- 1 Strike-slip tectonics during rift linkage
- 2 Carolina Pagli¹, Sang-Ho Yun², Cynthia Ebinger³, Derek Keir^{4,5}, and Hua
- 3 Wang⁶
- 4 ¹Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 56126
- 5 Pisa, Italy
- 6 ²Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove
- 7 Drive, Pasadena, California 91109, USA
- 8 ³Department of Earth & Environmental Sciences, Tulane University, 6823 St. Charles
- 9 Avenue, New Orleans, Louisiana 70118, USA
- ⁴Ocean and Earth Science, University of Southampton, European Way, SO14 3ZH,
- 11 Southampton, UK
- 12 ⁵Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira
- 13 4, 50121 Florence, Italy
- ⁶Department of Surveying Engineering, Guangdong University of Technology, 100
- 15 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
- 16 ABSTRACT
- 17 The kinematics of rift segment linkage in magmatic rifts remains debated.
- 18 Strain patterns from Afar provide tests of current models of how segmented rifts grow
- 19 in areas of incipient oceanic spreading. Here we present a combined analysis of
- 20 seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary
- 21 linkage between the Red Sea and Gulf of Aden rifts of Afar is accommodated
- 22 primarily by distributed extensional faulting. Large rotations about vertical axes
- 23 predicted by bookshelf faulting models are not detected. Additionally, models of
- 24 stress changes and seismicity induced by recent dikes provide poor fits to the
- 25 observed time-space patterns of strike-slip earthquakes. Instead we explain these as

26	rift-perpendicular shearing at the tips of spreading rifts where extension terminates
27	against less stretched lithosphere. Our results demonstrate that distributed extension
28	drives rift-perpendicular shearing that achieves plate boundary linkage during
29	incipient seafloor spreading
30	INTRODUCTION
31	Continental rifts are three-dimensional structures with complex fault
32	kinematics ranging from extensional to strike-slip (i.e., Kebede et al., 1989;
33	Sigmundsson, 1992). The distribution of strain also evolves from rift initiation to
34	plate rupture. During the initial continental extension, rifts show along-axis
35	segmentation by large-offset faults but, as plate stretching and heating progresses to
36	rupture, magma intrusion may accommodate a large percentage of the plate boundary
37	deformation, and along-axis segmentation is in part controlled by the distribution of
38	magma chambers (Ebinger and Casey, 2001; Keir et al., 2009). Yet, unlike mid-ocean
39	ridge segments that are linked by transform faults (>50 km offsets) or smaller 10 km
40	non-transform offsets (Macdonald et al., 1988), there are few if any strike-slip faults
41	at the surface between en echelon rift segments; it remains debated how crustal
42	extension is transferred from one rift segment to another. This gap obfuscates our
43	understanding of the mode and stability of rift linkage in Afar. However, recent
44	seismicity (Ebinger et al., 2008; Keir et al., 2009; Belachew et al., 2011) and high-
45	resolution InSAR and GPS derived strain maps (Pagli et al., 2014) now allow us to
46	identify the present plate boundary and constrain its kinematics in Afar. Our
47	seismicity and strain rate maps are complemented by independent structural data
48	(Varet, 1975; Hayward and Ebinger, 1996; Manighetti et al., 2001).
49	The divergence of the Nubian, Arabian and Somalian plates during the past 30
50	Ma created the Afar depression, where extension occurs across the Red Sea, the Gulf

51	of Aden, and the Main Ethiopian rifts (MER) (Fig. 1) (Barberi and Varet, 1977;
52	Courtillot et al., 1984). Current full spreading velocities are 18 mm/yr for Nubia-
53	Arabia, 16 mm/yr for Somalia–Arabia, and 6 mm/yr for Nubia–Somalia (McClusky et
54	al., 2010; Saria et al., 2014). The Red Sea and Gulf of Aden rifts are extending in a
55	NE-SW direction, and are connected to the much slower, ~E-W extending MER by
56	the Tendaho-Goba'ad discontinuity (Hayward and Ebinger, 1996; Manighetti et al.,
57	1998). Extension along the southern Red Sea was initially accommodated on large
58	border faults but during the past ~4 Ma strain localized to axial magmatic segments,
59	which mark the active plate boundary from latitude $\sim 15^{\circ}$ to 12° N in the Red Sea rift,
60	and south of 11°N in the MER (Fig. 1) (Hayward and Ebinger, 1996; Manighetti et
61	al., 1998). Similar patterns occur in the Gulf of Aden rift (Asal-Ghoubbet rift)
62	(Doubre et al., 2007; Vigny et al., 2007). Between the clear segmentation of the Red
63	Sea and Gulf of Aden rifts, from latitude 12° to 11°N, the presence of mainly tectonic
64	fault zones without recent (Holocene) volcanism suggests that plate opening is
65	accommodated by faulting.
66	The mode of linkage between the Red Sea and Gulf of Aden rifts in central
67	Afar has been debated. A model of propagating rifts assumes that the Red Sea rift
68	propagates southward as the Gulf of Aden rift propagates northward (Fig. 1 and Fig.
69	DR1 in the GSA Data Repository ¹) (i.e., Tapponnier et al., 1990; Manighetti et al.,
70	1998; Kidane et al., 2003; Muluneh et al., 2013; Kidane, 2016). According to the
71	bookshelf faulting model, the two propagating rift tips do not directly join but instead
72	overlap creating a broad zone of right-lateral shear in central Afar. The shearing is
73	achieved by slip along a series of rift-parallel left-lateral strike-slip faults: bookshelf
74	faulting. The 1969 Serdo earthquakes, rupturing \sim 2 km long, rift-parallel left-lateral
75	strike-slip faults, together with clockwise block rotations were originally used as

76	evidence of bookshelf faulting (Courtillot et al., 1984; Tapponnier et al., 1990).
77	However, the 1989 earthquake swarm from the Dobi graben had normal faulting
78	mechanisms (Sigmundsson, 1992). As normal faulting is not explained by the
79	bookshelf model, the author then argued that the model should be modified to include
80	extension together with strike-slip. Alternative models have also been proposed; the
81	rift-perpendicular distribution of aftershocks from the Serdo earthquakes was
82	interpreted as a rift-perpendicular transform (Kebede et al., 1989). The
83	palaeomagnetic rotations have been explained by models of rigid microplates
84	bounded by narrow zones of strain that may not be stable in time (Acton et al., 1991),
85	but Quaternary fault slip patterns show more distributed deformation in central Afar
86	(Polun et al., 2018). Importantly neither model considers strain accommodation by
87	episodic magma intrusion. Here we present a new model that separates magmatic and
88	tectonic features, and leads to distributed extension to link rift segments at plate
89	rupture.
90	SEPARATING DIKE-INDUCED AND TECTONIC SEISMICITY
91	We analyzed the seismicity from two local seismic networks that were
92	deployed in Afar between 19 October 2005 and 07 October 2009 (Fig. 1 and Table
93	DR1) (Ebinger et al., 2008; Keir et al., 2009; Belachew et al., 2011; Belachew et al.,
94	2013; Ayele et al., 2015). The catalogues were located using Hypo2000 and a single
95	1-dimensional velocity model. In our study area (black box in Fig. 1) there are a total
96	of 6141 earthquakes with local magnitudes of 0.8-4.7 and a mean horizontal error on
97	the earthquakes epicenters of 1.3 km. A total of fourteen intrusions occurred in DMH
98	between 2005 and 2010 and were identified by geodesy and seismicity (Wright et al.,
99	2012; Belachew et al., 2013), of which ten are covered by our catalogue. The
100	seismicity patterns in Figure 1 are caused by both tectonic and dike-induced stresses.

101	Dike intrusions cause stress changes in the surrounding crust, inducing earthquakes.
102	Specifically, the stress imposed by a dike intrusion is expected to cause normal
103	faulting above it and strike-slip faulting along two limbs near each of the two dike
104	tips, at ~120 degrees to the strike of the intrusion (Hill, 1977; Toda et al., 2002). We
105	analyzed the seismicity to separate co-intrusive from longer-term tectonic features.
106	In Figure 2a and Figure DR2 we show the co-intrusive seismicity at DMH.
107	The majority of the co-intrusive events occur within DMH (Fig. 2a) while off-rift
108	earthquakes are observed mainly northeast and southeast of the rift, crudely defining
109	two limbs (Fig. 2a). Nonetheless, earthquakes occur on the sides of DMH irrespective
110	of dike intrusions (Fig. 2b).
111	We modeled the seismicity around DMH calculating the stress changes caused
112	by the dikes, using a method that takes into account the dike-induced stress changes
113	caused by the intruded magma on the dike walls and the fact that these stresses acts
114	on crustal faults inducing earthquakes (Yun et al., 2006; Segall et al., 2013). We first
115	calculate the dike opening distributions in DMH, then we relate the dike-induced
116	stresses to seismicity based on the seismicity-rate theory of Dieterich (Dieterich,
117	1994) as described by Segall et al. (2013) (Supplemental Material and Fig. DR4). We
118	simulated the earthquakes induced by magma intruded in DMH between 2 and 9 km
119	depth (Wright et al., 2012). We assumed a 70-km-long, N150E striking DMH rift and
120	aligned faults (Varet, 1975; Hayward and Ebinger, 1996; Manighetti et al., 2001). Our
121	modeling predicts increased seismicity due to dike-induced stress changes around
122	DMH, reproducing some of the off-rift earthquakes (Fig. 2c). However, the ~E-W-
123	trending belt of persistent seismicity southeast of DMH cannot be matched by the
124	model predictions (Fig. 2c). We conclude that the off-rift earthquakes immediately

125	adjacent to the intruded area northeast and southeast of DMH are likely induced by
126	the intrusions while the rest of the seismicity is caused by tectonic stresses.
127	To better understand the tectonics of the area we then analyzed the seismicity
128	catalogue together with the focal mechanisms of the larger events and the strain rate
129	maps derived from InSAR and GPS. We removed from the catalogue all earthquakes
130	spanning the time of an intrusion and subsequent 30 days to make the seismicity
131	comparable to the geodesy, in which the one-month co-intrusive displacements were
132	removed. Co-intrusive seismicity plots (Fig. DR3) show that dike-induced
133	earthquakes decay more rapidly than 30 days. The resulting seismicity describes the
134	recent tectonic stresses acting in the region devoid of short-term dyking processes
135	(Fig. 2b). Although earthquake magnitudes are too small or azimuthal gaps too large
136	to evaluate isotropic and CLVD (Compensated Linear Vector Dipole) components,
137	earthquakes in the central Afar rifts do not occur in swarms characteristic of magma
138	intrusion events, and the focal mechanism analyses are consistent with double-couple
139	mechanisms.

140 **RIFT-PERPENDICULAR SHEARING AT SEGMENT TIPS**

141 Knowledge of how the crust deforms is fundamental to understand the 142 ongoing tectonics. Recently Pagli et al. (2014) combined InSAR data, acquired in 143 different geometries by the ENVISAT satellite, with the available GPS data to obtain 144 a continuous high-resolution 3D velocity field of Afar (Supplemental Material and 145 Figs. DR5-DR7) (Wang and Wright, 2012). The velocity field was then used to 146 calculate the horizontal strain rates (e.g. Savage et al., 2001). The InSAR and GPS 147 data span the time period from the start of 2007 to mid 2010, comparable to the 148 observation period of the seismic networks (Oct 2005-Oct 2009). All co-intrusive 149 deformation in the DMH segment has been removed from the data so the resulting

150	strain rates are representative of the tectonic regime. We also augment our seismicity
151	and strain rate maps with local (Lépine and Hirn, 1992; Ebinger et al., 2008) and
152	teleseismic focal mechanisms (Kebede et al., 1989; Craig et al., 2011).
153	High strain rates and dense seismicity clusters occur at the DMH axis, where
154	segment-centered extension (Fig. 3a) and shear (Fig. 3b) correlates with normal and
155	strike-slip earthquakes as a result of transient post-rifting deformation (Hamling et al.,
156	2014; Pagli et al., 2014). However, high shear strain rates and seismicity also extend
157	off-rift, in particular along two WSW-trending zones at the northern and southern tips
158	of DMH (Fig. 3b). Globally, co-intrusive deformation and induced earthquakes have
159	been observed in detail in the past and conceptual models exist (Hill, 1977;
160	Yamashita, 1999; Passarelli et al., 2015). However, Figure 3 shows for the first time
161	that repeated dyking at a rift segment (co-rifting) can generate shear off-rift during
162	post-rifting.
163	In central Afar, southeast of DMH, extension rates are detected across a 150-
164	200 km-wide region of sub-parallel basins: Manda-Gargori, Dobi, Immino, Hanle,
165	and Asal-Ghoubbet (Fig. 3a). Normal faulting earthquakes recorded globally also
166	occurred at the same location showing a tectonic regime dominated by extension
167	rather than distributed shear. Conversely, an ENE-WSW band of seismicity with
168	strike-slip focal mechanisms is recorded at the rift tips, including the Serdo
169	earthquakes (Fig. 3b), showing rift-perpendicular shear with good correlation to
170	where the extension of the central Afar rifts terminates (Fig. 3a). We explain these
171	spatial patterns as the result of a rift-perpendicular, right-lateral shear zone at the rift
172	tips where the extension across a broad region terminates against less stretched
173	lithosphere. The focal mechanism nodal planes and fault patterns are consistent with
174	the shear being accommodated by short rift-parallel left-lateral faults (i.e., 1969 Serdo

175	earthquakes), although the shear zone may also evolve to a through-going right-lateral
176	transform fault. The shearing is well captured by seismicity but not as clearly by the
177	shear strain rate map, likely because the resolution does not allow us to identify
178	narrow localized shear or because the shear motion is not high enough to be identified
179	by InSAR due to projection along the satellite Line-Of-Sight.
180	Paleomagnetic rotations have been taken as evidence of bookshelf faulting in
181	central Afar (Tapponnier et al., 1990) but recent studies show that rotations are
182	heterogeneous in the area, and that the western rifts (i.e., Manda-Gargori and Dobi)
183	are not rotated (Kidane et al., 2003). The bookshelf model also requires rift
184	propagation from the Asal-Ghoubbet rift into Manda-Inakir and Moussa-Alli rifts.
185	However, no strain localization or seismicity is recorded there, while extension and
186	normal faulting earthquakes occur in the central Afar rifts. Detailed structural
187	analyses in central Afar show that fault slip is primarily normal with a minimal
188	oblique component, and bookshelf fault zones have been inactive over the 5-100 ka
189	(Polun et al., 2017). We acknowledge that a zone of bookshelf may have acted in the
190	past, but our analyses of current strain rates and seismicity support a model for Red
191	Sea-Gulf of Aden-MER linkage through a broad zone of overlapping, extensional
192	basins bounded by rift-perpendicular shear zones (Fig. 4).
193	The Tendaho-Goba'ad discontinuity that links the MER to the Red Sea and
194	Gulf of Aden zones comprises conjugate NNW- and NNE-striking faults owing to the
195	high obliquity between the extension directions (Varet, 1975). In the MER, seismicity
196	occurs mainly in the Karrayu segment while extension is accommodated occurs over
197	a broader zone (Fig. 3a). This extension may be related to the superposition of the
198	younger MER structures on the ~30 Ma Red Sea-Gulf of Aden rift junction (Kidane
199	et al., 2003).

200 CONCLUSIONS

201	Our results show that rifts are linked by a series of extensional faults bounded
202	by a rift-perpendicular zone of shear, providing a new tectonic model of the Afar plate
203	boundary (Fig. 4). Specifically, plate extension is accommodated within the DMH,
204	while south of it, in the central Afar rifts strain rates and seismicity are consistent with
205	linkage between the Gulf of Aden ridge to the Southern Red Sea through a series of
206	rift segments that connect to the DMH. Owing to the lack of any significant strain
207	rates or seismicity in Manda-Inakir and Moussa-Alli (Fig. 3) these areas are not the
208	locus of the plate boundary at present, arguing against the broad zone of shear
209	deformation required by bookshelf faulting models.
210	The central Afar rifts are deep, sediment filled, grabens bounded by normal
211	faults that show normal faulting earthquakes. Seismicity, geodetic, and structural data
212	indicate that the central Afar basins are in extension, and lack the strike-slip faulting
213	and block rotations predicted by bookshelf faulting. We conclude that the Red Sea,
214	Gulf of Aden, and MER are currently linked by a zone of rift-parellel normal faults
215	bound by narrow rift-perpendicular shear zones.
216	REFERENCES CITED
217	Acton, G.D., Stein, S., and Engeln, J.F., 1991, Block rotation and continental
218	extension in Afar: A comparison to oceanic microplate systems: Tectonics, v. 10,

219 p. 501–526, https://doi.org/10.1029/90TC01792.

220 Ayele, A., Ebinger, C.J., van Alstyne, C., Keir, D., Nixon, C.W., Belachew, M., and

- Hammond, J.O.S., 2015, Seismicity of the central Afar rift and implications for
- 222 Tendaho dam hazards: Geological Society of London, Special Publications,
- 223 v. 420, p. 1–9, https://doi.org/10.1144/SP420.9.

224 Barberi, F., and Varet, J., 1977, Volcanism of Afar-Small-Scale Plate Tectonics 225 Implications: Geological Society of America Bulletin, v. 88, p. 1251-1266, 226 https://doi.org/10.1130/0016-7606(1977)88<1251:VOASPT>2.0.CO;2. 227 Belachew, M., Ebinger, C., and Cote, D., 2013, Source mechanisms of dike-induced 228 earthquakes in the Dabbahu-Manda Hararo rift segment in Afar, Ethiopia: 229 Implications for faulting above dikes: Geophysical Journal International, v. 192, 230 p. 907–917, https://doi.org/10.1093/gji/ggs076. 231 Belachew, M., Ebinger, C., Cote, D., Keir, D., Rowland, J.V., Hammond, J.O.S., and 232 Ayele, A., 2011, Comparison of dike intrusions in an incipient seafloor-spreading 233 segment in Afar, Ethiopia: Seismicity perspectives: Journal of Geophysical 234 Research, v. 116, B06405, https://doi.org/10.1029/2010JB007908. 235 Courtillot, V., Achache, J., Landre, F., Bonhommet, N., Montigny, R., and Feraud, 236 G., 1984, Episodic Spreading and Rift Propagation—New Paleomagnetic and 237 Geochronologic Data from the Afar Nascent Passive Margin: Journal of 238 Geophysical Research, v. 89, p. 3315–3333, 239 https://doi.org/10.1029/JB089iB05p03315. 240 Craig, T.J., Jackson, J.A., Priestley, K., and McKenzie, D., 2011, Earthquake 241 distribution patterns in Africa: their relationship to variations in lithospheric and 242 geological structure, and their rheological implications: Geophysical Journal 243 International, v. 185, p. 403–434, https://doi.org/10.1111/j.1365-244 246X.2011.04950.x. 245 Dieterich, J., 1994, A constitutive law for rate of earthquake production and its 246 application to earthquake clustering: Journal of Geophysical Research, v. 99, 247 p. 2601–2618, https://doi.org/10.1029/93JB02581.

- 248 Doubre, C., Manighetti, I., Dorbath, C., Dorbath, L., Jacques, E., and Delmond, J.C.,
- 249 2007, Crustal structure and magmato-tectonic processes in an active rift (Asal-
- 250 Ghoubbet, Afar, East Africa): 1. Insights from a 5-month seismological
- 251 experiment: Journal of Geophysical Research, v. 112, B05405,
- 252 https://doi.org/10.1029/2005jb003940.
- 253 Ebinger, C.J., and Casey, M., 2001, Continental breakup in magmatic provinces: An
- 254 Ethiopian example: Geology, v. 29, p. 527–530, https://doi.org/10.1130/0091-
- 255 7613(2001)029<0527:CBIMPA>2.0.CO;2.
- 256 Ebinger, C.J., Keir, D., Ayele, A., Calais, E., Wright, T.J., Belachew, M., Hammond,
- J.O.S., Campbell, E., and Buck, W.R., 2008, Capturing magma intrusion and
- faulting processes during continental rupture: seismicity of the Dabbahu (Afar)
- rift: Geophysical Journal International, v. 174, p. 1138–1152,
- 260 https://doi.org/10.1111/j.1365-246X.2008.03877.x.
- 261 Hamling, I.J., Wright, T.J., Calais, E., Lewi, E., and Fukahata, Y., 2014, InSAR
- 262 observations of post-rifting deformation around the Dabbahu rift segment, Afar,
- 263 Ethiopia: Geophysical Journal International, v. 197, p. 33–49,
- 264 https://doi.org/10.1093/gji/ggu003.
- 265 Hayward, N.J., and Ebinger, C.J., 1996, Variations in the along-axis segmentation of
- the Afar Rift system: Tectonics, v. 15, p. 244–257,
- 267 https://doi.org/10.1029/95TC02292.
- 268 Hill, D.P., 1977, Model for Earthquake Swarms: Journal of Geophysical Research,
- 269 v. 82, p. 1347–1352, https://doi.org/10.1029/JB082i008p01347.
- 270 Kebede, F., Kim, W.Y., and Kulhanek, O., 1989, Dynamic Source Parameters of the
- 271 March-May 1969 Serdo Earthquake Sequence in Central Afar, Ethiopia, Deduced

- from Teleseismic Body Waves: Journal of Geophysical Research, v. 94, p. 5603–
- 273 5614, https://doi.org/10.1029/JB094iB05p05603.
- 274 Keir, D., et al., 2009, Evidence for focused magmatic accretion at segment centers
- from lateral dike injections captured beneath the Red Sea rift in Afar: Geology,
- 276 v. 37, p. 59–62, https://doi.org/10.1130/G25147A.1.
- 277 Kidane, T., 2016, Strong clockwise block rotation of the Ali-Sabieh/Aïsha Block:
- 278 evidence for opening of the Afar Depression by a 'saloon-door' mechanism:
- 279 Geological Society, London, Special Publication, v. 420, p. 209-219,
- 280 https://doi.org/10.1144/SP420.10.
- 281 Kidane, T., Courtillot, V., Manighetti, I., Audin, L., Lahitte, P., Quidelleur, X., Gillot,
- 282 P-Y., Gallet, Y., Carlut, J., and Haile, T., 2003, New paleomagnetic and
- 283 geochronologic results from Ethiopian Afar: Block rotations linked to rift overlap
- and propagation and determination of a ~2 Ma reference pole for stable Africa:
- Journal of Geophysical Research, v. 108, B22102,
- 286 https://doi.org/10.1029/2001jb000645.
- 287 Lépine, J.C., and Hirn, A., 1992, Seismotectonics in the Republic of Djibouti, Linking
- the Afar Depression and the Gulf of Aden: Tectonophysics, v. 209, p. 65–86,
- 289 https://doi.org/10.1016/0040-1951(92)90011-T.
- 290 Macdonald, K.C., Fox, P.J., Perram, L.J., Eisen, M.F., Haymon, R.M., Miller, S.P.,
- 291 Carbotte, S.M., Cormier, M.H., and Shor, A.N., 1988, A new view of the mid-
- 292 ocean ridge from the behaviour of ridge-axis discontinuities: Nature, v. 335,
- 293 p. 217–225, https://doi.org/10.1038/335217a0.
- 294 Manighetti, I., Tapponnier, P., Courtillot, V., Gallet, Y., Jacques, E., and Gillot, P.Y.,
- 295 2001, Strain transfer between disconnected, propagating rifts in Afar: Journal of

- 296 Geophysical Research. Solid Earth, v. 106, p. 13613–13665,
- 297 https://doi.org/10.1029/2000JB900454.
- 298 Manighetti, I., Tapponnier, P., Gillot, P.Y., Jacques, E., Courtillot, V., Armijo, R.,
- 299 Ruegg, J.C., and King, G., 1998, Propagation of rifting along the Arabia-Somalia
- 300 plate boundary: Into Afar: Journal of Geophysical Research, v. 103, p. 4947–
- 301 4974, https://doi.org/10.1029/97JB02758.
- 302 McClusky, S., et al., 2010, Kinematics of the southern Red Sea–Afar Triple Junction
- 303 and implications for plate dynamics: Geophysical Research Letters, v. 37,
- 304 L05301, https://doi.org/10.1029/2009GL041127.
- 305 Muluneh, A.A., Kidane, T., Rowland, J., and Bachtadse, V., 2013, Counterclockwise
- 306 block rotation linked to southward propagation and overlap of sub-aerial Red Sea
- 307 Rift segments, Afar Depression: Insight from paleomagnetism: Tectonophysics,

308 v. 593, p. 111–120, https://doi.org/10.1016/j.tecto.2013.02.030.

- 309 Pagli, C., Wang, H., Wright, T.J., Calais, E., and Lewi, E., 2014, Current plate
- 310 boundary deformation of the Afar rift from a 3-D velocity field inversion of
- 311 InSAR and GPS: Journal of Geophysical Research, v. 119, p. 8562–8575,
- 312 https://doi.org/10.1002/2014jb011391.
- 313 Passarelli, L., Rivalta, E., Cesca, S., and Aoki, Y., 2015, Stress changes, focal
- 314 mechanisms, and earthquake scaling laws for the 2000 dike at Miyakejima
- 315 (Japan): Journal of Geophysical Research, v. 120, p. 4130–4145,
- 316 https://doi.org/10.1002/2014jb011504.
- 317 Polun, S., Horrell, D., Tesfaye, S., and Gomez, F., 2017, New kinematic constraints
- 318 on the Quaternary tectonic evolution of the Afar triple junction: Geological
- 319 Society of America Abstracts with Programs, v. 49, no. 6,
- 320 https://doi.org/10.1130/abs/2017AM-305558.

- 321 Saria, E., Calais, E., Stamps, D.S., Delvaux, D., and Hartnady, C.J.H., 2014, Present-
- 322 day kinematics of the East African Rift: Journal of Geophysical Research. Solid
- 323 Earth, v. 119, p. 3584–3600, https://doi.org/10.1002/2013JB010901.
- 324 Savage, J.C., Gan, W.J., and Svarc, J.L., 2001, Strain accumulation and rotation in the
- 325 Eastern California Shear Zone: Journal of Geophysical Research. Solid Earth,
- 326 v. 106, p. 21995–22007, https://doi.org/10.1029/2000JB000127.
- 327 Segall, P., Llenos, A.L., Yun, S.H., Bradley, A.M., and Syracuse, E.M., 2013, Time-
- 328 dependent dike propagation from joint inversion of seismicity and deformation
- data: Journal of Geophysical Research, v. 118, p. 5785–5804,
- 330 https://doi.org/10.1002/2013JB010251.
- 331 Sigmundsson, F., 1992, Tectonic Implications of the 1989 Afar Earthquake Sequence:
- 332 Geophysical Research Letters, v. 19, p. 877–880,
- 333 https://doi.org/10.1029/92GL00686.
- 334 Tapponnier, P., Armijo, R., Manighetti, I., and Courtillot, V., 1990, Bookshelf
- 335 Faulting and Horizontal Block Rotations between Overlapping Rifts in Southern
- 336 Afar: Geophysical Research Letters, v. 17, p. 1–4,
- 337 https://doi.org/10.1029/GL017i001p00001.
- 338 Toda, S., Stein, R.S., and Sagiya, T., 2002, Evidence from the AD 2000 Izu islands
- earthquake swarm that stressing rate governs seismicity: Nature, v. 419, p. 58–61,
 https://doi.org/10.1038/nature00997.
- 341 Varet, J., 1975, Geological map of Central and Southern Afar: CNRS-CNR, scale
 342 1:500,000.
- 343 Vigny, C., de Chabalier, J.B., Ruegg, J.C., Huchon, P., Feigl, K.L., Cattin, R., Asfaw,
- L., and Kanbari, K., 2007, Twenty-five years of geodetic measurements along the

- 345 Tadjoura-Asal rift system, Djibouti, East Africa: Journal of Geophysical
- 346 Research, v. 112, p. B06410, https://doi.org/10.1029/2004JB003230.
- 347 Wang, H., and Wright, T.J., 2012, Satellite geodetic imaging reveals internal
- deformation of western Tibet: Geophysical Research Letters, v. 39, p. L07303,
- 349 https://doi.org/10.1029/2012gl051222.
- 350 Wright, T.J., et al., 2012, Geophysical constraints on the dynamics of spreading
- 351 centres from rifting episodes on land: Nature Geoscience, v. 5, p. 242–250,
- 352 https://doi.org/10.1038/ngeo1428.
- 353 Yamashita, T., 1999, Pore creation due to fault slip in a fluid-permeated fault zone
- and its effect on seismicity: Generation mechanism of earthquake swarm: Pure
- 355 and Applied Geophysics, v. 155, p. 625–647,
- 356 https://doi.org/10.1007/s000240050280.
- 357 Yun, S., Segall, P., and Zebker, H., 2006, Constraints on magma chamber geometry at
- 358 Sierra Negra Volcano, Galápagos Islands, based on InSAR observations: Journal
- of Volcanology and Geothermal Research, v. 150, p. 232–243,
- 360 https://doi.org/10.1016/j.jvolgeores.2005.07.009.
- 361

362 FIGURE CAPTIONS

- 363
- 364 Figure 1. Local seismicity 2005–2009 (black dots). Solid red polygons are the
- 365 Holocene magmatic rift segments: DMH Dabbahu-Manda Hararo, MA Moussa Alli,
- 366 MI Manda Inakir and AG Asal-Ghoubbet segments. Volcanoes are marked by black
- 367 outlines. Dashed line mark the Tendaho-Goba'ad discontinuity (TDG). Black lines
- 368 are faults. The tectonic rift segments are: K Karrayu, MG Manda Gargori, D Dobi, I

369	DOI:10.1130/G45345.1 Immino, H Hanle and DG Derele Gaggade. The box marks the area shown in Figure
370	2–4. Inset shows the location of Afar.
371	
372	Figure 2. a) Co-intrusive seismicity. Filled circles are the earthquakes color coded by
373	day of occurrence since onset of intrusion over a 30-day period (see also Fig. DR1
374	[see footnote 1]). b) Non co-intrusive seismicity obtained from plotting the complete
375	seismic catalogue minus the earthquakes in a). c) Co-intrusive seismicity (as in panel
376	a) and predicted dike-induced seismicity (black dots). The red line marks the intruded
377	area. Black outlines are volcanoes and black lines are faults.
378	
379	Figure 3. a) First invariant of the horizontal strain rate tensor (positive values are
380	extension), normal faulting mechanisms (beach balls) from Craig et al. (2011), and
381	local seismicity (circles) as in Figure 2b. b) Maximum shear strain rate, strike-slip
382	faulting mechanisms (beach balls) from Kebede et al. (1989), Lépine and Hirn (1992),
383	Craig et al. (2011) and Ebinger et al. (2008), and local seismicity (circles) as in Figure
384	2b. White box marks a band of shear. Rift segments names are in Fig. 1.
385	
386	Figure 4. Sketch of the plate boundary w.r.t. stable Nubia. South of DMH fault
387	orientations are consistent with two directions of extension as shown by arrows 1 and
388	2. Earthquakes (white circles) as in Figure 2b.
389	
390	
391	
392	
393	ACKNOWLEDGEMENTS

- 394 We thank the anonymous reviewers and the editor for constrictive comments. CP
- 395 acknowledges support from the grant PRA_2018_19 and Rita Levi Montalcini
- fellowship. D.K. is supported by NERC grant NE/L013932/1. H.W. is supported by
- 397 the NSFC grant (NSFC/41672205).
- 398
- 399 1GSA Data Repository item 2018xxx, xxxxxxxxxxxx, is available online at
- 400 http://www.geosociety.org/datarepository/2018/, or on request from
- 401 editing@geosociety.org.