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In this thesis we explore aspects of scattering amplitudes in planar N' = 4 super Yang-
Mills. In particular we shall focus on studying the mathematical structure of scattering
amplitudes in different kinematical limits. First we use linear combinations of differ-
ential operators and the properties of multiple polylogarithms to solve for a differen-
tial equation obeyed by a 2-loop, 5-point dual conformal scalar integral in a coplanar
kinematical limit. Next we dedicate the bulk of this thesis to planar amplitudes in multi-
Regge kinematics (MRK) and we exploit the simplifications due to this limit to completely
classify their mathematical structure.

We show that in MRK, the singularity structure of the amplitude corresponds to finite
cluster algebras and thus may be described entirely by single-valued multiple polyloga-
rithms. We then present a factorised form for the amplitude expressed as a Fourier-
Mellin dispersion integral and proceed to derive novel results at leading logarithmic
accuracy (LLA) for both MHV and non-MHYV configurations. Specifically we show that
amplitudes at L loops are determined by amplitudes with L + 4 legs and classify their
leading singularities in MRK. Next we go beyond LLA by using 2-loop, 7-point data to
extract corrections to the BFKL central emission vertex which is the only quantity in
the dispersion integral not known to all orders. Finally we utilise the corrections to the
central emission vertex to conjecture a finite coupling expression and thus extend the
dispersion integral for amplitudes in MRK to all orders as well as all multiplicities and
helicity configurations.
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CHAPTER 1

Introduction

Our most successful theories regarding the constituents of matter and the way they in-
teract with each other are quantum field theories (QFT). By marrying quantum mechan-
ics with the symmetries of space-time, QFTs have been able to both guide and explain
experiments probing matter at ever smaller scales. From the highly accurate predictions
of QED to the complexity of the standard model we have made many discoveries regard-
ing the nature of fundamental particles, with the Higgs boson being a most notable re-
cent addition. However for experiments to be able to detect new physical phenomena,
it is essential to have an understanding of how likely they are compared to the back-
ground processes. This likelihood may be calculated theoretically and is encapsulated
in scattering amplitudes, thus making them principal objects of study in any QFT, link-
ing theory with prediction. Indeed, by calculating them we may form scattering cross

sections which determine the probabilities of processes at high energy colliders.

In the standard perturbative approach to quantum field theories established in the 1970s,
processes are broken up into all possible interactions, and their combinations, allowed
by the theory under consideration. Each individual scenario, drawn pictorially as a Feyn-
man diagram, is then treated separately. The procedure is to use the Feynman rules de-
rived from the Lagrangian of the theory and associate to each graph an integral, either
over position or momenta. While conceptually straightforward the integrals quickly be-
come notoriously difficult to evaluate and they are often divergent in either the low or
high momentum limits known as the IR and UV respectively. To make sense of these

infinities we require regularisation and renormalisation which have led to new insights
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about the nature of the standard model. Indeed confinement or asymptotic freedom,
a major features of QCD, have their origins in the need to treat the divergent nature of
scattering amplitudes. Thus it is fair to say that calculation of scattering amplitudes has

been a major driving force in the development of our understanding of QFTs.

Although it has taken us far, the Lagrangian approach to scattering amplitudes may not
be the best or most efficient way of doing calculations. The first hints of this fact were
found in the work of Parke and Taylor [1], where, by using a particular parametrisation,
the sum of hundreds of Feynman diagrams was seen to collapse to a single line. The
reasons for this remarkable simplification are two fold. Due to locality, our most real-
istic theories possess non-abelian gauge symmetries, however they are not maintained
by the expansion in Feynman diagrams. Secondly the Lagrangian formulation of QFTs
forces us to deal with off-shell quantities that simplify significantly when we restrict our-
selves to the physical space. Scattering amplitudes are non-local, gauge invariant quan-
tities that are manifestly on shell. Therefore the Feynman approach to scattering am-
plitudes, while systematic, introduces a lot of complications in the intermediate steps.
Another surprising feature that contributes to their simplicity is the fact that amplitudes
often possess symmetries that are not evident at the level of the Lagrangian. With these
considerations there has been a lot of impetus to make on-shell amplitudes the start-
ing point rather than the final step in a calculation. These on-shell approaches focus on
finding the most efficient ways of parametrising the amplitude such that they incorpo-
rate its analytic and symmetry properties. Consequently these parametrisations shall be

a recurring theme throughout this thesis.

There has been remarkable progress in recent years in both the understanding and cal-
culation of gauge theory scattering amplitudes. There have been results at high multi-
plicity and new mathematical structures discovered. The acquired mathematical so-
phistication is largely due to the remarkable properties of N' = 4 Super-Yang-Mills
(SYM). It is a maximally supersymmetric theory in four dimensions that can be cast as
a reduction of a ten dimensional N' = 1 super-Yang-Mills. Indeed N' = 4 SYM is not
only supersymmetric but conformal, with a vanishing Beta function, and thus depen-
dent only on the single renormalisation free tHooft coupling A. All of these features
are of great theoretical interest, which is further justified by comprising the CFT in the
AdS/CFT correspondence. Unfortunately, for the most part N' = 4 SYM is not a realistic
theory of the world we see around us, however this need not be an obstacle to progress.
It has long been the strategy of the physicist when confronted with a complex problem,
such as QCD, to find a similar yet simpler problem and adapt to the former the lessons
learned from the latter. In the context of scattering amplitudes the role of the simpler
theory is beautifully fulfilled by A/ = 4 SYM and it rightly deserves the focus we shall
accord it in this thesis. Of course simple here should be interpreted more as evidence
of the mathematical richness of the theory rather than a lack of features.



In the context of colour ordered planar amplitudes, that shall be of primary interest,
N = 4 possesses a dual conformal symmetry [2-4] which closes with the usual super-
conformal algebra to form an infinite dimensional Yangian algebra [5]. The Yangian pro-
vides an infinite set of charges in involution and thus is a strong indication of integrabil-
ity, and has prompted much work in investigating this property (see [6] for a review). In
fact the scaling dimensions of local operators in N' = 4 stem from the thermodynamic
Bethe ansatz and have been solved exactly. The origin of this unexpected integrabil-
ity in a four dimensional theory lies in its duality with a type IIB string theory living on
AdSs x Ss. The latter is prone to integrability by virtue of being a non linear sigma model
on a symmetric coset space, then the CFT inherits this property via the AdS/CFT corre-
spondence. At the QFT level the dual conformal invariance is broken by IR divergences,
however this happens in a controlled manner and we may restrict our attention to a
natural IR finite dual conformal invariant part. Thus the analytic structure of scattering
amplitudes is constrained and the four point and five point amplitudes are completely
fixed, which agrees with an earlier ansatz due to Bern, Dixon and Smirnov (BDS) [7]. This
ansatz packaged all information up to five points into a single exponential form contain-
ing the one loop amplitudes and the cusp anomalous dimension (known exactly from
integrability). The BDS ansatz also contains the divergent part of all amplitudes and is
usually factored out to leave finite functions of the cross ratios known as remainder
functions.

Although linked to integrability, a separate avenue of progress has stemmed from the in-
terplay between kinematics and geometry. Notably the kinematics of the amplitude may
be efficiently encoded in terms of momentum twistors, which are points in CP?. They
simultaneously resolve the momentum conservation and null momenta conditions as
well as linearise the action of the dual conformal symmetry generators. Furthermore
the kinematics may be organised into cluster algebras [8,9] which describe the space of
totally positive matrices whose minors are given by the Pliicker coordinates made from
the momentum twistors [10]. Evidence suggests that given an initial cluster we may use
a process called mutation to generate the singularity structure of amplitudes up to seven
points in general kinematics. Once the singularity structure is known the entire func-
tional space of the amplitude may be constructed and then bootstrapped using physical
considerations such as soft and collinear limits [11-13]. At eight points and beyond how-
ever this approach breaks down, non-cluster letters start to appear and eventually the
singularity structure may not be enough to fix the amplitudes. However as we shall see,
in certain kinematic regimes it is possible to use finite cluster algebras to determine the
analytic structure of amplitudes at all points.

This is of course not the only way to proceed and there has been great progress in a
variety of techniques involving twistors. In [14,15] it was shown that by considering the

factorisation of scattering amplitudes in certain limits it was possible to construct all tree
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level amplitudes. Crucially this is a completely on-shell method that relies on a defor-
mation of the amplitude and the residue theorem to recursively build amplitudes from
products of amplitudes with fewer legs. At loop level this is complicated by the branch
but it is still possible to build the integrand by using unitarity methods. While this does
not provide one with the amplitude directly it is nevertheless highly desirable to be able
to decompose the amplitude in terms of a general basis of integrals that may already be
known. In the so called generalised unitarity method [16-18] we may be able to deter-
mine the coefficients in this decomposition by cutting successive propagators. Further-
more, by analysing generalised unitarity in momentum twistor space it was possible to
express integrands of amplitudes as the volume of a remarkable generalised polytope,
over a Grassmannian, known as the amplituhedron [19-21]. This interesting geometrisa-
tion of scattering amplitudes does not obfuscate the Yangian symmetry, because locality
and unitarity are no longer external criteria but emergent phenomena.

Through the Yangian, dual conformal symmetry has played a central role in the progress
made thus far, remarkably this prominence may be understood geometrically via the
AdS/CFT correspondence. By considering the boundary conditions of the saddle point
solution to the string scattering equations it is possible to establish a duality between
scattering amplitudes in N' = 4 SYM and minimal surfaces bound by null polygonal
Wilson loops [22-25]. In this context the dual conformal symmetry is just the canonical
conformal symmetry of the Wilson loop and is related by T-duality to that of the am-
plitude. The Wilson loop/amplitude duality has led to the development of some very
powerful techniques. Most notably the Wilson loop OPE [26-31] where a collinear limit
is taken to decompose the loop in terms of polygons with fewer edges. In this way it
is possible to tessellate the polygon with a series of squares or overlapping pentagons.
For planar N/ = 4 SYM it we may interpret the two segments of each square belong-
ing to the original polygon as sourcing a colour-electric flux tube. Integrability mani-
fests itself here as well, as the excitations of this flux tube correspond to an integrable
spin chain [28-31]. The OPE is then an expansion in the states propagating across these
squares with special transition function taking the state from one square to the other.
Although for most of this work we do not make explicit use of the Wilson loop OPE it
shall however be a valuable point of comparison.

Instead we focus on the the functional space of the simplest scattering amplitudes, which
is expected to be that of iterated integrals over some one forms. These one forms are
determined by the configuration space of points in complex projective space Conf(CP?).
We shall be working with iterated integrals over rational one forms, otherwise know as
multiple polylogarithms (MPLs), which are believed to describe all maximally helicity
violating (MHV) and next-to-MHV (NMHV) [21]. MPLs and iterated integrals in general
are of deep mathematical interest. They have connections with algebraic geometry and
number theory, areas of mathematics which have a remarkably large overlap with the



study of scattering amplitudes. MPLs have a plethora of properties, stemming from their
Hopf algebra structure, and obey many functional relations among themselves. Fur-
thermore they admit an algebraic representation called the symbol [32-34], which is in
some sense simpler and more unique. The symbol has been used with great success
to simplify results that would have taken 17 pages to write [35, 36] and has proven to be
a very efficient tool with which to build scattering amplitudes. In particular we know
the symbols of all two-loop MHV amplitudes [37] and that of the three-loop seven point
amplitude [11]. It has been difficult to go to higher multiplicity however, with reasons
including the infinity of the cluster algebra as well as the expected appearance of new

classes of functions not expressible as MPLs.

This thesis is organised as follows. Section 2 is not original and is intended as a brief
overview of some of the more relevant topics in scattering amplitudes as well as an in-
troduction to some subjects that would be of use later on. In particular we spend some
time going through the principles of iterated integrals and their Hopf algebra. In Sec-
tion 3 we explore what can be learned from applying differential operators to a scalar
conformal 2-loop, 5-point integral. We find that in a coplanar limit of the kinematics we
may write a differential equation that has a solution in terms of single valued MPLs. This
section is based on unpublished work done in collaboration with my supervisor James
Drummond. In Section 4 we investigate scattering amplitudes in multi-Regge kinemat-
ics (MRK) at leading log approximation (LLA). We show that in MRK the cluster algebra of
the kinematics decomposes into two copies of finite type, which can be represented by
the Dynkin diagrams for 4,,. Thus we are able to describe the amplitude in terms of iter-
ated integrals on the moduli space of Riemann spheres with marked points 9t ,,. After
proposing a Fourier-Mellin dispersion integral for amplitudes at all loops and points we
proceed to investigate how the amplitude factorises. More precisely MHV amplitudes
at Lloops are completely determined by MHV amplitudes with up to (L+4) external legs.
Furthermore by considering convolutions with a helicity flip kernel the results are ex-
tended to NMHV. In Section 5 we develop the results of Section 4 beyond LLA. To do so
we shall promote the known symbol of the two loop heptagon to a function and fix di-
vergent terms in the integral by considering soft limits. After obtaining the function we
use its holomorphic part to completely fix the NLO corrections to the central emission
block via a map from the Taylor expansion of MPLs to the space of single valued Fourier-
Mellin integrals. Once the corrections are obtained we proceed to generate predictions
through a mixture of nested sum algorithms and convolution methods. Finally we obtain
further corrections to the central emission vertex and promote them to a Wilson loop
OPE inspired all order conjecture that is consistent with symmetries and seven points
data. Thus we complete our proposal for a finite coupling dispersion integral valid for all
multiplicities and helicity configurations. The work of the preceding two sections was
done in collaboration with Vittorio Del Duca, James Drummond, Claude Duhr, Falko Du-
lat, Robin Marzucca, Georgios Papathanasiou and Bram Verbeek [38, 39].
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CHAPTER 2

Overview

2.1 Colour and Spin

Given that our most realistic QFTs are non-abelian gauge theories with gauge group
SU(N) it is natural to expect additional structure in the amplitude, besides the kine-
matical dependence. However, as we shall see, in the planar limit of large rank (N — 1)
the gauge group dependence or colour structure will become mostly decorative. That
is to say given that our fields are Lie algebra valued, we demonstrate that the amplitude
can be expressed as a series of single traces of the generators. Furthermore, even if
the theories we consider are not entirely made of massless particles it is nevertheless
consistent with collider processes to assume a hyper-relativistic limit in which the par-
ticles have zero effective mass. Thus the full spin structure can be reduced to unitary
representations of the little group that are parametrised by the helicity of the particle.
Following [40, 41] we proceed to describe the colour decomposition of amplitudes and
the spinor helicity formalism.

2.11 Colour decomposition

Colour decomposition techniques for scattering amplitudes were introduced in [42] for
open string theory computations. Although the colour gauge group of QCD is SU(3)
the colour structure can be readily generalised to the group SU(N.). We define the Lie
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Figure 2.1.1: Yang-Mills Feynman rules

algebra su(N,) of the gauge group as an algebra with the following bilinear operation
(7%, T% = iv/2fc T a,b,c=1...N?—1 (2.1.1)

where the T are called the generators of the algebra and, for su(N,), are represented
by traceless hermitian N, x N, matrices. In a non abelian gauge theory and specifically
in QCD, the Feynman rules for the pure gauge vertices are expressed in terms of the
structure constants fy. (fig. 2.1.1), while the quark-gauge-anti-quark interactions are in
terms of the generators. This is due to the fact that the generators have three separate
indices (T“)% for the group, the fundamental and the anti-fundamental. Our aim is to
homogenise the Feynman rules by transitioning from the structure constant basis, to
the smaller generator basis. To do this we normalise the generators Tr (T°T%) = §°°,
and combine this with (2.1.1)

V2 fab — Ty (T“TbTC) —Tr (T“TCT”) (21.2)

As can be seen from (fig. 2.1.2) this has the effect of turning every pure colour vertex
into an internal fermionic loop. Thus for multi gluonic amplitudes the colour factors
are products of traces. If there are external fermions present then the amplitude will
contain strings of generators with fundamental indices (7% ... T%™ ){ . For diagrams with
internal gluon lines there will be terms of the form Tr (... 7%...) Tr (... T*...). We may
treat these terms by using the Fierz identity

(T‘L)J1 (TC”)]2 = 617126521 - —651161]22 (2.1.3)
In terms of the diagram this splits the colour factor of two fermionic lines that are joined

by an internal gluon. To prove the above identity we augment the SU(N,) with a U(1)
generator corresponding to a photon. Note that the new generator is proportional to
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Figure 2.1.2: Colour decomposition

the identity (7% (1>)g = \}55 and thus does not couple to the gluons or alternatively
feev) = 0. Taking these generators together they form a basis for all hermitian N, x N,

matrices. A canonical basis is given by [43]
(e7),, =010] (6,5, kl=1...N.) (2.1.4)

For which we can write a positive definite inner product that implies the completeness
relation
Tr[e" ()] = kst — (TA) (TA)” — 572571 (2.15)

1 12

Where A = 1...N2. Moving the U(1) generators to the right hand side of (2.1.5) we
recover (2.1.3). After applying all of the above identities to the colour factors of the n-
gluon tree amplitude we find that the 1/N, terms drop out and we can write its colour
decomposition

Aree({ki, Myai}) = g2 Y T (T .. T%m) Alree (0(1A1),-.-,o(nk")) (2.1.6)
oc€Sn/Zn

Here the k; denote the gluon momenta and ); their helicities. Due to the properties of
the trace, o must belong to the coset of all cyclically independent permutations S,/ Z,,.
This is in line with the intuition that rotating the amplitude should not affect its proper-
ties. The quantities A,, are known as partial amplitudes and given that they have a fixed
ordering among the momenta, are simpler than the full amplitude. This restricts the
possible singularity structure of the amplitude and it can only have poles in channels of
adjacent momenta

sij = (Pi + pig1 + .. +pj_1 +pj)? (2.17)

A similar procedure is applied to loop amplitudes and up to first order we have single
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and double trace terms

AP (kg Nyaid) = g S {NcTr(Tam...T%W)Aml (0(1)‘1),...,0(71)‘”)>
0cESK ) Zn

[5]+1
+ 3 T (T L TG 0) Tr (T%0 .. T%0) Ay <0(1>‘1),...,0(n)‘")>}
(2.1.8)

Where the brackets |-] in the limit denote the floor of the enclosed quantity and the
A, can be constructed from permutations of A,.;. In calculating the cross section we
need to square the amplitude and average over all the colours, which produces factors
of N.. From (2.1.8) we can see that the dominant powers of N, will come from gluing
amplitudes with the same ordering of the colour indices. Thus in the large N, limit only

planar graphs will contribute to the cross section.

2.1.2 Spinor Helicity Formalism

As mentioned previously when treating spin we can take helicity as a convenient basis
for particles in the ultra-relativistic limit. Fermion lines conserve helicity whereas gauge
bosons do not. The complexity of the amplitudes can be linked to the degree of helicity
violation (fig. 2.1.3), with the simplest amplitudes having the maximal degree (MHV) and
the next simplest being next-to-MHV (NMHV) etc. Fortunately we can make use of the
parity symmetry (2.1.23) to relate the amplitudes such that we only have | % | independent
helicity configurations to consider. Similarly to the colour ordering case we must re-
express our amplitude in terms of quantities with the correct indices. To do so we will

have to consider complexified four dimensional Minkowski space Mc.

ds® = nabda:adxb 2% e C? (2.1.9)

Note that signature has no meaning in M as that will change depending on what subset
of C* we restrict ourselves to. Thus we can view complexified Minkowski space as an
analytic continuation of all flat spacetimes. Although we are ultimately interested in
real spacetimes it can be extremely useful to express scattering amplitudes in terms of
complex spinors and twistors.

Amomentum vector on M transforms in the (3, 3) representation of SL(2,C) x SL(2, C).

This is because the Lie algebra of the spin group so(4, C) of complexified spacetime is

isomorphic to s((2,C) x sl(2,C). Thus we can decompose a spacetime index into two
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Figure 2.1.3: Helicity classification of amplitudes based on multiplicity. Amplitudes with
massless particles and with less than two helicities that are distinct from the rest will
vanish

conjugate spinor indices of opposite chirality by using the Pauli matrices aﬁd = (I,5),

: 01 : 0 — : 10
o = ( ) O) oy = ( Ol> 03" = (0 1) (2.110)
Z J—

The map to the spinor representation and its inverse is given by

0,3 1_ 2

: p +p° p —w 1 _

P = pto® = . p" = = Tr(c"p) (2.1.11)
1 <p1 +ip? P — p3) 2

where 63"" = (I, —&). Note that this map may be easily generalised to any number of
indices

ooy TOABBT- (2.112)
From (2.1.11) we can see that the norm of the momentum vector is given by the determi-
nant of the corresponding spinor representation
,uzx_l —U =V ok [36_1 e e BB_dt (o6 (2113)
NP = P TaaT5s0" P = Seapeapp™ P = det(p™) 1

Where e,5 = —£°” is the Levi-Civita tensor and in the second equality we used another
formulation of the completeness relation (2.1.5). For massless particles the right hand
side of (2.1.13) vanishes and the corresponding matrix is singular. Consequently the null

on-shell momenta can be expressed in terms of two spinors of opposite chirality.
P = NN = [p)[p|* (2.1.14)

However unlike the usual fermionic spinors which anti-commute these spinors are not
Grassmann valued. We use the Levi-Civita tensor to raise and lower indices as well as
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contract spinors.

P)a = cas(Pl” [l = e40p)”

cap A = (if) %BX?‘&@ = [i]] (2.1.15)

We can easily see that the helicity spinors satisfy the massless Weyl equation
P*P)a =0 [plap®® =0 (2.116)

Where we have used the anti-symmetry of the spinor contraction (ij) = —(ji). However
the helicity spinors for a given momentum are not unique and (2.1.14) will be invariant
under the following transformations

S L N I A=A O (2.117)

Thus we can see that the complex null momenta can be described by a cone over CP* x
CP'. For real momenta the two spinors are related by complex conjugation and are thus
forced to transform under the little group SO(2) ~ U(1) restricting ¢ to a phase

¢ORE — (e*%a)* (2.118)

And in this case we can give an explicit realisation

1 0 4 3 . 1 0 4 3
A= pl ?2 No= pl ?92 (2.1.19)
VP +pP \p +ip V' +pP \p —ip
Next we note two important identities. The first is the Schouten identity which comes

from the fact that only two spinors are required to form a basis for C?
(12)(3a) + (23)(1a) + (31)(2a) = 0 (2.1.20)

Where )\, is arbitrary and a similar identity holds for the A. The second identity is a
re-expression of the momentum conservation condition for amplitudes

Sppt=0 = Y (ai)it] =0 (2.1.21)
=1

i=1
It would be convenient if the amplitudes we consider did not care about whether we
swapped an incoming particle for an outgoing one (crossing -symmetry). Thus we use

the convention of taking all particles as outgoing and take the parity conjugate quantum

numbers of the incoming particles when writing down the amplitude.
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The spinor helicity formalism will prove to be a very natural language in which the am-
plitude can take a surprisingly simplified form. Intuitively this comes from the converse
of (2.114), i.e. by choosing the spinors X and A we automatically construct the null sub-
space of the kinematics. Thus by using these variables we avoid having to artificially
impose the massless on-shell conditions upon our amplitudes. In fact determining the
most efficient variables in which to express our on-shell kinematics has been a critical

source of progress in investigating the structure of scattering amplitudes.

Here we give some general properties of the colour ordered partial amplitudes that im-

pose powerful constraints and provide simplifications.

Cyclicity:
A(L,2,...,n)=A(n,1,...,n—1) (2.1.22)

This is a simple consequence of the cyclicity of the trace, and as already stated leads to

a simpler analytical structure.

Parity:

A1,2,...,n) = A(1,2,...,R) (2.1.23)

Where we have inverted the helicity of all the legs to find the real amplitude invariant.
This demonstrates that the positive and negative helicities are conjugate labels as evi-

denced by the spinor-helicity formalism.

Charge conjugation:
A(14,24,3...,n) = —A(15,24,3...,n) (2.1.24)

Where we have exchanged the helicity of a quark line. It can be seen from the Feynamn

rules that the amplitudes are equivalent up to a minus sign.

Reflection:
ATe(1,2,.n) = (=1)"A"(n,n — 1,...,1) (2.1.25)

This is due to n-point amplitudes having n + 2L — 2 three-point vertices, which are an-
tisymmetric under reflection. For quarks this holds only at tree level.

Photon Decoupling:
> ATe(1,0(2,3,...,m) =0 (2.1.26)

OELn—1

This can seen by putting a U(1) generator into (2.1.6) and collecting terms with equal



14 Chapter 2. Overview

colour factors. Since the photon doesn't couple to the gluon the amplitude must vanish
and we recover (2.1.26). At loop level this relates planar and non-planar partial ampli-
tudes [44]

Collinear limit:
L
A, (n—1)" )= Y S A a, L ksplit ), ((n— 1)1 nhn) (2127)

=0 h

Where L is the number of loops and we take the adjacent momenta of the n and (n — 1)
particle to be collinear. The [-loop splitting amplitudes are universal functions of the
helicities of the collinear particles and the momentum £ of the intermediate parton.

Soft limit:

tree 1+ <7’L2> tree
Alree(q ,2,...,n)—>7<n1><12>14 (2,...,n) (2.1.28)

Where we take the first momentum as soft. Finally, not only are partial amplitudes sim-
pler analytically but they are individually gauge invariant, which means that we may

study them as seperate quantities.

2.1.3 Athree-point example

As an illustration of the techniques discussed so far we will use the little group scaling to
determine a three gluon amplitude. First we note that the amplitude transforms under
the scaling (2.1.17)

An(oo {tidi t7 N hiyy ) = 672 AL g A i), ) (2.1.29)

Apriori the three point amplitude A3 (1", 22, 3"3) could depend on spinors of both chi-
ralities. However by choosing both a,b = 3 in the conservation of momentum identity

(2.1.21), we can infer that one of the following conditions must be true
)\3 XX )\2 XX /\1 or 5\3 XX 5\2 XX Xl (2.1.30)

Thus for three-point kinematics either all square or all angle bracket contractions must
vanish, and we can express the amplitude solely in terms of one or the other. Note that
this is only possible if we take the momenta as complex. We choose to work with angle

brackets and proceed by making an ansatz

Az(1M12h2 3h3) — ¢(12)m12(13)713(23)723 (2.1.31)
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By considering the transformation of the spinors under scalings we obtain a linear sys-

tem of equations —2h; = 712 + r13 etc. which can be easily solved to find
Az(101 202 3h3) = ¢(12)hs=h2=h1(13)h2=hi=hs (93)h1—hs—h> (2.1.32)

Similar to the scaling dimension of a CFT, scaling under the little group has been used to
completely fix the three particle amplitude. We could have proceded similarly with the
square brackets to find two possible solutions for the MHV 3-gluon tree amplitude
12)3
o g <1<3><>23)
A3(91,92,95) = (2.1.33)
7 [13][23]
g [12]3
However by dimensional analysis the square bracket amplitude would have had to come
from a non-local Lagrangian (assuming a Yang-Mills like dynamic term), and we can dis-
regard it. An alternate way of fixing the 3-particle amplitude is by using the helicity

operator
- 1., 0 174 O

hi = —5)\?@ + §X?6T? (2.1.34)
For which the amplitude is an eigenfunction h;A = h;.A and the spinors have helicity +3.
Despite their simplicity the three point amplitude are quite important, they are in a sense
a fundamental building block. As was shown by BCFW [14,15], all tree-level amplitudes
at arbitrary helicity can be constructed by recursively gluing the three-point amplitudes
together. We shall review this process for the supersymmetric case in Section (2.2.2).
One may reasonably think that the simple form of (2.1.33) is mainly due to the small
number of particles under consideration. It was found early on however [1] and later
proved in [45] as well as BCFW that the MHV tree-level amplitudes have a remarkably
simple all-point structure.
(ig)*

m (2.1.35)

An(coim, g, ) =
The degree of simplicity becomes even more striking if we consider the number of Feyn-
man diagrams (for a theory with tri-valent and quad-valent vertices) that contribute to
this final form [46]

n 2 3 4 5 6 7
no.diagrams | 1 3 10 38 154 654

The reason why we can express the sum of so many diagrams in a single line is easy to
guess. When using the path integral formulation we take the momenta to be off-shell
and we spoil the gauge invariance by expanding the generating function in terms of the
interaction vertices. The simple form of the Parke-Taylor amplitude (2.1.35) engendered
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the hope that perhaps these difficult calculations could be avoided.Thus it served as the
initial inspiration for the search of efficient on-shell and gauge independent methods
that has led to the field of modern scattering amplitudes.

2.2 Amplitudes in A = 4 Super Yang-Mills

So far we have been discussing amplitudes in the context of Yang-Mills or QCD in the
hyper-relativistic limit. These theories have proven themselves to be realistic and thus
form an integral part of the standard model. The question is then why should we wish
to study a theory that is manifestly unrealistic. Despite the simplifications encountered
so far at tree level, calculations in QCD remain notoriously complex. In situations like
these we turn to toy models for insight. These should be simple enough to solve, but
complex enough to learn something about the original problem and ideally should be
realistic in some approximation. The theory that surpasses all other in these respects is
N = 4 SYM. It is a maximally supersymmetric conformal theory in 4 dimensions that
possesses an infinite Yangian symmetry in the planar limit and is believed to be inte-
grable. Physically the theory can be thought of as a supersymmetric analogue of QCD
and for purely gluonic amplitudes at tree level the matter content drops out and both
theories produce exactly the same result. Furthermore it is thought that planar N' = 4
SYM gives the maximally transcendental part of QCD. It is closely linked to the AdS/CFT
correspondence and string theory allowing for results at strong coupling and then ex-
tended to finite coupling via integrability. Lastly due to its rich mathematical structure
it is an effective testing ground for novel techniques and has significant overlap with
purely mathematical topics from number theory to algebraic topology. In the following
we shall rely on the references [41,47,48].

2.2.1 General properties

The 4 dimensional A/ = 4 SYM is in fact a reduction of N' = 1 SYM in 10 dimensions,
which is in turn a low energy limit of type [ superstring theory. Its action is given in terms
of a real vector and a Majorana-Weyl spinor in the adjoint representation.

1 _
Sn—1 = / dx Tr{ = 1w " + i\IfF“DM\If} (2.2.0)

Where I'* are part of the 10d Clifford algebra, D,, = 9, — igAZd is the usual covariant
derivative and F*¥ is the associated curvature. The reduction of the action to 4 dimen-

5 ...,z" directions and discarding massive

sions is performed by compactifying the x4, z
modes, The vector then is divided into one 4 dimensional gauge potential plus 6 scalars.

The spinor is also divided into four Weyl spinors thus extending the supersymmetry to
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N = 4 and ultimately giving the action

Sn=4 = ZL d*z Tr{ - EFWFW — (Dygap)(D"¢*P) — %[@137 ocpl[¢??, o7
9y m

i, D s — 2al0" 0] - Shaloas, 07} 222)

All the fields in (2.2.2) remain in the adjoint since the reduction from (2.2.1) does not
affect the gauge indices. The scalar fields ¢7 are part of the totally antisymmetric rep-
resentation of the R-Symmetry group SU (4), which is isomorphic to the fundamental of
SO(6) (a subgroup of the full SO(1,9) of the 10d action). An immediate feature of (2.2.2)
is that there are only two free parameters, namely the coupling and the gauge group
which we shall take to be SU(N) in the planar limit. Less evident features are that it
has a super conformal symmetry PSU (2, 2|4) which does not develop anomalies upon
quantisation, and the coupling does not run. Consequently scattering amplitudes are
UV finite, however they still suffer from IR divergences. If we introduce the Grassmann

variables n for A = 1,..., 4 and define the partial derivatives
0 ~ 0 0

Then the generators of psu(2,2|4) are given by, beginning with the standard generators

of the super Poincaré sub-algebra
pad — )\aj\o'z qu — AaT]A Qﬁ — ;\aaA
-~ o~ 1
Mag = )\(aaﬁ) mdﬁ' = )\(aaﬁ) ’I“é = 77‘483 — 15;77080 (2.2.4)
The special conformal generators are
SaA = 0n04 §aA = T]Aéd koo = 8045@ (2.2.5)
Finally the dilatation and central charge generators
1 «a Y& Q 1 «a Y& q A
d =3 |\"00+ X305 + 1 c:1—|—§[)\ Bo — A28 — 17404 (2.2.6)

There are 8 bosonic and 8 fermionic on-shell degrees of freedom that are part of a single

PCT self-conjugate multiplet, which can be organised into a single on-shell superfield

1 1 1
D(n) =Gy + 04+ gnAnB Sap + gnAnB nCeapcpAl + @(n)”‘G- (2.2.7)

Where G are the gluon states of opposite helicity, S4p are the six scalars and A4, A”
are the gluinos. We assign a helicity of +3 to n and write the supersymmetric analogue
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of the helicity generator (2.1.34)

| o~
b= 5 [-A%0 + X305 + nAaA] —1—¢ (2.2.8)
thus we see that the superfield has a helicity of one (h® = ®). Gien that N’ = 4 SYM is

PCT self-conjugate we can combine all n-particle amplitudes into one super-amplitude

n—4
A@1,... @) = > AV MV (I X hi}) (2.2.9)

k=0
Where we have expanded with respect to the degree of helicity violation. Because the
superfield (2.2.7) is just a polynomial expansion in the Grassmann variables with the

states as coefficients, we can select a particular amplitude by differentiation (or inte-

gration) with respect to 7, e.g:

9 9 9 0 Sy
Ay (812,934,370 = == =5 | [ === on4 e O
( 12,034 n ) <8n% 877%) <3?73 8773) (,};[1 87734) Al |

7:=0
(2.2.10)

Note that the top limit is not the maximal n, which is a consequence of the fact that all
the amplitudes with n or (n — 1) positive helicities vanish. To see this we note that the
amplitude is annihilated by the sum of the super-symmetry generators over all particles
(2.24)-(2.2.6) i.e.

Q" =>" Ay - Q"' A, =0
=1
Q=" X0, — Q% A, =0
=1
— : (2.2.11)

Where the ellipses denote sums over particles of the remaining super-symmetry gen-

erators. These conditions are enough to constrain the general form of the amplitude

0 (p)5®(Q)

An({Xi, A, hi}) = (12)(23) ... (nl)

Where we have adopted the convention of extracting an overall factor of the MHV am-
plitude, which carries all the helicity information. thus leaving P,, with vanishing helicity
for every particle. The first delta function imposes the usual conservation of momen-
tum and the second is the analogous conservation of supermomentum. For Grassmann
variables the delta function is simply

d(n)=mn (2.2.13)
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and we can write §(*)(Q) as a polynomial in the 7;

1 4 1 4 n
09(@Q) = 55 [T @@a = 5 [T D Gu'ng' (2.2.14)
A=1

A=1ij=1

Because the first term of the function P, is 1 by construction we see how the conserva-
tion of supermomentum requires that the amplitude has a minimum Grassmann degree
of eight. Consequently, it must contain at least two pairs of legs along which helicity is
conserved. The absence of a §(Q) in (2.2.12) is due to our choice of representation for
the supersymmetry generators ¢4 as a differential operator, which breaks the symmetry
between @ and Q However ¢ (Q) is not necessary to ensure the supersymmetry con-
straints (2.2.11) are obeyed. This is due to the fact that if we have overall momentum
conservation then

Q*6®(Q) =0 (2.2.15)

Of course if we were to consider the parity conjugated amplitude then §(Q) would be
needed to impose supermomentum conservation. Although QCD does not posses the
supersymetry described in this section the pure gluon part of ' = 4 SYM is identical to
that of QCD. Because the MHV condition still holds if we restrict ourselves to amplitudes
containing only gluons, we can expect the same vanishing amplitudes in QCD. This is

indeed the case and is indicative of a hidden symmetry at tree level.

2.2.2 BCFW and tree amplitudes

As mentioned in the section on the three-point amplitude, the entire tree-level structure
can be determined by the use of the BCFW recursion relations. Although the general
framework can be applied to higher dimensions and massive theories without super-
symmetry we shall focus on the setting relevant to A/ = 4 SYM. The essential concept of
BCFW is taking complex momenta and studying the effect of deforming them for two
of the particles.

L= D1 =1 — 20 Dn = Pn = An(An + 201) (2.2.16)

Note that this does not spoil the null momentum condition p? = p3 = 0 and momen-
tum conservation p; + p, = p1 + p2. However if we wish to maintain supermomentum

conservation then we must deform the Grassmann variables as well

M =M =01 N — T =0n+2m (2.2.17)

Thus we establish a one parameter deformation of the amplitude A4,,(z). The tree am-
plitudes are rational functions of the spinors and we can only have simple poles in the
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Figure 2.2.1: Maximal z scaling of tree level scattering amplitude with deformed 1 and 7
momenta

parameter z of the form

1 1 1

g 5 = (2.2.18)
P2 (pr+pat+...+pim1)? PP —z(n|PBi|l]

If we introduce a pole at z = 0 then the non-shifted amplitude will be contained in the

following contour integral
74«%(2) =An+ ) Res <A"(Z), Zpl.> = Res (A"(z), oo> (2.2.19)
z - z z

Where zp, is the pole at which P? goes on shell.

P?
= 2.2.20
= LA (2220

At these poles the amplitude factorises into two lower point pieces.

. 1 1 /s o
i () ~ <<n|a|1]> XS:AL (1(25.), i, P(ZPZ.))
x A3, (P(;;pi),i, e, ﬁ(zPi)) (2.2.21)

Where we sum over the helicity s of all possible intermediate states. All that is left to
consider is the behaviour of the amplitude at infinity, fortunately in N' = 4 SYM the
residue at infinity vanishes [49]. Without going into too much detail we can motivate
this by noticing from the Feynman rules that each three-point vertex is O(z), each four-

point vertex is O(z°) and, as we have seen, each internal propagator goes like O(z71)
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as z — oo (figure 2.2.1). Given that there is always one more vertex than propagators
we conclude that the dominant amplitudes are O(z). Next we include the effects of the

momentum dependent polarization vectors

133

€4 = 5\1/// 1 € _ A P
A=Y nA =
(1) = (rop)
A1 Anfi 1
a_ =2 tn— = 2B 2 (2.2.22)
[14] [hp) =z

where y, i are arbitrary spinors afforded by gauge symmetry. Ostensibly the results are
not too encouraging and depending on the helicities of the shifted momenta the domi-
nant behaviour as z — oo ranges from O(z71) to O(z?). However in [50] the background
field method was used to show that there are enhanced spin symmetries that further
suppress the behaviour of the (++) and (——) cases to O(z~!) rather than O(z).

A(+—) ~ % A(44) ~ % A=)~ b Ay o 28 (22.23)

z

Finally we can take advantage of supersymmetry to set two of the Grassmann variables to
zero and relate the z- dependence of the superamplitude to the (——) component. Thus
for N' = 4 there is no residue at infinity and we can freely relate scattering amplitudes
to products of amplitudes with fewer particles. Consequently it is possible to solve the

recursion relations and write an expression for the entire tree-level S-matrix [51]

d4 P
ANPMHY _ IgPAyHV(ZP)Aan{\/[HV(ZP)

M|

m=0 1

d*ng  m .
s ANV () AN MY (o) (2.2.24)
7

Note that due to there being a single superfield the sum of the states has been replaced
by an integral over the Grassmann variables. Moreover we can write down closed form
expressions for the amplitudes. For example we give the PYMHV term in (2.2.12)

PYMHV = N R (2.2.25)
2<s<t<n—1

Where the R,,.s; are descriptively called R-invariants and first appeared in [52]. They

may be expressed in the following way

(55 = 1)(tt — 1) (nlanszstlfim) + (nlznezes|92m))

Jrgt<n|xnsxst|t><n|xns:cst\t — ) (n|xpxs|s) (n]|zpiees|s — 1)

Rn:st - (2226)
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Where we define the change of variables
j—1
k=i
7j—1
054 = qp! (2.2.27)
k=i

The higher N\MHV amplitudes can be similarly expressed in terms of nested sums of R-
invariants generalised to many pairs of labels {s;,¢;}. Note that in expressing the NMHV

amplitude we have introduced spurious non-local poles of the type.

1

(2.2.28)
(n|Tpsst|t)

Which continue to persist in other helicity configurations. Of course these cancel in
the full amplitude as the theory only has local poles, however their appearance is quite
natural due to the extra symmetries of the amplitudes described in the next section.

2.2.3 Dual coordinates and symmetries

We begin this section by establishing the dual conformal symmetry, which forms a unique
and central feature of scattering amplitudes in N' = 4 SYM. Note that we can invert the

change of variables (2.2.27) and define the dual coordinates
PR =affy = aft ol =000 =00 -0 (2229)

The null-momentum conditions require that adjacent {z, #} are null separated. The dual
coordinates are essentially telescopic solutions to the total (super)momentum condi-
tions. Thus the delta functions in (2.2.12) become

SO ()®(Q) = 6@ (wpi1 — 21)6® (Ops1 — 01) (2.2.30)

Therefore if we make the identification 1 ~ x, 41 (61 ~ 6,11) then we can trivialise the
(super)momentum conditions. The identification effectively arranges the dual coordi-
nates into the vertices of a polygon with light-like edges (figure 2.2.2). However this is not
the entire extent of their usefulness. It is easy to see that Poincaré transformations of the
dual coordinates leave the amplitudes invariant and we can treat them as honest coordi-
nates for a dual copy of spacetime. They also furnish their own copy of superconformal

symmetry independent from that of the Lagrangian. For example under inversion I:

[iafd (a9t =2

I:084 — (09471 = (2716;)%4 (2.2.31)
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P2 x3 p3

Pn | D5

Figure 2.2.2: Dual Coordinates

The dual coordinates are linearly related to the spinor-helicity variables via (2.2.29) and
thus they must also transform under the inversion
ad

(zi(wi — xj)a;)*
2,2
it

= (; 'y ) (2.2.32)

T;T

Note that the null separation is not spoiled by inversion and defines an automorphism
in the space of polygons with light-like edges. By setting j = ¢ + 1 we can infer

XY = (27 ) A = (@ )" (2.2.33)

However this is not unique and from (2.2.29) we have

(i — 2i+1)* X0 =0 = 2FN, =280\, (2.2.34)

From this we can determine that spinor contractions behave like

.. goml =1 1141
(114 1) — (i|z; 1ziJr11|z+1>:< . ) (2.2.35)

)

Thus we if we take the inversion weight of the delta function into account can see that

the MHV tree amplitude is covariant under the dual conformal symmetry

AMHV 2
n

— (22, 22)AMHV (2.2.36)

For NMHV we note that the delta function is also covariant

(5(4)(<n|xnsx8t|9ﬁ1> + <n|$nt$t8|9:%>) = 5(4)(<n|$ns$st|9£4> + <n|xntxt8|9;4> + $§t<n9£))
(2.2.37)
Together with the previous transformations it is easy to determine that the R-invariants
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have zero weight under inversion and thus are dual-conformal invariant as well. The ex-
tension to dual superconformal symmetry is not as straightforward, since it leaves R,,.5
invariant but not its generalisations that appear beyond NMHV. These however mani-
fest themselves only in nested sums which are in combination dual super-conformally
invariant [53] as one would expect from the BCFW expansion (2.2.24). Thus we see that

the dual symmetry extends to all tree level amplitudes.

The dual conformal generator is given by

Koo = Y [0 00.0,55 + s 0i50ip.a + T NiaOig + 20,1 o Nia0y5 + Nialih140ia]  (2.2.38)
i

this differs from the expected form of the generator due to the restriction that it must
commute with the conditions (2.2.29). The rest of the generators for psu(2,2|4) can be
obtained in a similar fashion [52]. Comparing with (2.2.5) we see that the symmetries are
distinctly generated, however the two dilatation operators coincide up to a minus sign
due to the linear relationship between the dual coordinates and the momenta. Further-
more if we re-express all the generators from the original variables {\, \,} by using
(2.2.27) then we find that P and Q become trivial, due to delta functions, while S, Q co-

incide with g ,5 respectively.

k P

Figure 2.2.3: Overlapping of the two superconformal symmetries

Summuarily the dual superconformal symmetry generators have the following action on

the superamplitude

DA, =nA, CAy=nA, KA, == af%A, S*A,=-) 0:A4, (2239

7

While all the other generators annihilate the amplitude. Note that we can simply re-
define the generators in (2.2.39) so that they also act trivially on the amplitude. Re-
markably both symmetries can be elegantly combined into a single Yangian symme-
try Y (psu(2,2[4)). The Yangian Y (g) of a simple Lie algebra was introduced by Drin-
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feld [54, 55] and is the Hopf algebra of the graded deformation of the loop-algebra. Its
generators are J{" where n € N denotes the level. However it is not necessary to con-

) and Jél) which obey the commutation

sider all generators as Y(g) is spanned by g0
relations

70, 70 = 600 (O g D] = g g0 (2.2.40)

Given that our generators have a Grassmann degree we must use the graded general
commutator
[01, 02] = 0109 — (—1)‘01”02'0201 (2.2.41)

The higher order generators can be constructed from commutators of J{" which are in
turn constrained by the Serre relations

[

a

5 IO = O D IO = g0, 30,00 2242)
Where gac e/ = & .5, 7 £k and {JCSO), o Jj(co)} is the totally symmetric sum over
products of the three terms. For completeness we also quote the action of the coproduct
on the generators which is part of the Hopf algebra structure.

AN =JO0 914+10J0 AU =D 21+10J0 + % £ea® @ g0 (2.2.43)

This non-trivial coaction is indicative that the symmetries act non-locally on multi-

particle states. We may relate the g0 generators to the standard conformal algebra

of psu(2,2|4)

IO =350 (2.2.44)
k=1
where the j ,i? are single particle generators. It turns out that the J(!) generators can be
explicitly given by
T = ST 950 (2.2.45)
1<k<k'<n

Note that the level one generators are manifestly non local. For (2.2.45) to hold in the
gluon supermultiplet representation of the Yangian that is of interest for N' = 4 SYM,
it is sufficient to show that dual superconformal symmetry implies that the level one
generators annihilate the amplitude. This was demonstrated in [5] by identifying the
level one Yangian generator ¢()4 constructed via (2.2.45) and the dual superconformal
symmetry generator S, We may obtain all other level one generators from ¢()4 via the
commutation relations (2.2.40), thus establishing a new infinite dimensional algebra that

annihilates the tree amplitude
YA =0y €Y (psu(2,2]4)) (2.2.46)

Given that the original context of the Yangian are integrable 2-dimensional theories or
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discrete spin chain models, its appearance in N' = 4 SYM is quite notable. Indeed in
the planar limit the single trace operators that appear in the colour decomposed ampli-
tude can be mapped to an integrable spin chain, with the dilatation operator acting as
the Hamiltonian. Integrability is also expected at strong coupling as SYM is related to
the AdSs sigma model which is classically integrable [56]. Beyond tree level the Yangian
symmetry described here is broken even for infrared finite quantities. However it is pos-
sible to restore exactness by incorporating the anomalies into an overall symmetry [57].
Ultimately the Yangian is a powerful non-local symmetry that can be used to completely
determine the S-matrix. Finally we note that its generators are most elegantly expressed

in terms of yet another set of variables called momentum twistors Z* = (A&, ¢, x#) [58]
JOA, =y zA 0 (2247)
— " 0ZF

0 0 .
JOAg = 3 (—1)° [Z"Aaz.czjcazﬁ — (i,5) (2.2.48)
i<j 7 7

Where both expressions are understood to have their supertrace removed. In contrast
to (2.2.44) and (2.2.45) the roles of the generators are reversed and the dual-conformal
symmetry generators are identified with the level-zero generators of the Yangian. Fur-
thermore we note that these Yangian generators annihilate only the MHV normalised
amplitudes

JP, =JYP, =0 (2.2.49)

For completeness we add that there are ordinary twistor variables for which the Yangian
generators are not reversed, take a similar form and annihilate the full amplitude. How-
ever in the next section we shall focus on momentum twistor variables as not only do
they simplify the Yangian but the amplitude in general.

2.24 Momentum Twistors

Following [59] we take twistors space PT as an open subset of the complex projective
space CP?. Exactly which subset depends on which slice of complexified Minkowski

space M we want. We may describe twistors via the homogenoeous coordinates
ZA = (zY, 2%, 73,7 #(0,0,0,0) ZA~rz4 rec* (2.2.50)

They transform in the fundamental of the complexified conformal group PGL(4,C) =
SL(4,C)/Z4 and can be divided into two Weyl spinors of opposite chirality.

Z4 = (Ao, 1) (2.2.51)
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By doing so we can establish a connection between twistor space and space-time via the
incidence relation
pe = )\, (2.2.52)

Which can be represented as a double fibration of the projective spinor bundle PS

PS

T2 1

PT Mc

Where PS 2 M¢ x CP! and has coordinates (z%%, A3). The projection 7 just isolates
the spacetime point 71 : (2%, A\5) — 2°% and the second projection implements the
incidence relation m : (2% \g) — (2%%“Xa, Ag). These relations are quite central in
the formulation of gauge theories in twistor space. Their usefulness stems from the
fact that they relate local points in space-time to a non-local line CP! ¢ CP3. The line
is isomorphic to the Riemann sphere and any linear holomorphic embedding of CP!
in twistor space can be shown to be of the form (2.2.52). Let o, = (09, 01) denote the
homogeneous coordinates of the Riemann sphere. Then we define the map (r%?, s2)

pae’

&

pd =1, Ay = s80, (2.2.53)

Naively the map has 8 components however we make use of SL(2,C) and projective

scaling to trivialise s¢, thus obtaining
pe =1, A, = 8o, (2.2.54)

Furthermore by setting r¢ = % we recover the incidence relation. Formulating gauge
theories in twistor space allows for solutions to zero rest-mass fields equations via the
Penrose transform. For our purposes however, they are a very convenient way to link the
dual coordinates and the helicity spinors such that both the null-momentum condition
and conservation of momentum are trivialised. To see this we consider the point in
twistor space Z as the intersection of two embeddings of the Riemann sphere which we
denote by X and X'.

XNX' =ZePT = p*=z"%)\, p*¥=2%, z,2/ €M (2.2.55)
If we simply subtract the two relations from each other we obtain
(x —2)*N\ =0 (2.2.56)

It is easy to see that this equation is solved exactly by the definition of the dual coordi-
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X/

Figure 2.2.4: Null separated points in space-time correspond to intersecting lines in
twistor space

nates
(z —2')2% = \O\& (2.2.57)

Thus if two points in M¢ are null separated then their corresponding lines in twistor
space intersect. If we do not restrict A* then (2.2.57) defines a two-plane in M¢ and
we see that non-locality extends to both sides of the correspondence. That is for every
point in space-time we have a corresponding line in twistor space and for every point
in twistor space we have a plane in space-time. Therefore if we wish to trivialise the
conditions on our kinematics then we necessarily have to consider non-local quantities.
Having established the correspondence then all that is required to completely determine
our kinematics is to choose an arbitrary set of {Z;} of rank n for which the embedding

maps are given by . .
_ AT = AL

p = 2.2.58
i (ii—1) (2.258)
We can use the twistors to neatly re-express Lorentz invariants
2 (i—1ij—1j)
2 — 2.2.59
YT T T — 1) (2:2.59)
where we define the SL(4,C) invariant Pliucker coordinates
(ijkl) =eapcp 220 Z{ ZP (2.2.60)
and the infinity twistor denoted by I is used to project out the helicity spinors
af 0
P = (50 0) = (Lij)=(ij) (2.2.61)

It is easy to recover the momenta from the twistor representation

N = (i +1apd 4 (= 1i+ Dpd + (00— 1), (2.2.62)
i G- 10+ 1) -




2.2. Amplitudes in N' = 4 Super Yang-Mills 29

It is worth mentioning that twistors, besides solving for the kinematical restrictions, are
also natural variables to describe conformal structures. If we define six homogeneous
coordinates on CP® organised in the anti-symmetric tensor representation X“?, then a

conformal structure on compactified complex space-time is given by the condition
eapcpXAPXOP =0 (2.2.63)
This condition can be solved by a skew tensor of rank two
X=2Z1NZy 71,75 €PT (2.2.64)
And the incidence relation is the trivial
XapZ{h =0 (2.2.65)

We can see that the bitwistor X4# encodes a point in space-time M¢ and reach our
previous definition of the incidence relation by writing

1.68..2 &

e xr

XAB _ (2 4 ﬂ) (2.2.66)
—Ta €ap

Note that twistor space is morally analogous to the spinor helicity formalism for null mo-
menta. Extending the twistor formalism to the supersymmetric case is straightforward
and we define the Grassmann incidence relation

Xt =64, (2.2.67)

Where x* transform in the fundamental of the SU(4) R-symmetry. We simply append
these variables to our previous construction and define super-momentum twistors

ZA = (Ao 1%, x ) (2.2.68)

Similar to (2.2.62) we can recover the original Grassmann variables from the ones defined
by the incidence relation
XD L= 1) F - 1)

A_
= (—1iy(ii+1) (2.269)

We have already seen how twistors simplify the form of the Yangian generators and we

can give a flavour of their effect on the amplitude by using them to write the R-invariants

6@ (x2(jklm) + cyclic)
(17 kl) (Gklm) (klmi)(lmij) (mijk)

[i, 4, k,1,m] = (2.2.70)

Where R,,.st = [n,s—1,s,t—1,t] are relevant for the NMHV amplitude. Given that (2.2.70)
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is constructed purely from SL(4,C) invariants, dual-conformal invariance is explicitly
manifest. Remarkably it is possible to use momentum twistors to construct R-invariants
by defining a Grassmannian contour integral [60, 61]

k n
_ 1 4/4 I
Bin = Grimen | [ s (E T Zi> (2.2.71)
r=1 =1

I'CcG(k,n

Where Ry, is a NNMHV n-particle invariant. The 77 are (k x n) complex homoge-
neous coordinates of the Grassmannian Gr(k, n) and the Z; are the momentum twistors
parametrising the kinematics. The measure is a k(n — k) top form

Dk(n—=k)

duE(12'--k)(23...k+1)...(n1...k—1) (2.2.72)

The brackets in the denominator represent the & x k& minors made from the columns
of T]. Besides Yangian invariants the contour integral (2.2.71) also produces identities

among them, at 6-points for example
[12345] — [23456] + [34561] — [45612] + [56123] — [61234] = 0 (2.2.73)

Which ensures that the 6-point NMHV amplitude is cyclically symmetric. Finally we
note that these Grassmannian contour integrals are the starting point of the amplituhe-

dron program [19-21].

2.2.5 Wilson Loops and Scattering Amplitudes

In the following we shall be making frequent reference to the review [62]. One could
ask what is the physical origin of the dual symmetries discussed so far. The answer is
that there is a surprising duality between scattering amplitudes in N' = 4 SYM and a
polygonal Wilson loop with light like edges whose vertices are naturally parametrised
by the dual coordinates. This remarkable relationship was first noticed at strong cou-
pling [22, 23] where the AdS/CFT correspondence can be used to calculate scattering
amplitudes of open strings by considering a minimal surface ending on a null polygon
at the boundary. The two cases are linked by a T-duality where the dual superconformal
symmetry of the scattering amplitude is the T-dual of the standard superconformal sym-
metry of the Wilson loop and vice-versa. While the original statement was formulated
for strong interactions it turns out that the equivalence is independent of the coupling
and we can conjecture a perturbative relation [24, 25]
2
log (1 > alPl%HV({pi})) = log (1 > almnﬂm})) 10 a=L7 @27

l l
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Figure 2.2.5: Open strings scattering are T-dual to a minimal area in AdS

Where the right hand side is a sum over loop corrections to the Wilson loop expectation

W, = (P exp% dr it A,) (2.2.75)
The action used to evaluate the expectation is for ' = 4 SYM and the contour C,, is
the union of the contours C; given in terms of the dual coordinates z!' and the affine
parameters 7; € [0, 1]

Co=JC Ci={a"(n) =2l +n(al,, —2l) =2l — rpl'} (2.2.76)
=1

At lowest order in perturbation theory the Wilson loop expectation is given by
1
(W) =1+ 2(ig)QC’F/ dr [ dfit(1)i" (1) G (z(m) — 2(m)) + O(g*)  (2.2.77)
n C7L

Where Cr = (N? — 1)/(2N) is the fundamental quadratic Casimir of SU(N) and G,
is the gluon propagator. It is straightforward to evaluate the one loop expectation by
breaking it down in terms of a gluon propagator linking various edges. Thus the basic
integral to consider is

/dn/ dry (pi - py)T(L = &) (i) (2.2.78)

—xj — Tip; + Tjp;)? + ie)le

The case where the gluon is emitted and absorbed on the same edge vanishes as I;;
p? = 0. If we consider adjacent edges however, we have a divergent contribution from
the discontinuities at the cusp of the polygon. Thus they are called ultraviolet diver-

gences

Pz pz‘+1)r(1 - 6)(7W2)6 2 2 Er(l —€)
I dr; dr; = (—x;, ——= (2.2.79
i1 = / Ti / T+1 P T (=7 omp”) 503 ( )
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Figure 2.2.6: The three types of one-loop contribution to the Wilson loop expectation

Finally for all other edges we have a finite integral which, remarkably, can be evaluated

to give [25]

L. . . .
Lij = 3.2 [Liz(1 — gsjy1i-1) + Lia(1 — gsiy15-1) — Lia(1 — gsj4-1) — Lia(1 — gsi-1)]
(2.2.80)
where we have introduced the generalised Mandelstam invariant s;; = (p; + ... + p;)?

and
_ Sj+li-1 F Sit1-1 = Sji—1 = Sij-1 (2.2.81)

Sj+1i—1Si+1j—-1 — —S5ji—1Sij—1 -

The function Lis is the second order polylogarithm defined by the integral
# log(l—t
Lis(z) = _/ dt Og(t) (2.2.82)
0

For the simplest Wilson loop W, however, (2.2.80) simplifies to just a product of loga-
rithms 1

I{/gal =-3 [logz (;) 4 71—2} (2.2.83)

This is achieved by means of the identity

. . 1 1 2 7'('2
Lig(z) + Lia [ = ) + 3 log*(—2) + = 0 (2.2.84)
z

As we shall see such identities are ubiquitous in scattering amplitudes and will develop
methods for generating them. Now that we have evaluated all the integrals that can ap-
pear, it is straightforward to express the one-loop expectation value by simply summing
over all the edges linked by the gluon propagator
2
9°Cr
2 > L+ 0ol (2.2.85)

1<i<j<n

<Wn> =1-

Aswas mentioned earlier the left hand side of the correspondence (2.2.74) is IR divergent
while the right hand side has ultraviolet divergences arising from the discontinuities at
the cusps of the polygon. In order to make the duality precise we must first remove these
divergences by defining suitable finite quantities. We can easily see that at one-loop the



2.2. Amplitudes in N' = 4 Super Yang-Mills 33

finite and divergent parts are separable and, remarkably, this continues to all orders

PR
log(W, ZZ —a?;op?)ke Top |+ Falfaa) (2.2.86)
=1 L

Where F,, are finite functions independent of ;1 and the quantities réugp and F( ) are the
cusp and collinear anomalous dimensions respectively. We encountered the one loop
value of the former in (2.2.79) however due to integrability its value is known up to all
orders for planar SYM [63]. The latter also arises from integrals of the type I;;1; in the
limit where the gluon propagates parallel to one of the polygonal edges. We can extract
the desired finite part F;, by dividing out the divergent part, which universally factorises

into pieces dependent on only one Mandelstam invariant.

Wa({23;})
[H?:l W4({1’z2i+27 $?1+2})]

HYVE = log (2.2.87)

N

Having removed the divergences for the Wilson loop we can follow a similar procedure

for the amplitude and safely identify the two finite quantities
HVE = gA (2.2.88)

The weak coupling correspondence was first observed for four points at lowest order
in perturbation theory [24] and then generalised to n points [25]. Two loop calcula-
tions [64-68] further confirmed the validity of the duality, thus suggesting that this is a
coupling independent phenomenon. On the amplitude side explicit calculation of four
point amplitudes up to three loops led Bern, Dixon and Smirnov [7] to postulate a general

solution in terms of the one loop result
-1
FSDS(plv e :pm G) - FCusp(a)Jr’; Oop(plu e 7pm CL) (2289)

Explicitly at four points

1
Ff = Teusp(a) log? < ) + const. (2.2.90)

24

Which can be easily seen to match the Wilson loop result (2.2.83). The BDS anzatz was

also shown to hold at five points.

FPPS = Leusp(a Zlog( Li+2 > og (ZHHS> + const. (2.2.91)

22—1—3 z+2 i+4

Note that the entire coupling dependence is encapsulated in the cusp anomalous di-

mension. This is consistent with dual conformal symmetry, which acts at the level of
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the Lagrangian for the Wilson loop. We may write a Ward identity for the conformal
generator K* [65]

KMF” ) CUSP me+1 log ( ”+2 ) (2.2.92)
z 141

Thus the BDS ansatz is the solution to the conformal Ward identity at four and five points.
The natural question to ask is whether the BDS ansatz holds for arbitrary number of glu-
ons. Without doing the explicit calculations we could consider a Wilson loop corre-
sponding to an amplitude made of many gluons that alternate from positive to negative

energies.

Figure 2.2.7: Zigzag Wilson loop approaching the four sided polygon

As the number of gluons tends to infinity the expectation value approaches that of a
rectangular Wilson loop which can be calculated at strong coupling [23]

— 2.2.93
1T T ( )
Where A = g?N is the t Hooft coupling and 7'/ L denote the euclidean time and length in
one of the spatial directions of the Wilson loop, which are taken to be large and 7" > L.

We compare this result to the strong coupling, infinite gluon limit of the finite part BDS

ansatz (2.2.89)

AT
lim FBDS — [L (2.2.94)

The discrepancy arises because there is an ambiguity in the solution to the conformal
Ward identity. Beyond five points (2.2.92) is only defined up to a function of conformal

cross-ratios

wijp = —— (2.2.95)

Thus we must correct the BDS solution by adding a conformally invariant remainder
function R,,
F, = F?™ 4 R, ({u;}) (2.2.96)

In order to calculate the number of independent cross ratios we note that in D dimen-
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sions the conformal group reduces the number of independent variables to

(D+2)(D+1)

5 (2.2.97)

Dn —

Which in four dimensions makes (4n — 15) independent cross ratios, however given that
our points are arranged along a null polygon we must subtract the number of edges to
obtain (3n—15). Thus we see that the hexagon is the first quantity with non trivial cross-
ratio dependence and the BDS ansatz is no longer sufficient. The discussion so far has
only been concerned with the duality between Wilson loops and MHV amplitudes. At
strong coupling the minimal surface in AdS provides the leading part of all amplitudes
and the helicity structure is secondary. At weak coupling however we require an appro-
priate supersymmetrisation of the Wilson loop [69] in order to describe the much richer

non-MHYV structure of the amplitudes.

2.2.6 Wilson loop OPE

Perturbative corrections to the remainder function are the principal objects of study
throughout much of this thesis. However at times we shall draw inspiration from a non-
perturbative Wilson loop approach that is heuristically linked to the OPE of conformal
field theory. The analogue of the sum over fields will be given by an expansion in terms
of the excitations of a flux tube that ends on two light-like lines. These states have ap-
peared as excitations of the infinite spin limit of the GKP string [70] which can be com-
puted exactly using integrabilty. The first step is to isolate a reference square by placing
a couple of imaginary cuts across the Wilson loop linking non adjacent edges. In order
to perform the OPE we wish to expand the Wilson loop in terms of the states propa-
gating from the bottom edge of the square to the top. This turns out to be equivalent
to taking a collinear limit by using the symmetries associated to each individual square.
That is we may parametrise the states that propagate across the square by the quantum
numbers associated to a rank three subset of the SO(2,4) symmetry, which leaves the

square invariant.

In order to expose this subset let us choose a particular square and place it in the (29, 1)
plane with one vertex at the origin, two at past and future null infinity and the final one
at spacelike infinity (z! — oo with 2° fixed). Then in this configuration the symmetries of
the square are dilatations D, boosts in the (2%, 2!) plane My; and rotations in the trans-
verse (22, 2%) plane My3. We can give an explicit representation of these symmetries

beginning with e*? = M
coshé —sinhé 0 0O 10 0 0
o—EMor _ —sinh¢  coshé 0 0 oMy _ 0 1 0 0 (2.2.98)
0 0 10 0 0 cos¢p —sing
0 0 01 0 0 —sing cos¢
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Figure 2.2.8: Comparison between the conformal theory OPE and Wilson loop OPE

which can be seen to leave the square invariant. By considering the other generators
of SO(2,4) we can see that there are no other symmetries that leave the square in-
variant. The special conformal generator, for example, would move the point at spa-
tial infinity. We can take particular combinations of the above generators that have the
effect of translating along the two directions of the square. For example the combina-
tion (D — Mpy;) can be thought of as a twist or “Hamiltonian” operator that leaves points
along x* invariant but scales the transverse directions x= — A2z~ and 22? — \z?3. We
note that because the lines of the square joining the sides of the Wilson loop are space-
like separated this is a Euclidean “Hamiltonian”. Similarly the combination (D + My;)
acts as a ‘momentum” operator providing translations along . Having established the
symmetry group we can consider its action on the cusps bellow the square. If we take
7(D — Mpy) in the limit 7 — oo

.Z'+
+

(13“ e—T(D—M01)> b % “’O (2.2.99)
0

We can bring a cusp to lie on the edge linking the origin to future null-infinity. By acting
in this manner on all the cusps bellow the square we flatten out the bottom of the Wilson
loop and reach its collinear limit. We can think of the two sides of the square that belong
to the Wilson loop as two high energy quarks that source a flux tube. Therefore we
can decompose the Wilson loop in terms of the excitations of the flux tube. The great
advantage of studying the symmetries of the square is that the excitations are eigenstates
of the generators and we can write schematically,

(W) = / dne™TEntipnoimne o 0P Cbottom (2.2.100)
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Where C/P and CPottom denote the overlap between top and bottom parts of the poly-
gon and the intermediate excitations. This decomposition around the collinear limit is
the Wilson loop equivalent of the expansion over local operators of the usual OPE. Note
that instead of a sum over states we have an integral in (2.2.100), this is due to the mo-
mentum operator being non-compact and thus having a continuous spectrum. At this
point we would like to observe that the derivation of the Wilson loop OPE was only de-
pendent on the symmetries of the square and thus it exists for any conformal field theory
where the flux is conserved. For non-planar N’ = 4 SYM, the approach is still valid if we
consider lines in the fundamental because the flux vacuum and its excitations are well
defined. For the adjoint case, however, the flux can be screened and the OPE will re-
quire modifications. Fortunately for the planar case not only is the flux conserved but
the excitations are in direct correspondence with the states of an integrable spin chain.

We can express these states as single trace operators with the vacuum given by
Tv(ZDZ), Di=Dy+D; (2.2.101)

Where Z is a complex combination of two scalars of the theory and Dy ; denote their
respective covariant derivatives. We excite the vacuum by inserting fundamental fields
d

Tx (205 0D 7) (2.2102)

The corresponding energy of the excitation can be found by considering
E(p) = (D — Mo1)1 — (D — Mor)vac = 1+ > _ N ED(p) (2.2.103)
]

Which is known to all loops through integrability [27]. As we saw in the previous section
UV divergence can spoil the conformal symmetry that has been instrumental in deriving
the Wilson loop OPE. In order to restore the symmetry we instead define the finite ratio

<W> <quuare>
<VVtOp> <Wbottom>

r = log (2.2.104)
Where Wiop (Whottom) corresponds to the polygon obtained by flattening all the cusps
bellow (above) the square. To this ratio we can safely attribute the OPE decomposition
(2.2.100). As stated previously, our object of interest is the remainder function (2.2.96),

which can be broken down into several contributions obtained from the Wilson loop
R = Rtop + Rbottom +7r— rU(l) (22105)

Where Riop and Ryoom are the remainder functions of Wiop and Wioiom respectively
and 7y7(1) is defined exactly as in (2.2.104) except for an underlying U(1) theory. In fact
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Figure 2.2.9: Expansions in terms of states propagating through the cut

we can make a connection with the BDS ansatz by noting

1
#BDS _ ZrcusprU(l) (2.2.106)

From (2.2.105) we can see that the OPE provides a way to express the remainder func-
tion in terms of the remainders for lower order polygons. It is therefore natural to fur-
ther break up the Wilson loop into squares so that we factorise the remainder function
completely. The procedure begins by placing more cuts across the polygon such that we
decompose the polygon into (n — 3) squares, with adjacent squares forming a pentagon.
If we associate the squares at the extremities with the GKP vacuum then we are left with
(n—5) middle squares and (n —4) pentagons. Generalising our discussion for the single
square we may use the individual symmetries to parametrise our problem {7, o;, ¢;}.
Given that there are 3n — 15 of these parameters it is possible to map them to the 4d
conformal cross ratios that appear in the remainder function. The three cross ratios that

appear for the hexagon, for example, are given by

1

J— 1 + 627’

U2

1 . .

=14+ (677— + eO’+Z¢)(67T + eo'fqu)

ug

uy = 2 ugusg (2.2.107)

For a general polygon it is possible to use momentum twistors to define the generic
map [29] for higher points. In order to remove the UV divergences we generalise the
ratio (2.2.104) by multiplying the expectation of the full Wilson loop by that of the middle
squares and dividing by the expectation of the pentagons

L= (W)

Wiy = (W
< >H?;14<WP>

(2.2.108)
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Having established a well defined object we proceed to investigate the dynamics. Be-
ginning with the GKP vacuum at the bottom we evolve it all the way to the top where it is
reabsorbed into the vacuum. Along the way the flux tube is decomposed in terms of GKP
eigenstates v; which propagate trivially in their respective squares for a time 7;. Before
it can propagate across to the next square the state undergoes a pentagon transition P
after which the decomposition is performed again. Remarkably this entire process can
be captured in a single factorised form

Wi =Y e CEm R0t mi p 0]y )P (4 4h2) - . . P(1hns50) (2.2.109)
;i

The GKP excitations may be fermions, gluons, scalars or bound-states of fundamental
fields. If we denote the type of excitations for the n particles by the seta = {a1,...,a,}
and their Bethe rapidities u = {u1,...u,} then we can re-write the sum (2.2.109) in a

similar manner to (2.2.100). For example the hexagon and heptagon are given by
Wo=2_ / du P,(0|u) Py (@|0)e™ BWrHip(wotime
a

Wy = Z / dudv Pa(0[u) Pap (V) Py (v]0)e EWntip(woitimiér o= E(V)ratip(v)oa-timads
a,b

(2.2.110)
Where u = {—uy, ..., —u;1} and the measure is given by
du = N, f[ o, (1) 2 Res Pya(ufv) = — (2.2.111)
7 om v=u )

J=1

Where N, is a symmetry factor for the particle configurations. The equality between the
residue of the pentagon transition and the measure relates the heptagon and hexagon
expansions. It comes from the fact that the residue is conformally equivalent to flatten-
ing the pentagon to a square. The pentagon transitions are analogues to the structure
constants of local operators independent of the global geometry. Fora single particle we
may define three main axioms beginning with reflection

P(—u| —v) = P(v|u) (2.2.112)

Which comes from the fact that flipping both momenta results in a reflection of the

pentagon. The second is called the fundamental relation
P(ulv) = S(u,v)P(v|u) (2.2.113)

Where S(u,v) is the GKP S-matrix and can be computed exactly using integrability. The
final axiom describes how to move the excitations between different edges of the pen-
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v (%

Figure 2.2.10: Mirror symmetry of the pentagon

tagon
P(u™7v) = P(v|u) (2.2.114)

Where =7 denotes the mirror transformations that exchanges the GKP space and time

direction with the effect
E(u™") = —ip(u) p(u™") = —iE(u) (2.2.115)

Although the effect is general, the precise nature of the transformation is dependent
on the particular excitation being considered. Furthermore we note that the axioms
(2.2.112)-(2.2.114) were written for scalar excitations, however they still hold for all funda-
mental fields with minor modifications. Of course we must also consider multi-particle
transitions. These obey the same axioms as the single particle cases and in [28] they were

given a conjectural form

Hi,j P(ui|vj)
[Tis; Puilug) [Ti; P(vilvy)

P(ulv) = (2.2.116)

However it turns out that the most relevant pentagon transitions are those for single-
particle states. Theyare the lightest states and thus dominate the collinear limit at generic
coupling and form a basis for building up heavier more intricate states. In other words
they decay the slowest in the multi-collinear limit and their contributions may be simply
separated from the rest of the excitations and are thus able to give a good approximation
for the Wilson loop in general kinematics. In contrast to the perturbative approach the
OPE is organised in terms of the states propagating across the cut. The comparison of
the sum over states versus the sum over orders is a rich source of constraints and checks
between the OPE and direct approaches to scattering amplitudes. For the hexagon the

leading contribution is given by

r=2cospe " / ;l—um(u)e_M(")Tle(“)U +0(e™) (2.2117)
oo 2T
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The remainder function associated to the above ratio was calculated in [71]

I
= 208 pe” ng Z 7 h{O( CuSp [e77log(1 + €*7) + €7 log(1 + e~ 27)] [ +O(e™*7)

(2.2.118)
where the functions

(o) =" €0 Huym, (—€7%) mi > 1 (2.2.119)

8,7y

are given as an expansion in terms of a special group of functions called the Harmonic
polylogarithms H,,, . m,.(2). These functions are a subset of a more general class of
transcendental functions called multiple polylogarithms, which we proceed to describe

in the next section.

2.3 Multiple Polylogarithms

In our discussion on scattering amplitudes in /' = 4 SYM all the explicit results encoun-
tered so far have featured either logarithms or classical polylogarithms.

logz—/ —  Liy(z / —Lln 1( (2.3

Their appearance is not restricted only to the supersymmetric case however, but a large
class of Feynman integrals may also be expressed in terms of these functions. Their gen-
eralisations, called multiple polylogarithms, will be of central importance to this work
and we dedicate the next section to their description. We begin by noting that the func-
tions in (2.3.1) are defined as iterated integrals. Let M be a smooth manifold and v a
smooth map 7 : [0,1] — M. Then by defining a set of wy,...w, smooth differential

one-forms on M we can write their iterated integral along 7 as

/ Wty = / Fulta)dtn - fo(t)dts (232)
v 0<t,<..<tn<1

Where we have taken the pullback of the one-forms v*(w;) = fi(t)dt to the interval [0, 1].
For example if we draw our forms from the set {wp,w; } and take 7 as a smooth path in
C\{0, 1} with end point 7(1) = z then logarithms and classical polylogarithms may be
expressed as

1
—'log”z = /w{f Liy(z) = /wg Loy (2.3.3)
n: v v

di
-1
We can extend the set of one-forms to include multiple variables and thus construct the

In order to agree with (2.3.1) the pullbacks must be of the form wy = % and w; =
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multiple polylogarithms

1
Limy g (21, 2p) = (=1)F / Wi g wi T (2.3.4)
0

and the pullbacks of the w; are related to the z; via

dt dt
wo = 7 Wwi>1 = 25_71 (2.3.5)

T1T2...T;

Note that apart from the end points all dependence on the path must drop out of the
integral if we are to have a well defined multiple polylogarithm. This means that if we
take another path « which is homotopic to v then the iterated integral must be invari-
ant. Paths are homotopic if the end points coincide 7/(1) = (1), 7/(0) = ¥(0) and one
path may be continuously deformed into the other. For a one fold integral, homotopy

/w—/w (2.3.6)
v v

Which is true if and only if w is closed. For iterated integrals however we must impose

invariance requires that

more complex constraints on the combination of one-forms. In Chen’s seminal [72]
work the homotopy invariant integrals were constructed by considering linear combi-
nations of one-forms. The initial step is to observe that for closed one-forms w; and ws

we then have for some one-from wqs
w1 Aws +dwio =0 — (/ — /> wiws +wie =0 (2.3.7)
2 vy

We can extend this result by considering a map D from the tensor products of smooth
one-forms (not closed) T(Q2!(M)) to the space of tensor products of all forms T'(Q(M))
given by

n
D(w1®...®wn):Zw1®...®dwj®...®wn
i=1
n—1
+) W ®.. QWi Aw1®...Quw, (2.3.8)
=1

Further defining the kernel of D through linear combinations of tensor products up to

rank m
m
Bn(@)=S6=>"Y" ¢ qwi1®...0w[DE=0 (2.3.9)
1=0 71,...,9;
Where ¢;, . ; are just constant coefficients. This is called the space of integrable words

and the equation D¢ = 0 is known as the integrability condition. Chen'’s theorem asserts

that mapping B,,(2) to an iterated integral by simply integrating the words defines an
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isomorphism to the space of homotopy invariant iterated integrals of up to length m.

& - i > cil,...,il/wl...wl (2.3.10)

1=0 i1,...,7 v

The reverse is also true; that is a homotopically invariant integral corresponds to an in-
tegrable word. We shall revisit the concept of integrable words in our discussion of the
symbol of a multiple polylogarithm. For now we proceed to describe iterated integrals
and their properties.

2.3.1 General properties of iterated integrals

Although we could continue in the established formalism for iterated path integrals, in
the physics literature however, there are two main types of iterated integrals. The most

prominent type are due to Goncharov [73] and are defined recursively

o dt
G(ay,...,an;2) = / G(ag,...,an;2) (2.3.11)
0 t— al

Where the parameters {a;} can be taken as constants or variables and G(z) = 1. Itis
easy to see from the definition of the multiple polylogarithm that we can express them

in the Goncharov notation as

1 1
Lin, ..o (@1, - 2) = (=1)*G <o, 0,0, 0, 1) (2.3.12)
Tk 1 ...Tk
Given how similar their definitions are we shall use the term multiple polylogarithm
(MPL) to interchangeably mean both (2.3.4) and (2.3.11). A second more general notation

is
dt

t—an

An+1
I(ap;a1,...,an;Qn41) = / I(ag;ai,...,an—1;t) (2.3.13)

ao

This is a similar definition to the previous version except that it allows for a general base-

point. For both cases the number of parameters defines the weight, that is (2.3.13) is an

iterated integral of weight n. It is easy to define a map going from the Goncharov notation
to the general one

G(ay,...,an;2) =1(0;anp,...,a1;2) (2.3.14)

The inverse relation is slightly more complicated however, due to the necessity of chang-
ing every basepoint in the iterated integral. We can nevertheless deduce it recursively
by applying the identity

@2 dt @2 dt a0 dt
I(ag; a1; az) :/ :/ —/ = G(ay;a2) — G(ag;ag) (2.3.15)
0 0

ao t—ay t—ay t—a
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In fact we can use this property of the integral to deduce much a more general result.
Let u and v be two paths from the unit interval to M with end points u(0) = ag, u(1) =
v(0) = x and v(1) = a,+1. Then the iterated integral along the composed path from ag

to an+1 is given by

n
I(ap;a1,...,an;Qn41) = ZI(ao; ai, ... ak; ) (T g1, -+ Qn; Qnyl) (2.3.16)
k=0
This is the path composition formula. Alternatively it may be viewed as the decomposi-
tion of a path v into two constituent paths v and v. We combine (2.3.16) with the following

inversion formula
Iapt1;an, ... a1;a0) = (=1)"I(ag; a1, ..., an; ant1) (2.3.17)

To obtain a map from the general iterated integral to the Goncharov MPLs

n

I(ag; a1, ..., an; any1) = Z(—l)kG(al, oy Uy a0)G(Any - ooy Q1 Q1) (2.3.18)
k=0

We could further use the path decomposition property to determine the monodromy
of an iterated integral. From the iterated integral definition it is easy to see that MPLs
have singularities whenever a path passes through one of the {a;}. The monodromy at a
point a; is obtained by considering integrals over paths that encircle one singular point.
Let vy be a path from 0 to 1 and +/ be its deformation that encircles the singular point only
once, then [74]

L(0;,a1,...,an;1) = Iy(0;,a1,...,am; 1) = 2mil(0s a1, . . ., ai—1; a;) 1 (@35 Gigt, - - -, s 1)
(2.3.19)
This can be seen from the fact that for a set of rational functions f; ... f,, the difference
between the above paths is given by

1
2m</7_/7> (dlog fi ...dlog f,) =

Z ’Ug(fk) (/ dlog f1 e dlog fk;_1> </ dlog fk+1 ce dlog fn> (2.3.20)

k=1

Where the composed path asa; is given by 0 — a; — 1. Furthermore v;5(fx) € Zis an

index defined by an integral around the path § which encircles the singular point

vs(f) =~ /5 dlog f (2.3.21)

2

Given that no other rational function vanishes at the singular point then only vs(f;) # 0
and we recover (2.3.19). A further central property of the iterated integrals is that they
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form a shuffle algebra. If we take two MPLs of weight p and ¢ with the same basepoint
and endpoint then their product is given by

I(ag; a1, ... ap; 2)I(ao; aps1, - .., Ggip; 2) = Z I(ao; ag(1), - - - 5 Go(prq)i 2)  (2.3.22)
o€X(p,q)

Where X(p, ¢) is a subset of the symmetric group S,, and denotes the set of all shuffles
of (p + q) elements

Y(p,q) ={o € Sp+q|a’1(1) <...<oYp) and o 'p+1)<...<o(p+q)}
(2.3.23)

For example take two Goncharov MPLs

G(a1,az; 2)G (b1, ba; 2) =G(ay, az, b1, ba; 2) + G(a1, by, az, be; 2) + G(b1, a1, az, ba; 2)

+ G(bh ai, b27 a; Z) + G(ah bl; b27 a; Z) + G(bb b27 ai, az; Z)
(2.3.24)

Similar to the path decomposition case the proof of the shuffle relations relies on the

recursive application of the following identity

Zdt zdt zdt b qt Zdt 2 qt
/ 1 / L / L / 2 4 / 2 / L (2325)
ap 11— a1 Jgu t2 — a2 ap 11— 01 Jqp T2 — a2 ap 12— 02 Joqp 11— a1

Which is the decomposition of an integral over a square into the two constituent trian-

gles.

Let a,, # 0 then MPLs are invariant under rescaling by £ € C*
G(kay, ..., kap;kz) = G(ay,...,an; 2) (2.3.26)

To see why it is necessary to have the condition a,, # 0 we note that by the shuffle rela-
tions
G(ay,...,an-1,0;2) = G(0;2)G(a1,...,apn-1;2) + ... (2.3.27)

Which does not obey the scale invariance property because
G(0; kz) = logkz — log kO # G(0; 2) (2.3.28)

For the same reason G(ay,...,ay; z) is only analytic at z = 0 if a,, # 0. Now assuming
that all the {a;} are non-zero then the total derivative of an iterated integral is given by
m

. aip1 — a;
dI(ap;al,...,an;ant1) = ZI(aO; A1y ey iy ey Up;apg1)dlog M (2.3.29)
i=1 v

Where the hat indicates omission of that parameter from the integral. To see how (2.3.29)
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comes about we restrict ourselves to the case where all the parameters are different and

differentiate with respect to a;

antl ¢ tit1 dt;
/ n e / 7121(0,0; A1y...,A5-1; ti) (2330)
ag tn — an ag (t’L - a’i)

By rewriting the differential with respect to a; as a differential with respect to ¢; inside

the integral and integrating by parts we obtain

fnt dtn /ti-’_1 dti
Iao'a1 RN PR B 7
/ao tn — an aw  (ti—ai)(ti—ai-1) (a0; a1, a1 ti)

an+1 ¢t tita dt:
— / LI / i+ I(ag;ay,...,a;—1;ti41) (2.3.31)
a In—an a  (tir1 — aiy1)(tiv1 — a;)

We use partial fraction decomposition in order to separate the denominators

1 1 1 1
(ti —a;)(ti —ai—1) B (a; — ai—1) <(1§z — a;) B (t; — ai_1)> (2.3.32)

1 _ 1 < 1 1 ) (2.3.33)
(tiv1 — air1)(tivr — @) (@is1 — ai) \(tip1 —aip1)  (tig1 — i) -
Performing the remaining integrations leads to

1

m(f(ao;---,di—l,---;anﬂ)—I(CLO%---,dz’a---;anH))
(2 11—

N M(I(ao; g ) — I(ag; . dis - ans1))  (2.3.34)
Which when summed over the da; give (2.3.19). The more general case where some of
the {a;} are allowed to be zero can also be incorporated. The procedure is simply to
treat all the zero entries as standard parameters when performing the total derivative.
Once this is done we restore the original values of the parameters (i.e. allow them to be
zero again). The only subtlety is that we may have a; = a;4+1 = 0, in which case we take
the 1-form dlog(a; — a;+1) to be zero. This property is known as canonical regularisation

and we may use it to treat divergent integrals of the form

I(0,0P a1, ..., am, 1% 1) — I(e,0P a1, ..., am, 191 —¢) = Z:logl’C efr(e) (2.3.35)
k=0

Where 07 and 17 denote sequences of length p and ¢ respectively. Thus we see that the
divergent part of the integral is a polynomial in log ¢ with regular coefficients f.(0) # 0.
Canonical regularisation then, is just keeping the finite part fy, which can be zero. Note
that with this regularisation scheme in mind we may identify

_ log" 2

G0™;2) = o (2.3.36)
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The total derivative of a multiple polylogarithm leads to a interesting and useful quantity

known as the symbol, which we proceed to study in the next section.

2.3.2 Symbols of multiple polylogarithms

One remarkable property of multiple polylogarithms, is that there are many non-trivial
functional identities among them and we have already seen an example in (2.2.84). There
are also various ways we could produce these identities, for example some may be de-
rived from the shuffle algebra like (2.3.24) others via the Holder convolution forall p € C*
and a1 # 1, a, # 0.

G(ay,...,ap;1) = Z(—l)kG <1 —ap,...,1—a;;1— ;) G <ak+1, e, Op; ;) (2.3.37)

k=0

And other functional relations are more complex still. It is therefore entirely possible
that along and complicated linear combination of MPLs obtained from the computation
of a scattering amplitude may reduce via these identities to something much simpler.
Indeed this is the context in which symbols first appeared in physics [32] where they
were used to dramatically simplify the six-point remainder function [35, 36] given in
terms of MPLs. The central concept is to map the space of polylogarithms to a tensor
algebra over the group of rational functions. Beginning with the total differential of a

transcendental function F,,(z1, ..., xx)

dF, = Fin 1dlogR; (2.3.38)

Where F; ,,_ are transcendental functions of weight (n—1) and R; are rational functions

in the z;. Thus we define the symbol recursively in the weight

S(F,) = ZS(Fz‘,n—l) ® R; (2.3.39)

Note that for MPLs the rational functions are given in (2.3.29). One of the simpler class

of symbols belongs to the classical polylogarithms

n—1

S(Lip(2))=-1-202®...02 (2.3.40)

We can see that the symbol must inherit a few properties from the logarithm, namely it

is additive with respect to products of the entries
L RA® ... =...0a® ... +...0b® ... (2.3.41)

Furthermore we have
.®c®...=0 (2.3.42)
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Where c is any numerical constant, and particularly when we have a 0 entry, by canon-
ical regularisation. However we must take care in the case of vanishing entries, if for
instance one of the factors in (2.3.41) tends to zero then we see that the two sides may
have different limits. To recover the finite part of the limit we must first expand the
factors

lim(..Qa®...)=..0b%... (2.3.43)

a—0

Combining these properties we may determine the symbol of an MPL by identifying all
the rational functions and then expanding the factors. Often in practical scenarios there
is a finite set of R; which is called the alphabet and the individual R; are called the letters.
Because of the multiplicative property an alphabet is not unique and two alphabets { R} }
and {R;} are equivalent if there exists an invertible matrix M;; over the rationals such
that

log R; = Y  M;;log R (2.3.44)

j

The symbol is a linear map and takes the product of transcendental functions to the
shuffle product of their symbols.

S(F,Gy) = S(F,) W S(Gy) (2.3.45)

Where F, and G, are two transcendental functions of weight p and ¢ respectively and

L denotes the shuffle product, defined similarly to the iterated integral case

R1®...®Rp LL Rp+1®...®Rp+q: Z Ra(l)®"'®Ra(p)®RU(p+1)®"'®Ra(p+q)

o€X(p,q) ( )
2.3.46

Unlike the iterated integral, however, there are no basepoint conditions and we may take
the shuffle product of symbols freely, for example

S(logzlogy) =2zWy=2Q0y+y®z (2.3.47)

An unfortunate consequence of the property (2.3.42) is that any function that is propor-
tional to ¢7 will vanish, and thus the symbol map is not injective. Furthermore because
the symbol only admits weight one entries then any function containing the transcen-
dental constants ¢, will vanish as well. Naturally this complicates the problem of finding
the inverse map from symbols to polylogarithms. In addition a general symbol does not
necessarily correspond to a function, and we must impose an integrability condition for
this to be the case. By continuing the recursion formula (2.3.39) a general symbol may
be written as

S(F)= > FoyinRiy®...9R,, (2.3.48)

il»“-vin



2.3. Multiple Polylogarithms 49

And the integrability condition is defined as

n—1
Z Z FO,il,...’inRi1 ®...®dlog Rij A dlog Rij+1 ®R...0R;, =0 (2.3.49)

J=1 i1seemsin

Which is the same as the previous integrability condition (2.3.8) for closed forms (dw; =
0). As we have seen (2.3.47) is a necessary condition for homotopy invariance, however
it also implies the natural property of functions that partial derivatives commute at all
weights. To see this we note that the partial derivative of a symbol is determined by its
last entry

S (;)%Fn) = IZ Foiy,inRiy ® ... @ Ry, 81 log R;, (2.3.50)
By applying another partial derivative we may produce a symbol of weight (n — 2) which
must be the same regardless of the order of differentiation. Thus by taking successive
partial derivatives and requiring that they commute we arrive at (2.3.49). Similarly the
first entry determines the monodromy of the symbol

S(Mz,=aFr) = Z Foir,in(Mzg,—qlog Ri )Ri, ® ... ® Ry, (2.3.51)
B1yeenyln
Where
2t R =0
My, —alogR=1{ " - _ (2.3.52)
0 otherwise

It is relatively straightforward to compute the symbol of a function however it is often
the case that we wish to find the function corresponding to a symbol. The first step is
to make sure the symbol does indeed belong to a function, that is it must satisfy the
integrability condition. Next we choose a particular path along which to integrate the
symbol and obtain a MPL representation [72]. Thus given a set of k variables {z;} on
which the letters of our symbol depend R(z1,...,z;) we shall choose an integration
path v which will be a composition of paths 7; that allow only one variable to vary at a
time. In other words the map is an integral over the edges of a k-dimensional hypercube
where ; is the path along the edge that goes from the basepoint ag to z. Of course there
are multiple paths that we may take determined by the order of integration

k
vo) =J 0w (2.3.53)
i=1

Where ¢ denotes a permutation of the 7;. Note that as long as two paths integrate up
to the same point (i.e. they both end with the same ~;) then, subject to some normal
crossing conditions, the corresponding MPL representations are homotopy equivalent
to each other. However we are not constrained to always integrate up to the same vari-

able and we may obtain a representation of the same symbol in terms of MPLs that have
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different top argument. Given that all the functions thus obtained are related through
the symbol map then the choice of permutation is similar to choosing a gauge. Having
selected the composition of paths we would wish to integrate our symbol along we may

construct the corresponding MPL explicitly via the path decomposition formula

S;H R ®...®Ry)= Y / dlog Ry ...dlog R;,
Yo (1)

0<i1<i2...9,<n
x/ dlogRil+1...dlogRi2.../ dlog R;, 41...dlog Ry,
Yo (2) Vo (k)

(2.3.54)

Where fv o) dlog R;;+1dlog R;; = 1 and thus drops out of the integral. Note that for a
a(j

particular ; all variables except z; are treated as constants and take values

R
il = { viorsJ (2.3.55)
0 21>
Where yet again we use canonical regularisation for any vanishing R;|,;. Although the
map (2.3.50) has been defined on a single sequence of tensor products we stress that
it is only valid for an integrable symbol of the form (2.3.48). As already mentioned the
solution to the inverse map is not unique. Apart from the obvious multitude of paths,
the MPL representation is defined up to any functions that disappear under the symbol

map, such as functions of non-maximal weight or those multiplied by transcendental
constants.

L3

v(o2)

v(o1)

Figure 2.3.1: Two different paths we may choose to integrate our symbol along

As an example take the symbol of G(z1, z2; x3)
Ll —z2) + (22 —x3) ® 7(:61 —23)
T (1 — x2)

X r1T — X
P B . k)
(1131 —332) ($1 —56‘3)

S(G(z1, 225 23)) =(21 — 23) ®
(2.3.56)
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Note that the symbol is automatically integrable because it is derived from a function. If

we choose the path starting at the origin v(¢1) in figure 2.3.1then we recover G(z1, x2; x3)

S_I(S(G(xl,xg;xg))) = G($1,$2;£L’3) (2.3.57)

o1

Similarly we would obtain the same result if we would permute z; with 2 in the path
since the top argument would still be z3. Alternatively if we choose the path v(o3) we
obtain

SU_QI(S(G(:L'l,a:Q; x3))) = G(xg,x3;21) — G(x2,0;21) + G(0, 22; x3) + G(22; 23)G(23; 71)
— G(x2;21)G(x2;23) + G(0; 23)G(22; 1)
(2.3.58)

By reviewing all the properties above it is clear that the strength of the symbol lies in
its ability to elucidate functional relationships between MPLs. However there is a sub-
stantial caveat in that it determines functional equivalence only up to terms propor-
tional to multiple zeta values, which carry transcendental weight but vanish under the
symbol map. In order to address this issue one could use an alternative definition of
the symbol, which is obtained from summing over dissections of a rooted and deco-
rated polygon [34]. This method has the advantage that its combinatoric nature does
not distinguish between constants and variables. Another way would to use the fact that
symbols and MPLs form a Hopf algebra [75] and use the coproduct which allows for the

incorporation of zeta values.

2.3.3 Hopf algebras

Although we have already described an extensive list of properties for MPLs our ma-
nipulation of symbols and iterated integrals shall rely on their more general algebraic
structure. The structure in question is that of Hopf algebra and its applications range
from integrability to the study of sub-divergences of a Feynman graph. However before
establishing the relationship with MPLs we begin by reviewing the notions of algebras
and co-algebras. An algebra over a field k (k-algebra) is a k-vector space A together with
two linear maps

m: A, A—A and u:k— A (2.3.59)

Where ®, denotes the tensor product over the field k£ which we shall leave implicit in
the following. The first operation is called multiplication and is associative. If we take

two elements a,b € A and define m(a ® b) = a - b then

midem)(a®@b®c)=a-(b-c)=m(m®id)(a®b®c)=(a-b)-c (2.3.60)
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where we define for two functions f and g
(f©g)a®b) = f(a) @ g(b) (2.361)
the second is called the unit element and embeds the field into the vector space
m(id®u)(a ® k) = ka = m(u ®id)(k ® a) (2.3.62)
Thus this implies the existence of the unit element for the k-algebra
u(lp)A=1,A=A (2.3.63)

We note that this is not the usual definition of an algebra which is defined on A x A rather
than on the tensor product. However the two definitions are completely compatible. At
this point we can see that the previous description of MPLs may be recast in terms of
an algebra over the rationals where multiplication is given by the shuffle product. The
weight gives a natural grading that is preserved by the shuffle product and we can write

the entire algebra of multiple polylogarithms as
Aypr =P An m(An, ® Any) C An, s, (2.3.64)
n=0

Where A corresponds to the field of rational functions over which we have defined our
algebra. Next we proceed to define the coalgebra by reversing the definitions above. A

k-coalgebra is a k-vector space C' with two linear maps
A:C—->C®C and e:C—=k (2.3.65)
The map A is called the co-product and obeys the co-associativity condition
(A ®id)A = (Id®A)A (2.3.66)

and the co-unit satisfies
(id®e)AC=C®1 (2.3.67)

Conversely to the multiplication of elements the co-multiplication axiom amounts to a
type of decomposition and the coassociativity condition states that the order of this de-
composition is irrelevant. To expand more on this we introduce the Sweedler notation
for coproducts
A) =Y a @ al? (2.3.68)
i
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Where a, az(-j ) € C are some elements of the co algebra. We can apply the coproduct
again and obtain the two sides of (2.3.67)

(A ®id)A }:a1”®a1”®a” (2.3.69)

(id®A)A }:&”®a@”®a@” (2.3.70)

The striking feature of coassociativity is that while the above equations are in general
different, for a co-algebra they will be equal. Thus as a consequence there is essentially
only one way to iterate the coproduct. We define an algebra homomorphism as a linear
map ¢ : A — B between two k-algebras if it satisfies

Hm(A® A)) = m(6(A) ® 3(4))  d(ua(k)) = up(k) (2371

Similarly a coalgebra homomorphism ¢ : C — D is one which commutes with the

coproduct

A(¢(C) = (9@ @)A(C)  ep(¢(C)) = ec(C) (2.3.72)

We define a bialgebra A as a k-vector space that is simultaneously an algebra and a co-
algebra . That is a bialgebra is the tuple A = (A, m,u, A, ) where (A, m,u) is an algebra
and (A, A, ¢) is a coalgebra such that the linear maps on one are homomorphism on the
other.

A(ma(a® b)) = maga(Aa) @ A(b)) (2.3.73)

In general if we take two k-bialgebras A and B then their tensor product is also one. We

can see this by noting

A@B®A® B2 49 A0 Be B A%, A9 B (2.3.74)
where 7 is the flip operator 7(a ® b) = b ® a. And similarly for the coproduct
A@B 24928 A9 A9 Bo B M9 4o Bo Aw B (2.3.75)

Note that the presence of the inversion step implies that

MAQB = (mA (%9 mB)(ld RXT R ld) < (a1 (%9 bl)(ag (%9 b2) = (CL1(L2 & blbg) (2.3.76)
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For iterated integrals the coproduct is non trivially given by

A(I(ag;at, ..., an; any1))
k
= E I(ao;ail,...,aik;anﬂ)@ HI(aip;aip+1,...,aip+171;a¢p+1)
0=11<i2...<ip<ig4+1=N p=0

(2.3.77)

In the case that the entries are not generic we replace all quantities on the right hand
side by their canonically regularised forms. As already mentioned, the coproduct may
be used to simplify expressions in a similar way to the symbol. For example let us take

the coproduct for the logarithms and classical polylogarithms

A(log" z) = Z ( " > log® z ® log" % 2 (2.3.78)
k=0 k
= log” 2
A(Lin(2)) = 1® Lin(2) + Lin(z) © 1+ > Lip 4(2) ® i‘ (2.3.79)
k=1 )

We can see that the iterative application of the coproduct together with the coassociativ-
ity property leads to an object similar to the symbol. The marked difference however is
that the coproduct has a non trivial action on the transcendental constants. Specifically
the coproduct of the odd zeta values is given by

A(Cont1) = A(Lizp41(1)) = 1 ® Cong1 + Cont1 @ 1 (2.3.80)

Even though Lig, (1) = (25, the even zeta values are not independent and if we consider
the homomorphism property of the coproduct we can see that the above equation is

not consistent any more. Instead we have to modify the coproduct [76]
AlGon) =Cn®1 <= Am) =71l (2.3.81)

That is, the coproduct for MZVs becomes a coaction by taking the second entry in the
tensor product modulo ¢, thus defining the p algebra

A:A— AR w=A/( (2.3.82)

Note that the second relation in (2.3.81) comes from the fact that ¢ o< 72. Of course these
are the simplest zeta values and analogously to polylogarithms the multiple zeta values
also form a bialgebra. To finish our definition of a Hopf algebra we require one more
ingredient: a linear endomorphism S called the antipode such that fora € A

g(a) =m(id®S)A(a) = m(S ®id)A(a) (2.3.83)
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The antipode may be determined recursively for MPLs by noting that the counit is given

bye(1) =1 and is O for all other iterated integrals. Thus
(S ®id)A(G(d; 2))) = p(id ® S)A(G(d; 2))) = 0,if |a| > 1, (2.3.84)

Taking the classical polylogarithms as an example we have the relations

(2.3.85)
Given that the antipode is an endomorphism it obeys
S(ab) = S(a)S(b) e(S(a)) =¢c(a) A(S(a)) =(S® 5)TA(a) (2.3.86)

As we shall see later the antipode will play a central role in our study of single valued
MPLs, i.e. iterated integrals with trivial monodromies. Given that we are always inter-

ested in the monodromies and differentials of MPLs we end this section by showing how

these operations commute with the coproduct. Thus for an MPL F,, (z1, ..., x%)
0 . 0
A <aan> = <1d® aﬁ) A(F,) (2.3.87)
A (My—aFpn) = (My,—q ® id) A(Fy) (2.3.88)

These relations were conjectured in [75] and proved for generic arguments. Note that
these operators act on the coproduct in the same way as they do on the symbol. As
has become evident there are numerous similarities between symbol and coproduct.
Indeed it is possible to make precise the relationship between them

S = Al,---,l mod (2.3.89)

Where A ; is defined as the maximum iteration of the coproduct.

n—1

—
A a(F)=(Ad®...01d)... (A®id)A(F) (2.3.90)

20ty

Iterated integrals possess a rich mathematical structure, only a subset of which has been
described above. It shall be the main focus of this thesis to further elucidate their alge-
braic properties and their application to scattering amplitudes. Thus in the next chapter

we proceed to study their role in solving a two loop five point conformal integral.
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CHAPTER 3

Differential equations for scalar integrals

Although the multiple polylogarithms are a mathematically interesting and versatile class
of functions they only become of relevance if we can use them to describe our ampli-
tudes. It is often quite challenging to recast a given solution to a Feynman integral in
terms of MPLs so that we may make use of their properties. For example when study-
ing interesting regimes such as Regge limits or for numerical evaluation. Furthermore
it is clearly more desirable to avoid any intermediary steps and try to solve the integral
directly in terms of MPLs or even their symbols. Having outlined the iterated integral
structure in the previous section a natural approach to consider would be to study what
are the particular differential equations that our integral obeys.

Indeed, the use of differential equations for scattering amplitudes is well established.
The usual approach is to differentiate the integral with respect to masses and kinemati-
cal invariants to obtain a combination of already evaluated Feynman integrals and then
solve the differential equation with appropriate boundary conditions. The method was
developed in [77] as an extension of the integration by parts identities which uses dif-
ferentiation with respect to the loop momenta under the integral to derive algebraic
relations between integrals. Thus they are used to express and evaluate an amplitude as
a linear combination of a preferred set of “master integrals” which are an entire field of
study in themselves.

Although the above methods are completely general our focus shall be on the differ-
ential equations obeyed by scalar integrals with conformal symmetry. By combining
differential operators acting on various legs we intend to exhibit the use of MPLs as a

57
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general technology for scattering amplitudes. This shall be done by changing variables
and exploiting the symbols in such a way that we may easily integrate the differential
equation obeyed by the integral. Finally in order to resolve the ambiguities in the in-
tegration we shall introduce single valued MPLs and impose that our solution be single
valued as well. This is a general physical constraint and single valuedness shall play an
important role in subsequent chapters where we treat amplitudes in the multi Regge

limit of the kinematics.

3.1 The integral

D5 L5 D4
L6 X7
x1 Ly
P1 ) xs3 p3
D2

Figure 3.1.1: 2-loop , 5-point massive scalar conformal integral

In [78-80] it was shown that it is possible to obtain two and three-point graphs as the
finite limit of four point graphs that obey certain differential equations. In this section we
wish to generalise these ideas to higher points, by analysing the behaviour of a 5-point,
massive 2-loop integral under various differential operators. Let us begin by writing the

integral depicted in 3.1.1 in terms of the dual coordinates

1 d*red*zr
D2z = — 2 2 2 2 2 2 2 CARY
& T16226237L 4726756 T57
By using the inversion of the dual coordinates
2
xs.
I:af — —2 (3.1.2)
i 52,2
(]
we see that the integrand transforms in a covariant manner
4,. 74 4,. 74
55 5 5 3 3 3 (TP 555 55— A
TYT56 57T 57T e TEGT L5657 L 7 TErTEGT
16726737 476725657 16726737L47L67L56 57

Note that the factors coming from the inversion of the loop dual coordinates z¢ and z~
are precisely canceled by the Jacobian of the corresponding change of variables. We can
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exploit this conformal symmetry and write the integral as

S15,-.-555
L343 = (CALIATE)] 5 5 3 ) (3.14)
T15T25734

Where f is a function of the five multiplicatively independent conformal cross-ratios
that one can construct from the five external points,

2,2 .2 2 .2 2 .2 2 .2 2 .2
_ T12¥35%y5 _ T13%ys _ T14%35 _ Ta3%ys _ TayZ3s

§1 = 22222 g9 = 53 = 54 = S5 = (3.1.5)
D 2, x2 I x2,x2 ] x2, 72
3471525 34775 347715 34T25 34T25

Next we would like to separate the function f in terms of a purely transcendental and
rational piece. To do so we need to calculate the leading singularity of the integral which
gives the rational prefactor. The leading singularity is obtained by taking the residues
of the integral on each of its global poles evaluated on a contour describing the maxi-
mal torus surrounding that pole. In order to demonstrate the technique it is useful to
consider the example [81]
d4x5
9123 = | 555 5 (3.1.6)
15225235245

We then make a change of coordinates p; = x% and compute the Jacobian

J = det < Opi ) (3.1.7)

m
Oxs

This can be rendered more transparent by considering the square of the Jacobian

J? = det(dws - 2j5) = 16 det(:r?j o :):35) (3.1.8)

Thus the integral (3.1.7) now becomes

d*p;
912342/1% (3.1.9)
P1p2p3pad

Which has the following residue on the global pole py = ps = p3 =ps =0
1 1

91234 — =
4y /det(a?) A2z

Where by convention we have ignored any contour that may encircle the pole produced

(3.1.10)

by the Jacobian. This may be justified by the fact that the integrals posses no pole at in-
finity and any residue produced from the Jacobian factor is equivalent to the one already

considered. Going back to our five point integral we can see that it may be separated into

1 d*x d*z
2345 = 7r4/ 0 / ! (3.1.11)

2 .2 .2 2 .2 .2 .2
T16TL26T56 / T37Ta7TE7L67

two parts

Using the previous example it is easy to see that upon taking residues we may reduce
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this expression to

4
1 / d g (3.1.12)

v 2,2 .2
T T16T362565 A3456

Now we must calculate the Jacobian with respect to the new denominator

(3.1.13)

7 — det (6(x%67x§67x§67)‘3456)>

M
Oy

The procedure then is essentially the same as before, and the leading singularity is ob-
tained by considering the square of the Jacobian under the global residue 224 = x3 =
2%, = 0 which also influences the remaining pole A\si56 = 235235 — 23523 = 0, from

which we infer that 23; = 235 = 0 and we obtain

2 2,2 2.2

s LiaXgs — Tyl

J? =16 det g, T e (3.1.14)
Ti3Tys — Tja¥35  —2X54T55TY;

Finally having obtained the leading singularity we may use our cross ratios to separate
the function f(si,..., s5) into a rational and purely transcendental function f of degree
four.

1 .

f(s1, 52,83, 54,585) = f(s1, 82, 83, 4, 85) (3.1.15)
\/(82 — 83 —84+S5)2 —481

In order to simplify the problem we would like to make use of the conformal symmetry
in order to remove one of the points by taking it to infinity. There are two ways of ob-
taining a topologically distinct four-point integral by taking a point to infinity. First we

may take x5 to infinity

. 1 d4a;6d4a;7 flt, ... ts
hgl w3l12305 = Hig34 = 4/ 5 5 5 3 = ( 5 ) (3.1.16)
L5700 n T16L26L37 V7267 T34
Here we have defined ¢; to be the limit of the s; cross-ratios
2 2 2 2 2
A X xr T X
=32 t="32, 3=, =", ty="31 (3.117)
T34 T34 L34 L34 T34
Alternatively we may take one of the other points, z; say, to infinity
1 dixed*z
lim $%112;34;5 = 12;34;5 = 4/ 2 9 62 27 2 (3118)
T1—00 T T16L26L37L 47267

We will focus on the former limit for the moment, as the integral has more obvious

symmetries. Indeed we have the relations

Hy2;314 = Ho1;34 = H3g1o (3.1.19)
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Which imply the following relations for the f function

1 to t4 t3 t5> (3.1.20)

1
t1,t2,t3,t4,15) = f(t1,84,t5,82,13) = —f| —, —, —, —, —
f(17 2,03, 04, 5) f(17 44505, 02, 3) t1f<t1,t1 t17t17t1
Next we proceed to derive a solvable differential equation for the purely transcendental

part of f in terms of MPLs.

3.2 Differential equations

We can derive differential equations for the integral by acting with the Laplace operator
on external points with a only a single propagator attached. The Laplace operator pro-

duces a delta function which, upon integration, reduces the loop order by one [2,78,80].

1
DiT = —471'2(54(1‘1' — .Tj) (321)
Ty

The integral H therefore obeys the differential equations

4 4
O1H12:34 = —?1134 OoHi2.:34 = —?1234
12 12
4 4
OsHi2;30 = ——5 1123 O4Hi230 = ——5T124 (3.2.2)
L34 L34

Similar equations arise after using integration by parts to produce a Laplace operator

acting on the intermediate propagator
(01 + 02)? Hig34 = (03 + 04)? Hia,34 = —411234 (3.2.3)

Where I134 and ;234 are the well-known one-loop graphs

1 d4x7 1

Iiga = 2/222 = W (2, 1) (324)
T Lirlardyr T3y
1 d4(E7 1 t2t5 t3t4

11234:2/ 2 2 2 2 2 2 oM (7 (3.2.5)
77 Lirlordyrdyy  Tad3y t1

The function on the right hand side ®() is known as the one-loop ladder function

X X

oM ((1-2)(1 - 7),27) = — ¢><1)( ! ) = - ! o (,7),  (326)

r—1"z—-1

And ¢() is the the Bloch-Wigner dilogarithm

¢ (z, %) = —log(xZ) (Liy () — Liy (%)) + 2(Lia(z) — Lia(7)) (3.2.7)
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The variables z, z that appear above, are indeed complex conjugates of each other, thus
making the ¢(1) single-valued as one would expect from the four point graphs. The single

valued property can be seen from the symbol
S@WM@,2))=01-2)1-2)@z/—2z22 (1—-7)/(1 - ) (3.2.8)

Recalling that the monodromy operator acts on the first entry of the symbol we can
easily check that the symbol is single valued. We begin our analysis by focusing on the
relations generated by 0O;, Oz and (9; + d2)2. From the first two differential equations in

(3.2.2) we obtain the following equations for f
Lo
O1f(t1,t2,t3,ta,t5) = —7® (t2,t3)
1
OQf(t17t27t37t47t5) = _F¢(l)(t47t5) (329)
1

Where O; and O, are the operators [0, Oz expressed in terms of 9; = 8‘2,

O1 =2(01 + Oy + 03) + 107 + 1205 + 1303

+ (t1 +to —t4)0102 + (t1 +t3 — t5)0103 + (t2 + t3 — 1)0203 (3.2.10)
Oy =2(01 + 04 + 05) + 107 + 1,07 + 1502
+ (tl +ty — t2)8184 + (tl +t5 — t3)8185 + (t4 + 5 — 1)(9485 (3.2.11)

Equation (3.2.3) becomes

1 tots tat
O1af(t1,ta,t3,ty,t5) = —E@(U (’;5 2’14> (3.2.12)

However it is more convenient to work with the operator 015 = 015 — O1 — Oy which
represents the action of 20; - 9, in the z variables. The operator 015 is then given by

@12 =—40, — 2t16% + (t4 —t — tg)alag + (t5 —t] — t3)8183
+ (tQ —t4 — t1)6184 + (tg -t — t5)8185 + (tg +t4 — t1)8264
+(t3+ts —t1 —1)0205 + (t2 +t5 —t1 — 1)0304 + (t3 +t5 — t1)0305  (3.2.13)

Solving the above equations directly in terms of polylogarithmic functions is not straight-
forward. However we may do so if we restrict ourselves to a special case of two dimen-

sional kinematics, where we choose to make the points coplanar. Therefore we intro-
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duce a new set of coordinates

t1 = (a1 —a2)(a1 —ag) +y

to = a1a1

ty = (1—a1)(l—a)

ty = agas

ts = (1 — as)(1 — @) (3.2.14)

Where the coordinate y is treated as a deformation away from coplanarity. By setting
y = 0 then we may identify the plane with the complex numbers and make use of trans-
lational and rotational symmetry to set x3 = 0 and 4 = 1 with x; = a; and x2 = ag. In

terms of the variables {a1, ai, as, as, y} the operators become,

1 Y az — az

O :maalaa (a1 —a) — - alay(aal — Oay) + - alayyay
1 N R Sl ]
) —Haazaa (ag — az) 4y — Gy 0y(Oay — Oay) + 4y — Gy Oyyoy
- 1 1
012 = <—28y + g — dg (&11 — 8{1 ) + H(&zz — 8,—12)>y8y
- J Oy — 02, ) (Duy — Day) + Oay Dy + O, Dy (3.2.15)

(a1 —ar)(az — az)

However we may not restrict them to the planar case individually due to the d,y terms
which do not commute with the coplanar condition and may introduce inconsistencies.
In order to remedy this we may consider a linear combination @ = ¢;0; + ¢yOs + ¢19012
of all three operators. Thus we find that the resultant operator contains solely products
of y0, terms if the following condition holds

1 - -
12 =3 <C1 2%y 2 A (_11) (3.2.16)
2 ap — ap ag — ag

Imposing the above condition then allows us to restrict to the coplanar case y = 0. Fur-
thermore if we choose ¢; = (a; — @;)? and ¢3 = (as — @2)? we find the operator O takes
a particularly convenient factorised form

O :[(al — (_11)3m + (CLQ — C_Lg)aag] [(al — C_ll)aal + (CL2 — 52)8@ — 1}
1
al — ay

:[(al — a1)8a1 + (ag — (_12)6@] [(al — C_ll)a(—ll + (az — 6_12)852} (a1 — C_Ll) (3.217)
We recall that the operator O acts on the function f. If we take into account the form of
the leading singularity we find (making a choice for the branch of the square root)

1 1

= — — (3.2.18)
\/(tz—tg—t4+t5)2—4t1 a; —ap —az+az
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Hence by commuting the operator past the rational term we obtain

1
a; —ap —as + as

Of(al,(_ll,CLQ,C_LQ) = @f(al,&l,@,dg) (3.2.19)

with
0= (a1 — 61)2(%1%1 + (a1 — a1)(ag — a2)(010a, + 0ay0a,) + (a2 — 62)28a285 (3.2.20)
We can again rewrite this operator in a factorised form, O = 0,04, where
O,
Os

[(al — C_Ll)aal + (CLQ — (_lg)aa2 — 1] (3.2.21)
[(a1 — 1)8a, + (a2 — G2)0a, (3.2.22)

Thus the purely transcendental part of the integral must satisfy the following equation

al —a; — a2+ as
(a1 —az)(a1 — az)

Of(a1,a1,as,a2) = — {(Cl — c12)®W (13, 13)

tots tst
(1 (fets tata
+on® (t1 " )
+ (CQ — 012)(1)(1)(t4, t5):| (3.2.23)

Putting in the choices we made above for ¢; and ¢; and recalling the constraint (3.2.16)

we find that the equation we have to solve is given by

(a1 — a1 — az + as)?*(a; — ap)
(a1 —a2)(ay — az)
B (a1 —a1 —as + dQ)(CLl — dl)(ag — dg)(b(l) (% %)
(a1 — ag)(dl — dg) t1 ’ t
(a1 — a1 — az + az)?(az — as)
(a1 — az)(a1 — az)

Of(a, a1, az,az) = — Wty t3)

W (14, t5) (3.2.24)

Using the definition of the one loop ladder function we can make explicit the rational
and pure parts of the equation
= =32
(PR CRIRIR T
(a1 —a; — a2 + &2)(a1 — &1)(@ — C_LQ) (f)(l) <CL1(1 — CLQ) C_Ll(l — C_L2)>
al(l—ag)(&l —@2) —@1(1—&2)(&1 —ag) a1 —ay = a1 — as
(3.2.25)

@f(al,&l,QQ,ag) - -

3.3 Solving the Differential Equation

In the previous section we have obtained an equation for the pure part of the integral
in the planar limit O f (a1, a1, as,d2) = X where X is given by the RHS of (3.2.25). Since
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the operator O factorises O = 0,0y, in the fist instance we need to solve the equation
019 = X where we expect g to be a degree three combination of MPLs. As has been the
case previously the key to tackling the problem is choosing appropriate variables. First

we choose variables suitable for rewriting O;. Let us define s and t via

a; —ay = st, as — Gy = ; . (3.3

In terms of the variables s, ¢, a1, as the operator O, takes the simple form
. go 1
O1 = s70s—. (3.3.2)
s

Now let us consider reproducing the first line of the RHS of (3.2.25). We look for a solu-
tion of

(a1 —a; —as + d2)2

(a1 —az)(ar — az)
s2(t—1/t)?

" (st+ay — s/t — ag) (a1 — ag)

(6 (a1,a1) — ¢V (az, a2)]

1 _
3283g91(s,t, ay,ds) = —

(6D (ay,a1) — ¢V (as,a2)] (3.3.3)

To obtain a solution in terms of G-functions all we need to do is to rewrite the pure func-
tions appearing in the square brackets as iterated integrals with s appearing in the outer-
most upper integration limit. This is simple to achieve as the letters {a1,1—aj, a2, 1 —as}
are all linearly related to s and we may take the symbol of a function and choose a
contour v ending at s. We note that starting from the origin {0, 0, 0,0} in the variables
{a1,a9,a1,a2} corresponds to starting from {0, 1,0,0} in the variables {s,t,a;,a2}. For

example,

LlQ(CLl 0, 1,a1

/a1 d’U1 / d’U2
1— V9

[1—ap,a)

[1 — st —ay,st+ a]

||
Q\Q\Q\

([s— (A —a)/t,s+a/t]+[t,s+a/t] +[s — (1 —a1)/t, t] + [t,1])

(3.34)

Where in the third line we have gone from the one-form representation to the symbol
and have expressed the tensor product as an array. We now use the freedom to choose
the contour along the axes in the coordinates {s,t,a;,as}, first along the ay direction
(where, in this example, nothing happens since nothing depends on this variable), then
along the a,; direction (with s = 0 and ¢ = 1 still), then along the ¢ direction (with s = 0
still) and then finally along the s direction. Having defined our contour we may then
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apply the map (2.3.54) taking us from the symbol to the function

. )
Lis(a1) = -G (-C;l tal;s> —G(1:a1)G (—%; s) —G(0,1,a) (3.3.5)

In this manner integrating with respect to s becomes simply a matter of adjoining the
appropriate letter to the beginning of the weight vector. Going through the above pro-

cedure for the full inhomogeneous term we find

1—a

oW (s, t,a1) — oW (s, t,a9) = 2G (0;a1) G ( ;s> —2G (1;a1) G (—7;3)

+2G (1;a2) G (—ast; s) — 2G (0;a2) G (t (1 — ag) ;)

l-a a i, 1—a
+G al,—ﬂ;s -G —ﬂ, al;s
t t t t

+ G (*C_Lgt, t (1 — C_LQ) ; S) -G (t (1 — C_LQ) , —ast; S) (3.3.6)

re-expressing the rational prefactor in terms of s and ¢

(a1 —a; — a2 + C_l2)2 52(75 — 1/t)2
— — — = — — < - (3.3.7)
(a1 —ag)(a; — az) (s(t —1/t) + a1 — az)(a; — ag)
we find that we can integrate and obtain a solution for g;
1 o (t—1/t) 1 B B
Os|= t =— —_ 16D (s, t,a1) — oWV (s, ¢ 3.3.8
[891(87 , A1, a?) dl — ag s+ (;1__1(/1? [¢ (87 7a1) ¢ (87 7a2)] ( )
for convenience let us introduce the variable
g=-n"0_ sa-ay (3.39)

_t—l/t - _al—(ll —ag + ag
as outlined previously we may integrate straightforwardly to find a solution to (3.3.3)

s(t—1/t)

ap — ag

1—a a
g1(s,t,a1,82) = — [QG (0;a1) G <q7 : 1;5) —2G (1;a1) G (q, —%;s)

+2G (1;a2) G (g, —ast; s) — 2G (0;a2) G (¢, t (1 — ag) ; s)
1—aq 6_1,1. ai 1—@1.
+G<Q7 t 7_t7s> G<q7 t ) t a8>

+ G (g, —azt, t (1 —ag);s) — G(q,t (1 — az), —ast; 8)}
(3.3.10)

Fortunately we may proceed in a similar way for the more complicated terms

(a1 —aq —a2+6_lg)(a1 —@1)(&2 —6_12) (1)<a1(1—a2) 6_11(1 —ELg))
a1(1 —az)((_ll —C_LQ) —&1(1—612)((11 —ag) ap — ag ’ aip — as .
(3.3.11)

1
S2asg92(8, t7 C_ll, C_LQ) - —
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From the form of the Block-Wigner dilog we can see that the inhomogeneous term con-

tains letters of the form

1— -1
- a ( az) _ az(ay ) (3.3.12)
ai — az ay — az

These still factorise in terms of factors linear in s and we treat the rational prefactor

B (CLl — a1 —a2+&2)(a1 —dl)(ag—@g) _ 82(1—t)(1+t)
al(l — ag)(@l — ELQ) — @1(1 — @2)(@1 — CLQ) (@1 — ELQ)tS — (1 — @1)@1 + (1 — dg)@gtg
2
sl =1/1) 1 (3.3.13)
ar —ay S—7r
where
. @1(1 — @1)/t — ag(l — ag)t _ @1(1 — @1)(@2 — ELQ) — ég(l — @2)(@1 — a1) (3.3.14)

a1 — ao S(dl — @2)

Again we simply adjoin the letter r to the beginning of each weight vector in the s-
dependent version of (3.3.10)

~1 1—a 1—a
92 (8,1, a1, az) = —M [2G <7“, ta1;5> G (0;a1) — 2G (0;a2) G <7“, al;S)

a1 — a9 t

1—-a 1-a _
+2G (L;a2) G (7“7 ta1;5> —2G (az;a1) G <r, tal;S) -2G (La1) G (r,—%;s)
al

+2G (a2:a1) G (r, ) +2G(0;d1) G (r, —dot; 5) — 2G (0: @2) G (r, —ast; )

+2G (1;a2) G (r, —agt; s) — 2G (az; a1) G (r, —ast; s) — 2G (1;a1) G (1, t — agt; s)
(a1 —ag)t _ (@1 —ag)t

—2G( )G(T,M;S +2G(O,CL2)G T,*ﬁ;s

+2G(La1) G <7’, a1 _ a2 A3 ) —2G (1;az) (r, —(a;__af)t;s>

ro(nlsn ) <r, o)
(

a; 1 —a1 al (6_11 —C_LQ)t
_G y T T, G( ) t ) G 7_77_7;
r r ) r —aot;s | + (r p 21 5)
B ai -~ (C_Ll —C_Lg)t
-I-G(T, _a2t’_7’ ) + G (r, —agt,t — ast;s) — G | r, —agt,—ﬁ;s

1—a a; —as)t
(r,t—dgt,tl;s> — G (r,t —agt,—ast;s) + G (r,t—c‘mt,—”;s)
(C_Ll —@Q)t 1 —C_Ll' (C_ll —C_Lg)t ai
+G<T,— N ;S —G T,—ﬁ,—f;s

t

a) — o) t a) — o) t
Ta_(al ai) 7_é2t; 8> _G <Ta_(ai2 _af) 7t_a2t’ ‘9)

+
DO
Q
)

9;a1) G (r,t — ast;s) — G <r, 1 _tal ,— (a;—_ai) t;s)] (3.3.15)
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Remarkably the prefactors of the weight 3 pure functions in ¢g; and g, are the same so

that the two pieces add up simply and we have

s(t—1/t)

g=ntg2= —7(, ,/ )g, (3.3.16)
ai; — as

where ¢ is a pure function of degree 3. Now that we have integrated with respect to O;

we may proceed to the next operator Oy, however this time there is only one function

to consider.

égf(al,ag,fbl,dg) = g(al,ag,dl,ag) (3.317)
We use the same variables s and ¢ as before

a; —ay = st, ay — a9 = ; , (3.3.18)

except that this time we consider the coordinates {a1,as,s,t} (ie. we eliminate the
barred variables). In these coordinates the operator O, takes the form

Oy = —50; . (3.3.19)

Hence we need to solve T
&f=£514lg. (3.3.20)

a1 — ag

Expressing the denominator in the coordinates {a1, as, s, t} we have

(t—1/t) 1 1

Osf = g = g =— g 3.3.21
oS a; —ag — st+ s/t —s+‘;1__1‘/1§g s—pg ( )
where
a1 — ag
= . 3.3.22
N ( )

To integrate again we must first express the weight 3 function g = g; + g2 found above in
terms of the variables {a1, as, s,t}. Remarkably we find that all letters are again at most
linear in s so the procedure is analogous to the one already employed. Then we can
express the function g as an iterated integral successively along the as, a1, ¢ and finally s
directions. Thus integrating to obtain a particular solution for f may be easily achieved
by adjoining a p to the beginning of the weight vector in the s-dependent MPLs.

By analysing the symbol of the particular solution we are able to make a list of the letters

appearing there. Finally we obtain an iterated integral over a weight 4 integrable word
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in the following letters:

{a1,a1,a2,a2,1 —a1,1 —ay,1 —ag,1 —ay,a; — az,a1 — @z, a1 — a1, ag — as,
a1 — az —az + ag,a1a2 —ag01,a1 — a1 — a2 + ajag + az — aiag,

ajao — a1a1a2 — a1a2 + ajaias + ajasay — dlagég} (3.3.23)

Note that the solution obtained so far is not the most general one as we still have some
ambiguity due to the boundary conditions of the differential equation. Because the dis-
continuities of physical amplitudes must coincide with the unitary and local nature of
the underlying theory, we shall have to impose that our solution be single-valued.

3.4 Single-valued hyperlogarithms from Picard-Fuchs equations

In this section we discuss the construction of single-valued hyperlogarithms, following
ref. [82, 83]. We review the construction in detail, because the techniques introduced
in the hyperlogarithm case can be extended to the KZ equation on the moduli space of

Riemann spheres with marked points 9% ,, that shall be central in the next chapter.

Consider a set of complex constants, ¥ = {01, ..., 0, }. We denote the shuffle algebra of
all hyperlogarithms with singularities in ¥ by Ly, see eq. (2.3.11). In the following it will be
useful to take a more abstract viewpoint. Let X = {x1,...,z,}, and C(X) is the complex
vector space generated by all words with letters from X, and the multiplication is the
shuffle product. We start by defining the universal algebra of hyperlogarithms HLy, as
the algebra C(X), but with rational functions (with poles at most at z € ¥) as coefficients,
and a derivation 9 which acts on rational functions as 9/9z and on words as
1

O(zjw) = P w (3.4.0)

H Ly is an abstract algebra (with a derivation) which has exactly the same properties as
the algebra Ly, (shuffle and differentiation). A realisation of HLy is then an algebra mor-
phism p : #HLyx, — A that preserves the derivative. In particular, the hyperlogarithms Ly,
are a realisation of HLy,. We will in the following refer to this realisation as the standard
realisation,

pG : HLy — Ly, w— G(w;2) (3.4.2)

where we made a slight abuse of notation: if the word is w = ;, ... ;. with [w] the
length of the word w, then we define G(w; z) = G(04,, - - -, 0y,,; 2). In the following also
the dual of H Ly, will be important. The dual of C(X) is the space C{(X)) of formal power

series in words.
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Next, consider a realisation p of H Ly, and consider the generating series

F, = Z p(w) w (3.4.3)

weX*

F, satisfies a Picard-Fuchs-type equation

n

9 i
gb =Y (34.4)

zZ — 0y

=1

Conversely, every solution to eq. (3.4.4) gives rise to a realisation of HLy. Moreover, one
can check that if F’ is any other solution to eq. (3.4.4), then there is a constant series
T € C((X)) such that F’ = F,T. Finally, it is easy to see that we can find n solutions L
such that close to the singularity z ~ o; we have L% ~ (z — ¢;)". Hence, we conclude
that there are constant series Z;; € C((X)) such that

L% = L% Z;; (3.4.5)

We refer to the Z;; as associators and we note that Z;; 7, = Z;;, and their inverses are
Zif = Zj;. The associators can be obtained as the shuffle-regularised values of F), at the
singular points [83]. In particular, if ¥ = {0, 1}, we have Zy; = ®(z¢,x1), where ® is the
Drinfeld associator

From now on we will always identify one of the singular points with 0, say o¢ = 0 (this is

always possible using SL(2,C) transformations). We define

L(z)=L(2) = Z pe(w)w = Z G(w;z)w (3.4.6)

weX* weX*

and we write the associators as Z7 = Z,, so that L7 (z) = L(z) Z°.

Due to the presence of the singularities in eq. (3.4.4), the solutions to eq. (3.4.4) will in
general have discontinuities with branch points at z = 0;. We denote by M,, F, the
monodromy obtained by analytically continuing F}, along a small loop encircling z = o;.
It is easy to check that M, F) is still a solution to eq. (3.4.4), and so there must be a
constant series M,, such that M, F, = F,M,,. We obtain

Mg, L% = L7 €™ and Mgy, L = L(Z2%)7" ¥ 7% (3.4.7)

One of the main results of ref. [83] is that there is always a solution to eq. (3.4.4) with a pre-
scribed monodromy. More precisely, if we are given n (grouplike) elements 41, ..., A, €
C((X)), then there is always a realisation p : HLx — Ly Ly, with Ly, the complex conju-
gate of Ly, such that M, F,, = F,A;. There are two particular cases of this:
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1. If we choose Ay = (Z°%)~1 e2™@r 7% V1 < k < n, we obtain the standard realisa-

tion pg.

2. We may also choose A, = 1, V1 < k < n and we see that there is a realisation of
‘HLsy that is single-valued.

Itis possible to write down a generating function for the single-valued realisation, similar

to the generating series L(z) for the standard realisation. Consider two alphabets X =

{z1,...,2,}and Y = {y1,...,y,} and two generating functions
Lx(z)= 3 Gwiz)w and Ly(2) = Y G(w;2) i (34.8)
weX* weyY'*

where w is the word w with all its letters in reversed order. We define

Lx(z) = Lx(z)Ly(2) (3.4.9)

Lx(z) is a solution of eq. (3.4.4), because

0 0 = Z; = . Z;
5. Lx(2) = - Lx(2)Ly (2) = ; p—— Lx(2)Ly(2) = ; P L(z) (3.4.10)
The monodromies of Lx(z) are
Mo, Lx(2) = Lx(2) My, Ly (%) (3.4.11)
with _ _
M,, = Z(X) "t e*™ @ 79k (X) Z7+(Y) e 2™ Wk Zk (V)1 (34.12)

Obviously Lx(z) is single-valued if M,, = 1, V1 < k < n, which implies that the letters

in X and Y are not independent. Infinitesimally, this condition becomes
Z0(Y ) g Z7H(Y) 7 = 27(X) g 2°%(X) (3.4.13)

This equation can be solved perturbatively in the length of the words. While solving the
constraints (3.4.13) is conceptually very algorithmic, explicitly constructing the solutions
order-by-order in the length of the words quickly becomes very tedious. Below we con-
struct an explicit solution to the constraints (3.4.13). Before doing so, however, it will be
useful to introduce some more notation.

Let us for now assume that we have obtained the solution to eq. (3.4.13) to any desired

order. If we substitute this solution into the definition of £x, we obtain in this way the
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single-valued realisation pgy of HLy,

Lx(z) = Z psv(w)w (3.4.14)

weX*

Some comments are in order: First, in the case where ¥ = {0, 1}, the single-valued real-
isation corresponds to the single-valued harmonic polylogarithms of ref. [82]. Second,
the solution for Y in terms of X is unique order-by-order in the length of the words,
and so the single-valued realisation is unique. Finally, psy and pg are really just two
different realisations of the same abstract algebra H Ly, (just like an abstract group may
have different representations). In other words, the standard and single-valued reali-
sations have exactly the same properties. In particular, they form a shuffle algebra and
have the same behaviour under holomorphic differentiation. We stress, however, that
the behaviour under anti-holomorphic differentiation is less obvious. We will address

this issue in Section 4.2.4.2.

In the following we write G(w; z) = G, (2) = psv (w). Let us denote the algebra generated
by the functions G(w; z) by L§Y. We can define a linear map

sy Ly — LYY G(w;2) — G(w; 2) (3.4.15)
As Ly and L3 are just different realisations of %Ly, sy preserves the multiplication,
sy(a-b) =sx(a) - su(b) (3.4.16)

In the following we denote by Z the algebra of multiple zeta values, and by 2V the
algebra of their single-valued analogues. It is possible to construct explicitly a homo-
morphism s¢ : Z — 25V [84]. One can check that if G(w, z) € Ly, then its regularised
version at some singularity reduces to a linear combination of hyperlogarithms with one

singularity less and with MZVs as coefficients. In other words, we have

with £ = ¥ /{0 } and where we see elements of Ly, as functions of o;. We denote by
Sy, the natural map

& = . SV o 7SV

Sy =58y : 2@ Ly — 27" ® L3, (3.4.18)

The single-valued maps preserve the multiplication, and so they commute with shuffle-

regularisation,

Ss,, |Reg,_,, G(w;z)| =Reg,_, [sx(G(w;2))] =Reg,_,, G(w;z) (3.4.19)

Using these definitions, we can explicitly solve the constraints (3.4.13). We claim that the
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solution for yy, to eq. (3.4.13) is obtained by conjugating zj, by the single-valued analogue
of the associator Z7+ (X)),

Yk = 8y, (Z7(X)) ™" a8y, (Z7+(X)) (3.4.20)

Equation (3.4.20) states that the single-valued analogues of the hyperlogarithms, and
thus the map sy, can be constructed recursively in the number of singularities 0. The
recursion starts with the single-valued harmonic polylogarithms, in which case the as-

sociator involves only MZVs, and so the map sy, reduces to s;.

In order to see why eq. (3.4.20) holds, let us cast the constraints (3.4.13) in the form

yi = Z°% (V) 27 (X) " ay Z0%(X) 274 (Yy)
_ . _ (3.4.21)
= (Z"k(X) Z"k(YX)> . (Z"k(X) Z"’“(Yx))

where we write Yy instead of Y in order to indicate that this identity holds on the solu-
tion to the constraints (3.4.13), i.e,, we have inserted the solution to eq. (3.4.13) into the
right-hand side of eq. (3.4.21). The right-hand-side then only depends on the letters
x;, and so eq. (3.4.21) is a formal solution to the constraints. Comparing eq. (3.4.21) and
eq. (3.4.20), we need to show that

85, (Z°(X)) = Z°%(X) Z°(Yx) (3.4.22)

This relation is in fact a generalisation of the relation between Deligne’s and Drinfeld'’s
associators in the case where ¥ = {0, 1} [84]. We start from the fact that the associator

can be written as the shuffle regularised version of Lx(z) at the point z = oy,
Z7%(X) =Reg,_, Lx(z) and Z°"(Y) = Reg,_, Ly (2) (3.4.23)

We assume that we have constructed all single-valued hyperlogarithms with a certain
number of singularities, and we want to add one more singularity, i.e., we assume that

we know how to construct all the sy, , and we want to construct sy,. We have

éZk (Zak (X)) = éEk [Regz:UkLX(Z)}
=Reg,_,, [sx(Lx(2))]
=Reg,_,, [LX(Z)ZYX (5)}

= [RegZ:UkLX(z)} [Regiz&kfyx(z)}

(3.4.24)

The first factor immediately gives an associator, Reg,_, Lx(z) = Z7*(X). The second
factor also gives an associator. Indeed, the solution Y is independent of z, and so the

shuffle regularisation does not act on the letters y; and it commutes with the reversal
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of words. Hence, Reg._ 5kfyx (2) = 7o (Yx), which finishes the proof. Note that at the
same time we have proved the identity

85, (Z°%(X)) = Reg,_, Lx(z) (3.4.25)

In practice, itis often easier to use this last relation to construct the single-valued associ-
ators than constructing the standard associators and then acting with the single-valued

map.
3.4.1 Single-valued check of the integral

Before proceeding to study the monodromies of our integral we note that it belongs
to a more general class than the one described in the previous section. The alphabet of
symbol entries mixes holomorphic and antiholomorphic variables and thus may couple
the a; to the a;. However using the above we may still compute the monodromies of our
integral around the singular points of (3.2.14) and ensure that the solution is single valued

in those cases.

That is we must ensure that the integral is physical and does not have any discontinuities
when approaching kinematical limits from different directions. As shown previously, in
order to calculate the monodromy around a point o; we must first write the solution
L7 to the Picard-Fuchs equation at that point. We may do so by using associators to

translate L(z), however let us instead decompose L% into
Z% = fi(2) exp(xy log(z — 0y)) (3.4.26)

The function f;(z) has a well defined limit f;(c;) = 1 and it is holomorphic on a subset
of the complex plane C\ Uy; £(0;). Where {(o;) signifies the closed half line beginning
at o; and does not cross any other such half line for the other singular points. Of course
fi(z) is also a generating series and we may write an explicit formula for its coefficients.
Thus for every word not ending in z; and of the form w = 2wy, 2" 'ay, ... 2! 2y, we

may write

o (—1)7" zZ — 0y m
L’SU )(Z) = Z ni+1 ?T—Q—l O—kl — 0;

1<<mi<...<my my s m
mo—m Myr—Mp—
2 — Ui 2 1 2 — Ui T r—1
X | ———— e | ——m
Oky — 04 Ok, — 04

(3.4.27)

Functions of this form are easily seen to be regular in the limit z — o0; and satisfy 3.4.4.
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This sum representation may be analytically continued in a straightforward manner to
an iterated integral whose entries are described by the word w and its basepoint is taken
to be o;. In fact the form 3.4.27 may be considered a Taylor expansion of the integral and

as such may be defined for points not contained in ¥ and for any word.

Thus in order to find the monodromies of our solution to the differential equations and
check that it is single valued we must translate it to different singular points. This may
be achieved via the composition of paths property of iterated integrals to re-express an
iterated integral at one basepoint in terms of another. Taking an example from the set
¥ ={0,1}

G(0,1,1,0;2) = G(0,1,1,0; 1) + G(1,1,0; 1)I(1;0; 2) + G(1,0,1)I(1;1,0, 2)
+G(0;1)I(1;1,1,0;2) + 1(1;0,1,1,0;2)  (3.4.28)

Although this follows from a straighforward decomposition of paths we may see the
terms coming from the Drinfeld associator if we shuffle out the trailing zeros in the G-
functions

)
G(0,1,1,0;2) = I(1;0,1,1,0; 2) — (21(1;1,052) + (31(1;0; 2) — 144 (3.4.29)

Where we have made the identification G(0™~1,1,0"~ 1 1,...,0" 1 1;1) = (o,
and have regularised the G-functions such that G(0,0) = G(0,1) = ¢; = 0. Note how-
ever that not all iterated integrals in the above formula are of the form (3.4.27). Specifi-
cally, because I(1; 1, 0; z) begins with a 1 (note the reversal of words in comparison with

Ll (z)) it should have an explicit logarithm around 1
I(1;1,0;2) = I(1;1;2)I(1;0; 2) — I1(1;0,1; 2) (3.4.30)
Thus we see that the monodromy of G(0, 1, 1,0, z) around 1 is given by
M1G(0,1,1,0,2) = —2mi (21(1;0; 2) (3.4.31)

Of course we may extend this analysis to any ¥ and in the particular context of our inte-
gral we checked the monodromies of a1, as around 0, 1 as well as each and found them
to be trivial. Thus we may conclude that our solution to the differential equation (3.2.25)
is single valued in these cases and we present the result in Appendix A.
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CHAPTER 4

Scattering amplitudes in multi Regge kinematics

It has been known since the early days of QCD that in the Regge limit s > |¢| scattering
amplitudes exhibit a rich analytic structure. The paradigm example is the BFKL equation
in QCD, which resums the radiative corrections in log(s/|t|) to parton-parton scattering
atleadinglogarithmic accuracy (LLA) [85-87] and next-to-LLA (NLLA) [88-90]. The build-
ing blocks of the BFKL resummation at LLA are the multi-gluon amplitudes, which are
evaluated in multi-Regge kinematics (MRK), i.e., in the approximation of a strong rapidity
ordering of the outgoing gluons. The multi-Regge limit is thus the kinematic cornerstone
of the BFKL resummation at LLA. In establishing the BFKL equation, the gluon rapidities
are then integrated out, and the BFKL equation is reduced to a two-dimensional prob-
lem in terms of purely transverse degrees of freedom: i.e., the evolution of a t-channel
gluon ladder in transverse momentum space and Mellin moment.

The aim of this section is to study the multi-Regge limit of scattering amplitudes in N = 4
SYM. We can completely describe the geometry in the transverse space as a configura-
tion of points in the complex plane, and hence we can completely classify all the iterated
integrals that appear in the final result. In other words, MRK is described by the geom-
etry of the moduli space My ,, of Riemann spheres with n marked points. The geometry
of My, is well understood. In particular, the cluster algebra associated to 9y, is al-
ways of finite type and corresponds to the Dynkin diagram A,,_3. The algebra of iterated
integrals on this space can also be completely described: they are iterated integrals of
d log-forms with singularities when some of the marked points coincide. We study scat-
tering amplitudes in planar ' = 4 SYM in MRK for any number N of external legs and

77
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arbitrary helicity configurations. In this chapter we we restrict ourselves to LLA and work
with the leading order central emission block describing the emission of a gluon along
the t-channel ladder. Beyond LLA corrections shall be explored in subsequent chapters.

4.1 Multi-Regge kinematics

The focus of this chapter are planar colour-ordered scattering amplitudes in N' = 4
SYM in a special kinematic limit of 2-to-(NN — 2)-gluon scattering, the so-called multi-
Regge kinematics (MRK) [91]. In order to define this limit, it is convenient to work in
conventions where all momenta are taken as outgoing. We define lightcone and (com-

plex) transverse momenta

+ _,0 z — T Y

pT=p £p° Pk =DprL =Dt ipg 4.11)

Using this decomposition, the scalar product between two four vectors p and ¢ is given
by

2p-q=p"¢ +p ¢ —Pa-pg (4.12)
Without loss of generality we may choose a reference frame such that the momenta of
the initial state gluons py, ps lie on the z-axis with pi = pJ, which implies pj = p; =
p1 = p2 = 0. Then the multi-Regge limit is defined as the limit where the outgoing

gluons with momenta p;, ¢ > 3 are strongly ordered in the lightcone coordinates while

having comparable transverse momenta

Py >>pl>> ok >k lp3| ~ ...~ |pn]| (4.1.3)

The mass-shell condition p? = p; p; — |p;|?> = 0 implies that

PN > Dy > ...pg > Ds (4.1.4)

The ordering between the lightcone coordinates in (4.1.3) implies the following hierar-

chy between the Lorentz invariants,

812 > 83..N—1, S4..N > 83..N—2,84..N—1,85..N > **°
’ ’ (4.1.5)

"'>>834""’SN*1N>>_t1,"',—tN,3

with ¢; held fixed, where

ti+1 = q? qi = —pP2 — ... Pi43 = IL‘(i+3)1 (417)
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We briefly sketch how the hierarchy in (4.1.5) follows from the strong ordering in light-

cone coordinates, (4.1.3). In MRK momentum conservation can be written in the form

N N N
pl_ :_Zpi_ g—p]_v pé": —ij_':—p;_ ():z:pZ (418)
i=3 i=3 i=3
and the two-particle invariants in MRK become modulo (4.1.8)
Sij = 2p7; “pj pjp; 1< ] <N (419)

From this, it is evident that all Mandelstam invariants made of k£ consecutive final state
momenta s;;11._i+k =~ Si+k Will be comparable in size, and much larger than invariants
made of £ — 1 consecutive momenta. For the scale separation between s-like and ¢-like
variables, we use (4.1.3)-(4.1.7) and (4.1.8) to infer that ¢;” ~ p;f, ;. ¢; ~ —p;, ; and therefore

—q g7 < piapis =~ |ail
2.

. In other words, the ¢; are dominated by their transverse

components, ¢? ~ —|q;

The analysis of MRK thus far only relied on Lorentz symmetry. We could also make use
of the dual conformal invariance and write the kinematical dependence of the amplitude
in terms of conformal cross ratios.
2 2
Tit15%ij4+1

Uij= 55— DPi=x —Ti (4.1.10)

Ti3Tit15+1
with indices cyclically identified, i + N =~ i. As mentioned before there are 3N — 15 of
them in four dimensions and following ref. [92, 93], from the set of all the Uj;x; we can

pick a particular algebraically independent set.

2 2 2 2 2 2
wg = Zit1,i+5%i42,i+4 s = TN ,i+3%1i+2 Ui = T1i4472,i43 (4.1.11)
i = 3 2 ) 2 i = 3 2 AL
Li11,i+4%i42,i45 TN i+271,i+3 L1,i+372 444

The three conformally invariant cross ratios (u1;, ug;, us;) of (4.1.11) can be associated to
the t-channel invariants (4.1.7), which have transverse momentum |q;|? [92,93]. In MRK
these cross ratios take the form

k; + kit1]? 2
U4 :1—(51'74—0 51
' kit1/? )
i 2
s = 8+ O(8) (4.112)
12 k)2
ug = 0; (LUK 2y

© 7 ail? kg 2

where k; = pij+3, 1 < i < N — 4, denote the momenta of the gluons emitted along the

t-channel ladder, and we define the ratio §; = k;jrl / k;” From (4.1.3) it is evident that in

MRK we have §; — 0, and so we see that all the u; tend to 1 at the same speed as the uy;
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q0 * X3
ki
q1 * X3
ko
X1 e
kn_5
qN-5 e XN-3
ky_4
qN -4 e XN_—2

Figure 4.1.1: The dual coordinates in the transverse space. Dashed lines indicate the for-
ward momenta with zero transverse momentum, which are strictly speaking absent in
the transverse momentum space because they are orthogonal to it.

and usg; vanish. It is convenient to define the reduced cross ratios [92, 93]

_ U |ai—1]? ki1 |?
U9 = = + O(6;
usi Qi | kil B
~ 31 i+ 4
Uz = = + O(6;
ol il [k + ki ? (%)
We now introduce dual coordinates in the transverse space CP! by (see Fig. 4.1.1)
q; = Xi4+2 — X1 and kz' = Xij4+2 — Xj+1 (4.1.14)

The reduced cross ratios ig; and u3; can then be written as (squares of) cross ratios in
CP!,
fig; ~ |&2i]? and ig; ~ |&3/? (4.1.15)

with

£ = (X1 = Xi41) (Xivs = Xiv2) o £ = (%1 — Xit3) (Xit2 — Xit1) (4.116)
C (%1 — Xig2) (Xir3 — Xiy1) C (%1 — Xig2) (Xir3 — Xiy1)

It is easy to check that
§i=8i=1—E3 (4.117)

We also introduce the transverse cross ratios

=1 1 (i —%Xi3) Kie —Xip1)  Qini ki (4.118)

& (%1 —Xiq1) (Xig2 — Xi43) di-1 kit1

In the literature it is customary to use the variables w; = —z;.

Itis easy to see from Fig. 4.1.1 that the MRK setup has a natural Zy symmetry, called target-
projectile symmetry [92,93], which acts by reflecting all the points along the horizontal
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symmetry axis. This symmetry acts on the points x; via

X1 le =1
X; , (4.1.19)
xy_; f2<i<N-2

On the cross ratios z; target-projectile symmetry acts by

Zi — 1/ZN—4—i (4.1.20)

411 Scattering amplitudes and cluster algebras

(1234)

N

(1235) — (1236) — — (123N —1) — (123N)
N N | N

(1245) — (1256) — — (12N —2N —1) — (12N —1N)
AN N } N

(1345) —» (1456) — — (IN-3N-2N-1) — [(IN-2N-1N)]
U NI BN N | N

(2345) || (3456) | (N-4N-3N-2N-1)| [(N-3N-2N-1N)

Figure 4.1.2: The A-coordinates for the initial quiver for Gr(4, N') with frozen nodes in
boxes.

As we have seen in previous sections, the kinematics of scattering amplitudes in planar
N =4 SYM are naturally encoded through a configuration of N momentum twistors in
three-dimensional projective space CP. As momentum twistors are free variables, we
can describe the kinematics of colour-ordered partial amplitudes by a configuration of
N points in CP? [10]. We denote the set of all such configurations by

Confy (CP3) ~ Gr(4, N)/(C*)N-1 (4.1.21)

Naturally associated to the spaces Confy (CP?) are cluster algebra structures [8,9,94-96],
which play a role in describing the singularity structure of scattering amplitudes or light-
like Wilson loops in planar N = 4 SYM theory [10]. The A-coordinates of the cluster al-
gebras are homogeneous polynomials in the Plicker coordinates (ijkl). For the cluster
algebras associated to Gr(4, V) one defines an initial cluster given by the quiver diagram
in Fig. 4.1.2. Other clusters are obtained by a repeated process called mutation. The A-
coordinates in the initial cluster are given by certain Pliicker coordinates. The nodes
in boxes are called frozen nodes and the others are called unfrozen. For each unfrozen
node one can form X'-coordinates by taking the product of all A-coordinates connected
by incoming arrows and dividing by the product of all A-coordinates connected by out-
going ones. We label the X'-coordinates as &;; fori =1,2,3and j =1,..., N — 5 follow-
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(1234)(1256) . (1235)(1267) . N (123N —2)(12N — 1 N)

(1236)(1245) @3nyame o T (123 N)(12N —2N — 1)

(1235)(1456) (1236)(1245)(1567) (123N — 1){12N —3N — 2){LN 2N — 1N}
(1256)(1345)  ~ (1235\(1267)(1456) - (123N _2)(12N _IN)(IN 3N 2N 1)
(1245)(3456) _ (256)(1345)(a567) (12N 2N —1)(IN —4N —3N—2)(N —3N —2N —LN)
(1456) (2345) (1245)(1567) (3456) (12N 3N —2)(IN —2N _1INWN —4N —3N 2N —1)

Figure 4.1.3: The X'-coordinates for the initial quiver for Gr(4, V).

ing the obvious structure of Fig. 4.1.3. Explicitly, they are given by

X1.:<123j+3><12j+4j+5>

T (1235 4+5)(125+35 +4)
XQI:<123j+4><12j+2j+3><1j+3j+4j+5) 4122)
T (1235 4+3)(125+45+5) (15 +25+35+4) -
xy = L2435+ DA+ 15 +2j+3)(+25+3)+4) +5)

T (125425 +3) {15 +35+45+5)(j+15+25+35+4)

The X' -coordinates of any given cluster, in particular the initial one outlined above, form
a complete set of coordinates for the kinematical dependence of the scattering ampli-
tude or Wilson loop.

In the remainder of this section we show that there is a very natural geometrical inter-
pretation of MRK in terms of momentum twistors. More precisely, we will show that the
dual conformal invariance of planar ' = 4 SYM implies that the multi-Regge limit de-
fined in (4.1.3) is conformally equivalent to the strongly-ordered multi-soft limit where

the momenta p;, 3 < i < N — 3, are soft, with p; softer than p; 1.

Before proving the connection between the multi-Regge and soft limits, let us discuss
in more detail how to take a single soft limit in momentum twistor space. In terms of
dual coordinates, the momentum p;4; is soft if the points z; and z;41 coincide. As the
points z; correspond to lines in momentum twistor space, the soft limit corresponds
to taking the twistor Z; to lie on the line between Z;_; and Z; ;. This limit leaves two
degrees of freedom from the three associated to Z;. The remaining degrees of freedom
can be thought of (using real twistor space as an analogy) as the distance along the line
between Z;_; and Z;; and the angle of approach to the line in which the limit is taken.
More generally, let us consider a limit where the twistor Z; approaches the line between

Zj and Zj,. We parametrise this situation as follows

Zi — ZAZ _ Zj+ai (jj—1k+1Ek+2) (Jkk+1k+2) Zj—1_€i5i< (Jj—1kk+2) ZkJrl (4123)

o =Tk 1 hr2) 2k T 6 G Tk b b2 Rrj—1kki2)

and the limit where Z;, Z; and Z;, are aligned corresponds to the limit ¢, — 0. The

existence of the last two terms in (4.1.23) ensures that 2? ;. ;,2% , ~ ¢; as we approach
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p1 p2

PN kn_4 kn_3 ’ ’ kpr1 kp ko k1 p3

Figure 4.1.4: Diagrammatic representation of the Mandelstam region [p, ¢]. The discon-
tinuity in the (k, + ... + k,)? channel is indicated by the dashed line.

the limit, as can be shown from (2.2.59) with the canonical choice of infinity twistor.

The multi-soft limit we wish to consider is one where we sequentially take the momenta
pi» 3 < i < N — 3, to be soft. This corresponds to taking twistor Z; to the line (Z;Z3),
then Z3 to the line (Z1Z,) and so on. This limit reproduces the behaviour of the cross

ratios (4.1.11) described in the previous section
u1; — 1 ug; — 0 uz; — 0 (4.1.24)

i.e., the cross ratios behave in the same way as in MRK, cf. (4.1.3). This is, however, still
insufficient to conclude that this multi-soft limit is equivalent to MRK, and we still need
to show that the cross ratios approach their limiting values at the same speed. Equiva-
lently, we need to show that the reduced cross ratios (4.1.13) are finite in the limit. This

is indeed the case, and we find

d = U Qi1 Bit1

" 1wy (T i) (14 Bip) (4.1.25)
i us; 1 h
U3 =

—)
I—wuy (T4 aip1) (1 + Bigr)

Hence, we conclude that this particular multi-soft limit is conformally equivalent to the
multi-Regge limit. Comparing (4.1.25) to (4.1.15) and (4.1.18), we see that we can identify
the parameters «;+1 and ;41 that describe the reduced cross ratios in the multi-soft

limit with the CP! cross ratio that appear in MRK

Qi1 = —1/Zi and (41 = —1/21' (4.1.26)

4.1.2 Planar SYM amplitudes in multi-Regge kinematics

So farall the considerations were purely kinematical. In this section we present the (con-
jectural) representation of an amplitude in MRK to leading logarithmic accuracy (LLA).
Helicity must be conserved by the gluons going very forward, so that the different he-
licity configurations are distinguished only by the helicities of the gluons emitted along
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the ladder. Denoting these helicities by A1, ..., hy_4, we define the ratio

i<1>h1 ,,,,, hn_g4 Rh1 _ AN(_7+7h17"'7hN—47+7_>

e ABDS(— 4+, -) 4.1.27)

[MRK, LLA

where Ax(—,+,h1,...,hn_4,+,—) is the (colour-ordered) amplitude for the produc-
tion of N — 4 gluons emitted along the ladder, and ABPS(—, +,... +, —) is the corre-
sponding BDS amplitude. The function Ry, . p,_, is finite, and thus dual conformally
invariant. It can easily be related to the well-known remainder and ratio functions. Since
Regge factorisation holds in the Euclidean region, the ratio in the left-hand side of (4.1.27)
tends to a phase in this region. The exact form of this phase is immaterial in the follow-
ing, because it is simply obtained as the ratio of the corresponding tree amplitudes [97].
We normalise the left-hand side of (4.1.27) such that Ry, . »

region.

v_, = lin the Euclidean

If we take a discontinuity corresponding to a consecutive subset of final-state momenta
kil € [p,ql € {1,...,N — 4}, ie, a discontinuity with respect to the invariant (k, +

.+ kq)Q, then Ry, . ny_, is no longer trivial due to the presence of a Regge cut (see
Fig. 4.1.4) [93,98-105]. In terms of the dual conformal cross ratios taking this discontinu-
ity corresponds to analytically continuing U,,+2 around the origin while all other cross

ratios U;; are held fixed. In the following we denote the value of the ratio Ry, . n,_, in

. We conjecture that R,[iq] By, D

this so-called Mandelstam region [p, q] by R[p 4

whN—a”
MRK to LLA can be cast in the form of a multlple Fourier-Mellin integral

RED, ({2 bpsksg 1) =1+ aimrP a0
q—2
+air (~1)TPFPD |y, [ T] Ok | xg 7 (4.1.28)
k=p

Where the multiple (inverse) Fourier-Mellin transform FP4 of a function F({v,ny}) is
defined as

q- ne/2 ptoo g, ‘
F{zr}) = FPAF ({vg, ni})) H Z < > /_ %VHQWF({%W})

k=pnp=—00
(4.1.29)
The remaining quantities in (4.1.28) are as follows
q—1 5
S N § B (4.1.30)

We define 7, = /ugiusk, and a is the 't Hooft coupling. To LLA, the value of 7 is inde-
pendent of k, but we prefer to keep the 7, different for reasons that will become clear in
subsequent sections. The one-loop coefficients r[P4:(1) receive contributions from both
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the Regge pole and cut. They are sums of logarithms whose functional form is irrelevant

for the remainder of this chapter. E,,, is the leading-order (LO) BFKL eigenvalue,

1
Ep=—= Inl s+ 1+z’u+m + 9 1—z‘u+M — 21(1) (4.1.31)
202+ 2 2 2
and x"(v,n) is the LO impact factor [98,99]
Xp = X" (Vps 11p)
Xq = Xihq (Vg—1,m9-1)
1
4+ _ _ *
X (v,n) = LT (X (v, —n)] (4.1.32)

The central emission block Cy, = C*(vk, ng, Vi1, nk11) for the emission of a positive-

helicity gluon is [102]

T(1—ivg — ") Tivgsr + ) D(i(vg — vpgr) + L)

C+(Vk7 ng, Vk+17 nk‘+1) =

D(14 iy — ) D(—ivgyr + )T —i(vg — vpg1) + 2EE)
(4.1.33)

Conversely for the emission of a negative-helicity gluon it takes the form
Ci(Vv n,Q, m) = [C+(_V7 -n,—H[, _m)]* = C+(V7 —n, W, _m) (4134)

The (inverse) Fourier-Mellin integral transform (4.1.28) is invertible and, focusing on the

single variable case, its inverse is given by

]:_l[f(z)] _ /djrz Z—l—iu—n/Q 2—1—iu+n/2 f(Z) (4.1.35)

with the usual metric on the complex plane

_dz ANdZ
21

d’z = =dxNdy=rdrANdp forz=ux+iy= re'¥ (4.1.36)

The Fourier-Mellin transform has the property that it maps ordinary products into con-
volutions. More precisely, if F[F| = f and F[G] = g, then

FIF-Gl=F[F]+«F[Gl=fx*g (4.1.37)

where the convolution is defined by

z

(fx9)(z) = % / ﬁg fw) g (—) (4.1.38)

w

A proof of the convolution theorem for the Fourier-Mellin transform is given in Ap-
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pendix A of [38]. It is easy to see that the convolution product is associative and com-

mutative, and the distribution 7 §?)(1 — z) is a neutral element.

In order to fully define the expression for 72,%71”6’.]“’h]\r74 in (4.1.28) we must specify the con-

tours of integration. The integrals over the v}, are taken along the real v -axes, however
the quantities x and C have poles on the real axes for certain values of the nj. Our con-

tour prescription for avoiding these poles is as follows. For n,, = 0 we replace

1

Wy — €

X" (v, 0) — (4.1.39)

For ni_1 = ni we find that C'(vg_1, ng—_1, vk, nk) exhibits a pole at v,_; = vy, as can be

seen by inspecting the third factor in the numerator of (4.1.33). We avoid this pole by

replacing it as follows
1 1
- — = (4.1.40)
i(Vg—1 — k) i(vg—1— k) te

For n,_; = 0 we replace

1
“ha-1(y, 1.0) - ———— 4141
X (Vq 1 ) di_1+€ ( )

In all cases we take € to be an infinitesimal positive number.

The effect of the replacement (4.1.39) is to shift the pole from x"# (1, 0) slightly into the
lower half v, plane. The shift (4.1.40) means the pole is slightly shifted into the upper half
vi—1 plane (or the lower half v plane). Finally the shift (4.1.41) takes the pole slightly into
the upper half v,_; plane.

We conclude this section by quoting some properties of the Fourier-Mellin space func-
tions that enter (4.1.28). For nj, = 0, the BFKL eigenvalue and the central emission block
have the following properties [85,87,91,106-109]

lim F,o =0 (4.142)
v—0
lin%C’i(V,O,u,m) = xF(u,m) (4.1.43)
v—
lim C*(v,n, 1, 0) = —xTF(v,n) (4.1.44)
pn—0
Res,—,CE(v,n, pu,n) = (—1)"i (4.1.45)

Note that E, vanishes quadratically as v — 0 due to its symmetry under v <» —v. As we
will see shortly, the above relations guarantee that (4.1.28) has the correct soft behaviour.
In order to prove the last relation (4.1.45), we need the following identity

sin (5 +iv)

[\

= (=1)"*! 7 4146
sinm (g — iv) (=1) ne ( )
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In order to show this identity, let us define

5= G4 4147)
sinm (g — iv)

[\

Obviously, Sp = —1 and S; = 1. Moreover, S, satisfies a recursion of order two

Spig = sin [77 +m(%+ w)] _ sin7(2 + iv) _s, (4.148)

sin [+ (% —iv)] sinw(§ —iv)

[
[\

Hence, S, = (—1)""L. Finally, we note the following relation between the central emis-
sion block and the impact factor

H(v,n) x~ (u,m)

C_(V,TL,/L,TTL) _ X
X~ (v,n) x (@, m)

CF v pm) (4.1.49)
Equation (4.1.28) reproduces the known Fourier-Mellin representation of the six-point
MHV and NMHV amplitudes in MRK to LLA [98,99,102], and also of the seven-point MHV
amplitude to LLA [102]. In [38] further support to the conjecture was given by showing
that it is consistent with target-projectile symmetry and with the factorisation of the
amplitude in infrared limits. Due to the strong ordering in the rapidities (or equivalently,
in the (+-) lightcone coordinates), there are no collinear singularities. All the singularities
of an amplitude in MRK can therefore be associated to some final-state partons being
soft. Indeed an amplitude in MRK has soft singularities only in the limits where one of
the momenta k;, 1 < i < N — 4, vanishes. More concretely, in terms of the transverse

cross ratios in MRK, the limits and their effect upon R are described by

21— 0: Rhy. (1,215, TN=5, 2N=5) = Rh,y. (72,22, ..., TN=5, ZN—5)
zi >0, zi—1z; fixed: R_p, (oo Tic1, 2ic1, Tis Ziy - .) = ha( ey TieATiy —Zi—1%iy + - +)
ZN_5 — 00 : Rohy s (11,21, TN=5, 2N=5) = R_hy 5(T1,21,- ., TN—6, ZN—6)

(4.1.50)
Furthermore these limits have their analogues in the Fourier-Mellin space and it turns
out that the prescribed contours are precisely the ones required to ensure that the con-
jectured form reproduces the soft limit behaviour. Similarly by considering how the
variables z; and 7; behave under target-projectile symmetry it is possible to show that

the conjecture is consistent with the behaviour of Ry, py_,-

Finally the function R,[i’q.]“ hy_, is identical to the ratio where all the gluons not present
in the discontinuity [p, ¢] have been removed. In other words, if we know the results for
the Mandelstam regions [1, N — 4], then we can reconstruct all other cases. Hence, in

the following we only discuss this particular case, and we simply write Ry, . n for

[1,N—4]
hiyeshn—4”

N—-4
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4.1.3 Perturbative expansion of the ratio R, 1, _,

So far all the considerations were made before the perturbative expansion of the func-

tion Ry, ... If we expand the integrand in (4.1.28) perturbatively, then at each order

whN—4-
we obtain logarithms of 4. The coefficients of these logarithms are the main objects of
interest in the rest of this chapter. We write the perturbative expansion of the function
Rhiyohy— @S

(1)

hi,...hn—4

00 N-5
. ; 1 ; i1yerin
+ 27 E E a' (H Tk' log"* Tk:) gfff,’...,iz,i)(zl, e ZN-5)

1=2 i1+...+Fiy_5=t—1 k=1

Rhr,hy g (T1, 21, -, TN=5, 2N—5) = L +aimr

(4.1.51)

The perturbative coefficients are completely known for N = 6 for both MHV and NMHV [100,
101,103,110-112], and for all MHV amplitudes at two loops [102,113,114]. Comparing the
perturbative expansion to (4.1.28), we see that the perturbative coefficients admit a Fourier-
Mellin transform representation

(i1,-iN—5) (‘UNH [1,N—4] pe o ik
Ihyr s (#1,.-.,2N—5) = 5 Flb X1 H Cr | Xy—s H Bl (4.152)
k=1 k=1

The poles on the real axis are dealt with by the prescription already outlined in (4.1.39) -
(4.1.41).

The symmetries of the ratio Ry, . s, _, induce similar symmetries on the perturbative

N
coefficients,
(91N —5) _ (#1yin—s) B B
ghl,...,hN74 (Zla ey ZN—5) - g,hhm’,h]\_‘; (Zl, P 7ZN—5)
_ (iN—5581) 1 1 (4.1.53)
= g_hN747._.7_h1 o Sy o

In the soft limits, the perturbative coefficients must reduce to lower-point functions.
The limits where either k; or ky_4 vanish are easy to describe: the perturbative co-
efficients reduce to the corresponding coefficients with the soft momentum removed,
except if the corresponding large logarithm is present, in which case the perturbative
coefficient vanishes in the limit. More precisely

(i2,-iN—5)

lim g(“’mﬂN_s)(Zl, N 7ZN—5) = 6i10 ghg,..‘,hN74 (227 ey ZN—5>

hi,....,hn—

z1—0 1--sRN—4
(i1,-siN—5) (11,-5iN—6) (4154)

zN1,15Hi>oo Ihi,ehn_a (Zl’ T ’ZN*E’) - 5iN—50 Ihi,.hn—s (Zl’ e ’ZN*B)
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If k;, with j ¢ {1, N — 4} is soft, then the perturbative coefficients behave like
g(ih-.-,iN—s)(zl e ZN5)
(2-1,2)—(00,0)7 oo —a AT T
Zj—1%j fixed (4155)

(11 5esBj 10 pesiN —5)

- Zlyeeey —Rji—1RGye+.y EN—
hl,...,hj,...,hN_4 ( 1 ) j—1<3, sy *N 5)

Indeed, we have

lim R TN 2N 4156
Ky 20 B (T1 215+ TN=5, 2N—5) ( )

0 N-5 1 ( )
) ; ; Lo 1N
= 271 a — log* T Hore =177
> > 11 il B TR Ihy ks

=2 i1+...Finy_5=t—1 k=1

— i 1 i (i1yenst yoyin—5)
=2miy > > a | 1L jqtes™ ) g5 0"

=2 iy i iy 5 =i— 1 i1 i =i k=1
oo 1 N-5 1 ( )
— 9 R PO S R i1 yeest yernsiN—5
a 27TZ Z Z “ 7//' log (T]_lTj) H Zk;' log ' Tk ghlvnuhj:“'vh‘Nfll
1=2 i1+...+i/+...+iN_5:’i—1 k=
k¢{j—1.j}
(4.1.57)
where the last step follows from the binomial theorem
L ogii1 7,y logh 7j = — log” (4.1.58)
2 o los T e log mi = g log” () -

ij,1+ij=Z

See [38] for a more in-depth discussion of soft limits.

4.2 MRK and the moduli space of genus zero curves with marked

points

In this section we argue that it is possible to describe the space of functions of scatter-
ing amplitudes in planar A/ = 4 SYM in MRK. We start by noting that in MRK the only
non-trivial functional dependence is through the transverse momenta. In the previ-
ous section we have seen that the kinematics in the transverse space are described by
n = N — 2 dual coordinates x;. Hence, in the multi-Regge limit the kinematics are de-
scribed by a configuration of (N — 2) points in CP!. The space of such configurations is

equivalent to the moduli space of genus zero curves with (N — 2) marked points
Confy_o(CP) =~ 9o 2 4.2.1)

In Section 4.1.1 we have seen that the cluster algebra attached to the configuration space
describing the kinematics of an amplitude is related to the singularities of the amplitude.
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From the previous discussion it is thus natural to expect that amplitudes in planar N’ = 4
SYM in MRK can be expressed in terms of iterated integrals on Mt xy_2. We now show
that this is indeed the case. More precisely, we show that the cluster algebra associated

to Confy (CP?) in full kinematics reduces to the cluster algebra of 9 y_o.

4.2.1 MRK and the moduli space 9%, y_-

We start from the duality between MRK and multi-soft limits discussed in Section 4.1.1.
We insert the parametrisation of eq. (4.1.23) into the cluster X'-coordinates of eq. (4.1.22)
and we take the limit ¢; — 0. We see that all X-coordinates of the form &3; vanish in the
limit, while the others reduce to either holomorphic or anti-holomorphic cross ratios in
CP!

(x1 —Xj41) (X142 — Xj13)
(x1 — Xj+3)(Xj+1 — Xj+2)

(X2 — Xj12)(Xj+3 — Xj44)

Xy = —— = =
T (R~ RKjra) (K2 — Xjiea)

(4.2.2)

ng =0 ng =

We see that the X-coordinates are singular when two points x; coincide, which is pre-
cisely the singularity structure of the moduli space 9ty xy_2. However, we have ob-
tained two copies of points, a holomorphic and an anti-holomorphic one. This can
be understood from the cluster algebra in Fig. 4.1.3. Indeed, in the multi-Regge limit
the middle line in the quiver vanishes, and so the cluster algebra splits into two dis-
connected parts, one which only depends on holomorphic variables and the other one
only on anti-holomorphic variables. Each of these two parts is isomorphic to the clus-
ter algebra An_5, which is the cluster algebra that describes the singularity structure
of Confy_o(CP!) ~ Mo, nv—2. Hence, we conclude that in MRK the cluster algebra of
Confy (CP?) reduces to the cluster algebra Ay_5 x Ax_s, and the two copies of Ay_5
are complex conjugate to each other in the case of real 2-to- (/N —2) scattering. As a con-
sequence, we expect that planar scattering amplitudes in /' = 4 SYM in MRK can be ex-
pressed through iterated integrals with singularities precisely when the X'-coordinates
in eq. (4.2.2) are singular, i.e., iterated integrals over integrable words made out of the
one-forms dlog(x; — x;) (and their complex conjugates). Note that scattering ampli-
tudes in MRK are singular whenever one of the final-state gluons is soft, k; — 0, which
happens precisely when x; = x;11, 2 < @ < N — 4. It is remarkable that the cluster
algebra in MRK is of finite type, independently of the number N of external particles.
Indeed, it is known that a cluster algebra is of finite type precisely if one of the quivers
that represent its seeds is a Dynkin diagram [9]. The cluster algebras associated to the six
and seven-point amplitudes are of finite type (the corresponding Dynkin diagrams are
As and Eg), but starting from N = 8 the cluster algebra is infinite [10,94]. Remarkably, the
cluster algebra in general kinematics always reduces to a cluster algebra of finite type in
MRK.

Scattering amplitudes, however, cannot be arbitrary combinations of iterated integrals
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built on Ay_5 x Ax_s, but the branch cuts of the amplitudes are constrained by physi-
cal considerations. In particular, massless scattering amplitudes can have branch points
at most when a Mandelstam invariant vanishes or becomes infinite, which puts strong
constraints on the first letter in the word defining the iterated integral® [115]. Dual confor-
mal invariance implies that the first letter of the word must be a cross ratio dlog U 1. In
the Mandelstam region [p, ¢], however, integrability combined with the first entry con-
dition implies that on this Riemann sheet the branch points are determined by products
of cross ratios that become equal to 0, 1 or co. In other words, in a Mandelstam region
the first letter is either a cross ratio dlog Uk or dlog(1 — [, an}glkl) In the following
we show that this implies that in MRK the first entries are necessarily absolute values

squared of cross ratios in CP".

To start, we note that there are N(N — 5)/2 multiplicatively independent cross ratios,
which we may choose as

U1, Ui, ug; 1 <1< N —=9

Uy 2<i<j—4<N-=5 (4.2.3)

where these cross ratios have been defined in eq. (4.1.11). The multi-Regge limit of (wuy;, ug;, us;)
was already analysed in Section 4.1. Using the duality between MRK and the multi-soft
limit, it is easy to show that all the U;; tend to 1in MRK. We introduce new reduced cross

ratios which have a finite multi-Regge limit

i3 2
~ 1-U;; X; — Xj_1 Xp — Xt
) 7 - 1 i +

] —4
[ (1 —uk) X; — Xi42

(4.2.4)

X — X
ki1 TR T kA2

From eq. (4.2.4) we see that all the U;; approach 1 at different speeds in the multi-soft
limit. Indeed, the multi-soft limit is approached sequentially according to e < €3 <
... K €n_4, Where ¢; are the small parameters introduced in eq. (4.1.23). Since uj; =
14+ O(€ei+1). wesee that Uj; = 14+ O(e; . . . €j_4), and so all the U;; approach 1 at a different
speed.

We now show that the first entries of the perturbative coefficients reduce to absolute
values squared of cross ratios in CP! (up to logarithmically divergent terms that are ab-
sorbed into the definition of the 73;). Let us first look at the case where the first letter
is dlog Ujji. It is sufficient to analyse the multiplicatively independent cross ratios in
eq. (4.2.3). They all tend to 1, except for ug; and us;, which we may exchange for the cor-
responding reduced cross ratios tg; and s;. The latter reduce to absolute values squared
of cross ratios in CP!, see eq. (4.1.15).

"We note that this condition is independent of whether the iterated integral can be evaluated in terms
of multiple polylogarithms.
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Nijkl

Next, let us analyse the case of a letter of the type dlog(1 — [, ), Uj;5;" ). It is sufficient
to assume that the factors in the product are taken from eq. (4.2.3). If one of the factors
goes to zero in MRK, then the claim is true, because we have for example

dlog(l —uy; U) —

{ ndlogug; +dlogU ifn <0 (4.2.5)

ifn>0

where U is any product of cross ratios that tend to 1 in MRK. If all the factors in the
product [[;;, U Z.Zl“ tend to 1, then we know that one of the factors tends to one much
slower than the others. Hence, up to terms that are power-suppressed in MRK, we only
need to keep this factor. The claim then follows from eq. (4.2.4).

The previous discussion implies that the coefficients appearing in the perturbative ex-
pansion of scattering amplitudes in planar ' = 4 SYM are iterated integrals with singu-
larities described by the cluster algebra Ax_5 x Ay_5 and whose first letters are absolute
values squared of cross ratios. As the first entries describe the branch points of the func-
tion, we conclude that the perturbative coefficients have no branch cuts when seen as
functions of the complex points x;. In other words, these iterated integrals must define
single-valued functions on the moduli space of Riemann spheres with N — 2 marked
points. In the remainder of this section we review the theory of single-valued iterated
integrals on My y_o. We first discuss ordinary, not necessarily single-valued, iterated
integrals on M x_2, and we turn to the construction of their single-valued analogues at
the end of the section.

4.2.2 Coordinate systems on 9,

In this section we review various coordinate systems on 91 ,, which are useful to study
iterated integrals and the multi-Regge limit. As a geometric space, we can describe M ,
by configurations of n distinct points on the Riemann sphere. We identify configurations
that are related by conformal transformations. As SL(2, C) has complex dimension 3, we
immediately see that

dime My, =n —3 (4.2.6)

Roughly speaking, since My ,, is SL(2, C)-invariant, a system of coordinates is given by a
set of cross ratios formed out of the points x;. There is no global coordinate system on
My . One such set of cross ratios is given by the cross ratios z; defined in eq. (4.1.18). We
will refer to these coordinates as Fourier-Mellin coordinates. These coordinates are well
suited to write down the Fourier-Mellin transforms that describe amplitudes in MRK.

These coordinates, however, are not ideal to describe the iterated integrals on Mt ,,.

In ref. [116] various local systems of coordinates are discussed that are well suited to
study iterated integrals on 9y ,,. A particularly simple set of local coordinates are the



4.2. MRK and the moduli space of genus zero curves with marked points 93

simplicial coordinates, obtained by using the SL(2,C) invariance to fix three of the n

points to 0, 1 and oo, e.g.

(xi —x1)(x2 — x3)
(xi — x3)(x2 — x1)

(X1,...,%Xp) — (0,1,00,t1,...,th—3) with t;_3 = 4<i<n (4.27)
Note that there are 6 () = n(n — 1)(n — 2) different choices for simplicial coordinates,
depending on which three points we fix to (0, 1, c0). Using simplicial coordinates we can

describe 9 ,, (roughly speaking) as the space

{(tl, R ,tnfg) S Cn_?”ti 75 0,1 and ¢; 7A tj} (4.2.8)

While there is in principle no reason to prefer one particular choice of simplicial coor-
dinates over the other, some choices are more suited to MRK than others. In particular,
it is useful to choose the coordinates so that they transform nicely under the symme-
tries of the problem. In our case, we prefer to choose simplicial coordinates on which
target-projectile symmetry acts in a simple way. It is easy to check that the simplicial
coordinate systems with this property are defined by fixing the points (x1,xx, Xn—_k),
2 < k < [#:2]. In addition, for N even the set of simplicial coordinates defined by

2
fixing (xx /2, Xk, XN ) also has this property.

There is one particularly nice choice of simplicial coordinates for which the two-loop
MHYV amplitudes factorise into sums of six-point amplitudes [102,113,114]. They are de-
fined by

(x1,.-.,xNn—2) = (1,0,p1, ..., pN—5,00) (4.2.9)

We refer to these coordinates as simplicial MRK coordinates. From the previous discus-
sion it follows that simplicial MRK coordinates transform nicely under target projectile

symmetry
(p1s--- pn—5) = (1/pN—s,...,1/p1) (4.2.10)

Simplicial MRK coordinates are related to the Fourier-Mellin coordinates by

(pi — pi=1)(pi+1 — 1)
4.2.11
(pi — pi1)(pi-1 — 1) @210

Zi =

with pg = 0 and py_4 = oo. In these coordinates the two-loop MHV amplitude takes a

particularly simple form [102,113]

2
( Hs]

0, 1
gl 1— — 4.2.12)

0,1,0,.“,0)(
Pk

1
Ply---y PN—5) = 1 log[1 — pi|* log

where k denotes the position of the 1in (0,...,0,1,0,...,0). Finally, we point out that
soft limits are very easy to describe in simplicial MRK coordinates. In the limit where k;

is soft we have p;_1 = p; (with pg = 0 and py_4 = ).
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There is another class of simplicial coordinates which will be important in the remain-
der of this paper. Let us start from the Fourier-Mellin coordinates, and let us single out
one of them, say z;. Then there is always a (non unique) set of simplicial coordinates
(tgi), . ,tg\i,)_5) such that tl@ = z;. Indeed, from eq. (4.1.18) we see that we can define
these coordinates by

(X1, xn—2) = (00, 8 49D 0,1, 1Y) L) (4.2.13)

We will refer to these simplicial coordinates as simplicial coordinates based at z;. They
do in general not possess any simple transformation properties under target-projectile
symmetry, but they will be essential in order to carry out all the Fourier-Mellin integra-
tions, because they ‘interpolate’ between the Fourier-Mellin and simplicial MRK coordi-
nates.

Sometimes it is helpful to describe the moduli space 9 ,, in projective terms. To do
so we can introduce n elements ; € CP', that is n two-component complex vectors
modulo non-zero complex scalings. We may return to the x; coordinates by making use
of the scalings so that 7; = (1, x;). In the projective language SL(2, C) invariance means

that all quantities should be expressed in terms of the SL(2, C) invariant two-brackets
(ij) = €apri'r? (4.2.14)

where ¢, is the two-index antisymmetric tensor with €12 = 1. Moreover, since we must
maintain the projective nature of the r; we must form only quantities which are homo-
geneous of degree zero. Such quantities are given by cross-ratios.

If we choose an ordering of our points (corresponding to the one induced by the colour
ordering of the scattering amplitude) we may introduce a particular set of cross-ratios,
the dihedral coordinates

j+1D)E+17) (i —Xj41) (i1 — x5)

BTG FD) G )G - %) 219

where indices are treated modulo n and we have given both projective and coordinate-
fixed forms. Note that only (n — 3) of the v;; are algebraically independent, since this is
the dimension of the moduli space 9t ,,. To continue, we pick a dihedral structure n on
Mo . i.e. a cyclic ordering of the n points r; modulo reflections . In our case the points
x;, and hence also the r;, come with a natural dihedral structure induced by the colour
ordering and target projectile symmetry. We therefore assume from now on that Mt ,, is
equipped with this particular dihedral structure, and we will often omit the dependence
on the choice of n explicitly. Dihedral coordinates will play an important role in the next
section when defining iterated integrals on 9 ,. Moreover, they allow one to give a
nice geometric interpretation of real moduli space M ,,(R), which we describe in the
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remainder of this section.

In the real moduli space, the region of M ,, defined by 0 < v;; < 1 describes the interior
of a Stasheff polytope or associahedron. The full real moduli space is tiled by n!/(2n)
such regions, each one corresponding to a different choice of dihedral structure . The
codimension one faces of the polytope are each obtained by taking one of the v;; to zero
(while maintaining 0 < v;; < 1 for the others). One can then continue to codimension
two boundaries of the boundary face etc. This process can be continued all the way until

one reaches the codimension (n — 3) (i.e. dimension zero) vertices.

The combinatorics describing the various boundaries are such that each vertex V' of the
Stasheff polytope is labelled by a triangulation Ty, of an n-sided polygon (which in our
case corresponds to the polygon formed by the dual coordinates x; in the natural order
induced by the color ordering, see Fig. 4.1.1), with the chords {4, j} € Ty defining the
triangulation given by the set of v;; that are zero at the vertex V. The other v;; are equal
to one at this vertex. This structure is described in detail in ref. [116] and we refer the
reader there for more details. Let us note however that two vertices V' and V’ which
are separated by a single edge correspond to two triangulations which differ by a single
chord. In other words, to obtain 7y~ from Ty, one removes some chord {3, j} from
Ty and replaces it with a crossing chord {k, [} such that the result is still a triangulation.
The projective and dihedral coordinates will be useful in the discussion of the Knizhnik-
Zamolodchikov equation on 9, which follows.

4.2.3 Iterated integrals on 9,

In this section we summarise the theory of iterated integrals on 9 ,,, before describ-
ing their single-valued analogues in the next section. A very helpful way to think about
iterated integrals on M, is to think of them as being described in terms of generating
functions which obey the Knizhnik-Zamolodchikov (KZ) equation [116]. The KZ equa-
tion on My, can be written in terms of the projective variables r; introduced above eq.
(4.2.14) as follows,

dL=QL Q=Y Q; Q= X;dlog(ij) (4.2.16)
1<j

Here the X;; are a collection of formal generators obeying

Xij = in X” =0 ZXU =0 [Xij,Xkl] =0 {i,j, k‘, l} distinct. (4217)
7

The first two relations in eq. (4.2.17) are conventional, ensuring that there are as many
generators as there are one-forms dlog(ij). The third relation ensures that the connec-

tion € is homogeneous under rescalings of the 7;, so that it is indeed a connection on the
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moduli space of points in CP'. The final relation in eq. (4.2.17) completes a centre-free
presentation of the infinitesimal pure braid relations on the X;; and it ensures that the
connection 2 obeys

QAQ=0 (4.2.18)

Since (2 also trivially obeys d€2 = 0, the condition (4.2.18) implies that the connection is
flat. We can consider solutions of eq. (4.2.16) which take the form,

L =1+ higher-order terms in the X;; (4.2.19)

Such solutions are formal series in the generators X;;, i.e., they are a sum over all words
in the X;; of any length, modulo the relations (4.2.17). The coefficients of the independent
words are given by iterated integrals on 91 ,,, and hence the solutions L can be viewed
as generating functions of the class of A,,_3 cluster polylogarithms. Iterated integrals
form a shuffle algebra, and in the following we denote by B,, the shuffle algebra over Q
of all iterated integrals on 9t ,,. As a vector space, B,, is generated by the coefficients of

the independent words in L.

The description of the KZ equation given in eq. (4.2.16) and (4.2.17) is manifestly invariant
under all permutations of the r;. In other words it did not depend on our initial choice of
ordering 71, ..., . It will be useful however to present another description, presented
in detail in ref. [116], which manifests only a dihedral symmetry. The construction de-
pends on the choice of dihedral structure, and as before we choose the one induced by
the colour ordering. In terms of the dihedral coordinates v;; the KZ equation takes the
form

dL=QL Q=) §;dlogui (4.2.20)

{i.5}

The sum is over all pairs {i, j} where the indices i and j are separated by at least two,
with all indices treated modulo n. We can identify a pair {7, j} with the corresponding
chord of the polygon built on the points r;, or equivalently x; (see Section 4.2.2). The

generators d;; are related to the Xj; via
Xij = i1+ 0ip15 — 0ij — Oig1j41 (4.2.21)
and consequently obey
(05 j41 405415 —0ij — i1 j+15 Ok 141 +0kt11— Ok —Okt1141) = 0 {4, 7, k, [} distinct. (4.2.22)

We also define d;; = d;,+1 = 0. Note that the above relations imply that two generators
di; and &, commute if the chords {4, j} and {k,{} of the polygon do not intersect. This
implies in particular that all the ¢;; associated to a triangulation, and hence to a vertex V'
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of the Stasheff polytope, commute

[5@‘, 5kl] =0 {i,j}, {k, l} ey (4.2.23)

We may now define canonically normalised solutions Ly to the KZ equation (4.2.20)
associated to each vertex V on the boundary of the polytope defining the positive region
such that Ly is real-valued in the interior of the Stasheff polytope, i.e., where all v;; obey
0 < v;; < 1. The solution Ly that we want is chosen to have the following behaviour in
a neighbourhood of V
Ly = LV,an( IT v ) 4.2.24)
{i.5}eTy

where Ly ,y is analytic in a neighbourhood of V. To linear order we have

Ly =1+ &ijlogvij+... (4.2.25)
{i.5}

The behaviour (4.2.25) is in fact independent of the choice of V, with the dependence on
V arising at quadratic and higher order. We may regard Ly as a shuffle regularised path-
ordered exponential in the connection 2. The coefficients of the independent words in
Ly are again iterated integrals on My . In fact, these coefficients simply provide an
alternative set of generators for the shuffle algebra B,. Note that, although the set of
generators depends on the choice of the vertex V used to define the generating function
Ly, the shuffle algebra B,, is independent of the vertex V.

Let us discuss how the generators obtained from different choices of V' are related. In
analogy with the hyperlogarithm case, different solutions of the KZ equation associated
to different vertices V and V’, are related by a parallel transport by a constant series
Dy,

Ly: = Ly ®yy» (4.2.26)

Continuing the analogy, just like Z;; of (3.4.5) the ®y~ are associators. By considering the
case where two vertices are connected by a single edge on the boundary of the polytope
Mo,»(R), we find that the constant series is given by the canonical Drinfeld associator,

given by a sum over shuffle regularised multiple-zeta values,

e, e1) = Y w(=1)" )¢y (w) 4.2.27)

w

where the sum is over all words w in two non-commuting generators ey and e; and
Cm (w) is the shuffle regularised multiple zeta value labelled by the word w. The quantity
d(w) is the number of e; generators in the word w and is present in order to be coher-
ent with the usual definition of multiple zeta values. To complete the relation between
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Ly and Ly, we still need to determine the values of ¢y and e; that enter eq. (4.2.27). In
Section 4.2.2 we have seen that to every vertex V' of the Stasheff polytope we can as-
sociate a triangulation 73 of the polygon formed by the points x;, and the triangulation
associated to two vertices connected by a single edge differ by exactly one chord. Since
to every chord {i, j} we can associate a letter J;;, we can determine the ey and e; from
the two chords by which the triangulations differ. More precisely, to move between two
adjacent vertices of the polytope we apply the associator ®(4, ') where the arguments
d corresponds to the generators §;; associated to the codimension one face being left
behind and ¢’ corresponds dy; associated to the one being moved to. Note that since
these two faces do not intersect on the boundary of the Stasheff polytope, the two gen-
erators § and ¢’ will never commute. This corresponds precisely with the fact that one
obtains the triangulation Ty from Ty by removing the chord {i, j} and replacing it with
a crossing chord {k, (}.

Iterated integrals are in general not single-valued. The monodromies of Ly around the
singularities defined by v;; = 0 for {7, j} € Ty immediately follow from the asymptotic
behaviour of eq. (4.2.24). If we denote the monodromy operator associated with the

singularity v;; = 0 by M;;, we have
MLy = Ly ™4 (i j} € Ty (4.2.28)

To compute the monodromies around another singularity, one first applies a parallel
transport from the vertex V to the vertex V'’ which sits on that singularity via eq. (4.2.26),
then performs the monodromy canonically according to the prescription (4.2.28), and

then parallel transports back again

This formula can be taken for all {, j}. It reduces to (4.2.28) in the case where the vertex
already sits on the singularity labelled by {i, j } since in that case ¢;; commutes with ®y;y-
and

Dy Byry =1 (4.2.30)

In practice it is often useful to work with an explicit basis for the iterated integrals gen-
erated by solutions of the KZ equation. The basis we will use is given in terms of hyper-
logarithms. We can simply relate this to the previous description of the KZ equation and

its solutions as follows. We work in simplicial coordinates of the form

{x1,%2,...,%xpn} = {00,0,1,t1,...,tn_3} (4.2.31)
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The KZ connection on 9t , becomes

Q(n) = Z [XQi dlogt;_3+ X3; dlog(l — ti_g)] + Z Xij dlog(ti_g — tj_g) (4.2.32)

4<i<n 4<i<j<n

where we have indicated the number n of marked points. We iteratively factorise solu-
tions of KZ in the form
Ln=FyLn_1, (4.2.33)

where L,,_ is a solution of KZ on My ,,—1
ALy, = Q" VL, (4.2.34)
and L3 = 1. In other words we have a solution of the form
L,=F,F,_1...Fy4 (4.2.35)
Since F,, = L, (L,_1)~! we find that

an = dLn<Ln—1)7l + Lnd(Ln—l)il
= QME, — L,(Ly,_1)" Q0D (4.2.36)

From this it follows that F,, obeys a Picard-Fuchs type equation

-1
dF, Xon, Xan s Xin
_ n LN Ain ) g (4.2.37)
dt, 3 (%—3 tng—1 ; tnog —tig | "

We are interested in the solution of the above equation given by

Fp=> wG(o1,...,00)tn-3) (4.2.38)
Here the sum is over all words w € ((Xay, ..., X,—1,)) and we denote the ‘weight’ or the
length of the word w by |w|. The variables o1, ..., 0, are obtained from the word w by

the translation of generators Xj,, into letters defined by
Xgn — 0 Xgn — 1 in — ;3 fors >4 (4239)
From the above discussion it is clear that the shuffle algebra B,, has a recursive structure.
In particular, if we work in simplicial coordinates, this recursive structure reads
B, ~ B,_1 ®q L{O,l,tl,...,tn,4} (4.2.40)

where Ly, denotes the shuffle algebra of hyperlogarithms with singularities at o; € X
(the o; are complex constants).
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The recursion starts with Bz = Q (because we cannot form a cross ratio with three
points), and Bj is the algebra of harmonic polylogarithms with singularities at most at
0 and 1. In other words, if we fix an order on the simplicial coordinates ¢;, we can de-
scribe B, explicitly as linear combinations of hyperlogarithms with singularities at most
att,—3 € {0,1,¢1,...,t,—4}, and the coefficients in the linear combination are iterated
integrals on the moduli space M ,,—1. A vector-space basis for Ly, is simply given by all

hyperlogarithms, and so we can easily obtain a basis for B,,.

We end this discussion by noting that there is an alternative way to construct a basis for
B,,. Since My, ~ Gr(2,n), we can equally well describe B,, as the algebra of all A4,,_3
cluster polylogarithms [117], and a basis for all A,,_3 cluster polylogarithms was given in
ref. [118].

4.2.4 Single-valued iterated integrals on 9, ,,

We have seen that scattering amplitudes in MRK can be expressed through single-valued
iterated integrals on My ,,. In this section we present different ways to construct these
functions. The strategy to construct single-valued iterated integrals on 91 ,, is to gener-
alise the results of ref. [82,83] from the Picard-Fuchs equation in the hyperlogarithm case
reviewed in the previous chapter to the KZ equation (4.2.16) on 9 ,,. In both cases the
construction of single-valued functions preserves the algebra structure. Hence, since it-
erated integrals on 9y ,, can always be written in terms of hyperlogarithms, as a byprod-
uct we find that both constructions give consistent results, and every single-valued iter-
ated integral on 9y ,, can be written in terms of single-valued hyperlogarithms. Finally,
inspired by ref. [84,119], we present a purely algebraic way to define single-valued ana-
logues of hyperlogarithms.

4.2.41 Single-valued iterated integrals from a differential equation on 9t ,

In this section we extend the construction of Section 3.4 to iterated integrals on 9 ,,.
Our goal will be to find single-valued solutions to the KZ equation (4.2.16) on 9, To
construct a generating series of single-valued polylogarithms on 9t ,, we first take two
copies of the infinitesimal pure braid generators, §;; and §;;, obeying the same relations
(4.2.22). We then have two copies of the KZ equation, one based on the §;; with dihe-
dral coordinates v;; and one based on the §;; with coordinates v;; respectively. We then
choose avertex V and pick a solution Ly, a formal series in the §;;, and the correspond-

ing L, a series in the 4.

Now we consider
Ly = LyLi, (4.2.41)

where the tilde operation means reversing all words in the 4;; generators. Now if we
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impose that the 7;; coordinates are the complex conjugates of the v;; then we obtain the

following results for the general monodromy of Ly
MLy = Ly Sy ™% Dy y &,y e 2700 &y, Ly (4.2.42)
where V' is again some vertex which sits on the singularity denoted by the pair {3, j}.

Single valuedness means imposing that there is no such monodromy and hence we have

. N o
Dy 0 Dy y Py e 20 @,

)

=1 (4.2.43)

forall {4, j}. This provides exactly the right number of conditions to eliminate the 4;; in
terms of the ¢;;. For the {4, j} in the triangulation Ty the relation (4.2.43) reduces simply
to

8i; = 0ij {i,5} € Ty (4.2.44)

for the other {i, j} it becomes
d;; = dij + higher order terms involving MZVs, {i,j} ¢ Ty (4.2.45)

The series Ly then becomes a generating series for all single-valued multiple poly-
logarithms on 9 ,,. Since it is real-valued inside the polytope M ,(R) and it has no
monodromy, it is real valued everywhere in 9 ,,. Expanding Ly over all words in the
d;; modulo the pure braid relations (4.2.22) gives all the single-valued multiple polylog-
arithms as coefficients

Ly =) wlyy (4.2.46)

The advantage of this construction is that it shows that the construction of single-valued
polylogarithms does not rely directly on the decomposition into hyperlogarithms. Since
both the generating series of single-valued hyperlogarithms and of single-valued iter-
ated integrals on 91 ,, satisfy the same holomorphic differential equation as their non-
single-valued analogues, we can repeat the very same argument given at the end of Sec-
tion 4.2.3 to conclude that the algebra B2" of single-valued iterated integrals on My,
has a recursive structure similar to the recursive structure of B, (see eq. (4.2.40)). In
particular, working with a specific choice of simplicial coordinates, we have

BV ~ BV, ®q Lfgfumtn_d (4.2.47)
i.e., for a given choice of simplicial coordinates, every single-valued iterated integral on
My, can be written as a linear combination of products of single-valued hyperloga-
rithms.
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4.2.4.2 Apurely algebraic approach to single-valued hyperlogarithms

So far we have seen that it is possible to define single-valued multiple polylogarithms,
and thus single-valued iterated integrals on 91 ,,, as solutions to a certain Picard-Fuchs
equation with trivial monodromy. While the construction of these solutions is algo-
rithmic, it can be desirable to have a purely combinatorial definition of single-valued
multiple polylogarithms that does not require any reference to any differential equation.
Inspired by ref. [84,119] we present in this section such a purely combinatorial definition.
We introduce a map s that only relies on the Hopf algebra structure of multiple poly-
logarithms, and we show that the resulting functions satisfy the Picard-Fuchs equation
of Section 3.4 and are single-valued. Hence, they must be identical to the single-valued

functions of Section 3.4.

Let us now show how we can use the coproduct and the antipode to define single-valued
hyperlogarithms. We use the notation of Section 3.4 and we write Ly, for the shuffle
algebra of all hyperlogarithms with singularities in ¥, Ly, is its complex conjugate and
LsLy ~ Ly ® Lx. Note that each of these algebras is actually a Hopf algebra for the
coproduct of MPLs Let us define a map

S:Ly — Ly; G@z2)— (—1)95(G(a;2)) (4.2.48)

where S denotes the complex conjugate of the antipode. It is easy to check that S inherits

many properties from S. In particular, it is an involution and it satisfies
S(a-b)=8(b)-S(a) and AS = (S® S)TA (4.2.49)

Unlike the antipode, S does not satisfy eq. (2.3.84). Rather, the equivalent equation for S

defines the single-valued map (see also ref. [84]),
s = u(S®id)A (4.2.50)

i.e., we claim that G(@;z) = s(G(a; 2)) is the single-valued analogue of G(d; z). Before
proving single-valuedness, let us discuss some of the properties of the single-valued
map s. Unlike the definition of the map sy, of Section 3.4, the definition (4.2.50) is purely
combinatorial and does not depend on the set of singularities. It is easy to see that s is

Q-linear and that it preserves the multiplication
s(a-b) =s(a) - s(b) (4.2.51)

We stress at this point that s is only linear with respect to rational numbers. In particular,

this means that s may act non-trivially on non-algebraic periods. Indeed, we have [84]

s(im) = 0 and s((,) = 2¢, forn odd (4.2.52)
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Let us denote by L3V C Ly Ly the image of Ly, under the map s. We use suggestively
the same notation as for the shuffle algebra of single-valued hyperlogarithms from Sec-
tion 3.4. While Ly, and Ly Ly, are Hopf algebras, the algebra Lgv is not a sub-Hopf al-
gebra of Ly, Ly, but the Hopf algebra structure on Ly. Ly, turns L5 into a graded Ly Ly:-

comodule, whose coaction agrees with the coproduct on Ly Ly,

A: L8 — I8V © LyLy, (4.2.53)

Let us now show that G(a@;z) = s(G(d; z)) is single-valued. Following Section 3.4 we
denote by M,G(d; z) the result of analytically continuing G(a; z) along a small loop (ori-
ented counterclockwise) encircling the singularity o € ¥ (and no other singularity). In

order to show that G(&; z) is single-valued, we need show that
M,G(d;z) =G(a;z) VoeX (4.2.54)

or equivalently
Disc,G(d;2) =0 VYoe X (4.2.55)

where the discontinuity operator is Disc, = M, — id. The proof that G(a; z) is single-

valued proceeds by induction in the weight. If |@| = 1, we have

G(a: 2) = G(a; 2) + 8(C(a; 2)) = log ‘1 - 2 (4.2.56)

’2
and this function is manifestly single-valued. Let us now assume that all functions G are
single-valued up to a certain weight n, and let us show that a function G(a; z) of weight
n+ 1 is still single-valued. Since the discontinuity operator only acts in the first factor of
the coproduct, ADisc, = (Disc, ® id)A, the graded comodule structure of L§" implies
that

ADisc,(G(a; z)) = (Disc, ® id)A(G(a; z)) = Disc,G(d; 2) ® 1 (4.2.57)

From eq. (2.3.84) we obtain
0 = u(id ® S)ADisc,(G(a; z)) = Disc,(G(d; 2)) - S(1) = Disc,(G(a; 2)) (4.2.58)
and so G(a; z) is single-valued.

So far we have shown that s respects multiplication and that the resulting functions are
single-valued. We now show that the functions G(a; z) agree with the single-valued re-
alisation pgy of HLy, see Section 3.4. In order to see this we need to prove that the

single-valued map commutes with holomorphic differentiation

0,8 =80, (4.2.59)
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This follows immediately from the fact that derivatives only act in the second factor of
the coproduct, A9, = (id ® 9,)A. We obtain

s0, = u(S ®id)Ad, = u(S ® 3,)A = d.s — (9,5 ®id)A (4.2.60)

where the last step follows from the Leibniz rule, 9, = p(0,®id+id®0,). The claim then
follows upon noting that S(G(a; z)) is always anti-holomorphic, and so 9,5 = 0. Hence,
we have shown that G(a, b; z) and G(a, b; z) behave in the same way under holomorphic
differentiation

9. G(a,b; z) = ! G(b; 2) (4.2.61)

Z—a

Moreover, it is easy to check that G(a, b; z) vanishes as z — 0, and so the functions G(&; z)
coincide with the single-valued realisation of # Ly, defined in Section 3.4. Note, however,
that the single-valued map does not commute with anti-holomorphic derivatives, d,s #

(s0,)*.

Single-valued hyperlogarithms naturally have both anti-holomorphic and holomorphic
parts. Hence, they carry a natural action of complex conjugation. We can again decom-
pose a complex conjugated single-valued hyperlogarithm into standard single-valued
hyper-logarithms
G(@2) =Y c;3G(b:2) (4.2.62)
b

Note that the fact that complex conjugation acts non-trivially on single-valued hyper-
logarithms (in the sense that the complex conjugate of a single-valued hyperlogarithm
is a linear combination of single-valued hyperlogarithms) is at the origin of why s does
not commute with anti-holomorphic derivatives. The action of complex conjugation
on single-valued hyperlogarithms is encoded in the map S. If § denotes the complex
conjugate of s, we find

s=sS (4.2.63)

As an example, we have
G(a,b; z) = 8(G(a,b; 2)) = G(b, a; 2) + G(b; a) G(a; 2) — G(a; ) G(b; 2) (4.2.64)

In the same way, we can also easily compute anti-holomorphic derivatives, because we
can reduce the anti-holomorphic derivative to a holomorphic one via the map S. For

example, we find

8.G(a, b =) = —— G(bsa) + — (G(a;2) — G(asD)) (4.2.65)

Z—a Z —

We conclude this section by commenting on functional equations for single-valued

hyperlogarithms. We can of course obtain functional equations by expressing single-
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valued hyperlogarithms in terms of ordinary hyperlogarithms, and then applying func-
tional equations to the latter. There is, however, a simpler way to obtain functional equa-
tions for single-valued hyperlogarithms: assume we are given a relation between ordi-
nary hyperlogarithms. We can then act with s on it, and we obtain a relation among
single-valued hyperlogarithms. Since the action of s is, essentially, to replace G by G,
we conclude that single-valued hyperlogarithms satisfy the same identities as ordinary
hyperlogarithms. Note that eq. (4.2.52) is crucial for this to work. Let us consider an
example to see how this works: we start from the following relation among ordinary

hyperlogarithms of weight three (valid on some branch for the logarithm)

1
G (O, 1,1; z) = —-G(0,0,0;2) + G(0,0,1;2) + G(0,1,0; 2) — G(0,1,1; 2)

. 2 IS
+ 7 [G(0,0; 2) — G(0,1; 2)] + 5 G(0;2) + (3 — -

(4.2.66)

We can act on both sides with s, and we obtain
1
g (0, 1,1; > =—G(0,0,0;2) + G(0,0,1;2) + G(0,1,0; 2) — G(0,1,1;2) + 2(3  (4.2.67)
z

This is indeed a valid identity among single-valued hyperlogarithms. We stress the im-
portance of eq. (4.2.52) in order for this to be true.

4.3 MHYV amplitudes in MRK

4.3.1 An invitation: the six-point MHV amplitude

In this section we apply the machinery of single-valued iterated integrals on 9ty y_2 of
the previous section to the computation of scattering amplitudes in MRK to LLA. We start
by reviewing the six-point MHV amplitude in MRK, and we generalise the discussion to
more external legs and other helicity configurations in subsequent sections. Most of the
techniques introduced in this paper apply also beyond LLA, which we shall explore in
coming chapters.

Traditionally, scattering amplitudes in MRK are computed by closing the integration
contour in the Fourier-Mellin representation of the amplitude, eq. (4.1.28), and taking
residues at the poles of the integrand [100,102,110-112,120]. In the case of the six-point
amplitude, the resulting multiple sums can all be performed in terms of polylogarithms
using standard techniques [121-125]. For amplitudes with more external legs, performing
the multiple sums, however, soon becomes prohibitive.

The goal of this section is to introduce a new way to compute, or rather to circumvent,
the Fourier-Mellin transform of eq. (4.1.28). The main idea is to use the convolution the-
orem (4.1.37) and to perform the computation directly in z-space, rather than evaluating
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the Fourier-Mellin transform explicitly. While in itself this idea is not new, performing
the convolution integral (4.1.38) requires the evaluation of some integral over the whole
complex plane, which seems a daunting task. We show that the fact that amplitudes in
MRK are single-valued functions on 9, x_2 reduces the computation to a simple ap-

plication of Stokes’ theorem.

In order to illustrate our method, we apply it in this section to the six-point MHV ampli-
tude. While the results of this section are not new (see for example ref. [110,111]), we use
them to show all the steps that enter the computation. We start from eq. (4.1.52), and we

obtain a recursion for the coefficients to LLA

1 _
90, (2) = =5 F [} (sm) Bl x~(vim)| = 9820 (2) % FIE,) (4.3.1)

We see that increasing the number of loops is equivalent to convoluting the lower loop
result with the Fourier-Mellin transform of the BFKL eigenvalue. In order to start the
recursion, we need to know gﬂr(z) analytically for some value of [. This can easily be
achieved by performing explicitly the Fourier-Mellin transform for! = 1 or! = 2, cf, e.g,

ref. [110]

F [ mx )] = 61(2) — 5 6o(2) .

F [ 0m) B x™ ()] = 3001(2) + 5G10(2) ~ 61(2)

where we use the notation G, .4, (2) = G(a1,...,ay;2). We also need the Fourier-
Mellin transform of the LO BFKL eigenvalue, which can easily be obtained by noting
that the functions x* (v, n) have a very simple interpretation in terms of Fourier-Mellin
transforms: they are related to derivatives in z-space

z0.F [xT(v,n) F(v,n)] = F[F(v,n) (4.3.3)

A similar relation holds when replacing z by z and x* by x . The Fourier-Mellin trans-
form of the LO BFKL eigenvalue is then given by

2+ z

£(2) = FBn] = 220: 0.F [ (vym) Bunx” (vim)] = 50—

(4.3.4)

Next we discuss how we can evaluate the convolution integral. We assume for now
that in the multi-Regge limit we can express the amplitude to all loop orders in terms of
single-valued hyperlogarithms (This will be proven later in Section 4.5). In ref. [80] it was
shown that convolution integrals of this type can be computed using residues. To see
how this works, consider a function f(z) that consists of single-valued hyperlogarithms

and rational functions with singularities at z = a; and z = oco. Close to any of these
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singularities, f can be expanded into a series of the form

2
) z _ _
f(z) = E cilmn logk 1-— o (z—a)"(z—a)" z—aq
kmmn ¢
ym, (4.3.5)
1 1 1

§ k

f(Z) = CZ?’VTL,TL IOg W Zim 27 zZ — 0

k,m,n

The holomorphic residue of f at the point z = a is then defined as the coefficient of the
simple holomorphic pole without logarithmic singularities

ReSZ:af(Z) = CS,—LO (436)

In ref. [80] it was shown that the integral of f over the whole complex plane, if it exists,
can be computed in terms of its holomorphic residues. More precisely, if F' is an anti-
holomorphic primitive of f, 9,F = f, then

/ d;z f(z) =Res,—F(2) — Z Res,—q, F(z) (4.3.7)

This result is essentially an application of Stokes’ theorem to the punctured complex
plane. Note that the anti-holomorphic primitive is only defined up to an arbitrary holo-
morphic function. It was shown in ref. [83] that every single-valued hyperlogarithm has
a single-valued primitive, and the sum of residues is independent on the choice of the
primitive [80]. It is clear that we can repeat the previous argument by reversing the roles

of holomorphic and anti-holomorphic functions.

As a pedagogical example, let us illustrate how this works on the two-loop remainder

function in MRK. Using the convolution theorem, we can write

F [X+(1/, n) E,n x~ (v, n)} =F [X+(V, n)x (v, n)] x E(2)
N /djrw [; Go(w) — G1(w) ST (4.3.8)

2|w]? |w — z|?

=f(w)

First, we need to compute the anti-holomorphic primitive. Since
Go(w) = Go(w) and Gi(w) = G1(w) (4.3.9)

and single-valued hyperlogarithms satisfy the same (holomorphic) differential equa-
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tions as their non-single-valued analogues, we obtain

wz + wz

Pw) = [ dwfw) = g [ du [; Go() — Ga ()
1

= T —7) [2002(w) = 4G1.2(w) — Goo(w) +2010(w) — 4G (w)Go(2)

+4G1 (w)G1(2) + 2Go(2)G.(w) — 4G (2)G.(w)]

+ o [Go(w) + 261+ (w) + 261 (w)Go(2) — 261 ()G (2) — Gol )G (w)

+2G1(2)G:(w)]

w(w — Z)

(4.3.10)

We anticipate, however, that for higher weights the relation between Gz(w) and Gz(w)
will not be as easy, but we have

Ga(w) = ;3 G5(w) (4.3.11)

We see that F'(w) has potential poles at w = 0, w = z and w = oo. It is easy to check that
the residue at w = 0 vanishes (because single-valued hyperlogarithms either vanish at
w = 0, or they have logarithmic singularities). The residue at w = z is easy to obtain

1 1
Resy—. F(w) = —lgo,o(z) —Go,1(2) — igl,o(z) +2G11(2) — G1,2(2)
1 1 (4.3.12)
= *Ego,o(z) - 591,0(2) +G1.1(2)
where the last step follows from the identity
G1.2(2) =G11(2) — Go1(2) (4.3.13)

Finally, the residue at infinity is obtained by letting w = 1/u (and including the corre-
sponding Jacobian) and expanding the result around u = 0. Note that we obtain single-
valued hyperlogarithms of the form G(a;1/u). In order to proceed, we need inversion
relations for single-valued hyperlogarithms, which may be obtained from the inversion
relations for ordinary hyperlogarithms and then acting with the single-valued map s. We
find

RSy o0 F(1) = %gm(z) _ igo,o(z) 4314)

Hence
F [xT(v,n) Evn x~ (v,n)] = Resy—ooF(w) — Resy— F(w)

) . (4.3.15)
= 5901(2) + 5G10(2) = Gra(2)

which is indeed the correct result. This construction is of course not restricted to two
loops, but we can now start from the two-loop result we have just computed and obtain
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the three, and even higher, loop results by convoluting the two-loop result with the BFKL

eigenvalue £.

4.3.2 Higher-point MHV amplitudes and the factorisation theorem

The six-point example from the previous section shows that we can bypass the evalu-
ation of the Fourier-Mellin integrals and the multiple sums, and we can entirely work
with convolutions and Stokes’ theorem. This procedure can of course be extended to
amplitudes with more external legs in a straightforward way. In particular, we obtain
the recursion

gl it hein=s) () ey s) = E(z) * TN (2, 2 s) (4.3.16)
In the previous equation the convolution is carried out only over the variable zj, even
though this is not manifest in the notation. In general, it will always be clear which is
the variable that enters the convolution integral. The starting point of the recursion is
the two-loop MHV remainder function in MRK, which is known at LLA for an arbitrary
number N of external legs [102, 113], cf. eq. (4.2.12). While a direct evaluation of the
Fourier-Mellin transform in terms of multiple sums becomes prohibitive because the
number of sums increases with the number of external legs, the recursion (4.3.16) re-
quires the evaluation of a single convolution integral at every loop order, independently
of the number of external legs. This is one of the key properties why the convolution
integral combined with Stokes’ theorem gives rise to an efficient algorithm to compute

scattering amplitudes in MRK.

In practice, however, if we try to evaluate the convolution integral in terms of residues
as we have done for the six-point MHV amplitude, then we have to face a conundrum:
The convolution and the BFKL eigenvalue are naturally written in terms of the Fourier-
Mellin coordinate z;. The residues, however, are most easily computed in simplicial
coordinates, where the poles in gSf.l.’.jr"iN -5 manifest themselves simply as points where
simplicial coordinates become equal to 0, 1, co or to each other. In general, the change
of variables from the Fourier-Mellin coordinates to simplicial coordinates is highly non-
linear, and will introduce complicated Jacobians. In addition, it will obscure the simple
form of the BFKL eigenvalue. This problem arises for the first time for seven points, be-
cause for the six-point amplitude the simplicial and Fourier-Mellin coordinate systems

coincide.

In some cases it is possible to identify a set of coordinates which share the good prop-
erties of the simplicial and Fourier-Mellin coordinates even at higher points. We have

seen in Section 4.2.2 that there is always a (non unique) system of simplicial coordinates

based at zj, with the property that t,(f ) = 2. This system of coordinates has already some

of the properties we want: it leaves the BFKL eigenvalue unchanged, because t,(f) = 2.
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However, the change of coordinates may introduce a non-trivial Jacobian, because in

) There is, how-

general z;_9, 2;—1 and z;, will depend on the new integration variable ték
ever, a special case where the Jacobian is trivial: If we perform a convolution with re-
spect to z1, and we change variables to simplicial coordinates based at z;, only z; will
depend on tgl), and so the Jacobian is 1. A similar argument can be made for zy_5, us-
ing a slightly different set of simplicial coordinates. Alternatively, we know that we can
exchange the roles of z; and zy_5 using target-projectile symmetry, so it is sufficient to
consider z;. Hence, if we perform a convolution with respect to the first or last cross
ratio z; or zy_5, we can find a set of simplicial coordinates with the right properties: it
leaves the BFKL eigenvalue unchanged, it has a unit Jacobian, and at the same time it ex-
poses all the singularities of g$1+w “ina very simple form. The algorithm to evaluate
the recursion (4.3.16) for the first or last cross ratio is then clear: in order to perform the
convolution over z;, we change coordinates to the simplicial coordinates based at z;,
and we evaluate the integral in terms of residues. The change of coordinates requires
the use of functional equations among single-valued polylogarithms, which can be ob-

tained using the techniques described in Section 4.2.4.

While the previous considerations answer the question of how to perform convolutions
with respect to the first or last cross ratio, we still need to discuss the remaining cases.
In the following, we argue that all amplitudes can be constructed by convoluting over
the first or last cross ratio only. We only discuss from now on the case of z;; the case of
zn—s5 is similar by target-projectile symmetry. The proof of this claim relies on a certain

factorisation theorem which we present in the following.

In order to state the factorisation theorem, it is useful to introduce the following graph-
ical representation for the perturbative coefficients,

(i1,-iN—5)

Iy i 1y pN—s) = 1 (4.317)

We work with the simplicial MRK coordinates p;, defined in Section 4.2.2. Every face of
the dual graph is associated with a point x, (cf. Fig 4.1.1), and we work in a coordinate
patch where (x1,x2,xny-2) = (1,0,00). Every outgoing line is labelled by its helicity
hi. In addition, to every face we do not only associate its coordinate pj;, but also the
index ij. In the following we will not show the points 0, 1 and co explicitly. Using this
graphical representation of the perturbative coefficients the factorisation theorem takes
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the simple form

S ____L:;;

— " _ e (4.3.18)

h Pc tc

In other words, whenever the graph representing a perturbative coefficient contains a

face with index i, = 0 and the lines adjacent to this face have the same helicity, then
this perturbative coefficient is equal to the coefficient where this face has been deleted.
We stress that the factorisation theorem holds for arbitrary helicity configurations and
is not restricted to MHV amplitudes. The proof of the factorisation theorem for both the
MHV and NMHYV cases may be found in [38].

In the MHV case, the factorisation theorem implies that we can drop all the faces labelled

by a zero,
(0,--,0siay 0,..,0,ag.0,....0siay, ,0,...,0) (iay siag sviay,)
9y ¥ (p1,---sPN=5) = g4 14 (Piay s Piays -+ Pia,) (4.319)

Let us discuss the implications of this result. First, eq. (4.3.19) implies that we can com-
pute all MHV amplitudes by performing convolutions over the left-most variable z;. In-
deed, assume that we know all MHV amplitude with up to NV legs. Then we can write

(17i27"-7iN75)

07 b 7‘ _
gy ¥ (p1,--- pN=5) = E(21) *gizi N5 (p1,. . pNs)
= E(21) + > 7 (p2,. py—s)
(2yi2,..iN—5) (1,i2,...in—5) (4320)
g+.,..—l: T (p17"'7pN—5) :5(21)*9_,__’__,: T (pla‘--va—E))
= E(21) *E(21) * g7 (2, pvs)

and so on. The amplitude in the right-hand side is a known lower-point amplitude. At
the beginning of this section we have argued that we can always easily perform con-
volutions over z; by going to simplicial coordinates based at z;, because the change of
variable has unit Jacobian and leaves the BFKL eigenvalue unchanged. Hence, we con-
clude that every MHV amplitude can be recursively constructed in this way, and we have

thus obtained an efficient algorithm to compute scattering amplitudes in MRK.

Next, let us discuss the implications of the factorisation theorem for the structure of
MHYV amplitudes. Indeed, since the sum of all indices is related to the loop number, we
see that for a fixed number of loops there is a maximal number of non-zero indices, and
so there is only a finite number of different perturbative coefficients at every loop order.
This generalises the factorisation observed for the two-loop MHV amplitude in MRK to
LLA [102,113,114]. Indeed, if all indices are zero except for one, say i,, then eq. (4.3.19)
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reduces to

0,...,0,iq,0,...,0 ia
g_(t,_-i,- ’ )(p17 ‘e :PN—5> - g_(i-J,-) (pa) (4321)

and so at two loops the amplitude completely factorises, in agreement with ref. [102,113,
114],

RS_Q)JF = Z log 7; gsrlJ)r (pi) (4.3.22)

1<i<N-5
As anticipated in ref. [102], the amplitude does no longer factorise completely beyond
two loops. However, we find that at every loop order only a finite number of different
functions appear. For example, at three-loop order at most two indices are non-zero,

and so we have

3 1 2 1,1
RSF)JF =3 E log® 7; gii(pi) + E log 7; log 7; 95_+.);_(Pi7pj> (4.3.23)
1<i<N-5 1<i<j<N-5

The only new function that appears at three loops that is not determined by the six-point

amplitude is gsrlji which is determined by the three-loop seven-point MHV amplitude.

At four loops we have

4 1 3
RY , = 5 O log’n 9L (p1)
1<i<N-5
1 2,1 1,2
+3 > [10g2 7 log i ¢33 (piy pj) + log i log? 7; gi#(m,pj)} (4.3.24)

1<i<j<N-5
1,1,1
+ Z log 7; log 7 log 7y ggr++4)r(Pi,Pj,Pk:)
1<i<j<k<N-5
The four-loop answer is determined for any number of external legs by the six, seven
and eight-point amplitudes through four loops. Similar equations can be obtained for
higher-loop amplitudes. In general, at L loops R(f) + is determined for any number of

legs by the MHV amplitudes involving up to (L + 4) external legs.

4.4 Non-MHV amplitudes in MRK

4.4.1 Helicity-flip operations

So far we have only considered MHV amplitudes. In this section we generalise all the
results from the previous section to non-MHV amplitudes. In particular, we extend the
factorisation theorem (4.3.18) to the non-MHYV case. We start by introducing an addi-
tional concept before we are ready to prove the factorisation theorem for non-MHV
amplitudes.

Let us start by analysing what happens if we start from an MHV amplitude and we flip the

helicity on an impact factor. In Fourier-Mellin space, this amounts to replacing x* (v, n)
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by x~(v,n),

F [X+(V7 n) F(v, n)] — F [Xi(V, n) F(v, n)]
= Fx (wn)/xT(w,n)] « F[x (v,n)F(v,n)] (441
= f[%y+2} « F [xT(v,n) F(v,n)]

n
(2% 2

We see that flipping the helicity on an impact factor amounts to convoluting with the

universal helicity-flip kernel

(4.4.2)

(=) :f[?”ﬂ .

ZV*é

The functional form of 7 (z) can easily be obtained by performing explicitly the Fourier-
Mellin transform. The integrand has only a simple pole at iv = n/2, and so we find

z

H(z) = H(/2) =~ (4.4.3)

Note that helicity-flip kernel is an involution, i.e., flipping the helicity twice on the same

impact factor returns the original helicity configuration, and so

H(z)«H(z) = F1] =70P1—2). 4.4.4)

Similarly, if we flip the helicity on one of the central emission blocks and use eq. (4.1.49),

we obtain
.F[C+(u,n,u,m)F(u n ,u,m)} — F [C_(V,n,u,m)F(u,n,u,m)]

(v m, } « F[CT(v,n, p,m)F(v,n, p,m)]
[ (m “’ (4.4.5)
[ o) X+ Mm;] « F [CH(v,n, p,m)F(v,n, p,m))

1) * H(z2) * F [C+(V n, [, m )F(V,n,u,m)] .

We see that the flipping of the helicity on a central emission block is controlled by the
same kernels as for the impact factor. As a consistency check, the helicity flip kernels
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allow us to show that MHV and MHV amplitudes are identical,

Ro.—(21,...,28v-5) = H(z1) * Ry —(21,---,2N5)
H(z1) * H(z1) * H(z2) ¥ Ry~ (21, -, 2N—5)

H(ZQ) * R++f.‘.7(21a s 7ZN—5)

=... (4.4.6)
=H(zn_5) * Ry +—(21,---,2N-5)

=H(zn_s5)*H(EN_5) * Ry +(21,.-.,2N_5)

=Ry +(z1,...,2N-5).

Let us conclude this section by making a comment about some classes of non-MHV
amplitudes with a special property. In ref. [102] it was argued that flipping the helicity on
an impact factor to produce an NMHV amplitude from an MHV amplitude is equivalent
to differentiating in the holomorphic variable and integrating in the anti-holomorphic
one. Let us see how this arises from the helicity-flip kernel. We have

Rt +(215- . 2n=5) = H(z1) * Ry 4(21,- -5 2N—5)
d*w % (4.4.7)
=— R Ce  ZN—5) -
We can evaluate eq. (4.4.7) in terms of residues. Let us denote by F the anti-holomorphic
primitive,
dw
Flw,z3...,2ny-5) = -y Rit.4(w,z0...,28-5). (4.4.8)

Then R_4 . is obtained by summing over all the holomorphic residues of F'. As MHV
amplitudes are a pure functions, they have no poles, and so F has no poles either. Fur-
thermore, it is easy to check that there is no pole at infinity, and so the only residue we

need to take into account comes from the double pole at w = z; in eq. (4.4.7),

21 F(w,z2...,2Nn_5)
(w— 21)?
=210, F(z1,20...,2N_5) (4.4.9)

dw
=Z15z1/wR++...+(7U,Z2---,ZN—5)'

R_+._+(Zl, ey ZN_5) = Resw:zl

We see that we recover the rule of ref. [102], but with the differentiation and integration
given in the reversed order. While this may look like a minor difference, it is crucial
in order to get the complete result. In principle, we need to include a boundary con-
dition when computing the anti-holomorphic primitive. However, if the operations of
differentiation and integration are performed in the order shown in eq. (4.4.9), then no

boundary condition is needed, because the residue is independent of the choice of the
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anti-holomorphic primitive. This is, however, not the case if the two operations are per-
formed in the order given in ref. [102], where one needs to include non-trivial boundary
information already for six points.

Itis of course tantalising to speculate if this simple rule generalises and all non-MHV am-

plitudes can be computed by this simple differentiation-integration rule without having

to include any boundary information. It turns out that this is not the case, because in

general the amplitude in the integrand of the convolution integral (4.4.7) is not a pure

function, but may itself have additional poles whose residues need to be taken into ac-

countwhen performing the convolution with the helicity-flip kernel. An explicit counter-
example to the simple differentiation-integration rule without boundary terms can be

constructed from an eight-point NNMHV amplitude.

Although the simple rule does not hold in general, there are some special cases where it
does apply. Besides the case of R discussed above, we have identified the following
special case in which we can apply the simple differentiation-integration rule without

boundary terms: Consider an amplitude whose helicity configuration is given by

-1 ifa<i<d
h; = ) (4.4.10)
+1 otherwise

This amplitude can be written as
R+.,,+7..,7+m+ == ?‘[(éafl) * H(Zb) * R+”.+ (4411)

Let us first discuss the convolution with #(z;). We can repeat exactly the same argument

as for R_ and we conclude that
dzy
H(zp) ¥ Ry = 250z, N Ri.+ (4.4.12)
b

Next we want to perform the convolution of this function with #(z,—1). The function
H(zp) * R+..+ will have poles, but all of them are holomorphic because they arise from
computing the holomorphic derivative with respect to z,. Hence, they do not give rise

to any additional anti-holomorphic poles, and so we have

dza—l

Rttt = 201 0y / e (14() £ Ry

- dzg— dz
= Zg—1 8za1/ 12{,(9%/2:724____4_

Za—1

(4.4.13)

The previous case covers in particular all NMHV amplitudes. Hence, all six and seven-

point amplitudes can be computed in this way.
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4.4.2 Leading singularities of scattering amplitudes in MRK

In the previous section we have shown how we can compute non-MHV amplitudes via
convolution with the universal helicity flip kernel H. Due to the double pole in the he-
licity flip kernel, non-MHV amplitudes are no longer pure, but the transcendental func-
tions are multiplied by rational prefactors. This is in agreement with the expected struc-
ture of scattering amplitudes in full kinematics, where these coefficients are identified
with the leading singularities of the amplitudes [126]. In this section we present a way to
determine the set of all rational prefactors that can appear in a given non-MHV ampli-
tude in MRK at LLA.

Let us start by defining some concepts that are useful to state the main result. We de-
fine interfaces of the perturbative coefficients g&lh;ﬁ ;5)(;)1, ...,pN—5) as the faces of
its graph (see eq. (4.3.17)) that are bounded by two external lines with opposite helic-
ities. In the following we refer to a face of the graph simply by the index of the cor-
responding dual coordinate (cf. Fig. 4.1.1). We call an interface holomorphic if the he-
licity changes from —1 to +1 in the natural order induced by the colour ordering, and
anti-holomorphic otherwise. We denote by I = {ay,...,a,} the set of all interfaces of
the graph (equipped with the natural order induced by the colour ordering) and we let

ap = Xo and a,11 = Xny_9. For 1 < k < k we define the sets
B ={blag-1 <b<ai} and E* = {b|ar <b < ap1} (4.4.14)

We also define the cross-ratios

Upae1  fOr holomorphic interfaces a
Rbac = (4415)

Upae1  for anti-holomorphic interfaces a

with
(xp — Xa)(Xc — X1)

Ubacl = (Xb — XC)(X(L — Xl) (4416)

We are now ready to state the main result of this section. We claim that it is possible to
write the perturbative coefficients in such a way that all rational prefactors multiplying
pure functions take the form

II Beae beE! ceEf (4.4.17)
a€s

where S C I is a (possibly empty) subset of interfaces and we have introduced the defi-
nition
Ef ={b|a < b} (4.4.18)
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This implies in particular that the building blocks of all rational prefactors in MRK at LLA
are contained in the set

L ={RyclacI,beE ce El} (4.4.19)

The cross ratios in this set are at the same time the building blocks for all leading sin-
gularities in MRK at LLA. We emphasise that this set is an upper bound for the rational
prefactors that can appear for a given helicity configuration. In particular, one may won-
der whether the asymmetry in eq. (4.4.17) and eq. (4.4.19) between E and Ef could not
be lifted, and we could restrict the building blocks to the more symmetric set

Lsym = {Rpacla € I,b € B ,c € E}'} (4.4.20)

Unfortunately, this is incorrect, because the cross ratios Ry, are not independent, but

they satisfy intricate non-linear relations, e.g.,
Rose + Roza Riae = Roze Rage + Ro3a Roae a<c a€l (4.4.21)

The apparent asymmetry in the set of building blocks in eq. (4.4.19) can then be lifted
through such relations. It would be interesting to have a classification of all the relations
among the building blocks Rj,.. Our building blocks are, however, linearly independent,
and so we can restrict to the more symmetric set Lgyn, in situations where there is at most
one interface of a given type (holomorphic or anti-holomorphic). Helicity configurations
involving products of building blocks of the same type require at least three interfaces,
and the simplest such amplitude is R_, .. We observe by explicit computation that in
this case the restricted set Lsym is indeed insufficient and a new building block Ra3s ¢
Lsym appears (see Appendix D of [38]).

It is evident from eq. (4.4.17) that every interface contributes at most one factor to the

product in eq. (4.4.17), i.e., we never encounter higher powers of Rpq.

Second, we see that for a given helicity configuration there is always a finite number of
different rational prefactors, independently of the number of loops. The complete set
of rational prefactors for a given helicity configuration shows up when all indices are
non-zero. In particular, we will see that eq. (4.4.17) is consistent with the factorisation
theorem (4.3.18) in the sense that we never need to consider faces b and ¢ bounded by

external lines with equal helicities and vanishing index.

Finally, we note that the ratios Ry, transform non-trivially under target-projectile sym-

metry. Target-projectile symmetry obviously maps interfaces to interfaces, and we have

Ryge = RN_pN—aN—c =1 — RN_c N—a,N—b (4.4.22)
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Let us now illustrate the content of eq. (4.4.17) on some simple examples. MHV and MHV
amplitudes do not have any interfaces, so these amplitudes should not contain any non-
trivial rational prefactors, in agreement with known results. The simplest amplitudes
having a single interface are NMHV amplitudes of the form R_ ... Since these am-
plitudes have a single interface, we have £ = Lgyn. The amplitude must then take the

form
N—2

Ry =0+ Y Ragcbe (4.4.23)
c=4
where a and b, are pure functions to all loop orders. In the special case N = 6 eq. (4.4.23)
reduces to the known structure of the six-point NMHV amplitude in MRK [103]

Ry =a+Roub=a+ 1 b (4.4.24)
p1—1
Equation (4.4.17) implies that this structure generalises to an infinite class of N'MHV am-

plitudes, k£ > 1, with a single holomorphic interface

a—1 N-2

Recgop =0+ > > Riac by (4.4.25)
b=2 c=a+1

where a is the holomorphic interface and a and b, are pure functions. Products of ra-
tional prefactors contribute for the first time for amplitudes with two distinct interfaces,
which appear precisely for the helicity configurations considered in eq. (4.4.10). The in-
terfaces are located at (a1, a2) = (a+1,b+2). One of them is holomorphic and the other
one anti-holomorphic, so we can work with the symmetric set Lsym. We find

a1—1 as as—1 N-2
R+...+7...7+...+ =a-++ Rca1d bcd + Rcazd bcd
c=2 d=a1+1 c=a1 d=az+1

(4.4.26)

a1—1 a2 az2—1

N-2
+ R R cl2
cra1dy Llcaazda Yeidycads

c1=2dy=a1+1 c2=a1 do=as+1

where we have indicated the anti-holomorphic rational functions by Ry, for clarity and
ij

i
a, b, and Cordy cods

are pure functions

Let us conclude this section by discussing the soft limits of the rational prefactors. First,
we can see that Ry, has simple poles for x;, = x. and x, = x;. None of these singu-
larities corresponds to a soft limit. This implies in particular that the weight of the pure
functions does not drop when taking a soft limit. Next, we see that

lim Rpee =0 and lim Rpee =1 (4.4.27)

Xp—Xq Xe—Xq

In order to understand the implication of these relations, let us consider a NMHV am-
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plitude, which can be written in the form of eq. (4.4.26) witha = a; = ag — 1

a—1 N-3
Ryvg—gop =0+ Eca(a-i—l) bia+1 + Z Roat1)a bzd

:i d=at2 (4.4.28)

12
+ Rca(aJrl) Ra(aJrl)d Cer (a+1)ada

In the limit where the gluon with negative helicity becomes soft, x, — x,+1, the NMHV
amplitude reduces to an MHV amplitude, which is a pure function. Equation (4.4.27)

guarantees that this is indeed the case, and we find,

a—1

A Repgpog =at > Blain (4.4.29)
a a C:2

4.4.3 Explicit two-loop, seven-point NMHV check

In this section we outline an explicit check of our discussion for the leading logarithmic
contribution to the two-loop seven-point NMHV amplitudes in MRK. The symbol of this
amplitude was obtained in ref. [57]2. More precisely, the quantity discussed in ref. [57]
the so-called BDS-subtracted’ amplitude, equivalent to the exponentiated remainder
function multiplied by the ratio function. It is given in supersymmetric notation as fol-

lows
ARDS aubtracted = [2(12) + $(13) + 2(14) + cyc.] X + [(67)Ver + (47)Var + cyc.] (4.4.30)

In the above formula the quantities X, V57 and V7 are pure functions based on the hep-
tagon alphabet arising from the cluster algebra structure on Gr(4,7), as discussed in
[10]. The quantities (ij) above represent the R-invariants which encode all the possi-

ble NMHYV configurations of external states by use of Grassmann odd variables 7;.

We recall that all on-shell states in A/ = 4 SYM theory can be described by the on-shell
supermultiplet written in superspace notation as a function of Grassmann parameters
n? transforming in the fundamental representation of SU(4) (2.2.7). The R-invariants
generically depend on five indices [ijklm]. In the seven-point case, however, we may

simply denote them by the two indices which are absent, e.g.
(12) = [34567] (4.4.31)

Furthermore, at seven points all R-invariants are of the form [rs — 1st — 1t for some

“We thank the authors for providing a file with the relevant expressions.
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r, s,t and for convenience we recall the functional form (2.2.26)

8
[rs—1st—1t] :57@
(12) ... (nl)
A " (4.4.32)
X (ss=1){tt — 1>5(4)(<n|xns$st‘9tn> + (n|Tniwes]05,))
x§t<n|xnsx3tlt> (n|xnszst|t — 1Y (n|Tpizes|s) (n|znizis|s — 1)

We have included in the above formula the supersymmetric Parke-Taylor-Nair prefactor

to exhibit all the relevant  dependence. We recall the explicit form of the delta function

(q)
0°(q) = &° (Z >\i77i) (4.4.33)

where the ); are the spinor-helicity variables introduced in eq. (2.1.14).

Next we calculate the limits of the pure functions X, V;; in MRK and we evaluate the R-
invariants in this limit. To perform the second task it is helpful to formulate the passage
to multi-Regge kinematics in term of spinor-helicity variables. It is sufficient for us to
parametrise our spinors with different powers of € in such a way so as to systematise the
strong ordering of the kinematics in the MRK limit, similar to ref. [113]. For example in

the 12 — 34567 kinematics, the A spinors are parametrised as

7 1 j—5
0 ( 3 p+61—5> 2 \/ﬁe?
A= B 27: lpil? 5— 51, A= =t , )\j = ;i 6¥ (4.4.34)
; pfr € 0 pJ-r
=3 7t J

where j = 3,...,7 and the \ are obtained by conjugation. After calculating the R-
invariants using this parametrisation we can recover the MRK value by taking ¢ — 0.

Projecting out the components of the 7’s corresponding to the desired helicity config-
uration and taking the MRK limit we find the following non-vanishing R-invariants for
the (— + +) configuration,

11— p2) p1
(12) =1, (23) =1 (A= p)’ (17) — 1
pi(l—p2) M pi(l—p2)  p
(27) — =)’ (13) = 1 P (37) — 0 —p) -1 (4.4.35)

For the (+ — 4) configuration we find

p1(1 — p2) (p1 — p2) p1(1l — p2) (p1 — p2)
GO = T el @Y 1) =10
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(p1 — p2) [P1(1 — p2)

(16) = (p2 —1) Lpa(1 —p1)

(p1 — Pz)} [1 p1(1 — p2)

—1], (25) > 1, (36)—>[1+(p2_1) - £

p2(1 = p1)

P=P2) gy, P2z p) L= P2) gy 4 5

p2(1—p1) (p2 —1) p2(1—p1)

(p2 — p1)
(p2—1) "

(15) — (26) — 1 —

Combining these formulas, we find that the two NMHYV helicity configurations become

R_ = X 4 Vig + Vaz + Rosa (V73 — st) + Roagss (Vn - V?S)
Ryt = X + Vas + Vig + Voo + Raza (‘734 — Vg — %2)

+ Rs3y5 (‘751 - ‘736) + RozaR3as (V14 — Vay + ‘736) (4.4.37)

Here the Vj; are the MRK limits of the pure functions V;; of eq. (4.4.30). The explicit
forms of V;; at LLA are given in Appendix D of [38] (of course, since we started from just
the symbol, these formulas are valid up to terms proportional to multiple zeta values).
Note that individually these functions may have beyond-leading log divergences. These
extra powers of divergent logarithms cancel in the combinations outlined in eq. (4.4.37).
These explicit limits may then be compared to the general structure outlined in eq. (D.11)
and the predicted pure functions presented in eqgs. (D.20) onwards of reference [38].

4.5 Analytic structure of scattering amplitudes in MRK

Itis believed that MHV and NMHV amplitudes are expressible in terms of multiple poly-
logarithms [21], but it is expected that for more complicated helicity configurations more
general classes of special functions may appear [127,128]. Knowing that in some limit
scattering amplitudes can always be expressed in terms of multiple polylogarithms in-
dependently of the helicity configuration and the number of external legs can thus pro-
vide valuable information and constraints on the analytic structure of scattering ampli-
tudes. A proof of such a property previously only existed for the six-point amplitudes
when expanded to leading order around the collinear limit [71] and to LLA in MRK [111,112].

In [38] it was shown that it is possible to construct all amplitudes in MRK to LLA via a
sequence of three elementary operations.

1. Flipping the leftmost helicity by convolution with #(z1) or #(z1) respectively.
2. Increasing the first index by convolution with £(z1).
3. Adding more particles to the left with index zero and equal helicities.

In this section we show that this recursive structure of scattering amplitudes in the

multi-Regge limit implies that they can always be expressed in terms of single-valued
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multiple polylogarithms of maximal and uniform weight, independently of the loop num-

ber and the helicity configuration.

Let us start by discussing MHV amplitudes. The algorithm of Section 4.4.2 allows us to
construct all MHV amplitudes by adding particles and by convoluting with £(z;). We
now show that the perturbative MHV coefficients gﬁfﬁ’.jr"i’“) are pure polylogarithmic func-
tions of uniform weight w = 1+1; +. . . +i. Obviously, the factorisation theorem (4.3.18)
implies that the claim remains true under the elementary operation of adding parti-
cles, so it suffices to show that convolution with £(z1) has the same property. The proof
proceeds by induction. Assume that gﬁff’.]r"ik) is a pure function of uniform weight w =
1441 + ...+ ik and let us show that g5:1++11k) = E(z1) * ggf?.i;’ik) is a pure function of

uniform weight w + 1. We have

E(z1) * g8 (pr, . pvs)

d2w (315N —5) wtl +wt_1
T / o It (w,ta, N -s5) [w2w — t1]? (4.5.1)

d*w (i1,erin—5) 1 w+it;  w
= — [ =gt (gt — 1=
/27r I+ (w, t2 N-5) ww—1t1) \w—1t; w

We evaluate the integral in terms of residues. As gsz',lf,jr"m -5) is assumed pure by induc-

tion hypothesis and all the denominators are linear in w, the anti-holomorphic primitive
is a pure function (seen as a function of w) of uniform weight w + 1. The convolution in

eq. (4.5.1) can then be written in the form

E(z1) # g™ (o1, pyos)

dw |1 1 (4.5.2)
=— | — |—F to,..., tN_ F to,..., tnN_
/ o |:?,U l(wa 2 s UN 5) + W — tl 2(11}, 2 s UN 5)

where F} and F; are pure single-valued polylogarithmic functions of weight w+ 1. As all
the poles are simple, the holomorphic residues can be computed by simply evaluating
the pure functions of weight w +1at w = 0, w = ¢; and w = oo (and dropping all

(i1,iN—5)

logarithmically divergent terms). Hence, £(21) * g}.) is a pure polylogarithmic

function of weight w + 1.

While the previous result is not unexpected for MHV amplitudes, we show in the re-
mainder of this section that we can extend the argument to non-MHV amplitudes, inde-
pendently of the helicity configuration. More precisely, we show that the pure functions
multiplying the rational prefactors defined in Section 4.4.2 are always pure polylogarith-
mic functions of uniform weight w = 1 441 + ... + ix. The proof in the MHV case relies
crucially on the fact that the anti-holomorphic primitive was a pure function of weight
w1 and that all the holomorphic poles were simple. Since non-MHV amplitudes are in
general not pure but contain rational prefactors, it is not obvious that the same conclu-

sion holds for arbitrary helicity configurations. In addition, for non-MHV we also need
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to analyse the effect of the helicity flip operation, which should not change the weight
of the function.

We proceed again by induction. Let us start by showing that also in the non-MHYV case
a convolution with £(z1) will increase the weight by one unit. From Section 4.4.2 we
know that all poles in z; are simple and either holomorphic or anti-holomorphic. In the
following we discuss the anti-holomorphic case and the extension to the holomorphic
case is trivial. The integrand of the convolution integral in the non-MHYV case may have
additional poles in w at points where Ra,. is singular. However none of these additional
poles are located at w = 0 or w = ¢;, and so all the anti-holomorphic poles entering
the convolution integral are simple. We can thus repeat the same argument as in the
MHYV case, and the anti-holomorphic primitive will be a pure polylogarithmic function
of weight w+1. Moreover, there are no additional holomorphic poles in w introduced by
the rational prefactors, and so we can compute all the holomorphic residues by evaluat-
ing the pure functions of weight w + 1 at w € {0, ¢1,00}. Hence, a convolution with £(z)
produces pure polylogarithmic functions of weight w + 1 also in the non-MHV case.

To complete the argument, we need to show that flipping the leftmost helicity does not
change the weight of the functions. In Section 4.4.2 we have seen that, since all poles
in ¢; are simple and either holomorphic or anti-holomorphic, we can always compute
the effect of the helicity flip by integrating and differentiating, cf. eq. (4.4.9). Since all
poles are simple, the integration will increase the weight by one unit. This effect is
compensated by the differentiation, so that the total weight of the functions remains
unchanged. Hence, we conclude that non-MHV amplitudes in MRK to LLA are poly-
logarithmic functions of uniform weight w = 1 + 4; + ... + i} independently of their
helicity configuration.
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CHAPTER B

The MRK heptagon at NLLA

In the previous chapter we argued that all amplitudes in MRK at the leading log approx-
imation (LLA) are described by single-valued polylogarithms associated to the moduli
space of (IV — 2) points on a Riemann sphere. Through integrability the impact factor
and BFKL eigenvalue, which appear in the hexagon, are known to all orders [109]. Thus
in this chapter we turn our attention to the simplest object beyond the solved six-gluon
case, the 2 — 5 amplitude in MRK. While predictions for the latter to LLA have been
worked out in [102,104,105], see also [38] for an extension to N-gluons, a major obstacle
for their generalization to arbitrary logarithmic accuracy, is that the dispersion integral
yielding the Regge cut contribution diverges when considering the N*~'LLA term at /
loops. This phenomenon is related to the fact that within the BFKL approach, the dual
conformal invariance of the theory is not maintained at the intermediate steps of the
calculation, and implies that some terms in the Regge pole contribution develop un-
physical poles. As discussed in [102], it is possible to shift these terms from the pole
to the cut contribution by modifying their definitions. The necessity of this step sug-
gests that there may be a certain degree of arbitrariness in separating the pole and cut

contributions in a conformally invariant theory.

Instead of the BFKL approach, in our analysis we will draw from the eikonal framework of
[108], where the two incoming high-energy gluons are approximated by straight Wilson
lines. Within this framework, only a Regge cut contribution, respecting high-energy
factorization, dual conformal symmetry and consistency with soft limits, is necessary to
describe the amplitude in MRK. This procedure also provides a natural regularization
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for the Regge cut at finite coupling, and allows for its straightforward expansion at weak
coupling. In this manner, we obtain the first significant result of this chapter, namely
a dispersion integral describing the 2 — 5 amplitude in MRK to arbitrary logarithmic

accuracy.

The 2 — 5 dispersion integral contains a new building block compared to the six-gluon
case, the BFKL central emission vertex, previously only known to leading order [102].
The second significant result of this chapter is the extraction of the NLO correction to
the central emission vertex, from the known NLLA contribution to the 2-loop 7-particle
MHYV amplitude [114], see also refs. [102,113] for earlier work on the LLA contribution.

More precisely, since the aforementioned NLLA contribution had been previously de-
termined [114] at the level of the symbol [32], in section 5.2 we show how to uniquely
promote it to a function, based on information we derive on the leading discontinuity
of the amplitude, together with its expected behaviour under soft limits, and single-
valuedness properties of the function space in which it “lives” As a bonus, from this
result we in fact also obtain the function level 2-loop MHV amplitude for any number
of gluons in MRK, since the latter has been shown to decompose into 6- and 7-gluon

building blocks in momentum space [114].

Then, in section 5.3 we present the final expression for the NLO correction to the BFKL
central emission vertex, and detail our approach for obtaining it, by translating the mo-
mentum space expression for the amplitude, to the Fourier-Mellin space of the disper-
sion integral. Using the same approach, we similarly extract the next-to-next-to-leading
order (NNLO) correction to the central emission vertex, up to transcendental constants,
from the 3-loop MHV heptagon symbol [11].

With the 2 — 5 dispersion integral and the NLO BFKL central emission vertex at hand, we
then move on to outline how to produce new predictions for the seven-gluon amplitude
in MRK to NLLA at higher loops. This is achieved by direct evaluation of the dispersion
integral, using a combination of nested sum algorithms and convolution methods, that

we describe in section 5.4.

Finally we combine all of the results of this chapter into an all order all multiplicity con-
jecture for the dispersion integral. Due to the integrability the only quantity that is not
known to all orders is the central emission block and it is for this quantity that we wish to
propose an Wilson loop OPE inspired expression. Specifically, by considering the NNLO
corrections to the central emission block obtained previously we write an ansatz com-
posed of several pieces which we proceed check by considering soft limits and compar-

ing to 4-loop data.
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5.1 The BFKL equation at finite coupling

In this section, we will obtain a dispersion integral describing the multi-Regge limit of the
2 — 5 amplitude that is well-defined at any logarithmic accuracy, based on the eikonal
approach of [108]. We review the basic ingredients of this approach for the 2 — 4 ampli-
tude in subsection 5.1.1, before extending it to the 2 — 5 MHV amplitude in subsection
5.1.2.

511 6-points

For 2 — 4 scattering in the multi-Regge limit, the six-point remainder function Rg in the
region where we analytically continue the energy components of all produced particles

is given by the all-order dispersion relation!

efo(2)+106(2) — omif, (5.1.1)
> 7 [ dv - »
fry = ;nzoo (g) ’ /_OO o B (v, n)|z2V e Lwm) (5.1.2)
where
L = log(y/u21u3y) + im = log(7) + im (5.1.3)

contains the logarithms that become large in the limit, whereas w(v, n) is the BFKL eigen-

value and ®(v,n) is the product of the impact factors respectively, to all orders in the

coupling

2 A
82"

The phase g appearing on the left-hand-side is the BDS contribution defined in ref. [129],

a=2g (5.1.4)

which is given to all orders in perturbation theory as

|z|2 _ K 11cusp

Ugus3

(1 — U1)2

where I' is proportional to the cusp anomalous dimension

d6(z) = m'log

219 1774
i (a) = 4a—4¢a® 4220 — <7C6+4C§) at+ <TC8+8(2C§+40C3§5> a®+0(a®) (5.1.6)
known to all loops from integrability (see [63] for a review).

We note that (5.1.2) differs from other results in the literature, in particular from [91].
This can be traced back to the choice of the integration contour to be used in (5.1.2),

which we have not specified so far. The two formulations are in fact equivalent via a

'Note that we have (z;/%;)"/? = (—1)" (w; /w;)"/? when converting any of the dispersion relations con-
sidered in this paper between z; <+ —w;, because any choice of branch on the square roots should also
respect complex conjugation. For example, if we choose v/z = i,/w, then we must also have vz = —i/w.
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change of integration contour [108], as we explain below. We should also note that one
could equally well use I' as an expansion parameter, rather than a. Based on this choice,
and some other considerations we will review in what follows, there exist two different
definitions of ®(v,n) in the literature

a = _a Preg(v,n) I'd(v,n)

2% _ _
5 (v,n) 5 1/2—|—”72 V2+%2—7T2F2 (5.1.7)

where the first expression is due to Lipatov, Bartels and collaborators [91,100], and the

second one is due to Caron-Huot [108].

S(v)

p 7

Figure 5.1.1: Integration contour for the six-gluon BFKL integral at finite coupling. Here
and in the following figures indicating different integration contours for the six-and
seven-gluon BFKL integrals, we only depict the singularities on the integration contour,
not the entire v-plane.

Strong constraints on the analytic structure of the integrand in (5.1.2) at finite coupling
can be derived by considering the soft limits z — 0 and z — oc. The correct soft limit be-
havior of the BDS ansatz implies that Rg has to vanish there to all orders in perturbation
theory, and thus by virtue of (5.1.5) the left-hand-side of eq. (5.1.1) reduces to

ll_l;r(l) eRg(Z)+i(56(z) — ’2’2ﬂ'ir (518)
z
Zlggo 6R6(2)+i56(z) _ ’2’727%1“. (5'1'9)

From this we can determine the behavior of the right-hand-side of eq. (5.1.1) forn = 0
(terms coming from n # 0 will be suppressed in the soft limit). It is evident that the

integrand should have simple poles at v = +#T", with residues

Res,— 41 (cﬁ(u, O)e*LW’O)) 4 (5.1.10)

m™a

in order to capture the all order soft behaviour of the left-hand-side. In fact, a more
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detailed analysis of the soft limit reveals that it separately restricts w(v,n) and ®(v,n) to

obey the exact bootstrap conditions [108],

~ 1
w(£nl,0) =0, and Res,—1,rP(v,0) = :I:E (5.1.11)

where by virtue of (5.1.7), the second relation may also be written as
O(£7l,0) =1 (5.1.12)

Finally, since the integral (5.1.2) diverges if the poles are located right on the real axis,
the soft limits (5.1.8)-(5.1.9) also dictate how the contour should be deformed in order
to avoid these poles on the real axis: Given that we need to close the contour on the
lower (upper) half-plane in v for z small (large), it is also clear that the integration contour

should run above the pole at 7I" and below the pole at —=T’, in other words

®(v,0) . o(v,0) B ®(v,0)
v2—m2l2 " 2 —7r2l2 440 (v —wl +i0)(v + 7l — i0)

(5.1.13)

as shown in figure 5.1.1.

So far the discussion was restricted to finite coupling. As we will now review, the knowl-
edge of the residues and integration contour that the soft limits provide at finite cou-
pling, is also crucial for appropriately regularizing the divergences that appear in the
weak coupling expansion of eq. (5.1.2). In particular, given that at leading order ®(v, n) —
1, it is evident from (5.1.13) that the integrand becomes ill defined for n = 0, since evalu-
ating the residue in either the upper or lower half-plane leads to a divergence. In other
words, while at finite coupling the contour runs between the poles at v = —zI" and
v =+, in the weak coupling expansion, where I' = O(a) with a — 0, these two poles

will move towards v = 0 and pinch the contour, leading to a divergence.

Consequently, we need to deform the contour at finite coupling before we are allowed

to expand in the coupling.

There are two immediate choices for deforming the contour so that it does not pass
between the two poles on the real axis any more. We can either take plus the residue
at v = —7l" in order to move the contour above the real line or we can take minus the
residue at v = +7I" to move the contour below the real line. It is possible to preserve

the symmetry of the integral by averaging between both choices, in order to find

eltetids _%V:RS?FF (é(% 0>‘Z’2iuefLw(u,O)> + o g 2/ V n) ’Z’QW —Lw(v,n)
n=—oo
+ S ReS (B0, 0)]c et 4 2 Z () / dv ®(v,n)|z|" e
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where 1 (|) denotes the contour running above (below) the real line, and the contours

may be closed in either half-plane.

After we evaluate the residues with the help of the bootstrap conditions (5.1.11)-(5.1.12),

combine the two contour integrals by introducing the Cauchy principal value P

1 1 1 1
—) == 114
P<x> 2<:U+i0+x—i0> (5.119)

and reexpress the integrand with the help of (5.1.7), we finally obtain the separation into

the conformal Regge pole and Regge cut contribution,?

efoti% — cos(log(|z|2)nT) + ig 73/ dv reg Vn?) |z |2i”e_L“’(”’”) (5.1.16)
n=—o0

This reproduces the well known expression from ref. [91], see also [99,100,129,130]. We
see that the regularization of the integral at v = n = 0, which in the prescription (5.1.14)
amounts to taking half the corresponding residue into account, is intimately connected
to the Regge pole contribution. It is worth emphasizing however that not just this sym-
metric choice, but any contour deformation that avoids a pinching is equally valid for
performing the weak coupling expansion. For example, when evaluating R for z small,
it is advantageous to pick the contour running below the real axis, so that after closing
it from below, the integral will no longer receive any contributions from the poles near

the real axis?®

—+00 n 5 )
eHetids — |Z|2mF + ig Z (g) 2 Adu O(v, n)|z|2we_L”(”’”) (5.117)

n=—oo

The generalization to the NMHV case is straightforward. Focusing on the helicity config-
uration most commonly found in the literature, see e.g. [131], the analogue of (5.1.1)-(5.1.2)

is

Ro_e%G) = omif, (5.1.18)
0 no o0 g, L
Fio :% (2)2 / %@(V,n)ﬂ(u,n)\zﬁ“’e Leo(n) (5.1.19)

where the helicity flip kernel H will be defined below in eq. (5.1.43). At this point, it is
sufficient to note that H(v,0) = 1, which implies that the MHV and NMHYV integrands

%In fact, we could have equally well arrived at the expression (5.1.16) from (5.1.1) and (5.1.13) by virtue of
the Sokhotski-Plemelj theorem on the real line,

1
x £10

= Frd(z) + P (é) (5.1.15)

for x = v* — 7°T2, together with 6(2* — o?) = (6(z — a) + §(z + )/ (2|al).
31t is worth keeping in mind that there will still be contributions from poles in the interior of the contour
forn = 0.
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become identical for n = 0, and so our analysis of the poles on the integration contour
as well as the prescription to avoid them generalize straightforwardly to NMHV. Finally,
the R_ helicity configuration may be obtained from (5.1.18)-(5.1.19) by a parity transfor-

mation.

5.1.2 7-points MHV

Armed with intuition from the six-point case, we now move on to propose an all-loop
dispersion-type formula for the 2 — 5 amplitude in MRK, again in the region where we
analytically continue the energy components of all produced particles. Our strategy will
be as follows:*

1. We start with a formula that expresses the remainder plus conformal BDS contri-
bution in the Multi-Regge limit at finite coupling, as a Regge cut (integral) only, i.e.
without any explicit Regge poles.

2. We then examine the soft limits of the formula at finite coupling, which reveal to
us the positions of the poles of the integral on the real axis, their residues, as well

as the prescription for integrating around them?.

3. In the weak-coupling expansion of the integrand, these poles will pinch the con-
tour, leading to divergences. We may deform the original contour, prior to ex-
panding in the coupling, to any contour that is not pinched in the weak-coupling
limit, picking up the residues that are crossed in the process of this deformation at

finite coupling, and then expand at weak coupling.

In this manner, for any deformation described in the last step, we will obtain an integral
that is well-defined at weak coupling, plus finite-coupling residue contributions, whose
values we know from the soft limits.

So let us start with the seven-point analogues of (5.1.1)-(5.1.2) shown in Fig. 5.6.16

Ro(avza)+idr(er22) — opif, o (5.1.20)

R &l 7 [ dud
_a <1 22 V1av 25y 2is
et F (3)7(2)7 e

n1=—00 Ng=—00

(&

(5.1.21)

X e_Ll“’(”l’”1)6_L2‘”(”2’"2)X+(1/1, TL1)C+(I/1, ny,ve,n2)X (v2,n9)

*A similar strategy for obtaining dispersion integrals of higher-point amplitudes, also in different regions,
has also been independently adopted by Basso,Caron-Huot and Sever, see [132].

®We assume that no other poles are present on the real axis but the ones dictated by the soft limits.

®To make contact with other notations used in the literature, f - is denoted as f.,w; in [104,105], and
similarly the six-gluon analogue f; ; of the previous section is denoted as f.,.
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b3 b7

P2 P1

Figure 5.1.2: Structure of the seven point amplitude in MRK.

where
L; = log \/ug;us; + im = log1; + im (5.1.22)
and the conformally invariant part of the 1-loop Regge cut coming from the BDS ansatz
is” o1
1/ U21U31 U22U32 2122
o =27l log —F—F——= =7TI'1 5.1.23
7(21,22) = 2wl log = [t A TS (5.1.23)

In addition, apart from the BFKL eigenvalue encountered in the previous section, x* (v, n)
are the two BFKL impact factors at the end of the ladder [100], whose product with equal

arguments also appeared in the hexagon case®

xt(w,n)x" (v,n) = (v, n) (5.1.24)

Finally, C*(v1,v9,n1,n2) is the central emission block, a new ingredient in the BFKL
approach to the heptagon compared to the hexagon, first computed to leading order
in [102].

Next, we consider the three soft limits where the momentum of one of the produced
particles goes to zero, and R; reduces to Rg. With the help of (5.1.23) we find that in the

’See for example [104], where §7 — 614 is expressed in terms of the transverse momenta of the produced
gluons, and the momentum transfer between them. It can be recast in terms of (transverse) cross ratios by
virtue of the kinematic analysis of [102], as adapted to our conventions in [38].

8The fact that the integrand contains impact factors of opposite helicity can be understood by thinking
about the momentum flow along the ladder: If we assume that its actual direction is from the x towards
the x~ impact factor, then in all-outgoing momentum conventions for these impact factors, the helicity
assignments of the gluons associated with x* and x~ will be (— 4+ +) and (-~ — +), respectively. Hence the
two must be related by parity.
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soft limits the left-hand-side of eq. (5.1.20) becomes,

Zhgo €R7+i57 — 6R6(Z2)+i56(2:2) |Zl ‘2m'1“ (5125)
1
Zlgnoo eR7+i57 — eRG(Z1)+i56(Zl)’Z2‘—2ﬂ'iF (5126)
2
lim  efrHior — oRo(ziz2)+ids(212) (5.1.27)

z2 4)0, Z122 fixed

Note that the last soft limit is also equivalent to z; — oo with z;29 fixed. From the be-
haviour in the soft limits we can determine that the r.h.s of eq. (5.1.20) needs to have a
pole vy = nI" — {0 for the n; = 0 term in the sum, a pole at o = —#T" + i0 for ny = 0, as
well as at 1 = v + 10 (or equivalently at o = 1 — i0) for ny = ny. Furthermore, it is easy
to check that the above relations hold if the residues on those poles are equal to

ResF (X+(V1, 0)Ct (v1,0,v9,n2)x ™ (v2, ng)) = ix T (v, n2)x ™ (v2,n2) (5.1.28)
vi=m

Res - (X+(V1, n1)CF (v, n1,v9,0)x ™ (12, O)) = —ixT(v1,n1)x " (v1,n1) (5.1.29)
Vo=—T
Res (X" (v1,12)C T (v1,n9, v9,m2) X~ (v2,12)) = —i(—1)"2e ™22\ (15, ng) X ™ (19, 12)
V=19

(5.1.30)

where we already took the condition (5.1.11) into account. The previous equations can
be seen as an integrand formulation in Fourier-Mellin space of the soft limits of the am-
plitude. In particular, if the residues take the values in (5.1.28), (5.1.29) and (5.1.30), then
the integrand with respect to the second integration variable becomes identical to the
hexagon integrand®. At this point we have to make a comment about these relations.
Since the soft limits are valid for the integrated amplitude after Fourier-Mellin trans-
formation, any integrand formulation is in principle valid only up to terms that vanish
when computing the Fourier-Mellin transform. For example, we could add to (5.1.28) any
function of (v, n;1) which is mapped to zero by the Fourier-Mellin transform, without
changing the soft limit of the amplitude. Since the Fourier-Mellin transform is invertible,
any such function which maps to zero is necessarily trivial, and so the bootstrap condi-
tions (5.1.28), (5.1.29) and (5.1.30) follow indeed from the soft limits of the full amplitude.

Finally, we come to address the necessity for a contour deformation before performing
the weak coupling expansion. It is evident that when at least one of the n; is different
from zero, we can have at most one pole on the real axis for either integration variable,
and therefore one can safely expand at weak coupling because no pinching can occur.
Therefore we only need to consider the n; = ns = 0 case, depicted in figure 5.1.3. There,

°The exponential factor in the last relation is present because for v1 = u» the term multiplying —w
in (5.1.21) becomes Ly + L2, whereas the corresponding large logarithm in (5.1.27) should be

L = log(T1i72) +im = L1 + Lo — im.
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we see that if after we close the contour at infinity, we receive a contribution from a
residue on the real line in any of the integration variables, the integral left to do in the
other integration variable will have the same pole structure as the hexagon integral of

figure 5.1.1, whereby the poles pinch the contour at weak coupling. We will therefore

S(v1) S(v2)

|

3
=N
=

Figure 5.1.3: Integration contour for the seven-gluon BFKL integral.

have to deform the contour before expanding, and the simplest choice will be to pick
a new contour such that it does not contain any poles on the real axis. For example, in
the region z; < 1,22 > 1, where we close v; from below and v, from above, we can
deform the contour as follows. Let us first schematically rewrite the integrand in a way

that exposes the pole structure of the ny = ny = 0 integrand in (5.1.21),

= |2 [z P26 B L2923 (11 0)CF (11, 0, 19, 0)x ™ (12, 0)

2(2m)
_ f(v1,v9)
(Vl — WF)(Vl — VQ)(Z/Q + 7TF)

(5.1.31)

Then, we can rewrite our original contour as

dvidva f(v1,v2) _ dvidv f(v1,v2) (5 1 32)
(v1—7—i0) (v1 —v2+40) (v2+7L+:0) — (v1—7I'+40) (v1 —v2+140) (v2+7I'+40) o

. dva f(nT,v2)
— 27TZ/ (VQ—WFin)(VQ-ETFF-HO)

_ dvidvs f(v1,v2)
- (111—ﬂ'F—‘riO)(l/l—I/Q—I-iO)(I/Q—Tl’F—iO)

dvi f(v1,—7I)
(v1—7T+40) (v1+7L'+40)

. dva f(nT,v2)
_27TZ/ (V2—TFF—27:0)(V2-57TF+7:0)

+ 271
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_ dvidvs f(v1,v2)
- (v1—7T+40) (v1 —r2+10) (v2 —7 I —30)

dvy f (v1,—7l)

270 | G r—0) (AT )
~ dvy f(nT ) N2 f(nl, =)
— 27TZ/ (u2—7r1“—2i0)(1/2-‘f7r1“+i0) + (QWZ) ol

where already in the second equality the double integral is free of poles on the real axis,
and in going from the second to the third equality, we changed the contour of the sin-
gle v; integral to make it identical to that of figure 5.1.1. The reason is that due to the
bootstrap conditions (5.1.11) and (5.1.28)-(5.1.30), also the integrand of these simple inte-
grals becomes identical to the hexagon integral in (5.1.2), up to factors independent of

the integration variable,

. —7 _omr @ [ dv1 —
2m/(l/1—rcrl;fig;1(’m+l;r)r+io) =|z2| 27”FQ/21@(”170)21|2w1€ L1w(1,0)
§ (5.1.33)
: dva f(nTv2) om0 [dvaz 2iva ,—L 0
=2mi | i) o) =l 2/ o 8(v2,0)|22[ e 2(v2,0)
Similarly, for the double residue in the last line of (5.1.32) we obtain
. —al 1 2mil
(2mi)2Resy, _xrResy,— ol = (2i)2 L =0 &l (5.1.34)

27l ©2mi |z 2T

Choosing to deform the contour in the same fashion for the case where one of the n; is
zero and the other nonzero, so that they contain no poles on the real axis, we observe
that the summands combine nicely to yield

’ 21 |27rz'F

6R7+’i57 — |Zl ‘27T7:F6R6(22)+i56(22) + ‘22|*27TiF6R6 (zl)+i56(z1) _ + 2777/f+++ (5135)

’22 |27riF

where f, , is defined precisely as in (5.1.21), but now with the integration contour of
eq.(5.1.32), which is also illustrated in figure 5.1.4. Notice that the presence of the second-
to-last term from the right, coming from eq.(5.1.34), is necessary for reproducing the
soft limits (5.1.25)-(5.1.26). We stress that although the above formula, which is the 7-
point analogue of (5.1.17), holds independently of how we choose to close the integration
contours, it is only valid in the region z; < 1, 29 > 1 which is convenient for expanding
at weak coupling. This is because the 1 = 15 residue is a simple integral that diverges at
weak coupling, and so it cannot be contained in our closed contour. By deforming the
contour in (5.1.32) around the v; = 15 pole, we similarly find

it _ Ro(m)iso(aiz) 4 onif, (51.36)

where again f, , | is defined as in (5.1.21), but this time the contour is the one that results
after we exchange v <+ v in figure 5.1.4. The last formula is particularly suited for the
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(1) R{2))
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Figure 5.1.4: The deformed integration contour for the seven-gluon BFKL integral, which
is convenient for the weak coupling expansion in the region z; < 1, zo > 1.

weak coupling expansion in the z; > 1, z» < 1 region. Finally, one may be tempted to
take the average of (5.1.35)-(5.1.36) as the analogue of (5.1.16), however at least currently
it seems that it is not convenient for the weak coupling expansion, since it will lead to
pinching in both contours.

5.1.3 Summary and extension to any helicity

In the previous section, for simplicity we focused on the MHV 2 — 5 amplitude. Here we
will present the generalization of the all-loop dispersion integral (5.1.20)-(5.1.23), as well
as the exact bootstrap conditions (5.1.28)-(5.1.30) that are obeyed by the building blocks,
for arbitrary helicity configurations.

Using definitions of subsection 4.1, the multi-Regge limit of the BDS-normalized N = 7
particle amplitude (4.1.27) will be given by

Rihahs €072 = 2703 f, oy (5.1.37)

ny

00 2 s na
a z21\ 2 (22 2 dvidva 9 Vv & ~
Frahohs =5 > <Z1> <Z2) / @n)? |21 [%" 22|72 @ (11, 11 ) D (v, M2)

n1,n2=—00

X e*Ll‘“(”l’"1)*L2w(”2’"2)1h1(Vl, nl)é’hQ(Vl, ni, Vg,ng)j:h3 (va,n2) (5.1.38)
with
. |2120]2
L; =logt; +im d7(21,22) = wl'log Tp——— (5.1.39)
as well as

®(v,n) = x"(v,n)x" (v,n) (5.1.40)
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as defined previously, and the contour of integration as depicted in figure 5.1.3. In addi-

tion, we have expressed the integrand in terms of the rescaled quantities!®

Ch(l/h ni, v, nz)

CMuvi,ni,va,m0) = (5.1.41)
(1,71, 12,12) X~ (v1,n1)x* (v2, n2)
and
h 1, h=+
"(v,n) = M = (5.1.42)
X (an) H(y’n) h=—
with I" denoting the complex conjugate of I". In the last equation,
H(v,n) = :U(u(y—%z) (5143)
z (u(v) + %)

is the helicity flip kernel, or NMHV form factor, known to all loops from integrability
[109], as is also the case for the hexagon impact factor ®. The precise definition of the
Zhukowski variables = and the rapidities u will not be important for our purposes, and
we will be explicitly providing the weak-coupling expansion of H in section 5.3. A crucial
property that however follows immediately from the above representation, is that

Hv,0)=1 = I"(v,00=1 (5.1.44)

The most significant advantage of defining a rescaled central emission block as in (5.1.41),
is that it allows us to formulate separate exact bootstrap conditions for the latter: Along

with the conditions

~ 1
w(£rT,0) =0, and Resy_inr (@(u, 0)) =+, (5.1.45)
T

which as we reviewed in section 5.1.1 follow from the analysis of the six-gluon amplitude,

the consistency of soft limits of the seven-point amplitude requires

CM(aT, 0,1, n2) = ima I" (9, ny) (5.1.46)
C"(v1,ny, —nT,0) = —ima I" (1, n1) (5.1.47)

_i(_l)ngeiﬂw(ug,nz)

Res éh(yl,ng, v, ng) = - (5.1.48)
n=v; B (12, n2)
as well as
C" (=T, 0,v9,n9) = C"(v1,ny,7T,0) =0 (5.1.49)

In particular, egs. (5.1.46)-(5.1.48) for h = + follow from (5.1.28)-(5.1.30) and (5.1.45), after

'9In more detail, the generalization of (5.1.21) to arbitrary helicity follows from xTCTx~ — x"1C"2x="3,
which can then be recast in the form (5.1.38) after we plug in the solution of (5.1.42) and (5.1.41) for x™ and
C" respectively, and finally use (5.1.40).
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also taking into account that C" must be regularat n; = 0,v; = al'and ny = 0,15 =
—n I for the soft limits (5.1.25)-(5.1.26) to hold (e.g. a pole would lead to additional log z;
dependence that is incompatible with these limits). In a similar spirit, the regularity of
the entire integrand at n; = 0,1 = —xl' and ny = 0,1 = 7[" implies (5.1.49), so as to

cancel the poles of either of the ®(v;, n;) there.

Then, the extension of these conditions to C~ can be done by recalling that the MHV
and MHV amplitudes must be equal to each other, R, = R___, as a consequence of
their equivalence to the same bosonic Wilson loop under the Wilson loop/amplitude
duality. Imposing this on (5.1.37)-(5.1.38) implies

C_ (I/l, ni, v, ng) == H(Vl, n1)0+(V1, ni, re, RQ)H(VQ, ng) (5150)

allowing us to obtain (5.1.46)-(5.1.48) for h = — from h = +, also with the help of (5.1.44).
Note that the last formula implies that we only need consider w,®, H and C* as the
independent building blocks of the integrand, and then C'~ may be expressed in terms

of the last two.

Finally, by deforming the contour, it is possible to equivalently write (5.1.37)-(5.1.38) as

‘ 21 |2m‘F

Rihahs € = 217" T Ry (22)€%002) + |29 2T TRy, (21)€001) — + 2704 fh hohs

(5.1.51)

where fj,, 1,1, is defined as in (5.1.41), but with the integration contour illustrated in figure

‘22 |27riF

5.14. In what follows, we will almost exclusively be using this form of the dispersion
integral, which is particularly convenient for its weak-coupling expansion in the region
71 < 1, z9 > 1 that we will consider.

5.2 From symbols to functions in MRK

In the previous section, we succeeded in obtaining an all-order dispersion integral de-
scribing the multi-Regge limit of the 2 — 5 amplitude of any helicity configuration, that
iswell defined at arbitrary logarithmic accuracy. In order to complete the description we
also need to determine the building blocks of the integrand, and while the ones associ-
ated to the six-particle amplitude are known to all loops, the (rescaled) central emission
block (5.1.41) is only known to leading order [102].

The aim of the next two sections will thus be to extract the central emission block at
higher order from the known perturbative data for the amplitude, exploiting the fact
that if we know the left-hand side of (5.1.37) at ¢ loops, we can determine all building
blocks in (5.1.38) at N*~'LO, since they start at O(a®). In particular, in this section we will
first promote the known 2-loop symbol of the MHV seven-particle amplitude [114] to a
function. From this, we will in fact obtain all 2-loop MHV amplitudes in the multi-Regge
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limit, by similarly promoting their interesting factorization property, i.e. their decom-
position into building blocks associated with the six- and seven-particle amplitude, that
was also discovered in ref. [114].

In subsection 5.2.1, we first establish a necessary result for our subsequent analysis,
which is however expected to have other applications as well, since it holds in gen-
eral kinematics: Based on the framework of the Operator Product Expansion (OPE) for
null polygonal Wilson loops [26, 28-31, 115, 133-138], we derive the maximal degree of
logarithmic divergences of MHV amplitudes in the Euclidean region for any number of
particles N, extending the earlier analysis in ref. [139] of the N = 6 case. In subsection
5.2.2, we then use this property, together with information from soft limits, in order to
uniquely fix all beyond-the-symbol terms of an ansatz for the 2-loop MHV seven-point
amplitude, or more precisely the remainder function Rg) . Finally, in section 5.2.3 we
obtain all 2-loop MHV amplitudes in the multi-Regge limit, by proving that the NLLA
factorization of the symbol observed in [114] must necessarily also hold at function level.

5.2.1 Maximal degree of logarithmic divergence from the OPE

Let us start by stating the main result of this subsection: We will prove that the N-point

L-loop remainder function R%) in general kinematics may always be written as

R = > log" U ... 10g" "> Un—5 1, .jw_s (5.2.1)
0<j1+...+jin-—5<L—1

where the functions f;, are analytic for any of the cross ratios U; — 0, and the

,,,,, JN—5
latter are defined as

Ui =Uy_; i=1,...,N—5 (5.2.2)

31,l51+2
with Uj; already defined in (4.1.10), or equivalently any other set obtained by acting on
(5.2.2) with dihedral transformations. In the last relation, |z | and [z] are the floor and
ceiling functions respectively. This way, we find that the only relevant cross ratio for
N = 6is Usy, for N = 7 there is Ugy and Ugz and for N = 8 we have Uz, Ugs and Ur3 and
so on for higher points.

The main content of (5.2.1) is twofold: First, the leading discontinuity of R%), or equiva-

lently its maximal degree of logarithmic divergence is L — 1. And second, that one can
unshuffle all logarithms in the U; simultaneously even in general kinematics, which is
nontrivial because it cannot be done for general polylogarithmic functions.

We now proceed with the proof, and at the end of this section also mention the gen-
eralization of our result beyond the MHV case. We will be relying on the Wilson loop
OPE [26] approach and its subsequent refinements [28-31], where the observable of in-

terest is a ratio of bosonic Wilson loops Wy, which has a weak coupling expansion of
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the form -
Wy =1+ aPwy (5.2.3)
L=1
and is related to Ry by
Ry = log Wy — %W}Vl) (5.2.4)

where vk has already been defined in (5.1.6). The last equation encodes the fact that al-

though Wy receives tree-level and one-loop contributions, Ry only starts at two loops.

As described in Section 2.2.6 the N-gon Wilson loop dual to the MHV amplitude is tes-
sellated into N — 5 consecutive squares, where the two segments of each square that are
part of the original Wilson loop can be thought of as a quark-antiquark pair sourcing
a colour-electric flux tube. We can then decompose the Wilson loop into excitations
of this flux tube v;, with energy F;, momentum p; and helicity m, corresponding to the
three isometries of the square (see Subsection 2.2.6)

Wy = Z eZy_S(_TjEj+ipjgj+imj¢j)73(0’wl)P(¢1‘wg)...P(¢N76|¢N75)P(¢N75’0)
V1, YN—5
(5.2.5)

The 3N —15 algebraically independent variables 7;, o; and ¢; parametrize the conformally
invariant kinematics, and when expressing the cross-ratios in terms of these variables,
it can be shown that the N — 5 cross ratios of (5.2.2) take the form

1

Vi=1yem

(5.2.6)

This formula can be obtained from the following equivalent parametrization of the ex-

ponential factors in terms of so-called 4-brackets (ijkl) of momentum twistors

627'2j+1 — <7j*17j+1,j+27j+3><*j*2,*j*17*jaj+2> =0 LN76J
B <_.]_27_]_17.]+27j+3><_]_17_]7]+1’]+2> T 2
627'2]' — <7J7]+1a]+25‘7+3><7]7157]57]+1a]+2> i—1 LN75J
= < e

(5.2.7)

For our purposes we will require the following identity between six momentum twistors,
(cdef)(abef) — (bdef){acef) = —(adef){bcef) (5.2.8)

The latter is a consequence of the Schouten identity
(ab)(cd) — (ac)({bd) = —(bc)(ad) (5.2.9)

since six points in CP? (the twistors) are equivalent to six points in CP! (the spinors), as

can be seen by replacing the spinor bracket of two points with a 4-bracket of its com-
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plement, (ab) — (cdef) etc. With the help of the last two formulas, we can show that

indeed
1 _<—j—2,—j—1,j+2,j+3)<—j—1,—j,j+1,j+2>_U' '
1 +€2T2j+1 a <_.7 - 27 _j - 17.7 + 17.] +2><_.] - lv_jvj +27j +3> R
1 _<_.7_17_]7j+27j+3><_37_j+17j+17]+2>_
1+627—2j a <_.7_17_.77.7+17]+2><_J7_.7+17]+27]+3> R
(5.2.10)

and (5.2.2) neatly combines the separate odd and even cases of the last equation.

At weak coupling, the tree-level term in (5.2.3) comes from the vacuum state, whereas
excitations on top of it have energies

E; = M; + via+ O(CLQ) (5.2.11)

where M; is the excitation number. Thus expanding (5.2.5) at weak coupling, and given
that ) )
Ti=5 log U; + 5 log(1 —Uj;) (5.2.12)

we see that at L loops the terms that maximize the sum of powers of log U; will be

2 H (NI 5, rbtiimortimon) [P0}y ) . .. P(o—5/0)])
M; =1
ji N-5
— Z H log U; x (terms analytic as U; = 0) (5213)

Where va ~%ji = L — 1. All other terms in the OPE expansion will also have the same
general structure as (5.2.13) but with fewer powers of log U; (this also includes so-called
small fermions which have ; = 0 and in fact start at O(a?), see for example [30]), which
proves that W](VL) has the structure of the right-hand side of eq. (5.2.1). Then by virtue of
(5.2.3) and (5.2.4), the same will be true for R%), which thus completes the proof.

Avery similar statement also holds true beyond the MHV case, where it is more conve-
nient to consider the entire superamplitude, rather than its gluonic component alone.
This is then dual to a super-Wilson loop, whose OPE expansion is equal to the same
expansion for MHV, times non-MHYV form factors [29,136-138]. These form factors may
increase or decrease the order at which OPE excitations begin to contribute, and indeed,
some components of the superamplitude, or more precisely ratio function, are nontriv-
ial at tree level. By repeating the arguments presented above, if a component of the dual
super-Wilson loop receives its first nontrivial OPE contribution at k loops, then the total
degree of its logarithmic divergence at L loops should be L — k.
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5.2.2 The function-level 7-particle 2-loop MHV amplitude in MRK

In this subsection, we will promote the known 2-loop symbol of the heptagon remainder
function in the multi-Regge limit of ref. [114], as defined in (4.1.27) for N = 7, and in the
region corresponding to the analytic continuation of the cross ratio,

G=Usn_1— e ™Uyn_1 (5.2.14)

to a function Rg). Let us start by reviewing the relevant information from the aforemen-

tioned paper, where it was shown that

(2)
R (21, 2 -
72(7:1.2) => (Qf(pi) log 7; + f(m)) +9(p1, p2) (5.2.15)
i=1
where
— 2

are the coordinates defined in (4.2.9)-(4.2.11) specialized to N = 7, and the functions f, f
are the LLA and NLLA parts of the hexagon remainder function,

R (21)

=2f(z1)logm + f(z1) (5.2.17)

this time in the region corresponding to the analytic continuation (5.2.14), but for N = 6

(two-particle cut). Explicitly we have [100], in the coupling normalization of (5.1.4)

1 1—z|? 1 1
4f(2) = 4f(1/z) = ; log|1 — z[* log | ,2‘2’ = —5%(2)G1(2) + 5%(2)
Af(z) = 4f(1/z) = —4Li3(z) — 4Li3(2) + 2log |z|?(Lia(2) + Liz(2)) (5.2.18)
1 Bl 1 11— 2|? | 2|2
“log? |1 — 2|1 — —log |l — 221 1
+ 3 log™[1 2] T og|l — z|"log CE 8L

= ~2G0(2)G1(2) + 4G001(2) + 361(2)° — 5G0(2)6(2)” + 5G0(=Gn(2)

Finally, the symbol, as well as a 25-parameter functional representative for the genuinely

heptagonal NLLA function g, were found in [114]. Here we fix all remaining ambiguity, and
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show that

49(p1, p2) =2G01,1/p (1/p2) = 2G11,1/p, (1/p2) = G1/p, (1/p2) Goa (1/p2)
—Go (p1) Go,1/p, (1/p2) +G1 (p1) Go,1/p, (1/p2)

)
+Go (p1) G1,1/p, (1/p2) 4+ Go (p2) G1,1/p, (1/p2)

—G1(p1) G1,1/p, (1/p2) = G1/p, (1/p2) Go,1 (p1)

— G1 (1) G0 (1/p2) + Gr1/pn (1/p2) 61 (1/p2) (5219
+ 590 (90)G1 (1) Gy (1/02) = 550 (1) 1 (1) G (1/p2)

= 590 (p2) G1 (p1) G (1/p2) = 500 () Gy (1/p2) 61 (1/p2)

+ G041 (p1) G1 (1/p2)

Where G are the single valued polylogarithms defined in section 4.2.4.2, thus fully spec-
(2)

ifying R;” in MRK at function level.

For the remainder of this subsection, we will describe how we have obtained eq. (5.2.19).
Specializing the discussion of subsection 4.2.4.2 to the seven-particle amplitude, we in-
fer that the relevant class of functions for describing it are single-valued A, polyloga-
rithms. Then, if we know the symbol of any function in this space (in this case, the sym-
bol of g), we can find a representative function either by matching it against the symbol
of an ansatz made of the basis functions of the same weight, which we call the Lyndon

basis
L= {Ga(pl)\ai e {0, 1}} U {Ga(l/pg)]ai e {0, 1, 1/,01}} (5.2.20)

As was done in [114], or, even better, by directly integrating the symbol along a given

contour.

The actual function may differ from the representative function by beyond-the-symbol
terms, namely transcendental constants multiplying lower-weight functions of the same
type. Assuming that the only transcendental constants appearing here are multiple zeta
values (MZV), we thus form an ansatz for the actual function by augmenting the repre-
sentative function with all products of MZVs with the bases of lower-weight functions,
multiplied by yet-to-be-determined coefficients.

In more detail, we may form separate ansatze for the imaginary and real parts of Rgz)'

which at two loops will have weight three and two, respectively. However, by virtue of
the property (5.2.1), Rg) has vanishing real part in the region where all produced parti-
cles have a negative energy. The functions f and f are determined from the six-point
amplitude and are known to be real. Hence, the function g must also be real. We thus
only need form an ansatz for the real part of g, which after taking into account parity

and projectile symmetry, will contain just four undetermined coefficients: a constant (3
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term, plus (2 times the three parity and flip symmetric weight-one functions

Go(p1) +Go(1/p2) Gi(p1) +G1(1/p2) Gp,(p1) (5.2.21)

The final piece of information we will rely on in order to arrive at a unique answer will
be the expected behaviour of the amplitude in soft limits. From (5.2.18) we can easily see
that

£(0)=f(0)=0 (5.2.22)

in agreement with (4.1.50) and the fact that R5 = 0. Similarly, the three soft limits of the
heptagon building block ¢ require

g(0,p2) =0 (5.2.23)
g(p1,00) =0 (5.2.24)
9(p1,p1) = —f(p1) (5.2.25)

Taking the limits on the left-hand side is straightforward, after expressing it in the Lyn-
don basis (5.2.20), the first limit sets the coefficients of the constant (3 terms and the first
two logarithms in (5.2.21) to zero. The second limit is related to the first one by target-
projectile symmetry, which leaves g invariant, g(p1, p2) = g(1/p2,1/p1). Therefore it will
not provide any new information, since our ansatz already respects this symmetry. Fi-
nally, the third limit po» — p; also sets the coefficient of the third logarithm in (5.2.21)
to zero, since there it is the only term that becomes divergent. We thus arrive at the
unique answer (5.2.19) for the function g, or equivalently the heptagon remainder func-
tion in MRK.

5.2.3 All function-level 2-loop MHV amplitudes in MRK

Quite interestingly, from the result of the previous section, we can also obtain all 2-loop
MHYV amplitudes, in any region in which the adjacent particles k +3,k+4,...,1+ 3 have

their energy signs flipped. In particular, we will show that in the region in question, we

have o
R -1 -2
CN[EA3I43] , o .
57 = Ek <2f(vl) log 7; + f(vl)) + Ek 9(vi, vig1) (5.2.26)

where the hexagon f, f and heptagon g building blocks have already been provided in
(5.2.18)-(5.2.19), and the variables v; are slight generalizations of the p; variables defined

in (4.2.9)-(4.2.11), corresponding to simplicial coordinates on the Riemann sphere with
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| — k + 3 marked points.!! They are related to the usual transverse cross ratios z; by

o (vj—1 —vj) (1 —vjp1) B
I o —v) 1 —vj) 7 © {ksoo 1 =1} (5.2.27)

with the boundary conditions v;_1 = 0, v; = 0.

The above result has already been established at symbol level in [114],'2 so more precisely
here we will prove that if it holds at symbol level, then must necessarily also hold at
function level.

It can be seen that by virtue of (5.2.22)-(5.2.25), the right-hand side of (5.2.26) has correct
soft limit behaviour, namely it reduces to the same function with one leg less. Therefore
if this factorization is to break down beyond symbol level, it can only be through terms

that vanish in the soft limit.

From the results of subsection (5.2.1) we know that the 2-loop remainder function has
a vanishing real part for any NV, so the only factorization-violating beyond-the-symbol
terms are transcendental constants or weight-1functions. Given that the latter are single-
valued, they can never turn into transcendental constants in the soft limit, and therefore
one cannot add transcendental constants to the right-hand side of (5.2.26) without vio-

lating soft limits.

With the weight-1 SVMPLs remaining as the only allowed beyond-the symbol terms not
captured in (5.2.26), we will now show that there exists no linear combination thereof
that vanishes in all soft limits, and therefore they too should be absent. Forgetting target-
projectile symmetry momentarily, the weight-1SVMPLs that can appear in N-point scat-
tering in MRK will be

log|vi| log|l—v;| loglv,—vj| i<j=k,....,l—1 (5.2.28)

This is a consequence of the fact that in the regions we are considering, the multi-Regge
limit is described by a configuration of I — k + 3 points x; (out of a total of N — 2)
in CP!, which can only have singularities when two of the points coincide, i.e. of the
form log(x; — x;), plus complex conjugates. Equation (5.2.28) then follows from single-
valuedness and the fact that the v; coordinates are a particular set of simplicial coordi-
nates parametrizing this space, in absolute analogy to (4.2.9) forthe k = 1,1 = N — 4

case.

Soft limits prohibit logarithms of adjacent v;, log |v;—1 —v;|, to appear, since for each i they
will be the only ones that diverge in the v;_; = v; limit, with all remaining terms being
finite. Then log |v;_2 —v;| are also prohibited, since in the same limit they will be the only

"That is, for the long cut with k = 1,1 = N — 4 the two sets of variables coincide, v; = p;.

?Note however that we have modified the conventions slightly: z; = —w; 3 and vf™ = —pieLe,
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ones that reduce to log |v;_1 — v;|, an independent function whose coefficient should
vanish. By extending the argument to differences of v; with larger and larger separation,
we thus sequentially exclude all log |v; — v;| from appearing as extra beyond-the-symbol

terms not captured by (5.2.26).

We are thus left with the logarithms of the first two types appearing in eq. (5.2.28). All
of them but log |1 — v1| can be similarly eliminated by the v; = 0 limit, namely they will
either diverge, or remain independent functions. And going back to any soft limit not

involving v; will also force log |1 — v;| to be absent, since it will remain nonzero.

Concluding our analysis, we have shown that there exist no beyond-the-symbol terms
respecting soft limits that can be added to the right hand side of eq. (5.2.26) for N >
7. Therefore the interesting NLLA factorization structure observed at symbol level also
holds at function level, and the latter equation accurately describes the MRK of 2-loop

MHYV amplitudes with any number of points N, in terms of the functions f, f and g.

5.3 Extracting the NLO central emission block

Let us now combine the knowledge of seven-gluon amplitudes in MRK we have gathered
so far, namely the function-level 2-loop MHV case of section 5.2, and the dispersion
integral governing any helicity configuration to all loops (5.1.37)-(5.1.38). By matching the
perturbative two-loop result to the weak coupling expansion of the dispersion integral
we determine a main result of this paper: the (rescaled) central emission block (5.1.41) to
next-to-leading order. This is a result which cannot be obtained from the well-studied

six-gluon amplitudes.

We start by presenting the result, and describe the details of our calculation in the fol-
lowing subsections. If we denote the perturbative expansion of the rescaled central
emission block as

C*(v1,n1,v9,m9) = 0(0)@1’ ni, ve,na) + aé(l)(Vh n1,va,m2) + O(a’) (5.3.0)
we find the result for the O(a) correction to the central emission block:

é(l) ) ) 1
(vi,n1,v2,m2) 1 [DE, — DEy + By By + (N1 + No)2 + Vs (5.3.2)

CO(v1,n1,v9,n9)
+(V1 — VQ)(M — E1 — EQ) + 2(2 + Zﬂ'(VQ — V1 — E1 — EQ)]
Here we normalized to the known leading order result, translated to our conventions [102],

~ T'(1—dvy — 2OT(1 + g + 22T (4 —tp — L + 22
CO(v1,n1,v9,n9) = ( : Zilﬂ = )_( Z:j : )_ .(wl .Wz_ oy :
F(wl 5 )F( o + 2)F(1 i+ — 5+ 2)

(5.3.3)



5.3. Extracting the NLO central emission block 147

In the above, we have expressed the answer in terms of the hexagon BFKL building
blocks [110]

E(,n) = -1 2+w(1+w+ ) ( )—sz()
S (5.34)
V(v,n) = i < N(v,n) = n 5 = —10/0v
v+ o v+ I

with the shorthand Ey = E(v1,n1) etc, as well as a new quantity involving mixed polygamma
functions

M(l/l,’rll, I/Q,ng) = ¢(i(V1 — 1/2) — %) + 1,[)(1 — i(l/l — 1/2) — %) — 21/)(1) (535)

Note however that when one changes the integration variables from angular momenta
v; to integrability-wise more natural rapidities u; [109] (taking into account that our v;
differ with the ones used in the latter reference by a factor of 1/2)

v; = u; + ai + O(a ) (5.3.6)

then any dependence on mixed polygamma functions drops out. In other words they
only appear when we expand the arguments of the gamma functions in the inverse

transformation from the u; to the v;.

We may readily check that our expression (5.3.1)-(5.3.5) indeed obeys the O(a) expansion
of the exact bootstrap conditions (5.1.46)-(5.1.49). For completeness, let us also mention
the weak coupling expansion of the BFKL eigenvalue [91,99], hexagon measure [101, 110,
140] and NMHYV helicity flip kernel [103,109,131] (see also the last paper for all-loop ex-

pressions of these quantities)

2

—w(v,n) = aE — “Z (D?E — 2VDE + 4GF + 12¢3) + O(a?), (5.3.7)
~ ) 2
d(v,n) = reg(¥; Z‘) _ 1 . [ <E2 + 3N2 > + O(a )} (5.3.8)
24 V2 2 4 3
v— % o a 2
H{vn) = — % [1 SNV +0(a )} (5.3.9)

Plugging these formulas back into (5.1.37)-(5.1.38) or (5.1.51), we may obtain predictions
for the heptagon to NLLA at higher loop orders. We detail how to evaluate the relevant
integrals to obtain explicit expressions in momentum space in section 5.4. Finally, we

may invert (5.1.41)-(5.1.42) in order to obtain equivalent perturbative expansions for the
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x* and C* building blocks of the BFKL approach,'®

®(v,n) 1 a 3 w2
+ = P = |1~ (E*+ SN? - NV + — ) + O(a®
X" (v,n) Hn) I/—gl|: 4< +3 +3 + O(a”)
+ 1 @ (2 2 m? 2
X (v,n)=x"(v,n)H(v,n) = . —— | E*+ -N"+ NV + — | + O(a”)
1/—|—Z;l 4 4 3
(5.3.10)
and
CH sy, v, mg) = — F(l.—iuln—%)l“.(im-i-n%) (il/1.—il/2'—%:%)n y
F(l"—ll/l—71)1—‘(—7;1/2—1—72)1—‘(1—21/1—'-21/2—714—72)
cM
X 1—|—a<é(0)—i(Ef—i—ESJerVI—NQVQ)—%(Nf+N22)—C2 +0(®)| (5311

where in the first line of (5.3.10) we picked the branch /(v — i—”)Q =y

5.3.1 Building the Fourier-Mellin representation

Here we would like to describe a procedure that can take us from the amplitude in multi-
Regge kinematics to its corresponding Fourier-Mellin (FM) representation. As we have
seen in previous chapters, in multi-Regge kinematics the amplitude exhibits divergent
logarithms which take the form of powers of the log 7;, whose coefficients are SVMPLs in

the variables z;. When investigating the heptagon amplitudes we find it useful to define
22 = 1/22 (5.3.12)

so that the target-projectile symmetry becomes simply z; <+ Zo.

The first step in our analysis is to focus solely on the holomorphic part of the heptagon
amplitude in MRK, by taking all zZ; — 0 as well as regularising any logarithms log z; — 0.
That is for a single valued function F'(z, z) we define the holomorphic part by

F'(2) = F(z,0) (5.3.13)

log z—0

We can reconstruct the full kinematic dependence of the latter with the help of the
single-valued map, cf. (4.2.50). One is then left with a five-letter Ay or M, 5 alphabet
for the holomorphic part of the form

{21,22,1—21,1—22,1—21 —22} (5.3.14)

*Note that here we have redefined x* and C'*, compared to e.g. [38], as follows: X}ire = i[x?ﬁere + O(a)],
and C:F —[Cf .. + O(a)].

here — there
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In addition to restricting to the holomorphic part we also focus on the terms in the Taylor
expansion of the amplitude with strictly positive powers of z; and Zs. In other words we
decompose terms in the perturbative expansion of the amplitude in a similar manner

to that shown in eq. (5.1.51) and keep only the final term corresponding to (27%) fi, hyhs-

Concretely, this amounts to taking the symbol expression for A = eff7+i7 o and
oops
forming the combination
AW (21, 29) = AP (21, 29) — AP (21,0) — AM0, %) 4+ A%(0,0) (5.3.15)

in order to remove contributions that reduce to lower-point objects. We remind the
reader that the superscript h refers to taking the holomorphic part as in eq. (5.3.13).
The quantity A%) contains all the information necessary to construct the Fourier-Mellin

representation we require.

The holomorphic part A% (zy, 25) will have logarithmic branch cuts around z; = 0 and
Z9 = 0, in addition to exhibiting the large logarithms log 7; associated with taking the
multi-Regge limit. We may render such branch cuts explicit by employing the shuffle
relations to obtain each function as a polynomial in log z; and log Z; with coefficients
which are analytic around z; = 0 and 22 = 0 respectively. Thus we obtain an expression
for the holomorphic part of the amplitude in MRK of the form

AL (21,22) = Z log? 11 log? 19 log" 21 log® 22 fpgrs (21, 22) (5.3.16)
p7q7r75

where fpqrs(21, 22) are linear combinations of polylogarithms which are analytic at z; =

29 = 0.

For each analytic function f, 4., s(21, 22) we now Taylor expand around the origin z; =
Zo = 0. We may do this simply by employing the following general formula for the Taylor

expansion about z = 0 of a G-function from e.g. [116]

Gorvay i (2) = 30— L [EM L] A

1 1
m’1“+ omir Tt Lag, Qg aj,

where the nested summation is performed over the region 1 < m; < ... < m, and the
a;, # 0. Here 0" denotes a length n sequence of 0. These nested sums actually form their
own Hopf algebra, with two closely related representations

2: 93? z

n>i >ip>..>i;>1 1 Ly

11 J

T €Z;

. . _ § 1 J
Z(n,m17...,mj,x1,...,ﬂ7j) = Sy Tmy o (5319)

n>i1>ig>..>i;>0 1 J



150 Chapter 5. The MRK heptagon at NLLA

with the generalized harmonic numbers corresponding to the special case S(k;m;1) =
Z(k;m;1). Where the multiplication is given by the quasi-shuffle product which may be
determined by repeated application of the following identity

n n n n
Z Qij = Z aij + Z aij + Z ajj (5.3.20)
irj

1<j J<i i

The coproduct of the coalgebra is given by deconcatenation of the entries

J
AZ(n;ma,...,mj;xq,...,25) = ZZ(n;mk+1,...,mj;a:k+1,...,$j)
k=0

®Z(n;my, ..., mg;T1,...,T)
(5.3.21)

With a similar expression for the S-sums. The final element of the Hopf algebra is the
antipode S which due to the simple nature of the coproduct together with the quasi-
shuffle algebra is given by

S(Z(nymy,...,mj;z1,...,25) = (=1)S(nymy,...,mi;z4,...,21) (5.3.22)

In the previous chapter we showed that we may build single valued polylogarithms in
a purely algebraic way by applying the map (4.2.50) to any holomorphic polylogarithm.
Analogously we would like to define a similar map that will generate single-valued Z-
sums, in the sense that they provide the integrand for the Fourier-Melin transform of
single valued polylogarithms.

s =pu(S®@id)A (5.3.23)

However before we may define the modified antipode we need to analytically continue
the nested sums to accept complex arguments. That is we will write each nested sum

with an integer upper limit as a combination of sums up to infinity.

J
Z(n;ma,...,mjx1,...,25) = Z(—l)kZ(oo; Mt 15+ MG Tt 1y - - 5 T5)
k=0
o0 xn+il mn+i1+...+ik
Xy 1 . k , (5.3.24)
(n4i)™ (41 +...+ i)™

i1,..i=0

With a similar expression for the S- sums, which apart from the obvious change from Z
to S will differ in the lower limit for the indices i.e. in the bottom line the indices would
start at 1 instead of 0. Note that for the special case where all the z; = 1, the sums in the
first line reduce to the multiple zeta values Z(oo;m1,...,mj;1,...,1) = ((m1,...,m; ).

Having defined the analytically continued sums we may finally write the the action of
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the modified antipode appearing in the map (5.3.23)
S (Z (g v —1;.. )) = (—1)ZimS (Z (g ;.. )) (5.3.25)

Note that the particular nature of the argument was chosen aposteriori to match the
arguments we will be encountering in the Fourier-Mellin integral. By putting all these
elements together we may write a self contained expression for the the single-valued
version of a Z-sum

J )
(2 (3 =100)) = S (3 i 1)

><Z<g+iufl;ml,...,mk;xl,...wk) (5.3.26)

Thus before we can continue we must first write our functions in terms of Z-sums.
While the formula (5.3.17) provides the explicit Taylor expansions, we empirically find
that fyqrs is always decomposable into sums of the following, much simpler, type in-

volving only simple Z-sums of depth one

Hi kg {rid {si3 4t} (215 22) = Z

ni,n2>0
<H Z(ny — 1;rg; 1)> (H Z(ng — 1; 845 1)> <H Z(n1+mng — 1t 1))] (5.3.27)

For the special case of depth one sums the analytic continuation is given by

211252 I'(ny + n2)
n’flngz F(l —+ nl)F(l =+ n2)

_1\r—1
Z(nyr1) = Zzl A zl (i +1n)r - ((r 13 1)! (o0 D+ —v ) (5328

Where ¢(")(2) is the polygamma function. The total weight of the representation (5.3.27)

btk +> ri+ > sit Y b (5.3.29)

is

We stress that the fact that the functions f,s are always expressible as linear combi-
nations of terms of the form (5.3.27) is not at all trivial. For low weights it is possible to use
various binomial and harmonic sum identities to go from the general Taylor expansion to
the reduced form (5.3.27). Unfortunately this requires cancellations among sums that do
not have a simple closed form, and it becomes increasingly intractable at higher weights.
However it is simple to explicitly evaluate the Taylor expansions (5.3.17) up to a finite
order and thus generate enough terms to reduce the f,4,s to the form (5.3.27) by means
of an ansatz and linear algebra. This requires building the vector space spanned by the
sums of the form (5.3.27) for each weight required.
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The reason why we are interested in solving the linear problem to arrive at the form
(5.3.27) is two-fold. Firstly, it gives us a double infinite sum that is reminiscent of the
BFKL LLA form. Note that this structure is not automatic just from using the form (5.3.17).
Secondly, the reduced sum (5.3.27) is particularly well suited to expressing its single-
valued completion through a Fourier-Mellin integral. We would like to stress the last
point, since the conjecture for the single valued Z-sums (5.3.26) has been tested only for
polylogarithms where all the z; = 1.

To find a Fourier-Mellin representation for the single-valued completion of each of the
fpqrs We begin by specifying the following prescription to be applied to the summations
in terms of the form (5.3.27)

N1 ana % g % g w1+ i — 21 Awg—i— 1/2—7%2
a2 V1 VQ 21 zl Z, 22 (5.3.30)
nk1pke (ivg + )k (ivg + B2 )ke o
ni,m2>0 "1 72 —oo<ny,ng <00 2 2

Here the contours of integration should be taken to be slightly below the real axes in v

and vy. Next we specify how to continue the harmonic sums

Z(nj—1;m;1) —

(_1)7'71

Finally we provide a prescription for the binomial coefficients

[wvlm +ivy) + (1) (1 B i) — 26,0000V (1)] (5.3.31)

['(ny + n2) . D% — i) D% — i) (ivy +ivg + 5 + 52)
F(1+n)l(1+n2) T +idvy + )01 +idve + )01 —dvy —ive + 5 + 22)
D(=% —iv)D(=% — i) (ivy +ive — 5 — 22)

_F(l—i-wl BOL(1 +dvg — 2)I(1 — iy —ivg — B — 12)

_ @@@hm,W%—m) (5.3.32)

(i + 15 (i1 = 5) (ive + 1) (iv2 — )

The equality of the first and second lines above holds for integer n; and ng due to the

following identity obeyed by the Gamma function

D(z—% T(z+%
(z ZL :QJﬁ——ELJ%f (5.3.33)
r(1-=-%) F(1-z+%)
The combination of gamma functions provides poles at v; = —i (% + h) that recover

the holomorphic part for h = 0 by closing the contours in the lower half-planes. It is
easy to see that for the holomorphic pole the right hand side of (5.3.31) reduces to their
initial quantities once we make use of (5.3.28) and similarly for (5.3.32).

Once the prescription is applied one may then evaluate the non-holomorphic residues
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and verify that they correctly reproduce the corresponding terms in the expansion of the
initial single-valued function. This procedure has been applied and verified for the two-
loop heptagon amplitude in MRK as well as many other single-valued polylogarithms.

The final step is to promote the power of log z; and log 25 to their single-valued versions
log |21]? and log | 22|? and then absorb the log terms into the integrand by writing them as

derivatives

log™ |z|? /o; ;l—;zi”JrgiiV*%F(y, n) = /Z ;l;(—z)";:n (z"'”r%i"l’*%) F(v,n) (5.3.34)
Then we may use integration by parts, ignoring surface terms, to shift the derivatives
onto the rest of the integrand F'(v, n). By construction this operation does not spoil the
single valuedness of the integrand. However this can also be seen from the fact that the
structure on the RHS of (5.3.31) is closed with respect to derivatives. This is immediately

evident except for the Gamma functions, for which we have

L0 F(% — iV) _ F(% — iy) " ‘ . .
(_1)5P(1+i1/+g) T T+t D) (V(5 — ) + (1 +iv +3))
TG -w) n . 1 1
T <w<1+2—w>+w(w+2)+ T g-w) (5.3.35)

The derivative increases the order of the holomorphic pole and is consistent with re-
covering log |z|? from the contour integration. Note that manipulating the arguments of
the polygamma functions introduces only rational terms in the integrand and thus does
not spoil single-valuedness. Furthermore the derivative of the gamma functions with
mixed arguments is already of the single-valued form and requires no rational terms.
Altogether this makes it easy to express the integrand in terms of the D, N, V| E, M ba-
sis.

It remains to note that to return to the variable z; instead of 2, = 1/22 we simply replace
(v2,n2) = (—r2, —ng2) in the integrand. In expressions written in the D, N, V| E, M basis

this amounts to simply replacing D, N2 and V, with (—Dz), (—N2) and (—V3).

Applying the above procedure to the finite part of the two-loop heptagon amplitude
in MRK yields the correction to the integrand #C*®, and by dividing with the known
expansion (5.3.8), we arrive at the expression (5.3.2)-(5.3.3). Similarly applying the pro-
cedure to the symbol of the amplitude in MRK, obtained from the results of [11], yields
the NNLO central emission vertex (up to beyond-the-symbol terms). We will analyse
the NNLO results in subsequent setions. Since the intermediate expressions in these
calculations can be slightly cumbersome, in the next section we give a worked example

of all the steps we have outlined here on a single weight-three polylogarithm.
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5.3.2 Aworked example

We provide here ademonstration of the entire algorithm on a simple weight-three SVMPL
whose holomorphic part admits a representation of the form (5.3.27). We begin with a

function with only positive powers of z; and 2» in its Taylor expansion,

Gl 1-2,0(22) — G11,0(22) = log(22)[G1-2,,1-2 (22) — G1,1(22)] — G1-2,,0,1—2 (22)
+ G1,0,1(22) — Goj—21,1—2 (22) + Go,1,1(22) (5.3.36)

On the RHS of (5.3.36) we have made the logarithmic branch cut at 2, = 0 explicit by
shuffling out the trailing zeros.

By comparing the explicit sum representation for (5.3.36) against terms of the form (5.3.27)

of weight three, we find we can write

Gloz1-2,0(22) —Gi10(%2) =

N (nl +n2) R 1
S g Z —1;1;1(1 —7)—2 —1:2:1
22 (1 n)D(1 + no) (n2 J{log 22 — - (n2 )

ni,n2 >0

(5.3.37)

Note that the example chosen can be expressed in terms of harmonic polylogarithms
and thus the form on the RHS of (5.3.37) is easy to derive. We emphasise again that it is
not always simple to derive such a form and in general we have to resort to comparing
against an ansatz of terms of the form (5.3.27).

We now pass to the FM representation for the single-valued completion. Following the

prescription in (5.3.31) we have

gl—zl,l—zl,o(ﬁ ) — ,1,0 Z2)

dl/l dl/2 wl+7 721/177 A“/2+7 szf%

—oo<n1,n2<oo
X [bg 29|11 (v1, v, 1, n2) — Ta(vi, V2, my, nz)]

dl/l dl/2 zl/l-&-f _ivg =T g+ 2 iy -T2
= E 21 ) )

—oo<ni,ngy<oo

X [iawfl(l/l, vo,ny, TLQ) — IQ(Vl, Vy,ny, 77,2)] (5.3.38)
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For convenience we have split the integrand into two pieces

I (vy,v9,n1,n2) :C'(O)(Vl, —V9, N1, —N2) [1/) (% + iyg) + (1 + 2 - Z'VQ) — 21/1(1)}

I(v1,v9,m1,12) = CO (11, 19,01, —n2) [—%/)(1) (%2 +ivg) + W (1 + 12 — ivy)

n;im(l/’ (2 i) + 0 (142 —ivg) — 21/1(1))] (5.3.39)

where (%) is the quantity which arises from the prescription (5.3.32)
~ C’(O)(lll’—lj27n1,—’l7,2)

o - - _ 5.3.40
C% (v, —ve,n1, —n2) (iV1 T %) (iV1 _ %) (iVQ + %)(iyg - %) ( )

After performing the differentiation we obtain the desired Fourier-Mellin integrand for
the single-valued polylogarithm (5.3.38), here expressed in terms of the N, V, E, M basis.

C(O)(Vl, —UV9, N1, —Tlg) X (EQ + ‘/2) <E2 - M — ;NQ) (5.3.41)

Finally, returning to the z, variable instead of Z; means flipping the sign of v» and na.
In the above expression this means that C(®) and M acquire arguments with canonical
signs and the signs of Ny and V5 get flipped.

5.4 Higher-loop NLLA predictions

In the previous section, we used the 2-loop MHV heptagon amplitude in the multi-Regge
limit, that we promoted from symbol to function in section 5.2, in order to extract the
NLO central emission block (5.3.2)-(5.3.3). Here, we will use this result, together with
the analogous weak coupling expansion of the BFKL eigenvalue (5.3.7), hexagon impact
factor (5.3.8), and helicity flip kernel (5.3.9), to compute explicit analytic expressions for
the heptagon at higher loops in NNLA, from the dispersion integral (5.1.37)-(5.1.38).

Let us start by introducing some useful notation to express the perturbative expansion
of the amplitude. At weak coupling, it is evident that the dispersion integral naturally or-
ganizes itself into a double expansion in the coupling and in the large logarithms log 7.
Separating the coefficients of this expansion into real and imaginary parts, we may de-
fine them as

oo £-1 2
. 1 .
R hohs (T1, 21, T2, 22) e07(z122) — 1 4 ony E E at <| | — log"* Tk> (5.4.1)
-

=1 11,12=0 k=1
~(Lyi1,i2) - 7 (Gi1,i2)
% (gh17h2,h3 (21, 22) + 2mi hhl,hz,hs (21, 22)

Note in particular that we have defined the perturbative coefficients not of Ry, , s,
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alone, but with its combination with a phase, that is equal to the dispersion integral.

The LLA contribution amounts to the coefficients with i; + iy = ¢ — 1, for which it is easy
to show that
7 Gy 0—1—i1) .
hy o =0 iy =0,...,0-1 (5.4.2)
In this section, we will be obtaining new results for the coefficients g}(fﬂﬁ’iz) and fzg;i}l’izh)
1,12,13 1,12,13
with 71 4 79 = £ — 2, or in other words the NLLA contribution.

We will work in the region z; < 1, 2z > 1, for which we saw in section 5.1.2 that it is
advantageous to deform the contour of the dispersion integral before the weak coupling
expansion, so that the latter becomes equal to (5.1.51), with

00 ny ng
1 a z1\ 2 (22 2 dvidy - L -
fh1h2h3 :E § : (71)n1+n2 <1) <2> / 1 2|Zl‘2w1‘22|2“/2q)(V1anl)q)(V%nZ)

21 Z2 (2m)?

X e_Llw(Vl’nl)_LQW(w’nQ)Ihl (1/1, nl)éhz (1/1, ni, v, RQ)jh3 (1/2, 712) (5.4.3)

ni,me=—00

and the integration contour goes below (above) the poles on the real axis for v; (12), as
shown in figure 5.1.4. The perturbative coefficients (5.4.1) will be a linear combination of
the respective coefficients of all the terms in the right-hand side of (5.1.51). However for
the hexagon amplitudes Ry, 5, they have already been obtained up to at least 8 loops to
NLLA [110,141], and more generally the holomorphic part may be evaluated in terms of
harmonic polylogarithms with the method of [71], see also [112,120]. So we only need to
focus on the last term in (5.4.1), that contains the genuine heptagon contributions.

Aswe will detail in the next sections, we will compute (5.4.3) with the help of two comple-
mentary methods. First, we will use nested sum evaluation algorithms, which are easier
to apply for the heptagon to high loop order. Then, we will also rely on Fourier-Mellin
convolutions, which are particularly suited for applying to higher-point amplitudes.

Before we proceed with the description of our methods, let us briefly summarize the
checks we have performed on our results. First of all, we have confirmed that the two
methods yield the same expressions for the 2 — 5 amplitude to NLLA, through 3 loops
in the R_; 4+ NMHYV helicity configuration, and through 4 loops in the MHV case. Up to
the same loop orders, we have also checked that under soft limits, the amplitude in any
helicity configuration reduces to the known 2 — 4 amplitude [110]. Finally, at 3 and 4
loops we have compared the symbol of our expressions for the MHV amplitude with
the MRK limit [142] of the known symbol in general kinematics [11,12], finding perfect
agreement.
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5.4.1 A nested sum evaluation algorithm

After we expand the integrand in (5.4.3) at weak coupling, we close the integration con-
tour below (above) the real axis for v; (1»), and use Cauchy’s theorem to express it as a
sum over the enclosed residues, with the infinite semicircles giving a vanishing contri-

2Im()] | || ~2im(

bution due to |z; vl — 0 in the region z; < 1, zo > 1 we are consid-

ering.

In reality, the fact that amplitudes in the multi-Regge limit, and thus also fi, 4,n,. are
expressible in terms of SVMPLs, allows us to compute the latter by only considering the
subset of poles v1 = —in; /2 and vs = —ing/2, with n; > 0 and ny < 0, which is equal to

its holomorphic part, in the sense of (5.3.13), with respect to the variables 21, 1/z [120]"

“h R — v+ a2 < ~
Jhiyhahs 252 Z Res <Z1 22y 2 ®(vi,n1)P(v2, n2) X

—in;

ni=1lno=—1Yi="35 (544)

x e~ iwlim) g=Lawlvana) iy \OP2 (1), ny, vy, n) T (1, 712))

That is, in what follows we will focus on computing f,};l hohy @nd then recover Fhihohs With
the help of the single-valued map (4.2.50) at the very end'®.

After we substitute (5.3.2)-(5.3.3), (5.3.7)-(5.3.9) in (5.4.4), extracting the residues becomes
in practice very easy after we also use the symmetry of (5.3.2)-(5.3.3) in order to replace
n; — —n,; there. In particular, it is manifest that only the rational denominators and
I'(—ivy + %) and I'(iv, — %2 ) will have poles, whereas all polygamma functions will have
positive arguments. In this manner, and after we set & = |n1]|,l = |n2|, (5.4.4) becomes a
sum of terms of the general form
7' T(k+1)

krt iz T(1+ k)D(1 + 1)

H W)k + DD (1 + D™D (k+1),  (5.4.5)

/ "
mi,m;,m;

k=1

for different choices of integers ry, ra, m;, m}, m! > 0, not necessarily different from each

other, times factors that do not depend on the summation variables.

Next, we express the polygamma functions in terms of S- or Z-sums [123], via

Pk +1) =9 Ok +1) = —yp + S(k; 1;1)

(5.4.6)
P (k4 1) = (=1)™(m — 1)![Gn — S(k;m; 1))

where (,,, the Riemann zeta function, yg = —t(1) ~ 0.577 the Euler-Mascheroni con-
stant, and This substitution allows us to use the quasi-shuffle algebra relations of S- or

“Note that we need to multiply the integrand with —(27i)? due to the orientation of our contours.
"®To be precise, this equality holds if f, .5, is a pure function. Subtleties when this is not the case are
discussed at the end of this section.
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Z-sums, in order to express their products with the same outer summation index, in

terms of linear combinations thereof.

As we will see very shortly, it proves advantageous to replace (™) (I + 1), 1) (k + 1)
by S- and (™) (k 4 1) by Z-sums respectively. After soaking up the gamma function

dependence of (5.4.5) into a rational factor times a binomial coefficient

k+1\  T(k+1+1)
( k >F(k:+1)r(z+1) (5.4.7)

shifting the summation variable | — j = k + [, and partial fractioning with respect to ,
the latter formula splits into terms that look like

—J

o

I Z(j —Ling,...51,...,1)x
7=1

7—1 . k

7 (z122) / 1 . "

XE —S(k;ng,...;1,...,1)——— S —kyng,...;1,...,1) (5.4.8)
k=1 <k> k™ (ki )(] — k)™ J " :

where we also extended the summation range to include j = 1, since Z(j — 1;...) van-

ishes there.

Very crucially, the sum on the second line of (5.4.8) can be evaluated in terms of Z-sums
with the help of algorithm D of [123], which has already been implemented in GiNaC [143]
and FORM [144] symbolic computation frameworks, as part of the nestedsums library [124]
or XSummer package [145] respectively. We make use of the former by directly interfacing
it to Mathematica, in particular by sequentially calling the transcendental _sum_type_D

and Ssum_to_Zsum commands for each sum of this type.

The Z-sums we obtain in this manner may have outer summation index j — a fora > 0,
which from the definition (5.3.19) is equivalent to the statement that in reality the out-
ermost summation range should be j > max(1, a). They may also come with (z122)’ or
(1 — z122)7 prefactors, products/powers of (j — b) denominators with a — 1 > b > 0, as
well as factors that do not depend on j. After shifting the summation variable j — i =
j —max(1,a) + 1 for each different a, and partial fractioning in 4, we reduce all terms
(5.4.8) in our expression for f,’jl hohs INtO simple sums of the form
! . . ,
;WZ(Z—FO— Ling,...;1,....1)Z(i—1;n5,...;29,...). (5.4.9)

We then synchronize the Z-sums, namely remove the offset o of the first of the two, by
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recursive definition of the identity!®
Z(i4+o—1;mq,...;21,...)

=Z(i—1;my,...; 21 +Zm{ HJ Z(i—1+j;mg,..;20,...) (5.4.11)

and once again eliminate any products with quasi-shuffle algebra relations. Similarly,

we remove the offset from the denominators with the help of

——Z(i—1,. 1 Z(i—1
— (i 4 c)™ (i-1, Z z+c—1 Z (i +c)mim (i = Lmz,...),
=1 =1 i=1
(5.4.12)
or . ‘ . ‘
xt 1 xt 1
—_—=— —_— 5.4.13
— (it x;(i—kc—l)m cm ( )

if no Z-sums are present. After these steps, the expression (5.4.4) for f,fjl hohy DAY be

readily evaluated in terms of multiple polylogarithms, thanks to the definition

0 i
. ] ) :
Livy,..om; (T1, -+, 25 E s Z(i—1;ma,...,mj;2,...,%)) (5.4.14)
=1

The procedure we have described for evaluating the Fourier-Mellin integrand is the
same for both the MHV and NMHYV case, the only difference being that in the former
the powers of the denominators 71, r2 are strictly positive, whereas in the latter they can
also be zero. This difference is closely related to the fact that the MHV amplitude is a pure

function, whereas the NMHV ones also contain some rational factors in the z; variables.

It is only with respect to these rational factors, that some additional care is needed when
considering the projection to the holomorphic part (5.4.4), since this will also set the
antiholomorphic rational factors to constants, possibly zero. Particularly for the R, |
NMHYV amplitude, it was shown in [38] that the rational factors contain no z; dependence,
so similarly to the MHV case, the full f_, may also be obtained with the help of (4.2.50),
when the rational factors are considered as constants with respect to the single-valued

map.

Using the techniques we have described in this section, we have obtained the MHV
R4+ and NMHV R_, ;. heptagons to NLLA through 5 and 4 loops respectively. The

treatment of R, _, will follow in the next section, with the method of convolutions.

16Since in this case the Z-sums with offset have their origin in the terms (™) (k + ) in (5.4.5), we could
have alternatively left them in this form, shift their arguments with the identity

P+ 1) =9 () + (1) el (5410

at this point, and only then use (5.4.6)-(5.3.19) to express them as Z-sums.
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5.4.2 Evaluation by Fourier-Mellin convolutions

In this section, we shall use the convolution-based method introduced in the previous
chapter to compute amplitudes in MRK, and adapt it for computations beyond LLA.

So as to render the computation by convolutions more transparent, we will define the
first few orders of the following building blocks separately,

w(v,n) = —a(Ey, + aE,E}% + 0(a?))
(v, n) = xE (v, n)(1 + axi(v,n) + O(a?)) (5.4.15)
Ci(y’ n, [, m) = Cét(yv n, |, m)(l + acit(l@ n, [, m) + O(a2))

and we define

_ + _ _+ + _  +
E,=Eyn.,, Xo.i = X0 (vi,ny), Ko = Ko (vi,ny) (5.4.16)
+ _ ~E + _ +
Co i = ( (Vi,ni,uj,nj), Clij =G (Vi,nivl/janj)’

We also define a shorthand for the product of leading order impact factors and central

emission blocks at seven points,

wy = whihehs — Xgllco 12X, hs (5.4.17)

where we drop explicit dependence on the helicities.

Then at LLA, (i.e. fori; + 192 = ¢ — 1) we find

1 o
ﬁ,(fl’ﬁz’,ﬁ)(zl, z9) = 572 [w7Eil Eﬂ (5.4.18)
where
0o ny e
21\ 2 (22 2 dvy dv 2i 2i
Fo|F| = — —= —_— i w2 B 5419
= Y (2)7(2)7 [ R G419

ny,neg=——0o0

denotes the two-fold Fourier-Mellin transform. At NLLA, (i.e. fori; +iy = £ —2), we write

the perturbative coefficients as

3
~(5i1,i2) ~;(£5i1,02) (L5i1,i2) (5i1,2)
Tnshahs (415 72) Zz] Tty (#1522) + Z hnhahs (21, 22) + Py 02 (21, 22) and
Jj=1
2 3

7 (45i1,12) _ 7 35(L5i1,i2) (5 21712) (i1,i2)
hh1h2h3 (Zl, Zg) = hh1h2h3 Z1, ZQ + E jihihahs Zl, 2’2) + Qh1h2h3 (Zl, ZQ) (5.4.20)

j=1 7j=1

where P and @ are due to the contributions from the first three terms of eq. (5.1.51),
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explicitly given by
G ~ (6 ~ (G
Pig;h;hi)(zh z2) = 5'2,0 g}(n’hlg) (Zl) + 51'170 gf(zz’hé) (22) (5.4.21)

i = (L 1 (013
Qﬁ’ighﬂ)(% 22) =iy 0 <h§f{;§£(m) - ZGo(Zz)g,(flhi’ 1)(,'51)) (5.4.22)
= (L 1 (013
+di 0 (hﬁéiﬁ(@) + Zgo(zl)g,(ihi’ 2)(2’2))
1
+ 66’2176%(731)%(22)

and we have also introduced corrected perturbative coefficients describing different
contributions to the expansion of the purely heptagonal fi, 1, term of the latter equa-
tion. Perturbative coefficients with an additional upper index correspond to insertions
of the NLO corrections to the BFKL eigenvalue and perturbative coefficients with an ad-
ditional lower index correspond to insertions of NLO corrections to the impact factors

or central emission blocks. Then these corrected perturbative coefficients are given by

Py | N -
i o1 22) = 72 [mr BV BB
(i 1 - i h
i) =3 72 [ 1 g 5429
(v 1 r o o
Bhinany (21,22) = 5 F |7 B! E§2”~1,l213}
(i i L _r i i
gé,:hf,)lg (21,22) = 572 | EV'E3R (C}f,glz)]
and
(0 1 o
i (122 = = 3 72 [ BB )
~ (0414 .
R (1, 22) =0, j € {1,3} (54.24)
- (i i 1 o b
B, (1 22) = o= o [wr BUBS ()|
Given the form of the recursion relation
601 1 1 —1,0-2
d Y = -5t {X(J)FJE{ IXO,I} = 95r+ )+ FIE] (5.4.25)

all we need in addition to the integration kernels £ (4.3.4) and # (4.4.3), which we may
extend to higher orders by using (5.3.9), is a starting point for the recursion. Starting
from the two-loop NLLA amplitude (5.2.15) we computed the perturbative coefficients g
and h through four loops in the MHV case and through three loops in all other helicity
configurations.

We will conclude this section by commenting on some details of this computation. At

NLLA, we had to introduce the terms |z;|?™'eft6(22)+i%(22) (the same discussion applies
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to the corresponding terms with z; <+ z9) and |21]?™ /| 22|?>™! in (5.1.35) in order to avoid
a pinching of our integration contour. Since only the term f, |, corresponds to the two-
fold Fourier-Mellin integral, when relating different perturbative coefficients via the re-
cursion (5.4.25), these additional terms should be subtracted before performing convo-
lutions and added back afterwards. At NLLA, for example, the term |z; 2™ /| z5|?™T only
contributes at two loops, as it is independent of the large logarithms log ;. Naively, con-
voluting over this term will introduce additional terms at three-loop order that should
not be there. It turns out, however, that these terms only interfere with our computa-
tions when raising the loop order of the real part from two- to three loops. This is easy
to see when analysing how the individual parts of these terms behave under convolu-
tions with the £ and H kernels. Expanding the extra terms in a only yields powers of
logarithms Go(z;)¥, with 0 < k < ¢ and six-point perturbative coefficients § and A at any
given order ¢, and though NLLA, we can limit our analysis to & < 2. When convoluted
with £ and #, these logarithms yield the following results.

1x&(z) =0
Go(z) xE(2) =0 (5.4.26)
90(2)2 x« E(z) = —4(3
1+HO(z) =1
Go(2) * HO(2) = Go(2) (5.4.27)
Go(2)? x HO(2) = Go(2)?
1+ HD(2) = Go(2) * HW(2) = Go(2)? + HWD(2) = 0 (5.4.28)

Let us now have a look at the two different kinds of extra terms individually. We will start
with the fraction term | 212" /| 25|?™!, which has no dependence on the large logarithms
log 7; and therefore, at NLLA, should only affect the 2-loop amplitude. As convolutions
with £(z;) and #()(z;) both appear with a factor of a in the Fourier-Mellin integrand, they
both result in a higher-order contribution and should evaluate to zero when convoluted
with the extra term. Furthermore, it does not depend on the helicity configuration of the
amplitude, which suggests that it should be invariant under convolution with leading
order helicity flip kernels #(?)(z;). Expanding the term in a, we find

|Zl |27riF 2

= 1+ %irr(go(zl) — Go(z2)) — %iﬂg(go(zl) — Go(22))

|22 ) (5.4.29)

+ %7_(2 (QO(21)2 — 2Go(21)Go(22) + 90(22)2) + O(a®)
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Considering (5.4.26) - (5.4.28), we see immediately that the aforementioned criteria are
only violated by the terms Gy(z;)? appearing in the 2-loop real part. We will therefore
have to subtract these terms before performing convolutions with £(z;).

We will now focus on the extra terms | z1|2”iFeRG(Z2)+i56(22) (and the one with z; < 29)
containing the 6-point amplitude. At LLA, it contributes only through the exponen-
tial efts(#2)+id6(22) |, 14 Which by definition transforms correctly under convolutions with
E(z2) and H(z2). Since the term only comes with large logarithms log 7, it should vanish
when convoluting with £(z1) so that its presence will not spoil the terms proportional to
both large logarithms. Furthermore, it should be invariant under leading order helicity
flips H(?) (1) and should vanish under first order helicity flips H(" (21 ). This follows again
from (5.4.26) - (5.4.28). At NLLA the situation is similar. Here we will again encounter

terms that only arise from efto(2)+i%(z2) | 17 i.e. the NLLA hexagon contributions. In

addition, we will find terms arising fromjlvo]:gL\il |26 (22) +ids(22) | 1.4 Since Fourier-Mellin
convolutions are also suited for the computation of hexagon NLLA amplitudes, con-
volutions in zo will behave in the desired fashion. Once again, we have to ensure that
convolutions in z; do not spoil our results, which means that convolutions with £(z1)
and #(V(z;) should vanish and that leading order helicity flips #(%)(z;) should have no
impact. This is again given by (5.4.26) - (5.4.28). We see therefore, that these potentially
dangerous terms appearing in the amplitude are sufficiently well behaved and we can
therefore completely ignore the presence of these terms and perform our convolutions

without taking further precautions.

Let us now briefly summarize the previous observations. We have seen that at NLLA,
we need to introduce extra terms to our amplitudes that are not part of the two-fold
Fourier-Mellin integral (5.1.35) due to the presence of Regge poles. Even though these
extra terms contribute to the perturbative coefficients at all orders, we only have to sub-
tract these terms when convoluting %21;](2;0) with &€ in order to raise its loop order. In all
other cases, and in particular for all helicity flips, convolutions can be applied directly to

the full perturbative coefficients.

5.5 All-order central emission vertex

As mentioned in the previous sections the N = 6 case is well studied and all-order
expressions are already known for the BFKL eigenvalue w, measure factor ® and helicity-
flip kernel H [109]. The only quantity for which the planar hexagon does not provide an
all order expression is the central emission vertex C. In section 5.3 we determined C'*

to NLL accuracy and here we give an all-loop generalisation of that formula, consistent

Note that ef6(2)+i%(22) a]so contains an extra term that is not part of the Fourier-Mellin transform.
This term is the 6-point equivalent of the fractional term we discussed before and all observations apply
here, too.
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with the known three-loop heptagon data obtained via the cluster bootstrap [11] as well
as soft limits on the amplitudes in MRK. In the following we focus on C* as C~ is related
to it by the helicity flip kernels

5.5.1 Central emission vertex at finite coupling

A crucial feature of the following analysis is that at finite coupling it is more appropriate
to use the rapidity variable u rather than the variables v in order to write the integral
expression. One may then write a uniform relation for w and v both in terms of the
rapidity u

wu,n)=-49g(Q-M-k); v=u—29(Q-M-: &), (5.5.1)

where the subscript (.. .); denotes the first element in the enclosed vector and the sources
x and K were obtained in [109] after analytic continuation of the OPE sources to the BFKL

regime

o dt J;(2
kj(u,n) = —/0 ?t ejt(_g?qu(t;u,n) (5.5.2)

and similarly for &z with ¢ replaced by ¢ where

(etdfve" _ (_1)jet6§?dd) cos(ut)e_%t — Jo(2¢1)

nt

(et(S;?ven + (—1)j6t6;?dd) Sin(ut>6_7 (553)

¢ =
4 =

NI= N

The matrices Q and M are given by

@ij = (52‘j(—1)i+1i M = (1 + K)il

K. — 2j(—1)j(i+1) /oo ﬂw
ij =

554
0 t et -1 ( )

The impact factor is related to the analytically continued OPE measure p as follows
d
—®(v,n) = —u,u(u,n) (5.5.5)
m 2

with the BFKL measure u(u, n) given by [109]

w(u,n) = — —_—— 5.
vta=/(atat — g%)(z=a= — ¢?)

Here we have

f=2-Q-M-x f=27k-Q-M- (5.5.7)

R
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and we introduce the Zhukowski variables
a* = z(u+il) z(u) = 3(u+u? —4g?) (5.5.8)

The quantity A which appears in (5.5.6) is given by

©dtl— Jo(2gt)% w2
A=2 | =202 T 1o 559
Thus we have
e =142¢%¢ — 7¢* ¢+ 0(¢%) (5.5.10)

Finally the helicity-flip kernel is simply given by

H(v(u,n),n) = s (5.5.11)

Here we highlight the factorised structure of the Fourier-Mellin space representation for
the heptagon amplitude in multi-Regge kinematics. From the explicit data for the sym-
bol of the MHV heptagon that we have up to three loops we are able to observe patterns
which strongly resemble objects that should arise from considering the appropriate an-
alytic continuation of the pentagon transitions of gluon bound states in the OPE of [31].
Specifically we observe that the part of the Mellin integrand (5.1.21)

U(vy,n1,v2,n2) = x1(v1,n1)C(v1,n1, va, n2) X2(V2, 12) (5.5.12)

respects a factorisation of the following form

dvi d

ﬂﬂ\p(ybnl’;@,m)

2 27
dui d 5 i f1+i

_ du U2M1M2h1h2Z12€2(_Zf1+Zf2_f3+f4)_ACO (5.5.13)
2 27

The factor Cj is the leading order Mellin integrand with rapidities u; as arguments rather
than the v;. It is expressed purely in terms of gamma functions

D(1—iuy — B0 (1 + dug + 22)T (iug — fug — M572)

D(iuy — )T (—iug + BT (1 — g + dug — M512)

+
_ C*(u1,n1,uz,ma) (5.5.14)
X~ (w1, n1)x T (u2,n2)

Co=

Expanding Cp in terms of the v; variables generates terms containing the quantity M,
defined in eq. (5.3.5), which encapsulates all dependence on polygammas with i(v; — v2)
in the argument. In particular it correctly generates the term proportional to M in (5.3.2).
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The functions f; are given by

f1=2k1-Q-M- ko fo=2Kk1-Q-M-Ro
fo= 27 Q-M-Fy  fi=2k1-Q-M-so (5.5.15)

with k; = k(u;,n;) etc.

With the above definitions we find the perturbative expansion of the exponential factor
dependent on the f; is

TN ) =1 4 (B By — EoVi + ErVa + ViVh) + O(g") (5.5.16)

Note that the arguments of the £ and V functions are taken as the rapidities u;, not the v;
in the above equation. At weak coupling the two variables are related by the expansion
of the finite coupling relation (5.5.1)

v=u+ig*V(u,n) — %g%DﬁV(u, n) 4+ 4GV (u,n)) + O(g%) (5.5.17)

The factor Z in (5.5.13) is expressed in terms of the Zhukowski variables z*

—— 9 +,4+_ 2
;. \/(mixg_ 92)(331_ 21 92) (5.5.18)
(@) x5 — g°) (125 — g°)

The perturbative expansion of Z is as follows,

1 1
Z=1+ 5921\711\/2 - gg4N1J\72(Nl2 — NNy + N2 +12V2 +8Vi Vs + 12V2) + O(¢°%) (5.5.19)

Once again the arguments of the N; and V] in the above equation are taken to be the

rapidity variables u;.

The quantity u(u, n) is the measure for the six-point amplitude in multi-Regge kinemat-

ics written in rapidity variables. The measure 1 has a perturbative expansion of the form

1 1 1
pu,n) = ——— 1—g2(E2+N2+3V2+2g2)+g4<2(DE)2+ED2E+2E4+E2N2
u? + o
31 4 2772 53 2772 4 2 3 2 2
+ N HBEPVE 4+ ENVE L 10V ARG + SN G + 617G

+12ECs; + 22C4> +0(g%)

(5.5.20)
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Again, the arguments of the £, N,V appearing above are the rapidity u. Note that
pu(—u, —n) = p(u,n) (5.5.21)

The remaining factor to be described in (5.5.13) is h(u, n). We write this factor as a prod-

uct
h(u,n) = heven(u, n)hoga(u, n) (5.5.22)

where

heven(_ua —TZ) = heven (u7 n) hodd(_uy _n) = [hodd (u7 n)]il (5523)
By looking at the symbol level data from the imaginary part of the amplitude up to three
loops we determine that

1 1
heven(u,n) = 1 + ¢* <V2 + 4N2> — g <V4 +2V2N? + 16N4> +0(¢%) (5.5.24)

while
hoad(u,n) = €™ (5.5.25)

with )
r(u,n) = g*DE — 1g4D3E +0(g% (5.5.26)

In (5.5.24) we have not included various terms proportional to im which come from the

real part of the amplitude.

So far we have explored the structure of the expression which we derived from the sym-
bols of the two and three-loop MHV heptagon amplitudes. By inspecting this data we
deduced that the Mellin integrand is most naturally expressed in terms of the rapid-
ity variables u; and furthermore that it decomposes naturally into various factors. Now
let us assume that the factorisation (5.5.13) found above holds in general and see what
we can determine about the form of h(u,n). Consider the residue of ¥(vy,n;,v2,n2)
at v1 = vy for n1 = ngy. The residue of ¥ is determined by the residue of the RHS of
(5.5.13) for u; = ug when n; = ngy. Because there are no M type functions in the rapidity
variables the only pole comes from the factor Cy(u1, n1, us, n2) whose residue is

2
T (ug, n2)x " (ug,ng) = —(—1)”22‘(1@ + %) (5.5.27)

Resy, —u, Co(u1, n2, uz, no) = (—1)"%ix
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We therefore find

dl/l dVQ
7{ —— o V(v1,n2,v2,n2)
n=vy 2T 2T

duy du
— ¢S atun )tz s )iz, )
w=uy 2T 2T

ALyt fo—
X Z(uy, 1, ug, ng)e  ATHTAFL =4I O (uy 0y, ug, no)

du n2 B .
=(-1)" 2—; (u% + f)u(uz, n2)2h(u2,n2)h(—u2, —ng)Z (uz, n2, uz, na)e A+2(fa—fs)
du n2 1
=(-1)™ o2 (u% + i)u(uQ, ng)ih(ug,ng)h(—u% —ng) (5.5.28)
2 4 Ty Ty

On the other hand by the general analysis of soft limits described in (5.1.30) we expect
that

dvi d d . ~
j{ ﬂﬂ\p(Vl’n%VQanQ) = Vz(—1)n2€mw(yz’n2)‘1’(’/27n2)
V1=Uv2

2w 2w o
d A
- Ql;u(uz,ng)(—l)mem(w(w)vm) (5.5.29)
Comparing (5.5.28) with (5.5.29) we find
9 Ty,
h(uz,n2)h(—ug, —n2) = heyen(u2,n2)* = 27226””(”2(“2)’”2) (5.5.30)
uld + 22
2T 7
This then fixes the function heyen (u, 1),
-1
272 pglimo(va(uz)nz)] (5.5.31)

where now we have included the necessary im terms needed for the soft limit to hold.
Note that we may also equivalently write the above formula such that the u-dependence
only appears manifestly in the exponent, with the help of the identity

— . -3
12' xn2 _ €f0 %[1—J0(2gt)} cos(ut)e™ 2? (5.5.32)
us + a

The veracity of this identity may be confirmed by e.g. expanding both sides at weak
coupling, and most probably it may also be proven at finite coupling along the lines
of [27,146].

Finally, we may resort to the v; = 7I" exact bootstrap condition in order to constrain
the remaining factor hoqq(u, n), which drops out in the above analysis. As explained in
appendix C of [109], the only additional complication is that for n; = 0, we need two
sheets in u; in order to cover the entire v; line, and the domain of v; that the finite-
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coupling analogue of (5.5.17) covers, does not contain the point v; = #I' we are after.
Thus if we wish to enforce the exact bootstrap in question at finite coupling, we need to
first analytically continue u; to the second sheet.

Since this issue, however, occurs only when expressing the Fourier-Mellin integrand
in the u-variables, we can make use of the v; = 7" exact bootstrap condition pertur-
batively: First of all, in the v-variables, nothing special happens when taking n; = 0,
e.g. eq.5.3.7) is still valid for w(r4,0). Furthermore, as we saw in section 5.1.2, taking
the residue 11, = 7T of the integrand at finite coupling, and then performing the weak
coupling expansion, or first expanding the integrand at weak coupling, and then taking
the v; = 0 residue, should yield the same result provided ny # 0: The pinching of the
contour only occurs for v; = v, =nj; =ng = 0.

The conclusion is that if we have a candidate, weak coupling expression for the Fourier-
Mellin integrand in the u-variables (including hogq(ui, 7)), we can translate it to an ex-
pression in the v-variables (now containing hogq (v, n;)) with the help of (5.5.17), set ny =
0, and finally take the 11 = 0 residue. This should then be equal to the right-hand side of
(5.1.28), expanded at weak coupling.

We make use of this condition by forming a weak-coupling ansatz for r(u, n), consisting
of all odd combinations of the single-variable building blocks V, N, D'E.i = 0, ... with
undetermined coefficients, and imposing it on the entire Fourier-Mellin integrand. We
find that it uniquely fixes the ansatz, up to 3 loops that we tried. More excitingly, we find
that the weak-coupling expansion for hyqq(u, n) that we determined, follows from the
finite-coupling formula

i (o dt Jo(2e)=D)(e'+1)

_n
h dd(u TL) _ o % Gy sin(ut)e 2t+7r(u—u)
o ) -

(5.5.33)
All in all, and in conventions where we rescale the central emission block so that the
Mellin integrand (5.1.21) contains the combination of impact factors of eq.(5.1.24) appear-
ing in the hexagon amplitude,

®(v1,n1)C (11,01, v2,m) D (v2,2) = X1(v1,11)C(v1, 1, v9,m2) x2(v2, n2) = ¥ (5.5.34)

the final finite-coupling expression for C is

C(u1,n1, ug, ng) =Co(u1,n1, uz, n2)h(ur, ni)h(—uz, —n2)Z(u1, n1, ug, na)

5.5.35
« e2(—ifitifo—fz+fi)—A ( )

Finally, let us summarize the checks of the finite-coupling expression for C, or equiva-

lently heptagon Fourier-Mellin integrand, have been performed so far:

- It respects the discrete symmetries (v; <> —v2,n1 <> n2) and n; <> —n;.
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- It agrees with the previously determined Fourier-Mellin transform of Rg) at func-

tion level, for both the real and the imaginary part.
- It agrees with the imaginary part of the symbol of Rgg) (full w;, w; dependence).

- Last but not least, without having used any 4-loop data as input, it indeed matches
the holomorphic terms (no w; dependence) for the imaginary part of the symbol
of Rgl).

5.6 Conclusion

D2 Pn-1

P1 Pn

Figure 5.6.1: General n-point factorisation structure of the scattering amplitude in multi-
Regge kinematics.

From Chapter 4 onwards we saw how in MRK both perturbative and finite coupling am-
plitudes in planar /' = 4 SYM are simple enough to be determined in all aspects. Be-
cause the kinematics are reduced from four to two dimensions the limit is significantly
more tractable than general kinematics, both from the point of view of the Wilson loop
OPE expansion [28-31,109] and from the analytic structure of perturbative amplitudes.

This simplification was further reflected in the singularity structure of the amplitudes,
and the cluster algebras describing the general kinematics collapsed into two algebras
of finite type A,,_3 x A,_3 which are complex conjugate to each other. It followed that
the cluster algebra A,,_3 was isomorphic to that of 9 ,, the moduli space of Riemann
spheres with marked points. Using the well understood structure of iterated integrals on
My, , we were able to show that amplitudes in MRK at all orders and all multiplicities are
given in terms of single-valued multiple polylogarithms. Furthermore we conjectured

that the remainder functions for amplitudes factorise in Fourier-Mellin space and they
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take the form
N-5
Ronr — H Z(ﬁ)nr dVr’Z |2iVTi> e—Ler Ihléhg éhN75 th74 (561)
N 2y or " " 1 VY12 YN—6,N-5IN—-5 .6.

r=1 zg

By considering soft limits we then showed the validity of the dispersion integral in the
region where all the energies of the produced particles have been analytically continued.
The Fourier-Mellin transform maps products into convolutions, and it was possible to
obtain higher order results and at different helicity configurations by convoluting known

results with the BFKL eigenvalue and the helicity flip kernel respectively.

At 6 points we could obtain all order results as all elements appearing in the Fourier-
Mellin integral are known at finite coupling due to integrability. At 7-points and beyond
however a new quantity called the central emission vertex C appears in the factorisation
which was known only to leading order. We were able to use a prescription for deriving
Fourier-Mellin integrands from single valued polylogarithms and combine it with ex-
isting MHV data at 7-points to obtain higher order corrections to the central emission
vertex. Finally by observing the perturbative corrections we were able to conjecture a fi-
nite coupling expression for the central emission vertex that is consistent with soft limits
and higher order data at 7-points. Thus by incorporating this finite coupling conjecture
into (5.6.1) we are able to obtain a dispersion integral valid for all multiplicities, all helicity
configurations and at arbitrary perturbative order.
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APPENDIX A

2-loop, 5-point integral result

In this appendix we present the solution in MPL form of the differential equation dis-

cussed in Section 3. We first define the quantities

a1ao
P11 =
a
_dl—al
P2 = a; — 1
al—ag—l—&l(ag—l)
p3 =
a; —1
asai(a; — 1
Dy = 2a1(@ — 1) (A.0.])

al(ag +a; — 1) — ajag

We give the integrated symbol of the solution along the path beginning at the origin and
fOHOWiDg ap — a; — as — ao.

G(0;a1)G(1;a1)G(a1;a2)G(ar; az) — G(0;a1)G(1; a1)G(a1; a2)G(ar; az) +
G(0;a1)G(0;a1)G(1;a2)G(ag; a2) — G(0;a1)G(1;a1)G(1; a2)G(ag; ag) +
G(0;a1)G(1;a1)G(a1;a2)G(p1;az2) + G(0;a1)G(1;a1)G(ar; az)G(pe; az) —
G(0;a1)G(1;a1)G(ar;a2)G(pe; a2) + G(0;a1)G(1;a1)G(ag; a2)G(p2; az) —
G(0;a1)G(1;a1)G(ag; a2)G(pe; az2) — G(0;a1)G(1;a1)G(p1; a2)G(p2; az) +
G(0;a1)G(1;a1)G(p1;a2)G(p2; az) — G(0;a1)G(0;a1)G(1; a2)G(ps; az) +
G(0;a1)G(1;a1)G(1;a2)G(p3; a2) — G(0;a1)G(1;a1)G(ar1; a2)G(ps; az) —
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(0;a1)G(a1; a )G(l 0;a1) — G(

(a1;a2)G(p1;a2)G(1,0;a1)+G(0;

(az;a2)G(p2;a2)G(1,0;5a1)—G(p1;a2)G(p2; a2)G(1,0;a1)+G(0;a1)G(ps; az)G(1,0;a1)+
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(
(
(
(
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QQQ
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0,a1;a2)G(1,0;a1) + G(0;a1)G(a1;a2)G(1,0;a1) + G(ar; a2)G(ar; a2)G(1,0;a1) —
0;a1)G(p2; a2)G(1,0;a1) —G(ay; az2)G(p2; a2)G(1,0;a1) — G(ag; a2)G(pa; a2)G(1,0; a1) +
p1;a2)G(p2;a2)G(1,0;a1) —G(0;a1)G(ps; a2)G(1,0;a1) —G(ar; a2)G(ps; a2)G(1,0;a1) +
po; a2)G(ps; az)G(1,0;a1)+G(0;a1)G(ag; a2)G(1, a1; a2)+G(0;a1)G(az; a2)G(1, a1;a2)—
0;a1)G(p3;a2)G(1,a1;a2)—G(0;a1)G(p3; az)G(1, ar1;a2)+G(0;a1)G(0;a1)G(ar, 1; az) —
0;a1)G(1;a1)G(a1,1;a2)+G(0,0;a1)G (a1, 1; a2)+G(0,0;a1)G(a1, 1;a2)—G(0, 1; a1 )G (a1, 1;a2)—
1,0;a1)G(a1,1;a2) + G(0;a1)G(1;a1)G (a1, p2; az) — G(0;a1)G(1;a1)G (a1, p2; az) —
0,1;a1)G (a1, p2; a2)+G(0,1;a1)G(a1, p2; a2)+G(1,0; a1)G(ai, p2; a2)—G(1,0;a1)G (a1, p2; az)+
a1, l;a2)G(a1,0;a2) — G(0;a1)G(0;a1)G(ar, 1;a2) + G(0;a1)G(1; a1)G(ar, 1; az) —
0,0;a1)G(a1,1;a2)—G(0,0;a1)G(a1, 1;a2)+G(0,1;a1)G (a1, 1;a2)+G(1,0;a1)G(ar, 1; az)—
a1,0;a2)G(a1, 1;a2) — G(0,1;a2)G(a1, az; az) + G(1,0; a2)G(a1, az; az) +
0;a1)G(a1;a2)G (a1, p1;az) + G(0;a1)G(ar; a2)G (a1, p1;az) + G(0,a1; a2)G(a1, p1;as) —
a1, 0;a2)G(ay1, p1;a2) + G(0;a1)G(1;a1)G (a1, ps; az) — G(0;a1)G(1; a1)G(ay, p3; az) —
0; a1)G(1; a2)G(a1, ps; a2) —G(0; a1)G(1; a2) G(a, p3; a2) +G(1; a1)G(1; a2) G(ar, p3; az)+
1;a1)G(1;a2)G(a1, p3; az)—G(1;a1)G(a1; a2)G(ar, ps; a2) —G(1;@1)G(ar; az)G(ar, ps; az) —
0,1;a1)G(a1,p3; a2)+G(0,1;a1)G(ay, ps; a2)+G(1,0; a1)G(a1, ps; a2)—G(1,0; a1)G(ay, ps; az)—
1,a1;a2)G (a1, ps; az) + G(ai, 1; a2)G(ay, ps; a2) + G(0;a1)G(1; a2)G (a1, pa; ag) +
0;a1)G(1; a2)G(ar, pa; a2)—G(1;a1)G(1;a2)G (a1, pa; a2) —G(1;a1)G(1; a2)G(a1, pa; az) —

a1)G(a1; a2)G (a1, pa; a2) —G(0;a1)G(ar; a2)G (a1, pa; a2)+G (15 a1)G(ay; az) G (a1, pa; az)+

a1)G(ay;a2)G(a1, pa; a2) + G(0,1;a2)G (a1, pa; az) — G(0, a1; a2)G(ay, pa; az) —

QO @

G
G(0
G
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G(1,0;a2)G (a1, ps; a2) + G(1,a1;a2)G(a1, ps; az) + G(ai1,0; a2)G(ay, pa; ag) —

a1, 1;a2)G(ay, ps; a2) + G(ai, 1;a2)G(ag, 0;a2) — G(0;a1)G(0;a1)G(az, 1;a2) +
0;a1)G(1;a1)G(az, 1;a2) — G(0,0;a1)G(az, 1;a2) — G(0,0;a1)G(ag, 1;a2) +

0,1;a1)G(ag, 1;a2)+G(1,0;a1)G(az, 1;a2)—G(a1, 0;a2)G(az, 1;a2)—G(0, 1; a2)G(ag, ar; az)+
1,0; a2)G(ag,a1;a2) — G(0,1; a2)G(ag, az; a2) + G(1,0; a2)G(ag, az; ag) +

0;a1)G(a1; a2)G(ag, p1; az) + G(0;a1)G(ar; a2)G(az, p1; az) + G(0, a1; a2)G(ag, p1; az) —
ai,0;a2)G(ag, p1;az) + G(0;a1)G(1;a1)G(az, p3; az) — G(0;a1)G(1; a1)G(az, p3; az) —
0;a1)G(1; a2)G(az, ps; a2)—G(0;a1)G(1; a2)G(az, ps; a2)+G(1; a1)G(1; a2) G (az, p3; az)+
;a1)G(15a2)G(az, p3; az)—G(1; a1)G(a1; a2)G(ag, ps; az) —G(1; a1)G(a1; a2) G (az, p3; az)—

s 1;a1)G(az, p3; a2)+G(0, 1;a1)G(az, ps; a2)+G(1, 0;a1)G(az, p3; a2)—G(1, 05 a1) G (az, ps; G2)—
,a1; a2)G(ag, p3;az) + G(a1, 1;a2)G(ag, ps; az) + G(0;a1)G(1; a2)G(ag, ps; az) +

a1)G(1; a2)G (az, ps; a2)—G(1;a1)G(1; a2)G(ag, pa; a2) —G(1;a1)G(1; a2) G (az, pa; G2)—

Q

G
G

QO QQD
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Q

(1,
(
(
(
(
(
(
(
(
(
(
(
(
(1;aq
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1;a1)G(a1;a2)G(p1,ps; az) + G(0,1;a1)G(p1, p3; az) — G(0,1;a1)G (p1, p3; az) —
1,0;a1)G(p1,p3; a2)+G(1,0;a1)G(p1, p3; a2) +G (1, a; a2) G (p1, p3; a2)—G (a1, 15 a2) G (p1, p3; G2)—
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1)G(1;a2)G(p1,pa; G2)+G(0; a1)G(a1; a2)G (p1, pa; a2)+G(0;a1)G(ar; az)G(p1, pa; G2)—
;a1)G(a1;a2)G(p1, pa; a2) — G(1;a1)G(a1;a2)G(p1, pa; a2) — G(0,15a2)G(p1, pa; az) +
0,a1;a2)G(p1,pa; a2) + G(1,0;a2)G(p1, pa; a2) — G(1,a1; a2)G(p1, pa; Gz) —
at,0;a2)G(p1,pa; a2) + Gla, 1;a2)G(p1, pa; az) — G(0;a1)G(0;a1)G (p2, 1; a2) +
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G(0;a1)G(ag; a2)G(p2, 1;a2)+G(1;a1)G(ag; a2)G(p2, 1; a2)+G(1; a1)G(ag; a2) G (p2, 1; a2)+
G(0;a1)G(p1;a2)G (p2, 15 a2)+G(0;a1)G(p1; a2)G(p2, 1; a2)—G(1;a1)G (p1; az) G(p2, 15 az) —
G(1;a1)G(p1;a2)G(p2, 15 a2)+G (05 a1)G(ps; a2) G (p2, 1; a2) +G(0; a1)G (ps,az)G(pz,l,@)
G(1;a1)G(ps; a2)G(p2, 1;a2) — G(1;a1)G(ps3; a2)G(p2, 1;a2) — G(0,0;a1)G(p2, 1;a2) —

G(0,0;a1)G (pg,17a2)+G(0,1,a1)G(p2,1,a2)+ (1,0;a1)G(p2, 1;a2)—G(0; a1)G(1;a1)G(p2, a1; az)—
G(1;a1)G(a1;a2)G(p2, a1;a2)—G(1;a1)G(a1; a2)G(p2, a1; a2)—G(1; a1)G(ag; a2) G(p2, a1; az)—
G(1;a1)G(ag; a2)G(p2, a1; a2)+G(1;a1)G(p1; a2) G(pe, a5 a2)+G(1;a1) G (p1; a2) G (p2, a1; az)+
G(1;a1)G(ps; a2)G(p2, a1;a2) + G(1;a1)G(ps; a2)G(p2, ar;a2) — G(0,1;a1)G(p2, ar;a2) —
G(1,0;a1)G(p2,a1;a2) — G(0;a1)G(1;a1)G(p2, p2; a2) + G(0; a1)G(1; a1)G(p2, p2; az) +
G(0,1;a1)G(p2, p2; a2)—G(0,1;a1)G(p2, p2; a2) —G (1,05 a1) G (p2, p2; a2)+G(1, 05 a1)G(p2, p2; az)+
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G(0;a1)G(0;a1)G(ps, 1;a2) — G(0;a1)G(1;a1)G(ps, 1; az) + G(0,0;5a1)G(ps, 15 a2) +
G(0,0;a1)G(ps3, 1;a2)—G(0,1;a1)G(ps, 1; a2) —G(1, 0;a1)G(ps, 1; a2)+G (a1, 05 a2) G (ps, 1; a2)+
G(0;a1)G(1;a1)G(ps, ar; az) + G(0,1;a1)G(ps, ar; az) + G(1,0;a1)G(ps, a1; az) —

1,0; a2)G(ps3,ar;az) + G(0, 1;a2)G(ps, az; az) — G(1,0; a2)G(ps, ag; az) —

0;a1)G(a1; a2)G(ps3, p1; az2) — G(0;a1)G(a1; a2)G(p3, p1; az2) — G(0, a1;a2)G(p3, p1; az) +
a1,03a2)G(ps, p1; a2) — G(0;a1)G(15.01) G (s, ps; a2) + G(03 a1) G (15 1) G(ps, psi a2) +
0;a1)G(1; a2)G(ps, p3; a2)+G(0;a1)G(1; a2) G (ps, ps; a2) —G(1; a1)G(1; a2) G(ps, ps; az) —
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G(1;a1)G(1;a2)G(ps, p3; a2)+G(1;a1)G(ar; a2) G (ps3, p3; az)+G(1; a1)G(a1; a2)G(ps, p3; Gz2)+
G(0,1;a1)G(ps, p3; a2) —G(0, 1;a1)G(ps, p3; az)—G(1, 05 a1)G(ps, p3; a2)+G(1, 05 a1) G (ps, ps; az) +
G(1,a1;a2)G(ps3, p3; az) — G(ai, 1;a2)G(ps3, p3; a2) — G(0;a1)G(1;a2)G (ps3, pa; G2) —

G(0;a1)G(1;a2)G(ps3, pa; a2)+G(1;a1)G(1; a2)G(ps, pa; a2)+G(1;a1)G(1; a2) G(ps, pa; az)+

G(0;a1)G(a1; a2)G(ps, pa; a2)+G(0;a1)G(a1; a2)G (p3, pa; a2)—G (15 a1)G(ar; a2) G(ps, pa; Gz)—
G(1;a1)G(a1; a2)G(p3, pa; a2)—G(0,1; a2)G(p3, ps; az)+G(0, a1; a2)G(p3, pa; a2)+G(1,0; a2)G(p3, ps; az) —
G(1,a1;a2)G(ps3, pa; a2)—G(a1, 05 a2) G (ps, pa; a2)+G (a1, 15 a2)G(ps, pa; a2)+G(0; a1)G (0,0, 1 a1 )+
G(a1;a2)G(0,0,1;a1)—G(p2; a2)G(0,0, 15 a1)—G(p3; a2) G(0, 0, 15 a1) —G(0; a1 ) G(0, 0, 15 a1 ) —
G(a1;a2)G(0,0,1;a1)+G(p2; a2)G(0,0, 15 a1)+G (ps; a2)G(0, 0, 1;a1) —G(0;a1)G(0, 1, 05 a1 )+
G(a1;a2)G(0,1,0;a1)—G(ar;a2)G(0,1,0;a1)+G(0;a1)G(0,1,0; a1 )+G(a1; a2)G(0,1,0; a1)—
G(a1;a2)G(0,1,0;a1)+G(0;a1)G(0,1,a1;a2)+G(0;a1)G(0, 1, a1;a2)+G(ar; a2)G(0, 1, a1; a2)—
G(ps;a2)G(0,1,a1;a2)—G(ar;a2)G(0, a1, 1;a2)—G(ag; a2)G(0, a1, 1; a2)+G(p1; a2)G(0, a1, 1; ag)+
G(ps3;a2)G(0,a1,1;a2)—G(a1; a2)G(1,0,0; a1)+G (p2; a2)G(1, 0, 05 a1)+G(ps; a2) G(1, 0,05 a1 )+
G(a1;a2)G(1,0,0;a1)—G(p2; a2)G(1,0,0;a1)—G(ps; a2)G(1,0,0;a1)+G(az; a2)G(1,0, a1; ag)—
G(p3;a2)G(1,0,a1;a2)—G(a1;a2)G(a1,0,1; a2)—G(ag; a2)G (a1, 0, 1; a2)+G(ps3; a2)G(a1, 0, 15 a2)+
G(ay;a2)G(a1, 1,05 a2)+G(ag; a2)G (a1, 1,0;a2)—G(p1; az2)G(a1, 1,0; a2)+G(0; a1)G (a1, 1, a1; as)+
G(0;a1)G(a1,1, a1;a2)—G(0; a1)G (a1, p2, 15 a2)—G(0;a1)G(a1, p2, 1; a2)+G(1; a1)G (a1, p2, 15 az)+
G(1;a1)G(a1, p2, 1;a2)—G(1;a1)G(a1, p2, a1; a2) —G(1;a1)G (a1, p2, ar; a2)+G(0; a1)G(a1, 0, 1; @) +
G(0;a1)G(a1,0,1;a2)—G(1;a1)G(a1, 0, 15 a2) —G(1;a1)G(a1, 0, 15 a2)+G (a1 a2) G(a1, 0, 1; az)+
G(1;a1)G(a1,0,a1;a2)+G(1;a1)G(a1, 0,a1; a2)—G(a1; a2)G(a1, 1,0; a2)—G(0; a1)G(ar, 1, ar; ag)—
G(0;a1)G(ar1,1,a1;a2)+G(1; a2)G (a1, az, 05 a2) —G(0; az)G(ar, az, 1; a2) —G(ar; a2) G(ar, p1, 05 az) —
G(0;a1)G (a1, p1,ar; a2)—G(0;a1)G (a1, p1, a1; a2)+G(0; a2)G(ar, pr, ar; a2)+G(0; a1) G (ar, p3, 1; @)+
G(0;a1)G (a1, p3, 1;a2)—G(1; a1)G(a1, p3, 1; a2) —G(1;a1)G (a1, ps, 15 a2)+G(a1; a2) G(ar, p3, 1; @)+
G(1;a1)G(a1, ps, ar; a2)+G(1;a1)G (a1, p3, a1; az) —G(1; a2)G(ar, ps, ar; a2) —G(1; a2) G (a1, pa, 03 @)+
G(a1;a2)G(a1, ps, 0;a2)—G(0; a1)G (a1, pa, 13 a2) —G(0; 1) G (a1, pa, 15 a2)+G(0; a2) G (a1, pa, 1; @)+
G(1;a1)G(a1, pa, 1;a2)+G(1;a1)G(a1, pa, 1; a2) —G(ar; a2)G(a1, pa, 15 a2)+G(0; a1) G (a1, pa, a1; az) +
G(0;a1)G (a1, pa, @15 a2)—G(0; a2) G (a1, pa, a1; a2) —G(1; a1)G(a1, pa, @15 a2)—G(1; a1) G (a1, pa, a1; az) +
G(1;a2)G(a1, p4, a1; a2)+G(0;a1)G(az, 0, 1; a2)+G(0; a1)G(az, 0, 1; az) —G(1; a1)G(az, 0, 1; az) —
G(1;a1)G(ag,0,1;a2)+G(a1;a2)G(ag,0,1;a2)+G(1;a1)G(az, 0, a1; a2)+G(1;a1)G(ag, 0,a1; az)—

Q

a2)G(ag, 1,0;a2)—G(0;a1)G(ag, 1,a1;a2)—G(0;a1)G(ag, 1,a1;a2)+G(1; a2)G(ag, a1, 0; az)—
2)G(az, a1, 1;a2)+G(1; a2)G(ag, az, 0; az) —G(0; a2) G (a2, az, 15 a2) —G(a1; a2) G (az, p1, 05 a2) —
)G (a2, p1,a1; a2)—G(0;a1)G(az, p1, a1; a2)+G(0; a2)G(ag, p1, ar; a2)+G(0; a1)G(ag, p3, 15 az)+
)G(

)G(

ai;

Q

Q

)

Q

@

0;
Oal
0;a

;a1

Q

G(az,p3,1;a2)—G(1;a1)G(az, p3, 1;a2)—G(1; a1)G(az, p3, 1; a2)+G(a1; a2)G(az, p3, 1; az)+
1;a1)G(az, p3, a1; a2) + G(1;a1)G(a2, p3, a1; az) — G(1; a2)G(ag, p3, a1; az) —

(
(
(
(
(
(
(
(
(
(
(
(
(13
(1,
(a
(
(
(a
(
(
(a1;
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Q
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G(1;a2)G(az, pa, 0;a2) + G(ar; a2)G(az, ps, 0;a2) — G(0; a1)G(az, pa, 1;a2) —
G(0;a1)G(ag, pa, 1;a2) + G(0; a2)G(ag, pa, 1;a2) + G(1;a1)G(ag, pa, 1;a2) +
G(1;a1)G(az, p4, 1;a2) — G(a; a2)G(az, pa, 15a2) + G(0; a1)G(az, pa, ar; az) +
G(0;a1)G(ag, ps, a1; az2) — G(0; a2)G(az, pa, ar; az) — G(1;a1)G(az, ps, 1; az) —
G(1;a1)G(az, ps, a1; a2) + G(1;a2)G(az, ps, a1; az) — G(0;a1)G(p1,0, 15 a2) —
G(0;a1)G(p1,0,1;a2) + G(1;a1)G(p1,0, 1;a2) + G(1;a1)G(p1,0, 15 a2) —
G(a1;a2)G(p1,0,15a2) — G(1;a1)G(p1,0,a1;a2) — G(1;a1)G(p1,0,a1; az) +
(

L;
1

15 a
;az) ;a2)G(p1, a2, 0;a2) + G(0;a2)G(p1, a2, 1;a2) +

G(0 G(p1,a1,1;a2) — G
G(a1;a2)G(p1,p1,0;a2) + G(0;a1)G(p1,p1, a1; G2) + G(0;a1)G(p1, p1, ar; az) —
G(0;a2)G(p1, p1,a1;a2) — G(0;a1)G (p1, p3, 15 a2) — G(0;a1)G(p1, p3, 1;a2) +
G(1;a1)G(p1,p3, 1;a2) + G(1;a1)G(p1, ps3, 1;a2) — G(ar; a2)G(p1, ps, 1;a2) —
G(1;a1)G(p1, p3, a1;az) — G(1;a1)G(p1, p3, a1; a2) + G(1;a2)G(p1, p3, ar; ag) +
G(1;a2)G(p1, p4,0;a2) — G(a1; a2)G(p1, p4, 05 a2) + G(0;a1)G(p1,pa, 1; a2) +
G(0;a1)G(p1,p4, L;a2) — G(0;a2)G(p1,pa, 1;a2) — G(1;a1)G(p1, pa, 1;a2) —
G(1;a1)G(p1, pa, 1;a2) + G(a1; a2)G(p1, pa, 15 a2) — G(0;a1)G(p1, pa, G1; G2) —
G(0;a1)G(p1, pa, ar; az) + G(0;a2)G(p1, pa, a1 a2) + G(1;a1)G(p1, pa, a1; az) +
G(1;a1)G(p1, pa, a1; a2) — G(1; a2)G(p1, pa, ay; az) — G(0;a1)G(p2, 0, 15 az) —
G(0;a1)G(p2,0,1;a2) + G(1;a1)G(p2,0, 1; a2) + G(1;a1)G(p2,0, 15 a2) —
G(1;a1)G(p2,0,a1;a2) — G(1;a1)G(p2,0,a15a2) — G(0;a1)G(p2, 1, a1; a2) —

)

Q
)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(0;a1)G(p2,1,a15a2) — G(ar; a2)G(p2, 1, a1; a2) — G(az; a2)G(p2, 1, a1; a2) +
(P1, a2)G(p2, 1, a1; a2) + G(p3; a2)G(p2, 1, a1; az) + G(a1; a2)G(p2, a1, 15 a2) +
(
(0
(L;
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(a1
(
(

Q@

az; a2)G(p2,a1,1;a2) — G(p1; a2)G(p2, a1, 1;a2) — G(ps; a2)G(p2, a1,1; a2) +

G(0 ,al)G(m,pg,Laz + G(0;a1)G(p2, p2, 1;a2) — G(1;01)G (p2, p2, 1; a2) —

G(1;a1)G(p2, p2, 1;a2) + G(1;a1)G(p2, p2, a1; a2) + G(1;a1)G(p2, p2, a1; az) +
G(a1;a2)G(ps, 1,0;a2) + G(0;a1)G(ps, 1,a1; a2) + G(0;a1)G(ps, 1, a1; az) —

G(1;a2)G(ps, a1, 0;a2) — G(1;a2)G(ps, az, 0;a2) + G(0; a2)G(ps, az, 1; az) +
G(a1;a2)G(p3, p1,0;a2) + G(0;a1)G(ps3, p1, a1; a2) + G(0;a1)G(p3, p1, a1; az) —

G(0; a2)G(ps, p1,a1; az) — G(0;a1)G(ps, ps, 1; az) — G(0;a1)G(ps, p3, 15 az) +
G(1;a1)G(p3, p3, 1;a2) + G(1;a1)G(p3, p3, 1; a2) — G(a1; a2)G(ps3, p3, 1; a2) —
G(1;a1)G(p3, p3, a1;a2) — G(1;a1)G (ps3, p3, ay; az) + G(1; a2)G(ps3, p3, a; az) +
G(1;a2)G(p3, pa, 0;a2) — G(a1; a2)G(p3, p4, 0; az) + G(0;a1)G(p3, pa, 15 a2) +
G(0;a1)G(ps, pa, 1;a2) — G(0;a2)G(ps3, pa, 1;a2) — G(1;a1)G(ps, pa, 1;a2) —
G(1;a1)G(p3, pa, 1;a2) + G(a1; a2)G(ps, pa, 1; az) — G(0;a1)G(ps3, pa, a1; az) —
G(0;a1)G(ps3; pa, ar; az) + G(0;a2)G (p3, pa, a1 a2) + G(1; a1)G(ps, pa, a1; az) +

G(1;a1)G(ps, pa,a1;a2) — G(1;a2)G(ps, pa, a1; az) + G(0,0,1,0;a1) — G(0,0,1,0;a1) —
G(0,1,0,0;a1) + G(0,1,0,0;a;1) + G(0,1,0,a1; a2) — G(0,a1,0,1; a2) — G(a1,0,a1, 1;a2) +
G(a1,1,0,a1;a2)—G(a1,p2, 1,a1; a2)+G (a1, p2, a1, 1;a2)+G(a1,0,1,a1;a2)—G(ay, 1,0,a1; az)+
G(a;

QQ

)—G(
,a2,0,1;a2)—G (a1, a2,1,0;a2)—G(a, p1,0,a1; a2)+G(a, p1, a1, 0; ag)+G (a1, ps, 1, a1; az) —
,D3, 01, 1;a2)—G (a1, pa,0,1; a2)+G(ar, pa, 0, a1; a2)+G(a1, pa, 1,05 a2) —G(a1, pa, 1, a1; az)—
ai,p4,a1,0;as)+G(ay, ps,ar, 1;a2)+G(ag, 0,1, a1;a2)—G(ag, 1,0, a1; a2)+G(
G(az, a1, 1,0;a2)+G(az, az2,0,1;a2)—G(ag, az, 1,0; az)—G(asg, p1,0, ar; az)+G(az, p1, a1, 0; az)+

ag, dla 07 17 dz)—
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G(az,p3,1,a1;a2)—G(az, p3, a1, 1;a2)—G(az, ps, 0, 15 a2)+G (a2, pa, 0, a1; az)+G(az, pa, 1,0; az) —
(a2,p4,1,a1;a2)—G (a2, pa, a1, 0; az)+G(az, ps, a1, 1;a2)—G(p1,0, 1, a1; a2)+G(p1, a1, 1,05 ) —
(p1,a2,0,1;a2)+G(p1,a2,1,0;a2)+G(p1,p1,0,a1; a2) —G(p1, p1, a1, 0; a2) —G(p1, p3, 1, a1; o)+
(p1,ps3,a1, 1;a2)+G(p1,p4,0,1;a2)—G(p1, P4, 0, a1; a2)—G(p1, pa, 1,05 a2)+G(p1, pa, 1, ar; az)+
(p1,p1,a1,0;a2)—G(p1,pa, a1, 1;a2)—G(p2,0,1, a1; a2)+G(p2, 0, a1, 1; az
(
(
(
(

Q@

p3,az, 07 ]-7 a2)+G(p37 a, 17 0 a2)+G(p37p1707 a“la &2)_G(p3 P1, ala 0 CL2 G P3,DP3, ]-7 ai, CL2)+
D3, D3, 01, 17 a2)+G(p3ap4> Oa 1) a2) G(p3>p47 Oa ai; a?)_G(p3ap47 17 0 a2 +G(p37p4> 1’ ai; a2)+
G(ps3, ps, a1, 0;a2) — G(ps, pa, a1, 1; az)

)—

2)

)—G(
p2,a1,0,1;a2)+G(p2, p2, 1, a15 a2) —G(p2, p2, a1, 15 a2)+G(ps3, 1,0, a1; az) — G(P3,Gl,0,17a2)

)—G(

)

Q
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