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Abstract

University of Southampton

Faculty of Engineering and Physical Sciences

School of Electronics and Computer Science

A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy

by Pavlos Vougiouklis

Most people need textual or visual interfaces in order to make sense of Semantic Web

data. In this thesis, we investigate the problem of generating natural language summaries

for structured data encoded as triples using neural networks.

We propose an end-to-end trainable architecture that encodes the information from a

set of triples into a vector of fixed dimensionality and generates a textual summary by

conditioning the output on this encoded vector. In order to both train and evaluate

the performance of our approach, we explore different methodologies for building the

required data-to-text corpora. We initially focus our attention on the generation of

biographies. Using methods for both automatic and human evaluation, we demonstrated

that our technique is capable of scaling to domains with challenging vocabulary sizes of

over 400k words.

Given the promising results of our approach in biographies, we explore its applicability in

the generation of open-domain Wikipedia summaries in two under-resourced languages,

Arabic and Esperanto. We propose an adaptation of our original encoder-decoder archi-

tecture that outperforms a set of strong baselines of different nature. Furthermore, we

conducted a set of community studies in order to measure the usability of the generated

content by Wikipedia readers and editors. The targeted communities ranked our gener-

ated text close to the expected standards of Wikipedia. In addition, we found that the

editors are likely to reuse a large portion of the generated summaries, thus, emphasizing

the usefulness of our approach to the involved communities.

Finally, we extend the original model with a pointer mechanism that enables it to jointly

learn to verbalise in a different number of ways the content from the triples while retain-

ing the ability to generate regular words from a fixed target vocabulary. We evaluate

performance with a dataset encompassing the entirety of English Wikipedia. Results

from both automatic and human evaluation highlight the superiority of the latter ap-

proach compared to our original encoder-decoder architecture and a set of competitive

baselines.
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Chapter 1
Introduction

Humans desire to store an exponentially increasing amount of data in a format that is

easily processable by machines has led to the adoption of various database frameworks.

The requirement to enable machines to understand complicated relations between the

objects of a structured data source has led to the development of knowledge bases and

knowledge graphs. The Semantic Web along with its surrounding technologies, such as

the Web Ontology Language (OWL) and the Resource Description Framework (RDF)

have emerged as a result of the latter (Shadbolt et al., 2006). While Semantic Web data,

such as triples in RDF, is easily accessible by machines, it is difficult to be understood

by humans. This is especially true for people who are unfamiliar with the underlying

technologies. On the contrary, for humans, reading well-structured and informative text

is not only a much more accessible, but also appealing, activity.

Natural Language Generation (NLG) is concerned with the development of the textual

interfaces that generate text that describes the input records of a structured data source

in a fluent and sensible manner (Reiter and Dale, 2000). In the context of the Semantic

Web, the structured data is in the form of knowledge base triples. This thesis focuses

on the development of those NLG techniques that would make the information that is

stored in a knowledge base’s triples more accessible to potential human users.

Most NLG systems that are employed over knowledge graphs, such as Wikidata, are

responsible for generating a textual summary of an input sub-graph of triples (Bouayad-

Agha et al., 2014). As such, their further development can have a dramatic impact on

a variety of application domains. A typical application is their integration in Question

Answering platforms, where a user’s experience could be improved by the ability to

automatically generate a textual description of an entity that is returned as a response

to their query. The Google Knowledge Graph1 and the Wikidata Reasonator2 are some

1https://googleblog.blogspot.co.uk
2https://tools.wmflabs.org/reasonator

1

https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
https://tools.wmflabs.org/reasonator


2 Chapter 1 Introduction

representative examples of such Question Answering systems. In the case of the former,

the returned text is copied directly from a single source, and, thus, not generated. The

latter is a rule-based system of community-curated templates. In its current state the

system supports realisation of a limited type of properties and entity types in only

English, French and German.

Another domain of application is dialogue systems in commercial environments. These

systems can be enhanced further by NLG components capable of generating responses

that better address the users’ questions (Janzen and Maass, 2009). Finally, the ability to

generate coherent text that addresses a set structured records can significantly improve

the coverage of Wikipedia or other collaborative knowledge bases, in which many topics,

especially in the less popular languages, remain under-represented (Chisholm et al.,

2017).

1.1 Aims and Objectives

The aim of the work in this thesis was to investigate how multilingual, open-domain

textual summaries could be generated from knowledge base triples. Recent literature

suggests that neural networks outperform rule- and k-NN-based approaches. However,

they have either only been employed on single-domain datasets (Mei et al., 2016), or by

restricting the generation procedure to a single sentence (Lebret et al., 2016; Chisholm

et al., 2017). Furthermore, the application of neural networks on top of Semantic Web

triples is still a relatively unexplored domain. To this end, the first objective was to

develop a cross-lingual approach of building corpora of knowledge base triples aligned

with texts. The subsequent objective was the design and implementation of a system

capable of generating a textual summary of a given input sub-graph of triples.

With this objective complete, the work has evolved to investigate the actual usability of

the generated content and the performance of more advanced architectures for textual

summaries generation. For the first, we chose to address the communities of Wikipedias

that lack content in order to evaluate the usability of the generated summaries by their

corresponding readers and editors. For the latter, we enhanced the original model with

a pointer mechanism that allows it to verbalise rare entities and numbers in the triples

by simply selecting them from the input. The results are evaluated on both single and

open-domain Wikipedia summaries generation.

1.2 Contributions

This thesis brings a number of clear contributions which are highlighted in brief below:
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• A fully-automatic, cross-lingual, approach for building loosely aligned corpora of

knowledge base triples with Wikipedia summaries

• An end-to-end trainable system that can generate a textual summary from knowl-

edge base triples

• A set of different approaches that enable the verbalisation of frequent and infre-

quent entities in the generated text

• An adaptation of the above architecture for the generation of summaries in under-

resourced languages

• An evaluation through a set of community studies that measures the usefulness of

the above end-system to the needs of the underserved Wikipedias (equal contribu-

tion with two other PhD students from the WDAqua project, Lucie-Aimée Kaffee

and Hady Elsahar)

• An end-to-end trainable neural architecture that jointly learns to verbalise in a

different number of ways the content from triples, while retaining the ability to

generate regular words from a fixed target vocabulary

The work has lead to a series of peer-reviewed publications. It should be noted that

during the first year of his PhD, the author of this thesis familiarised himself with

the fundamental neural network architectures by working on the domain of automatic

response generation on social media. This work led to a refereed conference publication

(Vougiouklis et al., 2016). The paper proposed an end-to-end learnable dialogue system

which rather than generating a response explicitly based on the sequence of the most

recent utterances of a conversation thread, it incorporates background knowledge in

order to capture the context of a conversation better. However, this work is not described

in the subsequent chapters in favour of the contextual consistency of the thesis. Table

1.1 presents the list of the resultant publications to which the work of this thesis is most

related.

1.3 Thesis Structure

This thesis describes the work of the author in attempting to achieve the objectives

outlined earlier in this chapter. Chapter 2 documents existing approaches for NLG,

from rule-based, to statistical ones. It also provides a detailed description of some of the

most recent neural network architectures from which some of the contributions of the

subsequent chapters are inspired. Chapter 3 discusses the different methodologies that

have been explored in the literature for the evaluation of NLG systems, and describes in

detail the methods and criteria against which the systems’ that are proposed in this thesis
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Table 1.1: The main contributions of this work.

Main Contributions

Pavlos Vougiouklis†, Eddy Maddalena†, Jonathon Hare and Elena Simperl. How Biased Is Your
NLG Evaluation?. In Proceedings of the 1st Workshop on CrowdBias, CrowdBias 2018, Zurich,
Switzerland.

Pavlos Vougiouklis, Hady Elsahar, Lucie-Aimée Kaffee, Christophe Gravier, Frédérique Laforest,
Jonathon Hare, and Elena Simperl. Neural Wikipedian: Generating Textual Summaries from
Knowledge Base Triples. Journal of Web Semantics, 2018.

Lucie-Aimée Kaffee†, Hady Elsahar†, Pavlos Vougiouklis†, Christophe Gravier, Frédérique
Laforest, Jonathon Hare, and Elena Simperl. Mind the (Language) Gap: Generation of Multilingual
Wikipedia Summaries from Wikidata for ArticlePlaceholders. In Proceedings of 15th International
Conference, ESWC 2018, Heraklion, Crete, Greece. Springer International Publishing.

Lucie-Aimée Kaffee†, Hady Elsahar†, Pavlos Vougiouklis†, Christophe Gravier, Frédérique
Laforest, Jonathon Hare, and Elena Simperl. Learning to Generate Wikipedia Summaries for
Underserved Languages from Wikidata. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, New Orleans, Louisiana. Association for Computational Linguistics.

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci, Christophe Gravier, Jonathon Hare, Elena
Simperl, and Frédérique Laforest. T-REx: A Large Scale Alignment of Natural Language with
Knowledge Base Triples. In Proceedings of the Eleventh International Conference on Language
Resources and Evaluation LREC 2018, Miyazaki, Japan. Association for Computational Linguistics.

Pavlos Vougiouklis, Jonathon Hare, and Elena Simperl. A Neural Network Approach for
Knowledge-Driven Response Generation. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics, Osaka, Japan. Association for Computational
Linguistics.

Yassine Mrabet, Pavlos Vougiouklis, Halil Kilicoglu, Claire Gardent, Dina Demner-Fushman,
Jonathon Hare, and Elena Simperl. Aligning Texts and Knowledge Bases with Semantic Sentence
Simplification. In Proceedings of the 2nd International Workshop on Natural Language Generation
and the Semantic Web, WebNLG ’16, Edinburgh, Scotland. Association for Computational
Linguistics.

†The authors contributed equally to this work.

are evaluated. Chapter 4 presents a fully-automatic approach for building large data-

to-text corpora along with descriptions of the resultant corpora used in the subsequent

chapters. Chapter 5 details a novel neural network architecture based on an encoder-

decoder framework that generates textual summaries from knowledge base triples. The

proposed approach is evaluated on the generation of biographies in English. In Chapter 6

the above approach is expanded in order to generate open-domain textual summaries in

two under-resourced Wikipedia languages: (i) Esperanto and (ii) Arabic. Alongside, the

regular automatic evaluation metrics, the generated summaries are evaluated through

two different community studies that aim to explore the usability of the automatically
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generated content by those underserved Wikipedia communities. Chapter 7 extends

the encoder-decoder architecture of Chapter 5 with a pointer mechanism that enables

the system to jointly learn to verbalise content from triples while retaining an ability

to generate regular words from a fixed target vocabulary. The approach is evaluated

on both single and open-domain Wikipedia summary generation. Finally, Chapter 8

summarises the results and contributions of this thesis, and highlights potential future

directions with respect to all of the previous contribution chapters.





Chapter 2
Background

This chapter documents some of the most notable existing systems for Natural Language

Generation. A range of approaches are discussed, from rule-based ones that had mostly

focused on the verbalisation from domain ontologies using hand-coded linguistic features

to the most recent, data-driven ones that attempt to “learn” directly from data how to

perform the different phases of the NLG pipeline. In the latter sections, the chapter

provides a detailed description of some of the most recent neural network architectures

which have inspired the contributions of the subsequent chapters of this thesis.

2.1 Natural Language Generation

NLG systems typically work in three different stages: (i) document planning or content

selection, (ii) microplanning, and (iii) surface realisation Bouayad-Agha et al. (2014);

Reiter and Dale (2000). During document planning the information that will be commu-

nicated in the text is selected and organised (i.e. document structuring). The output of

the document planner is used by the microplanner to decide how this information should

be linguistically expressed in the generated text. Subsequently, the realiser generates the

actual text that satisfies the linguistic requirements that are set by the microplanner,

and expresses the information as it was structured by the document planner. While in

conventional text generation systems that relied on rules these phases were performed

independently, they were associated not only with the domain and the language of the

end-application but, in many cases, with the application itself (Reiter et al., 2005; Green,

2006; Galanis and Androutsopoulos, 2007; Turner et al., 2009).

Data-driven approaches have been proposed that attempt to learn individual modules

for content selection, microplanning, and surface realisation. Duboue and McKeown and

Barzilay and Lapata treat the problem of learning content selection as a classification

task. They both propose different systems that learn from a corpus of aligned sentences

7
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and records whether a database entry should be selected to verbalised or not. Liang

et al. used a hierarchical Hidden semi-Markov model to generate textual descriptions of

football matches and weather forecasts. Their proposed system worked by concatenating

word sequences each one of which has been conditioned on a selected predicate from a

predicted sequence of predicates that has been chosen based on an initial selection of

record types. The resultant model is learned in an unsupervised manner using Expec-

tation Maximisation (EM). Microplanning (or sentence planning) has been modelled as

a supervised set partitioning task over records from American football matches where

each partition corresponds to a sentence (Barzilay and Lapata, 2006).

More recently, data-driven approaches which “learn” to perform content selection and

realisation under a single framework have been proposed (Chen and Mooney, 2008; An-

geli et al., 2010; Kim and Mooney, 2010; Konstas and Lapata, 2012a,b, 2013). Chen and

Mooney and Chen et al. learn to generate descriptions for robotic football matches (us-

ing the RoboCup dataset) by retraining a system based on supervised semantic parsing

and syntax-based statistical machine translation using an iterative algorithm similar to

EM. A more advanced system on the same task has been proposed by Kim and Mooney

who enhanced Liang et al.’s generative alignment model with the additional linguistic

information produced by Lu et al.’s semantic parser. Angeli et al. introduced a system

that jointly learns to perform the full NLG pipeline as a sequence of local decision us-

ing a log-linear classifier. The end-system also leverages Liang et al.’s alignment model

in order to automatically infer the alignment between the words in the text and the

allocated database records. They use a set of domain-independent features for their

log-linear model that enables them to handle with long-range dependencies. The final

output is fluent due to some domain-specific features that employed by the template

generation system. Konstas and Lapata propose an approach based on a probabilis-

tic context-free grammar that captures using a set of trees how the records of selected

database are rendered into text (Konstas and Lapata, 2012b, 2013). Generation is

achieved by approximating the best derivation tree in the hypergraph. In contrast to

previous approaches that leverage templates, fluent text is generated by intersecting the

hypergraph with an n-gram language model, which is trained separately on the dataset

of interest.

Most of the previous work on NLG with Semantic Web data has focused on the verbal-

isation from domain ontologies using hand-coded rules. However, designing linguistic

features requires significant effort in order for all the aspects of a specific language to

be successfully captured. These systems work in domains with small vocabularies and

restricted linguistic variability. Examples include systems that generate clinical narra-

tives (Arguello et al., 2011), summaries of football matches (Bouayad-Agha et al., 2012),

and, descriptions of museums’ exhibits (Dannélls et al., 2012). Further Semantic Web-

oriented NLG applications can be found in (Bouayad-Agha et al., 2014). The difficulty

of transferring the involved rules across different domains or languages along with the
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tedious repetition of their textual patterns has prevented them from becoming widely

accepted (Socher and Manning, 2013; Bouayad-Agha et al., 2014).

Our work naturally lies on the path opened by recent unsupervised (Duma and Klein,

2013) and distant-supervision (Ell and Harth, 2014) based approaches for the extraction

of RDF verbalisation templates using parallel data-to-text corpora. However, rather

than making a prediction about the template that would be the most appropriate to

verbalise a set of input triples, the models that are proposed in this thesis jointly perform

content selection and surface realisation, without the inclusion of any hand-engineered

rules or templates.

The recent success of neural networks in various text generative tasks, ranging from Ma-

chine Translation (Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2014) and

automatic response generation (Vinyals et al., 2015a; Wen et al., 2015, 2016; Vougiouklis

et al., 2016) to text summarisation (Rush et al., 2015; See et al., 2017), and generation

of textual descriptions from visual data (Karpathy and Fei-Fei, 2017; Vinyals and Le,

2015) has fuelled NLG-oriented research that adapts models from the above domains

to the requirements of the NLG tasks (Mei et al., 2016; Lebret et al., 2016; Chisholm

et al., 2017). These systems have shown substantial improvement over other competi-

tive data-driven approaches (Mei et al., 2016), and have proved to scale on challenging

vocabulary sizes of over than 400k words (Lebret et al., 2016; Chisholm et al., 2017).

More recently, adaptation of out-of-the-box Neural Machine Translation models, based

on the general encoder-decoder framework (discussed in detail in Section 2.2.3), have

shown great potential in tackling various aspects of triples-to-text tasks ranging from mi-

croplanning (Gardent et al., 2017b) to generation of paraphrases (Sleimi and Gardent,

2016). These systems work by conditioning a language model to a set of structured

records.

In the following section we describe some of the most fundamental architectures that

are used both by the aforementioned works and the systems that we propose in the

subsequent chapters.

2.2 Neural Networks in Natural Language Processing

In the context of Natural Language Processing (NLP), the term statistical language

model refers to a probability distribution over a sequence of input tokens, usually

characters or words. Given a sequence of observed values, x1, x2, . . . , xτ−1, a statis-

tical language model computes the probability of the upcoming value xτ to occur,

p(xτ |x1, x2, . . . , xτ−1). Among other approaches for statistical language modelling, such

as n-gram models, neural network implementations have exhibited state-of-the-art per-

formance over recent years (Bengio et al., 2003; Mikolov et al., 2010; Graves, 2013).

Furthermore, in many of the cases, language models based on neural networks are one
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of the fundamental components of many state-of-the-art NLP systems in tasks ranging

from Question Generation (Serban et al., 2016; Du et al., 2017) and syntactic consis-

tency parsing (Vinyals et al., 2015c) to image captioning (Karpathy and Fei-Fei, 2017;

Vinyals and Le, 2015) and automatic response generation (Vinyals et al., 2015a; Wen

et al., 2015, 2016; Vougiouklis et al., 2016). In the context of many statistical approaches

(i.e. those that do not achieve text generation using templates (Konstas and Lapata,

2012a,b, 2013)), and especially, neural networks, a language model is essentially what

interconnects Natural Language Processing and Generation (see Figure 2.1).

Figure 2.1: A statistical Language Model is the probability distribution that keeps
NLP and NLG interconnected. As part of an NLP task, we would want to learn a
language model and then sampling from this learned model is what carries out the

NLG process.

2.2.1 Language Modelling with Neural Networks

In this section, we present some of the fundamental language models that are based

on neural networks. We start with Bengio et al.’s feed-forward neural network model

(Bengio et al., 2003), which introduced neural nets as a competent tool in the NLP field.

We then explore the architecture of Recurrent Neural Networks along with their training

difficulties that arise from the manifestation of the vanishing and exploding gradient

problems. Subsequently, we focus our attention on the multi-gated RNN variants of the

Long Short-Term Memory (LSTM) cell and the Gated Recurrent Unit (GRU). Lastly, the

basic principles regarding the employment of neural network architectures as generative

models are illustrated.
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Please note that since bias terms can be included in each weight-matrix multiplication

(Bishop, 1995), they are not explicitly displayed in the equations that describe the

models of this chapter. Unless explicitly mentioned all weight matrices include a bias

term, and corresponding input vectors are with an additional element with value 1.

2.2.1.1 Modelling with Feed-Forward Neural Networks

The feed-forward neural network language model was introduced by Bengio et al. in 2003

and constitutes the first known implementation of neural nets in the field of language

modelling (Bengio et al., 2003). The model is based on the Markov assumption according

to which the probability of a word xi occurring is based only on the k − 1 words that

precede it. The model computes the probability of a sequence of words x = x1, x2, . . . , xT

to occur as follows:

p(x) =
T∏
t=1

p(xt|xt−k+1, . . . , xt−1) . (2.1)

Given a sequence of one-hot1 input vectors xt−k+1, xt−k+2, ..., xt−1, the network com-

putes the probability of generating the word that follows xt as follows:

h0
t = [Wx→hxt−k+1; . . . ; Wx→hxt−1] , (2.2)

h1
t = q(W1h0

t ) , (2.3)

hlt = q(Wlhl−1
t ) , 1 < l ≤ L , (2.4)

yt = Wyh
L
t , (2.5)

where l ≥ 1, [. . . ; . . .] represents vector concatenation and q(z) is a non-linear activa-

tion function. Typical choices include the hyperbolic tangent and the logistic sigmoid

function.

q(z) =
1

1 + exp(−z)
(2.6)

q(z) = tanh(z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

(2.7)

The original model is parameterised by three weight matrices (Bengio et al., 2003):

• the input weight matrix Wx→h : RV → Rm that contains the m-dimensional

embeddings for each word in the dictionary of size V ;

• the parameter matrix W1 : Rkm → Rm that compresses the concatenated vector

of the input embeddings to a space of lower dimensionality m; and,

1One-hot is a vector that contains a 1 at the index of a particular token, usually character or word,
in the vocabulary with all the other values set to zero.
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• the output matrix Wy : Rm → RV that projects the hidden state on the output

layer and similarly to the Wx→h matrix, it has an entry for each word in the

vocabulary V .

Eq. 2.4 is applied only in case of architecture with higher number of hidden layers.

In such scenarios the parameter matrix Wl ∈ Rm×m acts as a biased linear mapping

(Sundermeyer et al., 2015).

In case of a word-level model, the probability distribution over the next word given the

previous history is obtained by applying the softmax activation function that is able to

guarantee that the aggregated probability of all the observed words will sum up to 1:

p(xt|x1, . . . , xt−1) ≈ p(xt|xt−k+1, . . . , xt−1) =
exp(y

xt)
t )∑V

v=1 exp(y
(v)
t )

. (2.8)

The model achieved substantial perplexity2 improvements over the state-of-the-art n-

gram models. Furthermore, Bengio et al. introduced a novel mixture model by com-

bining the predictions that are computed by the neural network with the ones that are

calculated by an interpolated tri-gram model (Chen and Goodman, 1996). The fact

that the mixture architecture achieved even greater performance in terms of perplexity

dictates that both its component-models make enough mistakes that benefit from simple

averaging (Bengio et al., 2003).

2.2.1.2 Modelling with Recurrent Neural Networks

Mikolov et al. suggested a word-level language model based on the Recurrent Neural

Networks (RNNs). The proposed Recurrent Language Model (RLM) (Mikolov et al.,

2010, 2011) is based on the architecture of the simple RNN or Elman network (Elman,

1990) that is displayed in Figure 2.2.

Let hlt ∈ Rm be the aggregated output of a hidden unit at timestep t ∈ [1 . . . T ] and layer

depth l ∈ [1 . . . L]. The vectors at zero layer depth, h0
t = Wx→hxt, represent vectors

that are given to the network as an input. The parameter matrix Wx→h contains the

m-dimensional embeddings for each token usually, words or character, in the dictionary

of size V . The vectors at layer depth l = L, hLt , are used to predict the output vectors

yt represent the vectors of our architecture. All the weight matrices that follow have

dimension [m,m].

hlt = q
(
Wl

inh
l−1
t + Wl

h→hh
l
t−1

)
, (2.9)

yt = Wyh
L
t , (2.10)

2Perplexity is an evaluation metric that describes how good a model’s probability distribution pre-
dicts a sample. In information theory, it is usually used to compare language models.



Chapter 2 Background 13

Figure 2.2: The general architecture of a multi-layer Recurrent Neural Network
(RNN). The nodes in cyan, orange and dark grey represent inputs, outputs and hidden
states respectively. The weights are shared across all the unrolling timesteps. At each
timestep t the network is provided with the token of the current input (e.g. “a”, “b”,
“c” and “h”) and the hidden states of the previous timestep h1...Lt−1 and makes a predic-
tion about the following token. Essentially, the vectors of the hidden states across its
layers enable the model to keep track of the information that has been processed up to

the current timestep in the sequence.

where q(z) is the sigmoid activation function. The model is parameterised by three

weight matrices:

• the weight matrix Wl
in that has dimension [m,m] and contains the weights of the

connections between the hidden nodes of the l and the l − 1 layer;

• the recurrent matrix Wl
h→h ∈ Rm×m that decides which part of hlt−1 should be

considered for the computation of the hidden state at the current timestep t; and,

• an output matrix Wy : Rm → RV that projects the hidden state on the output

layer, and similarly to the Wx→h matrix, it has an entry for each word or character,

depending on the level of the model, in the vocabulary V .

Similar to the feed-forward neural network model discussed in Section 2.2.1.1, the proba-

bility distribution over the next word, given the previous history, is obtained by applying

the softmax activation function as follows:

p(xt|x1, . . . , xt−1) = softmax(yt) . (2.11)

Due to their intrinsic ability to cycle information inside the nodes of their high-dimensional

hidden state, RNNs are, in principle, extremely powerful sequence models (Sutskever
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et al., 2011; Graves, 2013). In contrast to Hidden Markov Models (HMMs), a widely

used approach for sequence processing (Gers et al., 2003), they are not limited to dis-

crete internal states but store information as continuous high-dimensional distributed

representations (Hochreiter et al., 2001; Martens and Sutskever, 2011).

Mikolov et al. proposed an extended version of the initial RLM model, by introducing

context-related parameters. They implemented a feature layer that is connected with

the hidden and the output layers of the original RLM architecture (see Figure 2.2).

The initial complementary values of the feature vector are computed in a pre-training

phase by applying Latent Dirichlet Allocation (LDA) (Blei et al., 2003) on a preceding

textual dataset. This approach has given rise to mechanisms that bootstrap additional

features in the high-dimensional hidden state of the RNNs, leveraging their ability to

retain relevant information across timesteps (Sordoni et al., 2015; Wen et al., 2015).

On the Difficulty of Training Recurrent Neural Nets. Training RNNs with

gradient descent is not trivial. Substantial amount of literature (Bengio et al., 1994;

Kolen and Kremer, 2001; Pascanu et al., 2012) has been published regarding the explod-

ing and vanishing gradient problem which constitutes the most fundamental difficulty

of training RNNs. The explosion of the long-term components that can occur during

training is responsible for the exponential increase, or exploding, of the Euclidean norm

of the gradient. Similarly, when the norm of the gradient of the long-term components

diminishes quickly to 0, the vanishing problem manifests itself; thus, any information

correlation between distant timesteps is deemed impossible. To sidestep this problem,

Mikolov suggested a technique for the initialisation and monitoring of the weights of

the hidden layers’ connections (Mikolov et al., 2010, 2011). He calculated the gradients

of the RNN with BackPropagation Through Time (BPTT) (Rumelhart et al., 1986;

Bishop, 1995) by propagating the error for only a specific number of timesteps, without,

however, being able to capture contextual information that spans hundreds of timesteps.

During the 90s there were many attempts to resolve the problem that is associated with

the long-term dependencies of the RNNs. The proposed solutions introduced either

non-gradient based training algorithms (Bengio et al., 1994) or weight noise to the

predictions (Graves, 2013) before feeding them again into the network. However, none of

these approaches were able to introduce a concrete methodology that would allow RNNs

to achieve the necessary stability during training (Hochreiter and Schmidhuber, 1996).

In order to sidestep the exploding and vanishing gradients training problem of RNNs,

multi-gated RNN variants that are not affected by the long-term dependency issues,

such as the Long Short-Term Memory (LSTM) cell (Hochreiter and Schmidhuber, 1997)

and the Gated Recurrent Unit (GRU) (Cho et al., 2014), have been proposed. Initial

implementations of LSTMs exhibited promising results in the field of robotic control

(Mayer et al., 2006) and handwritten text recognition (Graves and Schmidhuber, 2009).

The suggested gated mechanisms essentially allow gradients to flow backward more easily
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without suffering too much from the vanishing effect (Bengio et al., 1994; Pascanu et al.,

2012; Bahdanau et al., 2014). More details regarding the architecture of the LSTM and

GRU models are provided in the Sections 2.2.1.3 and 2.2.1.4.

Recently, Martens employed a variant of the Hessian-Free optimisation (Martens, 2010)

for training RNNs (Martens and Sutskever, 2011). The combination of the Hessian-

Free optimisation method along with the introduction of a novel mechanism of “struc-

tural damping” was able to train RNNs on two different long-term dependant datasets

(Sutskever et al., 2011). However, it should be mentioned that Martens’s approach for

training RNNs was found to be more computational expensive in comparison with the

state-of-the-art LSTM-based model, trained with simple stochastic gradient descent.

2.2.1.3 Models based on Long Short-Term Memory Cells

The architecture of an RNN based on Long Short-Term Memory (LSTM) neural net is

identical to the one of a simple RNN (see Figure 2.2). The main difference is that each

node of the hidden state is implemented as an LSTM cell, and, as a result, the hidden

state hlt at each timestep t and layer depth l is computed through the LSTM operations

that are described below rather than with Eq. 2.9. The architecture of the LSTM cell

is displayed in Figure 2.3.

Figure 2.3: The architecture of the Long Short-Term Memory (LSTM) cell (Graves,
2013; Zaremba and Sutskever, 2014).

Based on the architecture that has been proposed by Hochreiter and Schmidhuber,

Graves introduced an LSTM implementation for language modelling purposes. Inspired

by Graves, Zaremba and Sutskever proposed an almost identical architecture for the

LSTM absolved from the inclusion of the cell state in the computation of the input,

output and forget gates (see connections depicted as dashed lines in Figure 2.3). The

resultant architecture was used extensively in many generative tasks (Vinyals et al.,
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2015c,b; Wen et al., 2015; Karpathy et al., 2015; Dong and Lapata, 2016). Its function-

ality is described below.

Let hlt ∈ Rm be the aggregated output of a hidden unit at timestep t ∈ [1 . . . T ] and

layer depth l ∈ [1 . . . L]. All subsequent matrices have dimension [m,m] unless stated

otherwise. The model achieves its functionality by computing the following vectors:
inlt

f lt

outlt

c̃lt

 =


sigm

sigm

sigm

tanh

Wl
c

(
hl−1
t

hlt−1

)
, (2.12)

clt = f lt � clt−1 + inlt � c̃lt , (2.13)

hlt = outlt � tanh(clt) , (2.14)

where Wl
c : R2m → R4m is a biased linear mapping, and inlt, f

l
t , out

l
t and clt are the

vectors at timestep t and layer depth l that correspond to the input gate, the forget gate,

the output gate and the cell respectively. The cell state clt represents each LSTM cell’s

internal memory. The information that will be stored in each clt is regulated by the three

multiplicative gates (i.e. input, forget and output gate). The input gate inlt is used in

order to protect the cell state from any irrelevant inputs. Similarly, the output gate

outlt is introduced to protect any LSTM cells at further timesteps or higher layers from

irrelevant information stored in the current clt. Finally, the forget gate f lt determines

which part of the previous cell state clt−1 is ignored in the computation of the current

cell state clt.

2.2.1.4 Models based on Gated Recurrent Units

The GRU (Cho et al., 2014) is a less complex variant of the LSTM cell with comparable

performance (Chung et al., 2014). Similarly to the LSTM cell, it adaptively captures

dependencies of different time scales without, however, the inclusion of a memory cell

mechanism. The architecture of the GRU is displayed in Figure 2.4.

Let hlt ∈ Rm be the aggregated output of a hidden unit at timestep t ∈ [1 . . . T ] and

layer depth l ∈ [1 . . . L]. All subsequent matrices have dimension [m,m] unless stated

otherwise. The model computes:

(
rlt

ult

)
=

(
sigm

sigm

)
Wl

u

(
hl−1
t

hlt−1

)
, (2.15)

h̃lt = tanh(Wl
inh

l−1
t + Wl

h→h(rlt � hlt−1)) , (2.16)

hlt = (1− ult)� hlt−1 + ult � h̃lt , (2.17)
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Figure 2.4: The architecture of the Gated Recurrent Unit (GRU) (Cho et al., 2014).

where Wl
u : R2m → R2m is a biased linear mapping, and rlt, u

l
t and h̃lt are the vectors at

timestep t and layer depth l that represent the values of the reset gate, the update gate

and the candidate hidden state respectively. In contrast to the LSTM cell, the GRU is

essentially absolved from an explicit internal memory mechanism. At each timestep, the

reset gate rlt learns to determine how much of the previous hidden state hlt−1 should be

ignored for the computation of the candidate hidden state h̃lt. In a similar fashion, the

update gate ult learns to decide what part of hlt−1 will be leaked into the computation

of the current hidden state hlt.

2.2.2 Neural Networks as Generative Models

In the context of language modelling, the goal of the architectures that we discussed

in Sections 2.2.1.1—2.2.1.4 is to calculate a sequence of probability distributions using

their output vectors y1, y2, . . . , yT , given an one-hot input sequence x1, x2, . . . , xT :

p(xt|x1, . . . , xt−1) = softmax(yt) . (2.18)

Consequently, each model learns a probability distribution over sequences by utilising

the negative cross-entropy3 criterion (Sutskever et al., 2011; Graves, 2013; Sordoni et al.,

2015). The model computes how far the generated sequence of tokens is from the

empirical, actual text that is used for its training by utilising the negative logarithmic

probability of the generated summary:

cost = −
T∑
t=1

log p(xt|x1, . . . xt−1) . (2.19)

3In information theory, the entropy H is a measure of the uncertainty. The concept of cross-entropy
is associated with the similarity between two distributions, an empirical one q and a predicted one p given
a random variable X and a set of parameters θ. It is defined as: H(X) = −

∑
q(y(i)) log p(y(i)|x(i), θ).
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Consequently, our model tries to minimise the above cost function. This non-convex

optimisation problem is solved using Back-Propagation (Rumelhart et al., 1986).

Text can be generated by sampling from the above mentioned conditional distribution

to retrieve the next embedding and use it as the new input to the neural network. All

of the models that are presented in this section can be implemented either as character-

level or word-level models. Word-level implementations have been found to outperform

equivalent character-level approaches (Sutskever et al., 2011; Mikolov, 2012). However,

it should be noted that in a word-level model, the length of the one-hot input vectors is

equal to the number of words in the dictionary, which proves to be extremely challenging

not only in terms of the size of the vectors that need to be computed, but also in terms

of the size of the dataset that is required for all the possible syntactic variations of each

word to be successfully captured. Additionally, the existence of non-word strings, such

numbers or URLs in the training data, raises additional challenges in the applicability of

word-level implementations. However, despite their reported limitations, the majority of

NLG-oriented research using neural networks has focused on word-level representations

(Mei et al., 2016; Lebret et al., 2016; Chisholm et al., 2017; Wiseman et al., 2017).

Reflecting on Neural Language Models. In this section we attempt to make a

brief comparison of the above-discussed neural architectures.

A major defect of the feed-forward approaches that are based on Bengio et al. is that

they require a fixed-length context window that should be set every time before the

training procedure (Mikolov et al., 2010). Consequently, when the network attempts to

predict the next word has a relatively minimal contextual knowledge of the 5−10 words

that precede it. The superiority of recurrent neural networks over their feed-forward

equivalents for languages modelling has been discussed extensively in the scientific lit-

erature (Mikolov et al., 2011; Arisoy et al., 2012). When tested on datasets from the

Wall Street Journal the RLM performed significant better than the feed-forward model

by achieving at least 10% less perplexity (Mikolov et al., 2011).

In terms of models that are based on RNN, the multi-gated-paradigms of LSTM and

GRUs have proven reliable at absolving the recurrent architecture from the inherent

exploding and vanish gradient problems. These models can be efficiently trained with

stochastic gradient descent or rmsprop4 (Graves, 2013), without the employment of

sophisticated optimisation techniques (Bengio et al., 1994; Martens and Sutskever, 2011;

Sutskever et al., 2011) that in most cases seem to be computational expensive to use.

As a result, neural nets based on LSTMs and GRUs are currently the state-of-the-art

approaches for language modelling, and are a fundamental component of many systems

that are employed in the NLP field (Sundermeyer et al., 2012, 2015).

4rmsprop is a variant of stochastic gradient descent where the gradients are divided by a running
average of their recent magnitude.
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Recent literature shows that by training even on relatively small datasets (≤ 5Mbytes),

RNNs, regardless of the level of their model (i.e. character or word), are able to learn to

generate grammatically and syntactically correct textual content (Graves, 2013; Karpa-

thy et al., 2015).

However, the goal of this research is to generate a textual summary of a given set of

Semantic Web triples. Consequently, in the following section we describe a framework

that conditions the generative process of a language model to an input data structure.

2.2.3 Encoder-Decoder Framework

Based on the success of RNNs and their multi-gated variants on many tasks involving

sequence modelling (Mikolov et al., 2010; Sundermeyer et al., 2012; Graves, 2013; Sor-

doni et al., 2015), Cho et al. and Sutskever et al. have proposed the encoder-decoder

framework using GRUs and LSTM cells respectively. The architecture of the general

encoder-decoder framework is displayed in Figure 2.5. Implementations based on the

encoder-decoder framework work by mapping sequences of source tokens to sequences of

target tokens. The model essential consists of two RNNs, one that encodes the sequence

of source tokens into a vector of fixed dimensionality, and one that accepts the com-

puted vector and starts to decode the expected sequence of target tokens. The decoder

is essentially a language model conditioned on the input sequence. Given a sequence

of input tokens x = x1, . . . xτ , the model computes the probability of its corresponding

output sequence of tokens y1, . . . , yT whose length T may be different from τ as follows:

p(y1, . . . , yT ) =

T∏
t=1

p(yt|y1, . . . yt−1,x) , (2.20)

The framework learns to encapsulate all the information that it requires from the in-

put sequence in the hidden state of the last encoding timestep, hτ . In order for the

framework to work properly the existence of a special end-of-sequence token (i.e. <end>

in Figure 2.5) in the single dictionary of the encoder5 and both the source and target

dictionaries of the decoder is required. Essentially, this is the token that enables the

model to define a distribution over sequences of all possible lengths. Some approaches

have employed an additional special start-of-sequence token (<start>) (Dong and Lap-

ata, 2016). A special start-of-sequence token (<start>) is not explicitly required to be

appended in the source dictionaries of the encoder and the decoder. In Figure 2.5, the

<start> token is used in favour of a better representation of the start and the end of

the encoding and the decoding process. In case the system is not equipped with such a

5In most of the cases, the framework does not do any predictions on the encoder level, and, as a
result, the encoder is not required to have a target dictionary.
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token, decoding starts when the decoder is provided with the hidden state of the input

sequence h1...L
τ and the corresponding end-of-sequence token (Sutskever et al., 2014).

Adaptations of this framework have demonstrated state-of-the-art performance in many

generative tasks, such as machine translation (Cho et al., 2014; Sutskever et al., 2014),

and conversation modelling and response generation (Vinyals et al., 2015a; Shang et al.,

2015).

Handling Longer Sequences with an Attentive Encoder. One of the challenges

associated with the general encoder-decoder framework that is presented above is its

ability of handling very long sequences (Bahdanau et al., 2014). The problem is two-fold.

First, in the case of long inputs, the encoder is forced to compress all the information

that is relevant for the text generation procedure in a single vector (Bahdanau et al.,

2014). Second, in the case of long expected outputs, it is challenging for the decoder to

retain the information from the input at very distant timesteps. In order to alleviate

this problem Bahdanau et al. and Luong et al. introduced an attention mechanism over

the computed hidden states (e.g. hL1 , . . . , h
L
τ in Figure 2.5) of the encoder. The inclusion

of this mechanism allowed them to generate high quality translations even for very long

sentences (more than 50 words).

Rather than enforcing the model to compress in a single vector all the available informa-

tion that is contained in an input sequence, the attention mechanism allows the model

to learn to “align” the source information to the requirement of each expected output.

At each decoding timestep, the model computes a relevance score of the current hidden

state with each one of the hidden states (e.g. hL1 , . . . , h
L
τ in Figure 2.5) of the encoder.

Based on this score a weighted average of the source hidden states is calculated which is

fed into the decoder before it makes the prediction about the next token. Luong et al.

has also explored a set of different scoring functions (i.e. “dot”, “general” and “concat”)

without, however, conclusive remarks about the best one.

Table 2.1 attempts to document some of the key contributions in the field of neural

network approaches for NLG.

2.3 Summary

This chapter has attempted to review existing approaches for NLG. Among other data-

driven approaches neural networks have presented state-of-the-art performance in many

NLG tasks. However, the application of neural networks on top of data encoded in triples

is still a relatively unexplored domain. Our systems are inspired by the general encoder-

decoder framework which we wish to adapt to the requirements of the Semantic Web.
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Figure 2.5: The architecture of the general encoder-decoder framework. The nodes
in cyan, orange and dark grey represent inputs, outputs and hidden states respectively.
The encoder captures the relevant information from the input sequence (i.e. “A”, . . . ,
“K”) in the hidden state that is computed at the last encoding timestep hLτ . The
decoding process starts when the decoder is provided with this hidden state and the

special start-of-sequence token (i.e. <start>).

This framework along with other fundamental architectures based on neural networks

were described in this chapter.

The next chapter discusses the different methodologies that have been explored in the

literature for the evaluation of NLG systems, and describes in detail the methods and

criteria against which the systems’ that are proposed in this thesis are evaluated.
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Table 2.1: Overview of major contributions in the field of neural network approaches
for NLG.

Field of
Contribution

Year Author(s) Summary

Language
Modelling

2003 (Bengio et al., 2003)

Bengio et al. introduced the first neural network
approach in the field of language modelling. The
proposed feed-forward neural net achieved better
perplexity than the state-of-the-art n-gram models.

2010
(Mikolov et al.,

2010)

Mikolov et al. introduced the Recurrent Language
Model (RLM). The model was trained using
BackPropagation Through Time (BPTT) (Rumelhart
et al., 1986).

2013 (Graves, 2013)

Graves trained a language model based on the LSTM
architecture (Hochreiter and Schmidhuber, 1997) on
the Wikipedia dataset, to generate
encyclopedia-oriented content.

Optimisation
and Neural
Architectures

1986
(Rumelhart et al.,

1986)

Rumelhart et al. introduced a way of propagating
errors through a network backwards. Backpropagation
still is the mostly-used algorithm for training neural
networks.

1997
(Hochreiter and

Schmidhuber, 1997)

Hochreiter and Schmidhuber proposed the Long
Short-Term Memory (LSTM) architecture as a
modified RNN variant, absolved from the long-term
dependencies issues.

2014
(Cho et al., 2014;
Sutskever et al.,

2014)

Cho et al. and Sutskever et al. proposed the
encoder-decoder framework using GRUs and LSTM
cells respectively. The two systems achieved similar
state-of-the-art performance in Machine Translation
tasks.

2014
(Bahdanau et al.,

2014)

Bahdanau et al. introduced an attention mechanism
on top of an encoder-decoder architecture based on
GRUs. The inclusion of this mechanism allowed them
to generate high quality translations even for very long
sentences.

Text
Generation

2016 (Mei et al., 2016)

Mei et al. use an encoder-decoder model equipped
with LSTM cells, on both the encoder and the decoder
side, and attention (Bahdanau et al., 2014) to generate
textual description of robotic football matches (i.e.
RoboCup dataset) and weather forecasts (i.e.
WeatherGov).

2016 (Lebret et al., 2016)

Lebret et al. employ an adaptation of the general
encoder-decoder in order to generate one-sentence
Wikipedia biographies from Wikipedia infoboxes.
Their system works by conditioning a neural language
model based on a feed-forward architecture on the
tabular data from a Wikipedia infobox. They showed
extremely promising results on a dataset with a
challenging vocabulary size of 400k.

2017
(Chisholm et al.,

2017)

Similarly to Lebret et al., Chisholm et al. focus on
Wikipedia biographies generation. They use an
encoder-decoder model equipped with LSTM cells, on
both the encoder and the decoder side, in order to
generate one-sentence biographies from Wikidata
slot-value pairs.



Chapter 3
Evaluation Methodology

In this chapter, we will present the methodology that we follow in order to evaluate the

performance of our proposed NLG systems in Chapters 5—7. The employed methods for

automatic and human evaluation along with the baselines, against which we compared

our architectures, are described in detail in the following sections.

3.1 Evaluation Methods

Related literature suggests three ways of determining the efficacy with which an NLG

system achieves its communicative goal. The first approach, which is usually referred

to as metric-based corpus evaluation (Reiter and Belz, 2009; Reiter, 2010), use text-

similarity metrics, such as BLEU (Papineni et al., 2002), ROUGE (Lin, 2004) and

METEOR (Lavie and Agarwal, 2007). These metrics essentially compare how simi-

lar the generated texts are to the empirical texts of a designated corpus. In contrast to

the above approaches for automatic evaluation, the other two alternatives involve hu-

man subjects, and are performed through either: (i) task-based or (ii) judgement-based

(rating-based) evaluation (Reiter and Belz, 2009; Reiter, 2010). Since NLG systems are

intended to assist human in carrying out a particular task (e.g. learning about a topic

or improving an article’s writing experience), task-based evaluations seek to measure

the direct impact of the generated texts on the end user. Judgement-based evaluation

is based on compiling a set of criteria against which human evaluators rate the quality

of the generated texts (Reiter and Belz, 2009; Reiter, 2010).

23
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3.1.1 Automatic Evaluation

Metrics for automatic evaluation have gained increased amount of interest in the most

recent NLG-related literature. The BLEU, ROUGE and METEOR metrics are exten-

sively used in machine translation (Cho et al., 2014; Sutskever et al., 2014; Bahdanau

et al., 2014) and text summarisation (Rush et al., 2015; Chen et al., 2016; Nallapati

et al., 2016) tasks, offering a quick and cheap way of evaluating the performance of their

systems (Reiter and Belz, 2009). BLEU scores have been used to evaluate the quality of

automatically generated descriptions of football (Angeli et al., 2010; Kim and Mooney,

2010; Konstas and Lapata, 2012b, 2013; Mei et al., 2016) and basketball matches (Wise-

man et al., 2017), biographies (Lebret et al., 2016; Chisholm et al., 2017), weather

forecasts (Reiter and Belz, 2009; Konstas and Lapata, 2012b, 2013; Mei et al., 2016),

descriptions of diseases (Sauper and Barzilay, 2009), microplanning and realisation of

knowledge graphs (Gardent et al., 2017b) and dialogue utterances on a flight-booking

system (Konstas and Lapata, 2012a) given a set of structured records as input. In some

cases the reported BLEU scores are accompanied by results using perplexity (Lebret

et al., 2016), the METEOR (Konstas and Lapata, 2012a; Gardent et al., 2017b) and the

ROUGE (Sauper and Barzilay, 2009; Reiter and Belz, 2009; Lebret et al., 2016) metrics.

A short description of the aforementioned metrics is provided below.

Perplexity. is regarded as one of the most standard methods for language modelling

(Lebret et al., 2016). It measures the cross-entropy between the predicted sequence of

words and the actual, empirical, sequence of words.

BLEU (Bilingual Evaluation Understudy). BLEU (Papineni et al., 2002) is a

precision-oriented metric for measuring the quality of generated text by comparing it

to the actual, empirical text. BLEU-n calculates similarity scores based on the co-

occurrence of up to n-grams (i.e. 1-grams, . . . , n-grams) in the generated and the actual

text. It is marked on the range of 0 to 100.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation). ROUGE is a

metric that computes the recall of n-grams in the generated text with respect to the

n-grams of the actual text (Lin, 2004). It is marked on the range of 0 to 100.

METEOR. METEOR computes a weighted average of the precision and recall of uni-

grams in the generated and the empirical text by considering stemming, synonyms and

paraphrases (Lavie and Agarwal, 2007). It is marked on the range of 0 to 100.

Perplexity indicates how well the model learns its training objective (c.f. Section 5.1.4);

BLEU and ROUGE measure how close the generated text is to the actual real piece
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of text. BLEU and ROUGE are complimentary to each other. The first computes a

modified version of n-gram precision1, whereas the latter computes the n-gram recall, of

the automatically generated sentences with respect to the actual Wikipedia summaries.

We report the performance of the proposed systems using perplexity, the BLEU, ROUGE

and METEOR metrics on the validation and test set of each dataset (see Sections 5.3.2,

6.3.2 and 7.3.2). We adapt the code from the evaluation package that was released by

Peter Anderson2, which was originally implemented to evaluate the quality of textual

descriptions from images. BLEU 1, BLEU 2, BLEU 3, BLEU 4, and ROUGEL (an

alteration of the original ROUGE that is automatically measured on the longest common

sub-sequence) results are reported for all our models in the subsequent chapters.

Putting the Scores Into Perspective. In order to put our reported scores into

perspective, we briefly survey how other state-of-the-art systems involving surface reali-

sation perform with respect to the above automatic evaluation metrics. The CNN/Daily

Mail corpus (Hermann et al., 2015) has been used for the training and evaluation of sys-

tems that seek to generate multi-sentence summaries of news articles (Nallapati et al.,

2016, 2017; See et al., 2017; Paulus et al., 2018). The reported ROUGEL scores of those

systems ranges from 32.65 (Nallapati et al., 2016) to 39.08 (Paulus et al., 2018). See et al.

also report their performance using METEOR at 18.72 (with 36.38 respective ROUGEL

score). BLEU 4 has been the predominant metric for the evaluation of machine trans-

lation systems. However, the reported scores vary according to the complexities of the

source and target language. For instance, the state-of-the-art performance for translat-

ing from English to German and vice versa is around 48 BLEU whereas for English to

Ethiopian and Finnish is around 25 and 19 BLEU respectively (Bojar et al., 2017, 2018).

In the context of NLG, the expected range of scores using methods for automatic eval-

uation depends on the challenges of each task and the length of the expected generated

content (e.g. number of sentences and length of each generated sentence). The sys-

tem proposed Mei et al. achieved state-of-the-art performance for generation of single-

sentence descriptions of robotic football matches and weather forecast with respective

BLEU 4 scores of 25.283 and 61.01. The best performing systems in the WebNLG chal-

lenge that involves microplanning and realisation of knowledge graphs in single-sentence

descriptions scored around 45 and 39 BLEU 4 and METEOR points respectively (Gar-

dent et al., 2017b). The reported BLEU scores for a more challenging task involving

generation of multi-sentence descriptions of basketball matches are considerably lower

at 14.49 (Wiseman et al., 2017). Both Lebret et al. and Chisholm et al. focus on the

1The count of True Positives of an n-gram in the generated summary has an upper bound which is
defined by the number of occurrences of this particular n-gram in the actual summary.

2http://github.com/peteanderson80/coco-caption
3Similarly to our case, the experiments involved full selective generation. Angeli et al.; Kim and

Mooney; Konstas and Lapata; Konstas and Lapata and Mei et al. considered an alternate experiment
in which ground truth content selection was assumed at test time resulting in higher BLEU scores.

https://github.com/peteanderson80/coco-caption
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generation of single-sentence biographies in English. The best performing system on

this task achieves a BLEU 4 score of 41 (Chisholm et al., 2017).

Evaluating NLG Systems Beyond Text Similarity. While automatic text simi-

larity metrics (i.e. BLEU and ROUGE) can be used to evaluate the linguistic quality

of the generated texts, they do not always correlate with the respective human rat-

ings on the content quality (Reiter and Belz, 2009; Reiter, 2010). BLEU, ROUGE and

METEOR are well-established metrics in domains (e.g. machine translation and text

summarisation) where there is a tight alignment between the source and the generated

language. Our generative task is more challenging since it consists of learning to gen-

erate text from a corpus of knowledge base triples loosely associated with text. As a

result, the “correct” output is neither purely deterministic (i.e. there are multiple ways

to correctly summarise a set of knowledge base triples in text) or necessarily based on

the empirical data (i.e. the actual Wikipedia summary that is allocated to a set of triples

might discuss irrelevant facts than those that exist in the allocated triple set).

In order to address the limitation of the above automatic evaluation metrics, we further

evaluate our proposed systems in pilot user studies. In the next section, we describe the

criteria that have been selected in the conducted user studies, and we relate them to

existing works.

3.1.2 Human Evaluation

In the context of evaluating textual realisation of structured records with human sub-

jects, task-based evaluations are considered the most trusted ones. These are extrinsic

evaluations that seek to directly measure the impact of an NLG system to the end-

user (Mellish and Dale, 1998; Reiter and Belz, 2009; Reiter, 2010). While reliable, this

kind of human evaluation tend to be extremely time-consuming and expensive (Reiter

and Belz, 2009; Reiter, 2010). Representative examples are the extrinsic evaluations of

the SkillSum (Williams and Reiter, 2008) and STOP (Reiter et al., 2003) systems that,

including data analysis and planning, costed £75k and £25k respectively (Reiter, 2010).

The former was evaluated for the accuracy of its generated literacy and numeracy assess-

ments by a sample of 230 participants. The latter in a clinical trial with 2000 smokers,

all of whom completed a smoking questionnaire in the first stage of the experiment, in

order to find what portion of those that received the automatically generated letters

from STOP had managed to stop smoking.

Given the challenges at carrying out extrinsic evaluations, research has mostly used

judgement-based human evaluations for the performance assessment of NLG systems

(Lester and Porter, 1997; Sun and Mellish, 2007; Chen and Mooney, 2008; Reiter and

Belz, 2009; Chen et al., 2010; Angeli et al., 2010; Konstas and Lapata, 2012a,b, 2013;
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Duma and Klein, 2013; Ngonga Ngomo et al., 2013; Ell and Harth, 2014; Chisholm et al.,

2017; Wiseman et al., 2017). These are performed by asking human subjects to rate

generated texts against a set of criteria that explore various aspects of the generated

text’s quality, and its semantic coherence with the given input (i.e. usually the structured

records that have been provided to the system as input for the generation of the resultant

text), or to compare texts that have been generated by different pipelines (i.e. other

competing systems or humans). The evaluation is conducted by either a small group of

experts, usually consisting of not more than 10 people4, (Lester and Porter, 1997; Sun

and Mellish, 2007; Chen and Mooney, 2008; Reiter and Belz, 2009; Duma and Klein,

2013; Ngonga Ngomo et al., 2013; Ell and Harth, 2014), or crowdworkers (Angeli et al.,

2010; Konstas and Lapata, 2012a,b, 2013; Chisholm et al., 2017; Wiseman et al., 2017).

Fluency. Inspired by Chen and Mooney, Angeli et al., Konstas and Lapata and

Ngonga Ngomo et al., in our experiments, we opted to evaluate the eloquence of the

generated text (i.e. whether the text is comprehensible, grammatically and syntacti-

cally correct, and without any unnecessary redundancies) using a single criterion, flu-

ency. Evaluating the eloquence of texts using several metrics (e.g. grammaticality,

non-redundancy and coherence in (Sun and Mellish, 2007) or syntax, comprehensibil-

ity and overall quality in (Duma and Klein, 2013)) usually requires the employment of

domain experts or linguists for the human evaluation. On the contrary, using a single

metric provided us with the necessary flexibility to approach wider communities and

crowdworkers for our evaluation purposes. Our participants (either experts or crowd-

workers) were asked to rate the fluency of texts, following Ngonga Ngomo et al.’s rating

scale5. Consequently, fluency was marked on a scale from 1 to 6, with 1 indicating an

incomprehensible summary, 2 a barely understandable summary with significant gram-

matical errors, 3 an understandable summary with grammatical flaws, 4 a comprehen-

sible summary with minor grammatical errors, 5 a comprehensible and grammatically

correct summary that reads a bit artificial, and 6 a coherent and grammatically correct

summary (Ngonga Ngomo et al., 2013).

Coverage and Contradiction. Chen and Mooney, Angeli et al., and Konstas and

Lapata asked their participants to rate the semantic correctness of the automatically

generated weather forecasts and descriptions of robotic-football matches on a scale from

1 to 5. However, we believe that due to the nature of our task, a more descriptive set

of criteria with respect to the extent that triples are explicitly or implicitly realised in a

summary would enable us to evaluate our systems more effectively. Inspired by Ell and

4Ngonga Ngomo et al. had divided their human evaluation in three different tasks, two of which
were exclusively conducted by domain experts. The recruitment was carried out using various Semantic
Web- and NLP- oriented mailing lists and community channels resulting in a total of 115 participants
(Ngonga Ngomo et al., 2013).

5Ngonga Ngomo et al. used fluency to evaluate the comprehensibility and readability of a generated
question in natural language.
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Harth, we use coverage6 in order to identify the portion of input triples whose informa-

tion is mentioned either implicitly or explicitly in the text. Furthermore, we introduce

the notion of contradiction, and we define it as the percentage of input triple-facts that

conflict with information that exists in the generated summary. Our participants (ei-

ther crowdworkers or experts) evaluated the coverage of each summary by a competing

system with respect to a set of triple-facts that generated it. Consequently, they had

to identify the relation of each triple to the summary as either “Absent” or “Present”

and “Direct Contradiction” or “Not a Contradiction” for the coverage and contradic-

tion evaluation respectively. The final result for both coverage and contradiction is

computed after the total number of triples that have been identified as “Present” and

“Direct Contradiction” respectively is computed and normalised by the total number of

input triples.

Additional Information. In our initial experiments, we included one additional cri-

terion about the additional information that is presented in the generated summary, but

it is not included in the provided input set of triples. This criterion is mostly intended for

Semantic Web experts who are asked to define the number of triples to which potential

additional information in the text can be interpreted. For example, in case there is infor-

mation in the text about a person’s birthplace, without any birthplace-related triple in

the input; since the place of birth can be described in a single triple (with the predicates

of dbo:birthPlace or dbo:hometown), we increment the number of additional triples

by one.

One of the challenges that is usually associated with adaptations of the general encoder-

decoder framework is that occasionally their output, albeit fluent, is unrelated to their

given input (Chisholm et al., 2017; Koehn and Knowles, 2017; Wiseman et al., 2017).

Literature refers to such behaviour as “hallucinations”. The two latter criteria, contra-

diction and additional information, provide us with the opportunity to investigate the

extent to which our proposed models “hallucinate” factual statements that neither exist

nor can be deduced from the input triples.

3.1.3 Evaluating Multilingual Summaries from the Perspective of Wikipedia

Readers and Editors

As part of the collaborative work in which we investigated the generation of Wikipedia

summaries for underserved languages, we wished to explore the usability of the auto-

matically generated content by Wikipedia readers and editors. To this end, we designed

a community study that adopts a middle-ground approach between task- and rating-

based evaluation. In addition to reporting the performance of our approach against the

6Adapted from coverage in Ell and Harth (2014) which used to measure the number of included
sub-graphs in the text.
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competing baselines using automatic evaluation metrics, we extended the human evalu-

ation methodology of Sauper and Barzilay. Sauper and Barzilay manually analysed the

nature of human edits that have been performed on a set of 15 automatically generated

descriptions of deceases that have been appended as new articles to Wikipedia. However,

the fact that they were experimenting on the live version of Wikipedia constrained them

from conducting a comparative analysis on a larger sample using descriptions generated

by other competing systems (Sauper and Barzilay, 2009). In our experiments, we opted

for imitating the reader and editor experience. This granted us the flexibility to explore

the feasibility of our approach on a larger sample, against other baselines.

We conducted two community studies, one for readers and one for editors, of a partic-

ular Wikipedia language. The readers were asked to evaluate summaries generated by

our proposed system and the competing baselines against two criteria: (i) fluency (as

described in the “Fluency” part of 3.1.2) and (ii) appropriateness. In the second study,

we evaluated the automatically generated summaries against a single criterion: editors’

reuse. Appropriateness and editors’ reuse are described in detail below.

Appropriateness We use this criterion in order to investigate whether our approach

generates sentences that “feel” like Wikipedia text. The participants were asked in a

binary format (i.e. “Yes” or “No”) whether a displayed sentence could be part of a

Wikipedia article.

Similarly to Lester and Porter, Sun and Mellish, Duma and Klein and Chisholm et al.,

we compare the performance of our systems against texts that have been generated

by humans (cf. Section 6.4.2). We used the original reference Wikipedia sentences

in order to compute the expected upper bound for this task. In addition, we used

a sample of retrieved sentences from news. While we expected the latter to receive

low appropriateness ratings, we wished to test the participants’ ability to distinguish a

Wikipedia sentence from others that serve unrelated purposes.

Editors’ Reuse Our goal is to assess how editors use our generated summaries in

their work by measuring the amount of text they reuse. Each editor is provided with

the automatically generated summary that corresponds to a randomly selected item

from the test set of the dataset of interest (either Esperanto or Arabic) along with its

corresponding triples. We mock the editing experience by asking each participant to

write a short summary of up to 3 sentences about the allocated item in a dedicated

text field. The editors had the freedom to copy parts or the entirety of the provided

summary or completely start from scratch. In order to quantify the amount of text

that has been reused from the automatically generated summary, we use the Greedy

String-Tiling (GST) algorithm (Wise, 1996). GST is a sub-string matching algorithm

that computes the degree of reuse or copy from a source text. GST is able to deal with
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cases when a whole block of text is transposed, unlike other string matching metrics,

such as the Levenshtein distance (Levenshtein, 1966), that calculate it as a sequence of

single insertions or deletions. Let Y = y1, y2, . . . , yT be the sequence of tokens of an

automatically generated summary and Y ′ = y′1, y
′
2, . . . , y

′
T ′ be the sequence of tokens

of an edited one. The GST metric identifies the set Φ = {φ1, φ2, . . . , φΘ : φi ∩ φj = ∅
∀φi, φj ∈ Φ, i 6= j} of all the disjoint longest sequences of tokens in the edited text

that also appear in the source text. These sequences of tokens, φ1, . . . , φΘ, are usually

referred to as tiles.

Named entities and common stop words are expected to be present in both the source

and the edited text. However, we are mostly interested in exploring how much of the

general structure of a generated summary is used in the edited one. Consequently, we

retain the minimum-match-length parameter (i.e. the minimum length of tiles that are

identified) to its default 3 value s.t. ∀φj ∈ Φ : φj ⊆ Y and φj ⊆ Y ′ and |φj | ≥ 3. This

essentially means that transposed sequences of uni-grams or bi-grams are not regarded

as tiles, and, as a result, are not counted in the calculation of reuse. We calculate a

reuse score scoreGST by computing the accumulated length of the detected tiles which

we subsequently normalise by the length of the generated summary.

scoreGST(Y, Y ′) =

∑
φj∈Φ |φj |
|Y |

. (3.1)

where scoreGST ∈ [0, 1]. Furthermore, we adapt a GST-based categorisation based on

the categories that have been proposed by Clough et al.. While Clough et al.’s approach

has been applied on classifying the extent to which text from newspaper articles has been

reused by other news sources, we believe that their categories are directly applicable to

our task. Consequently, we identify the following categories based on the scoreGST of a

generated summary Y and edited one Y ′: (i) wholly-derived (WD) (0.66 ≤ scoreGST)

when the generated summary has been fully reused in the text that has been written

by the editor, (ii) partially-derived (PD) (0.33 ≤ scoreGST < 0.66) when a part of the

generated summary has been used in the edited paragraph, and (iii) non-derived (ND)

(scoreGST < 0.33) when the part of the generated text that has been included in the

edited one is either negligible or nonexistent.

3.2 Baselines

To demonstrate the effectiveness of our systems, we compare them to different baselines

of different natures.
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3.2.1 Random

We compute the expected lower bounds for the selected metrics for automatic evaluation

by using a random Wikipedia summary generation baseline. For each triple set in the

validation and test sets, the random system generates a response by uniformly randomly

selecting a Wikipedia summary from the corresponding training set.

In order to make this baseline more competitive, we equip it with the mechanism of

surface form tuples (see Section 5.2.1.2), and the <item> (see Section 4.2) and property-

type or property placeholders (described in Section 5.1.3 and 6.1.1 respectively). We

refer to the enhanced version of the random baseline as Random+. After a summary

is selected, its <item> placeholders along with any potential property or property-type

placeholders are replaced according to the original triples. In the case where a property(-

type) placeholder is not matched to the content of the triples, it is replaced by its

corresponding instance type token (see more in Sections 5.1.3 and 6.1.1).

3.2.2 Kneser-Ney (KN) Language Model

Similarly to (Lebret et al., 2016), we use the KenLM toolkit (Heafield et al., 2013)

in order to build a 5-gram Kneser-Ney (KN) language model. During testing, we use

beam-search with a beam of size B7 (see Section 5.1.5), to generate the B most probable

summaries for each triple set in the validation and test set. Similarly to the case of the

Random baseline, we equip it with surface form tuples, and the <item> and property-

type or property placeholders. We refer to this alteration of the original baseline as

KN+.

3.2.3 Information Retrieval (IR)

Previous baselines do not incorporate the triples corresponding to each summary directly

in the model. As a result, we build another baseline that conditions the output summary

to the input triples by adapting an Information Retrieval (IR) baseline. Our implemen-

tation is similar to the baseline that has been used in other text generative tasks, such as

textual summarisation (Rush et al., 2015) and generation of natural language questions

(Du et al., 2017). First, the baseline encodes the sets of input triples that corresponds

to each summary in a dataset into a sparse vector of TF-IDF weights (Joachims, 1997),

the dimensionality of which is based on the corresponding training set. We reduce the

dimensionality of the resultant sparse vectors to 200 using LSA (Halko et al., 2011).

Finally, for each item (i.e. the vector representation of its set of triples) in the corre-

sponding validation and test set, we perform k-NN to retrieve the closest vector based on

7We select the minimum beam size B for which there is no longer any improvement in performance
by increasing it.
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the Euclidean distance (l2) from the training set, and output its corresponding summary.

The summary that corresponds to the retrieved vector is used as the output summary

for this item in the validation and test set.

We experimented with two variations of this baseline. The first one (IR) retrieves the

raw summaries from the training set. The second one (i.e. IR+) retrieves summaries

that are equipped with surface form tuples (see Section 5.2.1.2), and the <item> (see

Section 4.2) and property-type or property placeholders (described in Section 5.1.3 and

6.1.1 respectively). In this format, a retrieved summary is, essentially, a template whose

special tokens are replaced, such as the <item> and property or property-type place-

holder, with their corresponding labels of the corresponding entities in the input triples’

set at a post-processing step. Since IR+ outputs “memorised” templates of summaries,

it can be considered as information retrieval over a set of templates from the training

data. This approach is very similar to recent template-based system for document gen-

eration that has been proposed by Ell and Harth. The main difference is that our version

selects the “templated” summary that corresponds to the set whose vector is the closest

without considering the extent to which this “templated” summary is covering its corre-

sponding set. Furthermore, Ell and Harth did not suggest a method for approximating

the best template from a training set for verbalising a templated, but not always known,

set of triples from the validation and test set.

3.2.4 Machine Translation (MT)

We also compare the performance of our approach at generating multilingual summaries

(i.e. in Arabic and Esperanto) against a Machine Translation (MT) baseline. We used

Google Translate on English Wikipedia summaries. These translations are compared to

the actual target language’s Wikipedia entry. This limited us to articles that exist in

both English and the target language. The concepts in Esperanto that are not covered

by English Wikipedia account for 4.3%. The concepts in Arabic that are not covered

by English Wikipedia account for 30.5%. This also indicates the content coverage gap

between different Wikipedia languages (Hecht and Gergle, 2010).

Translating content from popular and more complete Wikipedia pages has been pro-

posed as method of enriching underserved ones, such as in Esperanto and Arabic, using

the Content Translation Tool (Laxström et al., 2015). Nonetheless, we believe that

there are certain limitations in adapting such a baseline for multilingual knowledge base

completion. First, translating information from a source language constrains the textual

information to potential biases introduced by the editor of the original text. Secondly,

it is highly unlikely that the output text from MT would address the writing style and

culture of the target Wikipedias (the information is neither the same nor is it presented

in a similar manner across all different languages). Finally, post-editing of translations

would require a lot of work by the community. This is partially because of the different
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writing style of the translated sentence compared to the expected one; but more notably

because ensuring that the information has been translated correctly prerequisites knowl-

edge of both the source and the target language by the potential editors. As a result,

comparing this baseline to our approach would also provide us with the opportunity to

test the accuracy of our hypothesis regarding the inadequacy of MT for the above task.

3.3 Summary

This chapter has presented methods for the automatic and human evaluation of triples-

to-text generation systems. We emphasise on the fact that while the available text

similarity metrics have gained increased attention over the most recent years for the

evaluation of NLG systems, human evaluation is still essential in determining the per-

formance of an NLG system. The different criteria against which the human evaluation

of our systems is performed are also discussed in detail. In the final section, the baselines

against which our proposed systems are compared are presented.

In the following chapter, we propose a fully-automatic, cross-lingual, approach for build-

ing data-to-text corpora for the training and evaluation of our proposed NLG systems.

We also explore the statistics of the resultant corpora that are used in the subsequent

chapters.





Chapter 4
Building Corpora of Natural Language

Texts Aligned with Knowledge Base

Triples

Training data for NLG models is not always readily available. In our case the difficulty is

that data that is available in knowledge bases needs to be aligned with the corresponding

texts. In order to both train and evaluate the performance of our model, we propose

different methodologies for building data-to-text corpora of rich linguistic variability.

Existing solutions for data-to-text generation either focus mainly on creating a small,

domain-specific corpus where data and text are manually aligned by a small group of

experts, such as the SumTime-Meteo (Sripada et al., 2002), WeatherGov (Liang et al.,

2009) and RoboCup (Chen and Mooney, 2008) datasets, or rely heavily on crowdsourc-

ing (Gardent et al., 2017a), which makes them costly to apply in large domains.

In this chapter, we propose a fully-automatic approach, based on distant-supervision (Mintz

et al., 2009), for building large corpora of loosely aligned Wikipedia snippets with triples

from DBpedia and Wikidata. Our methodology can be easily extended to multiple do-

mains and languages. Using this approach we built a set of different data-to-text corpora

which we use, in the subsequent chapters of this thesis, for the training and evaluation

of our proposed NLG systems. The methodology itself along with the resultant corpora

are described in detail below.

35
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4.1 An Automatic Approach of Building a Corpus of Triples

Aligned with Natural Language Texts

Previous work has explored a set of different strategies in order to create the data-to-text

corpora that are required for learning and testing. Chen and Mooney manually aligned

database information from the RoboCup game finals with corresponding sentences ex-

tracted from the web. The resultant dataset has a small vocabulary of 214 words and

a simple syntax (e.g. a transitive verb with its subject and object). Similar approaches

have been adopted for the creation of datasets in the weather forecasts and the air travel

domain. The SumTime-Meteo dataset consists of 1045 human-written weather forecasts

that are aligned with numerical weather predictions (e.g. temperature, wind speed and

precipitation) (Sripada et al., 2002). A much larger dataset that is employed in the

same domain is WeatherGov. The WeatherGov dataset contains 29528 weather scenar-

ios for 3753 major US cities and it has a vocabulary of 345 words (Liang et al., 2009).

The ATIS dataset Dahl et al. consists of 5426 scenarios. It consists of transcriptions

of spontaneous utterances of users interacting with a hypothetical online flight-booking

system. Typically, such corpora are domain specific and of relatively small size while

their linguistic variability is often restricted.

Our approach is inspired by Lebret et al. who automatically extracted a corpus con-

sisting of 728321 biographies from English Wikipedia, each one of whom was associated

to its corresponding Wikipedia infobox. In our case our goal is to align knowledge base

triples with texts. We rely on the alignment of DBpedia and Wikidata with Wikipedia in

order to create corpora of knowledge base triples from DBpedia and Wikidata, and their

corresponding textual summaries. For the experiments presented in this thesis, we have

extracted five different corpora that consist of: (i) 260k English Wikipedia biographies

aligned with a total of 2.7M DBpedia triples (D1), (ii) 360k English Wikipedia biogra-

phies allocated to a total of 4.3M Wikidata triples (D2), (iii) 865k open-domain, English

Wikipedia summaries aligned with a total of 7.4M DBpedia triples (D3), (iv) 256k

open-domain Wikipedia summaries in Arabic aligned with a total of 2.1M Wikidata

triples (M1), and (v) 127k open-domain, Wikipedia summaries in Esperanto allocated

to a total of 1.4M Wikidata triples (M2). The first two associate English biographies

with triples from different knowledge bases, and aim to explore the performance of our

systems on a single-domain scenario. The third was designed to allow us to explore

our proposed systems capability to generate open-domain summaries given varied sets

of input triples. Finally, the latter two seek to evaluate whether our approach can be

extended to other languages that either lack training data (i.e. Esperanto) or introduce

further grammatical and syntactical complexities compared to English (i.e. Arabic).

We extracted the Wikipedia summaries and their corresponding DBpedia triples (i.e. for

D1 and D3) from the Mapping-based Objects1 (DB1) and Literals1 DBpedia dataset (DB2),

1http://wiki.dbpedia.org/downloads-2016-10

http://wiki.dbpedia.org/downloads-2016-10
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retaining only summaries for which an infobox exists. For the datasets that leverage

Wikidata (i.e. D2, M1 and M2), we used the Wikidata truthy dumps2 (WD1) and we

kept only items for which Wikidata triples exist. For all corpora, the relevant Wikipedia

summaries were extracted using the Long Abstracts1 DBpedia datasets (i.e. DBen for

the English summaries, and DBar and DBeo for the ones in Arabic and Esperanto re-

spectively).

In addition to the above datasets, we also leverage two DBpedia datasets: (i) the Instance

Types1 (DB3) and (ii) the Genders1 (DB4) datasets. The first one is used to map the

entities that occur infrequently in our aligned datasets to special tokens, and the second

in order for us to append a gender-related triple to the DBpedia triples that have been

already allocated to an article. Since co-reference resolution is not performed as a data

pre-processing stage, our hypothesis is that the additional knowledge from the inclusion

of gender-related triples will increase the model’s awareness towards the gender of the

main discussed entity of an article. Note that the Genders dataset is used for the

DBpedia version of the aligned dataset, in which gender-related triples are extremely

sparse. In summary, the datasets that we built along with their intermediate components

are enumerated below:

D1 DBpedia triples aligned with Wikipedia biographies; its intermediate components

are listed below:

• English Long Abstracts1 DBpedia dataset (DBen)

• Mapping-based Objects1 DBpedia dataset (DB1)

• Mapping-based Literals1 DBpedia dataset (DB2)

• Instance Types1 DBpedia dataset (DB3)

• Genders1 DBpedia dataset (DB4)

D2 Wikidata triples aligned with Wikipedia biographies that has been formed from:

• English Long Abstracts1 DBpedia dataset (DBen)

• Wikidata truthy dumps2 (WD1)

• Instance Types1 DBpedia dataset (DB3)

D3 DBpedia triples aligned with Wikipedia summaries; its intermediate components

are listed below:

• English Long Abstracts1 DBpedia dataset (DBen)

2https://dumps.wikimedia.org/wikidatawiki/entities

https://dumps.wikimedia.org/wikidatawiki/entities
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• Mapping-based Objects1 DBpedia dataset (DB1)

• Mapping-based Literals1 DBpedia dataset (DB2)

• Instance Types1 DBpedia dataset (DB3)

• Genders1 DBpedia dataset (DB4)

M1 Wikidata triples aligned with Arabic Wikipedia summaries that has been formed

from:

• Arabic Long Abstracts1 DBpedia dataset (DBar)

• Wikidata truthy dumps2 (WD1)

M2 Wikidata triples aligned with Esperanto Wikipedia summaries that has been formed

from:

• Esperanto Long Abstracts1 DBpedia dataset (DBeo)

• Wikidata truthy dumps2 (WD1)

In the following sections, we describe the pre-processing steps that we carried out to

bring both the textual summaries and the knowledge base triples of each corpus in the

desired format.

4.2 Wikipedia Summaries

One of the main challenges that is associated with the alignment of triples from a struc-

tured knowledge base with text is the identification of how the entities of the knowledge

base are mentioned in the text. For instance in the Wikipedia sentence: “Barack Hussein

Obama II is an American politician who served as the 44th President of the United States

from 2009 to 2017.”3, we need to be able to identify that the surface forms of “Barack

Hussein Obama II” and “United States” refer to the respective DBpedia resources of

dbr:Barack Obama and dbr:United States. In order to sidestep this problem, we use

DBpedia Spotlight (Daiber et al., 2013), an automatic system for annotation of DBpedia

entities in text. Confidence and support are the two main variables that parameterise

the annotation results that are returned by DBpedia Spotlight. Confidence refers to the

lowest threshold of certainty which the system must have in order to return an anno-

tation. Support is the lowest bound of the un-normalised total number of links to the

returned entities.

3https://en.wikipedia.org/wiki/Barack Obama

https://en.wikipedia.org/wiki/Barack_Obama
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We run each Wikipedia summary through DBpedia Spotlight. Our goal was to find the

combination of confidence and support that provides the greatest number of relevant

annotations, in order to (i) enhance the set of triples allocated to each Wikipedia page,

and (ii) allow the model to learn directly how entities in the triples on the encoder side

manifest themselves in the text on the decoder side. We empirically found that by set-

ting the confidence and support parameters to 0.35 and −1 respectively, we increased

the recall of the identified entities while maintaining precision at acceptable levels. We

retained a list of all the possible surface forms to which each entity was mapped. Fur-

thermore, we excluded any Wikipedia summaries whose main discussed entity was not

identified in the text.

Each Wikipedia summary is tokenised and split into sentences using the Natural Lan-

guage Toolkit (NLTK) (Bird et al., 2009). We retained the first introductory sentence

in the case of M1 and M2 (Lebret et al., 2016; Chisholm et al., 2017), and the first two

sentences, in the case of D1, D2 and D3, of each summary in order to reduce the com-

putational cost of our task; summaries that consist of only one sentence were included

unaltered. Since it would be impossible to learn a unique vector representation for the

entity of interest of each Wikipedia summary due to the lack of occurrences of the ma-

jority of those entities in the datasets, we replaced them with the special <item> token.

We used a fixed vocabulary of the most frequent tokens (i.e. either words or entities) of

the summaries that are aligned with the DBpedia and Wikidata triples. All occurrences

of numbers in the text are replaced with the special token 0, except for years that are

mapped to the special <year> token4 (Lebret et al., 2016).

Due to the nature of our task, we are required to handle both words and entities that

occur infrequently in the textual summaries. For every out-of-vocabulary word, we

use the special <rare> token (Graves, 2013; Cho et al., 2014; Sutskever et al., 2014;

Bahdanau et al., 2014; Luong et al., 2015a). However, using a single special token for

all the rare entities that have not been included in the fixed target vocabulary would

substantially limit the model, causing unnecessary repetition of this particular token

in the generated summaries. In order to circumvent this, we propose three different

approaches: (i) the property-type placeholders, (ii) the property placeholders, and (iii) a

realisation mechanism on top of a pointer-generator network. More details regarding

the above are provided in their respective sections (see Section 5.1.3 and 6.1.1).

4.3 Knowledge Base Triples

Our text generation task consists of learning how entities, along with their relationships,

are mentioned in the text. Given a set of triples, our approach learns to generate

4A slightly different strategy has been followed for the experiments using our pointer-generator
architecture (cf. Section 7.2).
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Table 4.1: An example of how a triple whose object is identified as a date is encoded
into two different triples. The first one represents the month that has been identified

in the original triple, and the second the year.

Original
Triple

dbr:Andre Agassi dbo:birthDate ‘‘1970-04-29’’

Resultant
Triples

dbr:Andre Agassi dbo:birthDateMonth 4

dbr:Andre Agassi dbo:birthDateYear <year>

text one token at a time, without constraining the generative procedure to pre-defined

templates that would include a given textual string as-it-is in the generated summary.

Consequently, we excluded from our corpora any triples with a textual string as their

object, except those that referred to numbers, dates or years. All instances of number-

objects are replaced with the special token 0, except for year-objects that are mapped

to the special <year> token (Lebret et al., 2016). In both Wikidata and DBpedia, date-

related objects are expressed as a string followed by its corresponding XML Schema

URI (e.g. XMLSchema/#dateTime or XMLSchema/#date). In order to enable our model

to process date-related triples and learn how their information is lexicalised in the text,

we decompose them into two different triples. The first one is used to represent the

month as it has been identified in the original triple, and the second one to represent

the year. The object of the latter is subsequently mapped to the special <year> token.

Table 4.1 presents an example of our date encoding approach.

For each entity that has been identified in a Wikipedia summary using DBpedia Spot-

light, we extracted its corresponding triples from the Mapping-based Objects dataset

in the DBpedia’s case (i.e. for D1 and D3 datasets), and the Wikidata truthy dump

in Wikidata’s case (i.e. for D2, M15 and M25 datasets). We assume that the subjects

or objects of a set of triples are consistent with the main subject of the corresponding

Wikipedia summary. Consequently, from this additional set of triples, we only retain

those whose object matches the main discussed entity in each summary, and we append

them to the initial set. In the case of the datasets that are based on DBpedia triples,

this results in 450 and 609k unique predicates and entities in D1’s case and in 1124 and

1723k unique predicates and entities respectively in D3’s case. Equivalently, D2, M1

and M2 consist of (i) 378 and 278k, (ii) 1021 and 355k, and (iii) 965 and 352k, unique

predicates and entities respectively.

Similar to the Wikipedia summaries, we represent the occurrence of the main entity of

the corresponding summary as either subject or object of a triple with the special <item>

token. A shared, fixed dictionary was used for all subjects, predicates and objects.

5DBpedia Spotlight is not available in Arabic and Esperanto. Consequently, for the M1 and M2
corpora we used an approach based on keyword-matching in order to identify realisation of entities in
the text. Further details are provided in Section 4.4.3.
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Table 4.2: The left and middle columns display the distribution of the 10 most com-
mon predicates and entities in the DBpedia triples that have been allocated to the D1
dataset. The right column depicts the distribution of the 10 most common entities in

the Wikipedia summaries as they have been identified with DBpedia Spotlight.

Predicates In Triples Entities In Triples Entities In Summaries

Predicate % Entity % Entity %

dbo:birthDate 12.43 dbr:United States 0.49 dbr:United States 2.82
dbo:birthPlace 10.67 dbr:England 0.19 dbr:Actor 2.14

dbo:careerStation 5.47 dbr:United Kingdom 0.14
dbr:Association -

football
1.02

dbo:deathDate 5.11 dbr:France 0.14 dbr:Politician 0.97

dbo:occupation 5.06 dbr:Canada 0.12 dbr:Singing 0.90
dbo:team 4.18 dbr:India 0.11 dbr:United Kingdom 0.59
dbo:deathPlace 3.51 dbr:Actor 0.10 dbr:England 0.58

dbo:genre 3.22 dbr:Italy 0.10 dbr:Writer 0.53
dbo:associatedBand 2.85 dbr:London 0.10 dbr:Canada 0.50
dbo:associated-

MusicalArtist
2.85 dbr:Japan 0.09 dbr:France 0.49

Table 4.3: The left and middle columns display the distribution of the 10 most com-
mon predicates and entities in the Wikidata triples that have been allocated to the D2
dataset. The right column depicts the distribution of the 10 most common entities in

the Wikipedia summaries as they have been identified with DBpedia Spotlight.

Predicates In Triples Entities In Triples Entities In Summaries

Predicate % Entity % Entity %

wikidata:P569 (place
of birth)

14.15 wikidata:Q5 (human) 3.96
wikidata:Q30 (United
States of America)

3.20

wikidata:P106

(occupation)
11.63

wikidata:Q6581097

(male)
3.27

wikidata:Q33999

(actor)
1.56

wikidata:P31 (instance
of)

8.29
wikidata:Q30 (United
States of America)

1.13
wikidata:Q82955

(politician)
1.02

wikidata:P21 (sex or
gender)

7.92
wikidata:Q6581072

(female)
0.70

wikidata:Q21

(England)
0.87

wikidata:P570 (date of
death)

7.58
wikidata:Q145 (United
Kingdom)

0.44
wikidata:Q145 (United
Kingdom)

0.85

wikidata:P27 (country
of citizenship)

6.75
wikidata:Q82955

(politician)
0.42

wikidata:Q27939

(singing)
0.79

wikidata:P735 (given
name)

6.53
wikidata:Q1860

(English)
0.39

wikidata:Q36180

(writer)
0.71

wikidata:P19 (place of
birth)

5.20
wikidata:Q33999

(actor)
0.36

wikidata:Q2736

(association football)
0.68

wikidata:P5 (member
of sports team)

2.64
wikidata:Q36180

(writer)
0.24

wikidata:Q183

(Germany)
0.61

wikidata:P69

(educated at)
2.58

wikidata:Q177220

(singer)
0.20 wikidata:Q16 (Canada) 0.58

4.4 Aligned Corpora

Tables 4.2—4.6 present the distribution of the 10 most common predicates, and entities

in the aligned datasets that have been built for the purposes of this thesis. The ex-

periments in which these aligned corpora have been used are presented in the following

chapters of this thesis.
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Table 4.4: The left and middle columns display the distribution of the 10 most com-
mon predicates and entities in the Wikidata triples that have been allocated to the D3
dataset. The right column depicts the distribution of the 10 most common entities in

the Wikipedia summaries as they have been identified with DBpedia Spotlight.

Predicates In Triples Entities In Triples Entities In Summaries

Predicate % Entity % Entity %

dbo:birthDate 4.52 dbr:United States 0.56 dbr:United States 2.23
dbo:birthPlace 3.92 dbr::United Kingdom 0.25 dbr:Mile 0.72

dbo:country 3.47 dbr:India 0.15 dbr:Actor 0.64

dbo:isPartOf 2.83 dbr:France 0.14 dbr:Town 0.60
dbo:genre 2.79 dbr:Canada 0.12 dbr:Village 0.59

dbo:location 2.12 dbr:England 0.12 dbr:England 0.54

dbo:careerStation 2.00 dbr:Animal 0.12
dbr:Association -

football
0.49

dbo:type 1.97 dbr:Italy 0.11 dbr:City 0.48

dbo:starring 1.92 dbr:Germany 0.10 dbr:Germany 0.43
dbo:occupation 1.89 dbr:Australia 0.10 dbr:France 0.43

Table 4.5: The left and middle columns display the distribution of the 10 most com-
mon predicates and entities in the Wikidata triples that have been used in the M1
corpus. The right column depicts the distribution of the 10 most common entities
in the Wikipedia summaries as they have been identified using our keyword-matching

approach.

Predicates In Triples Entities In Triples Entities In Summaries

Predicate % Entity % Entity %
wikidata:P31 (instance
of)

12.59 wikidata:Q5 (human) 1.49 wikidata:Q805 (Yemen) 10.54

wikidata:P17 (country) 5.87
wikidata:Q6581097

(male)
1.24 wikidata:Q794 (Iran) 6.04

wikidata:P569 (date of
birth)

4.82
wikidata:Q486972

(human settlement)
0.86

wikidata:Q30 (United
States of America)

5.67

wikidata:P131 (located
in the administrative
territorial entity)

4.76
wikidata:Q30 (United
States of America)

0.79 wikidata:Q532 (village) 5.37

wikidata:P106

(occupation)
4.20 wikidata:Q805 (Yemen) 0.75

wikidata:Q7432

(species)
3.88

wikidata:P21 (sex or
gender)

2.99 wikidata:Q794 (Iran) 0.49 wikidata:Q515 (city) 2.67

wikidata:P54 (member
of sports team)

2.92 wikidata:Q532 (village) 0.48
wikidata:Q937857

(association football
player)

2.23

wikidata:P150

(contains
administrative
territorial entity)

2.88
wikidata:Q16521

(taxon)
0.37

wikidata:Q33999

(actor)
1.54

wikidata:P47 (shares
border with)

2.59
wikidata:Q7432

(species)
0.33 wikidata:Q11424 (film) 1.14

wikidata:P27 (country
of citizenship)

2.41
wikidata:Q2736

(association football)
0.28 wikidata:Q79 (Egypt) 1.11
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Table 4.6: The left and middle columns display the distribution of the 10 most com-
mon predicates and entities in the Wikidata triples that have been used in the M2
corpus. The right column depicts the distribution of the 10 most common entities
in the Wikipedia summaries as they have been identified using our keyword-matching

approach.

Predicates In Triples Entities In Triples Entities In Summaries

Predicate % Entity % Entity %

wikidata:P31 (instance
of)

9.54
wikidata:Q6655

(UTC+01 : 00)
0.99

wikidata:Q183

(Germany)
6.73

wikidata:P47 (shares
border with)

8.42 wikidata:Q5 (human) 0.61 wikidata:Q515 (city) 4.87

wikidata:P150

(contains
administrative
territorial entity)

5.62
wikidata:Q183

(Germany)
0.58

wikidata:Q3863

(asteroid)
4.09

wikidata:P131 (located
in the administrative
territorial entity)

5.10
wikidata:Q6581097

(male)
0.54

wikidata:Q747074

(comune of Italy)
3.98

wikidata:P17 (country) 4.87
wikidata:Q262166

(municipality of
Germany)

0.39
wikidata:Q2179

(asteroid belt)
3.94

wikidata:P910 (topic’s
main category)

4.24 wikidata:Q38 (Italy) 0.33
wikidata:Q28

(Hungary)
1.85

wikidata:P106

(occupation)
3.11

wikidata:Q3863

(asteroid)
0.29

wikidata:Q484170

(commune of France)
1.65

wikidata:P2044

(elevation above sea
level)

2.73
wikidata:Q747074

(comune of Italy)
0.29 wikidata:Q577 (year) 1.46

wikidata:P421 (located
in time zone)

2.68
wikidata:Q2179

(asteroid belt)
0.28

wikidata:Q214

(Slovakia)
1.32

wikidata:P569 (date of
birth)

2.44
wikidata:Q16521

(taxon)
0.25 wikidata:Q29 (Spain) 1.28

In the following sections we provide further details regarding the two corpora of biogra-

phies (i.e. D1 and D2), and the three open-domain corpora that consist of English,

Arabic and Esperanto summaries (i.e. D3, M1 and M2) respectively.

4.4.1 Biographies

Inspired by Lebret et al. and Chisholm et al., we chose a corpus about biographies.

Biographies represent one of the largest single domains in Wikipedia, providing us with

a substantial amount of training data. While arguably Wikipedia biographies tend

to adopt a limited number of structural paradigms, they are still a dataset of rich

linguistic variability with challenging vocabulary sizes of greater than 400k words (cf.

Table 4.8). Their linguistic variability is also supported by the fact that our D1 and

D2 datasets contain summaries (95th percentile) whose main entities are of 45 and 44

different instance types respectively. Consequently, we believe that biographies offer a

good trade-off between diversity of instance types and regular structure allowing us to

explore the strengths and limitations of our purely data-driven approach. Table 4.7

presents the distribution of the 10 most frequent instance types of the main discussed
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entities of our corpora. Please note that in the case of D2, the Wikidata entities are

mapped to their respective DBpedia ones using the sameas-all-wikis6 dataset.

Table 4.7: Distribution of the 10 most frequent DBpedia instance types of the main
discussed entities of the two corpora of biographies, D1 (i.e. based on DBpedia triples)

and D2 (i.e. based on Wikidata triples).

D1 D2

Instance Type % Instance Type %

dbo:Person 26.48 owl#Thing 19.87

dbo:MusicalArtist 9.65 dbo:Person 17.48

dbo:OfficeHolder 6.75 dbo:MusicalArtist 6.57

dbo:Band 4.86 dbo:OfficeHolder 4.31

dbo:Writer 3.78 dbo:Band 3.18

dbo:SoccerPlayer 3.64 dbo:Writer 2.96

dbo:MilitaryPerson 2.98 dbo:SoccerPlayer 2.37

dbo:Scientist 2.87 dbo:MilitaryPerson 2.03

dbo:Artist 2.06 dbo:Scientist 1.90

dbo:Royalty 1.76 dbo:Artist 1.47

We used PetScan7 to collect a list of 1479k Wikipedia articles that have been curated

by the WikiProject Biography8. Subsequently, we leveraged this list in order to retain

only the relevant summaries from the English Long Abstracts1 DBpedia dataset (DBen)

and align them with their corresponding triples from DB1 and DB2 in the case of D1,

and WD1 in the case of D2.

Following the rest of the pre-processing steps that are described in Section 4.2 and

4.3 resulted in two aligned datasets that consist of: (i) 256850 instances of Wikipedia

summaries aligned with 2.74M DBpedia triples, and (ii) 358908 instances of Wikipedia

summaries aligned with the total of 4.34M Wikidata triples. The size difference is

explained as follows. Firstly, there are Wikipedia biographies without an infobox (i.e.

and, thus, without any available triples in the Mapping-based Objects and Literals

DBpedia datasets). Secondly, even when they do have an infobox, the retrieved triples

that are made available in the DBpedia dumps might not meet the requirements of our

task (Section 4.3). For example, we exclude a Wikipedia summary from an aligned

dataset, in case the objects of all the triples that are allocated to it are strings other

than dates or numbers. Table 4.8 provides statistics of the D1 and D2 corpora.

6http://wikidata.dbpedia.org/downloads/20160111
7PetScan (i.e. petscan.wmflabs.org) is a tool that identifies Wikipedia articles, images and cate-

gories based on the category or subcategory to which they belong.
8en.wikipedia.org/wiki/Wikipedia:WikiProject Biography

http://wikidata.dbpedia.org/downloads/20160111
https://petscan.wmflabs.org/
https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Biography
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Table 4.8: Statistics of the two corpora of biographies, D1 (i.e. based on DBpedia
triples) and D2 (i.e. based on Wikidata triples). Average parameters are shown with

standard deviations in brackets.

Parameter D1 D2

Total # of Articles 256850 358908

Total # of Entities 609k 278k

Total # of Predicates 450 378

Avg. # of Triples (incl.
Encoded Dates) per Article

10.68 (7.87) 12.09 (6.16)

Max. # of Alloc. Triples (incl.
Encoded Dates) per Article

175 255

Avg. # of Tokens per
Summary

41.30 (17.83) 39.90 (17.33)

Total # of Words In the
Summaries

400k 500k

Total # of Annotated Entities
In the Summaries (excl. the

Main Entity <item>)
194k 222k

Table 4.9: Statistics of the D3 corpus. Average parameters are shown with standard
deviations in brackets.

Parameter D3

Total # of Articles 864862

Total # of Entities 1173k

Total # of Predicates 1124

Avg. # of Triples (incl.
Encoded Dates) per Article

8.59 (6.33)

Max. # of Alloc. Triples (incl.
Encoded Dates) per Article

175

Avg. # of Tokens per
Summary

39.95 (21.05)

Total # of Words In the
Summaries

1114k

Total # of Annotated Entities
In the Summaries (excl. the

Main Entity <item>)
475k

4.4.2 The D3 Corpus

We adopt the above methodology in order to build a dataset encompassing the entirety

of Wikipedia rather than just the biographies. This corpus will allow us to train and

evaluate our approach on the generation of open-domain Wikipedia summaries. Ta-

ble 4.9 provides statistics of the D3 corpus. It should be noted that the total number

of unique entities and predicates in the triples of D3 along with its vocabulary size are

double the size of the biographical-oriented corpora.
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4.4.3 Building Multilingual Corpora

We follow a similar approach for building our non-English corpora. Every entity and

property in Wikidata is represented by a Uniform Resource Identifier (URI) which is the

same across all the available languages (e.g. “Berlin” is Q64 and “part of” is P361). Each

URI is connected to labels in multiple languages (Kaffee et al., 2017). We leverage this

cross-lingual nature of Wikidata in order to build two corpora Wikidata triples aligned

with open-domain Wikipedia summaries.

Inspired by Lebret et al.; Chisholm et al. in the experiments that involve Arabic and

Esperanto, we focus on generating single-sentence summaries. While as explained in

Section 4.2 this effectively reduces the computational cost of the tasks, it also pro-

vides better quality guarantees. Data-driven approaches generally struggle to generate

long snippets of text (Bahdanau et al., 2014; Wiseman et al., 2017). Since the goal of

these experiments was to explore the usability of the automatically generated content by

Wikipedia readers and editors (see Section 3.1.3), we decided not to sacrifice any poten-

tial quality of the generated content in favour of longer summaries. For each Wikipedia

article, we extract and tokenize the first introductory sentence using a multilingual

Regular-Expression Tokenizer from the NLTK toolkit (Bird et al., 2009). Afterwards,

we retrieve the corresponding Wikidata item to this article and query all triples where

this item appears as a subject or an object in the Wikidata truthy dump2.

Due to the lack of reliable Named Entity Recognition (NER) tools for underserved

languages, we rely on keyword-matching against Wikidata labels for the corresponding

language. In order to increase our coverage, we use the global language fallback chain

introduced by Wikimedia9 to extend the set of labels of each entity in the corresponding

language. This approach allows us to cover as many labels as possible and to overcome

the lack of non-English labels in Wikidata (Kaffee et al., 2017).

The above approach, along with the fact that Wikidata is a language-independent knowl-

edge base, allows us to create corpora in multilingual setting. This dataset aligns Wiki-

data triples with the first, introductory sentence of its corresponding Wikipedia articles.

Table 4.10 provides statistics on the resultant M1 and M2 corpora.

4.5 Discussion

While the above approach allows us to build large data-to-text corpora in different

languages, there are no guarantees that the information that exists in the triples does

necessarily appear in the corresponding text, and vice versa. We have explored an

alternate methodology for semi-automatically building high quality data-to-text corpora.

9https://meta.wikimedia.org/wiki/Wikidata/Notes/Language fallback

https://meta.wikimedia.org/wiki/Wikidata/Notes/Language_fallback


Chapter 4 Building Corpora of Aligned Texts and Triples 47

Table 4.10: Statistics of the two non-English corpora, M1 (i.e. with the textual
summaries in Arabic) and M2 (i.e. with the textual summaries in Esperanto). Average

parameters are shown with standard deviations in brackets.

Parameter Arabic Esperanto

Total # of Articles 255741 126714

Total # of Entities 355k 352k

Total # of Predicates 1021 965

Avg. # of Triples (incl.
Encoded Dates) per Article

8.10 (11.23) 11.23 (13.82)

Max. # of Alloc. Triples (incl.
Encoded Dates) per Article

885 883

Avg. # of Tokens per
Summary

27.98 (28.57) 26.36 (22.71)

Total # of Words In the
Summaries

433k 324k

Total # of Annotated Entities
In the Summaries (excl. the

Main Entity <item>)
22k 18k

This methodology leverages crowdsourcing and introduces an automatic scoring function

for the quality of the contribution to ensure better systematic alignment between text

and data, and works as follows. Firstly, similarly to Section 4.2, we annotate a textual

corpus in order to identify the realisations of entities that exist in a knowledge base.

Secondly, we collect triples from the corresponding knowledge base that link the entities

mentioned in a given sentence. Thirdly, we perform Semantic Sentence Simplification

(S3) through a crowdsourcing task in which we aim to retain only the natural language

elements that have correspondents in the allocated triples. Finally, we apply a novel

automatic scoring function to keep the most relevant semantic simplifications of each

sentence as a natural language expression of the corresponding set of collected triples.

Table 4.11 presents the final statistics on the resultant corpus based on sentences from

Wikipedia and MedlinePlus10 using this methodology.

Table 4.11: Statistics on the resultant corpus using Semantic Sentence Simplification
(S3) based on sentences from Wikipedia and MedlinePlus.

Parameter Wikipedia MedlinePlus

Total # of Sentences 600 450

Total # of of Triples 1119 766

Total # of Predicates 146 30

Total # of Words 13641 11167

Total # of Words In the
Summaries After S3

9011 6854

10medlineplus.gov

https://medlineplus.gov
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This work has led to a peer-reviewed publication (Mrabet et al., 2016). While it departs

from fully-automatic approaches (Lebret et al., 2016; Chisholm et al., 2017), which are

similar to the methodology in Section 4.1, offering greater systematic guarantees between

text and data, its initial resultant corpus did not offer the size nor the lexical variation

(see Table 4.11) that would allow us to explore the main objective of this thesis, which

is open-domain textual summaries generation. The fact that the approach relies on

crowdsourcing raises also additional challenges should we opt to apply it in less popular

languages. Consequently, the experiments that led to the creation of that corpus are

not described in this thesis. For further details, we urge interested readers to refer to

the corresponding published article (Mrabet et al., 2016).

4.6 Summary

In this chapter, we presented a fully-automatic, cross-lingual, approach for building large

corpora of loosely aligned knowledge base triples with Wikipedia summaries. We believe

that this methodology could be of great value to other research domains besides NLG,

such as Relation Extraction and Question Answering. Tailoring our approach to the

domain of Relation extraction, by excluding triples whose objects are not mentioned in

the corresponding text, resulted also in a peer-reviewed conference publication (Elsahar

et al., 2018).

In the subsequent chapters of this thesis, we focus our experiments on the five corpora

that were built using our fully-automatic approach, D1, D2, D3, M1 and M2.



Chapter 5
Neural Wikipedian: Generating

Biographies from Knowledge Base Triples

An idealised example of our NLG task is presented in Table 5.1; our system takes as

an input a set of triples about Walt Disney (i.e. the entity Walt Disney is either the

subject or object of the triples in the set), and generates a sequence of words in order

to summarise them in the form of natural language text. This essentially means that

the information that is presented in the text is a subset of the total knowledge that

is enclosed in the input set of triples (e.g. the fact that Walt Disney was born on

“1901-12-05” is not realised in the generated summary).

Our approach is inspired by the general encoder-decoder framework (Cho et al., 2014;

Sutskever et al., 2014) with multi-gated Recurrent Neural Network (RNN) variants,

such as the Gated Recurrent Unit (GRU) (Cho et al., 2014) and the Long Short-Term

Memory (LSTM) cell (Hochreiter and Schmidhuber, 1997). Implementations based on

the encoder-decoder framework work by mapping sequences of source tokens to sequences

of target tokens. We adapt this Sequence-to-Sequence model to the requirements of

Semantic Web data. Since the sets of triples that are given to our systems as an input

are unordered, and not sequentially correlated, in the next section we propose a model

that consists of a feed-forward neural network that encodes each triple from a set into a

vector of fixed dimensionality in a continuous semantic space. Within this space, triples

that have similar semantic meaning will have similar positions. We couple this novel

encoder with an RNN-based decoder that generates the textual summary one token at a

time (i.e. a token can be a word or an entity or a surface form of an entity). We explore

a set of different approaches that enable our models to verbalise entities from the input

set of triples in the generated text.

In this chapter, we focus on the generation of two-sentence biographies given a set of

input triples. This task is most similar to recent work by Lebret et al. and Chisholm

49
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Table 5.1: An idealised example of our NLG task. Our system takes as an input a
set of triples about Walt Disney, whose either subject or object is related to the entity

of Walt Disney, and generates a textual summary.

Triples

dbr:Walt Disney dbo:birthDate ‘‘1901-12-05’’

dbr:Walt Disney dbo:birthPlace dbr:Chicago

dbr:Mickey Mouse dbo:creator dbr:Walt Disney

Textual
Summary

Walt Disney was born in Chicago, and was the creator of
Mickey Mouse.

et al., who both employ adaptations of the encoder-decoder framework to generate the

first sentence of a Wikipedia biography (Lebret et al., 2016; Chisholm et al., 2017).

Lebret et al. propose a system that relies on slot-value templating in order to generate a

summary from a Wikipedia infobox. The model proposed by Chisholm et al. generates

a biography given a sequence of slot-value pairs extracted from Wikidata. In both

cases, the representation of the input is essentially limited to expressing only one-subject

relationships. In our case, the input set of triples that is allocated to each Wikipedia

summary is made of more than just the DBpedia or Wikidata triples of the corresponding

Wikipedia article. As we discuss in more detail in Section 4.3, the input also includes

triples with entities that are related to the main entity of a Wikipedia biography in

the respective knowledge base, and their object is the main subject of the Wikipedia

summary. For instance the first two triples of Table 5.1 that share the same subject

(i.e. dbr:Walt Dinsey) come from the DBpedia triples that are allocated to the article

of Walt Disney ; the latter one comes from the DBpedia triples of dbr:Mickey Mouse,

and is part of the input set since its object is the main entity of the original triples

extracted for Walt Disney. Furthermore, we believe that constraining the generative

process to only the first sentence significantly simplifies the task in terms of the amount

of information (i.e. in our case number of triples) that is lexicalised in the summary.

Consequently, we choose to train on longer snippets of text to generate more elaborate

summaries.

The experiments and results that are presented in this chapter have been published as

a journal article (Vougiouklis et al., 2018a). In the following sections, we describe in

detail our proposed model, and the experiments that we conducted using the D1 and

D2 corpora for its training and evaluation.

5.1 The Model

Given a set of E triples, F = {f1, f2, . . . , fE}, our goal is to learn a model that is able

to generate a sequence of T tokens, Y = y1, y2, . . . , yT . We regard Y as a representation

in natural language of the input set of triples, and build a model that computes the
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probability of generating y1, y2, . . . , yT , given the initial set of triples f1, f2, . . . , fE :

p(y1, . . . , yT |f1, f2, . . . , fE) =

T∏
t=1

p(yt|y1, . . . yt−1, F ) . (5.1)

Our model consists of a feed-forward architecture that encodes each triple from the input

set into a vector of fixed dimensionality in a continuous semantic space. This is coupled

to an RNN-based decoder that generates the textual summary one token at a time (i.e.

a token can be a word or an entity or a surface form of an entity). The architecture of

our generative model is shown in Figure 5.1. Note that since bias terms can be included

in each weight-matrix multiplication, they are not explicitly shown in the equations of

this section (Bishop, 1995).

Figure 5.1: The architecture of our model based on the encoder-decoder framework.
The triple encoder computes a vector representation, hf1 and hf2 , for each one of the
two input triples. Subsequently, the decoder uses the concatenation of the two vectors,
[hf1 ;hf2 ] to initialise the decoding process that generates the summary, token by token.
Each textual summary starts and ends with the respective start-of-sequence <start>

and end-of-sequence <end> tokens. At each timestep t, the decoder takes as an input the
current word and the hidden state of the previous timestep t−1, and makes a prediction
about the next token that should be appended in the summary. For example in the
second timestep, the decoder takes as an input the dbr:Walt Disney token and the
previous hidden state h1 and predicts the token (i.e. in this particular scenario who)

that should come next.

5.1.1 Triple Encoder

Let F = {f1, . . . , fE : fi = (si, pi, oi)} be the set of triples f1, . . . , fE , where si, pi and oi

are the one-hot1 vector representations of the respective subject, predicate and object of

1One-hot is a vector that contains a 1 at the index of a particular token (i.e. entity or predicate
on the encoder’s side, or regular word, entity or surface form of an entity on the decoder’s side) in the
vocabulary with all the other values set to zero.
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the i-th triple. The vector representation hfi of the i-th triple is computed by forward

propagating the triples encoder as follows:

h̃fi = [Wx→h̃si; Wx→h̃pi; Wx→h̃oi] , (5.2)

hfi = ReLU(Wh̃→hh̃fi) , (5.3)

where ReLU is the rectifier (i.e. non-linear activation function), [. . . ; . . .] represents

vector concatenation, Wx→h̃ : R|N | → Rm is a trainable weight matrix that represents

an unbiased linear mapping, where |N | is the cardinality of all the potential one-hot

input vectors (i.e. size of the dictionary of all the available predicates and entities of the

triples dictionary), and Wh̃→h : R3m → Rm is an unbiased linear mapping.

5.1.2 Decoder

After the vector representation hfi for each triple fi is obtained, we start the decoding

process during which the corresponding textual summary is generated. At each timestep

t, the decoder makes a prediction about the next token that will be appended to the

summary by taking into consideration both the tokens that have already been generated,

and the contextual knowledge from the triples that have been provided to the system as

input. We experiment with two commonly used multi-gated RNN variants: (i) the LSTM

cell and (ii) the GRU, in order to explore which one works best for the requirements of

our architecture. As explained in latter part of Section 2.2.1.2, the main advantage of

using multi-gated units is their ability to process information from much longer sequences

compared to the simple RNN (Chung et al., 2014). We adopt the architectures of the

LSTM cell and the GRU from Zaremba and Sutskever; Cho et al. respectively.

We initialise the decoder with a fixed-length vector that we obtain after encoding all

the information from the vector representations of the triples. Our approach is inspired

by the general Sequence-to-Sequence framework, within which an RNN-based encoder

encapsulates the information that exists in a sequence, and an RNN-based decoder gen-

erates a new sequence from this encapsulation (Cho et al., 2014; Sutskever et al., 2014).

However, since the triples that we use in our problem are not sequentially correlated, we

propose a concatenation-based formulation in order to capture the information across

all the triples that are given as an input to our system into one single vector. More

specifically, given a set of triples’ vector representations, hf1 , . . . , hfE , we compute:

h̃F = [hf1 ;hf2 ; . . . ;hfE−1
;hfE ] , (5.4)

hF = WhF→h1
0
h̃F , (5.5)
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where WhF→h1
0

: REm → Rm is a biased linear mapping. Subsequently, the hidden

units of the LSTM- or GRU-based decoder (discussed below) at layer depth l = 1 are

initialised with h1
0 = hF .

Let hlt ∈ Rm be the aggregated output of a hidden unit at timestep t ∈ [1 . . . T ] and layer

depth l ∈ [1 . . . L]. The vectors at zero layer depth, h0
t = Wx→hxt, represent the words

or entities that are given to the network as an input. The parameter matrix Wx→h

has dimensions [|X|,m], where |X| is the cardinality of all the potential one-hot input

vectors (i.e. size of the dictionary of all the available words and entities of the textual

summaries dictionary). All subsequent matrices have dimension [m,m] unless stated

otherwise. At each timestep t, hlt is computed as follows:

hlt =

LSTM(hlt−1, h
l−1
t ) LSTM-based decoder

GRU(hlt−1, h
l−1
t ) GRU-based decoder

(5.6)

We adopt the architecture for the LSTM cells and GRUs from (Zaremba and Sutskever,

2014) and (Cho et al., 2014) respectively. The functionality of LSTM cells and the GRUs

is described in details in Sections 2.2.1.3 and 2.2.1.4 respectively.

5.1.3 Property-Type Placeholders

Conventional systems based on neural networks when applied to other tasks related

to NLG involving surface realisation, such as Machine Translation (Sutskever et al.,

2014; Luong et al., 2015b) or Question Generation (Dong and Lapata, 2016; Serban

et al., 2016), are incapable of learning high quality vector representations for the in-

frequent tokens (i.e. either words or entities) in their training dataset. Inspired by

other multi-placeholder approaches that have been proposed by Serban et al.; Dong

and Lapata, we attempt to match a rare entity that has been annotated in the text,

in the subjects or the objects of the allocated triples. In case the rare entity exists

in the triples, then it is replaced by a placeholder token, which consists of the predi-

cate of the triple, a descriptor of the component of the triple that was matched (i.e.

obj or subj ), and the instance type of the entity. The instance type of an en-

tity is obtained from the Instance Types dataset. For example, if the subject of the

triple: (dbr:Atlas Shrugged dbo:author dbr:Ayn Rand) is annotated as a rare en-

tity in the corresponding summary, it is replaced with the subject-related placeholder:

dbo:author sub dbo:Book. If a rare entity is matched to the object of the triple:

(Michael Jordan dbo:birthPlace dbr:Brooklyn), it is replaced with the appropriate

object-related placeholder: dbo:birthPlace obj dbo:City. We refer to those place-

holders as property-type placeholders. In case the entity does not have a type in the

Instance Types dataset, the instance type part of the placeholder is filled by the <unk>
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token (e.g. dbo:birthPlace obj <unk>). If the rare entity is not matched to any

subject or object of the set of corresponding triples, then it is replaced by the special

token of its instance type. In case the rare entity does not exist in the instance types

dataset, it is replaced by the <unk> token. The property-type placeholders, enable our

systems to verbalise rare entities in the text by replacing any predicted placeholder with

the label of the subject or object of the relevant triple at a post-processing step. In case

the same property-type placeholder occurs more than once in a generated sentence, then

we assign each one of them to the relevant triples randomly, while making sure that each

placeholder will be mapped to a different triple.

5.1.4 Model Training

The conditional probability distribution over the each token of the summary at each

timestep t is represented with the softmax function over all the entries in the textual

summaries dictionary:

p(yt|y1, . . . yt−1, F ) = softmax(Wyh
L
t ) , (5.7)

where Wy : Rm → R|X| is a biased trainable weight matrix. Our model learns to

make a prediction about the next token by using the negative cross-entropy2 criterion.

During training and given a set of triples, the model predicts the sequence of tokens of

which the generated summary is comprised. The model computes how far the generated

sequence of tokens is from the empirical, actual text by utilising the negative logarithmic

probability of the generated summary given set of triples:

cost = −
T∑
t=1

log p(yt|y1, . . . yt−1, F ) . (5.8)

Consequently, our model tries to minimise the above cost function. This non-convex

optimisation problem is solved using Back-Propagation (Rumelhart et al., 1986) with a

dynamic learning rate update provided by the RMSProp3 algorithm.

2In information theory, the entropy H is a measure of the uncertainty. The concept of cross-entropy
is associated with the similarity between two distributions, an empirical one q and a predicted one p given
a random variable X and a set of parameters θ. It is defined as: H(X) = −

∑
q(y(i)) log p(y(i)|x(i), θ).

3RMSProp stands for Root Mean Square Propagation, and is a form of stochastic gradient descent
where the gradient for each weight is divided by a running average of its recent gradients norm (Tieleman
and Hinton, 2012).
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Figure 5.2: A simplified example of a beam-search decoder with a beam B of size 2
and target vocabulary size |X| equal to 9. After the vector representation hF for the
whole triples’ set is computed, it is provided as input to the decoder along with the
<start> token. The scores at the right-hand side of the words in the vocabulary is the
probability of the summary when it is extended by that particular word. At the first
timestep, the decoder retains the two most-probable words with which a summary given
this particular input set could begin. Subsequently, Berlin and <item> (i.e. <item> is
a special token that is described in more detail in Sections 4.2 and 4.3) are inputted to
the decoder separately at the second timestep. This results in 18 partial hypotheses.
We keep only the two most probable summaries, and since both of them start with
the <item> token, no summaries with Berlin as their first word are retained. At the
third timestep, is and was are provided as separate inputs to the decoder. The process
continues in a similar fashion until the seventh timestep, when the special <end> token
is predicted for the one of the partial hypothesis. This hypothesis is then appended
to the list of complete hypotheses and the beam search continues with beam of size 1,
until the <end> token is predicted for the other partial hypothesis. At the end the list
of complete hypotheses is formed as follows: (a) “<start> <item> was born in Berlin
<end>” with a probability of 0.04 and (b) “<start> <item> is born in Berlin, Germany

<end>” with a probability of 0.02.

5.1.5 Generating Summaries

During testing, our goal is to find:

y∗ = arg max
y

T∑
t=1

log p(yt|y1, . . . yt−1, F ) , (5.9)

where y∗ is the optimal summary computed by the model. Recall from Eq. 5.7 that at

each timestep, the model predicts a probability distribution over the token that is more

likely to come next. In theory, Viterbi decoding could approximate an optimal summary.

However, in practice, the fact that the target vocabulary |X| is large enough deems such

an approach intractable (Rush et al., 2015). A different approach is to approximate the
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best summary by appending the token with the highest probability at each timestep

of the generation process. Even though such greedy decoders have proven to be very

fast when employed in machine translation problems, they tend to produce low quality

approximations (Rush et al., 2015).

A compromise between a strictly-greedy decoding algorithm and Viterbi is to adopt

a beam-search decoder (Sutskever et al., 2014; Rush et al., 2015), which provides us

with the B-most-probable summaries (or hypotheses) given a set F of input triples.

The decoder maintains only a small number of B hypotheses (i.e. partially completed

summaries), which it extends at every timestep with every token in the target vocabulary

|X|.

During testing, we provide our network with an unknown set of triples, and initialise the

decoder with a special start-of-summary <start> token. The B tokens with the highest

probability are used as separate inputs to the decoder at the second timestep. This

leads to B|X| partial hypotheses from which we only retain the B-best. After all the

second words of our hypotheses are inputted to the decoder, we end up with B|X| partial

three-worded hypotheses from which again we only keep the B ones with the highest

probability. When the end-of-summary <end> token is predicted for a hypothesis, it is

appended to the list of complete summaries, and the process carries on with B = B− 1.

A simplified example of a beam-search decoder with a beam B of size 2, when the set

F of input triples consists of only a single triple (|F | = 1 and E = 1) is displayed in

Figure 5.2.

5.2 Dataset Preparation

We train and evaluate our model on the corpora of biographies, D1 and D2. We describe

next all the pre-processing steps that we followed in order to make our aligned datasets

fit for the training of our neural network architectures.

5.2.1 Modelling the Textual Summaries

We used a fixed vocabulary of 30000 and 33000 of the most frequent tokens (i.e. either

words or entities) of the summaries that are aligned with the DBpedia and Wikidata

triples. Each summary is augmented with the respective start-of-summary <start> and

end-of-summary <end> tokens (Sutskever et al., 2014; Luong et al., 2015a).

Our proposed neural network architectures learn to generate a textual summary as a

sequence of words and entities. In order to infer the verbalisation of the predicted

entities in a generated summary, we experiment with two different approaches which are

described in detail below.
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5.2.1.1 Generating Words Along with URIs

In this setup, all entities that have been annotated in the text with DBpedia Spotlight

are replaced with their URIs. The summaries vocabulary is comprised of words and

the entities’ URIs. The model thus learns to generate words along with entity URIs.

In order to improve the generated text further, as a post-processing step we replace:

(i) the <item> token with its corresponding surface form, and (ii) the tokens of DBpedia

or Wikidata entities in the text, with their most frequently matched surface form, as

these are recorded during data pre-processing (see Section 4.2).

5.2.1.2 Generating Words Along with Surface Form Tuples

Instead of replacing entity URIs with their most frequent surface forms, we propose a

setup that enables our system to make a prediction about the best verbalisation of a

predicted entity in the text. Each entity that has been identified in the text of the

Wikipedia summaries using DBpedia Spotlight is stored as a tuple of the annotated

surface form and its URI. Let K = {k1, k2, . . . , kD} be the set of all D entities that are

annotated in the text. We define the j-th surface form tuple of the entity kd ∈ K as:

ukdj = (kd, g
kd
j ) : kd ∈ K , where gkdj is the j-th surface form that is associated with the

entity kd. Similarly to Section 5.2.1.1, those tuples are stored as tokens in the target

dictionary. This setup enables the models to verbalise each entity with more than one

way by adapting the surface forms to the context of both the generated tokens and input

triples. For example, the entity of dbr:Actor is associated with the surface form tuples

of (dbr:Actor, actor) and (dbr:Actor, actress), and, thus, it can be verbalised

accordingly (as actor or actress) based on the gender of the main entity of interest.

Table 5.2: Statistics regarding the initial and the training versions of the two corpora
of biographies, D1 (i.e. based on DBpedia triples) and D2 (i.e. based on Wikidata

triples).

Parameter
D1 D2

Initial
Dataset

Training
Dataset

Initial
Dataset

Training
Dataset

Total # of Articles 256850 239806 358908 354321

Total # of Entities 609k 8702 278k 10684

Total # of Predicates 450 256 378 217

Avg. # of Triples (incl.
Encoded Dates) per Article

10.68 10.68 12.09 11.96

Max. # of Alloc. Triples (incl.
Encoded Dates) per Article

175 22 255 21

Total # of Words In the
Summaries

400k 14297 500k 16728

Total # of Annotated Entities
In the Summaries

194k 15703 222k 16272
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5.2.2 Modelling the Input Triples

The shared, fixed input dictionary of all subjects, predicates and objects was formed

as follows. First, we included all the predicates and entities that occur at least 20

times. Triples with rare predicates were discarded. Every out-of-vocabulary entity was

replaced by the special token of its instance type, which is retrieved from the Instance

Types dataset. For example, the rare entity of dbr:Mamma Mia! was replaced by the

dbo:Musical token. In case an infrequent entity is not found in the Instance Types

dataset, it is replaced with the special <unk> token. We appended to the source vocabu-

lary only the instance type tokens that occur at least 20 times. We used the <resource>

token for the rare entities with also infrequent instance types.

In order both to increase the homogeneity of the dataset in terms of the number of triples

that are aligned with each Wikipedia summary and to contain the space complexity of

our task to a single Graphics Processing Unit (GPU), we limit the number of allocated

triples per summary E to:

bEmin + 0.25σEc ≤ E ≤
⌊
E + 1.5σE

⌋
. (5.10)

If a biography is aligned with fewer triples then it is excluded from the respective dataset.

If a summary is aligned with more triples, we first attempt to exclude potential dupli-

cates (e.g. Fiorenzo Magni dbp:proyears 1945 and Fiorenzo Magni dbp:proyears

1944 would result in the same triple: <item> dbp:proyears <year> after the year-

replacement process that is described in Sections 4.3). In case their number still exceeds

the limit, we retain only the first ones until the threshold is reached.

Table 5.2 shows statistics on the initial and the training-ready versions of each corpus.

An example of the structure of the datasets is displayed in Table 5.3. Details about

the two different types of summaries (“Summary w/ URIs” and “Summary w/ Surface

Form Tuples”) are provided in Sections 5.2.1.1 and 5.2.1.2 respectively.

5.3 Experiments

Both, D1 and D2, datasets are split into training, validation and test, with respec-

tive portions of 85%, 10%, and 5%. We implemented our neural network models us-

ing the Torch4 package. Any cleaning or restructuring procedure that has been per-

formed on the datasets has been conducted with Python scripts. The aligned cor-

pora along with the code of our systems and the competing baselines are available at

github.com/pvougiou/Neural-Wikipedian.

4Torch is a scientific computing package for Lua. It is based on the LuaJIT package.

https://github.com/pvougiou/Neural-Wikipedian
http://torch.ch
http://luajit.org/
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5.3.1 Training Details

We train two different models. The first one is the triple encoder coupled with the GRU-

based decoder to which we refer as Triples2GRU; the other is the same triple encoder

coupled with the LSTM-based decoder (Triples2LSTM). For each dataset, D1 and D2,

we train each model on our task of generating a summary once as a combination of

words with URIs (w/ URIs, 5.2.1.1) and once as a mixture of words and surface form

tuples (w/ Surf. Form Tuples, 5.2.1.2).

For the recurrent component of our networks, we use 1 layer of (i) 650 LSTM cells and

(ii) 750 GRUs, resulting in 3.385M and 3.380M recurrent connections, respectively. We

found that increasing the number of layers does not improve the performance of our

architectures, whereas the dimensionality of the hidden states plays a crucial role in

achieving the best possible results. Table 5.4 summarises the hyper-parameters that

have been used in training.

The feed-forward triples encoder consist of a sequence of fully-connected layers with the

following [input, output] sizes: (i) one-hot input to vector representation of subject or

predicate or object: [|N | ·m,m], (ii) concatenated vector representation of each triple’s

subject-predicate-object to hidden representation of triple: [3 ·m,m]. At the topmost

layer of the encoder, we have a fully-connected layer that maps the concatenated hidden

representations of all the aligned to a summary triples to one single vector: [Emax ·m,m],

where Emax is the maximum number of triples per article. Sets of triples with fewer than

Emax triples are padded with zero vectors when necessary.

We optimised our architectures using an alteration of stochastic gradient descent with

adaptive learning rate. We found that a fixed learning rate was resulting in the explosion

of the gradients that were propagated to the encoder side. We believe that this behaviour

is explained by the fact that our models learn to project data of dissimilar nature

(i.e. structured data from the triples and unstructured text from the summaries) in a

shared continuous semantic space. In case their parameters are not initialised properly,

our neural architectures propagate vectors of different orders of magnitude leading to

the explosion of the gradients phenomenon. However, finding the appropriate values

to initialise the models’ parameters is not trivial (Ioffe and Szegedy, 2015). In order

to avoid this problem, we use Batch Normalisation before each non-linear activation

function and after each fully-connected layer both on the encoder and the decoder side,

and initialise all parameters with a random uniform distribution between −0.001 and

0.001 (Ioffe and Szegedy, 2015). The networks are trained with mini-batch RMSProp

with an initial learning rate value of 0.002. RMSProp was found to work better than

Stochastic Gradient Descent, RMSProp and AdaGrad by resulting into lower error (i.e.

perplexity) on the validation sets. Each update is computed using a mini-batch of

85 dataset instances. An l2 regularisation of 0.1 term over each network’s parameters

(weights) is also included in the cost function in order to prevent overfitting (Wen et al.,
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2015, 2016). After the 2nd epoch, the learning rate was decayed by 0.8 every epoch.

During testing, our systems generate a summary for each unknown set of triples, using

a beam B of size 5. We retain only the summary with the highest probability.

We trained all of our systems on a single Titan X (Pascal) GPU. The LSTM-based

models complete an epoch of training: (i) in around 25 minutes when trained on the

D2 dataset, and (ii) 17 minutes when trained on D1; the GRU-based architectures

require(i) around 22 minutes when trained on D2, and (ii) 15 minutes when trained on

D1.
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Table 5.3: Example of the alignment of our datasets. One Wikipedia summary is
coupled with a set of triples from either DBpedia or Wikidata. Any reference to the
main discussed entity of the summary (i.e. dbr:Papa Roach or wikidata:Q254371 re-
spectively) is replaced by the <item> token both in the text and the triples. Each other
entity in the triples is stored along with its instance type. Each infrequent entity in the
triples is replaced by the special token of its instance type, before it is provided to our
neural network architectures as part of the input (e.g. dbr:Infest (album) is replaced
by dbo:Album). When a rare entity in the text is matched to an entity of the correspond-
ing triples’ set, then it is replaced by a unique token, which consists from the predicate
of the relevant triple, a descriptor of the component (i.e. subject or object) of the triple
that was matched, and the instance type of the entity (e.g. the music album “Infest
(2000)” is replaced by the property-type placeholder [dbo:artist sub dbo:Album]).
In case an infrequent entity in the text is not matched to any of the entities in the
triples, it is replaced by the special token of its instance type (e.g. the entity of “Vacav-
ille, California” does not appear in the Wikidata triples, and as a result, it is replaced

in their corresponding text by the dbo:City token).

<item> dbr:Papa Roach and wikidata:Q254371

Original
Wikipedia
Summary

Papa Roach is an American rock band from Vacaville, California. Formed in
1993, their first major-label release was the triple-platinum album Infest
(2000).

DBpedia
Triples

<item> dbo:bandMember dbr:Jacoby Shaddix [dbo:MusicalArtist]

<item> dbo:bandMember dbr:Jerry Horton [dbo:MusicalArtist]

<item> dbo:genre dbr:Hard rock [dbo:MusicGenre]
...

<item> dbo:hometown dbr:United States [dbo:Country]

<item> dbo:hometown dbr:Vacaville, California [dbo:City]

[dbo:Album] dbr:Infest (album) dbo:artist <item>

[dbo:Album] dbr:Metamorphosis (Papa Roach album) dbo:artist <item>

Summary
w/ URIs

<start> <item> is an dbr:United States dbr:Rock music band from
[dbo:hometown obj dbo:City] . Formed in <year> , their first major-label
release was the dbr:RIAA certification album
[dbo:artist sub dbo:Album] ( <year> ) . <end>

Summary
w/ Surface

Form
Tuples

<start> <item> is an (dbr:United States, American) (dbr:Rock music,

rock) band from [dbo:hometown obj dbo:City] . Formed in <year> , their
first major-label release was the (dbr:RIAA certification,

triple-platinum) album [dbo:artist sub dbo:Album] ( <year> ) . <end>

Wikidata
Triples

<item> wikidata:P136 wikidata:Q11399 [dbo:MusicGenre]

<item> wikidata:P495 wikidata:Q30 [dbo:Country]

<item> wikidata:P571Month 1 [<unk>]

<item> wikidata:P571Year <year> [<unk>]

<item> wikidata:P31 wikidata:Q215380 [<unk>]

<item> wikidata:P264 wikidata:Q212699 [dbo:RecordLabel]
...

[dbo:Album] wikidata:Q902353 wikidata:P175 <item>

Summary
w/ URIs

<start> <item> is an wikidata:Q30 wikidata:Q11399 band from dbo:City .
Formed in <year> , their first <rare> release was the wikidata:Q2503026

album [wikidata:P175 sub dbo:Album] ( <year> ) . <end>

Summary
w/ Surface

Form
Tuples

<start> <item> is an (wikidata:Q30, American) (wikidata:Q11399,

rock) band from dbo:City . Formed in <year> , their first <rare> release
was the <unk> album [wikidata:P175 sub dbo:Album] ( <year> ) . <end>
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Table 5.4: Training Hyperparameters of the Systems

Parameter
Triples2LSTM

w/ URIs
Triples2GRU w/

URIs

Triples2LSTM
w/ Surf. Form

Tuples

Triples2GRU w/
Surf. Form

Tuples

D1 D2 D1 D2 D1 D2 D1 D2

Batch Size 85 85 85 85 85 85 85 85

Max.
Timestep T

66 69 66 69 66 69 66 68

Embedding
Size m

650 650 750 750 650 650 750 750

Target
Vocabulary
Size |X|

30692 33644 30692 33644 30761 33715 30761 33715

Source
Vocabulary
Size |N |

9168 11088 9168 11088 9168 11088 9168 11088

Max. # of
Alloc.
Triples per
Article Emax

22 21 22 21 22 21 22 21

# of
Training
Epochsa

12 16 12 16 12 15 13 22

aThe epoch at which the model converges to the lowest possible validation error. After this epoch,
the error on the validation set either does not improve further or it increases, and, thus, the model is
overfitting.
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Table 5.5: Automatic evaluation with perplexity (lower values are better), and the BLEU, METEOR and ROUGEL metrics (higher values are
better) on the validation and test sets. The average performance of the two baselines along with its standard deviation is reported after sampling

10 times.

Model
Perplexity BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGEL

Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test

Random+
Baseline on D1

− − 29.523
(±.04)

29.650
(±.06)

17.270
(±.04)

17.390
(±.05)

11.415
(±.04)

11.528
(±.04)

7.561
(±.03)

7.658
(±.03)

18.191
(±.03)

18.261
(±.05)

27.578
(±.05)

27.715
(±.06)

KN+ on D1 − − 22.587
(±.00)

22.685
(±.01)

16.601
(±.01)

16.722
(±.01)

12.626
(±.01)

12.750
(±.01)

9.412
(±.01)

9.518
(±.01)

34.041
(±.01)

34.161
(±.01)

38.202
(±.01)

38.418
(±.01)

Triples2LSTM on
D1 w/ URIs

19.447 19.769 40.134 39.902 30.610 30.430 25.188 25.025 21.285 21.121 26.734 26.681 45.981 45.937

Triples2GRU on
D1 w/ URIs

20.530 20.929 41.003 40.954 31.557 31.479 26.088 25.984 22.116 22.001 27.183 27.226 47.092 47.100

Triples2LSTM on
D1 w/ Tuples

19.171 19.086 40.679 40.763 30.809 30.904 25.234 25.344 21.287 21.393 24.752 24.885 44.973 45.143

Triples2GRU on
D1 w/ Tuples

20.164 20.007 41.350 41.457 31.877 31.991 26.387 26.510 22.419 22.531 26.250 26.506 47.027 47.235

Random+
Baseline on D2

− − 29.636
(±.03)

29.650
(±.03)

17.587
(±.03)

17.581
(±.03)

11.818
(±.02)

11.800
(±.03)

7.910
(±.02)

7.892
(±.03)

18.660
(±.02)

18.677
(±.04)

28.083
(±.04)

28.109
(±.04)

KN+ on D2 − − 22.716
(±.00)

22.713
(±.00)

16.680
(±.00)

16.675
(±.00)

12.692
(±.00)

12.685
(±.00)

9.448
(±.01)

9.432
(±.01)

33.836
(±.00)

33.898
(±.00)

37.937
(±.00)

37.957
(±.01)

Triples2LSTM on
D2 w/ URIs

20.995 21.045 40.967 41.134 31.190 31.312 25.729 25.812 21.780 21.845 25.575 25.655 46.522 46.675

Triples2GRU on
D2 w/ URIs

21.770 21.823 41.470 41.618 31.920 32.072 26.475 26.604 22.497 22.619 26.057 26.083 47.577 47.761

Triples2LSTM on
D2 w/ Tuples

20.779 20.403 40.660 40.604 31.158 31.144 25.776 25.783 21.874 21.898 25.462 25.597 47.031 47.140

Triples2GRU on
D2 w/ Tuples

21.493 21.200 41.527 41.566 32.072 32.097 26.645 26.673 22.679 22.708 25.451 25.576 47.979 48.100
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(a) D1 (b) D2

Figure 5.3: Performance of our models with the BLEU 4 metric across the different
number of input triples on D1 (a) and D2 (b).

5.3.2 Automatic Evaluation

We use perplexity, BLEU (Papineni et al., 2002), METEOR (Lavie and Agarwal, 2007),

and ROUGE (Lin, 2004) on the validation and test set of each corpus. Perplexity, BLEU

1, BLEU 2, BLEU 3, BLEU 4, METEOR, and ROUGEL results are reported in Table

5.5.

To demonstrate the effectiveness of our system, we compare it to two baselines. First,

we compute the expected lower bounds for BLEU scores by using a random Wikipedia

summary generation baseline (see Section 3.2.1). We consider this a particularly strong

baseline due to the fact that Wikipedia biographies tend to follow the same text struc-

ture. For each triple set on the validation and test set, the random system generates a

response by randomly selecting a Wikipedia summary from our training set. Secondly,

we use the KenLM toolkit (Heafield et al., 2013) in order to build a 5-gram Kneser-Ney

(KN+) language model (see Section 3.2.2). During testing, similarly to the case of our

neural network approaches, we use beam-search with a beam of size 10, to generate the

10 most probable summaries for each triple set in the validation and test set. We equip

both baselines with surface form tuples, and the <item> and property-type placeholders.

The results are illustrated in Table 5.5. Note that our scores are not directly comparable

to similar works by Lebret et al. and Chisholm et al. that focus on English biographies.

Both Lebret et al. and Chisholm et al. constrain the generative process to only the first

sentence of a Wikipedia summary. Nonetheless, generating shorter snippets of text sim-

plifies the task and results in higher automatic evaluation scores (Bahdanau et al., 2014;

Wiseman et al., 2017) (see “Putting the Scores Into Perspective” part of Section 3.1.1)

compared to those of our more elaborate summaries.

The GRU-based systems outperform the LSTM-based ones according to all the auto-

matic evaluation metrics. The Triples2GRU model equipped with surface form tuples

achieves a total improvement of 13 BLEU (using BLEU 4) and 9 ROUGE points over

the KN baseline on both datasets. Furthermore, for the same architecture (GRU- or



Chapter 5 Generating Biographies from Knowledge Base Triples 65

LSTM-based), we noted a correlation between perplexity, which is our training objec-

tive, and BLEU. We found that an average reduction of 0.5 in perplexity gives us an

improvement of around 0.2 BLEU-4 points in the case of the LSTM-based systems, and

0.4 BLEU-4 points in the case of the GRU-based ones. The slightly higher METEOR

scores of the w/ URIs systems compared to the w/ Surf. Form Tuples ones shows that

they occasionally generate text that differs from the empirical summaries due to syn-

onymic and morphological variations. We believe that this along with lower BLEU and

ROUGE might also be indicative of text with minor grammatical or syntactical errors

that, however, addresses the entities from the triples correctly. We are exploring this

hypothesis in the subsequent human evaluation (see Section 5.3.3).

Interestingly the KN+ is scoring higher METEOR scores than our neural network-based

systems, while its BLEU and ROUGE scores are much lower than the competition. This

shows that in the context of a single domain corpus with limited structural paradigms,

the KN+ baseline is capable of capturing the uni-grams (METEOR is a uni-gram based

metric) that have high probability of occurring in the empirical summaries. However,

the fact that is not fully conditioned on the input triple set is reflected in its low BLEU

scores (i.e. n-grams precision). We show also in a subsequent chapter (see Chapter 7)

that its METEOR performance is much lower when faced with a more challenging,

multi-domain corpus (i.e. D3).

In addition to the above experiments, we group Wikipedia summaries that are allocated

to same number of input triples and compute a BLEU score per group. Figure 5.3

displays the performance of our models with the BLEU 4 metric across different numbers

of input triples. The low performance of the models when they are initialised with a

low number of triples is explained by the fact that the systems are lacking information

required to form a two-sentence summary. In general, all the systems achieve a stable

performance when they are inputted with 10 or more triples.

BLEU, ROUGE and METEOR are well-established automatic text similarity metrics

that are extensively used in machine translation tasks where there is a tight alignment

between the source and the generated language (Cho et al., 2014; Sutskever et al., 2014).

Our generative task is more challenging since it consists of learning to generate text from

a corpus of triples loosely associated with text. While this explains why our scores are

lower than those usually reported for machine translation tasks, it also suggests that

these metrics have limitations when applied to NLG tasks in which the “correct” output

is neither purely deterministic (i.e. there are multiple ways to correctly summarise a set

of knowledge base triples in text) or necessarily based on the empirical data (i.e. the

actual Wikipedia summary that is allocated to a set of triples might discuss irrelevant

facts than those that exist in the allocated triple set). Consequently, we conduct a

pilot evaluation in order to determine with greater certainty which one of our proposed

architectures serves the needs of our task the best.
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Table 5.6: Examples of textual summaries that are generated by our proposed sys-
tems given an unknown set of triples as input. For each model, we report its immediate
output along with its corresponding (Final) version after the replacement of the gen-
erated placeholder tokens. Each other than the main discussed entity (<item>) in the
triples is recorded and displayed along with its instance type. Rare entities in the input
triples are replaced with their respective instance type tokens. The greyed-out tokens
of either entities or instance type tokens refer to tokens that are not used during the

training of the neural network models.

<item> dbr:Barbara Flynn

Triples

<item> dbo:birthPlace dbr:England [owl#Thing]

<item> dbo:birthPlace dbr:St Leonards-on-Sea [dbo:Settlement]

<item> dbo:birthPlace dbr:Sussex [owl#Thing]

<item> dbo:occupation dbr:Actress [<unk>]

<item> dbo:birthDateMonth 8 [<unk>]

<item> dbo:birthDateYear <year> [<unk>]

[dbo:TelevisionShow] dbr:Open All Hours dbo:starring <item>

[dbo:TelevisionShow] dbr:A Very Peculiar Practice dbo:starring <item>

[dbo:TelevisionShow] dbr:The Beiderbecke Trilogy dbo:starring <item>

...

[dbo:TelevisionShow] dbr:Cracker (UK TV series) dbo:starring <item>

Triples2GRU w/
URIs

<start> <item> ( born 0 August <year> ) is an dbr:English people dbr:Actor

and dbr:Actor. She is best known for her roles in the dbr:Television program

[dbo:starring sub dbo:TelevisionShow] ,
[dbo:starring sub dbo:TelevisionShow] and
[dbo:starring sub dbo:TelevisionShow] . <end>

Triples2GRU w/
URIs (Final)

<start> Barbara Flynn ( born 0 August <year> ) is an English actor and actor .
She is best known for her roles in the television series A Very Peculiar Practice ,
Beiderbecke Trilogy and Open All Hours . <end>

Triples2GRU w/
Surf. Form Tuples

<start> <item> ( born 0 August <year> ) is an (dbr:English people,

English) (dbr:Actor, actress) . She is best known for her roles in
[dbo:starring sub dbo:TelevisionShow] and
[dbo:starring sub dbo:TelevisionShow] . <end>

Triples2GRU w/
Surf. Form Tuples
(Final)

<start> Barbara Flynn ( born 0 August <year> ) is an English actress . She is
best known for her roles in Beiderbecke Trilogy and Open All Hours . <end>

Triples2LSTM w/
URIs

<start> <item> ( born 0 August <year> ) is an dbr:English people dbr:Actor .
She is best known for her role as dbo:SoapCharacter in the BBC soap opera
EastEnders . <end>

Triples2LSTM w/
URIs (Final)

<start> Barbara Flynn ( born 0 August <year> ) is an English actor . She is
best known for her role as dbo:SoapCharacter in the BBC soap opera
EastEnders . <end>

Triples2LSTM w/
Surf. Form Tuples

<start> <item> ( born 0 August <year> ) is an (dbr:English people, English)

(dbr:Actor, actress) . She is best known for her role as dbo:SoapCharacter

in the (dbr:BBC, BBC) soap opera (dbr:EastEnders, EastEnders) . <end>

Triples2LSTM w/
Surf. Form Tuples
(Final)

<start> Barbara Flynn ( born 0 August <year> ) is an English actress . She is
best known for her role as dbo:SoapCharacter in the BBC soap opera
EastEnders . <end>

5.3.3 Human Evaluation

We evaluated the performance of our approach in a pilot case study with seven re-

searchers from the University of Southampton and Jean Monnet University (UJM-Saint-

Étienne). All the participants are experts in the field of Semantic Web and have full

professional proficiency in English. For each corpus, we compiled a list of 15 randomly

selected sets of triples along with the textual summaries that have been generated from
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Table 5.7: Further examples of textual summaries that are generated by our proposed
systems given an unknown set of triples as input. For each model, we report its imme-
diate output along with its corresponding (Final) version after the replacement of the
generated placeholder tokens. Each other than the main discussed entity (<item>) in
the triples is recorded and displayed along with its instance type. Rare entities in the
input triples are replaced with their respective instance type tokens. The greyed-out
tokens of either entities or instance type tokens refer to tokens that are not used during

the training of the neural network models.

<item> dbr:Lee Jeong-beom

Triples

<item> dbo:birthPlace dbr:South Korea [dbo:Country]

<item> dbo:education dbr:Korea National University of Arts

[dbo:University]

<item> dbo:occupation dbr:Film director [owl#Thing]

<item> dbo:occupation dbr:Screenwriter [owl#Thing]

<item> dbo:birthDateMonth 9 [<unk>]

<item> dbo:birthDateYear <year> [<unk>]

...

[dbo:Film] dbr:Cruel Winter Blues dbo:director <item>

[dbo:Film] dbr:Cruel Winter Blues dbo:writer <item>

Triples2GRU w/
URIs

<start> <item> (born September 0 , <year> ) is a dbr:South Korea

dbr:Film director and dbr:Screenwriter . He is best known for his films
[dbo:director sub dbo:Film] ( <year> ) and [dbo:director sub dbo:Film]

( <year> ) . <end>

Triples2GRU w/
URIs (Final)

<start> Lee Jeong-beom ( born September 0 , <year> ) is a South Korean film
director and screenwriter . He is best known for his films Cruel Winter Blues (
<year> ) and dbo:Film ( <year> ) . <end>

Triples2GRU w/
Surf. Form Tuples

<start> <item> ( [dbr:Hangul, Hangul] : <rare> ; born September 0 , <year>
) is a (dbr:South Korea, South Korean) (dbr:Film director, film director)

and (dbr:Screenwriter, screenwriter) . He is best known for directing the
<year> (dbr:Film director, film) [dbo:director sub dbo:Film] . <end>

Triples2GRU w/
Surf. Form Tuples
(Final)

<start> Lee Jeong-beom ( Hangul : <rare> ; born September 0 , <year> ) is a
South Korean film director and screenwriter . He is best known for directing the
<year> film Cruel Winter Blues . <end>

Triples2LSTM w/
URIs

<start> <item> (born September 0 , <year> ) is a dbr:South Korea

dbr:Film director and dbr:Screenwriter . He has directed more than 0 films
since year . <end>

Triples2LSTM w/
URIs (Final)

<start> Lee Jeong-beom ( born September 0 , <year> ) is a South Korean film
director and screenwriter . He has directed more than 0 films since <year> .
<end>

Triples2LSTM w/
Surf. Form Tuples

<start> <item> ( born September 0 , <year> ) is a (dbr:South Korea, South

Korean) (dbr:Film director, film director) and (dbr:Screenwriter,

screenwriter) . He has directed 0 films since <year> . <end>

Triples2LSTM w/
Surf. Form Tuples
(Final)

<start> Lee Jeong-beom ( born September 0 , <year> ) is a South Korean film
director and screenwriter . He has directed 0 films since <year> . <end>

each one of our proposed models (i.e. (i) GRU with URIs and surface form tuples, and

(ii) LSTM with URIs and surface form tuples). The sets of triples are sampled from the

test sets. We conducted two separate studies, one for each corpus.

Our experiments showed that in our dataset, triple sets with fewer triples usually lack

enough information for our systems to generate a summary (cf. Section 5.3.2). Hence,

we included only input sets of triples that consist of at least 6 triples. The specific

model which generated the summary (i.e. LSTM or GRU with URIs or surface form

tuples) was not disclosed. Beyond evaluating the fluency of the generated summaries,
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Table 5.8: Nearest neighbours of the vector representations of some of the most
frequently occurring entities as these are learned by the encoder.

DBpedia Entity Nearest Neighbours

dbr:France
dbr:Paris, France, dbr:Marseille, dbr:Lyon, dbr:Kingdom of France, and
dbr:Olympique de Marseille

dbr:Japan
dbr:Empire of Japan, dbr:Chiba Prefecture, dbr:Yokohama, dbr:Osaka,
and dbr:Kyoto

dbr:Singer
dbr:Singing, dbr:Vocalist, dbr:Vocals, dbr:Playback singer, and
dbr:Americana (music)

dbr:Heavy metal music

dbr:Glam metal, dbr:Doom metal, dbr:Hard rock, dbr:Nu metal, and
dbr:Alternative metal

dbr:FC Barcelona

dbr:RCD Mallorca, dbr:Athletic Bilbao,
dbr:Spain national under-18 football team, dbr:Valencia CF, and
dbr:Battle of the Atlantic

Wikidata Entity Nearest Neighbours

wikidata:Q64

(Berlin)

wikidata:Q1022 (Stuttgart), wikidata:Q365 (Taiwan), wikidata:Q152087
(Humboldt University of Berlin), wikidata:Q1731 (Dresden), and
wikidata:Q43287 (German Empire)

wikidata:Q148

(China)

wikidata:Q17427 (Communist Party of China), wikidata:Q865 (Taiwan),
wikidata:Q7850 (Chinese language), wikidata:Q8686 (Shanghai), and
wikidata:Q1348 (Kolkata)

wikidata:Q20

(Norway)

wikidata:Q35 (Denmark), wikidata:Q486156 (University of Oslo),
wikidata:Q9043 (Norwegian language), wikidata:Q11739 (Lahore), and
wikidata:Q585 (Oslo)

wikidata:Q15981151

(jazz musician)

wikidata:Q12800682 (saxophonist), wikidata:Q248970 (Berklee College of
Music), wikidata:Q806349 (bandleader), wikidata:Q12804204
(percussionist), and wikidata:Q8341 (jazz)

wikidata:Q158852

(conductor)

wikidata:Q1415090 (film score composer), wikidata:Q9734 (symphony),
wikidata:Q3455803 (director), wikidata:Q1198887 (music director), and
wikidata:Q2994538 (Conservatoire national supérieur de musique et de
danse)

our goal is to explore to what extent the text addresses the information in the triples,

without contradicting the input facts. Consequently, the evaluators were asked to rate

each summary against four different criteria: (i) fluency, (ii) coverage (triples whose

information is mentioned either implicitly or explicitly in the text), (iii) contradiction

(information that exists in the sentence but it conflicts with one or more of triples from

the input set), and (iv) additional information (the portion of the number of triples to

which potential additional information in the text can be interpreted with respect to the

total number of input triples). These criteria are described in detail in Section 3.1.2.

The performance of our systems against the human evaluation criteria is presented in

Table 5.9.

The results of the human evaluators are in agreement with the results of the automatic

evaluation with the BLEU, ROUGE and METEOR metrics (i.e. Section 5.3.2). For the

same training setup (i.e. w/ URIs or surface form tuples) and with the only exception

the fluency performance of the Triples2LSTM compared to the Triples2GRU on D1 w/

URIs, the GRU-based architectures outperform the LSTM-based ones in all criteria.

Furthermore, they score consistently better in terms of the inclusion of additional or

contradicting information. Since they are more reluctant to introduce out-of-context
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Table 5.9: The average rating of our systems against the human evaluation criteria.
For fluency and coverage the higher the score the better; for contradiction and additional
information, the lower the score the better. The results are reported in the “mean (±

standard deviation)” format.

Model Fluency Coverage Contradiction
Additional
Information

Triples2LSTM
on D1 w/ URIs

5.124 (±0.963) 0.4 (±0.169) 0.045 (±0.069) 0.143 (±0.151)

Triples2LSTM
on D1 w/ Surf.
Form Tuples

5.287 (±0.791) 0.457 (±0.236) 0.05 (±0.068) 0.145 (±0.169)

Triples2GRU
on D1 w/ URIs

4.9 (±1.006) 0.423 (±0.221) 0.023 (±0.06) 0.112 (±0.141)

Triples2GRU
on D1 w/ Surf.
Form Tuples

5.511 (±0.640) 0.497 (±0.247) 0.017 (±0.056) 0.134 (±0.177)

Triples2LSTM
on D2 w/ URIs

5.036 (±1.017) 0.582 (±0.185) 0.018 (±0.037) 0.103 (±0.109)

Triples2LSTM
on D2 w/ Surf.
Form Tuples

5.470 (±0.687) 0.582 (±0.185) 0.018 (±0.037) 0.103 (±0.109)

Triples2GRU
on D2 w/ URIs

5.349 (±0.833) 0.596 (±0.200) 0.006 (±0.023) 0.085 (±0.107)

Triples2GRU
on D2 w/ Surf.
Form Tuples

5.663 (±0.668) 0.597 (±0.194) 0.009 (±0.028) 0.073 (±0.101)

information in the text, their generated textual content is better aligned with the input

triples.

Interestingly, all the models that were trained on D2 scored consistently better in terms

of the portion of input triples that are summarised in the text (i.e. coverage). We

believe that this is due to the fact that the information from the Wikidata triples, with

which D2 was formed, is better aligned with the content of the first two sentences of

the Wikipedia biographies than the Mapping-based DBpedia datasets that we used for

D1. “Noisy” triples, such as: dbr:Sequoyah dbo:occupation dbr:Sequoyah 1 and

dbr:Acie Law dbo:termPeriod Acie Law [1-10], are very common in the DBpedia

triples allocated to the Wikipedia biographies. Since, their information is not verbalised

in the text, our systems learn to disregard them, explaining the lower scores that these

model achieve with respect to the number of summarised triples.

In general the evaluators scored all of our systems with high fluency ratings, thus,

emphasising the ability of our approach to generate grammatically and syntactically

correct text. We should note, however, that verbalising the occurrence of entities in

the text with the mechanism of surface form tuples (systems w/ Surf. Form Tuples)

results consistently in higher fluency scores regardless of the architecture of the decoder

(LSTM- or GRU-based).
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5.4 Discussion

Two examples of textual summaries that are generated by our models are shown in

Table and 5.6 and 5.7. We selected two representative sets of triples from the test set.

The examples show that our approach can generate sentences that couple information

from several triples from an input set. In the first example, all the models are able

to capture the main entity’s gender from the input triple set. However, only in the

case of the models equipped with surface form tuples, are we able to verbalise the

entity of dbr:Actor correctly as “actress” in the text. This is due to the fact that in the

biographies dataset, the most frequent surface form, with which the entity of dbr:Actor

has been associated, is “actor”. Consequently, actor is used as the replacement of all

the occurrences of the dbr:Actor entity in the summaries that are generated by our

w/ URIs systems. This limitation of the w/ URIs systems in terms of their ability

to learn different verbalisation for the various entities in the text explains their lower

fluency scores compared to the systems w/ Surf. Form Tuples in our case study (see

Section 5.3.3).

The learned embeddings in the decoder capture information that is both coupled with the

embeddings in the encoder (e.g. the embedding of the pronouns “She” and “her” are cou-

pled implicitly with the existence of the triple: <item> dbo:occupation dbr:Actress),

and their own probability of occurring in the context of the sequentially generated text

(e.g. a word with its first letter capitalised, when it is following a full stop). Conse-

quently, items that have similar meanings find themselves close together in the con-

tinuous semantic space. Table 5.8 shows the nearest neighbours of some of the most

frequently occurring entities in our datasets which have been learned by our models.

This shows that our models can successfully infer semantic relationships among entities.

The main drawback of training our models on a dataset of loosely associated triples with

text is that the information that exists in the triples does not necessarily appear in the

corresponding text, and vice versa. As a result, the models are not penalised when they

generate textual information that does not exist in the input. For instance, in the first

example the LSTM-based models assume that Barbara Flynn has appeared “in the BBC

soap opera EastEnders”. While a textual mention to the EastEnders series is relatively

common in the Wikipedia summaries of both D1 and D2, those summaries are rarely

aligned with a triple set that would include a reference to this series. In particular, out

of the 197 total occurrences of EastEnders in the Wikipedia summaries of D1, there are

only 5 instances where a reference to the series exists both in the biography and the

corresponding triple set. In such cases, our systems is not able to sufficiently correlate

the output with the respective input, and as a result, they learn a general pattern in

terms of predicting a mention of EastEnders in the text (i.e. usually appears in the case

of actors who have starred in television series).
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A similar symptom is the occasional generation of special instance-type tokens, such as

dbo:SoapCharacter. This is also based on the loose association of the triples with the

summaries, and on our design choice not to use a single special token for infrequent

entities that have been identified in the text but do not appear in the triple set (see

Section 5.1.3). These are essentially learned when the models meet many training ex-

amples in which such a token is part of the text associated with a similar pattern of

input triples. While their existence is not ideal, we believe that their inclusion is the

best possible alternative since the generated summaries: (i) are not overwhelmed by a

single special <rare> token, and (ii) are more readable because a human can understand

what type of information the model wants to communicate in the text. We would also

argue that summaries with such tokens could be used as a starting point for improving

the coverage of the triples with respect to the automatically generated text, by hinting

the missing knowledge base triples based on the type of the not-verbalised entities in

the text.

It would have been very challenging to learn high quality vector representations for

numerical values due to their infrequent occurrence in the dataset. Our choice of using

one special token for numbers and one for years in the textual summaries does not

allow us to effectively examine our systems’ ability at generating plural forms. One

way of addressing this limitation would be the introduction of additional placeholder

tokens that replace the occurrences of numbers in the text with the property of the

triple that contains them (in case such a triple exists in the input set). This could

still prove problematic in the case of multiple triples in the input that share the same

property. An alternate method would be to adapt the architecture of a pointer-generator

network, similar to (See et al., 2017), that would theoretically be able to directly copy

from the source a numerical value in the generated text. We investigate this approach

in Chapter 7.

5.5 Conclusion

We propose an end-to-end trainable system that can generate a textual summary from

triples. Our approach does not require any manually defined templates Using the D1 and

D2 datasets, we have demonstrated that our technique is capable of scaling to domains

with vocabularies of over 400k words. We address the problem of learning high quality

vector representations for rare entities by adapting a multi-placeholder approach. Our

systems learn to emit placeholder tokens that are replaced by the surface forms of the

corresponding entities in the triples during a post-processing step.

We use a series of well-established automatic text similarity metrics in order to au-

tomatically evaluate our approach’s ability of predicting the Wikipedia summary that
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corresponds to a set of unknown triples showing substantial improvement over our base-

lines. Furthermore, our statistical approach for inferring the verbalisation of the entities

in the text with the surface form tuples mechanism (systems w/ Surf. Form Tuples),

further enhances the fluency of the generated summaries compared to a purely determin-

istic replacement of the generated entities’ URIs as reported by our human evaluators.

However, in our pilot study we did not explicitly investigate the performance of our

approach under specific realisation scenarios, such as conjugated verbs or plural forms.

This could be investigated further under a controlled study in the future.

In the following chapter, we adapt the Triples2GRU architecture equipped with sur-

face form tuples in order to generate textual summaries in two underserved Wikipedia

languages: (i) Esperanto and (ii) Arabic. We investigate the performance on this under-

resourced domain using automatic evaluation metrics and community studies through

which we seek to examine the usability of the automatically generated text in those two

Wikipedias.



Chapter 6
Learning to Generate Wikipedia

Summaries for Underserved Languages

An important aspect of the ability to generate coherent text that addresses a set struc-

tured records, is that it can be used to improve the coverage of Wikipedia, or other col-

laborative knowledge bases, which lack content in the less popular languages (Chisholm

et al., 2017). Given the promising results of our systems in the generation of biographies,

we wished to explore the applicability of our approach to languages that do not offer

the same training data abundance as English. We leverage the cross-lingual nature of

Wikidata (see Section 4.4.3), and we adapt the Triples2GRU architecture equipped with

surface form tuples (which was found to outperform the other alternatives in the previ-

ous chapter’s experiments) in order to generate textual summaries in two underserved

Wikipedia languages: (i) Esperanto and (ii) Arabic. Esperanto is an an easily acquired,

artificially created language for which we severely lack training data (see number of

available articles in Table 6.1). Our assumption is that the simple syntax and mor-

phology of Esperanto (Li, 2006) compensates for the lack of training data, making it a

suitable starting point for exploring the challenges of this task. On the contrary, Arabic,

due to its grammatical and syntactical complexities along with its significantly larger

vocabulary, is much more challenging to work with (Habash and Rambow, 2005; Badr

et al., 2008). As shown in Table 6.1 both Arabic and Esperanto suffer a significant lack

of content and active editors compared to the English Wikipedia which is currently the

biggest one in terms of number of articles. Our approach can not only dramatically en-

hance the coverage of the impoverished Wikipedias but also provide their corresponding

editors with a “starting point” to write their article.

In order to evaluate the usability of the automatically generated content by both the

readers and the editors of these involved Wikipedias, we propose a novel evaluation

framework. In addition to reporting the performance of our approach against the com-

peting baselines using automatic evaluation metrics (see Section 3.1.1), we conducted

73
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Table 6.1: Wikipedia page statistics along with the total number of unique words (i.e.
vocabulary size) in Arabic, Esperanto and English.

Parameter Arabic Esperanto English

Total # of Articles 541k 242k 5484k

Total # of Active Users 7818 2849 129237

Vocab. Size 2.2M 1.5M 2.0M

two community studies for each investigated Wikipedia language, one for its readers and

one for its editors.

In this chapter, we first describe the alteration to the original Triples2GRU w/ Surf.

Form Tuples (see Section 5.1 and 5.2.1.2), and then we present the necessary training

details and the results of the automatic and human evaluation on the M1 and M2

corpora.

It should be noted that the experiments that are presented in this chapter are part of a

collaborative work, the results of which have been published in the following two papers:

• Lucie-Aimée Kaffee†, Hady Elsahar†, Pavlos Vougiouklis†, Christophe Gravier,

Frédérique Laforest, Jonathon Hare, and Elena Simperl. Mind the (Language)

Gap: Generation of Multilingual Wikipedia Summaries from Wikidata for Arti-

clePlaceholders. In Proceedings of 15th International Conference, ESWC 2018,

Heraklion, Crete, Greece. Springer International Publishing.

• Lucie-Aimée Kaffee†, Hady Elsahar†, Pavlos Vougiouklis†, Christophe Gravier,

Frédérique Laforest, Jonathon Hare, and Elena Simperl. Learning to Generate

Wikipedia Summaries for Underserved Languages from Wikidata. In Proceedings

of the 2018 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, New Orleans, Louisiana.

Association for Computational Linguistics.

The original idea for the two community studies with which we explored the performance

of the proposed approach in generating a textual summary in a non-English language

was originally conceived by Lucie-Aimée Kaffee, who as part of her PhD investigates the

multi-linguality in collaborative knowledge bases.

6.1 Model

We use the Triples2GRU architecture that has been described in detail Section 5.1. The

architecture consists of a feed-forward architecture (that we refer to as Triple Encoder

†The authors contributed equally to this work.
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Table 6.2: The Triples2GRU architecture takes as an input a set of RDF triples about
Floridia, whose either subject or object is related to the item of Floridia. The Processed
Summary and Triples present the format of the respective summary and triples that
is used for the training of the neural architecture. Each entity in the triples is stored
along with its label (e.g. “komunumo de Italio” and “Floridia”). These are used at a
post-processing step in order for any generated special tokens (e.g. <item> or property
placeholders) to be replaced. As explained in Sections 4.2 and 4.3, any reference to the
main discussed entity is replaced by the <item> token both in the text and the triples.
When a rare entity in the text is matched to an entity of the corresponding triples’ set,
then it is replaced by the token of the predicate of the relevant triple (e.g. “Italio” is
replaced by the property placeholder [[P17]]). Any occurrence of an infrequent entity
in the triples is replaced by the special <resource> token (e.g. Q38 is replaced by the

<resource> token before the triples are inputted to the neural architecture).

Triples

f1 : Q490900 (Floridia) P17 (ŝtato) Q38 (Italio)

f2 : Q490900 (Floridia) P31 (estas) Q747074 (komunumo de Italio)

f3 : Q30025755 (Floridia) P1376 (ĉefurbo de) Q490900 (Floridia)

Processed
Triples

f1 : <item> (Floridia) P17 (ŝtato) <resource> (Italio)

f2 : <item> (Floridia) P31 (estas) Q747074 (komunumo de Italio)

f3 : Q30025755 (Floridia) P1376 (ĉefurbo de) <item> (Floridia)

Original
Wikipedia
Summary

Floridia estas komunumo de Italio.

Processed
Summary

<start> <item> estas komunumo de [[P17]]. <end>

in Section 5.1.1) that encodes an input set of triples into a vector of fixed dimensionality,

and an RNN that uses GRUs (Cho et al., 2014) to generate the textual summary one

token at a time. In the experiments of the previous chapter, the surface form tuples

mechanism (see Secion 5.2.1.2) significantly enhanced the fluency of the systems com-

pared to a deterministic replacement of the generated entities’ URIs. Consequently, we

also use this mechanism in order to replace textual mentions of entities in the text with

their corresponding surface form tuples.

Table 6.2 presents an example of how a set on input triples and its corresponding sum-

mary are pre-processed in order to be used for the training of our neural architecture.

6.1.1 Property Placeholders

The systems that we used for the generation of biographies leverage instance-type-related

information from DBpedia in order to address rare or unseen entities in the text. How-

ever, in this chapter we wish to tailor our approach to the Wikidata requirements without

using external information from other knowledge bases, and as a result, we explore a

much broader solution. In the current setup, surface form tuples in the text that cor-

respond to rare entities that are found to participate in relations in the input triple

set are replaced by the token of the property of the matched relationship. We refer to

those placeholder tokens (Serban et al., 2016; Dong and Lapata, 2016) as property place-

holders. Similarly to the property-type placeholders (see Section 5.1.3), the property
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placeholders are appended to the target dictionary of the generated summaries. This

approach does not rely on the assumption that unseen triples will adopt to the same

pattern of properties and entities instance types pairs as the ones that have been used

for training, and while a potential accuracy is sacrificed by not appending any instance-

type-related information to the property placeholder tokens, it should generalise better

than the property-type placeholders.

In Table 6.2, [[P17]] in the processed summary is an example of a property placeholder.

In case it is generated by our model, it is replaced with the label of the object of the

triple with which they share the same property (i.e. Q490900 (Floridia) P17 (ŝtato) Q38

(Italio)). When all the tokens of the summary are sampled, each property placeholder

that is generated is mapped to the triple with which it shares the same property, and

is subsequently replaced with the textual label of the entity. We randomly choose an

entity, in case there are more than one triple with the same property in the input triple

set.

6.2 Dataset Preparation

We train and evaluate our approach on the M1 and M2 corpora that are described in

detail in Section 4.4.3. We used a fixed target vocabulary that consisted of the 15000 and

25000 of the most frequent tokens (i.e. either words or surface form tuples of entities)

of the summaries in Arabic and Esperanto respectively. Using a larger size of target

dictionary in Arabic is due to its greater linguistic variability; the Arabic vocabulary is

47% larger than Esperanto vocabulary (cf. Table 6.1).

Similarly to Section 5.2.2, we limit the maximum number of triples Emax that are allo-

cated to each summary according to Eq 5.10 in order to contain the space complexity

of the task. In case the number of triples of a set exceeds this threshold, we follow the

same approach as in Section 5.2.2 to exclude any redundant ones. In case the size of

the set is still greater than Emax, we pick the first ones, but unlike in Section 5.2.2, we

prioritise those whose entities have been identified in the text.

We replaced any rare entities in the text that participate in relations in the aligned triple

set with the corresponding property placeholder of the upheld relations. We include all

property placeholders that occur at least 20 times in each training dataset. Subsequently,

the dictionaries of the Esperanto and Arabic summaries are expanded by 80 and 113

property placeholders respectively. In case the rare entity is not matched to any subject

or object of the set of corresponding triples, it is replaced by the special <resource>

token.

Each summary is augmented with the respective start-of-summary <start> and end-of-

summary <end> tokens (Sutskever et al., 2014; Luong et al., 2015a).
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6.3 Experiments

Both, M1 and M2, datasets are split into training, validation and test, with respective

portions of 85%, 10%, and 5%. The neural network models are implemented using the

Torch4 package. Any cleaning or restructuring procedure that has been performed on

the datasets has been conducted with Python scripts. The aligned corpora along with

the code of our systems, the competing baselines and the results of the automatic and

human evaluation are available at github.com/pvougiou/Wikidata2Wikipedia and

github.com/pvougiou/Mind-the-Language-Gap.

6.3.1 Training Details

We train the Triples2GRU / Surf. Form Tuples model in two different setups, one in

which it is equipped with the property placeholders, and one without. In the latter

scenario, all textual mentions to rare entities in the text are replaced by the special

<resource> token. In the experiments that are presented in this Chapter, we refer to

the first system as Triples2GRU w/ Property Type Placeholders, and the second as

Triples2GRU. Please note that neither setup leverages the property-type placeholders

that have been proposed in Chapter 5. For each dataset, M1 and M2, we train each

different on the task of generating textual summaries in Arabic and Esperanto respec-

tively.

For the decoder, we use 1 layer of GRUs. We set the dimensionality of the decoder’s

hidden state to 500 in Esperanto and 700 in Arabic. We initialise all parameters with

random uniform distribution between −0.001 and 0.001, and we use Batch Normalisation

before each non-linear activation function and after each fully-connected layer (Ioffe and

Szegedy, 2015) on the encoder side. During training, the model tries to learn those

parameters that minimise the sum of the negative log-likelihoods of a set of predicted

summaries. The networks are trained using mini-batch of size 85. The weights are

updated using Adam (Kingma and Ba, 2014) (i.e. it was found to work better than

Stochastic Gradient Descent, RMSProp and AdaGrad) with a learning rate of 10−5. An

l2 regularisation term of 0.1 over each network’s parameters is also included in the cost

function as an overfitting countermeasure (Wen et al., 2015, 2016).

The networks converge1 after the 9th epoch in the Esperanto case and after the 11th in

the Arabic case. During evaluation and testing, we do beam search (see Section 5.1.5)

with a beam size of 20, and we retain only the summary with the highest probability. We

found that increasing the beam size resulted not only in minor improvements in terms

of performance but also in a greater number of fully-completed generated summaries

1The epoch at which the model converges to the lowest possible validation error. After this epoch,
the error on the validation set either does not improve further or it increases, and, thus, the model is
overfitting.

https://github.com/pvougiou/Wikidata2Wikipedia
https://github.com/pvougiou/Mind-the-Language-Gap
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(i.e. summaries for which the special end-of-summary <end> token is generated). Triple

sets whose generated summaries are incomplete2 (i.e. summaries for which the special

end-of-summary <end> token is generated) have been excluded from the evaluation.

6.3.2 Automatic Evaluation

We use BLEU (Papineni et al., 2002), METEOR (Lavie and Agarwal, 2007), and

ROUGE (Lin, 2004) on the validation and test set of each corpus. BLEU 1, BLEU

2, BLEU 3, BLEU 4, METEOR, and ROUGEL results are reported in Table 6.3.

To demonstrate the effectiveness of our system, we compare it to three baselines. First,

we use the KenLM toolkit (Heafield et al., 2013) in order to build a 5-gram Kneser-Ney

(KN) language model. We provide two versions of this baseline, KN and KN+ (see

Section 3.2.2). The first is trained on the raw textual summaries from each training

set, and the second is equipped with the special tokens of the neural network-based

systems (i.e. surface form tuples and <item> and property placeholders). During testing,

similarly to the case of our neural network approaches, we use beam-search with a beam

of size 20, to generate the 20 most probable summaries for each triple set in the validation

and test sets. Secondly, we employ a MT baseline (see Section 3.2.4), with which we

translate the first introductory sentence of the English Wikipedia article of each item in

the validation and test set to Arabic and Esperanto. Lastly, we compare our approach

to an IR baseline (see Section 3.2.3). For each set of triples in the validation and test

sets, we perform k-NN to retrieve the closest vector from the training set, and output

its corresponding summary. Similarly to the case of KN, we explore the performance of

this baseline with and without including special tokens.

As displayed in Table 6.3, our approach shows a significant enhancement compared

to the baselines across the majority of the evaluation metrics in both languages. We

achieve at least an enhancement of at least 5.25 and 1.31 BLEU 4 score in Arabic

and Esperanto respectively over the IR+, the strongest baseline. The MT baseline is

not competitive. We attribute this result to the different writing styles across different

Wikipedia languages. We believe that this finding also inhibits MT from being sufficient

for Wikipedia document generation.

The introduction of the property placeholders to the Triples2GRU architecture enhances

our performance further by 0.61−1.10 BLEU (using BLEU 4). In general, the inclusion of

special tokens (i.e. surface form tuples and <item> and property placeholders) benefited

the performance of all the competitive systems.

2Around ≤ 1% and 2% of the input validation and test triple sets in Arabic and Esperanto re-
spectively led to the generation of summaries without the <end> token. We believe that this difference
is explained by the limited size of the Esperanto dataset that increases the level of difficulty that the
trained models (i.e. with or without property placeholders) to generalise on unseen data.
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Figure 6.1: A box plot showing the distribution of BLEU 4 scores of all the systems
for each category of generated summaries.

Furthermore, while our tasks consists in generating open-domain Wikipedia summaries,

our performance in terms of BLEU is competitive with other similar approaches that

constrain themselves to single-domain summaries (i.e. biographies) in English (Lebret

et al., 2016; Chisholm et al., 2017). Both in Arabic and Esperanto, the systems equipped

with property placeholders achieve BLEU 4 scores that are higher than the ones reported

by Lebret et al.. The performance in Arabic, where we have significantly more training

examples (see Table 4.10), is also very close to the one achieved by Chisholm et al.

(around 40.50− 41.00 BLEU 4).

Generalisation Across Domains. In order to further investigate how well the sys-

tems generalise across different categories, we group the Wikipedia summaries from

each dataset according to the instance type of their main entity (e.g. dbo:Village and

dbo:SoccerPlayer). The instance type of each main entity was identified using the DB3

dataset, after its Wikidata URI was mapped to their corresponding DBpedia one using

the sameas-all-wikis6 dataset. Figure 6.1 shows the performance of our systems against

the most competing baselines, according to the results of automatic evaluation, across

the 99th percentile of the included instance types (i.e. 140 and 107 included instances

types in M1 and M2 respectively).

We show that (i) the high performance of our systems is not skewed towards some

domains at the expense of others, and that (ii) our architectures has a good generalisation

across domains – better than any other baseline. Furthermore, the lowest performance

bounds of the Triples2GRU w/ Property Placeholders system are similar to the simple

Triples2GRU. However, the successful realisation of a property placeholder provides the
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first with a performance boost in cases where the latter would most likely generate a

<resource> token, whose existence in a summary is essentially punished in the metrics.
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Table 6.3: Automatic evaluation with the BLEU, METEOR and ROUGEL metrics (higher values are better) on the validation and test sets.

Model
BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGEL

Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test

KN on M1 12.84 12.85 2.28 2.4 0.95 1.04 0.54 0.61 29.04 29.02 17.08 17.09

KN+ on M1 28.93 28.84 21.21 21.16 16.78 16.76 13.42 29.04 29.02 13.42 28.57 28.52

MT on M1 31.12 33.48 19.31 21.12 12.69 13.89 8.49 9.11 31.05 30.1 29.96 30.51

IR on M1 41.39 41.73 34.18 34.58 29.36 29.72 25.68 25.98 32.99 33.33 43.26 43.58

IR+ on M1 49.87 48.96 42.44 41.5 37.29 36.41 33.27 32.51 34.39 34.25 51.66 50.57

Triples2GRU on
M1

53.61 54.26 47.38 48.05 42.65 43.32 38.52 39.20 45.89 45.99 64.27 64.64

Triples2GRU w/
Property
Placeholders on
M1

54.10 54.40 47.96 48.27 43.27 43.60 39.17 39.51 46.09 46.17 64.60 64.69

KN on M2 18.12 17.8 6.91 6.64 4.18 4.00 2.90 2.79 31.05 30.74 37.48 36.90

KN+ on M2 25.17 24.93 16.44 16.30 11.99 11.92 8.77 8.79 33.77 33.71 44.93 44.77

MT on M2 5.35 5.47 1.62 1.62 0.59 0.56 0.26 0.23 0.66 0.68 4.67 4.79

IR on M2 43.01 42.61 33.67 33.46 28.16 28.07 24.35 24.30 20.71 20.46 46.75 45.92

IR+ on M2 52.75 51.66 43.57 42.53 37.53 36.54 33.35 32.41 31.21 31.04 58.15 57.62

Triples2GRU on
M2

49.34 49.40 42.83 42.95 38.28 38.45 34.66 34.85 40.62 41.13 66.43 67.02

Triples2GRU w/
Property
Placeholders on
M2

50.22 49.81 43.57 43.19 38.93 38.62 35.27 34.95 40.80 40.74 66.73 66.61
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While automatic evaluation metrics are indicative of “how close” the generated text is to

the source summaries, they do not capture its usability by the end user (Reiter, 2010).

We conducted two community studies for each investigated language, one for its readers

and one for its editors. Our goal was to address the Wikipedia community in order to

further evaluate how well the generated text can meet the Wikipedians’ standards. The

following section first provides further details about the community studies, and then,

presents their results and discusses the findings.

6.4 Community Study

We followed the evaluation methodology that was described in Section 3.1.3. Our

evaluation targets two different communities: (i) readers (i.e. any speaker of Arabic

or Esperanto, that reads Wikipedia, independent of their activity on Wikipedia), and

(ii) any active contributor to the corresponding Wikipedia in Arabic or Esperanto. The

readers were asked to evaluate summaries generated by our proposed system and the

competing baselines against two criteria: (i) fluency (see the Fluency paragraph in

Section 3.1.2) and (ii) appropriateness (see the Appropriateness paragraph in Sec-

tion 3.1.3). Both those criteria were included in a single survey form for each sum-

mary. A different survey form was used for the editors. They were provided with

the automatically generated summary that corresponds to a randomly selected item

from the test set of the dataset of interest (i.e. either in Esperanto or Arabic) along

with its corresponding triples, and they were asked to write a short summary of up

to 3 sentences about the allocated item in a dedicated text field. Our goal was to

measure the amount of text that the editors reuse from the provided summary (i.e.

editors’ use; see Editors’ Reuse in Section 3.1.3). Examples of the two surveys

are can be found at: github.com/pvougiou/Mind-the-Language-Gap/tree/master/-

crowdevaluation/Examples. In order to sample only participants with previous rel-

evant activity on Wikipedia, we asked them for their reading and editing activity on

Wikipedia. The surveys’ instructions3 and announcements4 were translated in Arabic

and Esperanto.

6.4.1 Recruitment

For the recruitment of readers, we wanted to reach fluent speakers of the language. For

Arabic, we got in contact with Arabic speaking researchers from research groups working

on Wikipedia-related topics. For Esperanto, as there are fewer speakers, and they are

harder to reach, we promoted the survey on social media platforms, such as Twitter

3https://tinyurl.com/y7cgmesk
4github.com/luciekaffee/Announcements

https://github.com/pvougiou/Mind-the-Language-Gap/tree/master/crowdevaluation/Examples
https://github.com/pvougiou/Mind-the-Language-Gap/tree/master/crowdevaluation/Examples
https://tinyurl.com/y7cgmesk
https://github.com/luciekaffee/Announcements
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and Reddit5 using the researchers’ accounts. For the recruitment of editors, we posted

on the editors’ mailing lists6. Additionally, for Esperanto we posted on the Wikipedia

discussion page7. The Arabic editors survey was also promoted at WikiArabia, the

conference for the Arabic speaking Wikipedia community. The numbers of participation

in all surveys can be found in Table 6.4.

Table 6.4: Participation numbers for the community studies in Arabic (using the M1
corpus) and in Esperanto (using the M2 corpus).

Parameter

M1 M2

Readers Editors Readers Editors

Fluency Approp. Reuse Fluency Approp. Reuse

# of Participants 27 27 7 27 27 8

# of Sentences 60 60 30 60 60 30

# of Participants Evaluated
≥ 50% of Sentences

5 5 2 3 3 2

Avg. # of Sentences per
Participant

15.03 14.78 4.00 8.70 8.63 4.75

Total # of Annotations 406 399 33 235 233 38

6.4.2 Readers’ Evaluation

We answer whether we can generate summaries that match the quality and style of

Wikipedia content in a study with 54 Wikipedia readers from two different Wikipedia

languages, Arabic and Esperanto. We created two sets of summaries, one in Arabic

and one in Esperanto, consisting of 60 summaries. From those 60 summaries, 30 are

generated by the Triples2GRU w/ Property Placeholders system, 15 are from news, and

15 from Wikipedia summaries of the training datasets. For news in Esperanto, we chose

introduction sentences of articles of the Le Monde diplomatique8. For news in Arabic,

we used introduction sentences from the RSS feed of the BBC Arabic9. The readers

were asked to evaluate each allocated summary against two criteria: (i) fluency (see

the Fluency paragraph in Section 3.1.2) and (ii) appropriateness (see the Appropri-

ateness paragraph in Section 3.1.3). Participants were explicitly asked not to use any

external tools for this task. For each sentence, we calculate the mean value for both

fluency and appropriateness given by all the participants, and then we average over all

the summaries in each set. The results of the readers’ evaluation are summarised in

Table 6.5.

5https://www.reddit.com/r/Esperanto/comments/75rytb/help in a study using ai to -

create esperanto
6Esperanto: eliso@lists.wikimedia.org; Arabic: wikiar-l@lists.wikimedia.org
7https://eo.wikipedia.org/wiki/Vikipedio:Diskutejo/Diversejo#Help in a study -

improving Esperanto text for Editors
8http://eo.mondediplo.com. Accessed 28 Sep. 2017.
9http://feeds.bbci.co.uk/arabic/middleeast/rss.xml. Accessed 28 Sep. 2017.

https://www.reddit.com/r/Esperanto/comments/75rytb/help_in_a_study_using_ai_to_create_esperanto/
https://www.reddit.com/r/Esperanto/comments/75rytb/help_in_a_study_using_ai_to_create_esperanto/
mailto:eliso@lists.wikimedia.org
mailto:wikiar-l@lists.wikimedia.org
https://eo.wikipedia.org/wiki/Vikipedio:Diskutejo/Diversejo#Help_in_a_study_improving_Esperanto_text_for_Editors
https://eo.wikipedia.org/wiki/Vikipedio:Diskutejo/Diversejo#Help_in_a_study_improving_Esperanto_text_for_Editors
http://eo.mondediplo.com
http://feeds.bbci.co.uk/arabic/middleeast/rss.xml
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Table 6.5: The average fluency and appropriateness scores of our system against the
competing baselines in the readers’ evaluation. The results are reported in the “mean

(± standard deviation)” format.

Method Fluency Appropriateness
M

1

Triples2GRU w/
Property Placeholders

4.7 (±1.2) 77%

Wikipedia 4.6 (±0.9) 74%

News 5.3 (±0.4) 35%

M
2

Triples2GRU w/
Property Placeholders

4.5 (±1.5) 69%

Wikipedia 4.9 (±1.2) 84%

News 4.2 (±1.2) 52%

Overall, the quality of our generated summaries is high (4.7 points in average in Arabic,

4.5 in Esperanto). In Arabic (i.e. M1), 63.3% of the summaries were evaluated to have

at least 5 out of 6 in average. In Esperanto, 50% of the summaries have at least a

quality of 5 out of 6 in average, with 33% of all summaries given a score of 6 by all

participants. This means that similarly to the case of English biographies generation in

Chapter 5, the majority of our summaries is highly understandable and grammatically

correct. It should also be noted that, our generated summaries were also considered

by the participants to have a similar average quality as Wikipedia summaries and news

from widely-read media organisations.

Regarding the appropriateness scores, 77% and 69% of the generated summaries in

Arabic (using M1) and Esperanto (using M2) respectively were categorised as being

part of Wikipedia. In comparison, news sentences were identified as more likely not

to fit. In only 35% (Arabic) and 52% (Esperanto) of the cases, readers have mistaken

them for Wikipedia sentences. Wikipedia sentences were clearly recognised as such with

respective scores of 74% in M1 and 84% in M2 respectively. Wikipedia has a certain

writing style, that seems to differ clearly from news, and which the participants were

able to recall successfully given the low appropriateness scores of the news sentences

compared to the high ones of those from the actual Wikipedia. Our summaries are

able to reflect this writing style; the summaries that have been generated by our model

(i.e. Triples2GRU w/ Property Placeholders) were evaluated with appropriateness scores

close to those of the actual Wikipedia sentences.

6.4.3 Editors’ Evaluation

For each corpus, M1 and M2, we compiled a list of 30 randomly selected sets of triples

along with the textual summaries that have been generated by our proposed model

(i.e.Triples2GRU w/ Property Placeholders). The sets of triples are sampled from the

test sets. Our goal is to measure the amount of text that the editors reuse from the
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provided summary. Based on the average scoreGST of the generated summaries with

their corresponding edited ones, we identify the following categories: (i) wholly-derived

(WD) (0.66 ≤ scoreGST), (ii) partially-derived (PD) (0.33 ≤ scoreGST < 0.66), and

(iii) non-derived (ND) (scoreGST < 0.33). Further details about how we compute the

editors’ reuse are provided in Section 3.1.3.

As shown in Table 6.6, our generated summaries exhibit a high level of re-usability. 78%

and 93% of the generated summaries in Arabic and Esperanto respectively were either

wholly (WD) or partially (PD) reused when the edited paragraphs were composed.

It is important to note that those percentages demonstrate copies of actual sentence

structure rather than copies of names entities or co-occurrence of stop-words.

Table 6.6: Percentage of summaries (%) in each category of reuse. Each example
consists of the generated summary as it was generated by our neural network architec-
ture (top) and after it is was edited (bottom). Solid lines represent reused tiles, while

dashed lines represent overlapping sub-sequences not contributing to the scoreGST.

Reuse
Category

% Example

M
1

(A
ra

b
ic

) WD 45.45

PD 33.33

ND 21.21

M
2

(E
sp

er
a
n
to

)

WD 78.98

PD 15.79

ND 5.26

For the wholly derived edits, editors tended to copy the generated summary with min-

imal modifications, such as tiles A and B in Arabic or G in Esperanto in the examples

of Table 6.6. One of the common challenges that inhibits the full re-usability of our

generated summaries are the tokens that represent occurrence of a rare word or entity

(i.e. entity that has not been matched with any of the input triples; see Sections 4.2 and

6.2 for more details regarding the handling of rare words and entities respectively). In

order to provide the participants with a better idea of the nature of those tokens, we re-

place the tokens of a rare regular word (i.e. <rare>) and entities (i.e. <resource>) with

“(mankas vorto)” and (
�
èXñ

�
®

	
®Ó

�
éÒÊ¿ ) in Arabic and Esperanto respectively. Occurrences
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of numbers and years are replaced by “(manka nombro)” and “(jaro)” in Esperanto,

and (Xñ
�
®

	
®Ó Õ

�
P̄ ) and (ÐA«) in Arabic. Usually, those tokens are yielded by our model to

represent a missing information in the triples, or when the output word is not in the

model’s fixed target vocabulary, such as names in different languages. As it can be seen

in tiles E and D in the Arabic examples in Table 6.6, editors prefer in those cases to

adapt the generated sentences. This can occasionally go as far as making the editor

delete the whole sub-sentence in case it contains a high number of such tokens (e.g. in

Table 6.6, the sequence of words that is subsequent to tile H is completely deleted by

the editor).

By examining our generated summaries we find that such missing tokens are more likely

to appear in Arabic than in Esperanto. In the generated summaries from the validation

and test set of Esperanto (i.e. M1 corpus), a token that refers to a rare word or entity

appears every 0.73 summaries, whereas in Arabic (i.e. M2 corpus) similar tokens occur

every 1.21 summaries. We believe that this explains the lower scores of editors’ reuse

in Arabic (45.45% wholly-derived) compared to those in Esperanto (78.98% wholly-

derived) in comparison to Arabic (45.45% WD). The difference in the number of special

“rare” tokens across the two languages can be explained as follows. First, the significant

larger vocabulary size of Arabic, which lowers the probability of a word to be seen by the

Arabic model. Second, since the majority of rare tokens are named entities mentioned

in foreign languages and since the Latin script of Esperanto is similar to many other

languages, the Esperanto model has an advantage over the Arabic one when capturing

words representing named entities.

6.5 Conclusion

In this chapter, we explored an extension of the Triples2GRU architecture in order to

generate textual summaries from Wikidata triples in underserved Wikipedia languages.

Our approach was able to outperform and generalise across domains better than strong

baselines of different natures, including MT and a template-based baseline (i.e. the IR+

baseline). This is achieved by leveraging data from a structured knowledge base and

careful data preparation in a multilingual fashion, which are of the utmost practical

interest for our under-resourced task, that would have otherwise require a substantial

amount of additional data.

Furthermore, we conducted a set of community studies in order to measure to what

extend our generated summaries match the quality and style of Wikipedia articles, and

whether they are useful in terms of reuse by the Wikipedia editors. Members of the

targeted communities ranked our generated text close to the expected standards of

Wikipedia, and were also likely to assume the generated text is part of Wikipedia.

Lastly, we measured the reuse of these summaries by the Wikipedia editors. We found
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that the editors are likely to reuse a large portion of the generated summaries, thus,

emphasizing the usefulness of our approach to the involved community.

In the next chapter, we investigate the generation of open-domain Wikipedia summaries

in English. Rather than handling the realisation of rare entities in the text with ad-

ditional placeholder tokens that are replaced at a post-processing step, we propose an

architecture that “learns” to copy directly in the text the appropriate realisation of an

entity or a number from the input triple set.





Chapter 7
Point at the Triple: Improving Neural

Wikipedian with a Pointer Mechanism

In the previous chapters we presented how an adaptation of the general encoder-decoder

framework can be used for the generation of textual summaries given knowledge base

triples as input. Our proposed system exhibited promising results in the generation

of single domain summaries (i.e. biographies), and open-domain Wikipedia summaries

in under-resourced languages (i.e. Arabic and Esperanto). Similarly to recent related

works from Lebret et al. and Chisholm et al., our proposed architectures leverage a set

of placeholder tokens (i.e. property or property-type placeholders) in order to verbalise

rare or unseen entities. As explained in Sections 5.1.3 and 6.1.1, when these tokens

are generated by a system, they are replaced in a post-processing step with the label

of the entity that satisfies the requirements of the original placeholder. However, this

introduces a certain degree of stochasticity in the case that multiple relations from the

input meet the requirements of the predicted placeholders.

In this chapter, we introduce an approach that addresses this concern. The NLG task

that is investigated in this chapter is identical to the one presented in Chapters 5 and 6.

Table 7.1 presents an example of this task. Our systems summarises a set of triples about

the book Atlas Shrugged (i.e. Atlas Shrugged participates as either the subject or the

object of the given input relationships) in the form of sensible and coherent text. Our

model is inspired by pointer-generator networks which have been recently introduced in

text summarisation tasks (Gu et al., 2016; See et al., 2017). These constitute expansions

of the original pointer network suggested by Vinyals et al. which was only able to

generate an output sequence just by copying tokens from the source sequence. This

functionality is essentially achieved by selecting the token that an attentive decoder

pays most attention to.

89
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Table 7.1: An idealised example of our NLG task. Our system generates a textual
summary of an input set of un-ordered triple-facts about Atlas Shrugged. The red-
coloured part of each triple is the property or predicate of the triple. The items before
and after each predicate are the subject and object respectively of each triple. Numerical

values (e.g. 1957) can only appear at the object’s position.

Triples

Atlas Shrugged literaryGenre

Science fiction

Atlas Shrugged country United States

John Galt series Atlas Shrugged

Atlas Shrugged publicationYear ‘‘1957’’

Atlas Shrugged author Ayn Rand

Textual
Summary

Atlas Shrugged is a science fiction novel by
Ayn Rand.

Our novel approach jointly learns (i) to verbalise in a different number of ways the

entities of pointed triples, (ii) to copy the label or the number in the case that the

pointed triple consists of either infrequent entities or numbers, or (iii) to generate words

or realisations of entities from a fixed target vocabulary.

We train and evaluate our approach on the two corpora that are based on DBpedia

triples, D1 and D3. D1 enables us to explore the efficacy of our approach in a single

domain textual generation scenario. Since D3 is a dataset encompassing the entirety

of Wikipedia, rather than just biographies, it allows us to demonstrate our model’s

ability to generalise on a much more challenging task. We compare our performance

against a set of baselines from Section 3.2 and the architecture that has been described

in Chapter 5.

7.1 The Model

We assume our model is trained with records consisting of an English language sum-

mary and an aligned set of triples. The alignment of the elements of each triple to

their realisation in the vocabulary of the summary is either explicit or inferred. The

alignment of the triple: Dwayne Johnson occupation Actor to the sentence: “Dwayne

Johnson is an actor ...” is an example of explicit realisation; whereas the alignment

of Michael Jordan birthPlace Brooklyn to “Michael Jordan is an American retired

professional basketball player ...” is inferred.

Let Fz = {f1, . . . , fE : fi = (si, pi, oi)} be the set of triples f1, . . . , fE about the entity z

(i.e. z is either the subject or the object of the triples of the set), where si, pi and oi are

the one-hot vector representations of the respective subject, predicate and object of the

i-th triple. We build a model that computes the probability of generating a sequence of
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tokens y = y1, y2, . . . , yT , given the initial set of triples f1, f2, . . . , fE :

p(y|Fz) =

T∏
t=1

p(yt|y1, . . . yt−1, Fz) , (7.1)

where T > 1. We regard y as a textual summary of the input set of triples Fz.

Our approach is inspired by recent work by See et al. on text summarisation. The former

employs a pointer-generator capable of both copying tokens from the input sequence and

generating words from the fixed vocabulary of the decoder. While this model handles

sequential inputs and outputs, in our case the sets of input triples are un-ordered, and

not sequentially correlated. Consequently, we adopt the triple encoder proposed in

Section 5.1.1, and we compute the relevant attention scores on top of this feed-forward

architecture.

In many cases the entities that participate in the relationships of the input sets cannot

be directly copied to the generated text. For example, the entities of dbr:Actor and

dbr:United States can be expressed, based on the context, as “actor” or “actress” and

as “United States” or “American” respectively. Consequently, we propose a mechanism

that enables our model to learn different realisations for the entities of the pointed triples.

Our mechanism also allows the network to handle the occurrence of rare entities (for

which we are unable to learn good vector representations) or numbers that participate

in the pointed relationships by directly copying them (e.g. years) or their labels (see

Section 7.1.3) in the generated summary.

7.1.1 Decoder

Given the improved performance of the GRU-based architectures in Chapter 5 and

their lower complexity compared to the LSTMs (Chung et al., 2014), we implement the

decoder as a multi-gated RNN variant with GRUs. Let hlt ∈ Rm be the aggregated

output of a hidden unit at timestep t ∈ [1 . . . T ] and layer depth l ∈ [1 . . . L]. All the

subsequent matrices that follow have dimension [m,m] unless stated otherwise. The

vectors at zero layer depth, h0
t = Wx→hxt, represent the tokens that are given to the

network as an input. The parameter matrix Wx→h has dimensions [|X|,m], where |X|
is the cardinality of all the potential one-hot input vectors (i.e. size of the dictionary of

all the available tokens in the Wikipedia summaries dictionary). At each timestep t, hlt

is computed as follows:

hlt = GRU(hlt−1, h
l−1
t ) . (7.2)
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7.1.2 Triple Encoder

By leveraging the triple encoder that has been presented in Section 5.1.1, our model

computes the vector representation hfi of the i-th triple by forward propagating the

triple encoder as follows:

h̃fi = [Wx→h̃si; Wx→h̃pi; Wx→h̃oi] , (7.3)

hfi = ReLU(Wh̃→hh̃fi) , (7.4)

where ReLU is the rectifier (i.e. non-linear activation function), [. . . ; . . .] represents

vector concatenation, Wx→h̃ : R|N | → Rm is a trainable weight matrix that represents

an unbiased linear mapping, where |N | is the cardinality of all the potential one-hot

input vectors (i.e. size of the dictionary of all the available predicates and entities of the

triples dictionary), and Wh̃→h : R3m → Rm is an unbiased linear mapping.

Attending the Triples. Rather than enforcing the model to compress all the available

information that is contained in the triples in a single vector (see Eq. 5.5), we investigate

the implementation of an attention mechanism over all the given triples. We adopt the

global attention mechanism that has already been successfully employed in the domain

of semantic parsing (Dong and Lapata, 2016) and machine translation (Luong et al.,

2015b). The attention scores between the current state of the decoder hLt and the

representation of each one of the E input triples are computed from the attention weights

Wa : Rm → Rm as:

a
(i)
t =

exp[(hLt )TWahfi ]∑E
j=1 exp[(hLt )TWahfj ]

. (7.5)

Based on the attention scores, a context vector that aggregates the information from the

most important triples for the token that is to be generated at timestep t is described

as a weighted sum over the representation of each triple of the encoder:

ct =

E∑
i=1

a
(i)
t hfi . (7.6)

The above context vector allows the decoder to selectively decide to which part of the

source triples it should pay attention to. The alignment between the context vector and

the information that has already processed in a generated summary are jointly learned

through trainable weights Wc : Rm → Rm and Wh : Rm → Rm as follows:

hL+1
t = tanh

(
Wcct + Whh

L
t

)
. (7.7)



Chapter 7 Point at the Triple 93

Figure 7.1: The architecture of our pointer-generator network. At timestep t = 4,
pgen4 weights the probability of copying a word from V ext higher than generating a word
from the fixed vocabulary V †. The decoder learns to interpret the weighted sum of
hL4 and c4 in order to compute a probability distribution about which realisation is
the most appropriate given the context from the triples. The attention mechanism
highlights f2 as the most important triple for the generation of the upcoming token.
The attention scores are distributed among the entries of V ext, and accumulated into
the final distribution over V . As a result, the model copies “science fiction” that is one

of the surface forms associated with f2.

7.1.3 Dynamically Expanding the Vocabulary

As we explained above, the pointer-generator network proposed by See et al. would be

unfit for the task. See et al.’s model is capable of both copying tokens from the input

sequence and generating words from the decoder’s fixed vocabulary. In the context of

its copying functionality, their model learns to copy only a single realisation for its input

token. This would result in using the same label for each copied entity regardless of

the context of the text. Similarly to case of our w/ URIs systems (described in detail

in Section 5.2.1.1), such an approach would essentially result in less fluent text (see

Section 5.3.3).

Addressing the limitation of the architecture of See et al., we propose a mechanism that
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enables our model to learn different realisations for the entity of a pointed triple. Our

architecture is capable of (i) generating words from a fixed target vocabulary, (ii) copying

a number of different surface forms for the entities in the input triple set, and (iii) copying

the number or the label in the case of triples whose objects are numerical values or

infrequent entities. Our approach is partially inspired by how humans would perform

on the same task. When provided with a set of triple-facts which they are asked to

summarise in text, people would start summarising by using their own known vocabulary.

However, they would focus their attention on a particular triple when they would want

to realise an entity’s name or a number in the text.

Let K = {k1, k2, . . . , kD} be the set of all the entities that have been expressed in

the textual summaries of a training dataset. In addition, let (gkdj , z
kd
j ) be the tu-

ple of the j-th surface form gkdj of the entity kd ∈ K, along with the number of

occurrences of the realisation gkdj in the dataset, zkdj ∈ N. Additionally, let lkd =

{(gkd1 , zkd1 ), (gkd2 , zkd2 ), . . . , (gkdR , z
kd
R )} be the partially ordered set of the tuples that are

associated with the entity kd, s.t. zkdj ≥ zkdj+1∀j ∈ [1, R], where R is the total number

of realisations of kd. We compute the 95th percentile of the number of all the possible

textual realisations of kd, q
kd . We define Gkd = {gkd1 , gkd2 , . . . , gkdQ } s.t. Q ≤ R as the set

of all possible verbalisations with which our model learns to express kd in the generated

summary. Q is a dataset-relevant hyper-parameter for our model, and is calculated by

averaging the number of possible realisations qkd ∀kd ∈ K.

Let H(f) and H(i) be the sets of all the frequent and infrequent entities that participate

in the triples. In addition, let E = {e1, e2, . . . , eE} s.t. ej ∈ (sj , oj) and ej 6= z ∀j ∈
[1, E] be the set of all the items (numerical values or entities) other than entity z that

participate in the corresponding relationships in F . We assume a fixed target vocabulary

V † = {v†1, v
†
2, . . . , v

†
|X|}. In comparison to similar pointer-generator networks that expand

the decoder’s fixed vocabulary by the length of their input E, we expand it by Q ·E, and

we define the dynamic vocabulary extension (where the values are based on the input

triples), V ext = {vext
1 , vext

2 , . . . , vext
Q·E} along with its subsets V f

ext, V
copy

ext and V null
ext , s.t.:

vext
j =

g
edj/Qe
j%Q ∈ V f

ext edj/Qe ∈ H(f)

g
edj/Qe
1 ∈ V copy

ext edj/Qe ∈ H(i) and j%Q = 1

g
edj/Qe
1 ∈ V copy

ext edj/Qe ∈ R and j%Q = 1

null ∈ V null
ext otherwise

(7.8)

∀j ∈ [1, Q · E], where d. . .e represents the ceiling function.

During both training and testing, for each set of input triples we form the values of the

extended vocabulary V ext. Each triple is provided with Q slots in V ext. For example in

the example of Figure 7.1 where Q = 3, the frequent entity of United States ∈ H(f),
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results in the inclusions of “United States”, “American” and “U.S.” in the vocabulary

extension V ext. In case a rare entity is either the subject or the object of a triple in the

triple set, it is replaced by its corresponding instance type token before it is provided to

our model (e.g. John Galt is replaced by the Character token when it is inputted in the

triples encoder in Figure 7.1). In such scenario, all the values of V ext that correspond to

this particular triple are filled with null, except than the first one which refers to the

copy of the label of this rare entity. Similar methodology is used in the case of numbers

(e.g. ‘‘1957’’ is replaced by the <year> token, and the first slot of the positions in

V ext that correspond to this triple is filled with the copy of the year token in Figure 7.1).

7.1.4 Summarising By Pointing and Generating

The probability distribution qt for each entry in the vocabulary extension V ext after

distributing the attention scores over the realisations of the relevant triples is computed

as follows:

q̃
(i)
t =

exp[a
(di/Qe)
t ] i ∈ V f

ext ∪ V
copy

ext

0 i ∈ V null
ext

(7.9)

q
(i)
t =

q̃
(i)
t∑Q·E

j=1 q̃
(j)
t

. (7.10)

We adopt the notion of the generation probability pgen
t ∈ [0, 1], which is used to simulate

a soft switch at each timestep t between generating a token from the fixed vocabulary or

copying either the surface form or the label of an entity from the highlighted triple (See

et al., 2017).

pgen
t = sigm(Wĉct + Wĥh

L
t ) , (7.11)

where Wĉ :: Rm → R1 and Wĥ :: Rm → R1 are biased linear mappings.

Our model computes the following probability distribution for each entry w in the ex-

tended vocabulary V = V † ∪ V ext as follows:

Pt(w) =

pgen
t P voc

t (w)+

(1− pgen
t )q

(dw/Qe)
t w ∈ V f

ext ∪ V
copy

ext

pgen
t P voc

t (w) w ∈ V †

0 w ∈ V null
ext ,

(7.12)

where P voc
t = softmax(Wyh

L+1
t ), and Wy : Rm → R|X|+Q·E is a trainable weight

matrix.
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The decoder learns to interpret hL+1
t to make a decision about which realisation is the

most appropriate over the V given the context from both the input and the text that it

has generated so far. The attention scores point at the triple that should be verbalised

in the summary. The model makes the final prediction about the token that will be

outputted only after these scores are accumulated in the final distribution over V .

7.2 Dataset Preparation

When the realisation of an annotated entity or a year in the text is identified in the V ext

of an input set of triples, it replaced by the token of the position of the surface form in

V ext. Table 7.2 displays an example of the alignment of the datasets after the necessary

pre-processing.

For each input triple set, we are forming the values of the extended vocabulary V ext.

Each triple is provided with Q slots in V ext. In case a rare entity is either the subject

or the object of a triple in the triple set, it is replaced by its corresponding instance

type token before it is provided to our models. In such scenario, all the values of V ext

that correspond to this triple are filled with null, except than the first one which refers

to the copy of the label of the rare entity. Similar methodology is used in the case of

years1. We computed a Q value of 2 (for the D1 dataset), and 3 (for the D3 corpus)

which results in ∼ 98% coverage of the total number of textual realisations of the triples

entities for both corpora.

Years which have not been identified in the input set of triples are mapped to the

special <year> token. For simplicity, we choose not to map the occurrence of regular

numbers in the text to the corresponding input triples. Consequently, all numbers in the

text are replaced by the special 0 token. Every out-of-vocabulary token in the textual

summaries is represented by the special <rare> token in the case of regular words and

their corresponding instance type token (e.g. dbo:SoccerPlayer) in the case of surface

form tuples. The special tokens of an entity’s instance type are retrieved from the DB3

dataset.

In order to contain the space complexity of the task, we limit the number of triples E

that are allocated to each summary to:

bEmin + 0.25σEc ≤ E ≤
⌊
E + 2σE

⌋
. (7.13)

This leads to a slightly greater range of number of input triples compared to the exper-

iments in Chapter 5 and 6 for which the range of had been set according to Eq 5.10.

1While in our approach we limit our approach to years, theoretically we could address in the text
the existence of all numbers in the triples.
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Table 7.2: An example of the alignment of the datasets. The main-discussed entity
both in the triples and the corresponding summary is replaced with the <item> token.
Each triple is stored along with the instance type of the other than the main entity that
participates in it. The word “village” is recognised as the DBpedia entity dbr:Village,
which also participates in the triples of the input set. Since “village” is also one of the
realisations associated with dbr:Village in the 10th position of V ext, it is replaced
by the [ext 10] token in the text. Each summary is augmented with the respective

start-of-summary <start> and end-of-summary <end> tokens.

<item> dbr:C̆izma V ext

Triples

<item> dbo:country dbr:Bosnia and Herzegovina

[dbo:Country]

1: Bosnia

2: Bosian

3: Bosnia-Herzegovina

<item> dbo:isPartOf dbr:Kiseljak [dbo:Settlement]

4: Kiseljak

5: null

6: null

<item> dbo:timeZone dbr:Central European Time

[unknown type]

7: CET

8: cet

9: UTC+2

<item> dbo:type dbr:Village [owl#Thing]

10: village

11: rural community

12: selo

<item> dbo:utcOffset 0 [unknown type]

13: 0

14: null

15: null

Original
Summary

C̆izma is a village in the municipality of Kiseljak, Bosnia
and Herzegovina.

Annotated
Summary

<start> <item> is a (dbr:Village, village) in the
(dbr:Municipalities of Bosnia and Herzegovina,

municipality) of (dbr:Kiseljak, Kiseljak) ,
(dbr:Bosnia and Herzegovina, Bosnia) and Herzegovina .
<end>

Summary w/
Surf. Form

Tuples

<start> <item> is a [ext 10] in the
(dbr:Municipalities of Bosnia and Herzegovina,

municipality) of [ext 4] , [ext 1] and Herzegovina .
<end>

Summary w/o
Surf. Form

Tuples

<start> <item> is a [ext 10] in the municipality of
[ext 4] , [ext 1] and Herzegovina . <end>

This maximum number of triples resulted in a model size (i.e. in the case of the pointer-

generator systems) of around ≥ 10 GB, consuming almost the entirety of the available

GPU memory of the Titan X (Pascal) GPU that was used for these experiments. We

follow the same methodology as in Section 6.2 in order to filter out any potential re-

dundant triples from the oversized sets, and prioritise triples whose objects or subjects

have been mentioned in the text. We perform this in order to maximise the effect of

the proposed pointer mechanism and the property-types placeholders of the competing

Triples2GRU and Triples2LSTM systems (both are discussed in detail in Chapter 5).



98 Chapter 7 Point at the Triple

7.3 Experiments

We train and evaluate the performance of our approach on the D1 and D3 corpora.

Both datasets are split into training, validation and test, with respective portions of

85%, 10%, and 5%. Furthermore, we investigate whether the inclusion of the frequent

surface form tuples (see Section 5.2.1.2), whose entities have not been associated with

any triple from the input set, enhances the performance of our model. Consequently,

for each dataset we run two sets of experiments one in which the surface form tuples are

part of the fixed vocabulary of the decoder (w/ Surf. Form Tuples), and one in which

they are treated as regular words (w/o Surf. Form Tuples).

7.3.1 Training Details

On the encoder side, we include all entities and properties that occur at least 30 times

in the related dataset. Triples with rare properties are excluded. Infrequent entities are

replaced by their respective instance type tokens. This results in a source vocabulary

size of |N | = 5785 and 17146 tokens in the case of the D1 and D3 dataset respectively.

On the decoder side, we use a single layer of 500 GRUs, and we include the |X| = 15k

and |X| = 17k more frequent tokens (i.e. only words in the case of w/o Surf. Form

Tuples systems, and words and surface form tuples in the case of w/ Surf. Form Tuples

systems) from the respective D1 and D3 datasets. In all the experiments, we set the

dimensionality of the hidden states to m = 500. We initialise all parameters with random

uniform distribution between −0.1 and 0.1, and we use Batch Normalisation before each

non-linear activation function and after each fully-connected layer (Ioffe and Szegedy,

2015) on the encoder side.

Our training objective is to minimise the sum of the negative log-likelihoods of a mini-

batch of 80 predicted summaries. Optimisation is performed using Adam2 (Kingma and

Ba, 2014) with a learning rate of 5 · 10−5. An l2 regularisation term of 0.05 over the

parameters is also included in the cost function (Wen et al., 2015, 2016).

The networks converge3 after the 13th epoch in the case of D1 (i.e. biographies genera-

tion). In the case of the D3 dataset, convergence is achieved after 20 epochs in the w/o

Surf. Form Tuples system, and after 75 in the case of w/ Surf. Form Tuples. All of our

systems are trained on a single Titan X (Pascal) GPU. The pointer-generator networks

2While both RMSProp and Adam were converging after the same epoch, we noticed a minor im-
provement with respect to the lowest achieved validation error using Adam on our pointer-generator
architectures. In the case of Triples2GRU, the lowest validation error was almost identical using both
RMSProp and Adam.

3The epoch at which the model converges to the lowest possible validation error. After this epoch,
the error on the validation set either does not improve further or it increases, and, thus, the model is
overfitting.
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complete an epoch of training in around 36 minutes and around 2 hours when trained

on the D1 and D3 corpora respectively.

During testing and evaluation, we do beam-search (see Section 5.1.5) with a beam size

of 8, and we retain only the summary with the highest probability.

7.3.2 Automatic Evaluation

We use BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), and METEOR (Lavie and

Agarwal, 2007) on the validation and test set of each corpus.

We demonstrate the effectiveness of our approach by comparing it against a set of

competitive baselines. First, we compute the expected lower bounds for BLEU scores

by using a random Wikipedia summary generation baseline (cf. Section 3.2.1). For

each set of triples in the validation and test set, the system retrieves a response by

randomly selecting a summary from the training set. Secondly, we use the KenLM

toolkit (Heafield et al., 2013) in order to build a 5-gram Kneser-Ney (KN+) language

model (cf. Section 3.2.2). Thirdly, we compare our approach to the IR+ baseline

(see Section 3.2.3). Finally, we compare our systems against the Triples2GRU and

Triples2LSTM architectures that have been proposed in Chapter 5. We equip both

architectures with the mechanism of surface form tuples (w/ Surf. Form Tuples), and

we set the dimensionality of their hidden state to 500. All baselines are equipped with

the <item> and the property-type placeholders. After a summary is sampled, the first

are replaced by the label of the main discussed entity, and the second by the entity of

the triple from the input set that satisfies the requirements of the placeholder. During

testing, in the case of KN, Triples2LSTM and Triples2GRU, we do beam-search (see

Section 5.1.5) with a beam size of 8 in order to sample the most probable summaries for

each set of triples.

BLEU 1, BLEU 2, BLEU 3, BLEU 4, ROUGEL (computed on the longest common

sub-sequence) and METEOR results are reported in Table 7.3. Please note that the

reason for the performance of the Triples2GRU and Triples2LSTM systems to be lower

than the ones reported in the experiments in Section 5.3.2 is that in the former setup all

occurrences of number and years in the text are replaced by the special 0 and <year>

tokens (see Section 4.2) (Lebret et al., 2016). Since the systems presented in Chapter 5

have not been modelled with the ability to handle numbers, they are not punished in

the corresponding automatic evaluation section (see Section 5.3.2) when they generate

such tokens. Since our current setup is capable of generating years4, generating years

correctly in the text is properly reflected in the scores.

4In theory, the current pointer-generator network can work for regular numbers as well. We leave
this for future work.
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Interestingly the IR+ is the best and third-best performing system on D3 according to

the BLEU 1 and 2 metrics. This shows that a template-retrieval system can achieve

high precision in low order n-grams. However, it is much less competitive compared to

the neural network approaches according to BLEU 3 − 4, METEOR and ROUGE. In

almost all scenarios (except BLEU 1 on D3), our systems outperform the baselines. In

the case of D1 (i.e. generation of biographies), our systems achieve an improvement of at

least 4.8 BLEU 4 and 0.91 ROUGE points in comparison to the Triples2GRU, which is

our strongest competitor. In the case of the D3 dataset, our pointer-generator network

provides an improvement that ranges from 0.27 to 1.36 and 0.99 to 2.96 BLEU and

ROUGE points respectively. The high METEOR scores of our model w/o Surf. Form

Tuples also indicate that it often generates text that differs from the empirical summaries

due to morphological or synonymic variations. We believe that the lower performance

difference of our systems from the baselines on the D3 dataset is partially attributed to

the lower coverage of the input triples with respect to their corresponding summaries

in the non-biographical articles. We found that in D1 the number of tokens that are

identified as realisations of entities or years from the input triples is 2.51 (±1.62) tokens

whereas in the D3 dataset is 2.03 (±1.50). We believe that the fact that those numbers

would have been higher should we have opted to relate the occurrence of numbers (not

only years) in the corresponding input triples emphasises the superiority of our approach.

Table 7.4 presents the performance of all the models that are trained on the D3 dataset

on the triple sets of their validation and test sets that are also part of D1 (i.e. the

dataset of biographies). The experiment shows that training our systems on a much

more challenging dataset (see Table 4.8 and 4.9) with the same hyper-parameters in

terms of the dimensionality of the hidden states and the number of layers results in only

minor performance drop against systems trained specifically for the task.

In addition to the above experiments, we group Wikipedia summaries that are allocated

to the same number of input triples and compute a BLEU score per group. Figure 7.2

displays the performance of our models with the BLEU 4 metric on the 99th percentile

of the D1 and D3 test sets across different numbers of input triples. Please note that

sets of triples that consist of more than 26 and 21 triples in the case of D1 and D3 corpus

respectively are inputted to the systems after they are stripped of their additional triples,

according to the methodology described in Section 7.2. Similarly to the experiments

presented in Section 5.3.2, we observed that when the systems are initialised with a low

number of triples are lacking information required to form a two-sentence summary. In

the case of D1 the performance of the pointer-generator networks progressively increases

as more triples are given to the system as input. This shows the ability of the model to

successfully “select” the relevant triples and address them in the generated summary.

D3 is a much more challenging corpus due to the size of its source and target dictionaries

(cf. Table 4.9 and 4.8) and the low average number of triples’ entities that are identified

in the non-biographical articles (∼ 1.8 entities per summary). The latter is of great
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importance since the ability to directly copy in the text information from the triples is

essentially what separates the two architectures. In a scenario in which no information

in the text is directly taken from the triples, we would expect both models to score

almost identical performance5. However, even in this scenario, the systems based on the

pointer mechanism consistently outperform the competition.

We also noted a drop in performance when our systems are provided with oversized triple

sets. This is more noticeable in the case of D3, and is mainly due to the upper bounds

with respect to the number of allocated triples that we set per summary (Eq. 7.13).

Based on these upper bounds, we apply a simple approach of eliminating redundant

triples (described in detail in Section 5.2.2), but in case their number still exceeds the

threshold, we use an Emax number of them by prioritising triples whose subjects or

objects have been mentioned in the text. However, since the number of tokens in the

summaries that are recognised as realisations of entities or years is relatively low, it is

likely the Emax triples that we retain from a very large set might not be at all reflected in

their corresponding summary. The result of this misalignment of triples and summaries

might not be noticeable in the case of biographies due to their regular structure, but its

effect is amplified in the context of an open-domain corpus.

In order to further investigate how well our systems generalise across different categories,

we group the Wikipedia summaries from the D3 dataset according to the instance type

of their main entity (e.g. dbo:Village and dbo:SoccerPlayer). Figure 7.3 shows the

performance of our systems against the baselines across the 99th percentile of the ∼ 225

included instance types. The lowest performance bounds of our systems are similar to

the ones of Triples2GRU and higher than the ones of the other baselines. However,

in domains with greater coverage with respect to the triples that are verbalised in the

text, both our models significantly outperform the competition. For example, while

Triples2GRU summaries about dbo:Village and dbo:IceHockeyPlayer are one of the

highest scored instance types6 for both the Triples2GRU and Triples2LSTM systems,

with respective BLEU 4 scores of 34.98 and 32.68 in the case of the Triples2GRU and

32.54 and 31.12 in the case of the Triples2LSTM, they are outperformed by both our

systems (i.e. 37.10 and 36.01 in the case of w/ Surf. Form Tuples, and 40.38 and 36.94

in the case of w/o Surf. Form Tuples).

5In theory, the pointer-generator network should still have some advantage due its attention mech-
anism.

6Only instance types with more than 100 generated summaries in the test sets were considered.
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Table 7.3: Automatic evaluation of our architectures against all other baselines using BLEU 1− 4, ROUGEL and METEOR on the validation and
test set of the D1 and D3 datasets. The average performance of the Random+ baseline along with its standard deviation is reported after sampling

10 times.

Model
BLEU 1 BLEU 2 BLEU 3 BLEU 4 ROUGEL METEOR

Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test

Random+
28.26

(±.02)
27.96

(±.02)
15.78
(±.01)

15.56
(±.02)

10.25
(±.00)

10.09
(±.01)

6.71
(±.00)

6.59
(±.01)

27.68
(±.01)

27.51
(±.02)

14.15
(±.01)

14.07
(±.01)

KN+ 22.04 21.79 15.16 14.97 11.00 10.85 8.04 7.94 36.74 36.47 31.46 31.32

IR+ 36.51 36.37 24.60 24.44 18.16 17.96 13.66 13.45 36.20 36.08 18.12 18.02

Triples2LSTM 32.94 32.61 25.27 24.99 20.33 20.08 16.28 16.08 48.48 48.23 33.96 33.84

Triples2GRU 33.53 33.11 25.54 25.18 20.46 20.14 16.35 16.07 48.20 47.87 33.38 33.19

Pointer Generator
on D1 w/o Surf.
Form Tuples

37.12 36.93 29.40 29.27 24.79 24.67 21.39 21.26 49.11 49.12 33.92 33.98

Pointer Generator
on D1 w/ Surf.
Form Tuples

35.77 35.85 28.68 28.81 24.37 24.54 21.15 21.34 49.65 49.90 34.96 35.30

Random+
25.16

(±.01)
25.23

(±.01)
13.13
(±.01)

13.17
(±.01)

7.92
(±.01)

7.95
(±.01)

4.92
(±.01)

4.94
(±.01)

23.57
(±.01)

23.59
(±.01)

11.34
(±.01)

11.34
(±.00)

KN+ 19.13 19.15 11.98 11.99 8.07 8.06 5.55 5.53 28.49 28.50 16.50 16.50

IR+ 38.92 38.85 27.24 27.09 20.88 20.68 16.66 16.45 38.62 38.46 17.77 17.59

Triples2LSTM w/
Surf. Form Tuples

34.34 34.40 25.89 25.85 20.56 20.48 17.87 17.73 46.20 46.23 27.08 27.03

Triples2GRU w/
Surf. Form Tuples

35.72 35.70 27.21 27.13 21.84 21.73 17.87 17.73 47.33 47.36 27.21 27.23

Pointer Generator
on D3 w/o Surf.
Form Tuples

34.87 34.80 26.81 26.75 21.78 21.71 18.14 18.08 46.59 46.58 30.13 30.19

Pointer Generator
on D3 w/ Surf.
Form Tuples

36.55 36.58 28.07 28.11 22.81 22.86 19.04 19.09 47.22 47.20 28.20 28.31
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Table 7.4: Automatic evaluation of our architectures against all other baselines using BLEU 1− 4, ROUGEL and METEOR on the triple sets of
validation and test set of the D3 dataset that belong to the D1 one.

Model
BLEU 1 BLEU 2 BLEU 3 BLEU 4 ROUGEL METEOR

Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test Valid. Test

KN+ 16.91 16.97 10.13 10.16 6.47 6.46 3.64 3.61 25.31 25.33 15.84 15.81

IR+ 36.41 36.65 24.23 24.37 17.75 17.82 13.24 13.27 35.81 35.91 17.58 17.48

Triples2LSTM w/
Surf. Form Tuples

32.48 32.87 24.41 24.64 19.32 19.47 15.37 15.46 47.06 47.41 30.73 30.71

Triples2GRU w/
Surf. Form Tuples

32.88 33.09 24.95 25.06 19.92 19.99 15.88 15.90 47.71 47.99 32.56 32.52

Pointer-Generator
w/o Surf. Form
Tuples

33.58 33.67 26.79 26.94 22.71 22.87 19.65 19.82 48.58 48.82 34.81 35.05

Pointer-Generator
w/ Surf. Form
Tuples

34.77 34.67 27.76 27.64 23.49 23.37 20.30 20.17 49.47 49.51 34.19 34.42
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Figure 7.2: Performance of our models with the BLEU 4 metric across the different
sizes of triple sets from the test set of the D1 (a) and D3 (b) dataset. Please note
that sets of triples that consist of more than 26 and 21 triples in the case of D1 and
D3 corpus respectively are inputted to the systems after they are stripped of their

additional triples according to the methodology described in Section 7.2.

7.3.3 Human Evaluation

The above text similarity metrics have limitations in tasks with loose correlation between

the input and the expected output (Reiter, 2010). Consequently, we also evaluate the

performance of our approach in two separate user studies on the Figure Eight platform7.

In the first, we explore the performance of our networks against the Triples2GRU (the

most competitive system according to the results of Chapter 5) to generate open-domain

summaries when trained on the D3 corpus. The goal of the second study is to investigate

whether training our systems on the Full dataset with the same hyper-parameters (except

the size of the input and output vocabularies) results in comparable performance against

systems trained on the D1 corpus. Our experiments showed that in our dataset, triple

sets with fewer triples usually lack enough information for our systems to generate a

summary (see Figure 7.2). Hence, in both studies we include only sets that consist of

at least 6 triples. For the first case study, we identified the triple sets that occur in the

test sets of all the three neural-network-based systems. From those, we sampled 25 sets

of triples according to the instance types distribution of the main discussed entities in

the D3 dataset. For the second experiment, we compiled a list of the sets of triples that

are part of the test sets of our four investigated systems. From this list, we randomly

selected 25 sets of triples. For each study, we collected the summaries that have been

generated by each one of the investigated systems given the selected input sets of triples.

Each contributor was asked to evaluate three, in the case of the first study, and four, in

the case of the second, generated summaries against three criteria: (i) fluency, (ii) cov-

erage (triples whose information is mentioned either implicitly or explicitly in the text),

(iii) contradiction (information that exists in the sentence but it conflicts with one or

7https://www.figure-eight.com

https://www.figure-eight.com
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Figure 7.3: Performance across 225 domains.

more of triples from the input set). For fluency, the contributors were presented with all

the generated summaries, and they had to score each one of them on a scale from 1 to

6, with 1 indicating an incomprehensible summary and 6 a coherent and grammatically

correct one. For coverage and contradiction, the participants were provided with the

input triples, and for each one of the generated summaries, they had to identify the

relation of each triple to the summary as either “Absent” or “Present” and as “Direct

Contradiction” and “Not a Contradiction” respectively. For coverage, we computed

first the total number of triples that have been covered in a generated summary after

performing majority voting over all the contributions of each fact with respect to this

summary. For each summary, the number of covered triples is normalised by the total

number of triples of the respective input set. These criteria are described in detail in

Section 3.1.2. Each generated summary by each system is evaluated by 10 workers.

The average scores are obtained after averaging the respective fluency, coverage and

contradiction scores of all the 25 summaries that have been sampled from each system.

In order to further explore whether our crowdworkers annotate the generated summaries

according to the designated standards, we also run a subsequent pilot study with two

researchers from the University of Southampton who are experts in the field of Seman-

tic Web and have full professional proficiency in English. The experts were tasked to

repeat the first case study by evaluating the summaries that had been generated by the

Triples2GRU system.
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Table 7.5: Average rating of the investigated systems against the human evaluation
criteria. Top: Scores of the systems on the D3 dataset. Bottom: Scores of the systems
evaluated on biographies. The “... on D1” systems have been trained on biographies

only.

D
3

Model Fluency Coverage Contradiction

Triples2GRU 4.86 26.76 31.96

Pointer Generator w/o
Surf. Form Tuples

5.14 31.60 30.36

Pointer Generator w/
Surf. Form Tuples

5.06 34.24 32.64

D
1

w/o Surf. Form
Tuples on D1

4.71 40.36 14.36

w/ Surf. Form Tuples
on D1

4.81 39.32 17.24

w/o Surf. Form
Tuples on D3

4.44 30.20 15.76

w/ Surf. Form Tuples
on D3

5.10 35.92 20.16

The results of the two studies are in alignment with the results of the automatic eval-

uation (cf. Table 7.5). In the first study, our architectures achieve greater fluency and

coverage scores compared to the Triples2GRU. The coverage of “w/ Surf. Form Tuples”

is also significantly better (p < .05) than the Triples2GRU. While the system without

the surface form tuples performed slightly better than the competition when trained

and tested on a single domain, it is difficult for it to re-produce the same quality of

summaries when trained with the D3 dataset. Nonetheless, the inclusion of the surface

form tuples makes the model more flexible at addressing larger vocabulary sizes without

sacrificing significant performance on single domains. When trained on the full corpus

(i.e. D3) and tested on biographies (i.e. D1), the system w/ Surf. Form Tuples is

significantly more fluent than w/o Surf. Form Tuples (p < .01). Its fluency scores were

also slightly improved compared to when it was trained only on D1.

We should also note that in the training portion of the D3 dataset, the triples entities

are realised using the first realisation, 86% of the time, and the second and third, 11.5%

and 2.5%, respectively, of the time. During testing, entities from the triples are realised

using the first, second, and third realisation with respective percentages of 85, 11, and

4. We believe that this, along with the high fluency scores of our approach, highlights

its ability to verbalise entities from the triples in a different number of ways in the text.

A Note on the Human Evaluation Metrics. Despite our greater efforts, we faced

extreme difficulty to communicate with the crowdworkers the purpose of contradictions.

In a preliminary version of our experiments, each triple was to be marked as either

“Contradiction” or “Not Contradiction”. However, this proved inadequate since workers

were marking triples that were not covered in the summary as contradicting, resulting

in an average of ∼ 50% of triples whose information is contradicted in the summaries
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across all the investigated systems. The same evaluation when performed by the two

experts on the summaries that had been generated by the Triples2GRU system resulted

in an average percentage 0.7% triples that are contradicted in the summaries (i.e. a

result which is also much more consistent with the contradiction ratings on the system

in Section 5.3.3). In order to minimise the effect of contradictions, besides changing the

available labels for each triple to “Direct Contradiction” and “Not a Contradiction”,

in the relevant instructions, we explicitly noted that contradictions should be rare, and

that we expected many summaries without any of them. By comparing the 31.96%

contradiction as it was reported by the crowdworkers to the 0.7 of the experts, we

conclude that workers tended (p < 0.05) to significantly overestimate the presence of

triples that are contradicted in the generated summaries.

Such differences were observed in the way that both the experts and the crowdworkers

evaluate fluency and coverage. The average fluency with which the experts evaluated

the summaries by the Triples2GRU was 5.28. The ANOVA test computed on the two

fluency score series produced p < 0.05. Consequently, we can claim that compared to

the experts, crowdworkers tend to systematically underestimate the summaries’ fluency

by 0.5 out of 6. According to the experts, 39.71% of the input triples is covered in the

summaries that are generated by the Triples2GRU system. As a result, workers tended

to undercount the presence of facts in the generated summaries (confirmed by ANOVA

test p < 0.05). Furthermore, a positive significant correlation (Pearson = 0.64) pointed

out that workers evaluate coverage in a consistent manner with the experts.

7.4 Summary and Discussion

In this chapter, we have presented a pointer mechanism that enhances our original

encoder-decoder architecture that was presented in Chapter 5. Our network jointly

learns to verbalise in a different number of ways the content from the triples while

retaining the ability to generate regular words from a fixed target vocabulary. This

mechanism sidesteps one of the limitations of the systems presented in Chapters 5 and

6 which was their inability to realise numbers from the triples in the generated text. We

test this novel system on single- and open-domain Wikipedia summaries generation using

the D1 and D3 corpora. Results from both automatic and human evaluation highlight

the superiority of our approach compared to our original encoder-decoder architecture

(in Section 5) and a set of baseline of different natures.

While in our experiment we observed only few repetitions of textual content, it might be

one of the challenges in a multi-sentence generation scenario. A natural extension of this

work is the implementation of a coverage mechanism on top of our attention mechanism

that would discourage it from attending the same triples during the summary generation

procedure (Tu et al., 2016; Mi et al., 2016).
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Our experiments have also showed that there are differences between the scores that

are provided by experts and crowdworkers. These differences are more notable in the

case of the less trivial evaluation criteria (i.e. contradiction). However, using explicitly

experts for the evaluation of the various NLG system results to non-scalable evaluation

methodologies. For further details regarding this finding, we urge interested readers to

refer to the corresponding published paper (Vougiouklis et al., 2018b). A part of our

future work will focus on the methods with which the crowdworkers should be trained

in order to perform more accurately on similar tasks.



Chapter 8
Conclusion and Future Work

The thesis has demonstrated to the reader a number of novel data-driven systems that

are able to generate multilingual text that summarises a set of input knowledge base

triples. The generated text can be used to effectively increase the accessibility of people

who are unfamiliar either with the underlying technologies or with the more popular

(and, thus, better covered) languages to the information that is stored in a structured

knowledge base. This chapter summarises the results and contributions of this thesis,

and highlights future work with respect to all of the previous contribution chapters.

8.1 Summary and Conclusions

Training data for NLG is not always readily available; this applies to Semantic Web

scenarios as well. In the fourth chapter, we proposed a fully-automatic, cross-lingual,

approach for building large corpora of loosely aligned Wikipedia snippets with triples

from DBpedia and Wikidata. Using this methodology, we built five different corpora

that enabled us to test our system against a variety of generative scenarios, including

single- and open-domain summaries generation in three different languages (i.e English,

Arabic and Esperanto).

In Chapter 5, an end-to-end trainable architecture based on the general encoder-decoder

framework is presented. The system encodes the information from a set of triples into a

vector of fixed dimensionality using a novel triple encoder and generates a summary by

conditioning the output on the encoded vector. We train and evaluate the performance

of our approach on English biographies generation. Our hypothesis was that biographies

offer a good trade-off between linguistic variability and regular structure allowing us to

explore the strengths and limitations of our purely data-driven approach. Each summary

consists from regular words and realisation of entities from the triples. Consequently,

we explored a set of different approaches that enable our models to verbalise entities

109
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from the input set of triples in the generated text. Our statistical approach for inferring

the verbalisation of the entities in the text with the surface form tuples mechanism (sys-

tems w/ Surf. Form Tuples), further enhances the fluency of the generated summaries

compared to a deterministic replacement of the generated entities’ URIs. Results using

methods for both automatic and human evaluation (i.e. using experts) generate fluent

summaries that address around 50% of the input triples in the generated text. The very

low percentage of contradiction (around 0.05%) between the generated summary and its

corresponding triples reflect that our system properly conditions the generated content

to the given input.

Given the promising results of our systems in the generation of biographies, in Chapter 6,

we wished to explore the applicability of our approach to languages that do not offer

the same training data abundance as English. We leverage the cross-lingual nature

of Wikidata, and we adapt the Triples2GRU w/ Surf. Form Tuples system in order

to generate textual summaries in two underserved Wikipedia languages, Arabic and

Esperanto. We introduce the mechanism of property placeholders that enables the

system to verbalise rare entities in the text. Each property placeholder that is generated

is mapped to the triple with which it shares the same property, and is subsequently

replaced with the textual label of the entity. Results based on automatic evaluation show

that our approach was able to outperform and generalise across domains better than

strong baselines of different natures, including MT, a template-based IR baseline and a

templated Kneser-Ney language model. Our original goal was to evaluate whether the

generated content could be used to enhance the coverage of the impoverished Wikipedias

and to provide their corresponding editors with a “starting point” to write their article.

Consequently, besides evaluating our approach with automatic evaluation metrics, we

conducted two separate community studies, one for the readers and one for the editors of

the involved Wikipedias. The readers of the targeted communities ranked our generated

text close to the expected standards of Wikipedia, and were also likely to assume the

generated text is part of Wikipedia. In the second study, we asked Wikipedia editors to

write a short paragraph about an entity and we provided them with its corresponding

triples and the automatically generated summary from our system. We found that the

editors were likely to reuse a large portion of the generated summaries, thus, emphasizing

the usefulness of our approach to the involved communities.

Finally, in Chapter 7, we enhance the Triples2GRU with a pointer mechanism that en-

ables it to verbalise in a different number of ways the content from the triples while

retaining the ability to generate regular words from a fixed target vocabulary. The sug-

gested mechanism essentially tackles two limitations associated with the original system:

(i) the degree of stochasticity in the case that multiple relations from the input meet the

requirements of the predicted placeholders, since the model itself makes the final pre-

diction about the triple that should be realised, and (ii) the inability to handle different

numbers, since it can directly copy them in the text from the triples. We test the new
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system on both biographies and open-domain Wikipedia summaries generation, and we

compare its performance to the Triples2LSTM and Triples2GRU from Chapter 5, both

equipped with the surface form tuples mechanism. We also investigate two alterations

of the proposed pointer-generator network one which is equipped with surface form tu-

ples and one without. Using methods for both automatic and human evaluation (using

crowdsourcing), we showed that the proposed pointer mechanism results in performance

improvements in all scenarios. We found that the inclusion of surface form tuples makes

the model more flexible at addressing the large vocabulary sizes of open-domain corpora.

In the last section of Chapter 7, we also explored whether results of human evaluation

using both experts and crowdsourcing are comparable to each other. We tested a sam-

ple of the generated summaries that had been evaluated using crowdsourcing, and we

found differences between the scores that are provided by experts and crowdworkers.

These differences are more notable in the case of the less trivial evaluation criteria (i.e.

contradiction). We believe that this observation gives ground to future work regard-

ing identifying the type of properties that influence negatively the workers’ judgement

and suggesting the methods with which the crowdworkers should be trained in order to

perform more accurately on similar tasks.

8.2 Current Limitations and Future Work

In this section we present some of the existing limitation of our approach. We focus on

the general problem of generating multi-sentence summaries and we discuss techniques

that could enable our approach to scale to this domain. Finally, we propose future work

that could build on top of the research that has been presented in this thesis.

8.2.1 Generation of Multi-Sentence Summaries

The performance of our systems is dependent on the number of input triples (see Fig-

ure 5.3 and 7.2). In all scenarios, we observed a stable performance when the size of

the input set is ≥ 10. However, we also noted a slight drop in performance when our

systems are provided with oversized triple sets. This is mainly due to the original re-

quirement that the space complexity of the task should be contained in a single GPU.

Consequently, we set upper bounds with respect to the number of allocated triples per

summary (Eq. 5.10 and 7.13). Based on these upper bounds, we apply a simple approach

of eliminating redundant triples (described in detail in Section 5.2.2), but in case their

number still exceeds the threshold, we agnostically use an Emax number of them. This

introduces a degree of stochasticity with respect to the quality of the training data with

which the model is provided since the Emax triples that we retain from a very large set

of triples might not be reflected in their corresponding summary. This is observed even
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in the case of the experiments presented in Chapter 7, where we prioritise triples whose

subjects or objects have been mentioned in the text, since the average number of tokens

in the summaries that are recognised as realisations of entities or years from the input

is relatively low.

Based on this finding, we identify the following challenges with respect to the employ-

ment of our proposed systems for generation of multi-sentence summaries (i.e. very long

sequences) given very large input sets of triples: (i) our encoder should be provided with

all the information that it requires in order to generate a summary that matches the

expectation of a dataset; (ii) the decoder would have to retain the information from the

input at very distant timesteps.

A simple but relatively expensive method of addressing the first challenge is the par-

allelisation of the model across multiple GPUs1 allowing us to increase the maximum

number of expected input triples further. A much more sophisticated approach would

be to allow the model to “select” from an oversized set the most appropriate triples.

Selection of triples is already actively performed by all the proposed systems, but only

on the basis of the Emax provided inputs. In the case of the encoder-decoder architecture

without attention, this selection is carried out in a single step, and it can only be ob-

served empirically in the generated summaries. However, the pointer-generator network

generates a summary by attending the most relevant parts of the input at each decoding

timestep. Consequently, triples which are more relevant to the task are rewarded with

higher probabilities. An iterative process that might be worth investigating is to identify

the properties of the triples that are attended the most by a trained system, and retrain

the system by prioritising triples whose predicates have been attended the most during

testing. The process eventually stops when no further improvement in the automatic

evaluation metrics is observed.

The second challenge gives ground to repetition, which is an additional problem that is

associated with the generation of much longer snippets of text using attentive adapta-

tions of the general encoder-decoder framework (Tu et al., 2016; Mi et al., 2016). While

such behaviour was not commonly observed in our experiments, it might prove to be

one of the challenges in a multi-sentence generation scenario. Essentially, across distant

decoding timestep, the decoder forgets which parts of the input have already been ex-

pressed in the generated output, and re-addresses them. This problem had been recently

addressed with the implementation of a coverage architecture on top of the attention

mechanism Tu et al. (2016); Mi et al. (2016). Coverage is a vector that records the part

of the input that the encoder had paid attention to during previous timesteps in order to

avoid attending them, and thus, mentioning them again in the text, at future timesteps.

Consequently the existing attention mechanism with which the pointer-generator net-

work is equipped allow us to explore in future work to what extent monitoring the

1https://github.com/torch/cutorch

https://github.com/torch/cutorch
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coverage of the generated text is required in a triples-to-multi-sentence-summaries sce-

nario.

8.2.2 The Main Entity of Interest

While our triples are not restricted to a single entity, our model adopts the notion of the

“main entity of interest”, since our goal is to generate a summary about that particular

entity. A natural extension of this work is to explore what alterations of our current

approach, in terms both of system architecture and dataset building, are required to

produce a narrative about multiple entities.

8.2.3 Using the S3 Corpus

The main drawback of training our models on a dataset of loosely associated triples

with text is that the information that exists in the triples does not necessarily appear in

the corresponding text, and vice versa. In Chapter 4, we briefly explored an approach

for generating high quality data-to-text corpora using crowdsourcing. While such an

approach offers much better guarantees for the alignment of triples with the correspond-

ing text, it is costly to apply on large domains. An extension of this work is to collect

enough data to train a system that would perform the same task efficiently, reducing the

required manual interventions to only minor grammar checking. Since S3 is absolved

from the notion of the main entity of interest, we believe that building such a corpus

could be a reasonable first step for the generation of narratives. Nonetheless, a large,

high quality corpus of knowledge base triples aligned with text would be of great value

to other research domains alongside NLG, such as Relation Extraction and Question

Answering.
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