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Abstract 14 
 15 
Moho depths beneath four stations of the Ethiopian Seismic Station Network (ESSN) are estimated 16 
from p-wave receiver functions (RF). We used high quality seismic data recorded at ANKE 17 
(Ankober), DILA (Dilla), HARA (Harar) and SEME (Semera) stations for earthquakes located at 18 
epicentral distances ranging from 30 to 100 degrees with magnitude mb ≥ 5.5. We applied a 19 
frequency domain deconvolution technique to remove source and propagation path effects from 20 
the earthquakes waveforms to make the RFs dependent only on the structure beneath the seismic 21 
stations. A linearized-iterative inversion is applied on the generated radial component of the 22 
receiver functions. The minimum number of teleseismic earthquakes used is 14 for HARA while 23 
the maximum is 39 for SEME station. A linearized-iterative inversion is applied on the generated 24 
radial component of the receiver functions to obtain p-wave velocity models beneath the stations. 25 
We achieved a reasonably good fit between the observed and synthetic RFs, which demonstrated 26 
the high quality of the inversion process. From the obtained models we estimated Moho depths of 27 
26 ± 2 km for SEME, 36 ± 2 km for DILA, 38 ± 2 km for HARA and 42 ± 1.7 km for ANKE. We 28 
have achieved a reasonably good fit between the observed and synthetic RFs which demonstrates 29 
the quality of the inversion. The lowest Moho depth is observed at Semera station which implies 30 
a thinned crust while the highest crustal thickness is observed at Ankober, which lies along the 31 
North western plateau margin. Our results agree with previous observations which strengthen the 32 
hypothesis that Moho depths estimated for stations that lie within the rift and rift margins are lower 33 
than those located in the plateaus. Our RFs inversions show a low velocity gradient at about 16km 34 
depth at Semera station, interpreted as evidence for lower crustal storage of partial melt. 35 
 36 
 37 
 38 
 39 
 40 
 41 
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1. Introduction  43 

Most continental rifts are thought to extend by some component of mechanical extension in which 44 

faulting and stretching of the tectonic plate defines the primary architecture of the rift (Weissel 45 

and Karner, 1989). Ultimately, however, the locus of strain must shift towards a narrow zone that 46 

becomes the newly formed seafloor spreading center. It is here that magma formed from 47 

decompression melting of the mantle intrudes the plate and creates a new ocean floor (Whitehead 48 

et al., 1985). Despite the importance of continental breakup in plate tectonic theory, it remains 49 

unclear how and when the transition from mechanical to magmatic extension of the plate occur 50 

(Hayward and Ebinger, 1996; Hopper et al., 2004). For example, it is still unclear what proportion 51 

of rift extension is taken up by the intrusion and where the magma is stored in the crust beneath 52 

Afar.  53 

In Afar, mechanical extension is thought to have initiated around ~30 Ma on large offset border 54 

faults that still define the edge of the rift (Wolfenden et al., 2004). These observations have led to 55 

the interpretation that mechanical extension by ductile stretching occurred beneath the fault bound 56 

rift (Bastow and Keir, 2011). The geological record suggests the locus of extension migrated 57 

progressively in-rift, with exposed dikes and lava flows suggesting that the progressive extension 58 

included a magmatic component. The current locus of dike intrusion (Keranen et al., 2004), recent 59 

volcanism, young faults (Corti et al., 2009), earthquakes, coupled with the geodetically constrained 60 

ground motions (Wright et al., 2006; Dumont et al., 2017) suggest extension is now mainly focused 61 

in ~20km-wide and ~50—100 km long volcanic segments that define the axis of the rift (Ebinger 62 

and Casey, 2001).  63 

This study conducted, P to S wave conversion receiver function analysis at four newly occupied, 64 

permanent, seismic stations. Therefore, this work is aimed at estimating the Moho depth beneath 65 

Semera (Central Afar), Ankober (Northwestern plateau), Harar (Southeastern Plateau) and Dila 66 

(Southern Main Ethiopian Rift) (Figure 1) using teleseismic data recorded from September 2014 67 

to June 2015 at Ethiopian permanent broadband seismic stations. The aims of this study is to 68 

constrain crustal thickness and internal crustal structure in the rift and adjoining plateau using 69 

passive source teleseismic receiver functions. In particular, we aim to better understand how the 70 

lower crust has been modified by magma since this has implications for the thickness, strength of 71 

extending crust, as well as for quantifying the mode of extension. Though similar receiver function 72 



studies have been done in the rift and adjoining plateaus, this work focuses on Moho depth 73 

estimation beneath three new sites with few prior constraints. We also conduct a re-appraisal of 74 

one station. 75 

1.1 Previous constraints on crustal structure in Ethiopia 76 

The crustal structure beneath parts of Ethiopia has been constrained using both passive and 77 

controlled source seismic techniques, such as magnetotelluric imaging, and inversion of gravity 78 

data (Didana et al., 2014; Lewi et al., 2015). Seismic imaging is in broad agreement with other 79 

geophysical methods such as magnetotelluric and gravity methods and shows that crustal thickness 80 

beneath the Northwestern plateau is 35—45km, with the thicker crustal regions along the Southern 81 

Red Sea margins and central Northwestern plateau, including up to 10km of high velocity lower 82 

crust (P-wave velocity of 7.4—7.7 km/s) (Dugda et al., 2005; Maguire et al., 2006; Stuart et al., 83 

2006; Dugda and Nyblade, 2006; Ebinger et al., 2011). This high velocity lower crustal layer has 84 

been interpreted as “underplating” of mafic rock or high density lower crustal sill intrusion during 85 

Oligocene to Recent magmatism (Stuart et al., 2006; Cornwell et al., 2010; Maguire et al., 2006; 86 

Hammond et al., 2011; Hammond, 2014). This contrast with the South Eastern plateau where the 87 

receiver functions show the crustal thickness is consistently ~35±1 km thick (Hammond et al. 88 

2011). From seismic refraction results Vp through the upper mantle beneath the Northwestern 89 

plateau is about 8.0 km/s (Makris and Ginzburg, 1987). We summarized previous findings of 90 

crustal thickness in Ethiopia estimated from receiver function studies in Table 1. 91 

The crust is generally thinner and has higher Vp/Vs ratio in the Main Ethiopian Rift (MER) and 92 

Afar than the Ethiopian and Southeastern Plateau.Thickness of the crust beneath the rift 93 

reducesnorthward from ~36km in the MER, to ~25km in most of Afar, to ~15 km in northern Afar 94 

(Hammond et al., 2011). Recent multidisciplinary studies have helped to better image the crust in 95 

the region of the Tendahograben (station SEME). Magnetotelluric surveys showed the presence of 96 

a highly electrically conductive body ranging 15 to28 km depth and ~13 km width beneath the rift 97 

axis, which is in turn interpreted as evidence of considerable melt/partial melt fraction in the crust 98 

(Kind et al., 1996; Desissa et al., 2013; Didana et al., 2014; Hammond, 2014; Lewi et al., 2015). 99 

Modeling of dense micro-gravity measurements supports the presence of low density material 100 

(basaltic melt in a magma reservoir) whilst MT profile results show that high electrical 101 

conductivity material occupies space of ~13 km extent at a depth of about 15—28 km at the rift 102 



axis (Johnson, 2012. On a regional scale, the crustal thickness constrained by modeling gravity 103 

data is broadly consistent with that constrained using seismology (Tiberi et al., 2005; Mammo, 104 

2013) (Table 2).  105 

2. Methods 106 

The receiver function method (RF) is a well established time series technique, which is widely 107 

used to study the structure of the Earth’s crust and upper mantle (Langston, 1979; Ammon et al., 108 

1990; Ammon, 1991). It is the transfer function between the direct P and converted S waves with 109 

all P and Ps multiples and reverberations as shown in figure (A) and (B) in Figure 3 (Ammon, 110 

1991; Jesse and Douglas, 2004). In order to address thickness of the crust and its layered structures 111 

before and during progressive stages of rift evolution, we applied this method using high quality 112 

seismic data obtained from 4 permanent Ethiopian stations. Using Langston’s [1979] source 113 

equalization procedure to remove the effects of near-source and near receiver structure are a major 114 

procedure for receiver function analysis. The procedure includes phase information, complex 115 

frequency-domain ratio and inverse transforming back into the time domain. A deconvolution 116 

approach employed in this work used a water-level stabilization method. Then, a low-pass 117 

Gaussian filter removes high-frequency noises that are not filtered by the water-level. Following 118 

a low pass Gaussian filter (reducing spectral artifacts to acquire better P-onset arrival time), 119 

rotation of the coordinates from ZNE (Z = vertical, N = north, E = east) to ZRT (Z = vertical, R = 120 

radial, T = transversal) was done to isolate the converted S phase of the direct P wave using Seismic 121 

Analysis Code (SAC) software (Goldstein, 1999). Radial and transverse receiver functions were 122 

calculated using the source equalization approach to derive the structural response beneath the 123 

recording station (Langston, 1979). This approach was done using the frequency domain water-124 

level deconvolution method (Clayton and Wiggins, 1976; Midzi and Ottemöller, 2001). 125 

The powerful water-level technique was done by deconvolving the vertical from radial and 126 

transverse components in the frequency domain to remove the signature of source, travel path and 127 

instrumental response effects (Langston, 1979; Ammon et al., 1990; Ammon, 1991; Dugda et al., 128 

2005; Tuluka, 2010). Then, by multiplying the result obtained from water-level deconvolution 129 

with low-pass Gaussian filter high-frequency signals were excluded. Finally, receiver functions 130 

were stacked before being inverted to obtain the plane layered crustal velocity structure. Various 131 

starting forward velocity models ranging from 10 to 30 layers were synthetically generated for 132 



each receiver function. A smoothness factor in the range of 0.0 and 2.0 and Gaussian width factor 133 

of about 1.0 (Ammon et al., 1990; Ammon, 1991; Randall, 1989; Zandat and Ammon, 1995; 134 

Tuluka, 2010) were used to obtain a better root mean square fit between synthetic and observed 135 

receiver functions. Receiver functions were calculated using the singular-value decomposition 136 

method with a water level parameter c (in the range of 1.0 to 0.0001) to avoid division instabilities 137 

during the deconvolution process (Clayton and Wiggins, 1976; Randall, 1989; Ammon et al., 1990; 138 

Ammon, 1991; Cassidy, 1992; Mangino et al., 1993; Midzi and Ottem, 2001; Tuluka, 2010) for a 139 

better resolution of arrival times. Linearized inversion methods were used to model RF using 140 

several different starting models chosen by referring to a priori information from the previous work 141 

conducted near the study areas to make an initial model as close as the true Earth velocity structure 142 

as possible (Ammon et al., 1990). The receiver functions (RFs)) were produced using the programs 143 

written by Ammon, and others (e.g., Ammon, 1991). 144 

By calculating the time difference between the direct P (tp) and the converted Ps (tps) phase of the 145 

receiver function plot, the crustal thickness can then be estimated by multiplying average velocity 146 

above the Moho with the time difference. This estimation provides a good “point” measurement 147 

at the station because of the steep incidence angle of the teleseismic P wave (Zhu and Kanamori, 148 

2000).  149 

To obtain the fittest synthetic receiver function with its corresponding inverted velocity model, we 150 

applied an iterative inversion technique that employed an initial model which presumed downward 151 

increments of velocity. We then used a gradient-based inversion algorithm to evaluate at which 152 

iteration the synthetic and observed waveforms are matched. Once we obtained the minimum 153 

number of iterations by which calculated synthetic value converges to the observed model, then 154 

that is the end of selecting a station’s smoothest model that matches the observations (Ammon, 155 

1991). The iteration halts when the calculated receiver function begins to repeat itself without 156 

having significant modification during fitting process with the observed receiver function (Ligorria 157 

and Ammon, 1999). Fittest selection criteria used in this study is by visual coherency examinations 158 

of corresponding Ps conversions of synthetic RF with stacked observed RF that is obtained by 159 

careful elimination of outliers and noisy records before the start of inversion processes (Tkalčić et 160 

al., 2011). 161 



This work chose frequency domain over time domain method because the latter method is less 162 

efficient than simpler methods such as water level deconvolution for moderate earthquake source 163 

though it is efficient to estimate from large earthquake's source (Legorria and Ammon, 1999). The 164 

second reason we chose the frequency domain over time domain is due to the easiness of applying 165 

Water-level and Gaussian transform to limit frequency band by excluding high frequency signals 166 

(artifacts that are not obviously present in the original recording) (Langston, 1979; Clayton and 167 

Wiggins 1976) in addition to its simplicity and time efficiency (Bona, 1998). But both methods 168 

are equally effective for estimating receiver functions from high magnitude signals (Legorria and 169 

Ammon, 1999). 170 

Frequency domain deconvolution, a spectral division technique, has an advantage to resist leakage 171 

of the low amplitude portions from P-wave receiver functions (Jeffrey and Vadim, 2000). But, it 172 

has certain shortfalls; two of these disadvantages are exposed to instability caused by the very low 173 

denominator (exposed to spectral hole) and seismic noise (Bone, 1998). To circumvent the side 174 

effect of frequency domain deconvolution, a modified spectral division is used by applying water 175 

level parameters that avoids numerical instable zeroes of the denominator (Clayton and Wiggins, 176 

1976; Ammon, 1991; Jeffrey and Vadim, 2000). When the data are wide band with good signal to 177 

noise levels most decovolution methods such as frequency domain and time domain approaches 178 

work well, and the advantage of one method over the other is insignificant (Ligorria and Ammon, 179 

1999) and no deconvolution approach outshines all others in all occasions and complications. In 180 

this work we used both receiver function and inverted velocity versus depth plot for a conclusion 181 

whether the point is Moho or not as Ps phase may be hidden in the noise and/or display complex 182 

masks from near-surface reverberations and P-wave multiple reflections and may not fully judged 183 

by the velocity versus plot alone (Yuan et al., 2006). 184 

When unconsolidated sediments are unearthed below a station, the strong reverberations generated 185 

at its base mask the Ps conversions at deep structure such as the Moho. To minimize such hidden 186 

phase shift caused by masked structure we included velocity of sedimentary structure in the initial 187 

model. However, application of this technique alone didn’t fully remove the occurrences of misfit.  188 

In this work we used both receiver functions and inverted velocity versus depth plots for a 189 

conclusion whether the point is Moho or not as Ps phase may be hidden in the noise and/or display 190 



complex masks from near-surface reverberations and P-wave multiple reflections and may not 191 

fully judged by the velocity versus plot alone (Yuan et al., 2006). 192 

3 Results and Discussion 193 

Using the steps and processes described in Section 2 observed waveform receiver functions were 194 

estimated for the four stations (Figure 4A). Corresponding four calculated synthetic receiver 195 

functions were chosen from the smoothest model that matches (Figure 4B) the observations by the 196 

use of visual match. From calculated smoothest models various crustal structures were obtained 197 

(Table 3).  198 

The number of iterations in any inversion depended on the complexity of the structure and the 199 

closeness of the initial model to a structure that matches the observations (Ammon et al., 1990 and 200 

Ammon, 1991). The P wave velocity models obtained from iterative inversion technique (Figure 201 

5) displayed the velocity contrast of ANKE, DILA, HARA and SEME stations at various depths, 202 

which describe different crustal structural units. By using good quality teleseismic signals a 203 

reliable crustal thickness and P wave velocity (Vp) contrast were estimated. However, the 204 

numerical value of Vp in SEME is not in the range of known Vp passing through Moho, the 205 

anomalous Moho depth beneath SEME station is about 26km with a Vp value of 5 km/s. This 206 

anomalous low velocity zone was obtained in the range of 15 km to 26 km deep. The station DILA 207 

located at the southern main Ethiopian rift was obtained to be the second shallowest Moho in our 208 

study with a depth of 36 km and with Vp 7.53 km/s, however, the value of Vp at different depths 209 

were found to be less heterogeneous (i.e. ranging from 6.0—7.0 km/s). There is a relatively high 210 

velocity contrast at the depth of 36km from the top beneath this station. This contrast might be due 211 

to the existence of Moho beneath DILA, a rift margin of the southeastern plateau (Mahatsente et 212 

al., 1999). 213 

For the station HARA, which is in the southeastern plateau, there is a relatively high change in Vp 214 

from 7.8 km/s to 8.0 km/s at a depth of 38km ± 2km from the surface. The velocity contrast at this 215 

depth could be the location of the Moho interface. The Moho depth obtained in HARA is similar 216 

to the results obtained by Mahatsente et al. [1999] and Hammond et al. [2011] beneath the 217 

Southeastern plateau, which range from 36 to 38km. Significant P-wave velocity contrast of about 218 

7.8km/s is observed at the depth of 42km ± 1.7km beneath ANKE which is thickest crust with 219 



normal Vp beneath the station and this result has a good agreement with the previous studies 220 

(Mahatsente et al., 1999; Dugda et al., 2005; Stuart et al., 2006; Hammond et al., 2011; Mammo, 221 

2013). From inversion results of velocity versus depth a high velocity zone of about 7.1km/s is 222 

obtained in the range of ~7—10 km. The average value of Vp increases towards the Northwestern 223 

plateau and the reason for this higher than average upper crustal seismic velocity could be a mafic 224 

dike intrusion. In Figure 4B the observed and calculated receiver function obtained at HARA and 225 

SEME station look like they don't fit. This might be due to shallow volcanic and sedimentary 226 

layers which manifest high velocity contrast at its base since P wave arrivals overwhelmed by the 227 

converted phase and reverberations (Ligorria and Ammon, 1999). The locality beneath the station 228 

SEME could be layered soft and thick unconsolidated sediment that mixes the direct P and 229 

converted Ps phase (Chen and Niu, 2016).  230 

Overall, the thinnest crust is observed in SEME with the existence of anomalous Moho, while the 231 

thickest crust is in the Northwestern plateau beneath ANKE with the observed normal Moho 232 

(Table 3). Similar patterns of Moho depths were found near these two localities in previous studies 233 

(Dugda and Nyblade, 2006; Stuart et al., 2006; Cornwell et al., 2010). From the velocity models 234 

obtained from the  inversion process, the top most crustal layer of about 4 km at SEME has  a very 235 

low velocity, Vp. Beneath this low velocity there is a high velocity (~6.6 km/s—7.6 km/s) thick 236 

crustal layer of about 8km thick. At 16km the velocity decreases steeply to a low velocity layer of 237 

about 10km thick. The anomalous Moho depth beneath SEME station is about 26km ± 2km, while 238 

the Moho depth beneath ANKE is at the depth of 42km ± 1.7km.  239 

The crustal structure observed beneath SEME is distinctly different from that observed under the 240 

other three stations. The upper crustal layers in the top 4km have very low P wave velocities 241 

ranging from 2.4 to 3.2 km/s. This might be interpreted as a cover sediment (maybe evaporates) 242 

or volcanic layer. Top most layers beneath SEME are likely to be volcanic rocks intercalated with 243 

thin sediments. This is similar to the results obtained by Lewi et al. [2015] for a site with surface 244 

sediments of a thickness not more than 1.2 km is decreasing to 0.75 km northwards.  245 

Beneath this station a high velocity layer (~7—7.6 km/s) between 6 km to 14km is consistent with 246 

the presence of cooled magmatic intrusion. Below this high velocity zone, a very low Vp value 247 

was obtained (Figure 6) in the depth range of 16 km—26 km, which is unusual compared to earlier 248 

receiver function studies near the area (Dugda et al., 2005; Dugda and Nyblade, 2006; Stuart et 249 



al., 2006; Hammond et al., 2011; Hammond, 2014). Forward modeling shows that the observed 250 

very low velocity is not an artifact of the inversion process, but can potentially be explained by 251 

deep seated fluid accumulation. This conclusion is justified by the fact SEME station is located at 252 

the southeastern terminus of the active Manda Hararo Rift system which is near the Tendaho basin 253 

where deep seated magma and hydrothermal reservoirs are potentially possible at the specified 254 

depth (Hernández-Antonio et al., 2015). A similar inference is given by Field et al. [2012] as there 255 

isperalkaline magmas beneath Dabbahu Volcano, Afar.  Using secondary ion mass spectrometry 256 

(SIMS) analysis of volatile contents in melt inclusions (Kind et al., 1996) and olivine from 257 

pantellerite obsidians which represent the youngest eruptive phase (<8 ka) that includes H2O 258 

contents ≤5.8 wt. % and CO2 contents below 500 ppm (Field et al., 2012). Petrological methods 259 

for constraining magma storage depths include the identification of dissolved volatiles (principally 260 

H2O and CO2) in phenocryst-hosted melt inclusions from Dabbahu, which are H2O-rich in the 261 

range of 3 to 5.8 wt.%. However, high magmatic H2O is consistent with other findings in 262 

peralkaline rocks (Maksimov, 2008; Blundy and Cashman, 2008; Field et al., 2012) in Dabbahu 263 

near SEME station. Touret and Van Den Kerkhof [1986] gave a possible evidence for the presence 264 

and the nature of free fluid phase to be found at depths down to 35 km below the surface of the 265 

continent. The existence of melt and/or fluid beneath SEME makes the anomalous Moho difficult 266 

(since observed Vp value beneath SEME is very small compared to global Moho velocity) to 267 

identify only using Vp value from the velocity versus depth plot alone unless a priori Vp value is 268 

used. However, the source of this low velocity beneath the station could be the release of magmatic 269 

fluid such as CO2 and H2O from the mantle to the crust (Bucher-Nurminen, 1990). This inference 270 

may get accompanied by either the accumulation of H2O-rich fluid composition, heat and/or 271 

volatile in the lower crust (Zandt and Ammon, 1995) which percolates upwards through the crust 272 

by a porous-media or fracture depending on the melting of the crust. If the temperature of the lower 273 

crust is high enough, this fluid could induce partial melting of material of suitable composition 274 

(Amundsen, 1987; Bucher-Nurminen, 1990). This has a similar inference with the work of 275 

Thompson and Connolly [1990] as fluid accumulation is a common phenomenon in the lower 276 

crust. The maximum fluid content transferred from the mantle to the lower crust depends on both 277 

Moho temperature and depth (Bucher-Nurminen, 1990). The existence of the partial melt in the 278 

lower crust beneath Afar is supported by previous geophysical studies such as Hammond et al. 279 



[2011], Guidarelli et al. [2011], Desissa et al. [2013] and Hammond [2014], which are interpreted 280 

as stored melt in the sill-like features in the lower crust.  281 

The Moho depth beneath SEME is about 26km ± 2km and the result is very close to an inference 282 

given by (Berckhemer, 1975). Gravity modeling in the southern central part and margin of the Red 283 

Sea Rift shows that there is a possibility of partial melt existence at a depth of 8.5 to 25 km 284 

(Johnson, 2012; Lewi et al., 2015). In their work, Knox et al. (1998) used the inversion of Rayleigh 285 

wave dispersion and found low S-wave velocities (0.2—0.8 km/s) and that were inferred as partial 286 

melt. 287 

4 Global comparisons and the major points 288 

Crustal P wave seismic velocities and crustal thicknesses observed beneath HARA and DILA are 289 

similar to the global average crustal structure (Christensen and Mooney, 1995), suggesting that the 290 

crust on the Southeastern side of the MER and Afar have not been significantly modified by plate 291 

thinning and intrusion. The relatively normal seismic velocities in the crust make a relatively sharp 292 

contrast with what is slower than the global average upper mantle seismic velocities. 293 

ANKE is characterized by a 42 km thick crust that has higher seismic velocities than HARA and 294 

DILA, and thus higher than the global average. Specifically, the observed velocities at 5—10 km 295 

depth is ~0.5 to 1 km/s faster than the globally most commonly observed range of 6—6.5 km for 296 

this depth range [e.g., Christensen and Mooney, 1995]. In addition, the seismic velocities of 297 

~7km/s in the 30-40 km deep lower crust is towards the higher end of the globally most common 298 

velocities of 6.5—7.1 km/s. Since frozen mafic rock has a seismic velocity of over 7 km/s, the 299 

modification of the crust at ANKE by mafic intrusion provides a simple explanation for high 300 

seismic velocity through lower crust underplating and recent magmatic activity beneath the 301 

Northwestern plateau (Mackenzie et al., 2005). Intruded upper crust is consistent with observed 302 

mafic dykes exposed near the surface along the western margin of Afar (Wolfenden et al., 2004). 303 

Elevated lower crustal velocities are consistent with the presence of frozen lower crustal, stacked 304 

sill complexes imaged beneath the western margin of the MER and the Northwestern plateau by 305 

controlled source and passive seismic techniques in project EAGLE (Stuart et al., 2006; Keir et 306 

al., 2009). In light of previous results, the observed crustal structure beneath ANKE is consistent 307 

with the interpretation that the crust beneath the northwestern side of Afar and the MER has been 308 



significantly modified by magmatism. Our results suggest that intrusion into the upper crust along 309 

the western Afar margin may be more significant than previously thought.  310 

The seismic velocity structure of SEME is quite different to the other seismic stations, and to the 311 

global average continental crust. Seismic velocities in the uppermost crust are exceptionally low, 312 

consistent with the presence of a sedimentary basin including evaporites. Seismic velocities at 313 

10—13 km depth are over 7 km/s, and consistent with the presence of upper crustal mafic intrusion. 314 

Seismic velocities are then anomalously low in the 15 - 25 depth range. In light of independent 315 

constraints of high conductivities observed in MT studies at the same depth range and interpreted 316 

as evidence for the presence of partial melt (Dessiese et al., 2013), we interpret the low seismic 317 

velocities in the lower crust beneath SEME to be caused by the presence of partial melt. The 318 

interpretation is strengthened by InSAR analysis which shows a broad zone of subsidence near 319 

SEME that has been modeled as magma withdrawal from a lower crustal sill complex (Grandin et 320 

al., 2009). Our observations, in light of previous constraints from Afar as well as from seismic 321 

refraction images across rifted continental margins such as the eastern north Atlantic (White et al., 322 

2008), provides evidence that the lower crust is an important melt storage region during the 323 

breakup of continents. 324 

Conclusions  325 

By applying frequency domain deconvolution techniques followed by a linearized-iterative 326 

inversion on the radial component of receiver functions we obtained Moho depths of 26 ± 2 km 327 

for SEME, 36 ± 2 km for DILA, 38 ± 2 km for HARA and 42 ± 1.7 km for ANKE. We achieved 328 

a reasonably good fit between the observed and synthetic RFs by employing high quality seismic 329 

dataengaged in plain usage of water level and Gaussian filter methods. Though additive noises 330 

preceding direct P pulse caused uncertainty, the seemingly misfit result obtained at SEME and 331 

HARA stations could be due to local sediments overlaid on thick high velocity material in addition 332 

to the filters’ pre-signal remnants and ambient seismic noises. The lowest Moho depth is estimated 333 

for SEME station, which implies a thinned crust while the highest crustal thickness is achieved for 334 

ANKE that lies along the Northwestern plateau margin. Our results agree with previous 335 

observations which intensify the hypothesis that Moho depths estimated for stations that lie within 336 

the rift and rift margins are lower than those located in the plateaus. Our RF inversions show a low 337 

velocity gradient at a depth of about 16km at SEME station, interpreted as evidence of lower 338 



crustal storage of partial melt, which might have a defined contribution for the transition from 339 

continental to incipient oceanic rifting. A relatively high velocity zone probably due to cooled 340 

magma from previous dike or sill intrusions is found at a depth of ~7 to 20 km at ANKE station. 341 

In contrast, Vp values beneath HARA are consistently high throughout the crust, and this might 342 

be interpreted as low crustal heterogeneity. 343 
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Figures 515 



 516 

 517 

Figure 1. Location of the four Ethiopian permanent broadband seismic stations (blue triangles) for which receiver 518 
functions and P wave velocity models were estimated. The black thick lines are border faults that separate the NW 519 
plateau and the SE plateau from the Main Ethiopian Rift and Afar. The red circles represent the location of volcanoes. 520 
Inset: The red rectangle shows the location of the study area on the African continent 521 



 522 

Figure 2. The solid black circular symbols are the locations of the teleseismic earthquakes that occurred between 523 
September 2014 and August 2015 with a magnitude greater than or equal to 5.5mb and within epicentral distances 524 
between 30ºand 100º. These earthquake data were recorded by the Ethiopian permanent broad band seismic network 525 
of stations (ANKE, SEME, HARA and DILA) and collected by the team led by the Institute of Geophysics Space 526 
Science and Astronomy (IGSSA), Addis Ababa University. The black triangles in the center of the internal circles are 527 
locations of each seismic station. The teleseismic earthquake’s information (latitude, longitude and magnitudes) were 528 
taken from Global Earthquake catalog of the International Earthquake Information Center. 529 
 530 
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 538 

 539 

(A)                                                                               (B) 540 

Figure 3. (A) is a graphical representation ray diagram of receiver functions identifying the major P- to S converted 541 
phases that illustrates the direct P, Ps, PpPs and PpSs phases that comprises the receiver function for a single half-542 
space and (B) is a receiver function that shows the direct P-wave and the reverberations (Ps, PpPs, PsPs + PpSs). 543 
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(A) 545 
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(B) 547 

Figure 4. (A)The black wave form represented by A1, D1, H1 and S1 are the observed waveform receiver functions 548 
obtained from the deconvolution of the radial component  from the horizontal component waveform  of the teleseismic 549 
earthquakes recorded at ANKE, DILA, HARA and SEME permanent broad band seismic stations. (B) Observed 550 
receiver functions (Figure A) fit with the synthetic coloured receiver functions obtained from iterative frequency 551 
domain water level deconvolution technique. In all plots the delay time given for the P wave to show contrast is 10 552 
seconds and Ps marked in each plot is the conversion from direct P wave to S wave. The coloured waveform models 553 
are the synthetic receiver functions obtained by varying the smoothing weight parameters using the program 554 
"smthinv". 555 
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 585 
Figure 5. P wave velocity models obtained by inverting receiver functions for the seismic stations A3 (ANKE), D3 586 
(DILA), H3 (HARA) and S3 (SEME). The inversion results in these plots were obtained using programs by 587 
Ammon[1991]. The Moho is interpreted as the depth at which there is a sharp increase in seismic velocity from ~6.5 588 
km/s in the lower crust to 7—7.5 km/s in the upper mantle. 589 
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