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SUMMARY 

In modern physics, the investigation of the interaction between light and matter is 

important from both a fundamental and an applied point of view. Cavity quantum 

electrodynamics (cavity QED) is the study of the interaction between light confined 

in a reflective cavity and atoms or other particles where the quantum nature of light 

photons is significant. The strong interaction between an exciton and cavity photon 

in a high-finesse microcavity can induce a hybrid light-matter eigenstate which is 

usually named as polariton in solid-state systems. This strong light-matter interaction 

can be achieved when this interaction is larger than all broadenings caused by other 

various factors e.g. electron phonon scattering and cavity loss. The polariton is now 

stimulating tremendous research interests due to its high potential in cavity quantum 

electrodynamics (QED) and the achievement of polaritonic devices. Moreover, when 

the interaction strength between an excitation and the cavity photon, quantified by 

vacuum Rabi frequency, becomes comparable to or larger than the corresponding 

electronic transition frequency in a cavity, the system can enter an ultrastrong 

coupling regime, which has been experimentally observed. In this regime, the 

standard rotating-wave approximation is no longer valid and the antiresonant term of 

the interaction Hamiltonian starts to play an important role, giving rise to exciting 

effects in cavity QED. 

The Aharonov-Bohm (AB) effect is a fundamental quantum phenomenon that bears 

the significance of the nature of electromagnetic fields and potentials. Besides its 

fundamental significance in quantum theory, its importance for applications in 

interferometric devices is omnipresent. Recently, since the 2D materials have 

triggered immense interest, some work has been done to integrate the AB effect with 

the electronic and transport properties of 2D materials.  

This thesis consists of two parts. In the first part, the light-matter coupling between 

cyclotron transition and photon is theoretically investigated in some 2-D materials 

such as the monolayer MoS2, graphene and monolayer black phosphorene (BP) 

systems. The results show that, in these 2-D materials, the ultrastrong light-matter 

coupling can be achieved at a high filling factor of Landau levels. Furthermore, we 

show that, in contrast to the case for conventional semiconductor resonators, the 

MoS2 system shows a vacuum instability. In monolayer MoS2 resonator, the 

http://en.wikipedia.org/wiki/Quantum_electrodynamics
http://en.wikipedia.org/wiki/Quantum_electrodynamics
http://en.wikipedia.org/wiki/Photon
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diamagnetic term can still play an important role in determining magnetopolariton 

dispersion which is different from monolayer graphene system. The diamagnetic term 

arises from electron-hole asymmetry which indicates that electron-hole asymmetry 

can influence the quantum phase transition. Meanwhile, we show that, similar with 

some other 2D materials such as graphene and MoS2, the monolayer BP system 

shows a vacuum instability. However, in contrast with other 2D materials, the BP 

system displays a large energy gap between three branches of polaritons because of 

its strong anisotropic behavior in the eigenstates of the band structures. For the 

graphene system, we investigate the coupling of cyclotron transition and a multimode 

cavity described by a multimode Dicke model. This model exhibits a superradiant 

quantum phase transition, which we describe exactly in an effective Hamiltonian 

approach. The complete excitation spectrum in both the normal phase and 

superradiant phase regimes is given. At last, in contrast to the single mode case, 

multimode coupling of cavity photon and cyclotron transition can greatly reduce the 

critical vacuum Rabi frequency required for quantum phase transition, and 

dramatically enhance the superradiant emission by fast modulating the Hamiltonian. 

Our study provides new insights in cavity-controlled magneto-transport in these 2-D 

systems, which could lead to the development of polariton-based devices.  

The second part is a diversion from the main content of this thesis; readers who are 

not interested in foundational issues of physics can skip this part. For one charged 

quantum particle P moving in an electromagnetic vector potential ˆ ˆ ˆ( , )A  A  

created by some other charged particles, we can either use the framework of one 

particle quantum mechanics (OPQM) to calculate the evolutions of P, or we can treat 

this as an multi-particles problem in the framework of quantum field theory and 

calculate the evolution of P. These two methods need to be equavalent, i.e., they 

produce the same result for the evolution of P. One open question is how to describe 

the evolution of P within the framework of quantum field theory and show that these 

two methods yield the same result? In chapter 5, we are going to derive the OPQM 

from the quantum field theory, i.e., the quantum electrodynamics (QED) to be 

specific. We start with the discussions on the AB effect then raise a plausible 

interpretation within the QED framework. We provide a quantum treatment of the 

source of the electromagnetic potential and argue that the underlying mechanism in 
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AB effect can be viewed as interactions between electrons described by QED theory 

where the interactions are mediated by virtual photons. On further analysis, we show 

that the framework of one particle quantum mechanics (OPQM) can be given, in 

general, as a mathematically approximated model which is reformulated from QED 

theory while the AB effect scheme provides a platform for our derivations. In addition, 

the classical Maxwell equations are derived from QED scattering process while both 

classical electromagnetic fields and potentials serve as mathematical tools that are 

constructed to approximate the interactions among elementary particles described by 

QED physics. This work opens up a new perspective on the nature of electromagnetic 

fields and potentials. 

 

 

Thesis Supervisors: Wang Qijie (Nanyang Associate Professor) and  
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1. INTRODUCTION  

Cavity QED is to study the light-matter interaction in a reflective cavity where the 

quantum nature of light photons in the cavity is significant. Excitons are defined as 

the bond states between electrons and holes which are attacted to each other by 

the Coulomb force, they can be treated as quasiparticles that exist in solids and liquids. 

The strong interaction between an exciton and cavity photon in a high-finesse 

microcavity can induce a hybrid light-matter eigenstate which is usually named as 

polariton in solid-state systems [1]. This strong light-matter interaction can be 

achieved when this interaction is larger than all broadenings caused by other various 

factors e.g. electron phonon scattering and cavity loss. The polariton is now 

stimulating tremendous research interests due to its high potential in cavity quantum 

electrodynamics (QED) [2] and the achievement of polaritonic devices [3]–[5]. 

Moreover, when the interaction strength between an excitation and the cavity photon, 

quantified by vacuum Rabi frequency, becomes comparable to or larger than the 

corresponding electronic transition frequency in a cavity, the system can enter an 

ultrastrong coupling regime, which has been experimentally observed [6]. In this 

regime, the standard rotating-wave approximation is no longer valid and the 

antiresonant term of the interaction Hamiltonian starts to play an important role, 

giving rise to exciting effects in cavity QED [7], [8]. For the light-matter radiation, if 

the atoms were radiating coherently, the atomic ensemble spontaneously emits with 

an intensity proportional to the square of the number of the atoms, this gives the 

concept of super-radiance [9]. 

In this chapter, the background of the superradiant phase transition of Dicke model 

of single-mode will be introduced in the beginning, followed by a review of the 

theoretical work on multi-mode Dicke model with the emphasis of its difference and 

significance compared with the single-mode case. Meanwhile, the ultrastrong light-

matter coupling for 2D electron gas in semiconductor quantum wells is discussed, we 

also show the superradiant quantum phase transition in cavity-graphene system 

despite the absence of superradiant phase transition in normal semiconductors. At last, 

we briefly highlight some motivations behind our work. 

https://en.wikipedia.org/wiki/Coulomb%27s_law
https://en.wikipedia.org/wiki/Quasiparticle
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1.1 Superradiant Phase Transiton of Single-Mode Dicke Model  

In this paragraph, we give a brief review of the theoretical formulation of the 

superradiant phase transition of single-mode Dicke model based on Ref. [9]–[11].  

Indeed, the Dicke model allows us to investigate the superradiant phase of the system, 

a macroscopically excited and highly collective state that possesses the potential to 

super-radiant [12]–[20]. 

The single-mode Dicke Hamiltonian (DH) describes a collection of N  two-level 

atoms interacting with a single bosonic mode via a dipole interaction; it was further 

shown to admit a second-order quantum phase transition at certain coupling strength 

c  in the N   limit [8]. The single-mode DH in terms of collective operators 

reads as 

† †

0 ( )( )z

H
J a a a a J J

N
   


                                      (1-1) 

where J , J  and zJ  are the anguler momentum operators, 0  is the energy gap 

between the two energy levels of an atom.   is the frequency of the bosonic mode 

and    is the coupling strength between the atoms with the bosonic mode. In order 

to show that the single-mode DH undergo a quantum phase transition at a critical 

value at 0 / 2c   , we need to apply the Holstein-Primakoff [21] representation 

of the angular-momentum operators in the following way 

† † †,J b N b b J N b bb                                            (1-2)   

And 
† / 2zJ b b N   where Bosonic operators obey the commutation relation 

†[ , ] 1b b  . Substituting Eq. (1-2) into Eq. (1-1), we get the Dicke Hamiltonian written 

in bosonic operators as 

† †
† † † †

0 ( )( 1 1 )
H b b b b

b b a a a a b b
N N

                            (1-3)   

In normal phase where 
†

0
b b

N
 , we get the effective Hamiltonian as 
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† † † †

0 ( )( )
H

b b a a a a b b                                            (1-4)   

Upon diagonalization of the above Hamiltonian, we get the eigen-frequencies as 

2 2 2 2 2 2

0 0 0

1
{ ( ) 16 }

2
E                                          (1-5) 

Now we can see that E  is real only when 0 / 2 c    , therefore, the Eq. (1-

5) remains valid  under condition c   , i.e., in normal phase. 

    For the system passing the critical point c   , both the atomic ensemble and the 

optical field can acquire macroscopic occupations. In order to describe this scenario, 

i.e., the superradiant phase, we can define new Holstein-Primakoff representation of 

the angular-momentum operators as 

† † † †,a a b b                                                   (1-6)  

Now we can substitute Eq. (1-6) into Eq. (1-3), in order to eliminate the terms that 

are linear in the bosonic operators, we get the solutions 

2 2 2 2

2 2

( ) ( )
,

2

c cN N
 



   
 


                                          (1-7) 

Therefore, the new effective Hamiltonian can be given as 

2 2 2 2 2 2
† † † 20 0

2 2 2 2

2 † †

2 2

( ) ( )(3 )
( )

2 8 ( )

2
( )( )

c c c

c c c

c

c

H
a a b b b b

a a b b

 


     
   

   

  
 

               (1-8)  

Upon diagonalization of this new Hamiltonian, we get the eigen-frequencies in 

superradiant phase as 

2 4 2 4
2 2 2 2 20 0

04 4

1
( ) 4

2
[ ]

c c

E
 

   

 
    

 
                           (1-9) 
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From Eq. (1-9), we see that E  is real provided that c   , therefore, Eq. (1-9) 

indeed describes the system in the superradiant phase, Eq. (1-5) and Eq. (1-9) 

altogether indeed describe the complete spectrum of the single-mode Dicke model. 

1.2 Superradiant Phase Transiton of Multi-Mode Dicke Model  

In this section, we are going to briefly review a more general Dicke model in which 

the two-level atomic transition system is coupled to an arbitrary set of optical modes 

with arbitrary coupling constants. This is motived by the fact that it is rather a tough 

problem in many circumstances to create an environment with a single optical mode. 

Following the Ref. [22], similar as Eq. (1-3), the Hamiltonian of the multi-mode 

Dicke model can be given as 

† † † † † †

0 ( )( )i
i i i i i

i i

H
a a b b a a b N b b N b bb

N
 


                    (1-10) 

In which 
i  represents the coupling strength between the atomic system with the 

optical i -th mode with 1,2, ,Mi  . In normal phase which is similar as Eq. (1-4), 

we get the Hamiltonian as 

† † † †

0 ( )( )i i i i i i

i i

H
a a b b a a b b                                 (1-11)  

This Hamiltonian is quadratic and can be brought into the diagonal form by the 

Bogolubov transformation [23] by introducing a new set of Bosonic operators as 

†( )k kj j kj j

j

c A a A a                                              (1-12) 

with 0ja b   and j i ia a  . Upon diagonalization of the Hamiltonian using new 

defined operators, we can get the eigen-energies E  of Eq. (1-11) that satisfy the 

below equation 

2M
2 2

0 02 2
1

4 0i i

i i

E
E


 




  


                                     (1-13) 

From the above expression, we can see that the eigen-energy E  is real only when

2

0/ / 4i ii
   , this critical value defines the quantum phase transition point, 
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separating normal and superradiant phases. Passing the critical point

2

0/ / 4i ii
   , the system enters the super-radiant phase, which we will show 

below. 

    To get the effective Hamiltonian passing the critical point we displace all the 

bosonic modes in Eq. (1-10) by i i ia a   and b b  where   and   are 

some complex constants and eliminate the terms in Eq. (1-10) that are linear in the 

Bosonic operators by choosing (1 )
2

N
    and 

2

2

4 ( ) i
i

i

N

N

 




 
  where 

0

24 /i ii








. The effective Hamiltonian beyond the phase transition point 

becomes 

2 2SR
0

† † † † †( )( ) ( )i i i i i i

i i

H
a a b b a a b b f b b const            

(1-14) 

where 
2

0
0

( 6 3)

4 ( 1)

  


 

  



 , 

2

1
i i


  


 and 

2

0 ( 3 2 1)

8 ( 1)
f

  

 

  



.  

Then the excitation spectrum E  passing the critical point can be given by solving the 

below equation 

2
2 2 2

0 02 2
4( 2 ) 4i i

i i

f f E
E


 




   


                                    (1-15) 

Therefore, Eq. (1-13) and Eq. (1-15) altogether give the complete spectrum of the 

multi-mode Dicke model for both normal phase and superradiant phase, from the 

spectrum of multi-mode Dicke model, we will see that the superradiant phase 

transition can be achieved with smaller value of Rabi frequencies compared with the 

single-mode case, this point will be more clearly illustrated in chapter 4.  

1.3 Polariton and Ultrstrong Light-Matter Coupling For 2D Electron Gas  

In the previous paragraph, we briefly reviewed the superradiant phase transition of 

the Dicke model, both in single-mode and multi-mode cases. However, a more 
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realistic model should include the quadratic field term 
2A ( A  is the vector potential 

of the electromagnetic field) which was absent in Dicke Hamiltonian that were 

introduced in chapters 1.1, 1.2. Meanwhile, some researchers showed that there is a 

no-go theorem which states the quantum critical point, which separate the normal 

phase and superradiant phase, disappears in presence of the 
2A  term as a consequence 

of the TRK sum rule for the oscillator strength [24]. In addition, some combined 

systems, such as cyclotron transition of two-dimensional electron gas coupled with a 

cavity resonator or semiconductor intersubband transition coupled with a microcavity 

photon mode, were shown to present large diamagnetic term (
2A  term ) which again 

prevent quantum instability from happening [7], [25]. 

    In the work published in year 2010 [21], researchers investigated the coupling of 

the magnetic cyclotron transition of the 2D electron gas to optical modes in a cavity 

resonator. They consider a system consisting of multiple doped semiconductor 

quantum wells (QWs) in presence of a magnetic field B that is perpendicular to the 

QW plane. The QWs are embedded in a wire-like cavity resonator in presence of a 

magnetic field, the electrons occupy highly degenerate Landau levels (LLs), 

separated by the cyclotron energy 
0  where 0

eB

m c



   and m  is the effective 

electron mass of the 2D electron gas. For the case of an integer filling factor v , the 

electrons fill completely the LLs from 0n   to 1n v  , therefore, only transitions 

between the level 1n v   and n v  need to be considered due to the Pauli blocking 

and harmonic oscillator selection rules. In this light-matter coupled system, the 

Hamiltonian consists of four parts, that is 

intL dia cH H H H H                                               (1-16) 

where 
†

0 x x

x

L q q

q

H b b  represents the Landau level Hamiltonian and 
†

xqb is the 

creation operators associated to the cyclotron transition between the Landau level 

1n v   and n v , xq  is the wave vector of the cavity mode in x  direction. The 

second term in Eq. (1-16) represents the light-matter coupling Hamiltonian which can 

be given as 
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† † †

int [ ( ) ( )]
x x x x x x x

x

q q q q q q q

q

H i a b b a b b                                 (1-17) 

where 
†

xqa  represents creation operator of the optical modes with wave-vector 
xq  and 

xq is the Rabi coupling frequency. The third term diaH  comes from the squared 

vector potential 2

emA  of the optical modes in the cavity, it can be given as 

† † † †[ ]
x x x x x x x x x

x

dia q q q q q q q q q

q

H D a a a a a a a a                             (1-18) 

in which 
2

0/
x xq qD    is the diamagnetic coupling strength. The last term cH  is the 

Hamiltonian for the optical modes in the cavity can be given as 

†

x x x

x

c q q q

q

H a a                                                (1-19) 

Since the overall Hamiltonian is quadratic in terms of 
xqa  and 

xqb  operators, 

therefore, it can be diagonalized by introducing the magneto-polariton operators 
( )

x

i

qp  

defined as 

( ) ( ) ( ) ( ) † ( ) †

x x x x x x x x x

i i i i i

q q q q q q q q qp W a X b Y a Z b                                    (1-20) 

where the index i  indicate the polariton branches. The magneto-polariton operators 

also satisfy the Bose commutation relation as 
( ) †( )

, ,[ , ]
x x x x

i j

q q i j q qp p    . Therefore, by 

using Eq. (1-20), the Hamiltonian of Eq. (1-16) can be written in a form as 

( ) †( ) ( )

,

.
x x x

x

i i i

q q q

i q

H p p const                                             (1-21) 

By calculating the commutation relation 
( ) ( ) ( )[ , ]

x x x

i i i

q q qp H p , we can get 

( ) ( ) ( )

x x x x

i i i

q q q qv v   in which 
( )

x

i

qv  is the vector 
( ) ( ) ( ) ( ) T( , , , )
x x x x

i i i i

q q q qW X Y Z  and 
xq is the 

matrix given as 
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0

0

2 2

0

2 2

0

x x x x x

x x

x

x x x x x

x x

q q q q q

q q

q

q q q q q

q q

D i D i

i i

D i D i

i i









    
 

   
       

 
     

                             (1-22) 

Upon diagonalization of this matrix, the eigenvalues as the magneto-polariton 

frequencies can be obtained. Note that the no-go theorem indicates that for a system 

with 
2

0/
x xq qD    (note that 

xqD  comes from the quadratic field term 
2A ), the 

eigenvalue of 
xq never vanishes, therefore, in such cases, the superradiant quantum 

phase transitions for the vacuum have been prohibited.  

1.4  Polariton and Superradiant Phase Transition of Graphene in a Cavity 

          The discovery of graphene has attracted a great deal of investigations into two 

dimensional (2D) materials due to a wide range of extraordinary electrical, optical, 

mechanical and thermal properties [26]. In the previous chapter, we discussed that in 

some doped semiconductor QWs the superradiant phase transition does not occur due 

to the no-go theorem. One intriguing question is whether it is possible to achieve the 

quantum phase transition in some 2D materials.  

Recently, it has been predicted that graphene can enter the ultrastrong light-matter 

coupling regime under perpendicular magnetic field due to the negligible diamagnetic 

term 
xqD  in Eq. (1-22) [27], [28]. In particular, a vacuum instability (phase transition) 

analogous to the one occurring in the Dicke model can also occur for graphene in this 

ultrastrong coupling regime, which is absent in the case of massive electrons in 

semiconductors. In this chapter, we are going to briefly review the graphene quantum 

phase transition following the Ref. [27]. 

In the work of Ref. [27], researchers theoretically investigate the magnetopolariton 

in bilayer graphene under a perpendicular magnetic field using the quantum field 

theory. When the trigonal warping is neglected, the low energy effective Hamiltonian 

in K  valley can be given as 

† 2 †

2 †

1

1 00 ( ) 01 1

0 12 2 20 0

p p pU U
H

m mp pp

    
       

     
                (1-23) 
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where x yp p ip  . The effective mass is 2

1 / 2m v  where 1  is the interlayer 

hopping amplitude and v  is the single-layer Dirac velocity. The parameter U  

describes the asymmetry between the top and bottom layers. The cavity geometry that 

is considered has a dimension with a volume 2

zV L L , the graphene sheet is placed 

at the center of the cavity perpendicular to the z direction while the magnetic field is 

applied perpendicular to the graphene layer, as shown in Fig. 1-1 (more information 

can be seen in Appendix A). When the magnetic field is applied, the electrons occupy 

highly degenerate LLs, the Landau level spectrum can be solved by replacing the 

wave-vector p  in Eq. (1-23) with 0 0

e

c
 = p + A   where 

0 ( ,0,0)A By   is the 

vector potential in Landau gauge. The cavity length zL  along the z direction is much 

smaller than the other two transverse size L . 

 

Fig. 1-1 Sketch of a cavity resonator embedding a bilayer graphene. A uniform and static magnetic 

field B  is applied perpendicular to the graphene layer. (This figure is from Ref. [27]) 

With the considered cavity above, a cavity mode with the wave vector 

2 2 2
( , , ) ( , , )x y z

z

q q q
L L L

  
q =  is quasi-resonant with the active cyclotron transition. 

For this considered cavity mode, the electromagnetic vector potential can be given as 

2
†

1,2

2
( ) ( )

c

em

c
r a a

V
 







  ηuA                   (1-24) 
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where a  is the annihilation operator for a given photon mode 1,2  ,  is the cavity 

dielectric constant for bilayer graphene. The cavity frequency 

2[ / ( )] 1 8( / )c z zc L L L     and the modes spatial profile ηu  can be written as  

1

2 (2 / ) (2 / ) ( )

2 (2 / ) (2 / ) ( )

0

cos x L sin y L cos

u sin x L cos y L cos

  

  

 
 

  
 
 

                (1-25) 

2

2 (2 / ) (2 / )

2 (2 / ) (2 / )

0

cos x L sin y L

u sin x L cos y L

 

 

 
 

  
 
 

                                   (1-26) 

where 2( ) 1/ 1 8( / )zcos L L   . The light-matter interaction can be described by 

the minimal coupling 0 0 em

e

c
   A . Therefore, the bosonic mode annihilation 

operators between Landau level transitions 1n n   can be given as 

2
†

1 1, 2
,

,

2
†

2 1, 2
,

,

21
sin[ ( ) ]

4

21
cos[ ( ) ]

4

B
v k

v k
kB L

B
v k

v k
kB L

l
d k c c

n L L

l
d k c c

n L L





  

  











 

 





                         (1-27) 

where 
2

2

2
B

B

L
n

l
  is the Landau level degeneracy and B

c
l

eB
  is defined as the 

magnetic length. Starting from the bosonic mode operators, the bosonlized 

Hamiltonian for Eq. (1-23) can be given as three parts, which is 

† 2

1

† † †

,2

[ ( )( )( ) ]egH d d d d D a aa a      


  


                     (1-28) 

in which the third term that comes from the 2 ( )em rA  in Eq. (1-24) is called the 

diamagnetic term. Indeed, for bilayer graphene in the cavity, we have 

2

2

2

/
1

eg

D


 , 

therefore, the no-go theorem in Chapter 1.3 no longer applies in this case and we can 

neglect the third term in Eq. (1-28). While the Coulomb Hamiltonian can be given as 
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2†( )Coul cV d dH    


                                      (1-29) 

Adding Eq. (1-28) and Eq. (1-29) together, then we can diagonalize the total 

Hamiltonian by introducing the polariton operators as 

† †

2

†

1 1 2j j j j j j jp X a Y Z b Xa a Y a Z b      , therefore, the total Hamiltonian in 

polariton basis can be written as 

†

1,2

.Coul j j j

j

constH H p p


                      (1-30) 

Here j  indicates branches of polaritons and we have the commutation relation 

†

,
[ , ]j j j j
p p    . By calculating the commutation relation [ , ]j j jp H p , the 

polariton frequency j  can be obtained eventually given as Fig. 1-2 

 

Fig. 1-2 Normalized frequencies of branches of magnetopolaritons as a function of doping density  . 

The critical density that separates the normal phase and superradiant phase is 
11 28.8 10c cm   . 

(This figure is from Ref. [27]) 

Since the transition frequency eg  and the vacuum Rabi frequency   in Eq. (1-28) 

all depend on the doping density, the spectrums of different branches of 

magnetopolaritons in normal phase, which are shown as red and blue curves in Fig. 

1-2, can be plotted as a function of doping density  . The critical point that separates 
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the normal phase and superradiant phase is 11 28.8 10c cm    passing which the 

system will enter the superradiant phase. 

1.5  Polarition, Superradiant phase transition and their applications  

In this chapter, we are going to discuss some of the potential applications based on 

polaritons and superradiant phase transitions. As we discussed in previous chapters, 

if graphene or other semiconductor is enclosed within an optical cavity, the cyclotron 

transiton-photon interaction can give rise to some new sets of states, whose dispersion 

are given by polaritons. These resulting microcavity polaritons possess number of 

additional remarkable fascinating effects which have been observed in semiconductor 

polariton micro-cavities, such as superfluidity [29], [30], long-range spatial 

coherence [31]–[33] and many others [34]. Like traditional quantum optics, quantum 

polaritonics could have potential applications in cryptography, computation and 

simulation [35]. In previous chapters, we also showed that for increasing light-matter 

coupling strength, the Dicke model predicts a Superradiant phase transition, with a 

doubly degenerate ground state above a critical vacuum Rabi coupling. This so-called 

Superradiant phase is characterized by a spontaneous polarization of the atoms and a 

spontaneous coherence of the cavity optical field. The experimental realization of 

quantum phase transition from normal phase to superradiant phase is a mile-stone in 

this field [36], [37]. In a superradiant emission regime, the formation of a 

macroscopically ordered state shows  that it is a different class of emission from 

conventional spontaneous or stimulated emission, which could lead to ultra-

superluminal pulse propagations [38] and have potential applications in quantum 

information processing and quantum computings [39].  

1.6  Summary and Motivation  

In the above investigations of the magnetopolaritons in cavity, the effect of the 

electronic level broadening due to impurities is neglected. Normally the decay of 

Landau level excitation due to electron-impurity scattering can induce the electronic 

level broadening. If the decay rate is larger than the vacuum Rabi frequency, it will 

make the ultrastrong light-matter coupling not observable. For the sake of simplicity, 

in this thesis we have assumed zero temperature to ensure the cyclotron transition 
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energy larger than thermal energy and avoid the effect of impurity scattering in our 

calculation. 

In chapter 1.1 and chapter 1.2, we briefly introduced the theoretical Dicke model in 

both single-mode and multi-mode cases, in particular the superradiant phase 

transition are discussed. In chapter 1.3, we point out that the superradiant phase 

transition does not occur in some doped semiconductor quantum wells due to the no-

go theorem. In chapter 1.4, the calculations show that the superradiant phase transiton 

indeed occurs in graphene-cavity systems due to the negligiable diamagnetic term 

D  and the spectrum of magnetopolaritons in normal phase is plotted. However, the 

spectrum in superrandiant phase is not investigated in graphene-cavity system; 

moreover, only the single-mode Dicke model is studied in graphene-cavity systems. 

Some open questions are whether some other 2D materials in the cavity will enter the 

superradiant phase by adjusting some parameters and can we obtain the spectrum of 

magnetopolartions in the superradiant phase regime based on the multi-mode Dicke 

model. Apart from the discussions in chapter 1.5, our theoretical study of polaritons 

and superradiant phase transition can also provide new insights in cavity-controlled 

magneto-transport in these 2D systems, which could lead to the development of some 

polariton-based devices [40]. 

1.7  Thesis Overview   

This thesis consists of two parts. In the first part, which is from chapter 2 to chapter 

4, the light-matter coupling between cyclotron transition and photon is theoretically 

investigated in some 2-D materials such as the monolayer MoS2, monolayer BP 

systems and graphene. In chapter 2, we show that, in contrast to the case for 

conventional semiconductor resonators, the MoS2 system show a vacuum instability. 

In monolayer MoS2 resonator, the diamagnetic term can still play an important role 

in determining magnetopolariton dispersion which is different from monolayer 

graphene system. In chapter 3, we show that, similar with some other 2D materials 

such as graphene and MoS2, the monolayer BP system shows a vacuum instability. 

However, in contrast with other 2D materials, the BP system displays a large energy 

gap between three branches of polaritons because of its strong anisotropic behavior 

in the eigenstates of the band structures. In chapter 4, we investigate the coupling of 
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cyclotron transition of LLs in monolayer graphene system with a multimode cavity 

described by a multimode Dicke model. This model exhibits a superradiant quantum 

phase transition, which we describe exactly in an effective Hamiltonian approach. 

The complete excitation spectrum in both the normal phase and superradiant phase 

regimes is given.  

The second part is a diversion from the main part of this thesis, in chapter 5, we are 

going to investigate theoretically the Aharonov-Bohm (AB) effect from the quantum 

field theory approach, i.e., the quantum electrodynamics (QED) to be specific. We 

start with the discussions on the AB effect then raise a plausible interpretation within 

the QED framework. We provide a quantum treatment of the source of the 

electromagnetic potential and argue that the underlying mechanism in AB effect can 

be viewed as interactions between electrons described by QED theory where the 

interactions are mediated by virtual photons. On further analysis, we show that the 

framework of one particle quantum mechanics (OPQM) can be given, in general, as 

a mathematically approximated model which is reformulated from QED theory while 

the AB effect scheme provides a platform for our derivations. At last, the derivation 

of multi-particle classical fields and some discussions on the physical nature of fields 

and potentials are shown in Appendix C and Appendix D repectively.  
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2. POLARITON AND SUPERRADIANT PHASE TRANSITION IN 

MONOLAYER MOS2 
In previous chapters, it has been shown that graphene can enter the ultrastrong light-

matter coupling regime under perpendicular magnetic field. In particular, a vacuum 

instability (phase transition) analogous to the one occurring in the Dicke model can 

also occur for graphene in this ultrastrong coupling regime, which is absent in the 

case of massive electrons in semiconductors. In addition to graphene, monolayer 

group VI transition-metal dichalcogenides (e.g., MoSe2 and WS2) has emerged as a 

new class of 2D materials, which are being widely investigated. Due to their unique 

properties, MoS2 and other TMDs have attracted great interest in the study of light-

matter interactions. One important open question is whether MoS2 and other TMDs 

systems can enter the ultrastrong coupling regime and whether a quantum phase 

transition (or vacuum instability) can occur. In this section, we theoretically study the 

magnetopolariton spectrum of the monolayer MoS2-cavity system, followed by an 

analysis of the difference with the magnetopolariton spectrum in the graphene-cavity 

system. Such novel difference can provides new insights in cavity-controlled 

magneto-transport in the MoS2 materials. The set up of the cavity-MoS2 system in 

this chapter follows the chapter 1-4. From the chapter 2 to chapter 4, for simplicity, 

we use the SI unit for theoretical derivations. 

2.1 Theoretical Formulations  

In addition to graphene, monolayer group VI transition-metal dichalcogenides (e.g. 

MoS2, MoSe2 and WS2) has emerged as a new class of 2D materials, which are being 

widely investigated due to strong photoluminescence, excellent optical-electric 

properties and controllable valley polarization [41]–[55]. They have a direct bandgap 

in the visible range which is located at the K and K  points situated at the corners of 

the hexagonal first Brillouin zone with 
0

4
( ,0)
3 3

K
a


  and 0 1.84Aa   . Optical 

selection rule in bulk crystals determines the optical transition between energy states. 

Valley angular momentum is associated with energy valleys in momentum space in 

monolayer MoS2. Bloch electrons have opposite signs of valley angular momentums 

in adjacent valleys and render a valley dependent optical selection rule. The inversion 
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symmetry is explicitly broken in monolayer MoS2 and other transition-metal 

dichalcogenides (TMDs), giving rise to a valley-contrasting optical selection rule 

which allows optical pumping of valley-polarized carriers by circularly polarized 

light [56]. Due to their unique properties, MoS2 and other TMDs have attracted great 

interest in the study of light-matter interactions. The strong light-matter coupling 

between an exciton and photon has been experimentally observed recently [57].  

For the monolayer MoS2 system, without an external field applied, the conduction 

and valence band edges are located at the two corners (i,e. K  and K ) of the first 

Brillion Zone. The first-principle calculation has shown that the main contributions 

to band edges near K   and K  can be attributed to 2z
d , xyd and 2 2x y

d


 orbitals of 

metal atoms and the low-energy band model has been constructed by using the k p  

model [58]–[62]. Ignoring the trigonal warping effect, which can only provide small 

perturbation terms [63], [64], we can write two band Hamiltonian as [44], [64] 

2 2

0 0

0

1- | |
( )

2 2 4

z
s z zH t a s

m



   


     

k
k                   (2-1) 

where the final term indicates the electron-hole asymmetry. 0m  is the free electron 

mass, s    indicates spin up and down respectively,     indicates K  and K′ 

valley respectively, with Pauli matrices  ,x y τσ  and Bloch wavevector 

( , )x yk kk . The energy gap 1.9eV   and the spin orbit coupling coefficient 

80meV  . The other parameters are 
0 1.68t eV , 0.43  , 2.21   and 

0 1.84Aa   [64].  

    When a perpendicular magnetic field 
0B A  is applied to the MoS2 plane, the 

electrons occupy highly degenerate LLs. Within the limit 
0 / 1Ba l , we can make 

the Landau-Peierls substitution 
0 /e k k A  to the Hamiltonian sH , where 

/ ( )Bl eB  is the magnetic length. Using the Landau gauge  0 0, ,0BxA  and 

writing the wavefunction in K  valley as 

 , 1, , 0|,| ,n k n na n k b n k n                                           (2-2) 



24 
 

 0, 0,| 0, , 0n k k n                              (2-3) 

with 

0 0

2
/( ) o

B

na i a t n N
l

                                                     (2-4) 

2

,2

0

1
( )( /)

2 2 2
[ ]n n o

B

b n E
m

N
l

  


                                 (2-5) 

where 1n n n na a b b    and oN  is the normalization factor. Note that ,n k  are LL 

states with quantum numbers n  and k . In this work we assume the Fermi level is 

within the conduction band, and the eigen-energies are as follows [48]: 

2 20 0
, ( ) 2 ( ) ( )

2 2 2 2][n s cl cl

B

t as s
E n n n

l


   
   

 
             (2-6) 

where cyclotron frequency 
0/ 2cl eB m  . In this work, we neglect the valley and 

spin splitting of LL energies which are small so as to have negligible effect on our 

results. Therefore, the LL degeneracy is 
24 /Bn eBL h  where L  is the cavity length. 

The first unoccupied LL index n is determined by the filling factor / Bv S n  (ρ is 

electron doping density) where 2S L  being the monolayer 2MoS  surface area. For 

the sake of simplicity, we will consider the case of an integer filling factor v . As we 

deal with the coupling between the light and high filling factor of LLs, we have to 

take into account the system at cryogenic temperature. Therefore, we assume 

cryogenic temperature in the rest of the calculations from chapter 2 to chapter 4 to 

ensure the cyclotron transition energy is larger than thermal energy.  The loss of the 

2D materials will not influence the excitation of spectrum of polariton. But large loss 

will prevent from observing the spectrum of polariton. The considered cryogenic 

temperature can ensure the loss smaller than Rabi frequency in our considered 

parameters.       

    We consider a rectangular cavity as depicted in Fig. 2-1 with perfectly conducting 

walls on all three sides and has the volume 2

zV L L  with the monolayer 2MoS  

material placed at the center of the cavity perpendicular to the z  direction. The cavity 
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length zL  along the z  direction is assumed to be much smaller than the cavity 

transverse size L . Therefore, we can restrict our study to the particular photon mode 

with 1zn  , neglecting all the higher-lying modes 1zn  , more information of this 

cavity can be found in case 3 of Appendix B. The electromagnetic vector potential 

can be written as  

†

1,2 0

( ) ( )
2

em

c

r a a
V

 
  

  ηuA                   (2-7) 

where a  is the annihilation operator for a given photon mode 1,2  ,  is the cavity 

dielectric constant and 4.2   for monolayer 2MoS  [43]. Applying the cavity mode 

with wave vector ( , , ) (2 / , 2 / , / )x y z zq q q L L L   q , the cavity frequency 

2[ / ( )] 1 8( / )c z zc L L L     and the modes can be written as  

1

2 (2 / ) (2 / ) ( )

2 (2 / ) (2 / ) ( )

0

cos x L sin y L cos

u sin x L cos y L cos

  

  

 
 

  
 
 

                   (2-8)  

2

2 (2 / ) (2 / )

2 (2 / ) (2 / )

0

cos x L sin y L

u sin x L cos y L

 

 

 
 

  
 
 

                                         (2-9) 

where 2( ) 1/ 1 8( / )zcos L L   . 
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Fig. 2-1 Sketch of a cavity resonator embedding a monolayer MoS2 with a uniform and static magnetic 

field B applied perpendicular to the material. Cavity walls in all three directions are perfectly 

conducting. 

 

 

Fig. 2-2 The MoS2 cyclotron transition between conduction band LLs n v  and 1n v   is quasi-

resonant to a confined cavity photon mode. 

Now we can expand the total Hamiltonian of the MoS2-cavity system with respect to 

the wave-vector k  up to second order as 
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1 2total coulH H H H                                               (2-10) 

in which 
1H  stands for the first order expansion of the Hamiltonian and likewise 

2H  

is the second order, plus, we also need to add 
coulH  which is the Coulomb potential 

into the total Hamiltonian of the system. In following paragraphs below we are going 

to analyze different meanings that they stand for and show detailed calculation 

techniques that we apply to obtain the second quantization form the total Hamiltonian. 

For the interaction part of the total Hamiltonian, neglecting the spin and valley 

splitting effects, the first order Hamiltonian including the light-matter interaction can 

be written as two parts 1 1, 1,intLH H H   , where the kinetic energy part reads 

0,0,

1, 0 0

0,0,

0 0 ( )
2

0 ( ) 0
2

yx

x y

L

yx

x y

eAeA
k i k

H a t
eAeA

k i k

  
    

   
         

   

   (2-11)             

And the light-matter interaction part reads 

,,

1,int 0 0

,,

0

0

em yem x

em yem x

eAeA
i

H a t
eAeA

i

 
 

 
 

 
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                              (2-12) 

Similarly, the second order Hamiltonian (electron-hole asymmetry term) including 

the light-matter interaction can be written as three parts 2 2, 2,intL diaH H H H   , 

where the kinetic energy part reads 

2
20

0

2, 2
20

0

( ) ( ) 0
4

0 ( ) ( )
4

L

e

m
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e

m

 

 

 
  

 
 

   
 

A
k

A
k

                  (2-13) 

The light-matter interaction part reads 

2

0 0

0

2,int 2

0 0

0

( ) ( ) ( ) 0
4

0 ( ) ( ) ( )
4

[ ]

[ ]

em em

em em

e e e e
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e e e e

m

 

 
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    

 
 
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 

 

 

A A A A
k k

A A A A
k k
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(2-14) 

And in addition we have the diamagnetic term which reads 

2
2

0

2
2

0

( ) ( ) 0
4

0 ( ) ( )
4

em

dia

em

e

m
H

e

m

 

 

 
 

 
 

  
 

A

A

                       (2-15) 

where  0 0, ,0BxA  and emA  is given by Eq. (2-7). In addition to the light-matter 

interaction, we should also include Coulomb interaction which plays an important 

role. Bearing these in mind, we can first deal with the Coulomb potential. 

For the Coulomb potential 
coulH , we need to consider the Coulomb interaction 

between transition 1n v   and n v  of LLs. Based on our cavity structure, we can 

write the Coulomb potential 
2

0

( )
4

c

e
V

 
 


r r

r r
 expanded in terms of 2D 

Fourier series as 

,

,

( )( )
( ) cos[ ]cos[ ]

x y

x y

yx
c n n

n n

n y yn x x
V v

L L

 
  r r                       (2-16) 

where xn  and yn  runs over all positive integers. By the inverse Fourier 

transformation, we find 

,

, 2 0 0

2

,

2 2

0

d ( )cos( )cos( )

8

x y

x y

x y

L Ln n yx
n n c

n n

x y

C n yn x
v V

L L L

C e

L n n



 






  r r

                        (2-17) 

Since we are only interested in the mode which is quasi-resonant to the transition 

energy of LLs, that is, 2x yn n  with 2,2 4C  . Therefore, we can neglect other 

Fourier modes which do not make any contributions to the LL transitions.  We can 

write the mathematical expression 
( ) ( )

cos[ ]cos[ ]
y yn x x n y y

L L

   
 in Eq. (2-16) as 
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( )( )
cos[ ]cos[ ]

(cos cos sin sin )(cos cos sin sin )

yx

y y y yx x x x

n y yn x x

L L
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      



  
  

 

(2-18) 

This expression contains four major parts and they are symmetric in terms of r  and 

r . Therefore, in order to obtain the second quantization form of the Coulomb 

potential, our aim is to express the cosine and sine functions in terms of bosonic 

operators. For example, we can write two cosine functions in LL basis as 

, , , ,

† †

, ,

cos cos cos( cos )
y yx x
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n k n k

k n

k
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n n k
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L L L L
c c


 

 







             (2-19) 

in which ,n k  in K  valley is just Eq. (2-2) and †

,n kc  is the creation operator for LL 

states ,n k . Likewise, the cosine functions in prime coordinate systems can be given 

as  

†

, ,

,

†

, , ,cos cos c cos )( os
y yx x

n

n k n k n k n

k k

k

n

n y n yn x n x
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 

 

   

  
             (2-20) 

Note that x ( y ) and x ( y ) represents coordinate operators of two electrons here, 

thus, Eq. (2-19) is indeed equivalent to Eq. (2-20). Meanwhile, we can denote three 

other expressions in Eq. (2-18) as  
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, ,

† †

, ,

, , , ,
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(
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





 , ,

†

sk sk nc    

       (2-21) 

Put everything together, after divided by 2 due to the double counting of Coulomb 

potential between two electrons, we get the total Coulomb potential as 
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2 2 2 2

,

1
( )

2 x ycoul n n cc cs sc ssH v                     (2-22) 

Thus, in order to obtain the second quantization form of the Eq. (2-22), we can write 

2 2 2 2
( ) ( ) ( ) ( )1

cos cos [ ]
4

i x y i x y i x y i x yyx L L L L
n yn x

e e e e
L L

         

                (2-23) 

Then plugging Eq. (2-23) into Eq. (2-20) we can first deal with the expression 

2
( )

†

2 2
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,
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,
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              (2-24) 

Note that na  and nb  in Eq. (2-24) are just coefficients in Eq. (2-2). Since we are 

dealing with low energy cavity modes, the LL mixing can be neglected and we have 

2
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( )
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n n B k k q

q k k l
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  , x yq q iq  , 

†

x yq q iq   and ( )n   is Heaviside step function [65]. Bearing in mind that we are 

dealing with the cyclotron transitions between the last occupied LL 1v   with the first 

unoccupied one v . First, in case that 1n v   and n v  , we have  
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         (2-25)           

Note that in the last step of Eq. (2-25), we neglected high orders of 
Bql  due to the 

fact that 1Blq . Similarly, we can calculate the second term in Eq. (2-24) as 
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          (2-26) 

Therefore, in case that 1n v   and n v  , after some calculations we have 
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(2-27) 

in which the coefficient 
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Similarly, in case that n v  and 1n v   , we have 
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(2-28) 

in which the simplified notations 
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    . Put everything together, we get  
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similarly, we obtain 
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                        (2-30) 

in which the summation of wave-vector k  runs over all degenerate states in LL n v . 

Introduce new bosonic operators 
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and  

† †

1 1, 2 1, 2
, ,

† †

2 1, 2 1, 2
, ,

1
[sin( ) sin( ) ]

1
[sin( ) sin( ) ]

v k v k
v k v k

kB L L

v k v k
v k v k

kB L L

e c c c c
n

e c c c c
n

 

 

 
 

 
 

   

   





                          (2-32) 

in which 
24 /Bn eBL h  is the Landau level degeneracy. We can verify that the new 

defined bosonic operators satisfy the commutation relation in the ground state and 

dilute regime as 
†

,[ , ]d d     and 
†

,[ , ]e e     ( 1,2  ). With defined bosonic 

operators, we can finally write the Coulomb potential in Eq. (2-22) as 
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                (2-33)      

where 1 1   , 2 1  . Later on we will see that d  can be treated as the bosonic 

bright mode annihilation operators between the transitions 1v v   coupled to 

cavity modes 1,2   with the consideration of the condition 1Blq  (for the 

photonic wave vector, this condition is always satisfied), and the dark mode bosonic 

operators e  can be discarded since they are small in value and do not couple with 

the kinetic and interaction part of the total Hamiltonian of the system. Therefore, we 

obtain 
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  . 

Once we get the second quantization form of the Coulomb potential expressed by the 

Bosonic operators as Eq. (2-34), we can write the kinetic energy part of the 

Hamiltonian 1, 2,L L LH H H   in LL basis, which is given by Eq. (2-2), as 
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operator for the eigenstates ,n k  defined in Eq. (2-2). In order to obtain the bosonic 

form of the kinetic Hamiltonian 
LH , we calculate the commutation relation 
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nearby LLs 1n v   and n v ,  and obtain the bosonic Hamiltonian as 
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(2-35) 

 meanwhile we can write ,em xA  as 
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(2-36) 

in case 1n v  , n v  , the second term of Eq. (2-35) 

, ,2, ( ) , 0em x em yv k i v k  A A , for the first term we have 
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                    (2-37) 

Similarly, we can write ,em yA  as 
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And we have 
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                 (2-39) 

Put them together, we obtain 

†

1 1 2 2
, ,

0

†

2 2 2 2
,

,

,

,

{( )cos( )[sin( ) sin( ) ]

(

1, ( ) 1,

)[sin( ) sin( ) ]}

k k k k
c L L

k k k

em x e

k
L

m

L

yv k i v k

i a a
V

a a

 

 

  
 

 

 

 

 

   



    



A A

               (2-40) 
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in which sin( )  are given by Eq. (2-27). In case of n v , 1n v   , the first term 

in Eq. (2-35) which is , ,, ( ) 2, 0em x em yv k i v k  A A , for the second term we have 

†

1 1 2 2
, ,

0

†

2 2 2

, ,

2
, ,

{( )cos( )[sin( ) s

1, ( )

in( ) ]

( )[sin( ) s

1

in( ) ]}

,

k k k k
c L L

k k k

em x e

k
L L

m yv k i v k

i a a
V

a a

 

 

  
 

 

 

 

   

    

  

 

A A

              (2-41)    

Add Eq. (2-41) and Eq. (2-40) together, after some algebra we get the first order 

interaction Hamiltonian as 

,1

†

1,2

†( )( )f

intH d d a a    


                                                (2-42)    

with 1 2 ( )f f cos     and the first order vacuum Rabi frequency of mode two ( 2)    

is 

1 0 0

2

0

21

2

v Bf

c

vi a a n

V

b t e

 





                                 (2-43)                            

For the second order interaction Hamiltonian, we can transform the expression  

0, †

0, †

2
( )

2

2
( )

2

x

x

B

y

y

B

eA i
k dr dr

l

eA
k dr dr

l

  

  

                                          (2-44)                            

in which the operator 
†dr is defined as the creation operator of LL states ,n k  in Eq. 

(2-2). We write the second order interaction Hamiltonian in the second quantization 

form as 

2
†0 0

2,int , ,

, , , 0

2
†0 0
, ,

, , , 0

( ) , ( ) ( ) ,
4

( ) 1, ( ) ( ) 1,
4
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em em
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em em
n k n k

n n

n n

n n k k

e e e e
H n k n k c c

m

e e e e
b b n k n k c

m
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c

a  

 

 

 

 

 









     

       

 

 





A A A A
k k

A A A A
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(2-45)                            
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Plug the expression of emA  into Eq. (2-44) and first consider the case of 1n v  , 

n v  , we obtain 

0 0

, , , ,

, ( ) ( ) ,

2
[ , ( ) , 1, ( ) 1, ]

2

[ ]em em

em y em x em y em x

B

e e e e
n k n k

e v
v k A iA v k v k A iA v k

l

   

      

 
A A A A

k k

         (2-46)  

And  

0 0

, , , ,

1, ( ) ( ) 1,

2( 1)
[ 1, ( ) 1, 2, ( ) 2, ]

2

[ ]em em

em y em x em y em x

B

e e e e
n k n k

e v
v k A iA v k v k A iA v k

l

     


        

 
A A A A

k k

   

(2-47) 

Similarly, in case of n v , 1n v   , we obtain 

0 0

, , , ,

, ( ) ( ) ,

2
[ , ( ) , 1, ( ) 1, ]

2

[ ]em em

em y em x em y em x
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e e e e
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   

      

 
A A A A

k k

        (2-48) 

And  

0 0

, , , ,

1, ( ) ( ) 1,

2( 1)
[ 1, ( ) 1, 2, ( ) 2, ]

2

[ ]em em

em y em x em y em x

B

e e e e
n k n k

e v
v k A iA v k v k A iA v k

l

     


        

 
A A A A

k k

 

(2-49) 

Adding Eq. (2-47) and Eq. (2-48) together, after some routine calculations we get the 

second order interaction Hamiltonian as 

 † †

,2 ( )( )in

s

tH d d a a    


                                  (2-50) 

with 1 2 ( )s scos     and the second order vacuum Rabi frequency of mode two 

( 2)   is 
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12

* *

1

0 0

1
( ) 1 ( )

2 2
[ ]B
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c B

s
e n

a a v b b v
V m l

   
 

                (2-51) 

The diamagnetic contribution diaH  can be bosonized in a similar way which can be 

written in form as 

2 2
2 2 †

, ,

, , , 0 0

( ) 1, 1, ( ) , ,
4 4

[ ]n n n ndia em em n k n k

n n k k

a a
e e

H n k n k b n k n k cb c
m m

    

  

 


         A A  

(2-52) 

In case of n n  and k k , express 2

emA  in terms of cosine and sine functions, we 

have 

2
2 2 42 2 1

1, cos ( )sin ( ) 1, [1 cos( )]
4

Bklx x
n k n k

L L L

 
                  (2-53) 

And  

2
2 2 42 2 1

1, sin ( )cos ( ) 1, [1 cos( )]
4

Bklx y
n k n k

L L L

 
                  (2-54)       

Plug Eq. (2-52) and Eq. (2-53) into Eq. (2-51), we obtain 

2

2
2 † 2 † 2 † †0

1 1 2 2 1 1 2 2
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4
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(2-55)       

Note that the above expression does not depend on which LL that we apply. Therefore, 

by setting n n , k k  and summing over k  provides the LL degeneracy Bn . 

Replace the number operator †

, ,n k n kc c    by the its expectation value

†

, , ( 1 )n k n kc c v n     in the electronic ground state 
1

†

,
0 1

0
Bnv

n k
n k

F c


 

   , finally we 

can obtain 
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     (2-56)       

with 
2

1 2 ( )D D cos   and the diamagnetic terms 2D  of mode two ( 2)   is 

2 1
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n e
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   
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



                           (2-57)       

At this stage, we finally obtain the total Hamiltonian of the system written in second 

quantization form as 

† 2 2

1,2

† † † †[ ( )( ) ]) ( ) (total e cgH d d d d a a D a a V d d             


  


       

(2-58)       

in which the vacuum Rabi frequency f s

     . 

    By diagonalizing the kinetic and Coulomb Hamiltonian, we can obtain the 

Hamiltonian written in magnetoplasmon modes as 

1,2

†
Coul L pH H g g const 






                              (2-59) 

where 
†g u d v d      are called the magnetoplasmon mode annihilation operator, 

and we have ( 4 )eg gp ce V    ,

2

eg

e

p

g p

u 

 


 


  , 

2

eg p

peg

v
 

 


 .  

    Then we can write the total Hamiltonian describing photonic and magnetoplasmon 

modes as 

2

1,2

† † † † †( ) ( ) ( )[ ]total p cH g g a a g g a a D a a           


 


           (2-60)          

where ( )u v       .      

    Introducing polariton operators ††

, , , , ,j j j j jap c g d e g f a           , we can write 

the total Hamiltonian Eq. (2-10) in polariton basis as 
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†

, , ,

,

total j j j

j

coH p nstp  


                   (2-61) 

here j indicates upper and lower polaritons and the commutation relation 

†

, , ,
[ , ]j j j j
p p     . By calculating the commutation relation , , ,[ , ]j j jp H p    we 

can obtain a 4 by 4 matrix which can be written as 

2 2

0

2 2

0

c

p

c

p

D D

D D

   

 

   

 









    
 

  
    
 
    

                               (2-62) 

By diagonalizing the matrix, we can obtain the eigenfrequency of the polaritons. 

Meanwhile, the critical value of   beyond which the system may enter super-radiant 

phase regime is ( 4 ) / 2c p c D    , the phase transition occur at LL 200v   

with 0.75B T  which we will show below. Noted that in monolayer MoS2, similar 

to graphene, a quantum critical value exist because 2 egD   is smaller than 
2

2 , e.g. 

with 50v   and 1B T , 
2

2 2/ 0.5egD     [24]. Above this critical value, a 

spontaneous coherence of light and matter appears, the ground state becomes twice 

degenerate and the system enters superradiant quantum phase.  

2.2  Numerical Results and Discussions 

As written in Eq. (2-58) , we have obtained the vacuum Rabi frequency of monolayer 

MoS2 system and then can characterize the “intrinsic” strength of the transition i.e. 

the ratio between vacuum Rabi frequency 2  with LL transition frequency eg , 

which is shown in Fig. 2-3. The results show that the dimensionless vacuum Rabi 

frequency 
2 / eg  can be comparable to or even larger than 1 for small magnetic 

field B  and large enough doping density  . We can conclude that, similar with 

graphene, monolayer MoS2-cavity system can also enter the ultrastrong coupling 

regime. Noted that, in our work, the carrier doping is induced by the external electric 

fields and their relations can be simply calculated according to Ref. [66]. But as 

discussed in Ref. [64], the external electric field will also influence the electron-hole 
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asymmetry thus the band structure of MoS2. For the sake of simplicity, we adopt the 

formula as used in Ref. [64] which describes the relation between electron-hole 

asymmetry and electric field.    

0 3 6 9 12 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2


 



e
g

B=1.5T

B=1T

B=0.5T

(10
12

 cm
-2
)

 

 

 

Fig. 2-3 The dimensionless vacuum Rabi frequency 
2 / eg  versus the doping density  . Other 

parameters are Lz = 1mm, L = 8Lz. and 0.49c  THz rad-1. eg  is the cyclotron transition frequency 

between the last occupied LL with the first unoccupied one.  
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Fig. 2-4 Normalized frequencies of LP and UP branches of magnetopolariton as a function of doping 

density for 1   
and 2  . Parameters are  B = 0.75T, Lz = 1mm, L = 8Lz and 0.49c  THz rad-1, 

the critical density for phase transition is 13 21.44 10c cm   . 
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    Using Eq. (2-62) we can calculate the magnetopolariton dispersion. In the Fig. 2-

4, we show the carrier density dependences of frequencies of magnetopolariton 

normalized to the cavity mode, where the low polariton (LP) and upper polariton (UP) 

branches are the two spectrally separated light-matter eigenstates in strong coupling 

regime. In contrast to the conventional semiconductor materials (e.g. GaAs), 

monolayer cavity-MoS2 resonator, as a 2D semiconductor material, shows the 

existence of quantum critical point ( 13 21.44 10c cm    in our considered parameter) 

beyond which the normal ground state becomes unstable. This quantum critical point 

exits in MoS2 system due to smaller diamagnetic term, i.e., 
2

2 2 egD    as 

discussed in chapter 1.3. In conventional semiconductors, the diamagnetic term is 

even dominant in ultrastrong coupling regime between a cavity resonator and 

cyclotron transitions. 
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Fig. 2-5 Normalized frequencies of LP and UP branches of magnetopolariton as a function of doping 

density with and without the diamagnetic term for the second mode 2  . Parameters are B = 1T, Lz 

= 1mm, L = 8Lz and c = 0.49 THz rad-1, the critical density for phase transition is 

13 21.44 10c cm   and 12 26.30 10c cm    with and without diamagnetic terms respectively.  

    In contrast to graphene, the diamagnetic term can still play an important role in 

determining magnetopolariton dispersion for monolayer MoS2 system, as shown in 

Fig. 2-5. The quantum critical point of MoS2 resonator can be greatly increased from 



42 
 

12 26.30 10c cm     to 13 21.44 10c cm    when considering the diamagnetic term. 

On the other hand, the diamagnetic term arises from electron-hole asymmetry which 

indicates that electron-hole asymmetry can influence the quantum phase transition. 
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Fig. 2-6 (a) Normalized frequencies of LP and UP branches of magnetopolariton as a function of 

magnetic field B, doping density is 12 22.81 10 cm    (b) Normalized frequencies of LP and UP 

branches of magnetopolariton as a function of magnetic field B, doping density is 13 21.42 10 cm    

which is just below the critical density, the critical value of magnetic field B for phase transition is Bc 

= 1.06T beyond which the system may enter super-radiant phase regime. 

We close the analysis by considering the effect of magnetic field on 

magnetopolariton at doping density far away from the quantum critical point (Fig. 2-

6 (a)) and one just below the critical point (Fig. 2-6 (b)). As a 2D semiconductor 

material, MoS2 system has a similar magnetic field dependent magnetopolariton 

dispersion curve with a 2D electron gas in quantum wells if the doping density is far 

away from the critical density. However, when doping density is just below the 

critical point, the dispersion curve is very different as depicted in Fig. 2-6 (b). As the 

magnetic field increases, a strong asymmetric dispersion is exhibited, which shows 

the signature of such phase transition.  

As a conclusion of the chapter 2, we theoretically investigate the cavity QED in 

monolayer MoS2 system under perpendicular magnetic field with the consideration 

of electron-hole asymmetry. The results show that MoS2 system can enter the 

ultrastrong light-matter coupling regime. But, in contrast to conventional 

semiconductors, the semiconductor monolayer MoS2 system shows a quantum phase 

transition. In monolayer MoS2 resonator, the diamagnetic term can still play an 
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important role in determining magnetopolariton dispersion which is different from 

monolayer graphene system. The diamagnetic term arises from electron-hole 

asymmetry which indicates that electron-hole asymmetry can influence the quantum 

phase transition. Our study provides a theoretical foundation for the observation and 

investigation of cavity QED for fundamental studies and quantum applications in 

MoS2 system. 
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3.  CAVITY QED OF BLACK PHOSPHORENE 

In the previous chapter 2, we investigated the superradiant phase transition in 

monolayer MoS2-cavity system, and showed that in contrast with normal 

semiconductor quantum wells, the monolayer MoS2 shows a vacuum instability. 

Now we can proceed to investigate another 2D material which is the black 

phosphorene (BP) and show some resemblance and difference compared with the 

monolayer MoS2. The set up of the cavity-BP system in this chapter follows the 

chapter 2. 

3.1 Theoretical Formulations  

The BP has attracted massive attentions because of its unique electronic properties 

and novel practical applications in nanoelectronics [67]–[71]. The evidence of a large 

anisotropy on the effective mass has also been explored by researchers using various 

methods [72]–[74]. With the application of the tight-binding model and the effective 

k p  Hamiltonian, people also found that the Landau level (LL) spectra of 

phosphorene under a perpendicular magnetic field are similar with that in 

conventional semiconductor two dimensional gases [75], [76]. However, the cavity 

QED properties of such unique anisotropic system remain unexplored. One open 

question is whether quantum phase transition will occur and how the anisotropic 

behavior influences the cavity QED properties of the BP system. 

Using the tight binding model proposed in Ref. [72] and expanding the structure 

factors around the Gamma point, retaining the terms up to second-order in wave-

vector k , we can get the Hamiltonian as  

2 2 2 2

0

2 2 2 2

0

x x y y x x y y y

k

x x y y y x x y y

u k k k k i k
H

k k i k u k k

     

     

     
        

                        (3-1) 

in which the parameters are 0 0.42u eV  , 
20.58 Ax eV   , 

21.01 Ay eV   , 

0.76eV  , 5.25 AeV   , 
23.93 Ax eV    and  

23.83 Ay eV    [60]. Apply 

the magnetic field with the gauge ( ,0,0)= ByA  perpendicular to the plane of the 

layer and make the Landau-Peierls substitution 
e

 
A

k k , define new operators as 
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d
y l
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    with the magnetic length Bl

eB
 , 

then perform a Bogoliubov transformation  

†

† †

cosh sinh

cosh sinh

c v v

c v v

 

 

 

 
                                             (3-2) 

 we can get the parameter v  by solving 
2 1tanh 2 /v    with 

2

1
2 4

x y x y    




  
   and 

2

2
2 4

x y x y    




  
  . Finally we can obtain 

the wave-function for the LLs state by applying the ansatz as [60] 

†

,

( ) ,
2 2

x

o

x

B

n k

N
n k

l




 






 
   

      
 

                                        (3-3) 

in which , xn k  are LL states defined as †1 1, ,x xn n k c n k   , oN  is the factor 

to normalize the wave-function. In this work, we assume the Fermi level is within the 

conduction band, therefore, the transformed Hamiltonian for the electronic branches 

can be given as  

†

0

1
( )

2
L eH u c c                                                 (3-4) 

with 
e

e e

x y

eB

m m
   where the parameters are 

2

2( )

e

x

x x

m
 




 and 

2

22( / 2 )

e

y

y y

m
   


 

. 

In this work, we assume zero temperature in the rest of the calculations to ensure the 

cyclotron transition energy is larger than the thermal energy. Furthermore, we 

consider a rectangular microcavity that has the volume 
2

zV L L  with the monolayer 

BP material placed at the center of the cavity perpendicular to the z  direction as 

depicted in Fig. 3-1 (see Appendix B for more information of this cavity). The cavity 

length zL  in the z  direction is much smaller than the cavity transverse size L . 
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Therefore, we can restrict our study to the particular photon mode with 1zn  , 

neglecting all the higher-lying modes 1zn  . As can be read from Eq. (3-1), the light-

matter interaction Hamiltonian expanded in first order can be given as  

int

0

0

em

y

em

y

eA
i

H
eA

i





 
 
 
 
 
 

                                          (3-5) 

in which electromagnetic vector potential of the cavity photon modes can be given as  

†

1,2 0

( )
2

em

c

a a
V

  
  

 A u                                     (3-6) 

where a  is the annihilation operator for a given photon mode 1,2  , 3   is the 

cavity dielectric constant for monolayer BP system [77]. Next we apply the lowest 

cavity mode, which is quasi-resonant to the considered cyclotron LL transition, with 

wave vector ( , , ) ( / , / , / )x y z zq q q L L L   q  and the cavity frequency

/ ( )c zc L   , the modes can be given as  

1 2

2 ( / ) ( / ) ( ) 2 ( / ) ( / )

2 ( / ) ( / ) ( ) , 2 ( / ) ( / )

0 0

cos x L sin y L cos cos x L sin y L

u sin x L cos y L cos u sin x L cos y L

    

    

   
   

    
   
   

       (3-7)    

where 
2( ) 1/ 1 8( / )zcos L L   . 

We can proceed to write the interaction Hamiltonian in second quantization form as 

 † †

int

2 2 †
2 † †

, ,

0

0

( )
[ , ( ) , , , ]

2 2 2 2 x x

em

y

em

y

em

y em

o x x x y x n k n k

B B

eA
i

H
eA

i

i eA i e
N n k n k n k A n k d d

l l




 




   
 

 



 



 

 
 

 
   
  
 
 


     

 

(3-8) 
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in which 
†

, xn kd  represents the creation operator for the state Eq. (3-3) and summing 

over 
xk  provides the LL degeneracy 

24 /Bn eBL h , note that 
†

, xn kd  is different from 

†

, xn kc . Furthermore, we can write 
intH  in LL basis between the transitions 1n n   

as  

2 2
† †

int , 1,

,

2 2
† †

1, ,

,

, ( ) 1,
2 2

1, ( ) ,
2 2

x x

x x

x x

x

emo
x y x n k n k

k k B

emo
x y x n k n k

k k B

i eN
H n k A n k d d

l

i eN
n k A n k d d

l


 




 









  

  





            (3-9) 

Starting from Eq. (3-9), we need to simplify the expression 

†, ( ) 1,em

x y xn k A n k                                             (3-10) 

First by the reverse transformation, we can write the operators   ( † ) in terms of 

operators c  ( †c ) as  

†

† †

sinh cosh

sinh cosh

c v c v

c v c v





  

  
                                          (3-11) 

By substituting the above expression into Eq. (3-10), we get  

†

†

2
†

1 1 2
,

0

2 2 2

2 2
, ,

, ( ) 1,

, (cosh sinh )( ) 1,

( )cos( )
(cosh sinh ) ( )[exp(
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x x

x x x x
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x y x
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B x x

k k
c L

B x x B x x B x

k k k k
L L

n k A n k

n k v v c c A n k
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i l k k i l k k i l k

L L
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 

 


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 

  
 

 

  

 

   


  

    
   2

,

2

)
]

[  mode]

x x

x

k k
L

k

L

a


 





     

                                        (3-12) 

in which 
2[  mode]a  stands for similar expression for the second optical polarization 

mode 2a . Bearing in mind that we are dealing with the cyclotron transitions between 

the last occupied LL 1n v   with the first unoccupied one n v , after some algraba 

we can get intH  as  
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2 2
†

int 1 1

0

† † † †

, 2 , 2 2 , 2 ,
1, 1, 1, 1,

2

(cosh sinh )cos( )( )
2

sin( ) sin( ) sin( ) sin( ) ]

[  mode]

[
x x x x

x x x x

o

B c

n k n k n k n k
n k n k n k n k

L L L L

i eN n
H v v a a

l V

d d d d d d d d

a

   




  

       

  
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(3-13) 

in which the simplified symbol 22
sin( ) sin[ ( ) ]Bk l

L L

 
    and 

22
sin( ) sin[ ( ) ]Bk l

L L

 
   . We can further define the bosonic mode annihilation 

operator between the transitions 1n n   as 

2 †

1, / ,

,

1
sin ( )[ ]

x x

x

B n k L n k

kB

b k l d d
n L L



 
 



                             (3-14) 

which satisfies the commutation relation in the ground state in dilute regime as 

†[ , ] 1b b  . With the new defined bosonic operator, we can get the interaction 

Hamiltonian as 

2 2
† †

int 1 1 2

0

(cosh sinh )cos( )( )( ) [  mode]
2

o B

B c

i eN nn
H v v a a b b a

l V




  
      

(3-15) 

 



49 
 

Fig. 3-1 Sketch of a cavity resonator embedding a monolayer BP material with a uniform and static 

magnetic field B applied perpendicular to the material. Cavity walls in all three directions are perfectly 

conducting. 

Therefore, we can get kinetic Hamiltonian and interaction Hamiltonian 

shown as  

†

L eH b b                                                      (3-16)                                                                     

† †

int

1,2

( )( )H i a a b b  


                                          (3-17) 

where 
2 2

2

0
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2

o B

B c

eN n n
v v

l V



  
    , 

1 2 cos( )  , 
e

e e

x y

eB

m m
   and 

the Hamiltonian  of the cavity fields reads                               

†

1,2

photon cH a a 





                                               (3-18) 

where / ( )c zc L    is the frequency of the lowest photon mode. 

    Introducing polariton operators † †

2

†

1 1 2j j j j j j jp X a Y Z b Xa a Y a Z b      , we can 

write the total Hamiltonian in polariton basis as 

†

1,2,3

.j j j

j

H p p const


                     (3-19) 

Here j  indicates three branches of polaritons and we have the commutation relation 

†

,
[ , ]j j j j
p p    . By calculating the commutation relation [ , ]j j jp H p  we can 

obtain a 6 by 6 matrix which can be written as 
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i i i i




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





  
 

  
      
 

   
   
         

                            (3-20) 
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by diagonalizing the matrix, we can obtain three branches of polaritons which we 

name as upper, middle and lower polaritons as depicted in Fig. 3-3.  

3.2  Numerical Results and Discussions 

Since we obtained the vacuum Rabi frequency of BP system as given in Eq. (3-17), 

we can characterize the “intrinsic” strength of the transition i.e. the ratio between 

vacuum Rabi frequency 
2  with LL transition frequency 

e , which is shown in Fig. 

3-2. The result shows that the dimensionless vacuum Rabi frequency 
2 / e  can be 

comparable to or even larger than 1 for small magnetic field B  and large enough 

doping density. We can conclude that, as is the case for other 2D materials, monolayer 

BP system can also enter the ultrastrong coupling regime.  

    In the Fig. 3-3, we show the carrier density dependences of frequencies of 

magnetopolariton normalized to the lowest lying cavity mode, these are three 

spectrally separated light-matter eigenstates obtained from Eq. (3-20) in strong 

coupling regime. The Fig. 3-3(a) shows the frequency of the lowest lying branch of 

polaritons while the Fig. 3-3(b) shows the middle and upper ones. As we can see from 

Fig. 3-3(a), there exists a quantum critical point ( 12 21.22 10c cm    in our 

considered parameter) beyond which the normal ground state becomes unstable. The 

monolayer BP resonator, as a 2D semiconductor material, shows three branches of 

polaritons due to the missing of the first order of wave-vector xk  in the tight binding 

Hamiltonian as shown in Eq. (3-1). Furthermore, in contrast with other 2D materials, 

this anisotropic feature of its Hamiltonian also results large energy gap between the 

three branches of polaritons. The energy gap between the lower polariton with the 

upper one is about the same magnitude as the energy of the cavity mode; meanwhile, 

the frequency of the middle polariton is exactly the coupling photon frequency 
c  

which is just a trivial solution of the Eq. (3-20).  
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Fig. 3-2 The dimensionless vacuum Rabi frequency 
1 / e  versus the doping density  . Other 

parameters are Lz = 1mm, L = 8Lz. and 0.54c  THz rad-1. 
e  is the cyclotron transition frequency 

between the last occupied LL with the first unoccupied one. 
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Fig. 3-3 (a) Normalized frequencies of the lower branch of magnetopolariton as a function of doping 

density, the vacuum instability occurs at 12 21.24 10 cm    with magnetic field 200B mT . (b) 

Normalized frequencies of one upper and one middle branches of magnetopolariton as a function of 

doping density, the Middle branch of polaritons is a trivial solution of the Eq. (3-20). 

    The Fig. 3-4 shows the magnetic field dependent of the magnetopolariton 

dispersion curve, the Fig. 3-4(a) shows that the vacuum instability occurs at 

258B mT  with doping density 
12 21.22 10 cm   . As similar with the carrier 

density dependences of frequencies of magnetopolariton displayed in Fig. 3-3, the 
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energy gap between three branches of polaritons is much larger than the other 2D 

materials [78], [79].  
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Fig. 3-4 (a) Normalized frequencies of the lower branch of magnetopolariton as a function of magnetic 

field B, the vacuum instability occurs at 258B mT  with doping density 12 21.22 10 cm    and the 

LL at 50n   (b) Normalized frequencies of one upper and one middle branches of magnetopolariton 

as a function of magnetic field B, doping density is 12 21.22 10 cm   , the Middle branch of polaritons 

is a trivial solution of the Eq. (3-20). 

As a conclusion of this chapter, we theoretically investigated the cavity QED in 

monolayer BP system under a perpendicular magnetic field. The results show that BP 

system can enter the ultrastrong light-matter coupling regime and, similar with some 

other 2D materials, the quantum phase transition occurs at a large doping density or 

a large magnetic field magnitude. However, in contrast with some other 2D materials, 

the BP system shows three branches of polaritons and the energy gap between these 

polaritons is much larger, this is caused by the anisotropic behavior displayed in the 

tight binding Hamiltonian of the BP system. Our study provides a theoretical 

foundation for the observation and investigation of cavity QED for fundamental 

studies and quantum applications in monolayer BP system. 
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4. MULTI-MODE SUPERRADIANT PHASE TRANSITION IN 

GRAPHENE 

In previous chapter, we theoretically investigated the single-mode quantum phase 

transition in MoS2 and BP systems and showed the characteristics of the normal 

phase in these materials. In this chapter, we proceed to investigate the multi-mode 

quantum phase transition in graphene system and show the complete spectrum in both 

the normal and superradiant phases, furthermore, some differences between the 

single-mode Dicke model with the multi-mode Dicke model is analyzed in this 

chapter. The set up of the cavity in this chapter is one-dimentional which is different 

with previous chapters, we will see in this chapter that such change of the shape of 

cavity is a necessary condition in order to investigate the multi-modes coupling. 

4.1 Theoretical Formulations  

Researchers found the two dimensional materials, such as graphene, imbedded in an 

optical cavity resonator indeed show a quantum instability at certain doping value 

due to negligible 
2A  term [28]. However, such systems can only be described within 

the normal phase scope so far, an open question is what is beyond the quantum 

instability point and whether superradiant phase will emerge in such systems. In this 

chapter, in order to give an answer to this question, we present a microscopic theory 

to describe the physics of graphene imbedded in an optical cavity resonator under 

perpendicular magnetic field. We show that the physics behind such system can be 

modelled as a multi-mode Dicke model and the superradiant phase indeed emerge 

from the system when passing the vacuum instability point. We also point out that in 

order to observe the quantum phase transition in the system, one need not to enter the 

ultra-strong coupling regime, which, in fact, is in contrast with the single mode case. 

In the vicinity of the two inequivalent Dirac points K  and K  of graphene electronic 

band structure, the low energy Hamiltonian can be written as 

( )L F x x y yH v k k     where ( , )i i x y   are Pauli matrices, 610Fv m s  is the 

Fermi velocity and     is the valley index. In this work, a static and uniform 

magnetic field B  is applied along the z  axis perpendicularly to the graphene plane. 

As long as the lattice constant a  is much smaller than the magnetic length 



54 
 

0 / ( )l eB , we can perform the Landau-Peierls substitution which replace k  

with 
0ek + A   where 

0( ) ( / 2, / 2,0)By Bx A r  is the vector potential in 

symmetric gauge. This yields the LL states in conduction band in K  and K  valleys 

as  †

, , 1, , , / 2n l K n l n li   and  , ,

† , , 1, / 2Kn l n l i n l      respectively 

where n  and l  are good quantum numbers of LL states in symmetric gauge, and the 

LL energies in conduction band as 0nE n  where 0 02 /Fv l  . Each LL has 

degeneracy 2

04 / (2 )N S l  where S  represents the surface of the graphene layer. 

Note that here we take the spin and valley isospin degeneracy into account. We 

further define the LL filling factor as / 1/ 2v S N   where   is the electron 

doping density. In this paper, for the sake of simplicity, we consider the case of 

integer filling factor with the Fermi level being in the conduction band and zero 

temperature to avoid thermal effects. 

In this work, we consider 1D optical cavity ( x z yL L L ) with graphene 

monolayer placed in the middle at / 2zz L  as depicted in Fig. 4-1, more information 

of this cavity can be found in case 2 of Appendix B. This permits us to treat the 

continuous dispersion along the x  axis while keeping a few modes along z  axis and 

neglecting all the modes along the y  axis except the lowest one. The vector potential 

( )emA r  of  cavity electromagnetic field can be written as  

†

0

( ) ( )
2

u a u a
 

 em q q q q

q q

A r                                  (4-1) 

where   is the cavity dielectric constant and operators aq  are the photon annihilation 

operators with corresponding wave vector q  written as 2 / ,0, / )x x z z( n L n L q = , 

the mode spatial profile uq  reads  

22
exp( )sin( )(0,1,0)

2

x z

x

n x n
u i

V L

 
q                                 (4-2) 
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Fig. 4-1 Sketch of a one dimensional cavity embedding graphene sheet, a uniform and static magnetic 

field B is applied along the z axis. Cavity walls in y  and z  directions are perfectly conducting. 

Note that only the photonic modes with zn  being the odd integers will be coupled to 

the LL transitions. The cavity modes frequency are given as 

2 22
( ) ( )xz

z x

nnc

L L





 q                                            (4-3) 

The interaction Hamiltonian for the cavity-graphene system is given as 

int F emH ev A  ,  project this Hamiltonian in LL basics of conduction band, we 

obtain  

†

int , ,

, , ,

, 1, 1, ,
2

[ ]F
n l n l

n l n l

ev
H n l n l n l n l c c  

 

       em emA A                 (4-4) 

where 
em

A is given in Eq. (4-1). Bearing in mind that we are dealing with the 

cyclotron transitions between the last occupied LL 1n v   with the first unoccupied 

one n v , therefore the 
intH  can be simplified as   

int , 1, 1, ,

,

† †1, 1, ( )
2

F
v l v l v l v l

l l

ev
H v l v l c c c c  



    emA                   (4-5) 
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Since we are dealing with low energy cavity modes, the LL mixing can be neglected 

[80] and again we need to apply the formula 

2 2

0 , 0 , 0, exp( ) , exp( / 2) ( ) ( )n n l ln l i n l l ql q l  

 
     q r q , we get  

int 3
, 1, 1, ,

,

† † †sin( )( )( )
2

v l v l v l v l

l

H n
a a c c c c

N


 


  

q

q q

q

                     (4-6) 

We notice that only cavity modes with 
3n  being odd number are coupled with LL 

transitions. At last, 
3sin( / 2)n  can be absorbed in photon creation and annihilation 

operators by transformation 3

† †sin( / 2)( ) ( )n a a a a   q q q q  due to the fact that 

3sin( / 2) 1n   , therefore, we obtain 

int
, 1, 1, ,

,

† † †( )( )v l v l v l v l

l

H
a a c c c c

N
 


  

q

q q

q

                              (4-7) 

where the vacuum Rabi frequency is 
02

Fev N

V 
 q

q

 and x y zV L L L  is the 

cavity volume.    

    In order to bosonize the LL band excitations, we apply the Hosltein-Primakoff 

representation [21], where the effective Hamiltonian associated to the system reads 

eg

† † † † † †( )( )
H

b b a a a a b N b b N b bb
N

 


       
q

q q q q q

q q

        (4-8) 

where 
0 ( 1)eg v v     is the transition frequency between two nearby LLs. 

This is a multimode Dicke model which can be solved both in normal and 

superradiant phases [22]. Below the critical point (normal phase), the effective 

Hamiltonian in normal phase is obtained   

 No
eg

† † † †( )( )
H

b b a a a a b b       q q q q q q

q q

                           (4-9) 

Then the excitation spectrum of j  is given by solutions to the equation  

2

2 2

2 2
4 eg eg j

j


  

 


 




q q

q q

                                        (4-10) 
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We notice that the excitation energies j  are real only for / 1c     where 

2 /   q qq
 and / 4c eg  . The value of 1   separates the normal and 

superradiant phases. The summation of all the coupling photonic modes in   shows 

that the critical Rabi frequency required for quantum phase transition can be reduced 

compared with single-mode cavity case by coupling matter to a multi-mode cavity.  

    Above the critical point ( 1  ), we displace the Bosonic modes in Eq. (4-8) by 

a a  
q q q  and b b  , and eliminate the terms in Eq. (4-8) that are linear in 

the Bosonic operators by choosing (1 )
2

N
    and 

2

2

4 ( )N

N

 




 


q

q

q

. Note that 

we obtain exactly the same values of q  and    regardless of which sign of the 

operator displacements we choose. The effective Hamiltonian above the phase 

transition point becomes 

2 2SR
eg

† † † † †( )( ) ( )
H

a a b b a a b b f b b const          q q q q q q

q q

      (4-11) 

where 

2

eg

( 6 3)

4 ( 1)

eg  


 

  



 , 

2

1



  


q q  and 

2( 3 2 1)

8 ( 1)

eg
f

  

 

  



.  

Then the excitation spectrum j  above the critical point is given as 

2

2 2 2

2 2
4( 2 ) 4eg eg j

j

f f


  
 


   




q q

q q

                              (4-12) 

Note that beyond the transition point, the parity symmetry of the system has become 

spontaneously broken. In normal phase, the parity operator reads 

No

† †exp[ ( )]i b b a a   q q

q

 and it commutes with normal phase Hamiltonian 

No No[ , ] 0H  satisfying parity symmetry. In superradiant phase, parity symmetry is 

broken 
No SR[ , ] 0H  , and system obeys a new parity symmetry 

SR SR[ , ] 0H   

where SR

† †exp[ ( )]i b b a a   q q

q

. Note that Eq. (4-10) and Eq. (4-12) give the 

complete spectrum of the magnetopolaritons in the system for both normal and 
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superradiant phases. In order to solve Eq. (4-12), we notice that the condition 
x zL L  

allows us to make replacement: ( )
z

z

n

n

g d  
q

 where 

 
2

2 2

2

( )

( )

z

x
n

z

z

L
g

n
c

c L




 






                                      (4-13) 

is the density of the modes, therefore Eq. (4-12) becomes 

2 2 2 2

2

2 2 20
0

( 2 1)

2 2
z z

F eg x eg

j

n n

e v L N dy

c V y u

    


  

   
 


                      (4-14) 

where 

22 2

2 2z

jz
n

z

n
u

L c


  and 

2
2

2
( )z

z

n
y

c L

 
   . In order to perform the integration 

in the left hand side of Eq. (4-14), we consider the situation 1 0
znu   , therefore we 

have 
20 2

z z
n n

dy

y u u




 , thus the spectrum of magnetopolaritons can be obtained 

under condition 1 0
znu    which is plotted in Fig. 4-2(a).  

4.2  Numerical Results and Discussions  

In Fig. 4-2(a) and Fig. 4-2(b), we show the complete spectrum of the 

magnetopolariton both in normal and superradiant phases as a function of doping 

density   and magnetic field strength B  repectively. In Fig. 4-2(a), the superradiant 

phase transition occurs at 
9 2

c =2.42 10 cm   and in Fig. 4-2(b), the superradiant 

phase transition occurs at 8B mT  with our considered parameters. By analyzing the 

behavior of the excited state energy relatively to the ground state in the vicinity of the 

critical point, we find 
zv

j c    , here 1/ 2zv    is the critical exponent. The 

first derivative of the excited state energy with respect to the doping density is 

1/2j

c

d

d


 




  which diverges at the critical value, this marks the second order 

quantum phase transition. Meanwhile, we calculate the scaled ground state energy as 

2/ ( ) (1 ) / (4 )G c eg cE N       shown in Fig. 4-2(c) and Fig. 4-2(d) where we 
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scale this quantity by N  followed by normalization with respect to the lowest lying 

cavity mode frequency / ( )c zc L   . As we can see in Fig. 4-2(c) and Fig. 4-

2(d), the system indeed shows a qualitative change of the ground state energy at the 

phase transition point beyond which the system tends to stabilize itself into the 

superradiant phase.  
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Fig. 4-2 (a) Normalized frequencies of magnetopolariton both in normal and superradiant phases as a 

function of doping density   with 8B mT  and the critical density for phase transition is 

9 2=2.42 10 cm  . (b) Normalized frequencies of magnetopolariton both in normal and superradiant 

phases as a function of magnetic field B with doping density 
9 2=2.40 10 cm   and the critical value 

of magnetic field for phase transition is 8B mT  (c) The scaled ground state energy both in normal 

and superradiant phases as a function of doping density   with 8B mT . (d) The scaled ground state 

energy both in normal and superradiant phases as a function of magnetic field B with doping density 

9 2=2.40 10 cm  . The rest parameters are 100zL m , 25x zL L , / 5y zL L  and 

14.7THz radc
  being the lowest lying cavity mode frequency. With these parameters, only one 

branch of magnetopolaritons shows up (as shown in Fig. 4-2 (a), (b)) and this result is obtained with a 

cutoff value of 7zn  . 
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Fig. 4-3 Normalized frequencies of magnetopolariton for multimode versus single-mode as a function 

of doping density  . Parameters for multimode case are 8B mT , 100zL m , 25x zL L , 

/ 5y zL L  and 
14.7THz radc
  is the lowest lying cavity mode frequency. For the single mode 

case, the photonic mode frequency 14.7THz radc    . The critical density for phase transition in 

the multimode case is 9 2
c =5.32 10 cm  , this result is obtained with 1zn  . Note that the critical 

density for the single mode phase transition is 
11 2

c =4.38 10 cm   which is around 100 times larger 

than the critical density in multi-mode case. 

Fig. 4-3 shows the magnetopolariton frequencies calculated from the cases of 

multiple cavity modes coupling and single mode coupling as function of doping 

density. The result shows that the critical doping density required for superradiant 

phase transition is much smaller in multiple modes coupling than that in single mode 

coupling. This implies that we should consider a multimode cavity to experimentally 

observe the superradiant phase transition. Since we here consider the Landau 

transition of graphene under strong magnetic field, we think no graphene plasmonic 

mode will be excited in this THz range. As well, we have considered the collective 

excitation of graphene by considering the many-body interactions, the collective 

excitation of Plasmon is included in our model. 
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Fig. 4-4 (a) The scaled mean photon number as a function of doping density   with magnetic field 

8B mT . (b) electronic inversion as a function of doping density   with magnetic field 8B mT . 

(c) The scaled mean photon number and the electronic inversion as a function of the magnetic field B 

with doping density 9 2=2.40 10 cm  . The rest parameters are 200zL m , 50x zL L  and  

/ 5y zL L . 

In Fig. 4-4, we plot scaled mean photon number †a a    q qq
 and electronic 

inversion †b b    . This figure clearly illustrates that, in the normal phase, the 

system is only microscopically excited, whereas above a certain critical doping 

density both the field and electronic ensemble acquire macroscopic excitations. In the 

Fig. 4-4(c), since the degenercy 2

04 / (2 )N S l  has a linear dependence of the 

magnetic field B, therefore, we get the nearly linear dependence of the scaled 

quantities   and  . Noted that photons in the ground state of superradiant regime 



62 
 

are virtual and they cannot be escaped from the cavity in the case of time-independent 

Hamiltonians [8]. So multimode coupling of cavity photon and cyclotron transition 

can dramatically enhance the superradiant emission if we fast modulate the 

Hamiltonian compared with single mode case.  
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Fig. 4-5 Normalized frequencies of magnetopolariton both in normal and superradiant phases as a 

function of cavity dimension 
zL  with 8B mT  and the doping density is 9 2

c =1.06 10 cm  . The 

critical value of cavity dimensional for phase transition is 150zL m . The other parameters are

25x zL L , / 5y zL L . 

In Fig. 4-5, we plot the normalized magnetopolariton frequency versus the cavity 

thickness zL . / ( )c zc L    is the lowest cavity mode frequency which also 

depends on the cavity thickness zL , as we can see, the frequency of this lowest mode 

increases as the cavity size decreases. Note that for large cavities, the frequencies of 

the cavity modes become continuous, in such scenario, we cannot discard some 

higher order modes frequencies when we calculate the magnetopolariton frequencies. 

Therefore, the results become inaccurate for larger cavities. The Fig. 4-5 is plotted 

with a cutoff range with 400zL m . 

As a conclusion of chapter 4, we theoretically present the excitation spectrum of 

graphene embedded in an optical cavity under perpendicular magnetic field. We 

consider the coupling of cyclotron transition and a multimode cavity described by a 
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multimode Dicke model. The model predicts a superradiant phase transition will 

occur in graphene while such quantum phase transition does not exist in conventional 

semiconductors. The complete excitation spectrum in both the normal phase and 

superradiant phase regimes is given. In contrast to the single mode case, multimode 

coupling of cavity photon and cyclotron transition can greatly reduce the critical 

vacuum Rabi frequency required for quantum phase transition, and dramatically 

enhance the superradiant emission by fast modulating the Hamiltonian.  
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5. THEORETICAL STUDY OF AHARONOV-BOHM EFFECT 

FROM QUANTUM FIELD THEORY APPROACH 
In this chapter, we open a new research topic on the aharonov-bohm effect which is 

a diversion from the previous chapters; this topic is motivated by the author’s own 

interest in foundations of physics. For a problem with one charged quantum particle 

P moving in an electromagnetic vector potential ˆ ˆ ˆ( , )A  A  created by some other 

charged particles, the evolution of particle P can be described by the one particle 

quantum mechanics (OPQM), however, we can also treat this as a multi-particles 

problem in the framework of quantum field theory by providing a full quantization 

of the source that producing the classical vector potential ˆ ˆ ˆ( , )A  A . These two 

methods need to be equavalent, i.e., they produce the same result for the evolution of 

P. One open question is how to describe the evolution of P within the framework of 

quantum field theory and show that these two methods yield the same result? In this 

section, first we start with the discussions on the classical electromagnetic theory then 

review the Aharonov-Bohm (AB) effect within the one particle quantum mechanics 

(OPQM) framework. After that, we study the AB effect within the quantum field 

theoy framework. We provide a quantum treatment of the source of the 

electromagnetic potential and argue that the underlying mechanism in AB effect can 

be viewed as interactions between electrons described by QED theory where the 

interactions are mediated by virtual photons. On further analysis, we show that the 

framework of one particle quantum mechanics (OPQM) can be given, in general, as 

a mathematically approximated model which is reformulated from QED theory while 

the AB effect scheme provides a platform for our derivations. In addition, the 

classical Maxwell equations are derived from QED scattering process while both 

classical electromagnetic fields and potentials serve as mathematical tools that are 

constructed to approximate the interactions among elementary particles described by 

QED physics. Conclusions are given at the last of this chapter. 

5.1  Review of AB Effect From One Particle Quantum Mechanics  

Aharonov-Bohm effect has attracted tremendous research interest due to the 

conceptually importance it bears since its discovery [81], [82]. It is a fundamental 
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phenomenon of quantum interference influenced by a closed loop pierced by a 

magnetic flux, this effect was experimentally observed in metal rings in 1985 [83] 

and later in carbon nanotubes [84]. Besides its fundamental significance for quantum 

theory, it’s importance for applications in mesoscopic interferometric devices is 

omnipresent [85]–[89].  

For the AB effect, as is shown in Fig. 5-1, the magnetic field vanishes whereas the 

charged particle travel, however, this charged particle still feels an effect acted by the 

electromagnetic potential. Since the electromagnetic potential is not gauge-invariant 

and it cannot represent a physical entity, it is generally believed that the motion of a 

charged particle can be influenced by the electromagnetic fields confined to regions 

from which the particle is rigorously excluded; this attracts some researches and 

debates on the nonlocal feature in the quantum theory [90]–[99]. In the following 

sections, we are not going to join these discussions over the nonlocal feature of 

OPQM; instead we show that an alternative interpretation underlying the mechanism 

can be revealed provided a full quantum treatment of the source of the 

electromagnetic potential is undertaken within the framework of QED. Throughout 

this chapter, we use natural units in which the light velocity as well as Planck constant 

is equal to unity.  

Before we present the AB effect, let us first take a look at classical electrodynamics 

theory. In classical theory, the Hamiltonian of a charged particle in presence of 

classical potential ( , )A t x  can be given as 

21
[ ( , )] ( , )

2
H q t q t

m
  p A x x                                      (5-1) 

This gives the Lorentz equation of motion as  

2

2
[ ( ) ( ) ]

d
m q

d t t



      



x A
v A v A                                  (5-2) 

The electromagnetic field (EMF) can be introduced as 

( ) ( )

( )
( ) ( )

t, t,

t,
t, t,

t


 


  



B x A x

A x
E x x

                                        (5-3) 
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Therefore, Eq. (5-2) can be written in a more elegant form as 

2

2
( , ) ( , )

d
m q t q t

d t
  

x
E x v B x                                            (5-4) 

For the OPQM theory, we replace p  with i   in Eq. (5-1) and obtain the 

Hamiltonian of an electron in non-relativistic limit as 

21
[ ( , )] ( , )

2
H i e t e t

m
   A x x                                      (5-5) 

For the AB effect depicted in Fig. 5-1, in case of non-time-varying potential ( )A x  in 

radiation gauge, before the magnetic field is turned on in the solenoid, the electron P 

with wave-vector k  travelling along two different paths is in a super-positioned state 

as 

1 2( ) exp( ) exp( )i i    k x k x k x                                        (5-6) 

In which 1x  and 
2x  denote two separable paths as shown in the figure, the phase 

difference between the two plane waves is 
1 2( )   k x x . After turning on the 

magnetic field, one can verify that the state of the electron P becomes 

1 2

1 2
0 0

( ) exp[ ( ( ) )] exp[ ( ( ) )]i e d i e d             
x x

x k x A x x k x A x x            (5-7) 

And the phase difference will acquire a shifted value as 

( ) me d e d e        A x x B S =                               (5-8) 

in which the first integral is the circle enclosing the solenoid. Therefore, the electron 

traveling enclosing a circle will pick up a phase shift that can be measured which is 

me  where 
m  is the total magnetic flux through the closed surface. 
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Fig. 5-1. Sketch of a double-slit experiment in which the Aharonov-Bohm effect can be observed. 

5.2  Study of AB Effect Based on Quantum Field Theory  

In this section, we are going to derive the classical four-potential from QED scattering 

physics while the AB effect scheme provides a platform for our discussions. The 

Hamiltonian of QED theory without free electroic magnetic field (FEMF) is  

3 ˆˆ ˆ ˆ[ ( ) ]eH d i e A m

       x                                        (5-9) 

in which 
† 0ˆ ˆ   , ˆ ˆ ˆ( , )A  A  is the quantum electromagnetic four-potential, e  

is the coupling coefficient which is a positive constant, 
em  is electron’s rest energy 

and   are four Dirac Gamma matrices. In radiation gauge, the electromagnetic 

vector potential and Dirac electron field with fixed spin in the interaction picture are 

3
( ) ( )†

3
1,2

1ˆ ˆ ˆ( , ) [ ]
(2 ) 2

i t i t

I

d
t a e a e

    

 

    



  k kk x k x

k k

k

k
A x                    (5-10) 

3
( )

3

1
ˆ ˆ( , )

(2 ) 2

i t

I

d
t c u e


 

  
  k k x

k k

k

k
x                                   (5-11) 

where â

k  and ĉk  are photon and electron annihilation operators that satisfy 

commutation relation 
† 3 3ˆ ˆ[ , ] (2 ) ( )a a    
 


 k k k k  and anti-commutation relation 
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† 3 3ˆ ˆ{ , } (2 ) ( )c c  
 k k k k   respectively, the rest symbols are u

 

 

  
 
   

k

k

k
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k




 

where we take the positive root of each eigenvalue when taking the square root of the 

matrix in uk
 and 

1

0


 
  
 

,  are Pauli matrices; 1

2 1
2 2

1 2

1
( , ,0)k k

k k

  


  and  

2 2 2

1 3 2 3 1 2
22 2

1 2

1
( , , )

( )
k k k k k k

k k

   



k

 are two polarization directions of 

photons. Note that we omitted the positrons part in Eq. (5-11) just for simplicity of 

presentation. The free and interaction Hamiltonians are 

3

0
ˆ ˆ ˆ[ ( ) ]eH d i m     x   and 3

int
ˆˆ ˆ ˆ( )H d e A

   x  respectively. In the 

interaction picture, the time evolution operator 0
ˆ ( , )U t t  obey equation 

0 0
ˆ ˆ ˆ( , ) ( ) ( , )Ii U t t H t U t t

t





 with 0 0 0 0

ˆ ˆ( ) ( )

int
ˆ ˆ( )

iH t t iH t t

IH t e H e
  

 , the time-dependent 

perturbation theory to second order gives  

1

0 0 0

2

0 1 1 1 2 1 2
ˆ ˆ ˆ ˆ( , ) 1 ( ) ( ) ( ) ( ) ( )

t t t

I I I
t t t

U t t i dt H t i dt dt H t H t                           (5-12) 

Before we give the QED description of the AB effect, let us take a look at the 

scattering of two electrons governed by QED theory. The leading order which is the 

second order of perturbations gives 

2
4 4

1 2 1 2

( ) ˆ ˆ, [ ( ) ( )] , (2 ) ( )
2

I I

i
T dt dt H t H t p k p k 

 

 


        k p p k     (5-13) 

in which the symbol T  represents the time-ordering operator,  we have the scattering 

matrix element 
2

22( )

ie
u u u u 

  
 

 



 
  

p p k k

p p p p
 where  is the 

Minkowski metric tensor with 00 1ii    ( 1,2,3i  ) and energy-momentum four-

vector ( , )p  p p  with 2 2 2

em p = p  for on-shell electrons. The incoming and 

outgoing states are † †, 2 0c c 
p k p k

p k  and , 0 2 c c    
  

p k k p
k p  which 
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describe two electrons with the same spin and different momentum as ( )p p  and 

( )k k  respectively. We can divide   separately into two parts as 

2
0 0

22
( )

( )

i iie
u u u u u u u u   

 
   



  
  

p p k k p p k k

p p p p
                  (5-14) 

In the non-relativistic limit, 0   p p  and the second term 0iu u k k , the first 

term gives 
2

2

2
4 e

e
i m  

p p
 which is a matrix element of Coulomb potential 

expanded in momentum basis with some constant factors, i.e., 
2

1 1

ˆ
 


p p

x p p
 

with Fourier expansion formula 
3

23

1 exp( )

4 (2 )

d i

 


 

p p x

x p
; therefore, the Coulomb 

potential arises from two electrons scattering process described by QED theory. Note 

that in Eq. (5-13), we exclude the exchange interaction, that is, the transition from 

p k  and k p , later on we will explain that this transition is not allowed due 

to the constraint that we impose on the system which is that the two electrons can be 

distinguished, i.e., each of them are confined in a separable region and such constraint 

is indeed satisfied in the AB effect. Meanwhile the static EMF can be given as 

( )
4

e


 E x

x
 , and this EMF together with Coulomb potential are nothing but 

mathematical idealisations that approximate, to the second order perturbations, the 

interaction which is mediated by virtual photons propagating between the two 

electrons.  

    Now let us analyse what is happening for the AB effect using QED theory. In the 

schematic of double-slit experiment in which the AB effect can be observed as 

depicted in Fig. 5-1, the EMF is confined in the cylindrical solenoid. Suppose that 

this EMF is originally from spin and motion effects of an ensemble of electrons which 

are confined in the solenoid; this enormous number of electrons, in principle, can be 

mathematically constructed as a quantum state  , and we denote the state of an 

electron with momentum p  traveling outside of the solenoid as †2 0c
p p

p  in 
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which 0  is the vacuum state, we will name this traveling electron as P in all 

subsequent discussions. Note that for AB effect, we have the condition that the 

quantum state   is confined in the solenoid and the electron P does not penetrate 

into the solenoid; this is the separable constraint that we mentioned below Eq. (5-14), 

that is, the electron P is distinguishable from each electron in system  . It is clear 

that constructing an exact mathematical expression of   which involves a 

macroscopic ensemble of electrons in real world would be a highly non-trivial task, 

however, our target here is to provide a qualitative analysis of what happens for P 

using QED theory. 

    As stated above, we express the whole system which includes P and the ensemble 

of electrons as a quantum state , p  , we further assume that the interaction energy 

between P and   is much smaller than the free energy of P (this is due to the 

macroscopic distance between P and  ), then the evolution of P can be known, 

theoretically, using perturbation theory. We further assume that the combined system 

, p  is kept in an isolated situation and the ensemble of the electrons is in a 

macroscopically equilibrium state; therefore we expect that the state   does not 

vary macroscopically throughout the whole experimental time. Such physical 

idealization is a good approximation provided that there are no dramatic disturbances 

caused by the environment as well as significant external forces acted on , p  from 

other systems, later on we will see that this approximation can lead us to derive a 

non-time-varying classical potential ( )A x . Therefore, we can obtain the evolution 

of system , p  up to second order of perturbations as 

1

0 0 0

0

2

1 1 1 2 1 2

ˆ, ( , ) , , ,

ˆ ˆ ˆ( ) , ( ) , ( ) , ( ) ( ) ,
t t t

I I I
t t t

U t t

i dt H t i dt dt H t H t

        

           

p p p p

p p p p
 

(5-15) 

Since we do not include the photon field into the system, the first order perturbation 

term 1
ˆ, ( ) , 0IH t   p p . In the second order expression we have 
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1 2

3 3 2

1 1 1 2 2 2

ˆ ˆ, ( ) ( ) ,

ˆ ˆˆ ˆˆ ˆ, [ ( , ) ( , ) ( , ) ( , ) ( , ) ( , )] ,

I I

I I I I I I

H t H t

d d e t A t t t A t t 

      

   

  

p p

p x y x x x y y y p
   

(5-16) 

There are many terms arising from Eq. (5-16), most of them are originally from 

interactions between electrons inside of   while leaving P as unaffected, that is, 

3 3 2

1 1 1 2 2 2
ˆ ˆˆ ˆˆ ˆ[ ( , ) ( , ) ( , ) ( , ) ( , ) ( , )]I I I I I Id d e t A t t t A t t 

         x y x x x y y y p p         

(5-17) 

which do not contribute to the evolution of P. Thus, in all subsequent discussions, the 

results obtained from Eq. (5-16) only include the interactions between   and P. 

Note that solving Eq. (5-16) would be highly non-trivial, however, we can compare 

this expression with Eq. (5-13) and see that the underlying mechanism would not be 

different with the scattering between two electrons described by QED theory, the 

interaction between states   and p  is mediated by the virtual photons 

propagating between them. 

    Next we are going to show how the classical four-potential arise from the 

framework of QED. We note that in the interaction picture, the field operators of Eq. 

(5-10) and Eq. (5-11) display a rotating-time-dependence through the mathematical 

expression 
i te 

, for the macroscopically stationary system  , this rotating-time-

dependence would allow us to make an approximation as 

0 0
ˆ ˆ( T, ) , ( , ) ,U t t U t t   p p  in which T 2 /   which means that the effects 

on P caused by the variations of any electrons’ state inside of   would be cancelled 

away in a long term by other variations within the state   itself; this is the mean 

field approximation. Therefore we can remove this rotating-time-dependence by 

integrating over an infinite time period; this integration would usually generate an 

overall energy conservation constraint given by a Dirac delta function as displayed 

in Eq. (5-13). Thus, For the second order term in Eq. (5-15), we replace the state 

, p  with , p  which is the tensor product of a free state of P with momentum 

p  and the initial state  , i.e., , 0 2 c  
    

p p
p , we obtain the result as 
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2

2 1 2 1 2

( ) ˆ ˆ( , ) , ( ) ( ) ,
2

[ ]QED

I I

i
S T dt dt H t H t

 

 


    p p p p                 (5-18) 

in which 2 ( , )QEDS p p  is a function of the initial and final momentum of the electron 

P and note that 2 ( , )QEDS p p  does not cover the internal interactions expressed by Eq. 

(5-17). By tracing out   , the mathematical structure of function 2 ( , )QEDS p p  

depends on  the configurations of the ensemble of electrons which can be seen as a 

generating source. Note that it is legitimate to perform the time integration over an 

infinite period provided that the state   is macroscopically stationary, the methods 

above will not be valid in cases of a time-varying state ( )t  driven by some other 

external forces generated by a third party system interacting with  . Furthermore, 

we obtain the matrix elements of evolution operator expanded in momentum basis up 

to the second order as  

0 2
ˆ( , ) ( , ) , ( , ) ,QED QEDS S U       p p p p p p                        (5-19) 

in which 0 ( , ) , ,QEDS    p p p p  and ˆ ( , )U    is just Eq. (5-12) with t    and 

0t   , next we are going to show how the classical potentials arise from 

2 ( , )QEDS p p .  

    For AB effect described within OPQM framework, the system now in 

consideration is the electron P, in case of a static four-potential ( )A x , the OPQM 

Hamiltonian can be given as  

0[ ( ) ]eH i e A m

     x                                         (5-20) 

in which the interaction energy is 0

int ( ) ( )H e A

  x x  with 

( ) [ ( ), ( )]A  x x A x  and free energy is 0

0 ( )eH i m    . By comparison, we 

note that the photon field operator Â  in Eq. (5-9) has been replaced by a function 

( )A x  in Eq. (5-20); next we are going to explain how the function ( )A x  arises 

from QED theory. In the interaction picture of OPQM, we have the interaction energy 

and evolution operator as 



73 
 

0

0 0 int 0 0

0

( ) exp[ ( )] ( ) exp[ ( )]

( , ) exp[ ( )]{ }

I

t

I
t

H t iH t t H iH t t

U t t T i dt H t

   

   

x

                        (5-21) 

Similar as Eq. (5-12), we can expand 
0( , )U t t  in perturbation series up to the leading 

order which is the first order as 

0
0 1 1( , ) 1 ( ) ( )

t

I
t

U t t i dt H t                                             (5-22) 

In order to make a comparison of the dynamical formalism of the electron P between 

QED and OPQM, we need to apply the same method to remove the rotating-time-

dependence in Eq. (5-22). By integrating over an infinite time period then we can 

obtain the matrix elements of 
0( , )U t t  expanded in momentum basis as 

( , )U  p p . After plugging ( )IH t  from Eq. (5-21) into ( , )U  p p , we 

get results containing 2 ( )   p p  which put an energy conservation constraint on 

the initial and final state of the electron P, this appears as a serious problem in the 

formalism of OPQM since we nearly get an identity matrix ( , )U   . One may 

notice that this problem can be fixed by introducing another subsystem interacting 

with P, under this condition, the free energy 0H  in Eq. (5-21) will cover both the 

electron P and this subsystem, the overall energy is conserved by performing the time 

integration. Bearing in mind that our target is to derive the classical four-potential 

( )A x  from QED process, therefore, we can just focus on the dynamical evolutions 

of the electron P described by QED and OPQM respectively. We get the dynamical 

transition matrix expanded in momentum basis up to the first order of perturbations 

as 

0 1( , ) ( , ) ( , )S S U     p p p p p p                               (5-23) 

in which 1 1 int( , ) ( )S iC H  p p p x p  is the first order transition matrix. The 

constant factor 1C  carries an inverse energy dimension which may indicate the 

overall energy conservation obtained from the infinite-time-integration technique. 

For the zeroth order perturbation expansion 0 ( , )S  p p p p , if we attach the other 
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subsystem such as  , we would obtain an additional term as    which also 

appears in Eq. (5-19). The information of a non-trivial dynamical transition between 

the states of electron P is carried by the first order perturbation term 
1( , )S p p . For 

the AB effect depicted in Fig. 5-1, in order to get the OPQM transition matrix from 

QED theory, we divide the combined system , p  into two separable systems, that 

is, 

ˆ ˆ ˆ,QED QEDU U U   p p                                      (5-24) 

in which Û  is Eq. (5-22) and ˆ
QEDU  is Eq. (5-12) and the right hand side of Eq. (5-24) 

is a tensor product of two systems which are   and the electron P. The left hand 

side of Eq. (5-24) is the evolution of the combined system , p  governed by the 

QED theory, the right hand side is the evolution of  , which is governed by QED 

theory, and the evolution of P which is governed by OPQM theory, these two kinds 

of descriptions of the evolution of system , p  need to be equivalent. Practically, 

if we are only interested in the evolution of P, then we need to construct the OPQM 

theory to describe P which is Û p , however, we still get another system  , thus, 

we just tensor product it with P. The Eq. (5-24) holds under the condition that the 

electron P is distinguishable from any electron inside of the system  , this means 

that the state of P, which is †2 0c
p p

p , is orthogonal with any electron’s state 

inside of   during the evolution and the exchanging between the electron P with 

any electron inside of   is not allowed, such separable condition, the same as what 

we mentioned below Eq. (5-14), is satisfied in the AB effect since the electron P is 

travelling outside of the solenoid while the system   is confined in the solenoid as 

depicted in Fig. 5-1. Moreover, the Eq. (5-24) holds under the approximation that the 

influence on system   acted by the electron P is negligible, therefore, the evolution 

of the system   is fully controlled by the internal interactions expressed by 

ˆ
QEDU  . Indeed, for a macroscopic system   involving N  electrons, the 
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evolution of any electron inside of   is controlled by the other 1N   electrons 

plus the electron P, therefore, it would be reasonable that we only omit the effect 

caused by the single electron P in case that N  . The Eq. (5-24) will not be valid 

in cases of a time-varying state ( )t  driven by some other external forces 

generated by a third party system interacting with  , this is due to the fact that the 

evolution of system   cannot be expressed as ˆ
QEDU   in presence of some 

external forces. Meanwhile, the influence on P caused by the system   is 

expressed by the OPQM evolution operator Û , therefore, this Û  is dependent on the 

system   and our target is to construct the appropriate Û  to satisfy the Eq. (5-24). 

Furthermore, we product the state , 0 2 c  
    

p p
p  from left on both sides 

of Eq. (5-24) and get  

ˆ ˆ ˆ, ,QED QEDU U U     p p p p                           (5-25) 

in which , p  is the tensor product of an free state of P with momentum p  and 

the initial state of system  , the right hand side can be given as the product of two 

matrix elements under the separable condition. To be specific, we denote the N  

electrons state   as 

1 2 1 2

† † †22 0
N N

N

c c c    k k k k k k
                               (5-26) 

in which †

j
c

k ( 1,2, ,j N ) represents the creation operator of a free electron state 

with momentum jk , we have the condition that any two electrons’ states are 

orthogonal, i.e., †0 0
i j ijc c 

k k , by Pauli exclusion principle. The left hand side of 

Eq. (5-25) can be written as 

0 2
ˆ ˆˆ, , , , , ,QED QED

QEDU S S          p p p p p p             (5-27) 
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in which 0
ˆ, ,QEDS     p p p p  under the separable condition, note that 

the first order 1
ˆ, , 0QEDS   p p . The second order term can be written as two 

parts, that is, 

2

2 2

1 1

ˆ, ,

ˆ ˆ( 1) , ,

QED

N N
QED i j QED

i j

i j

S

S S i j

 

  

         

p p

p p p k k p
         (5-28) 

in which † †, 2 0
j jj c c  p k k pk p  and , 0 2

i ii c c  
 

p k p k
p k . The first term 

on the right hand side of Eq. (5-28) is the internal interactions inside of system   

leaving the electron P unaffected which is the same as Eq. (5-17), the second term 

express the interactions between P and the system  , later on we will see that the 

first order OPQM transition matrix arise from this term. j   is defined as the 

state of the remaining system after the removal of 
jk , that is, 

1 1 1 1 1 1

1

† † † †22 0
j j N j j N

N

j c c c c   
   



  k k k k k k k k
                 (5-29) 

Similarly, the state i   is 

1 1 1 1 1 1

1

20 2
i i N N i i

N

i c c c c   
   



  k k k k k k k k
                   (5-30) 

The right hand side of Eq. (5-27) expanded in leading order of perturbations can be 

given as 

2 1

ˆ ˆ

ˆ ˆ

QED

QED

U U

S S

  

           

p p

p p p p p p
             (5-31) 

Compare Eq. (5-31) with Eq. (5-29) and Eq. (5-30), we get 

1 2

1 1

ˆ ˆ( 1) , ,
N N

i j QED

i j

i j

i j
S S

 

  
  

 
p p p k k p                 (5-32) 
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For the terms with i j , 0i j     due to the Pauli exclusion principle, 

therefore, we get 

2

1

1

ˆ, ,
ˆ

QED
N

j j

j j j

S
S




 

p k k p
p p

k k
                                 (5-33) 

For a two electrons system , , p k p , the first order transition matrix can be 

given as 

2

1

ˆ, ,ˆ
QEDS

S


 
p k k p

p p
k k

                                    (5-34) 

Thus, in order to determine the mathematical structure of ( )A x , we can divide 

1 1
ˆ( , )S S p p p p  into two terms as 

0

1 1( , ) ( ) ( )( )S ieC      p p p x p p A x p                       (5-35) 

To be more specific, let us take a review of two electrons’ scattering process governed 

by QED physics. By comparing Eq. (5-35) with Eq. (5-14), note that in this case 

1 2 ( )C         p k p k , 
†2 0c  

k k
k , the state of the electron P is 

iu e  p x

px p  with ˆ0 ( )x x  and †2 0c
p p

p , with the application of Eq. 

(5-34), the classical potentials can be given as 

03

23

3

23

( ) exp( )
2 (2 )

( ) exp( )
2 (2 )

i
i

u ue d
i

u ue d
A i




 



 


 


 





k k
k

k

k k
k

k

q
x q x

q

q
x q x

q

                                 (5-36) 

with  q p p . Note that the classical four-potential given above is negative due to 

the positive coupling constant e , this agrees with what we have been taught in 

classical physics: the electrons which carry negative charges create negative 

potentials. One may also notice that in the above expression of ( )A

k x , we neglected 

2( )  p p  in the denominator, this is due to the fact that the potential ( )A

k x  cannot 
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be formulated as space-coordinate functions by including 2( )  p p
, therefore, the 

mathematical structure of OPQM fails to provide a precise description of the high 

energy particles’ interactions since the potential ( )A

k x  cannot be well defined in the 

high energy domain and it only arise from low energy physical phenomena, more 

discussions over such point of view can be seen in Appendix D. The electron static 

four-current can be given as 

3

3
( ) ( ) exp( )

2 (2 )

e d
j u u i 

 

 
  k k k

k

q q
x q x

q


                          (5-37) 

this gives the static classical Maxwell equations as 

2 ( ) ( ) ( )A j    k k kx A x x                                     (5-38)                                                       

Note that we have the expression 



 q

q
 inside of the four-current ( )jk x  given 

above, that is, we subtract the component which is parallel to the momentum q , this 

ensures the total classical charge conservation given as ( ) 0j k x . Meanwhile, the 

transition matrix 1( , )S p p  obtained from 2 ( , )QEDS p p  via Eq. (5-34) does not 

depend on the gauge that we choose, however, the four-potential ( )A

k x  given in Eq. 

(5-36) do depend on the gauge, which is the Feynman gauge in our case, that we 

apply to calculate 2 ( , )QEDS p p , one can also try to apply other gauges to derive 

different mathematical expressions of ( )A

k x .  

    As we can see, the expression ( )A

k x  obtained from Eq. (5-36) carries a state k  

dependency, this agrees with what we mentioned earlier below Eq. (5-18), i.e., the 

structure of 2 ( , )QEDS p p  depends on the configuration of  . As we can see now, 

the “source” of the stationary classical four-potential ( )A x  can be traced back to a 

relativistic quantum field, i.e., the Dirac electron field which we denoted as state   

in this scenario, the mathematical expressions of ( )A x  appear to be completely 

arbitrary in real situations due to the fact that the limitless configurations of the state 

  can be found in real world. Note that the infinite-time-integration approach 
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cannot be applied in case of a time-varying function ( , )A t x  to the derivations from 

Eq. (5-22) to Eq. (5-23). Indeed, we expect to obtain a time-varying function ( , )A t x  

in case of a macroscopically-varying state ( )t  driven by some external forces and 

such external forces would be generated by a third party system interacting with  , 

some specific examples with external forces can be a subject for future investigations. 

Now it is clear that, in the AB effect, it does not matter whether the EMF are zero or 

not in the region where P can enter, the underlying mechanism is the interactions 

between P and   while such interactions are mediated by virtual photons.  

    In summary, since the basic building blocks of nature are mathematically 

constructed as relativistic fields in quantum field theory framework, we believe that 

the macroscopic phenomenon or classical and OPQM theories originally arise from 

the collective effects among these fundamental quantum fields. With this belief, we 

reviewed physical theories from microscopic world to macroscopic world, that is 

from Eq. (5-9) to Eq. (5-20), i.e., from QED to OPQM then from OPQM, we now see 

clearly how physical quantities, such as the classical potential ( , )A t x  and EMF 

introduced from Eq. (5-3), were developed step by step. Since we showed that the 

OPQM is just an approximated model which arises from quantum field theory, 

therefore all the physical phenomena that are predicted by OPQM can find their 

counterpart explanations in quantum field theory, including the AB effect. In fact, the 

nonlocal feature in AB effect can be interpreted as the manifestation of virtual 

photons propagating between electrons in the framework of QED. At last, we note 

that the introduction of EMF from Eq. (5-3) become essential only in classical physics 

since, as we can see in Eq. (5-4), the EMF is directly linked with velocity and 

acceleration, which can be easily measured, of macroscopic objects.  
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6. CONCLUSIONS 

As conclusions of this thesis, we theoretically investigated the cavity QED in some 

2D materials such as monolayer MoS2, BP and graphene systems under perpendicular 

magnetic field. The results show that these systems can enter the ultrastrong light-

matter coupling regime. But, in contrast to conventional semiconductors, these 2D 

systems show a quantum phase transition. In monolayer MoS2 resonator, electron-

hole asymmetry can still play an important role in determining magnetopolariton 

dispersion which is different from monolayer graphene system. Moreover, in contrast 

with some other 2D materials, the monolayer BP system shows three branches of 

polaritons and the energy gap between these polaritons is much larger, this is caused 

by the anisotropic behavior displayed in the tight binding Hamiltonian of the BP 

system. For the graphene system, we considered the coupling of cyclotron transition 

and a multimode cavity described by a multimode Dicke model. In contrast to the 

single mode case, multimode coupling of cavity photon and cyclotron transition can 

greatly reduce the critical vacuum Rabi frequency required for quantum phase 

transition, and dramatically enhance the superradiant emission by fast modulating the 

Hamiltonian. Our study provides a theoretical foundation for the observation and 

investigation of cavity QED for fundamental studies and quantum applications in 

these 2D systems.  

At the last chapter, we studied the AB effect within the quantum field theoy 

framework. We provide a quantum treatment of the source of the electromagnetic 

potential and showed that the underlying mechanism in AB effect can be viewed as 

interactions between electrons described by QED theory where the interactions are 

mediated by virtual photons. We further showed that the framework of one particle 

quantum mechanics (OPQM) can be given, in general, as a mathematically 

approximated model which is reformulated from QED theory. In addition, the 

classical Maxwell equations are derived from QED scattering process while both 

classical electromagnetic fields and potentials serve as mathematical tools that are 

constructed to approximate the interactions among elementary particles described by 

QED physics. This work serves as a link from quantum field theory to one particle 

quantum mechanics and also shed a new light on the nature of the electromagnetic 

vector potentials. 
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APPENDIX A  

In this appendix, we are going to briefly introduce the concept of LLs which comprise 

important parts in the first part of our work and meanwhile plays a major role in the 

magnetic properties of solid materials. For a charged particle placed in a constant 

magnetic field (0,0, )BB =  which lies along the z  axis, the Hamiltonian can be 

given as 

2

2
H

m


p
                                                          (A1) 

In which the canonical momentum p  is 

i q  p A                                                     (A2) 

Landau levels in Landua gauge 

In Landau gauge with the electromagnetic vector potential (0, ,0)BxA = , the 

Schrödinger equation becomes 

2( )

2

i q
H E

m
  

 


A
=                                        (A3) 

Upon substitution of (0, ,0)BxA =  into Eq. (A3), we get 

2
2 2[ ( ) ] ( , ) ( , )

2
x y

qBx
i x y E x y

m
                                   (A4) 

Now we see that this Hamiltonian is independent of y , therefore, we can separate the 

wavefunction ( , ) exp( ) ( )x y iky x  . Upon the introduction of the cyclotron 

frequency c

qB

m
  , the Eq. (A4) can be written in a more elgant form as 

22
2 2[ ( ) ] ( , ) ( , )

2 2

yc
x

c

im
x x y E x y

m m


 




                              (A5) 

Next we replace ( , )x y  using exp( ) ( )iky x , we obtain 
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22
2 2[ ( ) ] ( ) ( )

2 2

c
x

c

m k
x x E x

m m


 


                                  (A6) 

Notice that Eq. (A6) is the Schrödinger equation of 1-D quantum harmonic oscillator 

except with the minimum of the potential shifted in coordinate space by 
0

c

k
x

m
 . 

Thus, the energy spectrum is identical to those of the standard quantum harmonic 

oscillator problem with 

1
( )

2
n cE n                                                     (A7) 

In which n  can be any non-negative integers. Meanwhile, the eigenstates can be 

given as 

0( , ) exp( ) ( )nx y iky x x                                              (A8) 

In which 0( )n x x   is the wavefunction of the standard quantum harmonic oscillator 

( )n x  with the coordinated space shifted by 0x . 

Landau levels in symmetric gauge 

In symmetric gauge, the vector potential can be written as 

1
( , ,0)

2
By BxA =                                                  (A9)  

With this choice of vector potential, the Hamiltonian of the charged particle in the 

magnetic field can be given as 

2
2 2[( ) ( ) ]

2 2 2
x y

qBy qBx
H i i

m
                                    (A10)       

Introducing new operators 

†

1
[( ) ( )]

2 22

1
[( ) ( )]

2 22

B y B x

B B

B y B x

B B

y x
a l i l

l l

y x
a l i l

l l

     

     

                                (A11)   
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in which 
Bl

qB
  is the magnetic length and the bosonic operators satisfy the 

communation relation †[ , ] 1a a  . Upon substitution of new operators into Eq. (A10), 

we obtain 

† 1
( )

2
cH a a                                                 (A12)       

Therefore, the energy spectrum can be given as 

1
( )

2
n cE n                                                 (A13)          

in which n  indicate the Landau level index. 
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APPENDIX B 

In this appendix, we discussed three quantization cases for the optical modes in the 

cavity following the Ref. [100].  

The cavities that we are going to discuss are enclosed by rectangular walls having 

length xL , yL  and zL  in three directions respectively. The electromagnetic vector 

potential in the cavity can be written as 

† †

1,2 0

( )
2

em

c

a a   
  

 A u u                                        (B1) 

In which 
c  is the frequency of the electromagnetic fields, 0  is the dielectric 

constant of the vacuum and   is the dielectric constant of the 2D material under study. 

Following the discussion of Ref. [100], we are going to discuss three cases of cavities. 

Case 1.  We assume that xL , y zL L  and the wall in the z  direction is perfectly 

conducting. The wave-vector in this case can be given as  

22
( , , )

yx z

x y z

nn n
=

L L L

 
k                                               (B2) 

in which ( , , )x y zn n n  are integers and the two  independent cavity modes in Eq. (B1) 

can be given as 

21

sin( )cos( )cos( ) sin( )sin( )
2 2

sin( )cos( )sin( ) , sin( )cos( )

cos( )sin( ) 0

y yx x

z z

ik y ik yik x ik x

z z

z

i k z i k z

u e e i k z u e e i k z
V V

k z

  

  



   
   

    
      

        

(B3) 

In which V  is the volume of the cavity and the spherical angle ( , )   can be 

determained upon specific values of ( , , )x y zn n n  using the relation 

(sin ,sicos sin con s ),=     k k  with Eq. (B2).   

Case 2.  We assume that the wall in the y  and z  direction are perfectly conducting. 

The wave-vector in this case can be given as  
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2
( , , )

yx z

x y z

nn n
=

L L L

 
k                                                 (B4)   

The two independent cavity modes can be given as 

2

1

sin( )sin( )cos( )cos( )
2

sin( )cos( )cos( )sin( )

cos( )sin( )sin( )

sin( )sin( )sin( )
2

sin( )cos( )cos( )

0

x

x

z y

ik x

z y

z y

z y

ik x

z y

i k z k y

u e i k z k y
V

k z k y

i k z k y

u e k z k y
V

 

 







 
 

  
  

 
 

  
 
 

                            (B5)     

Note that in this case, for the situation 0yk   or 0zk  , 
2

V
 in Eq. (B5) needs to be 

replaced by 
2

V
. 

Case 3.  We assume that the walls in all three directions are perfectly conducting. 

The wave-vector in this case can be given as  

( , , )
yx z

x y z

nn n
=

L L L

 
k                                                     (B6)   

The two independent cavity modes can be given as 

2

1

sin( )sin( )cos( )cos( )cos( )
8

sin( )cos( )sin( )cos( )sin( )

cos( )sin( )sin( )sin( )

sin( )sin( )cos( )sin( )
8

sin( )cos( )sin( )cos( )

0

z y x

z y x

z y x

z y x

z y x

k z k y k x

u k z k y k x
V

k z k y k x

k z k y k x

u k z k y k x
V

 

 







 
 

  
  

 
 

  
 
 

                         (B7)      

 

APPENDIX C 

    Here, we are going to obtain the classical EMF from the multi-particle interactions 

treated in the framework of QED theory. The following discussions will be based on 
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a mathematical model chosen for convenience and the complex real-world situations 

would be comprised of all kinds of configurations of atoms that involve other 

quantum particles, such as protons and neutrons, which are beyond our discussions. 

Therefore, the “source” of the classical potential ( )A x  are made of N  electrons 

which can be constructed as a quantum state  ; note that N  is a very large number 

in order to produce some significant effects on P at a macroscopic distance as shown 

in Fig. 5-1. We now write   in Slater determinant form as 

1 21 1 1

1 22 2 2

1 2

1

!

N

N

NN N N

N

  

  

  

                                          (C1) 

in which 
j i

  represents that the electron i  is in state 
j . For the second order 

perturbation term of Eq. (5-16), we have  

3 3 2

1 1 1 2 2 2
ˆ ˆˆ ˆˆ ˆ, [ ( , ) ( , ) ( , ) ( , ) ( , ) ( , )] ,I I I I I Id d e t A t t t A t t 

        p x y x x x y y y p      

(C2)                        

Plug Eq. (C1) into Eq. (C2), we can exclude the terms arising from interactions 

between the N  electrons within   since these interactions are irrelevant to the 

evolution of P. Next we are going to find out how the multi-particle classical 

potentials emerge from Eq. (C2). For macroscopically charged particles, they are well 

localized in space, this localization can be matched by demanding that the state of 

each electron j  is confined in a different small volume 3

jx  such that the orthogonal 

condition 
i j ij    is valid, therefore, Eq. (C2) can be transformed into 

3 3 2

1 1 1 2 2 2

1

ˆ ˆˆ ˆˆ ˆ, [ ( , ) ( , ) ( , ) ( , ) ( , ) ( , )] ,
N

j I I I I I I j

j

d d e t A t t t A t t 

        


 p x y x x x y y y p  

(C3) 
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up to a factor 
N

m m
m j

 


 , which is contributed from the rest 1N   electrons, in 

front of each summation term in Eq. (C3). The Eq. (C3) indeed displays a very clear 

physical picture, the potential energy of P in the presence of N  electrons is the 

summation over all individual contributions of these electrons, we can also find its 

counterpart in classical physics, i.e., the electrostatic potential energy of a point 

charge q  in the presence of other N  point charges equals to the summation over all 

the contributions of these point charges. Therefore, in order to simplify the 

subsequent calculations without losing the physical insight, we replace the general 

state 
j  with a free quantum state 

jk , perform the infinite-time-integration for 

Eq. (C3), by using Eq. (5-33) we obtain the first order scattering matrix of OPQM as 

4 2

0 0

1 2
1

(2 ) exp[ ( ) ]
( , ) ( )

j j j j

N
j i i

j j j

i e i
S u u u u u u u u


    



   
  


 p p k k p p k k

p p x
p p

k k p p
         

(C4) 

in which the factor exp[ ( ) ]ji   p p x  is to indicate that each electron’s state 
jk  in 

the ensemble is well localized in a small volume 3

jx . Similar as what we have done 

for two electrons scattering case and notice that 3(2 ) 2
jj j  

k
k k , the 2  inside 

of Eq. (C4) will be cancelled by the factor 1C  in Eq. (5-23). Hence, with Feynman 

gauge applied, after a short algebra we can obtain the classical multi-particle 

potentials as 

0 3

23
1

3

23
1

1
( ) exp[ ( )]

2 (2 )

1
( ) exp[ ( )]

2 (2 )

j j

j

j j

j

N

j

j

i
N

i

j

j

eu u d
i

eu u d
A i




 



 






  


  

 

 

k k

k

k k

k

q
x q x x

q

q
x q x x

q

                  (C5) 

The above expression can be brought into a more elegant form as 

1

( )
8

j j

j

N

j j

eu u
A














k k

k

x
x x

                                               (C6) 
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the electron static four-current can be given as  

3

3
1

( ) ( ) exp[ ( )]
2 (2 ) j j

j

N

j

j

e d
j u u i 

 

 
     k k

k

q q
x q x x

q


                 (C7) 

this gives the static classical Maxwell equations as 

2 ( ) ( ) ( )A j    x A x x                                      (C8) 

The classical fields ( )E x  and ( )B x  can be introduced following the relation defined 

in Eq. (5-3) as 

3
1

3
1

( )
( )

4

( )
( )

8

j j

j

N
j

j
j

N
j

j
j

e

eu u









 




  







k k

k

x x
E x

x x

x x
B x

x x


                                      (C9) 

Note that the electric field does not depend on the energy of the electrons in the 

ensemble due to 0 2
j j j

u u 
k k k . Again, the classical fields given in Eq. (C9) will 

play significant roles in classical physics formulated as Lorentz equation of motion 

and they play no role in the theoretically formulation of both QED and OPQM. We 

can further obtain the static Maxwell equations written in EMF form as 

0( ) ( )

( ) ( )

j

j

 

 

E x x

B x x
                                                (C10) 

which are Gauss’ Law and Ampere’s Law respectively for static classical 

electromagnetic fields. 

    In the low energy interaction process, we have 0
j j

iu u 
k k , then the Eq. (C6) 

reduces to the multi-electron Coulomb potential as 
1

( )
4

N

j j

e








x

x x
. This is 

what we expected earlier: the dynamical evolution of one electron governed by 

OPQM with the classical potentials agrees with QED theory up to the leading order 

of perturbations.  
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APPENDIX D 

    One may believe that the EMF correspond to some real entities of nature, contrary 

to this belief, we are going to provide more evidence here to show that EMF is nothing 

but a calculation tool. Before we present our argument, let us try to locate the origin 

of the misleading conception. In classical theory, we argue that the necessity for the 

introduction of EMF through Eq. (5-3) which also induces people to believe that EMF 

corresponds to real entities of nature lies inside of Eq. (5-4). As we can see, the fields 
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( , )tE x  and ( , )tB x  can be uniquely identified through Eq. (5-4) with the 

information of the acceleration and velocity of the charged particle. This fact induces 

people to believe that function ( , )tE x  and ( , )tB x  correspond to some real entities 

of nature since they seem can be uniquely valued at every space-time point. However, 

this follows the belief that the acceleration and velocity of the charged particle 

correspond to some real quantities and can be uniquely valued at every space-time 

point along the trajectory. Now we see that in order to uniquely identify one quantity 

we need to uniquely identify another since these quantities are bonded together in one 

equation, measuring quantities ( , )tE x  and ( , )tB x  precisely at every space-time 

point request us to treat the particle as a single space-time point which has no size, 

this condition is too unrealistic to be satisfied in classical physics, it demands more 

internal structures of the macroscopic particle. However, we know that for 

microscopic particles, the velocity along a trajectory is not well defined due to 

uncertainty principle, this makes Eq. (5-4) as well as the bond break down in the 

micro-world. Therefore, for AB effect depicted in Fig. 5-1 based on OPQM theory in 

radiation gauge, we get the wave-function of the electron as 

0
exp( ( ) )i e d    

x

A x x p  in case of non-time-varying vector potential, the 

electron traveling enclosing a circle will pick up a phase shift that can be measured 

which is ( ) m
S
e d e  B x S =  where 

m  is the total magnetic flux through the closed 

surface, however, remind that two wave-functions with the phase difference of 2n

( 1, 2n    ) still cannot be distinguished. Therefore, neither classical physics nor 

quantum physics can uniquely quantify ( , )tE x  and ( , )tB x  precisely at every space-

time point. This comes as expected actually, since we already argued that the classical 

potential ( , )A t x  together with classical EMF defined by Eq. (5-3) is emergent 

property and arises from QED process. In Eq. (5-4), EMF is introduced to 

approximate the interactions between charged particles governed by quantum physics.  

    At this stage, we argue that different physical quantities along with different 

theories arise at different spatial-temporal scales, the most fundamental nature law at 

the deepest level may be unique; however, the ignorance of the detailed structures at 

smaller scales permits physicists to create theories that are approximately effective at 
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larger scales. Moreover, physicists create mathematical equations which give 

predictions of the evolutions of nature and the mathematical form of the physical 

quantities on both sides of the equation needs to be constructed consistently in order 

to fit the equation form. As we can see from our derivations of the classical potentials 

given in Eq. (C6), this mathematical form of the classical four-potential is constructed 

to fit the framework of OPQM in order to give the same predictions with QED theory 

in low energy limit. Hence, if we view the physical laws from micro-world to macro-

world, the emergence of ( , )A t x  follows from the mathematical construction of the 

framework of OPQM while the EMF follows from the Lorentz force equation, or 

equivalently we can say these quantities are bonded with the framework of OPQM 

and framework of Lorentz force equation respectively. This is the same situation as 

the two different approaches, which are based on Hamiltonian (Heisenberg approach) 

and Lagrangian (Feynman Path Integral), to quantum mechanics, these two 

approaches are equivalent, one should not be confused over this ill-defined question: 

whether Hamiltonian or Lagrangian are real entities of nature; since these quantities 

are bonded in the framework of the two different approaches respectively, in a sense 

that these quantities cannot be divorced from their frameworks and nature does not 

specify what they are without referring to what roles that they play in the frameworks. 

To be more specific, let us just simply multiply by 2 on both sides of Eq. (5-4) and 

rescale the quantities 2m m  , ( , ) 2 ( , )t t E x E x  and ( , ) 2 ( , )t t B x B x  such that 

the equivalence relation with the rescaled quantities still holds [that is, if we revalue 

the mass of every macroscopic object in our universe, the EMF has to be revalued 

accordingly], in this way, the new equation with the rescaled quantities works just as 

good as the old one in a sense that nature does not tell us which one we should use 

and which quantity, that is ( , )tE x  or ( , )tE x , should be defined as the real physical 

entity of nature. Therefore, in this case we can safely speak that, at this macroscopic 

scale, only the equivalence relation in Eq. (5-4) is the real thing that we should stick 

with, any transformation of Eq. (5-4) with new defined quantities must 

mathematically maintain such equivalence relation in order to give the same physical 

measurement predictions, this is also what happens from Eq. (5-2) to Eq. (5-4). 

Alternatively, we can rescale the strength of EMF and the charge q  instead of m  in 

Eq. (5-4) then the above argument also applies. Moreover, quantities defined at one 
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scale may break down at another scale, such as color or the temperature of an object 

which cannot be well defined at the microscopic scale since they are originally from 

something else that are more fundamental, the similar argument applies to the 

classical potential ( , )A t x  and EMF which arise originally from low energy QED 

physics. In addition, EMF plays no role in the mathematical constructions of OPQM 

and QED framework, QED and OPQM are complete theories even without the EMF 

as we can see in Eq. (5-9) and Eq. (5-20). Next we are going to provide another 

evidence which reaffirm our statement. 

    Suppose that there exist a static classical field ( ) 0E x  and ( , ) 0t B x  

somewhere in the “source” free region, for simplicity, we assume that the polarization 

of ( )E x  is in the z  direction in reference frame ( , )t x , i.e., ( ) ( ) 0x yE E x x . 

Therefore, the static field ( )zE x  can be given as 

3
( ) † ( )

3
( ) [ ( , ) ( , ) ]

(2 )

i t i t

z z z

d d
E i E e E e 

 


     
k x k xk

x k k                      (D1) 

in order to get a non-time-varying function ( )zE x , we require ( , ) ( ) ( )zE f  k k  

in which ( )   is the Dirac-Delta function and ( )f k  is a function of wave-vector k . 

Next we perform a Lorentz boost with velocity v  in z  direction and obtain a new 

field ( , )zE t  x  written in ( , )t x  frame with relation 

( , ) ( , )z zE t E t   x x                                               (D2) 

The modes expansion of ( , )zE t  x  can be given as 

3
( ) † ( )

3
( , ) [ ( , ) ( , ) ]

(2 )

i t i t

z z z

d d
E t i E e E e 

 


            
         

k x k xk
x k k             (D3) 

In the new reference frame we have 
( )

( )

t t vz

z z vt





   
 
   

 and 
( )

( )

z

z z

vk

k k v

  

 

   
 
   

 with 

21/ 1 v   . Therefore, we can obtain the relation ( , ) ( , )z zE E   k k  as a result 

of Eq. (D2) and 
( ) ( )i t i te e       k x k x

, i.e., the Fourier components of field ( )zE x  does 

not change in the new reference frame. This result is also what we expect in quantum 
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field theory: the probability corresponding to measurement outcomes must be a 

Lorentz invariant. Plug relation ( , ) ( ) ( )zE f     k k  into Eq. (D3), after 

integrating over frequency   we find a nonzero value at 
zvk   . Therefore, we 

have brought a non-time-varying field ( )zE x  into a time-varying field ( , )zE t  x  by 

a Lorentz boost. Furthermore, we note that something interesting appears: measured 

in reference frame ( , )t x , the phase velocity of the modes ( )i te      k x  in ( , )zE t  x  

can be given as zvk
u


 

k
, therefore, the modes which comprise the field ( , )zE t  x  

are propagating at speed u v   which is slower than light. Thus, the modes in 

( , )zE t  x  cannot be photons, in fact, neither ( , )zE t  x  nor ( )zE x  can be quantized to 

bring out photons. The reason is, as we showed in our main text of this article, the 

EMF are emergent quantities and are not directly linked with some elementary 

particles, i.e., photons in this scenario.  

    At this stage, one may wonder whether it is still necessary to treat the EMF as 

Lorentz tensors which follow the Lorentz transformation rules. To answer this 

question, let us focus our attention on Eq. (5-20). As we can see from Eq. (5-20) (a 

more clear observation will be from its Lagrangian rather than Hamiltonian), in order 

to give a self-consistent theory, the potentials ( , )A t x  need to follow the 

transformation the same way as   do which is a Lorentz space-time four-gradient. 

At first sight, we seem to run into some kind of troubles here since the theory request 

us to treat these emergent quantities as Lorentz tensors. Indeed, our physical theories 

demands that the mathematical form of physical entities need to be constructed as 

tensors which transform following the Lorentz transformation rules. However, we are 

also allowed to attach a tensor-form function to an “imagined” physical entity, such 

as classical potential ( , )A t x  and EMF, since we can transform this function in any 

way we demand without any inconsistencies appearing within the mathematical 

structure itself, just recall what we have done above. Therefore, we have justified 

reasons to request the mathematical expressions which represent these emergent 

quantities, such as ( , )A t x  and EMF, to obey Lorentz transformation rules as the Eq. 

(5-20) demands.  
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    For the FEMF introduced following Eq. (5-3) and Eq. (5-10), we have   

3
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3
1,2

3
( ) ( )†

3
1,2

( , ) [ ]
(2 ) 2

1
( , ) [ ]

(2 ) 2

i t i t

i t i t

d
t i E e E e

d
t i B e B e

    



    







 

    



    



 

   





k k

k k

k x k xk
k k

k x k x

k k

k

k
E x

k
B x k k

 

 

        (D4) 

Note that these quantities above are totally different with EMF in Eq. (5-4). In Eq. 

(D4), the FEMF is defined from a Lorentz vector in the quantized form as Eq. (5-10), 

therefore, the FEMF are just two different mathematical constructions that are built 

of photons, and they, as a result, form a real Lorentz tensor. In addition, the FEMF 

also plays an essential role in the mathematical formulation of QED theory. However, 

there is no counterpart of EMF in quantum physics and the EMF emerges in macro-

world due to the collective effects from micro-world. Now we see that the FEMF and 

EMF possess totally different physical meanings, the FEMF are made up of photons 

which are elementary particles of nature while EMF only serve as mathematical tool 

in classical physics. The difference in physical meanings between FEMF and EMF 

originates from the differences between Â  in Eq. (5-9) and ( )A x  in Eq. (5-20) 

which is a derived quantity; indeed it would be less confusing if people historically 

have denoted the EMF and FEMF using two different symbols since they hold 

unrelated physical meanings. Moreover, the mathematical structure of Â  and FEMF 

are fixed, while ( )A x  and EMF appear to be completely arbitrary in real world. In 

fact, we should be more careful over the differences of their mathematical structures 

rather than what historically people have symbolized it, since only their mathematical 

structures tell us what these quantities really are. At last, speaking of the concept of 

the physical entity, we do not deny the possibility that the quantum elementary 

particles are just collective phenomena and arise from some unknown physical 

processes which are more fundamental; nevertheless, the quantum field theory is the 

most fundamental tool that people have at current stage to reveal nature’s mystery 

after all. 
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