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In this thesis we explore aspects of scattering amplitudes in planarN = 4 super Yang-

Mills. In particular we shall focus on studying the mathematical structure of scattering

amplitudes in different kinematical limits. First we use linear combinations of differ-

ential operators and the properties of multiple polylogarithms to solve for a differen-

tial equation obeyed by a 2-loop, 5-point dual conformal scalar integral in a coplanar

kinematical limit. Next we dedicate the bulk of this thesis to planar amplitudes in multi-

Regge kinematics (MRK) and we exploit the simplifications due to this limit to completely

classify their mathematical structure.

We show that in MRK, the singularity structure of the amplitude corresponds to finite

cluster algebras and thus may be described entirely by single-valued multiple polyloga-

rithms. We then present a factorised form for the amplitude expressed as a Fourier-

Mellin dispersion integral and proceed to derive novel results at leading logarithmic

accuracy (LLA) for both MHV and non-MHV configurations. Specifically we show that

amplitudes at L loops are determined by amplitudes with L + 4 legs and classify their

leading singularities in MRK. Next we go beyond LLA by using 2-loop, 7-point data to

extract corrections to the BFKL central emission vertex which is the only quantity in

the dispersion integral not known to all orders. Finally we utilise the corrections to the

central emission vertex to conjecture a finite coupling expression and thus extend the

dispersion integral for amplitudes in MRK to all orders as well as all multiplicities and

helicity configurations.
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CHAPTER 1

Introduction

Our most successful theories regarding the constituents of matter and the way they in-

teract with each other are quantum field theories (QFT). By marrying quantum mechan-

ics with the symmetries of space-time, QFTs have been able to both guide and explain

experiments probing matter at ever smaller scales. From the highly accurate predictions

of QED to the complexity of the standard model we have made many discoveries regard-

ing the nature of fundamental particles, with the Higgs boson being a most notable re-

cent addition. However for experiments to be able to detect new physical phenomena,

it is essential to have an understanding of how likely they are compared to the back-

ground processes. This likelihood may be calculated theoretically and is encapsulated

in scattering amplitudes, thus making them principal objects of study in any QFT, link-

ing theory with prediction. Indeed, by calculating them we may form scattering cross

sections which determine the probabilities of processes at high energy colliders.

In the standard perturbative approach to quantum field theories established in the 1970s,

processes are broken up into all possible interactions, and their combinations, allowed

by the theory under consideration. Each individual scenario, drawn pictorially as a Feyn-

man diagram, is then treated separately. The procedure is to use the Feynman rules de-

rived from the Lagrangian of the theory and associate to each graph an integral, either

over position or momenta. While conceptually straightforward the integrals quickly be-

come notoriously difficult to evaluate and they are often divergent in either the low or

high momentum limits known as the IR and UV respectively. To make sense of these

infinities we require regularisation and renormalisation which have led to new insights

1



2 Chapter 1. Introduction

about the nature of the standard model. Indeed confinement or asymptotic freedom,

a major features of QCD, have their origins in the need to treat the divergent nature of

scattering amplitudes. Thus it is fair to say that calculation of scattering amplitudes has

been a major driving force in the development of our understanding of QFTs.

Although it has taken us far, the Lagrangian approach to scattering amplitudes may not

be the best or most efficient way of doing calculations. The first hints of this fact were

found in the work of Parke and Taylor [1], where, by using a particular parametrisation,

the sum of hundreds of Feynman diagrams was seen to collapse to a single line. The

reasons for this remarkable simplification are two fold. Due to locality, our most real-

istic theories possess non-abelian gauge symmetries, however they are not maintained

by the expansion in Feynman diagrams. Secondly the Lagrangian formulation of QFTs

forces us to deal with off-shell quantities that simplify significantlywhen we restrict our-

selves to the physical space. Scattering amplitudes are non-local, gauge invariant quan-

tities that are manifestly on shell. Therefore the Feynman approach to scattering am-

plitudes, while systematic, introduces a lot of complications in the intermediate steps.

Another surprising feature that contributes to their simplicity is the fact that amplitudes

often possess symmetries that are not evident at the level of the Lagrangian. With these

considerations there has been a lot of impetus to make on-shell amplitudes the start-

ing point rather than the final step in a calculation. These on-shell approaches focus on

finding the most efficient ways of parametrising the amplitude such that they incorpo-

rate its analytic and symmetry properties. Consequently these parametrisations shall be

a recurring theme throughout this thesis.

There has been remarkable progress in recent years in both the understanding and cal-

culation of gauge theory scattering amplitudes. There have been results at high multi-

plicity and new mathematical structures discovered. The acquired mathematical so-

phistication is largely due to the remarkable properties of N = 4 Super-Yang-Mills

(SYM). It is a maximally supersymmetric theory in four dimensions that can be cast as

a reduction of a ten dimensional N = 1 super-Yang-Mills. Indeed N = 4 SYM is not

only supersymmetric but conformal, with a vanishing Beta function, and thus depen-

dent only on the single renormalisation free t’Hooft coupling λ. All of these features

are of great theoretical interest, which is further justified by comprising the CFT in the

AdS/CFT correspondence. Unfortunately, for the most part N = 4 SYM is not a realistic

theory of the world we see around us, however this need not be an obstacle to progress.

It has long been the strategy of the physicist when confronted with a complex problem,

such as QCD, to find a similar yet simpler problem and adapt to the former the lessons

learned from the latter. In the context of scattering amplitudes the role of the simpler

theory is beautifully fulfilled by N = 4 SYM and it rightly deserves the focus we shall

accord it in this thesis. Of course simple here should be interpreted more as evidence

of the mathematical richness of the theory rather than a lack of features.
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In the context of colour ordered planar amplitudes, that shall be of primary interest,

N = 4 possesses a dual conformal symmetry [2–4] which closes with the usual super-

conformal algebra to form an infinite dimensional Yangian algebra [5]. The Yangian pro-

vides an infinite set of charges in involution and thus is a strong indication of integrabil-

ity, and has prompted much work in investigating this property (see [6] for a review). In

fact the scaling dimensions of local operators in N = 4 stem from the thermodynamic

Bethe ansatz and have been solved exactly. The origin of this unexpected integrabil-

ity in a four dimensional theory lies in its duality with a type IIB string theory living on

AdS5×S5. The latter is prone to integrability by virtue of being a non linear sigma model

on a symmetric coset space, then the CFT inherits this property via the AdS/CFT corre-

spondence. At the QFT level the dual conformal invariance is broken by IR divergences,

however this happens in a controlled manner and we may restrict our attention to a

natural IR finite dual conformal invariant part. Thus the analytic structure of scattering

amplitudes is constrained and the four point and five point amplitudes are completely

fixed, which agrees with an earlier ansatz due to Bern, Dixon and Smirnov (BDS) [7]. This

ansatz packaged all information up to five points into a single exponential form contain-

ing the one loop amplitudes and the cusp anomalous dimension (known exactly from

integrability). The BDS ansatz also contains the divergent part of all amplitudes and is

usually factored out to leave finite functions of the cross ratios known as remainder

functions.

Although linked to integrability, a separate avenue of progress has stemmed from the in-

terplay between kinematics and geometry. Notably the kinematics of the amplitude may

be efficiently encoded in terms of momentum twistors, which are points in CP3. They

simultaneously resolve the momentum conservation and null momenta conditions as

well as linearise the action of the dual conformal symmetry generators. Furthermore

the kinematics may be organised into cluster algebras [8,9] which describe the space of

totally positive matrices whose minors are given by the Plücker coordinates made from

the momentum twistors [10]. Evidence suggests that given an initial cluster we may use

a process called mutation to generate the singularity structure of amplitudes up to seven

points in general kinematics. Once the singularity structure is known the entire func-

tional space of the amplitude may be constructed and then bootstrapped using physical

considerations such as soft and collinear limits [11–13]. At eight points and beyond how-

ever this approach breaks down, non-cluster letters start to appear and eventually the

singularity structure may not be enough to fix the amplitudes. However as we shall see,

in certain kinematic regimes it is possible to use finite cluster algebras to determine the

analytic structure of amplitudes at all points.

This is of course not the only way to proceed and there has been great progress in a

variety of techniques involving twistors. In [14, 15] it was shown that by considering the

factorisation of scattering amplitudes in certain limits it was possible to construct all tree
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level amplitudes. Crucially this is a completely on-shell method that relies on a defor-

mation of the amplitude and the residue theorem to recursively build amplitudes from

products of amplitudes with fewer legs. At loop level this is complicated by the branch

but it is still possible to build the integrand by using unitarity methods. While this does

not provide one with the amplitude directly it is nevertheless highly desirable to be able

to decompose the amplitude in terms of a general basis of integrals that may already be

known. In the so called generalised unitarity method [16–18] we may be able to deter-

mine the coefficients in this decomposition by cutting successive propagators. Further-

more, by analysing generalised unitarity in momentum twistor space it was possible to

express integrands of amplitudes as the volume of a remarkable generalised polytope,

over a Grassmannian, known as the amplituhedron [19–21]. This interesting geometrisa-

tion of scattering amplitudes does not obfuscate the Yangian symmetry, because locality

and unitarity are no longer external criteria but emergent phenomena.

Through the Yangian, dual conformal symmetry has played a central role in the progress

made thus far, remarkably this prominence may be understood geometrically via the

AdS/CFT correspondence. By considering the boundary conditions of the saddle point

solution to the string scattering equations it is possible to establish a duality between

scattering amplitudes in N = 4 SYM and minimal surfaces bound by null polygonal

Wilson loops [22–25]. In this context the dual conformal symmetry is just the canonical

conformal symmetry of the Wilson loop and is related by T-duality to that of the am-

plitude. The Wilson loop/amplitude duality has led to the development of some very

powerful techniques. Most notably the Wilson loop OPE [26–31] where a collinear limit

is taken to decompose the loop in terms of polygons with fewer edges. In this way it

is possible to tessellate the polygon with a series of squares or overlapping pentagons.

For planar N = 4 SYM it we may interpret the two segments of each square belong-

ing to the original polygon as sourcing a colour-electric flux tube. Integrability mani-

fests itself here as well, as the excitations of this flux tube correspond to an integrable

spin chain [28–31]. The OPE is then an expansion in the states propagating across these

squares with special transition function taking the state from one square to the other.

Although for most of this work we do not make explicit use of the Wilson loop OPE it

shall however be a valuable point of comparison.

Insteadwe focus on the the functional space of the simplest scattering amplitudes, which

is expected to be that of iterated integrals over some one forms. These one forms are

determined by the configuration space of points in complex projective space Conf(CP3).

We shall be working with iterated integrals over rational one forms, otherwise know as

multiple polylogarithms (MPLs), which are believed to describe all maximally helicity

violating (MHV) and next-to-MHV (NMHV) [21]. MPLs and iterated integrals in general

are of deep mathematical interest. They have connections with algebraic geometry and

number theory, areas of mathematics which have a remarkably large overlap with the
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study of scattering amplitudes. MPLs have a plethora of properties, stemming from their

Hopf algebra structure, and obey many functional relations among themselves. Fur-

thermore they admit an algebraic representation called the symbol [32–34], which is in

some sense simpler and more unique. The symbol has been used with great success

to simplify results that would have taken 17 pages to write [35, 36] and has proven to be

a very efficient tool with which to build scattering amplitudes. In particular we know

the symbols of all two-loop MHV amplitudes [37] and that of the three-loop seven point

amplitude [11]. It has been difficult to go to higher multiplicity however, with reasons

including the infinity of the cluster algebra as well as the expected appearance of new

classes of functions not expressible as MPLs.

This thesis is organised as follows. Section 2 is not original and is intended as a brief

overview of some of the more relevant topics in scattering amplitudes as well as an in-

troduction to some subjects that would be of use later on. In particular we spend some

time going through the principles of iterated integrals and their Hopf algebra. In Sec-

tion 3 we explore what can be learned from applying differential operators to a scalar

conformal 2-loop, 5-point integral. We find that in a coplanar limit of the kinematics we

may write a differential equation that has a solution in terms of single valued MPLs. This

section is based on unpublished work done in collaboration with my supervisor James

Drummond. In Section 4 we investigate scattering amplitudes in multi-Regge kinemat-

ics (MRK) at leading log approximation (LLA). We show that in MRK the cluster algebra of

the kinematics decomposes into two copies of finite type, which can be represented by

the Dynkin diagrams forAn. Thus we are able to describe the amplitude in terms of iter-

ated integrals on the moduli space of Riemann spheres with marked points M0,n. After

proposing a Fourier-Mellin dispersion integral for amplitudes at all loops and points we

proceed to investigate how the amplitude factorises. More precisely MHV amplitudes

at L loops are completely determined by MHV amplitudes with up to (L+4) external legs.

Furthermore by considering convolutions with a helicity flip kernel the results are ex-

tended to NMHV. In Section 5 we develop the results of Section 4 beyond LLA. To do so

we shall promote the known symbol of the two loop heptagon to a function and fix di-

vergent terms in the integral by considering soft limits. After obtaining the function we

use its holomorphic part to completely fix the NLO corrections to the central emission

block via a map from the Taylor expansion of MPLs to the space of single valued Fourier-

Mellin integrals. Once the corrections are obtained we proceed to generate predictions

through a mixture of nested sum algorithms and convolution methods. Finallywe obtain

further corrections to the central emission vertex and promote them to a Wilson loop

OPE inspired all order conjecture that is consistent with symmetries and seven points

data. Thus we complete our proposal for a finite coupling dispersion integral valid for all

multiplicities and helicity configurations. The work of the preceding two sections was

done in collaboration with Vittorio Del Duca, James Drummond, Claude Duhr, Falko Du-

lat, Robin Marzucca, Georgios Papathanasiou and Bram Verbeek [38,39].
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CHAPTER 2

Overview

2.1 Colour and Spin

Given that our most realistic QFTs are non-abelian gauge theories with gauge group

SU(N) it is natural to expect additional structure in the amplitude, besides the kine-

matical dependence. However, as we shall see, in the planar limit of large rank (N − 1)

the gauge group dependence or colour structure will become mostly decorative. That

is to say given that our fields are Lie algebra valued, we demonstrate that the amplitude

can be expressed as a series of single traces of the generators. Furthermore, even if

the theories we consider are not entirely made of massless particles it is nevertheless

consistent with collider processes to assume a hyper-relativistic limit in which the par-

ticles have zero effective mass. Thus the full spin structure can be reduced to unitary

representations of the little group that are parametrised by the helicity of the particle.

Following [40, 41] we proceed to describe the colour decomposition of amplitudes and

the spinor helicity formalism.

2.1.1 Colour decomposition

Colour decomposition techniques for scattering amplitudes were introduced in [42] for

open string theory computations. Although the colour gauge group of QCD is SU(3)

the colour structure can be readily generalised to the group SU(Nc). We define the Lie

7
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1

p2

fabcpµ

fabcf cde

Figure 2.1.1: Yang-Mills Feynman rules

algebra su(Nc) of the gauge group as an algebra with the following bilinear operation

[T a, T b] = i
√
2fabcT

c a, b, c = 1 . . . N2
c − 1 (2.1.1)

where the T a are called the generators of the algebra and, for su(Nc), are represented

by traceless hermitian Nc ×Nc matrices. In a non abelian gauge theory and specifically

in QCD, the Feynman rules for the pure gauge vertices are expressed in terms of the

structure constants fabc (fig. 2.1.1), while the quark-gauge-anti-quark interactions are in

terms of the generators. This is due to the fact that the generators have three separate

indices (T a)i
j̄

for the group, the fundamental and the anti-fundamental. Our aim is to

homogenise the Feynman rules by transitioning from the structure constant basis, to

the smaller generator basis. To do this we normalise the generators Tr
(
T aT b

)
= δab,

and combine this with (2.1.1)

i
√
2fabc = Tr

(
T aT bT c

)
− Tr

(
T aT cT b

)
(2.1.2)

As can be seen from (fig. 2.1.2) this has the effect of turning every pure colour vertex

into an internal fermionic loop. Thus for multi gluonic amplitudes the colour factors

are products of traces. If there are external fermions present then the amplitude will

contain strings of generators with fundamental indices (T a1 . . . T am)j̄i . For diagrams with

internal gluon lines there will be terms of the form Tr (. . . T a . . .)Tr (. . . T a . . .). We may

treat these terms by using the Fierz identity

(T a)j̄1i1 (T
a)j̄2i2 = δj̄2i1 δ

j̄1
i2

− 1

Nc
δj̄1i1 δ

j̄2
i2

(2.1.3)

In terms of the diagram this splits the colour factor of two fermionic lines that are joined

by an internal gluon. To prove the above identity we augment the SU(Nc) with a U(1)

generator corresponding to a photon. Note that the new generator is proportional to
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−→ −

−→ − 1

Nc

Figure 2.1.2: Colour decomposition

the identity (T aU(1))j̄i = 1√
N
δj̄i and thus does not couple to the gluons or alternatively

fabcU(1) = 0. Taking these generators together they form a basis for all hermitianNc×Nc

matrices. A canonical basis is given by [43]

(
eij
)
kl
= δikδ

j
l (i, j, k, l = 1 . . . Nc) (2.1.4)

For which we can write a positive definite inner product that implies the completeness

relation

Tr[eij(ekl)†] = δikδjl →
(
TA
)j̄1
i1

(
TA
)j̄2
i2

= δj̄2i1 δ
j̄1
i2

(2.1.5)

Where A = 1 . . . N2
c . Moving the U(1) generators to the right hand side of (2.1.5) we

recover (2.1.3). After applying all of the above identities to the colour factors of the n-

gluon tree amplitude we find that the 1/Nc terms drop out and we can write its colour

decomposition

Atree
n ({ki, λi, ai}) = gn−2

∑
σ∈Sn/Zn

Tr (T aσ(1) . . . T aσ(n))Atreen

(
σ(1λ1), . . . , σ(nλn)

)
(2.1.6)

Here the ki denote the gluon momenta and λi their helicities. Due to the properties of

the trace, σ must belong to the coset of all cyclically independent permutations Sn/Zn.

This is in line with the intuition that rotating the amplitude should not affect its proper-

ties. The quantities An are known as partial amplitudes and given that they have a fixed

ordering among the momenta, are simpler than the full amplitude. This restricts the

possible singularity structure of the amplitude and it can only have poles in channels of

adjacent momenta

sij ≡ (pi + pi+1 + . . .+ pj−1 + pj)
2 (2.1.7)

A similar procedure is applied to loop amplitudes and up to first order we have single
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and double trace terms

A1−loop
n ({ki, λi, ai}) = gn

∑
σ∈Sn/Zn

{
Nc Tr (T aσ(1) . . . T aσ(n))An;1

(
σ(1λ1), . . . , σ(nλn)

)

+

bn
2
c+1∑
i=2

Tr (T aσ(1) . . . T aσ(i−1))Tr (T aσ(i) . . . T aσ(n))An;i

(
σ(1λ1), . . . , σ(nλn)

)}
(2.1.8)

Where the brackets b·c in the limit denote the floor of the enclosed quantity and the

An;i can be constructed from permutations of An;1. In calculating the cross section we

need to square the amplitude and average over all the colours, which produces factors

of Nc. From (2.1.8) we can see that the dominant powers of Nc will come from gluing

amplitudes with the same ordering of the colour indices. Thus in the largeNc limit only

planar graphs will contribute to the cross section.

2.1.2 Spinor Helicity Formalism

As mentioned previously when treating spin we can take helicity as a convenient basis

for particles in the ultra-relativistic limit. Fermion lines conserve helicity whereas gauge

bosons do not. The complexity of the amplitudes can be linked to the degree of helicity

violation (fig. 2.1.3), with the simplest amplitudes having the maximal degree (MHV) and

the next simplest being next-to-MHV (NMHV) etc. Fortunately we can make use of the

parity symmetry (2.1.23) to relate the amplitudes such that we only have bn2 c independent

helicity configurations to consider. Similarly to the colour ordering case we must re-

express our amplitude in terms of quantities with the correct indices. To do so we will

have to consider complexified four dimensional Minkowski space MC.

ds2 = ηabdx
adxb xa ∈ C4 (2.1.9)

Note that signature has no meaning in MC as that will change depending on what subset

of C4 we restrict ourselves to. Thus we can view complexified Minkowski space as an

analytic continuation of all flat spacetimes. Although we are ultimately interested in

real spacetimes it can be extremely useful to express scattering amplitudes in terms of

complex spinors and twistors.

Amomentumvector onMC transforms in the (12 ,
1
2) representation ofSL(2,C)×SL(2,C).

This is because the Lie algebra of the spin group so(4,C) of complexified spacetime is

isomorphic to sl(2,C) × sl(2,C). Thus we can decompose a spacetime index into two
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Parity

n = 4

n = 5

n = 6

NMHV

N2MHV

MHV MHV

Figure 2.1.3: Helicity classification of amplitudes based on multiplicity. Amplitudes with
massless particles and with less than two helicities that are distinct from the rest will
vanish

conjugate spinor indices of opposite chirality by using the Pauli matrices σαα̇µ = (I, ~σ),

σαα̇1 =

(
0 1

1 0

)
σαα̇2 =

(
0 −i
i 0

)
σαα̇3 =

(
1 0

0 −1

)
(2.1.10)

The map to the spinor representation and its inverse is given by

pαα̇ ≡ pµσαα̇µ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
pµ =

1

2
Tr(σ̄µp) (2.1.11)

where σ̄αα̇µ = (I,−~σ). Note that this map may be easily generalised to any number of

indices

T abc... → Tαα̇ββ̇γγ̇... (2.1.12)

From (2.1.11) we can see that the norm of the momentum vector is given by the determi-

nant of the corresponding spinor representation

ηµνp
µpν =

1

4
ηµν σ̄

µ
αα̇σ̄

ν
ββ̇
pαα̇pββ̇ =

1

2
εαβεα̇β̇p

αα̇pββ̇ = det(pαα̇) (2.1.13)

Where εαβ = −εαβ is the Levi-Civita tensor and in the second equality we used another

formulation of the completeness relation (2.1.5). For massless particles the right hand

side of (2.1.13) vanishes and the corresponding matrix is singular. Consequently the null

on-shell momenta can be expressed in terms of two spinors of opposite chirality.

pαα̇ = λαλ̃α̇ ≡ |p〉α[p|α̇ (2.1.14)

However unlike the usual fermionic spinors which anti-commute these spinors are not

Grassmann valued. We use the Levi-Civita tensor to raise and lower indices as well as
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contract spinors.

|p〉α = εαβ〈p|β [p|α̇ = εα̇β̇|p]
β̇

εαβλ
α
i λ

β
j = 〈ij〉 εα̇β̇λ̃

α̇
i λ̃

β̇
j = [ij] (2.1.15)

We can easily see that the helicity spinors satisfy the massless Weyl equation

pαα̇|p〉α = 0 [p|α̇pαα̇ = 0 (2.1.16)

Where we have used the anti-symmetry of the spinor contraction 〈ij〉 = −〈ji〉. However

the helicity spinors for a given momentum are not unique and (2.1.14) will be invariant

under the following transformations

λα → tλα λ̃α̇ → t−1λ̃α̇ t ∈ C∗ (2.1.17)

Thus we can see that the complex null momenta can be described by a cone overCP1×
CP1. For real momenta the two spinors are related by complex conjugation and are thus

forced to transform under the little group SO(2) ∼ U(1) restricting t to a phase

eiφλ̃α̇ =
(
e−iφλα

)∗
(2.1.18)

And in this case we can give an explicit realisation

λα =
1√

p0 + p3

(
p0 + p3

p1 + ip2

)
λ̃α̇ =

1√
p0 + p3

(
p0 + p3

p1 − ip2

)
(2.1.19)

Next we note two important identities. The first is the Schouten identity which comes

from the fact that only two spinors are required to form a basis for C2

〈12〉〈3a〉+ 〈23〉〈1a〉+ 〈31〉〈2a〉 = 0 (2.1.20)

Where λa is arbitrary and a similar identity holds for the λ̃. The second identity is a

re-expression of the momentum conservation condition for amplitudes

n∑
i=1

pαα̇i = 0 ⇐⇒
n∑
i=1

〈ai〉[ib] = 0 (2.1.21)

It would be convenient if the amplitudes we consider did not care about whether we

swapped an incoming particle for an outgoing one (crossing -symmetry). Thus we use

the convention of taking all particles as outgoing and take the parity conjugate quantum

numbers of the incoming particles when writing down the amplitude.
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The spinor helicity formalism will prove to be a very natural language in which the am-

plitude can take a surprisingly simplified form. Intuitively this comes from the converse

of (2.1.14), i.e. by choosing the spinors λ and λ̃ we automatically construct the null sub-

space of the kinematics. Thus by using these variables we avoid having to artificially

impose the massless on-shell conditions upon our amplitudes. In fact determining the

most efficient variables in which to express our on-shell kinematics has been a critical

source of progress in investigating the structure of scattering amplitudes.

Here we give some general properties of the colour ordered partial amplitudes that im-

pose powerful constraints and provide simplifications.

Cyclicity :

A(1, 2, . . . , n) = A(n, 1, . . . , n− 1) (2.1.22)

This is a simple consequence of the cyclicity of the trace, and as already stated leads to

a simpler analytical structure.

Parity :

A(1, 2, . . . , n) = A(1̄, 2̄, . . . , n̄) (2.1.23)

Where we have inverted the helicity of all the legs to find the real amplitude invariant.

This demonstrates that the positive and negative helicities are conjugate labels as evi-

denced by the spinor-helicity formalism.

Charge conjugation:

A(1q, 2q̄, 3 . . . , n) = −A(1q̄, 2q, 3 . . . , n) (2.1.24)

Where we have exchanged the helicity of a quark line. It can be seen from the Feynamn

rules that the amplitudes are equivalent up to a minus sign.

Reflection:

Atree(1, 2, . . . , n) = (−1)nAtree(n, n− 1, . . . , 1) (2.1.25)

This is due to n-point amplitudes having n+ 2L− 2 three-point vertices, which are an-

tisymmetric under reflection. For quarks this holds only at tree level.

Photon Decoupling : ∑
σ∈Zn−1

Atreen (1, σ(2, 3, . . . , n)) = 0 (2.1.26)

This can seen by putting a U(1) generator into (2.1.6) and collecting terms with equal
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colour factors. Since the photon doesn’t couple to the gluon the amplitude must vanish

and we recover (2.1.26). At loop level this relates planar and non-planar partial ampli-

tudes [44]

Collinear limit :

A(L)
n (1, . . . , (n− 1)hn−1 , nhn) →

L∑
l=0

∑
h

A
(L−l)
n−1 (1, . . . , kh)Splitl−h((n− 1)hn−1 , nhn) (2.1.27)

Where L is the number of loops and we take the adjacent momenta of the n and (n− 1)

particle to be collinear. The l-loop splitting amplitudes are universal functions of the

helicities of the collinear particles and the momentum k of the intermediate parton.

Soft limit :

Atree(1+, 2, . . . , n) → 〈n2〉
〈n1〉〈12〉

Atree(2, . . . , n) (2.1.28)

Where we take the first momentum as soft. Finally, not only are partial amplitudes sim-

pler analytically but they are individually gauge invariant, which means that we may

study them as seperate quantities.

2.1.3 A three-point example

As an illustration of the techniques discussed so far we will use the little group scaling to

determine a three gluon amplitude. First we note that the amplitude transforms under

the scaling (2.1.17)

An(. . . , {tiλi, t−1
i λ̃i, hi}, . . .) = t−2hi

i An(. . . , {λi, λ̃i, hi}, . . .) (2.1.29)

A priori the three point amplitude A3(1
h1 , 2h2 , 3h3) could depend on spinors of both chi-

ralities. However by choosing both a, b = 3 in the conservation of momentum identity

(2.1.21), we can infer that one of the following conditions must be true

λ3 ∝ λ2 ∝ λ1 or λ̃3 ∝ λ̃2 ∝ λ̃1 (2.1.30)

Thus for three-point kinematics either all square or all angle bracket contractions must

vanish, and we can express the amplitude solely in terms of one or the other. Note that

this is only possible if we take the momenta as complex. We choose to work with angle

brackets and proceed by making an ansatz

A3(1
h1 , 2h2 , 3h3) = c〈12〉r12〈13〉r13〈23〉r23 (2.1.31)



2.1. Colour and Spin 15

By considering the transformation of the spinors under scalings we obtain a linear sys-

tem of equations −2h1 = r12 + r13 etc. which can be easily solved to find

A3(1
h1 , 2h2 , 3h3) = c〈12〉h3−h2−h1〈13〉h2−h1−h3〈23〉h1−h3−h2 (2.1.32)

Similar to the scaling dimension of a CFT, scaling under the little group has been used to

completely fix the three particle amplitude. We could have proceded similarly with the

square brackets to find two possible solutions for the MHV 3-gluon tree amplitude

A3(g
−
1 , g

−
2 , g

+
3 ) =


g 〈12〉3
〈13〉〈23〉

g′ [13][23]
[12]3

(2.1.33)

However by dimensional analysis the square bracket amplitude would have had to come

from a non-local Lagrangian (assuming a Yang-Mills like dynamic term), and we can dis-

regard it. An alternate way of fixing the 3-particle amplitude is by using the helicity

operator

ĥi = −1

2
λαi

∂

∂λαi
+

1

2
λ̃α̇i

∂

∂λ̃α̇i
(2.1.34)

Forwhich the amplitude is an eigenfunction ĥiA = hiA and the spinors have helicity±1
2 .

Despite their simplicity the three point amplitude are quite important, they are in a sense

a fundamental building block. As was shown by BCFW [14, 15], all tree-level amplitudes

at arbitrary helicity can be constructed by recursively gluing the three-point amplitudes

together. We shall review this process for the supersymmetric case in Section (2.2.2).

One may reasonably think that the simple form of (2.1.33) is mainly due to the small

number of particles under consideration. It was found early on however [1] and later

proved in [45] as well as BCFW that the MHV tree-level amplitudes have a remarkably

simple all-point structure.

An(. . . , i
−, . . . , j−, . . .) =

〈ij〉4

〈12〉 . . . 〈n1〉
(2.1.35)

The degree of simplicity becomes even more striking if we consider the number of Feyn-

man diagrams (for a theory with tri-valent and quad-valent vertices) that contribute to

this final form [46]

n 2 3 4 5 6 7

no. diagrams 1 3 10 38 154 654

The reason why we can express the sum of so many diagrams in a single line is easy to

guess. When using the path integral formulation we take the momenta to be off-shell

and we spoil the gauge invariance by expanding the generating function in terms of the

interaction vertices. The simple form of the Parke-Taylor amplitude (2.1.35) engendered
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the hope that perhaps these difficult calculations could be avoided.Thus it served as the

initial inspiration for the search of efficient on-shell and gauge independent methods

that has led to the field of modern scattering amplitudes.

2.2 Amplitudes in N = 4 Super Yang-Mills

So far we have been discussing amplitudes in the context of Yang-Mills or QCD in the

hyper-relativistic limit. These theories have proven themselves to be realistic and thus

form an integral part of the standard model. The question is then why should we wish

to study a theory that is manifestly unrealistic. Despite the simplifications encountered

so far at tree level, calculations in QCD remain notoriously complex. In situations like

these we turn to toy models for insight. These should be simple enough to solve, but

complex enough to learn something about the original problem and ideally should be

realistic in some approximation. The theory that surpasses all other in these respects is

N = 4 SYM. It is a maximally supersymmetric conformal theory in 4 dimensions that

possesses an infinite Yangian symmetry in the planar limit and is believed to be inte-

grable. Physically the theory can be thought of as a supersymmetric analogue of QCD

and for purely gluonic amplitudes at tree level the matter content drops out and both

theories produce exactly the same result. Furthermore it is thought that planar N = 4

SYM gives the maximally transcendental part of QCD. It is closely linked to the AdS/CFT

correspondence and string theory allowing for results at strong coupling and then ex-

tended to finite coupling via integrability. Lastly due to its rich mathematical structure

it is an effective testing ground for novel techniques and has significant overlap with

purely mathematical topics from number theory to algebraic topology. In the following

we shall rely on the references [41, 47, 48].

2.2.1 General properties

The 4 dimensional N = 4 SYM is in fact a reduction of N = 1 SYM in 10 dimensions,

which is in turn a low energy limit of type I superstring theory. Its action is given in terms

of a real vector and a Majorana-Weyl spinor in the adjoint representation.

SN=1 =

∫
d10xTr

{
− 1

4
FµνF

µν + iΨ̄ΓµDµΨ
}

(2.2.1)

Where Γµ are part of the 10d Clifford algebra, Dµ = ∂µ − igAad
µ is the usual covariant

derivative and Fµν is the associated curvature. The reduction of the action to 4 dimen-

sions is performed by compactifying the x4, x5, . . . , x9 directions and discarding massive

modes, The vector then is divided into one 4 dimensional gauge potential plus 6 scalars.

The spinor is also divided into four Weyl spinors thus extending the supersymmetry to
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N = 4 and ultimately giving the action

SN=4 =
1

g2YM

∫
d4xTr

{
− 1

4
FµνF

µν − (DµφAB)(D
µφAB)− 1

2
[φAB, φCD][φ

AB, φCD]

+ iψ̄AσµD
µψA − i

2
ψA[φ

AB, ψB]−
i

2
ψ̄A[φAB, ψ̄

B]
}

(2.2.2)

All the fields in (2.2.2) remain in the adjoint since the reduction from (2.2.1) does not

affect the gauge indices. The scalar fields φAB are part of the totally antisymmetric rep-

resentation of the R-Symmetry group SU(4), which is isomorphic to the fundamental of

SO(6) (a subgroup of the full SO(1, 9) of the 10d action). An immediate feature of (2.2.2)

is that there are only two free parameters, namely the coupling and the gauge group

which we shall take to be SU(N) in the planar limit. Less evident features are that it

has a super conformal symmetry PSU(2, 2|4) which does not develop anomalies upon

quantisation, and the coupling does not run. Consequently scattering amplitudes are

UV finite, however they still suffer from IR divergences. If we introduce the Grassmann

variables ηA forA = 1, . . . , 4 and define the partial derivatives

∂α ≡ ∂

∂λα
∂̃α̇ ≡ ∂

∂λ̃α̇
∂A ≡ ∂

∂ηA
(2.2.3)

Then the generators of psu(2, 2|4) are given by, beginning with the standard generators

of the super Poincaré sub-algebra

pαα̇ = λαλ̃α̇ qαA = λαηA q̃α̇A = λ̃α̇∂A

mαβ = λ(α∂β) m̄α̇β̇ = λ̃(α̇∂̃β̇) rAB = ηA∂B − 1

4
δABη

C∂C (2.2.4)

The special conformal generators are

sαA = ∂α∂A s̄Aα̇ = ηA∂̃α̇ kαα̇ = ∂α∂̃α̇ (2.2.5)

Finally the dilatation and central charge generators

d =
1

2

[
λα∂α + λ̃α̇∂̃α̇ + 1

]
c = 1 +

1

2

[
λα∂α − λ̃α̇∂̃α̇ − ηA∂A

]
(2.2.6)

There are 8 bosonic and 8 fermionic on-shell degrees of freedom that are part of a single

PCT self-conjugate multiplet, which can be organised into a single on-shell superfield

Φ(η) = G+ + ηAλA +
1

2!
ηAηBSAB +

1

3!
ηAηBηCεABCDλ̄

D +
1

4!
(η)4G− (2.2.7)

Where G± are the gluon states of opposite helicity, SAB are the six scalars and λA, λ̄
D

are the gluinos. We assign a helicity of +1
2 to η and write the supersymmetric analogue
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of the helicity generator (2.1.34)

ĥ =
1

2

[
−λα∂α + λ̃α̇∂̃α̇ + ηA∂A

]
= 1− c (2.2.8)

thus we see that the superfield has a helicity of one (ĥΦ = Φ). Gien that N = 4 SYM is

PCT self-conjugate we can combine all n-particle amplitudes into one super-amplitude

A(Φ1, . . . ,Φn) =
n−4∑
k=0

ANkMHV ({λi, λ̃i, hi}) (2.2.9)

Where we have expanded with respect to the degree of helicity violation. Because the

superfield (2.2.7) is just a polynomial expansion in the Grassmann variables with the

states as coefficients, we can select a particular amplitude by differentiation (or inte-

gration) with respect to η, e.g:

An
(
S12, S34, 3

−, . . . , n+
)
=

(
∂

∂η11

∂

∂η21

)(
∂

∂η32

∂

∂η42

)( 4∏
A=1

∂

∂ηA3

)
A(Φ1, . . . ,Φn)

∣∣∣∣
ηi=0

(2.2.10)

Note that the top limit is not the maximal n, which is a consequence of the fact that all

the amplitudes with n or (n − 1) positive helicities vanish. To see this we note that the

amplitude is annihilated by the sum of the super-symmetry generators over all particles

(2.2.4)-(2.2.6) i.e.

QαA =

n∑
i=1

λαi η
A
i → QαAAn = 0

Q̃α̇A =

n∑
i=1

λ̃α̇i ∂iA → Q̃α̇AAn = 0

... →
... (2.2.11)

Where the ellipses denote sums over particles of the remaining super-symmetry gen-

erators. These conditions are enough to constrain the general form of the amplitude

An({λi, λ̃i, hi}) =
δ(4)(p)δ(8)(Q)

〈12〉〈23〉 . . . 〈n1〉
Pn({λi, λ̃i, hi}) (2.2.12)

Where we have adopted the convention of extracting an overall factor of the MHV am-

plitude, which carries all the helicity information. thus leaving Pn with vanishing helicity

for every particle. The first delta function imposes the usual conservation of momen-

tum and the second is the analogous conservation of supermomentum. For Grassmann

variables the delta function is simply

δ(η) = η (2.2.13)
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and we can write δ(8)(Q) as a polynomial in the ηi

δ(8) (Q) =
1

24

4∏
A=1

QαAQAα =
1

24

4∏
A=1

n∑
i,j=1

〈ij〉ηAi ηAj (2.2.14)

Because the first term of the function Pn is 1 by construction we see how the conserva-

tion of supermomentum requires that the amplitude has a minimum Grassmann degree

of eight. Consequently, it must contain at least two pairs of legs along which helicity is

conserved. The absence of a δ(Q̃) in (2.2.12) is due to our choice of representation for

the supersymmetry generators q̃α̇A as a differential operator, which breaks the symmetry

between Q and Q̃. However δ(Q̃) is not necessary to ensure the supersymmetry con-

straints (2.2.11) are obeyed. This is due to the fact that if we have overall momentum

conservation then

Q̃α̇Aδ(8)(Q) = 0 (2.2.15)

Of course if we were to consider the parity conjugated amplitude then δ(Q̃) would be

needed to impose supermomentum conservation. Although QCD does not posses the

supersymetry described in this section the pure gluon part of N = 4 SYM is identical to

that of QCD. Because the MHV condition still holds if we restrict ourselves to amplitudes

containing only gluons, we can expect the same vanishing amplitudes in QCD. This is

indeed the case and is indicative of a hidden symmetry at tree level.

2.2.2 BCFW and tree amplitudes

As mentioned in the section on the three-point amplitude, the entire tree-level structure

can be determined by the use of the BCFW recursion relations. Although the general

framework can be applied to higher dimensions and massive theories without super-

symmetry we shall focus on the setting relevant to N = 4 SYM. The essential concept of

BCFW is taking complex momenta and studying the effect of deforming them for two

of the particles.

p1 → p̂1 = (λ1 − zλn)λ̃1 pn → p̂n = λn(λ̃n + zλ̃1) (2.2.16)

Note that this does not spoil the null momentum condition p̂21 = p̂22 = 0 and momen-

tum conservation p̂1 + p̂n = p1 + p2. However if we wish to maintain supermomentum

conservation then we must deform the Grassmann variables as well

η1 → η̂1 = η1 ηn → η̂n = ηn + zη1 (2.2.17)

Thus we establish a one parameter deformation of the amplitude An(z). The tree am-

plitudes are rational functions of the spinors and we can only have simple poles in the
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Figure 2.2.1: Maximal z scaling of tree level scattering amplitude with deformed 1̂ and n̂
momenta

parameter z of the form

1

P̂ 2
i

=
1

(p̂1 + p2 + . . .+ pi−1)2
=

1

P 2
i − z〈n|Pi|1]

(2.2.18)

If we introduce a pole at z = 0 then the non-shifted amplitude will be contained in the

following contour integral∮
An(z)

z
= An +

∑
i

Res

(
An(z)

z
, zPi

)
= Res

(
An(z)

z
,∞
)

(2.2.19)

Where zPi is the pole at which P̂ 2
i goes on shell.

zPi =
P 2
i

〈n|Pi|1]
(2.2.20)

At these poles the amplitude factorises into two lower point pieces.

lim
z→zPi

An(z) ∼
1

z − zPi

(
−1

〈n|Pi|1]

)∑
s

As
L

(
1̂(zPi), . . . , i− 1,−P̂ (zPi)

)
×As̄

R

(
P̂ (zPi), i, . . . , i− 1, n̂(zPi)

)
(2.2.21)

Where we sum over the helicity s of all possible intermediate states. All that is left to

consider is the behaviour of the amplitude at infinity, fortunately in N = 4 SYM the

residue at infinity vanishes [49]. Without going into too much detail we can motivate

this by noticing from the Feynman rules that each three-point vertex is O(z), each four-

point vertex is O(z0) and, as we have seen, each internal propagator goes like O(z−1)
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as z → ∞ (figure 2.2.1). Given that there is always one more vertex than propagators

we conclude that the dominant amplitudes are O(z). Next we include the effects of the

momentum dependent polarization vectors

ε1,+ =
λ̃1µ

〈1̂µ〉
∼ 1

z
εn,+ =

ˆ̃
λnµ

〈nµ〉
∼ z

ε1,− =
λ̂1µ̃

[1µ̃]
∼ z εn,− =

λnµ̃

[n̂µ̃]
∼ 1

z
(2.2.22)

where µ, µ̃ are arbitrary spinors afforded by gauge symmetry. Ostensibly the results are

not too encouraging and depending on the helicities of the shifted momenta the domi-

nant behaviour as z → ∞ ranges from O(z−1) to O(z3). However in [50] the background

field method was used to show that there are enhanced spin symmetries that further

suppress the behaviour of the (++) and (−−) cases to O(z−1) rather than O(z).

A(+−) ∼ 1

z
A(++) ∼ 1

z
A(−−) ∼ 1

z
A(−+) ∼ z3 (2.2.23)

Finallywe can take advantage of supersymmetry to set two of the Grassmann variables to

zero and relate the z- dependence of the superamplitude to the (−−) component. Thus

for N = 4 there is no residue at infinity and we can freely relate scattering amplitudes

to products of amplitudes with fewer particles. Consequently it is possible to solve the

recursion relations and write an expression for the entire tree-level S-matrix [51]

ANpMHV
n =

∫
d4ηP̂
P 2

AMHV
3 (zP )ANpMHV

n−1 (zP )

+

p−1∑
m=0

∑
i

∫
d4ηP̂i

P 2
i

ANmMHV
i (zPi)ANp−m−1MHV

n−i+2 (zPi) (2.2.24)

Note that due to there being a single superfield the sum of the states has been replaced

by an integral over the Grassmann variables. Moreover we can write down closed form

expressions for the amplitudes. For example we give the PNMHV
n term in (2.2.12)

PNMHV
n =

∑
2≤s<t≤n−1

Rn:st (2.2.25)

Where the Rn:st are descriptively called R-invariants and first appeared in [52]. They

may be expressed in the following way

Rn:st =
〈s s− 1〉〈t t− 1〉δ(4)(〈n|xnsxst|θAtn〉+ 〈n|xntxts|θAsn〉)

x2st〈n|xnsxst|t〉〈n|xnsxst|t− 1〉〈n|xntxts|s〉〈n|xntxts|s− 1〉
(2.2.26)
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Where we define the change of variables

xαα̇ij =

j−1∑
k=i

pαα̇k

θαAij =

j−1∑
k=i

qαAk (2.2.27)

The higher NkMHV amplitudes can be similarly expressed in terms of nested sums of R-

invariants generalised to many pairs of labels {si, ti}. Note that in expressing the NMHV

amplitude we have introduced spurious non-local poles of the type.

1

〈n|xnsxst|t〉
(2.2.28)

Which continue to persist in other helicity configurations. Of course these cancel in

the full amplitude as the theory only has local poles, however their appearance is quite

natural due to the extra symmetries of the amplitudes described in the next section.

2.2.3 Dual coordinates and symmetries

We begin this section byestablishing the dual conformal symmetry, which forms a unique

and central feature of scattering amplitudes in N = 4 SYM. Note that we can invert the

change of variables (2.2.27) and define the dual coordinates

pαα̇i = xαα̇i i+1 = xαα̇i − xαα̇i+1 qαAi = θαAi i+1 = θαAi − θαAi+1 (2.2.29)

The null-momentum conditions require that adjacent {x, θ} are null separated. The dual

coordinates are essentially telescopic solutions to the total (super)momentum condi-

tions. Thus the delta functions in (2.2.12) become

δ(4)(p)δ(8)(Q) = δ(4)(xn+1 − x1)δ
(8)(θn+1 − θ1) (2.2.30)

Therefore if we make the identification x1 ∼ xn+1 (θ1 ∼ θn+1) then we can trivialise the

(super)momentum conditions. The identification effectively arranges the dual coordi-

nates into the vertices of a polygon with light-like edges (figure 2.2.2). However this is not

the entire extent of their usefulness. It is easy to see that Poincaré transformations of the

dual coordinates leave the amplitudes invariant and we can treat them as honest coordi-

nates for a dual copy of spacetime. They also furnish their own copy of superconformal

symmetry independent from that of the Lagrangian. For example under inversion I :

I : xαα̇i → (xαα̇i )−1 =
xαα̇i
x2i

I : θαAi → (θαAi )−1 = (x−1
i θi)

α̇A (2.2.31)
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Figure 2.2.2: Dual Coordinates

The dual coordinates are linearly related to the spinor-helicity variables via (2.2.29) and

thus they must also transform under the inversion

xαα̇ij → (xi(xi − xj)xj)
αα̇

x2ix
2
j

= (x−1
i xijx

−1
j ) (2.2.32)

Note that the null separation is not spoiled by inversion and defines an automorphism

in the space of polygons with light-like edges. By setting j = i+ 1 we can infer

λα → (x−1
i λi)

α̇ λ̃α̇i → (x−1
i+1λ̃i)

α (2.2.33)

However this is not unique and from (2.2.29) we have

(xi − xi+1)
αα̇λα = 0 → xαα̇i λα = xαα̇i+1λα (2.2.34)

From this we can determine that spinor contractions behave like

〈i i+ 1〉 → 〈i|x−1
i x−1

i+1|i+ 1〉 = 〈i i+ 1〉
x2i

(2.2.35)

Thus we if we take the inversion weight of the delta function into account can see that

the MHV tree amplitude is covariant under the dual conformal symmetry

AMHV
n → (x21 . . . x

2
n)AMHV

n (2.2.36)

For NMHV we note that the delta function is also covariant

δ(4)(〈n|xnsxst|θAtn〉+ 〈n|xntxts|θAsn〉) = δ(4)(〈n|xnsxst|θAt 〉+ 〈n|xntxts|θAs 〉+ x2st〈nθAn 〉)
(2.2.37)

Together with the previous transformations it is easy to determine that the R-invariants
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have zero weight under inversion and thus are dual-conformal invariant as well. The ex-

tension to dual superconformal symmetry is not as straightforward, since it leavesRn:st
invariant but not its generalisations that appear beyond NMHV. These however mani-

fest themselves only in nested sums which are in combination dual super-conformally

invariant [53] as one would expect from the BCFW expansion (2.2.24). Thus we see that

the dual symmetry extends to all tree level amplitudes.

The dual conformal generator is given by

Kαα̇ =
∑
i

[xβ̇iαx
β
iα̇∂iββ̇ + xβiα̇θ

A
iα∂iβA + xβiα̇λiα∂iβ + xβ̇i+1αλ̃iα̇∂iβ̇ + λ̃iα̇θ

A
i+1α∂iA] (2.2.38)

this differs from the expected form of the generator due to the restriction that it must

commute with the conditions (2.2.29). The rest of the generators for psu(2, 2|4) can be

obtained in a similar fashion [52]. Comparing with (2.2.5) we see that the symmetries are

distinctly generated, however the two dilatation operators coincide up to a minus sign

due to the linear relationship between the dual coordinates and the momenta. Further-

more if we re-express all the generators from the original variables {λ, λ̃, η} by using

(2.2.27) then we find that P and Q become trivial, due to delta functions, while S̄, Q̄ co-

incide with q̄ ,s̄ respectively.

p

q̄ = S̄

s̄ = Q̄

k

s

q

K

P

S

Q

Figure 2.2.3: Overlapping of the two superconformal symmetries

Summarily the dual superconformal symmetry generators have the following action on

the superamplitude

DAn = nAn CAn = nAn Kαα̇An = −
∑
i

xαα̇i An SαAAn = −
∑
i

θαAi An (2.2.39)

While all the other generators annihilate the amplitude. Note that we can simply re-

define the generators in (2.2.39) so that they also act trivially on the amplitude. Re-

markably both symmetries can be elegantly combined into a single Yangian symme-

try Y (psu(2, 2|4)). The Yangian Y (g) of a simple Lie algebra was introduced by Drin-
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feld [54, 55] and is the Hopf algebra of the graded deformation of the loop-algebra. Its

generators are J (n)
a where n ∈ N denotes the level. However it is not necessary to con-

sider all generators as Y (g) is spanned by J (0)
a and J

(1)
a which obey the commutation

relations

[J (0)
a , J

(0)
b ] = f cabJ

(0)
c [J (0)

a , J
(1)
b ] = f cabJ

(1)
c (2.2.40)

Given that our generators have a Grassmann degree we must use the graded general

commutator

[O1, O2] = O1O2 − (−1)|O1||O2|O2O1 (2.2.41)

The higher order generators can be constructed from commutators of J (1)
a which are in

turn constrained by the Serre relations

[J (1)
a , [J

(1)
b , J (0)

c ]]− [J (0)
a , [J

(1)
b , J (1)

c ]] = gabc
def{J (0)

d , J (0)
e , J

(0)
f } (2.2.42)

Where gabcdef = 1
24f

d
aif

e
bjf

f
ckf

ijk and {J (0)
d , J

(0)
e , J

(0)
f } is the totally symmetric sum over

products of the three terms. For completeness we also quote the action of the coproduct

on the generators which is part of the Hopf algebra structure.

∆(J (0)
a ) = J (0)

a ⊗ 1 + 1⊗ J (0)
a ∆(J (1)

a ) = J (1)
a ⊗ 1 + 1⊗ J (1)

a +
1

2
f bca J

(0)
b ⊗ J (0)

c (2.2.43)

This non-trivial coaction is indicative that the symmetries act non-locally on multi-

particle states. We may relate the J (0)
a generators to the standard conformal algebra

of psu(2, 2|4)

J (0)
a =

n∑
k=1

j
(0)
ka (2.2.44)

where the j(0)ka are single particle generators. It turns out that the J (1) generators can be

explicitly given by

J (1)
a = fa

cb
∑

1≤k<k′≤n
j
(0)
kb j

(0)
k′c (2.2.45)

Note that the level one generators are manifestly non local. For (2.2.45) to hold in the

gluon supermultiplet representation of the Yangian that is of interest for N = 4 SYM,

it is sufficient to show that dual superconformal symmetry implies that the level one

generators annihilate the amplitude. This was demonstrated in [5] by identifying the

level one Yangian generator q(1)Aα constructed via (2.2.45) and the dual superconformal

symmetry generator SAα . We may obtain all other level one generators from q(1)Aα via the

commutation relations (2.2.40), thus establishing a new infinite dimensional algebra that

annihilates the tree amplitude

yAtree
n = 0 y ∈ Y (psu(2, 2|4)) (2.2.46)

Given that the original context of the Yangian are integrable 2-dimensional theories or
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discrete spin chain models, its appearance in N = 4 SYM is quite notable. Indeed in

the planar limit the single trace operators that appear in the colour decomposed ampli-

tude can be mapped to an integrable spin chain, with the dilatation operator acting as

the Hamiltonian. Integrability is also expected at strong coupling as SYM is related to

the AdS5 sigma model which is classically integrable [56]. Beyond tree level the Yangian

symmetry described here is broken even for infrared finite quantities. However it is pos-

sible to restore exactness by incorporating the anomalies into an overall symmetry [57].

Ultimately the Yangian is a powerful non-local symmetry that can be used to completely

determine the S-matrix. Finally we note that its generators are most elegantly expressed

in terms of yet another set of variables called momentum twistorsZA
i = (λαi , µ

α̇
i , χ

A
i ) [58]

J (0)A
B =

∑
i

ZA
i

∂

∂ZB
i

(2.2.47)

J (1)A
B =

∑
i<j

(−1)C
[
ZA
i

∂

∂ZC
i

ZC
j

∂

∂ZB
i

− (i, j)

]
(2.2.48)

Where both expressions are understood to have their supertrace removed. In contrast

to (2.2.44) and (2.2.45) the roles of the generators are reversed and the dual-conformal

symmetry generators are identified with the level-zero generators of the Yangian. Fur-

thermore we note that these Yangian generators annihilate only the MHV normalised

amplitudes

JPn = J (1)Pn = 0 (2.2.49)

For completeness we add that there are ordinary twistor variables for which the Yangian

generators are not reversed, take a similar form and annihilate the full amplitude. How-

ever in the next section we shall focus on momentum twistor variables as not only do

they simplify the Yangian but the amplitude in general.

2.2.4 Momentum Twistors

Following [59] we take twistors space PT as an open subset of the complex projective

space CP3. Exactly which subset depends on which slice of complexified Minkowski

space MC we want. We may describe twistors via the homogenoeous coordinates

ZA = (Z1, Z2, Z3, Z4) 6= (0, 0, 0, 0) ZA ∼ rZA r ∈ C∗ (2.2.50)

They transform in the fundamental of the complexified conformal group PGL(4,C) =
SL(4,C)/Z4 and can be divided into two Weyl spinors of opposite chirality.

ZA = (λα, µ
α̇) (2.2.51)
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By doing so we can establish a connection between twistor space and space-time via the

incidence relation

µα̇ = xαα̇λα (2.2.52)

Which can be represented as a double fibration of the projective spinor bundle PS

PS
π1

MC

π2

PT

Where PS ∼= MC × CP1 and has coordinates (xαα̇, λβ). The projection π1 just isolates

the spacetime point π1 : (xαα̇, λβ) → xαα̇ and the second projection implements the

incidence relation π2 : (xαα̇, λβ) → (xαα̇λα, λβ). These relations are quite central in

the formulation of gauge theories in twistor space. Their usefulness stems from the

fact that they relate local points in space-time to a non-local line CP1 ⊂ CP3. The line

is isomorphic to the Riemann sphere and any linear holomorphic embedding of CP1

in twistor space can be shown to be of the form (2.2.52). Let σa = (σ0, σ1) denote the

homogeneous coordinates of the Riemann sphere. Then we define the map (rα̇a, saα)

µα̇ = rα̇aσa λα = saασa (2.2.53)

Naively the map has 8 components however we make use of SL(2,C) and projective

scaling to trivialise saα, thus obtaining

µα̇ = rα̇aσa λα = δaασa (2.2.54)

Furthermore by setting rα̇a = xαα̇ we recover the incidence relation. Formulating gauge

theories in twistor space allows for solutions to zero rest-mass fields equations via the

Penrose transform. For our purposes however, they are a very convenient way to link the

dual coordinates and the helicity spinors such that both the null-momentum condition

and conservation of momentum are trivialised. To see this we consider the point in

twistor space Z as the intersection of two embeddings of the Riemann sphere which we

denote byX and X ′.

X ∩X ′ = Z ∈ PT =⇒ µα̇ = xαα̇λα µα̇ = x′αα̇λα x, x′ ∈ MC (2.2.55)

If we simply subtract the two relations from each other we obtain

(x− x′)αα̇λα = 0 (2.2.56)

It is easy to see that this equation is solved exactly by the definition of the dual coordi-
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x

x′

=⇒
X

X ′

Z

Figure 2.2.4: Null separated points in space-time correspond to intersecting lines in
twistor space

nates

(x− x′)αα̇ = λαλ̃α̇ (2.2.57)

Thus if two points in MC are null separated then their corresponding lines in twistor

space intersect. If we do not restrict λ̃α̇ then (2.2.57) defines a two-plane in MC and

we see that non-locality extends to both sides of the correspondence. That is for every

point in space-time we have a corresponding line in twistor space and for every point

in twistor space we have a plane in space-time. Therefore if we wish to trivialise the

conditions on our kinematics then we necessarily have to consider non-local quantities.

Having established the correspondence then all that is required to completelydetermine

our kinematics is to choose an arbitrary set of {Zi} of rank n for which the embedding

maps are given by

xαα̇i =
µα̇i−1λ

α
i − λαi−1µ

α̇
i

〈i i− 1〉
(2.2.58)

We can use the twistors to neatly re-express Lorentz invariants

x2ij =
〈i− 1 i j − 1 j〉

〈I i− 1 i〉〈I j − 1 j〉
(2.2.59)

where we define the SL(4,C) invariant Plücker coordinates

〈i j k l〉 = εABCD Z
A
i Z

B
j Z

C
k Z

D
l (2.2.60)

and the infinity twistor denoted by I is used to project out the helicity spinors

IAB =

(
εαβ 0

0 0

)
⇒ 〈I i j〉 = 〈i j〉 (2.2.61)

It is easy to recover the momenta from the twistor representation

λ̃α̇i =
〈i+ 1 i〉µα̇i−1 + 〈i− 1 i+ 1〉µα̇i + 〈i i− 1〉µα̇i+1

〈i− 1 i〉〈i i+ 1〉
(2.2.62)
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It is worth mentioning that twistors, besides solving for the kinematical restrictions, are

also natural variables to describe conformal structures. If we define six homogeneous

coordinates on CP5 organised in the anti-symmetric tensor representationXAB , then a

conformal structure on compactified complex space-time is given by the condition

εABCDX
ABXCD = 0 (2.2.63)

This condition can be solved by a skew tensor of rank two

X = Z1 ∧ Z2 Z1, Z2 ∈ PT (2.2.64)

And the incidence relation is the trivial

XABZ
B
1,2 = 0 (2.2.65)

We can see that the bitwistor XAB encodes a point in space-time MC and reach our

previous definition of the incidence relation by writing

XAB =

(
1
2ε
α̇β̇x2 xα̇β

−xβ̇α εαβ

)
(2.2.66)

Note that twistor space is morally analogous to the spinor helicity formalism for null mo-

menta. Extending the twistor formalism to the supersymmetric case is straightforward

and we define the Grassmann incidence relation

χA = θαAλα (2.2.67)

Where χA transform in the fundamental of the SU(4) R-symmetry. We simply append

these variables to our previous construction and define super-momentum twistors

ZA = (λα, µ
α̇, χA) (2.2.68)

Similar to (2.2.62) we can recover the original Grassmann variables from the ones defined

by the incidence relation

ηAi = −
χAi−1〈i i+ 1〉+ χAi 〈i+ 1 i− 1〉+ χAi+1〈i− 1 i〉

〈i− 1 i〉〈i i+ 1〉
(2.2.69)

We have already seen how twistors simplify the form of the Yangian generators and we

can give a flavour of their effect on the amplitude by using them to write the R-invariants

[i, j, k, l,m] ≡
δ(4)

(
χAi 〈jklm〉+ cyclic

)
〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉

(2.2.70)

WhereRn:st = [n, s−1, s, t−1, t] are relevant for the NMHVamplitude. Given that (2.2.70)
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is constructed purely from SL(4,C) invariants, dual-conformal invariance is explicitly

manifest. Remarkably it is possible to use momentum twistors to construct R-invariants

by defining a Grassmannian contour integral [60,61]

Rk,n ≡ 1

(2πi)k(n−k)

∮
Γ⊂G(k,n)

dµ

k∏
r=1

δ(4|4)

(
n∑
i=1

T ri Zi

)
(2.2.71)

Where Rk,n is a NkMHV n-particle invariant. The T ri are (k × n) complex homoge-

neous coordinates of the Grassmannian Gr(k, n) and the Zi are the momentum twistors

parametrising the kinematics. The measure is a k(n− k) top form

dµ ≡ Dk(n−k)T

(12 . . . k)(23 . . . k + 1) . . . (n1 . . . k − 1)
(2.2.72)

The brackets in the denominator represent the k × k minors made from the columns

of T ri . Besides Yangian invariants the contour integral (2.2.71) also produces identities

among them, at 6-points for example

[12345]− [23456] + [34561]− [45612] + [56123]− [61234] = 0 (2.2.73)

Which ensures that the 6-point NMHV amplitude is cyclically symmetric. Finally we

note that these Grassmannian contour integrals are the starting point of the amplituhe-

dron program [19–21].

2.2.5 Wilson Loops and Scattering Amplitudes

In the following we shall be making frequent reference to the review [62]. One could

ask what is the physical origin of the dual symmetries discussed so far. The answer is

that there is a surprising duality between scattering amplitudes in N = 4 SYM and a

polygonal Wilson loop with light like edges whose vertices are naturally parametrised

by the dual coordinates. This remarkable relationship was first noticed at strong cou-

pling [22, 23] where the AdS/CFT correspondence can be used to calculate scattering

amplitudes of open strings by considering a minimal surface ending on a null polygon

at the boundary. The two cases are linked by a T-duality where the dual superconformal

symmetry of the scattering amplitude is the T-dual of the standard superconformal sym-

metry of the Wilson loop and vice-versa. While the original statement was formulated

for strong interactions it turns out that the equivalence is independent of the coupling

and we can conjecture a perturbative relation [24,25]

log

(
1 +

∑
l

alPMHV
l;n ({pi})

)
= log

(
1 +

∑
l

alWl;n({xi})

)
+O(ε) a =

g2N

8π2
(2.2.74)
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⇐⇒

Figure 2.2.5: Open strings scattering are T-dual to a minimal area in AdS

Where the right hand side is a sum over loop corrections to the Wilson loop expectation

Wn = 〈P exp
∮
Cn

dτ ẋµAµ〉 (2.2.75)

The action used to evaluate the expectation is for N = 4 SYM and the contour Cn is

the union of the contours Ci given in terms of the dual coordinates xµi and the affine

parameters τi ∈ [0, 1]

Cn =

n⋃
i=1

Ci Ci = {xµ(τi) = xµi + τi(x
µ
i+1 − xµi ) = xµi − τip

µ
i } (2.2.76)

At lowest order in perturbation theory the Wilson loop expectation is given by

〈Wn〉 = 1 +
1

2
(ig)2CF

∫
Cn

dτ

∫
Cn

dτ̃ ẋµ(τ)ẋµ(τ)Gµν(x(τi)− x(τ2)) +O(g4) (2.2.77)

Where CF = (N2 − 1)/(2N) is the fundamental quadratic Casimir of SU(N) and Gµν

is the gluon propagator. It is straightforward to evaluate the one loop expectation by

breaking it down in terms of a gluon propagator linking various edges. Thus the basic

integral to consider is

Iij = −
∫ 1

0
dτi

∫ 1

0
dτj

(pi · pj)Γ(1− ε)(πµ2)ε

[(−(xi − xj − τipi + τjpj)2 + iε]1−ε
(2.2.78)

The case where the gluon is emitted and absorbed on the same edge vanishes as Iii ∝
p2i = 0. If we consider adjacent edges however, we have a divergent contribution from

the discontinuities at the cusp of the polygon. Thus they are called ultraviolet diver-

gences

Ii i+1 = −
∫ 1

0
dτi

∫ 1

0
dτi+1

(pi · pi+1)Γ(1− ε)(πµ2)ε

[−2(pi · pi+1)(1− τi)τi+1]1−ε
= (−x2i i+2πµ

2)ε
Γ(1− ε)

2ε2
(2.2.79)
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Figure 2.2.6: The three types of one-loop contribution to the Wilson loop expectation

Finally for all other edges we have a finite integral which, remarkably, can be evaluated

to give [25]

Iij =
1

8π2
[Li2(1− qsj+1 i−1) + Li2(1− qsi+1 j−1)− Li2(1− qsj i−1)− Li2(1− qsi j−1)]

(2.2.80)

where we have introduced the generalised Mandelstam invariant sij ≡ (pi + . . . + pj)
2

and

q =
sj+1 i−1 + si+1 j−1 − sj i−1 − si j−1

sj+1 i−1si+1 j−1 −−sj i−1si j−1
(2.2.81)

The function Li2 is the second order polylogarithm defined by the integral

Li2(z) = −
∫ z

0
dt

log(1− t)

t
(2.2.82)

For the simplest Wilson loop W4 however, (2.2.80) simplifies to just a product of loga-

rithms

IW4
13 = −1

4

[
log2

(s
t

)
+ π2

]
(2.2.83)

This is achieved by means of the identity

Li2(z) + Li2
(
1

z

)
+

1

2
log2(−z) + π2

6
= 0 (2.2.84)

As we shall see such identities are ubiquitous in scattering amplitudes and will develop

methods for generating them. Now that we have evaluated all the integrals that can ap-

pear, it is straightforward to express the one-loop expectation value by simply summing

over all the edges linked by the gluon propagator

〈Wn〉 = 1− g2CF
4π2

∑
1≤i≤j≤n

Iij +O(g4) (2.2.85)

As was mentioned earlier the left hand side of the correspondence (2.2.74) is IR divergent

while the right hand side has ultraviolet divergences arising from the discontinuities at

the cusps of the polygon. In order to make the duality precise we must first remove these

divergences by defining suitable finite quantities. We can easily see that at one-loop the
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finite and divergent parts are separable and, remarkably, this continues to all orders

log〈Wn〉 = −
n∑
i=1

∑
L

1

4
aL(−x2i i+2µ

2)Lε

[
Γ
(L)
cusp

(Lε)2
+

Γ
(L)
col

Lε

]
+ Fn({xi}) (2.2.86)

Where Fn are finite functions independent of µ and the quantities Γ(L)
cusp and Γ

(L)
col are the

cusp and collinear anomalous dimensions respectively. We encountered the one loop

value of the former in (2.2.79) however due to integrability its value is known up to all

orders for planar SYM [63]. The latter also arises from integrals of the type Ii i+1 in the

limit where the gluon propagates parallel to one of the polygonal edges. We can extract

the desired finite part Fn by dividing out the divergent part, which universally factorises

into pieces dependent on only one Mandelstam invariant.

HWL
n = log

 Wn({x2ij})[∏n
i=1W4({x2i i+2, x

2
i i+2})

] 1
4

 (2.2.87)

Having removed the divergences for the Wilson loop we can follow a similar procedure

for the amplitude and safely identify the two finite quantities

HWL
n = HA

n (2.2.88)

The weak coupling correspondence was first observed for four points at lowest order

in perturbation theory [24] and then generalised to n points [25]. Two loop calcula-

tions [64–68] further confirmed the validity of the duality, thus suggesting that this is a

coupling independent phenomenon. On the amplitude side explicit calculation of four

point amplitudes up to three loops led Bern, Dixon and Smirnov [7] to postulate a general

solution in terms of the one loop result

F BDS
n (p1, . . . , pn; a) = Γcusp(a)F

1−loop
n (p1, . . . , pn; a) (2.2.89)

Explicitly at four points

F BDS
4 =

1

4
Γcusp(a) log2

(
x213
x224

)
+ const. (2.2.90)

Which can be easily seen to match the Wilson loop result (2.2.83). The BDS anzatz was

also shown to hold at five points.

F BDS
5 = −1

8
Γcusp(a)

5∑
i=1

log
(
x2i i+2

x2i i+3

)
log
(
x2i+1 i+3

x2i+2 i+4

)
+ const. (2.2.91)

Note that the entire coupling dependence is encapsulated in the cusp anomalous di-

mension. This is consistent with dual conformal symmetry, which acts at the level of
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the Lagrangian for the Wilson loop. We may write a Ward identity for the conformal

generatorKµ [65]

KµFn =
1

2
Γcusp(a)

n∑
i=1

xµi i+1 log
(

x2i i+2

x2i−1 i+1

)
(2.2.92)

Thus the BDS ansatz is the solution to the conformalWard identity at four and five points.

The natural question to ask is whether the BDS ansatz holds for arbitrary number of glu-

ons. Without doing the explicit calculations we could consider a Wilson loop corre-

sponding to an amplitude made of many gluons that alternate from positive to negative

energies.

T
L

Figure 2.2.7: Zigzag Wilson loop approaching the four sided polygon

As the number of gluons tends to infinity the expectation value approaches that of a

rectangular Wilson loop which can be calculated at strong coupling [23]

log〈Wrect〉 =
√
λ

4

16π2

Γ
(
1
4

)4 TL (2.2.93)

Where λ = g2N is the t’Hooft coupling and T/L denote the euclidean time and length in

one of the spatial directions of the Wilson loop, which are taken to be large and T � L.

We compare this result to the strong coupling, infinite gluon limit of the finite part BDS

ansatz (2.2.89)

lim
n→∞

F BDS
n =

√
λ

4

T

L
(2.2.94)

The discrepancy arises because there is an ambiguity in the solution to the conformal

Ward identity. Beyond five points (2.2.92) is only defined up to a function of conformal

cross-ratios

uijkl =
x2ijx

2
kl

x2ikx
2
jl

(2.2.95)

Thus we must correct the BDS solution by adding a conformally invariant remainder

function Rn
Fn = F BDS

n +Rn({ui}) (2.2.96)

In order to calculate the number of independent cross ratios we note that in D dimen-
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sions the conformal group reduces the number of independent variables to

Dn− (D + 2)(D + 1)

2
(2.2.97)

Which in four dimensions makes (4n−15) independent cross ratios, however given that

our points are arranged along a null polygon we must subtract the number of edges to

obtain (3n−15). Thus we see that the hexagon is the first quantity with non trivial cross-

ratio dependence and the BDS ansatz is no longer sufficient. The discussion so far has

only been concerned with the duality between Wilson loops and MHV amplitudes. At

strong coupling the minimal surface in AdS provides the leading part of all amplitudes

and the helicity structure is secondary. At weak coupling however we require an appro-

priate supersymmetrisation of the Wilson loop [69] in order to describe the much richer

non-MHV structure of the amplitudes.

2.2.6 Wilson loop OPE

Perturbative corrections to the remainder function are the principal objects of study

throughout much of this thesis. However at times we shall draw inspiration from a non-

perturbative Wilson loop approach that is heuristically linked to the OPE of conformal

field theory. The analogue of the sum over fields will be given by an expansion in terms

of the excitations of a flux tube that ends on two light-like lines. These states have ap-

peared as excitations of the infinite spin limit of the GKP string [70] which can be com-

puted exactly using integrabilty. The first step is to isolate a reference square by placing

a couple of imaginary cuts across the Wilson loop linking non adjacent edges. In order

to perform the OPE we wish to expand the Wilson loop in terms of the states propa-

gating from the bottom edge of the square to the top. This turns out to be equivalent

to taking a collinear limit by using the symmetries associated to each individual square.

That is we may parametrise the states that propagate across the square by the quantum

numbers associated to a rank three subset of the SO(2, 4) symmetry, which leaves the

square invariant.

In order to expose this subset let us choose a particular square and place it in the (x0, x1)

plane with one vertex at the origin, two at past and future null infinity and the final one

at spacelike infinity (x1 → ∞with x0 fixed). Then in this configuration the symmetries of

the square are dilatations D, boosts in the (x0, x1) plane M01 and rotations in the trans-

verse (x2, x3) plane M23. We can give an explicit representation of these symmetries

beginning with eλD = eλI

e−ξM01 =


cosh ξ − sinh ξ 0 0

− sinh ξ cosh ξ 0 0

0 0 1 0

0 0 0 1

 e−iφM23 =


1 0 0 0

0 1 0 0

0 0 cosφ − sinφ
0 0 − sinφ cosφ

 (2.2.98)
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O
O

O

O
O

ψ1

ψ2

⇐⇒
ψ1

ψ2

Figure 2.2.8: Comparison between the conformal theory OPE and Wilson loop OPE

which can be seen to leave the square invariant. By considering the other generators

of SO(2, 4) we can see that there are no other symmetries that leave the square in-

variant. The special conformal generator, for example, would move the point at spa-

tial infinity. We can take particular combinations of the above generators that have the

effect of translating along the two directions of the square. For example the combina-

tion (D−M01) can be thought of as a twist or “Hamiltonian” operator that leaves points

along x+ invariant but scales the transverse directions x− → λ2x− and x2,3 → λx2,3. We

note that because the lines of the square joining the sides of the Wilson loop are space-

like separated this is a Euclidean “Hamiltonian”. Similarly the combination (D + M01)

acts as a “momentum” operator providing translations along x−. Having established the

symmetry group we can consider its action on the cusps bellow the square. If we take

τ(D −M01) in the limit τ → ∞

(
lim
τ→∞

e−τ(D−M01)
)
· xµ =

1

2


x+

x+

0

0

 (2.2.99)

We can bring a cusp to lie on the edge linking the origin to future null-infinity. By acting

in this manner on all the cusps bellow the square we flatten out the bottom of the Wilson

loop and reach its collinear limit. We can think of the two sides of the square that belong

to the Wilson loop as two high energy quarks that source a flux tube. Therefore we

can decompose the Wilson loop in terms of the excitations of the flux tube. The great

advantage of studying the symmetries of the square is that the excitations are eigenstates

of the generators and we can write schematically,

〈W 〉 =
∫
dne−τEn+ipnσ+imnφC

top
n Cbottom

n (2.2.100)
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Where C top
n and Cbottom

n denote the overlap between top and bottom parts of the poly-

gon and the intermediate excitations. This decomposition around the collinear limit is

the Wilson loop equivalent of the expansion over local operators of the usual OPE. Note

that instead of a sum over states we have an integral in (2.2.100), this is due to the mo-

mentum operator being non-compact and thus having a continuous spectrum. At this

point we would like to observe that the derivation of the Wilson loop OPE was only de-

pendent on the symmetries of the square and thus it exists for any conformal field theory

where the flux is conserved. For non-planar N = 4 SYM, the approach is still valid if we

consider lines in the fundamental because the flux vacuum and its excitations are well

defined. For the adjoint case, however, the flux can be screened and the OPE will re-

quire modifications. Fortunately for the planar case not only is the flux conserved but

the excitations are in direct correspondence with the states of an integrable spin chain.

We can express these states as single trace operators with the vacuum given by

Tr
(
ZDS

+Z
)
, D+ = D0 +D1 (2.2.101)

Where Z is a complex combination of two scalars of the theory and D0,1 denote their

respective covariant derivatives. We excite the vacuum by inserting fundamental fields

Φ

Tr
(
ZDS1

+ ΦDS2
+ Z

)
(2.2.102)

The corresponding energy of the excitation can be found by considering

E(p) = (D −M01)1 − (D −M01)vac = 1 +

∞∑
l

λlE(l)(p) (2.2.103)

Which is known to all loops through integrability [27]. As we saw in the previous section

UV divergence can spoil the conformal symmetry that has been instrumental in deriving

the Wilson loop OPE. In order to restore the symmetry we instead define the finite ratio

r = log
[ 〈W 〉〈Wsquare〉
〈Wtop〉〈Wbottom〉

]
(2.2.104)

Where Wtop (Wbottom) corresponds to the polygon obtained by flattening all the cusps

bellow (above) the square. To this ratio we can safely attribute the OPE decomposition

(2.2.100). As stated previously, our object of interest is the remainder function (2.2.96),

which can be broken down into several contributions obtained from the Wilson loop

R = Rtop +Rbottom + r − rU(1) (2.2.105)

Where Rtop and Rbottom are the remainder functions of Wtop and Wbottom respectively

and rU(1) is defined exactly as in (2.2.104) except for an underlying U(1) theory. In fact
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1̂ =
∑

|ψ2〉〈ψ2|

1̂ =
∑

|ψ1〉〈ψ1|

Figure 2.2.9: Expansions in terms of states propagating through the cut

we can make a connection with the BDS ansatz by noting

rBDS =
1

4
ΓcusprU(1) (2.2.106)

From (2.2.105) we can see that the OPE provides a way to express the remainder func-

tion in terms of the remainders for lower order polygons. It is therefore natural to fur-

ther break up the Wilson loop into squares so that we factorise the remainder function

completely. The procedure begins by placing more cuts across the polygon such that we

decompose the polygon into (n−3) squares, with adjacent squares forming a pentagon.

If we associate the squares at the extremities with the GKP vacuum then we are left with

(n−5) middle squares and (n−4) pentagons. Generalising our discussion for the single

square we may use the individual symmetries to parametrise our problem {τi, σi, φi}.

Given that there are 3n − 15 of these parameters it is possible to map them to the 4d

conformal cross ratios that appear in the remainder function. The three cross ratios that

appear for the hexagon, for example, are given by

1

u2
= 1 + e2τ

1

u3
= 1 + (e−τ + eσ+iφ)(e−τ + eσ−iφ)

u1 = e2σ+2τu2u3 (2.2.107)

For a general polygon it is possible to use momentum twistors to define the generic

map [29] for higher points. In order to remove the UV divergences we generalise the

ratio (2.2.104) by multiplying the expectation of the full Wilson loop by that of the middle

squares and dividing by the expectation of the pentagons

Wn ≡ 〈W 〉
∏n−5
i=1 〈W�

i 〉∏n−4
i=1 〈W

D
i 〉

(2.2.108)
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Having established a well defined object we proceed to investigate the dynamics. Be-

ginning with the GKP vacuum at the bottom we evolve it all the way to the top where it is

reabsorbed into the vacuum. Along the way the flux tube is decomposed in terms of GKP

eigenstates ψi which propagate trivially in their respective squares for a time τi. Before

it can propagate across to the next square the state undergoes a pentagon transition P
after which the decomposition is performed again. Remarkably this entire process can

be captured in a single factorised form

Wn =
∑
ψi

e
∑

j(−Ejτj+ipjσj+imjφj)P(0|ψ1)P(ψ1|ψ2) . . .P(ψn−5|0) (2.2.109)

The GKP excitations may be fermions, gluons, scalars or bound-states of fundamental

fields. If we denote the type of excitations for the n particles by the set a = {a1, . . . , an}
and their Bethe rapidities u = {u1, . . . un} then we can re-write the sum (2.2.109) in a

similar manner to (2.2.100). For example the hexagon and heptagon are given by

W6 =
∑

a

∫
duPa(0|u)Pa(ū|0)e−E(u)τ+ip(u)σ+imφ

W7 =
∑
a,b

∫
du dvPa(0|u)Pab(ū|v)Pb(v̄|0)e−E(u)τ1+ip(u)σ1+im1φ1e−E(v)τ2+ip(v)σ2+im2φ2

(2.2.110)

Where ū = {−un, . . . ,−u1} and the measure is given by

du = Na

n∏
j=1

µaj (uj)
duj
2π

Res
v=u

Paa(u|v) =
i

µa(u)
(2.2.111)

WhereNa is a symmetry factor for the particle configurations. The equality between the

residue of the pentagon transition and the measure relates the heptagon and hexagon

expansions. It comes from the fact that the residue is conformally equivalent to flatten-

ing the pentagon to a square. The pentagon transitions are analogues to the structure

constants of local operators independent of the global geometry. Fora single particle we

may define three main axioms beginning with reflection

P (−u| − v) = P (v|u) (2.2.112)

Which comes from the fact that flipping both momenta results in a reflection of the

pentagon. The second is called the fundamental relation

P (u|v) = S(u, v)P (v|u) (2.2.113)

Where S(u, v) is the GKP S-matrix and can be computed exactly using integrability. The

final axiom describes how to move the excitations between different edges of the pen-
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v

u−γ

γ =

v

u

Figure 2.2.10: Mirror symmetry of the pentagon

tagon

P (u−γ |v) = P (v|u) (2.2.114)

Where u−γ denotes the mirror transformations that exchanges the GKP space and time

direction with the effect

E(u−γ) = −ip(u) p(u−γ) = −iE(u) (2.2.115)

Although the effect is general, the precise nature of the transformation is dependent

on the particular excitation being considered. Furthermore we note that the axioms

(2.2.112)-(2.2.114) were written for scalar excitations, however they still hold for all funda-

mental fields with minor modifications. Of course we must also consider multi-particle

transitions. These obey the same axioms as the single particle cases and in [28] theywere

given a conjectural form

P (u|v) =
∏
i,j P (ui|vj)∏

i>j P (ui|uj)
∏
i<j P (vi|vj)

(2.2.116)

However it turns out that the most relevant pentagon transitions are those for single-

particle states. Theyare the lightest states and thus dominate the collinear limit at generic

coupling and form a basis for building up heavier more intricate states. In other words

they decay the slowest in the multi-collinear limit and their contributions may be simply

separated from the rest of the excitations and are thus able to give a good approximation

for the Wilson loop in general kinematics. In contrast to the perturbative approach the

OPE is organised in terms of the states propagating across the cut. The comparison of

the sum over states versus the sum over orders is a rich source of constraints and checks

between the OPE and direct approaches to scattering amplitudes. For the hexagon the

leading contribution is given by

r = 2 cosφe−τ
∫ ∞

−∞

du

2π
µ1(u)e

−γ1(u)τ+ip1(u)σ +O(e−2τ ) (2.2.117)
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The remainder function associated to the above ratio was calculated in [71]

R = 2 cosφe−τ
∞∑
l=1

g2l

[
l−1∑
n=0

τnh(l)n (σ) +
Γlcusp

4

[
e−σ log(1 + e2σ) + eσ log(1 + e−2σ)

]]
+O(e−2τ )

(2.2.118)

where the functions

h(l)n (σ) =
∑
s,r,mi

c±s,m1,...,mr
e±σσsHm1,...,mr

(
−e−2σ

)
mi ≥ 1 (2.2.119)

are given as an expansion in terms of a special group of functions called the Harmonic

polylogarithms Hm1,...,mr(z). These functions are a subset of a more general class of

transcendental functions called multiple polylogarithms, which we proceed to describe

in the next section.

2.3 Multiple Polylogarithms

In our discussion on scattering amplitudes in N = 4 SYM all the explicit results encoun-

tered so far have featured either logarithms or classical polylogarithms.

log z =
∫ z

1

dt

t
Lin(z) =

∫ z

0

dt

t
Lin−1(t) (2.3.1)

Their appearance is not restricted only to the supersymmetric case however, but a large

class of Feynman integrals may also be expressed in terms of these functions. Their gen-

eralisations, called multiple polylogarithms, will be of central importance to this work

and we dedicate the next section to their description. We begin by noting that the func-

tions in (2.3.1) are defined as iterated integrals. Let M be a smooth manifold and γ a

smooth map γ : [0, 1] → M . Then by defining a set of ω1, . . . ωn smooth differential

one-forms on M we can write their iterated integral along γ as∫
γ
ωn . . . ω1 =

∫
0≤t1≤...≤tn≤1

fn(tn)dtn . . . f1(t1)dt1 (2.3.2)

Where we have taken the pullback of the one-forms γ∗(ωi) = fi(t)dt to the interval [0, 1].

For example if we draw our forms from the set {ω0, ω1} and take γ as a smooth path in

C\{0, 1} with end point γ(1) = z then logarithms and classical polylogarithms may be

expressed as
1

n!
logn z =

∫
γ
ωn0 Lin(z) = −

∫
γ
ωn−1
0 ω1 (2.3.3)

In order to agree with (2.3.1) the pullbacks must be of the form ω0 = dt
t and ω1 = dt

t−1 .

We can extend the set of one-forms to include multiple variables and thus construct the
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multiple polylogarithms

Lim1,...,mk
(x1, . . . , xk) = (−1)k

∫ 1

0
ωmk−1
0 ωk . . . ω

m1−1
0 ω1 (2.3.4)

and the pullbacks of the ωi are related to the xi via

ω0 =
dt

t
ωi≥1 =

dt

t− 1
x1x2...xi

(2.3.5)

Note that apart from the end points all dependence on the path must drop out of the

integral if we are to have a well defined multiple polylogarithm. This means that if we

take another path γ′ which is homotopic to γ then the iterated integral must be invari-

ant. Paths are homotopic if the end points coincide γ′(1) = γ(1), γ′(0) = γ(0) and one

path may be continuously deformed into the other. For a one fold integral, homotopy

invariance requires that ∫
γ′
ω =

∫
γ
ω (2.3.6)

Which is true if and only if ω is closed. For iterated integrals however we must impose

more complex constraints on the combination of one-forms. In Chen’s seminal [72]

work the homotopy invariant integrals were constructed by considering linear combi-

nations of one-forms. The initial step is to observe that for closed one-forms ω1 and ω2

we then have for some one-from ω12

ω1 ∧ ω2 + dω12 = 0 =⇒
(∫

γ′
−
∫
γ

)
ω1ω2 + ω12 = 0 (2.3.7)

We can extend this result by considering a map D from the tensor products of smooth

one-forms (not closed) T (Ω1(M)) to the space of tensor products of all forms T (Ω(M))

given by

D(ω1 ⊗ . . .⊗ ωn) =

n∑
i=1

ω1 ⊗ . . .⊗ dωj ⊗ . . .⊗ ωn

+

n−1∑
i=1

ω1 ⊗ . . .⊗ ωj ∧ ωj+1 ⊗ . . .⊗ ωn (2.3.8)

Further defining the kernel of D through linear combinations of tensor products up to

rank m

Bm(Ω) =

ξ =
m∑
l=0

∑
i1,...,il

ci1,...,ilω1 ⊗ . . .⊗ ωl

∣∣∣∣Dξ = 0

 (2.3.9)

Where ci1,...,il are just constant coefficients. This is called the space of integrable words

and the equationDξ = 0 is known as the integrability condition. Chen’s theorem asserts

that mapping Bm(Ω) to an iterated integral by simply integrating the words defines an
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isomorphism to the space of homotopy invariant iterated integrals of up to length m.

ξ →
m∑
l=0

∑
i1,...,il

ci1,...,il

∫
γ
ω1 . . . ωl (2.3.10)

The reverse is also true; that is a homotopically invariant integral corresponds to an in-

tegrable word. We shall revisit the concept of integrable words in our discussion of the

symbol of a multiple polylogarithm. For now we proceed to describe iterated integrals

and their properties.

2.3.1 General properties of iterated integrals

Although we could continue in the established formalism for iterated path integrals, in

the physics literature however, there are two main types of iterated integrals. The most

prominent type are due to Goncharov [73] and are defined recursively

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; z) (2.3.11)

Where the parameters {ai} can be taken as constants or variables and G(z) ≡ 1. It is

easy to see from the definition of the multiple polylogarithm that we can express them

in the Goncharov notation as

Lim1,...,mk
(x1, . . . , xk) = (−1)kG

(
0, . . . , 0,

1

xk
, . . . , 0, . . . , 0,

1

x1 . . . xk
; 1

)
(2.3.12)

Given how similar their definitions are we shall use the term multiple polylogarithm

(MPL) to interchangeably mean both (2.3.4) and (2.3.11). A second more general notation

is

I(a0; a1, . . . , an; an+1) =

∫ an+1

a0

dt

t− an
I(a0; a1, . . . , an−1; t) (2.3.13)

This is a similar definition to the previous version except that it allows for a general base-

point. For both cases the number of parameters defines the weight, that is (2.3.13) is an

iterated integral of weightn. It is easy to define a map going from the Goncharov notation

to the general one

G(a1, . . . , an; z) = I(0; an, . . . , a1; z) (2.3.14)

The inverse relation is slightly more complicated however, due to the necessity of chang-

ing every basepoint in the iterated integral. We can nevertheless deduce it recursively

by applying the identity

I(a0; a1; a2) =

∫ a2

a0

dt

t− a1
=

∫ a2

0

dt

t− a1
−
∫ a0

0

dt

t− a1
= G(a1; a2)−G(a1; a0) (2.3.15)
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In fact we can use this property of the integral to deduce much a more general result.

Let u and v be two paths from the unit interval to M with end points u(0) = a0, u(1) =

v(0) = x and v(1) = an+1. Then the iterated integral along the composed path from a0

to an+1 is given by

I(a0; a1, . . . , an; an+1) =

n∑
k=0

I(a0; a1, . . . , ak;x)I(x; ak+1, . . . , an; an+1) (2.3.16)

This is the path composition formula. Alternatively it may be viewed as the decomposi-

tion of a path γ into two constituent pathsu and v. We combine (2.3.16) with the following

inversion formula

I(an+1; an, . . . , a1; a0) = (−1)nI(a0; a1, . . . , an; an+1) (2.3.17)

To obtain a map from the general iterated integral to the Goncharov MPLs

I(a0; a1, . . . , an; an+1) =

n∑
k=0

(−1)kG(a1, . . . , ak, a0)G(an, . . . , ak+1; an+1) (2.3.18)

We could further use the path decomposition property to determine the monodromy

of an iterated integral. From the iterated integral definition it is easy to see that MPLs

have singularities whenever a path passes through one of the {ai}. The monodromy at a

point ai is obtained by considering integrals over paths that encircle one singular point.

Let γ be a path from 0 to 1 and γ′ be its deformation that encircles the singular point only

once, then [74]

Iγ′(0; , a1, . . . , an; 1)− Iγ(0; , a1, . . . , am; 1) = 2πiI(0; a1, . . . , ai−1; ai)I(ai; ai+1, . . . , an; 1)

(2.3.19)

This can be seen from the fact that for a set of rational functions f1 . . . fn, the difference

between the above paths is given by

1

2πi

(∫
γ′
−
∫
γ

)
(d log f1 . . . d log fn) =

n∑
k=1

vδ(fk)

(∫
α1

d log f1 . . . d log fk−1

)(∫
α2

d log fk+1 . . . d log fn
)

(2.3.20)

Where the composed path α2α1 is given by 0 → ai → 1. Furthermore vδ(fk) ∈ Z is an

index defined by an integral around the path δ which encircles the singular point

vδ(f) =
1

2πi

∫
δ
d log f (2.3.21)

Given that no other rational function vanishes at the singular point then only vδ(fi) 6= 0

and we recover (2.3.19). A further central property of the iterated integrals is that they
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form a shuffle algebra. If we take two MPLs of weight p and q with the same basepoint

and endpoint then their product is given by

I(a0; a1, . . . , ap; z)I(a0; ap+1, . . . , aq+p; z) =
∑

σ∈Σ(p,q)

I(a0; aσ(1), . . . , aσ(p+q); z) (2.3.22)

Where Σ(p, q) is a subset of the symmetric group Sn and denotes the set of all shuffles

of (p+ q) elements

Σ(p, q) = {σ ∈ Sp+q|σ−1(1) < . . . < σ−1(p) and σ−1(p+ 1) < . . . < σ−1(p+ q)}
(2.3.23)

For example take two Goncharov MPLs

G(a1, a2; z)G(b1, b2; z) =G(a1, a2, b1, b2; z) +G(a1, b1, a2, b2; z) +G(b1, a1, a2, b2; z)

+G(b1, a1, b2, a2; z) +G(a1, b1, b2, a2; z) +G(b1, b2, a1, a2; z)

(2.3.24)

Similar to the path decomposition case the proof of the shuffle relations relies on the

recursive application of the following identity∫ z

a0

dt1
t1 − a1

∫ z

a0

dt1
t2 − a2

=

∫ z

a0

dt1
t1 − a1

∫ t1

a0

dt2
t2 − a2

+

∫ z

a0

dt2
t2 − a2

∫ t2

a0

dt1
t1 − a1

(2.3.25)

Which is the decomposition of an integral over a square into the two constituent trian-

gles.

Let an 6= 0 then MPLs are invariant under rescaling by k ∈ C∗

G(ka1, . . . , kan; kz) = G(a1, . . . , an; z) (2.3.26)

To see why it is necessary to have the condition an 6= 0 we note that by the shuffle rela-

tions

G(a1, . . . , an−1, 0; z) = G(0; z)G(a1, . . . , an−1; z) + . . . (2.3.27)

Which does not obey the scale invariance property because

G(0; kz) = log kz − log k0 6= G(0; z) (2.3.28)

For the same reason G(a1, . . . , an; z) is only analytic at z = 0 if an 6= 0. Now assuming

that all the {ai} are non-zero then the total derivative of an iterated integral is given by

dI(a0; a1, . . . , an; an+1) =

m∑
i=1

I(a0; a1, . . . , âi, . . . , an; an+1)d log (ai+1 − ai)

(ai − ai−1)
(2.3.29)

Where the hat indicates omission of that parameter from the integral. To see how (2.3.29)
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comes about we restrict ourselves to the case where all the parameters are different and

differentiate with respect to ai∫ an+1

a0

dtn
tn − an

. . .

∫ ti+1

a0

dti
(ti − ai)2

I(a0; a1, . . . , ai−1; ti) (2.3.30)

By rewriting the differential with respect to ai as a differential with respect to ti inside

the integral and integrating by parts we obtain∫ an+1

a0

dtn
tn − an

. . .

∫ ti+1

a0

dti
(ti − ai)(ti − ai−1)

I(a0; a1, . . . , ai−1; ti)

−
∫ an+1

a0

dtn
tn − an

. . .

∫ ti+2

a0

dti+1

(ti+1 − ai+1)(ti+1 − ai)
I(a0; a1, . . . , ai−1; ti+1) (2.3.31)

We use partial fraction decomposition in order to separate the denominators

1

(ti − ai)(ti − ai−1)
=

1

(ai − ai−1)

(
1

(ti − ai)
− 1

(ti − ai−1)

)
(2.3.32)

1

(ti+1 − ai+1)(ti+1 − ai)
=

1

(ai+1 − ai)

(
1

(ti+1 − ai+1)
− 1

(ti+1 − ai)

)
(2.3.33)

Performing the remaining integrations leads to

1

(ai − ai−1)

(
I(a0; . . . , âi−1, . . . ; an+1)− I(a0; . . . , âi, . . . ; an+1)

)
− 1

(ai+1 − ai)

(
I(a0; . . . , âi, . . . ; an+1)− I(a0; . . . , âi+1, . . . ; an+1)

)
(2.3.34)

Which when summed over the dai give (2.3.19). The more general case where some of

the {ai} are allowed to be zero can also be incorporated. The procedure is simply to

treat all the zero entries as standard parameters when performing the total derivative.

Once this is done we restore the original values of the parameters (i.e. allow them to be

zero again). The only subtlety is that we may have ai = ai+1 = 0, in which case we take

the 1-form d log(ai−ai+1) to be zero. This property is known as canonical regularisation

and we may use it to treat divergent integrals of the form

I(0, 0p, a1, . . . , am, 1
q; 1) → I(ε, 0p, a1, . . . , am, 1

q; 1− ε) =
∑
k=0

logk εfk(ε) (2.3.35)

Where 0p and 1q denote sequences of length p and q respectively. Thus we see that the

divergent part of the integral is a polynomial in log εwith regular coefficients fk(0) 6= 0.

Canonical regularisation then, is just keeping the finite part f0, which can be zero. Note

that with this regularisation scheme in mind we may identify

G(0n; z) =
logn z
n!

(2.3.36)
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The total derivative of a multiple polylogarithm leads to a interesting and useful quantity

known as the symbol, which we proceed to study in the next section.

2.3.2 Symbols of multiple polylogarithms

One remarkable property of multiple polylogarithms, is that there are many non-trivial

functional identities among them and we have already seen an example in (2.2.84). There

are also various ways we could produce these identities, for example some may be de-

rived from the shuffle algebra like (2.3.24) others via the Holder convolution for all p ∈ C∗

and a1 6= 1, an 6= 0.

G(a1, . . . , an; 1) =

n∑
k=0

(−1)kG

(
1− ak, . . . , 1− a1; 1−

1

p

)
G

(
ak+1, . . . , an;

1

p

)
(2.3.37)

And other functional relations are more complex still. It is therefore entirely possible

that a long and complicated linear combination of MPLs obtained from the computation

of a scattering amplitude may reduce via these identities to something much simpler.

Indeed this is the context in which symbols first appeared in physics [32] where they

were used to dramatically simplify the six-point remainder function [35, 36] given in

terms of MPLs. The central concept is to map the space of polylogarithms to a tensor

algebra over the group of rational functions. Beginning with the total differential of a

transcendental function Fn(x1, . . . , xk)

dFn =
∑
i

Fi,n−1d logRi (2.3.38)

WhereFi,n−1 are transcendental functions of weight (n−1) andRi are rational functions

in the xi. Thus we define the symbol recursively in the weight

S(Fn) =
∑
i

S(Fi,n−1)⊗Ri (2.3.39)

Note that for MPLs the rational functions are given in (2.3.29). One of the simpler class

of symbols belongs to the classical polylogarithms

S(Lin(z)) = −1− z ⊗
n−1︷ ︸︸ ︷

z ⊗ . . .⊗ z (2.3.40)

We can see that the symbol must inherit a few properties from the logarithm, namely it

is additive with respect to products of the entries

. . .⊗ ab⊗ . . . = . . .⊗ a⊗ . . .+ . . .⊗ b⊗ . . . (2.3.41)

Furthermore we have

. . .⊗ c⊗ . . . = 0 (2.3.42)
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Where c is any numerical constant, and particularly when we have a 0 entry, by canon-

ical regularisation. However we must take care in the case of vanishing entries, if for

instance one of the factors in (2.3.41) tends to zero then we see that the two sides may

have different limits. To recover the finite part of the limit we must first expand the

factors

lim
a→0

(. . .⊗ ab⊗ . . .) = . . .⊗ b⊗ . . . (2.3.43)

Combining these properties we may determine the symbol of an MPL by identifying all

the rational functions and then expanding the factors. Often in practical scenarios there

is a finite set ofRi which is called the alphabet and the individualRi are called the letters.

Because of the multiplicative property an alphabet is not unique and two alphabets {R′
i}

and {Ri} are equivalent if there exists an invertible matrix Mij over the rationals such

that

logRi =
∑
j

Mij logR′
j (2.3.44)

The symbol is a linear map and takes the product of transcendental functions to the

shuffle product of their symbols.

S(FpGq) = S(Fp)� S(Gq) (2.3.45)

Where Fp and Gq are two transcendental functions of weight p and q respectively and

� denotes the shuffle product, defined similarly to the iterated integral case

R1 ⊗ . . .⊗Rp � Rp+1 ⊗ . . .⊗Rp+q =
∑

σ∈Σ(p,q)

Rσ(1) ⊗ . . .⊗Rσ(p) ⊗Rσ(p+1) ⊗ . . .⊗Rσ(p+q)

(2.3.46)

Unlike the iterated integral, however, there are no basepoint conditions and we may take

the shuffle product of symbols freely, for example

S(log z log y) = z� y = z ⊗ y + y ⊗ z (2.3.47)

An unfortunate consequence of the property (2.3.42) is that any function that is propor-

tional to iπ will vanish, and thus the symbol map is not injective. Furthermore because

the symbol only admits weight one entries then any function containing the transcen-

dental constants ζn will vanish as well. Naturally this complicates the problem of finding

the inverse map from symbols to polylogarithms. In addition a general symbol does not

necessarily correspond to a function, and we must impose an integrability condition for

this to be the case. By continuing the recursion formula (2.3.39) a general symbol may

be written as

S(Fn) =
∑
i1,...,in

F0,i1,...inRi1 ⊗ . . .⊗Rin (2.3.48)
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And the integrability condition is defined as

n−1∑
j=1

∑
i1,...,in

F0,i1,...inRi1 ⊗ . . .⊗ d logRij ∧ d logRij+1 ⊗ . . .⊗Rin = 0 (2.3.49)

Which is the same as the previous integrability condition (2.3.8) for closed forms (dωi =

0). As we have seen (2.3.47) is a necessary condition for homotopy invariance, however

it also implies the natural property of functions that partial derivatives commute at all

weights. To see this we note that the partial derivative of a symbol is determined by its

last entry

S
(
∂

∂xi
Fn

)
=
∑
i1,...,in

F0,i1,...inRi1 ⊗ . . .⊗Rin−1

∂

∂xi
logRin (2.3.50)

By applying another partial derivative we may produce a symbol of weight (n−2)which

must be the same regardless of the order of differentiation. Thus by taking successive

partial derivatives and requiring that they commute we arrive at (2.3.49). Similarly the

first entry determines the monodromy of the symbol

S(Mxi=aFn) =
∑
i1,...,in

F0,i1,...in(Mxi=a logRi1)Ri2 ⊗ . . .⊗Rin (2.3.51)

Where

Mxi=a logR =

{
2πi R

∣∣
xi=a

= 0

0 otherwise
(2.3.52)

It is relatively straightforward to compute the symbol of a function however it is often

the case that we wish to find the function corresponding to a symbol. The first step is

to make sure the symbol does indeed belong to a function, that is it must satisfy the

integrability condition. Next we choose a particular path along which to integrate the

symbol and obtain a MPL representation [72]. Thus given a set of k variables {xi} on

which the letters of our symbol depend R(x1, . . . , xk) we shall choose an integration

path γ which will be a composition of paths γi that allow only one variable to vary at a

time. In other words the map is an integral over the edges of a k-dimensional hypercube

where γi is the path along the edge that goes from the basepoint a0 to xk . Of course there

are multiple paths that we may take determined by the order of integration

γ(σ) =

k⋃
i=1

γσ(i) (2.3.53)

Where σ denotes a permutation of the γi. Note that as long as two paths integrate up

to the same point (i.e. they both end with the same γi) then, subject to some normal

crossing conditions, the corresponding MPL representations are homotopy equivalent

to each other. However we are not constrained to always integrate up to the same vari-

able and we may obtain a representation of the same symbol in terms of MPLs that have
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different top argument. Given that all the functions thus obtained are related through

the symbol map then the choice of permutation is similar to choosing a gauge. Having

selected the composition of paths we would wish to integrate our symbol along we may

construct the corresponding MPL explicitly via the path decomposition formula

S̃−1
σ (R1 ⊗ . . .⊗Rn) =

∑
0≤i1≤i2...ik≤n

∫
γσ(1)

d logR1 . . . d logRi1

×
∫
γσ(2)

d logRi1+1 . . . d logRi2 . . .
∫
γσ(k)

d logRik+1 . . . d logRn

(2.3.54)

Where
∫
γσ(j)

d logRij+1d logRij = 1 and thus drops out of the integral. Note that for a

particular γi all variables except xi are treated as constants and take values

xi
∣∣
γj

=

{
xi i < j

0 i > j
(2.3.55)

Where yet again we use canonical regularisation for any vanishing Ri|γj . Although the

map (2.3.50) has been defined on a single sequence of tensor products we stress that

it is only valid for an integrable symbol of the form (2.3.48). As already mentioned the

solution to the inverse map is not unique. Apart from the obvious multitude of paths,

the MPL representation is defined up to any functions that disappear under the symbol

map, such as functions of non-maximal weight or those multiplied by transcendental

constants.

γ(σ2)

γ(σ1)

x1

x2

x3

Figure 2.3.1: Two different paths we may choose to integrate our symbol along

As an example take the symbol of G(x1, x2;x3)

S(G(x1, x2;x3)) =(x1 − x3)⊗
(x1 − x2)

x2
+ (x2 − x3)⊗

(x1 − x3)

(x1 − x2)

+x1 ⊗
x2

(x1 − x2)
+ x2 ⊗

(x1 − x2)

(x1 − x3)

(2.3.56)
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Note that the symbol is automatically integrable because it is derived from a function. If

we choose the path starting at the origin γ(σ1) in figure 2.3.1 then we recoverG(x1, x2;x3)

S̃−1
σ1 (S(G(x1, x2;x3))) = G(x1, x2;x3) (2.3.57)

Similarly we would obtain the same result if we would permute x1 with x2 in the path

since the top argument would still be x3. Alternatively if we choose the path γ(σ2) we

obtain

S̃−1
σ2 (S(G(x1, x2;x3))) = G(x2, x3;x1)−G(x2, 0;x1) +G(0, x2;x3) +G(x2;x3)G(x3;x1)

−G(x2;x1)G(x2;x3) +G(0;x3)G(x2;x1)

(2.3.58)

By reviewing all the properties above it is clear that the strength of the symbol lies in

its ability to elucidate functional relationships between MPLs. However there is a sub-

stantial caveat in that it determines functional equivalence only up to terms propor-

tional to multiple zeta values, which carry transcendental weight but vanish under the

symbol map. In order to address this issue one could use an alternative definition of

the symbol, which is obtained from summing over dissections of a rooted and deco-

rated polygon [34]. This method has the advantage that its combinatoric nature does

not distinguish between constants and variables. Another way would to use the fact that

symbols and MPLs form a Hopf algebra [75] and use the coproduct which allows for the

incorporation of zeta values.

2.3.3 Hopf algebras

Although we have already described an extensive list of properties for MPLs our ma-

nipulation of symbols and iterated integrals shall rely on their more general algebraic

structure. The structure in question is that of Hopf algebra and its applications range

from integrability to the study of sub-divergences of a Feynman graph. However before

establishing the relationship with MPLs we begin by reviewing the notions of algebras

and co-algebras. An algebra over a field k (k-algebra) is a k-vector spaceA together with

two linear maps

m : A⊗k A→ A and u : k → A (2.3.59)

Where ⊗k denotes the tensor product over the field k which we shall leave implicit in

the following. The first operation is called multiplication and is associative. If we take

two elements a, b ∈ A and define m(a⊗ b) ≡ a · b then

m(id⊗m)(a⊗ b⊗ c) = a · (b · c) = m(m⊗ id)(a⊗ b⊗ c) = (a · b) · c (2.3.60)
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where we define for two functions f and g

(f ⊗ g)(a⊗ b) = f(a)⊗ g(b) (2.3.61)

the second is called the unit element and embeds the field into the vector space

m(id⊗u)(a⊗ k) = ka = m(u⊗ id)(k ⊗ a) (2.3.62)

Thus this implies the existence of the unit element for the k-algebra

u(1k)A = 1AA = A (2.3.63)

We note that this is not the usual definition of an algebra which is defined onA×A rather

than on the tensor product. However the two definitions are completely compatible. At

this point we can see that the previous description of MPLs may be recast in terms of

an algebra over the rationals where multiplication is given by the shuffle product. The

weight gives a natural grading that is preserved by the shuffle product and we can write

the entire algebra of multiple polylogarithms as

AMPL =

∞⊕
n=0

An m(An1 ⊗An2) ⊂ An1+n2 (2.3.64)

WhereA0 corresponds to the field of rational functions over which we have defined our

algebra. Next we proceed to define the coalgebra by reversing the definitions above. A

k-coalgebra is a k-vector space C with two linear maps

∆ : C → C ⊗ C and ε : C → k (2.3.65)

The map ∆ is called the co-product and obeys the co-associativity condition

(∆⊗ id)∆ = (id⊗∆)∆ (2.3.66)

and the co-unit satisfies

(id⊗ε)∆C = C ⊗ 1 (2.3.67)

Conversely to the multiplication of elements the co-multiplication axiom amounts to a

type of decomposition and the coassociativity condition states that the order of this de-

composition is irrelevant. To expand more on this we introduce the Sweedler notation

for coproducts

∆(a) =
∑
i

a
(1)
i ⊗ a

(2)
i (2.3.68)
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Where a, a(j)i ∈ C are some elements of the co algebra. We can apply the coproduct

again and obtain the two sides of (2.3.67)

(∆⊗ id)∆(a) =
∑
i,j

a
(1,1)
i,j ⊗ a

(1,2)
i,j ⊗ a

(2)
i (2.3.69)

(id⊗∆)∆(a) =
∑
i,j

a
(1)
i ⊗ a

(2,1)
i,j ⊗ a

(2,2)
i,j (2.3.70)

The striking feature of coassociativity is that while the above equations are in general

different, for a co-algebra they will be equal. Thus as a consequence there is essentially

only one way to iterate the coproduct. We define an algebra homomorphism as a linear

map φ : A→ B between two k-algebras if it satisfies

φ(m(A⊗A)) = m(φ(A)⊗ φ(A)) φ(uA(k)) = uB(k) (2.3.71)

Similarly a coalgebra homomorphism φ : C → D is one which commutes with the

coproduct

∆(φ(C)) = (φ⊗ φ)∆(C) εD(φ(C)) = εC(C) (2.3.72)

We define a bialgebra A as a k-vector space that is simultaneously an algebra and a co-

algebra . That is a bialgebra is the tuple A = (A,m, u,∆, ε) where (A,m, u) is an algebra

and (A,∆, ε) is a coalgebra such that the linear maps on one are homomorphism on the

other.

∆(mA(a⊗ b)) = mA⊗A(∆(a)⊗∆(b)) (2.3.73)

In general if we take two k-bialgebrasA andB then their tensor product is also one. We

can see this by noting

A⊗B ⊗A⊗B
id⊗τ⊗id−−−−−→ A⊗A⊗B ⊗B

mA⊗mB−−−−−→ A⊗B (2.3.74)

where τ is the flip operator τ(a⊗ b) = b⊗ a. And similarly for the coproduct

A⊗B
∆A⊗∆B−−−−−→ A⊗A⊗B ⊗B

id⊗τ⊗id−−−−−→ A⊗B ⊗A⊗B (2.3.75)

Note that the presence of the inversion step implies that

mA⊗B = (mA ⊗mB)(id⊗τ ⊗ id) ⇐⇒ (a1 ⊗ b1)(a2 ⊗ b2) = (a1a2 ⊗ b1b2) (2.3.76)
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For iterated integrals the coproduct is non trivially given by

∆(I(a0; a1, . . . , an; an+1))

=
∑

0=i1<i2...<ik<ik+1=n

I(a0; ai1 , . . . , aik ; an+1)⊗

 k∏
p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)


(2.3.77)

In the case that the entries are not generic we replace all quantities on the right hand

side by their canonically regularised forms. As already mentioned, the coproduct may

be used to simplify expressions in a similar way to the symbol. For example let us take

the coproduct for the logarithms and classical polylogarithms

∆(logn z) =
n∑
k=0

(
n

k

)
logk z ⊗ logn−k z (2.3.78)

∆(Lin(z)) = 1⊗ Lin(z) + Lin(z)⊗ 1 +

n−1∑
k=1

Lin−k(z)⊗
logk z
k!

(2.3.79)

We can see that the iterative application of the coproduct togetherwith the coassociativ-

ity property leads to an object similar to the symbol. The marked difference however is

that the coproduct has a non trivial action on the transcendental constants. Specifically

the coproduct of the odd zeta values is given by

∆(ζ2n+1) = ∆(Li2n+1(1)) = 1⊗ ζ2n+1 + ζ2n+1 ⊗ 1 (2.3.80)

Even though Li2n(1) = ζ2n, the even zeta values are not independent and if we consider

the homomorphism property of the coproduct we can see that the above equation is

not consistent any more. Instead we have to modify the coproduct [76]

∆(ζ2n) = ζ2n ⊗ 1 ⇐⇒ ∆(π) = π ⊗ 1 (2.3.81)

That is, the coproduct for MZVs becomes a coaction by taking the second entry in the

tensor product modulo ζ2, thus defining the µ algebra

∆ : A→ A⊗ µ µ ≡ A/ζ2 (2.3.82)

Note that the second relation in (2.3.81) comes from the fact that ζ2 ∝ π2. Of course these

are the simplest zeta values and analogously to polylogarithms the multiple zeta values

also form a bialgebra. To finish our definition of a Hopf algebra we require one more

ingredient: a linear endomorphism S called the antipode such that for a ∈ A

ε(a) = m(id⊗S)∆(a) = m(S ⊗ id)∆(a) (2.3.83)
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The antipode may be determined recursively for MPLs by noting that the counit is given

by ε(1) = 1 and is 0 for all other iterated integrals. Thus

µ(S ⊗ id)∆(G(~a; z))) = µ(id ⊗ S)∆(G(~a; z))) = 0 , if |~a| ≥ 1 , (2.3.84)

Taking the classical polylogarithms as an example we have the relations

1 =S(1)

0 =S(1)Li1(z) + S(Li1(z))

0 =S(1)Li2(z) + S(Li2(z)) + S(Li1(z)) log(z)
... (2.3.85)

Given that the antipode is an endomorphism it obeys

S(ab) = S(a)S(b) ε(S(a)) = ε(a) ∆(S(a)) = (S ⊗ S)τ∆(a) (2.3.86)

As we shall see later the antipode will play a central role in our study of single valued

MPLs, i.e. iterated integrals with trivial monodromies. Given that we are always inter-

ested in the monodromies and differentials of MPLs we end this section by showing how

these operations commute with the coproduct. Thus for an MPL Fn(x1, . . . , xk)

∆

(
∂

∂xi
Fn

)
=

(
id⊗ ∂

∂xi

)
∆(Fn) (2.3.87)

∆(Mxi=aFn) = (Mxi=a ⊗ id)∆(Fn) (2.3.88)

These relations were conjectured in [75] and proved for generic arguments. Note that

these operators act on the coproduct in the same way as they do on the symbol. As

has become evident there are numerous similarities between symbol and coproduct.

Indeed it is possible to make precise the relationship between them

S ≡ ∆1,...,1 modπ (2.3.89)

Where ∆1,...,1 is defined as the maximum iteration of the coproduct.

∆1,...,1(Fn) = (∆⊗
n−1︷ ︸︸ ︷

id⊗ . . .⊗ id) . . . (∆⊗ id)∆(Fn) (2.3.90)

Iterated integrals possess a rich mathematical structure, only a subset of which has been

described above. It shall be the main focus of this thesis to further elucidate their alge-

braic properties and their application to scattering amplitudes. Thus in the next chapter

we proceed to study their role in solving a two loop five point conformal integral.
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CHAPTER 3

Differential equations for scalar integrals

Although the multiple polylogarithms are a mathematically interesting andversatile class

of functions they only become of relevance if we can use them to describe our ampli-

tudes. It is often quite challenging to recast a given solution to a Feynman integral in

terms of MPLs so that we may make use of their properties. For example when study-

ing interesting regimes such as Regge limits or for numerical evaluation. Furthermore

it is clearly more desirable to avoid any intermediary steps and try to solve the integral

directly in terms of MPLs or even their symbols. Having outlined the iterated integral

structure in the previous section a natural approach to consider would be to study what

are the particular differential equations that our integral obeys.

Indeed, the use of differential equations for scattering amplitudes is well established.

The usual approach is to differentiate the integral with respect to masses and kinemati-

cal invariants to obtain a combination of already evaluated Feynman integrals and then

solve the differential equation with appropriate boundary conditions. The method was

developed in [77] as an extension of the integration by parts identities which uses dif-

ferentiation with respect to the loop momenta under the integral to derive algebraic

relations between integrals. Thus they are used to express and evaluate an amplitude as

a linear combination of a preferred set of “master integrals”, which are an entire field of

study in themselves.

Although the above methods are completely general our focus shall be on the differ-

ential equations obeyed by scalar integrals with conformal symmetry. By combining

differential operators acting on various legs we intend to exhibit the use of MPLs as a

57
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general technology for scattering amplitudes. This shall be done by changing variables

and exploiting the symbols in such a way that we may easily integrate the differential

equation obeyed by the integral. Finally in order to resolve the ambiguities in the in-

tegration we shall introduce single valued MPLs and impose that our solution be single

valued as well. This is a general physical constraint and single valuedness shall play an

important role in subsequent chapters where we treat amplitudes in the multi Regge

limit of the kinematics.

3.1 The integral

x7x6

x5

x1

x2

x4

x3

p5 p4

p3
p2

p1

Figure 3.1.1: 2-loop , 5-point massive scalar conformal integral

In [78–80] it was shown that it is possible to obtain two and three-point graphs as the

finite limit of four point graphs that obey certain differential equations. In this section we

wish to generalise these ideas to higher points, by analysing the behaviour of a 5-point,

massive 2-loop integral under various differential operators. Let us begin by writing the

integral depicted in 3.1.1 in terms of the dual coordinates

I12;34;5 =
1

π4

∫
d4x6d

4x7
x216x

2
26x

2
37x

2
47x

2
67x

2
56x

2
57

(3.1.1)

By using the inversion of the dual coordinates

I : x2ij →
x2ij
x2ix

2
j

(3.1.2)

we see that the integrand transforms in a covariant manner

d4x6d
4x7

x216x
2
26x

2
37x

2
47x

2
67x

2
56x

2
57

→ (x45x
2
1x

2
2x

2
3x

2
4)

d4x6d
4x7

x216x
2
26x

2
37x

2
47x

2
67x

2
56x

2
57

(3.1.3)

Note that the factors coming from the inversion of the loop dual coordinates x6 and x7
are precisely canceled by the Jacobian of the corresponding change of variables. We can
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exploit this conformal symmetry and write the integral as

I12;34;5 =
f(s1, . . . , s5)

x215x
2
25x

2
34

(3.1.4)

Where f is a function of the five multiplicatively independent conformal cross-ratios

that one can construct from the five external points,

s1 =
x212x

2
35x

2
45

x234x
2
15x

2
25

, s2 =
x213x

2
45

x234x
2
15

, s3 =
x214x

2
35

x234x
2
15

, s4 =
x223x

2
45

x234x
2
25

, s5 =
x224x

2
35

x234x
2
25

(3.1.5)

Next we would like to separate the function f in terms of a purely transcendental and

rational piece. To do so we need to calculate the leading singularity of the integral which

gives the rational prefactor. The leading singularity is obtained by taking the residues

of the integral on each of its global poles evaluated on a contour describing the maxi-

mal torus surrounding that pole. In order to demonstrate the technique it is useful to

consider the example [81]

g1234 =

∫
d4x5

x215x
2
25x

2
35x

2
45

(3.1.6)

We then make a change of coordinates pi = x2i5 and compute the Jacobian

J = det
(
∂pi
∂xµ5

)
(3.1.7)

This can be rendered more transparent by considering the square of the Jacobian

J2 = det(4xi5 · xj5) = 16 det(x2ij − x2i5 − x2j5) (3.1.8)

Thus the integral (3.1.7) now becomes

g1234 =

∫
d4pi

p1p2p3p4J
(3.1.9)

Which has the following residue on the global pole p1 = p2 = p3 = p4 = 0

g1234 →
1

4
√

det(x2ij)
=

1

4λ1234
(3.1.10)

Where by convention we have ignored any contour that may encircle the pole produced

by the Jacobian. This may be justified by the fact that the integrals posses no pole at in-

finity and any residue produced from the Jacobian factor is equivalent to the one already

considered. Going back to our five point integral we can see that it may be separated into

two parts

I12;34;5 =
1

π4

∫
d4x6

x216x
2
26x

2
56

∫
d4x7

x237x
2
47x

2
57x

2
67

(3.1.11)

Using the previous example it is easy to see that upon taking residues we may reduce
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this expression to
1

π4

∫
d4x6

x216x
2
26x

2
56, λ3456

(3.1.12)

Now we must calculate the Jacobian with respect to the new denominator

J = det
(
∂(x216, x

2
26, x

2
56, λ3456)

∂xµ6

)
(3.1.13)

The procedure then is essentially the same as before, and the leading singularity is ob-

tained by considering the square of the Jacobian under the global residue x216 = x226 =

x256 = 0 which also influences the remaining pole λ3456 = x236x
2
45 − x235x

2
46 = 0, from

which we infer that x236 = x246 = 0 and we obtain

J2 = 16 det

(
x2ij x2i3x

2
45 − x2i4x

2
35

x2j3x
2
45 − x2j4x

2
35 −2x234x

2
35x

2
45

)
(3.1.14)

Finally having obtained the leading singularity we may use our cross ratios to separate

the function f(s1, . . . , s5) into a rational and purely transcendental function f̂ of degree

four.

f(s1, s2, s3, s4, s5) =
1√

(s2 − s3 − s4 + s5)2 − 4s1
f̂(s1, s2, s3, s4, s5) (3.1.15)

In order to simplify the problem we would like to make use of the conformal symmetry

in order to remove one of the points by taking it to infinity. There are two ways of ob-

taining a topologically distinct four-point integral by taking a point to infinity. First we

may take x5 to infinity

lim
x5→∞

x45I12;34;5 = H12;34 =
1

π4

∫
d4x6d

4x7
x216x

2
26x

2
37x

2
47x

2
67

=
f(t1, . . . , t5)

x234
(3.1.16)

Here we have defined ti to be the limit of the si cross-ratios

t1 =
x212
x234

, t2 =
x213
x234

, t3 =
x214
x234

, t4 =
x223
x234

, t5 =
x224
x234

(3.1.17)

Alternatively we may take one of the other points, x1 say, to infinity

lim
x1→∞

x21I12;34;5 = I2;34;5 =
1

π4

∫
d4x6d

4x7
x216x

2
26x

2
37x

2
47x

2
67

(3.1.18)

We will focus on the former limit for the moment, as the integral has more obvious

symmetries. Indeed we have the relations

H12;34 = H21;34 = H34;12 (3.1.19)



3.2. Differential equations 61

Which imply the following relations for the f function

f(t1, t2, t3, t4, t5) = f(t1, t4, t5, t2, t3) =
1

t1
f

(
1

t1
,
t2
t1
,
t4
t1
,
t3
t1
,
t5
t1

)
(3.1.20)

Next we proceed to derive a solvable differential equation for the purely transcendental

part of f in terms of MPLs.

3.2 Differential equations

We can derive differential equations for the integral by acting with the Laplace operator

on external points with a only a single propagator attached. The Laplace operator pro-

duces a delta function which, upon integration, reduces the loop order by one [2,78,80].

2i
1

x2ij
= −4π2δ4(xi − xj) (3.2.1)

The integral H therefore obeys the differential equations

21H12;34 = − 4

x212
I134 22H12;34 = − 4

x212
I234

23H12;34 = − 4

x234
I123 24H12;34 = − 4

x234
I124 (3.2.2)

Similar equations arise after using integration by parts to produce a Laplace operator

acting on the intermediate propagator

(∂1 + ∂2)
2H12;34 = (∂3 + ∂4)

2H12;34 = −4I1234 (3.2.3)

Where I134 and I1234 are the well-known one-loop graphs

I134 =
1

π2

∫
d4x7

x217x
2
37x

2
47

=
1

x234
Φ(1)(t2, t3) (3.2.4)

I1234 =
1

π2

∫
d4x7

x217x
2
27x

2
37x

2
47

=
1

x212x
2
34

Φ(1)

(
t2t5
t1
,
t3t4
t1

)
(3.2.5)

The function on the right hand side Φ(1) is known as the one-loop ladder function

Φ(1)
(
(1− x)(1− x̄), xx̄

)
= − 1

x− x̄
φ(1)

(
x

x− 1
,

x̄

x̄− 1

)
=

1

x− x̄
φ(1)(x, x̄) , (3.2.6)

And φ(1) is the the Bloch-Wigner dilogarithm

φ(1)(x, x̄) = − log(xx̄)
(
Li1(x)− Li1(x̄)

)
+ 2
(
Li2(x)− Li2(x̄)

)
(3.2.7)
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The variables x, x̄ that appear above, are indeed complex conjugates of each other, thus

making theφ(1) single-valued as one would expect from the four point graphs. The single

valued property can be seen from the symbol

S(φ(1)(x, x̄)) = (1− x)(1− x̄)⊗ x/x̄− xx̄⊗ (1− x̄)/(1− x) (3.2.8)

Recalling that the monodromy operator acts on the first entry of the symbol we can

easily check that the symbol is single valued. We begin our analysis by focusing on the

relations generated by 21, 22 and (∂1 + ∂2)
2. From the first two differential equations in

(3.2.2) we obtain the following equations for f

O1f(t1, t2, t3, t4, t5) = − 1

t1
Φ(1)(t2, t3)

O2f(t1, t2, t3, t4, t5) = − 1

t1
Φ(1)(t4, t5) (3.2.9)

Where O1 and O2 are the operators 21, 22 expressed in terms of ∂i = ∂
∂ti

O1 =2(∂1 + ∂2 + ∂3) + t1∂
2
1 + t2∂

2
2 + t3∂

2
3

+ (t1 + t2 − t4)∂1∂2 + (t1 + t3 − t5)∂1∂3 + (t2 + t3 − 1)∂2∂3 (3.2.10)

O2 =2(∂1 + ∂4 + ∂5) + t1∂
2
1 + t4∂

2
4 + t5∂

2
5

+ (t1 + t4 − t2)∂1∂4 + (t1 + t5 − t3)∂1∂5 + (t4 + t5 − 1)∂4∂5 (3.2.11)

Equation (3.2.3) becomes

O12f(t1, t2, t3, t4, t5) = − 1

t1
Φ(1)

(
t2t5
t1
,
t3t4
t1

)
(3.2.12)

However it is more convenient to work with the operator Õ12 = O12 − O1 − O2 which

represents the action of 2∂1 · ∂2 in the x variables. The operator Õ12 is then given by

Õ12 =− 4∂1 − 2t1∂
2
1 + (t4 − t1 − t2)∂1∂2 + (t5 − t1 − t3)∂1∂3

+ (t2 − t4 − t1)∂1∂4 + (t3 − t1 − t5)∂1∂5 + (t2 + t4 − t1)∂2∂4

+ (t3 + t4 − t1 − 1)∂2∂5 + (t2 + t5 − t1 − 1)∂3∂4 + (t3 + t5 − t1)∂3∂5 (3.2.13)

Solving the above equations directly in terms of polylogarithmic functions is not straight-

forward. However we may do so if we restrict ourselves to a special case of two dimen-

sional kinematics, where we choose to make the points coplanar. Therefore we intro-
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duce a new set of coordinates

t1 = (a1 − a2)(ā1 − ā2) + y

t2 = a1ā1

t3 = (1− a1)(1− ā1)

t4 = a2ā2

t5 = (1− a2)(1− ā2) (3.2.14)

Where the coordinate y is treated as a deformation away from coplanarity. By setting

y = 0 then we may identify the plane with the complex numbers and make use of trans-

lational and rotational symmetry to set x3 = 0 and x4 = 1 with x1 = a1 and x2 = a2. In

terms of the variables {a1, ā1, a2, ā2, y} the operators become,

O1 =
1

a1 − ā1
∂a1∂ā1(a1 − ā1)−

y

a1 − ā1
∂y(∂a1 − ∂ā1) +

a2 − ā2
a1 − ā1

∂yy∂y

O2 =
1

a2 − ā2
∂a2∂ā2(a2 − ā2)−

y

a2 − ā2
∂y(∂a2 − ∂ā2) +

a1 − ā1
a2 − ā2

∂yy∂y

Õ12 =

(
−2∂y +

1

a2 − ā2
(∂a1 − ∂ā1) +

1

a1 − ā1
(∂a2 − ∂ā2)

)
y∂y

− y

(a1 − ā1)(a2 − ā2)
(∂a1 − ∂ā1)(∂a2 − ∂ā2) + ∂a1∂ā2 + ∂ā1∂a2 (3.2.15)

However we may not restrict them to the planar case individually due to the ∂yy terms

which do not commute with the coplanar condition and may introduce inconsistencies.

In order to remedy this we may consider a linear combination O = c1O1+c2O2+c12Õ12

of all three operators. Thus we find that the resultant operator contains solely products

of y∂y terms if the following condition holds

c12 =
1

2

(
c1
a2 − ā2
a1 − ā1

+ c2
a1 − ā1
a2 − ā2

)
(3.2.16)

Imposing the above condition then allows us to restrict to the coplanar case y = 0. Fur-

thermore if we choose c1 = (a1 − ā1)
2 and c2 = (a2 − ā2)

2 we find the operator O takes

a particularly convenient factorised form

O =
[
(a1 − ā1)∂a1 + (a2 − ā2)∂a2

][
(a1 − ā1)∂ā1 + (a2 − ā2)∂ā2 − 1

]
=
[
(a1 − ā1)∂a1 + (a2 − ā2)∂a2

] 1

a1 − ā1

[
(a1 − ā1)∂ā1 + (a2 − ā2)∂ā2

]
(a1 − ā1) (3.2.17)

We recall that the operator O acts on the function f . If we take into account the form of

the leading singularity we find (making a choice for the branch of the square root)

1√
(t2 − t3 − t4 + t5)2 − 4t1

=
1

a1 − ā1 − a2 + ā2
(3.2.18)
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Hence by commuting the operator past the rational term we obtain

Of(a1, ā1, a2, ā2) =
1

a1 − ā1 − a2 + ā2
Ôf̂(a1, ā1, a2, ā2) (3.2.19)

with

Ô = (a1 − ā1)
2∂a1∂ā1 + (a1 − ā1)(a2 − ā2)(∂1∂ā2 + ∂a2∂ā1) + (a2 − ā2)

2∂a2∂ā2 (3.2.20)

We can again rewrite this operator in a factorised form, Ô = Ô1Ô2, where

Ô1 =
[
(a1 − ā1)∂a1 + (a2 − ā2)∂a2 − 1

]
(3.2.21)

Ô2 =
[
(a1 − ā1)∂ā1 + (a2 − ā2)∂ā2

]
(3.2.22)

Thus the purely transcendental part of the integral must satisfy the following equation

Ôf̂(a1, ā1, a2, ā2) = − a1 − ā1 − a2 + ā2
(a1 − a2)(ā1 − ā2)

[
(c1 − c12)Φ

(1)(t2, t3)

+ c12Φ
(1)
( t2t5
t1
,
t3t4
t1

)
+ (c2 − c12)Φ

(1)(t4, t5)

]
(3.2.23)

Putting in the choices we made above for c1 and c2 and recalling the constraint (3.2.16)

we find that the equation we have to solve is given by

Ôf̂(a1, ā1, a2, ā2) =− (a1 − ā1 − a2 + ā2)
2(a1 − ā1)

(a1 − a2)(ā1 − ā2)
Φ(1)(t2, t3)

− (a1 − ā1 − a2 + ā2)(a1 − ā1)(a2 − ā2)

(a1 − a2)(ā1 − ā2)
Φ(1)

( t2t5
t1
,
t3t4
t1

)
+

(a1 − ā1 − a2 + ā2)
2(a2 − ā2)

(a1 − a2)(ā1 − ā2)
Φ(1)(t4, t5) (3.2.24)

Using the definition of the one loop ladder function we can make explicit the rational

and pure parts of the equation

Ôf̂(a1, ā1, a2, ā2) =− (a1 − ā1 − a2 + ā2)
2

(a1 − a2)(ā1 − ā2)
[φ(1)(a1, ā1)− φ(1)(a2, ā2)]

− (a1 − ā1 − a2 + ā2)(a1 − ā1)(a2 − ā2)

a1(1− a2)(ā1 − ā2)− ā1(1− ā2)(a1 − a2)
φ(1)

(
a1(1− a2)

a1 − a2
,
ā1(1− ā2)

ā1 − ā2

)
(3.2.25)

3.3 Solving the Differential Equation

In the previous section we have obtained an equation for the pure part of the integral

in the planar limit Ôf̂(a1, ā1, a2, ā2) = X where X is given by the RHS of (3.2.25). Since
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the operator Ô factorises Ô = Ô1Ô2, in the fist instance we need to solve the equation

Ô1g = X where we expect g to be a degree three combination of MPLs. As has been the

case previously the key to tackling the problem is choosing appropriate variables. First

we choose variables suitable for rewriting Ô1. Let us define s and t via

a1 − ā1 = st , a2 − ā2 =
s

t
. (3.3.1)

In terms of the variables s, t, ā1, ā2 the operator Ô1 takes the simple form

Ô1 = s2∂s
1

s
. (3.3.2)

Now let us consider reproducing the first line of the RHS of (3.2.25). We look for a solu-

tion of

s2∂s
1

s
g1(s, t, ā1, ā2) = −(a1 − ā1 − a2 + ā2)

2

(a1 − a2)(ā1 − ā2)
[φ(1)(a1, ā1)− φ(1)(a2, ā2)]

= − s2(t− 1/t)2

(st+ ā1 − s/t− ā2)(ā1 − ā2)
[φ(1)(a1, ā1)− φ(1)(a2, ā2)] (3.3.3)

To obtain a solution in terms ofG-functions all we need to do is to rewrite the pure func-

tions appearing in the square brackets as iterated integrals with s appearing in the outer-

most upper integration limit. This is simple to achieve as the letters {a1, 1−a1, a2, 1−a2}
are all linearly related to s and we may take the symbol of a function and choose a

contour γ ending at s. We note that starting from the origin {0, 0, 0, 0} in the variables

{a1, a2, ā1, ā2} corresponds to starting from {0, 1, 0, 0} in the variables {s, t, ā1, ā2}. For

example,

Li2(a1) = −G(0, 1; a1)

=

∫ a1

0

dv1
v1

∫ v1

0

dv2
1− v2

= −
∫
γ
[1− a1, a1]

= −
∫
γ
[1− st− ā1, st+ ā1]

= −
∫
γ

(
[s− (1− ā1)/t, s+ ā1/t] + [t, s+ ā1/t] + [s− (1− ā1)/t, t] + [t, t]

)
(3.3.4)

Where in the third line we have gone from the one-form representation to the symbol

and have expressed the tensor product as an array. We now use the freedom to choose

the contour along the axes in the coordinates {s, t, ā1, ā2}, first along the ā2 direction

(where, in this example, nothing happens since nothing depends on this variable), then

along the ā1 direction (with s = 0 and t = 1 still), then along the t direction (with s = 0

still) and then finally along the s direction. Having defined our contour we may then
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apply the map (2.3.54) taking us from the symbol to the function

Li2(a1) = −G
(
− ā1
t
,
1− ā1
t

; s

)
−G(1; ā1)G

(
− ā1
t
; s
)
−G(0, 1, ā1) (3.3.5)

In this manner integrating with respect to s becomes simply a matter of adjoining the

appropriate letter to the beginning of the weight vector. Going through the above pro-

cedure for the full inhomogeneous term we find

φ(1) (s, t, ā1)− φ(1) (s, t, ā2) = 2G (0; ā1)G

(
1− ā1
t

; s

)
− 2G (1; ā1)G

(
− ā1
t
; s
)

+ 2G (1; ā2)G (−ā2t; s)− 2G (0; ā2)G (t (1− ā2) ; s)

+G

(
1− ā1
t

,− ā1
t
; s

)
−G

(
− ā1
t
,
1− ā1
t

; s

)
+G (−ā2t, t (1− ā2) ; s)−G (t (1− ā2) ,−ā2t; s) (3.3.6)

re-expressing the rational prefactor in terms of s and t

− (a1 − ā1 − a2 + ā2)
2

(a1 − a2)(ā1 − ā2)
= − s2(t− 1/t)2

(s(t− 1/t) + ā1 − ā2)(ā1 − ā2)
(3.3.7)

we find that we can integrate and obtain a solution for g1

∂s

[1
s
g1(s, t, ā1, ā2)

]
= −(t− 1/t)

ā1 − ā2

1

s+ ā1−ā2
t−1/t

[φ(1)(s, t, ā1)− φ(1)(s, t, ā2)] (3.3.8)

for convenience let us introduce the variable

q = − ā1 − ā2
t− 1/t

= − s(ā1 − ā2)

a1 − ā1 − a2 + ā2
(3.3.9)

as outlined previously we may integrate straightforwardly to find a solution to (3.3.3)

g1 (s, t, ā1, ā2) = −s (t− 1/t)

ā1 − ā2

[
2G (0; ā1)G

(
q,

1− ā1
t

; s

)
− 2G (1; ā1)G

(
q,− ā1

t
; s
)

+ 2G (1; ā2)G (q,−ā2t; s)− 2G (0; ā2)G (q, t (1− ā2) ; s)

+G

(
q,

1− ā1
t

,− ā1
t
; s

)
−G

(
q,− ā1

t
,
1− ā1
t

; s

)
+G (q,−ā2t, t (1− ā2) ; s)−G (q, t (1− ā2) ,−ā2t; s)

]
(3.3.10)

Fortunately we may proceed in a similar way for the more complicated terms

s2∂s
1

s
g2(s, t, ā1, ā2) = − (a1 − ā1 − a2 + ā2)(a1 − ā1)(a2 − ā2)

a1(1− a2)(ā1 − ā2)− ā1(1− ā2)(a1 − a2)
φ(1)

(
a1(1− a2)

a1 − a2
,
ā1(1− ā2)

ā1 − ā2

)
.

(3.3.11)
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From the form of the Block-Wigner dilog we can see that the inhomogeneous term con-

tains letters of the form

1− a1(1− a2)

a1 − a2
=
a2(a1 − 1)

a1 − a2
. (3.3.12)

These still factorise in terms of factors linear in s and we treat the rational prefactor

− (a1 − ā1 − a2 + ā2)(a1 − ā1)(a2 − ā2)

a1(1− a2)(ā1 − ā2)− ā1(1− ā2)(a1 − a2)
=

s2(1− t)(1 + t)

(ā1 − ā2)ts− (1− ā1)ā1 + (1− ā2)ā2t2

= −s
2(t− 1/t)

ā1 − ā2

1

s− r
(3.3.13)

where

r =
ā1(1− ā1)/t− ā2(1− ā2)t

ā1 − ā2
=
ā1(1− ā1)(a2 − ā2)− ā2(1− ā2)(a1 − ā1)

s(ā1 − ā2)
(3.3.14)

Again we simply adjoin the letter r to the beginning of each weight vector in the s-

dependent version of (3.3.10)

g2 (s, t, ā1, ā2) = −s (t− 1/t)

ā1 − ā2

[
2G

(
r,
1− ā1
t

; s

)
G (0; ā1)− 2G (0; ā2)G

(
r,
1− ā1
t

; s

)
+ 2G (1; ā2)G

(
r,
1− ā1
t

; s

)
− 2G (ā2; ā1)G

(
r,
1− ā1
t

; s

)
− 2G (1; ā1)G

(
r,− ā1

t
; s
)

+ 2G (ā2; ā1)G
(
r,− ā1

t
; s
)
+ 2G (0; ā1)G (r,−ā2t; s)− 2G (0; ā2)G (r,−ā2t; s)

+ 2G (1; ā2)G (r,−ā2t; s)− 2G (ā2; ā1)G (r,−ā2t; s)− 2G (1; ā1)G (r, t− ā2t; s)

− 2G (0; ā1)G

(
r,−(ā1 − ā2) t

t2 − 1
; s

)
+ 2G (0; ā2)G

(
r,−(ā1 − ā2) t

t2 − 1
; s

)
+ 2G (1; ā1)G

(
r,−(ā1 − ā2) t

t2 − 1
; s

)
− 2G (1; ā2)G

(
r,−(ā1 − ā2) t

t2 − 1
; s

)
+G

(
r,
1− ā1
t

,− ā1
t
; s

)
+G

(
r,
1− ā1
t

, t− ā2t; s

)
−G

(
r,− ā1

t
,
1− ā1
t

; s

)
−G

(
r,− ā1

t
,−ā2t; s

)
+G

(
r,− ā1

t
,−(ā1 − ā2) t

t2 − 1
; s

)
+G

(
r,−ā2t,−

ā1
t
; s
)
+G (r,−ā2t, t− ā2t; s)−G

(
r,−ā2t,−

(ā1 − ā2) t

t2 − 1
; s

)
−G

(
r, t− ā2t,

1− ā1
t

; s

)
−G (r, t− ā2t,−ā2t; s) +G

(
r, t− ā2t,−

(ā1 − ā2) t

t2 − 1
; s

)
+G

(
r,−(ā1 − ā2) t

t2 − 1
,
1− ā1
t

; s

)
−G

(
r,−(ā1 − ā2) t

t2 − 1
,− ā1

t
; s

)
+G

(
r,−(ā1 − ā2) t

t2 − 1
,−ā2t; s

)
−G

(
r,−(ā1 − ā2) t

t2 − 1
, t− ā2t; s

)
+ 2G (ā2; ā1)G (r, t− ā2t; s)− G

(
r,
1− ā1
t

,−(ā1 − ā2) t

t2 − 1
; s

)]
(3.3.15)
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Remarkably the prefactors of the weight 3 pure functions in g1 and g2 are the same so

that the two pieces add up simply and we have

g = g1 + g2 = −s(t− 1/t)

ā1 − ā2
ĝ, (3.3.16)

where ĝ is a pure function of degree 3. Now that we have integrated with respect to O1

we may proceed to the next operator O2, however this time there is only one function

to consider.

Ô2f̂(a1, a2, ā1, ā2) = g(a1, a2, ā1, ā2) (3.3.17)

We use the same variables s and t as before

a1 − ā1 = st , a2 − ā2 =
s

t
, (3.3.18)

except that this time we consider the coordinates {a1, a2, s, t} (i.e. we eliminate the

barred variables). In these coordinates the operator Ô2 takes the form

Ô2 = −s∂s . (3.3.19)

Hence we need to solve

∂sf̂ =
(t− 1/t)

ā1 − ā2
ĝ . (3.3.20)

Expressing the denominator in the coordinates {a1, a2, s, t} we have

∂sf̂ =
(t− 1/t)

a1 − a2 − st+ s/t
ĝ =

1

−s+ a1−a2
t−1/t

ĝ = − 1

s− p
ĝ (3.3.21)

where

p =
a1 − a2
t− 1/t

. (3.3.22)

To integrate again we must first express the weight 3 function g = g1+g2 found above in

terms of the variables {a1, a2, s, t}. Remarkably we find that all letters are again at most

linear in s so the procedure is analogous to the one already employed. Then we can

express the function g as an iterated integral successively along the a2, a1, t and finally s

directions. Thus integrating to obtain a particular solution for f̂ may be easily achieved

by adjoining a p to the beginning of the weight vector in the s-dependent MPLs.

By analysing the symbol of the particular solution we are able to make a list of the letters

appearing there. Finally we obtain an iterated integral over a weight 4 integrable word
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in the following letters:

{a1, ā1, a2, ā2, 1− a1, 1− ā1, 1− a2, 1− ā1, a1 − a2, ā1 − ā2, a1 − ā1, a2 − ā2,

a1 − ā2 − a2 + ā2, a1ā2 − a2ā1, a1 − ā1 − a2 + ā1a2 + ā2 − a1ā2,

ā1a2 − a1ā1a2 − a1ā2 + a1ā1ā2 + a1a2ā2 − ā1a2ā2} (3.3.23)

Note that the solution obtained so far is not the most general one as we still have some

ambiguity due to the boundary conditions of the differential equation. Because the dis-

continuities of physical amplitudes must coincide with the unitary and local nature of

the underlying theory, we shall have to impose that our solution be single-valued.

3.4 Single-valued hyperlogarithms from Picard-Fuchs equations

In this section we discuss the construction of single-valued hyperlogarithms, following

ref. [82, 83]. We review the construction in detail, because the techniques introduced

in the hyperlogarithm case can be extended to the KZ equation on the moduli space of

Riemann spheres with marked points M0,n that shall be central in the next chapter.

Consider a set of complex constants, Σ = {σ1, . . . , σn}. We denote the shuffle algebra of

all hyperlogarithms with singularities inΣ byLΣ, see eq. (2.3.11). In the following it will be

useful to take a more abstract viewpoint. LetX = {x1, . . . , xn}, and C〈X〉 is the complex

vector space generated by all words with letters from X , and the multiplication is the

shuffle product. We start by defining the universal algebra of hyperlogarithms HLΣ as

the algebraC〈X〉, but with rational functions (with poles at most at z ∈ Σ) as coefficients,

and a derivation ∂ which acts on rational functions as ∂/∂z and on words as

∂(xiw) =
1

z − σi
w (3.4.1)

HLΣ is an abstract algebra (with a derivation) which has exactly the same properties as

the algebraLΣ (shuffle and differentiation). A realisation of HLΣ is then an algebra mor-

phism ρ : HLΣ → A that preserves the derivative. In particular, the hyperlogarithms LΣ

are a realisation of HLΣ. We will in the following refer to this realisation as the standard

realisation,

ρG : HLΣ → LΣ, w 7→ G(w; z) (3.4.2)

where we made a slight abuse of notation: if the word is w = xi1 . . . xi|w| , with |w| the

length of the word w, then we define G(w; z) ≡ G(σi1 , . . . , σi|w| ; z). In the following also

the dual ofHLΣ will be important. The dual ofC〈X〉 is the spaceC〈〈X〉〉 of formal power

series in words.
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Next, consider a realisation ρ of HLΣ, and consider the generating series

Fρ =
∑
w∈X∗

ρ(w)w (3.4.3)

Fρ satisfies a Picard-Fuchs-type equation

∂

∂z
Fρ =

n∑
i=1

xi
z − σi

Fρ (3.4.4)

Conversely, every solution to eq. (3.4.4) gives rise to a realisation of HLΣ. Moreover, one

can check that if F ′ is any other solution to eq. (3.4.4), then there is a constant series

T ∈ C〈〈X〉〉 such that F ′ = FρT . Finally, it is easy to see that we can find n solutions Lσi

such that close to the singularity z ∼ σi we have Lσi ∼ (z − σi)
xi . Hence, we conclude

that there are constant series Zij ∈ C〈〈X〉〉 such that

Lσj = LσiZij (3.4.5)

We refer to the Zij as associators and we note that ZijZjk = Zik , and their inverses are

Z−1
ij = Zji. The associators can be obtained as the shuffle-regularised values of Fρ at the

singular points [83]. In particular, if Σ = {0, 1}, we have Z01 = Φ(x0, x1), where Φ is the

Drinfeld associator

From now on we will always identify one of the singular points with 0, say σ0 = 0 (this is

always possible using SL(2,C) transformations). We define

L(z) ≡ Lσ0(z) =
∑
w∈X∗

ρG(w)w =
∑
w∈X∗

G(w; z)w (3.4.6)

and we write the associators as Zσi ≡ Z0i, so that Lσi(z) = L(z)Zσi .

Due to the presence of the singularities in eq. (3.4.4), the solutions to eq. (3.4.4) will in

general have discontinuities with branch points at z = σi. We denote by MσiFρ the

monodromy obtained by analytically continuing Fρ along a small loop encircling z = σi.

It is easy to check that MσiFρ is still a solution to eq. (3.4.4), and so there must be a

constant series Mσi such that MσiFρ = FρMσi . We obtain

MσjL
σj = Lσi e2πixj and MσjL = L (Zσj )−1 e2πixj Zσj (3.4.7)

One of the main results of ref. [83] is that there is always a solution to eq. (3.4.4) with a pre-

scribed monodromy. More precisely, if we are given n (grouplike) elementsA1, . . . , An ∈
C〈〈X〉〉, then there is always a realisation ρ : HLΣ → LΣLΣ, with LΣ the complex conju-

gate of LΣ, such that MσiFρ = FρAi. There are two particular cases of this:
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1. If we choose Ak = (Zσk)−1 e2πixk Zσk , ∀1 ≤ k ≤ n, we obtain the standard realisa-

tion ρG.

2. We may also choose Ak = 1, ∀1 ≤ k ≤ n and we see that there is a realisation of

HLΣ that is single-valued.

It is possible towrite down a generating function for the single-valued realisation, similar

to the generating series L(z) for the standard realisation. Consider two alphabets X =

{x1, . . . , xn} and Y = {y1, . . . , yn} and two generating functions

LX(z) =
∑
w∈X∗

G(w; z)w and L̃Y (z̄) =
∑
w∈Y ∗

G(w̄; z̄) w̃ (3.4.8)

where w̃ is the word w with all its letters in reversed order. We define

LX(z) ≡ LX(z)L̃Y (z̄) (3.4.9)

LX(z) is a solution of eq. (3.4.4), because

∂

∂z
LX(z) =

∂

∂z
LX(z)L̃Y (z̄) =

n∑
i=1

xi
z − σi

LX(z)L̃Y (z̄) =
n∑
i=1

xi
z − σi

L(z) (3.4.10)

The monodromies of LX(z) are

MσkLX(z) = LX(z)Mσk L̃Y (z̄) (3.4.11)

with

Mσk = Zσk(X)−1 e2πixk Zσk(X) Z̃σk(Y ) e−2πiyk Z̃σk(Y )−1 (3.4.12)

Obviously LX(z) is single-valued if Mσk = 1, ∀1 ≤ k ≤ n, which implies that the letters

in X and Y are not independent. Infinitesimally, this condition becomes

Z̃σk(Y ) yk Z̃
σk(Y )−1 = Zσk(X)−1 xk Z

σk(X) (3.4.13)

This equation can be solved perturbatively in the length of the words. While solving the

constraints (3.4.13) is conceptually very algorithmic, explicitly constructing the solutions

order-by-order in the length of the words quickly becomes very tedious. Below we con-

struct an explicit solution to the constraints (3.4.13). Before doing so, however, it will be

useful to introduce some more notation.

Let us for now assume that we have obtained the solution to eq. (3.4.13) to any desired

order. If we substitute this solution into the definition of LX , we obtain in this way the
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single-valued realisation ρSV of HLΣ,

LX(z) ≡
∑
w∈X∗

ρSV (w)w (3.4.14)

Some comments are in order: First, in the case where Σ = {0, 1}, the single-valued real-

isation corresponds to the single-valued harmonic polylogarithms of ref. [82]. Second,

the solution for Y in terms of X is unique order-by-order in the length of the words,

and so the single-valued realisation is unique. Finally, ρSV and ρG are really just two

different realisations of the same abstract algebra HLΣ (just like an abstract group may

have different representations). In other words, the standard and single-valued reali-

sations have exactly the same properties. In particular, they form a shuffle algebra and

have the same behaviour under holomorphic differentiation. We stress, however, that

the behaviour under anti-holomorphic differentiation is less obvious. We will address

this issue in Section 4.2.4.2.

In the following we write G(w; z) ≡ Gw(z) ≡ ρSV (w). Let us denote the algebra generated

by the functions G(w; z) by LSVΣ . We can define a linear map

sΣ : LΣ → LSVΣ G(w; z) 7→ G(w; z) (3.4.15)

As LΣ and LSVΣ are just different realisations of HLΣ, sΣ preserves the multiplication,

sΣ(a · b) = sΣ(a) · sΣ(b) (3.4.16)

In the following we denote by Z the algebra of multiple zeta values, and by ZSV the

algebra of their single-valued analogues. It is possible to construct explicitly a homo-

morphism sζ : Z → ZSV [84]. One can check that if G(w, z) ∈ LΣ, then its regularised

version at some singularity reduces to a linear combination of hyperlogarithms with one

singularity less and with MZVs as coefficients. In other words, we have

Regz=σkG(w; z) ∈ Z ⊗ LΣk
(3.4.17)

with Σk = Σ/{σk} and where we see elements of LΣk
as functions of σk . We denote by

ŝΣ the natural map

ŝΣ ≡ sζ ⊗ sΣ : Z ⊗ LΣ → ZSV ⊗ LSVΣ (3.4.18)

The single-valued maps preserve the multiplication, and so they commute with shuffle-

regularisation,

ŝΣk

[
Regz=σkG(w; z)

]
= Regz=σk [sΣ(G(w; z))] = Regz=σkG(w; z) (3.4.19)

Using these definitions, we can explicitly solve the constraints (3.4.13). We claim that the
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solution for yk to eq. (3.4.13) is obtained by conjugating xk by the single-valued analogue

of the associator Zσk(X),

yk = ŝΣk
(Zσk(X))−1 xk ŝΣ

k
(Zσk(X)) (3.4.20)

Equation (3.4.20) states that the single-valued analogues of the hyperlogarithms, and

thus the map sΣ, can be constructed recursively in the number of singularities σk . The

recursion starts with the single-valued harmonic polylogarithms, in which case the as-

sociator involves only MZVs, and so the map ŝΣk
reduces to sζ .

In order to see why eq. (3.4.20) holds, let us cast the constraints (3.4.13) in the form

yk = Z̃σk(YX)
−1 Zσk(X)−1 xk Z

σk(X) Z̃σk(YX)

=
(
Zσk(X) Z̃σk(YX)

)−1
xk

(
Zσk(X) Z̃σk(YX)

) (3.4.21)

where we write YX instead of Y in order to indicate that this identity holds on the solu-

tion to the constraints (3.4.13), i.e., we have inserted the solution to eq. (3.4.13) into the

right-hand side of eq. (3.4.21). The right-hand-side then only depends on the letters

xi, and so eq. (3.4.21) is a formal solution to the constraints. Comparing eq. (3.4.21) and

eq. (3.4.20), we need to show that

ŝΣk
(Zσk(X)) = Zσk(X) Z̃σk(YX) (3.4.22)

This relation is in fact a generalisation of the relation between Deligne’s and Drinfeld’s

associators in the case where Σ = {0, 1} [84]. We start from the fact that the associator

can be written as the shuffle regularised version of LX(z) at the point z = σk ,

Zσk(X) = Regz=σkLX(z) and Z
σk(Y ) = Regz̄=σ̄kLY (z̄) (3.4.23)

We assume that we have constructed all single-valued hyperlogarithms with a certain

number of singularities, and we want to add one more singularity, i.e., we assume that

we know how to construct all the sΣk
, and we want to construct sΣ. We have

ŝΣk
(Zσk(X)) = ŝΣk

[
Regz=σkLX(z)

]
= Regz=σk [sΣ(LX(z))]

= Regz=σk

[
LX(z)L̃YX (z̄)

]
=
[
Regz=σkLX(z)

] [
Regz̄=σ̄k L̃YX (z̄)

]
(3.4.24)

The first factor immediately gives an associator, Regz=σkLX(z) = Zσk(X). The second

factor also gives an associator. Indeed, the solution YX is independent of z, and so the

shuffle regularisation does not act on the letters yi and it commutes with the reversal
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of words. Hence, Regz̄=σ̄k L̃YX (z̄) = Z̃σk(YX), which finishes the proof. Note that at the

same time we have proved the identity

ŝΣk
(Zσk(X)) = Regz=σkLX(z) (3.4.25)

In practice, it is often easier to use this last relation to construct the single-valued associ-

ators than constructing the standard associators and then acting with the single-valued

map.

3.4.1 Single-valued check of the integral

Before proceeding to study the monodromies of our integral we note that it belongs

to a more general class than the one described in the previous section. The alphabet of

symbol entries mixes holomorphic and antiholomorphic variables and thus may couple

the ai to the āi. However using the above we may still compute the monodromies of our

integral around the singular points of (3.2.14) and ensure that the solution is single valued

in those cases.

That is we must ensure that the integral is physical and does not have any discontinuities

when approaching kinematical limits from different directions. As shown previously, in

order to calculate the monodromy around a point σi we must first write the solution

Lσi to the Picard-Fuchs equation at that point. We may do so by using associators to

translate L(z), however let us instead decompose Lσi into

Zσi = fi(z) exp(xk log(z − σi)) (3.4.26)

The function fi(z) has a well defined limit fi(σi) = 1 and it is holomorphic on a subset

of the complex plane C\ ∪k 6=i `(σi). Where `(σi) signifies the closed half line beginning

at σi and does not cross any other such half line for the other singular points. Of course

fi(z) is also a generating series and we may write an explicit formula for its coefficients.

Thus for every word not ending in xi and of the formw = xnr
i xkrx

nr−1

i xkr−1 . . . x
n1
i xk1 we

may write

L(σi)
w (z) =

∑
1≤<m1<...<mr

(−1)r

mn1+1
1 . . .mnr+1

r

(
z − σi
σk1 − σi

)m1

×
(
z − σi
σk2 − σi

)m2−m1

. . .

(
z − σi
σkr − σi

)mr−mr−1

(3.4.27)

Functions of this form are easily seen to be regular in the limit z → σi and satisfy 3.4.4.
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This sum representation may be analytically continued in a straightforward manner to

an iterated integral whose entries are described by the wordw and its basepoint is taken

to be σi. In fact the form 3.4.27 may be considered a Taylor expansion of the integral and

as such may be defined for points not contained in Σ and for any word.

Thus in order to find the monodromies of our solution to the differential equations and

check that it is single valued we must translate it to different singular points. This may

be achieved via the composition of paths property of iterated integrals to re-express an

iterated integral at one basepoint in terms of another. Taking an example from the set

Σ = {0, 1}

G(0, 1, 1, 0; z) = G(0, 1, 1, 0; 1) +G(1, 1, 0; 1)I(1; 0; z) +G(1, 0, 1)I(1; 1, 0, z)

+G(0; 1)I(1; 1, 1, 0; z) + I(1; 0, 1, 1, 0; z) (3.4.28)

Although this follows from a straighforward decomposition of paths we may see the

terms coming from the Drinfeld associator if we shuffle out the trailing zeros in the G-

functions

G(0, 1, 1, 0; z) = I(1; 0, 1, 1, 0; z)− ζ2I(1; 1, 0; z) + ζ3I(1; 0; z)−
5

4
ζ4 (3.4.29)

Where we have made the identification G(0n1−1, 1, 0n2−1, 1, . . . , 0nr−1, 1; 1) = ζn1,...,nr

and have regularised the G-functions such that G(0, 0) = G(0, 1) = ζ1 = 0. Note how-

ever that not all iterated integrals in the above formula are of the form (3.4.27). Specifi-

cally, because I(1; 1, 0; z) begins with a 1 (note the reversal of words in comparison with

L
(σi)
w (z)) it should have an explicit logarithm around 1

I(1; 1, 0; z) = I(1; 1; z)I(1; 0; z)− I(1; 0, 1; z) (3.4.30)

Thus we see that the monodromy of G(0, 1, 1, 0, z) around 1 is given by

M1G(0, 1, 1, 0, z) = −2πi ζ2I(1; 0; z) (3.4.31)

Of course we may extend this analysis to anyΣ and in the particular context of our inte-

gral we checked the monodromies of a1, a2 around 0, 1 as well as each and found them

to be trivial. Thus we may conclude that our solution to the differential equation (3.2.25)

is single valued in these cases and we present the result in Appendix A.
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CHAPTER 4

Scattering amplitudes in multi Regge kinematics

It has been known since the early days of QCD that in the Regge limit s � |t| scattering

amplitudes exhibit a rich analytic structure. The paradigm example is the BFKL equation

in QCD, which resums the radiative corrections in log(s/|t|) to parton-parton scattering

at leading logarithmic accuracy (LLA) [85–87] and next-to-LLA(NLLA) [88–90]. The build-

ing blocks of the BFKL resummation at LLA are the multi-gluon amplitudes, which are

evaluated in multi-Regge kinematics (MRK), i.e., in the approximation of a strong rapidity

ordering of the outgoing gluons. The multi-Regge limit is thus the kinematic cornerstone

of the BFKL resummation at LLA. In establishing the BFKL equation, the gluon rapidities

are then integrated out, and the BFKL equation is reduced to a two-dimensional prob-

lem in terms of purely transverse degrees of freedom: i.e., the evolution of a t-channel

gluon ladder in transverse momentum space and Mellin moment.

The aim of this section is to study the multi-Regge limit of scattering amplitudes inN = 4

SYM. We can completely describe the geometry in the transverse space as a configura-

tion of points in the complex plane, and hence we can completely classify all the iterated

integrals that appear in the final result. In other words, MRK is described by the geom-

etry of the moduli space M0,n of Riemann spheres with nmarked points. The geometry

of M0,n is well understood. In particular, the cluster algebra associated to M0,n is al-

ways of finite type and corresponds to the Dynkin diagramAn−3. The algebra of iterated

integrals on this space can also be completely described: they are iterated integrals of

d log-forms with singularities when some of the marked points coincide. We study scat-

tering amplitudes in planar N = 4 SYM in MRK for any number N of external legs and

77
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arbitrary helicity configurations. In this chapterwe we restrict ourselves to LLAand work

with the leading order central emission block describing the emission of a gluon along

the t-channel ladder. Beyond LLA corrections shall be explored in subsequent chapters.

4.1 Multi-Regge kinematics

The focus of this chapter are planar colour-ordered scattering amplitudes in N = 4

SYM in a special kinematic limit of 2-to-(N − 2)-gluon scattering, the so-called multi-

Regge kinematics (MRK) [91]. In order to define this limit, it is convenient to work in

conventions where all momenta are taken as outgoing. We define lightcone and (com-

plex) transverse momenta

p± ≡ p0 ± pz pk ≡ pk⊥ = pxk + ipyk (4.1.1)

Using this decomposition, the scalar product between two four vectors p and q is given

by

2p · q = p+q− + p−q+ − pq̄ − p̄q (4.1.2)

Without loss of generality we may choose a reference frame such that the momenta of

the initial state gluons p1, p2 lie on the z-axis with pz2 = p02, which implies p+1 = p−2 =

p1 = p2 = 0. Then the multi-Regge limit is defined as the limit where the outgoing

gluons with momenta pi, i ≥ 3 are strongly ordered in the lightcone coordinates while

having comparable transverse momenta

p+3 � p+4 � . . . p+N−1 � p+N |p3| ' . . . ' |pN | (4.1.3)

The mass-shell condition p2i = p+i p
−
i − |pi|2 = 0 implies that

p−N � p−N−1 � . . . p−4 � p−3 (4.1.4)

The ordering between the lightcone coordinates in (4.1.3) implies the following hierar-

chy between the Lorentz invariants,

s12 � s3···N−1, s4···N � s3···N−2, s4···N−1, s5···N � · · ·

. . .� s34, . . . , sN−1N � −t1, · · · ,−tN−3

(4.1.5)

with ti held fixed, where

si(i+1)...j ≡ (pi + pi+1 + . . .+ pj)
2 = x2(i−1)j (4.1.6)

ti+1 ≡ q2i qi ≡ −p2 − . . .− pi+3 = x(i+3)1 (4.1.7)
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We briefly sketch how the hierarchy in (4.1.5) follows from the strong ordering in light-

cone coordinates, (4.1.3). In MRK momentum conservation can be written in the form

p−1 = −
N∑
i=3

p−i ' −p−N p+2 = −
N∑
i=3

p+i ' −p+3 0 =
N∑
i=3

pi (4.1.8)

and the two-particle invariants in MRK become modulo (4.1.8)

sij = 2pi · pj ' p+i p
−
j i < j ≤ N (4.1.9)

From this, it is evident that all Mandelstam invariants made of k consecutive final state

momenta sii+1...i+k ' sii+k will be comparable in size, and much larger than invariants

made of k− 1 consecutive momenta. For the scale separation between s-like and t-like

variables, we use (4.1.3)-(4.1.7) and (4.1.8) to infer that q+i ' p+i+4, q−i ' −p−i+3 and therefore

−q+i q
−
i � p+i+3p

−
i+3 ' |qi|2. In other words, the qi are dominated by their transverse

components, q2i ' −|qi|2.

The analysis of MRK thus far only relied on Lorentz symmetry. We could also make use

of the dual conformal invariance and write the kinematical dependence of the amplitude

in terms of conformal cross ratios.

Uij ≡
x2i+1jx

2
ij+1

x2ijx
2
i+1j+1

pi = xi − xi−1 (4.1.10)

with indices cyclically identified, i + N ' i. As mentioned before there are 3N − 15 of

them in four dimensions and following ref. [92, 93], from the set of all the Uijkl we can

pick a particular algebraically independent set.

u1i =
x2i+1,i+5x

2
i+2,i+4

x2i+1,i+4x
2
i+2,i+5

u2i =
x2N,i+3x

2
1,i+2

x2N,i+2x
2
1,i+3

u3i =
x21 i+4x

2
2,i+3

x21,i+3x
2
2,i+4

(4.1.11)

The three conformally invariant cross ratios (u1i, u2i, u3i) of (4.1.11) can be associated to

the t-channel invariants (4.1.7), which have transverse momentum |qi|2 [92,93]. In MRK

these cross ratios take the form

u1i = 1− δi
|ki + ki+1|2

|ki+1|2
+O(δ2i )

u2i = δi
|qi−1|2

|qi|2
+O(δ2i )

u3i = δi
|qi+1|2 |ki|2

|qi|2 |ki+1|2
+O(δ2i )

(4.1.12)

where ki ≡ pi+3, 1 ≤ i ≤ N − 4, denote the momenta of the gluons emitted along the

t-channel ladder, and we define the ratio δi ≡ k+i+1/k
+
i . From (4.1.3) it is evident that in

MRK we have δi → 0, and so we see that all the u1i tend to 1 at the same speed as the u2i
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Figure 4.1.1: The dual coordinates in the transverse space. Dashed lines indicate the for-
ward momenta with zero transverse momentum, which are strictly speaking absent in
the transverse momentum space because they are orthogonal to it.

and u3i vanish. It is convenient to define the reduced cross ratios [92,93]

ũ2i =
u2i

1− u1i
=

|qi−1|2 |ki+1|2

|qi|2 |ki + ki+1|2
+O(δi)

ũ3i =
u3i

1− u1i
=

|qi+1|2 |ki|2

|qi|2 |ki + ki+1|2
+O(δi)

(4.1.13)

We now introduce dual coordinates in the transverse space CP1 by (see Fig. 4.1.1)

qi = xi+2 − x1 and ki = xi+2 − xi+1 (4.1.14)

The reduced cross ratios ũ2i and ũ3i can then be written as (squares of) cross ratios in

CP1,

ũ2i ' |ξ2i|2 and ũ3i ' |ξ3i|2 (4.1.15)

with

ξ2i =
(x1 − xi+1) (xi+3 − xi+2)

(x1 − xi+2) (xi+3 − xi+1)
and ξ3i =

(x1 − xi+3) (xi+2 − xi+1)

(x1 − xi+2) (xi+3 − xi+1)
(4.1.16)

It is easy to check that

ξi ≡ ξ2i = 1− ξ3i (4.1.17)

We also introduce the transverse cross ratios

zi ≡ 1− 1

ξi
=

(x1 − xi+3) (xi+2 − xi+1)

(x1 − xi+1) (xi+2 − xi+3)
= − qi+1 ki

qi−1 ki+1
(4.1.18)

In the literature it is customary to use the variables wi ≡ −zi.

It is easy to see from Fig. 4.1.1 that the MRK setup has a naturalZ2 symmetry, called target-

projectile symmetry [92, 93], which acts by reflecting all the points along the horizontal
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symmetry axis. This symmetry acts on the points xi via

xi 7→
{

x1 if i = 1

xN−i if 2 ≤ i ≤ N − 2
(4.1.19)

On the cross ratios zi target-projectile symmetry acts by

zi 7→ 1/zN−4−i (4.1.20)

4.1.1 Scattering amplitudes and cluster algebras

Figure 4.1.2: The A-coordinates for the initial quiver for Gr(4, N) with frozen nodes in
boxes.

As we have seen in previous sections, the kinematics of scattering amplitudes in planar

N = 4 SYM are naturally encoded through a configuration of N momentum twistors in

three-dimensional projective space CP3. As momentum twistors are free variables, we

can describe the kinematics of colour-ordered partial amplitudes by a configuration of

N points in CP3 [10]. We denote the set of all such configurations by

ConfN (CP3) ' Gr(4, N)/(C∗)N−1 (4.1.21)

Naturally associated to the spaces ConfN (CP3) are cluster algebra structures [8,9,94–96],

which play a role in describing the singularity structure of scattering amplitudes or light-

like Wilson loops in planar N = 4 SYM theory [10]. The A-coordinates of the cluster al-

gebras are homogeneous polynomials in the Plücker coordinates 〈ijkl〉. For the cluster

algebras associated to Gr(4, N) one defines an initial cluster given by the quiver diagram

in Fig. 4.1.2. Other clusters are obtained by a repeated process called mutation. The A-

coordinates in the initial cluster are given by certain Plücker coordinates. The nodes

in boxes are called frozen nodes and the others are called unfrozen. For each unfrozen

node one can formX -coordinates by taking the product of allA-coordinates connected

by incoming arrows and dividing by the product of all A-coordinates connected by out-

going ones. We label the X -coordinates as Xij for i = 1, 2, 3 and j = 1, . . . , N −5 follow-
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Figure 4.1.3: The X -coordinates for the initial quiver for Gr(4, N).

ing the obvious structure of Fig. 4.1.3. Explicitly, they are given by

X1j =
〈1 2 3 j + 3〉〈1 2 j + 4 j + 5〉
〈1 2 3 j + 5〉〈1 2 j + 3 j + 4〉

X2j =
〈1 2 3 j + 4〉〈1 2 j + 2 j + 3〉〈1 j + 3 j + 4 j + 5〉
〈1 2 3 j + 3〉〈1 2 j + 4 j + 5〉〈1 j + 2 j + 3 j + 4〉

X3j =
〈1 2 j + 3 j + 4〉〈1 j + 1 j + 2 j + 3〉〈j + 2 j + 3 j + 4 j + 5〉
〈1 2 j + 2 j + 3〉〈1 j + 3 j + 4 j + 5〉〈j + 1 j + 2 j + 3 j + 4〉

(4.1.22)

The X -coordinates of any given cluster, in particular the initial one outlined above, form

a complete set of coordinates for the kinematical dependence of the scattering ampli-

tude or Wilson loop.

In the remainder of this section we show that there is a very natural geometrical inter-

pretation of MRK in terms of momentum twistors. More precisely, we will show that the

dual conformal invariance of planar N = 4 SYM implies that the multi-Regge limit de-

fined in (4.1.3) is conformally equivalent to the strongly-ordered multi-soft limit where

the momenta pi, 3 ≤ i ≤ N − 3, are soft, with pi softer than pi+1.

Before proving the connection between the multi-Regge and soft limits, let us discuss

in more detail how to take a single soft limit in momentum twistor space. In terms of

dual coordinates, the momentum pi+1 is soft if the points xi and xi+1 coincide. As the

points xi correspond to lines in momentum twistor space, the soft limit corresponds

to taking the twistor Zi to lie on the line between Zi−1 and Zi+1. This limit leaves two

degrees of freedom from the three associated to Zi. The remaining degrees of freedom

can be thought of (using real twistor space as an analogy) as the distance along the line

between Zi−1 and Zi+1 and the angle of approach to the line in which the limit is taken.

More generally, let us consider a limit where the twistorZi approaches the line between

Zj and Zk . We parametrise this situation as follows

Zi → Ẑi = Zj+αi
〈j j−1 k+1 k+2〉
〈k j−1 k+1 k+2〉Zk+εi

〈j k k+1 k+2〉
〈j−1 k k+1 k+2〉Zj−1−εiβi 〈j j−1 k k+2〉

〈k+1 j−1 k k+2〉Zk+1 (4.1.23)

and the limit where Zi, Zj and Zk are aligned corresponds to the limit εi → 0. The

existence of the last two terms in (4.1.23) ensures that x2i−1i+1, x
2
ii+2 ∼ εi as we approach
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Figure 4.1.4: Diagrammatic representation of the Mandelstam region [p, q]. The discon-
tinuity in the (kp + . . .+ kq)

2 channel is indicated by the dashed line.

the limit, as can be shown from (2.2.59) with the canonical choice of infinity twistor.

The multi-soft limit we wish to consider is one where we sequentially take the momenta

pi, 3 ≤ i ≤ N − 3, to be soft. This corresponds to taking twistor Z2 to the line (Z1Z3),

then Z3 to the line (Z1Z4) and so on. This limit reproduces the behaviour of the cross

ratios (4.1.11) described in the previous section

u1i → 1 u2i → 0 u3i → 0 (4.1.24)

i.e., the cross ratios behave in the same way as in MRK, cf. (4.1.3). This is, however, still

insufficient to conclude that this multi-soft limit is equivalent to MRK, and we still need

to show that the cross ratios approach their limiting values at the same speed. Equiva-

lently, we need to show that the reduced cross ratios (4.1.13) are finite in the limit. This

is indeed the case, and we find

ũ2i =
u2i

1− u1i
→ αi+1βi+1

(1 + αi+1)(1 + βi+1)

ũ3i =
u3i

1− u1i
→ 1

(1 + αi+1)(1 + βi+1)

(4.1.25)

Hence, we conclude that this particular multi-soft limit is conformally equivalent to the

multi-Regge limit. Comparing (4.1.25) to (4.1.15) and (4.1.18), we see that we can identify

the parameters αi+1 and βi+1 that describe the reduced cross ratios in the multi-soft

limit with the CP1 cross ratio that appear in MRK

αi+1 = −1/zi and βi+1 = −1/z̄i (4.1.26)

4.1.2 Planar SYM amplitudes in multi-Regge kinematics

So far all the considerations were purely kinematical. In this section we present the (con-

jectural) representation of an amplitude in MRK to leading logarithmic accuracy (LLA).

Helicity must be conserved by the gluons going very forward, so that the different he-

licity configurations are distinguished only by the helicities of the gluons emitted along
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the ladder. Denoting these helicities by h1, . . . , hN−4, we define the ratio

eiΦh1,...,hN−4 Rh1,...,hN−4
≡
[
AN (−,+, h1, . . . , hN−4,+,−)

ABDS
N (−,+, . . . ,+,−)

]
|MRK, LLA

(4.1.27)

where AN (−,+, h1, . . . , hN−4,+,−) is the (colour-ordered) amplitude for the produc-

tion of N − 4 gluons emitted along the ladder, and ABDS
N (−,+, . . . ,+,−) is the corre-

sponding BDS amplitude. The function Rh1,...,hN−4
is finite, and thus dual conformally

invariant. It can easily be related to the well-known remainder and ratio functions. Since

Regge factorisation holds in the Euclidean region, the ratio in the left-hand side of (4.1.27)

tends to a phase in this region. The exact form of this phase is immaterial in the follow-

ing, because it is simply obtained as the ratio of the corresponding tree amplitudes [97].

We normalise the left-hand side of (4.1.27) such that Rh1,...,hN−4
= 1 in the Euclidean

region.

If we take a discontinuity corresponding to a consecutive subset of final-state momenta

kl, l ∈ [p, q] ⊆ {1, . . . , N − 4}, i.e., a discontinuity with respect to the invariant (kp +

. . . + kq)
2, then Rh1,...,hN−4

is no longer trivial due to the presence of a Regge cut (see

Fig. 4.1.4) [93,98–105]. In terms of the dual conformal cross ratios taking this discontinu-

ity corresponds to analytically continuing Upq+2 around the origin while all other cross

ratios Uij are held fixed. In the following we denote the value of the ratio Rh1,...,hN−4
in

this so-called Mandelstam region [p, q] by R[p,q]
h1,...,hN−4

. We conjecture that R[p,q]
h1,...,hN−4

in

MRK to LLA can be cast in the form of a multiple Fourier-Mellin integral

R[p,q]
h1...hN−4

({τk, zk}p≤k≤q−1) =1 + a iπ r[p,q],(1)

+ a iπ (−1)q−pF [p,q]

χp
q−2∏
k=p

Ck

χq̄ τ
[p,q]

 (4.1.28)

Where the multiple (inverse) Fourier-Mellin transform F [p,q] of a function F ({νk, nk}) is

defined as

f({zk}) = F [p,q][F ({νk, nk})] =
q−1∏
k=p

+∞∑
nk=−∞

(
zk
z̄k

)nk/2 ∫ +∞

−∞

dνk
2π

|zk|2iνkF ({νk, nk})

(4.1.29)

The remaining quantities in (4.1.28) are as follows

τ [p,q] = −1 +

q−1∏
k=p

τ
aEνknk
k (4.1.30)

We define τk ≡ √
u2ku3k , and a is the ’t Hooft coupling. To LLA, the value of τk is inde-

pendent of k, but we prefer to keep the τk different for reasons that will become clear in

subsequent sections. The one-loop coefficients r[p,q],(1) receive contributions from both
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the Regge pole and cut. They are sums of logarithms whose functional form is irrelevant

for the remainder of this chapter. Eνn is the leading-order (LO) BFKL eigenvalue,

Eνn = −1

2

|n|
ν2 + n2

2

+ ψ

(
1 + iν +

|n|
2

)
+ ψ

(
1− iν +

|n|
2

)
− 2ψ(1) (4.1.31)

and χh(ν, n) is the LO impact factor [98,99]

χp = χhp(νp, np)

χq̄ = χ−hq(νq−1, nq−1)

χ±(ν, n) =
1

iν ± n
2

=
[
χ∓(−ν,−n)

]∗
(4.1.32)

The central emission block Ck = C+(νk, nk, νk+1, nk+1) for the emission of a positive-

helicity gluon is [102]

C+(νk, nk, νk+1, nk+1) =
Γ(1− iνk − nk

2 ) Γ(iνk+1 +
nk+1

2 ) Γ(i(νk − νk+1) +
nk+1−nk

2 )

Γ(1 + iνk − nk
2 ) Γ(−iνk+1 +

nk+1

2 ) Γ(1− i(νk − νk+1) +
nk+1−nk

2 )

(4.1.33)

Conversely for the emission of a negative-helicity gluon it takes the form

C−(ν, n, µ,m) = [C+(−ν,−n,−µ,−m)]∗ = C+(ν,−n, µ,−m) (4.1.34)

The (inverse) Fourier-Mellin integral transform (4.1.28) is invertible and, focusing on the

single variable case, its inverse is given by

F−1[f(z)] =

∫
d2z

π
z−1−iν−n/2 z̄−1−iν+n/2 f(z) (4.1.35)

with the usual metric on the complex plane

d2z = −dz ∧ dz̄
2i

= dx ∧ dy = r dr ∧ dϕ for z = x+ iy = reiϕ (4.1.36)

The Fourier-Mellin transform has the property that it maps ordinary products into con-

volutions. More precisely, if F [F ] = f and F [G] = g, then

F [F ·G] = F [F ] ∗ F [G] = f ∗ g (4.1.37)

where the convolution is defined by

(f ∗ g)(z) =
1

π

∫
d2w

|w|2
f(w) g

( z
w

)
(4.1.38)

A proof of the convolution theorem for the Fourier-Mellin transform is given in Ap-
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pendix A of [38]. It is easy to see that the convolution product is associative and com-

mutative, and the distribution π δ(2)(1− z) is a neutral element.

In order to fully define the expression forR[p,q]
h1,...,hN−4

in (4.1.28) we must specify the con-

tours of integration. The integrals over the νk are taken along the real νk-axes, however

the quantities χ and C have poles on the real axes for certain values of the nk. Our con-

tour prescription for avoiding these poles is as follows. For np = 0 we replace

χhp(νp, 0) →
1

iνp − ε
(4.1.39)

For nk−1 = nk we find that C(νk−1, nk−1, νk, nk) exhibits a pole at νk−1 = νk , as can be

seen by inspecting the third factor in the numerator of (4.1.33). We avoid this pole by

replacing it as follows
1

i(νk−1 − νk)
→ 1

i(νk−1 − νk) + ε
(4.1.40)

For nq−1 = 0 we replace

χ−hq−1(νq−1, 0) →
1

iνq−1 + ε
(4.1.41)

In all cases we take ε to be an infinitesimal positive number.

The effect of the replacement (4.1.39) is to shift the pole from χhp(νp, 0) slightly into the

lower half νp plane. The shift (4.1.40) means the pole is slightly shifted into the upper half

νk−1 plane (or the lower half νk plane). Finally the shift (4.1.41) takes the pole slightly into

the upper half νq−1 plane.

We conclude this section by quoting some properties of the Fourier-Mellin space func-

tions that enter (4.1.28). For nk = 0, the BFKL eigenvalue and the central emission block

have the following properties [85,87,91, 106–109]

lim
ν→0

Eν0 = 0 (4.1.42)

lim
ν→0

C±(ν, 0, µ,m) = χ±(µ,m) (4.1.43)

lim
µ→0

C±(ν, n, µ, 0) = −χ∓(ν, n) (4.1.44)

Resν=µC
±(ν, n, µ, n) = (−1)n i (4.1.45)

Note that Eν0 vanishes quadratically as ν → 0 due to its symmetry under ν ↔ −ν. As we

will see shortly, the above relations guarantee that (4.1.28) has the correct soft behaviour.

In order to prove the last relation (4.1.45), we need the following identity

sinπ(n2 + iν)

sinπ(n2 − iν)
= (−1)n+1 n ∈ Z (4.1.46)
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In order to show this identity, let us define

Sn =
sinπ(n2 + iν)

sinπ(n2 − iν)
(4.1.47)

Obviously, S0 = −1 and S1 = 1. Moreover, Sn satisfies a recursion of order two

Sn+2 =
sin
[
π + π(n2 + iν)

]
sin
[
π + π(n2 − iν)

] = sinπ(n2 + iν)

sinπ(n2 − iν)
= Sn (4.1.48)

Hence, Sn = (−1)n+1. Finally, we note the following relation between the central emis-

sion block and the impact factor

C−(ν, n, µ,m)

C+(ν, n, µ,m)
=
χ+(ν, n)χ−(µ,m)

χ−(ν, n)χ+(µ,m)
(4.1.49)

Equation (4.1.28) reproduces the known Fourier-Mellin representation of the six-point

MHV and NMHV amplitudes in MRK to LLA [98,99,102], and also of the seven-point MHV

amplitude to LLA [102]. In [38] further support to the conjecture was given by showing

that it is consistent with target-projectile symmetry and with the factorisation of the

amplitude in infrared limits. Due to the strong ordering in the rapidities (or equivalently,

in the (+-) lightcone coordinates), there are no collinear singularities. All the singularities

of an amplitude in MRK can therefore be associated to some final-state partons being

soft. Indeed an amplitude in MRK has soft singularities only in the limits where one of

the momenta ki, 1 ≤ i ≤ N − 4, vanishes. More concretely, in terms of the transverse

cross ratios in MRK, the limits and their effect upon R are described by

z1 → 0 : Rh1...(τ1, z1, . . . , τN−5, zN−5) → Rh2...(τ2, z2, . . . , τN−5, zN−5)

zi → 0 , zi−1zi fixed : R...hi...(. . . , τi−1, zi−1, τi, zi, . . .) → R...ĥi...
(. . . , τi−1τi,−zi−1zi, . . .)

zN−5 → ∞ : R...hN−4
(τ1, z1, . . . , τN−5, zN−5) → R...hN−5

(τ1, z1, . . . , τN−6, zN−6)

(4.1.50)

Furthermore these limits have their analogues in the Fourier-Mellin space and it turns

out that the prescribed contours are precisely the ones required to ensure that the con-

jectured form reproduces the soft limit behaviour. Similarly by considering how the

variables zi and τi behave under target-projectile symmetry it is possible to show that

the conjecture is consistent with the behaviour of Rh1,...,hN−4
.

Finally the function R[p,q]
h1,...,hN−4

is identical to the ratio where all the gluons not present

in the discontinuity [p, q] have been removed. In other words, if we know the results for

the Mandelstam regions [1, N − 4], then we can reconstruct all other cases. Hence, in

the following we only discuss this particular case, and we simply write Rh1,...,hN−4
for

R[1,N−4]
h1,...,hN−4

.
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4.1.3 Perturbative expansion of the ratio Rh1,...,hN−4

So far all the considerations were made before the perturbative expansion of the func-

tion Rh1,...,hN−4
. If we expand the integrand in (4.1.28) perturbatively, then at each order

we obtain logarithms of τk . The coefficients of these logarithms are the main objects of

interest in the rest of this chapter. We write the perturbative expansion of the function

Rh1,...,hN−4
as

Rh1,...,hN−4
(τ1, z1, . . . , τN−5, zN−5) = 1 + a iπ r

(1)
h1,...,hN−4

+ 2πi

∞∑
i=2

∑
i1+...+iN−5=i−1

ai

(
N−5∏
k=1

1

ik!
logik τk

)
g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5)
(4.1.51)

The perturbative coefficients are completelyknown forN = 6 for both MHVand NMHV [100,

101, 103, 110–112], and for all MHV amplitudes at two loops [102, 113, 114]. Comparing the

perturbative expansion to (4.1.28), we see that the perturbative coefficients admit a Fourier-

Mellin transform representation

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) =
(−1)N+1

2
F [1,N−4]

[
χ1

(
N−6∏
k=1

Ck

)
χN−5

N−5∏
k=1

Eikνknk

]
(4.1.52)

The poles on the real axis are dealt with by the prescription already outlined in (4.1.39) -

(4.1.41).

The symmetries of the ratio Rh1,...,hN−4
induce similar symmetries on the perturbative

coefficients,

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = g
(i1,...,iN−5)
−h1,...,−hN−4

(z̄1, . . . , z̄N−5)

= g
(iN−5,...,i1)
−hN−4,...,−h1

(
1

zN−5
, . . . ,

1

z1

) (4.1.53)

In the soft limits, the perturbative coefficients must reduce to lower-point functions.

The limits where either k1 or kN−4 vanish are easy to describe: the perturbative co-

efficients reduce to the corresponding coefficients with the soft momentum removed,

except if the corresponding large logarithm is present, in which case the perturbative

coefficient vanishes in the limit. More precisely

lim
z1→0

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = δi10 g
(i2,...,iN−5)
h2,...,hN−4

(z2, . . . , zN−5)

lim
zN−5→∞

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5) = δiN−50 g
(i1,...,iN−6)
h1,...,hN−5

(z1, . . . , zN−6)
(4.1.54)
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If kj , with j /∈ {1, N − 4} is soft, then the perturbative coefficients behave like

lim
(zj−1,zj)→(∞,0)
zj−1zj fixed

g
(i1,...,iN−5)
h1,...,hN−4

(z1, . . . , zN−5)

= g
(i1,...,ij−1+ij ,...,iN−5)

h1,...,ĥj ,...,hN−4
(z1, . . . ,−zj−1zj , . . . , zN−5)

(4.1.55)

Indeed, we have

lim
kj→0

Rh1,...,hN−4
(τ1, z1, . . . , τN−5, zN−5) (4.1.56)

= 2πi

∞∑
i=2

∑
i1+...+iN−5=i−1

ai

(
N−5∏
k=1

1

ik!
logik τk

)
g
(i1,...,ij−1+ij ,...,iN−5)

h1,...,ĥj ,...,hN−4

= 2πi
∞∑
i=2

∑
i1+...+i′+...+iN−5=i−1

∑
ij−1+ij=i′

ai

(
N−5∏
k=1

1

ik!
logik τk

)
g
(i1,...,i′,...,iN−5)

h1,...,ĥj ,...,hN−4

= 2πi

∞∑
i=2

∑
i1+...+i′+...+iN−5=i−1

ai
1

i′!
logi′(τj−1τj)

 N−5∏
k=1

k/∈{j−1,j}

1

ik!
logik τk

 g
(i1,...,i′,...,iN−5)

h1,...,ĥj ,...,hN−4

(4.1.57)

where the last step follows from the binomial theorem

∑
ij−1+ij=i′

1

ij−1!ij !
logij−1 τj−1 logij τj =

1

i′!
logi′(τj−1τj) (4.1.58)

See [38] for a more in-depth discussion of soft limits.

4.2 MRK and the moduli space of genus zero curveswith marked

points

In this section we argue that it is possible to describe the space of functions of scatter-

ing amplitudes in planar N = 4 SYM in MRK. We start by noting that in MRK the only

non-trivial functional dependence is through the transverse momenta. In the previ-

ous section we have seen that the kinematics in the transverse space are described by

n ≡ N − 2 dual coordinates xi. Hence, in the multi-Regge limit the kinematics are de-

scribed by a configuration of (N − 2) points in CP1. The space of such configurations is

equivalent to the moduli space of genus zero curves with (N − 2) marked points

ConfN−2(CP1) ' M0,N−2 (4.2.1)

In Section 4.1.1 we have seen that the cluster algebra attached to the configuration space

describing the kinematics of an amplitude is related to the singularities of the amplitude.
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From the previous discussion it is thus natural to expect that amplitudes in planarN = 4

SYM in MRK can be expressed in terms of iterated integrals on M0,N−2. We now show

that this is indeed the case. More precisely, we show that the cluster algebra associated

to ConfN (CP3) in full kinematics reduces to the cluster algebra of M0,N−2.

4.2.1 MRK and the moduli space M0,N−2

We start from the duality between MRK and multi-soft limits discussed in Section 4.1.1.

We insert the parametrisation of eq. (4.1.23) into the cluster X -coordinates of eq. (4.1.22)

and we take the limit εi → 0. We see that all X -coordinates of the form X2j vanish in the

limit, while the others reduce to either holomorphic or anti-holomorphic cross ratios in

CP1

X1j =
(x2 − xj+2)(xj+3 − xj+4)

(x2 − xj+4)(xj+2 − xj+3)
X2j = 0 X3j =

(x1 − xj+1)(xj+2 − xj+3)

(x1 − xj+3)(xj+1 − xj+2)
(4.2.2)

We see that the X -coordinates are singular when two points xi coincide, which is pre-

cisely the singularity structure of the moduli space M0,N−2. However, we have ob-

tained two copies of points, a holomorphic and an anti-holomorphic one. This can

be understood from the cluster algebra in Fig. 4.1.3. Indeed, in the multi-Regge limit

the middle line in the quiver vanishes, and so the cluster algebra splits into two dis-

connected parts, one which only depends on holomorphic variables and the other one

only on anti-holomorphic variables. Each of these two parts is isomorphic to the clus-

ter algebra AN−5, which is the cluster algebra that describes the singularity structure

of ConfN−2(CP1) ' M0,N−2. Hence, we conclude that in MRK the cluster algebra of

ConfN (CP3) reduces to the cluster algebra AN−5 × AN−5, and the two copies of AN−5

are complex conjugate to each other in the case of real 2-to-(N−2) scattering. As a con-

sequence, we expect that planar scattering amplitudes in N = 4 SYM in MRK can be ex-

pressed through iterated integrals with singularities precisely when the X -coordinates

in eq. (4.2.2) are singular, i.e., iterated integrals over integrable words made out of the

one-forms d log(xi − xj) (and their complex conjugates). Note that scattering ampli-

tudes in MRK are singular whenever one of the final-state gluons is soft, ki → 0, which

happens precisely when xi = xi+1, 2 ≤ i ≤ N − 4. It is remarkable that the cluster

algebra in MRK is of finite type, independently of the number N of external particles.

Indeed, it is known that a cluster algebra is of finite type precisely if one of the quivers

that represent its seeds is a Dynkin diagram [9]. The cluster algebras associated to the six

and seven-point amplitudes are of finite type (the corresponding Dynkin diagrams are

A3 andE6), but starting fromN = 8 the cluster algebra is infinite [10,94]. Remarkably, the

cluster algebra in general kinematics always reduces to a cluster algebra of finite type in

MRK.

Scattering amplitudes, however, cannot be arbitrary combinations of iterated integrals



4.2. MRK and the moduli space of genus zero curves with marked points 91

built on AN−5 ×AN−5, but the branch cuts of the amplitudes are constrained by physi-

cal considerations. In particular, massless scattering amplitudes can have branch points

at most when a Mandelstam invariant vanishes or becomes infinite, which puts strong

constraints on the first letter in the word defining the iterated integral1 [115]. Dual confor-

mal invariance implies that the first letter of the word must be a cross ratio d logUijkl. In

the Mandelstam region [p, q], however, integrability combined with the first entry con-

dition implies that on this Riemann sheet the branch points are determined by products

of cross ratios that become equal to 0, 1 or ∞. In other words, in a Mandelstam region

the first letter is either a cross ratio d logUijkl or d log(1 −
∏
ijkl U

nijkl

ijkl ). In the following

we show that this implies that in MRK the first entries are necessarily absolute values

squared of cross ratios in CP1.

To start, we note that there are N(N − 5)/2 multiplicatively independent cross ratios,

which we may choose as

u1i, u2i, u3i 1 ≤ i ≤ N − 5

Uij 2 ≤ i ≤ j − 4 ≤ N − 5 (4.2.3)

where these cross ratios have been defined in eq. (4.1.11). The multi-Regge limit of (u1i, u2i, u3i)

was already analysed in Section 4.1. Using the duality between MRK and the multi-soft

limit, it is easy to show that all the Uij tend to 1 in MRK. We introduce new reduced cross

ratios which have a finite multi-Regge limit

Ũij ≡
1− Uij∏j−4

k=i−1(1− u1k)
→

∣∣∣∣∣xi − xj−1

xi − xi+2

j−3∏
k=i+1

xk − xk+1

xk − xk+2

∣∣∣∣∣
2

(4.2.4)

From eq. (4.2.4) we see that all the Uij approach 1 at different speeds in the multi-soft

limit. Indeed, the multi-soft limit is approached sequentially according to ε2 � ε3 �
. . . � εN−4, where εi are the small parameters introduced in eq. (4.1.23). Since u1i =

1+O(εi+1), we see that Uij = 1+O(εi . . . εj−4), and so all the Uij approach 1 at a different

speed.

We now show that the first entries of the perturbative coefficients reduce to absolute

values squared of cross ratios in CP1 (up to logarithmically divergent terms that are ab-

sorbed into the definition of the τk). Let us first look at the case where the first letter

is d logUijkl. It is sufficient to analyse the multiplicatively independent cross ratios in

eq. (4.2.3). They all tend to 1, except for u2i and u3i, which we may exchange for the cor-

responding reduced cross ratios ũ2i and ũ3i. The latter reduce to absolute values squared

of cross ratios in CP1, see eq. (4.1.15).

1We note that this condition is independent of whether the iterated integral can be evaluated in terms
of multiple polylogarithms.
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Next, let us analyse the case of a letter of the type d log(1 −
∏
ijkl U

nijkl

ijkl ). It is sufficient

to assume that the factors in the product are taken from eq. (4.2.3). If one of the factors

goes to zero in MRK, then the claim is true, because we have for example

d log(1− un2i U) →

{
nd logu2i + d logU if n < 0

0 if n > 0
(4.2.5)

where U is any product of cross ratios that tend to 1 in MRK. If all the factors in the

product
∏
ijkl U

nijkl

ijkl tend to 1, then we know that one of the factors tends to one much

slower than the others. Hence, up to terms that are power-suppressed in MRK, we only

need to keep this factor. The claim then follows from eq. (4.2.4).

The previous discussion implies that the coefficients appearing in the perturbative ex-

pansion of scattering amplitudes in planar N = 4 SYM are iterated integrals with singu-

larities described by the cluster algebraAN−5×AN−5 and whose first letters are absolute

values squared of cross ratios. As the first entries describe the branch points of the func-

tion, we conclude that the perturbative coefficients have no branch cuts when seen as

functions of the complex points xi. In other words, these iterated integrals must define

single-valued functions on the moduli space of Riemann spheres with N − 2 marked

points. In the remainder of this section we review the theory of single-valued iterated

integrals on M0,N−2. We first discuss ordinary, not necessarily single-valued, iterated

integrals on M0,N−2, and we turn to the construction of their single-valued analogues at

the end of the section.

4.2.2 Coordinate systems on M0,n

In this section we review various coordinate systems on M0,n which are useful to study

iterated integrals and the multi-Regge limit. As a geometric space, we can describe M0,n

by configurations ofndistinct points on the Riemann sphere. We identify configurations

that are related by conformal transformations. AsSL(2,C)has complex dimension 3, we

immediately see that

dimCM0,n = n− 3 (4.2.6)

Roughly speaking, since M0,n is SL(2,C)-invariant, a system of coordinates is given by a

set of cross ratios formed out of the points xi. There is no global coordinate system on

M0,n. One such set of cross ratios is given by the cross ratios zi defined in eq. (4.1.18). We

will refer to these coordinates as Fourier-Mellin coordinates. These coordinates are well

suited to write down the Fourier-Mellin transforms that describe amplitudes in MRK.

These coordinates, however, are not ideal to describe the iterated integrals on M0,n.

In ref. [116] various local systems of coordinates are discussed that are well suited to

study iterated integrals on M0,n. A particularly simple set of local coordinates are the
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simplicial coordinates, obtained by using the SL(2,C) invariance to fix three of the n

points to 0, 1 and ∞, e.g.

(x1, . . . ,xn) → (0, 1,∞, t1, . . . , tn−3) with ti−3 =
(xi − x1)(x2 − x3)

(xi − x3)(x2 − x1)
4 ≤ i ≤ n (4.2.7)

Note that there are 6
(
n
3

)
= n(n − 1)(n − 2) different choices for simplicial coordinates,

depending on which three points we fix to (0, 1,∞). Using simplicial coordinates we can

describe M0,n (roughly speaking) as the space

{(t1, . . . , tn−3) ∈ Cn−3|ti 6= 0, 1 and ti 6= tj} (4.2.8)

While there is in principle no reason to prefer one particular choice of simplicial coor-

dinates over the other, some choices are more suited to MRK than others. In particular,

it is useful to choose the coordinates so that they transform nicely under the symme-

tries of the problem. In our case, we prefer to choose simplicial coordinates on which

target-projectile symmetry acts in a simple way. It is easy to check that the simplicial

coordinate systems with this property are defined by fixing the points (x1,xk,xN−k),

2 ≤ k ≤
⌈
N−1
2

⌉
. In addition, for N even the set of simplicial coordinates defined by

fixing (xN/2,xk,xN−k) also has this property.

There is one particularly nice choice of simplicial coordinates for which the two-loop

MHV amplitudes factorise into sums of six-point amplitudes [102, 113, 114]. They are de-

fined by

(x1, . . . ,xN−2) → (1, 0, ρ1, . . . , ρN−5,∞) (4.2.9)

We refer to these coordinates as simplicial MRK coordinates. From the previous discus-

sion it follows that simplicial MRK coordinates transform nicely under target projectile

symmetry

(ρ1, . . . , ρN−5) 7→ (1/ρN−5, . . . , 1/ρ1) (4.2.10)

Simplicial MRK coordinates are related to the Fourier-Mellin coordinates by

zi =
(ρi − ρi−1)(ρi+1 − 1)

(ρi − ρi+1)(ρi−1 − 1)
(4.2.11)

with ρ0 = 0 and ρN−4 = ∞. In these coordinates the two-loop MHV amplitude takes a

particularly simple form [102, 113]

g
(0,...,0,1,0,...,0)
+...+ (ρ1, . . . , ρN−5) =

1

4
log |1− ρk|2 log

∣∣∣∣1− 1

ρk

∣∣∣∣2 (4.2.12)

where k denotes the position of the 1 in (0, . . . , 0, 1, 0, . . . , 0). Finally, we point out that

soft limits are very easy to describe in simplicial MRK coordinates. In the limit where ki
is soft we have ρi−1 = ρi (with ρ0 = 0 and ρN−4 = ∞).
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There is another class of simplicial coordinates which will be important in the remain-

der of this paper. Let us start from the Fourier-Mellin coordinates, and let us single out

one of them, say zi. Then there is always a (non unique) set of simplicial coordinates

(t
(i)
1 , . . . , t

(i)
N−5) such that t(i)i = zi. Indeed, from eq. (4.1.18) we see that we can define

these coordinates by

(x1, . . . ,xN−2) → (∞, t
(i)
1 , . . . , t

(i)
i , 0, 1, . . . , t

(i)
N−5) (4.2.13)

We will refer to these simplicial coordinates as simplicial coordinates based at zi. They

do in general not possess any simple transformation properties under target-projectile

symmetry, but they will be essential in order to carry out all the Fourier-Mellin integra-

tions, because they ‘interpolate’ between the Fourier-Mellin and simplicial MRK coordi-

nates.

Sometimes it is helpful to describe the moduli space M0,n in projective terms. To do

so we can introduce n elements ri ∈ CP1, that is n two-component complex vectors

modulo non-zero complex scalings. We may return to the xi coordinates by making use

of the scalings so that ri = (1,xi). In the projective language SL(2,C) invariance means

that all quantities should be expressed in terms of the SL(2,C) invariant two-brackets

(ij) = εabr
a
i r
b
j (4.2.14)

where εab is the two-index antisymmetric tensor with ε12 = 1. Moreover, since we must

maintain the projective nature of the ri we must form only quantities which are homo-

geneous of degree zero. Such quantities are given by cross-ratios.

If we choose an ordering of our points (corresponding to the one induced by the colour

ordering of the scattering amplitude) we may introduce a particular set of cross-ratios,

the dihedral coordinates

vij =
(i j + 1)(i+ 1 j)

(ij)(i+ 1 j + 1)
=

(xi − xj+1)(xi+1 − xj)
(xi − xj)(xi+1 − xj+1)

(4.2.15)

where indices are treated modulo n and we have given both projective and coordinate-

fixed forms. Note that only (n− 3) of the vij are algebraically independent, since this is

the dimension of the moduli space M0,n. To continue, we pick a dihedral structure η on

M0,n, i.e. a cyclic ordering of the n points ri modulo reflections . In our case the points

xi, and hence also the ri, come with a natural dihedral structure induced by the colour

ordering and target projectile symmetry. We therefore assume from now on thatM0,n is

equipped with this particular dihedral structure, and we will often omit the dependence

on the choice of η explicitly. Dihedral coordinates will play an important role in the next

section when defining iterated integrals on M0,n. Moreover, they allow one to give a

nice geometric interpretation of real moduli space M0,n(R), which we describe in the
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remainder of this section.

In the real moduli space, the region of M0,n defined by 0 < vij < 1 describes the interior

of a Stasheff polytope or associahedron. The full real moduli space is tiled by n!/(2n)

such regions, each one corresponding to a different choice of dihedral structure η. The

codimension one faces of the polytope are each obtained by taking one of the vij to zero

(while maintaining 0 < vij < 1 for the others). One can then continue to codimension

two boundaries of the boundary face etc. This process can be continued all the way until

one reaches the codimension (n− 3) (i.e. dimension zero) vertices.

The combinatorics describing the various boundaries are such that each vertex V of the

Stasheff polytope is labelled by a triangulation TV of an n-sided polygon (which in our

case corresponds to the polygon formed by the dual coordinates xi in the natural order

induced by the color ordering, see Fig. 4.1.1), with the chords {i, j} ∈ TV defining the

triangulation given by the set of vij that are zero at the vertex V . The other vij are equal

to one at this vertex. This structure is described in detail in ref. [116] and we refer the

reader there for more details. Let us note however that two vertices V and V ′ which

are separated by a single edge correspond to two triangulations which differ by a single

chord. In other words, to obtain TV ′ from TV , one removes some chord {i, j} from

TV and replaces it with a crossing chord {k, l} such that the result is still a triangulation.

The projective and dihedral coordinates will be useful in the discussion of the Knizhnik-

Zamolodchikov equation on M0,n which follows.

4.2.3 Iterated integrals on M0,n

In this section we summarise the theory of iterated integrals on M0,n, before describ-

ing their single-valued analogues in the next section. A very helpful way to think about

iterated integrals on M0,n is to think of them as being described in terms of generating

functions which obey the Knizhnik-Zamolodchikov (KZ) equation [116]. The KZ equa-

tion on M0,n can be written in terms of the projective variables ri introduced above eq.

(4.2.14) as follows,

dL = ΩL Ω =
∑
i<j

Ωij Ωij = Xijd log(ij) (4.2.16)

Here the Xij are a collection of formal generators obeying

Xij = Xji Xii = 0
∑
i

Xij = 0 [Xij , Xkl] = 0 {i, j, k, l} distinct. (4.2.17)

The first two relations in eq. (4.2.17) are conventional, ensuring that there are as many

generators as there are one-forms d log(ij). The third relation ensures that the connec-

tionΩ is homogeneous under rescalings of the ri, so that it is indeed a connection on the
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moduli space of points in CP1. The final relation in eq. (4.2.17) completes a centre-free

presentation of the infinitesimal pure braid relations on the Xij and it ensures that the

connection Ω obeys

Ω ∧ Ω = 0 (4.2.18)

Since Ω also trivially obeys dΩ = 0, the condition (4.2.18) implies that the connection is

flat. We can consider solutions of eq. (4.2.16) which take the form,

L = 1 + higher-order terms in the Xij (4.2.19)

Such solutions are formal series in the generatorsXij , i.e., they are a sum over all words

in theXij of any length, modulo the relations (4.2.17). The coefficients of the independent

words are given by iterated integrals on M0,n, and hence the solutions L can be viewed

as generating functions of the class of An−3 cluster polylogarithms. Iterated integrals

form a shuffle algebra, and in the following we denote byBn the shuffle algebra over Q
of all iterated integrals on M0,n. As a vector space, Bn is generated by the coefficients of

the independent words in L.

The description of the KZ equation given in eq. (4.2.16) and (4.2.17) is manifestly invariant

under all permutations of the ri. In other words it did not depend on our initial choice of

ordering r1, . . . , rn. It will be useful however to present another description, presented

in detail in ref. [116], which manifests only a dihedral symmetry. The construction de-

pends on the choice of dihedral structure, and as before we choose the one induced by

the colour ordering. In terms of the dihedral coordinates vij the KZ equation takes the

form

dL = ΩL Ω =
∑
{i,j}

δij d log vij (4.2.20)

The sum is over all pairs {i, j} where the indices i and j are separated by at least two,

with all indices treated modulo n. We can identify a pair {i, j} with the corresponding

chord of the polygon built on the points ri, or equivalently xi (see Section 4.2.2). The

generators δij are related to the Xij via

Xij = δi j+1 + δi+1 j − δij − δi+1 j+1 (4.2.21)

and consequently obey

[δi j+1+δi+1 j−δij−δi+1 j+1, δk l+1+δk+1 l−δkl−δk+1 l+1] = 0 {i, j, k, l} distinct. (4.2.22)

We also define δii = δi i+1 = 0. Note that the above relations imply that two generators

δij and δkl commute if the chords {i, j} and {k, l} of the polygon do not intersect. This

implies in particular that all the δij associated to a triangulation, and hence to a vertex V
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of the Stasheff polytope, commute

[δij , δkl] = 0 {i, j}, {k, l} ∈ TV (4.2.23)

We may now define canonically normalised solutions LV to the KZ equation (4.2.20)

associated to each vertex V on the boundary of the polytope defining the positive region

such that LV is real-valued in the interior of the Stasheff polytope, i.e., where all vij obey

0 < vij < 1. The solution LV that we want is chosen to have the following behaviour in

a neighbourhood of V

LV = LV,an

( ∏
{i,j}∈TV

v
δij
ij

)
(4.2.24)

where LV,an is analytic in a neighbourhood of V . To linear order we have

LV = 1 +
∑
{i,j}

δij log vij + . . . (4.2.25)

The behaviour (4.2.25) is in fact independent of the choice of V , with the dependence on

V arising at quadratic and higher order. We may regardLV as a shuffle regularised path-

ordered exponential in the connection Ω. The coefficients of the independent words in

LV are again iterated integrals on M0,n. In fact, these coefficients simply provide an

alternative set of generators for the shuffle algebra Bn. Note that, although the set of

generators depends on the choice of the vertex V used to define the generating function

LV , the shuffle algebra Bn is independent of the vertex V .

Let us discuss how the generators obtained from different choices of V are related. In

analogy with the hyperlogarithm case, different solutions of the KZ equation associated

to different vertices V and V ′, are related by a parallel transport by a constant series

ΦV,V ′ ,

LV ′ = LV ΦV,V ′ (4.2.26)

Continuing the analogy, just likeZij of (3.4.5) theΦV,V ′ are associators. By considering the

case where two vertices are connected by a single edge on the boundary of the polytope

M0,n(R), we find that the constant series is given by the canonical Drinfeld associator,

given by a sum over shuffle regularised multiple-zeta values,

Φ(e0, e1) =
∑
w

w(−1)d(w)ζqq (w) (4.2.27)

where the sum is over all words w in two non-commuting generators e0 and e1 and

ζqq (w) is the shuffle regularised multiple zeta value labelled by the wordw. The quantity

d(w) is the number of e1 generators in the word w and is present in order to be coher-

ent with the usual definition of multiple zeta values. To complete the relation between
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LV and LV ′ we still need to determine the values of e0 and e1 that enter eq. (4.2.27). In

Section 4.2.2 we have seen that to every vertex V of the Stasheff polytope we can as-

sociate a triangulation TV of the polygon formed by the points xi, and the triangulation

associated to two vertices connected by a single edge differ by exactly one chord. Since

to every chord {i, j} we can associate a letter δij , we can determine the e0 and e1 from

the two chords by which the triangulations differ. More precisely, to move between two

adjacent vertices of the polytope we apply the associator Φ(δ, δ′) where the arguments

δ corresponds to the generators δij associated to the codimension one face being left

behind and δ′ corresponds δkl associated to the one being moved to. Note that since

these two faces do not intersect on the boundary of the Stasheff polytope, the two gen-

erators δ and δ′ will never commute. This corresponds precisely with the fact that one

obtains the triangulation TV ′ from TV by removing the chord {i, j} and replacing it with

a crossing chord {k, l}.

Iterated integrals are in general not single-valued. The monodromies of LV around the

singularities defined by vij = 0 for {i, j} ∈ TV immediately follow from the asymptotic

behaviour of eq. (4.2.24). If we denote the monodromy operator associated with the

singularity vij = 0 by Mij , we have

MijLV = LV e
2πiδij {i, j} ∈ TV (4.2.28)

To compute the monodromies around another singularity, one first applies a parallel

transport from the vertex V to the vertex V ′ which sits on that singularity via eq. (4.2.26),

then performs the monodromy canonically according to the prescription (4.2.28), and

then parallel transports back again

MijLV = LV ΦV,V ′ e2πiδij ΦV ′,V (4.2.29)

This formula can be taken for all {i, j}. It reduces to (4.2.28) in the case where the vertex

already sits on the singularity labelled by {i, j} since in that case δij commutes withΦV,V ′

and

ΦV,V ′ ΦV ′,V = 1 (4.2.30)

In practice it is often useful to work with an explicit basis for the iterated integrals gen-

erated by solutions of the KZ equation. The basis we will use is given in terms of hyper-

logarithms. We can simply relate this to the previous description of the KZ equation and

its solutions as follows. We work in simplicial coordinates of the form

{x1,x2, . . . ,xn} = {∞, 0, 1, t1, . . . , tn−3} (4.2.31)
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The KZ connection on M0,n becomes

Ω(n) =
∑

4≤i≤n
[X2i d log ti−3 +X3i d log(1− ti−3)] +

∑
4≤i<j≤n

Xij d log(ti−3 − tj−3) (4.2.32)

where we have indicated the number n of marked points. We iteratively factorise solu-

tions of KZ in the form

Ln = FnLn−1 , (4.2.33)

where Ln−1 is a solution of KZ on M0,n−1

dLn−1 = Ω(n−1)Ln−1 (4.2.34)

and L3 ≡ 1. In other words we have a solution of the form

Ln = FnFn−1 . . . F4 (4.2.35)

Since Fn = Ln(Ln−1)
−1 we find that

dFn = dLn(Ln−1)
−1 + Lnd(Ln−1)

−1

= Ω(n)Fn − Ln(Ln−1)
−1Ω(n−1) (4.2.36)

From this it follows that Fn obeys a Picard-Fuchs type equation

dFn
dtn−3

=

(
X2n

tn−3
+

X3n

tn−3 − 1
+

n−1∑
i=4

Xin

tn−3 − ti−3

)
Fn (4.2.37)

We are interested in the solution of the above equation given by

Fn =
∑
w

wG(σ1, . . . , σ|w|; tn−3) (4.2.38)

Here the sum is over all words w ∈ 〈〈X2n, . . . , Xn−1n〉〉 and we denote the ‘weight’ or the

length of the word w by |w|. The variables σ1, . . . , σw are obtained from the word w by

the translation of generators Xin into letters defined by

X2n 7→ 0 X3n 7→ 1 Xin 7→ ti−3 for i ≥ 4 (4.2.39)

From the above discussion it is clear that the shuffle algebraBn has a recursive structure.

In particular, if we work in simplicial coordinates, this recursive structure reads

Bn ' Bn−1 ⊗Q L{0,1,t1,...,tn−4} (4.2.40)

where LΣ denotes the shuffle algebra of hyperlogarithms with singularities at σi ∈ Σ

(the σi are complex constants).
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The recursion starts with B3 ≡ Q (because we cannot form a cross ratio with three

points), and B4 is the algebra of harmonic polylogarithms with singularities at most at

0 and 1. In other words, if we fix an order on the simplicial coordinates ti, we can de-

scribeBn explicitly as linear combinations of hyperlogarithms with singularities at most

at tn−3 ∈ {0, 1, t1, . . . , tn−4}, and the coefficients in the linear combination are iterated

integrals on the moduli space M0,n−1. A vector-space basis for LΣ is simply given by all

hyperlogarithms, and so we can easily obtain a basis forBn.

We end this discussion by noting that there is an alternative way to construct a basis for

Bn. Since M0,n ' Gr(2, n), we can equally well describe Bn as the algebra of all An−3

cluster polylogarithms [117], and a basis for all An−3 cluster polylogarithms was given in

ref. [118].

4.2.4 Single-valued iterated integrals on M0,n

We have seen that scattering amplitudes in MRK can be expressed through single-valued

iterated integrals on M0,n. In this section we present different ways to construct these

functions. The strategy to construct single-valued iterated integrals on M0,n is to gener-

alise the results of ref. [82,83] from the Picard-Fuchs equation in the hyperlogarithm case

reviewed in the previous chapter to the KZ equation (4.2.16) on M0,n. In both cases the

construction of single-valued functions preserves the algebra structure. Hence, since it-

erated integrals onM0,n can always be written in terms of hyperlogarithms, as a byprod-

uct we find that both constructions give consistent results, and every single-valued iter-

ated integral on M0,n can be written in terms of single-valued hyperlogarithms. Finally,

inspired by ref. [84, 119], we present a purely algebraic way to define single-valued ana-

logues of hyperlogarithms.

4.2.4.1 Single-valued iterated integrals from a differential equation on M0,n

In this section we extend the construction of Section 3.4 to iterated integrals on M0,n.

Our goal will be to find single-valued solutions to the KZ equation (4.2.16) on M0,n To

construct a generating series of single-valued polylogarithms on M0,n we first take two

copies of the infinitesimal pure braid generators, δij and δ′ij , obeying the same relations

(4.2.22). We then have two copies of the KZ equation, one based on the δij with dihe-

dral coordinates vij and one based on the δ′ij with coordinates v̄ij respectively. We then

choose a vertex V and pick a solution LV , a formal series in the δij , and the correspond-

ing L̄′
V , a series in the δ′ij .

Now we consider

LV = LV
˜̄L′
V (4.2.41)

where the tilde operation means reversing all words in the δ′ij generators. Now if we
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impose that the v̄ij coordinates are the complex conjugates of the vij then we obtain the

following results for the general monodromy of LV

MijLV = LV ΦV,V ′ e2πiδij ΦV ′,V Φ̃′
V ′,V e

−2πiδ′ij Φ̃′
V,V ′

˜̄L′
V (4.2.42)

where V ′ is again some vertex which sits on the singularity denoted by the pair {i, j}.

Single valuedness means imposing that there is no such monodromy and hence we have

ΦV,V ′e2πiδijΦV ′,V Φ̃
′
V ′,V e

−2πiδ′ij Φ̃′
V,V ′ = 1. (4.2.43)

for all {i, j}. This provides exactly the right number of conditions to eliminate the δ′ij in

terms of the δij . For the {i, j} in the triangulation TV the relation (4.2.43) reduces simply

to

δ′ij = δij {i, j} ∈ TV (4.2.44)

for the other {i, j} it becomes

δ′ij = δij + higher order terms involving MZVs, {i, j} /∈ TV (4.2.45)

The series LV then becomes a generating series for all single-valued multiple poly-

logarithms on M0,n. Since it is real-valued inside the polytope M0,n(R) and it has no

monodromy, it is real valued everywhere in M0,n. Expanding LV over all words in the

δij modulo the pure braid relations (4.2.22) gives all the single-valued multiple polylog-

arithms as coefficients

LV =
∑
w

wLV,w (4.2.46)

The advantage of this construction is that it shows that the construction of single-valued

polylogarithms does not rely directly on the decomposition into hyperlogarithms. Since

both the generating series of single-valued hyperlogarithms and of single-valued iter-

ated integrals on M0,n satisfy the same holomorphic differential equation as their non-

single-valued analogues, we can repeat the very same argument given at the end of Sec-

tion 4.2.3 to conclude that the algebra BSV
n of single-valued iterated integrals on M0,n

has a recursive structure similar to the recursive structure of Bn (see eq. (4.2.40)). In

particular, working with a specific choice of simplicial coordinates, we have

BSV
n ' BSV

n−1 ⊗Q L
SV
{0,1,t1,...,tn−4} (4.2.47)

i.e., for a given choice of simplicial coordinates, every single-valued iterated integral on

M0,n can be written as a linear combination of products of single-valued hyperloga-

rithms.
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4.2.4.2 A purely algebraic approach to single-valued hyperlogarithms

So far we have seen that it is possible to define single-valued multiple polylogarithms,

and thus single-valued iterated integrals on M0,n, as solutions to a certain Picard-Fuchs

equation with trivial monodromy. While the construction of these solutions is algo-

rithmic, it can be desirable to have a purely combinatorial definition of single-valued

multiple polylogarithms that does not require any reference to any differential equation.

Inspired by ref. [84,119] we present in this section such a purely combinatorial definition.

We introduce a map s that only relies on the Hopf algebra structure of multiple poly-

logarithms, and we show that the resulting functions satisfy the Picard-Fuchs equation

of Section 3.4 and are single-valued. Hence, they must be identical to the single-valued

functions of Section 3.4.

Let us now show howwe can use the coproduct and the antipode to define single-valued

hyperlogarithms. We use the notation of Section 3.4 and we write LΣ for the shuffle

algebra of all hyperlogarithms with singularities in Σ, LΣ is its complex conjugate and

LΣLΣ ' LΣ ⊗ LΣ. Note that each of these algebras is actually a Hopf algebra for the

coproduct of MPLs Let us define a map

S̃ : LΣ → LΣ ; G(~a; z) 7→ (−1)|~a| S(G(~a; z)) (4.2.48)

whereS denotes the complex conjugate of the antipode. It is easy to check that S̃ inherits

many properties from S. In particular, it is an involution and it satisfies

S̃(a · b) = S̃(b) · S̃(a) and ∆S̃ = (S̃ ⊗ S̃)τ∆ (4.2.49)

Unlike the antipode, S̃ does not satisfy eq. (2.3.84). Rather, the equivalent equation for S̃

defines the single-valued map (see also ref. [84]),

s = µ(S̃ ⊗ id)∆ (4.2.50)

i.e., we claim that G(~a; z) = s(G(~a; z)) is the single-valued analogue of G(~a; z). Before

proving single-valuedness, let us discuss some of the properties of the single-valued

map s. Unlike the definition of the map sΣ of Section 3.4, the definition (4.2.50) is purely

combinatorial and does not depend on the set of singularities. It is easy to see that s is

Q-linear and that it preserves the multiplication

s(a · b) = s(a) · s(b) (4.2.51)

We stress at this point that s is only linearwith respect to rational numbers. In particular,

this means that s may act non-trivially on non-algebraic periods. Indeed, we have [84]

s(iπ) = 0 and s(ζn) = 2ζn for n odd (4.2.52)
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Let us denote by LSVΣ ⊂ LΣLΣ the image of LΣ under the map s. We use suggestively

the same notation as for the shuffle algebra of single-valued hyperlogarithms from Sec-

tion 3.4. While LΣ and LΣLΣ are Hopf algebras, the algebra LSVΣ is not a sub-Hopf al-

gebra of LΣLΣ, but the Hopf algebra structure on LΣLΣ turns LSVΣ into a graded LΣLΣ-

comodule, whose coaction agrees with the coproduct on LΣLΣ,

∆ : LSVΣ → LSVΣ ⊗ LΣLΣ (4.2.53)

Let us now show that G(~a; z) = s(G(~a; z)) is single-valued. Following Section 3.4 we

denote by MσG(~a; z) the result of analytically continuing G(~a; z) along a small loop (ori-

ented counterclockwise) encircling the singularity σ ∈ Σ (and no other singularity). In

order to show that G(~a; z) is single-valued, we need show that

MσG(~a; z) = G(~a; z) ∀σ ∈ Σ (4.2.54)

or equivalently

DiscσG(~a; z) = 0 ∀σ ∈ Σ (4.2.55)

where the discontinuity operator is Discσ = Mσ − id. The proof that G(~a; z) is single-

valued proceeds by induction in the weight. If |~a| = 1, we have

G(a; z) = G(a; z) + S̃(G(a; z)) = log
∣∣∣1− z

a

∣∣∣2 (4.2.56)

and this function is manifestly single-valued. Let us now assume that all functions G are

single-valued up to a certain weight n, and let us show that a function G(~a; z) of weight

n+1 is still single-valued. Since the discontinuity operator only acts in the first factor of

the coproduct, ∆Discσ = (Discσ ⊗ id)∆, the graded comodule structure of LSVΣ implies

that

∆Discσ(G(~a; z)) = (Discσ ⊗ id)∆(G(a; z)) = DiscσG(~a; z)⊗ 1 (4.2.57)

From eq. (2.3.84) we obtain

0 = µ(id ⊗ S)∆Discσ(G(~a; z)) = Discσ(G(~a; z)) · S(1) = Discσ(G(~a; z)) (4.2.58)

and so G(~a; z) is single-valued.

So far we have shown that s respects multiplication and that the resulting functions are

single-valued. We now show that the functions G(~a; z) agree with the single-valued re-

alisation ρSV of HLΣ, see Section 3.4. In order to see this we need to prove that the

single-valued map commutes with holomorphic differentiation

∂z s = s ∂z (4.2.59)
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This follows immediately from the fact that derivatives only act in the second factor of

the coproduct, ∆∂z = (id ⊗ ∂z)∆. We obtain

s ∂z = µ(S̃ ⊗ id)∆∂z = µ(S̃ ⊗ ∂z)∆ = ∂zs − µ(∂zS̃ ⊗ id)∆ (4.2.60)

where the last step follows from the Leibniz rule, ∂zµ = µ(∂z⊗id+id⊗∂z). The claim then

follows upon noting that S̃(G(~a; z)) is always anti-holomorphic, and so ∂zS̃ = 0. Hence,

we have shown that G(a,~b; z) andG(a,~b; z) behave in the same way under holomorphic

differentiation

∂z G(a,~b; z) =
1

z − a
G(~b; z) (4.2.61)

Moreover, it is easy to check that G(a,~b; z) vanishes as z → 0, and so the functions G(~a; z)
coincide with the single-valued realisation ofHLΣ defined in Section 3.4. Note, however,

that the single-valued map does not commute with anti-holomorphic derivatives, ∂̄zs 6=
(s∂z)∗.

Single-valued hyperlogarithms naturally have both anti-holomorphic and holomorphic

parts. Hence, they carry a natural action of complex conjugation. We can again decom-

pose a complex conjugated single-valued hyperlogarithm into standard single-valued

hyper-logarithms

G(~a; z̄) =
∑
~b

c
~a,~b

G(~b; z) (4.2.62)

Note that the fact that complex conjugation acts non-trivially on single-valued hyper-

logarithms (in the sense that the complex conjugate of a single-valued hyperlogarithm

is a linear combination of single-valued hyperlogarithms) is at the origin of why s does

not commute with anti-holomorphic derivatives. The action of complex conjugation

on single-valued hyperlogarithms is encoded in the map S̃. If s̄ denotes the complex

conjugate of s, we find

s̄ = s S̃ (4.2.63)

As an example, we have

G(ā, b̄; z̄) = s̄(G(a, b; z)) = G(b, a; z) + G(b; a)G(a; z)− G(a; b)G(b; z) (4.2.64)

In the same way, we can also easily compute anti-holomorphic derivatives, because we

can reduce the anti-holomorphic derivative to a holomorphic one via the map S̃. For

example, we find

∂̄zG(a, b; z) =
1

z̄ − ā
G(b; a) + 1

z̄ − b̄
(G(a; z)− G(a; b)) (4.2.65)

We conclude this section by commenting on functional equations for single-valued

hyperlogarithms. We can of course obtain functional equations by expressing single-
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valued hyperlogarithms in terms of ordinary hyperlogarithms, and then applying func-

tional equations to the latter. There is, however, a simplerway to obtain functional equa-

tions for single-valued hyperlogarithms: assume we are given a relation between ordi-

nary hyperlogarithms. We can then act with s on it, and we obtain a relation among

single-valued hyperlogarithms. Since the action of s is, essentially, to replace G by G,

we conclude that single-valued hyperlogarithms satisfy the same identities as ordinary

hyperlogarithms. Note that eq. (4.2.52) is crucial for this to work. Let us consider an

example to see how this works: we start from the following relation among ordinary

hyperlogarithms of weight three (valid on some branch for the logarithm)

G

(
0, 1, 1;

1

z

)
= −G(0, 0, 0; z) +G(0, 0, 1; z) +G(0, 1, 0; z)−G(0, 1, 1; z)

+ iπ [G(0, 0; z)−G(0, 1; z)] +
π2

2
G(0; z) + ζ3 −

iπ3

6

(4.2.66)

We can act on both sides with s, and we obtain

G
(
0, 1, 1;

1

z

)
= −G(0, 0, 0; z) + G(0, 0, 1; z) + G(0, 1, 0; z)− G(0, 1, 1; z) + 2ζ3 (4.2.67)

This is indeed a valid identity among single-valued hyperlogarithms. We stress the im-

portance of eq. (4.2.52) in order for this to be true.

4.3 MHV amplitudes in MRK

4.3.1 An invitation: the six-point MHV amplitude

In this section we apply the machinery of single-valued iterated integrals on M0,N−2 of

the previous section to the computation of scattering amplitudes in MRK to LLA.We start

by reviewing the six-point MHV amplitude in MRK, and we generalise the discussion to

more external legs and other helicity configurations in subsequent sections. Most of the

techniques introduced in this paper apply also beyond LLA, which we shall explore in

coming chapters.

Traditionally, scattering amplitudes in MRK are computed by closing the integration

contour in the Fourier-Mellin representation of the amplitude, eq. (4.1.28), and taking

residues at the poles of the integrand [100, 102, 110–112, 120]. In the case of the six-point

amplitude, the resulting multiple sums can all be performed in terms of polylogarithms

using standard techniques [121–125]. For amplitudes with more external legs, performing

the multiple sums, however, soon becomes prohibitive.

The goal of this section is to introduce a new way to compute, or rather to circumvent,

the Fourier-Mellin transform of eq. (4.1.28). The main idea is to use the convolution the-

orem (4.1.37) and to perform the computation directly in z-space, rather than evaluating
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the Fourier-Mellin transform explicitly. While in itself this idea is not new, performing

the convolution integral (4.1.38) requires the evaluation of some integral over the whole

complex plane, which seems a daunting task. We show that the fact that amplitudes in

MRK are single-valued functions on M0,N−2 reduces the computation to a simple ap-

plication of Stokes’ theorem.

In order to illustrate our method, we apply it in this section to the six-point MHV ampli-

tude. While the results of this section are not new (see for example ref. [110, 111]), we use

them to show all the steps that enter the computation. We start from eq. (4.1.52), and we

obtain a recursion for the coefficients to LLA

g
(l)
++(z) = −1

2
F
[
χ+(ν, n)Elνn χ

−(ν, n)
]
= g

(l−1)
++ (z) ∗ F [Eνn] (4.3.1)

We see that increasing the number of loops is equivalent to convoluting the lower loop

result with the Fourier-Mellin transform of the BFKL eigenvalue. In order to start the

recursion, we need to know g
(l)
++(z) analytically for some value of l. This can easily be

achieved by performing explicitly the Fourier-Mellin transform for l = 1 or l = 2, cf., e.g.,

ref. [110]

F
[
χ+(ν, n)χ−(ν, n)

]
= G1(z)−

1

2
G0(z)

F
[
χ+(ν, n)Eνn χ

−(ν, n)
]
=

1

2
G0,1(z) +

1

2
G1,0(z)− G1,1(z)

(4.3.2)

where we use the notation Ga1,...,aw(z) ≡ G(a1, . . . , aw; z). We also need the Fourier-

Mellin transform of the LO BFKL eigenvalue, which can easily be obtained by noting

that the functions χ±(ν, n) have a very simple interpretation in terms of Fourier-Mellin

transforms: they are related to derivatives in z-space

z ∂zF
[
χ+(ν, n)F (ν, n)

]
= F [F (ν, n)] (4.3.3)

A similar relation holds when replacing z by z̄ and χ+ by χ−. The Fourier-Mellin trans-

form of the LO BFKL eigenvalue is then given by

E(z) ≡ F [Eνn] = z z̄ ∂z ∂̄zF
[
χ+(ν, n)Eνn χ

−(ν, n)
]
= − z + z̄

2 |1− z|2
(4.3.4)

Next we discuss how we can evaluate the convolution integral. We assume for now

that in the multi-Regge limit we can express the amplitude to all loop orders in terms of

single-valued hyperlogarithms (This will be proven later in Section 4.5). In ref. [80] it was

shown that convolution integrals of this type can be computed using residues. To see

how this works, consider a function f(z) that consists of single-valued hyperlogarithms

and rational functions with singularities at z = ai and z = ∞. Close to any of these
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singularities, f can be expanded into a series of the form

f(z) =
∑
k,m,n

caik,m,n logk
∣∣∣∣1− z

ai

∣∣∣∣2 (z − ai)
m (z̄ − āi)

n z → ai

f(z) =
∑
k,m,n

c∞k,m,n logk 1

|z|2
1

zm
1

z̄n
z → ∞

(4.3.5)

The holomorphic residue of f at the point z = a is then defined as the coefficient of the

simple holomorphic pole without logarithmic singularities

Resz=af(z) ≡ ca0,−1,0 (4.3.6)

In ref. [80] it was shown that the integral of f over the whole complex plane, if it exists,

can be computed in terms of its holomorphic residues. More precisely, if F is an anti-

holomorphic primitive of f , ∂̄zF = f , then∫
d2z

π
f(z) = Resz=∞F (z)−

∑
i

Resz=aiF (z) (4.3.7)

This result is essentially an application of Stokes’ theorem to the punctured complex

plane. Note that the anti-holomorphic primitive is only defined up to an arbitrary holo-

morphic function. It was shown in ref. [83] that every single-valued hyperlogarithm has

a single-valued primitive, and the sum of residues is independent on the choice of the

primitive [80]. It is clear that we can repeat the previous argument by reversing the roles

of holomorphic and anti-holomorphic functions.

As a pedagogical example, let us illustrate how this works on the two-loop remainder

function in MRK. Using the convolution theorem, we can write

F
[
χ+(ν, n)Eνn χ

−(ν, n)
]
= F

[
χ+(ν, n)χ−(ν, n)

]
∗ E(z)

=

∫
d2w

π

[
1

2
G0(w)− G1(w)

]
w̄z + wz̄

2 |w|2 |w − z|2︸ ︷︷ ︸
=f(w)

(4.3.8)

First, we need to compute the anti-holomorphic primitive. Since

G0(w) = G0(w̄) and G1(w) = G1(w̄) (4.3.9)

and single-valued hyperlogarithms satisfy the same (holomorphic) differential equa-
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tions as their non-single-valued analogues, we obtain

F (w) =

∫
dw̄ f(w) =

1

2w (w − z)

∫
dw̄

[
1

2
G0(w̄)− G1(w̄)

]
w̄z + wz̄

w̄ (w̄ − z̄)

=
1

4(w − z)
[2G0,z(w)− 4G1,z(w)− G0,0(w) + 2G1,0(w)− 4G1(w)G0(z)

+4G1(w)G1(z) + 2G0(z)Gz(w)− 4G1(z)Gz(w)]

+
1

4w
[−G0,z(w) + 2G1,z(w) + 2G1(w)G0(z)− 2G1(w)G1(z)− G0(z)Gz(w)

+2G1(z)Gz(w)]

(4.3.10)

We anticipate, however, that for higher weights the relation between G~a(w) and G~a(w̄)
will not be as easy, but we have

G~a(w) =
∑
~b

c
~a,~b

G~b(w̄) (4.3.11)

We see that F (w) has potential poles at w = 0, w = z and w = ∞. It is easy to check that

the residue at w = 0 vanishes (because single-valued hyperlogarithms either vanish at

w = 0, or they have logarithmic singularities). The residue at w = z is easy to obtain

Resw=zF (w) = −1

4
G0,0(z)− G0,1(z)−

1

2
G1,0(z) + 2G1,1(z)− G1,z(z)

= −1

4
G0,0(z)−

1

2
G1,0(z) + G1,1(z)

(4.3.12)

where the last step follows from the identity

G1,z(z) = G1,1(z)− G0,1(z) (4.3.13)

Finally, the residue at infinity is obtained by letting w = 1/u (and including the corre-

sponding Jacobian) and expanding the result around u = 0. Note that we obtain single-

valued hyperlogarithms of the form G(~a; 1/u). In order to proceed, we need inversion

relations for single-valued hyperlogarithms, which may be obtained from the inversion

relations for ordinary hyperlogarithms and then acting with the single-valued map s. We

find

Resw=∞F (w) =
1

2
G0,1(z)−

1

4
G0,0(z) (4.3.14)

Hence

F
[
χ+(ν, n)Eνn χ

−(ν, n)
]
= Resw=∞F (w)− Resw=zF (w)

=
1

2
G0,1(z) +

1

2
G1,0(z)− G1,1(z)

(4.3.15)

which is indeed the correct result. This construction is of course not restricted to two

loops, but we can now start from the two-loop result we have just computed and obtain
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the three, and even higher, loop results by convoluting the two-loop result with the BFKL

eigenvalue E .

4.3.2 Higher-point MHV amplitudes and the factorisation theorem

The six-point example from the previous section shows that we can bypass the evalu-

ation of the Fourier-Mellin integrals and the multiple sums, and we can entirely work

with convolutions and Stokes’ theorem. This procedure can of course be extended to

amplitudes with more external legs in a straightforward way. In particular, we obtain

the recursion

g
(i1,...,ik+1,...,iN−5)
+...+ (z1, . . . , zN−5) = E(zk) ∗ g

(i1,...,iN−5)
+...+ (z1, . . . , zN−5) (4.3.16)

In the previous equation the convolution is carried out only over the variable zk , even

though this is not manifest in the notation. In general, it will always be clear which is

the variable that enters the convolution integral. The starting point of the recursion is

the two-loop MHV remainder function in MRK, which is known at LLA for an arbitrary

number N of external legs [102, 113], cf. eq. (4.2.12). While a direct evaluation of the

Fourier-Mellin transform in terms of multiple sums becomes prohibitive because the

number of sums increases with the number of external legs, the recursion (4.3.16) re-

quires the evaluation of a single convolution integral at every loop order, independently

of the number of external legs. This is one of the key properties why the convolution

integral combined with Stokes’ theorem gives rise to an efficient algorithm to compute

scattering amplitudes in MRK.

In practice, however, if we try to evaluate the convolution integral in terms of residues

as we have done for the six-point MHV amplitude, then we have to face a conundrum:

The convolution and the BFKL eigenvalue are naturally written in terms of the Fourier-

Mellin coordinate zk . The residues, however, are most easily computed in simplicial

coordinates, where the poles in g(i1,...,iN−5)
+...+ manifest themselves simply as points where

simplicial coordinates become equal to 0, 1,∞ or to each other. In general, the change

of variables from the Fourier-Mellin coordinates to simplicial coordinates is highly non-

linear, and will introduce complicated Jacobians. In addition, it will obscure the simple

form of the BFKL eigenvalue. This problem arises for the first time for seven points, be-

cause for the six-point amplitude the simplicial and Fourier-Mellin coordinate systems

coincide.

In some cases it is possible to identify a set of coordinates which share the good prop-

erties of the simplicial and Fourier-Mellin coordinates even at higher points. We have

seen in Section 4.2.2 that there is always a (non unique) system of simplicial coordinates

based at zk with the property that t(k)k = zk. This system of coordinates has already some

of the properties we want: it leaves the BFKL eigenvalue unchanged, because t(k)k = zk.
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However, the change of coordinates may introduce a non-trivial Jacobian, because in

general zk−2, zk−1 and zk will depend on the new integration variable t(k)k . There is, how-

ever, a special case where the Jacobian is trivial: If we perform a convolution with re-

spect to z1, and we change variables to simplicial coordinates based at z1, only z1 will

depend on t
(1)
1 , and so the Jacobian is 1. A similar argument can be made for zN−5, us-

ing a slightly different set of simplicial coordinates. Alternatively, we know that we can

exchange the roles of z1 and zN−5 using target-projectile symmetry, so it is sufficient to

consider z1. Hence, if we perform a convolution with respect to the first or last cross

ratio z1 or zN−5, we can find a set of simplicial coordinates with the right properties: it

leaves the BFKL eigenvalue unchanged, it has a unit Jacobian, and at the same time it ex-

poses all the singularities of g(i1,...,iN−5)
+...+ in a very simple form. The algorithm to evaluate

the recursion (4.3.16) for the first or last cross ratio is then clear: in order to perform the

convolution over z1, we change coordinates to the simplicial coordinates based at z1,

and we evaluate the integral in terms of residues. The change of coordinates requires

the use of functional equations among single-valued polylogarithms, which can be ob-

tained using the techniques described in Section 4.2.4.

While the previous considerations answer the question of how to perform convolutions

with respect to the first or last cross ratio, we still need to discuss the remaining cases.

In the following, we argue that all amplitudes can be constructed by convoluting over

the first or last cross ratio only. We only discuss from now on the case of z1; the case of

zN−5 is similar by target-projectile symmetry. The proof of this claim relies on a certain

factorisation theorem which we present in the following.

In order to state the factorisation theorem, it is useful to introduce the following graph-

ical representation for the perturbative coefficients,

g
(i1,...,iN−5)
h1...hN−4

(ρ1, . . . , ρN−5) = (4.3.17)

We work with the simplicial MRK coordinates ρk defined in Section 4.2.2. Every face of

the dual graph is associated with a point xk (cf. Fig 4.1.1), and we work in a coordinate

patch where (x1,x2,xN−2) = (1, 0,∞). Every outgoing line is labelled by its helicity

hk . In addition, to every face we do not only associate its coordinate ρk but also the

index ik . In the following we will not show the points 0, 1 and ∞ explicitly. Using this

graphical representation of the perturbative coefficients the factorisation theorem takes
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the simple form

= (4.3.18)

In other words, whenever the graph representing a perturbative coefficient contains a

face with index ib = 0 and the lines adjacent to this face have the same helicity, then

this perturbative coefficient is equal to the coefficient where this face has been deleted.

We stress that the factorisation theorem holds for arbitrary helicity configurations and

is not restricted to MHV amplitudes. The proof of the factorisation theorem for both the

MHV and NMHV cases may be found in [38].

In the MHV case, the factorisation theorem implies that we can drop all the faces labelled

by a zero,

g
(0,...,0,ia1 ,0,...,0,ia2 ,0,...,0,iak ,0,...,0)
+...+ (ρ1, . . . , ρN−5) = g

(ia1 ,ia2 ,...,iak )
+...+ (ρia1 , ρia2 , . . . , ρiak ) (4.3.19)

Let us discuss the implications of this result. First, eq. (4.3.19) implies that we can com-

pute all MHV amplitudes by performing convolutions over the left-most variable z1. In-

deed, assume that we know all MHV amplitude with up to N legs. Then we can write

g
(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(0,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5)

g
(2,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g

(1,i2,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= E(z1) ∗ E(z1) ∗ g
(i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5)

(4.3.20)

and so on. The amplitude in the right-hand side is a known lower-point amplitude. At

the beginning of this section we have argued that we can always easily perform con-

volutions over z1 by going to simplicial coordinates based at z1, because the change of

variable has unit Jacobian and leaves the BFKL eigenvalue unchanged. Hence, we con-

clude that every MHV amplitude can be recursively constructed in this way, and we have

thus obtained an efficient algorithm to compute scattering amplitudes in MRK.

Next, let us discuss the implications of the factorisation theorem for the structure of

MHV amplitudes. Indeed, since the sum of all indices is related to the loop number, we

see that for a fixed number of loops there is a maximal number of non-zero indices, and

so there is only a finite number of different perturbative coefficients at every loop order.

This generalises the factorisation observed for the two-loop MHV amplitude in MRK to

LLA [102, 113, 114]. Indeed, if all indices are zero except for one, say ia, then eq. (4.3.19)
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reduces to

g
(0,...,0,ia,0,...,0)
+...+ (ρ1, . . . , ρN−5) = g

(ia)
++ (ρa) (4.3.21)

and so at two loops the amplitude completely factorises, in agreement with ref. [102,113,

114],

R(2)
+...+ =

∑
1≤i≤N−5

log τi g(1)++(ρi) (4.3.22)

As anticipated in ref. [102], the amplitude does no longer factorise completely beyond

two loops. However, we find that at every loop order only a finite number of different

functions appear. For example, at three-loop order at most two indices are non-zero,

and so we have

R(3)
+...+ =

1

2

∑
1≤i≤N−5

log2 τi g(2)++(ρi) +
∑

1≤i<j≤N−5

log τi log τj g(1,1)+++(ρi, ρj) (4.3.23)

The only new function that appears at three loops that is not determined by the six-point

amplitude is g(1,1)+++, which is determined by the three-loop seven-point MHV amplitude.

At four loops we have

R(4)
+...+ =

1

6

∑
1≤i≤N−5

log3 τi g(3)++(ρi)

+
1

2

∑
1≤i<j≤N−5

[
log2 τi log τj g(2,1)+++(ρi, ρj) + log τi log2 τj g(1,2)+++(ρi, ρj)

]
+

∑
1≤i<j<k≤N−5

log τi log τj log τk g
(1,1,1)
++++(ρi, ρj , ρk)

(4.3.24)

The four-loop answer is determined for any number of external legs by the six, seven

and eight-point amplitudes through four loops. Similar equations can be obtained for

higher-loop amplitudes. In general, at L loops R(L)
+...+ is determined for any number of

legs by the MHV amplitudes involving up to (L+ 4) external legs.

4.4 Non-MHV amplitudes in MRK

4.4.1 Helicity-flip operations

So far we have only considered MHV amplitudes. In this section we generalise all the

results from the previous section to non-MHV amplitudes. In particular, we extend the

factorisation theorem (4.3.18) to the non-MHV case. We start by introducing an addi-

tional concept before we are ready to prove the factorisation theorem for non-MHV

amplitudes.

Let us start by analysing what happens if we start from an MHV amplitude and we flip the

helicity on an impact factor. In Fourier-Mellin space, this amounts to replacing χ+(ν, n)
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by χ−(ν, n),

F
[
χ+(ν, n)F (ν, n)

]
−→ F

[
χ−(ν, n)F (ν, n)

]
= F

[
χ−(ν, n)/χ+(ν, n)

]
∗ F

[
χ+(ν, n)F (ν, n)

]
(4.4.1)

= F
[
iν + n

2

iν − n
2

]
∗ F

[
χ+(ν, n)F (ν, n)

]
We see that flipping the helicity on an impact factor amounts to convoluting with the

universal helicity-flip kernel

H(z) ≡ F
[
iν + n

2

iν − n
2

]
. (4.4.2)

The functional form of H(z) can easily be obtained by performing explicitly the Fourier-

Mellin transform. The integrand has only a simple pole at iν = n/2, and so we find

H(z) = H(1/z) = − z

(1− z)2
. (4.4.3)

Note that helicity-flip kernel is an involution, i.e., flipping the helicity twice on the same

impact factor returns the original helicity configuration, and so

H(z) ∗ H(z̄) = F [1] = π δ(2)(1− z) . (4.4.4)

Similarly, if we flip the helicity on one of the central emission blocks and use eq. (4.1.49),

we obtain

F
[
C+(ν, n, µ,m)F (ν, n, µ,m)

]
−→ F

[
C−(ν, n, µ,m)F (ν, n, µ,m)

]
= F

[
C−(ν, n, µ,m)

C+(ν, n, µ,m)

]
∗ F

[
C+(ν, n, µ,m)F (ν, n, µ,m)

]
= F

[
χ+(ν, n)χ−(µ,m)

χ−(ν, n)χ+(µ,m)

]
∗ F

[
C+(ν, n, µ,m)F (ν, n, µ,m)

]
= H(z̄1) ∗ H(z2) ∗ F

[
C+(ν, n, µ,m)F (ν, n, µ,m)

]
.

(4.4.5)

We see that the flipping of the helicity on a central emission block is controlled by the

same kernels as for the impact factor. As a consistency check, the helicity flip kernels
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allow us to show that MHV and MHV amplitudes are identical,

R−...−(z1, . . . , zN−5) = H(z1) ∗ R+−...−(z1, . . . , zN−5)

= H(z1) ∗ H(z̄1) ∗ H(z2) ∗ R++−...−(z1, . . . , zN−5)

= H(z2) ∗ R++−...−(z1, . . . , zN−5)

= . . .

= H(zN−5) ∗ R+...+−(z1, . . . , zN−5)

= H(zN−5) ∗ H(z̄N−5) ∗ R+...+(z1, . . . , zN−5)

= R+...+(z1, . . . , zN−5) .

(4.4.6)

Let us conclude this section by making a comment about some classes of non-MHV

amplitudes with a special property. In ref. [102] it was argued that flipping the helicity on

an impact factor to produce an NMHV amplitude from an MHV amplitude is equivalent

to differentiating in the holomorphic variable and integrating in the anti-holomorphic

one. Let us see how this arises from the helicity-flip kernel. We have

R−+...+(z1, . . . , zN−5) = H(z1) ∗ R+...+(z1, . . . , zN−5)

= −
∫
d2w

π

z1
w̄(w − z1)2

R+...+(w, z2 . . . , zN−5) .
(4.4.7)

We can evaluate eq. (4.4.7) in terms of residues. Let us denote byF the anti-holomorphic

primitive,

F (w, z2 . . . , zN−5) ≡
∫
dw̄

w̄
R++...+(w, z2 . . . , zN−5) . (4.4.8)

Then R−+...+ is obtained by summing over all the holomorphic residues of F . As MHV

amplitudes are a pure functions, they have no poles, and so F has no poles either. Fur-

thermore, it is easy to check that there is no pole at infinity, and so the only residue we

need to take into account comes from the double pole at w = z1 in eq. (4.4.7),

R−+...+(z1, . . . , zN−5) = Resw=z1
z1 F (w, z2 . . . , zN−5)

(w − z1)2

= z1 ∂z1F (z1, z2 . . . , zN−5)

= z1∂z1

∫
dw̄

w̄
R++...+(w, z2 . . . , zN−5) .

(4.4.9)

We see that we recover the rule of ref. [102], but with the differentiation and integration

given in the reversed order. While this may look like a minor difference, it is crucial

in order to get the complete result. In principle, we need to include a boundary con-

dition when computing the anti-holomorphic primitive. However, if the operations of

differentiation and integration are performed in the order shown in eq. (4.4.9), then no

boundary condition is needed, because the residue is independent of the choice of the
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anti-holomorphic primitive. This is, however, not the case if the two operations are per-

formed in the order given in ref. [102], where one needs to include non-trivial boundary

information already for six points.

It is of course tantalising to speculate if this simple rule generalises and all non-MHVam-

plitudes can be computed by this simple differentiation-integration rule without having

to include any boundary information. It turns out that this is not the case, because in

general the amplitude in the integrand of the convolution integral (4.4.7) is not a pure

function, but may itself have additional poles whose residues need to be taken into ac-

countwhen performing the convolutionwith the helicity-flip kernel. An explicit counter-

example to the simple differentiation-integration rule without boundary terms can be

constructed from an eight-point NNMHV amplitude.

Although the simple rule does not hold in general, there are some special cases where it

does apply. Besides the case ofR−+...+ discussed above, we have identified the following

special case in which we can apply the simple differentiation-integration rule without

boundary terms: Consider an amplitude whose helicity configuration is given by

hi =

{
−1 if a ≤ i ≤ b

+1 otherwise
(4.4.10)

This amplitude can be written as

R+...+−...−+...+ = H(z̄a−1) ∗ H(zb) ∗ R+...+ (4.4.11)

Let us first discuss the convolution withH(zb). We can repeat exactly the same argument

as for R−+...+ and we conclude that

H(zb) ∗ R+...+ = zb ∂zb

∫
dz̄b
z̄b

R+...+ (4.4.12)

Next we want to perform the convolution of this function with H(z̄a−1). The function

H(zb) ∗ R+...+ will have poles, but all of them are holomorphic because they arise from

computing the holomorphic derivative with respect to zb. Hence, they do not give rise

to any additional anti-holomorphic poles, and so we have

R+...+−...−+...+ = z̄a−1 ∂̄za−1

∫
dza−1

za−1
[H(zb) ∗ R+...+]

= z̄a−1 ∂̄za−1

∫
dza−1

za−1
zb ∂zb

∫
dz̄b
z̄b

R+...+

(4.4.13)

The previous case covers in particular all NMHV amplitudes. Hence, all six and seven-

point amplitudes can be computed in this way.
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4.4.2 Leading singularities of scattering amplitudes in MRK

In the previous section we have shown how we can compute non-MHV amplitudes via

convolution with the universal helicity flip kernel H. Due to the double pole in the he-

licity flip kernel, non-MHV amplitudes are no longer pure, but the transcendental func-

tions are multiplied by rational prefactors. This is in agreement with the expected struc-

ture of scattering amplitudes in full kinematics, where these coefficients are identified

with the leading singularities of the amplitudes [126]. In this section we present a way to

determine the set of all rational prefactors that can appear in a given non-MHV ampli-

tude in MRK at LLA.

Let us start by defining some concepts that are useful to state the main result. We de-

fine interfaces of the perturbative coefficients g(i1,...,iN−5)
h1...hN−4

(ρ1, . . . , ρN−5) as the faces of

its graph (see eq. (4.3.17)) that are bounded by two external lines with opposite helic-

ities. In the following we refer to a face of the graph simply by the index of the cor-

responding dual coordinate (cf. Fig. 4.1.1). We call an interface holomorphic if the he-

licity changes from −1 to +1 in the natural order induced by the colour ordering, and

anti-holomorphic otherwise. We denote by I = {a1, . . . , aκ} the set of all interfaces of

the graph (equipped with the natural order induced by the colour ordering) and we let

a0 = x2 and aκ+1 = xN−2. For 1 ≤ k ≤ κwe define the sets

Eak↑ = {b | ak−1 ≤ b < ak} and Eak↓ = {b | ak < b ≤ ak+1} (4.4.14)

We also define the cross-ratios

Rbac =


vbac1 for holomorphic interfaces a

v̄bac1 for anti-holomorphic interfaces a

(4.4.15)

with

vbac1 =
(xb − xa)(xc − x1)

(xb − xc)(xa − x1)
(4.4.16)

We are now ready to state the main result of this section. We claim that it is possible to

write the perturbative coefficients in such a way that all rational prefactors multiplying

pure functions take the form ∏
a∈S

Rbac b ∈ Ea↑ c ∈ Ẽa↓ (4.4.17)

where S ⊆ I is a (possibly empty) subset of interfaces and we have introduced the defi-

nition

Ẽa↓ = {b | a < b} (4.4.18)
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This implies in particular that the building blocks of all rational prefactors in MRK at LLA

are contained in the set

L = {Rbac|a ∈ I , b ∈ Ea↑ , c ∈ Ẽa↓} (4.4.19)

The cross ratios in this set are at the same time the building blocks for all leading sin-

gularities in MRK at LLA. We emphasise that this set is an upper bound for the rational

prefactors that can appear for a given helicity configuration. In particular, one maywon-

der whether the asymmetry in eq. (4.4.17) and eq. (4.4.19) between Ea↑ and Ẽa↓ could not

be lifted, and we could restrict the building blocks to the more symmetric set

Lsym = {Rbac|a ∈ I , b ∈ Ea↑ , c ∈ Ea↓} (4.4.20)

Unfortunately, this is incorrect, because the cross ratios Rbac are not independent, but

they satisfy intricate non-linear relations, e.g.,

R23c +R234R4ac = R23cR4ac +R234R2ac a < c a ∈ I (4.4.21)

The apparent asymmetry in the set of building blocks in eq. (4.4.19) can then be lifted

through such relations. It would be interesting to have a classification of all the relations

among the building blocksRbac. Our building blocks are, however, linearly independent,

and so we can restrict to the more symmetric setLsym in situations where there is at most

one interface of a given type (holomorphic or anti-holomorphic). Helicity configurations

involving products of building blocks of the same type require at least three interfaces,

and the simplest such amplitude is R−+−+. We observe by explicit computation that in

this case the restricted set Lsym is indeed insufficient and a new building block R236 /∈
Lsym appears (see Appendix D of [38]).

It is evident from eq. (4.4.17) that every interface contributes at most one factor to the

product in eq. (4.4.17), i.e., we never encounter higher powers of Rbac.

Second, we see that for a given helicity configuration there is always a finite number of

different rational prefactors, independently of the number of loops. The complete set

of rational prefactors for a given helicity configuration shows up when all indices are

non-zero. In particular, we will see that eq. (4.4.17) is consistent with the factorisation

theorem (4.3.18) in the sense that we never need to consider faces b and c bounded by

external lines with equal helicities and vanishing index.

Finally, we note that the ratiosRbac transform non-trivially under target-projectile sym-

metry. Target-projectile symmetry obviously maps interfaces to interfaces, and we have

Rbac 7→ RN−b,N−a,N−c = 1−RN−c,N−a,N−b (4.4.22)
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Let us now illustrate the content of eq. (4.4.17) on some simple examples. MHV and MHV

amplitudes do not have any interfaces, so these amplitudes should not contain any non-

trivial rational prefactors, in agreement with known results. The simplest amplitudes

having a single interface are NMHV amplitudes of the form R−+···+. Since these am-

plitudes have a single interface, we have L = Lsym. The amplitude must then take the

form

R−+···+ = a+
N−2∑
c=4

R23c bc (4.4.23)

where a and bc are pure functions to all loop orders. In the special caseN = 6 eq. (4.4.23)

reduces to the known structure of the six-point NMHV amplitude in MRK [103]

R−+ = a+R234 b = a+
ρ1

ρ1 − 1
b (4.4.24)

Equation (4.4.17) implies that this structure generalises to an infinite class of NkMHV am-

plitudes, k ≥ 1, with a single holomorphic interface

R−···−+···+ = a+

a−1∑
b=2

N−2∑
c=a+1

Rbac bbc (4.4.25)

where a is the holomorphic interface and a and bbc are pure functions. Products of ra-

tional prefactors contribute for the first time for amplitudes with two distinct interfaces,

which appear precisely for the helicity configurations considered in eq. (4.4.10). The in-

terfaces are located at (a1, a2) = (a+1, b+2). One of them is holomorphic and the other

one anti-holomorphic, so we can work with the symmetric set Lsym. We find

R+···+−···−+···+ = a+

a1−1∑
c=2

a2∑
d=a1+1

Rca1d b
1
cd +

a2−1∑
c=a1

N−2∑
d=a2+1

Rca2d b
2
cd

+

a1−1∑
c1=2

a2∑
d1=a1+1

a2−1∑
c2=a1

N−2∑
d2=a2+1

Rc1a1d1 Rc2a2d2 c
12
c1d1c2d2

(4.4.26)

where we have indicated the anti-holomorphic rational functions byRbac for clarity and

a, bicd and cijc1d1c2d2 are pure functions

Let us conclude this section by discussing the soft limits of the rational prefactors. First,

we can see that Rbac has simple poles for xb = xc and xa = x1. None of these singu-

larities corresponds to a soft limit. This implies in particular that the weight of the pure

functions does not drop when taking a soft limit. Next, we see that

lim
xb→xa

Rbac = 0 and lim
xc→xa

Rbac = 1 (4.4.27)

In order to understand the implication of these relations, let us consider a NMHV am-
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plitude, which can be written in the form of eq. (4.4.26) with a ≡ a1 = a2 − 1

R+···+−+···+ = a+
a−1∑
c=2

Rca(a+1) b
1
ca+1 +

N−3∑
d=a+2

Ra(a+1)d b
2
cd

+

a−1∑
c=2

N−3∑
d=a+2

Rca(a+1)Ra(a+1)d c
12
c1(a+1)ad2

(4.4.28)

In the limit where the gluon with negative helicity becomes soft, xa → xa+1, the NMHV

amplitude reduces to an MHV amplitude, which is a pure function. Equation (4.4.27)

guarantees that this is indeed the case, and we find,

lim
xa→xa+1

R+···+−+···+ = a+

a−1∑
c=2

b1c(a+1) (4.4.29)

4.4.3 Explicit two-loop, seven-point NMHV check

In this section we outline an explicit check of our discussion for the leading logarithmic

contribution to the two-loop seven-point NMHV amplitudes in MRK. The symbol of this

amplitude was obtained in ref. [57]2. More precisely, the quantity discussed in ref. [57]

the so-called ‘BDS-subtracted’ amplitude, equivalent to the exponentiated remainder

function multiplied by the ratio function. It is given in supersymmetric notation as fol-

lows

ANMHV
BDS−subtracted = [37(12) +

1
7(13) +

2
7(14) + cyc.]X + [(67)V67 + (47)V47 + cyc.] (4.4.30)

In the above formula the quantitiesX , V67 and V47 are pure functions based on the hep-

tagon alphabet arising from the cluster algebra structure on Gr(4, 7), as discussed in

[10]. The quantities (ij) above represent the R-invariants which encode all the possi-

ble NMHV configurations of external states by use of Grassmann odd variables ηi.

We recall that all on-shell states in N = 4 SYM theory can be described by the on-shell

supermultiplet written in superspace notation as a function of Grassmann parameters

ηA transforming in the fundamental representation of SU(4) (2.2.7). The R-invariants

generically depend on five indices [ijklm]. In the seven-point case, however, we may

simply denote them by the two indices which are absent, e.g.

(12) = [34567] (4.4.31)

Furthermore, at seven points all R-invariants are of the form [r s − 1 s t − 1 t] for some

2We thank the authors for providing a file with the relevant expressions.
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r, s, t and for convenience we recall the functional form (2.2.26)

[r s− 1 s t− 1 t] =
δ8(q)

〈12〉 . . . 〈n1〉

× 〈s s− 1〉〈t t− 1〉δ(4)(〈n|xnsxst|θAtn〉+ 〈n|xntxts|θAsn〉)
x2st〈n|xnsxst|t〉〈n|xnsxst|t− 1〉〈n|xntxts|s〉〈n|xntxts|s− 1〉

(4.4.32)

We have included in the above formula the supersymmetric Parke-Taylor-Nair prefactor

to exhibit all the relevant η dependence. We recall the explicit form of the delta function

δ8(q)

δ8(q) = δ8
(∑

i

λiηi

)
(4.4.33)

where the λi are the spinor-helicity variables introduced in eq. (2.1.14).

Next we calculate the limits of the pure functions X , Vij in MRK and we evaluate the R-

invariants in this limit. To perform the second task it is helpful to formulate the passage

to multi-Regge kinematics in term of spinor-helicity variables. It is sufficient for us to

parametrise our spinors with different powers of ε in such a way so as to systematise the

strong ordering of the kinematics in the MRK limit, similar to ref. [113]. For example in

the 12 → 34567 kinematics, the λ spinors are parametrised as

λ1 =

 0(
−

7∑
i=3

|pi|2
p+i

ε5−i
) 1

2

 , λ2 =


(
−

7∑
i=3

p+i ε
i−5
) 1

2

0

 , λj =


√
p+j ε

j−5
2

pj√
p+j

ε
5−j
2

 (4.4.34)

where j = 3, . . . , 7 and the λ̃ are obtained by conjugation. After calculating the R-

invariants using this parametrisation we can recover the MRK value by taking ε→ 0.

Projecting out the components of the η’s corresponding to the desired helicity config-

uration and taking the MRK limit we find the following non-vanishing R-invariants for

the (−++) configuration,

(12) → 1 , (23) → 1− ρ1(1− ρ2)

ρ2(1− ρ1)
, (17) → ρ1

ρ1 − 1

(27) → ρ1(1− ρ2)

ρ2(1− ρ1)
, (13) → 1− ρ1

ρ1 − 1
, (37) → ρ1(1− ρ2)

ρ2(1− ρ1)
− ρ1
ρ1 − 1

(4.4.35)

For the (+−+) configuration we find

(34) → ρ̄1(1− ρ̄2)

ρ̄2(1− ρ̄1)

[
1 +

(ρ1 − ρ2)

(ρ2 − 1)

]
, (24) → ρ̄1(1− ρ̄2)

ρ̄2(1− ρ̄1)
, (15) → 1 +

(ρ1 − ρ2)

(ρ2 − 1)
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(16) → (ρ1 − ρ2)

(ρ2 − 1)

[ ρ̄1(1− ρ̄2)

ρ̄2(1− ρ̄1)
− 1
]
, (25) → 1 , (36) →

[
1 +

(ρ1 − ρ2)

(ρ2 − 1)

][
1− ρ̄1(1− ρ̄2)

ρ̄2(1− ρ̄1)

]

(15) → (ρ2 − ρ1)

(ρ2 − 1)
, (26) → 1− ρ̄1(1− ρ̄2)

ρ̄2(1− ρ̄1)
, (14) → (ρ2 − ρ1)

(ρ2 − 1)

ρ̄1(1− ρ̄2)

ρ̄2(1− ρ̄1)
(4.4.36)

Combining these formulas, we find that the two NMHV helicity configurations become

R−++ = X̂ + V̂12 + V̂23 +R234

(
V̂73 − V̂23

)
+R235

(
V̂71 − V̂73

)
R+−+ = X̂ + V̂25 + V̂36 + V̂62 +R234

(
V̂34 − V̂36 − V̂62

)
+R345

(
V̂51 − V̂36

)
+R234R345

(
V̂14 − V̂34 + V̂36

)
(4.4.37)

Here the V̂ij are the MRK limits of the pure functions Vij of eq. (4.4.30). The explicit

forms of V̂ij at LLA are given in Appendix D of [38] (of course, since we started from just

the symbol, these formulas are valid up to terms proportional to multiple zeta values).

Note that individually these functions may have beyond-leading log divergences. These

extra powers of divergent logarithms cancel in the combinations outlined in eq. (4.4.37).

These explicit limits may then be compared to the general structure outlined in eq. (D.11)

and the predicted pure functions presented in eqs. (D.20) onwards of reference [38].

4.5 Analytic structure of scattering amplitudes in MRK

It is believed that MHV and NMHV amplitudes are expressible in terms of multiple poly-

logarithms [21], but it is expected that for more complicated helicity configurations more

general classes of special functions may appear [127, 128]. Knowing that in some limit

scattering amplitudes can always be expressed in terms of multiple polylogarithms in-

dependently of the helicity configuration and the number of external legs can thus pro-

vide valuable information and constraints on the analytic structure of scattering ampli-

tudes. A proof of such a property previously only existed for the six-point amplitudes

when expanded to leading order around the collinear limit [71] and to LLAin MRK [111,112].

In [38] it was shown that it is possible to construct all amplitudes in MRK to LLA via a

sequence of three elementary operations.

1. Flipping the leftmost helicity by convolution with H(z1) or H(z̄1) respectively.

2. Increasing the first index by convolution with E(z1).

3. Adding more particles to the left with index zero and equal helicities.

In this section we show that this recursive structure of scattering amplitudes in the

multi-Regge limit implies that they can always be expressed in terms of single-valued



122 Chapter 4. Scattering amplitudes in multi Regge kinematics

multiple polylogarithms of maximal and uniformweight, independentlyof the loop num-

ber and the helicity configuration.

Let us start by discussing MHV amplitudes. The algorithm of Section 4.4.2 allows us to

construct all MHV amplitudes by adding particles and by convoluting with E(z1). We

nowshowthat the perturbative MHVcoefficients g(i1,...,ik)+...+ are pure polylogarithmic func-

tions of uniform weight ω = 1+ i1+ . . .+ ik . Obviously, the factorisation theorem (4.3.18)

implies that the claim remains true under the elementary operation of adding parti-

cles, so it suffices to show that convolution with E(z1) has the same property. The proof

proceeds by induction. Assume that g(i1,...,ik)+...+ is a pure function of uniform weight ω =

1 + i1 + . . . + ik , and let us show that g(i1+1,...,ik)
+...+ = E(z1) ∗ g(i1,...,ik)+...+ is a pure function of

uniform weight ω + 1. We have

E(z1) ∗ g(i1,...,iN−5)
+···+ (ρ1, . . . , ρN−5)

= −
∫
d2w

2π
g
(i1,...,iN−5)
+···+ (w, t2, . . . , tN−5)

w̄t1 + wt̄1
|w|2|w − t1|2

= −
∫
d2w

2π
g
(i1,...,iN−5)
+···+ (w, t2, . . . , tN−5)

1

w(w − t1)

(
w + t1
w̄ − t̄1

− w

w̄

) (4.5.1)

We evaluate the integral in terms of residues. As g(i1,...,iN−5)
+···+ is assumed pure by induc-

tion hypothesis and all the denominators are linear in w̄, the anti-holomorphic primitive

is a pure function (seen as a function of w̄) of uniform weight ω + 1. The convolution in

eq. (4.5.1) can then be written in the form

E(z1) ∗ g(i1,...,iN−5)
+···+ (ρ1, . . . , ρN−5)

= −
∫
dw

2π

[
1

w
F1(w, t2, . . . , tN−5) +

1

w − t1
F2(w, t2, . . . , tN−5)

] (4.5.2)

where F1 and F2 are pure single-valued polylogarithmic functions of weight ω+1. As all

the poles are simple, the holomorphic residues can be computed by simply evaluating

the pure functions of weight ω + 1 at w = 0, w = t1 and w = ∞ (and dropping all

logarithmically divergent terms). Hence, E(z1) ∗ g
(i1,...,iN−5)
+···+ is a pure polylogarithmic

function of weight ω + 1.

While the previous result is not unexpected for MHV amplitudes, we show in the re-

mainder of this section that we can extend the argument to non-MHV amplitudes, inde-

pendently of the helicity configuration. More precisely, we show that the pure functions

multiplying the rational prefactors defined in Section 4.4.2 are always pure polylogarith-

mic functions of uniform weight ω = 1 + i1 + . . .+ ik . The proof in the MHV case relies

crucially on the fact that the anti-holomorphic primitive was a pure function of weight

ω+1 and that all the holomorphic poles were simple. Since non-MHV amplitudes are in

general not pure but contain rational prefactors, it is not obvious that the same conclu-

sion holds for arbitrary helicity configurations. In addition, for non-MHV we also need



4.5. Analytic structure of scattering amplitudes in MRK 123

to analyse the effect of the helicity flip operation, which should not change the weight

of the function.

We proceed again by induction. Let us start by showing that also in the non-MHV case

a convolution with E(z1) will increase the weight by one unit. From Section 4.4.2 we

know that all poles in z1 are simple and either holomorphic or anti-holomorphic. In the

following we discuss the anti-holomorphic case and the extension to the holomorphic

case is trivial. The integrand of the convolution integral in the non-MHV case may have

additional poles in w̄ at points whereR2ac is singular. However none of these additional

poles are located at w̄ = 0 or w̄ = t1, and so all the anti-holomorphic poles entering

the convolution integral are simple. We can thus repeat the same argument as in the

MHV case, and the anti-holomorphic primitive will be a pure polylogarithmic function

of weightω+1. Moreover, there are no additional holomorphic poles inw introduced by

the rational prefactors, and so we can compute all the holomorphic residues by evaluat-

ing the pure functions of weight ω+1 at w ∈ {0, t1,∞}. Hence, a convolution with E(z1)
produces pure polylogarithmic functions of weight ω + 1 also in the non-MHV case.

To complete the argument, we need to show that flipping the leftmost helicity does not

change the weight of the functions. In Section 4.4.2 we have seen that, since all poles

in t1 are simple and either holomorphic or anti-holomorphic, we can always compute

the effect of the helicity flip by integrating and differentiating, cf. eq. (4.4.9). Since all

poles are simple, the integration will increase the weight by one unit. This effect is

compensated by the differentiation, so that the total weight of the functions remains

unchanged. Hence, we conclude that non-MHV amplitudes in MRK to LLA are poly-

logarithmic functions of uniform weight ω = 1 + i1 + . . . + ik independently of their

helicity configuration.
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CHAPTER 5

The MRK heptagon at NLLA

In the previous chapter we argued that all amplitudes in MRK at the leading log approx-

imation (LLA) are described by single-valued polylogarithms associated to the moduli

space of (N − 2) points on a Riemann sphere. Through integrability the impact factor

and BFKL eigenvalue, which appear in the hexagon, are known to all orders [109]. Thus

in this chapter we turn our attention to the simplest object beyond the solved six-gluon

case, the 2 → 5 amplitude in MRK. While predictions for the latter to LLA have been

worked out in [102,104,105], see also [38] for an extension toN-gluons, a major obstacle

for their generalization to arbitrary logarithmic accuracy, is that the dispersion integral

yielding the Regge cut contribution diverges when considering the N`−1LLA term at `

loops. This phenomenon is related to the fact that within the BFKL approach, the dual

conformal invariance of the theory is not maintained at the intermediate steps of the

calculation, and implies that some terms in the Regge pole contribution develop un-

physical poles. As discussed in [102], it is possible to shift these terms from the pole

to the cut contribution by modifying their definitions. The necessity of this step sug-

gests that there may be a certain degree of arbitrariness in separating the pole and cut

contributions in a conformally invariant theory.

Instead of the BFKL approach, in our analysis we will draw from the eikonal framework of

[108], where the two incoming high-energy gluons are approximated by straight Wilson

lines. Within this framework, only a Regge cut contribution, respecting high-energy

factorization, dual conformal symmetry and consistency with soft limits, is necessary to

describe the amplitude in MRK. This procedure also provides a natural regularization
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for the Regge cut at finite coupling, and allows for its straightforward expansion at weak

coupling. In this manner, we obtain the first significant result of this chapter, namely

a dispersion integral describing the 2 → 5 amplitude in MRK to arbitrary logarithmic

accuracy.

The 2 → 5 dispersion integral contains a new building block compared to the six-gluon

case, the BFKL central emission vertex, previously only known to leading order [102].

The second significant result of this chapter is the extraction of the NLO correction to

the central emission vertex, from the known NLLA contribution to the 2-loop 7-particle

MHV amplitude [114], see also refs. [102, 113] for earlier work on the LLA contribution.

More precisely, since the aforementioned NLLA contribution had been previously de-

termined [114] at the level of the symbol [32], in section 5.2 we show how to uniquely

promote it to a function, based on information we derive on the leading discontinuity

of the amplitude, together with its expected behaviour under soft limits, and single-

valuedness properties of the function space in which it “lives”. As a bonus, from this

result we in fact also obtain the function level 2-loop MHV amplitude for any number

of gluons in MRK, since the latter has been shown to decompose into 6- and 7-gluon

building blocks in momentum space [114].

Then, in section 5.3 we present the final expression for the NLO correction to the BFKL

central emission vertex, and detail our approach for obtaining it, by translating the mo-

mentum space expression for the amplitude, to the Fourier-Mellin space of the disper-

sion integral. Using the same approach, we similarly extract the next-to-next-to-leading

order (NNLO) correction to the central emission vertex, up to transcendental constants,

from the 3-loop MHV heptagon symbol [11].

With the 2 → 5dispersion integral and the NLO BFKL central emission vertex at hand, we

then move on to outline how to produce new predictions for the seven-gluon amplitude

in MRK to NLLA at higher loops. This is achieved by direct evaluation of the dispersion

integral, using a combination of nested sum algorithms and convolution methods, that

we describe in section 5.4.

Finally we combine all of the results of this chapter into an all order all multiplicity con-

jecture for the dispersion integral. Due to the integrability the only quantity that is not

known to all orders is the central emission block and it is for this quantity that we wish to

propose an Wilson loop OPE inspired expression. Specifically, by considering the NNLO

corrections to the central emission block obtained previously we write an ansatz com-

posed of several pieces which we proceed check by considering soft limits and compar-

ing to 4-loop data.
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5.1 The BFKL equation at finite coupling

In this section, wewill obtain a dispersion integral describing the multi-Regge limit of the

2 → 5 amplitude that is well-defined at any logarithmic accuracy, based on the eikonal

approach of [108]. We review the basic ingredients of this approach for the 2 → 4 ampli-

tude in subsection 5.1.1, before extending it to the 2 → 5 MHV amplitude in subsection

5.1.2.

5.1.1 6-points

For 2 → 4 scattering in the multi-Regge limit, the six-point remainder functionR6 in the

region where we analytically continue the energy components of all produced particles

is given by the all-order dispersion relation1

eR6(z)+iδ6(z) = 2πif++ (5.1.1)

f++ =
a

2

∞∑
n=−∞

(z
z̄

)n
2

∫ ∞

−∞

dν

2π
Φ̃(ν, n)|z|2iνe−Lω(ν,n) (5.1.2)

where

L = log(
√
u21u31) + iπ = log(τ) + iπ (5.1.3)

contains the logarithms that become large in the limit, whereasω(ν, n) is the BFKL eigen-

value and Φ̃(ν, n) is the product of the impact factors respectively, to all orders in the

coupling

a = 2g2 =
λ

8π2
. (5.1.4)

The phase δ6 appearing on the left-hand-side is the BDS contribution defined in ref. [129],

which is given to all orders in perturbation theory as

δ6(z) = π Γ log u2u3
(1− u1)2

= π Γ log |z|2

|1− z|4
Γ ≡ γK

8
=

Γcusp

4
(5.1.5)

where Γ is proportional to the cusp anomalous dimension

γK(a) = 4a−4ζ2a
2+22ζ4a

3−
(219

2
ζ6+4ζ23

)
a4+

(1774
3

ζ8+8ζ2ζ
2
3+40ζ3ζ5

)
a5+O(a6) (5.1.6)

known to all loops from integrability (see [63] for a review).

We note that (5.1.2) differs from other results in the literature, in particular from [91].

This can be traced back to the choice of the integration contour to be used in (5.1.2),

which we have not specified so far. The two formulations are in fact equivalent via a

1Note that we have (zi/z̄i)
n/2 = (−1)n(wi/w̄i)

n/2 when converting any of the dispersion relations con-
sidered in this paper between zi ↔ −wi, because any choice of branch on the square roots should also
respect complex conjugation. For example, if we choose

√
z = i

√
w, then we must also have

√
z̄ = −i

√
w̄.
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change of integration contour [108], as we explain below. We should also note that one

could equally well use Γ as an expansion parameter, rather than a. Based on this choice,

and some other considerations we will review in what follows, there exist two different

definitions of Φ̃(ν, n) in the literature

a

2
Φ̃(ν, n) =

a

2

Φreg(ν, n)

ν2 + n2

4

=
ΓΦ(ν, n)

ν2 + n2

4 − π2Γ2
(5.1.7)

where the first expression is due to Lipatov, Bartels and collaborators [91, 100], and the

second one is due to Caron-Huot [108].

<(ν)

=(ν)

πΓ−πΓ

Figure 5.1.1: Integration contour for the six-gluon BFKL integral at finite coupling. Here
and in the following figures indicating different integration contours for the six-and
seven-gluon BFKL integrals, we only depict the singularities on the integration contour,
not the entire ν-plane.

Strong constraints on the analytic structure of the integrand in (5.1.2) at finite coupling

can be derived by considering the soft limits z → 0 and z → ∞. The correct soft limit be-

havior of the BDS ansatz implies thatR6 has to vanish there to all orders in perturbation

theory, and thus by virtue of (5.1.5) the left-hand-side of eq. (5.1.1) reduces to

lim
z→0

eR6(z)+iδ6(z) = |z|2πiΓ (5.1.8)

lim
z→∞

eR6(z)+iδ6(z) = |z|−2πiΓ. (5.1.9)

From this we can determine the behavior of the right-hand-side of eq. (5.1.1) for n = 0

(terms coming from n 6= 0 will be suppressed in the soft limit). It is evident that the

integrand should have simple poles at ν = ±πΓ, with residues

Resν=±πΓ

(
Φ̃(ν, 0)e−Lω(ν,0)

)
= ± 1

πa
(5.1.10)

in order to capture the all order soft behaviour of the left-hand-side. In fact, a more
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detailed analysis of the soft limit reveals that it separately restricts ω(ν, n) and Φ̃(ν, n) to

obey the exact bootstrap conditions [108],

ω(±πΓ, 0) = 0, and Resν=±πΓΦ̃(ν, 0) = ± 1

πa
(5.1.11)

where by virtue of (5.1.7), the second relation may also be written as

Φ(±πΓ, 0) = 1 (5.1.12)

Finally, since the integral (5.1.2) diverges if the poles are located right on the real axis,

the soft limits (5.1.8)-(5.1.9) also dictate how the contour should be deformed in order

to avoid these poles on the real axis: Given that we need to close the contour on the

lower (upper) half-plane in ν for z small (large), it is also clear that the integration contour

should run above the pole at πΓ and below the pole at −πΓ, in other words

Φ(ν, 0)

ν2 − π2Γ2
→ Φ(ν, 0)

ν2 − π2Γ2 + i0
=

Φ(ν, 0)

(ν − πΓ + i0)(ν + πΓ− i0)
(5.1.13)

as shown in figure 5.1.1.

So far the discussion was restricted to finite coupling. As we will now review, the knowl-

edge of the residues and integration contour that the soft limits provide at finite cou-

pling, is also crucial for appropriately regularizing the divergences that appear in the

weak coupling expansion of eq. (5.1.2). In particular, given that at leading orderΦ(ν, n) →
1, it is evident from (5.1.13) that the integrand becomes ill defined for n = 0, since evalu-

ating the residue in either the upper or lower half-plane leads to a divergence. In other

words, while at finite coupling the contour runs between the poles at ν = −πΓ and

ν = +πΓ, in the weak coupling expansion, where Γ = O(a) with a → 0, these two poles

will move towards ν = 0 and pinch the contour, leading to a divergence.

Consequently, we need to deform the contour at finite coupling before we are allowed

to expand in the coupling.

There are two immediate choices for deforming the contour so that it does not pass

between the two poles on the real axis any more. We can either take plus the residue

at ν = −πΓ in order to move the contour above the real line or we can take minus the

residue at ν = +πΓ to move the contour below the real line. It is possible to preserve

the symmetry of the integral by averaging between both choices, in order to find

eR6+iδ6 = −πa
2

Res
ν=−πΓ

(
Φ̃(ν, 0)|z|2iνe−Lω(ν,0)

)
+
ia

4

∞∑
n=−∞

(z
z̄

)n
2

∫
↑
dν Φ̃(ν, n)|z|2iνe−Lω(ν,n)

+
πa

2
Res
ν=πΓ

(
Φ̃(ν, 0)|z|2iνe−Lω(ν,0)

)
+
ia

4

∞∑
n=−∞

(z
z̄

)n
2

∫
↓
dν Φ̃(ν, n)|z|2iνe−Lω(ν,n)
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where ↑ (↓) denotes the contour running above (below) the real line, and the contours

may be closed in either half-plane.

After we evaluate the residues with the help of the bootstrap conditions (5.1.11)-(5.1.12),

combine the two contour integrals by introducing the Cauchy principal value P

P
(
1

x

)
=

1

2

(
1

x+ i0
+

1

x− i0

)
(5.1.14)

and reexpress the integrand with the help of (5.1.7), we finally obtain the separation into

the conformal Regge pole and Regge cut contribution,2

eR6+iδ6 = cos(log(|z|2)πΓ) + i
a

2

+∞∑
n=−∞

(z
z̄

)n
2 P

∫ ∞

−∞
dν

Φreg(ν, n)

ν2 + n2

4

|z|2iνe−Lω(ν,n) (5.1.16)

This reproduces the well known expression from ref. [91], see also [99, 100, 129, 130]. We

see that the regularization of the integral at ν = n = 0, which in the prescription (5.1.14)

amounts to taking half the corresponding residue into account, is intimately connected

to the Regge pole contribution. It is worth emphasizing however that not just this sym-

metric choice, but any contour deformation that avoids a pinching is equally valid for

performing the weak coupling expansion. For example, when evaluating R6 for z small,

it is advantageous to pick the contour running below the real axis, so that after closing

it from below, the integral will no longer receive any contributions from the poles near

the real axis3

eR6+iδ6 = |z|2πiΓ + i
a

2

+∞∑
n=−∞

(z
z̄

)n
2

∫
↓
dν Φ̃(ν, n)|z|2iνe−Lω(ν,n) (5.1.17)

The generalization to the NMHV case is straightforward. Focusing on the helicity config-

uration most commonly found in the literature, see e.g. [131], the analogue of (5.1.1)-(5.1.2)

is

R+−e
iδ6(z) = 2πif+− (5.1.18)

f+− =
a

2

∞∑
n=−∞

(z
z̄

)n
2

∫ ∞

−∞

dν

2π
Φ̃(ν, n)H(ν, n)|z|2iνe−Lω(ν,n) (5.1.19)

where the helicity flip kernel H will be defined below in eq. (5.1.43). At this point, it is

sufficient to note that H(ν, 0) = 1, which implies that the MHV and NMHV integrands

2In fact, we could have equally well arrived at the expression (5.1.16) from (5.1.1) and (5.1.13) by virtue of
the Sokhotski–Plemelj theorem on the real line,

1

x± i0
= ∓πδ(x) + P

(
1

x

)
(5.1.15)

for x = ν2 − π2Γ2, together with δ(x2 − α2) = (δ(x− α) + δ(x+ α))/(2|α|).
3It is worth keeping in mind that there will still be contributions from poles in the interior of the contour

for n = 0.
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become identical for n = 0, and so our analysis of the poles on the integration contour

as well as the prescription to avoid them generalize straightforwardly to NMHV. Finally,

the R−+ helicity configuration may be obtained from (5.1.18)-(5.1.19) by a parity transfor-

mation.

5.1.2 7-points MHV

Armed with intuition from the six-point case, we now move on to propose an all-loop

dispersion-type formula for the 2 → 5 amplitude in MRK, again in the region where we

analytically continue the energy components of all produced particles. Our strategy will

be as follows:4

1. We start with a formula that expresses the remainder plus conformal BDS contri-

bution in the Multi-Regge limit at finite coupling, as a Regge cut (integral) only, i.e.

without any explicit Regge poles.

2. We then examine the soft limits of the formula at finite coupling, which reveal to

us the positions of the poles of the integral on the real axis, their residues, as well

as the prescription for integrating around them5.

3. In the weak-coupling expansion of the integrand, these poles will pinch the con-

tour, leading to divergences. We may deform the original contour, prior to ex-

panding in the coupling, to any contour that is not pinched in the weak-coupling

limit, picking up the residues that are crossed in the process of this deformation at

finite coupling, and then expand at weak coupling.

In this manner, for any deformation described in the last step, we will obtain an integral

that is well-defined at weak coupling, plus finite-coupling residue contributions, whose

values we know from the soft limits.

So let us start with the seven-point analogues of (5.1.1)-(5.1.2) shown in Fig. 5.6.16

eR7(z1,z2)+iδ7(z1,z2) = 2πif+++ (5.1.20)

f+++ =
a

2

∞∑
n1=−∞

∞∑
n2=−∞

(
z1
z̄1

)n1
2
(
z2
z̄2

)n2
2
∫
dν1dν2
(2π)2

|z1|2iν1 |z2|2iν2

× e−L1ω(ν1,n1)e−L2ω(ν2,n2)χ+(ν1, n1)C
+(ν1, n1, ν2, n2)χ

−(ν2, n2)

(5.1.21)

4Asimilar strategy for obtaining dispersion integrals of higher-point amplitudes, also in different regions,
has also been independently adopted by Basso,Caron-Huot and Sever, see [132].

5We assume that no other poles are present on the real axis but the ones dictated by the soft limits.
6To make contact with other notations used in the literature, f+++ is denoted as fω2ω3 in [104, 105], and

similarly the six-gluon analogue f++ of the previous section is denoted as fω2 .
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p2
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p7
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χν1
χν2Cν1,ν2ων1
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ων2

τ2

z1 z2

Figure 5.1.2: Structure of the seven point amplitude in MRK.

where

Li = log
√
u2iu3i + iπ = log τi + iπ (5.1.22)

and the conformally invariant part of the 1-loop Regge cut coming from the BDS ansatz

is7

δ7(z1, z2) = 2πΓ log
√
u21u31u22u32

1− ũ
= πΓ log |z1z2|2

|1− z2 + z1z2|4
(5.1.23)

In addition, apart from the BFKLeigenvalue encountered in the previous section,χ±(ν, n)

are the two BFKL impact factors at the end of the ladder [100], whose product with equal

arguments also appeared in the hexagon case8

χ+(ν, n)χ−(ν, n) = Φ̃(ν, n) (5.1.24)

Finally, C+(ν1, ν2, n1, n2) is the central emission block, a new ingredient in the BFKL

approach to the heptagon compared to the hexagon, first computed to leading order

in [102].

Next, we consider the three soft limits where the momentum of one of the produced

particles goes to zero, and R7 reduces to R6. With the help of (5.1.23) we find that in the

7See for example [104], where δ7 → δ14 is expressed in terms of the transverse momenta of the produced
gluons, and the momentum transfer between them. It can be recast in terms of (transverse) cross ratios by
virtue of the kinematic analysis of [102], as adapted to our conventions in [38].

8The fact that the integrand contains impact factors of opposite helicity can be understood by thinking
about the momentum flow along the ladder: If we assume that its actual direction is from the χ+ towards
the χ− impact factor, then in all-outgoing momentum conventions for these impact factors, the helicity
assignments of the gluons associated with χ+ and χ− will be (−++) and (−−+), respectively. Hence the
two must be related by parity.
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soft limits the left-hand-side of eq. (5.1.20) becomes,

lim
z1→0

eR7+iδ7 = eR6(z2)+iδ6(z2)|z1|2πiΓ (5.1.25)

lim
z2→∞

eR7+iδ7 = eR6(z1)+iδ6(z1)|z2|−2πiΓ (5.1.26)

lim
z2→0, z1z2 fixed

eR7+iδ7 = eR6(z1z2)+iδ6(z1z2) (5.1.27)

Note that the last soft limit is also equivalent to z1 → ∞ with z1z2 fixed. From the be-

haviour in the soft limits we can determine that the r.h.s of eq. (5.1.20) needs to have a

pole ν1 = πΓ − i0 for the n1 = 0 term in the sum, a pole at ν2 = −πΓ + i0 for n2 = 0, as

well as at ν1 = ν2 + i0 (or equivalently at ν2 = ν1 − i0) for n1 = n2. Furthermore, it is easy

to check that the above relations hold if the residues on those poles are equal to

Res
ν1=πΓ

(
χ+(ν1, 0)C

+(ν1, 0, ν2, n2)χ
−(ν2, n2)

)
= iχ+(ν2, n2)χ

−(ν2, n2) (5.1.28)

Res
ν2=−πΓ

(
χ+(ν1, n1)C

+(ν1, n1, ν2, 0)χ
−(ν2, 0)

)
= −iχ+(ν1, n1)χ

−(ν1, n1) (5.1.29)

Res
ν1=ν2

(
χ+(ν1, n2)C

+(ν1, n2, ν2, n2)χ
−(ν2, n2)

)
= −i(−1)n2eiπω(ν2,n2)χ+(ν2, n2)χ

−(ν2, n2)

(5.1.30)

where we already took the condition (5.1.11) into account. The previous equations can

be seen as an integrand formulation in Fourier-Mellin space of the soft limits of the am-

plitude. In particular, if the residues take the values in (5.1.28), (5.1.29) and (5.1.30), then

the integrand with respect to the second integration variable becomes identical to the

hexagon integrand9. At this point we have to make a comment about these relations.

Since the soft limits are valid for the integrated amplitude after Fourier-Mellin trans-

formation, any integrand formulation is in principle valid only up to terms that vanish

when computing the Fourier-Mellin transform. For example, we could add to (5.1.28) any

function of (ν1, n1) which is mapped to zero by the Fourier-Mellin transform, without

changing the soft limit of the amplitude. Since the Fourier-Mellin transform is invertible,

any such function which maps to zero is necessarily trivial, and so the bootstrap condi-

tions (5.1.28), (5.1.29) and (5.1.30) follow indeed from the soft limits of the full amplitude.

Finally, we come to address the necessity for a contour deformation before performing

the weak coupling expansion. It is evident that when at least one of the ni is different

from zero, we can have at most one pole on the real axis for either integration variable,

and therefore one can safely expand at weak coupling because no pinching can occur.

Therefore we only need to consider the n1 = n2 = 0 case, depicted in figure 5.1.3. There,

9The exponential factor in the last relation is present because for ν1 = ν2 the term multiplying −ω
in (5.1.21) becomes L1 + L2, whereas the corresponding large logarithm in (5.1.27) should be

L′ = log(τ1τ2) + iπ = L1 + L2 − iπ .
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we see that if after we close the contour at infinity, we receive a contribution from a

residue on the real line in any of the integration variables, the integral left to do in the

other integration variable will have the same pole structure as the hexagon integral of

figure 5.1.1, whereby the poles pinch the contour at weak coupling. We will therefore

<(ν1)

=(ν1)

πΓν2
<(ν2)

=(ν2)

ν1−πΓ

Figure 5.1.3: Integration contour for the seven-gluon BFKL integral.

have to deform the contour before expanding, and the simplest choice will be to pick

a new contour such that it does not contain any poles on the real axis. For example, in

the region z1 � 1, z2 � 1, where we close ν1 from below and ν2 from above, we can

deform the contour as follows. Let us first schematically rewrite the integrand in a way

that exposes the pole structure of the n1 = n2 = 0 integrand in (5.1.21),

I ≡ a

2(2π)2
|z1|2iν1 |z2|2iν2e−L1ω1−L2ω2χ+(ν1, 0)C

+(ν1, 0, ν2, 0)χ
−(ν2, 0)

=
f(ν1, ν2)

(ν1 − πΓ)(ν1 − ν2)(ν2 + πΓ)

(5.1.31)

Then, we can rewrite our original contour as∫
dν1dν2f(ν1,ν2)

(ν1−πΓ−i0)(ν1−ν2+i0)(ν2+πΓ+i0) =

∫
dν1dν2f(ν1,ν2)

(ν1−πΓ+i0)(ν1−ν2+i0)(ν2+πΓ+i0) (5.1.32)

− 2πi

∫
dν2f(πΓ,ν2)

(ν2−πΓ−i0)(ν2+πΓ+i0)

=

∫
dν1dν2f(ν1,ν2)

(ν1−πΓ+i0)(ν1−ν2+i0)(ν2−πΓ−i0)

+ 2πi

∫
dν1f(ν1,−πΓ)

(ν1−πΓ+i0)(ν1+πΓ+i0)

− 2πi

∫
dν2f(πΓ,ν2)

(ν2−πΓ−i0)(ν2+πΓ+i0)
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=

∫
dν1dν2f(ν1,ν2)

(ν1−πΓ+i0)(ν1−ν2+i0)(ν2−πΓ−i0)

+ 2πi

∫
dν1f(ν1,−πΓ)

(ν1−πΓ−i0)(ν1+πΓ+i0)

− 2πi

∫
dν2f(πΓ,ν2)

(ν2−πΓ−i0)(ν2+πΓ+i0) + (2πi)2
f(πΓ,−πΓ)

2πΓ

where already in the second equality the double integral is free of poles on the real axis,

and in going from the second to the third equality, we changed the contour of the sin-

gle ν1 integral to make it identical to that of figure 5.1.1. The reason is that due to the

bootstrap conditions (5.1.11) and (5.1.28)-(5.1.30), also the integrand of these simple inte-

grals becomes identical to the hexagon integral in (5.1.2), up to factors independent of

the integration variable,

2πi

∫
dν1f(ν1,−πΓ)

(ν1−πΓ+i0)(ν1+πΓ+i0) =|z2|−2πiΓ a

2

∫
dν1
2π

Φ̃(ν1, 0)|z1|2iν1e−L1ω(ν1,0)

−2πi

∫
dν2f(πΓ,ν2)

(ν2−πΓ−i0)(ν2+πΓ+i0) =|z1|2πiΓ
a

2

∫
dν2
2π

Φ̃(ν2, 0)|z2|2iν2e−L2ω(ν2,0)
(5.1.33)

Similarly, for the double residue in the last line of (5.1.32) we obtain

(2πi)2Resν1=πΓResν2=−πΓI = (2πi)2
f(πΓ,−πΓ)

2πΓ
= − 1

2πi

|z1|2πiΓ

|z2|2πiΓ
(5.1.34)

Choosing to deform the contour in the same fashion for the case where one of the ni is

zero and the other nonzero, so that they contain no poles on the real axis, we observe

that the summands combine nicely to yield

eR7+iδ7 = |z1|2πiΓeR6(z2)+iδ6(z2) + |z2|−2πiΓeR6(z1)+iδ6(z1) − |z1|2πiΓ

|z2|2πiΓ
+ 2πif̃+++ (5.1.35)

where f̃+++ is defined precisely as in (5.1.21), but now with the integration contour of

eq. (5.1.32), which is also illustrated in figure 5.1.4. Notice that the presence of the second-

to-last term from the right, coming from eq.(5.1.34), is necessary for reproducing the

soft limits (5.1.25)-(5.1.26). We stress that although the above formula, which is the 7-

point analogue of (5.1.17), holds independently of how we choose to close the integration

contours, it is only valid in the region z1 � 1, z2 � 1 which is convenient for expanding

at weak coupling. This is because the ν1 = ν2 residue is a simple integral that diverges at

weak coupling, and so it cannot be contained in our closed contour. By deforming the

contour in (5.1.32) around the ν1 = ν2 pole, we similarly find

eR7+iδ7 = eR6(z1z2)+iδ6(z1z2) + 2πif̌+++ (5.1.36)

where again f̌+++ is defined as in (5.1.21), but this time the contour is the one that results

after we exchange ν1 ↔ ν2 in figure 5.1.4. The last formula is particularly suited for the
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<(ν1)

=(ν1)

πΓν2
<(ν2)

=(ν2)

ν1−πΓ

Figure 5.1.4: The deformed integration contour for the seven-gluon BFKL integral, which
is convenient for the weak coupling expansion in the region z1 � 1, z2 � 1.

weak coupling expansion in the z1 � 1, z2 � 1 region. Finally, one may be tempted to

take the average of (5.1.35)-(5.1.36) as the analogue of (5.1.16), however at least currently

it seems that it is not convenient for the weak coupling expansion, since it will lead to

pinching in both contours.

5.1.3 Summary and extension to any helicity

In the previous section, for simplicity we focused on the MHV 2 → 5 amplitude. Here we

will present the generalization of the all-loop dispersion integral (5.1.20)-(5.1.23), as well

as the exact bootstrap conditions (5.1.28)-(5.1.30) that are obeyed by the building blocks,

for arbitrary helicity configurations.

Using definitions of subsection 4.1, the multi-Regge limit of the BDS-normalized N = 7

particle amplitude (4.1.27) will be given by

Rh1h2h3e
iδ7(z1,z2) = 2πifh1h2h3 (5.1.37)

fh1h2h3 =
a

2

∞∑
n1,n2=−∞

(
z1
z̄1

)n1
2
(
z2
z̄2

)n2
2
∫
dν1dν2
(2π)2

|z1|2iν1 |z2|2iν2Φ̃(ν1, n1)Φ̃(ν2, n2)

× e−L1ω(ν1,n1)−L2ω(ν2,n2)Ih1(ν1, n1)C̃
h2(ν1, n1, ν2, n2)Ī

h3(ν2, n2) (5.1.38)

with

Li = log τi + iπ δ7(z1, z2) = πΓ log |z1z2|2

|1− z2 + z1z2|4
(5.1.39)

as well as

Φ̃(ν, n) = χ+(ν, n)χ−(ν, n) (5.1.40)
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as defined previously, and the contour of integration as depicted in figure 5.1.3. In addi-

tion, we have expressed the integrand in terms of the rescaled quantities10

C̃h(ν1, n1, ν2, n2) ≡
Ch(ν1, n1, ν2, n2)

χ−(ν1, n1)χ+(ν2, n2)
(5.1.41)

and

Ih(ν, n) ≡ χh(ν, n)

χ+(ν, n)
=

1, h = +

H(ν, n) h = −
(5.1.42)

with Īh denoting the complex conjugate of Ih. In the last equation,

H(ν, n) =
x
(
u(ν)− in

2

)
x
(
u(ν) + in

2

) (5.1.43)

is the helicity flip kernel, or NMHV form factor, known to all loops from integrability

[109], as is also the case for the hexagon impact factor Φ̃. The precise definition of the

Zhukowski variables x and the rapidities u will not be important for our purposes, and

we will be explicitly providing the weak-coupling expansion ofH in section 5.3. Acrucial

property that however follows immediately from the above representation, is that

H(ν, 0) = 1 ⇒ Ih(ν, 0) = 1 (5.1.44)

The most significant advantage of defining a rescaled central emission block as in (5.1.41),

is that it allows us to formulate separate exact bootstrap conditions for the latter: Along

with the conditions

ω(±πΓ, 0) = 0, and Resν=±πΓ

(
Φ̃(ν, 0)

)
= ± 1

πa
, (5.1.45)

which as we reviewed in section 5.1.1 follow from the analysis of the six-gluon amplitude,

the consistency of soft limits of the seven-point amplitude requires

C̃h(πΓ, 0, ν2, n2) = iπa Ih(ν2, n2) (5.1.46)

C̃h(ν1, n1,−πΓ, 0) = −iπa Īh(ν1, n1) (5.1.47)

Res
ν1=ν2

C̃h(ν1, n2, ν2, n2) =
−i(−1)n2eiπω(ν2,n2)

Φ̃(ν2, n2)
(5.1.48)

as well as

Ch(−πΓ, 0, ν2, n2) = Ch(ν1, n1, πΓ, 0) = 0 (5.1.49)

In particular, eqs. (5.1.46)-(5.1.48) for h = + follow from (5.1.28)-(5.1.30) and (5.1.45), after

10In more detail, the generalization of (5.1.21) to arbitrary helicity follows from χ+C+χ− → χh1Ch2χ−h3,
which can then be recast in the form (5.1.38) after we plug in the solution of (5.1.42) and (5.1.41) for χh and
Ch respectively, and finally use (5.1.40).
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also taking into account that C̃h must be regular at n1 = 0, ν1 = πΓ and n2 = 0, ν2 =

−πΓ for the soft limits (5.1.25)-(5.1.26) to hold (e.g. a pole would lead to additional log zi
dependence that is incompatible with these limits). In a similar spirit, the regularity of

the entire integrand at n1 = 0, ν1 = −πΓ and n2 = 0, ν1 = πΓ implies (5.1.49), so as to

cancel the poles of either of the Φ̃(νi, ni) there.

Then, the extension of these conditions to C̃− can be done by recalling that the MHV

and MHV amplitudes must be equal to each other, R+++ = R−−−, as a consequence of

their equivalence to the same bosonic Wilson loop under the Wilson loop/amplitude

duality. Imposing this on (5.1.37)-(5.1.38) implies

C̃−(ν1, n1, ν2, n2) = H(ν1, n1)C
+(ν1, n1, ν2, n2)H(ν2, n2) (5.1.50)

allowing us to obtain (5.1.46)-(5.1.48) for h = − from h = +, also with the help of (5.1.44).

Note that the last formula implies that we only need consider ω, Φ̃,H and C̃+ as the

independent building blocks of the integrand, and then C̃− may be expressed in terms

of the last two.

Finally, by deforming the contour, it is possible to equivalently write (5.1.37)-(5.1.38) as

Rh1h2h3e
iδ7 = |z1|2πiΓRh2h3(z2)e

iδ6(z2) + |z2|−2πiΓRh1h2(z1)e
iδ6(z1) − |z1|2πiΓ

|z2|2πiΓ
+ 2πif̃h1h2h3

(5.1.51)

where f̃h1h2h3 is defined as in (5.1.41), but with the integration contour illustrated in figure

5.1.4. In what follows, we will almost exclusively be using this form of the dispersion

integral, which is particularly convenient for its weak-coupling expansion in the region

z1 � 1, z2 � 1 that we will consider.

5.2 From symbols to functions in MRK

In the previous section, we succeeded in obtaining an all-order dispersion integral de-

scribing the multi-Regge limit of the 2 → 5 amplitude of any helicity configuration, that

is well defined at arbitrary logarithmic accuracy. In order to complete the description we

also need to determine the building blocks of the integrand, and while the ones associ-

ated to the six-particle amplitude are known to all loops, the (rescaled) central emission

block (5.1.41) is only known to leading order [102].

The aim of the next two sections will thus be to extract the central emission block at

higher order from the known perturbative data for the amplitude, exploiting the fact

that if we know the left-hand side of (5.1.37) at ` loops, we can determine all building

blocks in (5.1.38) at N`−1LO, since they start at O(a0). In particular, in this section we will

first promote the known 2-loop symbol of the MHV seven-particle amplitude [114] to a

function. From this, we will in fact obtain all 2-loop MHV amplitudes in the multi-Regge
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limit, by similarly promoting their interesting factorization property, i.e. their decom-

position into building blocks associated with the six- and seven-particle amplitude, that

was also discovered in ref. [114].

In subsection 5.2.1, we first establish a necessary result for our subsequent analysis,

which is however expected to have other applications as well, since it holds in gen-

eral kinematics: Based on the framework of the Operator Product Expansion (OPE) for

null polygonal Wilson loops [26, 28–31, 115, 133–138], we derive the maximal degree of

logarithmic divergences of MHV amplitudes in the Euclidean region for any number of

particles N , extending the earlier analysis in ref. [139] of the N = 6 case. In subsection

5.2.2, we then use this property, together with information from soft limits, in order to

uniquely fix all beyond-the-symbol terms of an ansatz for the 2-loop MHV seven-point

amplitude, or more precisely the remainder function R
(2)
7 . Finally, in section 5.2.3 we

obtain all 2-loop MHV amplitudes in the multi-Regge limit, by proving that the NLLA

factorization of the symbol observed in [114] must necessarily also hold at function level.

5.2.1 Maximal degree of logarithmic divergence from the OPE

Let us start by stating the main result of this subsection: We will prove that the N-point

L-loop remainder function R(L)
N in general kinematics may always be written as

R
(L)
N =

∑
0≤j1+...+jN−5≤L−1

logj1 U1 . . . logjN−5 UN−5fj1,...,jN−5 (5.2.1)

where the functions fj1,...,jN−5 are analytic for any of the cross ratios Ui → 0, and the

latter are defined as

Ui = UN−d i
2
e,b i

2
c+2 i = 1, . . . , N − 5 (5.2.2)

with Uij already defined in (4.1.10), or equivalently any other set obtained by acting on

(5.2.2) with dihedral transformations. In the last relation, bxc and dxe are the floor and

ceiling functions respectively. This way, we find that the only relevant cross ratio for

N = 6 is U52, forN = 7 there is U62 and U63 and forN = 8 we have U72, U63 and U73 and

so on for higher points.

The main content of (5.2.1) is twofold: First, the leading discontinuity of R(L)
N , or equiva-

lently its maximal degree of logarithmic divergence is L − 1. And second, that one can

unshuffle all logarithms in the Ui simultaneously even in general kinematics, which is

nontrivial because it cannot be done for general polylogarithmic functions.

We now proceed with the proof, and at the end of this section also mention the gen-

eralization of our result beyond the MHV case. We will be relying on the Wilson loop

OPE [26] approach and its subsequent refinements [28–31], where the observable of in-

terest is a ratio of bosonic Wilson loops WN , which has a weak coupling expansion of
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the form

WN = 1 +
∞∑
L=1

aLW(L)
N (5.2.3)

and is related to RN by

RN = logWN − γK
4
W(1)
N (5.2.4)

where γK has already been defined in (5.1.6). The last equation encodes the fact that al-

though WN receives tree-level and one-loop contributions,RN only starts at two loops.

As described in Section 2.2.6 the N-gon Wilson loop dual to the MHV amplitude is tes-

sellated intoN−5 consecutive squares, where the two segments of each square that are

part of the original Wilson loop can be thought of as a quark-antiquark pair sourcing

a colour-electric flux tube. We can then decompose the Wilson loop into excitations

of this flux tube ψi, with energy Ei, momentum pi and helicity m, corresponding to the

three isometries of the square (see Subsection 2.2.6)

WN =
∑

ψ1,...,ψN−5

e
∑N−5

j (−τjEj+ipjσj+imjφj)P(0|ψ1)P(ψ1|ψ2) . . .P(ψN−6|ψN−5)P(ψN−5|0)

(5.2.5)

The 3N−15 algebraically independentvariables τi, σi andφi parametrize the conformally

invariant kinematics, and when expressing the cross-ratios in terms of these variables,

it can be shown that the N − 5 cross ratios of (5.2.2) take the form

Ui =
1

1 + e2τi
(5.2.6)

This formula can be obtained from the following equivalent parametrization of the ex-

ponential factors in terms of so-called 4-brackets 〈ijkl〉 of momentum twistors

e2τ2j+1 ≡ 〈−j − 1, j + 1, j + 2, j + 3〉〈−j − 2,−j − 1,−j, j + 2〉
〈−j − 2,−j − 1, j + 2, j + 3〉〈−j − 1,−j, j + 1, j + 2〉

j = 0, . . . bN − 6

2
c

e2τ2j ≡ 〈−j, j + 1, j + 2, j + 3〉〈−j − 1,−j,−j + 1, j + 2〉
〈−j − 1,−j, j + 2, j + 3〉〈−j,−j + 1, j + 1, j + 2〉

j = 1, . . . bN − 5

2
c

(5.2.7)

For our purposes we will require the following identity between six momentum twistors,

〈cdef〉〈abef〉 − 〈bdef〉〈acef〉 = −〈adef〉〈bcef〉 (5.2.8)

The latter is a consequence of the Schouten identity

〈ab〉〈cd〉 − 〈ac〉〈bd〉 = −〈bc〉〈ad〉 (5.2.9)

since six points in CP3 (the twistors) are equivalent to six points in CP1 (the spinors), as

can be seen by replacing the spinor bracket of two points with a 4-bracket of its com-
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plement, 〈ab〉 → 〈cdef〉 etc. With the help of the last two formulas, we can show that

indeed

1

1 + e2τ2j+1
=

〈−j − 2,−j − 1, j + 2, j + 3〉〈−j − 1,−j, j + 1, j + 2〉
〈−j − 2,−j − 1, j + 1, j + 2〉〈−j − 1,−j, j + 2, j + 3〉

= U−j−1,j+2

1

1 + e2τ2j
=

〈−j − 1,−j, j + 2, j + 3〉〈−j,−j + 1, j + 1, j + 2〉
〈−j − 1,−j, j + 1, j + 2〉〈−j,−j + 1, j + 2, j + 3〉

= U−j,j+2

(5.2.10)

and (5.2.2) neatly combines the separate odd and even cases of the last equation.

At weak coupling, the tree-level term in (5.2.3) comes from the vacuum state, whereas

excitations on top of it have energies

Ei =Mi + γia+O(a2) (5.2.11)

where Mi is the excitation number. Thus expanding (5.2.5) at weak coupling, and given

that

τi = −1

2
logUi +

1

2
log(1− Ui) (5.2.12)

we see that at L loops the terms that maximize the sum of powers of logUi will be

∑
Mi

N−5∏
i=1

(−aγiτi)ji
ji!

e
∑

i(−τiMi+ipiσi+imiφi)a[P(0|ψ1) . . .P(ψN−5|0)](1)

= aL
ji∑
li=0

N−5∏
i=1

logli Ui × (terms analytic as Ui = 0) (5.2.13)

Where
∑N−5

i ji = L − 1. All other terms in the OPE expansion will also have the same

general structure as (5.2.13) but with fewer powers of logUi (this also includes so-called

small fermions which have γi = 0 and in fact start at O(a3), see for example [30]), which

proves that W(L)
N has the structure of the right-hand side of eq. (5.2.1). Then by virtue of

(5.2.3) and (5.2.4), the same will be true forR(L)
N , which thus completes the proof.

A very similar statement also holds true beyond the MHV case, where it is more conve-

nient to consider the entire superamplitude, rather than its gluonic component alone.

This is then dual to a super-Wilson loop, whose OPE expansion is equal to the same

expansion for MHV, times non-MHV form factors [29, 136–138]. These form factors may

increase or decrease the order at which OPE excitations begin to contribute, and indeed,

some components of the superamplitude, or more precisely ratio function, are nontriv-

ial at tree level. By repeating the arguments presented above, if a component of the dual

super-Wilson loop receives its first nontrivial OPE contribution at k loops, then the total

degree of its logarithmic divergence at L loops should be L− k.
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5.2.2 The function-level 7-particle 2-loop MHV amplitude in MRK

In this subsection, wewill promote the known 2-loop symbol of the heptagon remainder

function in the multi-Regge limit of ref. [114], as defined in (4.1.27) for N = 7, and in the

region corresponding to the analytic continuation of the cross ratio,

ũ ≡ U2,N−1 → e−2πiU2,N−1 (5.2.14)

to a functionR(2)
7 . Let us start by reviewing the relevant information from the aforemen-

tioned paper, where it was shown that

R
(2)
7 (z1, z2)

2πi
=

2∑
i=1

(
2f(ρi) log τi + f̃(ρi)

)
+ g(ρ1, ρ2) (5.2.15)

where

ρ1 = − z1z2
1− z2

ρ2 = (1− z1)z2 (5.2.16)

are the coordinates defined in (4.2.9)-(4.2.11) specialized to N = 7, and the functions f, f̃

are the LLA and NLLA parts of the hexagon remainder function,

R
(2)
6 (z1)

2πi
= 2f(z1) log τ1 + f̃(z1) (5.2.17)

this time in the region corresponding to the analytic continuation (5.2.14), but forN = 6

(two-particle cut). Explicitly we have [100], in the coupling normalization of (5.1.4)

4f(z) = 4f(1/z) =
1

2
log |1− z|2 log |1− z|2

|z|2
= −1

2
G0(z)G1(z) +

1

2
G2
1(z)

4f̃(z) = 4f̃(1/z) = −4Li3(z)− 4Li3(z̄) + 2 log |z|2(Li2(z) + Li2(z̄)) (5.2.18)

+
1

3
log2 |1− z|2 log |z|6

|1− z|4
− 1

2
log |1− z|2 log |1− z|2

|z|2
log |z|2

|1− z|4

= −2G0(z)G0,1(z) + 4G0,0,1(z) +
1

3
G1(z)

3 − 1

2
G0(z)G1(z)

2 +
1

2
G0(z)

2G1(z)

Finally, the symbol, as well as a 25-parameter functional representative for the genuinely

heptagonal NLLAfunction g, were found in [114]. Here we fix all remaining ambiguity, and
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show that

4g(ρ1, ρ2) =2G0,1,1/ρ1 (1/ρ2)− 2G1,1,1/ρ1 (1/ρ2)− G1/ρ1 (1/ρ2)G0,1 (1/ρ2)

− G0 (ρ1)G0,1/ρ1 (1/ρ2) + G1 (ρ1)G0,1/ρ1 (1/ρ2)

+ G0 (ρ1)G1,1/ρ1 (1/ρ2) + G0 (ρ2)G1,1/ρ1 (1/ρ2)

− G1 (ρ1)G1,1/ρ1 (1/ρ2)− G1/ρ1 (1/ρ2)G0,1 (ρ1)

− G1 (ρ1)G0,1 (1/ρ2) + G1,1/ρ1 (1/ρ2)G1 (1/ρ2)

+
1

2
G0 (ρ1)G1 (ρ1)G1/ρ1 (1/ρ2)−

1

2
G0 (ρ1)G1 (ρ1)G1 (1/ρ2)

− 1

2
G0 (ρ2)G1 (ρ1)G1 (1/ρ2)−

1

2
G0 (ρ2)G1/ρ1 (1/ρ2)G1 (1/ρ2)

+ G0,1 (ρ1)G1 (1/ρ2)

(5.2.19)

Where G are the single valued polylogarithms defined in section 4.2.4.2, thus fully spec-

ifying R(2)
7 in MRK at function level.

For the remainder of this subsection, we will describe how we have obtained eq. (5.2.19).

Specializing the discussion of subsection 4.2.4.2 to the seven-particle amplitude, we in-

fer that the relevant class of functions for describing it are single-valued A2 polyloga-

rithms. Then, if we know the symbol of any function in this space (in this case, the sym-

bol of g), we can find a representative function either by matching it against the symbol

of an ansatz made of the basis functions of the same weight, which we call the Lyndon

basis

L =
{
G~a(ρ1)|ai ∈ {0, 1}

}
∪
{
G~a(1/ρ2)|ai ∈ {0, 1, 1/ρ1}

}
(5.2.20)

As was done in [114], or, even better, by directly integrating the symbol along a given

contour.

The actual function may differ from the representative function by beyond-the-symbol

terms, namely transcendental constants multiplying lower-weight functions of the same

type. Assuming that the only transcendental constants appearing here are multiple zeta

values (MZV), we thus form an ansatz for the actual function by augmenting the repre-

sentative function with all products of MZVs with the bases of lower-weight functions,

multiplied by yet-to-be-determined coefficients.

In more detail, we may form separate ansätze for the imaginary and real parts of R(2)
7 ,

which at two loops will have weight three and two, respectively. However, by virtue of

the property (5.2.1), R(2)
7 has vanishing real part in the region where all produced parti-

cles have a negative energy. The functions f and f̃ are determined from the six-point

amplitude and are known to be real. Hence, the function g must also be real. We thus

only need form an ansatz for the real part of g, which after taking into account parity

and projectile symmetry, will contain just four undetermined coefficients: a constant ζ3
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term, plus ζ2 times the three parity and flip symmetric weight-one functions

G0(ρ1) + G0(1/ρ2) G1(ρ1) + G1(1/ρ2) Gρ2(ρ1) (5.2.21)

The final piece of information we will rely on in order to arrive at a unique answer will

be the expected behaviour of the amplitude in soft limits. From (5.2.18) we can easily see

that

f(0) = f̃(0) = 0 (5.2.22)

in agreement with (4.1.50) and the fact that R5 = 0. Similarly, the three soft limits of the

heptagon building block g require

g(0, ρ2) = 0 (5.2.23)

g(ρ1,∞) = 0 (5.2.24)

g(ρ1, ρ1) = −f̃(ρ1) (5.2.25)

Taking the limits on the left-hand side is straightforward, after expressing it in the Lyn-

don basis (5.2.20), the first limit sets the coefficients of the constant ζ3 terms and the first

two logarithms in (5.2.21) to zero. The second limit is related to the first one by target-

projectile symmetry, which leaves g invariant, g(ρ1, ρ2) = g(1/ρ2, 1/ρ1). Therefore it will

not provide any new information, since our ansatz already respects this symmetry. Fi-

nally, the third limit ρ2 → ρ1 also sets the coefficient of the third logarithm in (5.2.21)

to zero, since there it is the only term that becomes divergent. We thus arrive at the

unique answer (5.2.19) for the function g, or equivalently the heptagon remainder func-

tion in MRK.

5.2.3 All function-level 2-loop MHV amplitudes in MRK

Quite interestingly, from the result of the previous section, we can also obtain all 2-loop

MHV amplitudes, in any region in which the adjacent particles k+3, k+4, . . . , l+3 have

their energy signs flipped. In particular, we will show that in the region in question, we

have
R

(2)
N [k+3,l+3]

2πi
=

l−1∑
i=k

(
2f(vi) log τi + f̃(vi)

)
+

l−2∑
i=k

g(vi, vi+1) (5.2.26)

where the hexagon f, f̃ and heptagon g building blocks have already been provided in

(5.2.18)-(5.2.19), and the variables vi are slight generalizations of the ρi variables defined

in (4.2.9)-(4.2.11), corresponding to simplicial coordinates on the Riemann sphere with
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l − k + 3 marked points.11 They are related to the usual transverse cross ratios zi by

zj =
(vj−1 − vj)(1− vj+1)

(vj+1 − vj)(1− vj−1)
j ∈ {k, . . . , l − 1} (5.2.27)

with the boundary conditions vk−1 = 0, vl = ∞.

The above result has already been established at symbol level in [114],12 so more precisely

here we will prove that if it holds at symbol level, then must necessarily also hold at

function level.

It can be seen that by virtue of (5.2.22)-(5.2.25), the right-hand side of (5.2.26) has correct

soft limit behaviour, namely it reduces to the same function with one leg less. Therefore

if this factorization is to break down beyond symbol level, it can only be through terms

that vanish in the soft limit.

From the results of subsection (5.2.1) we know that the 2-loop remainder function has

a vanishing real part for any N , so the only factorization-violating beyond-the-symbol

terms are transcendental constants orweight-1 functions. Given that the latter are single-

valued, they can never turn into transcendental constants in the soft limit, and therefore

one cannot add transcendental constants to the right-hand side of (5.2.26) without vio-

lating soft limits.

With the weight-1 SVMPLs remaining as the only allowed beyond-the symbol terms not

captured in (5.2.26), we will now show that there exists no linear combination thereof

that vanishes in all soft limits, and therefore they too should be absent. Forgetting target-

projectile symmetry momentarily, the weight-1 SVMPLs that can appear inN-point scat-

tering in MRK will be

log |vi| log |1− vi| log |vi − vj | i < j = k, . . . , l − 1 (5.2.28)

This is a consequence of the fact that in the regions we are considering, the multi-Regge

limit is described by a configuration of l − k + 3 points xi (out of a total of N − 2)

in CP1, which can only have singularities when two of the points coincide, i.e. of the

form log(xi − xj), plus complex conjugates. Equation (5.2.28) then follows from single-

valuedness and the fact that the vi coordinates are a particular set of simplicial coordi-

nates parametrizing this space, in absolute analogy to (4.2.9) for the k = 1, l = N − 4

case.

Soft limits prohibit logarithms of adjacent vi, log |vi−1−vi|, to appear, since for each i they

will be the only ones that diverge in the vi−1 = vi limit, with all remaining terms being

finite. Then log |vi−2−vi| are also prohibited, since in the same limit they will be the only

11That is, for the long cut with k = 1, l = N − 4 the two sets of variables coincide, vi = ρi.
12Note however that we have modified the conventions slightly: zi = −wi+3 and vhere

i = −vthere
i+3 .
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ones that reduce to log |vi−1 − vi|, an independent function whose coefficient should

vanish. By extending the argument to differences of vi with larger and larger separation,

we thus sequentially exclude all log |vi−vj | from appearing as extra beyond-the-symbol

terms not captured by (5.2.26).

We are thus left with the logarithms of the first two types appearing in eq. (5.2.28). All

of them but log |1 − v1| can be similarly eliminated by the v1 = 0 limit, namely they will

either diverge, or remain independent functions. And going back to any soft limit not

involving v1 will also force log |1− v1| to be absent, since it will remain nonzero.

Concluding our analysis, we have shown that there exist no beyond-the-symbol terms

respecting soft limits that can be added to the right hand side of eq. (5.2.26) for N ≥
7. Therefore the interesting NLLA factorization structure observed at symbol level also

holds at function level, and the latter equation accurately describes the MRK of 2-loop

MHV amplitudes with any number of points N , in terms of the functions f, f̃ and g.

5.3 Extracting the NLO central emission block

Let us nowcombine the knowledge of seven-gluon amplitudes in MRKwe have gathered

so far, namely the function-level 2-loop MHV case of section 5.2, and the dispersion

integral governing any helicity configuration to all loops (5.1.37)-(5.1.38). By matching the

perturbative two-loop result to the weak coupling expansion of the dispersion integral

we determine a main result of this paper: the (rescaled) central emission block (5.1.41) to

next-to-leading order. This is a result which cannot be obtained from the well-studied

six-gluon amplitudes.

We start by presenting the result, and describe the details of our calculation in the fol-

lowing subsections. If we denote the perturbative expansion of the rescaled central

emission block as

C̃+(ν1, n1, ν2, n2) = C̃(0)(ν1, n1, ν2, n2) + aC̃(1)(ν1, n1, ν2, n2) +O(a2) (5.3.1)

we find the result for the O(a) correction to the central emission block:

C̃(1)(ν1, n1, ν2, n2)

C̃(0)(ν1, n1, ν2, n2)
=
1

2

[
DE1 −DE2 + E1E2 +

1
4(N1 +N2)

2 + V1V2 (5.3.2)

+(V1 − V2)
(
M − E1 − E2) + 2ζ2 + iπ(V2 − V1 − E1 − E2)

]
Herewe normalized to the known leading order result, translated to our conventions [102],

C̃(0)(ν1, n1, ν2, n2) =
Γ
(
1− iν1 − n1

2

)
Γ
(
1 + iν2 +

n2
2

)
Γ
(
iν1 − iν2 − n1

2 + n2
2

)
Γ
(
iν1 − n1

2

)
Γ
(
−iν2 + n2

2

)
Γ
(
1− iν1 + iν2 − n1

2 + n2
2

) (5.3.3)
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In the above, we have expressed the answer in terms of the hexagon BFKL building

blocks [110]

E(ν, n) = −1

2

|n|
ν2 + n2

4

+ ψ

(
1 + iν +

|n|
2

)
+ ψ

(
1− iν +

|n|
2

)
− 2ψ(1)

V (ν, n) ≡ iν

ν2 + n2

4

N(ν, n) =
n

ν2 + n2

4

Dν = −i∂/∂ν
(5.3.4)

with the shorthandE1 = E(ν1, n1) etc, aswell as a newquantity involving mixed polygamma

functions

M(ν1, n1, ν2, n2) = ψ(i(ν1 − ν2)− n1−n2
2 ) + ψ(1− i(ν1 − ν2)− n1−n2

2 )− 2ψ(1) (5.3.5)

Note however that when one changes the integration variables from angular momenta

νi to integrability-wise more natural rapidities ui [109] (taking into account that our νi
differ with the ones used in the latter reference by a factor of 1/2)

νi = ui + a
iVi
2

+O(a2) , (5.3.6)

then any dependence on mixed polygamma functions drops out. In other words they

only appear when we expand the arguments of the gamma functions in the inverse

transformation from the ui to the νi.

We may readily check that our expression (5.3.1)-(5.3.5) indeed obeys theO(a) expansion

of the exact bootstrap conditions (5.1.46)-(5.1.49). For completeness, let us also mention

the weak coupling expansion of the BFKL eigenvalue [91, 99], hexagon measure [101, 110,

140] and NMHV helicity flip kernel [103, 109, 131] (see also the last paper for all-loop ex-

pressions of these quantities)

−ω(ν, n) = aE − a2

4

(
D2E − 2V DE + 4ζ2E + 12ζ3

)
+O(a3) , (5.3.7)

Φ̃(ν, n) =
Φreg(ν, n)

ν2 + n2

4

=
1

ν2 + n2

4

[
1− a

2

(
E2 +

3

4
N2 +

π2

3

)
+O(a2)

]
, (5.3.8)

H(ν, n) =
ν − in

2

ν + in
2

[
1− a

2
NV +O(a2)

]
(5.3.9)

Plugging these formulas back into (5.1.37)-(5.1.38) or (5.1.51), we may obtain predictions

for the heptagon to NLLA at higher loop orders. We detail how to evaluate the relevant

integrals to obtain explicit expressions in momentum space in section 5.4. Finally, we

may invert (5.1.41)-(5.1.42) in order to obtain equivalent perturbative expansions for the
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χ± and C+ building blocks of the BFKL approach,13

χ+(ν, n) =

√
Φ̃(ν, n)

H(ν, n)
=

1

ν − in
2

[
1− a

4

(
E2 +

3

4
N2 −NV +

π2

3

)
+O(a2)

]
χ−(ν, n) = χ+(ν, n)H(ν, n) =

1

ν + in
2

[
1− a

4

(
E2 +

3

4
N2 +NV +

π2

3

)
+O(a2)

]
(5.3.10)

and

C+(ν1, n1, ν2, n2) = −
Γ
(
1− iν1 − n1

2

)
Γ
(
iν2 +

n2
2

)
Γ
(
iν1 − iν2 − n1

2 + n2
2

)
Γ
(
1 + iν1 − n1

2

)
Γ
(
−iν2 + n2

2

)
Γ
(
1− iν1 + iν2 − n1

2 + n2
2

)×
×

[
1 + a

(
C̃(1)

C̃(0)
− 1

4(E
2
1 + E2

2 +N1V1 −N2V2)− 3
16(N

2
1 +N2

2 )− ζ2

)
+O(a2)

]
(5.3.11)

where in the first line of (5.3.10) we picked the branch
√(

ν − in
2

)2
= ν − in

2 .

5.3.1 Building the Fourier-Mellin representation

Here we would like to describe a procedure that can take us from the amplitude in multi-

Regge kinematics to its corresponding Fourier-Mellin (FM) representation. As we have

seen in previous chapters, in multi-Regge kinematics the amplitude exhibits divergent

logarithms which take the form of powers of the log τi, whose coefficients are SVMPLs in

the variables zi. When investigating the heptagon amplitudes we find it useful to define

ẑ2 = 1/z2 (5.3.12)

so that the target-projectile symmetry becomes simply z1 ↔ ẑ2.

The first step in our analysis is to focus solely on the holomorphic part of the heptagon

amplitude in MRK, by taking all z̄i → 0 as well as regularising any logarithms log z̄i → 0.

That is for a single valued function F (z, z̄) we define the holomorphic part by

F h(z) = F (z, 0)
∣∣∣
log z̄→0

(5.3.13)

We can reconstruct the full kinematic dependence of the latter with the help of the

single-valued map, cf. (4.2.50). One is then left with a five-letter A2 or M0,5 alphabet

for the holomorphic part of the form

{z1, ẑ2, 1− z1, 1− ẑ2, 1− z1 − ẑ2} (5.3.14)

13Note that here we have redefined χ± and C+, compared to e.g. [38], as follows: χ±
here = i[χ±

there +O(a)],
and C+

here = −[C+
there +O(a)].
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In addition to restricting to the holomorphic part we also focus on the terms in the Taylor

expansion of the amplitude with strictly positive powers of z1 and ẑ2. In other words we

decompose terms in the perturbative expansion of the amplitude in a similar manner

to that shown in eq. (5.1.51) and keep only the final term corresponding to (2πi)f̃h1h2h3 .

Concretely, this amounts to taking the symbol expression for A = eR7+iδ7
∣∣∣
L loops

and

forming the combination

A(L)(z1, ẑ2) = Ah(z1, ẑ2)−Ah(z1, 0)−Ah(0, ẑ2) +Ah(0, 0) (5.3.15)

in order to remove contributions that reduce to lower-point objects. We remind the

reader that the superscript h refers to taking the holomorphic part as in eq. (5.3.13).

The quantityA(L) contains all the information necessary to construct the Fourier-Mellin

representation we require.

The holomorphic part A(L)(z1, ẑ2) will have logarithmic branch cuts around z1 = 0 and

ẑ2 = 0, in addition to exhibiting the large logarithms log τi associated with taking the

multi-Regge limit. We may render such branch cuts explicit by employing the shuffle

relations to obtain each function as a polynomial in log z1 and log ẑ2 with coefficients

which are analytic around z1 = 0 and ẑ2 = 0 respectively. Thus we obtain an expression

for the holomorphic part of the amplitude in MRK of the form

A(L)(z1, ẑ2) =
∑
p,q,r,s

logp τ1 logq τ2 logr z1 logs ẑ2fpqrs(z1, ẑ2) , (5.3.16)

where fpqrs(z1, ẑ2) are linear combinations of polylogarithms which are analytic at z1 =

ẑ2 = 0.

For each analytic function fp,q,r,s(z1, ẑ2) we now Taylor expand around the origin z1 =

ẑ2 = 0. We may do this simply by employing the following general formula for the Taylor

expansion about z = 0 of a G-function from e.g. [116]

G0nrair ...0
n1ai1

(z) =
∑ (−1)r

mn1+1
1 . . .mnr+1

r

[ z
ai1

]m1
[ z
ai2

]m2−m1

. . .
[ z
air

]mr−mr−1

, (5.3.17)

where the nested summation is performed over the region 1 ≤ m1 < . . . < mr and the

air 6= 0. Here 0n denotes a length n sequence of 0. These nested sums actually form their

own Hopf algebra, with two closely related representations

S(n;m1, . . . ,mj ;x1, . . . , xj) =
∑

n≥i1≥i2≥...≥ij≥1

xi11
im1
1

. . .
x
ij
j

i
mj

j

, (5.3.18)

Z(n;m1, . . . ,mj ;x1, . . . , xj) =
∑

n≥i1>i2>...>ij>0

xi11
im1
1

. . .
x
ij
j

i
mj

j

, (5.3.19)
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with the generalized harmonic numbers corresponding to the special case S(k;m; 1) =

Z(k;m; 1). Where the multiplication is given by the quasi-shuffle product which may be

determined by repeated application of the following identity

n∑
i,j

aij =

n∑
i<j

aij +

n∑
j<i

aij +

n∑
i

aii (5.3.20)

The coproduct of the coalgebra is given by deconcatenation of the entries

∆Z(n;m1, . . . ,mj ;x1, . . . , xj) =

j∑
k=0

Z(n;mk+1, . . . ,mj ;xk+1, . . . , xj)

⊗ Z(n;m1, . . . ,mk;x1, . . . , xk)

(5.3.21)

With a similar expression for the S-sums. The final element of the Hopf algebra is the

antipode S which due to the simple nature of the coproduct together with the quasi-

shuffle algebra is given by

S(Z(n;m1, . . . ,mj ;x1, . . . , xj) = (−1)jS(n;mj , . . . ,m1;xj , . . . , x1) (5.3.22)

In the previous chapter we showed that we may build single valued polylogarithms in

a purely algebraic way by applying the map (4.2.50) to any holomorphic polylogarithm.

Analogously we would like to define a similar map that will generate single-valued Z-

sums, in the sense that they provide the integrand for the Fourier-Melin transform of

single valued polylogarithms.

s = µ(S̃ ⊗ id)∆ (5.3.23)

However before we may define the modified antipode we need to analytically continue

the nested sums to accept complex arguments. That is we will write each nested sum

with an integer upper limit as a combination of sums up to infinity.

Z(n;m1, . . . ,mj ;x1, . . . , xj) =

j∑
k=0

(−1)kZ(∞;mk+1, . . . ,mj ;xk+1, . . . , xj)

×
∞∑

i1,...ik=0

xn+i11

(n+ i1)m1
. . .

xn+i1+...+ikk

(n+ i1 + . . .+ ik)mk
(5.3.24)

With a similar expression for the S- sums, which apart from the obvious change from Z

to S will differ in the lower limit for the indices i.e. in the bottom line the indices would

start at 1 instead of 0. Note that for the special case where all the xi = 1, the sums in the

first line reduce to the multiple zeta values Z(∞;m1, . . . ,mj ; 1, . . . , 1) = ζ(m1, . . . ,mj).

Having defined the analytically continued sums we may finally write the the action of
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the modified antipode appearing in the map (5.3.23)

S̃
(
Z
(n
2
+ iν − 1; . . .

))
= (−1)

∑
imiS

(
Z
(n
2
− iν; . . .

))
(5.3.25)

Note that the particular nature of the argument was chosen aposteriori to match the

arguments we will be encountering in the Fourier-Mellin integral. By putting all these

elements together we may write a self contained expression for the the single-valued

version of a Z-sum

s
(
Z
(n
2
+ iν − 1; . . .

))
=

j∑
k=0

(−1)
∑j

i=k+1(mi+1)S
(n
2
− iν;mj , . . . ,mk+1; x̄j , . . . , x̄k+1

)
× Z

(n
2
+ iν − 1;m1, . . . ,mk;x1, . . . , xk

)
(5.3.26)

Thus before we can continue we must first write our functions in terms of Z-sums.

While the formula (5.3.17) provides the explicit Taylor expansions, we empirically find

that fpqrs is always decomposable into sums of the following, much simpler, type in-

volving only simple Z-sums of depth one

Hk1,k2,{ri},{si},{ti}(z1, z2) =
∑

n1,n2>0

[
zn1
1 ẑn2

2

nk11 n
k2
2

Γ(n1 + n2)

Γ(1 + n1)Γ(1 + n2)(∏
i

Z(n1 − 1; ri; 1)

)(∏
i

Z(n2 − 1; si; 1)

)(∏
i

Z(n1 + n2 − 1; ti; 1)

)]
(5.3.27)

For the special case of depth one sums the analytic continuation is given by

Z(n; r; 1) =

n∑
i=1

1

ir
=

∞∑
i=1

1

ir
− 1

(i+ n)r
=

(−1)r−1

(r − 1)!

(
ψ(r−1)(n+ 1)− ψ(r−1)(1)

)
(5.3.28)

Where ψ(r)(z) is the polygamma function. The total weight of the representation (5.3.27)

is

k1 + k2 +
∑
i

ri +
∑
i

si +
∑
i

ti (5.3.29)

We stress that the fact that the functions fpqrs are always expressible as linear combi-

nations of terms of the form (5.3.27) is not at all trivial. For lowweights it is possible to use

various binomial and harmonic sum identities to go from the generalTaylor expansion to

the reduced form (5.3.27). Unfortunately this requires cancellations among sums that do

not have a simple closed form, and it becomes increasingly intractable at higher weights.

However it is simple to explicitly evaluate the Taylor expansions (5.3.17) up to a finite

order and thus generate enough terms to reduce the fpqrs to the form (5.3.27) by means

of an ansatz and linear algebra. This requires building the vector space spanned by the

sums of the form (5.3.27) for each weight required.
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The reason why we are interested in solving the linear problem to arrive at the form

(5.3.27) is two-fold. Firstly, it gives us a double infinite sum that is reminiscent of the

BFKL LLA form. Note that this structure is not automatic just from using the form (5.3.17).

Secondly, the reduced sum (5.3.27) is particularly well suited to expressing its single-

valued completion through a Fourier-Mellin integral. We would like to stress the last

point, since the conjecture for the single valuedZ-sums (5.3.26) has been tested only for

polylogarithms where all the xi = 1.

To find a Fourier-Mellin representation for the single-valued completion of each of the

fpqrs we begin by specifying the following prescription to be applied to the summations

in terms of the form (5.3.27)

∑
n1,n2>0

zn1
1 ẑn2

2

nk11 n
k2
2

→
∑

−∞<n1,n2<∞

∫ ∞

−∞

dν1
2π

∫ ∞

−∞

dν2
2π

z
iν1+

n1
2

1 z̄
iν1−n1

2
1 ẑ

iν2+
n2
2

2
ˆ̄z
iν2−n2

2
2

(iν1 +
n1
2 )k1(iν2 +

n2
2 )k2

(5.3.30)

Here the contours of integration should be taken to be slightly below the real axes in ν1
and ν2. Next we specify how to continue the harmonic sums

Z(nj − 1; r; 1) →
(−1)r−1

(r − 1)!

[
ψ(r−1)

(nj

2 + iνj
)
+ (−1)r−1ψ(r−1)

(
1 +

nj

2 − iνj
)
− 2δr,oddψ

(r−1)(1)
]

(5.3.31)

Finally we provide a prescription for the binomial coefficients

Γ(n1 + n2)

Γ(1 + n1)Γ(1 + n2)
→

Γ(n1
2 − iν1)Γ(

n2
2 − iν2)Γ(iν1 + iν2 +

n1
2 + n2

2 )

Γ(1 + iν1 +
n1
2 )Γ(1 + iν2 +

n2
2 )Γ(1− iν1 − iν2 +

n1
2 + n2

2 )

=
Γ(−n1

2 − iν1)Γ(−n2
2 − iν2)Γ(iν1 + iν2 − n1

2 − n2
2 )

Γ(1 + iν1 − n1
2 )Γ(1 + iν2 − n2

2 )Γ(1− iν1 − iν2 − n1
2 − n2

2 )

=
C̃(0)(ν1, n1,−ν2,−n2)(

iν1 +
n1
2

)(
iν1 − n1

2

)(
iν2 +

n2
2

)(
iν2 − n2

2

) (5.3.32)

The equality of the first and second lines above holds for integer n1 and n2 due to the

following identity obeyed by the Gamma function

Γ
(
x− k

2

)
Γ
(
1− x− k

2

) = (−1)k
Γ
(
x+ k

2

)
Γ
(
1− x+ k

2

) (5.3.33)

The combination of gamma functions provides poles at νj = −i
(nj

2 + h
)

that recover

the holomorphic part for h = 0 by closing the contours in the lower half-planes. It is

easy to see that for the holomorphic pole the right hand side of (5.3.31) reduces to their

initial quantities once we make use of (5.3.28) and similarly for (5.3.32).

Once the prescription is applied one may then evaluate the non-holomorphic residues
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and verify that they correctly reproduce the corresponding terms in the expansion of the

initial single-valued function. This procedure has been applied and verified for the two-

loop heptagon amplitude in MRK as well as many other single-valued polylogarithms.

The final step is to promote the power of log z1 and log ẑ2 to their single-valued versions

log |z1|2 and log |ẑ2|2 and then absorb the log terms into the integrand by writing them as

derivatives

logn |z|2
∫ ∞

−∞

dν

2π
ziν+

n
2 z̄iν−

n
2 F (ν, n) =

∫ ∞

−∞

dν

2π
(−i)n ∂

n

∂νn

(
ziν+

n
2 z̄iν−

n
2

)
F (ν, n) (5.3.34)

Then we may use integration by parts, ignoring surface terms, to shift the derivatives

onto the rest of the integrand F (ν, n). By construction this operation does not spoil the

single valuedness of the integrand. However this can also be seen from the fact that the

structure on the RHS of (5.3.31) is closed with respect to derivatives. This is immediately

evident except for the Gamma functions, for which we have

(−i) ∂
∂ν

Γ(n2 − iν)

Γ(1 + iν + n
2 )

= −
Γ(n2 − iν)

Γ(1 + iν + n
2 )

(
ψ(n2 − iν) + ψ(1 + iν + n

2 )
)

= −
Γ(n2 − iν)

Γ(1 + iν + n
2 )

(
ψ(1 + n

2 − iν) + ψ(iν + n
2 ) +

1
n
2 + iν

− 1
n
2 − iν

)
(5.3.35)

The derivative increases the order of the holomorphic pole and is consistent with re-

covering log |z|2 from the contour integration. Note that manipulating the arguments of

the polygamma functions introduces only rational terms in the integrand and thus does

not spoil single-valuedness. Furthermore the derivative of the gamma functions with

mixed arguments is already of the single-valued form and requires no rational terms.

Altogether this makes it easy to express the integrand in terms of the D,N, V,E,M ba-

sis.

It remains to note that to return to the variable z2 instead of ẑ2 = 1/z2 we simply replace

(ν2, n2) → (−ν2,−n2) in the integrand. In expressions written in the D,N, V,E,M basis

this amounts to simply replacing D2, N2 and V2 with (−D2), (−N2) and (−V2).

Applying the above procedure to the finite part of the two-loop heptagon amplitude

in MRK yields the correction to the integrand Φ̃C̃+Φ̃, and by dividing with the known

expansion (5.3.8), we arrive at the expression (5.3.2)-(5.3.3). Similarly applying the pro-

cedure to the symbol of the amplitude in MRK, obtained from the results of [11], yields

the NNLO central emission vertex (up to beyond-the-symbol terms). We will analyse

the NNLO results in subsequent setions. Since the intermediate expressions in these

calculations can be slightly cumbersome, in the next section we give a worked example

of all the steps we have outlined here on a single weight-three polylogarithm.



154 Chapter 5. The MRK heptagon at NLLA

5.3.2 A worked example

We provide here a demonstration of the entire algorithm on a simpleweight-three SVMPL

whose holomorphic part admits a representation of the form (5.3.27). We begin with a

function with only positive powers of z1 and ẑ2 in its Taylor expansion,

G1−z1,1−z1,0(ẑ2)−G1,1,0(ẑ2) = log(ẑ2)[G1−z1,1−z1(ẑ2)−G1,1(ẑ2)]−G1−z1,0,1−z1(ẑ2)

+G1,0,1(ẑ2)−G0,1−z1,1−z1(ẑ2) +G0,1,1(ẑ2) (5.3.36)

On the RHS of (5.3.36) we have made the logarithmic branch cut at ẑ2 = 0 explicit by

shuffling out the trailing zeros.

Bycomparing the explicit sum representation for (5.3.36) against terms of the form (5.3.27)

of weight three, we find we can write

G1−z1,1−z1,0(ẑ2)−G1,1,0(ẑ2) =∑
n1,n2>0

zn1
1 ẑn2

2

Γ(n1 + n2)

Γ(1 + n1)Γ(1 + n2)

[
Z(n2 − 1; 1; 1)

(
log ẑ2 −

1

n2

)
− Z(n2 − 1; 2; 1)

]
(5.3.37)

Note that the example chosen can be expressed in terms of harmonic polylogarithms

and thus the form on the RHS of (5.3.37) is easy to derive. We emphasise again that it is

not always simple to derive such a form and in general we have to resort to comparing

against an ansatz of terms of the form (5.3.27).

We now pass to the FM representation for the single-valued completion. Following the

prescription in (5.3.31) we have

G1−z1,1−z1,0(ẑ2)− G1,1,0(ẑ2)

=
∑

−∞<n1,n2<∞

∫ ∞

−∞

dν1
2π

∫ ∞

−∞

dν2
2π

z
iν1+

n1
2

1 z̄
iν1−n1

2
1 ẑ

iν2+
n2
2

2
ˆ̄z
iν2−n2

2
2

×
[

log |ẑ2|2I1(ν1, ν2, n1, n2)− I2(ν1, ν2, n1, n2)
]

=
∑

−∞<n1,n2<∞

∫ ∞

−∞

dν1
2π

∫ ∞

−∞

dν2
2π

z
iν1+

n1
2

1 z̄
iν1−n1

2
1 ẑ

iν2+
n2
2

2
ˆ̄z
iν2−n2

2
2

×
[
i∂ν2I1(ν1, ν2, n1, n2)− I2(ν1, ν2, n1, n2)

]
(5.3.38)
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For convenience we have split the integrand into two pieces

I1(ν1, ν2, n1, n2) = Ĉ(0)(ν1,−ν2, n1,−n2)
[
ψ
(
n2
2 + iν2

)
+ ψ

(
1 + n2

2 − iν2
)
− 2ψ(1)

]
I2(ν1, ν2, n1, n2) = Ĉ(0)(ν1,−ν2, n1,−n2)

[
−ψ(1)

(
n2
2 + iν2

)
+ ψ(1)

(
1 + n2

2 − iν2
)

+
1

n2
2 + iν2

(
ψ
(
n2
2 + iν2

)
+ ψ

(
1 + n2

2 − iν2
)
− 2ψ(1)

)]
(5.3.39)

where Ĉ(0) is the quantity which arises from the prescription (5.3.32)

Ĉ(0)(ν1,−ν2, n1,−n2) =
C̃(0)(ν1,−ν2, n1,−n2)(

iν1 +
n1
2

)(
iν1 − n1

2

)(
iν2 +

n2
2

)(
iν2 − n2

2

) (5.3.40)

After performing the differentiation we obtain the desired Fourier-Mellin integrand for

the single-valued polylogarithm (5.3.38), here expressed in terms of theN,V,E,M basis.

Ĉ(0)(ν1,−ν2, n1,−n2)× (E2 + V2)

(
E2 −M − 1

2
N2

)
(5.3.41)

Finally, returning to the z2 variable instead of ẑ2 means flipping the sign of ν2 and n2.

In the above expression this means that C̃(0) and M acquire arguments with canonical

signs and the signs of N2 and V2 get flipped.

5.4 Higher-loop NLLA predictions

In the previous section, we used the 2-loop MHVheptagon amplitude in the multi-Regge

limit, that we promoted from symbol to function in section 5.2, in order to extract the

NLO central emission block (5.3.2)-(5.3.3). Here, we will use this result, together with

the analogous weak coupling expansion of the BFKL eigenvalue (5.3.7), hexagon impact

factor (5.3.8), and helicity flip kernel (5.3.9), to compute explicit analytic expressions for

the heptagon at higher loops in NNLA, from the dispersion integral (5.1.37)-(5.1.38).

Let us start by introducing some useful notation to express the perturbative expansion

of the amplitude. At weak coupling, it is evident that the dispersion integral naturally or-

ganizes itself into a double expansion in the coupling and in the large logarithms log τk.

Separating the coefficients of this expansion into real and imaginary parts, we may de-

fine them as

Rh1,h2,h3 (τ1, z1, τ2, z2) e
iδ7(z1,z2) = 1 + 2πi

∞∑
`=1

`−1∑
i1,i2=0

a`

(
2∏

k=1

1

ik!
logik τk

)
(5.4.1)

×
(
g̃
(`;i1,i2)
h1,h2,h3

(z1, z2) + 2πi h̃
(`;i1,i2)
h1,h2,h3

(z1, z2)
)

Note in particular that we have defined the perturbative coefficients not of Rh1,h2,h3
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alone, but with its combination with a phase, that is equal to the dispersion integral.

The LLA contribution amounts to the coefficients with i1+ i2 = `− 1, for which it is easy

to show that

h̃
(`;i1,`−1−i1)
h1,h2,h3

= 0 i1 = 0, . . . , `− 1 (5.4.2)

In this section, we will be obtaining new results for the coefficients g̃(`;i1,i2)h1,h2,h3
and h̃(`;i1,i2)h1,h2,h3

with i1 + i2 = `− 2, or in other words the NLLA contribution.

We will work in the region z1 � 1, z2 � 1, for which we saw in section 5.1.2 that it is

advantageous to deform the contour of the dispersion integral before the weak coupling

expansion, so that the latter becomes equal to (5.1.51), with

f̃h1h2h3 =
a

2

∞∑
n1,n2=−∞

(−1)n1+n2

(
z1
z̄1

)n1
2
(
z2
z̄2

)n2
2
∫
dν1dν2
(2π)2

|z1|2iν1 |z2|2iν2Φ̃(ν1, n1)Φ̃(ν2, n2)

× e−L1ω(ν1,n1)−L2ω(ν2,n2)Ih1(ν1, n1)C̃
h2(ν1, n1, ν2, n2)Ī

h3(ν2, n2) (5.4.3)

and the integration contour goes below (above) the poles on the real axis for ν1 (ν2), as

shown in figure 5.1.4. The perturbative coefficients (5.4.1) will be a linear combination of

the respective coefficients of all the terms in the right-hand side of (5.1.51). However for

the hexagon amplitudes Rh1h2 they have already been obtained up to at least 8 loops to

NLLA [110, 141], and more generally the holomorphic part may be evaluated in terms of

harmonic polylogarithms with the method of [71], see also [112, 120]. So we only need to

focus on the last term in (5.4.1), that contains the genuine heptagon contributions.

Aswewill detail in the next sections, wewill compute (5.4.3)with the help of two comple-

mentary methods. First, we will use nested sum evaluation algorithms, which are easier

to apply for the heptagon to high loop order. Then, we will also rely on Fourier-Mellin

convolutions, which are particularly suited for applying to higher-point amplitudes.

Before we proceed with the description of our methods, let us briefly summarize the

checks we have performed on our results. First of all, we have confirmed that the two

methods yield the same expressions for the 2 → 5 amplitude to NLLA, through 3 loops

in the R−++ NMHV helicity configuration, and through 4 loops in the MHV case. Up to

the same loop orders, we have also checked that under soft limits, the amplitude in any

helicity configuration reduces to the known 2 → 4 amplitude [110]. Finally, at 3 and 4

loops we have compared the symbol of our expressions for the MHV amplitude with

the MRK limit [142] of the known symbol in general kinematics [11, 12], finding perfect

agreement.
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5.4.1 A nested sum evaluation algorithm

After we expand the integrand in (5.4.3) at weak coupling, we close the integration con-

tour below (above) the real axis for ν1 (ν2), and use Cauchy’s theorem to express it as a

sum over the enclosed residues, with the infinite semicircles giving a vanishing contri-

bution due to |z1|2|Im(ν1)|, |z2|−2|Im(ν2)| → 0 in the region z1 � 1, z2 � 1 we are consid-

ering.

In reality, the fact that amplitudes in the multi-Regge limit, and thus also f̃h1h2h3 , are

expressible in terms of SVMPLs, allows us to compute the latter by only considering the

subset of poles ν1 = −in1/2 and ν2 = −in2/2, with n1 > 0 and n2 < 0, which is equal to

its holomorphic part, in the sense of (5.3.13), with respect to the variables z1, 1/z2 [120]14

f̃hh1h2h3 =
a

2

∞∑
n1=1

−∞∑
n2=−1

Res
νi=

−ini
2

(
z
iν1+

n1
2

1 z
iν2+

n2
2

2 Φ̃(ν1, n1)Φ̃(ν2, n2)×

× e−L1ω(ν1,n1)e−L2ω(ν2,n2)Ih1(ν1, n1)C̃
h2(ν1, n1, ν2, n2)Ī

h3(ν2, n2)
) (5.4.4)

That is, in what follows we will focus on computing f̃hh1h2h3 , and then recover f̃h1h2h3 with

the help of the single-valued map (4.2.50) at the very end15.

After we substitute (5.3.2)-(5.3.3), (5.3.7)-(5.3.9) in (5.4.4), extracting the residues becomes

in practice very easy after we also use the symmetry of (5.3.2)-(5.3.3) in order to replace

ni → −ni there. In particular, it is manifest that only the rational denominators and

Γ(−iν1+ n1
2 ) and Γ(iν2− n2

2 )will have poles, whereas all polygamma functions will have

positive arguments. In this manner, and after we set k = |n1|, l = |n2|, (5.4.4) becomes a

sum of terms of the general form

∞∑
k,l=1

zk1
kr1

z−l2

lr2
Γ(k + l)

Γ(1 + k)Γ(1 + l)

∏
mi,m′

i,m
′′
i

ψ(mi)(k + 1)ψ(m′
i)(l + 1)ψ(m′′

i )(k + l) , (5.4.5)

for different choices of integers r1, r2,mi,m
′
i,m

′′
i ≥ 0, not necessarily different from each

other, times factors that do not depend on the summation variables.

Next, we express the polygamma functions in terms of S- or Z-sums [123], via

ψ(k + 1) ≡ ψ(0)(k + 1) = −γE + S(k; 1; 1)

ψ(m−1)(k + 1) = (−1)m(m− 1)![ζm − S(k;m; 1)]
(5.4.6)

where ζm the Riemann zeta function, γE = −ψ(1) ' 0.577 the Euler-Mascheroni con-

stant, and This substitution allows us to use the quasi-shuffle algebra relations of S- or

14Note that we need to multiply the integrand with −(2πi)2 due to the orientation of our contours.
15To be precise, this equality holds if f̃h1h2h3 is a pure function. Subtleties when this is not the case are

discussed at the end of this section.
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Z-sums, in order to express their products with the same outer summation index, in

terms of linear combinations thereof.

As we will see very shortly, it proves advantageous to replace ψ(m′
i)(l + 1), ψ(mi)(k + 1)

by S- and ψ(m′′
i )(k + l) by Z-sums respectively. After soaking up the gamma function

dependence of (5.4.5) into a rational factor times a binomial coefficient(
k + l

k

)
=

Γ(k + l + 1)

Γ(k + 1)Γ(l + 1)
(5.4.7)

shifting the summation variable l → j = k + l, and partial fractioning with respect to k,

the latter formula splits into terms that look like

∞∑
j=1

(z2)
−j

jn1
Z(j − 1;n2, . . . ; 1, . . . , 1)×

×
j−1∑
k=1

(
j

k

)
(z1z2)

k

kn
′
1

S(k;n′2, . . . ; 1, . . . , 1)
1

(j − k)n
′′
1
S(j − k;n′′2, . . . ; 1, . . . , 1) (5.4.8)

where we also extended the summation range to include j = 1, since Z(j − 1; . . .) van-

ishes there.

Very crucially, the sum on the second line of (5.4.8) can be evaluated in terms of Z-sums

with the help of algorithm D of [123], which has already been implemented in GiNaC [143]

and FORM [144] symbolic computation frameworks, as part of the nestedsums library [124]

or XSummer package [145] respectively. We make use of the former by directly interfacing

it to Mathematica, in particular by sequentially calling the transcendental_sum_type_D
and Ssum_to_Zsum commands for each sum of this type.

The Z-sums we obtain in this manner may have outer summation index j − a for a ≥ 0,

which from the definition (5.3.19) is equivalent to the statement that in reality the out-

ermost summation range should be j ≥ max(1, a). They may also come with (z1z2)
j or

(1 − z1z2)
j prefactors, products/powers of (j − b) denominators with a − 1 ≥ b ≥ 0, as

well as factors that do not depend on j. After shifting the summation variable j → i =

j − max(1, a) + 1 for each different a, and partial fractioning in i, we reduce all terms

(5.4.8) in our expression for f̃hh1h2h3 into simple sums of the form

∞∑
i=1

xi

(i+ c)n1
Z(i+ o− 1;n2, . . . ; 1, . . . , 1)Z(i− 1;n′2, . . . ;x2, . . .) . (5.4.9)

We then synchronize the Z-sums, namely remove the offset o of the first of the two, by
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recursive definition of the identity16

Z(i+ o− 1;m1, ...;x1, ...)

= Z(i− 1;m1, ...;x1, ...) +
o−1∑
j=0

xj1
xi1

(i+ j)m1
Z(i− 1 + j;m2, ...;x2, ...) (5.4.11)

and once again eliminate any products with quasi-shuffle algebra relations. Similarly,

we remove the offset from the denominators with the help of

∞∑
i=1

xi

(i+ c)m
Z(i− 1, ...) =

∞∑
i=1

xi−1

(i+ c− 1)m
Z(i− 1, ...)−

∞∑
i=1

xi

(i+ c)m
xi1
im1

Z(i− 1,m2, ...) ,

(5.4.12)

or
∞∑
i=1

xi

(i+ c)m
=

1

x

∞∑
i=1

xi

(i+ c− 1)m
− 1

cm
(5.4.13)

if no Z-sums are present. After these steps, the expression (5.4.4) for f̃hh1h2h3 may be

readily evaluated in terms of multiple polylogarithms, thanks to the definition

Lim1,...,mj (x1, . . . , xj) =

∞∑
i=1

xi1
im1

Z(i− 1;m2, . . . ,mj ;x2, . . . , xj) (5.4.14)

The procedure we have described for evaluating the Fourier-Mellin integrand is the

same for both the MHV and NMHV case, the only difference being that in the former

the powers of the denominators r1, r2 are strictly positive, whereas in the latter they can

also be zero. This difference is closely related to the fact that the MHVamplitude is a pure

function, whereas the NMHV ones also contain some rational factors in the zi variables.

It is only with respect to these rational factors, that some additional care is needed when

considering the projection to the holomorphic part (5.4.4), since this will also set the

antiholomorphic rational factors to constants, possibly zero. Particularly for the R−++

NMHVamplitude, itwas shown in [38] that the rational factors contain no z̄i dependence,

so similarly to the MHV case, the full f̃−++ may also be obtained with the help of (4.2.50),

when the rational factors are considered as constants with respect to the single-valued

map.

Using the techniques we have described in this section, we have obtained the MHV

R+++ and NMHV R−++ heptagons to NLLA through 5 and 4 loops respectively. The

treatment of R+−+ will follow in the next section, with the method of convolutions.

16Since in this case the Z-sums with offset have their origin in the terms ψ(m′′
i )(k+ l) in (5.4.5), we could

have alternatively left them in this form, shift their arguments with the identity

ψ(n)(z + 1) = ψ(n)(z) + (−1)nn!z−n−1 (5.4.10)

at this point, and only then use (5.4.6)-(5.3.19) to express them as Z-sums.
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5.4.2 Evaluation by Fourier-Mellin convolutions

In this section, we shall use the convolution-based method introduced in the previous

chapter to compute amplitudes in MRK, and adapt it for computations beyond LLA.

So as to render the computation by convolutions more transparent, we will define the

first few orders of the following building blocks separately,

ω(ν, n) = −a(Eν,n + aE(1)
ν,n +O(a2))

χ±(ν, n) = χ±
0 (ν, n)(1 + aκ±1 (ν, n) +O(a2))

C±(ν, n, µ,m) = C±
0 (ν, n, µ,m)(1 + ac±1 (ν, n, µ,m) +O(a2))

(5.4.15)

and we define

Ei ≡ Eνini , χ±
0,i ≡ χ±

0 (νi, ni), κ±0,i ≡ κ±0 (νi, ni) (5.4.16)

C±
0,ij ≡ C±

0 (νi, ni, νj , nj), c±1,ij ≡ c±1 (νi, ni, νj , nj),

We also define a shorthand for the product of leading order impact factors and central

emission blocks at seven points,

$7 ≡ $h1h2h3
7 = χh10,1C

h2
0,12χ

−h3
0,2 (5.4.17)

where we drop explicit dependence on the helicities.

Then at LLA, (i.e. for i1 + i2 = `− 1) we find

g̃
(`;i1,i2)
h1h2h3

(z1, z2) =
1

2
F2

[
$7E

i1
1 E

i2
2

]
(5.4.18)

where

F2 [F ] =

∞∑
n1,n2=−∞

(
z1
z̄1

)n1
2
(
z2
z̄2

)n2
2
∫ +∞

−∞

dν1
2π

dν2
2π

|z1|2iν1 |z2|2iν2F (5.4.19)

denotes the two-fold Fourier-Mellin transform. At NLLA, (i.e. for i1+i2 = `−2), we write

the perturbative coefficients as

g̃
(`;i1,i2)
h1h2h3

(z1, z2) =
2∑
j=1

ij g̃
j;(`;i1,i2)
h1h2h3

(z1, z2) +
3∑
j=1

g̃
(`;i1,i2)
j;h1h2h3

(z1, z2) + P
(`;i1,i2)
h1h2h3

(z1, z2) and

h̃
(`;i1,i2)
h1h2h3

(z1, z2) =

2∑
j=1

h̃
j;(`;i1,i2)
h1h2h3

(z1, z2) +

3∑
j=1

h̃
(`;i1,i2)
j;h1h2h3

(z1, z2) +Q
(`;i1,i2)
h1h2h3

(z1, z2) (5.4.20)

where P and Q are due to the contributions from the first three terms of eq. (5.1.51),
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explicitly given by

P
(`;i1,i2)
h1h2h3

(z1, z2) = δi2,0 g̃
(`;i1)
h1h2

(z1) + δi1,0 g̃
(`;i2)
h2h3

(z2) (5.4.21)

Q
(`;i1,i2)
h1h2h3

(z1, z2) = δi2,0

(
h̃
(`;i1)
h1h2

(z1)−
1

4
G0(z2)g̃

(`−1;i1)
h1h2

(z1)

)
(5.4.22)

+ δi1,0

(
h̃
(`;i2)
h2h3

(z2) +
1

4
G0(z1)g̃

(`−1;i2)
h2h3

(z2)

)
+ δ`,2

1

16
G0(z1)G0(z2)

and we have also introduced corrected perturbative coefficients describing different

contributions to the expansion of the purely heptagonal f̃h1h2h3 term of the latter equa-

tion. Perturbative coefficients with an additional upper index correspond to insertions

of the NLO corrections to the BFKL eigenvalue and perturbative coefficients with an ad-

ditional lower index correspond to insertions of NLO corrections to the impact factors

or central emission blocks. Then these corrected perturbative coefficients are given by

g̃
j;(`;i1,i2)
h1h2h3

(z1, z2) =
1

2
F2

[
$7E

i1−δ1j
1 E

i2−δ2j
2 E

(1)
j

]
g̃
(`;i1,i2)
1;h1h2h3

(z1, z2) =
1

2
F2

[
$7E

i1
1 E

i2
2 κ

h1
1,1

]
g̃
(`;i1,i2)
3;h1h2h3

(z1, z2) =
1

2
F2

[
$7E

i1
1 E

i2
2 κ

−h3
1,2

]
g̃
(`;i1,i2)
2;h1h2h3

(z1, z2) =
1

2
F2

[
$7E

i1
1 E

i2
2 <

(
ch21,12

)]
(5.4.23)

and

h̃
j;(`;i1,i2)
h1h2h3

(z1, z2) = − 1

4
F2

[
$7E

i1
1 E

i2
2 Ej

]
h̃
(`;i1,i2)
j;h1h2h3

(z1, z2) = 0, j ∈ {1, 3}

h̃
(`;i1,i2)
2;h1h2h3

(z1, z2) =
1

4π
F2

[
$7E

i1
1 E

i2
2 =

(
ch21,12

)] (5.4.24)

Given the form of the recursion relation

g
(`;`−1)
++ = −1

2
F
[
χ+
0,1E

`−1
1 χ−

0,1

]
= g

(`−1;`−2)
++ ∗ F [E] (5.4.25)

all we need in addition to the integration kernels E (4.3.4) and H (4.4.3), which we may

extend to higher orders by using (5.3.9), is a starting point for the recursion. Starting

from the two-loop NLLA amplitude (5.2.15) we computed the perturbative coefficients g̃

and h̃ through four loops in the MHV case and through three loops in all other helicity

configurations.

We will conclude this section by commenting on some details of this computation. At

NLLA, we had to introduce the terms |z1|2πiΓeR6(z2)+iδ6(z2) (the same discussion applies
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to the corresponding terms with z1 ↔ z2) and |z1|2πiΓ/|z2|2πiΓ in (5.1.35) in order to avoid

a pinching of our integration contour. Since only the term f̃+++ corresponds to the two-

fold Fourier-Mellin integral, when relating different perturbative coefficients via the re-

cursion (5.4.25), these additional terms should be subtracted before performing convo-

lutions and added back afterwards. At NLLA, for example, the term |z1|2πiΓ/|z2|2πiΓ only

contributes at two loops, as it is independent of the large logarithms log τi. Naively, con-

voluting over this term will introduce additional terms at three-loop order that should

not be there. It turns out, however, that these terms only interfere with our computa-

tions when raising the loop order of the real part from two- to three loops. This is easy

to see when analysing how the individual parts of these terms behave under convolu-

tions with the E and H kernels. Expanding the extra terms in a only yields powers of

logarithms G0(zi)
k , with 0 ≤ k ≤ ` and six-point perturbative coefficients g̃ and h̃ at any

given order `, and though NLLA, we can limit our analysis to k ≤ 2. When convoluted

with E and H, these logarithms yield the following results.

1 ∗ E(z) = 0

G0(z) ∗ E(z) = 0

G0(z)
2 ∗ E(z) = −4ζ3

(5.4.26)

1 ∗ H(0)(z) = 1

G0(z) ∗ H(0)(z) = G0(z)

G0(z)
2 ∗ H(0)(z) = G0(z)

2

(5.4.27)

1 ∗ H(1)(z) = G0(z) ∗ H(1)(z) = G0(z)
2 ∗ H(1)(z) = 0 (5.4.28)

Let us now have a look at the two different kinds of extra terms individually. We will start

with the fraction term |z1|2πiΓ/|z2|2πiΓ, which has no dependence on the large logarithms

log τi and therefore, at NLLA, should only affect the 2-loop amplitude. As convolutions

with E(zi) andH(1)(zi)both appearwith a factor of a in the Fourier-Mellin integrand, they

both result in a higher-order contribution and should evaluate to zero when convoluted

with the extra term. Furthermore, it does not depend on the helicity configuration of the

amplitude, which suggests that it should be invariant under convolution with leading

order helicity flip kernels H(0)(zi). Expanding the term in a, we find

|z1|2πiΓ

|z2|2πiΓ
= 1 +

a

2
iπ(G0(z1)− G0(z2))−

a2

12
iπ3(G0(z1)− G0(z2))

+
a2

8
π2
(
G0(z1)

2 − 2G0(z1)G0(z2) + G0(z2)
2
)
+O(a3)

(5.4.29)
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Considering (5.4.26) - (5.4.28), we see immediately that the aforementioned criteria are

only violated by the terms G0(zi)
2 appearing in the 2-loop real part. We will therefore

have to subtract these terms before performing convolutions with E(zi).

We will now focus on the extra terms |z1|2πiΓeR6(z2)+iδ6(z2) (and the one with z1 ↔ z2)

containing the 6-point amplitude. At LLA, it contributes only through the exponen-

tial eR6(z2)+iδ6(z2)
∣∣
LLA

, which by definition transforms correctly under convolutions with

E(z2) and H(z2). Since the term only comes with large logarithms log τ2, it should vanish

when convoluting with E(z1) so that its presence will not spoil the terms proportional to

both large logarithms. Furthermore, it should be invariant under leading order helicity

flipsH(0)(z1) and should vanish under first order helicity flipsH(1)(z1). This follows again

from (5.4.26) - (5.4.28). At NLLA the situation is similar. Here we will again encounter

terms that only arise from eR6(z2)+iδ6(z2)
∣∣
NLLA

17, i.e. the NLLA hexagon contributions. In

addition, we will find terms arising from log |z1|2eR6(z2)+iδ6(z2)
∣∣
LLA

. Since Fourier-Mellin

convolutions are also suited for the computation of hexagon NLLA amplitudes, con-

volutions in z2 will behave in the desired fashion. Once again, we have to ensure that

convolutions in z1 do not spoil our results, which means that convolutions with E(z1)
and H(1)(z1) should vanish and that leading order helicity flips H(0)(z1) should have no

impact. This is again given by (5.4.26) - (5.4.28). We see therefore, that these potentially

dangerous terms appearing in the amplitude are sufficiently well behaved and we can

therefore completely ignore the presence of these terms and perform our convolutions

without taking further precautions.

Let us now briefly summarize the previous observations. We have seen that at NLLA,

we need to introduce extra terms to our amplitudes that are not part of the two-fold

Fourier-Mellin integral (5.1.35) due to the presence of Regge poles. Even though these

extra terms contribute to the perturbative coefficients at all orders, we only have to sub-

tract these terms when convoluting h̃(2;0,0)h1h2
with E in order to raise its loop order. In all

other cases, and in particular for all helicity flips, convolutions can be applied directly to

the full perturbative coefficients.

5.5 All-order central emission vertex

As mentioned in the previous sections the N = 6 case is well studied and all-order

expressions are already known for the BFKL eigenvalueω, measure factor Φ̃ and helicity-

flip kernel H [109]. The only quantity for which the planar hexagon does not provide an

all order expression is the central emission vertex C̃ . In section 5.3 we determined C̃+

to NLL accuracy and here we give an all-loop generalisation of that formula, consistent

17Note that eR6(z2)+iδ6(z2) also contains an extra term that is not part of the Fourier-Mellin transform.
This term is the 6-point equivalent of the fractional term we discussed before and all observations apply
here, too.
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with the known three-loop heptagon data obtained via the cluster bootstrap [11] as well

as soft limits on the amplitudes in MRK. In the following we focus on C̃+ as C̃− is related

to it by the helicity flip kernels

5.5.1 Central emission vertex at finite coupling

A crucial feature of the following analysis is that at finite coupling it is more appropriate

to use the rapidity variable u rather than the variables ν in order to write the integral

expression. One may then write a uniform relation for ω and ν both in terms of the

rapidity u

ω(u, n) = −4g(Q ·M · κ)1 ν = u− 2g(Q ·M · κ̃)1 (5.5.1)

where the subscript (. . .)1 denotes the first element in the enclosedvector and the sources

κ and κ̃were obtained in [109] after analytic continuation of the OPE sources to the BFKL

regime

κj(u, n) = −
∫ ∞

0

dt

t

Jj(2gt)

et − 1
φj(t;u, n) (5.5.2)

and similarly for κ̃with φ replaced by φ̃where

φj =
1
2

(
etδ

even
j − (−1)jetδ

odd
j
)

cos(ut)e−
nt
2 − J0(2gt)

φ̃j =
1
2

(
etδ

even
j + (−1)jetδ

odd
j
)

sin(ut)e−
nt
2 (5.5.3)

The matrices Q and M are given by

Qij = δij(−1)i+1i M = (1 +K)−1

Kij = 2j(−1)j(i+1)

∫ ∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1
(5.5.4)

The impact factor is related to the analytically continued OPE measure µ as follows

dν

2π
Φ̃(ν, n) =

du

2π
µ(u, n) (5.5.5)

with the BFKL measure µ(u, n) given by [109]

µ(u, n) =
g2(x+x− − g2)eA−2f+2f̃

x+x−
√

(x+x+ − g2)(x−x− − g2)
(5.5.6)

Here we have

f = 2κ ·Q ·M · κ f̃ = 2κ̃ ·Q ·M · κ̃ (5.5.7)
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and we introduce the Zhukowski variables

x± = x(u± in2 ) x(u) = 1
2(u+

√
u2 − 4g2) (5.5.8)

The quantityAwhich appears in (5.5.6) is given by

A = 2

∫ ∞

0

dt

t

1− J0(2gt)
2

et − 1
− π2

4
Γcusp (5.5.9)

Thus we have

e−A = 1 + 2g2ζ2 − 7g4ζ4 +O(g6) (5.5.10)

Finally the helicity-flip kernel is simply given by

H
(
ν(u, n), n

)
=
x−

x+
(5.5.11)

Here we highlight the factorised structure of the Fourier-Mellin space representation for

the heptagon amplitude in multi-Regge kinematics. From the explicit data for the sym-

bol of the MHV heptagon that we have up to three loops we are able to observe patterns

which strongly resemble objects that should arise from considering the appropriate an-

alytic continuation of the pentagon transitions of gluon bound states in the OPE of [31].

Specifically we observe that the part of the Mellin integrand (5.1.21)

Ψ(ν1, n1, ν2, n2) ≡ χ1(ν1, n1)C(ν1, n1, ν2, n2)χ2(ν2, n2) (5.5.12)

respects a factorisation of the following form

dν1
2π

dν2
2π

Ψ(ν1, n1, ν2, n2)

=
du1
2π

du2
2π

µ1µ2h1ĥ2Z12e
2(−if1+if2−f3+f4)−AC0 (5.5.13)

The factorC0 is the leading order Mellin integrand with rapidities ui as arguments rather
than the νi. It is expressed purely in terms of gamma functions

C0=
Γ
(
1− iu1 − n1

2

)
Γ
(
1 + iu2 +

n2

2

)
Γ
(
iu1 − iu2 − n1−n2

2

)
Γ
(
iu1 − n1

2

)
Γ
(
−iu2 + n2

2

)
Γ
(
1− iu1 + iu2 − n1−n2

2

)
=

C+(u1, n1, u2, n2)

χ−(u1, n1)χ+(u2, n2)
(5.5.14)

Expanding C0 in terms of the νi variables generates terms containing the quantity M ,

defined in eq. (5.3.5), which encapsulates all dependence on polygammas with i(ν1−ν2)
in the argument. In particular it correctly generates the term proportional toM in (5.3.2).
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The functions fi are given by

f1 = 2κ̃1 ·Q ·M · κ2 f2 = 2κ1 ·Q ·M · κ̃2
f3 = 2κ̃1 ·Q ·M · κ̃2 f4 = 2κ1 ·Q ·M · κ2 (5.5.15)

with κi = κ(ui, ni) etc.

With the above definitions we find the perturbative expansion of the exponential factor

dependent on the fi is

e2(−if1+if2−f3+f4) = 1 + g2(E1E2 − E2V1 + E1V2 + V1V2) +O(g4) (5.5.16)

Note that the arguments of theE and V functions are taken as the rapidities ui, not the νi
in the above equation. At weak coupling the two variables are related by the expansion

of the finite coupling relation (5.5.1)

ν = u+ ig2V (u, n)− i

2
g4(D2

uV (u, n) + 4ζ2V (u, n)) +O(g6) (5.5.17)

The factor Z in (5.5.13) is expressed in terms of the Zhukowski variables x±

Z =

√
(x−1 x

−
2 − g2)(x+1 x

+
2 − g2)

(x+1 x
−
2 − g2)(x−1 x

+
2 − g2)

(5.5.18)

The perturbative expansion of Z is as follows,

Z = 1+
1

2
g2N1N2−

1

8
g4N1N2(N

2
1 −N1N2+N

2
2 +12V 2

1 +8V1V2+12V 2
2 )+O(g6) (5.5.19)

Once again the arguments of the Ni and Vi in the above equation are taken to be the

rapidity variables ui.

The quantityµ(u, n) is the measure for the six-point amplitude in multi-Regge kinemat-

ics written in rapidity variables. The measure µ has a perturbative expansion of the form

µ(u, n) =
1

u2 + n2

4

[
1− g2(E2 +N2 + 3V 2 + 2ζ2) + g4

(
1

2
(DE)2 + ED2E +

1

2
E4 + E2N2

+
31

32
N4 + 3E2V 2 +

53

4
N2V 2 + 10V 4 + 4E2ζ2 +

3

2
N2ζ2 + 6V 2ζ2

+ 12Eζ3 + 22ζ4

)
+O(g6)

]
(5.5.20)
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Again, the arguments of the E,N, V appearing above are the rapidity u. Note that

µ(−u,−n) = µ(u, n) (5.5.21)

The remaining factor to be described in (5.5.13) is h(u, n). We write this factor as a prod-

uct

h(u, n) = heven(u, n)hodd(u, n) (5.5.22)

where

heven(−u,−n) = heven(u, n) hodd(−u,−n) = [hodd(u, n)]
−1 (5.5.23)

By looking at the symbol level data from the imaginary part of the amplitude up to three

loops we determine that

heven(u, n) = 1 + g2
(
V 2 +

1

4
N2

)
− g4

(
V 4 + 2V 2N2 +

1

16
N4

)
+O(g6) (5.5.24)

while

hodd(u, n) = er(u,n) (5.5.25)

with

r(u, n) = g2DE − 1

4
g4D3E +O(g6) (5.5.26)

In (5.5.24) we have not included various terms proportional to iπ which come from the

real part of the amplitude.

So farwe have explored the structure of the expression which we derived from the sym-

bols of the two and three-loop MHV heptagon amplitudes. By inspecting this data we

deduced that the Mellin integrand is most naturally expressed in terms of the rapid-

ity variables ui and furthermore that it decomposes naturally into various factors. Now

let us assume that the factorisation (5.5.13) found above holds in general and see what

we can determine about the form of h(u, n). Consider the residue of Ψ(ν1, n1, ν2, n2)

at ν1 = ν2 for n1 = n2. The residue of Ψ is determined by the residue of the RHS of

(5.5.13) for u1 = u2 when n1 = n2. Because there are no M type functions in the rapidity

variables the only pole comes from the factor C0(u1, n1, u2, n2) whose residue is

Resu1=u2C0(u1, n2, u2, n2) = (−1)n2iχ+(u2, n2)χ
−(u2, n2) = −(−1)n2i

(
u22+

n22
4

)
(5.5.27)
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We therefore find∮
ν1=ν2

dν1
2π

dν2
2π

Ψ(ν1, n2, ν2, n2)

=

∮
u1=u2

du1
2π

du2
2π

[
µ(u1, n1)µ(u2, n2)h(u1, n1)h(−u2,−n2)

× Z(u1, n1, u2, n2)e
−A+2(−if1+if2−f3+f4)C0(u1, n1, u2, n2)

]
= (−1)n2

du2
2π

(
u22 +

n22
4

)
µ(u2, n2)

2h(u2, n2)h(−u2,−n2)Z(u2, n2, u2, n2)e−A+2(f̂4−f̂3)

= (−1)n2
du2
2π

(
u22 +

n22
4

)
µ(u2, n2)

1

x+2 x
−
2

h(u2, n2)h(−u2,−n2) (5.5.28)

On the other hand by the general analysis of soft limits described in (5.1.30) we expect

that ∮
ν1=ν2

dν1
2π

dν2
2π

Ψ(ν1, n2, ν2, n2) =
dν2
2π

(−1)n2eiπω(ν2,n2)Φ̃(ν2, n2)

=
du2
2π

µ(u2, n2)(−1)n2eiπω(ν2(u2),n2) (5.5.29)

Comparing (5.5.28) with (5.5.29) we find

h(u2, n2)h(−u2,−n2) = heven(u2, n2)
2 =

x+2 x
−
2

u22 +
n2
2
4

eiπω(ν2(u2),n2) (5.5.30)

This then fixes the function heven(u, n),

heven(u, n) =

√√√√ x+2 x
−
2

u22 +
n2
2
4

e
1
2 [iπω(ν2(u2),n2)] (5.5.31)

where now we have included the necessary iπ terms needed for the soft limit to hold.

Note that we may also equivalently write the above formula such that the u-dependence

only appears manifestly in the exponent, with the help of the identity√
x+x−

u2 + n2

4

= e
∫∞
0

dt
t
[1−J0(2gt)] cos(ut)e−

n
2 t

(5.5.32)

The veracity of this identity may be confirmed by e.g. expanding both sides at weak

coupling, and most probably it may also be proven at finite coupling along the lines

of [27, 146].

Finally, we may resort to the ν1 = πΓ exact bootstrap condition in order to constrain

the remaining factor hodd(u, n), which drops out in the above analysis. As explained in

appendix C of [109], the only additional complication is that for n1 = 0, we need two

sheets in u1 in order to cover the entire ν1 line, and the domain of ν1 that the finite-
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coupling analogue of (5.5.17) covers, does not contain the point ν1 = πΓ we are after.

Thus if we wish to enforce the exact bootstrap in question at finite coupling, we need to

first analytically continue u1 to the second sheet.

Since this issue, however, occurs only when expressing the Fourier-Mellin integrand

in the u-variables, we can make use of the ν1 = πΓ exact bootstrap condition pertur-

batively: First of all, in the ν-variables, nothing special happens when taking n1 = 0,

e.g. eq.(5.3.7) is still valid for ω(ν1, 0). Furthermore, as we saw in section 5.1.2, taking

the residue ν1 = πΓ of the integrand at finite coupling, and then performing the weak

coupling expansion, or first expanding the integrand at weak coupling, and then taking

the ν1 = 0 residue, should yield the same result provided n2 6= 0: The pinching of the

contour only occurs for ν1 = ν2 = n1 = n2 = 0.

The conclusion is that if we have a candidate, weak coupling expression for the Fourier-

Mellin integrand in the u-variables (including hodd(ui, ni)), we can translate it to an ex-

pression in the ν-variables (now containing hodd(νi, ni)) with the help of (5.5.17), set n1 =

0, and finally take the ν1 = 0 residue. This should then be equal to the right-hand side of

(5.1.28), expanded at weak coupling.

We make use of this condition by forming a weak-coupling ansatz for r(u, n), consisting

of all odd combinations of the single-variable building blocks V,N,DiE, i = 0, . . . with

undetermined coefficients, and imposing it on the entire Fourier-Mellin integrand. We

find that it uniquely fixes the ansatz, up to 3 loops that we tried. More excitingly, we find

that the weak-coupling expansion for hodd(u, n) that we determined, follows from the

finite-coupling formula

hodd(u, n) = e
i
∫∞
0

dt
t

(J0(2gt)−1)(et+1)

(et−1)
sin(ut)e−

n
2 t+π(u−ν)

(5.5.33)

All in all, and in conventions where we rescale the central emission block so that the

Mellin integrand (5.1.21) contains the combination of impact factors of eq.(5.1.24) appear-

ing in the hexagon amplitude,

Φ̃(ν1, n1)C̃(ν1, n1, ν2, n2)Φ̃(ν2, n2) ≡ χ1(ν1, n1)C(ν1, n1, ν2, n2)χ2(ν2, n2) = Ψ (5.5.34)

the final finite-coupling expression for C̃ is

C̃(u1, n1, u2, n2) =C0(u1, n1, u2, n2)h(u1, n1)h(−u2,−n2)Z(u1, n1, u2, n2)

× e2(−if1+if2−f3+f4)−A
(5.5.35)

Finally, let us summarize the checks of the finite-coupling expression for C̃ , or equiva-

lently heptagon Fourier-Mellin integrand, have been performed so far:

• It respects the discrete symmetries (ν1 ↔ −ν2, n1 ↔ n2) and ni ↔ −ni.
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• It agrees with the previously determined Fourier-Mellin transform ofR(2)
7 at func-

tion level, for both the real and the imaginary part.

• It agrees with the imaginary part of the symbol of R(3)
7 (full wi, w̄i dependence).

• Last but not least, without having used any 4-loop data as input, it indeed matches

the holomorphic terms (no w̄i dependence) for the imaginary part of the symbol

of R(4)
7 .

5.6 Conclusion

p1

p2

pn

pn−1

pn−3 pn−2p4p3

Figure 5.6.1: General n-point factorisation structure of the scattering amplitude in multi-
Regge kinematics.

From Chapter 4 onwards we saw how in MRK both perturbative and finite coupling am-

plitudes in planar N = 4 SYM are simple enough to be determined in all aspects. Be-

cause the kinematics are reduced from four to two dimensions the limit is significantly

more tractable than general kinematics, both from the point of view of the Wilson loop

OPE expansion [28–31, 109] and from the analytic structure of perturbative amplitudes.

This simplification was further reflected in the singularity structure of the amplitudes,

and the cluster algebras describing the general kinematics collapsed into two algebras

of finite type An−3 × An−3 which are complex conjugate to each other. It followed that

the cluster algebra An−3 was isomorphic to that of M0,n the moduli space of Riemann

spheres with marked points. Using the well understood structure of iterated integrals on

M0,n we were able to show that amplitudes in MRK at all orders and all multiplicities are

given in terms of single-valued multiple polylogarithms. Furthermore we conjectured

that the remainder functions for amplitudes factorise in Fourier-Mellin space and they
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take the form

RN =

N−5∏
r=1

[∑
nr

(zr
z̄r

)nr
∫
dνr
2π

|zr|2iνr Φ̃re−Lrωr

]
Ih11 C̃h212 . . . C̃

hN−5

N−6,N−5Ī
hN−4

N−5 (5.6.1)

By considering soft limits we then showed the validity of the dispersion integral in the

region where all the energies of the produced particles have been analytically continued.

The Fourier-Mellin transform maps products into convolutions, and it was possible to

obtain higher order results and at different helicity configurations by convoluting known

results with the BFKL eigenvalue and the helicity flip kernel respectively.

At 6 points we could obtain all order results as all elements appearing in the Fourier-

Mellin integral are known at finite coupling due to integrability. At 7-points and beyond

however a new quantity called the central emission vertex C̃ appears in the factorisation

which was known only to leading order. We were able to use a prescription for deriving

Fourier-Mellin integrands from single valued polylogarithms and combine it with ex-

isting MHV data at 7-points to obtain higher order corrections to the central emission

vertex. Finally by observing the perturbative corrections we were able to conjecture a fi-

nite coupling expression for the central emission vertex that is consistent with soft limits

and higher order data at 7-points. Thus by incorporating this finite coupling conjecture

into (5.6.1) we are able to obtain a dispersion integral valid for all multiplicities, all helicity

configurations and at arbitrary perturbative order.
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APPENDIX A

2-loop, 5-point integral result

In this appendix we present the solution in MPL form of the differential equation dis-

cussed in Section 3. We first define the quantities

p1 =
ā1a2
a1

p2 =
ā1 − a1
ā1 − 1

p3 =
a1 − a2 + ā1(a2 − 1)

a1 − 1

p4 =
a2ā1(a1 − 1)

a1(a2 + ā1 − 1)− ā1a2
(A.0.1)

We give the integrated symbol of the solution along the path beginning at the origin and

following a1 → ā1 → a2 → ā2.

G(0; a1)G(1; ā1)G(a1; a2)G(ā1; ā2)−G(0; ā1)G(1; a1)G(a1; a2)G(ā1; ā2) +

G(0; a1)G(0; ā1)G(1; a2)G(a2; ā2)−G(0; ā1)G(1; a1)G(1; a2)G(a2; ā2) +

G(0; ā1)G(1; a1)G(a1; a2)G(p1; ā2) +G(0; ā1)G(1; a1)G(ā1; ā2)G(p2; a2)−
G(0; a1)G(1; ā1)G(ā1; ā2)G(p2; a2) +G(0; ā1)G(1; a1)G(a2; ā2)G(p2; a2)−
G(0; a1)G(1; ā1)G(a2; ā2)G(p2; a2)−G(0; ā1)G(1; a1)G(p1; ā2)G(p2; a2) +

G(0; a1)G(1; ā1)G(p1; ā2)G(p2; a2)−G(0; a1)G(0; ā1)G(1; a2)G(p3; ā2) +

G(0; ā1)G(1; a1)G(1; a2)G(p3; ā2)−G(0; a1)G(1; ā1)G(a1; a2)G(p3; ā2)−
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G(0; ā1)G(1; a1)G(p2; a2)G(p3; ā2) +G(0; a1)G(1; ā1)G(p2; a2)G(p3; ā2) +

G(1; ā1)G(ā1; ā2)G(0, 0; a1) + G(1; a2)G(a2; ā2)G(0, 0; a1) − G(1; ā1)G(p2; a2)G(0, 0; a1) −
G(1; ā1)G(p3; ā2)G(0, 0; a1) − G(1; a2)G(p3; ā2)G(0, 0; a1) − G(1; a1)G(a1; a2)G(0, 0; ā1) +

G(1; a2)G(a2; ā2)G(0, 0; ā1) + G(1; a1)G(p2; a2)G(0, 0; ā1) + G(1; a1)G(p3; ā2)G(0, 0; ā1) −
G(1; a2)G(p3; ā2)G(0, 0; ā1) + G(0; ā1)G(a1; a2)G(0, 1; a1) − G(0; ā1)G(ā1; ā2)G(0, 1; a1) +

G(a1; a2)G(ā1; ā2)G(0, 1; a1)−G(ā1; ā2)G(p2; a2)G(0, 1; a1)−G(a2; ā2)G(p2; a2)G(0, 1; a1)+
G(p1; ā2)G(p2; a2)G(0, 1; a1)−G(a1; a2)G(p3; ā2)G(0, 1; a1)+G(p2; a2)G(p3; ā2)G(0, 1; a1)−
G(0, 0; ā1)G(0, 1; a1) +G(0; a1)G(a1; a2)G(0, 1; ā1)−G(0; a1)G(ā1; ā2)G(0, 1; ā1)−
G(a1; a2)G(ā1; ā2)G(0, 1; ā1)−G(1; a2)G(a2; ā2)G(0, 1; ā1)+G(a1; a2)G(p1; ā2)G(0, 1; ā1)+
G(ā1; ā2)G(p2; a2)G(0, 1; ā1)+G(a2; ā2)G(p2; a2)G(0, 1; ā1)−G(p1; ā2)G(p2; a2)G(0, 1; ā1)+
G(1; a2)G(p3; ā2)G(0, 1; ā1)−G(p2; a2)G(p3; ā2)G(0, 1; ā1) +G(0, 0; a1)G(0, 1; ā1) +

G(0; a1)G(0; ā1)G(0, 1; a2)−G(0; ā1)G(1; a1)G(0, 1; a2) +G(0; a1)G(ā1; ā2)G(0, 1; a2) +

G(0; ā1)G(ā1; ā2)G(0, 1; a2) − G(1; a1)G(ā1; ā2)G(0, 1; a2) − G(1; ā1)G(ā1; ā2)G(0, 1; a2) −
G(0; a1)G(p3; ā2)G(0, 1; a2) − G(0; ā1)G(p3; ā2)G(0, 1; a2) + G(1; a1)G(p3; ā2)G(0, 1; a2) +

G(1; ā1)G(p3; ā2)G(0, 1; a2)+G(0, 0; a1)G(0, 1; a2)+G(0, 0; ā1)G(0, 1; a2)−G(0, 1; ā1)G(0, 1; a2)+
G(0; ā1)G(1; a1)G(0, a1; a2)+G(1; a1)G(ā1; ā2)G(0, a1; a2)+G(1; ā1)G(ā1; ā2)G(0, a1; a2)−
G(1; a1)G(p3; ā2)G(0, a1; a2)−G(1; ā1)G(p3; ā2)G(0, a1; a2) +G(0, 1; ā1)G(0, a1; a2)−
G(0; ā1)G(a1; a2)G(1, 0; a1)−G(a1; a2)G(ā1; ā2)G(1, 0; a1)−G(1; a2)G(a2; ā2)G(1, 0; a1)+
G(a1; a2)G(p1; ā2)G(1, 0; a1)+G(0; ā1)G(p2; a2)G(1, 0; a1)+G(ā1; ā2)G(p2; a2)G(1, 0; a1)+

G(a2; ā2)G(p2; a2)G(1, 0; a1)−G(p1; ā2)G(p2; a2)G(1, 0; a1)+G(0; ā1)G(p3; ā2)G(1, 0; a1)+
G(1; a2)G(p3; ā2)G(1, 0; a1)−G(p2; a2)G(p3; ā2)G(1, 0; a1)−G(0, 1; a2)G(1, 0; a1) +

G(0, a1; a2)G(1, 0; a1) +G(0; a1)G(ā1; ā2)G(1, 0; ā1) +G(a1; a2)G(ā1; ā2)G(1, 0; ā1)−
G(0; a1)G(p2; a2)G(1, 0; ā1)−G(ā1; ā2)G(p2; a2)G(1, 0; ā1)−G(a2; ā2)G(p2; a2)G(1, 0; ā1)+
G(p1; ā2)G(p2; a2)G(1, 0; ā1)−G(0; a1)G(p3; ā2)G(1, 0; ā1)−G(a1; a2)G(p3; ā2)G(1, 0; ā1)+
G(p2; a2)G(p3; ā2)G(1, 0; ā1)+G(0; a1)G(a2; ā2)G(1, a1; a2)+G(0; ā1)G(a2; ā2)G(1, a1; a2)−
G(0; a1)G(p3; ā2)G(1, a1; a2)−G(0; ā1)G(p3; ā2)G(1, a1; a2)+G(0; a1)G(0; ā1)G(a1, 1; a2)−
G(0; ā1)G(1; a1)G(a1, 1; a2)+G(0, 0; a1)G(a1, 1; a2)+G(0, 0; ā1)G(a1, 1; a2)−G(0, 1; ā1)G(a1, 1; a2)−
G(1, 0; a1)G(a1, 1; a2) +G(0; ā1)G(1; a1)G(a1, p2; a2)−G(0; a1)G(1; ā1)G(a1, p2; a2)−
G(0, 1; a1)G(a1, p2; a2)+G(0, 1; ā1)G(a1, p2; a2)+G(1, 0; a1)G(a1, p2; a2)−G(1, 0; ā1)G(a1, p2; a2)+
G(a1, 1; a2)G(ā1, 0; ā2)−G(0; a1)G(0; ā1)G(ā1, 1; ā2) +G(0; a1)G(1; ā1)G(ā1, 1; ā2)−
G(0, 0; a1)G(ā1, 1; ā2)−G(0, 0; ā1)G(ā1, 1; ā2)+G(0, 1; a1)G(ā1, 1; ā2)+G(1, 0; ā1)G(ā1, 1; ā2)−
G(a1, 0; a2)G(ā1, 1; ā2)−G(0, 1; a2)G(ā1, a2; ā2) +G(1, 0; a2)G(ā1, a2; ā2) +

G(0; a1)G(a1; a2)G(ā1, p1; ā2) +G(0; ā1)G(a1; a2)G(ā1, p1; ā2) +G(0, a1; a2)G(ā1, p1; ā2)−
G(a1, 0; a2)G(ā1, p1; ā2) +G(0; ā1)G(1; a1)G(ā1, p3; ā2)−G(0; a1)G(1; ā1)G(ā1, p3; ā2)−
G(0; a1)G(1; a2)G(ā1, p3; ā2)−G(0; ā1)G(1; a2)G(ā1, p3; ā2)+G(1; a1)G(1; a2)G(ā1, p3; ā2)+
G(1; ā1)G(1; a2)G(ā1, p3; ā2)−G(1; a1)G(a1; a2)G(ā1, p3; ā2)−G(1; ā1)G(a1; a2)G(ā1, p3; ā2)−
G(0, 1; a1)G(ā1, p3; ā2)+G(0, 1; ā1)G(ā1, p3; ā2)+G(1, 0; a1)G(ā1, p3; ā2)−G(1, 0; ā1)G(ā1, p3; ā2)−
G(1, a1; a2)G(ā1, p3; ā2) +G(a1, 1; a2)G(ā1, p3; ā2) +G(0; a1)G(1; a2)G(ā1, p4; ā2) +

G(0; ā1)G(1; a2)G(ā1, p4; ā2)−G(1; a1)G(1; a2)G(ā1, p4; ā2)−G(1; ā1)G(1; a2)G(ā1, p4; ā2)−
G(0; a1)G(a1; a2)G(ā1, p4; ā2)−G(0; ā1)G(a1; a2)G(ā1, p4; ā2)+G(1; a1)G(a1; a2)G(ā1, p4; ā2)+
G(1; ā1)G(a1; a2)G(ā1, p4; ā2) +G(0, 1; a2)G(ā1, p4; ā2)−G(0, a1; a2)G(ā1, p4; ā2)−
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G(1, 0; a2)G(ā1, p4; ā2) +G(1, a1; a2)G(ā1, p4; ā2) +G(a1, 0; a2)G(ā1, p4; ā2)−
G(a1, 1; a2)G(ā1, p4; ā2) +G(a1, 1; a2)G(a2, 0; ā2)−G(0; a1)G(0; ā1)G(a2, 1; ā2) +

G(0; a1)G(1; ā1)G(a2, 1; ā2)−G(0, 0; a1)G(a2, 1; ā2)−G(0, 0; ā1)G(a2, 1; ā2) +

G(0, 1; a1)G(a2, 1; ā2)+G(1, 0; ā1)G(a2, 1; ā2)−G(a1, 0; a2)G(a2, 1; ā2)−G(0, 1; a2)G(a2, ā1; ā2)+
G(1, 0; a2)G(a2, ā1; ā2)−G(0, 1; a2)G(a2, a2; ā2) +G(1, 0; a2)G(a2, a2; ā2) +

G(0; a1)G(a1; a2)G(a2, p1; ā2) +G(0; ā1)G(a1; a2)G(a2, p1; ā2) +G(0, a1; a2)G(a2, p1; ā2)−
G(a1, 0; a2)G(a2, p1; ā2) +G(0; ā1)G(1; a1)G(a2, p3; ā2)−G(0; a1)G(1; ā1)G(a2, p3; ā2)−
G(0; a1)G(1; a2)G(a2, p3; ā2)−G(0; ā1)G(1; a2)G(a2, p3; ā2)+G(1; a1)G(1; a2)G(a2, p3; ā2)+
G(1; ā1)G(1; a2)G(a2, p3; ā2)−G(1; a1)G(a1; a2)G(a2, p3; ā2)−G(1; ā1)G(a1; a2)G(a2, p3; ā2)−
G(0, 1; a1)G(a2, p3; ā2)+G(0, 1; ā1)G(a2, p3; ā2)+G(1, 0; a1)G(a2, p3; ā2)−G(1, 0; ā1)G(a2, p3; ā2)−
G(1, a1; a2)G(a2, p3; ā2) +G(a1, 1; a2)G(a2, p3; ā2) +G(0; a1)G(1; a2)G(a2, p4; ā2) +

G(0; ā1)G(1; a2)G(a2, p4; ā2)−G(1; a1)G(1; a2)G(a2, p4; ā2)−G(1; ā1)G(1; a2)G(a2, p4; ā2)−
G(0; a1)G(a1; a2)G(a2, p4; ā2)−G(0; ā1)G(a1; a2)G(a2, p4; ā2)+G(1; a1)G(a1; a2)G(a2, p4; ā2)+
G(1; ā1)G(a1; a2)G(a2, p4; ā2) +G(0, 1; a2)G(a2, p4; ā2)−G(0, a1; a2)G(a2, p4; ā2)−
G(1, 0; a2)G(a2, p4; ā2) +G(1, a1; a2)G(a2, p4; ā2) +G(a1, 0; a2)G(a2, p4; ā2)−
G(a1, 1; a2)G(a2, p4; ā2)−G(a1, 1; a2)G(p1, 0; ā2)−G(0; a1)G(1; ā1)G(p1, ā1; ā2)−
G(0, 1; a1)G(p1, ā1; ā2)+G(0, 1; a2)G(p1, ā1; ā2)−G(1, 0; ā1)G(p1, ā1; ā2)+G(0, 1; a2)G(p1, a2; ā2)−
G(1, 0; a2)G(p1, a2; ā2) − G(0; a1)G(a1; a2)G(p1, p1; ā2) − G(0; ā1)G(a1; a2)G(p1, p1; ā2) −
G(0, a1; a2)G(p1, p1; ā2) +G(a1, 0; a2)G(p1, p1; ā2)−G(0; ā1)G(1; a1)G(p1, p3; ā2) +

G(0; a1)G(1; ā1)G(p1, p3; ā2)+G(0; a1)G(1; a2)G(p1, p3; ā2)+G(0; ā1)G(1; a2)G(p1, p3; ā2)−
G(1; a1)G(1; a2)G(p1, p3; ā2)−G(1; ā1)G(1; a2)G(p1, p3; ā2)+G(1; a1)G(a1; a2)G(p1, p3; ā2)+
G(1; ā1)G(a1; a2)G(p1, p3; ā2) +G(0, 1; a1)G(p1, p3; ā2)−G(0, 1; ā1)G(p1, p3; ā2)−
G(1, 0; a1)G(p1, p3; ā2)+G(1, 0; ā1)G(p1, p3; ā2)+G(1, a1; a2)G(p1, p3; ā2)−G(a1, 1; a2)G(p1, p3; ā2)−
G(0; a1)G(1; a2)G(p1, p4; ā2)−G(0; ā1)G(1; a2)G(p1, p4; ā2)+G(1; a1)G(1; a2)G(p1, p4; ā2)+
G(1; ā1)G(1; a2)G(p1, p4; ā2)+G(0; a1)G(a1; a2)G(p1, p4; ā2)+G(0; ā1)G(a1; a2)G(p1, p4; ā2)−
G(1; a1)G(a1; a2)G(p1, p4; ā2) − G(1; ā1)G(a1; a2)G(p1, p4; ā2) − G(0, 1; a2)G(p1, p4; ā2) +

G(0, a1; a2)G(p1, p4; ā2) +G(1, 0; a2)G(p1, p4; ā2)−G(1, a1; a2)G(p1, p4; ā2)−
G(a1, 0; a2)G(p1, p4; ā2) +G(a1, 1; a2)G(p1, p4; ā2)−G(0; a1)G(0; ā1)G(p2, 1; a2) +

G(0; ā1)G(1; a1)G(p2, 1; a2)−G(0; a1)G(ā1; ā2)G(p2, 1; a2)−G(0; ā1)G(ā1; ā2)G(p2, 1; a2)+
G(1; a1)G(ā1; ā2)G(p2, 1; a2)+G(1; ā1)G(ā1; ā2)G(p2, 1; a2)−G(0; a1)G(a2; ā2)G(p2, 1; a2)−
G(0; ā1)G(a2; ā2)G(p2, 1; a2)+G(1; a1)G(a2; ā2)G(p2, 1; a2)+G(1; ā1)G(a2; ā2)G(p2, 1; a2)+

G(0; a1)G(p1; ā2)G(p2, 1; a2)+G(0; ā1)G(p1; ā2)G(p2, 1; a2)−G(1; a1)G(p1; ā2)G(p2, 1; a2)−
G(1; ā1)G(p1; ā2)G(p2, 1; a2)+G(0; a1)G(p3; ā2)G(p2, 1; a2)+G(0; ā1)G(p3; ā2)G(p2, 1; a2)−
G(1; a1)G(p3; ā2)G(p2, 1; a2)−G(1; ā1)G(p3; ā2)G(p2, 1; a2)−G(0, 0; a1)G(p2, 1; a2)−
G(0, 0; ā1)G(p2, 1; a2)+G(0, 1; ā1)G(p2, 1; a2)+G(1, 0; a1)G(p2, 1; a2)−G(0; a1)G(1; ā1)G(p2, a1; a2)−
G(1; a1)G(ā1; ā2)G(p2, a1; a2)−G(1; ā1)G(ā1; ā2)G(p2, a1; a2)−G(1; a1)G(a2; ā2)G(p2, a1; a2)−
G(1; ā1)G(a2; ā2)G(p2, a1; a2)+G(1; a1)G(p1; ā2)G(p2, a1; a2)+G(1; ā1)G(p1; ā2)G(p2, a1; a2)+

G(1; a1)G(p3; ā2)G(p2, a1; a2) + G(1; ā1)G(p3; ā2)G(p2, a1; a2) − G(0, 1; a1)G(p2, a1; a2) −
G(1, 0; ā1)G(p2, a1; a2)−G(0; ā1)G(1; a1)G(p2, p2; a2) +G(0; a1)G(1; ā1)G(p2, p2; a2) +

G(0, 1; a1)G(p2, p2; a2)−G(0, 1; ā1)G(p2, p2; a2)−G(1, 0; a1)G(p2, p2; a2)+G(1, 0; ā1)G(p2, p2; a2)+
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G(0; a1)G(0; ā1)G(p3, 1; ā2)−G(0; a1)G(1; ā1)G(p3, 1; ā2) +G(0, 0; a1)G(p3, 1; ā2) +

G(0, 0; ā1)G(p3, 1; ā2)−G(0, 1; a1)G(p3, 1; ā2)−G(1, 0; ā1)G(p3, 1; ā2)+G(a1, 0; a2)G(p3, 1; ā2)+
G(0; ā1)G(1; a1)G(p3, ā1; ā2) +G(0, 1; ā1)G(p3, ā1; ā2) +G(1, 0; a1)G(p3, ā1; ā2)−
G(1, 0; a2)G(p3, ā1; ā2) +G(0, 1; a2)G(p3, a2; ā2)−G(1, 0; a2)G(p3, a2; ā2)−
G(0; a1)G(a1; a2)G(p3, p1; ā2)−G(0; ā1)G(a1; a2)G(p3, p1; ā2)−G(0, a1; a2)G(p3, p1; ā2) +

G(a1, 0; a2)G(p3, p1; ā2)−G(0; ā1)G(1; a1)G(p3, p3; ā2) +G(0; a1)G(1; ā1)G(p3, p3; ā2) +

G(0; a1)G(1; a2)G(p3, p3; ā2)+G(0; ā1)G(1; a2)G(p3, p3; ā2)−G(1; a1)G(1; a2)G(p3, p3; ā2)−
G(1; ā1)G(1; a2)G(p3, p3; ā2)+G(1; a1)G(a1; a2)G(p3, p3; ā2)+G(1; ā1)G(a1; a2)G(p3, p3; ā2)+

G(0, 1; a1)G(p3, p3; ā2)−G(0, 1; ā1)G(p3, p3; ā2)−G(1, 0; a1)G(p3, p3; ā2)+G(1, 0; ā1)G(p3, p3; ā2)+
G(1, a1; a2)G(p3, p3; ā2)−G(a1, 1; a2)G(p3, p3; ā2)−G(0; a1)G(1; a2)G(p3, p4; ā2)−
G(0; ā1)G(1; a2)G(p3, p4; ā2)+G(1; a1)G(1; a2)G(p3, p4; ā2)+G(1; ā1)G(1; a2)G(p3, p4; ā2)+

G(0; a1)G(a1; a2)G(p3, p4; ā2)+G(0; ā1)G(a1; a2)G(p3, p4; ā2)−G(1; a1)G(a1; a2)G(p3, p4; ā2)−
G(1; ā1)G(a1; a2)G(p3, p4; ā2)−G(0, 1; a2)G(p3, p4; ā2)+G(0, a1; a2)G(p3, p4; ā2)+G(1, 0; a2)G(p3, p4; ā2)−
G(1, a1; a2)G(p3, p4; ā2)−G(a1, 0; a2)G(p3, p4; ā2)+G(a1, 1; a2)G(p3, p4; ā2)+G(0; ā1)G(0, 0, 1; a1)+
G(ā1; ā2)G(0, 0, 1; a1)−G(p2; a2)G(0, 0, 1; a1)−G(p3; ā2)G(0, 0, 1; a1)−G(0; a1)G(0, 0, 1; ā1)−
G(a1; a2)G(0, 0, 1; ā1)+G(p2; a2)G(0, 0, 1; ā1)+G(p3; ā2)G(0, 0, 1; ā1)−G(0; ā1)G(0, 1, 0; a1)+
G(a1; a2)G(0, 1, 0; a1)−G(ā1; ā2)G(0, 1, 0; a1)+G(0; a1)G(0, 1, 0; ā1)+G(a1; a2)G(0, 1, 0; ā1)−
G(ā1; ā2)G(0, 1, 0; ā1)+G(0; a1)G(0, 1, a1; a2)+G(0; ā1)G(0, 1, a1; a2)+G(ā1; ā2)G(0, 1, a1; a2)−
G(p3; ā2)G(0, 1, a1; a2)−G(ā1; ā2)G(0, a1, 1; a2)−G(a2; ā2)G(0, a1, 1; a2)+G(p1; ā2)G(0, a1, 1; a2)+
G(p3; ā2)G(0, a1, 1; a2)−G(a1; a2)G(1, 0, 0; a1)+G(p2; a2)G(1, 0, 0; a1)+G(p3; ā2)G(1, 0, 0; a1)+
G(ā1; ā2)G(1, 0, 0; ā1)−G(p2; a2)G(1, 0, 0; ā1)−G(p3; ā2)G(1, 0, 0; ā1)+G(a2; ā2)G(1, 0, a1; a2)−
G(p3; ā2)G(1, 0, a1; a2)−G(ā1; ā2)G(a1, 0, 1; a2)−G(a2; ā2)G(a1, 0, 1; a2)+G(p3; ā2)G(a1, 0, 1; a2)+
G(ā1; ā2)G(a1, 1, 0; a2)+G(a2; ā2)G(a1, 1, 0; a2)−G(p1; ā2)G(a1, 1, 0; a2)+G(0; a1)G(a1, 1, a1; a2)+
G(0; ā1)G(a1, 1, a1; a2)−G(0; a1)G(a1, p2, 1; a2)−G(0; ā1)G(a1, p2, 1; a2)+G(1; a1)G(a1, p2, 1; a2)+
G(1; ā1)G(a1, p2, 1; a2)−G(1; a1)G(a1, p2, a1; a2)−G(1; ā1)G(a1, p2, a1; a2)+G(0; a1)G(ā1, 0, 1; ā2)+
G(0; ā1)G(ā1, 0, 1; ā2)−G(1; a1)G(ā1, 0, 1; ā2)−G(1; ā1)G(ā1, 0, 1; ā2)+G(a1; a2)G(ā1, 0, 1; ā2)+
G(1; a1)G(ā1, 0, ā1; ā2)+G(1; ā1)G(ā1, 0, ā1; ā2)−G(a1; a2)G(ā1, 1, 0; ā2)−G(0; a1)G(ā1, 1, ā1; ā2)−
G(0; ā1)G(ā1, 1, ā1; ā2)+G(1; a2)G(ā1, a2, 0; ā2)−G(0; a2)G(ā1, a2, 1; ā2)−G(a1; a2)G(ā1, p1, 0; ā2)−
G(0; a1)G(ā1, p1, ā1; ā2)−G(0; ā1)G(ā1, p1, ā1; ā2)+G(0; a2)G(ā1, p1, ā1; ā2)+G(0; a1)G(ā1, p3, 1; ā2)+
G(0; ā1)G(ā1, p3, 1; ā2)−G(1; a1)G(ā1, p3, 1; ā2)−G(1; ā1)G(ā1, p3, 1; ā2)+G(a1; a2)G(ā1, p3, 1; ā2)+
G(1; a1)G(ā1, p3, ā1; ā2)+G(1; ā1)G(ā1, p3, ā1; ā2)−G(1; a2)G(ā1, p3, ā1; ā2)−G(1; a2)G(ā1, p4, 0; ā2)+
G(a1; a2)G(ā1, p4, 0; ā2)−G(0; a1)G(ā1, p4, 1; ā2)−G(0; ā1)G(ā1, p4, 1; ā2)+G(0; a2)G(ā1, p4, 1; ā2)+
G(1; a1)G(ā1, p4, 1; ā2)+G(1; ā1)G(ā1, p4, 1; ā2)−G(a1; a2)G(ā1, p4, 1; ā2)+G(0; a1)G(ā1, p4, ā1; ā2)+
G(0; ā1)G(ā1, p4, ā1; ā2)−G(0; a2)G(ā1, p4, ā1; ā2)−G(1; a1)G(ā1, p4, ā1; ā2)−G(1; ā1)G(ā1, p4, ā1; ā2)+
G(1; a2)G(ā1, p4, ā1; ā2)+G(0; a1)G(a2, 0, 1; ā2)+G(0; ā1)G(a2, 0, 1; ā2)−G(1; a1)G(a2, 0, 1; ā2)−
G(1; ā1)G(a2, 0, 1; ā2)+G(a1; a2)G(a2, 0, 1; ā2)+G(1; a1)G(a2, 0, ā1; ā2)+G(1; ā1)G(a2, 0, ā1; ā2)−
G(a1; a2)G(a2, 1, 0; ā2)−G(0; a1)G(a2, 1, ā1; ā2)−G(0; ā1)G(a2, 1, ā1; ā2)+G(1; a2)G(a2, ā1, 0; ā2)−
G(0; a2)G(a2, ā1, 1; ā2)+G(1; a2)G(a2, a2, 0; ā2)−G(0; a2)G(a2, a2, 1; ā2)−G(a1; a2)G(a2, p1, 0; ā2)−
G(0; a1)G(a2, p1, ā1; ā2)−G(0; ā1)G(a2, p1, ā1; ā2)+G(0; a2)G(a2, p1, ā1; ā2)+G(0; a1)G(a2, p3, 1; ā2)+
G(0; ā1)G(a2, p3, 1; ā2)−G(1; a1)G(a2, p3, 1; ā2)−G(1; ā1)G(a2, p3, 1; ā2)+G(a1; a2)G(a2, p3, 1; ā2)+
G(1; a1)G(a2, p3, ā1; ā2) +G(1; ā1)G(a2, p3, ā1; ā2)−G(1; a2)G(a2, p3, ā1; ā2)−
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G(1; a2)G(a2, p4, 0; ā2) +G(a1; a2)G(a2, p4, 0; ā2)−G(0; a1)G(a2, p4, 1; ā2)−
G(0; ā1)G(a2, p4, 1; ā2) +G(0; a2)G(a2, p4, 1; ā2) +G(1; a1)G(a2, p4, 1; ā2) +

G(1; ā1)G(a2, p4, 1; ā2)−G(a1; a2)G(a2, p4, 1; ā2) +G(0; a1)G(a2, p4, ā1; ā2) +

G(0; ā1)G(a2, p4, ā1; ā2)−G(0; a2)G(a2, p4, ā1; ā2)−G(1; a1)G(a2, p4, ā1; ā2)−
G(1; ā1)G(a2, p4, ā1; ā2) +G(1; a2)G(a2, p4, ā1; ā2)−G(0; a1)G(p1, 0, 1; ā2)−
G(0; ā1)G(p1, 0, 1; ā2) +G(1; a1)G(p1, 0, 1; ā2) +G(1; ā1)G(p1, 0, 1; ā2)−
G(a1; a2)G(p1, 0, 1; ā2)−G(1; a1)G(p1, 0, ā1; ā2)−G(1; ā1)G(p1, 0, ā1; ā2) +

G(0; a2)G(p1, ā1, 1; ā2)−G(1; a2)G(p1, a2, 0; ā2) +G(0; a2)G(p1, a2, 1; ā2) +

G(a1; a2)G(p1, p1, 0; ā2) +G(0; a1)G(p1, p1, ā1; ā2) +G(0; ā1)G(p1, p1, ā1; ā2)−
G(0; a2)G(p1, p1, ā1; ā2)−G(0; a1)G(p1, p3, 1; ā2)−G(0; ā1)G(p1, p3, 1; ā2) +

G(1; a1)G(p1, p3, 1; ā2) +G(1; ā1)G(p1, p3, 1; ā2)−G(a1; a2)G(p1, p3, 1; ā2)−
G(1; a1)G(p1, p3, ā1; ā2)−G(1; ā1)G(p1, p3, ā1; ā2) +G(1; a2)G(p1, p3, ā1; ā2) +

G(1; a2)G(p1, p4, 0; ā2)−G(a1; a2)G(p1, p4, 0; ā2) +G(0; a1)G(p1, p4, 1; ā2) +

G(0; ā1)G(p1, p4, 1; ā2)−G(0; a2)G(p1, p4, 1; ā2)−G(1; a1)G(p1, p4, 1; ā2)−
G(1; ā1)G(p1, p4, 1; ā2) +G(a1; a2)G(p1, p4, 1; ā2)−G(0; a1)G(p1, p4, ā1; ā2)−
G(0; ā1)G(p1, p4, ā1; ā2) +G(0; a2)G(p1, p4, ā1; ā2) +G(1; a1)G(p1, p4, ā1; ā2) +

G(1; ā1)G(p1, p4, ā1; ā2)−G(1; a2)G(p1, p4, ā1; ā2)−G(0; a1)G(p2, 0, 1; a2)−
G(0; ā1)G(p2, 0, 1; a2) +G(1; a1)G(p2, 0, 1; a2) +G(1; ā1)G(p2, 0, 1; a2)−
G(1; a1)G(p2, 0, a1; a2)−G(1; ā1)G(p2, 0, a1; a2)−G(0; a1)G(p2, 1, a1; a2)−
G(0; ā1)G(p2, 1, a1; a2)−G(ā1; ā2)G(p2, 1, a1; a2)−G(a2; ā2)G(p2, 1, a1; a2) +

G(p1; ā2)G(p2, 1, a1; a2) +G(p3; ā2)G(p2, 1, a1; a2) +G(ā1; ā2)G(p2, a1, 1; a2) +

G(a2; ā2)G(p2, a1, 1; a2)−G(p1; ā2)G(p2, a1, 1; a2)−G(p3; ā2)G(p2, a1, 1; a2) +

G(0; a1)G(p2, p2, 1; a2) +G(0; ā1)G(p2, p2, 1; a2)−G(1; a1)G(p2, p2, 1; a2)−
G(1; ā1)G(p2, p2, 1; a2) +G(1; a1)G(p2, p2, a1; a2) +G(1; ā1)G(p2, p2, a1; a2) +

G(a1; a2)G(p3, 1, 0; ā2) +G(0; a1)G(p3, 1, ā1; ā2) +G(0; ā1)G(p3, 1, ā1; ā2)−
G(1; a2)G(p3, ā1, 0; ā2)−G(1; a2)G(p3, a2, 0; ā2) +G(0; a2)G(p3, a2, 1; ā2) +

G(a1; a2)G(p3, p1, 0; ā2) +G(0; a1)G(p3, p1, ā1; ā2) +G(0; ā1)G(p3, p1, ā1; ā2)−
G(0; a2)G(p3, p1, ā1; ā2)−G(0; a1)G(p3, p3, 1; ā2)−G(0; ā1)G(p3, p3, 1; ā2) +

G(1; a1)G(p3, p3, 1; ā2) +G(1; ā1)G(p3, p3, 1; ā2)−G(a1; a2)G(p3, p3, 1; ā2)−
G(1; a1)G(p3, p3, ā1; ā2)−G(1; ā1)G(p3, p3, ā1; ā2) +G(1; a2)G(p3, p3, ā1; ā2) +

G(1; a2)G(p3, p4, 0; ā2)−G(a1; a2)G(p3, p4, 0; ā2) +G(0; a1)G(p3, p4, 1; ā2) +

G(0; ā1)G(p3, p4, 1; ā2)−G(0; a2)G(p3, p4, 1; ā2)−G(1; a1)G(p3, p4, 1; ā2)−
G(1; ā1)G(p3, p4, 1; ā2) +G(a1; a2)G(p3, p4, 1; ā2)−G(0; a1)G(p3, p4, ā1; ā2)−
G(0; ā1)G(p3, p4, ā1; ā2) +G(0; a2)G(p3, p4, ā1; ā2) +G(1; a1)G(p3, p4, ā1; ā2) +

G(1; ā1)G(p3, p4, ā1; ā2)−G(1; a2)G(p3, p4, ā1; ā2) +G(0, 0, 1, 0; a1)−G(0, 0, 1, 0; ā1)−
G(0, 1, 0, 0; a1) +G(0, 1, 0, 0; ā1) +G(0, 1, 0, a1; a2)−G(0, a1, 0, 1; a2)−G(a1, 0, a1, 1; a2) +

G(a1, 1, 0, a1; a2)−G(a1, p2, 1, a1; a2)+G(a1, p2, a1, 1; a2)+G(ā1, 0, 1, ā1; ā2)−G(ā1, 1, 0, ā1; ā2)+
G(ā1, a2, 0, 1; ā2)−G(ā1, a2, 1, 0; ā2)−G(ā1, p1, 0, ā1; ā2)+G(ā1, p1, ā1, 0; ā2)+G(ā1, p3, 1, ā1; ā2)−
G(ā1, p3, ā1, 1; ā2)−G(ā1, p4, 0, 1; ā2)+G(ā1, p4, 0, ā1; ā2)+G(ā1, p4, 1, 0; ā2)−G(ā1, p4, 1, ā1; ā2)−
G(ā1, p4, ā1, 0; ā2)+G(ā1, p4, ā1, 1; ā2)+G(a2, 0, 1, ā1; ā2)−G(a2, 1, 0, ā1; ā2)+G(a2, ā1, 0, 1; ā2)−
G(a2, ā1, 1, 0; ā2)+G(a2, a2, 0, 1; ā2)−G(a2, a2, 1, 0; ā2)−G(a2, p1, 0, ā1; ā2)+G(a2, p1, ā1, 0; ā2)+
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G(a2, p3, 1, ā1; ā2)−G(a2, p3, ā1, 1; ā2)−G(a2, p4, 0, 1; ā2)+G(a2, p4, 0, ā1; ā2)+G(a2, p4, 1, 0; ā2)−
G(a2, p4, 1, ā1; ā2)−G(a2, p4, ā1, 0; ā2)+G(a2, p4, ā1, 1; ā2)−G(p1, 0, 1, ā1; ā2)+G(p1, ā1, 1, 0; ā2)−
G(p1, a2, 0, 1; ā2)+G(p1, a2, 1, 0; ā2)+G(p1, p1, 0, ā1; ā2)−G(p1, p1, ā1, 0; ā2)−G(p1, p3, 1, ā1; ā2)+
G(p1, p3, ā1, 1; ā2)+G(p1, p4, 0, 1; ā2)−G(p1, p4, 0, ā1; ā2)−G(p1, p4, 1, 0; ā2)+G(p1, p4, 1, ā1; ā2)+
G(p1, p4, ā1, 0; ā2)−G(p1, p4, ā1, 1; ā2)−G(p2, 0, 1, a1; a2)+G(p2, 0, a1, 1; a2)−G(p2, 1, 0, a1; a2)+
G(p2, a1, 0, 1; a2)+G(p2, p2, 1, a1; a2)−G(p2, p2, a1, 1; a2)+G(p3, 1, 0, ā1; ā2)−G(p3, ā1, 0, 1; ā2)−
G(p3, a2, 0, 1; ā2)+G(p3, a2, 1, 0; ā2)+G(p3, p1, 0, ā1; ā2)−G(p3, p1, ā1, 0; ā2)−G(p3, p3, 1, ā1; ā2)+
G(p3, p3, ā1, 1; ā2)+G(p3, p4, 0, 1; ā2)−G(p3, p4, 0, ā1; ā2)−G(p3, p4, 1, 0; ā2)+G(p3, p4, 1, ā1; ā2)+
G(p3, p4, ā1, 0; ā2)−G(p3, p4, ā1, 1; ā2)
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