Twin-Timescale Artificial Intelligence Aided
Mobility-Aware Edge Caching and Computing in
Vehicular Networks

Le Thanh Tan, Member, IEEE, Rose Qingyang Hu, Senior Member, IEEE and Lajos Hanzo, Fellow, IEEE

Abstract—In this paper, we propose a joint communication,
caching and computing strategy for achieving cost efficiency in
vehicular networks. In particular, the resource allocation policy
is specifically designed by considering the vehicle’s mobility and
the hard service deadline constraint. An artificial intelligence-
based multi-timescale framework is proposed for tackling these
challenges. To mitigate the complexity associated with this large
action and search space in the sophisticated multi-timescale
framework considered, we propose to maximize a carefully
constructed mobility-aware reward function using the classic
particle swarm optimization scheme at the associated large
timescale level, while we employ deep reinforcement learning at
the small timescale level of our sophisticated twin-timescale solu-
tion. Numerical results are presented to illustrate the theoretical
findings and to quantify the performance gains attained.

Index Terms—Vehicular networks; vehicular mobility; edge
caching and computing; artificial intelligence; deep reinforcement
learning; particle swarm optimization

I. INTRODUCTION

The emerging broadband wireless applications have led to
an unprecedented tele-traffic escalation in vehicular networks,
which were designed for improving safety and fuel-economy,
for reducing accidents and traffic congestion in the transporta-
tion systems. To tackle these challenges, edge caching and
computing capable of offloading tasks to the road side units
(RSUs) have been proposed for improving the QoS, despite
carrying out intensive computations to a hard deadline [1]],
[2]. To elaborate a little further, edge computing may be
viewed as an alternative to cloud computing, since it moves
the communication, control, computation and management
functions from the centralized cloud to the edge of a network
[3].

Wireless cooperative caching constitutes one of the most
widely studied paradigms, where the relay nodes can co-
operatively store the multimedia contents [4]-[6]. Hence, a
user can download the requested content directly from the
nearby relays instead of acquiring it from the base station
(BS). By doing so, the performance quantified in terms of

Manuscript received June 01, 2018; revised November 23, 2018; accepted
January 11, 2019.

Copyright (c¢) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

L. T. Tan and R. Q. Hu are with the Department of Electrical and Computer
Engineering, Utah State University, Logan, Utah 84322-4120, USA. Emails:
{tan.le, rose.hu} @usu.edu.

L. Hanzo is with the School of Electronics and Computer Science, Univer-
sity of Southampton, UK. Email: lh@ecs.soton.ac.uk.

access delay, throughput and scalability of the wireless net-
work would be significantly improved. Moreover, exploiting
the node-mobility for creating efficient caching strategies has
recently received substantial research attention [|6]—[8]]. In [7],
Wang et al. modeled the node-mobility pattern in terms of
the inter-contact time between different users and proposed
a mobility-aware caching placement policy for maximizing
the data offloading ratio. Poularakis and Tassiulas [§] aimed
for minimizing the workload at the macro BS by caching the
contents at the small-cell base stations (SBS), when the user
mobility is considered.

In this paper, we make a further bold step in designing,
analyzing and optimizing the cooperative coded caching place-
ment and computing allocation by considering the constraints
of limited dynamic storage capacities and computational re-
sources at the RSUs as well as giving cognizance to the
constraints of the vehicle’s mobility and hard deadline delay.
Specifically, the contributions of this paper can be summarized
as follows.

1) We model heterogeneous networks (HetNets) relying on
a mobility-aware coded probabilistic caching and com-
putation offloading scheme. The content transmission
is deemed successful only if 1) the requested content
is received from the nearby RSUs during the vehicular
movement; and 2) its corresponding tasks are offloaded
to the nearby mobile edge computing (MEC) servers
under the delay constraint to be observed. Otherwise, the
requesting vehicle receives the content requested from
the BS and offloads the computational tasks to the BS.

2) We formulate the joint optimal caching and computing
allocation problem to minimize the system cost under
the constraints of dynamically fluctuating limited storage
capacities and computational resources at the RSUs as
well as under the constraints of vehicular mobility and
hard end-to-end deadline delay.

3) To reduce the complexity imposed by the large action
space, we develop an algorithm based on the multi-
timescale framework of [9] for beneficially configuring
the parameters of caching placement and computing
resource allocation as well as for determining the sets of
potentially connecting RSUs. In particular, we develop
efficient mobility-aware algorithms using both particle
swarm optimization (PSO) [10] and deep ()-learning
[11]] for the large timescale and small timescale models,
respectively.

4) We present numerical results for illustrating the per-
formance of the proposed algorithms by using the op-
timal parameter configuration found for caching, for
computing and for vehicular mobility. The impact of
the user mobility, data size, RSUs’ caching storage,
backhaul capacities and cloud resources on the system
performance is also studied.

The outline of this paper is as follows. In Section [[I-A]
we discuss the related literature, background and potential
applications. Section describes our system model. Sec-
tion [IV] briefly presents the proposed framework of artificial
intelligent-based mobility-aware edge caching and comput-
ing for the resource allocation. Then we describe the large
timescale model relying on PSO-based reward maximization in
Section [V]and the small timescale deep (Q-learning in Section
Section presents our performance results followed by
our concluding remarks in Section

II. RELATED WORKS, BACKGROUND AND APPLICATIONS
A. Related Works

Various research problems and solutions have been consid-
ered in the edge caching and computing literature. The strategy
of caching popular contents at various local devices aims for
placing contents closer to mobile users with the assistance of
device-to-device (D2D) communications in HetNets, as stud-
ied in [12], [13]. In [12], relay nodes with caching capability
are introduced to deliver the stored messages cooperatively
with the BS, yielding a low delay. In [13]], Ji et al. considered
the combined effect of using both coding in the delivery
phase, achieving “coded multicast gain” and spatial reuse as
a benefit of local short-range D2D communication. Wireless
cooperative caching constitutes one of the most widely studied
wireless caching network paradigms, where both the local
user terminals and the relay nodes can cooperatively store the
multimedia contents [[12]]—[16].

Small-cell caching, referred to as “Femtocaching” in [[14]],
[15]], utilized SBSs in HetNets as distributed caching devices.
In [16], Li ef al. analyzed a deterministic content placement,
where the placement strategy was optimized by exploiting both
the knowledge of the node locations and of the instantaneous
wireless channels. Moreover, Gregori et al. [17] investigated
the case that both the relays and the user devices can perform
caching to improve performances of throughput and delay.
Poularakis er al. [18] studied the joint design of routing and
caching for maximizing the data offloading ratio. Recently,
exploiting user-mobility for enhancing the caching placement
strategies has received much attention [6], [[19]. They then
extended their discussions to caching at mobile devices for
supporting D2D communication networks [[7].

B. Background and Applications

In this section, we first present the state of the art of
caching, computing, HetNet and D2D communications in 5G
standards and industrial applications [20]]. We further introduce
the applications for vehicular networks, which have not been
adequately addressed in the research community.

1) Background of Fog Computing Network: Compared with
4G/LTE network, 5G network is expected to serve the rapidly
growing demands for the thousand-fold growth of mobile data
traffic [21]. Mobile network operators and their suppliers are
actively developing strategies such as getting more spectrum,
seeking advanced technologies, using diverse infrastructures,
and offloading traffic to alternative access networks. These
technologies aim to increase coverage, boost network capacity
and cost-effectively bring contents closer to users. We first
introduce the recent literature about the network architecture
in the following.

HetNet is the key architecture for the future wireless net-
works. It can bring the cell sites closer to end users and
shorten the radio transmission distance. HetNet is comprised
of a variety of radio access technologies with different formats
and aspects. Many applications prefer to deploy distributed
antennas and small cellular access points (such as femtocells,
picocells, metro cells and microcells) in residential homes,
subways, enterprises and hot-spot areas. In particular, cell
sizes have been progressively shrinking from the order of
hundreds of square kilometers to the order of tens of square
meters or even less. The small cell can enhance spatial reuse,
increase system capacity, extend coverage and offload traffic
efficiently. There exist rich research literature in HetNets
(e.g., see [22]] and references therein), where various aspects
including interference management, cell association, stochastic
network modeling and energy-efficiency have been investi-
gated. Novel cell association mechanisms and architectures
shall be developed, where recent advanced techniques, namely,
flexible uplink/downlink communications, massive multiple-
input multiple-output (MIMO), D2D communications, full-
duplexing and etc., can be utilized [23]]. Network modeling
approaches based on stochastic geometric tools have recently
gained enormous attention in both academia and industry [24].

We now investigate the network protocols of fog computing
networks, which are employed in the fog/edge units to provide
the communication, computation and storage resources and
services to the users. One of the most important research
topics in content delivery networks is caching at the edge of
the network, which is one of the most promising solutions in
5G wireless networks [6]], [[12]-[[16]]. It helps lower down the
content-access latency and backhaul traffic loading, improve
user Quality of Experience and reduce network cost. The
concept of caching originally came from algorithm designs
in operating systems, which aims to improve the scalability
of world wide web and to offload the network by caching
contents in the proxy servers and/or intermediate nodes of
the network [25]. Recently, information-centric networking
has been proposed as a promising solution for Internet of
Things (IoTs) due to its focus on uniquely naming contents and
smartly distributing these across the network, rather than on
endpoints [26]. Note that normally a few popular contents are
most frequently requested by users in spite of the substantial
amount of data traffic in the network [27]. It implies that a
small portion of popular contents will actually contribute to
the majority of data traffic over a period of time. The wireless
cooperative caching is received substantial attention, where
both local user terminals and relay nodes can cooperatively

store the multimedia contents [28]]. So a user can download
the requested contents directly from the nearby storage unit
instead of from the BS. As a result, caching-aided networks
have been shown to present a great potential to lower the
backhaul load, in turn reducing the end-to-end access delay
and increasing the throughput.

2) Potential Applications: The industrial IoT system has
recently attracted extensive research attention, because it can
connect machines and devices in different vertical segments
such as oil and gas, transportation, power generation and
health-care (6], [28]—[31]. In particular, a substantial number
of devices having Internet connections can collect, analyze and
share data. A huge amount of data can be collected or analyzed
in cloud servers, which extract meaningful information and
provide insights to network operations. Hence, the advanced
tools of artificial intelligence and signal processing [6], [29]-
[33] would be employed as the excellent solutions to tackle
the big data.

Let us consider the scenario of smart city. People drive along
the street of the city and are connected to a possibly far-away
central cloud for music or YouTube videos. Alternatively, they
can get these contents directly from the nearby small BSs
and/or from the nearby devices, which cache the corresponding
contents [6[], [28], [29]. Moreover, the requesting users can
also keep the received contents and then serve other nearby
users via D2D communications [28]]. Another application can
be found in the smart monitoring network in the city. The
monitoring devices collect road information such as weather,
wind direction and intensity, road surface temperatures and
conditions, air quality, etc. The measured data are transmitted
to the cloud for processing and analyzing [29]. Then, the
extracted insights are sent back to the small BSs to serve
nearby devices, who request this information [28[]-[31].

The smart city concept is gaining ever increasing attention
by researchers in various areas. Recent proposals and tech-
nological initiatives seek to make cities smarter as well as
more sustainable. To embrace the smart city paradigm shift,
ones would improve the lives of the people living in the city
as well as adapt to a fast-paced environment. Especially, four
key elements such as climate management systems, building,
transportation and electricity would be carefully addressed by
the technological initiatives. The proposed work is ambitious
to deal with one of the main elements, i.e. an intelligent
transportation system. In particular, there is an observation
on the issue of increasing frequency and severity of road
accidents and rising traffic congestion due to the increasing
number of vehicles, the poor infrastructure and the inefficient
traffic controls. We put an effort on developing advanced com-
munications technologies and intelligent data collecting tech-
niques of the vehicular networks to improve safety, enhance
efficiency, reduce accidents and decrease traffic congestion in
the transportation systems. The proposed cost-effective models
guarantee the real-time communication between the vehicles
and the RSUs.

Backhaul Y \,,n\
Core network

RSU eCache @ Processing unit & Vehicle
-+—»Computation offloading-«—»>Data offloading
— — — —» Green vehicle’s moving direction

Yellow vehicle’s moving direction

Fig. 1. Mobility-aware network model.
TABLE I
DEFINITION OF PARAMETERS
Ta Duration of transporting the content ¢
vi(t) Spectral efficiency of link between vehicle 4 and RSU &
bl (t) Bandwidth assigned to link between vehicle ¢ and RSU k
T (t) Communication rate of link between vehicle 7 and RSU k
w} Task of content c for vehicle ¢
1y Size of computational task for content ¢
le Size of Fountain-coded segment for content ¢
DY Number of CPU cycles required for accomplishing task
,i Computational capability of RSU k allocated to vehicle ¢
r}\ “(t) | Computing rate
T.,n» A | Contact duration and contact frequency
a Number of segments obtained by vehicle ¢ from RSUs within T}y
a® Number of tasks that are computed by the RSUs
Se Number of segments required to reconstruct content ¢
R Communication cost between vehicles and RSUs
589 Communication cost between vehicles and BS
Ee Caching cost
nR Computational cost of MEC server
nBS Computational cost of BS
S,}f Maximum caching storage of RSU

III. SYSTEM MODELS

A. Network Architecture

We consider a vehicular network that includes one BS, K
RSUs hosting MEC servers and U vehicles. Note that MEC
servers are installed at the RSUs for computing, which help
reduce the computational load on the BS. Let £ = {1,..., K}
and U = {1,...,U} be the sets of RSUS/MEC servers and
vehicles, respectively. We assume that the requesting vehicle
is capable of concurrently downloading the requested con-
tent and uploading its tasks to the RSUs/BS by employing
the radical full-duplex technology [34[]-[36]. The network
architecture is presented in Fig. [l where we consider the
vehicular mobility, edge caching and computational models.
In particular, the yellow vehicle starts to request the contents
and their computation from the RSU 1. Then, it moves to the
coverage range of RSU 2 and hence, the data offloading and
the computation offloading also change from RSU 1 to RSU
2 during its movement. After that this vehicle further moves

out of the communication coverages of RSUs 1 and 2. So, it
must connect directly to the BS for the data offloading and
the computation offloading.

B. Communication Model

The channel between a vehicle and an RSU is time-varying
and it is modeled by a finite-state Markov chain (FSMC) [5]],
[6]. Let v,i denote the receiver SNR of the link between vehicle
¢ and RSU k. We partition and quantize ;, into L discrete
levels, each of which corresponds to a state of FSMC. Let
Ty be the duration of transporting the content c in terms of
the number of time slots. Then, the realization of ’y,i at ¢ is
" (t). Let us assume furthermore that OFDMA is used for data
communications. All the vehicle-to-RSU links are assigned an
orthogonal bandwidth, hence there is no interference from one
link to another. Let v}, (t) denote the spectral efficiency of the
link between vehicle ¢ and RSU k. The communication rate
of vehicle i can be expressed as ri(t) = b (t)vi(t),Vi € U,
where b (¢) is the bandwidth assigned to the link.

C. Computing Model

Each task W of vehicle i consists of two components
{l¥,D¥}, where [is the size of the computational task for
content ¢, which includes the software code and the input
parameters. Furthermore, DY is the number of CPU cycles
required for accomplishing the task. After accomplishing the
computational task, RSU k sends the computing results (i.e.
the control signals) back to vehicle i. Note that we ignore the
transmission duration of the control signals due to the small
amount of data. Let f{ (CPU cycles/second) be the compu-
tational capability of RSU k£ allocated to vehicle ¢. Due to
the vehicular mobility, multiple vehicles may access the same
RSU and share the same MEC server at a given time instant.
Hence we do not know exactly the computational capability
of vehicle ¢ at the next time instant. Thus, the computational
capability f;. can be modeled by a random variable. We divide
f,i into N levels, where IV corresponds to the number of avail-
able computational capability states. Hence, the computing

rate (bits/second) is expressed as rlk‘f (t) = / ’“g;),,lc

D. Mobility Model and Coded Caching Scheme

This paper uses the contact duration 7.2 and contact fre-
quency A to model the mobility pattern of vehicles. Although
the vehicles’ positions may change at any time, the moving
range of the vehicle is relatively small during a short time.
We assume that within each contact time 7%, , the mobile
vehicle remains connected to the same RSU. If the vehicles
move at a high speed, the contact duration can be short,
while it will be longer if the vehicles move at a low speed.
Vehicular mobility is typically modeled by discrete random
jumps with the corresponding intensity characterized by the
average contact duration between jumps [7]. The number of
contacts between vehicle ¢ and RSU k& can be modeled by
the Poisson distribution relying on the parameter A%, which
represents the connection frequency associated with a specific
mobility intensity.

We assume that C' contents can be requested by the vehicles.
The average request rate for content ¢ (¢ € {1,2,...,C}) at
time ¢ can be expressed as \.(t) = §/(pc®). Note that the set
{1,2,...,C} is stored in a descending order, i.e. the index
c stands for the c-th most popular content. We assume that
the requests follow a Poisson process with parameter 8. The
request probability can be modeled by the Zipf function of
1/pc® [17)], where we have p = 25:1 1/c¢* and o (0 < a <
1) is the popularity skew. In a coded caching scheme, each
content ¢ is encoded into multiple segments with length /. by
using a rateless Fountain code [7] and a requested content file
can then be recovered by collecting any s. number of encoded
segments, which constitute a subset of the complete Fountain-
coded file. These segments can be cached in the RSU storage.
If a vehicle fails to collect enough encoded segments from the
RSUs within the delay-tolerance time 7, the BS sends the
missing data to the vehicle. A Fountain-coded caching scheme
is particularly beneficial for vehicles in motion.

Remark 1: For simplicity, we employ the rateless Fountain
code of [[7] in the coded caching scheme. Although this scheme
generally does not work well for a fixed deadline owing to
its random delay, it still enhances the system’s performance
over its un-coded counterpart. Moreover, this simple approach
enables us to gain insight into artificial intelligence aided
mobility-aware edge caching and computing, while keeping
the problem sufficiently tractable. The extension of the model
to more advanced coding techniques will be considered in our
future works. Relevant coding implementations that were pub-
lished in some recent contributions [37[]-[40]] would be useful
for these further studies. In particular, the performance is
significantly improved, when sophisticated coding and packet-
combining are used at the ARQ-aided receiver.

IV. ARTIFICIAL INTELLIGENCE-BASED MOBILITY-AWARE
EDGE CACHING AND COMPUTING

This section formulates the resource allocation optimization
problem considered, where the parameters of caching, comput-
ing and communication are optimized jointly. Recall that the
network has K RSUS/MEC servers, U vehicles and C' content
files. The downlink channel conditions, the computational
capabilities, the caching states and the vehicles’ mobility
intensity all change dynamically. We aim for determining
the subset of RSUs as well as their resources to serve each
requesting vehicle. Due to the large number of system states
and actions as well as owing to the system dynamics, it is hard
to solve this optimization problem by employing traditional
methods. We invoke both deep reinforcement learning [[11]]
and the classic PSO [10], which can efficiently determine a
near-optimal action, despite searching through only a small
fraction of the potentially excessive total search space at a
much reduced complexity.

In this paper, a twin-timescale framework is developed
based on [9]. To improve the performance, we consider not
only the resource requirements of communications, storage
and computing but also the hard deadline for every requested
content. So we integrate the resource consumption and the
hard deadline into a twin-timescale optimization framework.

The large timescale model is developed at epoch level (corre-
sponding to T}; time slots), while the small timescale model is
at the time slot level. Similar to [9]], the large timescale model
receives the requested content and computes the corresponding
tasks within each epoch, while the small timescale model
performs actions based on the raw states. In particular, the
large timescale model provides resources to guarantee that the
vehicle receives a sufficiently high number of Fountain-coded
segments and offloads all the tasks within 7. To do so, the
system selects the appropriate sets of potential RSUs eligible
for caching as well as the sets of MEC servers suitable for
computing. However, the algorithms proposed in [9] do not
scale well, when the network size increases. Moreover, the
user-mobility imposes excessive operational cost and extensive
resource allocation complexity. Hence, new schemes have
to be conceived for addressing the associated mobility and
scalability challenges. To that end, we propose to use mobility-
aware reward estimation for the large timescale model. In
particular, we use the PSO [[10] for maximizing the estimated
reward in the large timescale model. Then, the small time scale
model selects the most appropriate actions based on the states
for maximizing the immediate reward. The specific differences
between the estimated reward in the large scale model and the
immediate reward in the small scale model will be elaborated
on Sections [V] and [V1] respectively. The algorithm developed
in the technical report [41]] is used for learning as part of the
small timescale models in order to derive the optimal policy.
This model is presented in Fig. 2}

Remark 2: In the scenario considered, there are two salient
metrics for us to consider, namely the reward and delay con-
straint. Our proposed twin-timescale framework is designed
to address both. By contrast, the large timescale model aims
for maximizing the reward of the requesting vehicle under
the assumption that it receives a sufficiently high number of
Fountain-coded segments and offloads all the tasks within
Ty (we term this as a goal). Although not exactly known,
the reward is estimated based on a mobility-aware model at
the large scale. In the small timescale model, an accurate
reward can be calculated, when the agent takes an action.
The agent maximizes the reward at every point of action
without considering the delay constraint. To deal with this
issue, the agent has to check whether the received segments
and offloading tasks are completed or not at each time slot.

Remark 3: We focus on the centralized algorithm as the first
step in this paper. According to the machine learning perspec-
tive, it is not the right time to develop it due to the following
reasons. To implement the distributed machine learning system
efficiently, the system must satisfy the impossible strict re-
quirements such as /) the consistency across all the machines,
2) the fault tolerance due to the equipment breakdowns in
large scale distributed system, 3) the perfect communication
between machine nodes within the computing cluster, 4) the
efficient storage mechanism tailored to different environments,
5) the good coordination in resource management mechanism
for all the joint machine nodes and 6) the excellent designation
of programming interfaces to support multiple programming
languages. Therefore, the extension of the model to develop
the distributed algorithm will be considered in our future

Using the PSO to find the possible connecting RSUs/MEC servers
and their coded caching segments 4 '(tl) based on the observations

Large
timescale

r =27,

A
L (. .).

Small
timescale

Using the deep Q-learning to determine actions Ei(t ") based on the
observations and A’ (¢')

Ai(tl) — {A(m,[)(tl)’A(Ld,[)(tl)’A(Lp,,)(t/)};;lf(t.s) — {2((‘1,4,[)(1‘3)’;l(q),i)(t.x)}

Fig. 2. Graphical illustration of multi-timescale model. The large timescale
is denoted as ¢!, while the small timescale is denoted as t5.

work. Relevant results that were published in some recent
works, e.g., in [30]-[33], [42] and references therein, would
be useful for these further studies. Of course, these works still
suffer the obstacle that requires the good design to support the
different interfaces including operating systems, programming
languages and libraries. Hence, it is hard to enable training and
evaluation of the deep reinforcement learning model across the
distributed servers concurrently with high efficiency and low
overhead.

V. LARGE TIMESCALE MODEL WITH PSO-BASED
REWARD MAXIMIZATION

In this section, we formulate and solve the reward maxi-
mization problem for the large timescale model. The best sets
of caching RSUs and MEC severs are selected to serve the
requesting vehicle. Recall that the requested content has to
be received within T}, i.e. both the computation and content
downloading tasks must be completed before the deadline of
Ty

A. Definitions

The system has to appoint the serving RSU for each
vehicle, regardless whether or not the requested content
should be cached at the RSU. It also has to decide how
many coded packets should be cached and whether or
not the computational tasks should be offloaded to the
RSU/MEC server. An action set A?(t!) is defined as A’(t!) =
{AleaD) (), AledD(¢h), ACPD)(¢!)} and discussed in the fol-
lowing.

For the caching action of RSUs, define a K x C' matrix
Alead) (¢1), whose (k, c) entry a\“*" (') represents the cache
control of the ¢-th content cached at RSU k for vehicle i and
a,(cfz’l (t') is a binary variable with a value of either 1 or 0.
Value 0 indicates that the c-th content is not cached at RSU &
at t! or RSU £ is out of the communication range of vehicle
1 during time slot t. By contrast, the value 1 indicates that
the c-th content is cached and RSU £k is a contact candidate
for vehicle 7 at t'. At each epoch, A(¢%?)(#!) determines the

subset of RSUs that are contact candidates for vehicle 7 as
well as the subset of contents that are cached at these RSUs.
Let us now define another K x C' action matrix A(¢%9)(¢!),

whose (k, c) entry a,(:d Z)(t*) represents the number of coded
packets of the c-th content cached at RSU k and the value

(°d 2 (tY) € {0,s.}. Here, s. is the minimum number of
coded packets that is required for successfully decoding con-
tent c. Then, let us define the (K x C')-element computational
action matrix of RSUs (MEC servers) as A(°P9)(¢!), whose

(k,c) entry aﬁff) (#') represents the offloading decision of the
k-th MEC server for vehicle i, where a,(:p (1) is either 1 or
0. Value 0 means that the task is not offloaded to MEC server
k at time ¢!, or RSU k is out of the communication range of
vehicle ¢ during time slot t', while value 1 indicates that the
task is offloaded and RSU £ is a contact candidate for vehicle
i at time t'.

B. Reward Function

To maximize the reward, we aim for minimizing the cost
of communication, storage and computation. The cost of
communication between vehicles and RSUs is defined as 67%;
685 is the cost of communications between the vehicles and
BS; &, is the caching cost. Finally, n® and n”° are the
computational costs of MEC servers and BS, respectively. The
reward for vehicle 7 is defined as

Ri(tY) = R (¢h) 4 Rlead) (¢h, (D

Then, R(?)(t!) and R(¢®(t!) are calculated as follows.

1) Calculation of R* (t!): Let matrix Xg ¢ define the
caching strategy of the encoded segments in RSUs, where
Zk,c € X represents the number of coded segments in RSU

k,ie. xp. = a,(;z) x afjd) Furthermore, let U%(X) denote
the total amount of coded segments that vehicle ¢ can obtain
from the RSUs within Ty.

Next, Pr(U{(X) = a) is calculated, where a is the number
of Fountain-coded segments that vehicle ¢ obtains from RSUs.
Let M; denote the number of contacts within 7,; between
vehicle ¢ and RSU £, where M} is a random variable obeying
the Poisson distribution with A}. Then, the total size of the
file that Vehiclle 1 can obtain from RSU k within Ty is
Vi (X) = Zﬁi’“l B,". Here, B;" is the maximum number of
contents received at vehicle 7 from RSU k, which follows an
exponential distribution with parameter B.. Explicitly, B}% can

be calculated by B}, = b;RV,i R where Tcon > bi’
1 R

v,"" are the average duration of every contact, the bandwidth
and the achievable spectral efficiency of the link between
vehicle ¢ and RSU £k, respectively. Since the number of con-
tacts follows the Poisson distribution, the average number of
contacts for vehicle ¢ with RSU £ can be represented by e Ty

con k

With this simplification, we arrive at V! .(X) = Sk T B;"

Furthermore, BL” n=12...,)\};Td) is a collection of in-
dependent and identically distributed random variables. Thus,
according to [43], we have V; (X) oc T'(A Ty, By). The
size of the file that vehicle i can obtain is expressed as
Ve(X) = Lkex Vi X)-

Let us now proceed to determine the probability distribution
function (pdf) of fy:(x)(v). Let fy: (x)(v) denote the pdf of
variable V,gc(X) According to the above analysis, the pdf
of fyi(x)(v) is the discrete convolution of fV;Z,C(X)(U) (k =
1,2,..., K) formulated as

i) = fvi o0(0) © ... @ fvp x)(0), 2)

where ® is the discrete convolution. To circumvent the com-
plexity of the convolution, the Welch-Satterthwaite estimation
of [43]] is used,

N —le—vo1

fvig(v) & ————, (3)
$(X) 7 T () | |
Copex MTab S | Do NTulBi)
Zkelc)‘ZTd(BE)T Zke)c A TaB,

Moreover, the random variable V/(X) can be modeled by
the Gamma distribution, i.e. V/!(X) o< I'(v1,01). Note that we
have U! = min(|V//l.|,s.), where I, is the length of each
coded segment. Hence, the probability P;(a) = Pr(UX(X) =
a) that vehicle i receives a coded segments is

M= “4)

le(a+1)
I fvim@dv 0<a< Y g,
ca kel
P = x 5
=Y T hue@d a= Y ok ®
lea ke
0 otherwise.

Thus, R (t!) is expressed as

ch Z L, c+

ceC keK
+Y Pila)(a
a=1

where (a)* = max(0, a), where b® and v are the minimum
radio bandwidth and the minimum achievable spectral effi-
ciency of the link between vehicle ¢ and RSU k, respectively.
Similarly, 5% and P are the minimum assigned bandwidth
and the minimum achievable spectral efficiency of the link
between vehicle i and the BS. Finally, 6* and §%° are the
communication costs, when vehicle 7 downloads Fountain-
coded packets from the RSU and the BS, respectively.

2) Calculation of R(“P") ('): Remind that the computations
associated with content ¢ have to be completed within 7. Let
us denote the number of tasks to be completed for content
¢ by s¥. For every task w of content ¢, [’ denotes the
length of data that includes the software code and the input
parameters, while DY represents the number of CPU cycles
required for completing task w. The computational capacity
of RSU k reserved for vehicle 7 is fi (cycles per second),
which can be translated to the rate 70 = f/I1¥’/DY (bits per
second). At the beginning of each epoch, we reserve a subset
of RSUs for vehicle 4, denoted by A(°P¥) = [a; (cp ’Z)] Then the

computational capacity of K RSUs is Zg x¢ = [rk X a,(f’;],

It may be readily observed that after making the translation of

(ca z) C(SRbRI/R

(1= Py (a)s

5RbRVR—(SC _a)+(sBSbBSVBS)7 (6)

the computational capacity, the scheme of Section can
be applied for the following derivations.

Let UX(Z) denote the total number of tasks that can be
computed by the RSUs within 7};. Next, we have to determine
Pr(U{(Z) = a™), where a™ is the number of tasks that
are computed by the RSUs. The number of contacts between
vehicle ¢ and RSU k within T}; is M, }c Hence, the total size of
the contents that vehicle 7 can offload to RSU k can be calcu-
lated as V! .(Z) = SoMe H,". Here, H;" is the maximum
number of contents offloaded to RSU k&, which is modeled
by an exponential distribution with parameter Hj calculated
as follows. For a single contact having the duration Tcon &>
vehicle ¢ has to transmit H} bits to RSU k and RSU k has
to accomplish the computation of this amount of data. Hence,
we have T , = Hi/rj + Hk/rk Y where i, = bl)"
is the communication rate, while lefw

TE, & [(Tk,c) '+ (7"2)_1}
Since the number of contacts follows the Poisson distri-
bution, the average number of contacts between vehicle 7
and RSU k can be represented by A 7Ty. Through such a

NTy
=
H;" n=12...,)\};Td) is a collection of independent and
identically distributed random variables, according to [43]], we

obtain V! .(Z) oc T(A Ty, H},). Thus, vehicle i can offload a
fraction of the file ¢ given by V(Z) = > V,j,C(Z).
keK

We now determine the pdf of fv:(z)(v). Let fy: (7 (v) be
the pdf of variable Vk (Z). According to the above analysis,
the pdf of fy.:(z)(v) is the discrete convolution of fvi 2 (v)
(k=1,2,...,K). Then,

is the computing rate.

Then, we arrive at H }C =

simplification, we can obtain V} (Z) = . Since

fvi@ () = fvi @) ©...© fvi @)(v). (7)

Note that the random variable V}(Z) obeys the Gamma
distribution, i.e. V*(Z) x I'(y2,02). So we have

p12—1le—vo2

fvizy(v) 8 ————, (8)
SO 6 P ()
o = oo NI ®
Zke)c)‘}ch(Hi)y
NeTy(HE)?
oy = Zke)c kid(ki) . (10)
ZkEIC)‘deHk

Note that U} = min(|VZ/I¥ |,
of each task. So the probability Ps(a
that vehicle ¢ offloads a" tasks is

s¢’), where [iY is the length
) = Pr(UL(Z) = a")

& (a*+1)
| fu@dv 0<a® <223 2,
lwaqw ¢ kel
w o0
P2(a)_ f fVCi(X)(U)d’U at = % E Zhc (11)
waw kex
0 otherwise.

Finally, R(°P?) (t') is expressed as

3 S e e (a2) S

R(epd)
ceCa¥=1
+ 1= Pa(a)| svCh, (12)
av=1
where (a®) = max(0,a%). C® = §FbFvE 4 nE DY ek is the

total offloading cost for a single task, including the commu-
nication cost 6%b%1® and the computational cost n¥DYef.
Furthermore, CB% = §B9pBSyBS 4 nBSDweBS s the total
cost of offloading to the BSs for a single task, which includes
the communication cost 62565555 and the computational
cost nBIDweBS,

C. Problem Formulation

In this treatise, reward is the key performance metric. We are
interested in finding both the optimal caching placement and
the resource allocation that maximize the reward. Specifically,
the reward R’ is a function of the caching control of the
RSUs (Alca:9) Aled9)) and the computing control of the MEC
servers A(P9)_ Then, the reward maximization problem can
be formulated as follows:

[P1]:
max i
Aleasi)| Aled.i) A(vp D)

(ca 1) cp 1)
S.t. Qe 5O e

2:06[1,...7

where S’,f is the maximum caching capacity of RSU k. Here
the first and second constraints represent the limited cached
capacities and computational resources of the RSU. The next
section presents our solution to problem P1.

€{0,1}, aCdz)
} (cdz <S

€[0,sc], 13)

D. Caching Placement and Computing Resource Allocation

Problem P1 in is non-convex, since the reward in
the objective function defined in (I)) is a complex non-linear
function. Given this observation, we have devised Alg. E] for
finding the solution of this optimization problem based on
the PSO [10]. We normalize A% to arrive at A(¢%%) where
d,(cff’l) = a{™" /sC Let us reshape the K x C' matrices Alea)
Aledsi) and A(C” %) to the vectors X;, X5 and X35, respectlvely.
The variable vector is defined as X = {X;, X5, X3}, where
the length of vector X is K = 3K xC. Then, we aim for find-
ing the solutions of X, where X; € [0, 1] for maximizing the
reward R’ (X). Note that the solutlons X* can be translated
to the optimal solutions of {A(c®D* Aled:i)x Alepi)x1,

For brevity, we describe the PSO in the context of our
problem as follows. Explicitly, the PSO is a swarm intelligence
based technique inspired by the collective behavior of social
swarms of bees or birds. Here, each single solution defined
as a “particle” may be viewed as a “bird” in the search
space. A swarm of these particles moves through the search
space at a specified velocity in order to find an optimal

position. Generally, each particle, which is a member of the
population, has two components including the position of
X and the velocity of V. Note that the velocities decide
the movement directions of the particles, when they roam
around the search space to find the optimal position. In
our particular problem, the position vector of particle j is
[Xﬂ,XjQ,...,Xjf(}

presented as X; = and its velocity

vector is represented as V; = [le, Via, .. J/'ﬂv(} Here, j

denotes particle j, while K represents the number of unknown
variables given above.

Firstly, a group of random particles (solutions) is used for
initializing the PSO and then the optimal solution is sought
by updating the consecutive generations as follows. At every
iteration, there are two “best” values: [) the particle’s best
known position p®®*? is the position vector of the best solution
(fitness) of this particle achieved so far (we term it as the
personal best position); 2) the swarm’s best known position
gPest is the position vector of the global “best” solution, which
is tracked by the particle swarm optimizer (we term it as
the global best position). In particular, the fitness value of
each particle is compared to that of its corresponding p?e*t.
If the fitness value of the j-th particle is larger than that of
pJest, pbest is then replaced by the j-th particle. Next, g’
is selected as the best pé’-“t among all the particles. Recall
that the velocities of the particles represent the rate of change
for the current position and all particles continuously move in
the search space.

In summary, each particle j at iteration ¢ can be defined
by three values: 1) the position, X;k, is used to evaluate the
quality of particle j; 2) the velocity, Vjtk, represents the direc-
tion and magnitude per iteration of the particle j’s movement;
and 3) the personal best position, pgi‘“’t, is the particle j that
has been visited up to the iteration ¢. Note that the personal
best position represents the knowledge of the quality solutions.
The superscript ¢ and the subscript k represent the iteration
index and the particle index, respectively. So the velocity
of particle j at iteration ¢ + 1 is updated according to the

current position, X;k, the current velocity, Vjtk, the personal

best position, p?ZSt’t and the global best position, g?ZSt’t, We

summarize this procedure in Alg.
So both the position and velocity of the particle j are
updated as follows:

V}t;jl:l“/}tk‘f‘clﬁl (P?Zﬂ’t— ;k) +co€a (g?eSt’t—ka) , (14)
Xt =X+ Vi, (15)

J
where c; and c; are the cognitive and social learning fac-
tors (also called acceleration coefficients), which are positive
constants. These parameters are among the most important
parameters and are utilized for accelerating the algorithm. In
fact, they control the balance between exploration and explo-
ration tendencies, which can be explained as follows [44], [45]].
If ¢; is set to the larger value, the particle tends to move
closer to the personal best position. If co is set to the higher
value, it will result in faster convergence to the global best
position. It implies that enables the particle to move toward
to the optimum solution. In our scenario, we set ¢; and cs as

c1 = cg = 2.05 [45]). Still referring to (I4), €; and €, are a
pair of independent random variables with uniform distribution
between 0 and 1, which are generated at every update for each
individual dimension. These parameters are used for ensuring
diversity of the group particles. Furthermore, v is the inertia
weight, which shows the effect of the previous velocity vector
on the new vector. Usually, ¢ is set as the constant value in
the range of [0.9, 1.2]. However, 1 in our algorithm decreases
linearly from 0.9 to 0.4 to enhance the convergence [46]. When
the termination conditions are satisfied, the final gb“t will be
the output as the optimal solution, X*.

Note that the velocity vector in the regular PSO may grow to
infinity if the values of v, ¢; and co are not set correctly. In this
case, the particle leaves the search space (we call the swarm
explosion) and hence, its objective value is not considered for
updating personal and global best vectors [44]], [45]. Therefore,
the fundamental solution to the swarm explosion restricts the
velocity to the range of [—Vmax, Umaz], Where vp,q, is the
maximum allowed velocity [44]. However, this restriction may
prevent the particles from going to the boundaries of the
search space. Hence, the search scheme does not direct to
the optimal solutions. To improve the stability and ensure the
convergence of PSO, we employ the constriction factor [44].
In particular, the velocity of the constriction factor based PSO
can be expressed as follows:

Vjtlj_l :E[Vﬂ +cr€1 (ngSt’t—X§k) +ca€2 (g?ZSt’t —X;kﬂ , (16)
2

" 2-¢-ve-1x)

where £ = ¢; + ¢ and £ > 4. The stability and convergence
requirements would be satisfied by controlling the value of &.
When ¢ increases, the constriction factor v decreases. This
results in reducing the diversity of the population and hence,
it takes longer to reach convergence. Moreover, the value of
¢ has to be larger than 4 to guarantee stability. In this paper,
we set ¢ = co = 2.05, £ =4.1.

a7)

VI. SMALL TIMESCALE DEEP (Q-LEARNING MODEL

In the small timescale model, the operation of the control
system is as follows. First, the control system collects the
status of each RSU/MEC server, of each vehicle and of
each vehicle’s mobility. Next, it constructs the system states,
which are the vehicle’s mobility and communication channel
information as well as the caching contents and the computa-
tional resources at the RSU/MEC servers. Then, the deep Q-
network (or agent) receives the system states and determines
the optimal action A*. This action includes the set of RSUs
as well as their caching and computational resources for the
requesting vehicle. Finally, the control system receives this
action and forwards it to the vehicle.

A. Deep QQ-Learning

In the following, we provide a brief description of deep Q-
networks. Interested readers can find further detailed informa-
tion in [11]. Let X = {x1,z2,...,z,} denote the state space
and let A = {ay,as,...,a,} denote the action set. The agent

Algorithm 1 PSO-BASED EDGE CACHING AND COMPUTING
IN VEHICULAR NETWORKS

1: for each particle j =1,2,...,D do

2: Initialize the position X; with a random number
€ [0,1], the velocity Vj; with a random number €
[—vmax, vmax| and the particle’s best known position
pbest =X..

J J
if RY (plest) > R (ghe*') then

3:
4: Update the swarm’s best known position gbest =
pfj)est.
5 end if
6: end for
7: repeat
8: for each particle j =1,2,..., D do
9 ford=1,2,...,N do
10 Pick random numbers, €; and €3 € [0, 1]. Update
the velocity using Eq. (T4).
11: end for
12: Update the particle’s position X; = X; + V.
13: if R? (pi*’) < R*(X;) then
14: Update the particle’s best known position pb“t
X;.
15: if Ri (be“) <R (b“t) then
16: Update the swarm’s best known position gb“t
pgest.
17: end if
18: end if
19: ghest = argmax R* (ghes').
gé)ebt
20: end for
21: until Convergence
22 X* — gbest.

takes an action a(t) € A based on the current state z(t) € X.
After that the system evolves to a new state z(t + 1) € X
with the transition probability P, (;),(¢+1)(a) and obtains the
immediate reward r [z(t), a(t)].

For the long-term consideration, the target is the future
reward that is characterized by a discount factor 0 < € < 1.
The reinforcement learning agent aims for determining an
optimal policy a* = 7*(z) € A for each state x, which
maximizes the expected time-averaged reward. This quantity
is expressed as

(18)

267“

where [E denotes the expectation.
Recall that the environment is modeled by a Markov deci-
sion process (MDP), hence, the value function can be rewritten

as
+€ Y Pow [r(@))

z'eX

NNz0) ==z,

VTi(x) = V'), (19

where R(x,m(x)) is the mean value of the immediate reward
r [z, m(z)], while Py, [m(x)] is the transition probability from
x to a’, when the action 7(z) is executed.

Let us now consider model-free reinforcement learning,
where both R and P are unknown. (Q-learning is one of the
strategies capable of determining the best policy 7*. From
@]), a state-action function, namely, Q)-function is defined as

Q" (z,a) = R(z,a) + € Y _ Prw(a)V™ ('),

z'eX

(20)

which represents the discounted cumulative reward, when
action a is performed at state x and continues to obey the
optimal policy from that point on. The maximum @-function
is expressed as

Q" (z,a) = R(z,a)+ € Y Prw(a)V"™ (a),

z'eX

2n

The discounted cumulative state function can be written as
V™ (2) = max Q™ (z,a). (22)
acA

So we now aim for estimating the best Q-function instead
of finding the best policy. The @-function can be obtained by
using the recursive method of [47].

Qii(x,a)=Q(z,a)+ (r—i—e max Q2 d)—Qu(z, a)), (23)

where « is the learning rate. Note that Q;(x,a) definitely
converges to Q*(z, a), when an appropriate « is selected [[11].
One way to estimate the ()-function is to use a function ap-
proximation, such as a neural network Q(z,a;0) =~ Q*(x, a),
where the parameter 6 is the weight of the neural network
[11]], which is adjusted at each iteration during the () network
training in order to reduce the mean square error.

To make reinforcement learning applicable to real appli-
cations, deep (Q-learning was developed as follows, which
requires two improvements for transforming the regular Q-
learning to deep (Q-learning. The first one is an experience
replay. At each time instant ¢, an agent stores its interaction
experience tuple, e(t) = [z(t), a(t),r(t),z(t + 1)] into a re-
play memory, D(¢t) = {e(1), ..., e(¢)}. In contrast to traditional
Q-learning, where the arriving samples are used for training
the neural network’s parameters, deep ()-learning randomly
selects the sample experience pool to train the deep neural
network’s parameters. The second modification is that deep
Q@-learning updates the weight every IV time steps, instead of
updating it every time step. By doing so, the learning process
becomes more stable.

The deep (-function is trained towards the target value by
minimizing the loss function, Loss(f), at each iteration. The
loss function can be written as

Loss(0) =E [(y — Q(x, a,9)2)] J

where the target value y is expressed as y = 7r +
max Q(z’,a’,0;). In the Q-learning, the weights obey 6, =
a/

(24)

0;—1, whereas in deep ()-learning, we have 0; = 0;_n.
Given the action A’ at the large timescale model, we
perform the actions AP (t) and A(“»?)(t) according to the
states in the time slot level. The vehicle’s mobility has an
impact on the actions of AP (t) and A(¢»)(t) as well
as on the immediate reward. At the deep @-network, the

replay memory stores the agent’s experience at each time
slot. The @-network parameter, 0, is updated at every time
instant with samples from the replay memory. The target Q-
network parameter 6 is copied from the @-network every N
time instants. The e-greedy policy is utilized for balancing
the exploration and exploitation. It implies that this policy
balances the reward maximization based on the knowledge
already acquired, while attempting new actions to further
increase knowledge [[11]. So the remaining tasks define the
system states, system actions and immediate reward functions,
which are presented in the following sections.

B. System States

The state of the available RSU/MEC servers k£ €
{1,2,...,K} and available caches ¢ € {1,2,...,C} for
vehicle ¢ in time slot ¢ (with duration of one small time slot)
is determined by the realization of the states of the random
variables, (Vi f},sc)-

C. System Actions

In each time slot, the agent has to decide which RSU is
assigned to the vehicle and whether or not the computational
task should be offloaded to the RSU/MEC server. Note that the
caching placement is performed as part of the large timescale
model. However, the size of each caching content dynamically
changes in the small timescale model [5], [6]. The current
action A*(t%) is denoted by

Ai(tS) _ {/I(cp,i)(ts)’A(ca,i)(ts)} :

where AP (¢*) and A(¢%?) (%) are defined as follows.

For the communication control, let us define the K x C
matrix A% (%), whose (k,c) entry &,(Cca) (£5) represents
the connection control of RSU % and vehicle i for the c-th
content cache, where ak”“ (t°) is a binary variable with a
value of either 1 or 0. Value 0 implies that the content c¢ is not
cached at RSU k at time slot ¢° or that RSU £ is out of the
communication range of vehicle ¢ during time slot ¢°, while
value 1 means that the content is cached and RSU £ is the best
contact for vehicle ¢ during time slot ¢*. For the computing
control, let us define the K x C matrix A(°»)) (%), whose (k, ¢)

entry a](:’;) (%) represents the connection between the MEC
server k and vehicle i for the data offloading. Each element
EL(CW) (t*) is either 1 or 0. Value 0 means that the task is not
ofﬂoaded to the MEC server k at time slot ¢°, or RSU £k is
out of the communication range of vehicle ¢ during time slot
t%, while value 1 indicates that the task is offloaded and RSU

k is the best contact with vehicle ¢ during time slot ¢°.

(25)

D. Reward Functions

The exact immediate rewards for the actions are defined as
follows:
RI(t%)

= RPD () + R0 (1), (26)

10

R(Cp’i)(ts) and R(°®?(£%) can be respectively calculated as

Rlead) (¢ ch Zxkc +Z a(caz §Rpi Ry
ceC kek keK
+(1 - Z d;ﬁf?’“)éBSbBSuBS7 27)
keK
R(cp, ZZ ~(cp, Z)CR Zdécf;,i))cBS, (28)
ceC kek kek
where C% = 68bp"vp™ 4 nDweR is the cost of of-

floading tasks to RSU including the communication cost
58"y and the computational cost nD¥e. Similarly,
CB‘Sk 5BSbBS BS 4 nBSDweBS is the cost of offloading
the tasks to BS, where 655559,55 and nPSDYePS are the
communication and computational costs. Here, el and eB°
are the energy consumption per cycle of the MEC server and
the BS, respectively.

VII.

This section presents our numerical results for illustrating
the performance of the proposed scheme. The key parameters
are chosen as follows, unless stated otherwise: K = 10; U =
50; bt = 4bP5 = 1 MHz; £, = 2 units/MB; 685 = 1067
= 20 units/MHz; n?° = 10p® = 100 units/J; eBS = eff =
IW/GHz; D¥ = 100 Mcycles; I./I¥ = 20; flf, in the range of
[10, 20] GHz; time slot is set 20s, T; = 240s. Note that the
cost of using the services of the BS (for downloading cached
contents and computing their corresponding tasks) is assumed
to be ten times the cost of using the services of the RSUs.

The wireless channels of vehicle-to-RSU links all follow the
Markov model. During the contact duration between vehicle
i to RSU k, vi has two states, ie. vj = {1,4}, with 1
corresponding to the worst channel and 4 to the best channel.
The probabilities of remaining in the same state and that
of traversing from one state to the other are set to 0.7
and 0.3, respectively. Similarly, the probabilities of caching
are set to 0.7 and 0.3. The computational states of MEC
servers are assumed to obey the Markov model, where the
transition probabilities ©; ; are in the range of [0,1] and
>_i;©i; = 1. The following simulation results validate the
theoretical findings. More detailed results have to be omitted
here owing to the space limit, but motivated readers can find
the details in [41].

Fig. [3] shows the success probability versus the coded
packet size [, for N1y = 0.1. Here, “success” means that
the tagged vehicle ¢ completes downloading the requested
content and offloads its corresponding tasks for computation
within the hard deadline Ty without assistance from the BS.
We compare our proposed scheme against two benchmark
cases: 1) random resource allocation; and 2) equal resource
allocation. Similar to our proposed scheme, both the random
resource allocation and the equal resource allocation select
the sets of eligible RSUs at every epoch in order to reduce
the number of reserved RSUs for reducing the cost of their
caching storage. However, they pre-select these sets in a
random manner. In every time slot, the random resource allo-
cation allocates caching contents and computational resources,
while the equal resource allocation performs caching and

NUMERICAL RESULTS

A = Proposed scheme
3 = = =Random resource allocation
, 08 : == Equal resource allocation
!
=
z 0.6r u 1
S "
= v
E 041]
<
=}
=
~
0.2]
0

50 100 150
Packet size 1C (MB)

200

Fig. 3. Probability of success vs coded packet size I for AT; = 0.1.

5
1419

Cost

= Proposed scheme
0.8 = = =Random resource allocation
07 ‘ ‘ == Equal resource allocation

10 20 30 40 50 60 70
Packet size lc (MB)

Fig. 4. Cost vs coded packet size [for AXT;; = 0.05.

x 10
. = Proposed scheme

IOJ\ = = =Random resource allocation
‘;‘»‘ == Equal resource allocation

Cost

Mobility intensity AT P

Fig. 5. Cost vs vehicle mobility intensity, ATy for [, = 30M B.

computing allocation equally. As expected, the probability
of success decreases upon increasing the coded packet size
for all the schemes, because it becomes easier to transmit
data within the contact duration, when the size of the coded
segment is small. However, the success probability of random
resource allocation decreases dramatically, when [, reaches
40 MB, while our proposed scheme achieves a much higher
success probability. This validates the beneficial contribution

11

0.9

§ 0.8

§ .

3

%07

::; 0.6

A Rt = Proposed scheme
0.5¢ = = =Random resource allocation
04 ‘ . |'='='Equal resource allocation

©
n
—
o3

. 2 2.5 3 35 4
RSU storage (GB)

Fig. 6. Probability of success vs RSU storage, ATy for [= 30M B.
x10°
) — T, =05
.....)\Td =
15F 1
‘gﬂ
O 1t]
05f ‘“‘--.]
0 ‘ ‘ ‘ ‘
0 20 40 60 80 100

Iteration

Fig. 7. Convergence performance of the PSO algorithm (Alg. 1) for ATy =
(0.5,8) and I, = 30M B.

X 104

— PRES/PRR = 7
= = =prRES/PRR = 10
== pRES/PRR = 20

Mobility intensity AT d

Fig. 8. Cost vs vehicle mobility intensity, ATy, the backhaul capacities and
cloud computing resources for I = 30M B.

of the large timescale model design, where we carefully select
the sets of necessary RSUs for every epoch. Therefore, the
traditional method of pre-selecting eligible RSUs does not
work well in the presence of hard end-to-end deadline delay
constraint and in the scenario of vehicular mobility. Note
that a high number of supporting nodes causes inefficient
learning for the small timescale model due to the large action

space. On the other hand, if that number is too small, the
requesting vehicle cannot receive the number of coded packets
required for successfully processing the requested content.
As a result, it fails to accomplish its corresponding tasks
within the hard deadline of T};. Our proposed small timescale
model provides the excellent performances compared with the
two benchmark schemes because our proposal can adapt well
with the dynamic change of parameters for communications,
storage and computing as well as vehicular mobility.

Fig.] illustrates the cost versus Fountain-coded packet size
l. for XTy; = 0.05. We can readily observe that increasing
the size of the coded segment increases the cost of the
caching storage. Moreover, it is hard for the tagged vehicle
1 to download the content and to offload its computational
tasks under the constraints of vehicular mobility and hard
deadline delay, when the coded file size is large. Therefore,
the tagged vehicle may fail to receive the required number of
coded segments. As a remedy, these missed segments and their
corresponding tasks can then be downloaded and computed
with the assistance of the BS, but say at ten times higher cost.
Again, our proposed scheme consistently provides significant
performance gains over the other two schemes. Similarly, the
impact of mobility intensity on the cost is demonstrated in
Fig. [5| with I, = 30M B. When the vehicular mobility is low,
the cost is high because there are less opportunities for the
requesting vehicle to connect to new RSUs. Hence, every
RSU has to cache more segments in order to acquire the
minimum number of received coded segments required for
successful decoding. However, the proposed scheme relying
on deep reinforcement learning, PSO and our twin-timescale
framework mitigates this detrimental impact.

In Fig. [6] we investigate the influence of RSUs’ caching
storage, Si.‘, on our proposed scheme. In particular, the rela-
tionship between caching storage of RSUs and the probability
of success is illustrated. For simplicity, we consider the same
caching storage of RSUs, i.e. St = S®. Again, we compare
our proposed scheme with the random resource allocation and
the equal resource allocation. As expected, the probability
of success increases, when the caching storage of RSUs
increases. This observation can be intuitively explained as
follows. When the RSUs’ caching storage is larger, the RSUs
can store more contents and hence, the higher probability of
success would be attained. Furthermore, it is clearly observed
from the figure that the influence on probability of success
of the random resource allocation is greater than that of the
equal resource allocation, especially, when the cache storage
of RSUs is larger. Because the diversity of contents that can
be stored with the random resource allocation is higher than
that with the equal resource allocation, when storage capacity
of RSUs is larger. Therefore, the random resource allocation
achieves a higher probability of success than the equal re-
source allocation. Finally, our proposed scheme outperforms
both the random resource allocation and the equal resource
allocation. Especially, when the RSU has a limited resource
of caching capacity, our proposed scheme also achieves the
high performance in terms of probability of success (all the
probabilities of success are higher than 80%). This result
validates the significant contributions of the classic PSO in the

12

large timescale model and deep reinforcement learning in the
small timescale model. In particular, we beneficially exploit
the user-mobility and caching cooperation amongst the RSUs
to achieve a high probability of success.

We also evaluate the complexity of our proposed twin-
timescale framework. In Fig. [/} we illustrate the convergence
performance of the large timescale model for ATy = (0.5, 8)
and [, = 30M B. It is readily observed that the cost perfor-
mance decreases with the increase of the iteration number.
It reaches a relatively stable value at the iteration of 48.
This result confirms that our proposed large timescale model
is efficient and effective. Furthermore, the performance cost
of the small timescale model reaches the relatively stable
value, when the number of the episodes goes around 1100.
This number is quite small, because it is beneficial from the
solution of the large timescale model (i.e. the decision of sets
of necessary RSUs for every epoch).

Finally, we study the impact of backhaul capacity and of
the amount of cloud computing resources on the cost. For low
backhaul capacities and low cloud computing resources, the
performance cost of using the limited bandwidth to download
cached content from the BS is high and the cloud resources
invoked for computing its corresponding tasks are expensive.
Hence, the system imposes a cost penalty on the requesting
vehicle, whenever it relies on the limited backhaul capaci-
ties and cloud computing resources. Again, we consider the
scenario of [, = 30M B. For simplicity, we assume that the
ratio of the communication costs equals the ratio of computing
cost (i.e. PRES/PRE = nBS /nft = §B5 /6R). To elaborate,
PRBS /PR is the ratio of the cost of using the BS’s re-
sources to the cost of using the RSUs’ resources. In Fig.[§] it is
set to 7, 10 and 20, which correspond to low, medium and high
backhaul and computational capabilities. When PRBS/PRE
increases, the cost increases because poor backhaul and BS
computational capabilities degrade the system performance.
It is also observed that when mobility intensity A7y is large
at high speed, the performance curves follow a downward
trend and the discrepancy between the curves of low and high
capabilities becomes small. By contrast, there is a substantial
gap between the curves of low and high capabilities at a low
mobility intensity, ATy. These observations indicate that our
proposed scheme mitigates the deleterious effects of limited
backhaul capacity and low BS computational resources by
effectively exploiting the distributed storage and computational
capabilities as well as the vehicular mobility.

VIII. CONCLUSIONS

In this paper we developed a framework of joint optimal
resource allocation for communication, caching and computing
in vehicular networks. In order to strike a compelling trade-off
between a high QoS and desirable cost efficiency, the vehicular
mobility was exploited for enhancing both the caching and
computing policies. We formulated an optimization problem
for resource allocation and proposed a twin-timescale frame-
work for solving this problem. Due to the potentially excessive
complexity of the resultant large action space, it remains
an open challenge to operate within a truly multi-timescale

framework. Thus, we proposed PSO-based reward maximiza-
tion for our large timescale model, while we invoked deep
reinforcement learning for the small timescale model. Our
numerical results provided insights into a number of important
theoretical findings and showed significant performance gains
as a benefit of using optimal parameter configurations for our
proposed scheme.

ACKNOWLEDGMENT

The research of L. T. Tan and R. Q. Hu was supported
in part by National Science Foundation under grants NeTS
1423348 and EARS 1547312, in part by Natural Science Foun-
dation of China under grant 61728104, and in part by Intel
Corporation. L. Hanzo gratefully acknowledges the financial
support of the EPSRC projects EP/No0o4558/1, EP/PO34284/1,
of the Royal Society’s GRCF as well as of the European
Research Council’s Advanced Fellow Grant QuantCom.

REFERENCES

[11 Y. Chen, L. Wang, Y. Ai, B. Jiao and L. Hanzo, “Performance
analysis of NOMA-SM in vehicle-to-vehicle massive MIMO channels,”
IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2653-2666, Dec. 2017.

[2] J. Wang, C. Jiang, Z. Han, Y. Ren and L. Hanzo, “Internet of vehicles:
Sensing aided transportation information collection and diffusion,” IEEE
Trans. Veh. Tech., vol. 67, no. 5, pp. 3813-3825, May 2018.

[3] R. Tandon and O. Simeone, “Harnessing cloud and edge synergies:
Toward an information theory of fog radio access networks,” IEEE
Commun. Mag., vol. 54, no. 8, pp. 44-50, Aug. 2016.

[4] J. Hu, L. L. Yang and L. Hanzo, “Energy-efficient cross-layer design of
wireless mesh networks for content sharing in online social networks,”
in IEEE Trans. Veh. Tech., vol. 66, no. 9, pp. 8495-8509, Sept. 2017.

[51 Y. He, N. Zhao and H. Yin, “Integrated networking, caching,
and computing for connected vehicles: A deep reinforcement learning
approach,” IEEE Trans. Veh. Tech., vol. 67, no. 1, pp. 44-55, Jan. 2018.

[6] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing
framework in vehicle networks: A deep reinforcement learning,” IEEE
Trans. Veh. Tech., vol. 67, no. 11, pp. 10190-10203, Nov. 2018.

[7]1 R. Wang, J. Zhang, S. H. Song and K. B. Letaief, “Mobility-aware
caching in D2D networks,” in IEEE Trans. Commun., vol. 16, no. 8, pp.
5001-5015, May 2017.

[8] K. Poularakis and L. Tassiulas, “Code, cache and deliver on the move:
A novel caching paradigm in hyper-dense small-cell networks,” IEEE
Trans. Mobile Comput., vol. 16, no. 3, pp. 675-687, 2017.

[9] H. S. Chang, P. J. Fard, S. 1. Marcus and M. Shayman, “Multitime
scale Markov decision processes,” in IEEE Trans. Autom. Control, vol.
48, no. 6, pp. 976-987, June 2003.

[10] J. Kennedy, “Particle swarm optimization,” Encyclopedia of machine
learning, Springer US, pp. 760-766, 2011.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski and S. Petersen, “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, Feb.
2015.

[12] N. Golrezaei, A. F. Molisch, A. G. Dimakis and G. Caire,
“Femtocaching and device-to-device collaboration: A new architecture
for wireless video distribution,” in /JEEE Commun. Mag., vol. 51, no. 4,
pp. 142-149, April 2013.

[13] M. Ji, G. Caire and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp.
849-869, Feb. 2016.

[14] Y. Chen, M. Ding,J. Li, Z. Lin, G. Mao and L. Hanzo, “Probabilistic
small-cell caching: Performance analysis and optimization,” in /EEE
Trans. Veh. Tech., vol. 66, no. 5, pp. 4341-4354, May 2017.

[15] J. Li, H. Chen, Y. Chen, Z. Lin, B. Vucetic and L. Hanzo, “Pricing
and resource allocation via game theory for a small-cell video caching
system,” in IEEE J. Sel. Areas Commun, vol. 34, no. 8, pp. 2115-2129,
Aug. 2016.

[16] J. Li, Y. Chen, Z. Lin, W. Chen, B. Vucetic and L. Hanzo, “Dis-
tributed caching for data dissemination in the downlink of heterogeneous
networks,” in IEEE Trans. Commun., vol. 63, no. 10, pp. 3553-3568, Oct.
2015.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(33]

[34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

13

M. Gregori, J. Gomez-Vilardebo, J. Matamoros and D. Gunduz,
“Wireless content caching for small cell and D2D networks,” in IEEE
J. Sel. Areas Commun, vol. 34, no. 5, pp. 1222-1234, May 2016.

K. Poularakis, G. losifidis and L. Tassiulas, “Approximation algorithms
for mobile data caching in small cell networks,” in [EEE Trans.
Commun, vol. 62, no. 10, pp. 3665-3677, Oct. 2014.

R. Wang, X. Peng, J. Zhang and K. B. Letaief, “Mobility-
aware caching for content-centric wireless networks: modeling and
methodology,” IEEE Commun. Mag., vol. 54, no. 8, pp. 77-83, Aug.
2016.

C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen and L. Hanzo,
“Machine learning paradigms for next-generation wireless networks,”
IEEE Wireless Commun., vol. 24, no. 2, pp. 98-105, April 2017.

E. Bastug, M. Bennis and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82-89, Aug. 2014.

J. G. Andrews, H. Claussen, M. Dohler, S. Rangan and M. C. Reed,
“Femtocells: Past, present, and future,” in IEEE J. Sel. Areas Commun.,
vol. 30, no. 3, pp. 497-508, April 2012.

R. Q. Hu, Y. Qian, “An energy efficient and spectrum efficient wireless
heterogeneous network framework for 5G systems,” IEEE Commun.
Mag., vol. 52 no.5, pp. 94-101, May 2014.

J. G. Andrews, F. Baccelli and R. K. Ganti, “A tractable approach to
coverage and rate in cellular networks,” in IEEE Trans. Commun., vol.
59, no. 11, pp. 3122-3134, Nov. 2011.

J. Wang, “A survey of web caching schemes for the internet,” ACM
SIGCOMM Comp. Commun. Review, vol. 29, no. 5, pp. 36-46, Oct.
1999.

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher and B. Ohlman,
“A survey of information-centric networking,” IEEE Commun. Mag., vol.
50, no. 7, pp. 26-36, Jul. 2012.

M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn and S. Moon, “Analyzing
the video popularity characteristics of large-scale user generated content
systems,” in IEEE/ACM Trans. Networking, vol. 17, no. 5, pp. 1357-
1370, Oct. 2009.

L. T. Tan, R. Q. Hu and Y. Qian, “D2D communications in
heterogeneous networks with full-duplex relays and edge caching,” in
Trans. Ind. Informat., vol. 14, no. 10, pp. 4557-4567, Oct. 2018.

Q. Wang, L. T. Tan,R. Q. Hu and G. Wu, “Hierarchical collaborative
cloud and fog computing in IoT networks,” Proc. WCSP 2018.

L. T. Tan and L. B. Le, “Compressed sensing based data processing
and MAC protocol design for smartgrids,” Proc. IEEE WCNC2015.

L. T. Tanand L. B. Le, “Joint data compression and MAC protocol
design for smartgrids with renewable energy,” Wirel. Commun. Mob.
Com., vol.16, no. 16, pp. 2590-2604, July 2016.

L. T. Tan and H. Y. Kong, “A novel and efficient mixed-
signal compressed sensing for wide-band cognitive radio,” Proc. IEEE
IFOST2010.

L. T. Tan, H. Y. Kong and V. N. Q. Bao, “Projected Barzilai-
Borwein methods applied to distributed compressive spectrum sensing,”
Proc. IEEE DySPAN2010.

Z. Zhang, K. Long, A. V. Vasilakos and L. Hanzo, “Full-duplex
wireless communications: challenges, solutions, and future research
directions,” Proc. IEEE, vol. 104, no. 7, pp. 1369-1409, Jul. 2016.

L. T. Tan and L. B. Le, “Design and optimal configuration of full-
duplex MAC protocol for cognitive radio networks considering self-
interference,” in IEEE Access, vol. 3, pp. 2715-2729, 2015.

L. T. Tan and L. B. Le, “Multi-channel MAC protocol for full-
duplex cognitive radio networks with optimized access control and load
balancing,” Proc. IEEE ICC2016.

H. Chen, R. G. Maunder and L. Hanzo,“A survey and tutorial on low-
complexity turbo coding techniques and a holistic hybrid ARQ design
example,” in IEEE Commun. Surv. Tutor., vol. 15, no. 4, pp. 1546-1566,
Fourth Quarter 2013.

H. Chen, R. G. Maunder and L. Hanzo,“Low-complexity multiple-
component turbo-decoding-aided hybrid ARQ,” in [EEE Trans. Veh.
Tech., vol. 60, no. 4, pp. 1571-1577, May 2011.

H. Chen, R. G. Maunder and L. Hanzo, Lookup-table-based deferred-
iteration aided low-complexity turbo hybrid ARQ),” in IEEE Trans. Veh.
Tech., vol. 60, no. 7, pp. 3045-3053, Sept. 2011.

H. Chen, R. G. Maunder, Y. Ma, R. Tafazolli and L. Hanzo, “Hybrid-
ARQ-aided short fountain codes designed for block-fading channels,” in
IEEE Trans. Veh. Tech., vol. 64, no. 12, pp. 5701-5712, Dec. 2015.
“Twin-timescale artificial intelligence aided mobility-aware edge
caching and computing in vehicular networks,” technical report. Online:
https://www.dropbox.com/s/x3w 1 wxbkessh10p/MDRLTechrep.pdf?dl=0

[42] E. P. Xing, Q. Ho,W. Dai,J. K. Kim, J. Wei, S. Lee, X. Zheng,
P. Xie, A. Kumar and Y. Yu, “Petuum: A new platform for distributed
machine learning on big data,” IEEE Trans. Big Data, vol. 1, no. 2, pp.
49-67, June 2015.

S. M. Ross, Introduction to Probability Models. San Francisco, CA,
USA: Academic, 2014.

M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58-73, Feb. 2002.

M. R. Bonyadi and Z. Michalewicz, “Particle swarm optimization for
single objective continuous space problems: A review,” in Evol. Comput.,
vol. 25, no. 1, pp. 1-54, March 2017.

R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” Proc. CEC2000.

S. Gu, T. Lillicrap, I. Sutskever and S. Levine, “Continuous deep
Q@-learning with model-based acceleration,” Proc. ICML’2016.

[43]
[44]

[45]

[46]

(471

Le Thanh Tan (S’11-M’15) received his B.Eng.
and M.Eng. degrees from Ho Chi Minh University
of Technology, Vietnam, in 2002 and 2004, respec-
tively, and PhD degree from Institut National de
la Recherche Scientifique, Canada in 2015. He is
currently with Department of Electrical & Computer
Engineering, Utah State University. From 2002 to
2010, he was a Lecturer with the Ho Chi Minh
University of Technology and Education. In 2015,
he was a Postdoctoral Research Associate at Ecole
Polytechnique de Montreal, Canada. From 2016 to
2017, he was a Postdoctoral Research Associate at Arizona State University,
USA. His research interests include artificial intelligence, machine learning,
Internet of Things, vehicular networks, 5G wireless communications, edge/fog
computing and cloud computing, information centric networking, software
defined networking and network function virtualization. He has served on
TPCs of different international conferences including IEEE CROWNCOM,
VTC, PIMRC, etc. He is a Member of the IEEE.

Rose Qingyang Hu (S’95-M’98-SM’06) received
the B.S. degree from the University of Science and
Technology of China, the M.S. degree from New
York University, and the Ph.D. degree from the
University of Kansas. She is a currently a Professor
with the Electrical and Computer Engineering De-
partment and an Associate Dean for Research with
the College of Engineering, Utah State University.
Besides a decade academia experience, she has more
than 10 years of R&D experience with Nortel,
Blackberry, and Intel as a Technical Manager, a
Senior Wireless System Architect, and a Senior Research Scientist, actively
participating in industrial 3G/4G technology development, standardization,
system level simulation, and performance evaluation. Her current research
interests include next-generation wireless communications, wireless system
design and optimization, Internet of Things, cloud computing/fog computing,
wireless system modeling, and performance analysis. She has published
extensively in top IEEE journals and conferences and holds numerous patents
in her research areas. She is an IEEE Communications Society Distinguished
Lecturer Class 2015-2018. She was a recipient of Best Paper Awards from
the IEEE GLOBECOM 2012, the IEEE ICC 2015, the IEEE VTC Spring
2016, and the IEEE ICC 2016. She served as the TPC Co-Chair for the
IEEE ICC 2018. She is currently serving on the editorial boards for the
IEEE Transactions on Wireless Communications, the IEEE Transactions on
Vehicular Technology, the IEEE Communications Magazine and the IEEE
Wireless Communications.

14

Lajos Hanzo (http://www-mobile.ecs.soton.ac.uk)
FREng, FIEEE, FIET, Fellow of EURASIP, DSc
received his degree in electronics in 1976 and his
doctorate in 1983. In 2009 he was awarded an
honorary doctorate by the Technical University of
Budapest and in 2015 by the University of Edin-
burgh. In 2016 he was admitted to the Hungarian
Academy of Science. During his 40-year career in
telecommunications he has held various research
and academic posts in Hungary, Germany and the
UK. Since 1986 he has been with the School of
Electronics and Computer Science, University of Southampton, UK, where
he holds the chair in telecommunications. He has successfully supervised
112 PhD students, co-authored 18 John Wiley/IEEE Press books on mobile
radio communications totaling in excess of 10 000 pages, published 1800+
research contributions at IEEE Xplore, acted both as TPC and General Chair
of IEEE conferences, presented keynote lectures and has been awarded a
number of distinctions. Currently he is directing an academic research team,
working on a range of research projects in the field of wireless multimedia
communications sponsored by industry, the Engineering and Physical Sciences
Research Council (EPSRC) UK, the European Research Council’s Advanced
Fellow Grant and the Royal Society’s Wolfson Research Merit Award. He
is an enthusiastic supporter of industrial and academic liaison and he offers
a range of industrial courses. He is also a Governor of the IEEE ComSoc
and VTS. During 2008 - 2012 he was the Editor-in-Chief of the IEEE Press
and a Chaired Professor also at Tsinghua University, Beijing. For further
information on research in progress and associated publications please refer
to http://www-mobile.ecs.soton.ac.uk.

	Introduction
	Related Works, Background and Applications
	Related Works
	Background and Applications
	Background of Fog Computing Network
	Potential Applications

	System Models
	Network Architecture
	Communication Model
	Computing Model
	Mobility Model and Coded Caching Scheme

	Artificial Intelligence-Based Mobility-Aware Edge Caching and Computing
	Large Timescale Model with PSO-based Reward Maximization
	Definitions
	Reward Function
	Calculation of R(ca,i)(tl)
	Calculation of R(cp,i)(tl)

	Problem Formulation
	Caching Placement and Computing Resource Allocation

	Small Timescale Deep Q-Learning Model
	Deep Q-Learning
	System States
	System Actions
	Reward Functions

	Numerical Results
	Conclusions
	References
	Biographies
	Le Thanh Tan
	Rose Qingyang Hu
	Lajos Hanzo

