
A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as 

doi: 10.1111/gcb.14577 

This article is protected by copyright. All rights reserved. 

 
MS. LIQING  PENG (Orcid ID : 0000-0002-0329-2200) 

DR. ZHENZHONG  ZENG (Orcid ID : 0000-0001-6851-2756) 

DR. ZHONGWANG  WEI (Orcid ID : 0000-0002-6287-8527) 

DR. ANPING  CHEN (Orcid ID : 0000-0003-2085-3863) 

 

Article type      : Primary Research Articles 

 

Determinants of the ratio of actual to potential evapotranspiration 

 

Running head: Ratio of actual to potential evaporation 

 

Liqing Peng
1
, Zhenzhong Zeng

1
, Zhongwang Wei

2
, Anping Chen

3
, Eric F. Wood

1
, Justin 

Sheffield
4
 

 

1
Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, 

United States. 

2
River and Environmental Engineering Laboratory, Department of Civil Engineering, University of 

Tokyo, Tokyo, Japan. 

3
Department of Biology, Colorado State University, Fort Collins, Colorado, United States. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

4
School of Geography and Environmental Science, University of Southampton, Southampton, United 

Kingdom. 

 

*Corresponding author: Liqing Peng, Department of Civil and Environmental Engineering, 

Princeton University, Princeton, New Jersey, United States. (lpeng@princeton.edu) 

 

Keywords:  

Evapotranspiration; Potential evapotranspiration; Leaf area index; Canopy height; Surface 

conductance; Aerodynamic conductance; Decoupling 

 

Paper type: Primary Research 

 

Abstract 

A widely-used approach for estimating actual evapotranspiration (AET) in hydrological and earth 

system models is to constrain potential evapotranspiration (PET) with a single empirical stress factor 

(         ).   represents water availability and is fundamentally linked to canopy-atmosphere 

coupling. However, the mean and seasonal variability of   in the models have rarely been evaluated 

against observations, and the model performances for different climates and biomes remain unclear. 

In this study, we first derived the observed   from 28 FLUXNET sites over North America during 

2000-2007, which was then used to evaluate   in six large-scale model-based datasets. Our results 

confirm the importance of incorporating canopy height in the formulation of aerodynamic 

conductance in the case of forests. Furthermore, leaf area index (LAI) is central to the prediction of   

and can be quantitatively linked to the partitioning between transpiration and soil evaporation (R
2 

= 

0.43). The substantial differences between observed and model-based   in forests (range: 0.2 ~ 0.9) 
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are highly related to the way these models estimated PET and the way they represented the responses 

of   to the environmental drivers, especially wind speed and LAI. This is the first assessment of   in 

models based on in-situ observations. Our findings demonstrate that the observed   is useful for 

evaluating, validating, and optimizing the modelling of AET and thus of water and energy balances. 

 

Introduction 

Terrestrial evapotranspiration (ET) is the sum of soil and open water evaporation, plant transpiration, 

and rainfall interception by the canopy. ET is a critical process linking water resources (Oki & Kanae, 

2006; Gedney et al., 2006) and carbon-climate feedbacks (Shukla & Mintz,1982; Field et al., 1995; 

Ponce-Campos et al., 2013; Zeng et al., 2018a), and understanding the ET process has important 

implications for agricultural management (Allen et al., 1998; Fisher et al., 2017; D’Odorico et al., 

2018). When surface water supply is unlimited, ET reaches an upper limit bounded by atmospheric 

evaporative demand, also known as potential evapotranspiration (PET). The actual ET (AET) over 

land will fall short of PET due to surface biophysical limitations. The effect of these limitations can 

be captured in a single empirical stress factor ( ), which can be expressed as the ratio of AET to PET. 

Using   to constrain PET has been widely used as a simple but effective approach for estimating AET 

in hydrological models (Schaake et al., 1996; Caylor et al., 2005; Fisher et al., 2008; Miralles et al., 

2011; van Beek et al., 2011) and earth system models (Dufresne et al., 2013; Kay et al., 2015). In 

agriculture, this approach is often used to quantify water availability (Ritchie, 1998), to estimate 

irrigation requirements (Allen et al., 1998), and to monitor crop water stress (Jackson et al., 1981; 

Anderson et al., 2007, 2011). 

 

While   is often related to water availability, it is determined to a greater extent by the relative 

importance of biophysical control (surface conductance) versus aerodynamic control (aerodynamic 

conductance) of AET (Jarvis & McNaughton, 1986). Previous studies have revealed the roles of water 

supply (e.g., precipitation, Liu et al., 2017, De Kauwe et al., 2017; soil moisture, Ohta et al., 2008) 
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and atmospheric evaporative demand (e.g., radiation, Mallick et al., 2016; vapor pressure deficit, 

Wullschleger et al., 2000; wind speed, Kim et al., 2014, Barnard & Bauerle, 2016) in affecting  . A 

variety of phenological vegetation characteristics, such as vegetation cover (Donohue et al., 2010), 

leaf area index (Launiainen et al., 2016; Liu et al., 2017), and crop growing stages (Allen et al., 1998; 

Kang et al., 2003), are found to be positively correlated with  . While vegetation characteristics 

related to green leaf coverage have been a focus for understanding the biophysical effects on  , not 

many studies have explored the aerodynamic effect of vegetation vertical structure, such as canopy 

height (Raupach, 1994; Allen & Pereira, 2009; Chu et al., 2018), on the variation of  . As vegetation 

grows, a greater roughness due to increased canopy height has the potential to offset the benefits of 

greater leaf area for  . This suggests a need to consider the competition between aerodynamic and 

biophysical control on AET when explaining the variability of water stress.  

 

Recent progress in the integration of satellite data with eddy covariance measurements has led to a 

range of process-based or data-driven observational AET datasets (Fisher et al., 2008; Jung et al., 

2010; Mu et al., 2011; Miralles et al., 2011). Nonetheless, huge gaps remain in our ability to represent 

AET in the existing diagnostic datasets, land surface models, and reanalyses (Mueller et al., 2013; 

Greve et al., 2014) and to understand the variability of AET (Wang & Dickinson, 2012; Katul et al., 

2012; Zhang et al., 2015). Uncertainty in AET estimates is caused by at least (1) the different PET 

approaches (Sheffield et al., 2012; Peng et al., 2018), (2) the complexity of the parameterization of the 

biophysical limitations (Chen et al., 1996), and (3) the partitioning of AET between soil evaporation 

and transpiration (Lawrence et al., 2007). Given the wide spectrum of parameterization schemes and 

input sources, it is challenging to find a common variable (e.g., canopy conductance) to evaluate the 

representation of the biophysical processes in different models. In practice,   can be easily calculated 

from model outputs and is a useful metric for evaluating the biophysical processes and explaining the 

error in ET model structure (Polhamus et al., 2013; De Kauwe et al., 2017). However, the mean and 

temporal variability of   derived from large-scale model-based datasets generally have not been 

evaluated against observations. A mechanistic understanding of the errors of   derived from the 
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models should help improve the modeling of AET dynamics and reduce the uncertainty in the 

predictions of water, energy, and carbon balances. 

 

The primary goals of this study are (i) to examine the seasonal variations of   derived from eddy 

covariance flux measurements across a broad range of climates and biomes in North America; (ii) to 

understand the climate and vegetation controls on seasonal variability of  ; and (iii) to evaluate the 

accuracy of   derived from the large-scale diagnostic observational datasets, land surface models, 

reanalysis products, and terrestrial biosphere models at the eddy covariance sites. 

 

Materials and methods 

Overview of the AET/PET ratio 

PET and AET can be calculated from the Penman (Penman, 1948) and the Penman-Monteith (P-M, 

Monteith, 1965) equation as  

     
               

      
 (1) 

     
               

        
  
  
  

 (2) 

where PET and AET are expressed as water mass fluxes (kg m
-2

 s
-1

),    is the surface net radiation 

(W m
-2

),   is the surface ground heat flux (W m
-2

),   is the slope of the saturation vapor pressure 

curve at the temperature of interest (Pa K
-1

),   is the psychrometric constant (Pa K
-1

),   is the latent 

heat of vaporization (J kg
-1

),    is the air density (kg m
-3

),    is the specific heat of air (J kg
-1

 K
-1

), 

and D is the vapor pressure deficit (VPD, Pa).    is the aerodynamic conductance (m s
-1

) and 

quantifies how easily fluxes are transported from the canopy to the atmosphere.    is the surface 

conductance (m s
-1

) which quantifies how easily water is transported from roots to the canopy surface, 
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and it consists of canopy conductance, soil conductance, and conductance from the canopy 

interception. 

 

The ratio of AET to PET, given by combining Eq.1 and Eq.2, is  

 

       
   

   
  

  
 
 

  
 
 
 
  
  

 (3) 

The inverse of the AET/PET ratio introduces a linear relation between this quantity and the ratio of 

     , written as 

 
     
   

   
    

 

   
 
  
  

 (4) 

  is a function of    and    (Eq.3), which is also referred to as the “decoupling factor”, a measure of 

the decoupling between atmospheric conditions at the canopy surface and those in the surrounding air, 

introduced by Jarvis & McNaughton (1986, appendix A27). Conversely, (   ) describes the 

coupling between canopy and the ambient atmosphere and represents the sensitivity of the fractional 

change in AET to the fractional change in    (Jarvis & McNaughton, 1986, appendix A29): 

     

    
   
   
  

 (5) 

where a 1% change in    will cause a corresponding (   )% change in AET.  

 

In summary,   is a useful metric that illustrates the partitioning between atmospheric demand control 

and surface biophysical control over AET.   is a nonlinear positive function of the       ratio, 

ranging from 0 to 1 (Eq.3, Fig.3b). When       (       ),   goes to 0, meaning that the 

canopy is fully coupled with the surrounding atmospheric conditions. As (   ) approaches 1,   
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increases rapidly with      , and the sensitivity of changes in AET to the changes in    reaches its 

maximum (Eq.5). Thus, AET is supply-limited under water-stressed conditions and the biophysical 

control over AET becomes dominant. When       (       ),   approaches 1, meaning that the 

canopy atmospheric conditions are fully decoupled from those of the free airstream. As (   ) is 

very small, the relative change in AET is almost independent of the relative change in   . Thus, AET 

is demand-limited and totally regulated by the available energy and aerodynamic control.  

 

In-situ data 

We utilized the data from a North American subset of the La Thuile eddy flux dataset 

(http://fluxnet.fluxdata.org/data/la-thuile-dataset/) developed by the global network of 

micrometeorological tower sites, FLUXNET. The FLUXNET dataset is a harmonized, standardized, 

and gap-filled synthesis database at 30-minute resolution. We selected a broad range of sites by 

applying the following quality-control flags: (1) site years were restricted to the period of 2000-2007 

to ensure long enough records; (2) sites were restricted to the North America area within 25
o
-50

o
 N 

and 50
o
-120

o 
W to include locations across different climates; (3) time steps were discarded if there 

were no data on latent heat (LE), sensible heat (H), air temperature (  ), net radiation (  ), global 

radiation (Rg), vapor pressure deficit (VPD), wind speed, or frictional velocity (  ); (4) nighttime 

records were excluded when Rg < 10 W m
-2

; (5) sites with less than 2 years of temporal coverage 

were excluded. We finally selected 28 sites spanning a range of vegetation and climate types that 

satisfy the above criteria (Fig. 1b).  

 

Across these 28 sites, there are seven vegetation types based on the International Geosphere-

Biosphere Program (IGBP) land cover type classification: evergreen needleleaf forest (ENF), 

deciduous broadleaf forest (DBF), mixed forest (MF), cropland (CRO), grassland (GRA), woody 

savanna (WSA), and closed shrubland (CSH). There are eight climate types based on the Köppen-
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Geiger (K-G) climate classification (Kottek, 2006): Hot summer Continental (Dfa), Warm Summer 

Continental (Dfb), Subarctic Continental (Dfc), Cold Semi-arid (Bsk), Hot summer Mediterranean 

(Csa), Warm summer Mediterranean (Csb), Humid Subtropical (Cfa), and Oceanic Warm Temperate 

(Cfb). Detailed site information is listed in Table 1.  

 

The leaf area index (LAI) for each site was obtained from the MOD15A2H version 6 L4 8-day 

composite LAI product at 500-meter pixel resolution (Myneni & Park, 2015; ORNL DAAC, 2018). 

When obtaining the monthly LAI, we first selected the pixel where the site is located. If this pixel 

does not pass the quality control, we used the average of the 8 neighboring pixels (range of 1.5 km) to 

approximate the site value. To minimize errors associated with clouds, we used the maximum 8-day 

value during a month to represent the monthly LAI. 

 

Table 1. List of the flux tower sites used in this study with their FLUXNET Identifier (ID), Latitude 

(LAT), Longitude (LON), IGBP land cover (IGBP), Köppen-Geiger climate (K-G), period of record 

(PERIOD), and principle investigator (PI). 

 

 ID LAT, LON IGBP K-G PERIOD PI 

1 CA-Ca1 49.87, -125.33 ENF Cfb 2000-2005 T. Andrew Black 

2 CA-Ca3 49.53, -124.9 ENF Cfb 2001-2005 T. Andrew Black 

3 CA-Qcu 49.27, -74.04 ENF Dfc 2001-2006 Hank A. Margolis 

4 CA-Qfo 49.69, -74.34 ENF Dfc 2003-2006 Hank A. Margolis 

5 CA-TP4 42.71, -80.36 ENF Dfb 2003-2005 M. Altaf Arain 

6 US-ARM 36.61, -97.49 CRO Cfa 2003-2006 Sebastien Biraud 

7 US-Aud 31.59, -110.51 GRA Bsk 2002-2006 Tilden Meyers 

8 US-Blo 38.9, -120.63 ENF Csa 2000-2006 Allen Goldstein 

9 US-Bo1 40.01, -88.29 CRO Dfa 2000-2007 Tilden Meyers 

10 US-FPe 48.31, -105.1 GRA Bsk 2000-2006 Tilden Meyers 
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11 US-Goo 34.25, -89.87 GRA Cfa 2002-2006 Tilden Meyers 

12 US-Me2 44.45, -121.56 ENF Csb 2003-2005 Bev Law 

13 US-MMS 39.32, -86.41 DBF Cfa 2000-2005 Kim Novick 

14 US-MOz 38.74, -92.2 DBF Cfa 2004-2006 Jeffrey Wood 

15 US-Ne1 41.17, -96.48 CRO Dfa 2001-2005 Andy Suyker 

16 US-Ne2 41.16, -96.47 CRO Dfa 2001-2005 Andy Suyker 

17 US-Ne3 41.18, -96.44 CRO Dfa 2001-2005 Andy Suyker 

18 US-NR1 40.03, -105.55 ENF Dfc 2000-2003 Peter Blanken 

19 US-SO3 33.38, -116.62 CSH Csa 2000-2006 Walt Oechel 

20 US-SP2 29.76, -82.24 ENF Cfa 2000-2004 Tim Martin 

21 US-SP3 29.75, -82.16 ENF Cfa 2000-2004 Tim Martin 

22 US-SRM 31.82, -110.87 WSA Bsk 2004-2006 Russell Scott 

23 US-Syv 46.24, -89.35 MF Dfb 2002-2006 Ankur Desai 

24 US-Ton 38.43, -120.97 WSA Csa 2001-2006 Dennis Baldocchi 

25 US-Var 38.41, -120.95 GRA Csa 2001-2006 Dennis Baldocchi 

26 US-WCr 45.81, -90.08 DBF Dfb 2000-2006 Ankur Desai 

27 US-Wkg 31.74, -109.94 GRA Bsk 2004-2006 Russell Scott 

28 US-Wrc 45.82, -121.95 ENF Csb 2000-2006 Sonia Wharton 

 

Estimating   from observations 

To estimate  , we used observed AET and calculated PET from meteorological forcing based on 

Eq.1. Although   can be derived from    and    using Eq.3, directly calculating   with PET using 

Eq.1 is preferred because only    estimation is needed, which excludes additional uncertainties 

associated with inverted   .    can be defined as the inverse of aerodynamic resistance for 

momentum and excess resistance in series (Verma, 1989):  

 
 

  
     

 

  
 
 

 

   
    

   
   

     
    
 

     
    
 

     
   
 
     

   
 
    (6) 
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where    and     are stability functions for momentum and heat,   is the measurement reference 

height (m),   is the wind speed at reference height (m s
-1

),    is the frictional velocity (m s
-1

),   is the 

von Karman constant,    is the zero­plane displacement height (m),     and     are the roughness 

lengths for momentum and heat (m), and   is the Obukhov length (m).     and    are assumed to be 

a function of canopy height (h), as     = h/7.6 and    = 2h/3 (Brutsaert, 1982). 

 

The term            , typically defined as     , quantifies the relationship between roughness 

length for heat and momentum. The parameterization of      is important for the transport of heat 

and water vapor and associated land surface processes (Rigden et al., 2018). We selected the 

following power function of the roughness Reynolds number (           ) implemented in the 

Noah model (Zilitinkevich, 1995; Chen et al., 1997), where   is kinematic viscosity for air (= 

1.4610
-5

 m
2
 s

-1
): 

                    (7) 

     is a critical parameter determining      and varies with land cover type (Chen & Zhang, 2009). 

We followed the work of Rigden et al. (2018) in estimating the coefficient    (      , where   is the 

von Karman constant) for each land cover. We adopted smaller      values (   = 0.005,      = 0.0125) 

at forests sites including ENF, DBF, and MF, and larger      values at CRO (   = 0.06,      = 0.15), 

GRA (   = 0.1,      = 0.25), and CSH and WSA (   = 0.05,      = 0.125) sites. 

 

The Obukhov length   is defined as 

   
   

                  
   

 (8) 

where    is air temperature (Kelvin),   is the specific humidity (kg kg
-1

),   is the gravitational 

acceleration (9.81 m s
-2

), and   is the sensible heat flux (W m
-2

). Following Sun & Mahrt (1995), the 
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stability functions for momentum and heat are empirical functions of the stability parameter      

      as: 

     

    

    
   

 
     

    

 
          

 

 

   

      

       

(9) 

     

    

    
    

 
 
  

      

       

(10) 

where             . Since     and     are small compared to   , the two terms    
   

 
  

and    
   

 
  in Eq.6 are negligible. 

 

Surface conductance    is obtained from inverting the Penman­Monteith equation (Eq.2) by 

employing the computed values of    as 

    
 

  
 

     

                       
 (11) 

where surface resistance    is the inverse of    and LE is the latent heat flux. We also tested the 

sensitivity of   to other common    formulations and found that the effects of canopy height and 

vegetation type on   through    are important in forests (see Text S1, Fig.S1, and Discussion). 

 

First, the 30-minute FLUXNET data that pass the quality control (“fqcOK” = 1) were selected 

(Williams et al., 2012). To avoid stable conditions and dewfall conditions during nighttime, we 

excluded those time steps for which Rg < 10 W m
-2

, (  -G)  0 W m
-2

, LE  0 W m
-2

, H  0 W m
-2

, 

relative humidity (RH)  95%, frictional velocity (  )  0.01 m s
-1

, or stability parameter ( ) > 1. 

Also, when both AET and PET are close to zero during cold seasons,   is approaching 1 and becomes 

less meaningful in representing water stress and the coupling between canopy and atmosphere. 
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Therefore, we restricted our analysis to the non-frozen period with air temperature > 5C (Knauer et 

al., 2018). Since the Penman method (Eq.1-2) assumes the energy balance to be closed, we discarded 

time steps in which the error in energy balance closure is above 20%. For time steps in which the 

energy balance non-closure is within 20%, the energy balance was closed by shifting the measured 

turbulent fluxes (H, LE) to match available energy (  -G) while maintaining the measured Bowen 

ratio (H/LE) (Twine et al., 2000; Wohlfahrt et al., 2009; Text S2 and Fig.S2). For precipitation (P), we 

computed the daily cumulative sum for the 30-minute data without discarding any records. For the 

rest of the meteorological variables, we computed the daily average only for the filtered records and 

aggregated the daily values to monthly values. For each site year, we derived the annual mean   from 

the monthly   during the non-frozen season, which is publicly available as supporting data (Data S1) 

and can be downloaded from the online version of this article. 

 

Model-based datasets 

The magnitude of   depends heavily on the approach used to estimate PET. To ensure consistency in 

the estimation of   in the large-scale model-based data, we first considered datasets that contain 

estimates of both AET and PET, including three categories following Mueller et al. (2013): diagnostic 

datasets based on satellite observations, land surface model (LSM) simulations driven by observation-

based forcing, and atmospheric global and regional reanalyses assimilating atmospheric observations. 

The approach used for AET estimation and the resolution for each dataset are listed in Table 2. There 

are three satellite products, GLEAM v3.2a (Global Land-surface Evaporation: The Amsterdam 

Methodology, Miralles et al., 2011, Martens et al., 2017), PT-JPL (Priestley and Taylor Jet Propulsion 

Laboratory model, Fisher et al., 2008, http://josh.yosh.org/datamodels.htm), and MOD16A2 

MODIS/Terra Net Evapotranspiration V006 (hereafter MOD16; Running & Mu, 2017; ORNL 

DAAC, 2018). GLEAM is a hydrological model driven by satellite soil moisture, precipitation, and 

vegetation optical depth. PT-JPL uses the Priestley-Taylor method (Priestley & Taylor, 1972) with 

vegetation data from the Advanced Very High Resolution Radiometer (AVHRR) and meteorological 
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data from the International Satellite Land Surface Climatology Project Initiative II (ISLSCP-II). 

MOD16 uses the Penman-Monteith method driven by vegetation data from the MOderate-Resolution 

Imaging Spectroradiometer (MODIS) and meteorological forcing. We also evaluated the Noah LSM 

simulation taken from the NLDAS-2 (Phase 2 of the North American Land Data Assimilation System, 

https://ldas.gsfc.nasa.gov/nldas/NLDAS2model.php) and two reanalyses: CFSR (Climate Forecast 

System Reanalysis, https://rda.ucar.edu/datasets/ds093.2/) and NARR (North America Regional 

Reanalysis, https://rda.ucar.edu/datasets/ds608.0/). Both CFSR and NARR use the same four-layer 

operational Noah land surface model (Ek et al., 2003) with different data assimilation schemes. The 

main differences among the models are (1) the selection of the Penman-Monteith (P-M) or the 

Priestley-Taylor (P-T) method for AET simulation and the inclusion or omission of the aerodynamic 

component for PET, and (2) the complexity incorporated in parameterizing plant water stress or 

canopy conductance.  

 

Table 2. List of the model-based data with their approach, parameterization scheme for  , temporal 

and spatial resolution, and reference. 

 

 Dataset Approach   parameterization Resolution Reference 

Diagnostic 

GLEAM 

v3.2a 

Priestley-Taylor 

Root-zone soil moisture, 

precipitation, vegetation 

optical depth 

daily/0.25
o
 

Miralles et 

al., 2011 

PT-JPL Priestley-Taylor VPD, vegetation index monthly/0.5
o
 

Fisher et 

al., 2008 

MOD16 

Priestley-Taylor (plant) 

Penman-Monteith (soil) 

Conductance based on 

meteorology, biomes, 

vegetation index 

8-day/500m 
Mu et al., 

2011 

LSM Noah Penman-Monteith 
Four-layer soil model, 

Jarvis canopy 

conductance 

(Chen et al., 1996) 

monthly/0.125
o
 

Xia et al., 

2012 

Reanalyses 

CFSR Penman-Monteith monthly/0.5
o
 

Saha et al., 

2010 

NARR Penman-Monteith monthly/32km 
Mesinger et 

al., 2006 
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We extracted monthly time series of AET and PET for the 2000-2007 period (except for PT-JPL, 

which is only available for the 1986-1995 period) in the grids collocated with the FLUXNET sites. 

For GLEAM and MOD16, monthly data were aggregated from the original daily/8-day time step. To 

compare the observed FLUXNET   with the monthly model outputs, we recalculated the monthly 

AET and PET from the observations to include both daytime and nighttime data. We set the nighttime 

AET and PET records (Rg < 0 W m
-2

,   -G  0 W m
-2

, or LE  0 W m
-2

) to zero, and linearly 

interpolated the half-hourly records for averaging.  

 

To further explore the potential uncertainties in the outputs of model/reanalysis, we also utilized the 

simulated latent heat from 18 terrestrial biosphere models that participated in the North American 

Carbon Program site-level synthesis (NACP, https://daac.ornl.gov/NACP/). These models are run in 

single point at the 47 FLUXNET sites driven by the observed environmental forcing (Ricciuto et al., 

2013). We calculated   for these models using model-simulated AET and PET calculated from the in-

situ meteorological forcing at the 16 overlapping sites (see Table S1) and then compared them against 

  derived from the sites. 

 

Results 

Seasonality of observed   

 

Fig.1 shows the annual mean non-frozen season   across different vegetation types over the 28 sites. 

All vegetation types exhibit relatively large AET deviations from PET (small   values with the mean 

< 0.5). On average, CRO sites have the highest   (mean = 0.45), followed by DBF (mean = 0.32) and 

GRA (mean = 0.29). ENF, MF, WSA, and CSH have lower   with means = 0.23, 0.24, 0.23, and 

0.17, respectively. The large ranges in CRO (0.17~0.71) and GRA (0.09~0.58) sites arise mainly from 

site-to-site variability (Fig.S3d, e), while the DBF sites ranging from 0.11 ~ 0.47 display significant 
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inter-annual variability (Fig.S3b). Despite the large number of site years (N = 48), the site-to-site and 

inter-annual variability of ENF is small (Fig.S3a), with   ranging from 0.14 ~ 0.43. 

 

Fig.1 (a) Box plots of annual mean non-frozen season   grouped by the IGBP vegetation types. Each 

box indicates the interquartile range (top: the third quartile; bottom: the first quartile), with a 

horizontal grey solid line indicating the median and a black dot referring to the mean. The upper and 

lower whiskers extend to 1.5 times the interquartile range. The number of site years (N) for each 

vegetation type is indicated at the top. (b) The spatial distribution of the 28 FLUXNET sites grouped 

by vegetation types: evergreen needleleaf (ENF), deciduous broadleaf (DBF), mixed forest (MF), 

cropland (CRO), grassland (GRA), woody savanna (WSA), and closed shrubland (CSH). 

 

We further assessed how   varies with both vegetation and climate types. Fig.2 shows that the 

seasonal cycle of   varies with the vegetation type for a given climate. For example, under the Humid 

Subtropical climate (Fig.2g), the DBF sites (i.e., US-MMS, US-MOz) have substantially larger 

variations in   compared to the ENF sites (i.e., US-SP2, US-SP3). The corn-dominated croplands 

(CRO) in the Continental climate (Fig.2a) have the highest   among all the vegetation types in July-
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August, because corn farming is water intensive and maintains high rates of AET during the 

reproductive growth stages. Conversely, CSH and WSA adopt conservative water use strategies and 

hence exhibited consistently lower values of  , around 0.1~0.6 (Fig.2d). 

 

The seasonal cycle of   also varies with different climate regimes and climate seasonalities, which 

explains much of the site-to-site variability for a given vegetation type in Fig.S3. At the Continental 

Climate (Df) sites,   is higher in the warm and wet season (Fig.2a-c).   at the Mediterranean (Cs) 

sites tends to be higher in the rainy season and lower in the warm season due to the lack of soil 

moisture supply (Fig.2e, f). This is consistent with Ryu et al. (2008) that reported a high   = 0.51 

during the growing season and a low   = 0.27 averaged across the year for the Mediterranean site, 

US-Var (see Fig.2e). The seasonal patterns of   at the Cold Semi-arid (Bsk, Fig.2d) sites depend 

heavily on the annual cycle of precipitation that peaks in July-August, particularly for sites in Arizona 

(i.e., US-Aud, US-SRM, US-Wkg).  

 

 

Fig.2 Seasonality of   at the 28 Ameriflux sites grouped by the K-G climate classes. (a) Dfa: Hot 

summer Continental, (b) Dfb: Warm Summer Continental, (c) Dfc: Subarctic Continental, (d) Bsk: 

Cold Semi-arid, (e) Csa: Hot summer Mediterranean, (f) Csb: Warm summer Mediterranean, (g) Cfa: 

Humid Subtropical, (h) Cfb: Oceanic Warm Temperate. The shape of marker indicates different IGBP 

vegetation type. The colors in each subplot indicate different sites under the same climate. 
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Climate and vegetation controls on seasonality of   

Recall that   is determined by the relative importance of    versus    (Eq.3-5). The inverse of   

(    = PET/AET) is a linear function of the ratio of       (Eq.4), which we tested with the monthly 

FLUXNET data. Fig.3a plots the monthly     against monthly       which yields a reasonably good 

linear fit (                   , R
2 

= 0.91, p < 0.01). The fit has a positive bias (+1.43) in the 

intercept from the theoretical value 1.0, and the observed sensitivity of     to       is 0.23 (Eq.4).   

is a nonlinear positive function of the       ratio (Eq.3), depicted by Fig.3b. When the influence of 

   and    are comparable (       ),   is centered around 0.7. Note that the variability of   caused 

by the differences in the     ratio is much smaller than that due to differences in the       ratio. 

 

Fig.3 (a) The linear regression relationship between     and       ratio. Each black data point 

represents an observed monthly     under a wide range of       ratio. The black solid line is the 

regression fit of all data points. The red dashed line depicts a prediction by the linear equation (Eq.4) 

with the observed median         ratio. (b) The nonlinear relationship between   and       ratio. 

The blue, red, and green dashed lines are the predictions of   using the observed largest, median, and 
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lowest monthly     ratio to account for the uncertainty of   fitting caused by the differences in the 

    ratio. 

 

We further explored how climate and vegetation factors control the seasonal variations of   through 

their regulation of    and    (Fig.S4 and S5). Fig.4 depicts the relationships between   and climate or 

vegetation drivers.   increases significantly with monthly total precipitation in ENF (Fig.4a1, R
2
 = 

0.11), CRO (Fig.4a3, R
2
 = 0.23), GRA (Fig.4a4, R

2
 = 0.33), and WSA and CSH (Fig.4a5, R

2
 = 0.35). 

Conversely, rainfall deficit leads to a dry-down in soil moisture, and more negative soil water 

potential limits plant water uptake and reduces    to almost zero during the dry season (Fig.S4d, e), 

and thereby decreases   (Fig.2d, e).  
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Fig.4 Relationships between monthly   and monthly (a) P: total precipitation, (b) VPD: vapor 

pressure deficit, (c)  : wind speed, and (d) LAI: leaf area index for different vegetation classes: (1) 

ENF, (2) DBF, (3) CRO, (4) GRA, (5) WSA and CSH. The grey curve is the line of best fit (using a 

linear or logarithmic function) with coefficient of determination (R
2
) and significance level (p) shown. 

 

  decreases significantly with monthly mean VPD in ENF (Fig.4b1, R
2
 = 0.06) and in xeric biomes 

including GRA (Fig.4b4, R
2
 = 0.38), and WSA and CSH (Fig.4b5, R

2
 = 0.36). This negative  -VPD 

relation is associated either with atmospheric drying that forces plants to close stomata in order to 

avoid excessive water loss (Katul et al., 2009), or with hydraulic limitation on    (Sperry et al., 2016; 
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Anderegg et al., 2016) due to soil moisture deficit, given the strong correlation between VPD and soil 

moisture that has been found on monthly time scale (Novick et al., 2016a, 2016b). When VPD < 

2kPa,   is not sensitive to VPD in CRO (Fig.4b3, p = 0.16), as croplands are typically not water 

stressed, owing to irrigation.   is insensitive to VPD in DBF as well (Fig.4b2, p = 0.53) where 

precipitation is not a limiting factor (Fig.4a2, p = 0.99). Additionally, the relationships of monthly   

with    and Rg are similar to those of VPD in GRA, and in WSA and CSH (Fig.S6a4-a5, b4-b5). In 

mesic DBF sites, as the growing season progresses, solar radiation and temperature increase, and    

becomes higher (Fig.S4b,g), which explains the positive relationship between   and    (Fig.S6a2, R
2
 

= 0.32) and Rg (Fig.S6b2, R
2
 = 0.57). 

 

We found that monthly LAI plays a key role in controlling  .   increases significantly with LAI in all 

vegetation types, with R
2
 = 0.11 in ENF (Fig.4d1), R

2
 = 0.41 in DBF (Fig.4d2), R

2
 = 0.47 in CRO 

(Fig.4d3), R
2
 = 0.59 in GRA (Fig.4d4), and R

2
 = 0.32 in WSA and CSH (Fig.4d5). As LAI increases, 

   increases and thus   becomes higher, because    is proportional to leaf area and the number of 

stomata (Mu et al., 2011). We further estimated the response of   to LAI (       , the linear 

regression slope of monthly   versus monthly LAI) at each site. We are interested in the underlying 

factors explaining the spatial pattern of        . Fig.S7 shows that         declines from very 

sensitive (0.4 per m
2
 m

-2
) to not sensitive (0 per m

2
 m

-2
) with increasing site-average water supply (P, 

Fig.S7a, R
2
 = 0.09) and leaf area (LAI, Fig.S7b, R

2
 = 0.38).         is also slightly positively 

correlated with site-average atmospheric evaporative demand (   and VPD, Fig.S7c-d).  

 

We noted that   in ENF is not well explained by environmental variables (Fig.4 Row1, R
2
 < 0.11). In 

fact, the divergence of   at ENF sites is determined by    rather than   , as demonstrated by the 

difference between Fig.S4 and Fig.S5a.    is similar at all ENF sites, within a range of 0.005 ~ 0.015 

m s
-1

 (Fig.S4), while the magnitude of    for ENF sites varies greatly even for the same climate type, 

ranging from 0.04 to 0.10 m s
-1

 (Fig.S5a).    is associated with wind speed and canopy height, as 
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both enhance    and thus increase the coupling of atmosphere and canopy (see Materials and 

Methods). As expected,   decreases significantly with higher monthly mean wind speed in all 

vegetation types, especially in DBF (Fig.4c2, R
2
 = 0.35), CRO (Fig.4c3, R

2
 = 0.29), and GRA 

(Fig.4c4, R
2
 = 0.18). To assess the relationship between   and canopy height, we normalized site-

average   by site-average LAI, which isolates the boosting effect of LAI on  . We found that   per 

unit LAI at ecosystem level follows a power-law relation with canopy height (Fig.5, R
2
 = 0.32), where 

  per unit LAI is sensitive to canopy height when canopy height < 20 m. 

 

Fig.5 The relationship between site-average  /LAI and canopy height (h) color coded with vegetation 

type. 

 

Comparison of in-situ observations and model-based datasets 

Based on the interpolated FLUXNET measurements, we calculated the monthly error statistics of the 

models (Table 3; PT-JPL is excluded due to the different period it covers). We averaged the monthly 

data during the non-frozen period (   > 5C) to obtain the annual mean  , PET, and AET, as shown 

by the colored boxplots in Fig.6. There are large differences among the model-based datasets, with 

mean   ranging from 0.1 to 0.9 (Fig.6a).   derived from Noah agrees with that from FLUXNET very 

well, with the smallest Root-Mean-Squared-Errors (RMSE) in ENF, DBF, and CRO sites, as well as 
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the highest correlations in CRO, GRA, WSA and CSH sites (bias = -0.12 ~ -0.04, R = 0.34 ~ 0.93, 

Table 3). Both MOD16 and NARR are consistent with FLUXNET in short-grass vegetation (CRO, 

GRA, WSA, and CSH) with small biases and high correlations (bias = -0.16 ~ 0.04, R = 0.53 ~ 0.91, 

Table 3). GLEAM and PT-JPL have much larger values of   (mean = 0.53 ~ 0.89) compared to 

FLUXNET (mean = 0.22 ~ 0.49) and the other datasets. Conversely, CFSR has very low magnitudes 

(mean = 0.13 ~ 0.23) and small variability (range = 0.21 ~ 0.33) in  . The divergence in   

magnitudes in different models tends to follow the patterns of PET magnitudes, as displayed in 

Fig.6b. Specifically, GLEAM and PT-JPL, which are based on the P-T approach, have lower PET (3 

~ 5 mm d
-1

) than either FLUXNET or the other models that use the P-M approach (5 ~ 15 mm d
-1

). 

 

In general, PET estimates remain relatively consistent within each model regardless of vegetation 

type. The patterns among vegetation types in Fig.6a tend to follow that of AET in Fig.6c. For 

example, in FLUXNET, both AET and   are higher in croplands and lower in semi-arid ecosystems 

(GRA, WSA, CSH). Noah has AET patterns (Fig.6c) similar to those in FLUXNET (Fig.6a) across 

vegetation types. GLEAM, MOD16, and Noah capture the mean and spread of AET in short-grass 

vegetation (CRO, GRA, WSA, CSH), while PT-JPL, CFSR, and NARR yield higher mean and larger 

spread compared to the FLUXNET values. For forests (ENF and DBF), all models except for Noah 

predict much higher AET rates and hence higher   values. However, PET estimates from some 

models (MOD16, CFSR, NARR) are often lower in forests than in short-grass vegetation (Fig.6b). 

The contrasting behaviors of AET and PET in forests result in even larger   values in these models 

(Fig.6a).  
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Fig.6 Annual mean (a)  , (b) PET, and (c) AET from the FLUXNET data and the model-based 

datasets. For each data source, the annual mean   are shown by box plots as in Fig.1a for different 

vegetation classes: ENF, DBF, CRO, GRA, and WSA and CSH. Black circles outside of the whiskers 

indicate the outliers. 
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Table 3. Statistics of comparison between the FLUXNET observations and the model-based datasets 

in different vegetation types, including bias, Root-Mean-Squared-Error (RMSE), and correlation (R). 

Statistics with asterisks indicate the correlations are not significant. 

 

 GLEAM MOD16 Noah CFSR NARR 

Type Bias RMSE R Bias RMSE R Bias RMSE R Bias RMSE R Bias RMSE R 

ENF 0.59 0.62 0.30 0.24 0.27 0.49 -0.04 0.11 0.42 -0.06 0.15 0.27 0.28 0.32 0.41 

DBF 0.59 0.62 -0.02* 0.22 0.26 0.65 -0.06 0.18 0.34 -0.06 0.21 0.00* 0.35 0.37 0.67 

CRO 0.28 0.36 0.13* -0.16 0.23 0.68 -0.12 0.19 0.76 -0.33 0.39 0.23 -0.05 0.20 0.53 

GRA 0.31 0.35 0.82 -0.06 0.14 0.83 -0.09 0.15 0.89 -0.14 0.20 0.79 0.00 0.11 0.89 

WSA&  

CSH 
0.31 0.37 0.78 -0.05 0.11 0.81 -0.08 0.10 0.93 -0.09 0.13 0.85 0.04 0.12 0.91 

 

 

 

Fig.7 Seasonality of   in the FLUXNET data and the model-based datasets for different vegetation 

classes. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The magnitudes and seasonal cycles of   in Noah are highly consistent with that in FLUXNET 

(Fig.7). MOD16 and NARR also capture the seasonal variability of  , shown by their high 

correlations with   from FLUXNET for all vegetation types (Table 3), but they have positive biases 

in ENF and DBF sites and negative biases in CRO sites (shown by blue and red dashed lines in Fig.7). 

The seasonal cycles of   in GLEAM are very different from that in FLUXNET and the other models, 

with smallest seasonal variability in forests. The large values during the cold season in particular 

contribute to the large annual mean   in GLEAM (Fig.6a). Overall, we found that the model-based 

datasets capture the observed seasonality better in semi-arid grasslands and shrublands (GRA, WSA, 

CSH, R = 0.78 ~ 0.93) than in forests and croplands (ENF, DBF, CRO, R = -0.02 ~ 0.67). 

 

To further explore the processes behind the divergence of model-based   shown in Fig.6 and 7, we 

examined the relationships between model-based   and climate or vegetation drivers, and compared 

these with the same relationships from the FLUXNET observations. We performed linear regressions 

of the   derived from the models as well as from the interpolated FLUXNET data versus the variables 

in Fig.4, with slopes displayed in Fig.8. Similar to the findings in the observations, larger   is 

associated with higher precipitation especially in semi-arid grasslands and shrublands (Fig.8a, 0.04 ~ 

0.09 per mm mon
-1

), lower VPD (Fig.10b, -0.1 ~ -0.3 per kPa) except for DBF sites, and higher LAI 

(Fig.8d, 0.1 ~ 0.3 per m
2 
m

-2
).   in GLEAM does not capture the increase with precipitation in ENF, 

DBF, and CRO (Fig.8a, p > 0.01) and has a much stronger negative response to VPD (Fig.8b, -0.3 per 

kPa) than FLUXNET and the other models. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Fig.8 Linear regression slopes of   versus (a) precipitation (P, mm d
-1

), (b) VPD (kPa), (c) wind 

speed (u, m s
-1

), and (d) LAI (m
2
 m

-2
) in FLUXNET and the model-based datasets for different 

vegetation classes. 95% confidence intervals for regression slopes are indicated by whiskers. 

 

The models generally are in better agreement with FLUXNET in GRA, CSH, and WSA sites. For 

croplands and forests, the models are less consistent in their responses to wind speed (Fig.8c, Fig.S9a-

c) and LAI (Fig.8d, Fig.S9d-f) regarding slope sign and magnitude. In terms of slope sign,   in 

GLEAM and CFSR shows insignificant correlations with wind speed and/or LAI in DBF and CRO, 

which explains their out-of-phase seasonal variations (Fig.7b, c). In terms of magnitude, the 

sensitivity of   to wind speed and LAI in the models is generally insignificant or smaller than that in 

FLUXNET. For instance, in DBF sites, the slope magnitudes in all models are less than 0.1 per m s
-1

 

for wind speed, and less than 0.06 per m
2
 m

-2
 for LAI. 
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Fig.9 The relationship between   (AET/PET) and the ratio of transpiration to total AET (T/ET) in (a) 

FLUXNET, (b) GLEAM, and (c) Noah. 

 

The responses of the components of AET to the environmental drivers are very different, so it is very 

likely that the values and patterns of   are linked with AET partitioning. In FLUXNET, we applied 

the LAI-based methodology in Wei et al. (2017) to estimate the monthly transpiration to total 

evapotranspiration ratio (T/ET) at all the natural vegetation sites. A strong positive linear relationship 

with slope = 0.53 between site-average   and T/ET is observed (Fig.9a, R
2 

= 0.43). To explain the 

differences in model-derived  , we also evaluated the  -T/ET relationships in the two models that 

contain separate outputs of transpiration and soil evaporation. In the Noah model, a slight positive 

relationship with slope = 0.13 between   and model-derived T/ET is found (Fig.9c, R
2 

= 0.04). In 

contrast, we found a significantly negative relationship between   and model-derived T/ET in 

GLEAM (Fig.9b, slope = -0.89, R
2 
= 0.16).  

 

To further understand the uncertainties in the outputs of models and reanalyses, we compared the 

annual mean   from FLUXNET against the 18 NACP models for 16 overlapping sites (Table S1). 

Similar to the previous model comparison (Fig.6), Fig.S10 shows a large disagreement between 

observations and off-line model simulations. As for ENF and MF sites (Fig.S10a, c), the BEPS, ED2, 

LOTEC, and SSIB2 models capture the values of observed   reasonably well, while the other models 

substantially overestimate  , with a bias of 0.1 ~ 0.2. As for WSA sites (Fig.S10f), the ECOSYS, 
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ORCHIDEE, and TECO models capture the magnitude of   well, while the other models 

overestimate the magnitude. As for GRA, DBF and CRO sites, models may overestimate (up to +0.4) 

or underestimate (up to -0.35)  . In this comparison, even though additional uncertainties (such as 

PET estimates and the mismatch of inputs between grid box and site) were precluded as in-situ 

environmental forcing are used, such huge divergence among the models highlight the inadequate 

representation of AET processes in the models. 

 

Discussion 

Canopy height is critical to predicting   for forests 

The AET/PET ratio ( ), which is closely related to canopy-atmosphere decoupling, decreases with    

(Fig.3). The observed   values are not well explained by LAI at ENF sites (Fig.4d1, R
2
 = 0.11), as the 

seasonal variation in leaf phenology for ENF is generally smaller, and canopy height plays a more 

important role instead (Fig.S5a).    depends heavily on canopy height through several pathways. 

First, canopy height and density increase surface roughness, generating higher turbulent exchange and 

higher   , thus reducing  . Second, taller trees usually confront higher wind speed because wind 

velocity increases with height based on a logarithmic wind profile. We found that   per unit LAI 

follows a power-law relation with canopy height (Fig.5), where   per unit LAI is sensitive to canopy 

height when canopy height < 20 m. This observed  -canopy height relationship can be used to predict 

the biophysical constraints on AET as well as to calibrate AET in dense forests. 

 

The formulation of    was found to be critical for estimating   in forests (Fig.S1 and Text S1). One 

major difficulty in the derivation of   is determining whether PET should vary with surface 

characteristics. PET is often estimated by the open water Penman equation and reference crop 

evapotranspiration (Milly & Dunne, 2016). Both methods implicitly assume    is calculated from a 

smooth surface with low roughness length, which, when applied to forests, tends to underestimate    
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and produce a higher  , as demonstrated in Fig.S1. The P-T equation with P-T coefficient     = 1.26 

is independent of wind speed and canopy height, which also implicitly suggests    is calculated with 

low roughness length (Brutsaert, 1982). Given the inconsistent    definitions in Eq.1 and Eq.2, these 

PET methods are likely to produce AET/PET ratios that deviate, in forests, from the concept of 

decoupling factor (Jarvis & McNaughton, 1986). Our results confirm the effect of canopy height on 

   and highlight the need to incorporate surface characteristics in PET formulation when estimating 

and interpreting  . Our    formulation, which is adopted from Zilitinkevich (1995), considers the 

effect of biome, canopy vertical structure, and stability, and provides relatively robust estimates of   

across all vegetation types. 

 

In addition to the aerodynamic impact, canopy height is also related to rooting depth and hydraulic 

functioning and might have physiological impacts on AET and  . Taller trees may have deeper roots 

that provide access to deeper soil moisture, and thus enable them to maintain transpiration rates and 

withstand drought as in Amazon tropical forests, for example (Nepstad et al., 1994; Giardina et al., 

2018). Canopy height is linearly associated with LAI when canopy height < 5 m (Fig.S8), which tends 

to increases    and  . However, taller trees are also more vulnerable to atmospheric dryness due to a 

lower xylem conductivity and a higher risk of cavitation (Novick et al., 2009). Taller trees (> 10 m) 

were found to be more isohydric than shorter vegetation and very sensitive to VPD and stomatal 

regulation (Konings & Gentine, 2017). Further reduction in   could arise from the effect of increasing 

wind speed, which increases VPD by removing saturated air (Kim et al., 2014; Barnard & Bauerle, 

2016) and may potentially reduce    and dampen  . Hence, the biological impact of canopy height 

may either magnify or offset the aerodynamic impact on AET, depending upon the directions and the 

relative magnitudes of the two effects. To date, the physical and biological effects of canopy height on 

AET and   and their balance across various vegetation types remains largely unexplored and may be 

a worthy avenue for future research.  
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The role of LAI in determining   

Our analysis confirms the important role of LAI in regulating   (Fig.4 Column d). LAI is one of the 

most important variables in simulating AET processes and AET partitioning in climate models and 

Earth System models (Zeng et al., 2018b; Lian et al., 2018). At a given    and temperature,    

increases with LAI, enhancing   and the coupling between atmosphere and canopy (Fig.3b). We 

found that   has a non-linear and saturating response to LAI. When vegetation structure is dense and 

well-developed (LAI > 3), the increase of   gradually slows at higher LAI values. There are two main 

reasons for this reduced growth rate of  . First, canopy conductance may not necessarily increase 

with LAI because high LAI can also reduce average absorbed radiation in the canopy (Katul et al., 

2012). Second, even though the potential canopy conductance increases linearly with LAI, the  -   

curve starts to reach saturation when       > 1.5 (Fig.3b).   is less sensitive to changes in    when 

   is relatively large, and at that point the increase of AET with LAI becomes marginal. When the 

vegetation fraction is small (LAI < 3), the contribution of soil evaporation to AET is large (Kelliher et 

al., 1995), the fraction of net radiation to global radiation is small (Launiainen et al., 2016), and AET 

is therefore strongly affected by the meteorologically induced stresses. We found that   in GRA, 

WSA, and CSH sites tends to have low magnitude and large variability under soil water deficit, low 

radiation load, and high VPD (Fig.4). 

 

Our analysis also reveals that   is more sensitive to LAI at higher aridity (high evaporative demand 

and/or rainfall deficit) and lower leaf area (Fig.S7). This suggests that   in semi-arid grasslands and 

savannahs has higher sensitivity to LAI than in forests and croplands. Although this study is based on 

monthly data, the observed response of   to LAI may be valid over longer time scales. Recent studies 

indicated that warming temperature may lead to an increase in evaporative demand and drought (e.g., 

Fu & Feng, 2014) and have shown a global increase in LAI in semi-arid and arid ecosystems 

(greening, Zhu et al., 2016) as well as woody plant encroachment into grasslands and savannahs 

(Knapp et al., 2008). Future changes in   due to increasing aridity and greening, or due to land cover 
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change, may have an impact on soil moisture and vegetation productivity, and hence on the water and 

carbon cycles (Zeng et al., 2018a, 2018b).  

 

Sources of errors in the model-based datasets 

Our results highlight the substantial divergence among the diagnostic, LSM, and reanalysis datasets in 

the magnitudes of   (Fig.6a). Such large divergence appears to be primarily due to the choice of the 

PET formulation (Fig.6b). GLEAM and PT-JPL used the P-T approach and produced the lowest PET, 

because the P-T equation fails to account for the effect of canopy height and temperature on large-

scale advection (Garratt, 1994). The other models use the P-M approach, which itself is highly 

variable due to various approaches for    formulation and additional input uncertainties related to 

wind speed and vegetation characteristics. PET in forests is hypothesized to be higher due to large 

roughness; however, we found an increase in PET from forest to grassland in the four P-M based 

models (Fig.6b). In models using the Noah LSM (Noah, CFSR, and NARR),      is a key parameter 

used to quantify the dependence of      on    and determine the thermal roughness length (Eq.7; 

Weston et al., 2018).      should be very small for tall trees according to observational studies (Chen 

& Zhang, 2009; Rigden et al., 2018), suggesting that the default      = 0.1 for all vegetation types in 

the Noah model is problematic and could potentially underestimate    in forests. Our previous 

findings highlight the need to account for surface roughness in the estimation of AET, particularly in 

forests. Correctly representing    in models by appropriately incorporating canopy height and 

vegetation type is required not only to realistically simulate AET, but also to improve the prediction 

of sensible heat and land surface temperature, two important variables that determine surface energy 

exchanges.  
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The model departures from observed seasonal patterns of   (Fig.7) are related to the model response 

of   to climate and vegetation drivers (Fig.8), which is determined by the parameterization of the 

surface biophysical limitations (e.g., canopy conductance). Our analysis indicates that the model-

based datasets predict the sensitivity of   to driving factors surprisingly well in semi-arid ecosystems. 

Yet they are not able to capture the observed sensitivity in forests and croplands, especially for wind 

speed and LAI. In Noah and CFSR, the sensitivities of   to wind speed and LAI at DBF sites are 

positive and insignificant, respectively (Fig.8c, d), potentially leading to underestimated peaks during 

the warm season (Fig.7b) and underestimation of summer AET for forests (Xia et al., 2012, 2015). 

GLEAM does not capture the sensitivity of   to precipitation, LAI, and VPD in forests, which 

explains the insignificant seasonality of   in their results. We conclude that capturing the response of 

  to climate and vegetation drivers is critical for better predicting the seasonality of   and AET.  

 

At present, AET partitioning (T/ET) is not captured well by the models (Wei et al., 2017, 2018). 

Assessing the relationship between   and T/ET in the models may provide new insights into the 

substantial differences among model-derived  . We related the ecosystem-scale   to observed T/ET 

and found a strong positive linear relationship (Fig.9a). This is mainly because T/ET is also closely 

linked to LAI and phenology on monthly time scale (Wang et al., 2014; Wei et al., 2017). As LAI 

increases, canopy conductance increases, resulting in increased transpiration and total 

evapotranspiration. Meanwhile, available energy transmitted to the soil surface decreases, diminishing 

soil evaporation. On the other hand, an increase in    can also result from greater soil conductance 

(Scott & Biederman, 2017), which enables plants to access water from deeper soil layers, thereby 

allowing for continuing transpiration during drought. This can change the total AET level and shift 

the balance of T/ET, a dynamic which has not been well represented by the ET models. For example, 

in the GLEAM model, a negative relation between   and T/ET was found (Fig.9b). This is probably 

due to an overestimation of T/ET in grasslands and savannahs, as GLEAM uses the MODIS 

MOD44B land cover product to separate the soil and vegetation fraction for each pixel and it does not 

account for soil evaporation in the vegetated fraction (Miralles et al., 2011). Our analysis highlights 
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the linkage between canopy-atmosphere decoupling and AET partitioning through the effect of 

vegetation cover and may provide a useful tool to reconcile observations and large-scale AET 

datasets. Further observation-based studies should be conducted to investigate the relationship 

between the levels of    and T/ET. 

 

The parameterization of surface biophysical limitations is also linked to the PET model structure. For 

example, soil moisture is sometimes corrected to adjust PET and ensure surface water balance in the 

models (Yang et al., 2015); vegetation and rooting depth parameters have been tuned to increase AET 

and match the observed near-surface air temperature in the Climate Forecast System (Saha et al., 

2014). Biased PET and   in the models, although they may provide accurate estimates of AET for 

locations with measurements, may not function well if novel climate and vegetation conditions occur, 

such as global warming and greening. 

 

Potential Caveats 

There are a few caveats about the practical approximations we used when available observations were 

less than ideal. Firstly, we applied a correction of the surface energy budget imbalance by adjusting 

the turbulent fluxes while conserving the Bowen ratio, in order to use the Penman approach. Although 

this correction of latent heat (AET) may change the magnitude of  , it was not likely to change the 

seasonal variation of   during the warm season. Secondly, when comparing model outputs with 

observations, we applied a linear interpolation to the FLUXNET daytime measurements and set 

nighttime AET and PET to zero. This approach did not consider nighttime transpiration, but 

nonetheless provides an initial estimation that is comparable to model outputs. The   patterns 

regarding vegetation type are unlikely to be affected by the interpolation (not shown). Thirdly, the 

satellite-observed LAI may underestimate the site LAI due to the LAI saturation effect and scale 
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mismatch (Zhu et al., 2016; Wei et al., 2017). This may cause an overestimation of the sensitivity of   

to LAI. 

 

In summary, we evaluated the seasonal dynamics of the AET/PET ratio ( ) at the North American 

FLUXNET sites across various biomes and climates and from large-scale models at the collocated 

grids. We found that the importance of vegetation vertical structure in forests cannot be understated, 

since canopy height largely determines    and canopy-atmosphere decoupling. As    is 

fundamentally linked to sensible heat and energy balance, calibration and incorporation of canopy 

height in the representation of the biophysical limitations can potentially improve the predictions of 

the water and energy balances. Our results emphasize that LAI is central to the estimation of   and 

can be quantitatively linked to AET partitioning, which is largely determined by LAI. We found 

substantial differences between observed   and model-based   in terms of their magnitudes and the 

patterns across vegetation types. These differences are closely related to the way these models are 

built to estimate PET, to represent the   responses to the environmental drivers, and to partition 

transpiration and soil evaporation across vegetation types. More efforts are needed to identify errors in 

the model responses to the drivers and to understand the sources of uncertainties. Continuous satellite 

monitoring of vegetation cover and plant water stress will also contribute to an improved 

understanding of how AET interacts with climate and vegetation and will facilitate progress toward 

understanding the response of water availability to climate change. 

 

Acknowledgements 

This research was sponsored by NASA under grant NNX14AB36A. We acknowledge the members of 

the FLUXNET community, especially the AmeriFlux network, for their help in providing the La 

Thuile dataset (http://fluxnet.fluxdata.org/data/la-thuile-dataset/). We acknowledge institutions and 

projects for free access to relevant datasets: the Oak Ridge National Laboratory Distributed Active 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Archive Center (Fixed Sites Subsets Tool: https://modis.ornl.gov/sites/), the Global Land-surface 

Evaporation: The Amsterdam Methodology, the Priestley and Taylor Jet Propulsion Laboratory 

model, the Phase 2 of the North American Land Data Assimilation System, the Climate Forecast 

System Reanalysis, the North America Regional Reanalysis, the MOderate-Resolution Imaging 

Spectroradiometer global database, and the North American Carbon Program Site-Level Interim 

Synthesis team. We thank Nathaniel Chaney at Duke University for the pre-processing of the eddy 

covariance data. Finally, we deeply thank the three anonymous reviewers for their constructive 

criticisms that improved the work substantially.  

 

References 

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for 

computing crop water requirements-FAO Irrigation and drainage paper 56. Rome: FAO. 

Allen, R. G., & Pereira, L. S. (2009). Estimating crop coefficients from fraction of ground cover and 

height. Irrigation Science, 28, 17–34. 

Anderegg, W. R. L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F. A., Choat, B., & Jansen, S. 

(2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-

induced tree mortality across the globe. Proceedings of the National Academy of Sciences, 113, 

5024–5029. 

Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., & Kustas, W. P. (2007). A 

climatological study of evapotranspiration and moisture stress across the continental United 

States based on thermal remote sensing: 2. Surface moisture climatology. Journal of Geophysical 

Research, 112. 

Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., & Kustas, W. P. (2011). 

Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the 

continental United States. Journal of Climate, 24, 2025–2044. 

Barnard, D. M., & Bauerle, W. L. (2016). Seasonal variation in canopy aerodynamics and the 

sensitivity of transpiration estimates to wind velocity in broadleaved deciduous species. Journal 

of Hydrometeorology, 17, 3029–3043. 

Brutsaert, W. (1982). The Surface Roughness Parameterization. In: Evaporation into the atmosphere: 

theory, history and applications (pp. 113-127). Dordrecht: Springer Science+Business Media. 

Caylor, K. K., Shugart, H. H., & Rodríguez-Iturbe, I. (2005). Tree canopy effects on simulated water 

stress in southern african savannas. Ecosystems, 8, 17–32. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Chen, F., Mitchell, K., Schaake, J. C., Xue, Y., Pan, H. L., Koren, V., et al. (1996). Modeling of land 

surface evaporation by four schemes and comparison with FIFE observations. Journal of 

Geophysical Research: Atmospheres, 101, 7251–7268. 

Chen, F., Janjić, Z., & Mitchell, K. (1997). Impact of atmospheric surface-layer parameterizations in 

the new land-surface scheme of the NCEP mesoscale Eta model. Boundary-Layer Meteorology, 

85, 391–421. 

Chen, F., & Zhang, Y. (2009). On the coupling strength between the land surface and the atmosphere: 

From viewpoint of surface exchange coefficients. Geophysical Research Letters, 36, L10404. 

Chu, H., Baldocchi, D. D., Poindexter, C., Abraha, M., Desai, A. R., Bohrer, G., et al. (2018). 

Temporal dynamics of aerodynamic canopy height derived from eddy covariance momentum 

flux data across North American flux networks. Geophysical Research Letters, 45. 

De Kauwe, M. G. D., Medlyn, B. E., Knauer, J., & Williams, C. A. (2017). Ideas and perspectives: 

how coupled is the vegetation to the boundary layer? Biogeosciences, 14, 4435–4453. 

D'Odorico, P., Davis, K. F., Rosa, L., Carr, J. A., Chiarelli, D., Dell'Angelo, J., et al. (2018). The 

global food‐Energy‐Water Nexus. Reviews of Geophysics, 56, 456-531. 

Donohue, R. J., Roderick, M. L., & McVicar, T. R. (2010). Can dynamic vegetation information 

improve the accuracy of Budyko’s hydrological model? Journal of Hydrology, 390, 23–34. 

Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., et al. (2013). Climate 

change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate 

Dynamics, 40, 2123–2165. 

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., et al. (2003). 

Implementation of Noah land surface model advances in the National Centers for Environmental 

Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmospheres, 

108, 8851. 

Field, C. B., Jackson, R. B., & Mooney, H. A. (1995). Stomatal responses to increased CO2: 

implications from the plant to the global scale. Plant, Cell & Environment, 18, 1214–1225. 

Fisher, J. B., Tu, K. P., & Baldocchi, D. D. (2008). Global estimates of the land–atmosphere water 

flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote 

Sensing of Environment, 112, 901–919. 

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M. C., Allen, R. G., et al. (2017). The 

future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate 

feedbacks, agricultural management, and water resources. Water Resources Research, 53, 2618–

2626. 

Fu, Q., & Feng, S. (2014). Responses of terrestrial aridity to global warming. Journal of Geophysical 

Research: Atmospheres, 119, 7863–7875. 

Garratt, J. R. (1994). Evaporation. In: The Atmospheric Boundary Layer (pp. 125-135). Cambridge: 

Cambridge University Press. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Gedney, N., Cox, P. M., Betts, R. A., Boucher, O., Huntingford, C., & Stott, P. A. (2006). Detection 

of a direct carbon dioxide effect in continental river runoff records. Nature, 439, 835–838. 

Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira, R. S., Uriarte, M., & 

Gentine, P. (2018). Tall Amazonian forests are less sensitive to precipitation variability. Nature 

Geoscience, 11, 405–409. 

Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., & Seneviratne, S. I. (2014). Global 

assessment of trends in wetting and drying over land. Nature Geoscience, 7, 716–721. 

Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J., Jr. (1981). Canopy temperature as a crop 

water stress indicator. Water Resources Research, 17, 1133–1138. 

Jarvis, P. G., & McNaughton, K. G. (1986). Stomatal control of transpiration: scaling up from leaf to 

region. In: Advances in Ecological Research (Vol. 15, pp. 1–49). London: Academic Press. 

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., et al. (2010). 

Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 

467, 951–954. 

Kang, S., Gu, B., Du, T., & Zhang, J. (2003). Crop coefficient and ratio of transpiration to 

evapotranspiration of winter wheat and maize in a semi-humid region. Agricultural Water 

Management, 59, 239–254. 

Katul, G. G., PALMROTH, S., & Oren, R. (2009). Leaf stomatal responses to vapour pressure deficit 

under current and CO2-enriched atmosphere explained by the economics of gas exchange. Plant, 

Cell & Environment, 32, 968–979. 

Katul, G. G., Oren, R., Manzoni, S., Higgins, C., & Parlange, M. B. (2012). Evapotranspiration: A 

process driving mass transport and energy exchange in the soil‐plant‐atmosphere‐climate system. 

Reviews of Geophysics, 50, RG3002. 

Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A., Migliavacca, M., et al. (2018). 

Towards physiologically meaningful water‐use efficiency estimates from eddy covariance data. 

Global Change Biology, 24, 694–710. 

Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., et al. (2015). The Community 

Earth System Model (CESM) large ensemble project: A community resource for studying climate 

change in the presence of internal climate variability. Bulletin of the American Meteorological 

Society, 96, 1333–1349. 

Kelliher, F. M., Leuning, R., Raupach, M. R., & Schulze, E. D. (1995). Maximum conductances for 

evaporation from global vegetation types. Agricultural and Forest Meteorology, 73, 1–16. 

Kim, D., Oren, R., Oishi, A. C., Hsieh, C.-I., Phillips, N., Novick, K. A., & Stoy, P. C. (2014). 

Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. 

Agricultural and Forest Meteorology, 187, 62–71. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., Bret-Harte, M. S., Ewers, B. E., et al. 

(2008). Shrub encroachment in North American grasslands: shifts in growth form dominance 

rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615–623. 

Konings, A. G., & Gentine, P. (2017). Global variations in ecosystem‐scale isohydricity. Global 

Change Biology, 23, 891–905. 

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger 

climate classification updated. Meteorologische Zeitschrift, 15, 259–263. 

Launiainen, S., Katul, G. G., Kolari, P., Lindroth, A., Lohila, A., Aurela, M., et al. (2016). Do the 

energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf 

area? Global Change Biology, 22, 4096–4113. 

Lawrence, D. M., Thornton, P. E., Oleson, K. W., & Bonan, G. B. (2007). The partitioning of 

evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: 

impacts on land–atmosphere interaction. Journal of Hydrometeorology, 8, 862–880. 

Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., et al. (2018). Partitioning global land 

evapotranspiration using CMIP5 models constrained by observations. Nature Climate Change, 8, 

640–646. 

Liu, C., Sun, G., McNulty, S. G., Noormets, A., & Fang, Y. (2017). Environmental controls on 

seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the 

global eddy flux measurements. Hydrology and Earth System Sciences, 21, 311–322. 

Mallick, K., Trebs, I., Boegh, E., Giustarini, L., Schlerf, M., Drewry, D. T., et al. (2016). Canopy-

scale biophysical controls of transpiration and evaporation in the Amazon Basin. Hydrology and 

Earth System Sciences, 20, 4237–4264. 

Martens, B., Gonzalez Miralles, D., Lievens, H., van der Schalie, R., de Jeu, R. A., Fernández-Prieto, 

D., et al. (2017). GLEAM v3 : satellite-based land evaporation and root-zone soil moisture. 

Geoscientific Model Development, 10, 1903–1925. 

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., et al. (2006). North 

American Regional Reanalysis. Bulletin of the American Meteorological Society, 87, 343–360. 

Milly, P. C. D., & Dunne, K. A. (2016). Potential evapotranspiration and continental drying. Nature 

Climate Change, 6, 946–949. 

Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., & Dolman, A. 

J. (2011). Global land-surface evaporation estimated from satellite-based observations. 

Hydrology and Earth System Sciences, 15, 453–469. 

Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental 

Biology, 19, 205–234. 

Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial 

evapotranspiration algorithm. Remote Sensing of Environment, 115, 1781–1800. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Mueller, B., Hirschi, M., Jiménez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., et al. (2013). 

Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. 

Hydrology and Earth System Sciences, 17, 3707–3720. 

Myneni, R., Knyazikhin, Y., & Park, T. (2015). MOD15A2H MODIS Leaf Area Index/FPAR 8-Day 

L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes 

DAAC. http://doi.org/10.5067/MODIS/MOD15A2H.006. 

Nepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., et 

al. (1994). The role of deep roots in the hydrological and carbon cycles of Amazonian forests and 

pastures. Nature, 372, 666–669. 

Novick, K. A., Oren, R., Stoy, P., Juang, J.-Y., Siqueira, M., & Katul, G. G. (2009). The relationship 

between reference canopy conductance and simplified hydraulic architecture. Advances in Water 

Resources, 32, 809–819. 

Novick, K. A., Miniat, C. F., & Vose, J. M. (2016a). Drought limitations to leaf‐level gas exchange: 

results from a model linking stomatal optimization and cohesion–tension theory. Plant, Cell & 

Environment, 39, 583–596. 

Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., et al. (2016b). The 

increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature 

Climate Change, 6, 1023–1027. 

Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313, 

1068–1072. 

Ohta, T., Maximov, T. C., Dolman, A. J., Nakai, T., van der Molen, M. K., Kononov, A. V., et al. 

(2008). Interannual variation of water balance and summer evapotranspiration in an eastern 

Siberian larch forest over a 7-year period (1998–2006). Agricultural and Forest Meteorology, 

148, 1941–1953. 

ORNL DAAC (2018). MODIS and VIIRS Land Products Fixed Sites Subsetting and Visualization 

Tool. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, 

USA. Accessed Nov, 2018. Subset obtained for MOD15A2H and MOD16A2 product at various 

sites in Spatial Range: N=50N, S=25N, E=50W, W=120W, time period: 2000-02-18 to 2007-12-

31. https://doi.org/10.3334/ORNLDAAC/1567. 

Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. In: Proceedings of 

the Royal Society of London Series A (Vol. 193, pp. 120-145). The Royal Society. 

Peng, L., Li, D., & Sheffield, J. (2018). Drivers of variability in atmospheric evaporative demand: 

multiscale spectral analysis based on observations and physically based modeling. Water 

Resources Research, 54, 3510–3529. 

Polhamus, A., Fisher, J. B., & Tu, K. P. (2013). What controls the error structure in evapotranspiration 

models? Agricultural and Forest Meteorology, 169, 12–24. 

Ponce-Campos, G. E., Moran, M. S., Huete, A., Zhang, Y., Bresloff, C., Huxman, T. E., et al. (2013). 

Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494, 349–352. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Priestley, C., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using 

large-scale parameters. Monthly Weather Review, 100, 81–92. 

Raupach, M. R. (1994). Simplified expressions for vegetation roughness length and zero-plane 

displacement as functions of canopy height and area index. Boundary-Layer Meteorology, 71, 

211–216. 

Ricciuto, D. M., Schaefer, K., Thornton, P. E., Davis, K., Cook, R. B., Liu, S., et al. (2013). NACP 

Site: Terrestrial Biosphere Model and Aggregated Flux Data in Standard Format. Oak Ridge 

National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. 

http://dx.doi.org/10.3334/ORNLDAAC/1183. 

Rigden, A., Li, D., & Salvucci, G. D. (2018). Dependence of thermal roughness length on friction 

velocity across land cover types: A synthesis analysis using AmeriFlux data. Agricultural and 

Forest Meteorology, 249, 512–519. 

Ritchie, J. T. (1998). Soil water balance and plant water stress. In: Tsuji, G. Y., Hoogenboom, G., 

Thornton, P. K. (Eds.), Understanding Options for Agricultural Production (Vol. 7, pp. 41–54). 

Dordrecht: Springer. 

Running, S., & Mu., Q. (2017). MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 

500m SIN Grid V006. NASA EOSDIS Land Processes 

DAAC. https://doi.org/10.5067/MODIS/MOD16A2.006. 

Ryu, Y., Baldocchi, D. D., Ma, S., & Hehn, T. (2008). Interannual variability of evapotranspiration 

and energy exchange over an annual grassland in California. Journal of Geophysical Research, 

113, 424. 

Saha, S., Wang, J., Tripp, P., Behringer, D., Ek, M. B., Meng, J., et al. (2014). The NCEP Climate 

Forecast System Version 2. Journal of Climate, 27, 2185–2208. 

Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., et al. (2010). The NCEP Climate 

Forecast System Reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1058. 

Schaake, J. C., Koren, V. I., Duan, Q. Y., Mitchell, K., & Chen, F. (1996). Simple water balance 

model for estimating runoff at different spatial and temporal scales. Journal of Geophysical 

Research: Atmospheres, 101, 7461–7475. 

Scott, R. L., & Biederman, J. A. (2017). Partitioning evapotranspiration using long‐term carbon 

dioxide and water vapor fluxes. Geophysical Research Letters, 44, 6833–6840. 

Sheffield, J., Wood, E. F., & Roderick, M. L. (2012). Little change in global drought over the past 60 

years. Nature, 491, 435–438. 

Shukla, J., & Mintz, Y. (1982). Influence of land-surface evapotranspiration on the Earth's climate. 

Science, 215, 1498–1501. 

Sperry, J. S., Venturas, M. D., Anderegg, W. R. L., Mencuccini, M., Mackay, D. S., Wang, Y., & 

Love, D. M. (2016). Predicting stomatal responses to the environment from the optimization of 

photosynthetic gain and hydraulic cost. Plant, Cell & Environment, 40, 816–830. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Sun, J., & Mahrt, L. (1995). Determination of surface fluxes from the surface radiative temperature. 

Journal of the Atmospheric Sciences, 52, 1096–1106. 

Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., et al. (2000). 

Correcting eddy-covariance flux underestimates over a grassland. Agricultural and Forest 

Meteorology, 103, 279–300. 

van Beek, L. P. H., Wada, Y., & Bierkens, M. F. P. (2011). Global monthly water stress: 1. Water 

balance and water availability. Water Resources Research, 47, W07517. 

Verma, S. B. (1989). Aerodynamic resistances to transfers of heat, mass and momentum. In: Black, T. 

A., Spittlehouse, D. L., Novak, M. D., Price, D. T. (Eds.), Estimation of Areal 

Evapotranspiration (pp. 13-20). IAHS Press. 

Wang, K., & Dickinson, R. E. (2012). A review of global terrestrial evapotranspiration: Observation, 

modeling, climatology, and climatic variability. Reviews of Geophysics, 50, RG2005. 

Wang, L., Good, S. P., & Caylor, K. K. (2014). Global synthesis of vegetation control on 

evapotranspiration partitioning. Geophysical Research Letters, 41, 6753–6757. 

Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., & Lee, X. (2017). Revisiting the 

contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research 

Letters, 44, 2792–2801. 

Wei, Z., Lee, X., Wen, X., & Xiao, W. (2018). Evapotranspiration partitioning for three agro-

ecosystems with contrasting moisture conditions: a comparison of an isotope method and a two-

source model calculation. Agricultural and Forest Meteorology, 252, 296–310. 

Weston, M., Chaouch, N., Valappil, V., Temimi, M., Ek, M. B., & Zheng, W. (2018). Assessment of 

the sensitivity to the thermal roughness length in Noah and Noah-MP land surface model using 

WRF in an arid region. Pure and Applied Geophysics, 41, 1–17. 

Williams, C. A., Reichstein, M., Buchmann, N., Baldocchi, D. D., Beer, C., Schwalm, C., et al. 

(2012). Climate and vegetation controls on the surface water balance: Synthesis of 

evapotranspiration measured across a global network of flux towers. Water Resources Research, 

48, W06523. 

Wohlfahrt, G., Haslwanter, A., Hörtnagl, L., Jasoni, R. L., Fenstermaker, L. F., Arnone, J. A., III, & 

Hammerle, A. (2009). On the consequences of the energy imbalance for calculating surface 

conductance to water vapour. Agricultural and Forest Meteorology, 149, 1556–1559. 

Wullschleger, S. D., Wilson, K. B., & Hanson, P. J. (2000). Environmental control of whole-plant 

transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple 

trees. Agricultural and Forest Meteorology, 104, 157–168. 

Xia, Y., Mitchell, K., Ek, M. B., Sheffield, J., Cosgrove, B., Wood, E. F., et al. (2012). 

Continental‐scale water and energy flux analysis and validation for the North American Land 

Data Assimilation System project phase 2 (NLDAS‐2): 1. Intercomparison and application of 

model products. Journal of Geophysical Research: Atmospheres, 117, D03109. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Xia, Y., Hobbins, M. T., Mu, Q., & Ek, M. B. (2015). Evaluation of NLDAS‐2 evapotranspiration 

against tower flux site observations. Hydrological Processes, 29, 1757–1771. 

Yang, R., Ek, M. B., & Meng, J. (2015). Surface water and energy budgets for the Mississippi river 

basin in three NCEP reanalyses. Journal of Hydrometeorology, 16, 857–873. 

Zeng, Z., Piao, S., Li, L. Z. X., Wang, T., Ciais, P., Lian, X., et al. (2018a). Impact of Earth greening 

on the terrestrial water cycle. Journal of Climate, 31, 2633–2650. 

Zeng, Z., Peng, L., & Piao, S. (2018b). Response of terrestrial evapotranspiration to Earth's greening. 

Current Opinion in Environmental Sustainability, 33, 9–25. 

Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley, J. J., & Yu, Z. (2015). 

Vegetation greening and climate change promote multidecadal rises of global land 

evapotranspiration. Scientific Reports, 5, 15956. 

Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., et al. (2016). Greening of the 

Earth and its drivers. Nature Climate Change, 6, 791–795. 

Zilitinkevich, S. S. (1995). Non‐local turbulent transport: Pollution dispersion aspects of coherent 

structure of convective flows. In: Power, H., Moussiopoulos, N., Brebbia, C. A. (Eds.), Air 

pollution III. Volume I. Air pollution theory and simulation (pp. 53–60). Computational 

Mechanics Publications. 

 

Supporting Information 

Additional Supporting Information may be found in the online version of this article. 

Data S1 DataS1_annual_mean_omega_fluxnet_2000-2007.csv. 

Text S1   dependence on the formulation of aerodynamic conductance. 

Figure S1 Annual mean   calculated using four    methods grouped by the vegetation types. 

Text S2 Other factors affecting   estimates. 

Figure S2 Annual mean   calculated from raw data with energy balance non-closure (black) and 

from adjusted data using Bowen ratio method (blue) grouped by the vegetation types. 

Figure S3 Annual time series of   at the 28 Ameriflux sites grouped by the vegetation types.  

Figure S4 Seasonality of    at the 28 Ameriflux sites grouped by the K-G climate classes. 
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Figure S5 Seasonality of    at the 28 Ameriflux sites grouped by the vegetation classes. 

Figure S6 The relationships between monthly   and monthly (a)   : air temperature (K), (b) Rg: 

global radiation (W m
-2

) for different vegetation classes. 

Figure S7 The sensitivity of   to LAI vs site-average (a) monthly total precipitation, (b) LAI, (c)   , 

and (d) VPD, with marker shape and color coded with vegetation type. 

Figure S8 The relationship between LAI and canopy height (h) color coded with vegetation type. 

Figure S9 The relationships between monthly   and (a), (b), (c) wind speed (u, m s
-1

), and (d) (e) (f) 

LAI (m
2
 m

-2
) for ENF, DBF, and CRO in the FLUXNET data and the model-based datasets.  

Table S1 The 16 overlapping sites between NACP site-level synthesis and the 28 sites selected in this 

study. 

Figure S10 Annual mean   in FLUXNET and the 18 NACP models for the 16 overlapping sites 

grouped by the six vegetation types.  


