ẽ a

Â
ẽ B̂
b . . .

)
/£u

(
S b...
a...

)
ẽ a
Â
ẽ B̂
b . . . = Ṡ b...

a... ẽ a
Â
ẽ B̂
b . . .+ S b...

a...
˙̃e a
Â
ẽ B̂
b . . .

+ S b...
a... ẽ a

Â
˙̃e B̂
b . . . ,

(2.4.21)

where the first line equality follows from equation (2.4.2) since the quantity in the
parentheses is a scalar from the spacetime point of view. Substituting equations
(2.4.19) and (2.4.20) in the right-hand-side of the second line of the equation above
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we get

/£u

(
S b...
a...

)
ẽ a
Â
ẽ B̂
b . . . = Ṡ b...

a... ẽ a
Â
ẽ B̂
b + S b...

a...

(
ẽ c
Â
∇cu

a + ẽ c
Ã
u̇cu

a
)
ẽ B̂
b . . .

+ S b...
a... ẽ a

Â

(
−ẽ B̂

c ∇bu
c − ẽ B̂

c ucu̇b

)
. . .

=
[
Ṡ b...
a... + S b...

c... (∇au
c + u̇au

c) . . .

−S c...
a...

(
∇cu

b + ubu̇c

)
. . .
]
ẽ a
Â
ẽ B̂
b . . . ,

(2.4.22)

where we have interchanged dummy indices a with c, and so finally we get

/£uS
b...

a... = Ṡ b...
a... + S b...

c... (∇au
c + u̇au

c) . . .− S c...
a...

(
∇cu

b + ubu̇c

)
. . . . (2.4.23)

which is the formula for the material derivative of a general spacetime tensor.

The material derivative generalises the Lie derivative in terms of material constancy
according to the following argument, which is similar to the argument of the previ-
ous section. If S b...

a... is an orthogonal tensor with vanishing material derivative then
the respective matter space tensor is materially constant along the worldlines of ua.
This arises, in analogy to equation (2.3.36), from equation (2.4.21). In this case the
projection vectors appearing in the equality are only those of matter space (i.e. e A

a )
and the quantity in the parentheses on the left hand side is the matter space tensor
S B...
A... . Vanishing of the material derivative of the spacetime tensor (i.e the term
/£u

(
S b...
a...

)
ẽ a
Â
ẽ B̂
b . . . in the left hand side) implies that the time derivative of the

respective matter space tensor (i.e. the term uc∇c

(
S b...
a... ẽ a

Â
ẽ B̂
b . . .

)
in right hand

side) is vanishing as well. Considering that the worldlines of ua are parametrised
by the proper time τ then, from the matter space point of view, the matter space
tensor is independent of the proper time and thus it is materially constant (i.e. a
function of the material coordinates qA only).
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CHAPTER 3

Variational principle

Assuming a Lagrangian density which is a function of some scalar, vector or tensor
fields, the action of our system is given by the integral on all spacetime Ω of the
Lagrangian density under consideration

Itot =

∫
Ω

Ltot
√
−g d4x, (3.0.1)

where
√
−g d4x is the invariant volume element at each point on Ω and g is the

determinant of the metric tensor. Ltot is usually decomposed in a sum of Lagrangians
each related to some aspects of the system. In order to obtain the equations of
motion for the fields we demand that the Eulerian variation of the action is zero,
δItot = 0. It follows from equation (3.0.1) that∫

Ω

δ
(
Ltot

√
−g
)

d4x = 0. (3.0.2)

27
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The Euler-Lagrange equtions for a scalar field [55], say φ = φ (xa) described by the
Lagrangian Lφ = Lφ (φ,∇aφ) follow from equation (3.0.2) through∫

Ω

(
∂Lφ

∂φ
δφ+

∂Lφ

∂∇aφ
δ∇aφ

)√
−gd4x = 0∫

Ω

[
∂Lφ

∂φ
δφ−

(
∇a

∂Lφ

∂∇aφ

)
δφ+∇a

(
∂Lφ

∂∇aφ
δφ

)]√
−gd4x = 0,

(3.0.3)

where we used equation (2.2.6) and integrated by parts the second term in the first
line. Also, we have assumed that the independent variables of the Lagrangian are
the scalar field and its gradient ∇aφ. The integral above can be separated into
integrals, namely ∫

Ω

(
∂Lφ

∂φ
−∇a

∂Lφ

∂∇aφ

)
δφ

√
−gd4x (3.0.4)

and ∫
Ω

∇a

(
∂Lφ

∂∇aφ
δφ

)√
−gd4x. (3.0.5)

The latter integral contains the divergence of the varied field. Using the divergence
theorem [49] we transform this integral through∫

Ω

(∇aδV
a)
√
−g d4x =

∫
∂Ω

(δV a)na

√
|h|d3x, (3.0.6)

where δV a =
∂Lφ

∂∇aφ
δφ, ∂Ω denotes the 3-dimensional boundary of Ω, na is normal

to ∂Ω boundary and
√

|h| is the volume element of the boundary. According to
the divergence theorem we may choose any 3-surfaces enclosing Ω. Assuming that
∂Ω extends to infinity and that the variations vanish at infinity, the above integral
vanishes identically. This means, through equation (3.0.3), that the integral (3.0.4)
has to vanish. Assuming that the variation of the action is independent of the
variations of the fields (i.e. δφ in this case) the coefficient of the variation has to
vanish and therefore we get

∂Lφ

∂φ
−∇a

∂Lφ

∂∇aφ
= 0, (3.0.7)

which is the Euler-Lagrange equation for the scalar field φ. This demonstrates the
idea of the variational principle for the simplest case, i.e. that of a scalar field.
Deriving equations for systems described by higher rank tensor fields, as in the
following sections, is straightforward.



3.1. Einstein-Hilbert action 29

3.1 Einstein-Hilbert action

The Einstein-Hilbert action provides the equations of motion for a gravitational field
without sources i.e. those of vacuum spacetime. Starting with the Einstein-Hilbert
Lagrangian

LEH = R, (3.1.1)

where R = Rabg
ab is the Ricci scalar which is the trace of the Ricci tensor Rab, the

variation of the action is ∫
Ω

δ
(
R
√
−g
)

d4x = 0. (3.1.2)

The integrated quantity is varied with respect to the metric tensor with indices
upstairs, which yields

δ
(
R
√
−g
)
=

√
−g
(
gab δRab +Rab δg

ab
)
+Rab g

ab δ(
√
−g). (3.1.3)

In order to calculate the expression above we have to calculate the variations of the
Ricci tensor and the determinant of the metric.

3.1.1 Variation of the metric determinant

The quantity
√
−g being a part of the volume element in equation (3.0.1), will

appear in any Lagrangian under consideration. To derive the variation of
√
−g we

work as follows. The metric determinant g is given by

g =
∑
a

gabi∆
abi , (3.1.4)

where in this equation the summation convention of repeating indices does not hold.
bi denotes a specific index (any of them), while ∆ab is the cofactor matrix of the
metric tensor given by

∆ab = g gab. (3.1.5)

Using equations (3.1.4) and (3.1.5) we get the intermediate result

∂g

∂gab
= g gab, (3.1.6)
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and thus the derivative of
√
−g with respect to the metric is

∂
√
−g

∂gab
=

1

2

√
−ggab. (3.1.7)

It follows that the variation of
√
−g with respect to gab is

δ(
√
−g) =

∂
√
−g

∂gab
δgab =

1

2

√
−ggabδgab. (3.1.8)

Using (2.1.2) and that δ b
a is constant the variation of the metric with indices down-

stairs is related to that with the indices upstairs through

δgab = −gac gbd δg
cd. (3.1.9)

It also follows that the partial derivative of the metric with indices upstairs with
respect to the metric with indices downstairs is

∂gab

∂gcd
= −ga(cgd)b. (3.1.10)

In the following section we proceed with the calculation of the variation of Christof-
fel symbols which is an intermediate step towards calculating the variation of the
Riemann tensor and eventually of the Ricci tensor.

3.1.2 The variation of the Christoffel symbols

Varying the definition (2.1.18) of the Christoffel symbols yields

δΓa
bc =

1

2
δgad (∂cgdb + ∂bgdc − ∂dgbc)

+
1

2
gad (∂cδgdb + ∂bδgdc − ∂dδgbc) ,

(3.1.11)

and by using equations (2.1.18) and (3.1.9), after rearranging terms we get

δΓa
bc =

1

2
gad
(
∂cδgdb + ∂bδgdc − ∂dδgbc − 2Γf

bc δgdf

)
. (3.1.12)

Adding and subtracting 2Γf
cd δgfb and 2Γf

bd δgfc to the previous equation we obtain

δΓa
bc =

1

2
gad (∇cδgbd +∇bδgcd −∇dδgbc) , (3.1.13)



3.1. Einstein-Hilbert action 31

which demonstrates the fact that the variation of the Christoffel symbols is a tensor.

3.1.3 The variation of the Ricci tensor

In order to derive the variation of the Ricci tensor Rab we start with the Riemann
tensor Ra

bcd defined by

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc + Γe

bd Γ
a
ec − Γe

bc Γ
a
ed. (3.1.14)

Working in normal coordinates the Christoffel symbols vanish (Γa
bc = 0) and the

metric tensor is constant (∂cgab = 0) at an arbitrary point P0. Then the Riemann
tensor acquires the following simpler form

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc, (3.1.15)

while the variation is (since δ commutes with the partial differentiation)

δRa
bcd = ∂cδΓ

a
bd − ∂dδΓ

a
bc. (3.1.16)

Now since the variation of the Christoffel symbols is a tensor (see section 3.1.2) and
the partial derivative is equivalent to the covariant derivative in normal coordinates,
we obtain a tensor equation that holds in all coordinate systems

δRa
bcd = ∇cδΓ

a
bd −∇dδΓ

a
bc. (3.1.17)

Contracting a and d we get the variation of the Ricci tensor

δRab = ∇cδΓ
c
ab −∇bδΓ

c
ac, (3.1.18)

which is known as the “Palatini equation”. Substituting this result and equations
(3.1.8), (3.1.9) in (3.1.3) we have

δ
(
R
√
−g
)
= −Rab δgab +

1

2
Rgab δgab +∇c

(
gab δΓc

ab − gac δΓb
ab

)
, (3.1.19)
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and thus equation (3.1.2) obtains the following form∫
Ω

(
1

2
Rgab −Rab

)
δgab

√
−gd4x

+

∫
Ω

∇c

(
gab δΓc

ab − gac δΓb
ab

)√
−gd4x = 0.

(3.1.20)

The second term of the previous equation, using the divergence theorem, vanishes.
Finally, assuming that the integral is independent of the variation of the metric we
obtain the Einstein equations for vacuum spacetime

Gab ≡ Rab − 1

2
Rgab = 0, (3.1.21)

where Gab is the Einstein tensor. Note also that the divergence of the Einstein tensor
vanishes (i.e. ∇aG

ab = 0) due the contracted Bianchi identity [56].
In the following sections we consider systems that contain matter and energy and
therefore we introduce additional terms to the Lagrangian. In those cases the
matter-energy counterpart of the Einstein tensor is the Einstein-Hilbert stress-
energy-momentum tensor1, a symmetric second rank tensor denoted usually by T ab.
This tensor contains all the information about the matter-energy part of the system
under consideration. In this case the Einstein equation becomes

Gab = 8πT ab. (3.1.22)

From the vanishing of the divergence of the Einstein tensor we obtain

∇aT
ab = 0, (3.1.23)

which provides a set of conservation equations for the material part of the system.

3.2 Hydrodynamics of multifluids

Here, following Carter’s formalism [57, 52], we will describe the dynamics of mul-
tifluid media. To do this we will employ the matter space description which was
introduced in section 2.3, generalizing it for many components. We will derive the

1Various authors refer to this tensor as stress-energy or energy-momentum tensor. Here we
use these names interchangeably. Note that in all cases we refer to the Einstein-Hilbert energy
momentum tensor.
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stress-energy-momentum tensor and the equations of motion for a multicomponent
fluid focusing, for the sake of clarity, only on the hydrodynamic part of the medium.
As in the single component case we will introduce the fundamental quantities de-
scribing the medium. To distinguish the various components we introduce additional
indices denoted by the roman letters x, y, z that are evaluated in the range of the
components. For example, in the case of a medium consisting of protons and neu-
trons we will have x, y, z = p, n. The indices of the fluid’s components indices (i.e.
x, y, . . .) are only labels for the fluid species and are shown upstairs or downstairs
interchangeably. In general, other choices for the components of the fluid can be
electrons, other elementary entities which collectively form fluids, or entropy. Fur-
thermore, Einstein summation convention does not hold for the component indices
and so any summation will be shown explicitly. Although entropy is intuitively
more abstract than the other components (which consist of particles and therefore
are pictured more clearly), it is considered, within this formulation, to be a com-
ponent of the medium. Such a consideration is justified since at the lengthscales
that hyrdodynamics apply, the entropy contained in a volume element in spacetime
may be considered as a fluid, similarly to the other components. Furthermore the
inclusion of entropy as a dynamical variable allows to describe systems that exhibit
heat transfer [57].
Assuming that there are as many matter spaces as there are components, the num-
ber density2 form for each component nx

abc will be closed (see equation (2.3.5)).
Following the calculation of section 2.3 the respective number density 4-current for
each component na

x is given by

na
x =

1

3!
εbcdanx

bcd, and nx
abc = εdabcn

d
x, (3.2.1)

and is related to the fluid’s 4-velocity ua
x through

na
x = nxu

a
x, where ua

xu
x
a = −1. (3.2.2)

The 4-velocity of the x component is related to that of an other observer3 ua frame
through

ua
x = γx (u

a + vax) , and γx = (1− vaxv
x
a)

− 1
2 , (3.2.3)

2Although entropy is not characterised by a “number”, contrary to the other material compo-
nents (where e.g. ‘proton number’ makes sense), we refer to nx in all cases as ‘number density’.

3This is an arbitrary observer introduced here to demonstrate the transformation between
frames.
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where vax is the relative spatial velocity between frames ua and ua
x (with uavx

a = 0)
and γx is the Lorentz factor. Following equation (2.3.8) the number density current
is conserved for each component seperately

∇an
a
x = 0. (3.2.4)

The square of na
x is given by n2

x = −na
xn

x
a where we introduced the minus sign

to ensure that it is a positive quantity. In a similar manner, the contraction of
number density currents between different components is given by n2

xy = −na
xn

y
a.

The Eulerian variation of na
x is given by equation (2.3.37)

δna
x = nb

x∇bξ
a
x − ξbx∇bn

a
x − na

x

(
∇bξ

b
x +

1

2
gcdδgcd

)
. (3.2.5)

To describe the medium we assume a Lagrangian density LF which is a function
of n2

x and n2
xy. This implies that the medium is locally isotropic as there are no

preferred directions. The dependence on these invariants implies that we are looking
exclusively into the hydrodynamic part of the medium. Calculating variations with
respect to the number density currents we obtain the equations of motion for the
fluids and with respect to the metric tensor we obtain the energy momentum tensor
of the medium. The variation of LF

√
−g with respect the number density current

and the metric yields

δ(
√
−gLF) =

√
−g
∑

x

∂LF

∂na
x
δna

x +

(
LF

∂
√
−g

∂gab
+
√
−g

∂LF

∂gab

)
δgab, (3.2.6)

and by considering that the Lagrangian is a function of n2
x and n2

xy the previous
result obtains the following form

δ(
√
−gLF) =

√
−g
∑

x

∂LF

∂n2
x

∂n2
x

∂na
x
+
∑
x6=y

∂LF

∂n2
xy

∂n2
xy

∂na
x

 δna
x + LF

∂
√
−g

∂gab
δgab

+
√
−g
∑
x

(
∂LF

∂n2
x

∂n2
x

∂gab
+

1

2

∑
x 6=y

∂LF

∂n2
xy

∂n2
xy

∂gab

)
δgab.

(3.2.7)

The reason behind the 1
2

factor in the coefficient of the metric variation is that
n2

xy = n2
yx and each term should be considered once. Note that the 1

2
factor is not

introduced in the number density current variation, because n2
xy should be taken

into account for each fluid component separately. Since we want to present a general
result valid for multiple equations of state, we have not yet determined the exact
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functional form of LF. It is therefore useful to use the following quantities to denote
the partial derivatives of LF

Bx = −2
∂LF

∂n2
x

and Axy = − ∂LF

∂n2
xy
. (3.2.8)

Using these equations, the variation now reads

δ(
√
−gLF) =

√
−g
∑

x

Bxnx
a +

∑
x6=y

Axyn
y
a

 δna
x +

1

2

√
−gLFg

abδgab

+
√
−g
∑

x

(
1

2
Bxna

xn
b
x +

1

2

∑
x 6=y

Axyna
xn

b
y

)
δgab.

(3.2.9)

The momentum of each fluid component µx
a is defined through

µx
a =

∂L
∂nx

a

, (3.2.10)

where L denotes the Lagrangian of the system under consideration (in the present
section we have L = LF). Therefore the momenta are given by equation (3.2.9)
through

µx
a = Bxnx

a +
∑
x6=y

Axyn
y
a. (3.2.11)

As we can see in the above expression, the momentum for a specific component does
not depend solely on the number density current of that component but there are
additional terms that are related to the rest of the components since they are coupled
through Axy. This relation between the momenta and the number density currents
of other components is known as “entrainment” and shows that the momentum is
not aligned with the respective number density current [58, 59, 57, 60, 61]. Using
the momenta we are able to define a 3rd rank contravariant totally antisymmetric
tensor as we did for na

x

µabc
x = εdabcµx

d. (3.2.12)

Additionally, in the case one of the components is entropy then the related momen-
tum µs is the temperature [52]. Equation (3.2.9) can be written

δ(
√
−gLF) =

√
−g
∑

x

µx
aδn

a
x +

1

2

√
−g

(
LFg

ab +
∑

x

µb
xn

a
x

)
δgab, (3.2.13)
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and by using equation (3.2.5) to substitute δna
x we get

δ(
√
−gLF) =

1

2

√
−g

(
ΨFg

cd +
∑
x

µc
xn

d
x

)
δgcd

+
√
−g
∑

x

(
µx
an

b
x∇bξ

a
x − µx

aξ
b
x∇bn

a
x − µx

an
a
x∇bξ

b
x
)
.

(3.2.14)

In the above expression, ΨF is the generalized pressure of the multifluid, defined as

ΨF = LF −
∑

x

µx
an

a
x. (3.2.15)

After some manipulation in the last term of equation (3.2.14) (see section A.1.3)
the variation obtains the final form

δ(
√
−gLF) =

1

2

√
−g

(
ΨFg

cd +
∑
x

µc
xn

d
x

)
δgcd

+
√
−g
∑

x

(−fx
a ξ

a
x) +

∑
x

∇b

(
1

2
µbef

x nx
efaξ

a
x

)
,

(3.2.16)

where fx
a is the force density for component {x} given by

fx
a = nb

xω
x
ba, (3.2.17)

and ωx
ab is the vorticity of component {x}, a second rank, covariant, totally antisym-

metric tensor
ωx
ab = 2∇[aµ

x
b]. (3.2.18)

Assuming that the variation of the Lagrangian is independent of ξax , and noting that
ξax are independent variables, the equations of motion for each species is given by

fx
a = 0. (3.2.19)

The stress-energy-momentum tensor T ab for a Lagrangian density L is obtained by
varying the Lagrangian with respect to the metric and is given by

T abδgab =
2√
−g

δ
(√

−gL
)
. (3.2.20)
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For the system under consideration the above expression appears in the first term
in equation (3.2.16) and the respective tensor T ab

F is

T ab
F = ΨFg

ab +
∑

x

µa
xn

b
x. (3.2.21)

Finally, the last term of equation (3.2.16) is a divergence containing the infinitesimal
displacements ξax and by transforming that part to a surface integral it will vanish,
according to the divergence theorem (see eq. (3.0.6)).

3.2.1 The case of a two-constituent single fluid

A special case of the multifluids discussed in the previous section is a single fluid
with two components. Since there are two constituents, the Lagrangian is a function
of the two number densities nx, where in this case x = {i, s} are assumed to be ions
and entropy. The fact that this is a single fluid means it is characterised by a single
4-velocity which is tangent to the worldlines of the medium’s particles. Therefore
the number density currents are given by

na
i = niu

a
i , (3.2.22)

and
na

s = nsu
a
i , (3.2.23)

where ua
i is the fluid’s 4-velocity (with ua

i u
i
a = −1) and ni, ns are the ion number

density and entropy number density, respectively. As in the previous section we have
n2

x = −na
xn

x
a and the conservation of number density currents, given by equation

(3.2.4). Additionally, since this fluid is characterised by a single 4-velocity we have
only one matter space. There is only one infinitesimal displacement ξa, and the
variation on the number density current is given instead of equation (3.2.5) is given
by

δna
x = nb

x∇bξ
a − ξb∇bn

a
x − na

x

(
∇bξ

b +
1

2
gcdδgcd

)
. (3.2.24)

In this case since the two number density currents are aligned (parallel to ua) there
is no entrainment. Thus, the momenta using equation (3.2.10) are given by

µx
a = Bxnx

a (3.2.25)
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where Bx is given by equation (3.2.8). The generalised pressure ΨF is given by
equation (3.2.15). The variation of the Lagrangian for the two-constituent fluid is
given by

δ(
√
−gLF) =

1

2

√
−g

(
ΨFg

cd +
∑
x

µc
xn

d
x

)
δgcd

+
√
−g
∑

x

(−fx
a ξ

a) +
∑

x

∇b

(
1

2
µbef

x nx
efaξ

a

)
.

(3.2.26)

As in the previous section the last term vanishes, while the first term is the Einstein-
Hilbert energy momentum tensor of the fluid given by equation (3.2.21). The second
term, provides the equation of motion for the fluid. The fa

x is related to vorticity
through equation (3.2.17) and the vorticity in turn is given by equation (3.2.18).
Here we have only one equation of motion, given by∑

x

fx
a = 0, (3.2.27)

since, as we mentioned before, there is only one ξa.
It also worth mentioning the following aspect of the two-constituent single fluid.
Combining the number density currents conservation given by equation (3.2.4) for
ni and ns we get

−∇au
a =

ṅi

ni
=

ṅs

ns
. (3.2.28)

It follows that
ṅi

ni
=

ṅs

ns

ua
i ∇a (logni) = ua

i ∇a (logns)

ua
i ∇a

(
log ns

ni

)
= 0

ua
i ∇a

ns

ni
= 0,

(3.2.29)

which means that the ratio ns
ni

is conserved along the fluid worldlines. The number
densities are physical quantities divided by volume, ni is ion particle number per
volume and ns is entropy per volume. It follows, the previously mentioned ratio is
entropy per particle number, which is also referred to as specific entropy4 [48, 62].

4The definition here of specific entropy is different from the bibliography by a constant mul-
tiplicative factor, which is the fixed rest mass per baryon. Nevertheless, this difference does not
alter equation (3.2.29).
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The conservation of specific entropy Σ along ua
i

ua
i ∇aΣ = 0, (3.2.30)

is referred to as the “adiabatic” [62, 41] or sometimes “isentropic” condition [48]. In
this thesis we will use the former.

3.3 Electromagnetism

In this section we will look into electromagnetism. We will first discuss linear me-
dia, describing the classical vacuum as the simplest case of a linear medium, the
isotropic media, and media with spontaneous excitation. We will also investigate
electromagnetism in non-linear media, by describing a general Lagrangian used in
quantum electrodynamics as a simple isotropic model of a non-linear medium. We
also we the material derivative to provide an expression for non-linear media that
resembles the respective of the linear case. Subsequently, we discuss the coupling
between electromagnetism and matter and how the electromagnetic and material
properties of a medium relate.

3.3.1 Electromagnetism in linear media

The electromagnetic field is described by the Faraday tensor Fab an antisymmetric
second rank tensor which is related to the 4-vector potential Aa through5

Fab = ∇aAb −∇bAa. (3.3.1)

The Faraday tensor may be defined with partial instead of covariant derivatives
because the Christoffel symbols are symmetric in the lower indices and cancel. The
Lagrangian of electromagnetism in linear media [63], is given by

Llin
EM = −1

8
χabcdFabFcd + jaFAa, (3.3.2)

5As we will show in section 3.3.6 the completely antisymmetric part of the covariant derivative
of Faraday tensor is vanishing. From a geometric point of view this means that the Faraday tensor
is a closed 2-form which implies that (at least) locally it is exact i.e. it may be written in terms of
a non-unique 4-vector as in equation (3.3.1). See [42] for a discussion on closed and exact forms.
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where χabcd is the constitutive tensor which contains the information about the
electrical and magnetic properties of the medium, jaF is the “free 4-current”. This
Lagrangian is linear in the sense that the constitutive tensor is not a function of the
electromagnetic field (i.e. the Faraday tensor or the 4-vector potential). Additionaly
it is described by a sum of two terms, the first is source-free which means that it is
valid in the case where electromagnetic currents are absent while the second takes
into account currents. The currents are closely related to the material part of the
system, since they are moving particles carrying charge. In this section we discuss
only the first term because we would like to focus on the electromagnetic properties
of the medium in the case of absence of source terms. We deal with the currents in
section 3.4.1.
Similarly to the classical (non-covariant) description of electromagnetism in media
[64, 65, 66], we introduce the electromagnetic excitation tensor Hab which is defined
through

Hab = −2
∂LEM

∂Fab

. (3.3.3)

This expression is similar to the definition (3.2.10) of momenta of the previous
section and provides a covariant constitutive relation between Fab and Hab. The
antisymmetry of the Faraday tensor indicates through the definition above that
the excitation tensor is antisymmetric as well. The definition (3.3.3) holds for all
materials, and is not limited to Lagrangians of the form (3.3.2)6. Using the definition
(3.3.3) for the Lagrangian of linear media given in equation (3.3.2) we obtain

Hab =
1

2
χabcdFcd, (3.3.4)

which is the equation where linearity becomes obvious. The excitation tensor is
related linearly to the Faraday tensor through a multiplication factor which is the
constitutive tensor. Combining the definition (3.3.3) and the equaton above we may
write the Lagrangian given in equation (3.3.2) as

Llin
EM = −1

4
HabFab + jaFAa. (3.3.5)

As shown in a following section, writing the Lagrangian of a system using the above
form is possible only in the linear case.
Following the classical description of electromagnetism we introduce an additional
field, the magnetisation-polarisation tensor Mab, that is related to Hab and F ab

6For that reason we use LEM in the definition rather than Llin
EM which implies the linear case.
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through
Hab = F ab +Mab. (3.3.6)

This equation holds for all materials, both linear and non-linear [64, 65, 67, 68] and
can be interpreted in the following way. The excitation tensor will always contain
the linear vacuum part (described by the first term in equation 3.3.6) and a second
part, either linear or non-linear (described by the second term). The magnetisation-
polarisation tensor is also antisymmetric, following from the antisymmetry of F ab

and Hab. Similarly the electromagnetic field the “free” current jaF is related to the
total ja and “bound” jaB currents through

ja = jaF + jaB. (3.3.7)

The term “bound”, as in classical electromagnetism, implies that the current is as-
sembled of a large number of microscopic currents. Each of them is confined to move
in a microscopic region of spacetime according to the properties of medium. Hence,
these microscopic currents do not flow freely in the medium, and from the macro-
scopic point of view their motion collectively appears as a macroscopic current, which
is referred to as the “bound” current. In contrast, the “free” current is free to flow
in the medium on a macroscopic scale and for that reason it is characterised as “free”.

As mentioned at the beginning of section 3.3.1 the constitutive tensor χabcd con-
tains all the information about the electric and magnetic properties of the medium
under consideration. We may obtain the constitutive tensor of the Lagrangian given
in equation (3.3.2) through

χabcd = 2
∂Hab

∂Fcd

= −4
∂2LEM

∂Fab∂Fcd

. (3.3.8)

The equations above as discussed in a subsequent section also serve as definitions
for the non-linear constitutive tensor in non-linear electromagnetic media. We also
have the symmetries

χabcd = −χabdc, (3.3.9)

and
χabcd = −χbacd, (3.3.10)

which arise by the symmetries of Fab and Hab and equation (3.3.8). These two sym-
metries reduce the number of independent components of χabcd to 36. Additionally
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the commutativity of partial differentiation

∂2LEM

∂Fab∂Fcd

=
∂2LEM

∂Fcd∂Fab

, (3.3.11)

in definition (3.3.8) provides the following symmetry

χabcd = χcdab, (3.3.12)

which reduces the independent components of the constitutive tensor to 21 [63].
Following equation (3.3.6) in the case of linear media we may write χabcd as a sum
of two tensors

χabcd = χabcd
0 + ςabcd, (3.3.13)

where χabcd
0 is the constitutive tensor for vacuum given by

χabcd
0 = gacgbd − gadgbc, (3.3.14)

and ςabcd is the susceptibility tensor of the medium which has the same symmetries
as the constitutive tensor. Using equation (3.3.13), equation (3.3.4) becomes

Hab =
1

2
χabcd

0 Fcd +
1

2
ςabcdFcd = F ab +

1

2
ςabcdFcd, (3.3.15)

where for the second equality we used the vacuum constitutive tensor given in equa-
tion (3.3.14). It follows that the magnetisation-polarisation tensor is related to the
Faraday tensor through the linear relation

Mab =
1

2
ςabcdFcd. (3.3.16)

3.3.2 The decomposition of electromagnetic quantities

Here we show the decomposition of the various electromagnetic quantities that have
been introduced are decomposed into temporal and spatial parts. The decomposition
of the Faraday tensor with respect to an observer with 4-velocity ua, into the electric
and magnetic parts is given by

Fab = 2u[aEb] + εabcdu
cBd, (3.3.17)
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where Ea = Fabu
b is the electric field, Ba = −1

2
εabcdub Fcd is the magnetic field. In a

similar way, the excitation tensor decomposes as

Hab = 2u[aDb] + εabcdu
cHd, (3.3.18)

where Da = Habu
b is the electric displacement and Ha = −1

2
εabcdubHcd is called,

since we have already used the name “magnetic field” for Ba, “magnetic intensity”7.
In the same manner the magnetisation-polarisation tensor decomposes as

Mab = 2u[aPb] − εabcdu
cMd, (3.3.19)

where Pa = Mabu
b is the polarisation and Ma = 1

2
εabcdubMcd is the magnetisa-

tion. Note here that there is a different sign in the definition of the magnetisation
compared with the definitions of the magnetic field and Ha field. This sign differ-
ence arises from the fact that equations involving the magnetisation should resemble
the equations as treated in textbooks of classical electromagnetism [64, 65]. Addi-
tionally, all the decomposed fields in equations (3.3.17), (3.3.18), and (3.3.19) are
orthogonal to the observer’s 4-velocity. The orthogonality arises from the antisym-
metry of the tensors Fab, Hab, and Mab respectively.
The 4-currents given in equation (3.3.7) decompose as

jaF = σ̂Fu
a + Ja

F, (3.3.20a)

jaB = σ̂Bu
a + Ja

B, (3.3.20b)

ja = σ̂ua + Ja, (3.3.20c)

where σ̂F = −ua jaF is the ’free’ charge density and Ja
F = ha

b j
b
F is the spatially

projected ’free’ 3-current. The ’bound’ σ̂B, and total σ̂ charge densities and spatially
projected 3-currents are defined in a similar way. It follows from equation (3.3.7),
that the projected 3-currents are related through

Ja = Ja
B + Ja

F, (3.3.21a)

and
σ̂ = σ̂B + σ̂F. (3.3.21b)

7There is an occasional conflict in the names of Ba and Ha due to the fact that the various
scientific communities use different names for the fields. For example in astrophysics Ba is usually
the magnetic field while in experimental material physics the magnetic field is Ha.
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The constitutive tensor is also decomposed into temporal and spatial parts through,

χabcd = 4 u[aEb][cud] + εab eε
cd

mMem + 2εab eX e[cud] + 2u[aYb]eε cd
e , (3.3.22)

where εabc is defined through equation (2.1.16), and Eab is the relativistic electric
permittivity tensor given by

Eac = −χabcdubud, (3.3.23)

Mac is the relativistic inverse magnetic permeability tensor given by

Mac =
1

4
εaefε

c
kmχ

efkm, (3.3.24)

and X ac, Yac are cross-permittivities given by

X ac = −1

2
εaefχ

efcdud, (3.3.25)

and
Yac =

1

2
εcefχ

abefub. (3.3.26)

This decomposition is similar to the decomposition of the Riemann tensor into
“gravito-electric”, “gravito-magnetic” and mixed “gravito-electromagnetic” parts as
discussed in [69]. By contracting one free index of each (3.3.23)-(3.3.26) with the
4-velocity and using properties (3.3.9), (3.3.10), it is obvious to show that these
tensors are orthogonal to ua. Additionally, symmetry (3.3.12) implies that Eab = Eba,
Mab = Mba and Yab = −X ba. Using equation (3.3.22) with (3.3.17) and (3.3.18) we
obtain the decomposition of equation (3.3.4) which provides the relativistic relations
between the electric displacement and magnetic intensity with respect to the electric
and magnetic fields, in a form similar to that of ordinary electromagnetism,

Da = EabEb + YabBb, (3.3.27)

and
Ha = MabBb + X abEb. (3.3.28)

As it can be seen from the last two equations, the linear relation (3.3.4) allows
for possible coupling between the electric and the magnetic field through the cross-
permittivities Yab and X ab.
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Due to the symmetries given by equations (3.3.9), (3.3.10) and (3.3.12) there are
only two non-vanishing and independent traces of the constitutive tensor. These
are χ bad

a and χab
ab. Using equation (3.3.22) the two traces in terms of the projected

tensors are

χ bad
a = Ebd − Ea

au
bud +Ma

ah
bd −Mbd − εaebYaeu

d − εaedYaeu
b, (3.3.29)

where we also used the symmetry of the cross-permittivities Yab = −X ba. The other
trace is given by

χab
ab = 2(Ea

a +Ma
a). (3.3.30)

Note also that there are two scalar invariants of the Faraday tensor, namely I and
K given through

I = 2F abFab = χabcd
0 FabFcd = 4

(
B2 − E2

)
, (3.3.31)

where E2 = EaE
a and B2 = BaB

a, and

K = εabcdFabFcd = 8EaB
a. (3.3.32)

3.3.3 Linear media

In this section we demonstrate specific cases of linear media, namely the classi-
cal vacuum, the case of isotropic media and the case of media with spontaneous
excitation.

3.3.3.1 Classical vacuum

The simplest case of a linear medium is the classical vacuum. The Lagrangian
density is given by

L0
EM = −1

4
F abFab = −1

8
χabcd

0 FabFcd. (3.3.33)

where χabcd
0 is given by equation (3.3.14). As already implied in equation (3.3.15)

the excitation tensor is related to the Faraday tensor through

Hab =
1

2
χabcd

0 Fcd = F ab. (3.3.34)
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Using equations (3.3.23)-(3.3.26) we find that the permittivity and permeability
tensors acquire the trivial form

Eab
0 = hab, (3.3.35)

Mab
0 = hab. (3.3.36)

As was anticipated, since there is no coupling between the electric and magnetic
field in vacuum, the cross-permittivities X ac

0 , Yac
0 vanish. Using equations (3.3.35)

and (3.3.36) we can show that the relations between the Da, Ha and Ea, Ba take
the familiar form

Da = Ea, (3.3.37)

and
Ha = Ba. (3.3.38)

3.3.3.2 Isotropic media

Isotropic media are characterised by the scalar electrical permitivity ε and the scalar
magnetic permeability µ. Using this as starting point along with the form of excita-
tion fields in classical vacuum (which is the simplest isotropic medium) we can work
backwards to obtain the constitutive tensor. For an observer at rest with respect to
isotropic medium we have [64]

Da = εEa, (3.3.39)

and
Ha = µBa, (3.3.40)

where ε and µ are the scalar permittivity and permeability of the medium respec-
tively. Therefore the permittivity and permeability tensors should read

Eab = εhab, (3.3.41)

and
Mab = µhab, (3.3.42)

while the cross-permittivities are zero. It follows that Ea
a = 3ε and Ma

a = 3µ. The
constitutive tensor then, with the respect to the observer at rest, obtains the simple
form

χabcd = 4ε u[ahb][cud] + µ
(
hachbd − hadhbc

)
. (3.3.43)
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The two traces of the constitutive tensor become

χ bad
a = εgbd − 2εubud + 2µhbd, (3.3.44)

and
χab

ab = 6(ε+ µ). (3.3.45)

3.3.3.3 Media with spontaneous excitation field

In the previous sections we discussed linear media which do not possess any spon-
taneous excitation field. This means, as can be seen from equation (3.3.4), that
in order for a medium to have non-zero excitation tensor there has to exist a non-
zero electromagnetic field. In this paragraph we consider media with a spontaneous
excitation field. This means there is a non-zero excitation tensor even if the Fara-
day tensor is vanishing. The spontaneous excitation field is formulated through an
additional term added to the Lagrangian (that shown in equation (3.3.2)) given by

Lsp
EM = −1

2
Hab

0 Fab, (3.3.46)

where Hab
0 is the spontaneous excitation field. The total Lagrangian for linear media

with spontaneous electromagnetic excitation is then given by Llin,Sp
EM = Lsp

EM + Llin
EM.

Using the definition (3.3.3) we get for the excitation tensor the following expression

Hab = Hab
0 +

1

2
χabcdFcd, (3.3.47)

and by decomposing this equation we get additional terms for the spontaneous elec-
tric displacement Da

0 and magnetic intensity Ha
0 in equations (3.3.27) and (3.3.28)

given in this case by
Da = Da

0 + EabEb + YabBb, (3.3.48)

and
Ha = Ha

0 +MabBb + X abEb. (3.3.49)

Pyroelectric media exhibit spontaneous electric displacement [66] and thus are de-
scribed by equation (3.3.48).
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3.3.4 Non-linear Electromagnetic Media

So far we looked into linear media where the theory is well established. In this
section we examine the electromagnetic properties of more general types of media.
The reason we introduce non-linear media is that in some cases, for example in
ferromagnetic materials, equation (3.3.4) does not hold. In these cases the excitation
tensor is related to the Faraday tensor through a non-linear relation and as a result
the constitutive tensor, still defined by (3.3.8), is not constant but a function of
the Faraday tensor. Starting from this point the question to ask is: Does equation
(3.3.5) still hold for a Lagrangian density describing a non-linear medium?
To work our way to the answer we first have to understand what equation (3.3.5)
implies. The source free part of this equation (i.e the part that does not include the
4-current) using definition (3.3.3) is

Llin,f
EM =

1

2

∂Llin,f
EM

∂Fab

Fab. (3.3.50)

This is very similar to the second term (the first term of the series would be the
Lagrangian evaluated at zero Fab) of a Maclaurin series expansion for Llin,f

EM . The
difference is that the partial derivative ∂Llin,f

EM/∂Fab is not evaluated for any spe-
cific value of the Faraday tensor, and there is an extra factor (1

2
) not matching the

Maclaurin series. If this expression was indeed the second term of some approximat-
ing series for the Lagrangian we could assume that it holds exactly for linear media
(since the constitutive tensor is independent of Fab and the Lagrangian is quadratic
in Fab as given by equation (3.3.2)) while it could be a first order approximation for
non-linear media. Thus the generalisation to non-linear media would just be the in-
clusion of higher order terms of the expansion to the desired accuracy. Infinite series
are used in non-linear optics to express the magnetic intensity and electric displace-
ment [67, 68] where the various non-linear effects are incorporated in the various
terms of the expansion. However, in non-linear optics the Lagrangian formulation is
not used and the starting point is the previously mentioned series expansions that
serve as constitutive relations for the magnetic intensity and the electric displace-
ment. In this work, since we are interested in results that arise from first principles,
it is rather inconvenient to use the phenomenological treatment which is the usual
approach in non-linear optics. Moreover, equation (3.3.50) is not trivially gener-
alised to non-linear media (since it is not the largest term of some series expansion).
Therefore, providing here the respective expression for the Lagrangian in the case of
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non-linear media will give us some insight into how to manipulate these media. The
MacLaurin expansion for a general Lagrangian which is a function of the Faraday
tensor is

LEM = LEM(0) +
∂LEM

∂Fab

∣∣∣∣
0

Fab +
1

2!

∂2LEM

∂Fab∂Fcd

∣∣∣∣
0

FabFcd

+
1

3!

∂3LEM

∂Fab∂Fcd∂Fef

∣∣∣∣
0

FabFcdFef − . . . ,

(3.3.51)

Using equation (A.2.40) in Appendix A.2 it follows that any Lagrangian can be
written as a function of the Faraday tensor and the derivatives with respect to the
Faraday tensor as

LEM = L(0) + ∂LEM

∂Fab

Fab −
1

2!

∂2LEM

∂Fab∂Fcd

FabFcd

+
1

3!

∂3LEM

∂Fab∂Fcd∂Fef

FabFcdFef − . . . ,

(3.3.52)

or in compact form as

LEM = LEM(0) +
+∞∑
N=1

(−1)N+1

N !

∂NLEM

∂Fab∂Fcd . . . ∂Fef︸ ︷︷ ︸
N terms

FabFcd . . . Fef︸ ︷︷ ︸
N terms

 . (3.3.53)

In Appendix A.2 we show how the previous formula is derived for a single variable
function. Here we have considered the straightforward generalization of equation
(A.2.40) for tensor fields.8 Equation (3.3.53) is the generalisation of equation (3.3.50)
for non-linear media. We would also like to mention here that equation (3.3.53) can
be used when we prefer to avoid the calculation of the derivatives for specified values
of the variables, in contrast with the Maclaurin series that restricts the derivative at
a specific point. It does require, though, the knowledge of the value of the function
at a specific point. Since we mainly calculate variations of the Lagrangian densities
the term LEM(0) is not important and we will assume that it vanishes.
In the linear case the Lagrangian consists of, as stated previously, one term quadratic
in Fab. In this special case, all terms except the first and second order derivatives in

8The idea behind this generalization, which might seem to contain a logical leap, is that the
Faraday tensor Fab, as any other tensor, using the abstract index notation behaves as a single
variable in the sense that the components do not appear explicitly as independent variables. We
only have the field “F”, and that is similar to having one variable. To give another example where
tensors are treated as a single variable function, we mention the formula for the Taylor expansion
of scalar functions of tensors, which is the same as the formula for single variable scalar functions
(see [70]).
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equation (3.3.51) vanish. As a result, the Lagrangian can be written by just using
the second term multiplied with a constant as shown in equation (3.3.5). Conversely,
if the Lagrangian density is not a quadratic monomial of the Faraday tensor 9 then
there can not be a linear relation between the excitation and Faraday tensor as in
equation (3.3.4) and eventually the Lagrangian cannot be written as in the form of
equation (3.3.5).
In the analysis above we assumed a Lagrangian which is in general a function of Fab

and expanded it in series with respect to that tensor. We could have assumed that
it is a function of the 4-vector potential and performed a similar expansion for it
as well. The reason we did not consider this option is that the 4-vector potential
is assumed in all cases to appear in the Lagrangian only as a source term, in the
form of the second term in the right hand side of equation (3.3.2) . Hence, non-
linearity as treated here is characterized entirely by the functional dependence of
the Lagrangian to the Faraday tensor. Finally, equations (3.3.3) and (3.3.6) imply
that in all cases the Lagrangian of electromagentism is of the form

LEM = L0
EM + LMed, (3.3.54)

and as a consequence the magnetisation-polarisation tensor is defined through

Mab = −2
∂LMed

∂Fab

. (3.3.55)

In the equations above, the LMed part of the Lagrangian contains any terms that
are related to coupling between matter and the electromagnetic field including both
the linear and the non-linear cases.

3.3.4.1 The Quantum Electrodynamics Lagrangian

A simple example model of a non-linear Lagrangian is that of Quantum Electrody-
namics (QED). In the case of extremely intense electromagnetic fields, QED theory
provides corrections [71, 72] to the electromagnetic Lagrangian and as a result it
deviates from that given in equation (3.3.33). In that sense electromagnetism in
vacuum with the QED corrections can be perceived as a non-linear medium. Such
a Lagrangian will in general consist of LEM

0 plus a non-linear correction which we
9In general any Lagrangian that is a monomial power product of the Faraday tensor can be

treated in a way similar to that of the linear case. All these cases fall into the non-linear case
though as we consider that the linear case is strictly that of section 3.3.1.
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denote as LEM
1 . That is

LEM
QED = LEM

0 + LEM
1 . (3.3.56)

Additionally, since the Lagrangian has to be Lorentz invariant [71] it will be a
function of the invariants of the Faraday tensor10 given by equations (3.3.31) and
(3.3.32). We have used the decomposition for the Faraday tensor, given by equation
(3.3.17), to derive the last equalities in terms of the electric and the magnetic field.
Using the definition of the excitation tensor (3.3.3) and equation (3.3.33) we get

Hab =
1

2
χabcd

0 Fcd − 2

(
∂LEM

1

∂I

∂I

∂Fab

+
∂LEM

1

∂K

∂K

∂Fab

)
. (3.3.57)

The derivatives of the Faraday invariants with respect to the Faraday tensor are
given by

∂I

∂Fab

= 2χabcd
0 Fcd, (3.3.58)

and
∂K

∂Fab

= 2εabcdFcd, (3.3.59)

and by substituting equations (3.3.58) and (3.3.59) in equation (3.3.57) we get

Hab =
1

2
χabcd

0 Fcd − 4

(
∂LEM

1

∂I
χabcd

0 +
∂LEM

1

∂K
εabcd

)
Fcd. (3.3.60)

The respective non-linear constitutive tensor, which is given by equation (3.3.8), is

χabcd
QED = χabcd

0 − 8

[
2
∂2LEM

1

∂I2
χabsp

0 χcdnt
0 FspFnt + 2

∂2LEM
1

∂K2
εabspεcdntFspFnt

+2
∂2LEM

1

∂K∂I

(
χabsp

0 εcdnt + εabspχcdnt
0

)
FspFnt

+
∂LEM

1

∂I
χabcd

0 +
∂LEM

1

∂K
εabcd

]
.

(3.3.61)

We proceed now with the calculation of the non-linear permittivity, permeability
and cross-permittivities. Using equations (3.3.23)-(3.3.26) we get

Eab
QED = hab − 8

∂LEM
1

∂I
hab − 64

[
∂2LEM

1

∂I2
EaEb +

∂2LEM
1

∂K2
BaBb

−∂2LEM
1

∂I∂K

(
EaBb +BaEb

)]
,

(3.3.62)

10Note that the classical vacuum part of the Lagrangian L0
EM is a linear function of the I

invariant. L0
EM = − 1

8I
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and

Mab
QED = hab − 8

∂LEM
1

∂I
hab − 64

[
∂2LEM

1

∂I2
BaBb +

∂2LEM
1

∂K2
EaEb

+
∂2LEM

1

∂I∂K

(
EaBb +BaEb

)]
,

(3.3.63)

for the permittivity and permeability. For the cross-permittivities we obtain

X ab
QED = −8

∂LEM
1

∂K
hab + 64

[
∂2LEM

1

∂I2
BaEb − ∂2LEM

1

∂K2
EaBb

+
∂2LEM

1

∂I∂K

(
EaEb −BaBb

)]
,

(3.3.64)

and
Yab

QED = 8
∂LEM

1

∂K
hab − 64

[
∂2LEM

1

∂I2
EaBb − ∂2LEM

1

∂K2
BaEb

+
∂2LEM

1

∂I∂K

(
EaEb −BaBb

)]
.

(3.3.65)

As anticipated, the previous tensors have the symmetries described in section 3.3.2.
In a following section we will use a similar Lagrangian accounting for the material
part as well, to model an isotropic medium with non-linear electromagnetic proper-
ties.

3.3.5 Probing non-linear electromagnetic relations using the
material derivative

The present part is based on the analogy between Carter’s relativistic elasticity and
electromagnetism in matter [23]. Since both phenomena arise in the presence of a
material it makes sense to generalize the linear constitutive relations of electromag-
netism in a way similar to the generalization of general relativistic elasticity. In
all media, the excitation tensor is given, as stated previously, by equation (3.3.3).
Since in the non-linear case there is not a linear relation between the Hab and Fab

we have to generalise equation (3.3.4) so it holds for all cases. In order to obtain a
relation between those quantities we start by assuming that the excitation tensor is
a function of the Faraday tensor. Thus, we have the following relation between the



3.3. Electromagnetism 53

material derivatives of these tensors

/£uHab =
∂Hab

∂Fcd

/£uFcd =
1

2
χ cd
ab /£uFcd, (3.3.66)

where we used equation (3.3.8) to substitute the non-linear constitutive tensor. Of
course this relation should reduce to equation (3.3.4) in the case of the classical
vacuum. Additionally, calculating the derivatives of both sides of equation (3.3.6)
yields

/£uHab = /£uFab + /£uMab

1

2
χ cd
ab /£uFcd =

1

2
χ0 cd
ab /£uFcd +

∂Mab

∂Fcd

/£uFcd

1

2
χ cd
ab /£uFcd =

1

2
χ0 cd
ab /£uFcd +

1

2
ς cd
ab /£uFcd,

(3.3.67)

where we have substituted, in analogy to equation (3.3.8), the definition of the
susceptibility tensor

ς cd
ab = 2

∂Mab

∂Fcd

. (3.3.68)

Equation (3.3.67) implies that for a non-linear medium the constitutive quantities
are still related through

χ cd
ab = χ0 cd

ab + ς cd
ab , (3.3.69)

which is the same as equation (3.3.13). Using equations (3.3.17), (3.3.18) and
(3.3.22) we decompose equation (3.3.66) it into temporal and spatial parts. This
provides us with the following non-linear constitutive relations between the fields
Da, Ha and the electric and magnetic fields

/£uDa = E b
a /£uEb + Yab /£uB

b +ΘYabB
b, (3.3.70)

and
/£uH

a = Ma
b /£uB

b + X ab /£uEb +ΘMa
bB

b −ΘHa, (3.3.71)

where Θ = ∇au
a is the volume expansion expansion scalar which measures the

average separation between close distance observers [73]. It is straightforward to
show that, in absence of coupling between the electric displacement Da and the
magnetic field, as well as between the Ha field and the electric field, these equations
reduce to

/£uDa = E b
a /£uEb, (3.3.72)

and
/£uH

a = Ma
b /£uB

b +Θ
(
Ma

bB
b −Ha

)
. (3.3.73)
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It is interesting that equation (3.3.72) simplifies more than equation (3.3.73), as
the latter contains terms related to Θ. These peculiar terms exist due to the fact
that the 3D volume form εabc is not materially constant along the worldlines of the
4-velocity. The non-linear relations (3.3.70) and (3.3.71) should of course satisfy
equations (3.3.27) and (3.3.28) in the case of a linear material. Substituting the
right-hand-side of the latter in the left-hand-side of the former we get(

/£uE b
a

)
Eb + E b

a /£uEb +
(
/£uYab

)
Bb + Yab /£uB

b

=E b
a /£uEb + Yab /£uB

b +ΘYabB
b,

(3.3.74)

and (
/£uMa

b

)
Bb +Ma

b /£uB
b +
(
/£uX ab

)
Eb + X ab /£uEb =

Ma
b /£uB

b + X ab /£uEb +ΘMa
bB

b −ΘHa,
(3.3.75)

which reduce to (
/£uE b

a

)
Eb +

(
/£uYab −ΘYab

)
Bb = 0, (3.3.76)

for the electric properties of the medium and

(
/£uMa

b

)
Bb +

(
/£uX ab

)
Eb −Θ

(
Ma

bB
b −Ha

)
= 0, (3.3.77)

for the magnetic properties of the medium. These two equations describe the evo-
lution of the decomposed constitutive tensors in terms of the material derivative for
the case of a linear medium. In case the coupling tensors Yab and X ab are zero the
previous equations simplify to

(
/£uE b

a

)
Eb = 0, (3.3.78)

for the electric properties of the medium and

(
/£uMa

b

)
Bb = 0, (3.3.79)

for its magnetic properties. If we assume that the above equations hold for all
electric and magnetic fields we get

/£uE b
a = 0, (3.3.80)

and
/£uMa

b = 0, (3.3.81)



3.3. Electromagnetism 55

for the electric and magnetic properties, respectively. It is straightforward to show
that for the case of classical vacuum equations (3.3.35) and (3.3.36) satisfy the pre-
viously mentioned equations since the projection tensor h b

a is materially constant.

We should mention here the following. In this section we used the material deriva-
tive to produce a relation between the excitation tensor and the Faraday tensor in
analogy with the linear case. By choosing the material derivative for the calcula-
tion, we have ensured that equations (3.3.80) and (3.3.81) are satisfied for the case
of vacuum which provides some additional consistency to the argument. However,
we could have used any other derivative for which the chain rule of differentiation
holds and additionally the differentiated quantity is still a tensor. In these cases
though, we possibly have to make additional assumptions, such that the equations
inferred by that other derivative regarding the linear media –which will be equivalent
to equations (3.3.80) and (3.3.81)– hold.

3.3.6 The Maxwell equations

In this section we will derive the two Maxwell equations in covariant form. The first
Maxwell equation arises from the antisymmetry of the Faraday tensor (see Appendix
A.1.4) and is given by

∇[aFbc] = 0. (3.3.82)

Since we assumed a symmetric Christoffel symbol this equation can be written with
a partial instead of a covariant derivative. The second Maxwell equation, is slightly
more complicated to derive, and arises by varying the Lagrangian with respect to the
vector potential Aa. Following the variational derivation demonstrated in equation
(3.0.7) we assume a Lagrangian11 of the form LEM(Fab, Aa). The variation of this
Lagrangian yields

δLEM =
∂LEM

∂Fab

δFab +
∂LEM

∂Ab

δAb

= 2
∂LEM

∂Fab

δ (∇aAb) +
∂LEM

∂Ab

δAb.

(3.3.83)

11From equation (3.3.1) for the Faraday tensor it follows that the variation with respect to Fab

as an independent field is equivalent to the variation with respect to the gradient of the 4-vector
potential. See [63] for an elaborate discussion on this matter.
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Now, the variation commutes with the covariant derivative (since it is a variation of
the electromagnetic field alone) and so we have

δLEM = 2
∂LEM

∂Fab

∇aδAb +
∂LEM

∂Ab

δAb

=

[
∇a

(
−2

∂LEM

∂Fab

)
+

∂LEM

∂Ab

]
δAb +∇a

(
2
∂LEM

∂Fab

δAb

)
,

(3.3.84)

where the last term is a divergence of a term that contains the variation. This
term vanishes after transformed to a boundary term (see equation (3.0.6)) as was
demonstrated in the beginning of this chapter. Additionally, the variation of the
action (see equation 3.0.2) is independent of the variation of Aa and so the first
term vanishes as well, which means that

∇a

(
−2

∂LEM

∂Fba

)
=

∂LEM

∂Ab

, (3.3.85)

which is the second Maxwell equation. As we have stated previously, we will consider
only cases where the dependence to the vector potential is described by a term of
the form jaFAa. Substituting this function for the source term, and the definition
(3.3.3) of the excitation tensor, we get

∇bH
ab = jaF, (3.3.86)

We find that the “free” current is covariantly conserved

∇aj
a
F = 0, (3.3.87)

which follows by application of the covariant derivative with the free index contracted
on equation (3.3.86). Projecting the Maxwell equations (3.3.82) and (3.3.86) along
and orthogonally to the observer’s 4-velocity we get the general relativistic coun-
terparts of the classical Maxwell equations. Equation (3.3.82) decomposes into the
relativistic Faraday equation

habḂ
b + εabc∇̄bEc = −εacbu̇

cEb +Bc∇̄cua −Ba∇̄cu
c, (3.3.88)

and relativistic Gauss law for the magnetic field

∇̄aBa = −εabcEa∇̄buc, (3.3.89)
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while the second equation (3.3.86) decomposes into the relativistic Ampére law

h b
a Ḋb − εabc∇̄bHc + Ja

F = Db∇̄bua −Da∇̄bub + εabcu̇
bHc, (3.3.90)

and the relativistic Gauss law for the electric displacement

∇̄aDa − σ̂F = εabcHc∇̄aub. (3.3.91)

In the equations above we have moved to the left-hand side the relativistic counter-
parts of the terms existing in classical equations while the right-hand side contains
terms that do not have classical equivalents. These extra terms contain the covariant
derivative of the 4-velocity and are of geometric origin.

3.4 Electromagnetism in multifluid media

Up to this point we have treated fluid dynamics and electromagnetism separately
in order to provide a clear description for both. In this section we combine electro-
magnetism in media with the multifluid description. The idea behind this synthesis
is that the medium, as we discussed in section 3.3, is related to the material part of
the system under consideration. Hence, our task is to present a model that accounts
for both electromagnetic and hydrodynamic phenomena of multifluids.

3.4.1 The Lagrangian source term jaFAa

We will look into the coupling between electromagnetism and matter that arises
from the 4-current. Electromagentic currents consist of moving charged particles
and thus posses both fluid and electromagnetic properties.
We assume that each charged fluid component carries a single, either positive or
negative, unit of charge ( i.e. e or −e). Neutral fluid components such as neutrons
carry zero charge. For each component the unit of charge is shown as qx. For
example, if the system consists of protons and electrons the two components will
be qp = e and qe = −e respectively (if the system consists of neutrons we also have
qn = 0). The free current of each species jaF,x is given by

jaF,x = qxn
a
x, (3.4.1)
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while the total free 4-current is the sum of the above-stated currents

jaF =
∑

x

jaF,x. (3.4.2)

It is apparent through the previous two equations that for a two-component medium
with opposite charges, if na

x = na
y (with x 6= y) then the total free 4-current vanishes.

Additionally, the number density current conservation given by equation (3.2.4)
ensures that jaF is divergent-free

∇aj
a
F = 0. (3.4.3)

We proceed with calculating the variation of the source term given by

Lsrc
EM = jaFAa, (3.4.4)

with respect to na
x and the metric tensor. The variation with respect to the 4-

potential has already been calculated in section 3.3.6 and provides the right-hand
side of the equation (3.3.86). We have

δ
(
Lsrc

EM
√
−g
)
=
∑

x

[
qx
(
δna

xAa

√
−g + na

xAaδ
√
−g
)]

, (3.4.5)

and using equations (3.2.5) and (3.1.8) we obtain the following expression

δ
(
Lsrc

EM
√
−g
)
=

√
−g
∑

x

(
qxAan

b
x∇bξ

a
x − qxAaξ

b
x∇bn

a
x − qxAan

a
x∇bξ

b
x
)
, (3.4.6)

where the last term of equation (3.2.5) cancels with the term which emerges from
the variation of the metric. We have already encountered an expression similar to
that of equation (3.4.6) in section 3.2. Using the same process we finally get for the
variation of the current term

δ
(
Lsrc

EM
√
−g
)
=
√
−g
∑

x

(
2ξaxqxn

b
x∇[aAb]

)
+
√
−g
∑

x

∇b

(
1

2
ξaxn

x
efaε

befcAc

)
.

(3.4.7)

The last term is a vanishing boundary term while the first term contains the parts
of relativistic Lorentz force fL,x

a for each charged component

fL,x
a = qxn

b
xFab, (3.4.8)
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which provides additional terms to the equations of motion (3.2.19) of the medium.
Collectively all these terms constitute the relativistic Lorentz force given by

fL
a =

∑
x

qxn
b
xFab. (3.4.9)

3.4.2 An isotropic non-linear electromagnetic fluid medium

In this section we consider an isotropic, non-linear12 electromagnetic fluid medium.
An example of such a medium can be a part of the neutron star core where matter can
be treated as a multifluid while it may exhibit ferromagnetic behaviour at densities
a few times the nuclear saturation density [31, 30, 32, 33, 74]. Ferromagnetism is
usually treated microscopically since most of the properties related to it require a
quantum description. However, since our treatment is mesoscopic (by this we mean
that the scales are small enough that we can adequately refer to infinitesimal regions,
but not so small that quantum manipulation would be necessary) we will focus on
the non-linear electromagnetic behaviour of ferromagnetic media which appears at
larger scales. In order to do this we assume that the part of the Lagrangian describing
the electromagnetic properties has a similar role to the one describing the fluid in
section 3.2. So, in some sense it is an “equation of state” for the electromagnetic
properties of the medium just as LF is perceived as the equation of state for the
fluid.
We assume that the system is described by a Lagrangian density Lfer which is
a function of the number density currents na

x, the Faraday tensor, the 4-vector
potential and the metric tensor. Additionally, as in sections 3.2 and 3.3.4.1 we
consider the case that the Lagrangian does not explicitly depend on these fields
but to the related scalar invariants in order the Lagrangian to be Lorentz invariant.
Thus, we have

Lfer = L0
EM + Lsrc

EM + LF
(
n2

x, n
2
xy
)
+ LNL

(
I,K, n2

x, n
2
xy, Fxy

)
, (3.4.10)

where the last term is a function of the invariants I,K, n2
x, n

2
xy, Fxy, coupling the

fluid and electromagnetic properties of the medium. The quantity Fxy is an invariant
given by

Fxy = Fabn
a
xn

b
y, (3.4.11)

12The analysis here applies to linear electromagnetic media, as well.
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which by using equation (3.2.3) is decomposed in the frame of ua as

Fxy = γxγy
[
Ea

(
vax − vay

)
+ εabcv

a
xv

b
yB

c
]
. (3.4.12)

This quantity obeys the symmetry Fxy = −Fyx which implies that if x = y then it
vanishes. If the components x, y are comoving then it vanishes as well. Note the
components x, y related to this scalar should carry some charge for the expression
to be meaningful. Neutral components should not be able to interact directly with
the electromagnetic field.
In order to provide the complete set of equations for the system we first have to
manipulate the last in equation (3.4.10). From the definition (3.3.3) we get

Hab =
1

2
χabcd

0 Fcd

− 2

∂LNL

∂I

∂I

∂Fab

+
∂LNL

∂K

∂K

∂Fab

+
1

2

∑
x

∑
x6=y

∂LNL

∂Fxy

∂Fxy

∂Fab

 ,
(3.4.13)

which by using equations (3.3.58) and (3.3.59) and the results of Appendix A.1.5
yield

Hab =
1

2
χabcd

0 Fcd + I χabcd
0 Fcd +K εabcdFcd +

1

2

∑
x

∑
x6=y

Fxy n
[a
x n

b]
x , (3.4.14)

where in the same fashion as in section 3.2 we defined the quantities

I = −4
∂LNL

∂I
, K = −4

∂LNL

∂K
, and Fxy = −2

∂LNL

∂Fxy
, (3.4.15)

that are similar to the quantities defined in equation (3.2.8). To obtain the hy-
drodynamical 4-momenta of the system we calculate the partial derivative of the
Lagrangian with respect to the number density current through

µa
x =

∂Lsrc
EM

∂na
x

+
∂(LF + LNL)

∂n2
x

∂n2
x

∂na
x

+
∑
x 6=y

(
∂(LF + LNL)

∂n2
xy

∂n2
xy

∂na
x
+

∂LNL

∂Fxy

∂Fxy

∂na
x

)
.

(3.4.16)
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where we considered only the terms of equation (3.4.10) that contain non vanishing
quantities. So the previous equation becomes

µx
a = (Bx +Dx)nx

a +
∑
x6=y

[
(Axy + Cxy)ny

a + FxyFabn
b
y
]
+ qxAa, (3.4.17)

The additional term involving Fxy in the previous equation arises from the contri-
bution of Fxy to the momentum. In analogy to section 3.2 Dx and Cxy are given
by

Dx = −2
∂LNL

∂n2
x

and Cxy = −∂LNL

∂n2
xy

. (3.4.18)

Instead of considering two separate terms that contain the hydrodynamical informa-
tion in the Lagrangian we could have assumed only one. In that case the quantities
Bx and Dx as well as Axy and Cxy would have been merged. Following the cal-
culation of section 3.2 regarding the variation with respect to the number density
currents, the equations of motion for component x are given by equation (3.2.19).
The vorticity ωx

ab is calculated by equation (3.2.18) with respect to the momentum
given in equation (3.4.17). That is

2qxn
b
x∇[bAa] + 2nb

x∇[b

[
nx
a] (Bx +Dx)

]
+
∑
x 6=y

2∇[b

[
ny
a] (A

xy + Cxy)
]

+
∑
x6=y

2∇[b

(
Fa]cFxyn

c
y
)
= 0,

(3.4.19)

and by using equations (3.3.1) and (3.3.82) we get

jbF,xFba + 2nb
x∇[b

[
nx
a] (Bx +Dx)

]
+
∑
x6=y

2∇[b

[
ny
a] (A

xy + Cxy)
]

+
∑
x6=y

2F[ac∇b]

(
Fxyn

c
y
)
= 0.

(3.4.20)

Finally, we will consider the variations with respect to the metric tensor in order
to obtain the stress-energy-momentum tensor of the medium, which is given by
equation (3.2.20). Starting by calculating the derivative of Lfer with respect to the
metric we obtain

∂Lfer

∂gab
=
∂Lfer

∂I

∂I

∂gab
+

∂Lfer

∂K

∂K

∂gab

+
∑

x

(
∂Lfer

∂n2
x

∂n2
x

∂gab
+

1

2

∑
x 6=y

∂Lfer

∂n2
xy

∂n2
xy

∂gab
+

∂Lfer

∂Fxy

∂Fxy

∂gab

)
,

(3.4.21)
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which by using the results of appendix A.1.5 we have

∂Lfer

∂gab
=
1

2
F acF b

c +
1

2

∑
x

(Bx +Dx)na
xn

b
x +

∑
x6=y

(Axy + Cxy)na
xn

b
y


+ IF acF b

c +
1

8
KKgab.

(3.4.22)

Note that the Fxy term does not appear as the related derivative vanishes. We
point out that a part of the variation with respect to the metric is given through
the number density current variation in equation (3.2.5). This part corresponds
to the subtracted quantity in the first term in the following equation. The energy
momentum tensor is therefore given by

T ab
fer =

(
Lfer − Lsrc −

∑
x

µx
cn

c
x +

1

4
KK

)
gab + F acF b

c + 2IF acF b
c

+
∑

x

(Bx +Dx)na
xn

b
x +

∑
x6=y

(Axy + Cxy)na
xn

b
y

 .

(3.4.23)

The first term as in section 3.2, corresponds to a generalized pressure of the system
through

Ψfer = Lfer − Lsrc −
∑

x

µx
an

a
x +

1

4
KK. (3.4.24)

We also observe that the coupling of the electric and magnetic field adds a term to the
pressure Ψfer. Note that in both equations (3.4.23) and (3.4.24) we have subtracted
the Lsrc term since, as it was found in section 3.4.1, it does not contribute to the
energy momentum tensor.

3.4.3 The ideal magnetohydrodynamic approximation

In this section we will discuss the ideal magnetohydrodynamic (MHD) approach.
According to the classical (Newtonian) theory the ideal MHD is a simplifying ap-
proximation for the description of plasmas [75, 76] which, among other cases, is
relevant in astrophysical configurations.
Assuming a two fluid plasma consisting of positive ions and negative electrons the
ideal MHD approximation follows, by imposing a set of simplifying assumptions.
The system is described by a single fluid and is perfectly conducting, which means
that the electric field with respect to the observer moving with the fluid vanishes. In
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the following sections, we start from the multifluid perspective and by introducing
a set of approximations we obtain the equations of single fluid ideal MHD, following
[77, 78].

3.4.3.1 Relativistic ideal MHD from the variational principle

To derive the single fluid ideal MHD we start by assuming that the system is de-
scribed by the Lagrangian

LMHD = L0
EM + Lsrc

EM + LF, (3.4.25)

where the first term is given by equation (3.3.33), while the source term for the
electromagnetic field i.e. Lsrc

EM, introduces the 4-current. The fluid term LF (n
2
x) is

discussed in section 3.2 with x = {i, e, s}, i.e. positive ions, electrons and entropy.
We assume that ions and entropy form a single two-constituent fluid in the sense
of section 3.2.1, while the electrons are considered as a separate fluid. We have not
assumed any n2

xy terms and therefore the fluids are not coupled through entrain-
ment. The number density currents for the ions and entropy are given by equations
(3.2.22) and (3.2.23) respectively, while for the electrons is given by equation (3.2.2).
Furthermore, this system is a special case of the one described in section 3.4.2 as we
see by comparing the Lagrangians (3.4.10) and (3.4.25).
As discussed previously the system is descirbed by the following system of equations.
We have the conservation laws for na

i , n
a
s , n

a
e given by equation (3.2.4). Following

the definition (3.2.10) the momenta of the ions and entropy arise from the Lsrc
EM,LF

and LF parts of the Lagrangian respectively, and are given by

µi
a = Biniu

i
a + qiAa, (3.4.26a)

µs
a = Bsnsu

i
a. (3.4.26b)

The momentum of the electrons is given by

µe
a = Beneu

e
a + qeAa, (3.4.27)

and is calculated by the Lsrc
EM,LF terms of the Lagrangian. The equations of motion

for the fluid are then given by

qin
b
i∇[bAa] + nb

i∇[b

(
ni
a] Bi)+ nb

s∇[b

(
ns
a] Bs

)
= 0, (3.4.28)
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for the ion-entropy fluid. Note that the equation above is essentially equation
(3.2.27) with the additional (first) term that accounts for the interaction between the
matter and the electromagnetic field. Similarly the equation of motion for electrons
is

qen
b
e∇[bAa] + nb

e∇[b

(
ne
a] Be

)
= 0. (3.4.29)

Adding the two equation provides a single equation of motion for the system

fL
a + nb

i∇[b

(
ni
a] Bi)+ nb

s∇[b

(
ns
a] Bs

)
+ nb

e∇[b

(
ne
a] Be

)
= 0, (3.4.30)

where fL
a is the Lorentz force, given by equation (3.4.9). We also have the two

Maxwell equations (3.3.82) and (3.3.86). Additionally, the energy momentum tensor
of the system is given by

T ab
MHD =

(
L0

EM + LF −
∑

x

µx
cn

c
x

)
gab + F acF b

c +
∑

x

(
Bxna

xn
b
x
)
. (3.4.31)

As done in the previous sections, we can assign the generalised pressure of the system
as

ΨMHD =

(
L0

EM + LF −
∑

x

µx
cn

c
x

)
. (3.4.32)

It is useful here to separate the purely electromagnetic part from the fluid part of
the energy-momentum tensor. Note that this separation is not always possible13 as
for example in the energy-momentum tensor of section 3.4.2. The fluid part is

T ab
MHD, F =

(
LF −

∑
x

µx
cn

c
x

)
gab +

∑
x

(
Bxna

xn
b
x
)
, (3.4.33)

while the electromagnetic part is

T ab
MHD, EM = L0

EMgab + F acF b
c, (3.4.34)

which is the standard energy-momentum tensor for the vacuum case of the electro-
magnetic field [43]. Obviously, the fluid pressure is

ΨMHD, F =

(
LF −

∑
x

µx
cn

c
x

)
. (3.4.35)

13Actually, this is the subject of the long standing Abraham-Minkowski controversy. For a brief
review see [79] and references therein.
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3.4.3.2 The single fluid approximation of electrons and ions

Up to this point we have not made any assumption for the system other than that
it consists of two fluids and has three components. Our purpose is to describe the
system in a way such that it is characterised by a single fluid with one 4-velocity. For
this reason we consider the following simplifications. We assume an observer with 4-
velocity ua such that the drift velocities (i.e. the velocities of the fluid components
with respect to ua) given in equation (3.2.3) are small compared to the speed of
light. This assumption, though, does not constrain the ua itself, which may still be
relativistic. This ‘low relative-velocity’ assumption implies that the Lorentz factors
are small i.e. that γx ' 1 and that vxvy ' 0, where x, y are any of {i, e, s} and vx is
the magnitude of the drift-velocity vector vax.
Under these assumptions the fluid part of energy momentum tensor is given by

T ab
MHD, F = ΨMHD, Fg

ab + (niµi + nsµs + neµe)u
aub

+ [(niµi + nsµs) v
a
i + neµev

a
e ]u

b +
[
(niµi + nsµs) v

b
i + neµev

b
e
]
ua.

(3.4.36)

Contracting both indices with ua and using equation (3.4.35) we get the fluid energy
density ρMHD, F given by

ρMHD, F = T ab
MHD, Fuaub = −LF. (3.4.37)

The fluid energy-momentum flux qaMHD, F in the frame of ua is given by [38]

qaMHD, F = −ha
cT

cb
MHD, Fub = (niµi + nsµs) v

a
i + neµev

a
e . (3.4.38)

Since in ideal MHD the fluid under consideration is perfect, the fluid energy-momentum
tensor in the frame of ua should only contain the density and the isotropic pressure
terms. To implement this we assume that ua is comoving with the Landau-Lifshitz
frame [80], that is a frame where the above mentioned energy-momentum flux van-
ishes. Therefore, for this observer we have

(niµi + nsµs) v
a
i + neµev

a
e = 0, (3.4.39)

and thus the fluid energy momentum tensor takes the form of a perfect fluid

T ab
MHD, F = ΨMHD, Fg

ab + ρMHD, Fu
aub. (3.4.40)
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with energy density given by equation (3.4.37) and pressure given by (3.4.35). In
ideal MHD the plasma is usually assumed to be locally neutral [76, 75] and therefore
we have ne = ni. Furthermore, we have µi � µe which means that the chemical
potential of ions is much larger than that of electrons. This is a reasonable assump-
tion, when the electrons are not relativistic, as in most astrophysical systems. By
non-relativistic here, we mean that the electrons are not characterised by velocities
at the microscopic scale (i.e. at a scale that is much smaller than the scale of the
fluid element considered in the analysis above) that are comparable to the speed
of light. Additionally, this assumption is in agreement with the Newtonian theory
where the equivalent of the chemical potential is the mass.
Using these assumptions, in equation (3.4.39) we obtain

vai = − neµe

(niµi + nsµs)
vae ' 0, (3.4.41)

where we have used that nsµs > 0. This inequality is justified since the entropy
density ns is positive and the related chemical potential is the absolute temperature,
which is also always positive. The equation above means that the drift velocity of
ions is approximately zero and therefore ua

i ' ua. The 4-current given by equation
(3.4.2) becomes

ja = e ni (v
a
i − vae ) ' −e niv

a
e . (3.4.42)

Furthermore, for the conservation laws of the number density currents of ions and
electrons given by equations (3.2.4) we have

∇a (n
a
i + na

e) ' 2∇a (niu
a)− 1

e
∇aj

a

∇a (n
a
i + na

e) ' ∇a (niu
a) = 0,

(3.4.43)

where we have used the previously mentioned low drift velocity approximation, equa-
tion (3.4.41), we substituted vae from equation (3.4.42) and also used the 4-current
conservation law given by equation (3.3.87). Furthermore, equation (3.4.42) means
that the 4-current is orthogonal to the 4-velocity. This result states that within
the range of our approximations the two conservation laws for the number density
currents of ions and electrons can be approximately substituted by a one. Generally
in multifluid systems, the existence of a frame such that both the energy momentum
tensor and the conservation of number density current are those of a perfect single
fluid, is not guaranteed [77].
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3.4.3.3 The Ohm’s law for perfect conductors

The Ohm’s law for ideal MHD is also referred to as the “perfect conductivity” law for
the following reason. Ohm’s law for an observer moving with an electric conductor
is

J?
a = ςE?

a, (3.4.44)

where J?
a and E?

a are the projected spatial current and electric field with respect to
observer co-moving with the electric conductor and ς is the isotropic scalar electrical
conductivity14. Assuming that ς → +∞, then in order to have a finite current, the
electric field necessarily is zero. Therefore, a medium with “perfect” (i.e. tending
to infinity) conductivity experiences zero electric field.
It is possible to begin with the derivation of the generalised Ohm’s law in relativistic
context and then derive the classical Ohm’s and perfect conductivity laws as simpli-
fying approach [81, 78, 77]. Although, as discussed in [78], this derivation of perfect
conductivity is less straightforward to obtain in relativity than in the Newtonian
context.
In this work, we regard the perfect conductivity law as an assumption of our system
given by

Fabu
b = Ea = 0. (3.4.45)

where ua is the 4-velocity of the Landau-Lifshitz frame introduced in section 3.4.3.2
and Ea is the electric field with respect to that frame. The condition above has the
following implications on the system. Using equations (3.3.33), (3.3.31), (3.4.34)
along with the decomposition of the Faraday tensor (3.3.17) we find that the elec-
tromagnetic part of the energy momentum tensor is given by

T ab
MHD, EM =

1

2
B2gab +B2uaub −BaBb. (3.4.46)

The Faraday and Gauss law for the magnetic field given in equations (3.3.88) and
(3.3.89) become

habḂ
b −Bc∇̄cua +Ba∇̄cu

c = 0, (3.4.47)

and
∇̄aBa = 0. (3.4.48)

14In general conductivity is anisotropic described by a second rank tensor, ς b
a . Here we consider

the case that ς b
a = ςδ b

a
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The Ampére law given by equation (3.3.90) takes the form

Ja = εabcu̇
bBc + εabc∇̄bBc, (3.4.49)

while the relativistic Gauss law for the electric field given by (3.3.91) is

σ̂ = −εabcBc∇̄aub. (3.4.50)

3.4.3.4 The system of equations for single fluid relativistic ideal MHD

In the previous two sections we worked towards the single fluid approximation of
a multifluid and introduced the perfect conductivity law. Here we will complete
the description of the relativistic ideal MHD with the system of equations. The
collective energy-momentum tensor putting together the terms of equations (3.4.40)
and (3.4.46) is given by

T ab
MHD =

(
ΨMHD, F +

1

2
B2

)
gab +

(
ρMHD, F +B2

)
uaub −BaBb. (3.4.51)

Below we derive the conservation equation for ρMHD and the Euler equation of the
fluid. To do so we project equation (3.1.23) along and orthogonally to ua respectively.
Additionally, in the case the electromagnetic part of the energy-momentum tensor
is given by equation (3.4.34) we have (see Appendix section A.1.6 for the derivation)

∇aT
ab
MHD,EM = −Fabj

b, (3.4.52)

where, as mentioned before, the right-hand-side is the relativistic Lorentz force.
We substitute the equation above in the conservation equation (3.1.23) in order to
simplify the latter. It follows that the energy conservation is given by

ρ̇MHD,F +∇au
a (ρMHD,F +ΨMHD,F) = 0. (3.4.53)

This is the equivalent of the Newtonian continuity equation. The Euler equation is
given by

(ρMHD,F +ΨMHD,F)u
b∇bu

a + hab∇bΨMHD,F − εabcJ bBc = 0, (3.4.54)

and is analogous to the Newtonian Euler equation. Substituting the spatial current
Ja from Maxwell equation (3.4.49) and after some manipulation the Euler equation
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takes the form

(ρMHD,F +ΨMHD,F)u
b∇bu

a + hab∇bΨMHD,F +BcB
cub∇bu

a + habBc∇bB
c

−BaBcu
b∇bu

c − ha
bB

c∇cB
b = 0.

(3.4.55)

The evolution of the magnetic field is given by equation (3.4.47), which serves as
the relativistic counterpart of the induction equation. The system of equations is
completed with adiabatic condition (3.2.30). The specific entropy Σ serves as an
equation of state and is assumed to be a function of the fluid energy density ρMHD,F

and the pressure ΨMHD,F. The fact that the specific entropy is a function of both the
pressure and energy density is in agreement with the consideration of section 3.2.1
where the Lagrangian (which serves as an equation of state, as well) is a function
of two independent variables, namely the number density and entropy density. In
that sense we have chosen a different equation of state (namely Σ) but still with two
independent variables (the pressure and the energy density).
The system of equation is now complete. Euler equation and induction equation
have three independent components because they are orthogonal to the 4-velocity.
Therefore we have four equations with eight independent components in total for
eight unknowns, namely three components of the 4-velocity (note that the fourth
component is not independent of the rest due to the uaua = −1 normalisation), three
components of the magnetic field, the fluid energy density and the fluid pressure.
In the following chapter we will use this set of equations in order to look into some
phenomena of ideal MHD, and we will eventually describe the the magnetorotational
instability [36].

Before moving on, it is worth noting that the Gauss law for the magnetic field
given by equation (3.4.48) should be satisfied identically and while the respective
law for the electric field (equation (3.4.50)) indicates a non-zero free-electric charge
of kinematic origin when the right-hand side of the respective equation is not van-
ishing. Also, it is evident we have not used the momentum conservation equation
(3.4.30) but instead we used the relativistic Euler equation (3.4.55) which is equiva-
lent. Additionally, instead of using the conservation law for the approximated single
fluid and the entropy density current given by equations (3.4.43) and (3.2.4) we use
the adiabatic condition (3.2.30). This condition is justified since entropy and ions
are co-moving, as is shown in section 3.2.1.
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CHAPTER 4

Perturbations

In this part we perform a first order perturbation analysis using the geometric optics
approach. This method is a special case of the “WKB” or “WKBJ” approximation,
after the physicists G. Wentzel, H. Kramers, L. Brillouin and mathematician H.
Jeffreys. It is also sometimes called the “two-timing” method [82, 83, 84]. Although
the name “geometric optics” seems to refer to optics, it is used in the context of
wave propagation in general, as well. In this chapter we look into various systems
which are not limited to electromagnetism so we use the method in a broader sense.
Assuming an initial background solution to the system under consideration this
analysis provides some insight into the stability of the system when perturbed.

4.1 The geometric optics approximation

In this section we introduce geometric optics in order to look into linear perturba-
tions. We introduce the notion of “fast” and “slow” quantities and discuss stability
criteria, as well.

71
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4.1.1 Zero and first order terms

To calculate first order perturbations for a system of equations, we assume for any
physical quantity, say V a, a solution of the form

V a = V a
0 + δV a, (4.1.1)

where V a
0 is the background term. We assume that the first order perturbation,

δV a, is given by the formal asymptotic expansion [82]

δV a = δ̄

(
+∞∑
q=0

ε̄qV̄ a
q

)
ei

S
ε̄ , (4.1.2)

where δ̄, ε̄ are small dimensionless book-keeping parameters such that

0 < ε̄ < δ̄ � 1, (4.1.3)

and V̄ a
q are vector coefficients of the expansion1. The expression above may be

written as
δV a = δ̄V̄ aei

S
ε̄ , (4.1.4)

describing a locally plane wave with amplitude V̄ a (which is equal to the term in
the parenthesis in equation (4.1.2)) and phase S. The quantity δ̄ provides a relative
measure between the scale (i.e. magnitude) of the background terms and the scale
of the perturbed terms through

|δV a|
|V a

0 |
∼ δ̄, (4.1.5)

where |V a
0 | and |δV a| are the norms of the respective quantities, while ε̄ measures

how “fast” or “slow” the various quantities of the system are (as we will discuss in
the following section).
Substituting the solution (4.1.1) into the system of equations we get various orders
in terms of powers of δ̄ and ε̄. It follows from inequality (4.1.3) that in descending
magnitude (i.e. from largest to smallest) these are

δ̄0ε̄0 > δ̄1ε̄0 > δ̄0ε̄1 > δ̄1ε̄1 > . . .

> δ̄mε̄m > δ̄m+1ε̄m > δ̄mε̄m+1 > δ̄m+1ε̄m+1 > . . . .
(4.1.6)

1Note that there is no Einstein summation for q.
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Since we are employing the geometric optics approximation, we will consider only
two orders. The “zero order” (i.e. the δ̄0ε0) also referred to as the “background”,
which is assumed to satisfy the system of equations alone, and “first-order” (i.e.
the δ1ε0 terms) also referred to as “perturbed order” or “linearised order”, which
again is assumed to satisfy the system of equations. Higher order terms in ε̄ consist
“post-geometric optics” approximations, while higher orders in δ̄ imply non-linear
perturbations [41, 82, 83].
In the following sections we will focus on the case where the metric is fixed and so
the metric perturbations are vanishing i.e. ḡab = 0. This is usually referred to as the
Cowling approximation. This assumption is valid when the background spacetime
is curved but the origin of curvature is not due to the configuration we examine.
Therefore, perturbing the matter and electromagnetic field under consideration does
not introduce a perturbation in the metric. An example of a physical situation where
this assumption applies is the perturbation of a configuration (possibly a gas-dust
disc) in the proximity of a massive object (a neutron star, for example). We assume
that the curvature and any perturbation of spacetime at a point in the disk induced
by the disk itself is negligible compared to that induced by the presence of the
neutron star. In that sense

|δgab|
|g0

ab|
∼ δ̄2. (4.1.7)

4.1.2 “Fast” and “slow” quantities

In order to be able to describe more complicated configurations, we introduce the
“fast” and “slow” characterisation of the various quantities [82]. Within this formal-
ism all the quantities that appear in our equations are assumed to be either “fast”
or “slow” varying. We assume the existence of coordinates2 xµ such that a “slow”
component (in this coordinate basis) of some quantity is of the form3

V s
µ = V s

µ (ε̄x
ν) . (4.1.8)

2Note that Latin indices are abstract while Greek indices are concrete taking values 0 . . . 3.
3Here we mean that a “slow” quantity is of the funtional form (4.1.8). This statement expressed

with mathematical rigor would read V s
µ = ˜̃Vµ (ε̄x

ν), i.e. that components V s
µ in this specific

coordinate basis have the functional dependence of “slow” functions, namely ˜̃Vµ (ε̄x
ν). Nevertheless

in physics literature the same statement is usually expressed as given in form (4.1.8) i.e. by using
the same symbol in both sides. In order to avoid introducing new symbols in equations (4.1.8),
(4.1.9) and (4.1.10) we use the latter.
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For the components of the “fast” varying quantities (in the same coordinate basis)
we have

V f
µ = V f

µ (x
ν) . (4.1.9)

Although we have used co-vectors as an example, the above formulas are directly
generalised for higher rank tensors. “Slow” quantities have components which are
functions of ε̄xµ while “fast” components do not obey that assumption. By intro-
ducing a coordinate system which satisfies the assumptions above, we are diverting
from the covariant approach which we have followed up to this point. To clarify
things regarding this diversion we discuss the various cases of “slow” quantities and
how they affect the covariance4 of the various quantities.
The “most” covariant (or more precisely, closest to covariance) case is when all com-
ponents (with respect to a coordinate system) of some tensorial quantity is given by
either of the above forms and additionally this happens for a number of coordinate
systems. The reason behind the requirement “for a number of coordinate systems”
(rather than just one coordinate system) where the assumption holds is that it en-
sures (in some sense) the independence of the frame. In the extreme case where the
above forms hold for any coordinate system we have covariance.
In most cases some of the components of the tensorial quantities of the system are
“slow” with respect to some of the coordinates (in a given coordinate system) and
“fast” with respect to the rest coordinates (of the same coordinate system). In such
case a mixed “fast” and “slow” component has the functional form

Vµ = Vµ (ε̄x
ν , xρ) , ν 6= ρ, (4.1.10)

while other components of the same tensorial quantity may have different “slow”
and “fast” dependence with respect to the coordinates. In the following sections we
work in a specific coordinate frame and we make assumptions about the “fast”-ness
and “slow”-ness of the various components of the quantities with respect to each of
the coordinates of the frame. The motivation behind this strategy, as will become
apparent subsequently, is that we try to make contact with the respective Newtonian
calculations which are carried out in specific frames. Additionally, choosing which
components are “fast” and “slow” is basically choosing in a qualitative manner the
background configuration. The only constraint on these choices is that they have to
make sense physically.

Below we discuss the physical intuition behind the notion of “fast” and “slow” de-
4By “covariance” here we refer to the property of tensors being independent of frames.
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pendence as well as some details of the formulation.
If we consider a small region of spacetime (sufficiently small for our linear pertur-
bation analysis to hold but large enough so that the hydrodynamic description is
still valid) then to the orders we are considering here i.e. δ̄0ε0 and δ̄1ε0 the “slow”
components (given by equation (4.1.8)) are assumed to be approximately constant,
while the “fast” components (given by equation (4.1.9)) vary within this region. In
that sense, ε̄ provides a relative measure between the gradients of “slow” and “fast”
quantities. In analogy with equation (4.1.5) we would write

|∂a(“slow”)|
|∂b(“fast”)|

∼ ε̄. (4.1.11)

Looking at the same idea from a different perspective, the “slow” components in-
troduce a lengthscale (and a timescale5) L such that they do not vary significantly
within a region characterised by this scale. Then ε̄ is related to this scale through

1

L
∼ ε̄. (4.1.12)

The “fast” components, on the other hand, will vary within that region. In the
intuitive argument regarding the relation between the scales of the system and ε̄

we have assumed, for simplicity, that the “slow” components are purely “slow” i.e.
have functional form given by equation (4.1.8). If we instead consider components
given by equation (4.1.10) the same argument regarding the lengthscale holds but
only for the coordinates there is an ε̄xb functional dependence.
In general, background quantities (i.e. the quantities which are of zero order in δ̄),
may have either “fast” or “slow” (or mixed given by equation (4.1.10)) components
depending on the specific system under consideration. Meanwhile, the barred quan-
tities (i.e. the first order in δ̄) and the phase S always have only purely “slow”
components (given by equation (4.1.8)).

4.1.2.1 Metric with “slow” components

The components of the metric are one of the three types mentioned above, since
the metric is a background quantity. Nevertheless, there are some implications on
the Christoffel symbols and subsequently on the covariant derivative that are worth
mentioning. The assumption that the background metric components are “slow”,

5Since we use geometrised units the respective timescale, which would be cL, is again L.
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means where the spacetime appears to be almost flat within the region that the
approximation (is valid in the coordinate system we have chosen).
A metric with purely “slow” components with functional dependence given in equa-
tion (4.1.8) implies for the Christoffel symbols, using equation (2.1.18),

Γµ
νρ (ε̄x

κ) =
1

2
gµσ (ε̄xκ) [∂ρgσν (ε̄x

κ) + ∂νgσρ (ε̄x
κ)− ∂σgνρ (ε̄x

κ)]

=
1

2
gµσ (Xκ)

[
∂Xλ

∂xρ

∂gσν (X
κ)

∂Xλ
+

∂Xλ

∂xν

∂gσρ (X
κ)

∂Xλ

−∂Xλ

∂xσ

∂gνρ (X
κ)

∂Xλ

]
=ε̄

1

2
gµσ (Xκ)

[
∂gσν (X

κ)

∂Xρ
+

∂gσρ (X
κ)

∂Xν
− ∂gνρ (X

κ)

∂Xσ

]
=ε̄ Γ̂µ

νρ (X
κ) ,

(4.1.13)

where we have used the coordinate transformation Xa = εxa. Note that, in order
to avoid confusion, ‘∂µ’ denotes partial differentiation with respect to coordinates
xa while partial differentiation with respect to Xa is denoted with ‘ ∂

∂Xa ’. The Γ̂µ
νρ

components are of order unity since partial derivatives of any “slow” component
(given by equation (4.1.8)) with respect to Xa are of order unity. Thus, equation
(4.1.13) yields that the Christoffel symbols with respect to the xa coordinates are
of order ε̄. Equation (3.1.14) then implies that the components of the Riemann
tensor (in xa coordinates) are of the order ε̄2 and that means that the spacetime is
approximately flat.
The components of the covariant derivative (see definition (2.1.17)) of a co-vector is
given by

∇µV
s
ν = ε̄

(
∂V s

ν

∂Xµ
− Γ̂σ

µνV
s
σ

)
, (4.1.14)

where the component V s
ν is “slow” (i.e. having the functional form 4.1.8). For first

order perturbation terms, given in equation (4.1.4), we have

∇µδVν = ε̄

(
∂V̄ν

∂Xµ
− Γ̂σ

µνV̄σ

)
ei

S
ε̄ + ikµδVν , (4.1.15)

where kµ is the 4-wavevector defined through

kµ = ∂µ

(
S

ε̄

)
=

∂S

∂Xµ
, (4.1.16)

which is normal to the constant S surfaces. The 4-wavevector is the 4-dimensional
generalisation of the 3-dimensional wavevector and denotes the direction of the plane
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wave in spacetime. Since the wavevector is a gradient of a scalar, the definition
above for the 4-wavevector is independent of the “slow”-ness or “fast“-ness of the
components of the metric. Additionally, the components of the 4-wavevector are
of order unity since they are partial derivatives with respect to Xa. This implies,
through the approximation (4.1.12), that the wavelength of the plane wave is smaller
than the characteristic lengthscale L. Alternatively stated, there is enough space
for the plane wave to oscillate within L.
Finally, for the “fast” components of a co-vector we have

∇µV
f
ν =

∂V f
ν

∂xµ
− ε̄Γ̂σ

µνV
f
σ. (4.1.17)

From equations (4.1.14) and (4.1.17) we observe that the components of the covariant
derivative of a co-vector, to order ε̄0, is either zero or equal to the partial dif-
ferentiation with the same indices. Additionally, equation (4.1.15) implies that for
a first order perturbation co-vector it is equivalent (again to order ε̄0) to substitute
the operator ∇µ with ikµ. Although we have used co-vectors for the analysis above,
the generalisation to any kind of tensor is straightforward.

4.1.2.2 Metric with mixed “slow” and “fast” components

In the previous section we discussed the case where the metric components have
the functional form (4.1.8). Here we discuss the implications of a metric that may
have some components “slow” with respect to some coordinate(s) of the coordinate
system xa (i.e. the components are of the functional form 4.1.10). In this case only
some of the Christoffel symbols will be of order ε̄, given in equation (4.1.13). The
remaining Christoffel symbols will be of order unity. This consideration, that the
metric has mixed “fast” and “slow” dependence means that we are restricted to a
specifically chosen spacetime. Although some Christoffel symbols are of order unity,
flat spacetime is still a possible choice. This is the case because flat spacetime may
be expressed in coordinate systems, such as the cylindrical polar coordinates, where
some of the Christoffel symbols are not zero.
Therefore, for the Christoffel symbols that are of order unity the components of the
covariant derivative of a co-vector are

∇µV
s
ν = ε̄

∂V s
ν

∂Xµ
− Γσ

µνV
s
σ , (4.1.18)
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where the co-vector component V s
ν has the functional form (4.1.8). The respective

equation when the co-vector component has the functional form (4.1.9) is

∇µV
f
ν =

∂V f
ν

∂xµ
− Γσ

µνV
f
σ. (4.1.19)

Finally a first order perturbation co-vector we have

∇µδVν = ε̄ei
S
ε̄
∂V̄ν

∂Xµ
− Γσ

µνδV̄σ + ikµδVν , (4.1.20)

where the 4-wavevector is given by the definition (4.1.16). The components of the
covariant derivative of a co-vector with components of mixed “slow” and “fast” de-
pendence along the coordinates, i.e. of the form (4.1.10), are given by equations
(4.1.18) or (4.1.19), depending on the “fast” or “slow”-ness of each co-vector com-
ponent along each of the coordinates.
In contrast to the previous section, we find that the components of the covariant
derivative may not be negligible since they contain Christoffel symbols of order unity.
Allowing the metric to have “fast” components has also the following implication.
A tensor quantity, say a vector with the index upstairs, that has all components and
with respect to all coordinates of the coordinate system “slow” (i.e. having the func-
tional form 4.1.8) may have “fast” components with respect to some coordinate(s)
when the index is lowered. This means that we should take into account the type
(i.e. which indices are upstairs and downstairs) of the various tensor quantities when
making the assumptions regarding the “fast” and “slow”-ness of the components.

4.1.3 The causality and stability criteria

In this section we discuss the causality and stability criteria arising by using the
geometric optics method. In the analysis below we consider that the fundamental
observer (in the sense of Chapter 3) is a background quantity and therefore denoted
as ua

0 . The 4-wavevector given by definition (4.1.16) decomposes with respect to this
observer as

ka = k
(
vphu

0
a + k̂a

)
, (4.1.21)

where vph is the phase velocity, k̂a is the spatial (i.e. k̂au
a
0 = 0) unit 3-wavevector

(i.e k̂ak̂a = 1 ), and k is the spatial wavenumber. The vector k⊥
a = h0 b

a kb = kk̂a is
the spatial part of the wavevector that is usually mentioned in textbooks discussing
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wave propagation in optics and acoustics. [85]. The angular frequency of the plane
wave is given by

ω = vph k. (4.1.22)

The 4-wavevector is a spacelike or null vector [41] since it is normal to the S iso-
surfaces which are timelike or null. An S isosurface is timelike or null because,
by definition, it has everywhere the same value and for that reason there should
be a timelike separation between two distinct points on the surface. Conversely,
two points on a phase isosurface have to be causally connected (this is also called
the local causality condition [86]) in order for the surface to have the same value
everywhere. Using equations (4.1.21), (4.1.22), and that ka is spacelike or null i.e.
kak

a ≥ 0 we get the causality criterion

k2 − ω2 ≥ 0

v2ph ≤ 1.
(4.1.23)

When the 4-wavevector is null the wave is propagating with the speed of light. We
see that the phase velocity is less than or equal to the speed of light. This is in
contrast to Newtonian theory where the group velocity is constrained by the speed
of light. The derivation of a relativistic constraint involving the group velocity in
analogy with the Newtonian analysis discussed in [82], requires different considera-
tion of wave propagation and is beyond the scope of this thesis.

In order to provide the stability criterion we first have to explain the next steps
in the perturbation analysis. After considering the assumptions of the previous
sections, we obtain an algebraic system, which is a homogeneous system of lin-
ear equations with perturbation amplitudes serving as variables. The coefficient
matrix of this system contains only background quantities and components of the
4-wavevector. Since the solution of this system should not depend on specific values
of the perturbation amplitudes we demand that the determinant of the coefficient
matrix should be zero. By doing this we obtain the characteristic equation (this is
also referred to as the dispersion relation [87]) ,

P (ω, k, background terms) = 0, (4.1.24)

which is a polynomial that relates the angular frequency, the 3-wavevector and the
rest of the background quantities.
Following the Newtonian theory [87] we consider that the independent variable of the
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characteristic polynomial is the angular frequency ω and that the spatial wavenum-
ber k is real. This latter assumption, as will become obvious later, implies that any
instability we find is an absolute instability. A root of the characteristic polynomial
ωr can be purely real, purely imaginary or complex. In order to get some intuition
of the relation between the type of the root and the linear stability of the system we
work as follows. Assuming that S(ε̄xa) has derivatives in xa of all orders and using
equation (A.2.40) with respect to the Xa = ε̄xa coordinates we get

S(Xa) =S(~0) +
∂S

∂Xb
Xb − 1

2!

∂S

∂XbXc
XbXc +

1

3!

∂S

∂XbXcXd
XbXcXd − . . .

=S(~0) + ε̄
∂S

∂Xb
xb − ε̄2

2!

∂S

∂XbXc
xbxc +

ε̄3

3!

∂S

∂XbXcXd
xbxcxd − . . . ,

(4.1.25)

where ~0 is the origin of the Xa coordinates. Dividing the equation above by ε̄ and
using the definition (4.1.16) we obtain

S (ε̄xa)

ε̄
=
S(~0)

ε̄
+ kbx

b − ε̄

2!

∂kb
∂Xc

xbxc +
ε̄2

3!

∂kb
∂XcXd

xbxcxd − . . . . (4.1.26)

It follows, by keeping terms of order unity and larger, that the exponential part of
the perturbation terms given in equation (4.1.4) can by approximated through

ei
S
ε̄ ≈ c1e

ikaxa

, (4.1.27)

where c1 is a constant which can be neglected6. Although the coordinates xa do
not have the properties of vectors (since they do not transform as vectors), we see
that up to order of unity the exponential part of the perturbation is approximated
by the relativistic analogue of a Newtonian plane wave. Note that, since ka is not
calculated at a specific point, the approximation above holds for any point.
We assume a complex solution of the form ωr = ωRe

r + iωIm
r (where ωRe

r and ωIm
r

are real) for the characteristic polynomial given by equation (4.1.24) and substitute
the decomposition given in equation (4.1.21) in the right-hand-side of the equation
above

exp
[
i
(
ωRe

r uax
a + k⊥

a x
a
)]

exp
[
−ωIm

r (uax
a)
]
, (4.1.28)

where we also used equation (4.1.22) and the assumption that k is real. Since projec-
tion along the 4-velocity provides temporal components of the projected quantities
the right exponential is in some sense the equivalent of the Newtonian e−ωIm

r tNewt

(where tNewt is the Newtonian time). Therefore, the term exp
[
−ωIm

r (uax
a)
]

implies
6The c1 constant appears only in equations of order δ̄1ε̄0 and is multiplied by all terms. There-

fore it can be factored out.



4.1. The geometric optics approximation 81

an exponential growth of the perturbation along the observer’s temporal part of the
coordinates if the exponent is positive and a decay if the exponent is negative. In
most cases the polynomial (4.1.24) has only real coefficients and therefore for every
complex root the respective complex conjugate of the root (i.e. ω†

r = ωRe
r − iωIm

r )
will also be a root [88]. It follows that in order to have a stable solution, that is to
avoid terms of exponential growth, the imaginary part of the angular frequency ωIm

r

has to vanish. This means that for stability the angular frequency should be

ω2 ≥ 0

v2ph ≥ 0,
(4.1.29)

which in turn means that the system is stable when the polynomial given in equation
(4.1.24) has only real roots. The criterion above along with that given by inequality
(4.1.23) constrain the phase velocity through

0 ≤ v2ph ≤ 1. (4.1.30)

In the analysis we did not consider complex spatial wavenumbers. Considering such
would introduce terms of exponential growth or decay along the observer’s spatially
projected part of the coordinates. These kind of instabilities or decays would be the
equivalent of the Newtonian amplifying and evanescent waves [87] and are beyond
the scope of this thesis.
Finally, the instabilities we calculate with this method are local instabilities. This
means that the analysis and the results refer to a small region of spacetime where the
background solution is valid. Nevertheless, this can be any small spacetime region
around any point (of those that satisfy the background solution) and therefore the
results are in some sense holistic.

4.1.4 An intuitive argument regarding the choice of observer

Before we move on there is one more thing to discuss regarding geometric optics
and stability. The introduction of “fast” and “slow” components in specific coor-
dinate systems is frame dependent as discussed in section 4.1.2. A component of
a projected tensor with respect to some observer, say the energy density given in
equation (3.4.37), that is “slow” along some coordinate(s) may not be “slow” if it
is calculated with respect to another observer along the same coordinate(s) (in the
same coordinate system). Thus, the choice of observer matters in the characterisa-
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tion of stability for the system.
In order to avoid unphysical choices of observers we choose the observer co-moving
with the fluid, i.e. the fundamental observer ua

0 (as in section 3.4.3.2). The intuitive
argument behind this consideration is the following. As we discussed in section 2.3
an observer co-moving with the fluid has “attached” a material element along their
worldline which consists of a specific number of particles. Therefore, an instability
with respect to this observer is transferred to the matter space and to the particles
consisting the material element. If instead we choose a different observer (i.e. one
that is not co-moving with the fluid) then the particles along their worldline do not
correspond to conserved material elements in matter space, and thus instabilities
might be related to the specific choice of this (not co-moving) observer.

4.2 A Newtonian interlude

Before proceeding to describe the application of the geometric optics method in a
relativistic context we will derive some well-known results in the Newtonian frame-
work. The reasons for this Newtonian interlude in an otherwise relativistic thesis are
two. Firstly, obtaining already known results provides more insight and understand-
ing of the method. This will help in providing a more accurate interpretation of the
results that we obtain in the relativistic context. Secondly, some of the known results
discussed in the following section are usually derived using different approaches. In
that sense it is interesting to show how to obtain these results using the geometric
optics method.
The covariant expression for the Euler equation of motion for a fluid in the Newto-
nian case contains the covariant derivative of the fluid velocity [40]. In this section
it is possible to assume that the Christoffel symbols will be of order of ε̄ but we
need to use coordinates where this assumption holds. As discussed previously this
assumption will not hold for any coordinate system (e.g. in cylindrical polar co-
ordinates). The following examples are either in Cartesian coordinates where the
Christoffel symbols vanish completely or in cylindrical coordinates where we have
retained the terms of at least the order of unity.
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4.2.1 The Newtonian framework

The results we derive here are either in the context of hydrodynamics or magneto-
hydrodynamics [75]. The equations presented here are the Newtonian versions of
the equation discussed in section 3.4.3.4. The description of a single fluid in the
Newtonian framework employs the continuity equation given by

∂ρ

∂t
+ ρ∇ · v + (v · ∇)ρ = 0, (4.2.1)

where v is the fluid velocity and ρ is the density. We also have the Euler (momentum
conservation) equation

∂v

∂t
+ (v · ∇)v +

1

ρ
∇P +∇Φ+

1

4πρ
B × (∇×B)︸ ︷︷ ︸

MHD Lorentz force

= 0,
(4.2.2)

where Φ is the gravitational potential and B is the magnetic field and P is the
pressure. For a purely hydrodynamical system the MHD Lorentz force (i.e. the
under-braced term) vanishes. In order to describe MHD systems we have to intro-
duce one more equation, the magnetic field induction equation

∂B

∂t
−∇× (v ×B) = 0. (4.2.3)

Additionally, the Gauss law for the magnetic field ∇ ·B = 0 should be identically
satisfied (so that it does not overdetermine the system). Obviously for pure hydro-
dynamic systems this equation is not needed. We also have the adiabatic condition

dΣ

dt
=

∂Σ

∂t
+ (v · ∇)Σ = 0, (4.2.4)

where Σ is the specific entropy. The operator d
dt

is the Newtonian convective deriva-
tive. This equation means that the entropy is conserved along the flow lines which
happens in the case of adiabatic flows. We assume that the entropy is a function of
the pressure and the density

Σ = Σ (P, ρ) , (4.2.5)

that serves as an equation of state for the system. Applying the chain rule of
differentiation to the functional form of the specific entropy (4.2.5) and using the
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adiabatic condition we get

dΣ

dt
= 0

∂Σ

∂P

∣∣∣∣
ρ

dP

dt
+

∂Σ

∂ρ

∣∣∣∣
P

dρ

dt
= 0

dP/dt

dρ/dt
= − ∂Σ/∂ρ|P

∂Σ/∂P |ρ
∂P

∂ρ

∣∣∣∣
Σ

= − ∂Σ/∂ρ|P
∂Σ/∂P |ρ

.

(4.2.6)

The speed of sound is defined through

c2s =
∂P

∂ρ

∣∣∣∣
Σ

, (4.2.7)

and describes the speed of propagation for acoustic perturbations [62]. Using this
definition for speed of sound, equation (4.2.4) in terms of P and ρ becomes

∂P

∂t
+ (v · ∇)P − c2s

[
∂ρ

∂t
+ (v · ∇)ρ

]
= 0. (4.2.8)

4.2.2 Linear perturbations (Newtonian framework)

The linear perturbations in the Newtonian frame are formulated similarly to the
relativistic case, discussed in section 4.1. We substitute all quantities of the system
using equation (4.1.1). As previously mentioned, we assume that components of all
first order perturbation amplitudes are “slow”. Additionally, we assume that the
perturbation of the gravitational potential is zero (δΦ = 0). The components of
the background quantities are either “slow” or “fast” according to the system under
consideration. The phase of the plane wave is given by

S = ε(k · r − ωt), (4.2.9)

where k is the wavevector, r is the position vector, ω the frequency and t the time.
Following equation (4.1.4) and since the perturbations amplitudes of the various
quantities are “slow” (as discussed in section 4.1.2), the perturbation of the fluid
velocity is given by

δv = δ̄v̄ (ε̄t, ε̄r) ei
S
ε̄ . (4.2.10)



4.2. A Newtonian interlude 85

The perturbations of the pressure and density and entropy are given by equivalent
expressions through

δρ = δ̄ρ̄ (ε̄t, ε̄r) ei
S
ε̄ , (4.2.11)

and
δP = δ̄P̄ (ε̄t, ε̄r) ei

S
ε̄ . (4.2.12)

Finally, the perturbation of the background magnetic field is given by

δB = δ̄B̄ (ε̄t, ε̄r) ei
S
ε̄ . (4.2.13)

The background terms (i.e. those of order δ̄0ε̄0) of the system are given by equations
(4.2.1)-(4.2.5) with the various quantities considered only in the δ̄0 order7. Keeping
terms of order δ̄1ε̄0 in the general case where all background quantities are “slow”,
the continuity equation (4.2.1) yields

−iωρ̄+ ρ̄ (∇ · v0) + iρ0 (k · v̄) + i (v0 · k) ρ̄+ v̄ · ∇ρ0 = 0. (4.2.14)

Similarly, the Euler equation (4.2.2) obtains the following form

− iωv̄ + (v̄ · ∇)v0 + i (v0 · k) v̄ + (v0 · ∇) v̄ − ρ̄

ρ20
∇P0 + i

k

ρ0
P̄

− ρ̄

4πρ20
B0 × (∇×B0) +

1

4πρ0
B̄ × (∇×B0) +

1

4πρ0
B0 ×

(
∇× B̄

)
︸ ︷︷ ︸

Perturbed MHD Lorentz force terms

= 0.
(4.2.15)

The perturbed induction equation is

−iωB̄ + B̄ (∇ · v0) + iB0 (k · v̄)−
(
B̄ · ∇

)
v0 − (B0 · ∇) v̄ + (v0 · ∇) B̄ = 0.

(4.2.16)

Using the chain rule of differentiation the perturbation of equation (4.2.5) provides
a relation between the perturbation of the entropy and the perturbations of pressure
and density

δΣ =
∂Σ0

∂P

∣∣∣∣
ρ0

δP +
∂Σ0

∂ρ

∣∣∣∣
P0

δρ

Σ̄ =
∂Σ0

∂P

∣∣∣∣
ρ0

P̄ +
∂Σ0

∂ρ

∣∣∣∣
P0

ρ̄.

(4.2.17)

7The background is basically equations (4.2.1)-(4.2.5) with all quantities subscripted zero
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In the equation above the partial derivatives are calculated at the values of the
background. This is justified because the specific entropy, a dependent variable of
the system, may have different perturbation values for different background values
of pressure and density. The perturbation of entropy conservation is given by

− iωΣ̄ + v̄ · ∇Σ0 + iv0 · kΣ̄ + v0 · ∇Σ̄ = 0

i (v0 · k − ω)

(
∂Σ0

∂P

∣∣∣∣
ρ0

P̄ +
∂Σ0

∂ρ

∣∣∣∣
P0

ρ̄

)
+ (v̄ · ∇P0)

∂Σ0

∂P

∣∣∣∣
ρ0

+ (v̄ · ∇ρ0)
∂Σ0

∂ρ

∣∣∣∣
P0

+ v0 · ∇Σ̄ = 0

i (v0 · k − ω)
(
P̄ − c2s ρ̄

)
+ v̄ · ∇P0 − c2s v̄ · ∇ρ0

+ v0 · ∇
(
P̄ − c2s ρ̄

)
+

P̄ − c2s ρ̄

∂Σ0/∂P |ρ0

v0 · ∇

(
∂Σ0

∂P

∣∣∣∣
ρ0

)
= 0,

(4.2.18)

hence

i (v0 · k − ω)
(
P̄ − c2s ρ̄

)
+ v̄ · ∇P0 − c2s v̄ · ∇ρ0 − ρ̄v0 · ∇c2s

+
P̄ − c2s ρ̄

∂Σ0/∂P |ρ0

v0 · ∇

(
∂Σ0

∂P

∣∣∣∣
ρ0

)
= 0,

(4.2.19)

where we divided the second line by ∂Σ0/∂P |ρ0
, used the definition of sound waves

(4.2.7) and substituted equation (4.2.17). We also removed the gradients and partial
time derivatives of the perturbations of pressure and density. Since ρ̄ and P̄ are
scalars (no Christoffel symbols involved in the gradients) and are always “slow” (see
equations 4.2.11 and 4.2.12) the partial derivatives will always be of order ε̄1 and
therefore not considered. Furthermore, the speed of sound is a function of P , ρ and
the term ∂Σ0/∂P |ρ0

is a function of P (since it is calculated at the fixed value ρ0).
Using the chain rule, equation (4.2.19) takes the form

i (v0 · k − ω)
(
P̄ − c2s ρ̄

)
+ v̄ · ∇P0 − c2s v̄ · ∇ρ0

− ρ̄

(
∂c2s
∂P

∣∣∣∣
ρ0

v0 · ∇P0 +
∂c2s
∂ρ

∣∣∣∣
P0

v0 · ∇ρ0

)

+
P̄ − c2s ρ̄

∂Σ0/∂P |ρ0

(
∂2Σ0

∂P 2

∣∣∣∣
ρ0

)
v0 · ∇P0 = 0.

(4.2.20)

In this section we assumed that all background quantities have “fast” components
since this consideration provides the most general form of the perturbed (i.e. of
order δ̄1ε̄0) equations. If some of the components are “slow” in the system under
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consideration, the respective terms are of order ε̄1 and therefore vanish.

4.2.3 The elimination of sound waves

In the following sections we find that characteristic polynomials of the different con-
figurations include, expect for the terms specific to each configuration, additionally
terms related to sound waves. In order to investigate stability in many of these cases
we separate the solutions specific to the system from the sound waves. To do this
we bring the polynomial given in equation (4.1.24) to the form

P1 (ω, k, background terms) + c2sP2 (ω, k, background terms) = 0, (4.2.21)

where P1 and P2 are polynomials in ω. We divide the equation above by c2s (assuming
that the speed of sound is not zero) and multiply by v2ph. The quantity defined
through M = vph/cs is the “Mach number” [54, 82] and provides a comparison
between the speed of propagation of the plane wave and the speed of sound. Low
Mach numbers imply that the phase velocity is small compared to the speed of
sound, while large values imply the opposite. The characteristic polynomial now
has the form

M2 P1 (ω, k, background terms) + v2ph P2 (ω, k, background terms) = 0, (4.2.22)

and by assuming M2 ∼ ε̄α with α ≥ 1, we obtain after eliminating the first term

v2ph P2 (ω, k, background terms) = 0. (4.2.23)

This equation is the characteristic polynomial8 with sound waves removed. This is
a reasonable approximation since most of the times sound waves are much faster
than the propagation speed of the rest modes and thus the exclusion of sound waves
does not alter the qualitative behaviour of the system regarding the stability.
The method we used here for eliminating sound waves has the advantage that it
can be directly used in relativistic context. In the Newtonian framework where the
various speeds of the system are not constrained, we would obtain equation (4.2.23)
by merely diving equation (4.2.21) by c2s and then considering that c2s → +∞,
instead of introducing the Mach number. In contrast, in relativity this consideration

8The factor v2ph in equation (4.2.23) introduces two additional trivial ω = 0 roots to the set of
solutions.
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is invalid because the speed of sound is constrained by the speed of light, c2s < 1.
Since it is not possible to assign an arbitrarily large value to the speed of sound, we
assume that cs is large in comparison to the speed of wave propagation vph (which
is constrained too, as shown in 4.1.30).

4.2.4 Newtonian applications of geometric optics (Cartesian
coordinates)

Using the perturbed equations from section 4.2.2 we derive some results known in
the literature by choosing appropriately the scale of variation for the background
quantities. We discuss sound waves, the Taylor-Rayleigh instability [89, 90], the
Kelvin-Helmholtz instability [89] and the Alfvén waves [75]. In the first three ex-
amples the magnetic field is zero since these are purely hydrodynamic phenomena.
However, the magnetic field enters in the derivation of the Alfvén waves. Working
in Cartesian coordinates in an orthonormal frame9 the Cartesian coordinates are
(x, y, z). The ∇ operator in the Cartesian orthonormal frame is given by

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, (4.2.24)

where (x̂, ŷ, ẑ) are the orthonormal basis vectors.

4.2.4.1 The sound waves

The simplest result we can produce using the geometric optics approximation is to
derive the sound waves for a single fluid at rest (v0 = 0), where the background
pressure, density and gravitational potential are “slow” along all directions. Under
these assumptions equation (4.2.14) becomes

ikxρ0v̄x + ikyρ0v̄y + ikzρ0v̄z − iωρ̄ = 0, (4.2.25)

the components of the linearised Euler equation are

− iωv̄x + i
kx
ρ0

P̄ = 0, (4.2.26)

9An orthonormal frame is a frame where all basis vectors, say ei with i = 1, 2, 3, are of unit
length (ei · ei = 1) and orthogonal to each other (ei · ej = δij).



4.2. A Newtonian interlude 89

− iωv̄y + i
ky
ρ0
P̄ = 0, (4.2.27)

− iωv̄z + i
kz
ρ0
P̄ = 0. (4.2.28)

for the x, y and z component respectively. The perturbed entropy conservation
(given in equation (4.2.20)) is

ω
(
P̄ − c2s ρ̄

)
= 0. (4.2.29)

The characteristic equation of the system above is

ω3
(
c2sk

2 − ω2
)
= 0, (4.2.30)

which has a triple root ω = 0 and additionally the solution

ω2 = c2sk
2. (4.2.31)

Using equation (4.1.22) this implies that the phase velocity of the perturbations
travel with the speed of sound v2ph = c2s .

4.2.4.2 The Taylor-Rayleigh instability

The Taylor-Rayleigh instability [90] arises when a fluid of some density is super-
imposed over a less dense fluid in the presence of a gravitational field that varies
(or when the fluids are accelerated) along the direction normal to the interface of
the fluids. Here we derive a single-fluid version of this instability where instead of
an interface with a discontinuity we have a density gradient. Following the original
derivation where the fluids are assumed to be at rest, the background velocity in
the present consideration is vanishing, i.e. v0 = 0. The pressure and density and
gravitational potential are assumed “slow” in x, y directions and “fast” in the z di-
rection, i.e. P0 = P0 (ε̄t, ε̄x, ε̄y, z), ρ0 = ρ0 (ε̄t, ε̄x, ε̄y, z) and Φ0 = Φ0 (ε̄t, ε̄x, ε̄y, z).
Assuming that the gravitational potential has a uniform gradient we have

∇Φ0 = −g0, (4.2.32)

where g = −g0ẑ, with g0 > 0 the gravitational acceleration. The Euler equation
(4.2.2) for the background (we remind the reader that this is of order δ̄0ε̄0) yields
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the hydrostatic equilibrium equation

1

ρ0

∂P0

∂z
= −g0. (4.2.33)

As in the original work we also assume that the wavevector is orthogonal to the z-
axis and given by k = kxx̂+kyŷ. Under these assumptions the linearised continuity
equation (4.2.14) becomes

(ikxρ0) v̄x + (ikyρ0) v̄y +
∂ρ0

∂z
v̄z − iωρ̄ = 0 (4.2.34)

while the linearised Euler equation (4.2.15) becomes

− iωv̄x + i
kx
ρ0

P̄ = 0 (4.2.35)

for the x component,
− iωv̄y + i

ky
ρ0
P̄ = 0 (4.2.36)

for the y component, and
− iωv̄z −

1

ρ0

∂P0

∂z
ρ̄ = 0 (4.2.37)

for the z component. Similarly, entropy conservation equation (4.2.20) becomes(
∂P0

∂z
− c2s

∂ρ0

∂z

)
v̄z − iωP̄ + iωc2s ρ̄ = 0. (4.2.38)

Setting the determinant of the coefficients of the system (4.2.34-4.2.38) to zero we
obtain the following characteristic equation

ρ20ω
4 − ∂P0

∂z

∂ρ0

∂z
ω2 − k2

(
∂P0

∂z

)2

+ k2c2s

(
∂P0

∂z

∂ρ0

∂z
− ρ20ω

2

)
= 0. (4.2.39)

along with the ω = 0 solution. We are interested in the case where sound waves are
eliminated. Following the low Mach number argument of section 4.2.3 we obtain
the reduced characteristic equation(

ω2ρ20 −
∂P0

∂z

∂ρ0

∂z

)
= 0, (4.2.40)

having the pair of solutions
ω2 =

1

ρ20

∂P0

∂z

∂ρ0

∂z
. (4.2.41)
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Using the background equation (4.2.33) the previous result becomes

ω2 = −g0

ρ0

∂ρ0

∂z
, (4.2.42)

and therefore, since ρ0 > 0 always, the background equilibrium is unstable if ∂ρ0
∂z

> 0,
which means that the instability occurs when the density is increasing opposite to
the direction of the Newtonian gravitational force (here gravity points towards the
negative z-direction), as in the original derivation by Rayleigh. The result we have
provided is qualitatively the same but not identical to that in [90]. The reason
behind this is that our analysis, as mentioned before, is local in the sense that
it describes a small region of space using continuous quantities while the original
calculation uses a discontinuous density field to describe two separate fluids. Apart
from that technical difference in the formulation we see that this kind of instability
can be formulated in Newtonian context with a single fluid using the geometric
optics approximation along with the “fast” and “slow” consideration of background
quantities.

4.2.4.3 The Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability occurs when two adjacent fluids with distinctive
interface, flow parallel to each other, uniformly, but in opposite directions. This
configuration has a velocity discontinuity across the interface and additionally is un-
stable. In this section we formulate the continuous version of the Kelvin-Helmholtz
instability using the geometric optics approximation. We assume that the back-
ground velocity is related to a scalar f0 through v0 = ∇f0. This scalar is of the form
f0 = f0(ε̄t, x, y, ε̄z) and therefore the velocity has a “slow” z component and “fast”
x and y components given through

v0,x = ∂f0/∂x, (4.2.43)

and
v0,y = ∂f0/∂y, (4.2.44)

while v0,z is of the order ε̄. It follows by the commutativity of partial derivatives
that

∂v0,x

∂y
=

∂v0,y

∂x
=

∂2f0

∂y∂x
. (4.2.45)
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We also assume that ∂v0,x/∂x = 0 = ∂v0,y/∂y so that the fluid is incompressible
(i.e. ∇ · v0 = 0). Additionally, we consider that all other background quantities
are “slow” along all directions, except for the gravitational potential which is Φ0 =

Φ0 (ε̄t, x, y, ε̄z). The reason that the gravitational potential has this form is that it
serves as balance term in the background Euler equation (4.2.2). The wavevector
has only a z component, k = kẑ. Under these assumptions, the linearised continuity
equation (4.2.14) becomes

ikzρ0v̄z − iωρ̄ = 0, (4.2.46)

the x component of the linearised Euler equation (4.2.15) is

− iωv̄x +
∂v0,x

∂y
v̄y = 0, (4.2.47)

the y component is
− iωv̄y +

∂v0,y

∂x
v̄x = 0, (4.2.48)

and the z component is
− iωv̄z + i

k

ρ0
P̄ = 0. (4.2.49)

Finally, the perturbed entropy conservation equation is the same as in equation
(4.2.29). The characteristic equation (obtained by setting the determinant of the
coefficient matrix of the system above equal to zero) is given by

(
ω2 − c2sk

2
)(

ω2 +
∂v0,x

∂y

∂v0,y

∂x

)
= 0. (4.2.50)

Eliminating the sound waves, the reduced characteristic polynomial (along with the
double ω = 0 root) is

ω2 = −
(

∂2f0

∂y∂x

)2

, (4.2.51)

where we used also equation (4.2.45). The solution for ω implies that the configu-
ration is always unstable, since ω2 is always negative, provided there is shear in the
fluid velocity.
This result is the Kelvin-Helmholtz instability in a single fluid with shear. It is
similar to the Rayleigh shearing instability that we discuss in a following section.
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4.2.4.4 The Alfvén waves

Here we introduce the magnetic field and derive the characteristic equation for the
two types of Alfvén waves [75]. The one type of waves, the compressional mode
or the magnetosonic mode, consists of compression and de-compression of magnetic
field lines. These waves are similar to the sound waves in the sense that they are
disturbances of the magnetic pressure as the sound waves are disturbances of the
(thermodynamic) pressure P . The other type of waves is the shear mode or Alfvén
mode [91], which involves more complicated disturbances (e.g. shearing motion) of
the magnetic field lines10. The system of equations are those of sections 4.2.1 and
4.2.2 including the terms related to the magnetic field.
We assume that the background fluid velocity vanishes and there is a background
“slow” magnetic field along the z-axis B0 = B0 (ε̄x, ε̄y, ε̄z) ẑ. The gravitational po-
tential, the pressure and the density are “slow” in the background along all directions
(i.e. P0 = P0 (ε̄t, ε̄x, ε̄y, ε̄z), ρ0 = ρ0 (ε̄t, ε̄x, ε̄y, ε̄z) and Φ0 = Φ0 (ε̄t, ε̄x, ε̄y, ε̄z) ). To
the order δ̄1ε̄0 the continuity equation is the same as in the sound waves section
given by equation (4.2.25). The components of Euler equation (4.2.15) are

− iωv̄x + i
kx
ρ0

P̄ − i
B0kz
4πρ0

B̄x + i
B0kx
4πρ0

B̄z = 0, (4.2.52)

− iωv̄y + i
ky
ρ0
P̄ − i

B0kz
4πρ0

B̄y + i
B0ky
4πρ0

B̄z = 0, (4.2.53)

and
− iωv̄z + i

kz
ρ0
P̄ = 0, (4.2.54)

for the x, y and z components respectively. The components of the perturbed
induction equation (4.2.16) are given by

− iB0kzv̄x − iωB̄x = 0, (4.2.55)

for the x component,
− iB0kzv̄y − iωB̄y = 0, (4.2.56)

for the y component, and

iB0kxv̄x + iB0kyv̄y − iωB̄z = 0, (4.2.57)
10The two modes are also called fast and slow respectively. We have not used this terminology

in order to avoid confusion with the notions of “fast” and “slow” quantities as they are introduced
in this chapter.
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for the z component. Finally, the perturbed entropy equation is the same as in
the derivation of sound waves, given in equation (4.2.29). Combining the equations
above, the characteristic equation of the system (along with a double ω = 0 root) is

[
ω4 − k2

(
c2s + v2A

)
ω2 + c2sk

2k2
zv

2
A
] (

ω2 − k2
zv

2
A
)
= 0, (4.2.58)

where v2A = B2
0/4πρ0 is the Alfvén velocity. The two modes, the compressional and

the shear, appear coupled because we have allowed non-zero pressure perturbations.
If the pressure perturbations vanish then the two modes are derived separately using
different assumption for each one. For the compressional mode we have the solution

ω2
± =

1

2

[
k2
(
v2A + c2s

)
±
√

k4 (v2A + c2s )
2 − 4k2k2

zv
2
Ac

2
s

]
, (4.2.59)

while for the shear mode we have

ω2 = v2Ak
2
z . (4.2.60)

If the wave is propagating only along the z direction i.e. k = kzẑ, then equation
(4.2.59) reduces to either equation (4.2.60) or to the purely acoustic mode along z

direction
ω2 = c2sk

2
z . (4.2.61)

The two solutions for ω2 given in equation (4.2.59) are both positive (the first term
is always larger or equal than the radical and additionally the radicand is always
positive) and therefore the system is always stable.

4.2.5 Newtonian applications of geometric optics (Cylindri-
cal polar coordinates)

In this section we discuss, in a cylindrical polar frame, the sound waves and the
inertial modes in a rotating fluid, the Rayleigh shearing instability [89, 90] and the
Magnetorotational instability [36]. We use an orthonormal frame R̂, ẑ, φ̂ and the
respective coordinates (R, z, φ). Below in all cases we assume that all quantities are
axisymmetric i.e. they do not depend on the φ coordinate (though, we can still have
vector components along the φ̂).
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4.2.5.1 The sound waves (again) and the inertial modes of a rotating
fluid

In this section we derive the characteristic equation of the sound waves along with
the inertial modes for a fluid flowing around the z-axis. We assume that the fluid
velocity is v0 = Ω(ε̄R)Rφ̂, where Ω is the (“slow”) angular velocity of the fluid11.
We assume that the background density and pressure are “slow” along all directions
while the gravitational potential is of the form Φ0 = Φ0 (ε̄t, R, ε̄z). The “fast”
dependence of the R coordinate in the gravitational potential provides a balance
force term in the R component of the background Euler equation (4.2.2)

Ω2R =
∂Φ0

∂R
. (4.2.62)

The equation above means that the centrifugal force is balanced by the gravity and
therefore it implies that the fluid is a Keplerian flow. It is the only equation of the
order δ̄0ε̄0. The wavevector is k = kRR̂ + kzẑ. Using the vector calculus formulas
of section A.1.7 for axisymmetric configurations, the linearised continuity equation
(4.2.14) becomes

ρ0

(
1

R0
+ ikR

)
v̄R + iρ0kzv̄z − iωρ̄ = 0. (4.2.63)

The three components of the Euler equation (4.2.15) are

− iωv̄R − 2Ωv̄φ + i
kR
ρ0

P̄ = 0, (4.2.64)

− iωv̄z + i
kz
ρ0
P̄ = 0, (4.2.65)

and
2Ωv̄R − iωv̄φ = 0, (4.2.66)

for the R, z and φ components respectively. The perturbation of the entropy con-
servation equation is the same as in the Cartesian sound wave derivation, given by
equation (4.2.29). The system of equations contains the term 1

R0
which appears

because the cylindrical coordinates are curvilinear and thus there are nonvanishing
Christoffel symbols. The characteristic equation of the above system is given by

− 1

R
c2sω

3kR + i ω
[
ω4 − ω2

(
4Ω2 + k2c2s

)
+ 4Ω2c2sk

2
z

]
= 0. (4.2.67)

11Since in our analysis we do not consider perturbations on the anglular velocity Ω or the R
coordinate we do not present this quantities with subscript zero or barred.
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Keeping the 1/R terms, the resulting characteristic polynomial is complex12. In
order to avoid complex coefficients, we assume that R is large enough so that 1/R is
effectively zero. A suitable choice for this assumption is 1/R ∼ ε̄β, with β > 1. We
have chosen β > 1 rather than specifying β precisely because we want some freedom
regarding the order of 1/R. We have already made a similar choice for the Mach
number in section 4.2.3 and we intend to avoid the possibility that terms of the form
Mn Rm ∼ ε̄nα−mβ (with n, m positive integers to be of order unity). Under this
simplification we get the ω = 0 solution along with the characteristic equation

ω4 −
(
4Ω2 + c2sk

2
)
ω2 + 4c2sΩ

2k2
z = 0, (4.2.68)

The two positive solutions for ω2 are

ω2
± =

1

2

(
4Ω2 + k2c2s ±

√
(4Ω2 + c2sk

2)2 − 16Ω2c2sk
2
z

)
. (4.2.69)

We observe that ω is a combination of sound waves and the inertial modes of the
fluid. If we set Ω = 0 then we only get the sound wave solution ω2 = k2c2s . In order
to obtain the inertial modes alone we eliminate the sound waves in equation (4.2.68)
following the method of section 4.2.3. The characteristic polynomial then becomes

k2ω2 − 4Ω2k2
z = 0. (4.2.70)

Therefore the inertial modes are given by

ω2 = 4Ω2k
2
z

k2
, (4.2.71)

and are always stable.

4.2.5.2 The Rayleigh shearing instability

The next is to examine the case where the background angular velocity is “fast”. We
assume that the fluid velocity is v0 = Ω(R)Rφ̂, which is an differentially rotating,
axisymmetric flow. The density is “slow” with respect to all coordinates,the pressure
and gravitational potential are of the form P0 = P0 (ε̄t, R, z) and Φ0 = Φ(ε̄t, R, z).

12In general polynomials with complex coefficients may have real solutions which would imply
stability. Nevertheless our analysis, as discussed in section 4.1.3, is restricted to polynomials with
real coefficients.
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Using these assumptions the background equations to the order δ̄0ε̄0 are the R and
z components of the Euler equation (4.2.2)

Ω2R =
∂Φ0

∂R
+

1

ρ0

∂P0

∂R
, (4.2.72)

and
∂Φ0

∂z
+

1

ρ0

∂P0

∂z
= 0. (4.2.73)

The rest of the background equations of section 4.2.1 are either of higher order in
ε̄ or vanishing. The reason we have considered a “fast” dependence with respect to
R and z for the pressure and gravitational potential is the following. We want to
be able to consider general flows for the background and therefore we need more
freedom in the force balance equation. This extra freedom is introduced by the
gradient of the pressure. In contrast, assuming that the pressure is “slow” along
the R coordinate (as we have done in section 4.2.5.1) implies a Keplerian flow and
therefore a specific functional form for Ω(R).
We assume that the wavevector is the same as in the previous case. The linearised
continuity equation is given by equation (4.2.63). For the linearised Euler equations
we have

− iωv̄R − 2Ωv̄φ −
1

ρ20

∂P0

∂R
ρ̄+ i

kR
ρ0

P̄ = 0, (4.2.74)

− iωv̄z −
1

ρ20

∂P0

∂z
ρ̄+ i

kz
ρ0
P̄ = 0, (4.2.75)

and (
2Ω +R

dΩ

dR

)
v̄R − iωv̄φ = 0, (4.2.76)

for the R, z and φ components respectively. The entropy conservation equation
(4.2.20) takes the form

∂P0

∂R
v̄R +

∂P0

∂z
v̄z − iωP̄ + iωc2s ρ̄ = 0. (4.2.77)

Note that the directional derivatives v0 · ∇ of scalars, as in equation (4.2.20), are
vanishing. This happens because the fluid velocity has a single component along φ̂

and axisymmetric quantities do not have a φ dependence. The full characteristic
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equation (along with the root ω = 0) is given by

(
ω2k2 − k2

zκ
2
)
c2s +

[
−ω4 + ω2κ2 +

1

ρ20

(
∂P0

∂z
kR − ∂P0

∂R
kz

)2
]

+
1

R

[
ω2

(
1

ρ0

∂P0

∂R
− ic2skR

)
+

i

ρ20

∂P0

∂z

(
∂P0

∂R
kz −

∂P0

∂z
kR

)]
= 0,

(4.2.78)

where κ is the epicyclic frequency given by

κ2 = 4Ω2 + 2RΩ
dΩ

dR
. (4.2.79)

After removing the sound waves and assuming that terms multiplied by 1/R0 are of
the same order as in the previous section i.e. 1/R0 ∼ ε̄β with β > 1, the reduced
characteristic equation is given by the first term of equation (4.2.78). The roots in
ω are

ω2 = κ2k
2
z

k2
, (4.2.80)

which are stable provided that κ2 > 0. Another form of the Rayleigh stability
criterion for circular shearing flow is the following. If Ω > 0, then multiplying the
definition of the epicyclic frequency (4.2.79) by 1/ (2Ω2R) we have

1

Ω

dΩ

dR
+

2

R
> 0

d

dR
(logΩ) + d

dR

(
logR2

)
> 0

d

dR
log
(
ΩR2

)
> 0

d

dR

(
R2Ω

)
> 0.

(4.2.81)

4.2.5.3 The Magnetorotational Instability

In this section we introduce the magnetic field in the configuration of the previous
section and examine the stability of the system. It appears that the magnetic field
gives rise to a different kind of instability, the magnetorotational instability (MRI)
[36]. As in the Rayleigh shearing instability we assume that the background density
is “slow” along all directions while pressure and the gravitational potential are P0 =

P0 (ε̄t, R, z) and Φ0 = Φ(ε̄t, R, z). The fluid velocity is circular v0 = Ω(R)Rφ̂.
The background magnetic field is along the z and φ directions and has the form
B0 = B0,z (ε̄t, ε̄R, ε̄z) ẑ + B0,φ (ε̄t, ε̄R, ε̄z) φ̂. Also, the wavevector is axisymmetric,
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k = kRR̂+kzẑ. The main difference between this analysis and Balbus’ original paper
[36] is that we use the full continuity equation instead of ∇ · v = 0. By using the
full continuity equation 4.2.1 we do not implicitly impose additional conditions on
the background and perturbed density. Also we avoid the assumption that isobaric
and isochoric surfaces coincide which may be somewhat restrictive.
The non-vanishing background equations are, as in the Rayleigh shearing instability,
the R and z components of the Euler equation (4.2.2). The z component is given
by equation (4.2.73) while for the R component we have

Ω2R =
∂Φ0

∂R
+

1

ρ0

∂P0

∂R
+

B2
0,φ

R
, (4.2.82)

where the last term appears due to the MHD Lorentz force. The linearised con-
tinuity equation and entropy conservation are same as in the Rayleigh shearing
instability, given by equation (4.2.63) and (4.2.77) respectively. The R component
of the linearised Euler equation (4.2.15) is

− iωv̄R − 2Ωv̄φ −
(

1

ρ20

∂P0

∂R
+

1

R0

B2
φkz

4πρ20

)
ρ̄+ i

kR
ρ0

P̄ − i
Bzkz
4πρ0

B̄R

+ i
BzkR
4πρ0

B̄z +
Bφ

4πρ0

(
2

R0
+ ikR

)
B̄φ = 0,

(4.2.83)

the z component is

− iωv̄z + i
kz
ρ0
P̄ − 1

ρ20

∂P0

∂z
ρ̄+ i

Bφkz
4πρ0

B̄φ = 0, (4.2.84)

and the φ component is(
2Ω +R0

dΩ

dR

)
v̄R − iωv̄φ −

1

R0

Bφ

4πρ0
B̄R − i

Bzkz
4πρ0

B̄φ = 0. (4.2.85)

The components of the linearised induction equation (4.2.16) are

− iBzkzv̄R − iωB̄R = 0, (4.2.86)

Bz

(
1

R0
+ ikR

)
v̄R − iωB̄z = 0. (4.2.87)

and
iBφkRv̄R + iBφkzv̄z − iBzkzv̄φ −R0

dΩ

dR
B̄R − iωB̄φ = 0, (4.2.88)
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for the R,z and φ components respectively. The full characteristic polynomial (along
with a double ω = 0 root) is given by

[
ω4k2 − ω2k2

z

(
κ2 + 2k2v2Az

)
+ k4

zv
2
Az
(
κ2 − 4Ω2 + k2v2Az

)]
c2s

−
{
ω6 − ω4

[
κ2 + k2

R

(
v2Az + v2Aφ

)
− kz

(
2v2Az + v2Aφ

])
+

ω2

ρ20

[
2
∂P0

∂R

∂P0

∂z
kRkz + k2

R

(
ρ20k

2
zv

2
Az
(
v2Az + v2Aφ

)
−
(
∂P0

∂z

)2
)

+k2
z

(
ρ20
(
v2Az
(
v2Aφk

2
z + κ2 − 4Ω2

)
+ v4Azk

2
z + v2Aφκ

2
)
−
(
∂P0

∂R

)2
)]

+
ω

ρ0

[
4Ωk2

zvAzvAφ

(
kz

∂P0

∂R
− kR

∂P0

∂z

)]
+

1

ρ0

(
kz

∂P0

∂R
− kR

∂P0

∂z

)2

k2
zv

2
Az

}

− 1

Rρ20

{
i
(
ω2 − k2

zv
2
Az
) [

kR

(
ρ20
(
c2s
(
ω2 − v2Azk

2
z

)
+ ω2v2Az

)
+

(
∂P0

∂z

)2
)

−∂P0

∂R

∂P0

∂z
kz + i

∂P0

∂R
ρ0ω

2

]
+ 2ρ0ωΩvAzvAφkz

(
4ρ0c

2
sk

2
z + i

∂P0

∂z
kz − 3ρ0ω

2

)
+ ρ0v

2
Aφ

[
4ρ20ωΩvAzv

3
Aφk

3
z + 2

∂P0

∂R
k2
z

(
v2Azk

2
z + ω2

)
+ikR

(
v2Azk

2
z

(
−ρ0ω

2 + 2i
∂P0

∂z
kz

)
+ 2i

∂P0

∂z
ω2kz + ρ0ω

4

)]}
+

v2Aφ

R2ρ20

{(
v2Azk

2
z + ω2

) [
ρ0ω

2 − kz

(
ρ0kz

(
v2Aφ + 2c2s

)
+ i

∂P0

∂z

)]}
= 0,

(4.2.89)

where v2Az =
B2

0,z
4πρ0

and v2Aφ =
B2

0,φ
4πρ0

. This is obviously a very complicated characteristic
equation. We may simplify the expression by introducing the assumptions of the
previous sections. Eliminating the terms of order 1/R and 1/R2 the last five lines of
equation (4.2.89) vanish. Additionally, if we eliminate the sound waves all lines of the
same equation vanish apart from the first. The simplified characteristic polynomial
now reads

k2

k2
z

ω4 −
(
κ2 + 2k2v2Az

)
ω2 + k2

zv
2
Az
(
κ2 − 4Ω2 + k2v2Az

)
= 0, (4.2.90)

This characteristic equation is identical to the one derived in [92] (if we consider a
wavevector with z component only). It is a convex quadratic polynomial (since the
coefficient of ω4 is positive) in ω2. The discriminant is k4

z (κ
4 + 16k2Ω2v2Az) which is

always positive and therefore the two roots of the polynomial are real. Additionally
the two ω2 roots are positive and thus the system is stable if the coefficient of ω2
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is negative and the constant term is positive. The first condition implies that the
minimum of the polynomial occurs at positive ω2 and the second condition implies
that the polynomial intersects the ω2 = 0 axis at a positive value. These two
conditions read

κ2 + 2k2v2Az ≥ 0, (4.2.91)

and
κ2 − 4Ω2 + k2v2Az ≥ 0. (4.2.92)

Of these two inequalities (provided that k2v2Az > 0) we only need the second one be-
cause if it is satisfied, the first is satisfied as well. Using the definition of the epicyclic
frequency from equation (4.2.79) the stability condition obtains the following form

dΩ2

d lnR
+ k2v2Az ≥ 0, (4.2.93)

which is the one derived in [92]. Assuming then that k2v2Az goes to zero (since we
can either have a very small magnetic field or very small wavenumbers) the stability
criterion reads

dΩ2

d lnR
≥ 0. (4.2.94)

This inequality implies that a disk is stable if the magnitude of Ω is radially increas-
ing outwards. However, for most physical configurations Ω decreases in magnitude
with respect to the radius and so the majority of realistic models should be unstable.
A peculiar and interesting aspect of this result is that for a vanishing magnetic field
equation (4.2.93) does not coincide with the Rayleigh shearing instability criterion
of the previous section as we would anticipate. Physically this means that an ar-
bitrarily small magnetic field would produce an instability in a configuration which
would be stable if the magnetic field had not be introduced at all, i.e because we
may have κ2 > 0 but κ2 − 4Ω2 < 0. In the following section, we will discuss this
issue.

4.2.5.4 The Rayleigh shearing instability limit of the MRI

The condition (4.2.94) arises by taking the limit k2v2Az → 0. Instead of taking this
limit after having calculated the condition we could assume that k2v2Az is propor-
tional to some small bookkeeping number 0 < ζ̄ � 1 such that k2v2Az → ζ̄k2v2Az

13

13To be more precise we assume that k2v2Az → ζ̄ k̃2ṽ2Az, assuming the tilded quantities are of
order unity and then we rename again k̃ → k and ṽAz → vAz.



102 Chapter 4. Perturbations

where k2 and v2Az on the right hand side of the arrow are assumed to be of order
unity. The characteristic equation (4.2.90) then reads

1

cos2 q
ω4 −

(
κ2 + 2ζ̄k2v2Az

)
ω2 + ζ̄(cos2 q)k2v2Az

(
κ2 − 4Ω2 + ζ̄k2v2Az

)
= 0, (4.2.95)

where kz = k cos q which is the direction cosine for kz. The equation above rear-
ranged in powers of ζ̄ becomes(

k4v4Az cos2 q
)
ζ̄2 + k2v2Az

(
κ2 cos2 q − 4Ω2 cos2 q − 2ω2

)
ζ̄

+ ω2

(
ω2

cos2 q
− κ2

)
= 0.

(4.2.96)

The above expansion in ζ̄ indicates that there are three cases to be considered. The
first case is when ζ̄ and ζ̄2 terms are not neglected so we have to keep all the terms
and the stability condition should be that given by inequality (4.2.93). The k2v2Az is
now included in the final criterion because we have made the assumption that this
term is of the same magnitude as the other terms.
The second case happens when the product of the Alfvén speed and the wavenumber
is such that the ζ̄2 terms are sufficiently small to be omitted, but ζ̄ terms are not.
In this case equation (4.2.96) reduces to

1

cos2 q
ω4 −

(
κ2 + 2k2v2Az

)
ω2 + (cos2 q)k2v2Az

(
κ2 − 4Ω2

)
= 0. (4.2.97)

The stability criterion for this characteristic equation is given by inequality (4.2.94)
i.e. that ultimately obtained in [92].
The third case happens when the product of the Alfvén speed and the wavenum-
ber is such that both the ζ̄2 and the ζ̄ terms are negligible. In this instance the
characteristic equation yields

ω2

(
ω2 1

cos2 q
− κ2

)
= 0, (4.2.98)

which is the characteristic equation of the Rayleigh shearing instability given in
section 4.2.5.2 with the related stability criterion

κ2 > 0. (4.2.99)

In the following discussion we consider that the magnitude of the Alfvén speed is
controlled only by the magnitude of the magnetic field (i.e. the density is of order
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unity). Therefore, it appears that by considering the magnitude of the term k2v2Az

in the characteristic equation (4.2.90) of the MRI it is possible to derive the Balbus
criterion if the magnetic field (or the wavenumber) is small (keeping ζ̄1 terms but
not ζ̄2). A very small (tending to zero) magnetic field (or wavenumber) though,
reduces the criterion to the Rayleigh shearing instability criterion.

Another way of looking at this result is the following. Suppose there is a num-
ber ζ̄? which is the largest possible value of ζ̄ such that the terms proportional to ζ̄

vanish. For all values of ζ̄ < ζ̄? the characteristic equation reduces to the Rayleigh
shearing equation (since the ζ̄2 vanish as well). The value ζ̄? in other words is the
largest value for which ζ̄ is effectively zero.
For values ζ̄? < ζ̄ <

√
ζ̄? (the right bound is the value such that ζ̄2 = ζ̄?) the

linear terms in ζ̄ do not vanish but the ζ̄2 terms vanish. For this interval, namely(
ζ̄?,
√

ζ̄?

)
(note here that the square root is larger than the number itself since

ζ̄ < 1) the stability condition reduces to that derived by Balbus [36].
Further increase in ζ̄, i.e. ζ̄ >

√
ζ̄?, implies that neither the ζ̄ nor the ζ̄2 terms are

sufficiently small to be considered effectively zero. In this case the stability condition
is that given by inequality (4.2.93).

The analysis above has an interesting consequence. Although we have found three
qualitatively different intervals for ζ̄ it is possible to always find, for a given Alfvén
speed, a wavenumber such that k2v2Az ∼ ζ̄ ′ where ζ̄? < ζ̄ ′ <

√
ζ̄?. It follows that

an Alfvén speed of the order, say, v2Az ∼ ζ̄ ′β requires a wavenumber of the order
k2 ∼ ζ̄ ′1−β with β ∈ IR. A weak magnetic field (i.e. β > 0) requires a wavenumber
of at least the order unity to trigger the MRI instability (using the criterion 4.2.94).
In the opposite limit, a strong magnetic field (β < 0) gives rises to the MRI (ac-
cording to criterion 4.2.94) provided that the wavenumber is sufficiently small.
Therefore, using criterion (4.2.93) for the case of an infinitesimal magnetic field,
requires large wavenumbers such that they could be unphysical. This is justified
in the same manner that wavenumbers (and frequencies) have some upper bound
defined by the microscopic properties of media in the case of sound waves. Roughly,
the wavelength (i.e. the inverse of wavenumber) cannot be less than the mean free
path of the particles consisting the medium. Assuming an upper finite limit for the
wavenumber kmax the stability of a configuration with a sufficiently small magnetic
field (such that k2

maxv
2
Az < ζ̄?) is characterised by the Rayleigh shearing criterion

(4.2.99) rather than criterion (4.2.94).
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4.3 The relativistic framework

In this section we discuss using the geometric optics method to explore the relativis-
tic analogues of the sound waves and inertial waves, the Rayleigh shearing instability
and the MRI. We first present the system of equations and then we introduce the
frame and the metric. We derive the characteristic polynomials for each case and
discuss various limits.

4.3.1 The system of equations

The systems we are examining are single fluids in the context of relativistic hydrody-
namics or magnetohydrodynamics. In order to be able to compare to the Newtonian
cases we use the equations derived in section 3.4.3.4 and rename the symbols used
for the physical quantities. The energy conservation equation (3.4.53) is given by

ua∇aρ+ (ρ+ P )∇au
a = 0, (4.3.1)

where ua is 4-velocity of the observer co-moving with the fluid (normalised through
uaua = −1), ρ is the relativistic energy density and P is the relativistic pressure
with respect to this observer14. The relativistic Euler equation (3.4.55) is given by

(ρ+ P )ub∇bu
a + hab∇bP

+BcB
cub∇bu

a + habBc∇bB
c −BaBcu

b∇bu
c − habBc∇cBb︸ ︷︷ ︸

relativisic MHD Lorentz force

= 0, (4.3.2)

where Ba is the magnetic field with respect to the observer. The relativistic induc-
tion equation (3.4.47) is

habuc∇cBb −Bb∇bu
a +Ba∇bu

b = 0. (4.3.3)

Note that the Euler equation and induction equation are orthogonal to ua and
therefore these equations have three independent components each. The adiabatic
condition (3.2.30) becomes

ua∇aΣ = 0. (4.3.4)
14Note that in section 3.4.3.4 energy was denoted by ρMHD,F and pressure by ΨMHD,F
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As in the Newtonian case we assume that the specific entropy Σ is an equation of
state for the system of the form

Σ = Σ (P, ρ) . (4.3.5)

Writing the condition (4.3.4) in the form

dΣ

dτ
= 0, (4.3.6)

where τ is the proper time along the observer’s worldline, it follows, similarly to the
Newtonian derivation given in equation (4.2.6), that the relativistic speed of sound
is given by the definition (4.2.7). Using this definition along with equation (4.3.5)
equation (4.3.4) becomes

ua∇aP − c2s u
a∇aρ = 0. (4.3.7)

4.3.2 Linear perturbations (relativistic framework)

Here we present the linear perturbations of the system of equations. Using equation
(4.1.1) we obtain the background and perturbed terms of the system of equations
(i.e. of the order δ̄0ε̄0 and δ̄1ε̄0 respectively). The background equations are obtained
by substituting all quantities with the respective subscripted zero quantities. As
discussed in section 4.1.2 scalar perturbations (such as P̄ and ρ̄) are “slow” i.e
P̄ = P̄ (ε̄xν), ρ̄ = ρ̄ (ε̄xν) and therefore the respective gradients are of order ε̄1.
Assuming that the perturbation of the metric is vanishing the perturbed energy
conservation equation (4.3.1) is given by

ūa∇aρ0 + iua
0ka +

(
ρ̄+ P̄

)
∇au

a
0 + ikaū

a (ρ0 + P0) + (ρ0 + P0)∇aū
a = 0, (4.3.8)
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where the 4-wavevector is defined through equation (4.1.16). The Euler equation
(4.3.2) becomes(

ρ̄+ P̄
)
ub

0∇bu
a
0 + (ρ0 + P0) ū

b∇bu
a
0 + (ρ0 + P0)u

b
0∇bū

a

+ i (ρ0 + P0)u
b
0kbū

a + ūaub
0∇bP0 + ua

0 ū
b∇bP0 + ihab

0 kbP̄

+ 2B̄cB0
cu

b
0∇bu

a
0 +B0

cB
c
0 ū

b∇bu
a
0 +B0

cB
c
0u

b∇bū
a + iB0

cB
c
0u

b
0kbū

a

+ ūaub
0B

0
c∇bB

c
0 + ua

0 ū
bB0

c∇bB
c
0 + hab

0 B̄c∇bB
c
0 + hab

0 B0
c∇bB̄

c

+ ihab
0 B0

ckbB̄
c − B̄aB0

cu
b
0∇bu

c
0 −Ba

0 B
0
c ū

b∇bu
c
0 −Ba

0 u
b
0B

0
c∇bū

c

− iBa
0 u

b
0kbB

0
c ū

c −Ba
0 B̄cu

b
0∇bu

c
0 − ūau0

bB
c
0∇cB

b
0 − ua

0 ūbB
c
0∇cB

b
0

− hab
0 B̄c∇cB

0
b − hab

0 Bc
0∇cB̄b − ihab

0 Bc
0kcB̄b = 0,

(4.3.9)

where we have substituted the perturbation of the projection tensor through h̄ab =

ūaub + uaūb. The terms including the magnetic field and perturbations of the mag-
netic field are related to the relativistic MHD Lorentz force. The perturbation of
the induction equation (4.3.3) is given by

ūau0
bu

c
0∇cB

b
0 + ua

0 ūbu
c
0∇cB

b
0 + hab

0 ūc∇cB
0
b + hab

0 uc
0∇cB̄b + ihab

0 uc
0kcB̄b

− B̄b∇bu
a
0 −Bb

0∇bū
a − iBb

0kbū
a + B̄a∇cu

c
0 + iBa

0 kcū
c +Ba

0 ∇cū
c = 0.

(4.3.10)

In analogy with the Newtonian case, the perturbation of the specific entropy is
related to those of density and pressure through equation (4.2.17). Using this along
with the definition of the speed of sound (4.2.7), the perturbation of the adiabatic
conservation equation (4.3.4) becomes

ūa∇aΣ0 + ikau
a
0 Σ̄ + ua

0∇aΣ̄ = 0

ūa
(
∇aP0 − c2s∇aρ0

)
+ ikau

a
0

(
P̄ − c2s ρ̄

)
+ ua

0∇a

(
Σ̄

∂Σ0/∂P |ρ0

)

− Σ̄ua
0∇a

(
1

∂Σ0/∂P |ρ0

)
= 0

ūa
(
∇aP0 − c2s∇aρ0

)
+ ikau

a
0

(
P̄ − c2s ρ̄

)
+ ua

0∇aP̄ − c2su
a
0∇aρ̄− ρ̄ua

0∇ac
2
s +

P̄ − c2s ρ̄

∂Σ0/∂P |ρ0

ua
0∇a

(
∂Σ0

∂P

∣∣∣∣
ρ0

)
= 0,

(4.3.11)
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hence
ūa
(
∇aP0 − c2s∇aρ0

)
+ ikau

a
0

(
P̄ − c2s ρ̄

)
− ρ̄ua

0

[(
∂c2s
∂P

∣∣∣∣
ρ0

)
∇aP0 +

(
∂c2s
∂ρ

∣∣∣∣
P0

)
∇aρ0

]

+
P̄ − c2s ρ̄

∂Σ0/∂P |ρ0

(
∂2Σ0

∂P 2

∣∣∣∣
ρ0

)
ua

0∇aP0 = 0.

(4.3.12)

We also have the perturbation of the 4-velocity normalisation

ūau0
a = 0, (4.3.13)

which means that ūa has three independent components. The orthogonality of the
magnetic field and the 4-velocity yield

ua
0B

0
a = 0, (4.3.14)

for the background, and for the first order

ūaB0
a + ua

0 B̄a = 0, (4.3.15)

imply that Ba
0 and B̄a have three independent components each. Therefore, as in

the Newtonian case, along with P̄ and ρ̄, there are eight unknowns (i.e. barred
quantities).
Furthermore, the orthogonality of the non-linear Euler and induction equations to
the observer 4-velocity indicates that equations (4.3.9) and (4.3.10) have three in-
dependent components each. It is straightforward to show this result if we write the
orthogonality condition as uaf

a = 0, where fa is the left-hand-side of either equation
(4.3.2) or (4.3.3). The first order perturbation of this equation is u0

af̄
a + ūaf

a
0 = 0

where fa
0 denotes the background left-hand-side terms of the equations and f̄a the

left-hand-side terms of either equation (4.3.9) or (4.3.10). Thus, in total we have,
along with equations (4.3.8) and (4.3.12) eight independent components in the sys-
tem of linearised equations.
In this section we have shown the equations in abstract index notation since they
hold in all coordinate frames. Nevertheless, in the following sections we find it
convenient introduce a coordinate frame and a specific metric.
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4.3.3 Relativistic applications of geometric optics

In this section, working in a coordinate basis with cylindrical polar coordinates xν =

(t, R, z, φ) we derive the relativistic equivalents of section 4.2.5 (i.e. sound waves
along with the inertial modes, the relativistic Rayleigh shearing instability and the
MRI). Additionally, we obtain limits of these results that approximate the respective
Newtonian ones. In analogy to the Newtonian consideration, we assume that all
quantities are axisymmetric, that is they do not have φ dependence. However, it is
possible to have vector components along the φ direction. The calculations and the
characteristic polynomials are calculated with Mathematica [93] using the RGTC
package [94].

4.3.3.1 The choice of metric, the plane wave, and the background ob-
server

Since we are working in axisymmetry, the background metric should satisfy this
assumption. In order to allow for some freedom for the background spacetime we
choose the following functional form of the metric

gµν = diag [−gtt (R, ε̄z) , gII (R, ε̄z) , gII (R, ε̄z) , gφφ (R, ε̄z)] , (4.3.16)

which is a diagonal matrix with gRR = gzz = gII > 0, gtt > 0 and gφφ > 0.
The components of the metric with indices upstairs (i.e. gµν), since the above
matrix is diagonal, are given by a diagonal matrix with elements the inverses of gµν
components. The Christoffel symbols to the order ε̄0 of this metric are15

Γt
tR = Γt

Rt =
1

2gtt

∂gtt
∂R

, ΓR
tt =

1

2gII

∂gtt
∂R

,

ΓR
RR = Γz

Rz = Γz
zR = −ΓR

zz =
1

2gII

∂gII
∂R

,

ΓR
φφ = − 1

2gII

∂gφφ
∂R

, Γφ
Rφ = Γφ

φR =
1

2gφφ

∂gφφ
∂R

.

(4.3.17)

15For brevity we suppressed the arguments of the metric components in the equation (4.3.17)
and we do the same in the following equations. In any case, if the “fast” and “slow” dependence
are to be considered different from those already assumed in equation (4.3.16) we will explicitly
state this.
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This metric describes a static, axially symmetric spacetime. It is in some sense the
Weyl metric [95, 96], if we choose the metric components appropriately. We have
chosen “fast” dependence of the components along the R direction and “slow” along
the z direction and this means that we focus on the radial direction of the various
configurations.
From a physical point of view, where the source of gravity is a large spherical mass
at the origin of the coordinate system, this consideration has the following implica-
tion. We are looking into a spacetime region around the equatorial plane, where the
dependence on z direction can be omitted. This kind of coordinate dependence in-
troduces a simplification in comparison to the Newtonian case (where we considered
fast dependence along both R and z coordinates). The logic behind this assump-
tion is that astrophysical disks, where the kind of instabilities we are examining are
most likely to occur, are usually thin (i.e. the R dimension is much larger than the
z dimension of the disk [97]) and mostly close to a region around the equatorial plane.

We also assume that the phase is of the form S = S (ε̄t, ε̄z), which means that
the 4-wavevector has only t and z components

kµ = (kt, 0, kz, 0) . (4.3.18)

Following the Newtonian analysis we introduce a background observer with a circular
velocity field

uµ
0 = (γ, 0, 0, γΩ) , (4.3.19)

where the scalar γ is calculated using the normalisation equation ua
0u

0
a = −1 and

the metric defined in equation (4.3.16) through

γ =
1√

gtt − Ω2gφφ
, (4.3.20)

with Ω the angular velocity16 of the fluid (with respect to an observer at rest at
infinity). Constant angular velocity implies uniform rotation. On the other hand,
“fast” dependence of Ω along the R coordinate suggests that the fluid is differentially
rotating (while “slow” dependence along R means that the differential rotation is of
order ε̄1).
The 4-wavevector is given through equation (4.3.18) with respect to the cylindrical

16Although Ω is a quantity of the background, similarly to the Newtonian case, we do not show
this quantity with a zero subscript.
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coordinate frame. Nevertheless, the characteristic polynomial described in equa-
tion (4.1.24) requires the angular frequency and wavenumber with respect to the
background observer. Using the decomposition of ka given in equation (4.1.21) and
equations (4.3.18), (4.3.19) we find, by contraction with the 4-velocity, that kt is
related to the angular frequency through

kt = −ω

γ
= −ω

√
gtt − Ω2gφφ. (4.3.21)

To derive the respective relation for kz we use the definition of the spatial wavenum-
ber k2 = hab

0 kakb (see section 4.1.3). The projection tensor, using the definition
(2.1.6) with indices upstairs, related to the background metric and observer is given
by

hµν
0 =


1

gtt−gφφΩ2 − 1
gtt

0 0 Ω
gtt−gφφΩ2

0 1
gII

0 0

0 0 1
gII

0
Ω

gtt−gφφΩ2 0 0 gtt
gφφ

(
gtt−gφφΩ2

)

 . (4.3.22)

The definition of the spatial wavevector then yields

k2
z = gII

(
k2 − ω2 gφφΩ

gtt

)
. (4.3.23)

The components of the perturbation amplitude for the 4-velocity is given by

ūµ =

(
gφφΩ

gtt
ūφ (ε̄xν) , ūR (ε̄xν) , ūz (ε̄xν) , ūφ (ε̄xν)

)
. (4.3.24)

Also, we used equation (4.3.13) to eliminate the ūt component of the perturbation
amplitude. For the magnetic field we have

B̄µ =
(
B̄t, B̄R (ε̄xν) , B̄z (ε̄xν) , B̄φ (ε̄xν)

)
, (4.3.25)

where the B̄t component may be eliminated using equation (4.3.15). Since this com-
ponent depends on background quantities it may be “fast” along the R direction17.

17The fact that the components ūt and B̄t may be fast does not have any implication since these
components are not independent of the rest.
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4.3.3.2 Low velocity, flat metric, and the elimination of sound waves

As in the Newtonian case we may introduce simplifications to the characteristic
polynomial (4.1.24). In particular, it is possible to eliminate the sound waves in the
way discussed in section 4.2.3.
We further simplify the characteristic polynomial by assuming that the metric is flat.
We substitute the components of the background metric (4.3.16) and the respective
derivatives with those of the Minkowski metric ηµν which in cylindrical coordinates
is

ηµν = diag
[
−1, 1, 1, R2

]
. (4.3.26)

This consideration removes the implications of the curvature of spacetime and pro-
vides a reduced characteristic polynomial that is subject only to the laws of special
relativity.
Additionally, we may also consider a “low speed” approximation. Additionally, we
consider that the various velocities involved (in the most general case considered
here, these are the phase velocity vph, the angular velocity Ω and the Alfvén veloc-
ity vAz) are proportional to a small bookkeeping parameter ζ̄. As in section 4.2.5.4
we substitute the velocities through vph → ζ̄vph, Ω → ζ̄Ω and vAz → ζ̄vAz, where the
tilde quantities are of order unity18. By keeping various powers of ζ̄ we obtain dif-
ferent “low speed” limits of the characteristic equation. The rest of the background
quantities appearing in the characteristic polynomial are assumed to be of the order
unity. As we show in the following sections using these simplifying assumptions it
is possible to obtain the Newtonian results of section 4.2.5.

4.3.3.3 The relativistic sound waves and the inertial modes

In order to derive the sound waves and the inertial modes we assume that all the
background quantities are “slow” along all coordinates (i.e. Ω = Ω (ε̄R), P0 =

P0 (ε̄R, ε̄z), ρ0 = ρ0 (ε̄R, ε̄z)). Additionally this is a purely hydrodynamical configu-
ration and thus the magnetic field is zero. The background equations for this system
vanish identically except for the R component of the Euler equation (4.3.2)

g′tt = Ω2g′φφ, (4.3.27)

18As in section 4.2.5.4 to avoid crumbled expressions after introducing ζ̄ we have changed to
intermediate tilded quantities and then again to the original through ṽph → vph, Ω̃ → Ω, ṽAz → vAz.
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where the prime means differentiation with respect to the R coordinate. The equa-
tion above is in some sense the relativistic analogue of the Keplerian condition if
we assume that g′tt ' 2Φ′

Newt, with ΦNewt the Newtonian graviational potential [41].
The perturbed continuity equation (4.3.8) becomes

(P0 + ρ0)
[
gIIgφφg

′
tt + gtt

(
2gφφg

′
II + gIIg

′
φφ

)]
2gIIgttgφφ

ūR + ikz (P0 + ρ0) ū
z

+ iktgφφΩ
P0 + ρ0

gtt
ūφ + iγktρ̄ = 0,

(4.3.28)

The components of the perturbed Euler equation (4.3.9) are

ikt (P0 + ρ0) ū
R + Ω(P0 + ρ0)

gφφg
′
tt − gttg

′
φφ

gIIgtt
ūφ = 0, (4.3.29)

iγkt (P0 + ρ0) ū
z + i

kz
gII

P̄ = 0, (4.3.30)

and

(P0 + ρ0) γg
′
tt

gtt
ūR + iΩγkt

gφφ
gtt

(P0 + ρ0) ū
φ + ikt

(
γ2 − 1

gtt

)
P̄ = 0, (4.3.31)

for the R, z and φ components respectively. Note that the background equation
(4.3.27) implies that γ′ is vanishing

γ′ = −1

2
γ3
(
g′tt − Ω2g′φφ

)
= 0. (4.3.32)

The perturbation of the adiabatic condition (4.3.12) is

−c2s ρ̄+ P̄ = 0. (4.3.33)

Note that the gradients of scalars contracted with the background 4-velocity in
equation (4.3.12) vanish due to axisymmetry and stationarity.
The full characteristic polynomial using equations (4.3.20), (4.3.21), (4.3.23) and
(4.3.27) is given by

Ω2gII
(
g′φφ
)2 {

gtt
[
c2s
(
2k2 + ω2

)
− 2ω2

]
− ω2Ω2c2sgφφ

}
+ 2ω2g2IIg

2
ttgφφ

(
ω2 − k2c2s

)
+ 2ω2Ω2 c2s gtt gφφ g

′
II g

′
φφ = 0.

(4.3.34)
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In the absence of rotation (i.e. Ω = 0) we get the sound waves alone, ω2 = c2sk
2. On

the other hand the inertial waves are given by the polynomial

ω2
[
−2k2g2IIg

2
ttgφφ + Ω2gIIgtt

(
g′φφ
)2

+ 2Ω2gttgφφg
′
IIg

′
φφ

−Ω4gIIgφφ
(
g′φφ
)2]

+ 2k2Ω2gIIgtt
(
g′φφ
)2

= 0.
(4.3.35)

Assuming that the metric components are given by the flat metric (4.3.26) and
taking the low velocity approximation of section 4.3.3.2 we obtain the following
polynomial in ζ̄

2ζ̄6ω2Ω4R2 − 2ζ̄4ω2Ω2 + ζ̄2k2
(
ω2 − 4Ω2

)
= 0. (4.3.36)

The smallest degree polynomial in ζ̄ of the equation above that also includes ω (that
is the ζ̄2 term in this case) reproduces exactly the Newtonian result of equation
(4.2.71) provided that the Newtonian wavevector has only a z component.

4.3.3.4 The relativistic Rayleigh shearing instability

To derive the relativistic Rayleigh shearing instability we assume that the angular
velocity of the fluid and the background pressure are “fast” along the R coordinate
(i.e. Ω = Ω (R), P0 = P0 (R, ε̄z)). The background density is assumed to be “slow”
along all directions (i.e. ρ0 = ρ0 (ε̄R, ε̄z)). As in the previous section the only non
vanishing background equation is the R component of equation (4.3.2)

1

2 (gtt − Ω2gφφ)
Ω2g′φφ =

1

2 (gtt − Ω2gφφ)
g′tt +

1

P0 + ρ0
P ′

0. (4.3.37)

which is the relativistic counterpart of equation (4.2.72). As in the Newtonian case
the pressure gradient allows for some freedom in the choice of the profile of the
angular velocity. The perturbed continuity equation is same as in the previous
section and given by equation (4.3.28). The R and z components of the perturbed
Euler are also same, and therefore are given by equations (4.3.29) and (4.3.30),
respectively. The φ component is given by[

(P0 + ρ0) (gttγ)
′

gtt
+ γP ′

0

]
ūR + iΩγkt

gφφ
gtt

(P0 + ρ0) ū
φ

+ ikt

(
γ2 − 1

gtt

)
P̄ = 0,

(4.3.38)
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where the partial derivative of γ with respect to R coordinate is

γ′ = −1

2
γ3
(
g′tt − Ω2g′φφ − 2ΩΩ′gφφ

)
. (4.3.39)

The perturbed adiabatic condition takes the form

P ′
0ū

R − iktc
2
sγρ̄+ iktγP̄ = 0. (4.3.40)

The characteristic polynomial is, after we remove the sound waves

ω2
{
−4k2g2IIg

2
ttgφφ

(
gtt − Ω2gφφ

)2
+ 2gttgφφg

′
II

(
gtt − Ω2gφφ

) [
Ω2gttg

′
φφ

+g′tt
(
gtt − 2Ω2gφφ

)]
+ gII

[
Ω2gttg

′
φφ + g′tt

(
gtt − 2Ω2gφφ

)] [
gttg

′
φφ (gtt

−3Ω2gφφ
)
+ gφφ

(
g′tt
(
gtt + Ω2gφφ

)
− 2ΩgttgφφΩ

′)]}
+ 4k2ΩgIIgtt

(
gttg

′
φφ − gφφg

′
tt

) [
gtt
(
gφφΩ

′ + Ωg′φφ
)
− Ωgφφg

′
tt

]
= 0,

(4.3.41)

where we have used equations (4.3.20),(4.3.21),(4.3.23) and (4.3.37). The last of
these equations is used to eliminate the P ′

0 from the final expression. The full
polynomial can be found in appendix A.1.8. The flat metric and low velocity ap-
proximation discussed in section 4.3.3.2 for the polynomial above yield

ζ̄6
(
k2ω2Ω4R4 + 3ω2Ω4R2

)
+ ζ̄5

(
ω2Ω3R3Ω′)+ ζ̄4

(
−2k2ω2Ω2R2 − ω2Ω2

)
+ ζ̄2

(
k2ω2 − 4k2Ω2

)
− ζ̄

(
2k2ΩRΩ′) = 0.

(4.3.42)

The largest term in ζ̄ (i.e. ζ̄1 term) alone does not provide a characteristic equation19

in ω. Therefore by additionally considering the ζ̄2 term and eliminating the book-
keeping parameter (i.e. ζ̄ = 1) we obtain the result of equation (4.2.80) provided
that the Newtonian wavevector has only a z component.

4.3.3.5 The relativistic MRI

To obtain the relativistic magnetorotational instability we assume that the back-
ground magnetic field only has a z component which is also “slow” along the R and
z directions (i.e. Bµ

0 = (0, 0, Bz
0 (ε̄R, ε̄z) , 0)). We do not consider a φ component

for the magnetic field as we did in the Newtonian case because we want to describe
the simplest possible configuration that reproduces the MRI. From an astrophysical

19Here we mean that ω does not explicitly appear in the ζ̄1 term. Therefore it is not possible to
obtain a characteristic equation in ω by considering this term alone.
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point of view (where the magnetic field is assumed to be a dipole originating from
the neutron star) this implies that we are examining a region at distance from the
star such that the z component of the magnetic field is much larger compared to the
other components. The fluid angular velocity Ω, and the background pressure P0,
are assumed to be “fast” along the R direction and “slow” along the z direction. The
background density ρ0 is “slow” along both R and z. As in both previous sections
the only non vanishing background equation is the R component of equation (4.3.2)

Ω2g′φφ
2 (gtt − Ω2gφφ)

=
g′tt

2 (gtt − Ω2gφφ)
+

P ′
0

P0 + ρ0

+
Bz

0

P0 + ρ0

2gttg
′
II − 2Ω2gφφg

′
II + gII

(
g′tt − Ω2g′φφ

)
2 (gtt − Ω2gφφ)

,

(4.3.43)

which is the relativistic analogue of equation (4.2.82). The perturbed continuity
equation for this system is given by equation (4.3.28). The R, z and φ components
of the linearised Euler equation (4.3.9) are

iγkt
[
P0 + ρ0 + (Bz

0 )
2 gII

]
ūR + γΩ

[
P0 + ρ0 + (Bz

0 )
2 gII

] gφφg′tt − gttg
′
φφ

gIIgtt
ūφ

+ γ2
g′tt − Ω2g′φφ

2gII

(
ρ̄+ P̄

)
− iBz

0kzB̄
R

+
Bz

0

gII

[
2g′II + γ2gII

(
g′tt − Ω2g′φφ

)]
B̄z = 0,

(4.3.44)

iγkt (P0 + ρ0) ū
z + i

kz
gII

P̄ − Bz
0

2gII

[
2g′II + γ2gII

(
g′tt − Ω2g′φφ

)]
B̄R = 0, (4.3.45)

and [
(P0 + ρ0) (gttγ)

′ + (Bz
0 )

2 (γgttgII)
′

gtt
+ γP ′

0

]
ūR

+ i (Bz
0 )

2 gIIkz
γgtt

(
γ2gtt − 1

)
ūz

+ iΩγkt
gφφ
gtt

[
P0 + ρ0 + (Bz

0 )
2 gII

]
ūφ + ikt

(
γ2 − 1

gtt

)
P̄

+ iBz
0

gIIkt
gtt

(
γ2gtt − 1

)
B̄z − iΩBz

0kz
gφφ
gtt

B̄φ = 0,

(4.3.46)

for the R, z and φ components, respectively, and γ′ is given by equation (4.3.39).
Similarly, the linearised induction equation (4.3.10) yields

−iBz
0kzū

R + iγktB̄
R = 0, (4.3.47)
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for the R component,

1

2
Bz

0

(
2
g′II
gII

+
g′tt
gtt

+
g′φφ
gφφ

)
ūR + iΩBz

0kt
gφφ
gtt

ūφ + iγktB̄
z = 0, (4.3.48)

for the z component, and

− iBz
0kt

gII
gtt

(
γ2gtt − 1

)
ūz − iΩBz

0kz
gφφ
gtt

ūφ

+
1

2

[
−2γ′ + γ3

(
Ω2g′φφ − g′tt

)]
B̄R + iγktΩ

gφφ
gtt

B̄φ = 0,
(4.3.49)

for the φ component. The perturbed adiabatic conservation is given by equation
(4.3.40).
Using equation (4.3.43) to eliminate the P ′

0 term, along with equations (4.3.20),
(4.3.21), (4.3.23) and (4.3.43) the characteristic equation, having removed the sound
waves, is given by

4
(
k2 − ω2

)
g4IIgttgφφ

(
gtt − Ω2gφφ

)2 [
ω4g2φφΩ

4 + ω2
(
ω2 − 2k2

)
gttgφφΩ

2

+
(
k4 − k2ω2

)
g2tt
]
v4Az + g3II

{
−2ω4g4φφv

2
Azg

′
ttg

′
φφΩ

8 + 2ω2gttg
3
φφv

2
Az
[
−2ω2gφφΩ

′g′φφΩ
3

+2
(
k2 + ω2

)
g′ttg

′
φφΩ

2 +
(
ω2 − k2

)
(g′tt)

2
]
Ω4 − g2ttg

2
φφ

[
−4ω4

(
ω2 − 2k2

)
g2φφ
(
v2Az

−1)Ω4 − 8k2ω2gφφv
2
AzΩ

′g′φφΩ
3 + v2Az

(
ω2
(
3ω2 − k2

) (
g′φφ
)2

Ω4 + 2
(
k4 + 3ω2k2

+ω4
)
g′ttg

′
φφΩ

2 +
(
−2k4 + ω2k2 + ω4

)
(g′tt)

2
)]

Ω2 + 8k2ω2
(
k2 − ω2

)
g5ttgφφ

(
v2Az − 1

)
−2g4tt

[
−2ω2

(
−4k4 + 2ω2k2 + ω4

)
Ω2
(
v2Az − 1

)
g2φφ + 2k2

(
ω2 − k2

)
Ωv2AzΩ

′g′φφgφφ

+k2v2Azg
′
φφ

((
k2 − ω2

)
g′tt −

(
k2 − 2ω2

)
Ω2g′φφ

))
+ g3ttgφφ

(
8ω2

(
k4 + ω2k2
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−ω4
)
g2φφ
(
v2Az − 1

)
Ω4 − 4

(
k4 + ω2k2 − ω4

)
gφφv

2
AzΩ

′g′φφΩ
3 + v2Az

((
ω2k2 + 4ω4

−k4
) (

g′φφ
)2

Ω4 + 2
(
k4 + 2ω2k2 − ω4

)
g′ttg

′
φφΩ

2 +
(
k2ω2 − k4

)
(g′tt)

2
)]}

v2Az

− 2ω2g2ttgφφ
(
gtt − Ω2gφφ

) (
v2Az − 1

)
g′II
{
2ω2gφφ

[
2Ω2gφφv

2
Azg

′
II −

(
v2Az − 1

)
g′tt
]
Ω2

+4k2g2ttv
2
Azg

′
II − gtt

[
4
(
k2 + ω2

)
Ω2gφφv

2
Azg

′
II − ω2

(
v2Az − 1

) (
g′φφΩ

2 + g′tt
)]}

− gIIgtt
{
2ω4g3φφ

(
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)
g′tt
[
2Ω2gφφv

2
Azg

′
II −

(
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)
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]
Ω4

+ω2gttg
2
φφ

[
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2
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′
II

((
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)
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(
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−4gφφ
(
v2Az − 1

) (
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g′ttk
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(
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)
Ω′g′tt

)
Ω

+
(
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(
7ω2g′φφΩ

2 +
(
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)
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Ω2 + 4k2g4ttv
2
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2
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(
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)
gφφv

2
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]
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[
8g2φφv

2
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) (
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)
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Ω4 − 4
(
2k2 + ω2

)
g′ttg

′
φφΩ
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2
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(
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)
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)
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(
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(
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(
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((
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)
g′φφΩ
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(
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(
v2Az − 1

)
g′tt
(
3ω2g′φφΩ
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k2ω4Ω− 2

(
k4 + ω2k2

−ω4
)
Ω′g′II

))
Ω3 − 2gφφv

2
Az
(
Ωv2Azg

′
II

((
3k4 − 7ω4

)
g′φφΩ
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(4.3.50)



118 Chapter 4. Perturbations

where vAz is the relativistic Alfvén velocity [98], defined through

v2Az =
(Bz

0 )
2

(Bz
0 )

2 + P0 + ρ0

. (4.3.51)

The full polynomial can be found in appendix A.1.8. The flat metric and low speed
limit yields the following polynomial in ζ̄
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6 −R4ω4

(
ω2 − 3Ω2

)
v4AzΩ

4
]
ζ̄14

+R5ω4Ω5v4AzΩ
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+4R2ω2Ω2v2Azk
4 − 2R2ω4Ω2k2 − ω2Ω2v2Azk

2 − ω4Ω2
)
ζ̄6

+
(
v4Azk

6 − 2ω2v2Azk
4 + ω4k2 − 4ω2Ω2k2

)
ζ̄4

+
(
2k4RΩv2AzΩ

′ − 2k2Rω2ΩΩ′) ζ̄3 = 0.

(4.3.52)

Considering only the smallest power of ζ̄ (i.e. ζ̄3) we obtain

ω2 − v2Azk
2 = 0, (4.3.53)

which is the characteristic polynomial for the Alfvén waves. Retaining the ζ̄4 term
as well and assuming ζ̄ = 1 we obtain the Newtonian MRI characteristic equation
(4.2.90) assuming for the Newtonian wavevector kz = k.
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4.3.3.6 A remark on the characteristic polynomials and a discussion on
more realistic models

In the previous sections we obtained the characteristic equations that provide infor-
mation on the stability of each system. More specifically, the full (general relativis-
tic) characteristic equations (i.e. including the sound waves) are of degree four in ω

for the inertial waves (section 4.3.3.3) and the Rayleigh shearing instability (section
4.3.3.4). After we remove the sound waves, the polynomials are of degree two in ω

for both cases. Regarding the MRI, the full characteristic equation is of degree six
in ω while the reduced equation is of degree four.
The coefficients of the characteristic equations are too involved to be reduced ana-
lytically to general, physically intuitive conditions, similar the respective Newtonian
conditions obtained in section 4.2.5. However, the characteristic equations acquire
practical use, if instead of deriving general conditions, we consider specific forms for
the various background quantities involved. Using explicit functions or tabulated
results of numerical simulations we may investigate the stability of models in full
general relativity as long as these background solutions satisfy the “fast” and “slow”
assumptions we have imposed. Since our assumptions about the background are
general, there is substantial freedom regarding the background solutions that may
be probed as possible stable solutions of the system. Such solutions for astrophysical
disks are, for example, discussed in [97].
Apart from the investigation of stability in the context of general relativity it is
possible to obtain results in special relativity, as well. The fully special relativis-
tic polynomials are obtained by setting ζ̄ = 1 in equations (4.3.36), (4.3.42), and
(4.3.52). Furthermore, we may obtain post-Newtonian corrections by considering
the terms providing the Newtonian results, plus extra terms (i.e. higher powers of
ζ̄) of the previously mentioned equations.
Moreover, in the applications of the general relativistic case in section 4.3.3 we
considered a static, axially symmetric spacetime of the form (4.3.16) as discussed in
[95, 96]. However, more realistic models of rotating configurations in general relativ-
ity would require the consideration of spacetime framedragging [48]. To implement
such physical process we need to consider a more general metric than that provided
in equation (4.3.16), which will contain off diagonal components. More specifically,
framedragging in our analysis introduces the off diagonal gtφ background metric
component, which may be chosen either “fast” or “slow” as discussed in section
4.1.2.2.
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CHAPTER 5

Conclusions

In this thesis we have examined the dynamical behaviour of electromagnetic fluid
media in the context of general relativity. In the first part, using the variational
approach, we derived the Einstein equations, the Euler-Lagrange equations for a
multicomponent fluid and the equations for the electromagnetic field. Starting with
the covariant description of electromagnetism in linear media we took steps towards
the non-linear case. In analogy with the expression for the Lagrangian used in lin-
ear media we provided the respective formula for non-linear media in terms of an
infinite series. The linear case is given by the first two terms of the series. We
also provided a set of propagation equations in terms of the material derivative for
the permittivity and permeability tensors. We continued with the description of a
model for a general fluid consisting of multiple components with possible non-linear
electromagnetic properties. Such a medium may be found in the crust or in the core
of a neutron star. This description is quite general and it allows the derivation of
the the single fluid ideal magnetohydrodynamic limit of the general medium. The
derivation parallels the Newtonian derivation of the same limit.
In the second part we examined the dynamical behaviour of systems relevant to
astrophysical environments. We performed a first order perturbation analysis using
the geometric optics method assuming that the perturbations have harmonic de-
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pendence, in the form of a plane wave. Additionally, in order to be able to model
various physical configurations we introduced the notion of “fast” and “slow” quan-
tities and we discussed the stability and causality criteria that constrain the phase
velocity of the plane waves. The method is general in the sense that we can model
various configurations and also is not limited to ideal MHD. It can also be applied in
Newtonian context and thus, in order to gain insight, we calculated the modes and
instabilities of specific Newtonian systems. More precisely, working in a Cartesian
framework we derived in pure hydrodynamical systems the sound waves, the con-
tinuous versions of the Taylor-Rayleigh and Kelvin-Helmholtz instabilities, and the
Alfvén waves in MHD. Taking a step towards more realistic astrophysical configura-
tions we worked in cylindrical polar coordinates and obtained the inertial waves, the
Rayleigh shearing instability and the magnetorotational instability. We also demon-
strated the vanishing magnetic field limit of the latter and argued the circumstances
under which it reduces to the Rayleigh shearing instability. Although this limit has
been discussed in literature [99, 100, 97], most of the times the arguments favouring
the difference between the vanishing magnetic field MRI and the Rayleigh shearing
instability are vague. In this work we provided a quantitative analysis of this limit,
using expansions of the MRI characteristic polynomial and discussed the various
possible cases. In that sense, we provided a clearer picture regarding the stability
condition in the vanishing magnetic field limit of the MRI. Subsequently, we con-
sidered an axisymmetric spacetime in cylindrical coordinates and worked out the
characteristic equations of the inertial waves, and the Rayleigh shearing and mag-
netorotational instabilities. We also demonstrated that these equations reduce to
the respective Newtonian results provided that the background metric is flat and
the various velocities of the system are small. This Newtonian-like limit of the
characteristic equations provide insight into the Newtonian behaviour of relativistic
systems.

The thesis would be incomplete if we did not mention the various paths that may
be followed starting with this work. Regarding the first part, it is possible to extend
the propagation equations of the permittivity and permeability tensors in order to
account for dependence on number density currents in addition to the electromag-
netic field. Also, following the long Abraham-Minkowski controversy on the essence
of the spatial electromagnetic flux vector it would be interesting to calculate the two
forms for the general medium presented here.
Regarding the second part, it would be interesting to look into the possibility of re-
garding the notion of “fast” and “slow” quantities in such a way that the calculations



123

remain covariant, in the sense of a 1+3 decomposition. Additionally, we may extend
the existing relativistic approach to account for “fast” quantities along z axis. This
consideration will result in a characteristic polynomial that will be valid in regions
far from the equatorial plane. Furthermore, using a different coordinate system we
may obtain solutions in three spatial dimensions. Finally, since the geometric op-
tics method may be used in many physical configurations, it is possible to perform
a stability analysis of systems involving electromagnetic media and multifluids as
discussed in the first part of the thesis.
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APPENDIX A

Mathematical formulas

A.1 Definitions and additional calculations

A.1.1 Formulas for the Levi-Civita tensor

From equation (2.1.14), contracting a pair of indices yields

εabcdε
afpq = −3!δ f

[b δ
p
c δ

q
d], (A.1.1)

while contracting two pairs leads to

εabcdε
abpq = −2!δ p

[c δ
q
d]. (A.1.2)

For three pair contraction we have

εabcdε
abcq = −6δ q

d . (A.1.3)

125



126 Appendix A. Mathematical formulas

For the spatial Levi-Civita tensor we have

εabcε
def = 3!h d

[a h
e

b h f
c] , (A.1.4)

while contracting one pair of indices implies

εabcε
aef = 2!h e

[b h
f

c] , (A.1.5)

while two pair contracting yields

εabcε
abf = 2h f

c , (A.1.6)

and finally contracting all indices provides

εabcε
abc = 3!. (A.1.7)

A.1.1.1 Lagrangian variation

The Lagrangian variation of the metric tensor is calculated starting with equation
(2.2.5)

∆gab = δgab + £ξgab

= δgab + ξc∇cgab + gcb∇aξ
c + gac∇bξ

c

= δgab +∇aξb +∇bξa

= δgab + 2∇(aξb).

(A.1.8)

If ξa is a Killing vector then the last term vanishes and the Lagrangian and Eulerian
variations for the metric are the same. Since the Lagrangian variation of the Kro-
necker delta is zero the variations of the metric with indices upstairs and downstairs
are related through

∆gab = −gac gbd ∆gcd. (A.1.9)
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A.1.2 The variation of the Levi-Civita tensor

To calculate the Eulerian variation of the Levi-Civita tensor we start with equations
(2.1.14) and (2.1.12)

δ
(
εabcdε

efgh
)
=0

εefghδεabcd =− εabcd (δεpqrs) g
pegqfgrggsh − εabcdεpqrsδ

(
gpegqfgrggsh

)
δεabcd =

1

4!
εefghεabcd (δεpqrs) g

pegqfgrggsh

+
1

4!
εefghεabcdεpqrsδ

(
gpegqfgrggsh

)
,

(A.1.10)

we now multiply this expression with εabcd and we contract the respective indices
and so we get

εabcdδεabcd = −εefgh (δεpqrs) g
pegqfgrggsh − εefghεpqrsδ

(
gpegqfgrggsh

)
= −1

2
εefghεpqrsδ

(
gpegqfgrggsh

)
.

(A.1.11)

We now substitute the first term of equation (A.1.10) with the result of the previous
equation and we have

δεabcd =
1

2 · 4!
εabcdεefghεpqrsδ

(
gpegqfgrggsh

)
= − 2

4!
εabcdεefghε

fgh
p gpmgenδgmn

= − 2

4!
εabcdεefghε

mfghgenδgmn

=
1

2
εabcdg

mnδgmn.

(A.1.12)

This formula is the same for the Lagrangian variation of the Levi-Civita tensor that
is

∆εabcd =
1

2
εabcdg

mn∆gmn. (A.1.13)

A.1.3 The variation of multi-fluid Lagrangian

We will show the manipulation of the terms related to the infinitesimal spacetime
displacement in the variation of the Lagrangian for the multi-fluid. Starting with
equation (3.2.14) and omitting the summation symbol for clarity the terms in the
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brackets can be written as

µx
an

b
x∇bξ

a
x − µx

aξ
b
x∇bn

a
x − µx

an
a
x∇bξ

b
x =

∇b

(
µx
aξ

a
xn

b
x
)
− µx

aξ
a
x∇bn

b
x︸ ︷︷ ︸

=0

−nb
xξ

a
x∇bµ

x
a −∇b

(
µx
an

a
xξ

b
x
)
+ na

xξ
b
x∇bµ

x
a.

(A.1.14)

The second term in the right-hand side vanishes due to the conservation of each fluid
number density current while the third and fifth in the right-hand side, by renaming
indices, are

−nb
xξ

a
x∇bµ

x
a + na

xξ
b
x∇bµ

x
a = −2ξbxn

a
x ∇[aµ

x
b]. (A.1.15)

Finally, the first and fourth terms in the right-hand side of equation (A.1.15) using
equations (2.1.14), (2.3.4) and (3.2.12) is

∇b

(
µx
aξ

a
xn

b
x
)
−∇b

(
µx
an

a
xξ

b
x
)
= ∇b

(
1

2
µbef

x nx
efaξ

b
x

)
. (A.1.16)

A.1.4 The first Maxwell equation

In order to derive the first Maxwell’s equation (3.3.82) we will use the definition of
the covariant derivative for a 2nd rank covariant tensor Sab. That is

∇cSab = ∂cSab − Γd
acSdb − Γd

bcSad. (A.1.17)

The left-hand part of equation (3.3.82) expands as

∇[aFbc] =
1

6
(∇aFbc −∇aFcb −∇bFac +∇bFca −∇cFba +∇cFab) . (A.1.18)

Using equation (A.1.17) and the antisymmetry of the Faraday tensor, this result is
equivalent to

∇[aFbc] =
1

6

[
2∂aFbc + 2∂bFca + 2∂cFab + 2

(
Γd

ac − Γd
ca

)
Fbd

+2
(
Γd

bc − Γd
cb

)
Fda + 2

(
Γd

ba − Γd
ab

)
Fcd

]
,

(A.1.19)

and since the connection is symmetric the related terms cancel and we obtain

∇[aFbc] =
1

3
(∂aFbc + ∂bFca + ∂cFab) . (A.1.20)
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The Faraday tensor given in equation (3.3.1) can be written as

Fab = ∂aAb − Γc
baAc − ∂bAa + Γc

abAc = ∂aAb − ∂bAa. (A.1.21)

Substituting the previous equation in equation (A.1.20) we get

∇[aFbc] =
1

3
[∂a∂bAc − ∂a∂cAb + ∂b∂cAa − ∂b∂aAc + ∂c∂aAb − ∂c∂bAa] , (A.1.22)

and finally, the commutativity of the partial differentiation yields

∇[aFbc] = 0. (A.1.23)

A.1.5 Calculation of derivatives of invariants

Here we will provide the derivatives of the invariants with respect to the fundamental
fields that were used in section 3.4.2. The second derivatives of the the electromag-
netic invariants I and K are (since the first are already given in equations 3.3.58)
and 3.3.59)

∂2I

∂Fab∂Fcd

= 2χabcd
0 , (A.1.24)

and
∂2K

∂Fab∂Fcd

= 2εabcd, (A.1.25)

For Fxy we have
∂Fxy

∂Fab

= δ a
[c δ

b
d] n

c
xn

d
y = n[a

x n
b]
y , (A.1.26)

while the second derivative with respect to the Faraday tensor vanishes. The deriva-
tives of the electromagnetic invariants I, K with respect to the number density cur-
rent are zero since these quantities depend only on the electromagnetic field. For
Fxy we have

∂Fxy

∂na
x

= Fcdn
d
yδ

c
a = Fadn

d
y, (A.1.27)

and for the second derivative we have

∂2Fxy

∂na
x∂n

b
y
= Fadδ

d
b = Fab, (A.1.28)
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while the second derivative with respect to number density current and the Faraday
tensor is

∂2Fxy

∂na
x∂Fbc

= δ [b
e δ

c]
d nd

yδ
e

a = δ [c
a nd]

y . (A.1.29)

The derivatives of I, K with respect to the the metric are

∂I

∂gab
= FspFcd

∂

∂gab

(
gscgpd − gsdgpc

)
= −4F a

cF
bc, (A.1.30)

where we have used the vacuum constitutive tensor given in equation (3.3.14) and
used equation (3.1.10). The derivative of the Levi-Civita tensor with respect to the
metric is obtained by a process similar to that of appendix A.1.2 given by

∂K

∂gab
= −1

2
Kgab. (A.1.31)

Finally, the derivative of Fxy with respect to the metric is vanishing since number
density currents are defined with indices upstairs while the Faraday tensor is defined
with indices downstars.

A.1.6 Relation between the Lorenz force and the electro-
magnetic energy-momentum tensor in vacuum

Here we derive the ∇aTEM
ab = −Fabj

b relation, where TEM
ab is given by equation

(3.4.34). We have

∇aTEM
ab = ∇b

(
−FacF

c
b −

1

4
FcdF

cdgab

)
= −Fac

(
∇bF c

b

)
−∇bFacF

c
b −

1

4
gab∇b

(
FcdF

cd
)

= −Facj
c − F cb∇bFac −

1

2
F cd∇aFcd
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where we substituted ja by the Maxwell equation (3.3.86)

= −Facj
c − F cd

(
∇cFda +

1

2
∇aFcd

)
= −Facj

c − 1

2
F cd (∇cFda −∇cFad +∇aFcd)

= −Facj
c − 1

2
F cd (∇cFda +∇dFac +∇aFcd)

= −Facj
c − 3

2
F cd∇[aFcd]

= −Facj
c.

(A.1.32)

The second term in the second to last line vanished because of the Maxwell equation
(3.3.82).

A.1.7 The axisymmetric Newtonian ∇ operator in a cylin-
drical polar orthonormal frame

We consider the orthonormal basis vectors R̂, ẑ, φ̂ and the respective coordinates
(R, z, φ). For the axissymetric quantities f(R, z), A = AR (R, z) R̂ + Az (R, z) ẑ +

Aφ (R, z) φ̂ and B = BR (R, z) R̂+Bz (R, z) ẑ +Bφ (R, z) φ̂ we have

∇f =
∂f

∂R
R̂+

∂f

∂z
ẑ, (A.1.33)

∇ ·A =
1

R
AR +

∂AR

∂R
+

∂Az

∂z
, (A.1.34)

∇×A = −∂Aφ

∂z
R̂+

(
∂AR

∂z
− ∂Az

∂R

)
φ̂+

(
∂Aφ

∂R
+

Aφ

R

)
ẑ, (A.1.35)

and
(A · ∇)B =

(
AR

∂BR

∂R
+ Az

∂BR

∂z
− AφBφ

R

)
R̂

+

(
AR

∂Bφ

∂R
+ Az

∂Bφ

∂z
+

AφBR

R

)
φ̂

+

(
AR

∂Bz

∂R
+ Az

∂Bz

∂z

)
ẑ.

(A.1.36)
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A.1.8 The full relativistic characteristic polyomials

The full characteristic equation (i.e. including the speed of sound) for the relativistic
Rayleigh shearing instability (of section 4.3.3.4) is given by

4ω2g2IIg
2
ttgφφ

(
ω2 − k2c2s

) (
gtt − Ω2gφφ

)2
+ gII

{
Ω2g2tt

(
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)2 [
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(
c2s
(
4k2 + ω2

)
− 5ω2

)
−Ω2gφφ

(
3ω2c2s + k2 − 4ω2

)]
+ gttg

′
φφ

[
g′tt
(
2Ω2gttgφφ

(
−2c2s

(
2k2 + ω2

)
+ k2 + 2ω2

)
+ω2

(
c2s + 1

)
g2tt + ω2Ω4

(
7c2s − 3

)
g2φφ
)
+ 2ΩgttgφφΩ

′ (−2gtt
(
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(
c2s − 1

)
gφφ
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′
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(
k2 − ω2c2s

)
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(
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(A.1.37)

Similarly the full characteristic polynomial for the relativistic MRI (of section 4.3.3.5)
is given by

− v2Az
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g′φφΩ
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)
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(
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)
g3ttg

′
φφ
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(
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)
g′φφΩ
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−2Ω2c2sgφφg
′
tt

]
ω2 + gII

[
−2ω2c2sg

3
φφ (g

′
tt)
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+4ω2c2sgφφΩ
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ω2 +

(
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)
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g′tt
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(
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g′ttg

′
φφΩ
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)
ω2g′φφΩ

2

+
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2k2 + ω2

)
c2s − ω2
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g′tt
)
Ω +

(
k2 − ω2c2s

)
(g′tt)

2
)
+ g3ttg

′
φφ

((
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(A.1.38)
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A.2 An alternative form of Maclaurin series

In this section we present a Taylor-like series for a real single variable function.
Let f : R → R be a real analytic function. The MacLaurin series (Taylor series
around x0 = 0) are 1

f(x) =
+∞∑
n=0

(
f
(n)
0

n!
xn

)
. (A.2.1)

The MacLaurin series for the k-th derivative of f are given by

f (k)(x) =
+∞∑
n=0

(
f
(n+k)
0

n!
xn

)
. (A.2.2)

We will now calculate the following infinite series

A = f0 + xf (1) − 1

2!
x2f (2) + . . .+

(−1)k+1

k!
xkf (k) . . .

= f0 +
+∞∑
k=1

(
(−1)k+1

k!
f (k)xk

)
.

(A.2.3)

The manipulation of the previous expression is easier if we substitute equation
(A.2.2). Then we obtain

A =f0 +
+∞∑
k=1

(
(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

))
, (A.2.4)

1Here the subscripts denote the point where the function is evaluated i.e. f0 = f(0) and the
superscripts the order of the derivative i.e. f (k) = f (k)(x) = dkf

dxk . Note that f0 = f
(0)
0 = f(0).

Since we manipulate single variable functions we do not show the variable in some occasions.
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and we split the sum into three individual sums

A = f0 +
N∑
k=1

(
(−1)k+1

k!
xk

N−k∑
n=0

(
f
(n+k)
0

n!
xn

))
︸ ︷︷ ︸

A0

+
N∑
k=1

(
(−1)k+1

k!
xk

+∞∑
n=N−k+1

(
f
(n+k)
0

n!
xn

))
︸ ︷︷ ︸

A2

+
+∞∑

k=N+1

(
(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

))
︸ ︷︷ ︸

A1

.

(A.2.5)

Starting with the second term A0 we have

A0 =
N∑
k=1

(
(−1)k+1

k!
xk

N−k∑
n=0

(
f
(n+k)
0

n!
xn

))
m=n+1
=

N∑
k=1

N−k+1∑
m=1

(
(−1)k+1

k!(m− 1)!
f
(m−1+k)
0 xm−1+k

)
s=m−1+k

=
N∑
k=1

N∑
s=k

(
(−1)k+1

k!(s− k)!
f
(s)
0 xs

)
.

(A.2.6)

Using now the property for double sums [101]

N∑
k=1

N∑
n=k

c(k, n) =
N∑

n=1

n∑
k=1

c(k, n), (A.2.7)

equation (A.2.4) takes the following form

A0 =
N∑
k=1

N∑
s=k

(
(−1)k+1

k!(s− k)!
f
(s)
0 xs

)

=
N∑
s=1

s∑
k=1

(
(−1)k+1

k!(s− k)!
f
(s)
0 xs

)

=
N∑
s=1

(
f
(s)
0

s!
xs

)
.

(A.2.8)
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So we have shown that

A0 =
N∑
k=1

(
(−1)k+1

k!
xk

N−k∑
n=0

(
f
(n+k)
0

n!
xn

))
=

N∑
s=1

(
f
(s)
0

s!
xs

)
. (A.2.9)

Calculating the limit of the previous equation for N → +∞ yields

lim
N→+∞

A0 = lim
N→+∞

N∑
s=1

(
f
(s)
0

s!
xs

)
=

+∞∑
s=1

(
f
(s)
0

s!
xs

)
, (A.2.10)

which by using equation (A.2.1) is found to take the value

lim
N→+∞

A0 = f(x)− f0. (A.2.11)

We will now calculate the last term of equation (A.2.3). We assume that
∣∣∣f (n+k)

0

∣∣∣ ≤ ε

for all n, k where ε is assumed to be finite. We know that a series
∑

n a(n) converges
if
∑

n |a(n)| converges. So, we will calculate the related absolute series (namely A′
1

and A′
2) for terms A1 and A2. Starting with A1 we have

A′
1 =

+∞∑
k=N+1

(∣∣∣∣∣(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

)∣∣∣∣∣
)

≤

+∞∑
k=N+1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=0


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|

 .

(A.2.12)

The absolute value of xk for k ∈ Z is given through

∣∣xk
∣∣ = { xk , x ≥ 0

(−1)kxk , x < 0
(A.2.13)

Since the expressions for positive and negative x are different we will consider them
separately. Starting with x ≥ 0 equation (A.2.12) becomes

+∞∑
k=N+1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=0


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|

 ≤ ε
+∞∑

k=N+1

(
xk

k!

+∞∑
n=0

xn

n!

)
=

ε

+∞∑
k=N+1

(
xk

k!

)
= εe2x

(
1− Γ(N + 1, x)

Γ(N + 1)

)
,

(A.2.14)
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where Γ(x) is the Gamma function and Γ(n, x) is the upper incomplete Gamma
function. Using the series definition of the later [102]

Γ(n, x) = (n− 1)!e−x

n−1∑
s=0

xs

s!
, (A.2.15)

equation (A.2.14) obtains the following form

+∞∑
k=N+1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=0


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|

 ≤ εe2x

(
1− e−x

N∑
s=0

xs

s!

)
. (A.2.16)

Similarly, equation (A.2.12) for x < 0 becomes

+∞∑
k=N+1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=0


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|

 ≤

ε
+∞∑

k=N+1

(
(−1)kxk

k!

+∞∑
n=0

(−1)nxn

n!

)
=

εe−x

+∞∑
k=N+1

(
(−1)kxk

k!

)
= εe−2x(−1)N(−x)−NxN

(
1− Γ(N + 1,−x)

Γ(N + 1)

)
,

(A.2.17)

and by using equation (A.2.15) we get

+∞∑
k=N+1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=0


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|


≤ εe−2x

(
1− ex

N∑
s=0

(−x)s

s!

)
.

(A.2.18)

Putting together the result of equations (A.2.16), (A.2.18) and (A.2.12) we get

A′
1 =

+∞∑
k=N+1

(∣∣∣∣∣(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

)∣∣∣∣∣
)

≤


εe2x

(
1− e−x

∑N
s=0

xs

s!

)
, x ≥ 0

εe−2x
(
1− ex

∑N
s=0

(−x)s

s!

)
, x < 0

.

(A.2.19)
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Taking now the limits of both sides of the previous piecewise equation as N → +∞
we get

lim
N→+∞

+∞∑
k=N+1

(∣∣∣∣∣(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

)∣∣∣∣∣
)

≤
limN→+∞

(
εe2x

(
1− e−x

∑N
s=0

xs

s!

))
, x ≥ 0

limN→+∞

(
εe−2x

(
1− ex

∑N
s=0

(−x)s

s!

))
, x < 0

(A.2.20)

Both limits in the right-hand-side of equation (A.2.20) are zero and so we have

lim
N→+∞

+∞∑
k=N+1

(∣∣∣∣∣(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

)∣∣∣∣∣
)

= 0. (A.2.21)

Note that since all terms in the left-hand-side of equation (A.2.21) are positive the
“<” symbol is dropped. We will now calculate the A′

2 term

A′
2 =

N∑
k=1

(∣∣∣∣∣(−1)k+1

k!
xk

+∞∑
n=N−k+1

(
f
(n+k)
0

n!
xn

)∣∣∣∣∣
)

≤

N∑
k=1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=N−k+1


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|

 .

(A.2.22)

As before we consider first the case x ≥ 0

N∑
k=1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=N−k+1


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|

 ≤

ε
N∑
k=1

(
1

k!
xk

+∞∑
n=N−k+1

(
1

n!
xn

))
= εex

N∑
k=1

[
xk

k!

(
1− Γ(N + 1− k, x)

Γ(N + 1− k)

)]
,

(A.2.23)
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and by using equation (A.2.15) we get

N∑
k=1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=N−k+1


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|

 ≤

εex
N∑
k=1

(
xk

k!

)
− ε

N∑
k=1

(
xk

k!

N−k∑
s=0

xs

s!

)
=

m=k+s
= εex

N∑
k=1

(
xk

k!

)
− ε

N∑
k=1

(
N∑

m=k

(
xm

k!(m− k)!

))

= εex
N∑
k=1

(
xk

k!

)
− ε

N∑
m=1

(
m∑
k=1

(
xm

k!(m− k)!

))
.

(A.2.24)

So after some manipulation we have

N∑
k=1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=N−k+1


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|


≤ εex

N∑
k=1

(
xk

k!

)
− ε

N∑
m=1

(
2m − 1

m!
xm

)
.

(A.2.25)

We calculate equation (A.2.22) for x < 0

N∑
k=1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=N−k+1


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|

 ≤

ε

N∑
k=1

(
(−1)k

k!
xk

+∞∑
n=N−k+1

(
(−1)n

n!
xn

))
=

ε

N∑
k=1

(
(−1)k

k!
xk(−1)N+2−ke−x(−x)k−NxN−k

(
1− Γ(N + 1− k,−x)

Γ(N + 1− k)

))
=

εe−x

N∑
k=1

(
(−1)k

k!
xk

)
− εe−x

N∑
k=1

(
(−1)k

k!
xkΓ(N + 1− k,−x)

Γ(N + 1− k)

)
,

(A.2.26)
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and by using the definition of the incomplete Gamma function (A.2.15) we get

N∑
k=1

∣∣(−1)k+1
∣∣

k!

∣∣xk
∣∣ +∞∑
n=N−k+1


∣∣∣f (n+k)

0

∣∣∣
n!

|xn|

 ≤

≤ εe−x

N∑
k=1

(
(−1)k

k!
xk

)
− ε

N∑
k=1

(
N−k∑
s=0

(−1)k+s

k!s!
xk+s

)
=

m=s+k
= εe−x

N∑
k=1

(
(−1)k

k!
xk

)
− ε

N∑
k=1

(
N∑

m=k

(−1)m

k!(m− k)!
xm

)
=

= εe−x

N∑
k=1

(
(−1)k

k!
xk

)
− ε

N∑
m=1

(
(−1)m(2m − 1)

m!
xm

)
.

(A.2.27)

The piecewise inequality for A′
2 using equations (A.2.25), (A.2.26) and (A.2.22) is

A′
2 =

N∑
k=1

(∣∣∣∣∣(−1)k+1

k!
xk

+∞∑
n=N−k+1

(
f
(n+k)
0

n!
xn

)∣∣∣∣∣
)

≤
εex
∑N

k=1

(
xk

k!

)
− ε

∑N
m=1

(
2m−1
m!

xm
)
, x ≥ 0

εe−x
∑N

k=1

(
(−1)k

k!
xk
)
−

ε
∑N

m=1

(
(−1)m(2m−1)

m!
xm
)
, x < 0

.

(A.2.28)

Calculating the limit as N → +∞ on both sides of equation (A.2.29) we find that
the right-hand-side limits are zero and thus

lim
N→+∞

N∑
k=1

(∣∣∣∣∣(−1)k+1

k!
xk

+∞∑
n=N−k+1

(
f
(n+k)
0

n!
xn

)∣∣∣∣∣
)

= 0. (A.2.29)

We will now calculate the values of A1 and A2. For A1 we have

|A1| ≤ A′
1 (A.2.30)

and thus, we obtain ∣∣∣∣∣
+∞∑

k=N+1

(
(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

))∣∣∣∣∣
≤

+∞∑
k=N+1

(∣∣∣∣∣(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

)∣∣∣∣∣
)
.

(A.2.31)
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Taking the limit as N → +∞ on both sides of the above equation and using equation
(A.2.21) we get

lim
N→+∞

|A1| = lim
N→+∞

∣∣∣∣∣
+∞∑

k=N+1

(
(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

))∣∣∣∣∣ = 0. (A.2.32)

For A1 we have
− |A1| ≤ A1 ≤ |A1| (A.2.33)

and therefore,

−

∣∣∣∣∣
+∞∑

k=N+1

(
(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

))∣∣∣∣∣ ≤ A1 ≤∣∣∣∣∣
+∞∑

k=N+1

(
(−1)k+1

k!
xk

+∞∑
n=0

(
f
(n+k)
0

n!
xn

))∣∣∣∣∣ ,
(A.2.34)

which is a condition that is in general true for any real number. Calculating the limit
as N → +∞ of the previous inequality and using the result of equation (A.2.32) we
get

0 ≤ lim
N→+∞

A1 ≤ 0, (A.2.35)

and therefore
lim

N→+∞
A1 = 0. (A.2.36)

Similarly using the same arguments the value of A2 as N → +∞ is

lim
N→+∞

A2 = 0. (A.2.37)

Finally, we calculate the limit of equation (A.2.5) as N → +∞ using equations
(A.2.11), (A.2.36) and (A.2.37)

lim
N→+∞

A = f0 + lim
N→+∞

A0 + lim
N→+∞

A1 + lim
N→+∞

A2 (A.2.38)

which reduces to
lim

N→+∞
A = f(x), (A.2.39)

and by substituting A from the definition (A.2.3) we find

f(x) = f0 +
+∞∑
k=1

(
(−1)k+1

k!
f (k)xk

)
. (A.2.40)
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A.2.1 Mathematical results of the modified MacLaurin se-
ries

Calculating the series given by equation (A.2.40) for arctan(x) and then calculating
for x = 1 we obtain in an analytic way the following BBP type formula [103] which
was originally obtained numerically in [104]

π =
+∞∑
N=0

[
(−1)N

22N−1
· 20N2 + 21N + 5

32N3 + 48N2 + 22N + 3

]
. (A.2.41)

Additionally the error function erf(x) which is defined through

erf(x) = 2√
π

∫ x

0

e−t2dt (A.2.42)

by using equation (A.2.40) obtains the following form

erf(x) = 2√
π
e−x2

+∞∑
N=1

[
xN

N !
HN−1(x)

]
, (A.2.43)

where HN(x) are the Hermitte polynomials [102]. Using the Rodrigues’ formula for
the Hermitte polynomials given by

HN(x) = (−1)Nex
2 dN

dxN

(
e−x2

)
, (A.2.44)

along with equation (A.2.40) we get the following identity

+∞∑
N=1

[
xN

N !
HN(x)

]
= ex

2

, (A.2.45)

which is a special case of an exponential generating function [102].
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