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Bayesian Design of Experiments for Intractable
Likelihood Models Using Coupled Auxiliary

Models and Multivariate Emulation

Antony Overstall∗ and James McGree†

Abstract. A Bayesian design is given by maximising an expected utility over a
design space. The utility is chosen to represent the aim of the experiment and its
expectation is taken with respect to all unknowns: responses, parameters and/or
models. Although straightforward in principle, there are several challenges to find-
ing Bayesian designs in practice. Firstly, the utility and expected utility are rarely
available in closed form and require approximation. Secondly, the design space can
be of high-dimensionality. In the case of intractable likelihood models, these prob-
lems are compounded by the fact that the likelihood function, whose evaluation
is required to approximate the expected utility, is not available in closed form. A
strategy is proposed to find Bayesian designs for intractable likelihood models. It
relies on the development of an automatic, auxiliary modelling approach, using
multivariate Gaussian process emulators, to approximate the likelihood function.
This is then combined with a copula-based approach to approximate the marginal
likelihood (a quantity commonly required to evaluate many utility functions).
These approximations are demonstrated on examples of stochastic process models
involving experimental aims of both parameter estimation and model comparison.

Keywords: approximate Bayesian computation, approximate coordinate
exchange, indirect inference, Gaussian process, model comparison, parameter
estimation.

1 Introduction

Often, the dynamics underpinning a complex physical phenomenon can be modelled
by a stochastic process. It is commonly the situation that the stochastic process (or
model) depends on unknown parameters, time and, potentially, other controllable vari-
ables. In this paper, we consider the case where an experiment is to be performed
to learn about the phenomenon by estimating the unknown parameters. That is, the
physical phenomenon of interest is observed at a series of time points, after the speci-
fication of any controllable variables, and the stochastic model is fitted to the observed
responses. In particular, we focus on the optimal choice of time points and controllable
variables (collectively referred to as design variables) to best learn about the unknown
process.
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2 Design of Experiments for Intractable Likelihood Models

A feature of the stochastic models studied in this paper is that, although the dy-
namics behind each process can be relatively simple, the probability model linking
parameters and design variables to responses is typically only defined implicitly. The
development of new statistical methodology, so called likelihood-free methodology, to
analyse observed responses under these intractable likelihood models has received much
attention in recent years, e.g. approximate Bayesian computation (Tavaré et al. 1997);
synthetic likelihood (Wood, 2010); variational Bayes (Tran et al., 2017) and auxiliary
modelling (Gourieroux et al. 1993). The task of designing the experiment, i.e. specify-
ing the design variables, has received significantly less attention. Under the frequentist
approach to statistical inference, Pagendam and Pollett (2013) and Parker et al. (2015)
used numerical approximations to the Fisher information to find D-optimal designs
(e.g., Atkinson et al., 2007, Chapter 11) for stochastic epidemic and queueing models,
respectively. In this paper, the Bayesian approach to statistical inference is used. Under
such an approach, a utility function is specified representing the aim of the experiment.
Then, a Bayesian design (Chaloner and Verdinelli, 1995) is found by maximising the
expectation of the utility where expectation is with respect to all unknown quantities
(i.e. parameters and unobserved responses) and the maximisation is over the space of
all possible designs. Finding optimal designs under the Bayesian approach, even for
tractable likelihood models, is a significant computational challenge; see recent reviews
of the field by Ryan et al. (2016b) and Woods et al. (2017). Typically, neither the utility
function nor its expectation are available in closed form, and the space of all possible de-
signs can be high-dimensional. For intractable likelihood models, the problem is further
exacerbated by there being no closed form expression for the likelihood. Approaches for
finding Bayesian designs have been proposed that use approximate Bayesian compu-
tation (Drovandi and Pettitt 2013, Hainy et al. 2013, Price et al. 2016) and auxiliary
modelling (also known as indirect inference; Ryan et al. 2016a) to approximate the like-
lihood. A common feature of these methodologies is that they have only been applied for
examples of experiments with low-dimensional design spaces rendering them of limited
practical relevance.

In this paper, we aim to overcome the shortcomings of existing approaches. The
contribution is threefold. First, we apply the latest methods (Overstall and Woods,
2017) for maximising the approximate expected utility which are suitable for high-
dimensional design spaces. Secondly, we develop an automatic, flexible non-parametric
auxiliary modelling approach to approximate the likelihood that uses a multivariate
emulator to provide an approximate link between parameters, design variables and the
responses. Thirdly, we develop a novel copula-based approximation to the marginal like-
lihood which is a key quantity for many commonly-used utility functions and is rarely
analytically tractable. The paper is organised as follows. In Section 2, we review the
necessary background on Bayesian design and likelihood-free methodology. In Section 3
we describe the proposed automatic auxiliary modelling approach and the approxima-
tion to the marginal likelihood, before demonstrating the proposed methodology on
illustrative yet challenging examples in Section 4. Lastly, we describe and demonstrate
how the approach can be extended to the experimental aim of model comparison in
Section 5.
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2 Background

2.1 Intractable likelihood model

Suppose the experiment consists of n runs. For k = 1, . . . , n, the kth run involves the
specification of a w × 1 vector of design variables dk ∈ D. Let yk be the corresponding
response from the phenomenon for the kth run. It is assumed that, independently,

yk ∼ F (θ,dk) , (1)

where F is a distribution depending on a p × 1 vector of unknown parameters θ ∈ Θ,
with Θ the parameter space. Let f(y|θ,d) denote the probability density function (pdf)
or probability mass function (pmf) of the distribution F . The likelihood is

π(y|θ,D) =

n∏
k=1

f(yk|θ,dk),

where y = (y1, . . . , yn) is the n × 1 vector of responses, D = (d1, . . . ,dn) ∈ Δ = Dn

is the vector giving the design, and Δ the q-dimensional design space with q = nw.
For the models considered in this paper, F is only defined implicitly with the result
that f(y|θ,d) and π(y|θ,D) are not available in closed form. The marginal model is
the distribution of y|D having marginalised over the parameters θ. The pdf/pmf of this
distribution is called the marginal likelihood (also known as evidence) and given by

π(y|D) =

∫
Θ

π(y|θ,D)π(θ)dθ, (2)

where π(θ) is the pdf of the prior distribution for θ.

2.2 Bayesian optimal design of experiments

We initially describe the concept of Bayesian optimal design of experiments for the ex-
perimental aim of parameter estimation. We consider the extension to model comparison
in Section 5. Bayesian optimal design of experiments begins with the specification of a
utility function denoted by u(θ,y,D) which represents the utility of estimating θ using
observed responses y generated via design D. A Bayesian optimal design is given by
maximising (over Δ) the expected utility function given by

U(D) =

∫
u(θ,y,D)dPθ,y|D, (3)

where the expectation is with respect to the joint distribution of all unknown quantities;
θ and y. In this paper we consider a class of utility functions which we term likelihood-
based. This is where the utility function is a functional of the likelihood, π(y|θ,D), and
the marginal likelihood, π(y|D).

This class of utility function includes many commonly-employed utilities. As an
example, consider the Shannon information gain (SIG; Lindley 1956) given by

uS(θ,y,D) = log π(y|θ,D)− log π(y|D). (4)
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The Bayesian design under the SIG utility is equivalently the design that maximises the
expected (with respect to the marginal distribution of y) Kullback Leibler divergence
between the prior and posterior distributions of θ.

Although conceptually straightforward, there are at least two hurdles to finding
Bayesian designs in practice (even for tractable likelihood models). Firstly, neither the
utility function u(θ,y,D) nor its expectation U(D) are usually analytically tractable
and will require approximation. Secondly, the design space Δ can be of high dimension-
ality, i.e. q can be relatively large.

Methods proposed in the literature for approximately maximising the expected util-
ity can be broadly classified into simulation- or smoothing-based. The simulation-based
approach of Müller (1999) places an artificial joint distribution on θ, y and D such that
the marginal pdf of D is proportional to U(D). Simulation methods are used to generate
a sample from this joint distribution which is then used to estimate the marginal mode
of D, i.e. the Bayesian design. This method has been further refined, for example, by
Müller et al. (2004) and Amzal et al. (2006). However, difficulties in efficiently sampling
over a high dimensional space mean that the typical limit of dimensionality for the
design space under these methods is considered to be q = 4 (e.g. Ryan et al. 2016b).

Smoothing-based approaches are based on the following Monte Carlo approximation
to the expected utility

Ũ(D) =
1

B

B∑
i=1

u(θi,yi,D), (5)

where {θi,yi}Bi=1 is a sample of size B generated from the joint distribution of θ and y
(given D). Due to the stochastic nature of the Monte Carlo approximation, application
of standard optimisation methods (e.g. Lange, 2013) is difficult. Instead, Müller and
Parmigiani (1995) proposed a method whereby Ũ(D) is evaluated at a series of designs
and a statistical model (a smoother or emulator) is fitted that is able to predict Ũ(D)
(and therefore U(D)) at any D ∈ Δ. This predictor is then maximised over the design
space, Δ. Müller and Parmigiani (1995) were able to consider design spaces with di-
mensionality of q = 2. This method has been further refined by Weaver et al. (2016)
(with maximum q = 3) and Jones et al. (2016) (with maximum q = 9).

To aid in the applicability to design spaces of higher dimensionality, Overstall and
Woods (2017) proposed the approximate coordinate exchange (ACE) algorithm. Here a
cyclic ascent algorithm (usually referred to as coordinate exchange in the design of ex-
periments literature; see Meyer and Nachtsheim 1995) is used to maximise the expected
utility. At each of the q elements (coordinates) of the design, Ũ(D) is evaluated at a
series of designs which only differ in that coordinate and a Gaussian process smoother
is fitted to the resulting evaluations and used to predict U(D) for any design. This
prediction is then maximised over the one-dimensional design space of the coordinate
under study. By using this methodology, Overstall and Woods (2017) were able to find
approximately optimal designs for experiments in examples with design spaces of up to
q = 192 dimensions, i.e. nearly two orders of magnitude greater than existing methods.
A brief description of the ACE algorithm is given in Section 1 of the Supplementary
Material (Overstall and McGree, 2019). Furthermore, the algorithm is implemented in
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the acebayes (Overstall et al., 2018b) R package. The ACE algorithm is currently the
state of the art in computing Bayesian designs for realistic-sized design spaces and, for
this reason, we use it in all examples. However the methodology we propose is suitable
to use with any optimisation method which only requires the evaluation of the Monte
Carlo approximation to the expected utility given by (5).

To apply any optimisation method relying on evaluation of the Monte Carlo approx-
imation to the expected utility given by (5), it is a requirement to be able to evaluate
the utility function u(θ,y,D). However, it is usually the case that the utility function
itself is analytically intractable. Specifically, likelihood-based utilities depend on the
marginal likelihood, e.g. the SIG utility given by (4), which is typically not available
in closed form. The obvious approach is to use a further (inner) Monte Carlo approxi-
mation resulting in a nested Monte Carlo approximation to the expected utility (Ryan,
2003; Huan and Marzouk, 2013; Overstall and Woods, 2017). For example, to approx-
imate the SIG utility, we generate a further sample, {θ̃j}Cj=1, of size C from the prior
distribution of θ. The SIG utility is then approximated by

ũS(θ,y,D) = log π(y|θ,D)− log π̃(y|D), (6)

where the inner Monte Carlo approximation to the marginal likelihood is

π̃(y|D) =
1

C

C∑
j=1

π(y|θ̃j ,D). (7)

2.3 Bayesian design for intractable likelihood models

Finding Bayesian designs becomes impossible under an intractable likelihood model
using the methods described in Section 2.2 which rely on a large number of evaluations
of the likelihood π(y|θ,D) to approximate the expected utility. In the Monte Carlo
approximation to the expected utility given by (5), the utility function is evaluated B
times where each evaluation of the utility needs at least C evaluations of the likelihood
for the inner Monte Carlo approximation to the marginal likelihood given by (7).

We assume at this point that, although we are unable to evaluate the likelihood,
it is possible to generate samples from the intractable likelihood model. All models
considered in this paper are examples of Markov process models where samples can be
straightforwardly generated using the Gillespie method (Gillespie, 1977). In recent years
there has been an explosion of novel methodology to evaluate the posterior distribution
under an intractable likelihood depending only on the ability to generate from the model.
The most popular of these methods is approximate Bayesian computation (ABC; Tavaré
et al. 1997). Here, the likelihood is approximated by the ABC likelihood

πABC(y|θ,D) =

∫
I(δ(ỹ,y) ≤ ε)dPỹ|θ,D,

where I(A) is the indicator function for event A, δ(ỹ,y) ≥ 0 is a discrepancy function
(with δ(ỹ,y) = 0 if and only if ỹ = y) and ε ≥ 0 is a specified tolerance. If ε = 0,
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the ABC likelihood is equal to the likelihood. The ABC likelihood is approximated via
Monte Carlo. There is typically a trade-off between choosing ε to be sufficiently small
to ensure accurate inference and large enough for computational efficiency. A similar
approximation exists for the marginal likelihood given by (2).

Some authors (e.g., Drovandi and Pettitt, 2013; Hainy et al., 2013; Price et al., 2016)
have used ABC to approximate the utility function when finding Bayesian designs.
However, the ABC methodology needs the successful simultaneous specification of a
discrepancy function, δ, and tolerance, ε. In inferential settings with fixed observations
y and design, D, it is possible to tailor these choices. However for Bayesian design,
y is unknown meaning the choice of discrepancy function and tolerance need to be
suitable for all observations under the marginal model and for any design D ∈ Δ. This
means applying ABC techniques to find Bayesian designs for anything other than small
n is difficult (e.g Dehideniya et al., 2018) and therefore Bayesian design for intractable
likelihood models using ABC has been limited to design spaces of small dimensionality.

As mentioned in Section 1, an alternative methodology for inference under an in-
tractable likelihood is auxiliary modelling (also known as indirect inference). This is a
well established methodology for both frequentist (Gourieroux et al., 1993; Heggland
and Frigessi, 2004) and Bayesian (Drovandi et al., 2011, 2015) inference. A conditional
auxiliary model FX (θ,d) is used to approximate the distribution, F (θ,d), of y given
in (1). We use the term conditional since it is conditional on parameters θ and to dis-
tinguish it from the marginal auxiliary model which we introduce in Section 3. Suppose
the pdf/pmf of FX is denoted by fX(y|θ,d), then the auxiliary likelihood is

πX(y|θ,D) =

n∏
k=1

fX(yk|θ,dk), (8)

which is used to approximate the likelihood π(y|θ,D) in the utility function.

The conditional auxiliary model FX (θ,d) is specified by assuming that F (θ,d) =
HX(φf (θ,d)), where HX(φf ) is a probability distribution depending on v auxiliary
parameters, φf , which are a function of the parameters θ and design variables d. The
function φf (θ,d) is estimated by generating samples from the model F (θ,d) under

different parameters and design variables. Then FX (θ,d) = HX(φ̂f (θ,d)) where φ̂f is
the estimate of φf .

Ryan et al. (2016a) have previously used the auxiliary modelling approach to find
Bayesian designs under intractable likelihood models. However they estimated φf by
imposing a parametric form which may lack flexibility. They also found designs using
sampling-based approaches (see Section 2.2) and so were restricted to design spaces of
small dimensionality. In Section 3.1, we consider a more flexible non-parametric form
for the function φf .

An additional barrier to overcome is that to consider likelihood-based utilities we
also need to approximate the marginal likelihood given by (2). The standard nested
Monte Carlo approach (see Section 2.2) would be to replace evaluation of the likelihood
π(y|θ,D) by evaluation of the auxiliary likelihood πX(y|θ,D) in the inner Monte Carlo
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approximation to the marginal likelihood given by (7). However there exists a subtle
disadvantage relating to the complexity of the conditional auxiliary model. For all pairs
of i = 1, . . . , B and j = 1, . . . , C, in the inner Monte Carlo approximation to the
marginal likelihood we need to evaluate the auxiliary likelihood

πX(yi|θ̃j ,D) = exp

(
n∑

k=1

log fX(yik|θ̃j ,dk)

)
, (9)

where yik is the kth element of yi. In general, the exponent on the right hand side of
(9) can be decomposed as

n∑
k=1

log fX(yik|θ̃j ,dk) =

n∑
k=1

α(yik,dk) +

n∑
k=1

β(θ̃j ,dk) +

n∑
k=1

γ(yik, θ̃j ,dk), (10)

for functions α, β and γ whose form depend on the exact form of fX(y|θ,D). Therefore,
to evaluate the nested Monte Carlo approximation to the expected utility, α and β are
evaluated B×n and C ×n times each, respectively. However, γ is evaluated B×C ×n
times, which can result in a high computational burden. In cases where the nested
Monte Carlo approximation has been applied previously for tractable likelihood models
(e.g Huan and Marzouk, 2013; Overstall and Woods, 2017), the actual (not conditional
auxiliary) model is from the exponential family of distributions and γ can be decomposed
as follows

γ(y,θ,d) = γy(y,d)γθ(θ,d) (11)

which significantly reduces the computational burden of evaluation. It transpires that
γy and γθ need only be evaluated B×n and C×n times each, respectively. However, as
we demonstrate in Section 4, the conditional auxiliary model typically needs to possess
characteristics which are not found in exponential family distributions. For example,
for count models, we have found that the negative binomial distribution provides a far
more adequate conditional auxiliary model (see Section 4) than the Poisson, the latter
being an exponential family distribution. In these cases, the decomposition given by
(11) will typically not hold. This apparently simple complication significantly increases
the computational burden of evaluating the nested Monte Carlo approximation. As an
alternative to nested Monte Carlo, in Section 3.2, we propose an auxiliary modelling
approximation to the marginal likelihood. In Section 4, we compare designs found under
nested and auxiliary Monte Carlo both in terms of accuracy and computational time.

3 Methodology

3.1 Non-parametric estimation of φf

To estimate the function φf , we propose an automatic approach originating from the
field of computer experiments (see, e.g., Dean et al. 2015, Section V). In this area,
the goal is to approximate an unknown function (which is usually computationally
expensive). To do this, the function is evaluated a “small” number of times at a specified
meta-design of arguments, and a statistical model (known as an emulator) fitted to the
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output. The emulator provides a prediction of the unknown function for any argument.
We use the multivariate Gaussian process (MGP; Conti and O’Hagan 2010) model as
the emulator. This is a multivariate generalisation of the Gaussian process model which
is a commonly employed emulator in computer experiments.

We begin by generating a training sample {d(i)}Mi=1 of sizeM from D. We employ the
usual design used for computer experiments, i.e. a space-filling Latin hypercube design
(e.g. Santner et al., 2003, Chapter 5). We then generate a sample {θ(i)}Mi=1 of size M
from the prior distribution of θ. Finally, for i = 1, . . . ,M we generate an independent

sample y
(i)
f = (y

(i1)
f , . . . , y

(iN)
f ) of size N from F(θ(i),d(i)).

For each of these M samples we compute the maximum likelihood estimate (MLE)
of φf under HX(φf ), i.e. let

φ̂
(i)

f = argmax
φf

N∏
j=1

hX(y
(ij)
f |φf ),

for i = 1, . . . ,M , where hX(y|φf ) is the pdf/pmf of HX(φf ). Typically, the MLE is not
available in closed form so numerical methods are used.

We now have {φ̂(i)

f ,d(i),θ(i)}Mi=1 and we learn the relationship between φf and (d,θ)
using a MGP as follows.

Let Zf be the v × M matrix where the ith column (for i = 1, . . . ,M) is given by

z
(i)
f = λ(φ̂

(i)

f ) where λ is a monotonic and differentiable link function applied element-

wise to φ̂
(i)

f . The link function is applied so that the elements of Zf are in R, e.g. a log
link if the auxiliary parameters are positive. Under the MGP, we assume that

Zf |βf ,Σf ,Af ∼ MN
(
βf1M ,Af ,Σf

)
, (12)

where MN (β1M ,Af ,Σf ) denotes the matrix-normal distribution with v × M mean
matrix βf1M , v × v unstructured row covariance matrix Σf and M ×M column cor-
relation matrix Af . In (12), 1M is an 1×M matrix of ones, and βf is an v × 1 matrix
of coefficients. The ijth element of Af is given by

Afij = κ
(
xi,xj ;ρf

)
+ ηfI(i = j), (13)

where xi = (θ(i),d(i)), κ(·, ·;ρf ) is a valid correlation function depending on parameters
ρf , and ηf > 0 is referred to as a nugget. We will assume that φf is a smooth function
meaning that a suitable correlation function is the following squared exponential

κSE

(
xi,xj ;ρf

)
= exp

(
−

s∑
l=1

ρfl (xil − xjl)
2

)
, (14)

where xil and ρfl are the lth elements of xi and ρf , respectively. Note that ρf is an
s× 1 vector where s = p+ w.
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Suppose we wish to predict the value of zf = λ(φf (x)) for any value of x = (θ,d).
Under (12), the predictive distribution for zf is given by

zf |βf ,Σf ,ρf , ηf ∼ N
(
βf +

(
Zf − βf1M

)
A−1

f af ,
(
1 + ηf − aTf A

−1
f af

)
Σf

)
, (15)

where af is an M × 1 vector with ith element afi = κ
(
xi,x;ρf

)
.

For simplicity, we specify that the function φ̂f (x) is given by the inverse link of the
predictive mean, i.e. the mean of (15). This depends on the parameters βf , ρf and ηf .
We replace these parameters by their MLEs where the likelihood is given by (12). Thus

φ̂f (x) = λ−1
(
β̂f +

(
Zf − β̂f1M

)
Â−1

f âf

)
, (16)

where âf and Âf are af and Af , respectively, with ρf and ηf replaced by their MLEs,
ρ̂f and η̂f , respectively.

Finding the conditional auxiliary model using the above approach does carry high
computational burden. However it can be entirely completed off-line, i.e. prior to start-
ing any algorithm for maximising the approximate expected utility. Although we have
prescribed an automatic approach to estimating the function φf , we still need to spec-
ify the distribution HX . In Section 3.4, we propose methods for assessing the adequacy
of auxiliary models. We advocate an iterative approach whereby an auxiliary model is
fitted, assessed for adequacy and, in light of this assessment, potentially updated, i.e.
the same approach one would use for statistical modelling of physical data.

3.2 Approximating the marginal likelihood

For k = 1, . . . , n, let G(dk) be the marginal distribution of yk having marginalised over
the parameters θ, i.e. the pdf/pmf of G(dk) is given by

g(yk|dk) =

∫
Θ

f(yk|θ,dk)π(θ)dθ.

If the elements of y are continuous then, by Sklar’s theorem (e.g. Nelson, 1998, Section
2.3), the marginal likelihood is uniquely given by

π(y|D) = c (G(y1|d1), . . . , G(yn|dn)|D)×
n∏

k=1

g(yk|dk), (17)

where c is the pdf of the copula C of the marginal model, y|D, and G(yk|dk) is
the cumulative distribution function (cdf) of G(dk), for k = 1, . . . , n. Suppose that
u = (G(y1|d1), . . . , G(yn|dn)), then the marginal distribution of each element of u is
U[0, 1] and the copula is the joint distribution of u. Essentially a continuous multivari-
ate probability distribution can be decomposed into the marginal distributions of each
element and the copula which controls the dependency structure.
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Suppose we find a suitable auxiliary model (termed the marginal auxiliary model),
denoted by GX(d), for G(d), with pdf gX(y|d) and cdf GX(y|d), and an auxiliary copula,
CX , with pdf cX(u|D), then the marginal likelihood can be approximated using

πX(y|D) = cX (GX(y1|d1), . . . , GX(yn|dn)|D)×
n∏

k=1

gX(yk|dk). (18)

The decomposition given by (17) is only unique for continuous y. However, this does
not preclude its use for discrete y (see, e.g., Panagiotelis et al., 2012).

The marginal auxiliary model is constructed in an analogous way to the construction
of the conditional auxiliary model, i.e. we assume that G(d) = HX(φg(d)) and we set

GX(d) = HX(φ̂g(d)) where φ̂g is the estimate of φg. The estimate φ̂g is found using a
MGP in a similar way to how we estimate φf in Section 3.1. Full details are given in

Section 2 of the Supplementary Material. Note that similar to the construction of φ̂f , we
complete this off-line, prior to starting any algorithm for maximising the approximate
expected utility.

3.3 Constructing the auxiliary copula

We now consider specifying the auxiliary copula. Similar to forming the conditional and
marginal auxiliary models, we choose a family for the copula depending on an r × 1
vector of copula parameters, ζ. In contrast to the conditional and marginal auxiliary
models, the choice of copula family will be less intuitive. However, for all examples in this
paper, the t-copula (e.g. Demarta and McNeil, 2005) sufficed to produce an adequate
coupled auxiliary model. We compared to the simpler normal copula (e.g. Joe, 1997)
and found negligible difference in terms of approximate expected utility of the designs
found. However we favour the more complex t-copula for its flexibility in accounting
for extreme values. Unlike the conditional and marginal auxiliary models, we propose
that the specification of the auxiliary copula be made on-line, i.e. during evaluation of
Ũ(D) within the chosen algorithm for the maximisation of the approximate expected
utility. The reasoning for this difference is as follows. In the case of the conditional and
marginal auxiliary models, the dimensionality of the arguments of the functions φf and
φg are p+w and w, respectively, i.e. relatively small. However, if we were to allow ζ to
be a function of D, the dimensionality of this argument is q = nw, i.e. relatively large,
for which it may not be possible to estimate ζ reliably for all D ∈ Δ. At each evaluation
of Ũ(D), since D is fixed, ζ is independent of D and its value estimated using a copula
training sample generated from the model. Therefore, we write the copula as CX(ζ) with
pdf cX(u|ζ), i.e. independent of D. The pdf for the t-copula with δ degrees of freedom
at u = (u1, . . . , un) is

cX(u|ζ) = |R(γ)|− 1
2

[
δ + vTv

δ + vTR(γ)−1v

] δ+n
2

. (19)

In (19), v is an n × 1 vector with kth element vk = T−1
δ (uk), Tδ is the distribution

function of the standard univariate t-distribution with δ degrees of freedom, and R(γ)
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is an n × n correlation matrix with 1
2n(n − 1) unique elements given by the elements

of γ. The r = 1
2n(n− 1) + 1 copula parameters, given by ζ = (γ, δ), are estimated via

a two-stage process where γ is estimated via method of moments and δ by maximum
likelihood (e.g. Demarta and McNeil, 2005).

3.4 Assessing adequacy of auxiliary models

Before applying the auxiliary models described in the previous section to approximate
the expected utility, their adequacy should be assessed for plausibility, i.e. do they
provide a reasonable approximation to the assumed model. The approach proposed is
based on posterior predictive assessments (see, for example, Gelman et al. 2014, Chapter
6). Here M0 test samples are generated from the assumed and auxiliary models, and
sample statistics from each compared. We propose to separately assess a) the conditional
and marginal auxiliary models and; b) the coupled auxiliary model.

Assessing the conditional and marginal auxiliary models

We generate M0 samples of size N from the assumed, {ȳ(i)
f }M0

i=1, and auxiliary condi-

tional, {ȳ(i)
fX}M0

i=1, models using the following two steps.

1. Generate test samples, {θ̄(i)}M0
i=1 and {d̄(i)}M0

i=1, of size M0 from the prior distri-
bution of θ and uniformly over D, respectively.

2. For i = 1, . . . ,M0 and j = 1, . . . , N generate

ȳ
(ij)
f ∼ F

(
θ̄
(i)
, d̄(i)

)
ȳ
(ij)
fX ∼ HX

(
φ̂f

(
θ̄
(i)
, d̄(i)

))
.

Let
ȳ
(i)
f =

(
ȳ
(i1)
f , . . . , ȳ

(iN)
f

)
ȳ
(i)
fX =

(
ȳ
(i1)
fX , . . . , ȳ

(iN)
fX

)
.

We propose two diagnostics to compare these samples. First, plot sample statis-

tics of the ȳ
(i)
f ’s against ȳ

(i)
fX ’s, where suggested sample statistics are mean, variance,

median, etc. If the conditional auxiliary model is adequate then the points should ap-
proximately lie on a straight line through the origin with unit slope. Second, a single
number summary of conditional auxiliary model adequacy is given by the Bayesian
posterior predictive p-value (Gelman et al., 2014, page 146) given by

p-valuef

=
1

M0

M0∑
i=1

I

⎛
⎝ N∑

j=1

log hX

(
ȳ
(ij)
f |φ̂f (θ̄

(i)
, d̄(i))

)
<

N∑
j=1

log hX

(
ȳ
(ij)
fX |φ̂f (θ̄

(i)
, d̄(i))

)⎞⎠ .

A posterior predictive p-value close to zero or one indicate that the auxiliary model is
inadequate. Similar diagnostics can be obtained for the marginal auxiliary model.
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Assessing the coupled auxiliary model

To assess the adequacy of the coupled auxiliary model, we generate M0 samples of size

n from both the marginal model, {y̆(i)}M0
i=1, and the coupled auxiliary model, {y̆(i)

X }M0
i=1.

The steps required to generate these samples is given in Section 3 of the Supplementary
Material. To compare these samples, we use a posterior predictive p-value given by

p-value =
1

M0

M0∑
i=1

I
(
log πX

(
y̆(i)|D̆(i)

)
> log πX

(
y̆
(i)
X |D̆(i)

))
.

Similar to assessing the conditional and marginal auxiliary models, a posterior predictive
p-value close to zero or one suggests an inadequate coupled auxiliary model.

3.5 The auxiliary Monte Carlo approximation to the expected
likelihood-based utility

We now summarise the steps required to approximate the expected utility given a design
D = (d1, . . . ,dn), a Monte Carlo sample size B and a copula training sample size L.
Note that these steps rely on the off-line construction of both the conditional auxiliary
model FX(θ,d) (with pdf/pmf fX(y|θ,d)) and the marginal auxiliary model GX(d)
(with pdf/pmf gX(y|d) and distribution function GX(y|d)).

1. Generate sample, {θi}Bi=1 from the prior distribution of θ. For i = 1, . . . , B and
k = 1, . . . , n, generate

yik ∼ F (θi,dk) ,

and let yi = (yi1, . . . , yin). Now {yi,θi}Bi=1 is the Monte Carlo sample from the
joint distribution of y and θ given D.

2. Generate sample, {θ̄i}Li=1 from the prior distribution of θ. For l = 1, . . . , L and
k = 1, . . . , n, generate

ȳlk ∼ F
(
θ̄l,dk

)
,

and let ȳl = (ȳl1, . . . , ȳln). Now {ȳ}Ll=1 is the copula training sample from the
marginal distribution of y given D.

3. Calculate the maximum likelihood estimates, ζ̂, of ζ where

ζ̂ = argmax
ζ

L∏
l=1

cX (GX(ȳl1|d1), . . . , GX(ȳln|dn)|ζ) .

This maximisation will need to be computed numerically since closed form maxi-
mum likelihood estimates typically do not exist for copula parameters.

4. For i = 1, . . . , B, calculate the following approximations to the likelihood and
marginal likelihood

πX(yi|θi,D) =

n∏
k=1

fX(yik|θi,dk),
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πX(yi|D) = cX

(
GX(yi1|d1), . . . , GX(yin|dn)|ζ̂

) n∏
k=1

gX(yik|dk).

5. For i = 1, . . . , B, approximate the likelihood-based utility, u(θi,yi,D), by uX(θi,
yi,D), wherein the likelihood and marginal likelihood are replaced by πX(yi|θi,D)
and πX(yi|D), respectively. The resulting approximation to the expected utility,
given by

Ũ(D) =
1

B

B∑
i=1

uX(yi,θi,D),

is termed the auxiliary Monte Carlo approximation to the expected utility.

4 Examples

We apply the proposed methodology on a series of examples. To demonstrate the
methodology and assess its efficacy, in Section 4.1, we consider an illustrative example
of the compartmental non-linear model where the likelihood is available in closed form.
We then apply the methodology to an aphid population growth model (Section 4.2)
and a parasite model (Section 4.3), both of which have been used in the literature to
demonstrate Bayesian design under intractable likelihood.

First we describe some implementation details common to all examples. For the
training samples, we set M = 500 (number of marginal and conditional auxiliary model
training samples), N = 10000 (size of training sample size) and L = 500 (number of
copula training samples). These were found to be sufficient in all examples to provide
adequate auxiliary models. To assess adequacy, we used M0 = 100 test samples. To
assess the coupled auxiliary model, we compute the posterior predictive p-value for all
values of n considered for each example.

4.1 Compartmental model

In this section we apply the proposed methods to find a Bayesian design under the SIG
utility for a compartmental model. For this model, the likelihood is available in closed
form so the aim of this example is to assess the efficacy of the approach. Compartmental
models simulate how materials flow through an organism. The design problem is to
specify the n sampling times D = (t1, . . . , tn) (in hours) at which to measure the
concentration of a drug in an individual, following the administration of the drug at
time t = 0. The concentration at time tk is denoted by yk where it is assumed that

yk ∼ N(μ(θ; tk), ν(θ; tk)) ,

with θ = (θ1, θ2, θ3) being the unknown parameters,

μ(θ; tk) =
400θ2

θ3 (θ2 − θ1)
(exp (−θ1tk)− exp (−θ2tk)) , ν(θ; tk) = 0.1 + 0.01μ(θ; tk)

2,

and n = 15. Following Ryan et al. (2014), independent prior distributions are assumed
for the elements of θ, where, on the log scale, the common variance is 0.05 and the
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Approach Mean (standard error)
Nested Monte Carlo (exact likelihood) 4.51 (0.003)
Auxiliary Monte Carlo 4.28 (0.003)
Auxiliary Monte Carlo (exact likelihood) 4.48 (0.003)
Equally-spaced design 3.70 (0.003)

Table 1: Mean (standard error) nested Monte Carlo approximation (under the exact
likelihood) to the expected SIG utility for the compartmental model under the designs
found under the four different approaches.

expectations are log(0.1), log(1) and log(20), respectively. Additionally, a constraint
is imposed on the design whereby sampling times must be at least 15 minutes apart.
Overstall and Woods (2017) describe how such constraints can be easily incorporated
into the ACE algorithm.

For the distribution, HX , we use the normal distribution dependent on v = 2 aux-
iliary parameters, φ = (φ1, φ2) controlling the mean and variance, respectively. The
variance parameter, φ2, is positive so the λ link function is chosen to be the log func-
tion for this element. After fitting the auxiliary models, the posterior predictive p-values
associated with the conditional and marginal auxiliary models are p-valuef = 0.62 and
p-valueg = 0.42. The posterior predictive p-value associated with the coupled auxiliary
model is 0.47. Figure 1 in the Supplementary Material shows plots of sample statistics

(mean and variance) of the y
(i)
f ’s (the y

(i)
g ’s) against the y

(i)
fX ’s (the y

(i)
gX ’s). These plots

and the posterior predictive p-values show that the auxiliary models appear adequate.

We find Bayesian designs under the SIG utility using ACE under two different ap-
proaches. In the first, we use the auxiliary Monte Carlo approximation to the expected
utility, as described in Section 3, where we approximate both the likelihood and marginal
likelihood using the auxiliary models. In the second approach, we only approximate the
marginal likelihood, using the coupled auxiliary model, since the likelihood for the com-
partmental model is available in closed form. We compare the resulting two designs to
a) the SIG design found by using nested Monte Carlo (under the exact likelihood) to
approximate the expected utility; and b) the design given by equally-spaced sampling
times. The former was found by Overstall and Woods (2017) using the ACE algorithm.
Table 1 shows the mean and standard error of twenty nested Monte Carlo approxima-
tions (under the exact likelihood) to the expected utility under each of the four designs.
The design found under the methodology proposed in this paper for intractable likeli-
hood models (i.e. second row of Table 1) performs reasonably. Obviously being able to
evaluate the exact likelihood (third row of Table 1) improves this design to a point that
it has performance close to the design found under nested Monte Carlo with the exact
likelihood. We conclude that the methodology is competitive.

4.2 Aphid population growth model

Now consider an experiment to learn about aphid infestation in cotton plants. In the
experiment, the number of aphids, yk, in a plot of cotton plants is recorded at sampling
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time tk (in days), for k = 1, . . . , n. Let N(t) and C(t) denote the number of current
and cumulative aphid population sizes at time t. Matis et al. (2007) proposed a Markov
model for the aphid population where the dynamics are given by the following equations:

P (N(t+ δt) = N(t) + 1, C(t+ δt) = C(t) + 1) = θ1N(t)δt+ o(δt),

P (N(t+ δt) = N(t)− 1, C(t+ δt) = C(t)) = θ2N(t)C(t)δt+ o(δt),

where θ = (θ1, θ2) are the unknown parameters. Therefore the population of aphids
experiences a birth rate of θ1N(t) and a death rate of θ2N(t)C(t). Note that yk =
N(tk) and the design is D = (t1, . . . , tn). Finding designs for this experiment was
considered by Gillespie and Boys (2019) under a non-likelihood-based utility given by
the determinant of the posterior precision matrix for θ. They used a moment closure
approach to approximate the stochastic model (Gillespie and Golightly, 2010) but only
considered experiments with a low-dimensional design space. Following Gillespie and
Boys (2019), we assume a-priori that

θ ∼ N

((
2.46× 10−1

1.34× 10−4

)
,

(
6.24× 10−5 5.80× 10−8

5.80× 10−8 4.00× 10−10

))
,

let N(0) = C(0) = 28 and Δ = [0, 49] days. Finally, we consider a range of different
experiment sizes, i.e. n = 5, 10, . . . , 50.

Since the response is a count, the natural choice for HX is a Poisson distribution.
This has v = 1 auxiliary parameter giving both the mean and variance of the auxiliary
model. Since this parameter is positive we employ the log link. We fit the conditional
auxiliary model and assess its adequacy. The first column of Figure 1 shows plots of the

sample mean (a) and sample variance (d) of the y
(i)
fX ’s against the y

(i)
f ’s. Whereas there

appears to be good agreement between the means of the two models, the conditional
auxiliary model appears to be severely underestimating the variance. Instead we use a
negative binomial distribution which is a common alternative to the Poisson distribution
in the presence of over-dispersion. The negative binomial distribution has v = 2 positive
auxiliary parameters so again the log link is used. The second column of Figure 1 shows

plots of the sample mean (b) and sample variance (e) of the y
(i)
fX ’s against the y

(i)
f ’s.

The third column shows the corresponding plots for the y
(i)
gX ’s against the y

(i)
g ’s. Clearly

there is now agreement between both the sample means and the sample variances.
The posterior predictive p-values for the conditional and marginal auxiliary models are
p-valuef = 0.43 and p-valueg = 0.37, respectively. For the range of different values of n,
the posterior predictive p-values for the coupled auxiliary model correspondingly ranged
from 0.24 to 0.47. We conclude that the auxiliary models are adequate.

We consider finding Bayesian designs under the SIG utility and an alternative
likelihood-based utility that we term likelihood ratio (LR), given by

uLR(θ,y,d) = 1− π(y|d) 1
2π(y|θ,d)− 1

2 .

The design that maximises the expected LR utility, equivalently maximises the expected
Hellinger distance between the prior and posterior distributions.
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Figure 1: Graphics for assessing the adequacy of the auxiliary model for the aphid

model. In the first row, (a) shows a plot of the sample mean of the y
(i)
fX ’s against the

sample mean of the y
(i)
f ’s for the Poisson conditional auxiliary model. Corresponding

plots for the negative binomial conditional (b) and marginal (c) auxiliary models. The
second row shows the corresponding plots for the sample variance.

We find designs using ACE under auxiliary Monte Carlo for each value of n and each
utility function. We compare these designs against the design formed from n equally
spaced sampling times. Finally, designs are also found under each utility for n = 5
using nested Monte Carlo (using the auxiliary likelihood). Only n = 5 was consid-
ered due to the computational expense of finding designs using nested Monte Carlo for
n > 5.
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Number of runs, n 5 10 15 20 25 30 35 40 45 50
Auxiliary Monte Carlo 0.5 1.7 3.7 6.2 9.6 13.6 18.2 23.8 29.7 36.1
Nested Monte Carlo 8.5 - - - - - - - - -

Table 2: Average computing time (in hours) for designs found under auxiliary and nested
Monte Carlo for the SIG utility and the aphid model.

The first row of Figure 2 shows the mean of twenty nested Monte Carlo approxima-
tions (under auxiliary likelihood) to the expected (a) SIG and (b) LR utilities against n
for the three different types of design. As expected, in both cases, as n increases the ex-
pected gain in utility increases. The SIG and LR designs found under auxiliary Monte
Carlo are superior to the equally-spaced designs, and, for n = 5, there is negligible
difference between the designs found under nested and auxiliary Monte Carlo.

Table 2 shows the average computing times required to find the designs under the
SIG utility for auxiliary and nested Monte Carlo for each value of n. The times for the LR
utility are similar. For n = 5, it can be seen that finding the nested Monte Carlo design
requires over 15 times as much computing time relative to the auxiliary Monte Carlo
design. The additional computational expense of the nested Monte Carlo approximation
can be explained by considering the decomposition given in (10). Under the negative

binomial auxiliary model, α(y,d) = −y!, β(θ,d) = φ̂f2 log φ̂f2 − log Γ(log φ̂f2) and

γ(y,θ,d) = log Γ(φ̂f2 + y) + yφ̂f1 − (y + φ̂f2) log(φ̂f1 + φ̂f2),

where (φ̂f1, φ̂f2) = φ̂f (θ,d) are the v = 2 estimated auxiliary parameters under the
conditional auxiliary model. The function γ(y,θ,d) cannot be written in the form of
(11) due to the Gamma function and the same is true even after applying the Stirling
approximation to the Gamma function (e.g. Abramowitz and Stegun, 2002, page 257).

Figure 2 (c) shows a plot of 200 samples of the aphid population size generated
from the aphid model plotted against time. Figures 2 (d) and 2 (e) shows the SIG
and LR designs, respectively, found under auxiliary Monte Carlo for each value of n. It
can be seen in both cases, that for small values of n, the designs have sampling times
concentrated in the middle of the sampling window corresponding to the “peak” in
the aphid population. This qualitatively agrees with the designs found by Gillespie and
Boys (2019) under their non-likelihood-based utility function. However, as n increases,
we find the designs also include sampling times at the extremes of the sampling window.

4.3 Parasite model

We now consider a parasite model example modified from Drovandi and Pettitt (2013)
and Ryan et al. (2016a). In the experiment, the kth host cat is injected with dk1 ∈
[100, 200] Brugia pahangi larvae at time t = 0, for k = 1, . . . , n. After time dk2 ∈
(30, 300) (in days), the kth host cat is sacrificed and the number of mature parasites,
yk, are counted at autopsy. Riley et al. (2003) proposed a Markov process to simulate
the population of parasites within the host cat. At time t, let J(t) and M(t) denote
the number of juvenile and mature parasites, respectively. Furthermore, let I(t) be a
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Figure 2: Plots summarising results from the aphid model. Plots (a) and (b) show the
mean nested Monte Carlo approximation (under auxiliary likelihood) to the expected
SIG and LR utilities, respectively, against n for designs found under the three different
approaches. Plot (c) shows 200 samples of the aphid population size generated from
the aphid model plotted against time. Plots (d) and (e) show the SIG and LR designs,
respectively, found under auxiliary Monte Carlo for each value of n.

discrete representation of the host immunity. The dynamics of the model are as follows

P (J(t+ δt) = J(t)− 1,M(t+ δt) = M(t) + 1, I(t+ δt) = I(t)) = θ1J(t)δt+ o(δt),

P (J(t+ δt) = J(t)− 1,M(t+ δt) = M(t), I(t+ δt) = I(t))

= (θ4 + θ5I(t)) J(t)δt+ o(δt),
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P (J(t+ δt) = J(t),M(t+ δt) = M(t)− 1, I(t+ δt) = I(t)) = θ2M(t)δt+ o(δt),

P (J(t+ δt) = J(t),M(t+ δt) = M(t), I(t+ δt) = I(t) + 1) = θ3J(t)δt+ o(δt),

P (J(t+ δt) = J(t),M(t+ δt) = M(t), I(t+ δt) = I(t)− 1) = θ6I(t)δt+ o(δt),

where θ = (θ1, . . . , θ6) are unknown parameters. Juvenile and mature parasites die with
rates (θ4 + θ5I(t)) J(t) and θ2M(t), respectively. Juvenile parasites mature with rate
θ1J(t). The discrete measure of cat immunity increases or decreases by one unit with
rates θ3J(t) or θ6I(t), respectively.

Note that for the kth run, J(0) = dk1, M(0) = 0, I(0) = 0 and M(dk2) = yk. Both
Drovandi and Pettitt (2013) and Ryan et al. (2016a) fixed all parameter values except θ3
and θ4 and considered a design space with a maximum dimensionality of four. This was
either by setting n = 4 and fixing dk1 = 200 or setting n = 2. We consider all elements
of θ to be unknown and consider number of runs n = 2, 4, 6, 8, 10, 20, 30, 40, thus con-
sidering a design space with a maximum dimensionality of 80. The prior distributions
for θ follow from the analysis of responses from a previous experiment with n = 212
(Denham et al., 1977). Following Drovandi and Pettitt (2013), the prior distribution for
θ3 and θ4 is given by( √

θ3√
θ4

)
∼ N

((
0.0361
0.0854

)
,

(
2.03× 10−5 −1.07× 10−4

−1.07× 10−4 1.17× 10−3

))
.

The remaining parameters are given Gamma prior distributions with

E (θ1) = 0.04 var (θ1) = 4.00× 10−4

E (θ2) = 0.00147 var (θ2) = 2.56× 10−7

E (θ5) = 1.10 var (θ5) = 0.21
E (θ6) = 0.31 var (θ6) = 0.18.

(20)

The prior means in (20) are given by the assumed fixed values of Drovandi and Pettitt
(2013), with prior standard deviations given by the corresponding standard errors found
by Riley et al. (2003), inferred from 95% confidence intervals.

Since a mature parasite can only materialise from a juvenile, it means yk ∈ {0, . . . ,
dk1}. The obvious choice is to use a binomial distribution but similar to the aphid model
in Section 4.2, this was under-dispersed compared to the parasite model. Instead, we
choose HX to be the beta-binomial distribution. This distribution was also used by
Ryan et al. (2016a). The posterior predictive p-values for the conditional and marginal
auxiliary models were p-valuef = 0.20 and p-valueg = 0.11, respectively. The posterior
predictive p-values for the coupled auxiliary models ranged from 0.39 to 0.68 (over the
different values of n considered). Figure 2 in the Supplementary Material shows plots

of sample statistics (mean and log variance) of the y
(i)
f ’s (the y

(i)
g ’s) against the y

(i)
fX ’s

(the y
(i)
gX ’s). These plots and the posterior predictive p-values indicate that the auxiliary

models are adequate.

We consider finding Bayesian designs under the SIG and LR utilities using ACE,
under auxiliary Monte Carlo for each value of n. For n = 2 we also use ACE to find
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Figure 3: Plots summarising results from the parasite model. Plots (a) and (b) show the
mean nested Monte Carlo approximation (under auxiliary likelihood) to the expected
SIG and LR utilities, respectively, against n for designs found under the three different
approaches.

a design using the nested Monte Carlo approximation (under the auxiliary likelihood).
Similar to Section 4.2, we only consider n = 2 due to the computational expense of
finding designs under nested Monte Carlo for n > 2. As a further comparison we also
find maximin Latin hypercube designs (LHD) for each value of n.

Figure 3 shows the mean of twenty nested Monte Carlo approximations (under aux-
iliary likelihood) to the expected (a) SIG and (b) LR utilities against n for the three
different types of design. For both utilities, the auxiliary Monte Carlo designs are supe-
rior to the maximin Latin hypercube designs and, for n = 2, there is negligible difference
between the designs found under nested and auxiliary Monte Carlo. Table 1 in the Sup-
plementary Material shows the average computing times required to find the designs
under the SIG utility for auxiliary and nested Monte Carlo for each value of n. The
computing time required to find a maximin Latin hypercube design is essentially negli-
gible and not shown. Similar to Section 4.2, finding a design under nested Monte Carlo
requires significantly more computing time than for auxiliary Monte Carlo.

5 Model comparison

5.1 Bayesian design of experiments for model comparison

Often interest lies in comparing a set M of competing stochastic models. An experi-
mental aim of model comparison can be encapsulated by a utility function now denoted
by u(m,y,D) where m ∈ M denotes the unknown model. Fully Bayesian inference in
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this case centres on the posterior model probability of each model given by

π(m|y,d) = π(y|d,m)π(m)∑
m∈M π(y|d,m)π(m)

,

where

π(y|d,m) =

∫
Θm

π(y|θm,d,m)π(θm|m)dθm (21)

is the marginal likelihood and π(m) the prior model probability, respectively, for model
m. In (21), π(y|θm,d,m) is the likelihood for model m with parameters θm having
prior distribution with pdf π(θm|m). Two likelihood-based utility functions suitable for
model comparison aims are

(a) the SIG utility for models given by uSM (m,y,D) = log π(y|m,D) − log π(y|D),
where π(y|D) =

∑
m∈M π(y|m,D)π(m); and

(b) the 0-1 utility given by u01(m,y,D) = I(m = m̃) where m̃ = argmaxm∈M π(m|y,
D) is the posterior modal model.

5.2 Marginal auxiliary model

Both of the utility functions for model comparison given in Section 5.1 depend on
evaluation of the marginal likelihood, π(y|m,D), for each model m ∈ M. Analogous to
Section 3.2, for k = 1, . . . , n, let G(m,d) be the marginal distribution of yk for model m
having marginalised over the parameters θm. The marginal likelihood for model m ∈ M
is then

π(y|m,D) = c (G(y1|m,d1), . . . , G(yn|m,dn)|m,D)×
n∏

k=1

g(yk|m,dk),

where g(yk|m,dk) and G(yk|m,dk) are the pdf/pmf and cdf of G(m,d), respectively,
for k = 1, . . . , n, and c(·|m,D) is the copula for the marginal model, y|m,D.

A natural approach would be to find a separate coupled auxiliary model for each
model, as described in Sections 3.2 and 3.3. However, one or more coupled auxiliary
models may fit more adequately than the others, thus inflating the marginal likelihoods
of these models. To mitigate this risk, we propose to find a separate copula for each
model (as in Section 3), but form a marginal auxiliary model which is dependent on m.
Specifically, we assume G(m,d) = HX(φg(m,d)) and set the marginal auxiliary model

to be GX(m,d) = HX(φ̂g(m,d)) where φ̂g(m,d) is an estimate of φg(m,d) formed
using an MGP. Full details are given in Section 5 in the Supplementary Material. The
most important point is that the squared exponential correlation function given in (14)
is only suitable for quantitative arguments, i.e. d or θ, but not m. Qian et al. (2008)
considered computer experiments where the arguments can be a mixture of quantitative
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and categorical. We adopt their exchangeable correlation function, i.e.

κSEE

((
m(i),d(i)

)
,
(
m(j),d(j)

)
;ρ

)
= exp

(
−

w∑
l=1

ρl(dil − djl)
2 − ρw+1I

(
m(i) �= m(j)

))
.

(22)

5.3 Model comparison in epidemiological dynamics

We now consider a modified version of the model comparison example considered by
Dehideniya et al. (2018). The set M refers to a set of different epidemiological models
for the spread of a disease in a given population of known size K = 200. The experiment
involves observing yk the number of infected individuals in the population at time tk, for
k = 1, . . . , n. Thus the design is D = (t1, . . . , tn). The population also includes exposed
and susceptible individuals. Exposed individuals are those who have been exposed to
the disease but are not yet infected. Susceptible individuals are those who are at risk of
becoming exposed. Let S(t), E(t), and I(t) be the number of susceptible, exposed and
infected individuals, respectively, at time t, constrained such that S(t)+E(t)+I(t) = K.
Assume that at time t = 0, S(0) = K and I(0) = E(0) = 0 and note that yk = I(tk).
Dehideniya et al. (2018) considered the following four competing models.

1. Death model (m = 1)

In the death model, individuals transition from susceptible to infected directly,
i.e. they do not become exposed as an intermediate step. The rate of transition is
proportional to the number of susceptible individuals left in the population. These
dynamics are given by

P (S(t+ δt) = S(t)− 1, I(t+ δt) = I(t) + 1) = θ11S(t)δt+ o(δt),

where θ1 = (θ11) is an unknown parameter.

2. Susceptible-Infected (SI) model (m = 2)

The SI model modifies the death model so that the rate of transition from sus-
ceptible to infected is proportional to the rate at which susceptible and infected
individuals meet. These dynamics are given by

P (S(t+ δt) = S(t)− 1, I(t+ δt) = I(t) + 1) = (θ21 + θ22I(t))S(t)δt+ o(δt),

where θ2 = (θ21, θ22) are unknown parameters.

3. Susceptible-Exposed-Infected (SEI) model (m = 3)

In the SEI model, the individuals can transition from susceptible to exposed to
infected. The rate of these two transitions are proportional to the number of
susceptible and exposed individuals, respectively. These dynamics are given by

P (S(t+ δt) = S(t)− 1, E(t+ δt) = E(t) + 1, I(t+ δt) = I(t))

= θ31S(t)δt+ o(δt),
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P (S(t+ δt) = S(t), E(t+ δt) = E(t)− 1, I(t+ δt) = I(t) + 1)

=
E(t)

θ32
δt+ o(δt),

where θ3 = (θ31, θ32) are unknown parameters.

4. Susceptible-Exposed-Infected-II (SEI-II) model (m = 4)

The SEI-II model is a modification of the SEI model such that the rate of transition
from susceptible to exposed is proportional to the rate at which susceptible and
infected individuals meet. These dynamics are given by

P (S(t+ δt) = S(t)− 1, E(t+ δt) = E(t) + 1, I(t+ δt) = I(t))

= (θ41 + θ42I(t))S(t)δt+ o(δt),

P (S(t+ δt) = S(t), E(t+ δt) = E(t)− 1, I(t+ δt) = I(t) + 1)

=
E(t)

θ43
δt+ o(δt),

where θ4 = (θ41, θ42, θ43) are unknown parameters.

We consider finding designs under the two likelihood-based utilities described in
Section 5.1 for n = 5, 10, . . . , 50. Dehideniya et al. (2018) also considered finding designs
for the 0-1 utility function but used ABC to approximate the marginal likelihood and,
therefore, only considered low-dimensional designs.

We set the prior model probabilities to be equal, i.e. π(m) = 0.25 therefore specifying
that the models are a-priori equally likely. For the prior distribution of θm under each
model m, we let each element of θm have the following uniform distributions

θ11 ∼ U[0, 0.5],
θ21 ∼ U[0, 0.5], θ22 ∼ U[0, 0.005],
θ31 ∼ U[0, 0.5], θ32 ∼ U[0, 10],
θ41 ∼ U[0, 0.5], θ42 ∼ U[0, 0.005], θ43 ∼ U[0, 10].

(23)

These were chosen so that the distribution of y|m,D is approximately the same for
all m. To see this, Figure 3 in the Supplementary Material shows samples of y plotted
against time under each of the models.

Since the number of infected individuals is bounded from above by K, it means
that yk ∈ {0, . . . ,K}. Therefore, similar to the parasite model in Section 4.3, we use the
beta-binomial model for HX . The posterior predictive p-value for the marginal auxiliary
model (for all m) is p-valueg = 0.36. The posterior predictive p-values for the coupled
auxiliary models range from 0.20 to 0.41 over the different n considered. Figure 4 in
the Supplementary Material shows plots of sample statistics (mean and variance) of

the y
(i)
g ’s against the y

(i)
gX ’s. These plots appear to show some slight differences in

the predictive variance between the four epidemiological dynamics models. However, in
conjunction with the posterior predictive p-values, we consider the auxiliary models to
be adequate.
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Figure 4: Plots summarising results from the epidemiological dynamics example. Plots
(a) and (b) show the mean nested Monte Carlo approximation (under auxiliary likeli-
hood) to the expected SIG and 0-1 utilities, respectively, against n for the design found
under auxiliary Monte Carlo and the equally-spaced design. Plots (c) and (d) show the
SIG and 0-1 designs, respectively, found under auxiliary Monte Carlo for each value
of n.

The first row of Figure 4 shows the mean of twenty nested Monte Carlo approxima-

tions (under auxiliary likelihood) to the expected (a) SIG and (b) LR utilities against

n for the design found under auxiliary Monte Carlo and the design given by equally-

spaced sampling times. For both utilities, the auxiliary Monte Carlo designs are superior

to the equally-spaced designs. The second row of Figure 4 shows the (c) SIG and (d)

0-1 designs found under auxiliary Monte Carlo for each value of n. It can be seen in

both cases, that the designs appear to have sampling times at the beginning and end

of the sampling window.
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6 Discussion

In this paper we have introduced a general-purpose approach for finding Bayesian de-
signs under intractable likelihood models. It is applicable for all likelihood-based utility
functions, for realistic-sized experiments and for experimental aims of parameter esti-
mation and model comparison.

The proposed methodology is not applicable for non-likelihood-based utility func-
tions. Examples of such utilities are the negative trace of the posterior variance matrix
(e.g. Overstall and Woods, 2017) or the determinant of the posterior precision matrix
(e.g Gillespie and Boys, 2019). As stated by Gillespie and Boys (2019), these utilities are
only suitable for non-skewed unimodal posterior distributions. Likelihood-based utili-
ties, on the other hand, use the likelihood function to characterise information coming
from the experiment, as opposed to a single summary, such as the posterior mean or
variance, and therefore make no restrictions on the posterior distribution.

Ryan et al. (2016a) suggested the combination of auxiliary modelling and using
normal-based approximations to posterior quantities (e.g. Long et al., 2013; Overstall
et al., 2018a). However, as for our recommendation of likelihood-based utilities, we be-
lieve that the type of posterior distribution encountered in intractable likelihood models
may not be well approximated by a normal distribution. Instead, other deterministic ap-
proximations, such as expectation propagation (e.g. Gelman et al., 2014, pages 338–343)
could be more suitable.

Supplementary Material

Supplementary Material for “Bayesian design of experiments for intractable likelihood
models using coupled auxiliary models and multivariate emulation”
(DOI: 10.1214/19-BA1144SUPP; .pdf).
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