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Abstract The Radial Basis Function (RBF) network is one of the most widely used surrogate 
models in multidisciplinary design optimization. However, one of the challenges of applying the 
RBF network to engineering problems is how to efficiently optimize its width parameters. In this 
work, a novel space-division-based width optimization (SDWO) method is proposed to 
decompose the complex multivariable width optimization into several small-scale single-variable 
width optimizations. The SDWO method consists of two main steps. First, a two-stage fuzzy 
clustering algorithm is carried out to group the samples and divide the input space into several 
overlapping local regions, and the overlapping degree is controlled by a dimensionless expansion 
factor. Second, in each local region, one small-scale local RBF network (LRBFN) is constructed 
by solving a single-variable optimization problem when the LRBFN is needed for prediction. All 
these LRBFNs are independent of each other and can be constructed in parallel. The proposed 
method is efficient and particularly suitable for large sample sets. Test results of four sample sets 
verify that the proposed SDWO method has better performance than the conventional width 
optimization method in terms of both training efficiency and approximation accuracy. An 
inter-stage structure optimization is carried out, which demonstrates the efficiency of the proposed 
method in practical engineering applications. 
 
Keywords: width optimization, Radial Basis Function network, space division, fuzzy clustering, 
surrogate model 

 

1 Introduction 

In the multidisciplinary design optimization (MDO) of complex systems, such as launch 
vehicles and aircrafts, a large number of computer simulations are involved. High fidelity 
simulations, like computational structural dynamics (CSD) and computational fluid dynamics 
(CFD), take a long computing time and are too expensive to be directly carried out for global 
optimization. Surrogate models can be used as a replacement of high-fidelity simulation models to 
make a trade-off between accuracy and efficiency. 

The Radial Basis Function (RBF) network is one of the most promising surrogate models for 
global optimization (Haftka et al. 2016; Akhtar and Shoemaker 2016). It approximates an 
unknown complicated function by a weighted sum of several basis functions directly from the 
input-output dataset (Sobester et al. 2004; Huang et al. 2005) and has been widely used in a large 
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number of practical problems (Alexandridis et al. 2013; Li et al. 2017; Fang et al. 2018; Shi et al. 
2018). The training process of the RBF network is to estimate the optimal values of three types of 
parameters: the RBF centres, the width parameters, and the output weights. The output weights 
can be analytically calculated by solving the linear regression equations after the RBF centres and 
the widths being determined. Therefore, the RBF centres and their corresponding widths are key 
factors affecting the model accuracy. A large amount of work has been carried out to determine 
these two types of parameters. 

First, consider the methods for determining the RBF centres. In the early studies of the RBF 
network (Broomhead and Lowe 1988; Poggio and Girosi 1990), the RBF centres were allocated at 
each training sample under the interpolation condition. Such treatment can lead to prohibitive 
computational costs and overfitting when the number of the training samples is large or the 
numerical noise exists. A solution (Lowe 1989) was proposed, which selects the RBF centres 
randomly from the training samples. However, this method does not consider the distribution 
density of the sample data in the input space, so it is unable to achieve satisfactory generalization 
performance. A significant improvement has been made by developing a series of algorithms 
based on a sequential strategy, e.g., the Orthogonal Least Squares (OLS) Algorithm (Chen et al. 
1991), Resource Allocating Networks (RAN) (Platt 1991), Growing and Pruning RBF (GAP-RBF) 
networks (Huang et al. 2004), and other variations (Huang et al. 2005; Bortman and Aladjem 2009; 
Vuković and Miljković 2013). These methods construct the hidden layer by collecting the RBF 
centres sequentially and incrementally until a termination criterion is met. Simulation results 
indicate that these methods can generate compact networks, but their iterative procedures are 
time-consuming. Different from these sequential methods, some methods based on clustering 
algorithm (Hansen and Jaumard 1997) can simultaneously determine all the RBF centres. 
Carvalho (Carvalho and Brizzotti 2001) reviewed different clustering algorithms for determining 
the RBF centres. Oh (Oh et al. 2012) proposed an advanced architecture of k-means 
clustering-based polynomial RBF networks. Niros (Niros et al. 2015) proposed a new method that 
combines hierarchical fuzzy clustering and particle swarm optimization to efficiently design RBF 
networks. These clustering-based methods put the RBF centres at the centroids of the clusters such 
that the RBF centres spread throughout the entire input space according to the distribution of the 
sample data. 

As far as the determination of width parameters of the RBF network is concerned, the 
published methods in the literature can be summarized into three categories: 1) all widths are set 
to the same value; 2) all widths are set to different values; and 3) the widths are partially set to the 
same value. 

In the first category, all RBF centres are assumed to have the same width. Park and Sandberg 
(Park and Sandberg 1991) assume the single width parameter to be the average Euclidean distance 
between the RBF centres. Orr (Orr 1998) determines the width by optimization. These methods 
are easy to implement. However, they are inadequate for most practical problems due to flexibility 
limitations. 

The second category of methods for determining the widths is much more flexible. It assigns 
a specific width to each RBF centre, and considers all the widths as independent variables. 
Leonard and Kramer (Leonard and Kramer 1991) proposed a p-nearest-neighbour (p-NN) 
heuristic method, which defines the width of each RBF centre as the weighted average Euclidean 
distance between the RBF centre and its p nearest neighbours. Huang (Huang et al. 2006, 2011) 
proposed the Extreme Learning Machine (ELM), which defines all the widths of the hidden layer 
as random variables. These methods, based on unsupervised learning, are very efficient but still 
show difficulty in guaranteeing accuracy (Peng et al. 2006). Other methods based on optimization 
algorithms for determining the widths are also considered, such as gradient descent method 
(Neruda and Kudová 2005), genetic algorithms (GA) (Sheta and De Jong 2001; Harpham et al. 
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2004; Neruda and Kudová 2005), differential evolution (DE) (Liu and Lampinen 2005), etc. 
However, these methods are extremely computationally expensive, and are slow to converge due 
to excessive design variables. 

The third category of methods for determining the widths makes a compromise between the 
abovementioned two categories. It divides the RBF centres into different groups, and assumes the 
RBF centres belonging to the same group have the same width (Verleysenl and Hlavackova 1996; 
Benoudjit et al. 2002; Benoudjit and Verleysen 2003; Yao et al. 2012). With this assumption, the 
number of design variables of the width optimization problem is greatly reduced, which is equal to 
the number of the groups. These methods achieve a trade-off between model flexibility and 
training efficiency. Despite the reduction of the number of design variables, these methods still 
lead to multivariable width optimizations, which converge much more slowly in comparison with 
single-variable optimizations. Hence, these methods are still unsatisfactory in practical 
engineering problems, especially dealing with large sample sets. 

This paper aims to tackle the computationally expensive multivariable width optimization 
problem of the RBF network. A space-division-based width optimization (SDWO) method using 
fuzzy clustering technique is proposed to reduce the number of design variables to one without 
sacrificing model flexibility and approximation accuracy. Different from the hierarchical fuzzy 
clustering method in Niros’s work (Niros et al. 2015), in which one global RBF network is 
constructed, multiple small-scale local RBF networks (LRBFNs) are created within different local 
regions of the input space in our work. Recently, Smolik and Skala (Smolik and Skala 2018) 
proposed a new space-division approach for RBF interpolation of large scattered datasets. They 
use rectangular grids and a distance parameter to divide the input space into several overlapping 
cells. However, this space division method based on rectangular grids is only suitable for 
uniformly distributed samples. In contrast, the space division method based on a two-stage fuzzy 
clustering algorithm with an expansion factor in this paper is suitable for arbitrary distributed 
samples. 

The remainder of the article is organized as follows. Section 2 briefly describes the RBF 
network and the fuzzy k-means clustering algorithm. In section 3, the space-division-based width 
optimization method is introduced in detail. Section 4 presents the validation and application of 
the proposed method. Finally, the conclusions are summarized. 

2 The RBF network and the fuzzy k-means clustering algorithm 

2.1 The RBF network 

The RBF network is a single-hidden layer feedforward network. For an arbitrary 
n-dimensional input vector 1 2( , ,..., )T

nx x x=x , the total response ( )f x  of an RBF network with 
CN  RBF centres is a linear combination of the basis functions stated as 



1
( ) ( )CN

i ii
f wφ

=
= ∑x x  (1) 

where ( )iφ x  is the i-th basis function with an input vector nR∈x , and iw  is the corresponding 
weight. Without loss of generality, the output dimension of the RBF network is assumed to be one 
throughout this paper. Different types of functions can be used as basis functions. The 
exponentially decaying Gaussian function is one of the most popular basis functions. Its 
expression is defined as 

2

2( )=exp( )i
i

i

φ
σ
−

−
x c

x  (2) 
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where ic  and iσ  are the centre and the width of the i-th ( 1, 2,..., Ci N= ) RBF, respectively.   
denotes the 2L -norm of the underlying vector. 

Assume the training sample set is {( , ) | ( ), 1, 2,..., }i i i i TT y y f i N= = =x x , where : nf R R→  
is the accurate function, and TN  is the number of training samples. The purpose of training an 
RBF network is to determine the values for the parameters , , and ( 1, 2,..., )i i i Cw i Nσ =c  in Eq.(1) 
to best fit the accurate function. The locations of RBF centres ( =1, 2,..., )i Ci Nc  can be determined 
by clustering algorithms, which will be discussed in the next subsection. The width parameters 

( =1, 2,..., )i Ci Nσ  are determined by multi-variable optimization, which is computationally 
expensive. In order to obtain the output weights ( 1, 2,..., )i Cw i N= , substitute the training samples 
into Eq.(1), then the resulting equation system can be expressed in the matrix form as 

1 2

1 2

1 1 2 1 1

1 2 2 2 2

1 2

[ , ,..., ]

[ , ,..., ]

( ) ( ) ( )

( ) ( ) ( )
=

( ) ( ) ( )

T

C

C

C

T T C T
T C

T
N

T
N

N

N

N N N N N N

y y y

w w w

φ φ φ

φ φ φ

φ φ φ
×

=

=

 
 
 
 
 
  

y = Φw
y

w

x x x

x x x
Φ

x x x





   



 (3) 

where Φ  is a T CN N×  matrix, and generally, C TN N . The weight vector w  can be 
analytically calculated by Least Square Method (LSM): 

†=w Φ y  (4) 

where †Φ  is the pseudo-inverse of Φ . 
The key bottleneck of training an RBF network is how to efficiently optimize the width 

parameters ( =1, 2,..., )i Ci Nσ . As summarized in section 1, one of the most promising methods in 
the literature is to divide the RBF centres { | =1, 2,..., }i Ci Nc  into ( )L L CN N N  non-overlapping 
groups ( ) ( 1, 2,..., )j

LC j N= . The RBF centres within the same group have the same width, as 
stated in Eq.(5). 

( )

1

( ) ( )

( ) ( )

{ | 1,..., }

 ( , 1, 2,..., ,  and )
,  ( 1,..., )

LN
j

i C
j

j k
L

j j
i i L

C i N

C C j k N j k
C j Nσ σ

=
= =

∩ = ∅ ∀ = ≠

∀ ∈ = =

c

c



 (5) 

where ( )jσ  is the width of the RBF centres within the j-th group ( )jC . Given a validation 
sample set {( , ) | ( ),  1, 2,..., }i i i i VV y y f i N= = =z z , where VN  is the number of validation 
samples, the mathematical model of the width optimization problem can be expressed as 





( )(1) (2)

2

1

2
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1

find , ,...,
1min ( )
2

s.t. ( ) exp( )
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i
i i

y f

f w

σ σ σ

σ

=

=

−

−
= −

∑

∑

z

z c
z

 (6) 

For the convenience of discussion, this method is referred to as the conventional width 
optimization (CWO) method in the rest of this paper. The CWO method reduces the number of 
design variables from CN  to LN . However, there are two key issues of CWO. The first one is 
that it still leads to a multi-variable optimization, which may need excessive iterations to converge; 
and the second one is that it is computationally prohibitive to calculate pseudo-inverse of the 
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large-scale Φ , especially when dealing with large sample sets. The SDWO method is proposed 
mainly for addressing these two issues. 

2.2 The fuzzy k-means clustering algorithm 

Clustering algorithms employ unsupervised learning to find natural data groups in a 
non-classified dataset (Hansen and Jaumard 1997). The k-means clustering algorithm is one of the 
most widely used clustering techniques in literatures (Harpham et al. 2004; Oh et al. 2012; Yao et 
al. 2012). The standard k-means clustering algorithm is used to find a set of k centroids 

( 1, 2,..., )j j k=c  which minimize the sum of the squared Euclidean distance D between the N 
sample points ( 1, 2,..., )i i N=x  and its nearest centroid: 

{ }

2

1 1

 1 ,1

( )N k
ij i ji j

ij i N j k

D u

u
= =

≤ ≤ ≤ ≤

= −

=

∑ ∑ x c

U



 (7) 

where U  is a N k×  membership matrix. The element iju  of U  can only be 1 or 0, which 
identifies if the i-th sample belongs to the j-th cluster or not. iju  is calculated by: 

1
1 arg min(|| ||)

0 otherwise

k

i mmij
ju =

 = −= 


x c
 (8) 

Since there can only be one “1” in each row of U , the sum of the elements in each row of 
U  is 1, as stated in Eq.(9). 

1
1 ( 1, 2,..., )

k

ij
j

u i N
=

= =∑  (9) 

The following iterative algorithm can be used to minimize Eq.(7): 
Step 1: Determine the number of clusters k, and randomly generate a set of initial cluster 

centroids (0)  ( 1, 2,..., )j j k=c , where (0)  ( 1, 2,..., )j i i N≠ ∀ =c x . Set loop variable 1r = . 
Step 2: Update the cluster membership matrix ( )rU  using Eq.(8). 
Step 3: Update cluster centroids ( ) ( 1, 2,..., )r

j j k=c  by: 

( )
( ) 1

( )

( )N r
ij ir i

j r
j

u
n

=
⋅

= ∑ x
c  (10) 

where ( )r
jn  is the number of points which belong to the j-th cluster. 

Step 4: Check the termination criterion using Eq.(11). 
( ) ( 1)

1

k r r
j jj

ε−
=

− <∑ c c  (11) 

where ε  is a positive tolerance. Set 1r r= +  and go to step 2 until Eq.(11) is satisfied. 
The clustering result of the k-means algorithm are also called “hard” clusters, since any 

sample point either is or is not a member of a particular cluster. The fuzzy k-means clustering 
algorithm, however, allows “soft” or “fuzzy” partition, which means that a sample point has a 
degree of membership in each cluster (Bezdek 1981). The calculation procedure of the fuzzy 
k-means algorithm is similar to that of the k-means algorithm except for the determination of 

(1 ,1 )iju i N j k≤ ≤ ≤ ≤ : 
2/( 1) 1

1

|| ||
( ( ) )

|| ||

k
i j

ij
m i m

u ϕ− −

=

−
=

−∑
x c
x c

 (12) 

where (0 1)ij iju u< <  represents the degree or possibility that ix  belongs to the j-th cluster, and
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1ϕ >  is a constant that determines the degree of fuzziness. As ϕ  increases, the degree of 
fuzziness increases accordingly, and specifically, when 1ϕ → , the algorithm becomes the 
standard k-means clustering algorithm (Bezdek 1981; Stetco et al. 2015). Generally, 1.5 3.0ϕ≤ ≤  
is suitable for most data (Bezdek et al. 1984). In this paper, 2ϕ =  is used as suggested in 
(Chuang et al. 2006). 

Eq.(12) can also be written as:  

2/( 1)
2/( 1)

2/( 1)2/( 1)
11

1 1
1|| || || || ( )( ) || |||| ||

ij kk
i j

i j
m i mm i m

u ϕ
ϕ

ϕϕ

−
−

−−
==

= =
− − ×

−−
∑∑

x c x c
x cx c

 (13) 

Moreover,  

2/( 1)
1 1

2/( 1)
1

2/( 1)
1

2/( 1)
1

1 1
|| || 1

|| ||

1 1 1
|| || 1

|| ||

k k

ij k
j j i j

m i m

k

k
j i j

m i m

u ϕ

ϕ

ϕ

ϕ

−
= =

−
=

−
=

−
=

 
 
 = × −  
   −  

 
= × =  −     − 

∑ ∑
∑

∑
∑

x c
x c

x c
x c

 (14) 

Hence, similar to the k-means clustering algorithm, the membership matrix U  of the fuzzy 
k-means clustering algorithm still satisfies the condition in Eq.(9). The “soft” partition property of 
the fuzzy k-means clustering algorithm is used in the SDWO method to divide the input space into 
overlapping local regions. 

3 The proposed SDWO method 

Based on the divide and conquer (D&C) strategy, the proposed SDWO method uses space 
division to decompose the complex multivariable width optimization into several small-scale 
single-variable width optimizations. The detailed process is presented as follows. 

3.1 The two-stage fuzzy clustering algorithm with an expansion factor for 

space division 

Clustering algorithms have been widely used for training the RBF network (Harpham et al. 
2004; Oh et al. 2012; Yao et al. 2012; Alexandridis et al. 2013). Different from these methods 
which only perform the clustering algorithm once, SDWO takes a two-stage clustering process to 
partition the input space. The clustering algorithms used in the two stages and their purposes are 
different. The schematic diagram of the proposed two-stage fuzzy clustering algorithm with an 
expansion factor is shown in Fig. 1. 
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Fig. 1 Schematic diagram of the proposed two-stage fuzzy clustering algorithm with an expansion 
factor 

In the first clustering stage, the input components { | , 1, 2,..., }n
i i TR i N∈ =x x  of the available 

training samples {( , ) | ( ), 1, 2,..., }i i i i TT y y f i N= = =x x  are cluster-analysed with the k-means 
clustering algorithm. The obtained cluster centroids { | , 1, 2,..., }n

i i CC R i N= ∈ =c c  are used as 
RBF centres. 

In the second clustering stage, the resulting RBF centres from the first stage are 
cluster-analysed again with the fuzzy k-means clustering algorithm, and are divided into LN  
clusters ( ) ( )(1 , )j j

LC j N C C≤ ≤ ⊂ . 
It should be noted that, in the original fuzzy k-means clustering algorithm, one RBF centre 

( 1, 2,..., )i Ci N=c  is allocated to the cluster which has the maximum membership degree for ic , 
as stated in Eq.(15). 

( )

1
arg max( )   

1

LN
m

ij ij

C

m u C

i N
=

= ⇒ ∈

≤ ≤

c
 (15) 

However, in this case, one RBF centre can only belong to one cluster. Unlike the CWO 
method, the second clustering stage of SDWO divides all the RBF centres into multiple 
overlapping clusters (The reason for overlap is explained in the next subsection). For this purpose, 
a new rule is used to augment all the clusters, as shown in Eq.(16). 

1 ( )
1/

arg max( )
  

1or
2

L

L

N

ijj m
iN

im

m u
C

u λ
=

=  ⇒ ∈
− ≥



c  (16) 

where λ  is an expansion factor, and [0,1]λ ∈ . 
This newly introduced rule consists of two conditions. If ( 1, 2,..., ,  1, 2,..., )im C Lu i N m N= =  

satisfies either of the two conditions, ic  will be allocated to the cluster ( )mC . The first condition 
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is the same as Eq.(15). The second condition can add extra RBF centres, whose membership 
degrees are larger than a threshold, to cluster ( )mC . 

The threshold 1/(1 ) / 2LNλ−  is a function of the expansion factor λ . When =0λ , 
1/(1 ) / 2 0.5LNλ− = . Since in each row of U , the sum of the elements is equal to 1, as stated in 

Eq.(9), at most only 1 element in each row of U  can be larger than 0.5. Hence, in this case, one 
RBF centre only belongs to one cluster, and there is no overlap between different clusters. When 

=1λ , 1/(1 ) / 2 0LNλ− = . Because the membership degree is a positive number, the second 
condition of Eq.(16) is always satisfied. Therefore, each RBF centre belongs to all RBF centre 
clusters. In other words, all clusters overlap completely, and each cluster contains all the RBF 
centres, i.e., ( ) { | , 1,..., } (1 )m n

i i C LC R i N m N= ∈ = ≤ ≤c c . When λ  gradually increases from 0 to 
1, each cluster contains more RBF centres, and more RBF centres are shared by different clusters. 
Fig. 2 depicts the curves of the threshold with respect to λ  using different LN . It can be noticed 
from Fig. 2 that LN  does not affect the threshold when =0λ  or =1λ , while it only affects the 
decreasing trend of the threshold. The larger LN  is, the smaller the membership degree that one 
RBF centre belongs to each cluster will be. As a result, the threshold should decrease rapidly such 
that the expansion factor λ  can smoothly control the overlapping degree of the clusters. Hence, 
the variable LN  in the threshold 1/(1 ) / 2LNλ−  is employed to make the threshold adaptive to the 
specific number of clusters of RBF centres. 

 

Fig. 2 The curves of the threshold with respect to λ using different NL 

After grouping the RBF centres, the Voronoi diagram (Aurenhammer 1991; Watson 1993) is 
adopted to divide the input space. Given a set of RBF centres, the Voronoi diagram partitions the 
input space into multiple local regions based on the nearest neighbor principle. For each RBF 
centre, there is a corresponding Voronoi cell consisting of all points that are closer to that RBF 
centre than to any other RBF centres. 

Denote the entire input space of the accurate function as S. In the Voronoi diagram generated 
by the RBF centres { | , 1, 2,..., }n

i i CC R i N= ∈ =c c , the input space S are partitioned into CN  
Voronoi cells. All the Voronoi cells corresponding to the RBF centres in the j-th cluster 

( ) ( 1, 2,..., )j
LC j N=  are merged together to form the j-th local region ( ) ( 1, 2,..., )j

LS j N= . Due to 
the overlap between these clusters, adjacent local regions also overlap each other, and the 
overlapping degree is controlled by the expansion factor λ. Fig. 3 shows an example of different 
space division schemes when λ takes different values. In this example, 40 RBF centres are divided 
into 2 clusters, and the input space is divided into 2 overlapping local regions. It can be noticed 
from Fig. 3 that, as the expansion factor increases, the number of RBF centres shared by the 2 
clusters increases, and so the shared area of the two regions also increases. 

After the space division, the training samples {( , ) | ( ), 1, 2,..., }i i i i TT y y f i N= = =x x  and 
validation samples {( , ) | ( ), 1, 2,..., }i i i i VV y y f i N= = =z z  are also divided into LN  groups with 
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respect to which local regions they are located in, as stated in Eq.(17). 
( ) ( )

( )

1

( ) ( )

( )

1

{( , ) | ( , ) ,  } ( 1,..., )

{( , ) | ( , ) ,  } ( 1,..., )

L

L

j j
L

N
j

j

j j
L

N
j

j

T y y T S j N

T T

V y y V S j N

V V

=

=

= ∈ ∈ =

=

= ∈ ∈ =

=

x x x

z z z





 (17) 

where ( )jT  and ( )jV  are the subsets of the training and the validation samples of the j-th local 
region, respectively. 

 

Fig. 3 Different Space division schemes by using different expansion factor λ 

3.2 Train the LRBFNs as needed by solving single-variable optimizations 

After the space division in the previous subsection, the obtained LN  groups of training 
samples, validation samples, and RBF centres are allocated to LN  width optimizers, and then 
independent small-scale LRBFNs are constructed as needed in different local regions 

( ) ( 1, 2,..., )j
LS j N= . The independence between different LRBFNs is reflected in two aspects: 1) 

there is no data exchange between the construction processes of different LRBFNs, and all the 
LRBFNs can be constructed independently and in parallel; 2) after one LRBFN is constructed, it 
can be independently used for prediction regardless of whether other LRBFNs finish their 
construction processes or not. The detailed discussions are presented as follows. 
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Denote the numbers of elements in these subsets ( ) ( ) ( ),  , and j j jT V C  as 
( ) ( ) ( ),  , and j j j

T V CN N N , respectively, for 1, 2,..., Lj N= . All the RBF centres in ( )jC  are assumed to 
have the same width parameter ( )jσ . The function of the j-th LRBFN can be expressed as 



( )
2

( )
( ) 21

( ) ( )

( ) exp( )
( )

 ( 1, 2,..., )

j
CN ij

j i ji

j j
i C

f w

C i N
σ=

−
= −

∈ =

∑
x c

x

c
 (18) 

The mathematical model of width optimization for constructing the j-th LRBFN can be 
expressed as 





( )

( )

( )

2

1
2

( )
( ) 2

1

( ) ( )

find

1min ( )
2

( ) exp( )
s.t. ( )

 ( 1, 2,..., )

j
V

j
C

j

N

i j i
i

N
ij

j i j
i

j j
i C

y f

f w

C i N

σ

σ

=

=

−

−
= −

∈ =

∑

∑

z

z c
z

c

 (19) 

It is obvious that the width optimization in Eq.(19) only involves one design variable. 
Furthermore, all the LN  width optimizations are independent of each other, and hence they can 
be carried out in parallel. After the optimal ( ) ( 1, 2,..., )j

Lj Nσ =  are determined, the output weights 
are calculated with LSM, and finally, the LN  LRBFNs are constructed. 

It should be noticed that, in this paper, the LRBFNs are not blended together to create a 
whole network covering the entire input space. In contrast, the LRBFNs are independent of each 
other, and only one LRBFN is used to predict the output to an unknown input vector. In this case, 
if the local regions do not overlap, i.e. 0λ = , the approximation accuracy loss may occur because 
each LRBFN uses too few samples for training, and sharp discontinuity may exist near the 
boundary of one LRBFN and its neighbours. Conversely, if the expansion factor is too large, the 
computational complexity will increase due to the large-scale matrices involved in the width 
optimizations. Therefore, the expansion factor, which is introduced to make a trade-off between 
the approximation accuracy, the function continuity, and the computational efficiency, should be 
carefully chosen. The sensitivity of SDWO to the expansion factor is analysed by numerical 
experiments in section 4. LN  can be determined according to the number of available CPU cores. 

LN  should not be too large, otherwise the accuracy of each LRBFN will decrease due to the too 
small local region and the too few samples for training. 

Because of the independence between the LRBFNs, SDWO has an important special 
advantage that, once one LRBFN completes its own training process, it can be used for prediction, 
regardless of whether other LRBFNs finish their training processes or not. Hence, the LRBFNs 
can be constructed as needed, i.e., one LRBFN can delay its training process until it is needed for 
prediction. The construction of those LRBFNs which are never needed for prediction can be 
omitted to save the computational time. 

3.3 The procedure of the proposed SDWO method 

The flowchart of the proposed SDWO method is shown in Fig. 4. It consists of two main 
steps. First, the two-stage fuzzy clustering algorithm with an expansion factor is carried out to 
divide the input space into multiple overlapping local regions. Second, in each local region, one 
LRBFN is trained as needed by solving a small-scale single-variable width optimization problem. 
The algorithm procedure of the proposed SDWO method is summarized in Table 1. 
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Fig. 4 Flowchart of the proposed SDWO method 

Table 1 Algorithm procedure of the proposed SDWO method 

Step 0: 
Step 1: 

Initialization: determine the values of , , and C LN N λ . 
Carry out the two-stage fuzzy clustering algorithm with an expansion factor for space 
division. 

 Step 1.1: The input components { | , 1, 2,..., }n
i i TR i N∈ =x x  of the training samples are 

cluster-analysed with the k-means clustering algorithm to determine the RBF 
centres { | , 1, 2,..., }n

i i CR i N∈ =c c . 
 Step 1.2: According to Eq.(16), use the fuzzy k-means clustering algorithm with the 

expansion factor λ  to divide the obtained RBF centres into LN  
overlapping clusters. 

 Step 1.3: Based on the Voronoi diagram, partition the input space into LN  
overlapping local regions and divide the samples into LN  groups. 

Step 2: Allocate the obtained LN  groups of samples and RBF centres to LN  width 
optimizers. 

Step 3: Train the LRBFNs as needed by solving single-variable optimizations 
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 Step 3.1: For all the unknown input vectors { |1 }i pi N≤ ≤x , where pN  is the number 
of input vectors for prediction, let 1r = . 

 Step 3.2: While pr N≤ , do: 
  Step 3.2.1: Find the nearest RBF centre (denoted as nearestc ) of rx  from 

{ | , 1, 2,..., }n
i i CR i N∈ =c c . 

  Step 3.2.2: Find the LRBFN (denoted as jLRBFN , where 1 Lj N≤ ≤ ) 
which has the maximum membership degree for nearestc . 

  Step 3.2.3: If jLRBFN  has not been built 
build jLRBFN  by solving the single-variable 
optimization problem in Eq.(19). 

end 
  Step 3.2.4: Use jLRBFN  to calculate the predicted response ry  of rx . 
  Step 3.2.5: 1r r= +  
Step 4: Output all the LRBNs and the predicted responses { |1 }r py r N≤ ≤ . 

3.4 Computational complexity analysis 

In this subsection, the computational complexity of CWO and the proposed SDWO method is 
analysed and compared. 

For an optimization problem, the number of iterations needed for convergence depends on 
the specific optimizer, the number of design variables, and the objective function features 
(unimodal or multimodal, etc.). Generally, if the number of design variables increases, the number 
of iterations required to obtain the optima will increase significantly for the same objective 
function with the same optimizer (Yao et al. 2012). Let ( )h m  denote the number of iterations 
required to obtain the global optimum of an m-variable objective function. The CWO method 
involves one var- iableLN  optimization as stated in Eq.(6), while the proposed SDWO method 
decomposes it to LN  single-variable optimizations. Hence, the numbers of iterations of CWO 
and SDWO can be respectively stated as ( )Lh N  and (1)h , and ( ) (1)Lh N h . 

For CWO, the computational complexity of one iteration for calculating the pseudo-inverse 
of Φ  and the output weight vector w , can be approximated as 3(( ) )TO N . For SDWO, in the 
best case, where there is no overlap between all the local regions and the samples are divided into 

LN  equal groups, the computational complexity of one iteration can be approximated as 
3(( / ) )T LO N N . Therefore, the ratio of computational complexity of CWO to SDWO can be 

expressed by 
3

3

3

( ( ) ( ) ) ( )( ( ) )
(1)( (1) ( ) )

L T L
L

T

L

best
O h N N h NO NN hO h

N

η ×
= = ×

×  (20) 

It is obvious that 1bestη  , which indicates that the proposed SDWO method has much 
lower computational complexity than the CWO method. Specifically, the low computational 
complexity of SDWO is due to two aspects: 1) the much higher convergence rate of the 
single-variable optimization than the multivariable optimization; and 2) the fewer samples and 
smaller matrices for constructing the LRBFNs. 

In the worst case of SDWO, where each local region extends to the entire input space and 
each LRBFN makes use of all the available samples for training, the computational complexity of 
one iteration of the width optimization can be approximated as 3(( ) )TO N . The ratio of 
computational complexity of CWO to SDWO can be expressed by 
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3

3

( ( ) ( ) ) ( )( )
( (1) ( ) ) (1)

L T L

T
worst

O h N N h NO
O h N h

η ×
= =

×
 (21) 

Hence, as shown in Eq.(21), even in the worst case, SDWO still has much lower 
computational complexity than CWO due to the decomposition of the var- iableLN  optimization 
into single-variable optimizations. 

4 Validation and application 

This section presents the validation and application of the proposed SDWO method. First, 4 
training sample sets are generated and used to verify the effectiveness and efficiency of the 
proposed method in comparison with the CWO method. Second, the proposed method is applied 
in an inter-stage structure optimization problem to show its efficiency in solving practical 
optimization problems. 

4.1 Validation of the proposed SDWO method 

4.1.1 Training sample sets 

4.1.1.1  “SinC” function with 60 samples 

The 1-dimensional “SinC” function (Huang et al. 2006) is a popular test case to verify 
regression algorithms. The function is expressed by Eq.(22) and its accurate model is shown in Fig. 
5. A dataset of 60 samples is generated with the full factorial design method from the input space 
[ 10,10]− . 

 

sin( ) / , 0
( )

1, 0
[ 10,10]

x x x
y x

x
x

≠
=  =

∈ −
 (22) 

 

Fig. 5 Accurate model of the “SinC” function 

4.1.1.2 2-dimensional function with 300 samples 

The 2-dimensional test case (R.L.Haupt and S.E.Haupt 1998; Yao et al. 2012) is expressed by 
Eq.(23). Its accurate model is shown in Fig. 6. The Optimal Latin Hypercube Design (OLHD) 
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method with the maximin criterion (van Dam et al. 2009) is used to generate 300 space-filling 
samples within the input space 2[0,3.5] . 

1 2 1 1 2 2

1 2

( , ) sin(4 ) 1.1 sin(2 )
, [0,3.5]

f x x x x x x
x x

= +
∈

 (23) 

 

Fig. 6 Accurate model of the second test case 

4.1.1.3 7-dimensional function with 2000 samples 

This 7-dimensional test function (John John Kocherry, Rahul Rajan 2007) is a standard test 
case for MDO, which can be expressed by Eq.(24). The OLHD method with the maximin criterion 
is used to generate 2000 space-filling samples within the input space defined in Eq.(24). 

2 2
1 2 3 3

2 2 3 3
1 6 7 6 7

2 2
4 6 5 7

1 2 3 4

5 6 7

0.7854 (3.3333 14.9334 43.0934)

1.5079 ( ) 7.477( )

0.7854( )
[2.6,3.6], [0.7,0.8], [17, 28], [ , ]
[ , ], [ ,

7.3 8.3
7.3 8.3 2.9 3.9 5.], 5 ]5[ 0 .,

f x x x x

x x x x x

x x x x
x x x x
x x x

= + −

− + + +

+ +
∈ ∈ ∈ ∈
∈ ∈ ∈

 (24) 

4.1.1.4 Spaceplane model with 10000 samples 

This test case considers a spaceplane, which is boosted into space by a launch vehicle, then 
re-enters the atmosphere at the maximum speed of Mach 20, and lands as a conventional plane. 
The lift-to-drag ratio /L D  is an important parameter to assess the aerodynamic performance of 
the spaceplane. It is a function of the angle of attack α , angle of sideslip β , flight altitude h , 
and free stream Mach number Ma , as stated in Eq.(25). 

/ ( , , , )L D f h Maα β=  (25) 
In this paper, this test case is used to illustrate the approximation capability of the SDWO 

method in dealing with practical engineering problems. The surface mesh of the spaceplane is 
shown in Fig. 7, and its partial geometric parameters are listed in Table 2. The input space of the 
four input parameters, , , , and h Maα β , is defined in Table 3. Fig. 8 depicts the pressure 
coefficient distribution of the spaceplane on the condition that 8α °= , 8β °= − , 10 kmh = , and 

6Ma = . 10000 samples are generated within the input space by the 4-variable 10-level full 
factorial design method. 
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Fig. 7 The surface mesh of the spaceplane in test 4 

Table 2 Geometric parameters of the spaceplane 

Parameter Value 
Length 9600mm  
Height 2860mm  
Fuselage height 1650mm  
Wingspan 5600mm  
Wing area 23844200mm  

Table 3 The lower and upper bounds for the four input parameters 

Parameter Lower bound Upper bound 
α(deg) -10 10 
β(deg) -10 10 
h(km) 0 40 
Ma 0 20 

 

Fig. 8 Pressure coefficient distribution of the spaceplane ( 8 , 8 , 10 km, and 6h Maα β° °= = − = = ) 
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4.1.2 Test settings 

All the available samples are randomly divided into 3 subsets, which are used for training, 
validating, and testing the RBF network, respectively. The numbers of RBF centres used for four 
test problems are different. The specification is shown in Table 4. 

Table 4 Specification of the four test cases 

 Test 1 Test 2 Test 3 Test 4 
Total samples 60 300 2000 10000 
Training samples 36 180 1200 6000 
Validation samples 12 60 400 2000 
Testing samples 12 60 400 2000 
RBF centres 12 60 120 220 

In order to accelerate convergence and improve the approximation accuracy, the input and 
output component of the samples are normalized to the range [0,1] . 4LN =  is used for both the 
CWO and SDWO method and for all the four test cases. The expansion factors, 

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}λ = , are used to demonstrate its effects on the 
performance of SDWO. 

The Particle Swarm Optimization (PSO) (Kennedy and Eberhart 1995; Alexandridis et al. 
2013; Niros et al. 2015) algorithm is used as the optimizer for both CWO and SDWO. The lower 
and upper bounds of the searching range of the widths are 0.01 and 2, respectively. The swarm 
size of the PSO algorithm is 20 for both CWO and SDWO. Although the LRBFNs of the SDWO 
method can be trained in parallel, the training processes of both CWO and SDWO are carried out 
in serial to fairly compare the training efficiency. 

The root mean square error (RMSE) is used as a measurement of approximation accuracy of 
the surrogate modes. Given m samples {( , ) | ( ), 1, 2,..., }i i i iy y f i m= =x x , the RMSE is defined as 



2

1

1RMSE ( )m
i ii

y f
m =

= −∑ x  (26) 

The RMSE of both training and testing samples are calculated to assess the approximation 
accuracy of the obtained RBF networks of CWO and SDWO. 

For each simulation, 30 trials have been carried out to reduce random variation in the 
numerical results and validate the robustness of the proposed method. The mean values of the 
achieved training time, training RMSE, and testing RMSE of CWO and SDWO, are calculated 
and analysed. All these simulations are carried out in a MATLAB 9.2 environment running on a 
computer with an Intel Core i5, 2.5GHz CPU, and 7.92 GB memory. 

4.1.3 Results and discussion 

Due to space limitation, only partial test results using {0, 0.3, 0.6, 1}λ =  are listed in Table 5. 
The detailed test results are given in the supplementary material of this paper. The test results of 
CWO and SDWO are compared in Fig. 9 with respect to training time, the number of 
objective-function evaluations, training RMSE and testing RMSE. For each subgraph of Fig. 9, 
the parameter of the horizontal coordinate is the expansion factor λ , which, as explained in 
section 3, is used to control the overlapping degree of SDWO, and the results of CWO are not 
affected by λ . Hence, the curves of CWO in Fig. 9 are all horizontal lines. The following 
discussion focuses on two aspects: 1) the sensitivity of the performance of SDWO to the 
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expansion factor; 2) the comparison of training efficiency and approximation accuracy between 
CWO and SDWO. 

Table 5 Partial test results of CWO and SDWO using different expansion factors 

Test Method λ Training 
time (s) 

Objective-function 
evaluations 

Training 
RMSE 

Testing 
RMSE 

Test 1 

SDWO 0.0 0.13 1135.74 0.02275 0.02575 
SDWO 0.3 0.16 1387.53 0.00141 0.00324 
SDWO 0.6 0.19 1377.55 1.38E-4 6.48E-4 
SDWO 1.0 0.31 1430.43 1.38E-4 2.97E-4 
CWO \ 0.90 3375.22 1.52E-4 2.32E-4 

Test 2 

SDWO 0.0 0.36 1273.57 0.02336 0.03296 
SDWO 0.3 0.73 1425.75 0.00855 0.01144 
SDWO 0.6 1.22 1338.24 0.00576 0.00800 
SDWO 1.0 1.94 1355.72 0.00482 0.00671 
CWO \ 6.45 4710.10 0.00561 0.00764 

Test 3 

SDWO 0.0 0.80 542.25 0.01825 0.01854 
SDWO 0.3 2.22 702.18 0.00845 0.00856 
SDWO 0.6 4.71 765.55 0.00774 0.00791 
SDWO 1.0 10.87 792.28 0.00737 0.00756 
CWO \ 18.83 1640.91 0.00788 0.00819 

Test 4 

SDWO 0.0 5.06 910.00 0.02982 0.03024 
SDWO 0.3 24.41 1072.50 0.02730 0.02745 
SDWO 0.6 51.95 905.07 0.02639 0.02645 
SDWO 1.0 141.20 1005.12 0.02612 0.02628 
CWO \ 397.94 3227.19 0.02623 0.02632 

 

Fig. 9 Comparison of the test results of CWO and SDWO using different expansion factors 

4.1.3.1 Sensitivity of SDWO to the expansion factor 

First, consider the training time and the numbers of objective-function evaluations of SDWO 
when using different expansion factors. As it can be seen from Table 5 and Fig. 9, when λ  
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increases from 0 to 1, the training time of SDWO also increases. For example, in Test 4, the 
training time increases significantly from 5.06 s to 141.20 s. This is because as λ  increases, 
according to Eq.(16), each local region is expanded, and each LRBFN possesses more samples for 
training. Hence, larger matrices are involved in the optimization process of the LRBFNs, which 
lengthens the training time. Additionally, it is also observed that with the increase of λ , the 
increasing trend of the training time is accelerating. This is because the computational complexity 
of calculating the pseudo-inverse of matrix Φ  is superlinear to the scale of the matrix. It can also 
be noticed that the number of objective-function evaluations changes little as λ  increases for all 
the four test cases. This is because the more samples in each LRBFN do not affect the 
convergence rate of the width optimization. 

Second, consider the approximation accuracy of SDWO when using different expansion 
factors. It is observed from Table 5 and Fig. 9 that with the increase of λ , the training RMSE and 
testing RMSE decrease rapidly at first, and then stay all most the same for all the four test cases. 
This result indicates that using more samples which are near the local region of one LRBFN can 
greatly reduce its approximation error, and the samples which are too far away from its local 
region contributes little to accuracy improvement of that LRBFN. Hence, it is not necessary to 
make use of all samples to construct a huge surrogate model covering the entire input space. 

Third, consider the model continuity of the RBF networks obtained from SDWO with 
different expansion factors. For the convenience of visualization, the results of Test 2 are used to 
study the effect of . Surrogate models of Test 2 using different expansion factors are shown in 
Fig. 10. It is observed that when =0λ , the surrogate model shows sharp discontinuity near the 
boundaries of LRBFNs; when =0.3λ , the sharp discontinuity is noticeably reduced; when λ  
increases to 0.6 and 1, the surrogate models have small approximation error and present very 
smooth surfaces. 

The above results demonstrate the approximation capability of the RBF networks obtained by 
SDWO and show effectiveness of the expansion factor in making a trade-off between the 
approximation accuracy, the model continuity, and the computational efficiency. 

 

λ



 

19 
 

Fig. 10 Surrogate models of Test 2 using SDWO with different expansion factors. The discontinuity of 
the surrogate models is noticeably reduced with the increase of λ. 

4.1.3.2 Comparison of CWO and SDWO 

First, consider the training time and the numbers of objective-function evaluations of CWO 
and SDWO. The percentages of training time and the numbers of objective-function evaluations of 
SDWO using {0.6, 1}λ =  relative to CWO are listed in Table 6 and Table 7, respectively. It is 
obvious that SDWO spends much shorter training time than CWO for all the four test cases, even 
when λ  increases to 1. It can also be seen that SDWO needs much fewer objective-function 
evaluations than CWO, which demonstrates the advantage of the single-variable optimization over 
the multi-variable optimization. 

As it can be observed from Table 5, when 0.6λ ≥ , with much shorter training time, SDWO 
can obtain comparable approximation accuracy to CWO. In Test 3, SDWO even achieves better 
approximation accuracy than CWO. This is because CWO involves an -variableLN  optimization 
problem, and has a much higher dimensional search space than SDWO. Hence, the SDWO 
method is more likely to find the global optimal or near-optimal solution than CWO with the same 
swarm size of PSO algorithm. 

Table 6 The percentages of training time of SDWO using {0.6, 1}λ =  relative to CWO for the four 
test cases 

 Test 1 Test 2 Test 3 Test 4 
=0.6λ  21.1% 18.9% 25.0% 13.1% 
=1.0λ  34.4% 30.1% 57.7% 35.5% 

Table 7 The percentages of the numbers of objective-function evaluations of SDWO using {0.6, 1}λ =  
relative to CWO for the four test cases 

 Test 1 Test 2 Test 3 Test 4 
=0.6λ  40.8% 28.4% 46.7% 28.0% 
=1.0λ  42.4% 28.8% 48.3% 31.1% 

The above discussion shows that SDWO can greatly reduce training time whereas 
maintaining comparable approximation accuracy to CWO. In general, the advantage in efficiency 
can be transformed to the superiority in accuracy. In Test 4, limited by the computational 
complexity of CWO, only 220 RBF centres are used, which are far from enough. But for the 
SDWO method, more RBF centres can be used because of its high efficiency. In order to further 
improve the approximation accuracy of the LRBFNs obtained by SDWO, additional simulations 
are carried out. More RBF centres are generated in these extra simulations. The fixed expansion 
factor 0.6λ =  is adopted for all these simulations. The simulation results are presented in Table 8, 
and the plots of training time, training RMSE and testing RMSE with respect to the number of 
RBF centres are shown in Fig. 11. It is observed that as the number of RBF centres increases, 
longer training time is needed; meanwhile the training and testing RMSE continue to decrease. 
When the number of RBF centres reaches 580, the training time of SDWO is 390.5 s, which is 
close to that of CWO when using 220 RBF centres (397.9 s). However, the training RMSE and the 
testing RMSE of SDWO are reduced by 37.0%  and 33.8% , respectively. This result 
demonstrates that the proposed SDWO method can achieve higher approximation accuracy than 
CWO with similar computational cost. 
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Table 8 Simulation results of Test 4 using SDWO with 0.6λ =  and different numbers of RBF centres 

Number of 
RBF centres 

Training 
time (s) 

Number of objective- 
function evaluations 

Training 
RMSE 

Testing 
RMSE 

220 51.953 905.11 0.02632 0.02645 
260 77.407 1021.67 0.02566 0.02585 
300 99.730 1105.40 0.02486 0.02532 
340 157.871 1505.07 0.02258 0.02328 
380 180.738 1445.00 0.01978 0.02038 
420 213.117 1450.25 0.01862 0.01938 
460 230.960 1373.33 0.01832 0.01916 
500 274.612 1415.13 0.01821 0.01899 
540 331.552 1495.38 0.01757 0.01851 
580 390.526 1580.02 0.01649 0.01740 

 

 

Fig. 11 Plots of the simulation results of Test 4 using SDWO with 0.6λ =  and different numbers of 
RBF centres 

4.2 Application in structure optimization 

4.2.1 The inter-stage structure optimization 

This structure optimization problem can be referred to Sun’s work (Sun et al. 2012), and it 
has been slightly changed in this paper. The finite element model of the inter-stage structure is 
shown in Fig. 12, which involves 16526 finite elements. The length of the inter-stage structure is 
720 mm, and its diameter is 2300 mm. It contains 72 axial frames and 10 ring frames, and all the 
frames have a rectangular cross-section as depicted in Fig. 13a. There are 4 elliptical holes in the 
same shape on the wall of the inter-stage structure, and the schematic diagram of the elliptical 
holes is shown in Fig. 13b. The upper end of the inter-stage structure is subjected to a 
uniformly-distributed axial load of 1800 kN, and the lower end is under fixed-supported 
constraints, as shown in Fig. 12. The material properties are listed in Table 9. 
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Fig. 12 Finite element model of the inter-stage structure 

 

Fig. 13 Schematic diagrams of the rectangular frame and the elliptical holes 

Table 9 The material properties of the inter-stage structure 

Modulus of elasticity Density Yield strength 
Poisson’s 

ratio 
68,646 MPa 2,700 kg/m3 313.8 MPa 0.3 

 
There are 6 design variables in the inter-stage structure optimization problem, including the 

wall thickness T, the thickness of the ring frames C1, the thickness of the axial frames C2, the 
height of the ring and axial frames H, and the lengths of the semi-major and semi-minor axes of 
the 4 elliptical holes A and B. The design space is defined by Eq.(27). 

1 2

4 mm 10 mm
4 mm , 15 mm
15 mm 30 mm
150 mm , 220 mm

T
C C
H

A B

≤ ≤
 ≤ ≤
 ≤ ≤
 ≤ ≤

 (27) 

The objective is to minimize the weight of the inter-stage structure subject to the constraints 
that: 1) the maximum von Mises stress is less than the yield strength of the material 

313.= 8 MPayσ ; 2) the axial displacement of the upper end of the inter-stage structure is less than 
limit 0.6 mms = . The mathematical model of the structure optimization problem can be expressed 

as: 

1 2

1

li it

2

1 m

1 2

2

find , , , , ,
min ( , , , , , )

( , , , , , )
s.t.

( , , , , , )
v y

T C C H A B
w T C C H A B
T C C H A B

s T C C H A B s
σ σ≤

≤

 (28) 

where w, vσ , and s are respectively the weight, the maximum von Mises stress, and the maximum 
axial displacement of the inter-stage structure. 
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4.2.2 Test settings 

The proposed SDWO method is embedded into a surrogate-based optimization (SBO) 
(Haftka et al. 2016; Liu et al. 2017) framework to solve the structure optimization problem. 

First, the OLHD method is used to generate 300 space-filling samples within the design 
space defined by Eq.(27), and the Finite Element Method (FEM) is carried out at these samples to 
calculate the maximum von Mises stress and the axial displacement by Nastran. Besides, the 
weight is calculated by HyperMesh. 

Second, with the obtained samples, the proposed SDWO method using 0.6λ =  is applied to 
construct three RBF surrogate models  , , and vw sσ   respectively for the weight, the maximum 
von Mises stress, and the axial displacement of the inter-stage structure with respect to the design 
variables. 

Third, the PSO algorithm is used to solve the optimization problem in Eq.(29). 





1 2

1 2

1 2

1 2 limit

find , , , , ,

min ( , , , , , )

( , , , , , )
s.t.

( , , , , , )
v y

T C C H A B

w T C C H A B

T C C H A B

s T C C H A B s

σ σ≤

≤

 (29) 

For practical engineering problems, the surrogate model constructed by using the initial 
samples may not satisfy the required accuracy (Peng et al. 2014; Li et al. 2017). Therefore, it is 
necessary to refine the surrogate model iteratively by adding new samples. Hence, in this paper, 
the above process is carried out iteratively. In each iteration, to balance the global exploration and 
local exploitation (Zhou et al. 2007; Feng et al. 2015), two new points, including the optimum of 
Eq.(29) and the point at which the samples are most sparse in the design space, are evaluated with 
the FEM and then added to the training sample set to gradually improve the three surrogate 
models until the optimization converges. 

The structure optimization problem is further solved by the FEM using the PSO algorithm to 
validate the proposed SDWO-based optimization method, and in the PSO, the swarm size is set to 
20. For both optimization methods, the penalty-function method is used to deal with the nonlinear 
constraints, and the termination criterion is that the optimum objective (weight of the inter-stage 
structure) remains unchanged over the last 20 consecutive iterations. 

4.2.3 Results and discussions 

A feasible baseline design is used for comparison. The baseline design and the two optimal 
designs obtained respectively by the proposed SDWO-based optimization method and the direct 
FEM-based optimization method are all listed in Table 10. 

The von Mises stress contour of the baseline design is depicted in Fig. 14. As shown in Table 
10, the weight of the baseline design is 180.88 kg, and its maximum von Mises stress and axial 
displacement are 161.21 MPa and 0.54630 mm, respectively, which are far from the limits of the 
constraints. 

The two optimal designs are very close to each other. The von Mises stress contours of the 
two optimal designs are depicted in Fig. 15 and Fig. 16, respectively. It can be observed from the 
two contours that the maximum stress is located around the elliptical holes due to stress 
concentration. According to Table 10, the maximum von Mises stresses of the two optimal designs 
are increased compared with the baseline design, but they are still much less than the yield 
strength of the material. In contrast, their axial displacements almost reach the limit of the axial 
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displacement constraint. Moreover, the weights of both optimal designs are nearly reduced by 30% 
in comparison with the baseline design, and the optimal design obtained by the proposed 
SDWO-based method is slightly better than that obtained by the direct FEM-based method. These 
results indicate that the proposed SDWO-based method and the direct FEM-based method can 
achieve similar optimal designs. 

The convergence histories of the SDWO-based method and the direct FEM-based method are 
depicted in Fig. 17. After 106 iterations, the SDWO-based method converges and 212 new 
samples are analysed by the FEM in addition to 300 initial samples, and therefore, totally 512 
FEM analyses are performed. For the direct FEM-based method, it takes 72 iterations for 
convergence and the total number of the FEM analysis is 1440. In this paper, a single FEM 
analysis takes 83 seconds on average, and the computational time required for constructing and 
optimizing the RBF networks is negligible compared to the FEM analyses. Therefore, despite the 
more iterations, the proposed SDWO-based method is almost three times as efficient as the direct 
FEM-based method. Hence, the results demonstrate the efficiency of the proposed SDWO method 
in practical optimization applications. 

Table 10 Comparison of the initial baseline and the optimal designs obtained by the two 
optimization methods 

Parameters 
Initial  

baseline 
SDWO-based 

optimization method 
Direct FEM-based 

optimization method 

Design  
variables 

T/mm 8.00 5.03 5.26 
C1/mm 8.00 13.12 11.53 
C2/mm 8.00 4.00 4.02 
H/mm 20.00 15.00 15.00 
A/mm 220.00 150.00 150.07 
B/mm 170.00 150.23 153.70 

Constraints vσ /MPa 161.21 197.45 191.66 
s/mm 0.54630 0.59997 0.59985 

Objective w/kg 180.88 125.77 126.12 
Number of FEM analysis \ 512 1440 

 

Fig. 14 Von Mises stress contour of the baseline design 
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Fig. 15 Von Mises stress contour of the optimal design by the SDWO 

 

Fig. 16 Von Mises stress contour of the optimal design by the direct FEM-based optimization 

 

Fig. 17 Comparison of convergence histories of the SDWO and the direct FEM-based optimization 

5 Conclusion 

In this paper, a novel SDWO method is proposed to overcome the computationally expensive 
multivariable width optimization problem in training RBF networks. First, a two-stage fuzzy 
clustering algorithm is carried out to divide the input space into multiple overlapping local regions 
and to group the available samples, and an expansion factor is introduced to control the 
overlapping degree. Second, one LRBFN is constructed in each local region by solving a 
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single-variable optimization problem when the LRBFN is needed for prediction. All the LRBFNs 
are independent of each other, and can be trained in parallel. 

The proposed SDWO method decomposes the complex multivariable width optimization into 
multiple small-scale single-variable optimizations, which accelerates the convergence rate. Fewer 
samples and smaller-scale matrices are involved for training each LRBFN without sacrificing the 
model flexibility and the approximation accuracy. Therefore, the SDWO method achieves much 
lower computational complexity than the CWO method. 

Numerical experiments of four training tests verify the effectiveness of the introduced 
expansion factor in making a trade-off between the approximation accuracy, the model continuity, 
and the computational complexity, and show that the proposed SDWO method has better 
performance than the CWO method in terms of both training efficiency and approximation 
accuracy. Results of the inter-stage structure optimization demonstrate the proposed method is 
efficient in practical engineering applications. 

The proposed SDWO method has the potential of being used to approximate expensive 
blackbox functions based on discrete input-output data in engineering applications, such as SBO, 
reliability-based optimization (RBO), and MDO of aircraft and spacecraft systems. In future 
studies, gradient information of the accurate function can be considered to be employed so as to 
further improve the accuracy and reduce discontinuity at the boundaries of LRBFNs with smaller 
expansion factors. 

Acknowledgments 

The present work was partially supported by the National Natural Science Foundation of 
China (Grant No. 51505385, 11502209), the National Defense Fundamental Research Funds of 
China (Grant No. JCKY2016204B102, JCKY2016208C001), and the China Civil Aerospace 
Program (Grant No. D010403, D010402). 

Conflict of interest 

On behalf of all authors, the corresponding author states that there is no conflict of interest. 

Replication of results 

The total sample datasets and the detailed results of the four validation examples are given in 
the supplementary material of this paper. The source code of the proposed method (written in 
MATLAB) and the source files of the inter-stage structural optimization examples are available at 
https://github.com/AlanZhangNpu/SDWO. 

References 

Akhtar T, Shoemaker CA (2016) Multi objective optimization of computationally expensive 
multi-modal functions with RBF surrogates and multi-rule selection. Journal of Global Optimization 
64:17–32. doi: 10.1007/s10898-015-0270-y 

Alexandridis A, Chondrodima E, Sarimveis H (2013) Radial Basis Function Network Training 
Using a Nonsymmetric Partition of the Input Space and Particle Swarm Optimization. IEEE 
Transactions on Neural Networks and Learning Systems 24:219–230. doi: 
10.1109/TNNLS.2012.2227794 

Aurenhammer F (1991) Voronoi diagrams. ACM Computing Surveys. doi: 
10.1111/j.1447-0756.2010.01436.x 

Benoudjit N, Archambeau C, Lendasse A, et al (2002) Width optimization of the Gaussian kernels 
in Radial Basis Function Networks. In: European Symposium on Artificial Neural Networks. Bruges, 
pp 425–432 

https://github.com/AlanZhangNpu/SDWO


 

26 
 

Benoudjit N, Verleysen M (2003) On the Kernel Widths in Radial-Basis Function Networks. 
Neural Processing Letters 18:139–154. doi: 10.1023/A 

Bezdek JC (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, 
New York, London 

Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Computers 
& Geosciences 10:191–203. doi: 10.1016/0098-3004(84)90020-7 

Bortman M, Aladjem M (2009) A Growing and pruning method for radial basis function networks. 
IEEE Transactions on Neural Networks 20:1039–1045. doi: 10.1006/brcg.1996.0066 

Broomhead DS, Lowe D (1988) Multivariable Functional Interpolation and Adaptive Networks. 
Complex Systems 2:321–355 

Carvalho AD, Brizzotti MM (2001) Combining RBF Networks Trained by Different Clustering 
Techniques. Neural Processing Letters 14:227–240. doi: 10.1023/A:1012703414861 

Chen S, Cowan CFN, Grant PM (1991) Orthogonal Least Squares Learning Algorithm for Radial 
Basis Function Networks. IEEE Transactions on Neural Networks 2:302–309 

Chuang K-S, Tzeng H-L, Chen S, et al (2006) Fuzzy c-means clustering with spatial information 
for image segmentation. Computerized Medical Imaging and Graphics 30:9–15. doi: 
10.1016/j.compmedimag.2005.10.001 

Fang H, Gong C, Li C, et al (2018) A surrogate model based nested optimization framework for 
inverse problem considering interval uncertainty. Structural and Multidisciplinary Optimization. doi: 
10.1007/s00158-018-1931-5 

Feng Z, Zhang Q, Zhang Q, et al (2015) A multiobjective optimization based framework to 
balance the global exploration and local exploitation in expensive optimization. Journal of Global 
Optimization 61:677–694. doi: 10.1007/s10898-014-0210-2 

Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization with 
expensive functions – a survey. Structural and Multidisciplinary Optimization 54:3–13. doi: 
10.1007/s00158-016-1432-3 

Hansen P, Jaumard B (1997) Cluster analysis and mathematical programming. Mathematical 
Programming 79:191–215. doi: 10.1007/BF02614317 

Harpham C, Dawson CW, Brown MR (2004) A review of genetic algorithms applied to training 
radial basis function networks. Neural Computing and Applications 13:193–201. doi: 
10.1007/s00521-004-0404-5 

Huang G Bin, Wang DH, Lan Y (2011) Extreme learning machines: A survey. International 
Journal of Machine Learning and Cybernetics 2:107–122. doi: 10.1007/s13042-011-0019-y 

Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: Theory and applications. 
Neurocomputing 70:489–501. doi: 10.1016/j.neucom.2005.12.126 

Huang G, Saratchandran P, Sundararajan N (2005) A Generalized Growing and Pruning RBF 
(GGAP-RBF) Neural Network for Function Approximation. IEEE Transactions on Neural Networks 
16:57–67. doi: 10.1109/TNN.2004.836241 

Huang G, Saratchandran P, Sundararajan N (2004) An Efficient Sequential Learning Algorithm 
for Growing and Pruning RBF(GAP-RBF) Networks. IEEE TRANSACTION ON 
SYSTEM,MAN,AND CYBERNETICS 34:2284–2292. doi: 1083-4419/04 

John John Kocherry, Rahul Rajan AV (2007) MDO Test Suite. 
http://www.eng.buffalo.edu/Research/MODEL/mdo.test.orig/class2prob4.html 

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - 
International Conference on Neural Networks. IEEE, Piscataway,NJ, pp 1942–1948 

Leonard JA, Kramer MA (1991) Radial Basis Function Networks for Classifying Process Faults. 
IEEE Control Systems 11:31–38 

Li X, Gao W, Gu L, et al (2017) A cooperative radial basis function method for variable-fidelity 
surrogate modeling. Structural and Multidisciplinary Optimization 56:1077–1092. doi: 
10.1007/s00158-017-1704-6 

Liu H, Ong YS, Cai J (2017) A survey of adaptive sampling for global metamodeling in support 
of simulation-based complex engineering design. Structural and Multidisciplinary Optimization 1–24. 
doi: 10.1007/s00158-017-1739-8 

Liu J, Lampinen J (2005) A Differential Evolution Based Incremental Training Method for RBF 
Networks. In: Proc. 2005 conference on Genetic and evolutionary computation. Washington DC, pp 
881–888 

Lowe D (1989) Adaptive radial basis function nonlinearities, and the problem of generalisation. In: 



 

27 
 

Proceedings of first IEE international conference on artificial neural networks. pp 171–176 
Neruda R, Kudová P (2005) Learning methods for radial basis function networks. Future 

Generation Computer Systems 21:1131–1142. doi: 10.1016/j.future.2004.03.013 
Niros AD, Tsekouras GE, Tsolakis D, et al (2015) Hierarchical Fuzzy Clustering in Conjunction 

with Particle Swarm Optimization to Efficiently Design RBF Neural Networks. Journal of Intelligent & 
Robotic Systems 78:105–125. doi: 10.1007/s10846-014-0152-4 

Oh SK, Kim WD, Pedrycz W, Joo SC (2012) Design of K-means clustering-based polynomial 
radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization 
and differential evolution. Neurocomputing 78:121–132. doi: 10.1016/j.neucom.2011.06.031 

Orr M (1998) Optimising the widths of radial basis functions. In: Proceedings 5th Brazilian 
Symposium on Neural Networks (Cat. No.98EX209). IEEE Comput. Soc, pp 26–29 

Park J, Sandberg I (1991) Universal Approximation using Radial-Basis-Function Networks. 
Neural Computation 3:246–257 

Peng J, Li K, Huang D (2006) A Hybrid Forward Algorithm for RBF Neural Network 
Construction. IEEE Transactions on Neural Networks 17:1439–1451 

Peng L, Liu L, Long T, Guo X (2014) Sequential RBF surrogate-based efficient optimization 
method for engineering design problems with expensive black-box functions. Chinese Journal of 
Mechanical Engineering 27:1099–1111. doi: 10.3901/CJME.2014.0820.138 

Platt JC (1991) A Resource-Allocating Network for Function Interpolation. Neural Computation 
3:213–225. doi: 10.1162/neco.1991.3.2.213 

Poggio T, Girosi F (1990) Networks for approximation and learning. Proceedings of the IEEE 
78:1481–1497. doi: 10.1109/5.58326 

R.L.Haupt, S.E.Haupt (1998) Practical Genetic Algorithms. John Wiley&Sons 
Sheta AF, De Jong K (2001) Time-series forecasting using GA-tuned radial basis functions. 

Information Sciences 133:221–228. doi: 10.1016/S0020-0255(01)00086-X 
Shi R, Liu L, Long T, et al (2018) Multidisciplinary modeling and surrogate assisted optimization 

for satellite constellation systems. Structural and Multidisciplinary Optimization. doi: 
10.1007/s00158-018-2032-1 

Smolik M, Skala V (2018) Large scattered data interpolation with radial basis functions and space 
subdivision. Integrated Computer-Aided Engineering 25:49–62. doi: 10.3233/ICA-170556 

Sobester A, Leary SJ, Keane AJ (2004) A parallel updating scheme for approximating and 
optimizing high fidelity computer simulations. Structural and Multidisciplinary Optimization 27:371–
383. doi: 10.1007/s00158-004-0397-9 

Stetco A, Zeng XJ, Keane J (2015) Fuzzy C-means++: Fuzzy C-means with effective seeding 
initialization. Expert Systems with Applications 42:7541–7548. doi: 10.1016/j.eswa.2015.05.014 

Sun Y, Zhu X, Zhang L, Zhao Z (2012) Structure Optimization Design of Interstage Section. 
MISSILES AND SPACE VEHICLES 7182:5–6. doi: 1004-7182(2012)05-0006-05 

van Dam ER, Rennen G, Husslage B (2009) Bounds for maximin Latin hypercube designs. 
Operations Research 57:595–608 

Verleysenl M, Hlavackova K (1996) Learning in RBF networks. In: International Conference on 
Neural Networks (ICNN). Washington, DC, pp 199–204 

Vuković N, Miljković Z (2013) A growing and pruning sequential learning algorithm of hyper 
basis function neural network for function approximation. Neural Networks 46:210–226. doi: 
10.1016/j.neunet.2013.06.004 

Watson D (1993) Spatial tessellations: concepts and applications of voronoi diagrams. Computers 
& Geosciences. doi: 10.1016/0098-3004(93)90024-Y 

Yao W, Chen X, Zhao Y, van Tooren M (2012) Concurrent Subspace Width Optimization Method 
for RBF Neural Network Modeling. IEEE Transactions on Neural Networks and Learning Systems 
23:247–259. doi: 10.1109/TNNLS.2011.2178560 

Zhou Z, Ong YS, Nair PB, et al (2007) Combining global and local surrogate models to accelerate 
evolutionary optimization. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications 
and Reviews 37:66–76. doi: 10.1109/TSMCC.2005.855506 

 


	An efficient space-division-based width optimization method for RBF network using fuzzy clustering algorithms
	Yunwei Zhang1, Chunlin Gong10F(, Hai Fang1, Hua Su1, Chunna Li1, Andrea Da Ronch2

	1 Introduction
	2 The RBF network and the fuzzy k-means clustering algorithm
	2.1 The RBF network
	2.2 The fuzzy k-means clustering algorithm

	3 The proposed SDWO method
	3.1 The two-stage fuzzy clustering algorithm with an expansion factor for space division
	3.2 Train the LRBFNs as needed by solving single-variable optimizations
	3.3 The procedure of the proposed SDWO method
	3.4 Computational complexity analysis

	4 Validation and application
	4.1 Validation of the proposed SDWO method
	4.1.1 Training sample sets
	4.1.1.1  “SinC” function with 60 samples
	4.1.1.2 2-dimensional function with 300 samples
	4.1.1.3 7-dimensional function with 2000 samples
	4.1.1.4 Spaceplane model with 10000 samples

	4.1.2 Test settings
	4.1.3 Results and discussion
	4.1.3.1 Sensitivity of SDWO to the expansion factor
	4.1.3.2 Comparison of CWO and SDWO


	4.2 Application in structure optimization
	4.2.1 The inter-stage structure optimization
	4.2.2 Test settings
	4.2.3 Results and discussions


	5 Conclusion
	Acknowledgments
	Conflict of interest
	Replication of results
	References

