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1 Introduction

Early asset pricing models exploit the covariance between the return on a financial asset and

the market portfolio. In this category we find the CAPM of Sharpe (1964) and Lintner (1965),

based on the mean-variance efficiency of the market portfolio, Black (1972)’s version of the CAPM,

characterized by the zero-beta portfolio return, the cross-sectional CAPM of Fama and MacBeth

(1973) or the intertemporal CAPM of Merton (1973). Extensions of these models incorporate other

risk factors beyond the market portfolio with power to explain the cross-section of asset returns.

Seminal contributions in this literature are Ferson, Kandel, and Stambaugh (1987), Fama and

French (1993, 2015) and Carhart (1997) specifications, among many others. All of these models

can be regarded as special cases of a unifying framework developed in Harrison and Kreps (1979),

which states that, under no arbitrage, there exists a single stochastic discount factor (SDF) for

pricing all risky assets in a market. Asset pricing theories based on the existence of a common

stochastic discount factor are exploited in Cochrane (1996), Lettau and Ludvigson (2001), Kogan

and Papanikolaou (2013) and Penaranda and Sentana (2015), among many others.

The asset pricing theories developed by Sharpe (1964), Lintner (1965), Fama and MacBeth

(1973), Ross (1976) and subsequent literature have been extensively tested in the finance literature

by the so-called ‘traditional methodologies.’ These methodologies are characterized by, given a

particular data-generating process for the returns, testing the restrictions imposed by the corre-

sponding asset pricing model as parametric constraints on the return-generating process. It has

been standard in the empirical asset pricing literature to validate these asset pricing specifications,

characterized by tradable common factors such as portfolio returns, by applying simple hypothesis

tests for the statistical significance of the intercept of asset pricing equations, see e.g., early work by

Sharpe (1964) and Lintner (1965) on the CAPM, Ross (1976) for multifactor asset pricing models,

and more recent contributions such as Fama and French (1993, 2015). For asset pricing models

characterized by non-tradable factors or by the absence of a risk-free asset the testable restrictions

imposed by the model are different. In Black (1972)’s zero-beta portfolio CAPM, the correct speci-

fication of the asset pricing model implies a specific form of the unrestricted intercept that depends

on the expected return on the zero-beta portfolio. More generally, Fama and MacBeth (1973)
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propose joint tests for the correct specification of the asset pricing model. The null hypothesis in

these tests not only considers the statistical significance of the intercept but also tests the equality

between the factors’ risk premia and the expected value of the pricing factors using estimates of the

latter two quantities. Ferson, Kandel, and Stambaugh (1987) propose tests that focus on assessing

the contribution of non-market risk factors in addition to a market portfolio return for pricing a

cross-section of time-varying expected returns.

Recent empirical asset pricing tests have also been developed based on the more general SDF

theory. These studies have been focused on testing the pricing restrictions in terms of the SDF

model rather than on restrictions imposed by specific asset pricing models. Both the traditional

and SDF methodologies assume the existence of a common factor risk premia for pricing the entire

cross-section of risky assets that precludes the presence of arbitrage opportunities. These factor

risk premia entail a discount rate associated to each pricing factor common across risky assets.

This argument is well understood in the theoretical asset pricing literature, however, to the best of

our knowledge, the empirical asset pricing literature has not developed tests to statistically assess

the homogeneity of the factor risk premia for the cross-section of risky assets.

The main contribution of this paper is to propose the use of statistical tests to assess the

homogeneity of the factor risk premia across risky assets and with it the correct specification of asset

pricing models. In contrast to the related asset pricing literature, we do not impose the factor risk

premia to be common across risky assets, instead, these parameters are estimated from time series

regressions between the excess returns on risky assets and the corresponding risk factor loadings.

By doing so, we allow for the possibility of heterogeneity in the factor risk premia across assets and

develop a test to statistically assess this condition. We focus on a static set of factor risk premia,

but the proposed methodology can also be extended to dynamic factor risk premia as discussed

in Lettau and Ludvigson (2001), and more recently, Nagel and Singleton (2010) and Gagliardini,

Ossola, and Scaillet (2016). To make the model tractable, the factor loadings that measure the

quantity of risk born by each asset need to be dynamic, otherwise the factor risk premia and the

intercepts of the corresponding asset pricing regression equations cannot be identified.

The presence of dynamics in the factor loadings of asset pricing equations is consistent with the
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recent literature in financial economics that suggests that market betas may vary with conditioning

variables, see Hansen and Richard (1987), Jagannathan and Wang (1996) and Wang (2003). We

are interested in obtaining low frequency (quarterly) estimates of the factor loadings from high

frequency (daily) data on excess returns on the risky assets and common factors. In particular,

we exploit realized measures recently developed in statistics by Andersen, Bollerslev, Diebold, and

Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and

Labys (2003) and Barndorff-Nielsen and Shephard (2004), among many others. The application of

this strategy to obtain realized betas has also been proposed in Andersen, Bollerslev, Diebold, and

Wu (2006), among a few others. The asset-specific estimates of the factor risk premia obtained from

time series regressions are compared by means of a statistical test with a pooled estimate of the

factor risk premia obtained from panel data methods that is common across assets by construction.

The homogeneity hypothesis for the factor risk premia constitutes the basis for our test of correct

specification of the asset pricing equation. We exploit the econometric literature on panel data and

adapt slope homogeneity tests developed by Ando and Bai (2015) to an asset pricing context.

These tests are very well suited for testing the restrictions imposed by our asset pricing framework

under the presence of cross-sectional dependence among the pricing errors. In particular, we test

for the absence of intercept and homogeneity of slopes of N asset pricing regression equations. We

contribute to the econometric literature on tests of homogeneity for the parameters of regression

models by deriving the asymptotic distribution of Ando and Bai (2015)’s test under the presence

of generated regressors, in our case characterized by time series of estimated factor loadings. For

comparison purposes, we also present the analogue slope homogeneity test under cross-sectional

independence similar in spirit to the Swamy type tests introduced in Pesaran and Yamagata (2008),

and derive its distribution under the presence of generated regressors.

In an online appendix, we present a comprehensive Monte-Carlo study with the performance of

these tests in finite samples. The results show adequate performance of both proposed tests under

the presence of generated regressors, with correct empirical size and high power against selected

alternatives.

We apply the tests to a comprehensive empirical application to U.S. quarterly data on industry
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portfolio returns spanning the period July 1963 to December 2014. We illustrate our testing

procedure for three popular asset pricing models developed in the literature, namely, the CAPM

model of Sharpe (1964) and Lintner (1965), and the three and five factor models of Fama and

French (1993, 2015). The conclusions of our empirical analysis reject the null hypothesis of correct

specification of these models for different hypotheses and test statistics. In particular, we reject the

null hypotheses of a zero intercept, homogeneous factor risk premia across risky assets and the joint

test involving both hypotheses. These results are robust to the evaluation period and choice of test

statistic and provide ample evidence of misspecification of different asset pricing factor models that

use tradable assets as common factors when the factor loadings are dynamic. Our results are in

line with the findings for the four-factor model obtained in Gagliardini, Ossola, and Scaillet (2016).

These authors reject the suitability of this model for a large cross-section of assets and also for

industry portfolios in a conditional asset pricing factor setting.

The rest of the paper is organized as follows. Section 2 introduces the asset pricing framework,

derives the testable asset pricing equations and outlines the test. Section 3 deploys the econometric

methodology and is divided in three stages: first, estimation of the dynamic factor loadings; second,

time series regressions to obtain asset-specific factor risk premia; and third, we propose our asset

pricing test. This is a joint test based on the homogeneity of the factor risk premia and the

null intercept hypothesis. We discuss different versions of this test under the presence of cross-

correlation between the pricing errors following Ando and Bai (2015) and under the assumption of

absence of such correlation following Pesaran and Yamagata (2008). In Section 4, we apply this

testing methodology to assess the Sharpe (1964) CAPM and Fama and French (1993, 2015) asset

pricing models with quarterly data of U.S. industry portfolio returns spanning the period July 1963

to December 2014. Section 5 concludes the paper. A separate online appendix presents different

extensions of the results. Appendix A collects the mathematical proofs of the results presented in

the paper. Appendix B contains an extension of our tests for exact asset pricing factor models. In

Appendix C we develop a detailed Monte-Carlo exercise showing the finite-sample performance of

the tests.
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2 Asset pricing tests

This section is divided into two blocks. First, we provide a brief review of linear asset pricing

models. In the second block we introduce the null hypothesis of homogeneity of the factor risk

premia for asset pricing tests.

2.1 A review of linear asset pricing factor models

Traditional asset pricing linear factor models propose a return-generating process for the excess

returns, rei,t+1. A typical example is a K-factor model

rei,t+1 = αi + β>i ft+1 + ei,t+1, (2.1)

where ft+1 is the realized value of a K-vector of systematic risk factors at time t + 1. These

common factors have unit variance and are uncorrelated across factors, i.e., Cov(fj , fk) = 0 for

j, k = 1, . . . ,K, αi is the intercept of the regression model and βi = Cov[rei,t+1, ft+1] are the factor

loadings of the excess returns on the common factors. The random variable ei,t+1 is the idiosyncratic

risk of the asset that satisfies E[ei,t+1|ft+1] = 0. We hereafter use E[·], Cov[·, ·] and Var[·] to denote

the expected value, covariance and variance of random variables and Et[·], Covt[·, ·] and Vart[·] to

denote the corresponding conditional statistical moments.

No-arbitrage arguments (Ross (1976), Al-Najjar (1998)) show that for tradable common factors

the corresponding beta asset pricing model is

E[rei,t+1] = β>i λ, for i = 1, . . . , N, (2.2)

with λ a vector of factor risk premia that captures the price of risk corresponding to the pricing

factors ft+1, and βi the factor loadings that capture the quantity of risk corresponding to each risky

asset. The asset pricing model (2.2) entails the testable restrictions

αi = 0 for i = 1, . . . , N,
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and

λ = E[ft+1].

The main feature of this asset pricing theory is the existence of a common parameter λ that

prices the cross-section of risky assets. This assumption along with the restriction of a zero excess

return for those risky assets uncorrelated with the common factors entail the absence of arbitrage

opportunities in asset pricing models characterized by tradable common factors. Most of the

empirical asset pricing literature focuses on evaluating the intercept restriction, namely, αi = 0

for all i = 1, . . . , N , in the time series regression (2.1), and assumes that the factor risk premia

λ is homogeneous across risky assets, see early work by Sharpe (1964) and Lintner (1965) on

the CAPM, Ross (1976) for multifactor asset pricing models, and Fama and French (1993, 2015)

on univariate versions of this restriction. A seminal contribution extending the restriction to a

multivariate setting is Gibbons, Ross, and Shanken (1989). These authors propose a Wald type

test for the joint null intercept hypothesis. A recent contribution by Pesaran and Yamagata (2018)

propose Wald type tests robust to the presence of correlation in the pricing errors.

Alternative asset pricing tests for the null intercept hypothesis use information on the cross-

section of risky assets. These tests are based on the so-called two-pass regressions and focus on

testing the significance of the intercept of a cross-sectional regression between the expected excess

return on the risky asset and the corresponding estimated beta factor loadings. A seminal example

is Fama and MacBeth (1973) and, more recently, for conditional linear factor pricing models, see

Gagliardini, Ossola, and Scaillet (2016). The assumption that the factor risk premia λ are common

across risky assets implies that the discount rates associated to each pricing factor are the same

across assets. This argument is well understood in the theoretical asset pricing literature, however,

to the best of our knowledge, the empirical asset pricing literature has not developed tests to

statistically assess this condition. For example, two-pass regressions are by construction not able

to test this condition as this testing methodology assumes a common price of risk parameter across

risky assets.

The main contribution of this paper is to propose the use of statistical tests to assess the

joint hypothesis of a null intercept and homogeneity of the factor risk premia for a cross-section
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of asset pricing equations. By doing so, we provide a statistical method to test for general forms

of misspecification in asset pricing equations that are reflected in heterogeneity across factor risk

premia.

The factor model (2.1) entails the representation

rei,t+1 − E[rei,t+1] = β>i f̃t+1 + ei,t+1, i = 1, . . . , N, (2.3)

with f̃t+1 = ft+1 − E[ft+1] being the demeaned common factors, and recalling that E[ei,t+1] = 0.

Under the correct specification of the beta asset pricing model (2.2), expression (2.3) can be written

as

rei,t+1 = β>i λ+ β>i f̃t+1 + ei,t+1, i = 1, . . . , N. (2.4)

Equation (2.4) presents the time series counterpart of the cross-sectional two-pass regression models

introduced in Fama and MacBeth (1973) for asset pricing. In this paper, to test the beta asset

pricing model we assume a generalized form of (2.2) given by

E[rei,t+1] = αi + β>i λi. (2.5)

In particular, we extend standard asset pricing tests based on the null intercept hypothesis, see

Gibbons, Ross, and Shanken (1989). For each pricing factor k = 1, . . . ,K, we add the testable

restriction λ1k = λ2k = . . . = λNk = λk, to the standard null intercept condition. More formally,

our null hypothesis to assess the correct specification of the asset pricing model is

Hα,λ
0 : α1 = . . . = αN = 0 and λ1 = . . . = λN = λ, (2.6)

for λ a vector of parameters, against the alternative Hα,λ
1 : αi 6= 0 or λi 6= λj , for some i, j ∈

1, . . . , N . For notational convenience, we define ηi = (αi, λ
>
i )> and η0 = (0, λ>)>, such that

the null hypothesis can then be simply written as Hα,λ
0 : ηi = η0, for all i = 1, . . . , N , against

Hα,λ
1 : ηi 6= ηj for some i, j ∈ 1, . . . , N . For asset pricing models characterized by non-tradable

factors the intercept of the asset pricing regression model can be different from zero and the null
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hypothesis of interest only concerns the homogeneity of the factor risk premia.

For comparison purposes, we define the test for the joint null intercept hypothesis as

Hα
0 : αi = 0, (2.7)

for all i = 1, . . . , N , against the alternative Hα
1 : αi 6= 0, for some i, j ∈ 1, . . . , N . We also introduce

a hypothesis test for the homogeneity of the factor risk premia as

Hλ
0 : λi = λ, (2.8)

for all i = 1, . . . , N , against the alternative Hλ
1 : λi 6= λj , for some i, j ∈ 1, . . . , N .

2.2 Asset pricing equation for a known factor structure

Under this generalized expression for the expected excess returns on risky assets using a known

factor error structure model the relevant time series regression equation is the following:

rei,t+1 = αi + β>i λi + ui,t+1, (2.9)

ui,t+1 = β>i f̃t+1 + ei,t+1.

The error term ui,t+1 has zero mean but exhibits cross-sectional correlation for i = 1, . . . , N , due

to the presence of the demeaned common factors f̃t+1 in the error term.

Note that αi and λi cannot be identified from the regression model (2.9). This identifi-

cation issue can be solved by replacing the static factor loadings βi by the dynamic quantity

βit = Covt[r
e
i,t+1, ft+1]. This is possible if we assume the common factors to be constructed from

tradable assets, see Fama and French (1993) as a seminal example. In this case the dynamic factor

loadings βit are unbiased estimators of βi. More formally, by the law of total covariance, it follows

that βi = E[Covt(r
e
i,t+1, ft+1)] + Cov(Et[r

e
i,t+1],Et[ft+1]), with Et[·] denoting a conditional expec-

tation with respect to the information set available up to time t. For tradable common factors

characterized by financial returns on investment portfolios the efficient market hypothesis implies
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the absence of return predictability and entails the condition Et[ft+1] = c, with c a constant, such

that βi = E[βit]. The regression equation (2.9) is replaced by

rei,t+1 = αi + β̂>itλi + νi,t+1, (2.10)

νi,t+1 = β>i f̃t+1 + εi,t+1,

with β̂it a consistent estimate of βit for i = 1, . . . , N . The sequence of estimates of the factor

loadings is interpreted as a set of generated regressors in our empirical asset pricing specification

(2.10). Note that the error term uit in (2.9) is replaced by νit in (2.10). This error term reflects the

estimation of βit that introduce additional uncertainty into the model. Moreover, our regression

model (2.10) will be estimated using the proposed interactive fixed-effects model of Bai (2009) and

Song (2013), and thus it allows for the factor structure in the error term to be correlated with the

covariates, i.e., β̂>it .

2.3 Asset pricing equation for an unknown factor structure

Testing for Hα,λ
0 rather than Hα

0 offers important information for building an appropriate empirical

asset pricing model. In fact, the definition of a strict factor structure can, in some cases, be

sufficiently stringent that it is unlikely that any large asset market has a usefully small number of

factors (Chamberlain and Rothschild (1983)). Thus, even if a strict K−factor structure existed,

K might be so large that a more useful model would be an approximate factor model with fewer

factors. In econometric terms this approximate factor model structure entails the omission of

relevant common factors in the pricing equation. In this context, Hα
0 may lack power for detecting

the omission of relevant factors for pricing the cross-section of risky assets if the exposure of the

excess risky returns on the omitted factors is weak. A similar observation has been noted by Pesaran

and Yamagata (2018) for motivating the presence of cross-correlation in asset pricing equations.

We can augment model (2.1) to consider the following factor model as the correct specification

rei,t+1 = αi + β>i ft+1 + φ>i ht+1 + et+1, (2.11)
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with ht+1 a set of additional common factors omitted from the model and φi the corresponding

factor loadings. Model (2.11) is flexible and allows for common factors omitted from (2.1). Under

specification (2.11) and E[ei,t+1|ft+1, ht+1] = 0, the representation in (2.3) becomes

rei,t+1 − E[rei,t+1] = β>i f̃t+1 + φ>i h̃t+1 + ei,t+1, i = 1, . . . , N, (2.12)

with h̃t+1 = ht+1 − E[ht+1] being the demeaned unobserved common factors, and

rei,t+1 = αi + β>i λi + β∗>i g̃t+1 + ei,t+1, i = 1, . . . , N, (2.13)

where g̃t+1 = (f̃>t+1, h
>
t+1)> and β∗>i = (β>i , φ

>
i ).

Under this generalized expression for the excess returns on risky assets, the relevant time series

regression equation is

rei,t+1 = αi + β̂>i λi + νi,t+1, (2.14)

νi,t+1 = β∗>i g̃t+1 + εi,t+1.

The error term νi,t+1 has zero mean but exhibits cross-sectional correlation for i = 1, . . . , N due to

the presence of the demeaned common factors g̃t+1 in the error term. Note that the presence of un-

known common factors entails the same empirical representation as the model with a known factor

structure, as long as the cross-sectional dependence is properly treated when modeling the error

term. In what follows, we employ the regression equation (2.14) in the empirical implementation

of our asset pricing tests.

3 Testing Procedures

This section describes the testing procedures used in the paper, which are divided in three stages.

First, we describe the computation of the factor loadings. Second, we describe the estimator for

the parameters of interest in the construction of the test statistics. We then formalize the null

hypothesis, the test statistics, and the corresponding limiting distributions of the tests.
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3.1 First Stage: Realized Covariance Measures

Although nonstandard the assumption that βit is dynamic is consistent with recent literature in

financial economics. This literature suggests that factor loadings may vary with conditioning vari-

ables, see Hansen and Richard (1987), Jagannathan and Wang (1996) and Wang (2003). The first

step is the construction of the estimates of the factor loadings βit. This has been a difficult task in

the empirical asset pricing literature. Our paper overcomes this problem by using data at higher

frequencies to obtain accurate measures of the factor loadings at lower frequencies. We follow

Andersen, Bollerslev, Diebold, and Wu (2006) and explicitly allow for continuous evolution of βit

over time. The theoretical background for this assumption is the theory of quadratic variation

and covariation. The following paragraphs provide an introduction to this theory and define the

realized covariance measure that we will use to estimate the dynamics of βit.

Let ∆ denote the sampling frequency and m = 1/∆ be the number of sample observations per

period t. We denote the intra-period continuously compounded returns from time t+h∆ to t+(h+

1)∆ by Rt+(h+1)∆ = pt+(h+1)∆−pt+h∆ with h = 0, . . . ,m−1 and m∆ = 1. The corresponding inter-

period return is defined as Rt+1 =
m−1∑
h=0

Rt+(h+1)∆. For our purposes, it is helpful to consider this

return process as a multidimensional process formed by the excess returns ret+1 on the N individual

risky assets and K factor returns ft. We can do this under the assumption that the common

pricing factors ft are returns on traded assets. Let Rt+1 = (re1,t+1, . . . , r
e
N,t+1, f1,t+1, . . . , fK,t+1);

under these conditions, the (N +K)× (N +K) realized covariance matrix at time t+ 1 is

Ω̂t+1 =
m−1∑
h=0

Rt+(h+1)∆R
>
t+(h+1)∆. (3.1)

This matrix is positive definite provided N + K < m. Moreover, this covariance measure can be

defined over l periods as

Ω̂
(l)
t+l =

l∑
j=1

Ω̂t+j .

The assumption of no-arbitrage in financial markets also entails a logarithmic (N+K)×1 price
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process, pτ , with τ ∈ [0, T ], that is in the class of semi-martingales. Then, it has the representation

pτ = p0 +Aτ +Mτ , (3.2)

where Aτ is a predictable drift component of finite variation, and Mτ is a local martingale, and

such that A0 = 0 and M0 = 0. A typical example of process within this class is a multivariate

continuous-time stochastic volatility diffusion process,

dpτ = µτdτ + ΩτdWτ , (3.3)

where Wτ denotes a standard N +K-dimensional Brownian motion, and both the process for the

(N+K)×(N+K) positive definite diffusion matrix, Ωτ , and the (N+K)-dimensional instantaneous

drift, µτ , are strictly stationary and jointly independent of the Wτ process. The cumulative return

process at time t + 1 associated to (3.3) is Rt+1 = pt+1 − pt. Then, for any partition Πm of the

interval [t, t+ 1] defined as Πm = {t = τ0 < τ1 < . . . < τm = t+ 1}, the quadratic covariation (QC)

of the return process from time t to t+ 1 is defined as

QCt+1 = plim||Πm||→0

M−1∑
h=0

Rτh+1
R>τh+1

as m→∞, (3.4)

with plim denoting the limit in probability, and ||Πm|| = max
h=0,...,m−1

(τh+1 − τh). This process

measures the realized sample path variation of the squared return process. For the process (3.3),

it follows that

QCt+1 =

∫ t+1

t
Ωτdτ,

with
∫ t+1
t Ωτdτ the integrated diffusion matrix at time t+ 1.

The main result derived and extended in Andersen, Bollerslev, Diebold, and Ebens (2001),

Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and Labys (2003)

and Barndorff-Nielsen and Shephard (2004), is that the realized covariance matrix converges in

probability to the quadratic variation measure as the sampling frequency m increases. Mathemat-
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ically,

Ω̂t+1
p→ QCt+1, as m→∞. (3.5)

It is important to note that the process QCt+1 is different from the conditional return covariance

matrix Covt[Rt+1, Rt+1]. Nevertheless, Andersen, Bollerslev, Diebold, and Labys (2001) show that

if the price process is square integrable and satisfies some further regularity conditions on the

predictable drift component Aτ in (3.2), it follows that Covt[Rt+1, Rt+1] = Et[QCt+1]. In our asset

pricing setting outlined above, we are interested in the submatrix of Covt[Rt+1, Rt+1] determined

by the upper-right block matrix of dimension N ×K. The elements of this matrix correspond to

the dynamic quantities Covt[r
e
i,t+1, fj,t+1] with i = 1, . . . , N and j = 1, . . . ,K, that are identified

above as the dynamic factor loadings βit. Hence, we have the identity βit = Et[QCur
i,t+1], with

QCur
i,t+1 denoting the upper-right block-matrix of QCt+1 with the quantities describing the quadratic

variation between excess returns and common factors. These vectors can be consistently estimated

by the vector Ω̂ur
i,t+1 = (ω(i,N+1),t+1, . . . , ω(i,N+K),t+1) obtained from realized estimators computed

with data at higher frequencies. Most importantly, note that for a grid sufficiently dense (m→∞),

expression (3.5) shows that we can assume for each time t that

βit = Et[Ω̂
ur
i,t+1]. (3.6)

This quantity is unobserved so we need to approximate it by a forecast of βit obtained from a

time series model. For simplicity, we propose the following autoregressive process for each element

ω(i,j),t+1 of the vector Ω̂ur
i,t+1 with i = 1, . . . , N and j = N + 1, . . . , N +K1

ω(i,j),t+1 = δij,0 + δij,1ω(i,j),t + vij,t+1, (3.7)

with ω(i,j),t+1 converging to the quadratic covariation between rei,t+1 and each of the pricing factors

1The autoregressive strategy in (3.7) can be improved by constructing estimators of the conditional covariance ma-
trix Covt[Rt+1, Rt+1] that preserve the symmetric positive definiteness property of covariance matrices, see Noureldin,
Shephard, and Sheppard (2012), Golosnoy, Gribisch, and Liesenfeld (2012) and Jin and Maheu (2013). To do this,

one has to assume that Ω̂t+1 conditional on the information available up to time t follows a N + K-dimensional
central Wishart distribution W (ν, St/ν) where ν > N +K − 1 denotes the degrees of freedom and St/ν is a positive
definite symmetric scale matrix of order N ×K. This assumption defines a conditional autoregressive Wishart model
such that Et[Ω̂t+1] = St.
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fj,t+1 for m → ∞. Furthermore, the autoregressive process implies that Et[ω(i,j),t+1] = δij,0 +

δij,1ω(i,j),t. By construction, see (3.6), Et[ω(i,j),t+1] = βij,t under the assumption that model (3.7)

provides a correct specification of the dynamics of each element of the vector Ω̂ur
i,t+1. In this context,

a consistent estimator of the time series βij,t is

β̂ij,t = Êt[ω(i,j),t+1] = δ̂ij,0 + δ̂ij,1ω(i,j),t, (3.8)

with (δ̂ij,0, δ̂ij,1) the OLS parameter estimators of the time series regression equation (3.7).

3.2 Second stage: Estimation of factor risk premia

The observable estimated factor loadings obtained from (3.7) allow us to obtain estimates of the

factor risk premia from time series regressions between the excess returns on the risky assets and

the estimated dynamic factor loadings. For ease of presentation, we reproduce the notation for the

relevant quantities. Let ηi = (αi, λ
>
i )> denote the model parameters for i = 1, . . . , N , X̂it = (1, β̂>it )

with β̂it defined in (3.8), and Xit = (1, β>it ) with βit = Et[QCur
i,t+1].

We propose the following time series regression equation that mimicks (2.10) for testing the

above hypotheses:

rei,t+1 = X̂itηi + νi,t+1, (3.9)

with

νi,t+1 = β∗>i g̃t+1 + εi,t+1

being the pricing error of the asset pricing equation. The regression model (3.9) exhibits cross-

correlation with the rest of asset pricing equations indexed by i = 1, . . . , N due to the presence of

observed and unobserved common factors in the pricing errors νi,t+1. We assume R factors that

will be treated as unobserved components and that will determine a factor model. The presence

of these factors generates cross-sectional dependence in the test statistic. The error term εi,t+1

satisfies Assumption C in Ando and Bai (2015), namely, E[εit] = 0, E[|εit|8] < C < ∞ for all i

and t, εit and εjs are independent for i 6= j and t 6= s. The error term is also independent of the

regressors X̂it, parameters ηi and factors g̃t.
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The quantities ηi, β
∗
i and g̃t+1, for i = 1, . . . , N and t = 1, . . . , T are estimated from the following

minimization problem:

l(ηi, β
∗
i , g̃t+1) =

N∑
i=1

T∑
t=1

(rei,t+1 − X̂itηi − β∗>i g̃t+1)2, (3.10)

subject to the normalization G>G
T = IR and β∗>β∗

N being diagonal, with G = (g̃1, . . . , g̃T )> a T ×R

matrix and β∗ = (β∗1 , . . . , β
∗
N )> a N × R matrix. For convenience of implementation, we adopt

the iterative principal component approach initially proposed by Bai (2009) and extended by Song

(2013). This approach decomposes the original estimation problem into two steps: the estimation

of the individual coefficients given common factors, and the estimation of the common factors given

individual coefficients. Following these authors, we maintain the assumption that the number of

factors, i.e., R, is known. The extension to an unknown number of factors under heterogeneous

regression coefficients is cumbersome (see Song (2013)) and beyond the scope of this paper.

Bai (2009) and Song (2013) propose a tractable solution to the estimation problem by concen-

trating out the factor loadings from the objective function (3.10). More specifically, these authors

assume that the factor loadings β∗i satisfy a relationship of the form β∗ = (G>G)−1G>(rei − X̂iη̂i),

with rei the T×1 vector representation of the excess returns in (3.9). Then, replacing this expression

into (3.10), the minimization problem is equivalent to

max
G

tr

[
G>

(
1

NT

N∑
i=1

(rei − X̂iη̂i)(r
e
i − X̂iη̂i)

>

)
G

]
(3.11)

subject to G>G
T = IR, with tr denoting the trace of the matrix. Therefore, the estimator ({η̂i}Ni=1, Ĝ)

with η̂i = (α̂i, λ̂
>
i )> should simultaneously solve a system of nonlinear equations

η̂i = (X̂>i MĜ
X̂i)
−1X̂>i MĜ

rei , (3.12)

and [
1

NT

N∑
i=1

(rei − X̂iη̂i)(r
e
i − X̂iη̂i)

>

]
Ĝ = ĜV̂NT , (3.13)

where V̂NT is a diagonal matrix of R largest eigenvalues corresponding to Ĝ, and M
Ĝ

= IR −
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Ĝ(Ĝ>Ĝ)−1Ĝ>. The actual estimation procedure can be implemented by iterating each of the

two steps in (3.12) and (3.13) until convergence. The unknown factor loadings are obtained as

β̂∗ = (Ĝ>Ĝ)−1Ĝ>(rei − X̂iη̂i).

The presence of generated regressors X̂it in (3.9) replacing Xit implies that the variance of

the vector of parameter estimators η̂· = (η̂1, . . . , η̂N )> needs to be corrected. In what follows, we

establish several asymptotic results when m and N,T go to infinity sequentially. The sequential

asymptotics is defined as m diverging to infinity first, and then N,T .2 For a detailed discussion

on sequential and simultaneous asymptotics for panel data, see Phillips and Moon (1999, 2000). In

particular, we adopt the following notation: (m,N, T )seq →∞ means that first m →∞ and then

(N,T )→∞.

We notice that the generated regressors in this paper have two layers of potential estimation er-

rors. First, as equation (3.1) shows, we compute the realized covariance matrix with high-frequency

data. Second, as shown in equation (3.7), we employ an autoregressive framework to model the

correlation in the elements of that variance. Therefore, the sequential asymptotics helps with the

first issue, since by assuming that m diverges first, we obtain consistent estimates for the realized

covariance, which are used in the autoregressive fitting, and only have to account for the estimation

error of the autoregressive model. We also notice that the sequential asymptotics assumption is

plausible in our application since we use daily data to estimate quarterly observations.3

First, we derive the variance of the statistic
√
T (η̂· − η·), with η· = (η1, . . . , ηN )> the true

parameters of the model, as this quantity plays a fundamental role for deriving the asset pricing

tests. Let S be a N(K + 1)×N(K + 1) block-diagonal matrix with elements Sii = [X>i MGXi]/T ,

and let L be a N(K + 1) × N(K + 1) matrix with elements Lij = aij(X
>
i MGXj)/T with aij =

(β∗i )>(G>G/N)−1β∗j . Also, let H be a block-diagonal matrix with elements Hi defined as T ×K

matrices with columns given by the vectors Zij

(
Z>ijZij

T

)−1
Z>ijvij√

T
for i = 1, . . . , N and j = 1, . . . ,K;

Zij = (1,QC(i,j)) with QC(i,j) the (i, j) element of the quadratic covariation matrix QCur defined

2In the definition of the simultaneous asymptotics, m, N and T tend to infinity at the same time.
3As noted by an anonymous referee we usually face a bias when using a plugging based on in-fill asymptotics, see

for instance Li and Xiu (2016). In our paper, by employing the sequential asymptotic framework we are able to use
the consistent estimates of the realized covariances into the autoregressive model, and hence, reduce the estimation
error from the first step to only the error produced by using forecasts of the autoregressive model (3.7) without having
to rely on a bias-corrected estimator for the second step.
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in (3.4) and containing the covariance between the excess returns ret and the factors ft.

Lemma 3.1. Under assumptions A-D and GR1-GR3 in the Online Appendix, the asymptotic

variance of the quantity
√
T (η̂· − η·) is

[(
S − 1

N
L>
)]−1

W

[(
S − 1

N
L

)]−1

, (3.14)

as (m,N, T )seq →∞, with W a N(K + 1)×N(K + 1) block-diagonal matrix given by

W = lim
T→∞

Var

[(
λ� MGX

T

)>
H

]
+ lim
T→∞

(
X>MGX

T

)
V ar(ε). (3.15)

The following lemma proposes a consistent estimator for the asymptotic variance of
√
T (η̂·−η·).

To do this, we need a set of assumptions to be satisfied by the vector of unobservable regressors βit

and the error term v of the regression equation (3.7). These high level assumptions can be found

before Theorem 2 in Pagan (1984). We also need some set of assumptions for the error term νit in

(3.9) limiting the amount of cross-sectional dependence on the pricing errors. These assumptions

can be found in Assumptions A to D in Song (2013).

Lemma 3.2. Under assumptions in Lemma 3.1 and assumptions E–F in the Online Appendix, a

consistent estimator of the variance of
√
T (η̂· − η·) is

[(
Ŝ − 1

N
L̂>
)]−1

Ŵ

[(
Ŝ − 1

N
L̂

)]−1

, (3.16)

where Ŝ be a N(K+1)×N(K+1) block-diagonal matrix with elements Ŝii = (X̂>i MĜ
X̂i)/T , L̂ be a

N(K+1)×N(K+1) matrix with elements L̂ij = âij(X̂
>
i MĜ

X̂j)/T and âij = (β̂∗i )>(Ĝ>Ĝ/N)−1β̂∗j ,

and Ŵ a block-diagonal matrix with elements

Ŵi =

(
λ̂i �

M
Ĝ
X̂i

T

)>
T−1diag

(
Ĥ>i Ĥi

)(
λ̂i �

M
Ĝ
X̂i

T

)
+

(
X̂>i MĜ

X̂i

T

)
σ̂2, (3.17)

with Ĥi defined as T × K matrices with columns given by the vectors Ẑij

(
Ẑ>ij Ẑij

T

)−1
Ẑ>ij v̂ij√

T
for

i = 1, . . . , N and j = 1, . . . ,K, where Ẑij = (1, ω(i,j)) with ω(i,j) the elements of the realized
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covariance matrix Ω̂ur defined in (3.1) and v̂ij are the residuals of the regression model (3.7). The

quantity σ̂2 is defined as σ̂2 = 1
NT−N(K+1)−(N+T )R

T∑
t=1

N∑
i=1

(rei,t+1 − X̂itη̂i − β̂∗>i ̂̃gt+1)2.

In order to complete the estimation of the model parameters, we introduce a panel data esti-

mator for the factor risk premia λ. In contrast to the above estimators of λ that are idiosyncratic

to each risky asset our panel data estimator is common across the N risky assets. More formally,

λ̂ =
1

N

N∑
i=1

λ̂i. (3.18)

This estimator is an average of the estimators of the factor risk premia obtained from each individual

asset pricing regression equation. Our strategy in the next section to test the null hypotheses Hα,λ
0 ,

Hα
0 and Hλ

0 is to compare the estimates η̂i obtained from each individual asset pricing regression

equation with the vector η̂ = (0, λ̂>)>.

3.3 Third Stage: Homogeneity Tests

Now we consider asset pricing tests with cross-sectional dependence. There are several testing

procedures for slope homogeneity available in the literature, see, for example, Pesaran, Smith,

and Im (1996), Phillips and Sul (2003), Pesaran and Yamagata (2008), Blomquist and Westerlund

(2013), Su and Chen (2013). Ando and Bai (2015) extend these tests by accommodating the

presence of cross-sectional correlation between the error terms of the different regression models

indexed by i = 1, . . . , N . However, to the best of our knowledge there is no available test of slope

homogeneity in panel data models that accounts for generated regressors. In the following, we

adapt existing tests, namely Pesaran and Yamagata (2008) and Ando and Bai (2015)’s test to our

asset pricing context characterized by the presence of estimated factor loadings. We also extend

these tests to be suitable for testing the null hypothesis Hα,λ
0 that includes testing for the statistical

significance of the intercept of the asset pricing models. We should note that the test in Pesaran

and Yamagata (2008) corresponds to exact asset pricing factor models and Ando and Bai (2015)

to approximate asset pricing factor models. We discuss first Ando and Bai (2015)’s test as this

is more relevant empirically due to the presence of cross-sectional correlation between the pricing
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errors.

We consider the following test statistic:

Γ̂α,λ =
T (η̂· − η̂ιN )>

(
Ŝ − 1

N L̂
>
)
Ŵ−1

(
Ŝ − 1

N L̂
)

(η̂· − η̂ιN )− [(N − 1)K +N ]√
2[(N − 1)K +N ]

, (3.19)

with ιN denoting a vector of ones of dimension N and (N − 1)K + N denoting the number of

restrictions under the null hypothesis Hα,λ
0 .

Proposition 3.1. Under the null hypothesis Hα,λ
0 , and assumptions in Lemma 3.1 and 3.2,

Γ̂α,λ
d→ N(0, 1),

as (m,N, T )seq →∞, with
√
T
N → 0.

The above method can be also used to test the joint null hypothesis Hα
0 : αi = 0 for i = 1, . . . , N .

In particular, we can apply the results in Lemma 3.2 to the intercept parameter estimator only. This

test statistic extends Gibbons, Ross, and Shanken (1989)’s Wald type test by considering the effect

of using estimated factor loadings on the variance-covariance matrices Wα and accommodating the

presence of cross-sectional dependence in the pricing errors. The corresponding test statistic is

Γ̂α =
T α̂>B̂αα̂−N√

2N
, (3.20)

with B̂α the submatrix of
(
Ŝ − 1

N L̂
>
)
Ŵ−1

(
Ŝ − 1

N L̂
)

only containing the intercept parameter

elements. Note that the joint null hypothesis Hα
0 entertains N restrictions.4 This test statistic will

be used in the empirical application as a valid Wald type test to assess the null hypothesis of no

intercept under the presence of generated regressors.

4Gagliardini et al. (2016) also develop a test that extends Gibbons, Ross, and Shanken (1989)’s Wald type test.
Their test accommodates estimated factor loadings within an approximate linear factor structure for large N and
T . Our approach differs from that in Gagliardini et al. (2016). We work on an unconditional linear factor model,
use high-frequency data to obtain consistent estimates of the factor loadings (assuming that m→∞), and our tests
do not only consider the hypothesis of null intercept but also consider the homogeneity of the slope parameters that
characterize the price of risk for the cross-section of risky assets.
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Proposition 3.2. Under the null hypothesis Hα
0 , and assumptions in Lemma 3.1 and 3.2,

Γ̂α
d→ N(0, 1),

as (m,N, T )seq →∞, with
√
T
N → 0.

As discussed earlier, we also consider tests for the null hypothesis Hλ
0 , that is, slope parameters

only. The corresponding test statistic is

Γ̂λ =
T (λ̂· − λ̂ιN )>B̂λ(λ̂· − λ̂ιN )> − (N − 1)K√

2(N − 1)K
, (3.21)

with B̂λ the submatrix of
(
Ŝ − 1

N L̂
>
)
Ŵ−1

(
Ŝ − 1

N L̂
)

only containing the slope parameter ele-

ments. Note that the joint null hypothesis Hλ
0 entertains (N − 1)K restrictions. This test statistic

will be used in the empirical application as a valid Wald type test to assess the null hypothesis of

slope homogeneity under the presence of generated regressors.

Proposition 3.3. Under the null hypothesis Hλ
0 , and assumptions in Lemma 3.1 and 3.2,

Γ̂λ
d→ N(0, 1),

as (m,N, T )seq →∞, with
√
T
N → 0.

Propositions 3.1, 3.2, and 3.3 formalize the limiting distributions of the asset pricing tests with

cross-sectional dependence. In the Online Appendix B we also consider the simpler case of asset

pricing tests without cross-sectional dependence. In this scenario we assume no cross-sectional

dependence among the pricing errors νit in (3.9). Although this is not possible in our model set-up

due to the presence of correlation in the pricing errors induced by the observed common factors

f̃t+1 in (2.10) or the set of observed and unobserved common factors g̃t+1 in (2.14), we present

for completeness the extension of the Swamy type tests derived in Pesaran and Yamagata (2008)

to entertaining generated regressors. In turn, these tests, together with the standard Swamy-type

tests, serve to illustrate the contribution of our tests for achieving correct size and power.

21



We study the finite sample performance of these tests with Monte Carlo simulations. The

results are provided in the Online Appendix C. The test results show that: (i) the tests are able

to separate heterogeneity arising from the intercepts (i.e., αi) and the slopes (i.e., λi); (ii) in

the presence of unobserved factors, Ando and Bai (2015) type tests are the only ones that have

correct empirical size; (iii) the presence of generated regressors requires a variance correction that

is achieved with our proposed test. We also note in this detailed simulation exercise that there are

no significant differences in the finite-sample properties of the tests for the null intercept hypothesis

between Ando and Bai (2015) and our correction for generated regressors. Nevertheless, there are

significant differences, however, with the Gibbons, Ross, and Shanken (1989) test that is oversized

when the factor loadings are estimated. Overall, our proposed tests, Γ̂α, Γ̂λ and Γ̂α,λ, have the

best performance in terms of correct empirical size and power for detection of departures from the

different null hypotheses.

4 Empirical Application

In this section we apply the asset pricing tests developed above to explain the excess returns on

47 U.S. industry portfolios maintained in Kenneth French’s data library spanning the period July

1963 to December 2014.5 The return on the risk-free asset is proxied by daily returns on the U.S.

three-month Treasury bill also available from this website. Our aim is to test the suitability of the

beta asset pricing model for different specifications of the pricing factors. The empirical strategy

for the practical implementation of the above tests is as follows.

First, for each individual industry portfolio we compute the realized covariance measures β̂it

proxying the dynamic quantities βit. These observed measures are unbiased estimators of the

actual unobserved conditional covariances between the excess returns on the risky portfolios and

the pricing factors. In a second stage, we regress the excess industry portfolio returns on the

5The dataset provided in Kenneth French’s website comprises the returns on 49 industry portfolios at daily
frequencies, however, reliable information at daily frequency is not available for the full sample period for Healthcare
(available from July 1969) and Computer Software (available from July 1965), hence, these industries are removed
from the empirical study. In a similar vein, Fama and French (2008) suggest to exclude from the empirical datasets
the firms (and thus the industry porfolios) with a Standard Industrial Classification Codes between 6000 and 6999
(banking, insurance, real estate and trading sectors).
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proxies β̂it and obtain the parameter estimates of the vector (αi, λi) for i = 1, . . . , N , and estimates

of the unobserved factors g̃t for a predetermined number of factors R. Using these estimates we

can compute the panel data estimator of the slope coefficients λ in (3.18) and the different test

statistics. In particular, we compute Γ̂α,λ, Γ̂α and Γ̂λ corresponding to the corrected version of

Ando and Bai (2015)’s test; Γ̂ABα,λ, Γ̂ABα and Γ̂ABλ are the uncorrected versions of the tests. Finally,

for comparison, we also compute the corrected versions (for generated regressors) of the Pesaran

and Yamagata (2008) tests denoted by Γ̃α,λ, Γ̃α and Γ̃λ, together with the uncorrected tests Γ̃PYα,λ ,

Γ̃PYα and Γ̃PYλ . Note that Γ̂α coincides with Γ̂ABα , and Γ̃α with Γ̃PYα , and thus only the former is

presented in each case. For the approximate factor models we present test results for R = 2, 5,

unobserved factors.

4.1 Models and Risk Factors

The asset pricing tests developed in this paper are applied to different asset pricing models proposed

in the literature for describing the cross-section of risky assets. We concentrate on models defined

by observable common factors given by financial returns on tradable portfolios. In particular, we

study the suitability of the CAPM proposed by Sharpe (1964), the Fama and French (1993) three-

factor model and the Fama and French (2015) five-factor model. Gagliardini, Ossola, and Scaillet

(2016) propose a four-factor model for testing their conditional approach to asset pricing. These

authors use a very similar evaluation period as well.

Our specifications comprise the CAPM one-factor model defined by the market excess return

MKT (i.e, K = 1); the three-factor model (3F) with pricing factors given by MKT, SMB, and

HML (i.e, K = 3); and the five-factor model (5F) defined by the pricing factors MKT, SMB, HML,

RMW and CMA (i.e, K = 5). In particular, MKT stands for a value-weighted average market

portfolio return; SMB denotes a small-minus-big portfolio constructed as the difference between

the returns on diversified portfolios of small and large asset size; HML is high-minus-low portfolio

constructed as the difference between the returns on diversified portfolios of high and small book-

to-market equity; RMW defines a robust-minus-weak profitability portfolio constructed as the

difference between the returns on diversified portfolios of stocks with robust and weak profitability.
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The factor CMA stands for a conservative-minus-aggressive portfolio constructed as the difference

between the returns on diversified portfolios of stocks of low (conservative) and high (aggressive)

investment firms. Details of the definition of the portfolio returns that determine the different

factors can be found in Fama and French (2015).6

Our testing regression equation is (3.9) that we reproduce here for convenience:

rei,t+1 = αi + β̂>itλi + νi,t+1,

νi,t+1 = β∗>i g̃t+1 + εi,t+1.

The pricing factors are standardized to have unit variance such that the estimates of the dynamic

factor loadings, β̂it, can be computed as the conditional covariances Covt(r
e
i,t+1, ft+1) using the

autoregressive model (3.7). The observed quantities ω(i,j),t used for (3.7) are constructed from

expression (3.1) with the vector Rt+1 comprised by the 47 daily industry returns ri,t+1 for i =

1, . . . , N = 47, and K common pricing factors given by the daily returns on the factor portfolios

introduced above. The risk-free return is proxied by the daily time series of the 3-month U.S.

Treasury bill. This analysis leads to a time series of quarterly realized dynamic betas obtained

from m = 22× 3 daily observations.

We study the suitability of the asset pricing models for quarterly returns evaluated over the

period July 1963 to December 2014, and then over blocks of twenty years of observations that cover

different turmoil periods in financial markets.

4.2 Tests Results

We first focus on tests for the null hypothesis Hα
0 : αi = 0 for all assets in the cross-section of

returns. This is the test usually implemented in the empirical asset pricing literature to assess

the correct specification of an asset pricing equation. This test can be implemented as a t-test for

time series asset pricing equations, see Fama and French (1993, 2015) type of models, or as a joint

F-test to assess the suitability of an asset pricing equation for the whole market. The latter is done

6A detailed explanation of the formation of the industry portfolios can be found at
http://mba.turc.dartmouth.edu/pages/faculty/ken.french.
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using Gibbons, Ross, and Shanken (1989) Wald type test. We extend these methods in two ways.

First, we correct the variance of the statistic due to the fact that we use generated regressors, and

second, we accommodate the presence of dependence between the pricing errors of the different

asset pricing equations.

Table 1 reports the value of the test statistics and corresponding p-values for the versions of the

tests that correct for the presence of generated regressors. In particular, we consider Γ̂α computed

for R = 2, 5, with R the number of unobserved factors, and Γ̃α that denotes the correction of

the test statistic by Pesaran and Yamagata (2008). In order to obtain a clear insight over the

performance of the asset pricing equations across different evaluation periods, we divide our sample

in a full period covering 1963− 2014, and four additional subsamples covering twenty years of data

each. The results for all tests and periods present overwhelming evidence rejecting the suitability

of any of the asset pricing factor models under study.

We extend this analysis to assess the slope homogeneity hypothesis. In this case our interest

is in the hypothesis Hλ
0 : λi = 0 for all assets in the cross-section of returns. Test statistics and

p-values are reported in Table 2. We also compute the uncorrected versions of the tests given in this

case by Γ̂ABλ and Γ̃PYλ . As for the previous test, the results show overwhelming evidence rejecting

the null hypothesis of slope homogeneity. These results suggest that the factor risk premia cannot

be considered to be the same across asset pricing equations. The effect of the generated regressors

on the tests can be observed in the differences in the value of the test statistics, nevertheless, in

most cases, the magnitude of the test statistics leads to clear rejections of the null hypothesis.

These results are robust to the sample period, choice of asset pricing model and the number of

unobserved factors R, with R = 2, 5.

[Insert Tables 1 - 3 about here]

To complete the analysis, we also evaluate the joint hypothesis test Hα,λ
0 in Table 3. The results

of the tests in this case offer more discussion. For the full sample period, we observe that whereas

Ando and Bai (2015)’s based tests do reject the null hypothesis, the tests based on the i.i.d. as-

sumption provide statistical evidence not to reject for the three asset pricing specifications. Similar

findings are observed for the period 1993 − 2014. This result suggests that careful consideration

25



about the possibility of cross-sectional dependence in the pricing errors is needed as the results are

in stark contrast. The overall results suggest the rejection of the joint null hypothesis across periods

and test statistics, however, it is worth noting that the corrected versions of Ando and Bai (2015)’s

test for both R = 2, 5 and the three asset pricing equations do not reject the null hypothesis of

correct specification of the asset pricing equation over the period 1973− 1993.

In summary, our empirical results for a cross-section of 47 industry portfolios excluding Health

and Computer Software sectors are similar to other recent empirical studies testing the validity of

empirical asset pricing models. Thus, Ang, Liu, and Schwarz (2017) using two-pass asset pricing

regression models reject the hypothesis that the cross-sectional risk premia are equal to the mean

factor portfolio returns using a dataset of portfolios. Our results are also similar to the empirical

findings in Gagliardini, Ossola, and Scaillet (2016) that reject the empirical validity of different

factor models to price the cross-section of industry portfolios using a novel test in a conditional

asset pricing setting, and also the standard Gibbons, Ross, and Shanken (1989) F-statistic. The

overall rejection of popular asset pricing factor models seems to be robust to the testing method,

evaluation period and specific choice of investment portfolios.

5 Conclusion

This paper shows that the correct specification of an asset pricing equation not only involves a

zero intercept but also homogeneity of the slope coefficients that characterize the factor risk premia

associated to the common pricing factors. The latter condition is very important as the rejection

of the null hypothesis due to heterogeneity on the factor risk premia raises concerns about the

existence of a common set of pricing factors, and more importantly, about the possibility of arbitrage

opportunities. To overcome this, we have developed novel statistical tests based on Swamy type

tests for exact and approximate linear factor models for asset pricing. In particular, we proposed

versions of Ando and Bai (2015) and Pesaran and Yamagata (2008) tests that accommodate the

presence of generated regressors. These generated regressors arise in our model setup due to the

choice of dynamic factor loadings in the different asset pricing specifications that are estimated

by high-frequency realized covariance measures. Our methodology can be also interpreted as an
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extension of the popular Gibbons, Ross, and Shanken (1989) Wald type test to correct for the

presence of generated regressors in two-pass regression models, see for example Fama and MacBeth

(1973) type of framework.

An empirical application to the cross-section of U.S. industry portfolios rejects the validity of

different linear factor models such as the CAPM and Fama and French (1993, 2015) three- and

five-factor models. These results are robust to the evaluation period and choice of test statistic.

These empirical findings are in line with recent literature, see Gagliardini, Ossola, and Scaillet

(2016), that rejects a four-factor model using a conditional asset pricing factor approach.
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Table 2: Empirical application. Tests for slopes

K Γ̂λ(R = 2) Γ̂ABλ (R = 2) Γ̂λ(R = 5) Γ̂ABλ (R = 5) Γ̃λ Γ̃PYλ
Full sample 1963-2014

1 Stat. 32.577 33.773 20.563 22.004 5.754 5.927
p-val. (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

3 Stat. 31.402 35.516 18.916 21.698 3.472 4.180
p-val. (0.000) (0.000) (0.000) (0.000) (0.007) (0.000)

5 Stat. 21.352 26.473 26.988 31.236 5.503 6.922
p-val. (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

1963-1983

1 Stat. 134.705 137.401 334.660 339.822 28.711 29.196
p-val. (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

3 Stat. 140.738 144.236 261.319 265.673 19.753 20.727
p-val. (0.000) (0.000) (0.000) (0.000) (0.007) (0.000)

5 Stat. 89.994 95.712 276.311 282.667 45.942 50.770
p-val. (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

1973-1993

1 Stat. 16.004 16.149 59.233 59.5469 2.594 2.614
p-val. (0.000) (0.000) (0.000) (0.000) (0.005) (0.004)

3 Stat. 126.750 130.951 76.760 79.637 8.780 11.215
p-val. (0.000) (0.000) (0.000) (0.000) (0.007) (0.000)

5 Stat. 178.459 184.742 186.177 189.971 13.763 16.959
p-val. (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

1983-2003

1 Stat. 104.466 108.082 33.775 34.27969 20.960 21.398
p-val. (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

3 Stat. 122.206 128.296 41.991 45.610 25.059 27.970
p-val. (0.000) (0.000) (0.000) (0.000) (0.007) (0.000)

5 Stat. 91.953 98.901 59.942 66.454 28.602 32.103
p-val. (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

1993-2014

1 Stat. 12.369 12.934 13.246 13.872 5.176 5.508
p-val. (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

3 Stat. 38.251 47.042 27.000 30.540 8.941 10.413
p-val. (0.000) (0.000) (0.000) (0.000) (0.007) (0.000)

5 Stat. 23.770 1.271 16.886 21.839 2.185 3.950
p-val. (0.000) (0.000) (0.000) (0.000) (0.014) (0.000)
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Table 3: Empirical application. Tests for intercepts and slopes

K Γ̂α,λ(R = 2) Γ̂ABα,λ(R = 2) Γ̂α,λ(R = 5) Γ̂ABα,λ(R = 5) Γ̃α,λ Γ̃PYα,λ
Full sample 1963-2014

1 Stat. 8.778 9.619 2.338 3.352 -2.372 -2.251
p-val. (0.000) (0.000) (0.010) (0.000) (0.991) (0.988)

3 Stat. 5.468 9.021 2.583 4.986 -3.167 -2.555
p-val. (0.000) (0.000) (0.005) (0.000) (0.992) (0.947)

5 Stat. 4.798 9.465 5.988 9.859 0.356 1.649
p-val. (0.000) (0.000) (0.000) (0.000) (0.308) (0.050)

1963-1983

1 Stat. 1.288 3.184 7.585 11.216 70.813 71.154
p-val. (0.099) (0.001) (0.000) (0.000) (0.000) (0.000)

3 Stat. -0.564 2.458 3.847 7.607 83.237 84.079
p-val. (0.714) (0.007) (0.000) (0.000) (0.000) (0.000)

5 Stat. -1.031 4.179 5.957 11.748 44.387 48.786
p-val. (0.849) (0.000) (0.000) (0.000) (0.000) (0.000)

1973-1993

1 Stat. 0.592 0.694 2.397 2.618 -3.492 -3.478
p-val. (0.277) (0.244) (0.008) (0.004) (1.000) (1.000)

3 Stat. -1.458 2.170 -1.258 1.228 -2.109 -0.006
p-val. (0.928) (0.015) (0.896) (0.110) (0.983) (0.503)

5 Stat. -1.255 4.470 -1.631 1.826 8.572 11.484
p-val. (0.895) (0.000) (0.949) (0.034) (0.000) (0.000)

1983-2003

1 Stat. -0.310 2.233 -0.308 0.047 11.771 12.080
p-val. (0.622) (0.013) (0.621) (0.481) (0.000) (0.000)

3 Stat. 2.314 7.575 -3.236 -0.110 17.622 20.136
p-val. (0.010) (0.000) (0.999) (0.544) (0.007) (0.000)

5 Stat. 2.434 8.765 -3.958 1.976 35.406 38.596
p-val. (0.007) (0.000) (1.000) (0.024) (0.000) (0.000)

1993-2014

1 Stat. 3.644 4.041 -1.660 -1.220 -2.328 -2.094
p-val. (0.000) (0.000) (0.952) (0.889) (0.990) (0.982)

3 Stat. 5.962 13.555 0.517 2.712 -0.118 1.153
p-val. (0.000) (0.000) (0.303) (0.003) (0.547) (0.124)

5 Stat. 5.524 12.358 2.536 7.049 -3.079 -1.472
p-val. (0.000) (0.000) (0.006) (0.000) (0.999) (0.929)
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