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Abstract—A precoding scheme is proposed for the downlink
of multibeam satellite communication in the face of phase
perturbations. In order to alleviate the signal-to-interference and
noise ratio (SINR) degradation induced by phase uncertainty and
to minimize the transmission power consumption, we formulated
the beamforming problem as a chance-constrained optimization.
Moreover, we provided a large deviation inequality (LDI) aided
conservative approximation for the chance-constraints, followed
by conceiving a tractable solution. Our simulation results showed
the accuracy and the efficiency of our proposed approximation
algorithm compared to the benchmarks.

Index Terms—Multibeam satellite, robust beamforming, phase
perturbations, large deviation inequality.

I. INTRODUCTION

THE design of multicast multibeam satellite communi-
cation systems has attracted much attention as a ben-

efit of providing interactive broadband services to remote
geographical areas at a high quality of service (QoS) [1].
Multibeam joint beamforming is conducive to full frequency
reuse and interference mitigation [2]. In [1], Christopoulos et
al. demonstrated that a broadband multibeam satellite commu-
nication system relying on a frame-based Transmit PreCoding
(TPC) scheme had a higher throughput than the conventional
four-color frequency reuse configuration. Meanwhile, Zheng
et al. [3] proposed a generic optimization framework of
linear precoding design for handling objective functions of
data rate, which was close to the dirty paper coding under
nonlinear power constraints in general multibeam satellite
systems. Furthermore, Joroughi et al. [4] investigated on-board
beamforming schemes in a joint multiple gateways architecture
and showed that the number of gateways remained affordable
even though the data demand increased. Taking both system’s
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performance and user’s fairness into account [5], Jiang et
al. proposed a multimedia multicast beamforming scheme
for improving the total system’s capacity for the integrated
terrestrial-satellite networks.

However, satellite communication systems are characterized
by a long round-trip delay (RTD) and imperfect channel state
information (CSI) [6]. To elaborate, Vázquez et al. [7] demon-
strated that the outdated CSI was expected to degrade the
performance of precoded L-band mobile multibeam satellite
systems. Naturally, the antenna weights are also affected by the
imperfect CSI, which leads to an inaccurate precoding matrix.
Hence, it is necessary to consider how the imperfect CSI af-
fects the precoder design. In order to counteract the signal-to-
interference and noise ratio (SINR) degradation caused by the
CSI estimation error, a robust beamforming has been proposed.
There are two types of method invoked for describing the
CSI imperfections, namely the so-called determined bounded
model [8] and the random model [9]. Specifically, Wang et
al. [8] maximized the worst-case received SINR by solving a
max-min optimization problem under a bounded uncertainty
for multi-input multi-output (MIMO) systems, which may not
necessarily result in a better convex restrictive approximation.
Another one is constituted by the outage-constrained problem,
where the constraints are represented in the form of probability
inequalities due to the characteristics of the CSI error, which
makes the computation of the antenna weights difficult and
hence tackling this challenge is the main focus of our paper.
To address this issue, a flexible outage-probability-constrained
robust beamforming mechanism is conceived in this paper.

The magnitude of typical satellite channel models, such as
line-of-sight (LOS) channel [10] and rain fading channel [11],
is determined only by the path attenuation, which usually
varies slowly and is easy to estimate [12]. Therefore, we can
assume that the amplitude is constant and known during the
feedback interval. However, there is a significant variation
in the channel phase component arising out of time vary-
ing phase perturbations and the high RTD will induce the
outdated CSI [11]. To qualify the service of satellite, Li et
al proposed a secure and robust beamforming framework for
cognitive satellite-terrestrial networks (CSTNs) to minimize
the transmit power under a stochastic model for the CSI
uncertainty [9]. However, most of the existing contributions
dedicated only limited attention to the phase perturbations
induced by a number of impairments, such as the presence
of the satellite’s non-linear transponders and conditioning
filters, the channel fading and the imperfect synchronization
caused by the oscillator [13]. Moreover, since the phase noise
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increases as the center frequency increases, in particular for
the frequency bands beyond Ka-band, the phase perturbation
is an important factor in satellite communications. Given
these phase perturbations, the probabilistic constraints are
reformulated into random complex exponential forms which
result in computational challenges. In this paper, we provide
a conservative approximation and a tractable solution with the
following new contributions:
• Our proposed robust beamforming formulation minimizes

the power, while satisfying the SINR constraints in the
face of the phase perturbations.

• In order to solve the problem under the probabilistic
constraints involving random complex exponential forms
relying on the classic Taylor series and large deviation
inequality (LDI), we proposed a conservative approxi-
mation of the outage probability constraints to give a
tractable solution.

• Extensive simulations are conducted in order to show
the efficiency of our proposed robust beamformer and
to strike a compelling outage probability vs power con-
sumption trade-off.

Notations.Throughout this paper, we use boldfaced lower-
case letters to represent column vectors and uppercase Roman
letters to represent matrices. vec(A) represents the vector
obtained by joining the column vectors of A. The notations
SN and KN denote the sets of N -order symmetric matrices
and skewed-symmetric matrices, respectively. Furthermore,
diag(a) represents a square diagonal matrix with the elements
of the vector a constituting the main diagonal. The super-
scripts ‘T’ and ‘H’ represent the transpose and the Hermitian
transpose, respectively, while Tr(A) and � represent the trace
and the entry-wise product respectively. Additionally, Ji(·)
stands for the ith-order Bessel functions of the first-kind,
while ‖·‖ and ‖·‖F represent the vector Euclidean norm and
matrix Frobenius norm respectively. Finally, Pr {·} denotes
the probability function.

The remainder of this paper is summarized as follows. In
Section II, we describe the system model and formulate the
multibeam beamforming problem considering phase perturba-
tions. In Section III, an LDI approximation algorithm is pro-
posed for minimizing the power consumption. In Section IV,
the power consumption and the outage probability are used
for benchmarking the performance of our proposed model,
followed by our conclusions in Section V.

II. MULTIBEAM BEAMFORMING CONSIDERING PHASE
PERTURBATIONS

In this section, we consider a communication scenario,
where terrestrial users can be served by a gateway and a
geosynchronous earth orbit (GEO) satellite. To elaborate, the
data packets are firstly precoded at the gateway and then sent
to the GEO satellite, as shown in Fig. 1. The users receive the
data relayed by the GEO satellite.

Although the channel between the gateway and the GEO
satellite is not perfect, the digital video broadcasting satellite
(DVB-S2) working group [13] assumes that the downlink
noise between the satellite and the users dominates the link’s

overall noise contributions. In line with this, we also assume a
noiseless channel between the gateway and the GEO satellite.
In our model, the gateway is equipped with K antennas and
has realistic imperfect CSI. The GEO satellite also has K
antennas, forming a cluster of K adjacent beams directed to
the ground. The total bandwidth is B. Moreover, time division
multiplexing is invoked. Given the strict power constraint
of the solar-powered satellite, we formulate the multibeam
beamforming as a power minimization problem.

A. Signal Model

In our model, each signal is precoded at the gateway and
transmitted to the GEO satellite. We assume that there are I
users and let si (t) , i = 1, ..., I be the initial signal requested
by each user. Then, the transmitted signal x (t) of the GEO
satellite precoded by the gateway is given by:

x (t) =

I∑
i=1

wisi (t) , (1)

where wi represents the precoding vector. Hence, the signal
received by the i-th user is:

ri (t) = h
H
i wisi (t) +

∑
j 6=i

hHi wjsj (t) + ni (t) , (2)

where ni (t) is the additive white Gaussian noise (AWGN)
with variance of τ2i . Moreover, hi = (hi1, ..., hiK)T denotes
the channel matrix, where hij = |hij |ejθij is the sub-channel
function between the i-th user and the j-th antenna of GEO
satellite. Then, the SINR of the i-th user can be formulated
as:

SINRi =
|hHi wi|2∑

j 6=i
|hHi wj |2 + τ2i

. (3)

B. Channel Model

In our model, we have perfect amplitude information of
|hij |, but imperfect phase information, which means that
θ̂ij = θij − δij , where θ̂ij represents the estimate of the phase
and δij is its estimation error. Moreover, ∆i = (δi1, ..., δiK) ∼
N (0,Ci), where Ci is the correlation matrix. Hence, the
estimate of the sub-channel function can be formulated as
ĥij = |hij |ejθ̂ij and we have:

hi = ĥi � ei = diag(ĥi)ei, (4)

Gateway

Satellite

Users

Rain attenuation channel

x(t) r(t)

s(t)

Fig. 1. System model
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where ei =
(
ejδi1 , ..., ejδiK

)T
represents the error vector.

Rain-induced fading is a typical phenomenon in satellite
communications. The water vapor may typically results in a
high phase rotation [14]. Furthermore, as to whether the rain-
induced phase error is dominant or not depends on how large
the deviation of the estimation error is from its prediction,
which is related both to the specific choice of the estimation
method and to the particular value of the delay encountered in
satellite communications and similarly on how dynamically the
time-varying space-ground communication channel fluctuates.
Therefore, considering the rain attenuation in the air-to-ground
(A2G) channel, ĥi can be formulated as:

ĥi = C
√
10−

z
10 bi � φi, (5)

where we have:

C =

(
c

4πfd0

)2
Gr,i
κBT

. (6)

Moreover, f is the carrier frequency and d0 represents the
distance between the user and the GEO satellite, the user’s
receiver gain is denoted by Gr,i, while T represents the
receiver’s noise temperature and κ is Boltzmann’s constant.
Furthermore, 10−

z
10 is the rain attenuation coefficient, where

ln(z) ∼ N (µrain, σ
2
rain) [15] and φi = ejθ̂i denotes the

estimated phase of the i-th user [15]. Additionally, bi in Eq. (5)
represents the beam gain, which can be approximated by [11]:

bik = Gs,k

(
J1 (uk)

2uk
+ 36

J3 (uk)

u3k

)2

, (7)

where Gs,k is the transmitter gain of the k-th beam on board.
Moreover, we have uk = 2.07123

sinαk,i

sinαk,3 dB
, and αk,i is the

elevation angle between the i-th user and the k-th beam center,
while αk,3 dB denotes the half power angle.

C. Problem Formulation

To mitigate the cross-beam interference and to improve
power efficiency, we formulate the problem as the power
minimization problem under SINR constraints. However, due
to the existence of phase errors, the SINR constraints are
represented in the form of probability inequalities, which
ensure that statistically speaking the cross-beam interference
remains sufficiently low. Therefore, our robust beamforming
problem can be formulated as:

min
wi,i=1,...,I

I∑
i=1

‖wi‖22

s.t. Pr∆i
{SINRi ≥ ηi} ≥ 1− εi, i = 1, ..., I,

(8)

where ηi is the lower bound of SINR required for sat-
isfying the QoS of the i-th user and εi is the fail-
ure probability. Hence, each user’s service is fulfilled
with a probability of (1 − εi). Noting that |hHi wi|2 =
hHi wiw

H
i hi = hHi Wihi, the inequality SINRi ≥ ηi

is equivalent to hHi ( 1
ηi

Wi −
∑
j 6=i Wj)hi ≥ τ2i . Ac-

cording to Eq. (4), the left side can be reformulated as
eHi

[
diag(ĥ

H

i )( 1
ηi

Wi −
∑
j 6=i Wj)diag(ĥi)

]
ei = eHi Ziei.

Hence, we achieve the first constraint in (9). After these
derivations, the optimization problem can be reformulated as:

min
Wi,i=1,...,I

I∑
i=1

Tr(Wi)

s.t. Pr∆i

{
eHi Ziei ≥ τ2i

}
≥ 1− εi,

Rank(Wi) = 1, i = 1, ..., I,

(9)

where the positive semi-definite matrix obeys Wi = wiw
H
i ,

while Zi , diag(ĥ
H

i )( 1
ηi

Wi −
∑
j 6=i Wj)diag(ĥi). Since

the constraints are represented in the form of probability in-
equalities of complex exponential random variables, it is hard
to check the associated feasibility. Therefore, we convert the
complex exponential probabilistic constraints into a quadratic
form relying on a linear transformation. For the quadratic
form probability inequalities, Wang et al. [16] pointed out
that the feasibility decreases upon increasing the SINR η.
Moreover, the LTI based method rates the feasibility to be
much higher than that of the probabilistic second-order cone
program (SOCP) based method. Below, we will first provide
a near-optimal solution of (9) relying on a relaxed chance-
constraint.

III. APPROXIMATION AND SOLUTIONS

In this section, we first convert the problem in (9) into an
SDP approximation problem via a Taylor’s expansion as well
as an LDI. Then, we solve the SDP relying on CVX [17] and
the Gaussian randomization.

A. The approximation of complex exponential Gaussian vari-
ables

First we use the quadratic Gaussian variables to approximate
the complex exponential Gaussian variables via a Taylor’s
expansion as well as linear mapping, which is embodied in
Lemma 1.

Lemma 1 For complex exponential Gaussian variables
e = (ejδ1 , ..., ejδI ), δi ∈ R, i = 1, ..., I , then eHZe can be
approximately represented by its second-order Taylor’s series
as:

eHZe
.
=
∑
i,j

Zi,j + ∆T f (X)∆ + ∆T g (Y) , (10)

where X ∈ SK is the real part of Z, while Y ∈ KK is the
imaginary part of Z. The functions f : RK×K → RK×K and
g : RK×K → RK constitute a linear mapping defined by:

[f (X)]m,n =

Xm,n −
∑
l

Xm,l, m = n,

Xm,n, m 6= n,
(11)

[g (Y)]m = 2
∑
l

Ym,l. (12)

The proof of Lemma 1 can be provided with reference to [10].
Relying on Lemma 1 in Eq. (10), the constraint in (9) can be
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relaxed into a probability restriction associated with quadratic
Gaussian variables, in the form of:

Pr
{
eH
i Ziei < τ2i

}
.
=

Pr
{

∆T
i f (Xi)∆i + ∆T

i g (Yi) +
∑

j,k
Zi,[j,k] − τ2i < 0

}
< εi,

(13)
where Zi,[j,k] represents the (j, k)-th element of Zi. In the
following, we aim for eliminating the probability constraint,
which may yield a quadratic constraint based on LDI.

B. The conservative approximation of probability inquality
Lemma 2 For ∆̃ ∼ N (0, IK), we have:

Pr
{

∆̃
T
Q∆̃ +Re

{
∆̃
T
r
}
+ s ≤ 0

}
≤


exp(− ζ2

4D2
), 0 < ζ ≤ 2λνD,

exp(−λνζ
D

+ (λν)2), ζ > 2λνD,

(14)

where ν =
[
−(λ+ log(1− λ))/λ2

] 1
2 , ζ = Tr (Q) + s and

D = ν‖Q‖F + 1
2
√
2
‖r‖2. The proof of Lemma 2 can

be provided with reference to [16]. Relying on Lemma 2,
let the right side of the inequality in (14) be less than
ε, which is equivalent to 2

√
− ln εD ≤ ζ < 2λνD or

ζ ≥ max
{
2λνD, (λν + − ln ε

λν )D
}

. Then we have:

ζ

D
≥

 2
√
− ln ε, λν >

√
− ln ε,

(
− ln ε

λν
+ λν), λν ≤

√
− ln ε.

(15)

The inequality in (15) grants us the freedom of selecting λ.
Note that λν + − ln ε

λν reaches the minimum value of 2
√
− ln ε

when λν =
√
− ln ε. Therefore, to minimize the value of ζ/D,

which can be viewed as the least conservative approximation
of the chance-constraint, let λν =

√
− ln ε, yielding:

λ+ ln(1− λ) = ln ε, (16)

which has one root in the range of (
√
1− ε, 1), that can be

found by the classic bisection method, since the left side of
Eq. (16) decreases monotonically when λ > 0. Hence, the
inequality in (15) reduces to ζ > 2

√
− ln εD. By introducing

a pair of auxiliary variables x and y, the outage constraint can
be rewritten as:

s+Tr (Q) ≥ 2
√
− ln ε(x+ y),

1

2
√
2
‖r‖2 ≤ x,

ν‖Q‖F ≤ y.

(17)

Obviously we have ∆ = C
1
2 ∆̃. Meanwhile, in our formula-

tion, let us introduce following definitions s =
∑
j,k Zj,k−τ2,

Q = C
1
2 f (X)C

1
2 , C

1
2 FC

1
2 and r = C

1
2 g (Y) , C

1
2 G.

Therefore, relying on Lemma 1 and Lemma 2, the original
optimization problem in (9) can be reformulated as:

min
Wi,xi,yi,i=1,...,I

I∑
i=1

Tr(Wi) s.t.

C1 :
∑
j,k

Zi,[j,k] − τ2i +Tr

(
C

1
2
i FiC

1
2
i

)
≥ 2
√
− ln εi(xi + yi),

C2 :
1

2
√
2
‖C

1
2
i Gi‖2 ≤ xi,

C3 :vi‖vec
(

C
1
2
i FiC

1
2
i

)
‖2 ≤ yi,

C4 :Zi = Xi + jYi,

C5 :Fi = f (Xi) ,Gi = g (Yi) ,

C6 :Wi � 0,

C7 :Rank(Wi) = 1, i = 1, ..., I.

(18)

C. Gaussian randomization

Due to the rank constraints, the problem is still non-convex.
Motivated by the methodology in [18], in this section, we
give the Gaussian randomization algorithm for non-convex
problem (18), which is give in Algorithm 1. First, by dropping
the rank constraint, the optimization problem reduces to a
convex SDP, which can be solved by CVX. If the rank of the
solution Ŵi is 1, then the optimal wi can simply be found
by eigen-decomposition, i.e. 8. However, if the rank of Ŵi is
higher than 1, we generate (w1, ...,wI) by using Ŵ1,...,ŴI

as the covariance matrix of the Gaussian distribution and
scale them to satisfy the constraints, i.e. 2∼5, in each loop.
Moreover, L is the maximum times of Gaussian sampling.

Algorithm 1 Gaussian Randomization Method for Prob-
lem (18)

Input: Ŵ1, ...,ŴI and the times of Gaussian sampling L.
1: if ∃Rank(Ŵi) > 1, i = 1, ..., I then
2: for j = 1, ..., L do
3: Generate ŵ

(j)
i , i = 1, ..., I from the distribution

CN (0,Ŵi).

4: Let t(j)i =
ŵ

(j)
i

‖ŵ(j)
i ‖2

, i = 1, ..., I and solve the
problem:

min

I∑
i=1

ρ
(j)
i , s.t.

Wi = ρ
(j)
i tit

H
i ,

ρ
(j)
i ≥ 0,

C1 ∼ C6.

Set w(j)
i =

√
ρ
(j)
i t

(j)
i .

5: end for
6: w1, ...,wI = min

j=1,...,L

I∑
i=1

‖w(j)
i ‖22.

7: else
8: Solve wi such that Ŵi = wiw

H
i , i = 1, ..., I .

9: end if
Output: w1, ...,wI

IV. SIMULATION RESULTS

In our simulations, we benchmark the performance of
our proposed algorithm in comparison to both a non-robust
method, as well as to the central limit theorem aided algo-
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TABLE I
PARAMETERS

Parameters Value [11]
Orbit altitude of GEO d0 = 35786 (Km)
Downlink carrier frequency f = 20 (GHz)
Bandwidth B = 50 (MHz)
Number of beams K = 5
Boltzmann’s constant κ = 1.38× 10−23 (J/K)
Satellite transmitting gain Gs,k = 35 (dBi)
User received gain per noise temperature Gr,i/T = 34 (dB/K)
Half power angle α3 dB = 0.4◦

rithm1 (denoted as CLT) of [11] and to the Bernstein-type
inequality assisted algorithm2 (termed as BTI) of [10].

In Table I, we summarize the essential parameters of the
simulations. We set the noise power τ2 to 1 and the phase
estimate φ to 1. The phase perturbations obey a zero-mean
Gaussian distribution with the correlation matrix of C = σI,
where σ = 5◦. The location of I = 5 users is generated
randomly within the coverage of K = 5 beams. In the convex
optimization, we relax the rank-one constraint of (9) with the
aid of Gaussian randomization. We use the CVX tool to solve
our SDP subproblem. The number of Gaussian sampling is set
to L = 10.

Fig. 2 shows the minimum total power consumption re-
quired for satisfying the lower bound SINR constraint η rang-
ing from 0 dB to 5 dB parameterized by the outage parameter
values of ε = 0.01, ε = 0.05 and ε = 0.1, respectively. We
disregard some values of the BTI method and the CLT method,
which exceed 120 because of its extreme power consumption.
We can conclude from Fig. 2 that our proposed algorithm is
the most energy-efficient one, outperforming both the BTI and
CLT, whilst meeting the SINR requirement.

In Fig. 3, we use the classic Monte Carlo method for
evaluating the actual outage probability versus the lower bound
of the SINR η ranging from 0 dB to 5 dB in conjunction
with the theoretical values of ε = 0.01, ε = 0.05 and
ε = 0.1. Moreover, the gap between the actual and the
theoretical outage probability reveals, how conservative our
approximation is.

The actual outage probability in the context of the non-
robust method ranges from 0.1 to 0.4, which implies that
the outage probability is sensitive to phase perturbations upon
increasing the SINR. This which underlines the importance of
an accurate phase estimation and a robust precoding scheme,
which can compensate the SINR degradation caused by phase
perturbations with the aid of some extra power consumption.
The actual outage probability in the context of CLT is near-
zero due to the high power consumption compared to both our
proposed method and to the BTI. Furthermore, our proposed
method is characterized by a low power consumption as well
as by an acceptable outage probability, compared to the BTI.

1CLT approximates the distribution of quadratic form of complex-
exponential Gaussian random variables with a Gaussian distribution relying
on the central limit theorem.

2BTI solves the beamforming problem without considering channel inter-
ference based on Taylor approximation and Bernstein-type inequalities.
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Theoretically, if we scale wi, i = 1, ..., I in Eq. (3) by a
common factor of ρ > 1, then the SINR can be deemed to
be an increasing function of the parameter ρ. Therefore, the
increased power consumption may be expected to result in
a high probability of satisfying the SINR constraint. Further-
more, as for the approximation of the probability constraint,
the central limit theorem requires a sufficiently large number of
variables due to its asymptotic nature, which indicates that the
approximation invoked for a small-scale beamforming problem
may give rise to an unmeasurable approximation error. Hence,
it may require excessive power to fulfill its overly conservative
approximation. In contrast, we use the second-order Taylor
expansion, which is an accurate approximation near the point
where it expands. Moreover, small perturbations occur with a
high probability since a zero-mean gaussian variable having
a small deviation is typically close to zero, which implies
that our approximation is accurate with a high probability.
As to the approximation of the probability inequality, our
proposed method depends on the large deviation inequality
of Lemma 2, while the BTI method depends on the accuracy
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of the Bernstein-type inequality. Observe from the simulation
results of Fig. 3 that the large deviation inequality outperforms
the Bernstein-type inequality in terms of avoiding the overly
conservative approximation of the probability constraint char-
acterized by the gap between the actual and the theoretical
outage probability. Finally, the computational complexities
of the three algorithms are identical, because they all rely
on the SDP problem having the same dimension, which
can be solved within a worst-case complexity on the order
of O[max(K, I)K

1
2 log( 1

ω )], where ω represents the solution
accuracy [18].

V. CONCLUSIONS

In this paper, we proposed robust beamforming for multi-
beam satellite communication in the face of phase perturba-
tions. We formulated the robust beamforming as a minimal
power consumption problem under a probability constraint.
Furthermore, relying on Taylor’s expansion and on LDI, we re-
laxed the chance-constrained problem into an SDP. Finally, our
simulation results demonstrated that the proposed algorithm is
beneficial in terms of both providing a constraint relaxation
and yielding a high energy efficiency.
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