Chalcogenide phase-change photonic metamaterials
Chalcogenide phase-change photonic metamaterials
Chalcogenide semiconductor alloys offer a uniquely functional and compositionally-controllable material base for nanophotonic, plasmonic and optical-frequency metamaterial applications. They variously present high- and low-index dielectric, low-epsilon and plasmonic properties at near-UV to near-IR wavelengths, coupled to a capacity for fast, non-volatile, electrically-/optically-induced switching between phase states with markedly different properties. We present recent developments in their application to non-volatile reconfiguration in photonic metamaterials, including: switchable ‘structural colors’ underpinned by a transition between characteristically dielectric and plasmonic states; and the first optically-switchable UV/HEV dielectric metamaterials, wherein the functional chalcogenide is hybridized with a transparent, high-index dielectric supporting the resonant mode and phase-switching, unusually, changes resonance quality but not spectral position.
Gholipour, Behrad
c17bd62d-9df6-40e6-bc42-65272d97e559
Piccinotti, Davide
15c6d296-3464-43ec-943a-8155e66d2a51
Karvounis, Artemios
878c12bb-c30e-46f4-8c56-86423b41cdba
Martins, Tiago
826b0b69-90f5-4d40-84b7-f661628dbf66
MacDonald, Kevin F.
76c84116-aad1-4973-b917-7ca63935dba5
Zheludev, Nikolai
32fb6af7-97e4-4d11-bca6-805745e40cc6
22 April 2019
Gholipour, Behrad
c17bd62d-9df6-40e6-bc42-65272d97e559
Piccinotti, Davide
15c6d296-3464-43ec-943a-8155e66d2a51
Karvounis, Artemios
878c12bb-c30e-46f4-8c56-86423b41cdba
Martins, Tiago
826b0b69-90f5-4d40-84b7-f661628dbf66
MacDonald, Kevin F.
76c84116-aad1-4973-b917-7ca63935dba5
Zheludev, Nikolai
32fb6af7-97e4-4d11-bca6-805745e40cc6
Gholipour, Behrad, Piccinotti, Davide, Karvounis, Artemios, Martins, Tiago, MacDonald, Kevin F. and Zheludev, Nikolai
(2019)
Chalcogenide phase-change photonic metamaterials.
MRS Spring Meeting 2019, , Phoenix, AZ, United States.
22 - 26 Apr 2019.
Record type:
Conference or Workshop Item
(Other)
Abstract
Chalcogenide semiconductor alloys offer a uniquely functional and compositionally-controllable material base for nanophotonic, plasmonic and optical-frequency metamaterial applications. They variously present high- and low-index dielectric, low-epsilon and plasmonic properties at near-UV to near-IR wavelengths, coupled to a capacity for fast, non-volatile, electrically-/optically-induced switching between phase states with markedly different properties. We present recent developments in their application to non-volatile reconfiguration in photonic metamaterials, including: switchable ‘structural colors’ underpinned by a transition between characteristically dielectric and plasmonic states; and the first optically-switchable UV/HEV dielectric metamaterials, wherein the functional chalcogenide is hybridized with a transparent, high-index dielectric supporting the resonant mode and phase-switching, unusually, changes resonance quality but not spectral position.
This record has no associated files available for download.
More information
Published date: 22 April 2019
Venue - Dates:
MRS Spring Meeting 2019, , Phoenix, AZ, United States, 2019-04-22 - 2019-04-26
Identifiers
Local EPrints ID: 427644
URI: http://eprints.soton.ac.uk/id/eprint/427644
PURE UUID: 01d6974a-f7db-41ba-b82a-4612cd4f65cb
Catalogue record
Date deposited: 24 Jan 2019 17:30
Last modified: 23 Feb 2023 02:41
Export record
Contributors
Author:
Behrad Gholipour
Author:
Davide Piccinotti
Author:
Artemios Karvounis
Author:
Tiago Martins
Author:
Kevin F. MacDonald
Author:
Nikolai Zheludev
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics