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Abstract: Given the varying manifestations of climate change over time and the influence of 18 

climate perceptions on adaptation, it is important to understand whether farmer perceptions 19 

match patterns of environmental change from observational data. We use a combination of 20 

social and environmental data to understand farmer perceptions related to rainy season onset. 21 

Household surveys were conducted with 1171 farmers across Zambia at the end of the 2015-22 
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2016 growing season eliciting their perceptions of historic changes in rainy season onset and 23 

their heuristics about when rain onset occurs. We compare farmer’s perceptions with satellite-24 

gauge-derived rainfall data from the Climate Hazards Group InfraRed Precipitation with Station 25 

dataset and hyper-resolution soil moisture estimates from the HydroBlocks land surface model. 26 

We find evidence of a cognitive bias, where farmers perceive the rains to be arriving later, 27 

although the physical data do not wholly support this. We also find that farmers’ heuristics 28 

about rainy season onset influence maize planting dates, a key determinant of maize yield and 29 

food security in sub-Saharan Africa. Our findings suggest that policy makers should focus more 30 

on current climate variability than future climate change.  31 

 32 

Keywords: Rainfall; rain onset; climate variability; maize; Africa; Zambia; perceptions; 33 

adaptation. 34 

 35 

1. INTRODUCTION 36 

 37 

There is mounting evidence of climatic changes in sub-Saharan Africa (SSA) including 38 

changes in average and extreme temperatures, changes in rainfall amounts and spatiotemporal 39 

patterns, and changes in the frequency and intensity of extreme weather events (see Kotir, 40 

2010 for a review). In addition to the extreme variation in rainfall from year to year common in 41 

semi-arid areas there has been a widespread trend towards more arid conditions and a 42 

downward trend in rainfall at the seasonal scale (Nicholson et al., forthcoming). Although there 43 

is substantial uncertainty as to the impacts of climate change on regional rainfall, the two most 44 
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recent generations of global climate models project reduced spring rainfall over Southern Africa 45 

by 2100 under a business as usual emissions scenario (Lazenby et al, 2018). This result, along 46 

with widespread increases in dry spell length, was more recently found by a regional climate 47 

model ensemble that simulated the impacts of 1.5 and 2 degrees of warming over Southern 48 

Africa (Maure et al, 2018). 49 

These climatic changes contribute to the riskiness of farming and pose a threat to food 50 

security in developing countries (Campbell et al., 2016; IPCC, 2014; Schmidhuber, 2007), 51 

particularly for agrarian households who rely on rainfall for agriculture (Jarvis, 2011). The 52 

impacts of these changes on agriculture is expected to fall most heavily on staple crops, such as 53 

maize, grown in SSA's marginal climatic regions (Lobell et al., 2011; Rippke et al., 2016). Climate 54 

changes are expected reduce maize yields by 15% and increase total crop loss by 3% in Zambia 55 

by 2055 (Jones and Thornton, 2003). In the hottest sites, 1 degree of warming is expected to 56 

lead to maize yield losses exceeding 40% (Lobell et al., 2011).  57 

While smallholder farmers are particularly vulnerable to climate change, there has been 58 

relatively little empirical research about how they perceive climate change or how their 59 

perceptions of climate change match observational records and influence their agricultural 60 

decisions. A growing body of literature documents smallholder awareness of climate change 61 

(Grothman and Patt, 2005; Mertz et al., 2009; Nyanga et al. 2011). There are also studies 62 

documenting the prevalence of smallholder ex-ante agricultural strategies to adapt to climatic 63 

change such as water harvesting or changing to drought resistant crops (for example: Eakin, 64 

2000; Smit and Skinner, 2002; Thomas et al., 2007; Mertz et al., 2009; Jarvis et al, 2011; Mercer 65 

et al., 2012). A small but growing number of studies suggest that smallholder perceptions of 66 
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climate change are not consistent with climate data (Sutcliffe et al., 2016; Simelton et al., 2013; 67 

Rao et al., 2011; Osbahr et al., 2011), highlighting the assertion that farmers’ behavior can be 68 

shaped more by their perceptions of climate change than by the actual patterns of change 69 

(Adger et al., 2009). Scholarship to date has relied on meteorological station data to measure 70 

patterns of change which has limited spatial applicability, whereas we compare farmers’ 71 

perceptions of climate variability with satellite derived observational data at a national level. 72 

Given the multidimensional nature of the concept of climate, it is not easy to accurately 73 

identify changes without extensive recording and processing of hydroclimate data. Even with 74 

processing capability, interpretation is often debated and can differ based on factors such as 75 

political ideology (Weber, 2010; Weber and Stern, 2011). The same information can lead two 76 

people to opposite conclusions about climate change based on how they personally experience 77 

climate impacts (Howe et al., 2015) or are economically impacted by climate change (Hsiang et 78 

al., 2017). For example, peoples’ attitudes about climate change are affected by whether they 79 

locally experience unseasonably warm (or cold) temperatures as opposed to milder 80 

temperatures (Bohr, 2017). There is evidence of inter-generational changes in the perception of 81 

the state of the environment, suggesting that climate change perceptions can vary based on 82 

formative experiences (Sáenz-Arroyo et al., 2005). This literature highlights the importance of 83 

understanding how individuals interpret climate events or patterns when trying to understand 84 

the relationship of climate perceptions with physical data.  85 

Research has shown that people’s perceptions and synthesis of climate information can 86 

be influenced by psychological biases. A major development in the area of understanding biases 87 

in decision making was the discovery of decision heuristics, or cognitive shortcuts that people 88 
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use to make decisions, often in situations of uncertainty (Kahneman et al., 1982). One such 89 

example, is the “availability heuristic”, a psychological mechanism where people evaluate the 90 

probability of events by the ease with which they come to mind (Tversky and Kahneman, 1973). 91 

People judge the probability of environmental shocks and disturbances occurring as higher the 92 

more recent or extreme they were (Morton, 2007; Marx et al., 2007; Hertwig et al., 2004). 93 

Perceptions of climate change therefore may more accurately reflect perceptions of recent 94 

weather events as opposed to long-term climate trends (Zaval et al., 2014, NRC, 1999). Another 95 

heuristic example is that people tend to underestimate large probabilities (Kahneman and 96 

Tversky, 1979), and thus underestimate their personal exposure to risk from natural hazards 97 

such as extreme weather events (Freeman and Kunreuther, 2002). There has been little 98 

research addressing climate-related perceptions and in particular instances where smallholder 99 

farmers may exhibit cognitive bias related to narratives about climate trends. We address a key 100 

gap in the literature, by matching rich empirical survey data on climate perceptions from small-101 

scale farmers with robust rainfall estimates, typically used to assess regional patterns of climate 102 

conditions. We further match perceptions with soil moisture estimates which are rarely, if ever, 103 

considered despite their greater importance for agriculture. 104 

In this paper we explore farmers’ perceptions about rainy season onset related to the 105 

fundamental agricultural decision of when to plant the staple maize crop. There is a dearth of 106 

meteorological stations across SSA and a lack of capacity in providing or receiving weather 107 

information (Parker et al., 2011; Washington et al., 2006), so farmers receive little geospatially 108 

relevant weather information to aid decision-making. Hydro-climatological definitions of rainy 109 

season onset often use a combination of several empirical rainfall thresholds, involving 110 
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consecutive days with minimum rainfall amounts without a dry spell in the following days 111 

(Boyard-Micheau et al., 2013). However, these definitions do not reflect how farmers 112 

individually define rainy season onset and thus are of limited help in understanding actual farm 113 

behavior. Our paper demonstrates that rainy season onset is both a hydrometeorological and 114 

social concept. The best time to plant maize in a rainfed system is highly uncertain. Planting 115 

maize too early, prior to consistent rainy season onset, can stunt crop growth or lead to total 116 

crop failure and the farmer will incur the cost to replant. If a farmer plants maize too late they 117 

do not maximize the full length of the growing season and thus fail to achieve potential yield. 118 

Farmers in Sub-Saharan Africa face a fundamental challenge in choosing the right seed 119 

and the right planting date. Hybrid varieties have different maturity periods designed to fit with 120 

varying lengths of growing seasons and in many African countries earlier maturing hybrid maize 121 

is heavily promoted through government policies (Smale and Jayne, 2003). Many parts of SSA 122 

are characterized by a distinct wet and dry season so most farmers only have one chance per 123 

year to plant maize and thus the combination of seed choice and timing of planting is crucial. 124 

Farmers are faced with a tradeoff between minimizing weather-related risk by planting a 125 

variety that will mature quickly and maximizing yield by planting a later maturing variety that 126 

will produce more grain during the longer maturation period. Selecting a seed variety that will 127 

perform well in a given agroecological environment and choosing the optimal sowing date is 128 

cognitively challenging and can have very large differences in yield outcomes for farmers 129 

(Akinnuoye-Adelabu and Modi, 2017). 130 

Agricultural subsidy programs, providing fertilizer and often hybrid seed are ubiquitous 131 

and politically popular in Africa, including Ethiopia, Ghana, Malawi, Nigeria, Tanzania, and 132 
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Zambia (Mason and Ricker-Gilbert, 2013). In Zambia, new hybrid maize varieties combined with 133 

subsidized credit for seed and fertilizer led to a doubling of maize area during the 1970s and 134 

1980s (Smale et al., 2015) and near universal adoption in Zambia (Smale and Jayne, 2003). 135 

Hybrid maize varieties in Zambia are bred for a single predominant characteristic, to mature 136 

earlier in the season. These hybrids are characterized as very early, early, and medium maturing 137 

varieties and their potential yield and price are inversely correlated with their length of 138 

maturity. The current version of the support program is the Farmer Input Support Program 139 

(FISP) which originally distributed a single medium maturing hybrid maize variety to all eligible 140 

farmers. In the last decade the program has gradually allowed farmers greater choices of seeds 141 

although poor information exchange about varieties from seed companies and agricultural 142 

extension has resulted in ‘choice overload’ for farmers (Waldman et al., 2017).  143 

We examine farmers’ perceptions of rainy season onset, using their heuristics, and 144 

compare these with satellite derived rainfall data and high-resolution soil moisture estimates. 145 

We elicited heuristics farmers use to determine both (a) rain onset and (b) appropriate planting 146 

time, through household surveys across Zambia. Farmers were asked to recall rain onset in the 147 

previous four seasons and approximately a decade ago (see methods section below for more 148 

detail). Rainfall data are at 5km-daily resolution from the Climate Hazards Group InfraRed 149 

Precipitation with Station (CHIRPS) dataset (Funk et al., 2015). Soil moisture estimates are at a 150 

1km-daily resolution estimated using HydroBlocks, a hyper-resolution physically-based land 151 

surface model (Chaney et al., 2016). We translated farmer heuristics into biophysical metrics 152 

that best represent those heuristics. For farmers who expressed heuristics based on rainfall 153 

duration or frequency we used CHIRPS and for heuristics related to soil moisture amount we 154 
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used the Hydroblocks model to determine a rain onset date. We then compared the physically 155 

derived rain onset date with farmer recalled rain onset and their actual planting dates during 156 

the 2015-6 season.   157 

The following research questions guide our analysis: (1) Are smallholder farmers’ 158 

perceptions of climate variability consistent with observational records? (2) Is there evidence 159 

that farmer perceptions are cognitively biased and if so what is the source of this bias? (3) Are 160 

heuristics about rainy season onset and planting time associated with agricultural decisions and 161 

if so, does this alter how farmers can adapt to climate variability? We choose to frame the 162 

problem as a ‘cognitive bias’ in the sense that we investigate whether there is a perceptual 163 

distortion related to narratives about climate change. We acknowledge that climate data is not 164 

necessarily the truth and farmers perceptions right or wrong but rather focus on whether there 165 

is a systematic pattern to farmers’ perceptions of rainy season onset.  166 

These research questions are explored in Zambia, a country in SSA that chronically 167 

struggles with food insecurity and where drought events frequently result in local or even 168 

regional scale crop failure. Our study focuses on smallholder farmers in a region characterized 169 

by strong rainfall seasonality and substantial rainfall variability (see Figures A2-A4 in Appendix). 170 

Zambia is typical of savanna range countries, which are expected to be the global center of 171 

agricultural development in SSA in the next few decades (Estes et al., 2016). 172 

 173 

2. METHODS 174 

2.1 Rainfall and maize production in Zambia  175 
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The majority of farming in Zambia is rainfed agricultural production with little possibility 176 

of irrigation. The rainy season is unimodal and runs from October or November until March or 177 

April. Mean annual rainfall ranges from 500 mm to 1400 mm annually, depending on the 178 

location within Zambia. The map below (figure 1) illustrates mean annual rainfall in Zambia 179 

from the period 2000 to 2016, showing annual rainfall as low as 500 mm in the south and as 180 

high as 1400 mm in the North and Northwest of the country. Figures A1 and A2 in the appendix 181 

illustrate the coefficient of variation of rainfall and the mean soil moisture estimates over the 182 

same period. 183 

<insert figure 1 about here> 184 

There is a significant difference in rainfall patterns within the country, defined by 185 

distinct precipitation zones. Figure 1 displays three zones over the 2000-2016 period 186 

constructed by tracing natural breaks in the climatological data. The zones range from dry 187 

(Zone 1: <800mm annually) to moderate (Zone 2: 800-1000mm annually) to wet (Zone 3: >1000 188 

mm annually) and are used in the proceeding analysis to disaggregate the data for clearer 189 

comparison. These different precipitation zones define the potential growing season length. 190 

The respective season length in dry, intermediate, and wet zones is <120 days, 120-150 days, 191 

and 150-190 days. These growing season lengths roughly accommodate early, medium and late 192 

maturing hybrid maize varieties respectively. In addition to significant variation in mean annual 193 

rainfall, there is significant intra-annual variation in rainfall. While 500 mm per year can be a 194 

sufficient amount of rainfall for crop production, high variation in the form of long dry periods 195 

or intense weather events could translate into a poor growing season or total crop loss. In other 196 
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words, inter-annual variability could be the difference between a very good year and a famine.  197 

Smallholder farmers comprise more than 95% of farmers in the country in Zambia, 198 

cultivating less than five hectares of land, although medium size farmers (cultivating between 199 

five and twenty hectares of land) are increasing (Sitko and Jayne, 2014). Maize is the dominant 200 

staple crop in Zambia, grown by 82% of farming households, accounting for approximately 57% 201 

of total caloric consumption (Sitko et al., 2011). Average maize yields are approximately 2.2 202 

metric tons per hectare in Zambia, approximately 20% of the average yield in the US (Purdy and 203 

Langemeier, 2018).  204 

 205 

2.2 Household perceptions of rainfall 206 

Household level surveys were conducted with 1,171 farmers in June and July of 2016, 207 

following the crop harvest. Survey questions focused on basic demographics, socioeconomic 208 

indicators, production data from the 2015-2016 season, and perceptions about rainfall onset, 209 

drought probabilities, and precipitation uncertainty. We sampled households in two districts in 210 

each of six provinces as follows: Central (Mkushi, Mumbwa), Copperbelt (Mpongwe, Masaiti), 211 

Eastern (Lundazi, Petauke), Northern (Mbala, Mungwi), Northwestern (Mufumbwe, Solwezi), 212 

and Southern (Choma, Namwala). These districts span all three precipitation zones.  213 

Our sampling methodology involved identifying primary, secondary, and tertiary 214 

markets from the district town in two directions and sampling households around the tertiary 215 

markets. Primary markets are largely aggregating markets in the district town, secondary 216 

markets are markets along main paved roads where vendors traveled to sell goods to people 217 

from other areas within the district or camp, and tertiary markets are an assemblage of vendor 218 
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stands in rural areas accessed on foot by the local community. Once we identified a tertiary 219 

market we sampled 30 households by walking along dirt paths or roads from those markets in 220 

each direction and randomly selecting households along the paths. The spatial structure of the 221 

road network and household settlement patterns varied across market locations. In general 222 

households were located within an 8 km x 8 km area in each sampled market area. We followed 223 

the same protocol but with a denser sampling of market nodes and households in Southern 224 

Province because of the smaller area that falls within this precipitation zone. We chose this 225 

sampling strategy as a way to ensure that we were consistently selecting rural households in 226 

each district.  227 

The central survey questions we used to characterize farmer perceptions of climate 228 

variability included farmer recollection of when the rains arrived in previous seasons, heuristics 229 

the farmer uses to determine (a) rainy season onset, and heuristics they use to decide (b) when 230 

to plant maize. We asked farmers to recall when the rainy season arrived in each of the last 231 

four growing seasons and about ten years ago. Based on informal interviews with farmers, we 232 

were not confident farmers could reliably recall specific planting dates prior to four growing 233 

seasons ago. Thus when asking about rainy season onset from 10 years ago, we emphasized 234 

that we were not asking about a specific year and rather asked the farmer to think generally 235 

about the rains "around 10 years ago". Farmers generally were able to recall planting dates 236 

with a precision of a one-week window so predefined responses were based on weekly 237 

intervals (first week of October, second week of November etc.). We also asked farmers a series 238 

of structured questions related to heuristics about rainy season onset. Response categories 239 

were developed through informal interviews and field testing prior to development of the 240 
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structured surveys. We provided respondents with four categories that consistently emerged 241 

from the field testing and an open ended category to capture other responses. Farmers were 242 

asked to only offer a single reason.  243 

In addition to these questions we also asked farmers about their perceptions of the 244 

likelihood of drought occurring and their general perception of risk associated with drought and 245 

dry spells. The date, variety, and quantity of each time a farmer planted maize was also 246 

recorded. In the analysis we included various socio-economic variables related to asset 247 

ownership. We created an asset index based on the first principle component of a list of 248 

common household assets owned by each household and divided it into quintiles. This 249 

approach is similar to common approaches of estimating asset ownership in areas where 250 

formal income is not common (Filmer and Pritchett, 2001). We created a livestock index by 251 

converting livestock to tropical livestock units (TLU). We used a weighting formula to calculate 252 

TLU, according to index guidelines developed at the Food and Agriculture Organization (Jahnke 253 

et al., ND). 254 

 255 

2.3 Matching farmer perceptions and observational data 256 

 257 

Physical estimates use the best currently available high-resolution gridded rainfall and 258 

soil moisture hydrometeorological products. We use satellite-derived rainfall from the Climate 259 

Hazards Group InfraRed Precipitation with Station (CHIRPS) dataset (Funk et al., 2015). This 260 

dataset was selected given its quasi-global coverage from 1981 to present with 5km-daily 261 

resolution. CHIRPS combines satellite imagery and station data to create a bias-corrected 262 
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gridded rainfall time series for trend analysis. The technique was developed to produce 263 

precipitation maps for drought detection and environmental monitoring in areas where there is 264 

a dearth of surface data. Although rainfall station data are sparse in developing countries, the 265 

CHIRPS dataset performs better than coarser satellite-derived and gauged corrected rainfall 266 

products (Beck et al., 2017). The high spatial resolution of CHIRPS captures rainfall spatial 267 

variability and land heterogeneity (Masau et al., 2016), which are important in this context 268 

given the ubiquity of convective rainfall in this region and the fine scale of household level 269 

perceptions. 270 

The high-resolution 1km-daily soil moisture estimates were derived with one of the 271 

latest generation land surface models: HydroBlocks. HydroBlocks is a physically based hyper-272 

resolution land surface model based on the Noah-MP (Ek et al., 2003) vertical land surface 273 

scheme applied to the concept of hydrologic response units (HRUs). The HRUs represent areas 274 

of similar hydrological behavior that are derived by clustering high-resolution proxies of the 275 

drivers of spatial heterogeneity including soil properties, topography, and land cover. At each 276 

time step, the land surface scheme updates each HRU; and the HRUs dynamically interact 277 

laterally via subsurface and surface flow. HydroBlocks outperforms both satellite-derived soil 278 

moisture and large-scale land surface models when compared to in-situ ground measurements 279 

(Pan et al., 2016; Cai et al., 2017). 280 

The hydrological processes were simulated at 3-hourly 30-m resolution between 1980-281 

2016. We used 3-hourly 5-km meteorological data (Princeton Global Forcing; Sheffield et al., 282 

2006); 30-m topography (SRTM; Farr et al.,2007); 30-m Landsat-derived land cover type 283 

(GlobeLand; Chen et al., 2014); 250-m soil properties (SoilGrids; Hengl et al., 2016); 30-m 284 
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Landsat-derived NDVI (USGS; Roy et al., 2010); and 30-m Landsat-derived fraction of water, 285 

bare soil and tree cover (USGS; Hansen et al., 2013). The simulation ran for 120 hours with 500 286 

cores on the Princeton University High-Performance Supercomputing facility. The soil moisture 287 

output were upscaled to 1km-daily resolution to reduce data volume.  288 

We obtained the coordinates of each interviewed household following the household 289 

survey using a GPS device. The household location was then overlaid on the 5 km resolution 290 

gridded rainfall data and 1 km resolution soil moisture data, allowing us to obtain a 291 

precipitation and soil moisture history for each household. To harmonize the social and 292 

environmental data we translated farmer heuristics into hydrometeorological physically-based 293 

metrics to define the rain onset and planting dates. This allowed us to interpret rainy season 294 

onset using physical data in the same way that a farmer perceives the onset of the rainy season. 295 

Thus, we used the farmers’ reported heuristics as a guideline to define these metrics, as well as 296 

to capture the uncertainties in the environmentally-based metrics. When farmers were asked 297 

about how they decided when it was the start of the rainy season, their answers ranged from 298 

after the first day of heavy rainfall, after a few consecutive days of rain, when there is enough 299 

soil moisture, to various other natural signs related to cloud density and movement or 300 

ecological indicators. We created rainfall and soil moisture based metrics for each of the three 301 

major reported heuristics (details below). We did not create a metric for the natural signs, 302 

given the lack of rainfall-based translations.  303 

To evaluate the degree to which farmers’ perceptions were consistent with the physical 304 

data of rainy season onset, we compare farmers’ perceptions with the physically estimated 305 

rainy season onset adjusted by farmer’s heuristics. Using farmers own cognitive rule for 306 
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determining rainy season onset gives us a more nuanced way to capture the subjectivity of the 307 

onset of the rainy season. This approach allows us to control for error related to the subjectivity 308 

of onset perception and highlights the heterogeneity in these perceptions. Our analytical 309 

approach is novel in that it goes beyond much simpler approaches comparing perceptions with 310 

single meteorological station records to attain a much finer scale measure of rainy season 311 

onset. In addition, rather than simply using a standard metric for rainy season onset we use an 312 

approach that accounts for differences in how people cognitively process rainy season onset.  313 

The first day of heavy rain heuristic was translated into a rainfall-based metric in which 314 

rainy season onset was defined as the first day in which at least 10 mm of rain fell following the 315 

end of the dry season. To account for uncertainties in this metric, we also tested alternative 316 

versions using daily rainfall thresholds of 5 mm and 15 mm and include this range of 317 

uncertainty in the visual display of data. Excluding amounts of precipitation less than 5 mm 318 

omits what farmers often refer to as ‘false rains’, which are brief precipitation events that are 319 

not consequential for crop production. 320 

The few consecutive days of rain heuristic was translated to a metric wherein the rain 321 

onset was defined as the last of at least 3 consecutive days during which rainfall was greater 322 

than 1mm on each day. Since “a few days” of rain is a vague definition, we include an 323 

uncertainty range for this metric varying between 2 and 4 days. This metric focuses on rainfall 324 

duration. 325 

The soil moisture heuristic for the start of the rainy season was implemented based on 326 

the total available water (TAW) (FAO Doc 56; Allen et al., 1998). A certain threshold of TAW is 327 

the soil moisture level at which plants can easily extract water from the soil, with unrestricted 328 
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growth, being neither waterlogged or water-stressed. We assume this TAW threshold to be the 329 

soil moisture held between field capacity and wilting point and use the date at which 70 % TAW 330 

is first reached as the soil moisture heuristic, with 25% uncertainty bounds above and below.  331 

Table 1 summarizes the translation of the rainy season onset heuristics into physically-332 

based rainfall and soil moisture metrics. Once the physically-based metrics were defined, we 333 

computed these for each household location based on the heuristic they specified. We then 334 

compared the density distribution of the physically-defined rainy season onset with the 335 

farmer’s stated perception of rainy season onset for the following growing seasons: 2015, 2014, 336 

2013, 2012 and about 10 years ago (which is an average of the 2004, 2005, 2006 seasons). Due 337 

to limitations in farmer recall the perceptions were reported based on the week of the year (i.e. 338 

1st week October, 2nd week November, etc.), so for practicality we used the central day of the 339 

given week which presents some inconsistency in the alignment of the social and 340 

environmental data.  341 

<insert table 1 about here> 342 

 343 

3. RESULTS AND DISCUSSION 344 

 345 

3.1 Farmer perceptions of rainfall 346 

 347 

Farmers perceive that rains began earlier the further back in time they were asked to 348 

recall rainfall onset dates (see Table 2). See Figure A3 in the appendix for a crop calendar, 349 

displaying the range of planting months and variability in growing season length. On average, 350 
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farmers perceived that the rainy season onset during the 2015- 2016 growing season (2015 351 

from here on) was 21.8 days later than it was 10 years ago, and approximately 12.6 days later 352 

than it was during the 2012-2013 season. The standard deviation in their responses also 353 

decreased with recall, with the highest standard deviation occurring in the previous season and 354 

the lowest occurring approximately 10 years ago. This suggests that the heterogeneity in farmer 355 

responses is trending towards a mean as a result of cognitive bias. Additionally, the number of 356 

people who were unable to recall rainy season onset increased with recall each year, except for 357 

“about a decade ago” (~2005), when 98% of respondents provided a rainy season onset date. 358 

While farmers admittedly have difficulty recalling rainy season onset 2-4 seasons ago they 359 

nearly all have a perception about a longer time horizon. 360 

<insert table 2 about here> 361 

The different hydroclimate patterns across Zambia, create wide variation in rainy season 362 

onset between and within the three rainfall zones. Despite these climatic differences, trends in 363 

farmers’ perceptions are clear across Zambia. To look more closely by precipitation zone, we 364 

subdivided the data and plotted distributions of the perceived rainy season onset. Figure 2 365 

depicts the distribution of farmers’ rain onset estimates by week for each rainfall zone labeled 366 

dry, intermediate, and wet. Despite the differences in rainfall seasonality between the zones, 367 

the same pattern of farmers’ perceptions seen in Table 3 holds across all three zones, but is 368 

clearest in the driest zone (Zone 1, panel 2a). The more recent seasons have wider variation in 369 

responses, with 2015-6 season demonstrating the widest variation and also the latest average 370 

onset. The 2014-15 season showed less spread and earlier peaks. The relationship persists 371 

throughout the data to 10 years ago when farmers recall the rainy season onset to have taken 372 
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place during the last week of October. These data depict a clear perception among farmers that 373 

rainy season onset is getting later. 374 

Figure 3 summarizes the difference between farmers’ perceptions of rainy season onset 375 

in the previous season (2015-16) and about 10 years ago (~2005). The vast majority of farmers 376 

(88%) perceive the rain onset to be getting later over the last 10 years, indicated by a positive 377 

difference between 2015-16 and ~2005. Less than five percent of farmers perceived the rains to 378 

be getting earlier (negative value) and approximately 7% perceived no difference in rain onset. 379 

On average farmers perceive the rains to be arriving 21.9 days (or about 3 weeks) later over the 380 

10-year period.  381 

 382 

3.2 Perceptions and cognitive biases  383 

 384 

<insert figure 3 about here> 385 

To understand factors associated with the perceived change in rainy season onset we 386 

estimated a fixed effects regression model where the dependent variable is the difference 387 

between individual farmer’s perceptions of the change in rain onset from 10 years ago to the 388 

2015-16 season (see Table A1 in appendix for summary statistics of households). The fixed 389 

parameter included is the district, to roughly capture location specific effects such as the 390 

clustering of observations resulting from similar rainfall patterns across space. As independent 391 

variables we included basic socio-demographic variables such as age, gender, the number of 392 

maize fields planted, a basic asset index, a livestock index, the amount of income they derive 393 

off farm, and the amount of maize they have in storage. We also included a set of independent 394 
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variables to capture psychological factors that might impact a farmer’s cognitive bias related to 395 

rainy season onset. These include the length of the longest dry spell they experienced during 396 

the growing season and their perceptions of the frequency of drought.  397 

Our findings support the notion that climate perceptions and biases may be related to 398 

socio-demographic factors, such as gender and education, as well as psychological factors 399 

related to food insecurity and rainfall events (see table 3). On average men perceive the rains 400 

to start 3.5 days later over a ten-year period than women. One additional year of education 401 

reduces the perception of the rainy season onset arriving later by almost a week. Another 402 

significant variable that is associated with the perception that the rains are getting later is the 403 

length of the longest dryspell in the previous season. For each additional day of dry spell, 404 

farmers perceive the rains to be 0.15 days later.  405 

 406 

<insert table 3 about here> 407 

Figure 4 displays the distribution of heuristics farmers use to characterize rainy season 408 

onset. The most prevalent response from 36% of respondents, is that they perceive the rainy 409 

season to start after the first day of heavy rainfall. Slightly fewer respondents, 31%, reported 410 

that they perceive the rainy season to start after a few consecutive days of rainfall. 411 

Approximately 17% of respondents reported using a heuristic that could be categorized as 412 

other, mostly involving movement, size, and density of storm clouds but also ecological 413 

indicators such as the presence of certain butterfly species. About 15% of respondents perceive 414 

the rainy season to start when there is sufficient soil moisture. Only about 2% of respondents 415 

define the rainy season by the cumulative amount of rain.  416 
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 417 

3.3 Comparing perceptions and physical estimates of rainfall onset  418 

 419 

<insert figure 4 about here> 420 

Figure 5 displays a series of individual figures comparing the density of farmer perceived 421 

and biophysical rainy season onset for each zone in each year. The areas under the curves 422 

represent the density of farmer “perceptions” of rainy season onset and the “physical metric” 423 

defining rainy season onset across the initial weeks of the growing season. Biophysical metrics 424 

of rain onset are defined by using farmer heuristics to determine the biophysical threshold of 425 

rain onset. For example, if a farmer reported that they perceive rain onset to start after the first 426 

day of heavy rain, we compared their perceived date of rain onset with rain onset as defined by 427 

the first day of heavy rain recorded in the CHIRPS data for that household location. The shaded 428 

area around the physical metric represents the uncertainty involved in converting heuristics 429 

into physical metrics.  430 

 431 

<insert figure 5 about here> 432 

Figure 5 shows that on average the accuracy of farmers’ perceptions gets worse when 433 

they are asked to recall more distant seasons. Farmers’ perceptions of onset and the physical-434 

derived onset have similar distributions in the most recent season (2015), where the mean 435 

perceived rain onset is almost identical to the mean physically-derived onset. The physically-436 

derived data is less smooth than the perceptions data and often has multiple peaks, reflecting 437 

the heterogeneity in rainy season onset across the country. The smoothness of the perceptions 438 
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is likely attributable to recall bias. Starting in 2013, the mean of the perceptions and the 439 

physical data diverge as farmers recall earlier rainy season onset for previous seasons. In 2012, 440 

there is the largest discrepancy between perceived and actual observations, with average 441 

farmers’ perception of rainy season onset occurring almost 5 weeks earlier than the average 442 

physically-derived onset. This suggests that their perceptions of the typical inter-annual 443 

variability of rainfall, are overridden by a narrative among farmers that the rains are arriving 444 

later. This narrative has been documented by Mulenga et al. (2016). The data provide evidence 445 

of recall bias that sets in as early as one year after harvesting and a systematic deviation 446 

resulting from the widely held perception that the rainy season starts later each year. Statistical 447 

tests of the differences between perceived and observed rainy season onset can be found in 448 

the appendix Table A2.  449 

In addition to a perceptual distortion about rainy season onset getting later, there is also 450 

evidence of cognitive bias related to anchoring in the more distant past. Farmers’ perceptions 451 

of rainy season onset “about a decade ago” appear to reach a ceiling, with a narrower range of 452 

responses with a median around the fourth week of October. There is a common narrative 453 

among farmers in Zambia that the rainy season is getting later and previously started in 454 

October and we see that farmers’ perceptions form a relatively normal distribution with a steep 455 

peak anchored around the last week of October. In other words, their perceptions of rainy 456 

season onset in the distant past (more than a few years ago) appear to be anchored around this 457 

narrative and date. While using approximately 10 years ago does not capture perceptions of the 458 

multi-decadal nature of climate perceptions, it does start to uncover farmer cognition about 459 

weather beyond simply inter-annual variability. While there are some limitations to asking 460 
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farmers in this way, we felt it was better than directly asking about a trend which would likely 461 

prime them to recall what they have heard about trends in the climate. 462 

 463 

3.4 Influence of perceptions on planting behavior 464 

 465 

We included several questions in our survey instrument to better understand how 466 

heuristics influence not just perceptions of rainy season onset but actual agricultural practices. 467 

We asked farmers what heuristic they use when they decide when to plant maize (Figure 4). 468 

The most common heuristic, cited by approximately 43% of the sample, is soil moisture. The 469 

next most common response (35%) was from farmers who reported that they wait for a few 470 

days of consecutive rain before planting. Approximately 12% of farmers reported that they 471 

plant after the first day of heavy rain, while less than 10% wait for a specific date or until the 472 

rain is imminent.  473 

<insert figure 6 about here> 474 

 475 

To evaluate whether farmers’ choice of heuristic influences their maize planting date, 476 

we examined how the heuristics are related to when farmers planted their first maize crop in 477 

the 2015 season. Planting dates differ across precipitation zones in Zambia as they are based on 478 

the length of the growing season and the total quantity of rainfall. Since farmers can have 479 

multiple maize plantings we focus on the date of each farmer’s earliest maize planting. Figure 480 

A4 displays the distribution of farmers’ earliest maize planting in each week, disaggregated by 481 

precipitation zone. Farmers in zones 1 and 2 planted maize with relatively normal distributions 482 
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centered on the first week of December. Farmers in the wettest zone were able to plant earliest 483 

on average, with a median planting date in the second week of November. 484 

 We then group their actual planting dates by heuristic category to look for differences 485 

in mean planting date. Heuristics about when it is time to plant maize influence the date 486 

farmers actually plant (Figure 7). Farmers who use heuristics such as on a specific date, plant 487 

the earliest, followed by those who rely on a sense that the rains are coming, or plant after a 488 

single day of heavy rain. The latest median planting date is for farmers who wait for several 489 

days of consecutive rain or for adequate soil moisture. Importantly, the use of heuristics clearly 490 

influences not only the perception of rain onset but the actual planting date in a given season. 491 

Further details about how perceptions of rain onset getting later influence seed choice are 492 

presented in a separate publication (redacted).  493 

 494 

<insert figure 7 about here> 495 

 496 

4. Conclusions 497 

 498 

We find that while the vast majority of farmers perceive the rainy season onset to be 499 

getting later, this perception is not wholly consistent with observed physical data. This 500 

mismatch is important for multiple reasons. Farmers are unable to accurately recall when the 501 

rains started beyond two to three years so it is not surprising that their longer term recall about 502 

weather trends is biased as well. Biases related to rainy season onset influence the decision of 503 

what date to plant which is an important determinant of yield outcomes. While some of this 504 
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bias can be explained by socio-demographic factors such as gender and education, or 505 

psychological factors such as food inadequacy, much of this bias appears to be related to 506 

perceptions of climate trends. We also provide evidence that heuristics about the appropriate 507 

time to plant are correlated with actual planting dates, and this reliance on heuristics is 508 

presumably related to uncertainty about when to plant. Certain heuristics are associated with 509 

earlier planting, while other heuristics are associated with later planting decisions. While 510 

cognitive shortcuts can be efficient and alleviate taxing mental calculations (Goldstein and 511 

Gigerenzer, 2002), they can also be associated with recall bias and lead farmers to suboptimal 512 

decision making. We explore this suboptimality in a separate publication, where we find that 513 

perceptions of the rain onset getting later influences seed choice and that in general seed 514 

choice does not correlate well with growing season length (reference redacted).  515 

Farmers receive information about the climate through various channels, including 516 

through signals sent by agricultural policies. Polices promoting earlier maturing hybrids likely 517 

intensify the perception that the season is getting shorter, thus nudging farmers towards 518 

behavior that aligns with this perception. Our findings raise questions about the drawbacks 519 

from national policies that fail to consider heterogeneous weather and climate conditions and 520 

are more focused on future climate change than current climate variability. Policy and 521 

technology that focuses on understanding rainfall and climate variability and that involves 522 

information exchange with farmers is crucial to addressing current food security needs.  523 

 524 
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 768 

 769 

Tables 770 

 771 
Table 1. Farmer’s heuristics on the start of the rainy season and rainfall-derived metrics 772 

 773 
Farmer’s Heuristics Rainfall-based metric with confidence bounds 
First day of heavy rain First day > 10 mm ± 5 mm  
Few consecutive days of rain 3 consecutive days >1mm rain ± 1 days 
Soil moisture (0.70 ± 0.25 )* TAW  

 774 

 775 

Table 2. Date farmers perceived rainy season onset (all observations) 776 
 777 

Year Mean 
date1 

Std. 
dev. 

Obs 
(n) 

Response 
rate 

2015 324.3 16.9 1,172 100% 
2014 319.6 15.3 1,131 97% 
2013 315.5 12.7 1,037 88% 
2012 311.7 12.3 1,016 87% 

~2005 302.5 10.1 1,146 98% 
 778 

Notes: 1 For comparison farmer perceptions were converted from weeks to the central date of the week 779 
expressed in Julian calendar days. 780 

 781 
 782 
 783 
 784 
 785 
 786 
 787 
 788 
 789 
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Table 3. Variables associated with the perception of later rainy season onset 790 
 791 

Variables Coef. SE P>t 
Gender of household head (male=1) 3.644 1.410 0.01 
Education of household head (years) -0.897 0.400 0.03 
Number of plantings -0.411 0.620 0.51 
Asset Index (1-5) -0.382 0.465 0.41 
Livestock (TLU) 0.039 0.035 0.25 
Off farm Income (Kwacha) -0.006 0.005 0.24 
Maize in storage (kg) -0.032 0.020 0.10 
Longest dryspell length (days) 0.157 0.062 0.01 
Perceived frequency of drought (years) -0.200 0.146 0.17 
Constant 21.977 2.347 0.00 
Observations 1105     
Groups (fixed effect= district) 12     
R2 (within) 0.03     
R2 (between) 0.45     

 792 
Note: ***indicates statistical significance at the 1% level; ** indicates statistical 793 

significance at the 5% level. 794 
 795 
 796 

 797 

Table A1. Descriptive statistics of farmers/households sampled 798 
 799 

Variable Mean 
Std. 
Dev. Min Max 

Gender of household head (male=1) 0.8 0.4 0 1 
Education of household head (1-7 categories) 3.2 1.6 0 7 
Number of plantings  1.7 1.0 0 5 
Asset Index (1-5 categories) 3.0 1.4 1 5 
Livestock (TLU) 3.4 22.8 0 722 
Off farm Income (‘00 Kwacha) 72.7 138.6 0 1800 
Maize in storage (‘00 kilograms) 17.4 40.7 0 1000 
Longest dryspell length (days) 21.0 10.0 0 60 
Perceived frequency of drought (years) 5.5 3.9 1 10 

 800 
Notes: Asset index ranges from 1 (lowest) to 5 (highest). Educational attainment categories are as follows: None 801 
(1); Some primary (2), completed primary (3), some secondary (4), completed secondary (5), some post-secondary 802 
(6), completed post-secondary (7). 803 
 804 
 805 
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Table A2. Paired t-test between average perceived and observational rainy season onset dates 806 
(in days) 807 

 808 
  Zone 1 Zone 2 Zone 3 

 Diff. t Diff. t Diff. t 
2015 -1.6† -1.1 10.2 7.6 5.4 5.3 
2014 -4.5 -3.0 10.0 7.7 13.1 9.7 
2013 -13.2 -10.8 -9.1 -9.1 -6.1 -7.3 
2012 -34.1 -43.9 -22.3 -22.2 -22.8 -27.6 
2005 -7.2 -5.5 -15.0 -13.3 -7.3 -10.0 

 809 
† Not significantly different at any conventional level. All other paired comparisons statistically 810 
significant at the 1% level or better 811 
 812 
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 827 

Figures 828 

 829 

Figure 1. Mean annual rainfall map of Zambia, 2000-2016 830 

 831 

 832 

Notes: Source: Author derived estimate using CHIRPS (Funk et al., 2015), displays three zones over 833 

the 2000-2016 period constructed by tracing natural breaks in the climatological data. These 834 

rainfall zones range from dry (Zone 1: <800mm annually) to moderate (Zone 2: 800-1000mm 835 

annually) to wet (Zone 3: >1000 mm annually). 836 

 837 
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 838 

Figure 2. Percent of farmer indicating different rainy season onset dates for ~2005, 2012, 2013, 839 

2014 and 2015 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 
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Figure 3. Farmer's perceived change in the rainy season onset over the last 10 years 849 

 850 

 851 

 852 

Note: Values to the right of zero indicate a positive change in the onset week (rains 853 

later) while values to the left indicated a negative change (rains earlier). 854 

 855 

Figure 4. Heuristic determining perceived rainy season onset (% of farmers using each heuristic) 856 

 857 

  858 

 859 

 860 
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Figure 5. Farmer perceptions versus physically-derived rain onset (physical metric) by year and 862 

precipitation zone 863 

 864 

 865 

 866 

Note: Perceived and physical metrics are different in all but Zone 1, 2015. The figures for 2005 are an 867 

average for the seasons beginning in 2004, 2005, and 2006. Shaded area represents the uncertainty 868 

parameters described in table 1.  869 

 870 

 871 

 872 

 873 

 874 

 875 
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Figure 6. Heuristic determining when to plant (% of farmers using each heuristic) 876 

 877 

   878 

 879 

 880 

 881 

 882 

Figure 7. Boxplots of rain onset date by rain onset heuristic category 883 

 884 

 885 

 886 

Note: Boxplots represent 25%, 50% (median) and 75% of observed data. 887 

 888 

 889 
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 890 

 891 

Figure A1. Coefficient of variation of annual rainfall, 2000-2016 892 

 893 

 894 

Note: Scale is the coefficient of variation (standard deviation/mean) in annual rainfall 895 

 896 

 897 

 898 

 899 
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 900 

Figure A2. Mean annual soil moisture, 2000-2016 901 

 902 

Note: Soil moisture at 1km resolution derived from the Hydroblocks model in units of volume of 903 

water/volume of soil. 904 

 905 

 906 

 907 

 908 

 909 
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 910 

 911 

Figure A3. Maize production calendar for Zambia 912 
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 915 

Figure A4. Actual planting dates by precipitation zones 916 

 917 

 918 

 919 

Note: Zone 1 is dry, Zone 2 is intermediate and Zone 3 is wet. 920 
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