Accepted Article

Title: Chemical Consequences of the Mechanical Bond: A Tandem Active Template-Rearrangement Reaction

Authors: Florian Modicom, Ellen Jamieson, Elise Rochette, and Stephen Michael Goldup

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201813950
Angew. Chem. 10.1002/ange.201813950

Link to VoR: http://dx.doi.org/10.1002/anie.201813950
http://dx.doi.org/10.1002/ange.201813950
Chemical Consequences of the Mechanical Bond: A Tandem Active Template-Rearrangement Reaction

Florian Modicom,[a] Ellen M. G. Jamieson,[a] Elise Rochette,[b] and Stephen M. Goldup*[a]

Abstract: We report the unexpected discovery of a tandem active template CuAAC-rearrangement process in which N2 is extruded en route to the 1,2,3-triazole product to give instead acrylamide rotaxanes. Mechanistic investigations suggest this process is dictated by the mechanical bond, which stabilizes the Cu-triazolide intermediate of the CuAAC reaction and diverts it down the rearrangement pathway; when no mechanical bond is formed, the CuAAC product is isolated.

The Cu-mediated alkyne-azide cycloaddition (CuAAC) reaction[1] is now ubiquitous in the synthesis of non-natural products for a wide range of applications.[2] This success is largely due to the availability of the required starting materials, broad substrate scope, high yield and mild conditions of the reaction itself, often cited as the archetypal “click” reaction.[3] Furthermore, the 1,2,3-triazole link formed from simple azides and alkynes is chemically robust, and is thus an excellent structural unit.[4]

The active template (AT) approach to interlocked molecules,[5] introduced by Leigh and co-workers, harnesses the ability of endotopic functional groups within a macrocycle to mediate a new covalent bond forming reaction through the ring and thus generate a mechanical bond. The first and best studied AT process is the AT-CuAAC reaction[6] which employs an endotopically ligated CuI ion and inherits the benefits of the parent CuAAC process to produce complex rotaxanes,[7] catenanes,[8] and knots[9] in excellent yield with broad substrate scope, and has been applied to the synthesis of mechanically interlocked ligands,[10] pro-drugs,[11] catalysts,[12] hosts,[13] sensors[14] and molecular machines.[15]

However, to date, all AT reactions generate products in which the bond forming reaction used determines the functional group present in the product; all AT-CuAAC products reported retain the 1,2,3-triazole link produced in the cycloaddition process. Here we report the unexpected observation and subsequent optimization of a domino AT-CuAAC-rearrangement process to produce acrylamide-derived rotaxanes with up to 100% selectivity, and mechanistic studies that rationalize the reaction outcome. Not only does this new transformation expand the range of interlocked molecules available using this simple methodology, it also serves to highlight the ability of mechanical bonding to augment chemical reactivity to produce new reaction outcomes.

We set out to synthesize rotaxane 4 under our optimized AT-CuAAC conditions[16,17] with readily available small bipyridine macrocycle 1,[18] azide 2 and propargylic alkyne 3. However, in addition to 4, a second interlocked product was observed in trace amounts prior to purification. The amount of the interlocked impurity varied between runs and this effect was eventually traced to the presence of adventitious water; when strictly anhydrous conditions were used 4 was the only observed interlocked product. Conversely, when water was intentionally added, the new product was found in ~ 1 : 9 ratio with 4, allowing us to isolate and characterize it in order to determine its structure.

Scheme 1. *(a) Consumption of 1a. (b) Determined by 1H NMR analysis of the crude reaction product. (c) Conversion varied considerably run-to-run. (d) Isolated yield.[18]"

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Conversion [%]</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NPr₂Et CH₂Cl₂, rt, 48 h</td>
<td>100%</td>
<td>4 : 59</td>
<td>99 : 1</td>
</tr>
<tr>
<td>2</td>
<td>NPr₂Et CH₂Cl₂-H₂O (9:1), rt, 48 h</td>
<td>99%</td>
<td>60 : 40</td>
<td>100 : 0</td>
</tr>
<tr>
<td>3</td>
<td>CH₂Cl₂-H₂O (9:1), rt, 48 h</td>
<td>90 : 10%</td>
<td>85 : 15</td>
<td>99 : 1</td>
</tr>
<tr>
<td>4</td>
<td>THF-H₂O (9:1), 48 h</td>
<td>100%</td>
<td>>99 : <1</td>
<td>99 : 1</td>
</tr>
<tr>
<td>5</td>
<td>THF-H₂O (9:1), 80 °C (uw), 20 min</td>
<td>66% - 80%</td>
<td><1 : >99</td>
<td>4 : 96</td>
</tr>
<tr>
<td>6</td>
<td>KF, THF-H₂O (9:1), 80 °C (uw), 20 min</td>
<td>99%</td>
<td>4 : 96</td>
<td>100 : 0</td>
</tr>
<tr>
<td>7</td>
<td>KF, THF-H₂O (9:1), 70 °C (uw), 1 h</td>
<td>99%</td>
<td><1 : >99 (99%)</td>
<td>99 : 1</td>
</tr>
</tbody>
</table>

Figure 1. Solid-state structure of rotaxane 5 in a) sticks representation and b) spacefilling representations. Selected intercomponent distances in Å: H – O = 2.94, H – N = 2.78, NH – N = 2.65, NH – N = 2.26.

LCMS analysis confirmed the isolated material was single component with *m/z* = 926.6199, corresponding to [4 – N₂]+, suggesting dinitrogen had been extruded. Strikingly, the 1H NMR spectrum of the unknown product did not display desymmetrisation of the macrocycle component as would be expected if the stereogenic center derived from the propargylic alcohol was present in the axle.[18] Also, the 1H NMR spectrum of the unknown product contained coupled doublets at 6.85 and 6.29 ppm (*J* = 15.5 Hz), consistent with trans-related vinyl protons. Ultimately, slow diffusion of Et₂O into a ChCl₂ solution of the unknown compound produced crystals suitable for single

This article is protected by copyright. All rights reserved.
crystal x-ray diffraction analysis (Figure 1), revealing the byproduct to be rotaxane 5, which is derived from 4 by loss of N2 and rearrangement of the axle to yield an acrylamide unit and is consistent with the LCMS and 1H NMR analysis.

Having identified 5, we turned our attention to optimizing its formation. When NP2El was omitted from the reaction (entry 3), 5 was observed as the major product, albeit with extended reaction times. Replacing CH2Cl2 with THF yielded a homogeneous reaction mixture from which the only interlocked product observed was 5 (entry 4). However, the rate of reaction varied considerably run-to-run due to a long induction period, as determined by 1H NMR monitoring of the reaction (see ESI). Heating the reaction mixture to 80 °C (µw)19 increased the rate of reaction but the conversion still varied run-to-run (entry 5). This poor reproducibility, and in particular the observed induction period, led us to propose that F−, derived from hydrolysis of the counter ion of [Cu(MeCN)2]PF6, played a role in the production of 5. Pleasingly, addition of KF to the reaction mixture led to a reproducible process (entry 6).19 Finally, reducing the reaction temperature to 70 °C allowed complete, rapid and selective formation of 5, which was isolated in 95% yield (entry 7).

With optimized conditions in hand, we investigated the effect of substrate structure on reaction selectivity to gain insight into the features required for this unexpected rearrangement process. Macrocycles 1b and 1d produced acrylamide products 6 and 7 respectively, although more sterically hindered macrocycle 1d required more forcing conditions to achieve reasonable conversion, leading to reduced selectivity (7 : 3 acrylamide-triazole product). The rearrangement process proved extremely sensitive to the structure of the alkyne or azide component; benzyl azide 2b produced rotaxane 8 in diminished selectivity (4 : 1) and less hindered azide 2c produced 9 in poor selectivity (1 : 3). Similarly, alkyne 3b, in which a methylene unit was introduced between the propargyl carbon and the aromatic unit, led to a significant reduction in selectivity (~ 1 : 1). Conversely, when hindered tertiary alcohol 3c was used, complete selectivity was observed for acrylamide rotaxane 11.

To probe the role of the alcohol functional group we examined alkynes in which this functional group is absent. When methyl ether 3d was used in place of alcohol 3a the same rearranged rotaxane 5 was observed in excellent selectivity. However, when alkyne 3e was used, in which no propargylic C–O bond is present, only the corresponding triazole rotaxane was observed. Finally, when the reaction was carried out either in the absence of macrocycle 1a or in the presence of macrocycle 1c, which is too large to be retained by the aromatic stopper units, no acrylamide product was observed (see ESI).20

Based on the above results, steric hindrance appears to favor the acrylamide product, the presence of an alcohol or ether unit at the propargylic position of the azide is required, and mechanical bond formation is essential. With this information in hand we turned our attention to the mechanism of the rearrangement process. We have previously shown that the AT-CuAAC reaction proceeds via a Cu–triazole intermediate21 whose Cu–C bond is kinetically stabilized against protonation by the mechanical bond.18 To probe whether this species was also an intermediate en route to the acrylamide product we synthesized triazole 12 by reaction of macrocycle 1a with azide 2a and alkyne 3c in the presence of NP2El.22 When 12 was subjected to optimized conditions for the production of 5, incomplete conversion to rearranged product 11 was observed. Re-examination of the proposed scheme for the formation of the acrylamide product via the corresponding triazole we identified that it is formed alongside an equivalent of H+ (Scheme 2b).

Accordingly, when triazolide 12 was re-subjected to our reaction conditions in the presence of 1 equiv of HPF6, with or without the addition of KF, even at room temperature (Scheme 2a), acrylamide 11 was formed selectively. Subjecting the corresponding triazole rotaxane to the optimized reaction conditions did not produce 11, confirming that 11 is not formed by from the simple AT-CuAAC product.

These results, combined with previous observations in the CuAAC reaction of azides bearing sulfonyl, phosphoryl or acyl groups,23 allow us to propose a mechanism (Scheme 2b) for the formation of the acrylamide products. The first step of the reaction is the formation of a triazole intermediate.19 Protonation of the hydroxyl group to generate oxonium I and subsequent loss of H2O gives resonance stabilized cation II. Loss of N2 from II gives cumulated ketenimine species III that can undergo reaction with H2O to yield the observed product.22b–22d This proposed mechanism is consistent with both the need for steric hindrance in the axle component, which kinetically stabilizes the Cu–C bond against proto-demetalation, and the need for a propargylic hydroxyl or ether unit, both of which can act as the leaving group. The proposed mechanism is also supported by preliminary molecular modelling (see ESI).

Protonation of the hydroxyl leaving group of a truncated model of the triazole derived from 1a, 2a and 3a was predicted to lead directly to loss of H2O to give a resonance stabilized carbocation. Subsequent loss of N2 to give the proposed Cu-bound cumulene intermediate III was predicted to be exergonic by ~44 kJmol−1 and proceed with a barrier of ~78 kJmol−1.
The proposed mechanism is striking in that the kinetic stabilization of the Cu-C bond provided by the mechanical bond appears to allow a pathway to operate in which an organometallic species is activated by protonation at a thermodynamically less basic position. To further confirm the role of the OH as a leaving group, we monitored the reaction of 1a, 2a and 3c by 1H NMR under anhydrous conditions in CDC$	extsubscript{6}$. In the presence of NPr$_2$Et (4 equiv.), triazolide 12 formed rapidly. Addition of Tf$_2$O (1 equiv.) led to consumption of 12 to give a major new species consistent with intermediate 13 by 1H NMR and MS (m/z = 984) analysis (see ESI1). The species tentatively identified was 13 was surprisingly stable, treatment with H$_2$O led to slow conversion to acrylamide 11. If instead KCN$_{aq}$ was added, 13 was rapidly consumed to produce rotaxane 11 in excellent selectivity, suggesting that the Cu$_2$ ion held in place by a mechanical chelate between the bipyrind ligand and the cumulene n-donor, stabilizes 13 to nucleophilic attack, presumably by rigidifying the framework. Finally, to demonstrate the generality of these observations, the same procedure was repeated in the case of 1a, 2a and 3a; again, Tf$_2$O produced a species identified in situ as the corresponding cumulene which was subsequently hydrolysed to 5.

In conclusion, we have identified and optimized a domino AT-CuAAC-rearrangement pathway for the synthesis of acrylamide-based rotaxanes, from propargylic alcohols and azides in good to excellent yield. Although the triazole product of the CuAAC has been shown to rearrange with extrusion of Nz when the azide component bears an electron withdrawing group, either under CuAAC conditions23 or subsequently in the presence of transition metal catalysts,29 azides 2 do not fit these general substrate classes and acrylamide formation was not observed in the corresponding non-interlocked products. The mechanical bond appears to play a key role in the mechanism by stabilizing and directing the reactivity of the Cu-triazolide intermediate to the degree that it is possible to generate a leaving group by protonation of a hydroxy in preference to protonation of the Cu-C bond. The mechanical bond has previously been shown to alter the reactivity of the interlocked covalent sub-components by sterically stabilizing reactive functionalities,27 controlling the reactivity of catalytic moieties28 or by modulating the intercomponent reactions of functional groups.26 To the best of our knowledge this is, however, the first time that the mechanical bond has been shown to alter the chemoselectivity of a reaction used in its own formation.

These results add another dimension to the active template approach, namely the ability to access products that are not formed in the non-interlocked manifold, and suggests that even more complex reaction schemes are possible if the augmented reactivity of mechanically bonded intermediates can be harnessed. Furthermore, by employing a macrocycle as a temporary auxiliary, mechanical bonding may allow expedient access to non-interlocked targets using such novel reactivity.29 Indeed, this proved the most direct route to the non-interlocked axle of rotaxanes 5-7 which was produced by acid-mediated cleavage of the macrocycle of rotaxane 6 (see ESI).

Acknowledgements

The authors acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton. The authors thank Fluorochem for the gift of reagents. S.M.G acknowledges funding from the European Research Council (Consolidator Grant Agreement no. 724987), and Leverhulme Trust (ORPG-2733). S.M.G thanks the Royal Society for a Research Fellowship. E.M.G.J. and F.M. thank the University of Southampton and EPSRC for financial support (EP/L505067/1).

Keywords: rotaxane • rearrangement • triazole • supramolecular
Angewandte Chemie International Edition
This article is protected by copyright. All rights reserved.