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Chemistry Doctor of Philosophy

The role of water in drug binding: Calculating positions and bind-
ing free energies of active site water molecules, and their influence
on ligand binding by Hannah Bruce Macdonald

This thesis studies the ability of computer simulation to determine the lo-
cation and free energy of binding of active site water molecules, and the
energetic e↵ect water molecules can have on ligand binding. The primary
method used involves sampling within the grand canonical ensemble, using
grand canonical Monte Carlo (GCMC).

The first results chapter looks at the introduction of replica exchange
(RE) to GCMC simulations, and the improvements this yields in the re-
liability of calculated water binding free energies. The results show that
GCMC can determine water binding free energies that are consistent with
double-decoupling methods, while being able to calculate multiple water free
energies simultaneously, without a priori knowledge of water locations.

The second chapter explores the accuracy of GCMC at determining the
locations of active site water molecules, using a large dataset of molecules and
targets of pharmaceutical interest. Understanding the accuracy of GCMC to
reproduce crystallographic water locations allows for reliable calculation of
protein-ligand complexes without experimentally known water locations be-
ing known. Focus will be placed on the variation of quoted water placement
success rates with di↵erent published protocols.

The final chapter of this thesis involves the integration of two techniques;
GCMC and ligand alchemical perturbation simulations. Grand canonical
Alchemical Perturbations (GCAP) will be presented, whereby relative bind-
ing free energies of pairs of ligands are calculated, while active site wa-
ter molecules are sampled using the grand canonical ensemble. This GC
sampling of water allows the ligands water network to dynamically adapt.
GCAP will be demonstrated for two example systems, where active site water
molecules are a key factor in the ligand binding a�nities.
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2 CHAPTER 1. INTRODUCTION

Many cases are known where water molecules are known to directly influence

ligand binding a�nity. For example, OppA is a non-specific tri-peptide binder, ca-

pable of binding to a class of ligands of the structure Lys-X-Lys, where X is any of

the natural amino acids.1 The active site of OppA is therefore capable of binding

ligands of a range of sizes and properties. This promiscuity is made possible by a

varying network of water molecules occupying the active site volume around the

central amino acid, confirmed by X-ray crystallography studies.1 Binding data of

the ligand class shows that displacement of water molecules in the active site cor-

responds to a decreasing binding a�nity. In contrast, Scytalone Dehydratase (SD)

is a fungicidal protein-target for rice-blast disease in crops.2 The SD enzyme catal-

yses two steps in the pathogenic fungus, M. grisea, in its biosynthesis of melanin.

Melanin is required by the fungus for its structural integrity, without which cell

penetration, which is required in its mechanism of infection is not possible. A range

of ligands are known to bind to the protein, causing inhibition of the enzyme and

disrupting the melanin pathway. Design of high-a�nity ligands for this system has

focussed on displacing known active site water molecules, and displacement of one

particular water molecule can increase ligand a�nity 100-30,000 fold.3 These two

cases illustrate the lack of consistency that arises, whereby in OppA, disruption of

a water network weakens binding while in SD, the displacement of a water has the

opposite e↵ect. Quantifying these changes in a�nity are of significant importance

in drug design.

Various protein-ligand systems will be studied in this thesis. SD will be used

in Chapters 2 and 4. As it is a single water system, where displacement of the

said water molecule has a large impact on ligand binding a�nity, it is a useful

test system. Bovine pancreatic trypsin inhibitor (BPTI) will also be used as a test

system in Chapter 2. BPTI is useful as it is a small protein that has a small pocket

that ligands do not bind, but contains three water molecules. This is useful for

empirically testing the e↵ect of multiple water binding and water network e↵ects.

Adenosine A2Areceptor is a membrane protein, which has a dataset of binding

a�nity data for twelve related ligands.4 This is an interesting system, as the two

associated crystallographic structures are low resolution (3UZA: 3.273 Å, 3UZC:
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3.341 Å) where no water locations are resolved. This shows how grand canonical

(GC) methods can be advantageous for a case where the experimental data is of

low quality. A2Awill be used in Chapter 4 to demonstrate GCAP where multiple

water molecules are displaced by ligand perturbation. Chapter 3 will present anal-

ysis of the hydration of a dataset of 105 protein-ligand complexes, and demonstrate

a large scale test of GCMC.

This thesis uses GCMC methodologies to try reproduce experimental water

locations, and ligand binding a�nities. If GCMC is shown to be reliable at re-

producing known experimental results, it can in future be applied to novel target

systems with confidence. GCMC will be used first, in the calculation of binding

free energies of active site water molecules; second, in the determination of the

locations of active site water molecules, and finally, for the calculation of ligand

binding free energies, in cases where water molecules are displaced resulting in

changes in a�nity. GCMC involves simulating in the grand canonical ensemble,

the µVT ensemble, where µ is chemical potential, V is volume and T is tempera-

ture. This involves the fluctuation of N (the number of atoms or molecules) within

the simulation through insertion and deletion Monte Carlo moves. The molecules

allowed to insert and delete in the protein-ligand systems studied in this thesis

are water molecules, with insertion and deletion moves attempted within a certain

user defined region of a protein-ligand complex. Insertion and deletion of water

molecules allows for the location of active site hydration sites to be predicted, as

well as their binding free energy calculated through using the grand canonical in-

tegration (GCI) equation. GCMC is beneficial over other water location methods

as it is able to calculate multiple waters simultaneously i.e. a network of water

molecules, without prior knowledge of where the waters are located, while pro-

viding binding a�nities consistent with double decoupling (DD) simulations. The

theoretical basis and computational methodology of GCMC will be discussed in

Section 1.4.

Several methods are capable of locating and classifying water molecules in a

system, but this is only the starting point from a pharmaceutical perspective.
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Primarily, the binding a�nity of a ligand is of interest, which can be calculated

by free energy methods, which are discussed in Section 1.2. These methods can

be used to determine the binding free energy of a ligand once the correct sur-

rounding water structure is known. Computationally, binding is often handled in

relative terms, and when comparing binding of two ligands with di↵ering water

structures convergence issues can arise, solved only by lengthy simulations and as-

sociated thermodynamic cycles.5 The method of grand canonical Alchemical Per-

turbation (GCAP) is able to avoid this, using free energy methods between two

ligands, while simultaneously optimising their respective water networks through

the water-location method of GCMC. GCAP will be introduced in Section 1.4.

1.1 Computational methods

Force fields

A force field is a set of parameters and a functional form that have been designed to

reproduce known properties of a system— either experimental values, or properties

determined from a higher level of computational theory. Force fields are often

designed for a specific use, i.e. Amber forcefields6 for proteins, and the general

Amber force field (GAFF) for small organic molecules.7 Herein, fixed-charge all-

atom force fields will be considered, however various coarse-grained and united-

atom models also exist. The functional form of the force field consists of both

the bonded and the non-bonded parameters. The bonded energy is determined

between covalently bonded ligands, through bond, angle and dihedral terms, while

the non-bonded terms are calculated for non-bonding atoms by considering the

electrostatic and van der Waals forces between atoms, Equation 1.1c.

Etotal = Ebonded + Enon�bonded (1.1a)

Ebonded = Ebond + Eangle + Edihedral (1.1b)

Enon�bonded = Eele + EvdW (1.1c)
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The bonded terms (Ebonded) are calculated using the following;

Ebond = kbond(r � r
o)2 (1.2a)

Eangle = kangle(✓ � ✓
o)2 (1.2b)

Edihedral =
nX

i=1

ki[1 + kj(cos(kk�+ kl))] (1.2c)

both the bond and angle terms take the same form of a harmonic potential,

whereby the di↵erence between a bond or angle (r or ✓) to a minimum value (ro

or ✓
o) with a bond or angle strength (kbond or kangle). The form of the dihedral

energy is calculated is using the dihedral angle �, and a set of dihedral parameters,

ki�l. The bonded energy terms account for the energetic interactions of covalently

bonded atoms that are one, two or three bonds distance. For pairs of atoms that

are separated by four or more bonds, or not covalently linked, non-bonded energies

are calculated. These consist of the electrostatic terms; which are calculated using

the Coulomb equation, and intermolecular electron dispersion forces are calculated

using the Lennard-Jones potential;8

Eele =
qiqj

4⇡✏or
(1.3a)

EvdW = 4✏ij
h⇣

�ij

r

⌘m
�

⇣
�ij

r

⌘ni
(1.3b)

The Coulomb equation is shown in Equation 1.3a, where the electrostatic in-

teraction between two atoms at distance r can be calculated using their respective

charges (qi and qj), where ✏o is the permittivity of free space. The Lennard-Jones

m-n potential, Equation 1.3b, is a pairwise approximation of many-body interac-

tions that would be computationally prohibitive to calculate directly. Many other

forms of pair potentials exist,9,10 of which the Lennard-Jones 12-6 is the most

common. Both � and ✏, the collision radius and well-depth respectively, are em-

pirically determined parameters for an atom, which for a pair of atoms (�ij and

✏ij) are calculated using arithmetic combining for � and geometric combining for
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✏;

�ij =
1

2
(�i + �j) (1.4a)

✏ij = (✏i✏j)
1
2 (1.4b)

these are the combining rules used in Amber, and other force fields use di↵ering

combining rules.

In a system of more than a few atoms, the number of non-bonded interactions

will quickly outnumber the number of bonded interactions. To reduce this expense,

non-bonded interactions may be truncated by only calculating them for atoms, or

groups of atoms within a given cuto↵ distance, (rcut). To smooth the non-bonded

interaction energy, the energy is scaled for some region (rfeather).11 Two atoms at

distance r will be scaled accordingly;

Enon�bonded = scale(r)Enon�bonded (1.5a)

r > rcut ! scale(r) = 0.0 (1.5b)

rcut � rfeather < r < rcut ! scale(r) =
r
2
cut � r

2

r
2
cut

� (rcut � rfeather)2
(1.5c)

r < rcut � rfeather ! scale(r) = 1.0 (1.5d)

as scale(r) is 0.0 where r > rcut, these energies do not need to be evaluated.

Statistical mechanics

A force field allows for the energy of a state of a system to be calculated. Statistical

mechanics is able to relate details of all states of a given system to macroscopic

properties. All possible states, or replicas of a given system is known as an ensem-

ble of states, whereby the type of ensemble is defined by the properties that are

constant between all replicas of states. The canonical ensemble (NVT) is where

the number of atoms (N), the volume (V) and the temperature (T) are consistent;
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the microcanonical ensemble (NVE) where E is energy, and the ensemble that is

exploited within this thesis; the grand canonical ensemble (µVT). The canonical

ensemble allows for calculation of the Helmholtz free energy (A) of a system;11

A = �kBT ln(Q) (1.6)

where kB is the Boltzmann constant, and Q is the partition function. Di↵erent

ensembles provide di↵erent types of free energy. The partition function is the sum

of the energies of all microstates in the ensemble;

Q =
X

i

e
� Ei

kBT (1.7)

where Ei is the energy of the ith microstate. In the classical limit, the canonical

partition function of N atoms, can be treated as an integral over all states,

Q =
1

h3NN !

Z

r

e

Ei(r)
kBT dr (1.8)

where h is Planck’s constant. The 1
N ! term removes the overcounting of microstates

which are fundamentally the same, but di↵er only in the exchange of identical

atoms with di↵ering labels. this can be substituted into Equation 1.6;

A = �kBT ln

✓
1

h3NN !

Z

r

e
�Ei(r)

kBT dr

◆
(1.9)

this leads to a result where the free energy of a system can be determined from

the ensemble of a canonical system.

Free energy

The following section leads to the resulting equation, Equation 1.9, where the

absolute Helmholtz free energy of a canonical ensemble can be calculated from

potential energy of each microstate of the system. However, this cannot be solved

for large systems for two reasons; firstly the number of microstates of the system

that must be integrated over is prohibitively large, and the e
Ei(p) term results in

poor numerical behaviour.
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The issue of the large number of microstates will first be addressed using the

Boltzmann-weighted distribution of the phase space, and the issue of the numeri-

cal behaviour of eEi(p) will be reduced by considering relative free energy calcula-

tions.11

All of the j microstates of a system at temperature, T, will follow the Boltz-

mann distribution;

Pi =
e
�Ei�

R
j
e�Ej�

(1.10)

Where the probability of the system being in microstate i is Pi, where Ex is

the energy of microstate x, and � = 1
kBT

is thermodynamic beta. The Boltzmann

distribution means that only a subsection of microstates will contribute signifi-

cantly to the ensemble observables. This means that integral over all microstates

can be simplified to simply summing over the important microstates of a system

— which is the states that are proximal to the minima and therefore contributing

to the denominator. The integral over all states can be replaced with a sum over

all states — or in practise a sum over contributing states.

Pi =
e
�Ei�

P
j
e�Ej�

(1.11)

An average property of the system can be calculated from the Boltzmann

distribution of states, using the following;

hXi =

R
r
X(r)e��Ei(r)drR
r
e��Ei(r)dr

(1.12a)

hXi =

Z

r

X(r)Pi(r) (1.12b)

This can be combined with Helmholtz free energy equation, Equation 1.9,

where the numerator has been multiplied by e
��Er(r)e�Er(r) = 1 to give;
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A = kBT ln

0

@
R
r
e
��Er(r)e�Er(r)

R
r
e

�Er(r)
kBT

dr

1

A (1.13a)

= kBT ln

✓Z

r

Pi(r)e
�Er(r)

◆
(1.13b)

= kBT ln

⇣
< e

�Er(r) >

⌘
(1.13c)

This results in an equation whereby the Helmholtz free energy can be deter-

mined from the average potential energy of observed microstates, rather than the

entire ensemble. This allows for thermodynamic results to be calculated from a

sampling regime, which will be discussed in Sections 1.1 and 1.1. The result cal-

culates the absolute free energy of a system, and there is still the issue of the e
E

term whereby the result will be unstable with addition of additional microstates as

additional states will cause large flucctuations to the free energy, and is only stable

for small systems with a small configurational phase space that can be sampled

adequately. Absolute free energies are not viable for biomolecular systems.

Relative free energies

To circumvent the issue of large energetic terms, relative free energies can be

calculated.12

�AAB = AB �AA (1.14)
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where A is the Helmholtz free energy, calculated from the NVT ensemble.

�AAB = �kBT ln

✓
QB

QA

◆
(1.15a)

= �kBT ln

 R
r
e
��EB(r)

R
r
e��EA(r)

!
(1.15b)

= �kBT ln

 R
r
e
��EB(r)

e
��EA(r)

e
�EA(r)

R
r
e��EA(r)

!
(1.15c)

= �kBT ln

✓
PA(r)

Z

r

e
��(EB(r)�EA(r))

◆
(1.15d)

= �kBT ln

⇣D
e
���EAB(r)

E⌘
(1.15e)

Where �EAB is the di↵erence in energy of a microstate of system A in systems

A and B. This quantity will be smaller than the absolute energy, EA, and means

that the result can be evaluated.

With Equation 1.15e we now have a method of calculating the relative free

energy of a system, by calculating the energy di↵erence between two systems,

for thermally significant states of the systems. To generate thermally significant

states, sampling methods will be used. States of a system can be generated using

either molecular dynamics or Monte Carlo simulations.

Molecular dynamics

Molecular dynamics (MD) simulation is the method of studying atomic systems

following the equations of classical dynamics.13 Newton’s equations of motions are

solved repeatedly over short time steps.

F = ma (1.16a)

F =
dv

dr
(1.16b)

The positions and velocities of all the particles in a system are all coupled,
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which results in a many-body problem, meaning that the equations of motion

need to be integrated using a finite di↵erence method, rather than being solved

analytically. The most common methods of integrating the equations of motions

is using either the Verlet14 or the velocity Verlet algorithm. The Verlet algorithm

is derived by first approximating the positions and momenta using a Taylor series

expansion;

x(t+ �t) = r(t) + �t (1.17)

r(t+ �t) = r(t) + �tv(t) +
1

2
�t

2a(t) +O(�t3)... (1.18a)

v(t+ �t) = v(t) + �ta(t) +O(�t3)... (1.18b)

for the positions (r), velocity (v) and acceleration (a) at time (t) and an incre-

mentally small time after t, t+ �t. The Verlet algorithm provides the positions at

time t+ �t using;

r(t+ �t) = 2r(t)� r(t� �t) + �t
2a(t) (1.19)

which is dependent on the coordinates, the coordinates at the previous time

step and the acceleration. The velocity can also be determined by dividing the

di↵erence in positions at t + �t and t � �t. Other methods that also integrate

the equations of motions exist.15,16 Updating the positions and velocities of the

atoms for a su�cient number of timesteps, allows the motion of the system for

a time X�t, where X is the number of iterations that are performed. If the time

is su�cient, behaviours and properties of the system can be studied. From a

su�ciently long MD simulation, it is possible to calculate system properties that

are a function of atom coordinates and momenta. As MD simulations follow a

time trajectory, they are useful for understanding di↵usion motions of systems,

and other time-dependent properties. However, even for reasonable numbers of

atoms, many computing hours are required to achieve simulation timescales on

the order of nanoseconds. MD, with the use of thermostats, is able to generate a
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set of microstates, which can be used with Equation 1.15e.

Monte Carlo

Monte Carlo is an alternate method for generating states of a systems, whereby

instead of a time-evolving set of states being generated as by MD, states are

generated by making random changes to the system.11 The potential energy of

each sampled state can be generated from the positions of atoms in the system,

but as the ‘motions’ are randomly generated, there is no momenta component.

The energy of a microstate is the sum of the potential energy, which is a function

of the atomistic coordinates, and the kinetic energy, a property of the atomistic

momenta. This allows the partition function to be decomposed into two parts —

coordinates and momentum;

Q =
1

h3NN !

Z

r

Z

q

e
�Er(p)

kBT e
�Ek(q)

kBT dpdq (1.20)

where Er and Ek are the potential and kinetic energy respectively, which are in

turn, a function of the coordinates, r, and momenta, p, of the system. These are

separable;

Q =
1

h3NN !

Z

r

e
�Er(r)

kBT dr

Z

p

e
�Ek(p)

kBT dp (1.21a)

Q = QrQp (1.21b)

The kinetic partition function (Qp);17

Qp =
V

N

N !⇤3N
(1.22)

where ⇤ =
p
h2/2⇡kBTm, and m is atomic mass. The kinetic contribution to

the partition function is the partition fucntion of an ideal gas and is analytically

solvable. The potential energy part of the partition function can now be considered;

Qr =

Z

r

e

�Er(r)
kBT dr (1.23)
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where when used in Equation 1.9, allows the Helmholtz free energy to be cal-

culated from the potential energy of the generated microstates.

States are generated by making random changes to the system of interest, with

much freedom with regards to the type of change that can be made. One example

of this are the insertion and deletion moves of GCMC that will be discussed in

much more detail. A MC move consists of making a random change, and assessing

this change based on the energetic di↵erence between the system and the trial

system. Either the previous microstate, or the trial microstate will be accepted or

rejected into the ensemble of states, based on the Metropolic criteria. If the energy

of the trial state is lower than the previous, the trial move is accepted, and this

configuration is then used as the starting point for the following step. However, if

the trial configuration is higher in energy than the previous, the move is accepted

if a randomly generated number between 0 and 1 is smaller than the Boltzmann

factor;

rand(0, 1)  e
���E (1.24)

this ensures that the states generated follow the correct Boltzmann distribution of

states.

In terms of the moves that can be made, these are generally applied to the

translation and rotation of atoms, functional groups or molecules. The number of

atoms moved, and the magnitude of the change will increase the likelihood of �E

being large, and therefore reduce the likelihood of the move being accepted. On

the other hand, if the moves are very small, then the majority of moves will be

accepted, but the states generated are likely to be very similar. The move size is

often optimised such that approximately 50% of moves are accepted.

Metropolis sampling requires that the condition of detailed balance to hold

for systems in equilibrium.18,19 This states that the step from configuration a to

configuration b should be equally likely as the step from b to a, and should hold

for all configurations of a system. The likelihood of moving from configuration a

to configuration b (referred to as the flow, (a ! b)) is a product of the likelihood
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of being in state a (N (a)), the likelihood of the move to state B being proposed

(↵(a ! b)), and finally the likelihood of accepting the proposed move, acc(a ! b);

(a ! b) = (b ! a) (1.25a)

(a ! b) = N (a)↵(a ! b)acc(a ! b) (1.25b)

where in the canonical ensemble, the likelihood of being in configuration a is

the Boltzmann factor; e��E(r). If all random moves proposed are equally likely,

then ↵(a ! b) = ↵(b ! a), and the appropriate acceptance rates can be derived;

acc(a ! b)

acc(b ! a)
=

e
��Eb(r)

e��Ea(r)
(1.26)

which leads to the Metropolis acceptance criteria;

acc(a ! b) = min

h
1, e��(Eb(r)�Ea(r))

i
(1.27)

1.2 Free energy calculations

The previous section refers to a and b, which are two microstates of the same state.

Here, we would like to compare the free energy of two di↵erent states, A and B,

using Equation 1.15e. This involves sampling in state A, following the Boltzmann

distribution of states, that MC sampling upholds, and evaluating the di↵erence in

energy between each microstate of A, for both state A and B, �EAB(r). Integrat-

ing between these two states can be performed with various rigorous free energy

methods; including thermodynamic integration (TI),20 Bennett Acceptance Ratio

(BAR),21 and Multistate BAR (MBAR)22 methods.

Accuracy of free energy methods require the sampling of state A, to reflect

the Boltzmann distribution of state B. To improve overlap between the two states,

intermediate states can be introduced such to bridge the di↵erence. The collection

of intermediate states are referred to as a a � coordinate, where � is a coupling

parameter. States A and B refer to the � end points, 0 and 1, while for intermediate
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states a fictitious potential is defined. One common definition;

U(�) = (1� �)UA + �UB. (1.28)

where U(�) is the fictitious potential at the � intermediate. The free energy at

each � value can be determined from the partition function of an ensemble at that

� using Equation 1.29.

Q(N,V, T,�) =
X

i

e
��Ui(�) (1.29)

where i are the microstates of the � ensemble. The average derivative of the

potential energy with respect to each � value can be used to compute the integral

over each of these derivatives. forming a path between � = 0 and 1, i.e. states A

and B, Equation 1.30.

�F (A ! B) =

Z 1

0

�F (�)

��
d� =

Z 1

0

⌧
�U(�)

��

�

�

d� (1.30)

Computationally, this is often performed using parallelised code, where indi-

vidual � values of a free energy path will be simulated on individual processors of

a node, commonly 12 or 16 � windows. As the method relies on overlapping phase

space, errors can occur if the � coupling between the two states is not su�cient.

RE can be applied to TI to reduce the e↵ect of limited sampling.23 The general

method of RE is when swaps are attempted between multiple replicas of a system,

where each replica di↵ers by a given property. Attempts to swap replicas are made

and swaps are accepted or rejected following acceptance criteria.24,25 The method

has been successfully applied to simulations of various properties such as tem-

perature26 and pH.27 The application of RE to TI by attempting swaps between

neighbouring � windows allows simulations to share coordinates of trajectories,

optimising sampling between the states and removing errors from the integration

path. RE methods have been applied to GCMC methods in this thesis, and the

benefits of this will be discussed in Chapter 2.

BAR is an alternate method of determining the free energy di↵erence between
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two states.21 BAR calculates the di↵erence in free energy between states A and B,

with the assumption that the two systems share all their microstates. With this

assumption, complete sampling of the phase space of state A, with the Hamiltonian

of A should cover the entire phase space of state B. Reversibly, A should be sampled

by the simulation of state B with the Hamiltonian of B. The di↵erence in free

energy between the two states, will be the ratio of probabilities of sampling one

state from the system of the other, Equation 1.31

e
��(�F�C) =

hf(�(UB � UA � C))i
A

hf(�(UA � UB � C))i
B

(1.31)

where �F is the free energy di↵erence between the two states, hUxiy is the

potential energy U evaluted using the Hamiltonian of x, while sampling in the

ensemble of y. Equation 1.31 will hold for any function, f , that also meets the

detailed balance condition. In practise f(x) = 1
1+ex

is used as it is the optimal

solution. C is an energy o↵set between the two systems, i.e. the value of inter-

est, �F . This requires the equation to be solved iteratively.13 Iterations will only

converge if there is su�cient overlap between the two states. Multistate BAR

(MBAR) is a derivative of BAR, where all intermediate � states are considered in

the calculation, rather than only neighbouring states.22 MBAR has been shown to

be the most statistically e�cient method to abstract free energy di↵erences from

simulations28 .

Single and dual topology calculations

For calculations of free energies of systems, thermodynamic cycles are often re-

quired to calculate the energies of interest. For example, to calculate the relative

solvation free energy of two molecules, the free energy di↵erence between the two

species is required both in solution and in the gas phase.29
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Figure 1.1: Free energy cycle. Vertical legs are the solvation free energy of
A and B respectively, the di↵erence of which can be determined by com-
putational calculation of the horizontal legs, the free-energy calculation of
peturbing A to B in the gas and solution phase.

Shown in Figure 1.1, the di↵erence between the two vertical legs is the relative

solvation free energies of the species, while the horizontal legs are the perturba-

tion between the two species when solvated, and in the gas phase. The direct

calculation of the solvation free energy of each individual molecule is prohibitively

di�cult, as the overlap of the phase space between a molecule in gas phase and

in solution is too poor to use the methods outlined above. Assuming the two

molecules are su�ciently similar, their phase space within a given environment

should overlap, allowing the computational methods of free energy calculation to

be possible. The two alchemical transformations are equal to the two solvation free

energies, �G
A

solv
� �G

B

solv
= �G2 � �G1. Thermodynamic cycles are also used

for the calculation of molecular association, where gas and solv instead represent

bound and unbound complexes. The calculation of the free energy between two

states, requires a pathway to exist between the two states through the � coupling

parameter outlined above. The pathway taken between the two states is known as

the molecular mechanical topology. There are two main approaches to this, known

as single topology and dual topology, illustrated in Figure 1.2.

Illustrations of both single and dual topology are shown in Figure 1.2. In dual

topology, the pathway between the two states is generated by retaining two in-
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Figure 1.2: Two protocols for alchemical perturbations; dual topology and
single topology. Dual topology contains two ligands, while one is decoupled
from the system across �, the other has its interactions turned on. Single
topology only contains one ligand, which is geometrically and electrostatically
altered between the two ligands considered.

dependent topologies of each state (A and B), both of which are present in the

calculation. Each state does not interact with the other, but interacts with its en-

vironment with an energy scaled by �. At each � value, two topologies exist, with

state A interacting with its environment with a value of �, and B, a value of (1-�).

At � = 0 and 1, only one state will be ‘on’ and the other ‘o↵’.30 Single topology

di↵ers from this as only one independent topology exists at intermediate states

generated by � scaling of the force field and geometric parameters. A molecular

geometry at each � value is required for the simulation, which at intermediate �

values will refer to an alchemical molecular structure. This involves the mapping

of the two structures onto each other, and changing di↵ering bond lengths and

atom types across the � path. Where an atom is not present in the map of the

other, dummy atoms are required. When an atom is perturbed to a dummy state,

the bond to the dummy atom is retracted. The determination of the state of the

hybrid topology at intermediate � values can sometimes be non-obvious for two

states, and the accuracy of the result may vary depending on the protocol, if the

two end points are not clearly defined.29 When an atom is perturbed to a dummy

state, the bond to the dummy atom is retracted, such that the dummy atom is
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within the vdW radius of the bound atom. If the protocol di↵ers in end states, the

free energy will be dependent on the method of shrinking/disappearing atoms or

groups,31, 32 requiring a bond length pseudo-potential of mean force correction to

ensure the free energy is independent to the shrinking of these groups. This issue

only arises when the dummy-bond is sampled within each � window. As bond

lengths are not sampled within the ProtoMS software, this is not a consideration

for these results. Any contributions due to a choice in single-topology protocol

should cancel directly between the two legs of the calculation, i.e. solvation and

bound legs.

At the end values of the � pathway, both single and dual topology may have

either created or annihilated of atoms in the system. If a molecule is ‘o↵’ it has no

interaction with its environment and is able to overlap with surrounding atoms. If

an atom is then turned on from this position of overlap, the energy will be infinite,

even if the interaction of the group is scaled to be very small at the neighbouring �

value. This is known as a singularity problem, occurring due to the r�12 repulsion

term in the Lennard-Jones equation. Soft-core potential functions are able to stop

infinite energies by removing the points of singularity and ensuring the energies

are finite in these high energy conformations.33 One possible form of soft-core

potential function has the form of Equation 1.32,34 where a value of 0.5 for � is

suggested in the original work. As the interatomic distance, rij approaches zero,

an unsoftened functional would result in an energy of infinity, while Equation 1.32

causes the energy to go to a constant, finite value (��)�6�6
ij
, where ✏ and � are

the combined Lennard-Jones parameters for a pair of atoms, and � controls the

degree of softness.

V
LJ

ij = 4✏ij(1� �)

 
�
12
ij

(���ij)6
�

�
6
ij

(���ij)3

!
(1.32)

While the Lennard-Jones softening allows molecules to interact with a finite

value at short distances a consequence of this that charged molecules are able to

move closer together than if a normal potential is used. This can be bypassed

by two methods; either a two-step decoupling can occur, whereby the Lennard-
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Jones interactions and electrostatic interactions are decoupled from the system

in separate steps (a two-step decoupling), or an additional electrostatic softening

term can be used, Equation 1.33.

V
ele

ij = (1� �)
qiqj

4⇡✏0
q
(�+ r

2
ij
)

(1.33)

Various forms of the soft-core potentials exist and have been applied to a multi-

tude of energy calculations, from binding energies, solvation energies and solubility

of additives in amorphous materials.35–38 The calculated free energy di↵erence will

be independent of the soft-core potential system, within a range of sensible pa-

rameters.

The above describes the protocol for relative binding free energies, however

this can be applied for absolute binding free energies. For absolute binding free

energies, state A will correspond to the ligand, and state B will be no ligand. Ab-

solute binding free calculations involve the decoupling of the entire ligand, across

the � pathway. Depending on the size of the ligand, this change is generally much

larger change than a relative perturbation between two similar ligands, thus re-

ducing the phase space overlap. Not only is the removal of the ligand a large

change in the system, but the protein itself may also adjust, di↵ering in structure

between the apo and holo form. Absolute free energy packages counteract this by

introducing many � windows to the perturbation, increasing the computational

cost.39 An interesting application is the Waterswap implementation of absolute

free energy calculations in Sire,40,41 where instead of fully decoupling the ligand,

the ligand is perturbed across the � coordinate into N water molecules that occupy

the equivalent volume of the ligand. This prevents the creation of a vacuum on

decoupling, and will solvate the apo form of the protein. Waterswap assumes that

the apo form of the protein is solvated at a density of bulk water, and that the

conformation of the holo and apo protein do not significantly di↵er.
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Restraints and constraints

The dual topology method used for calculating ligand binding involves simulating

one molecule in the o↵ state, at � = 0 and 1. When a molecule is entirely non-

interacting with the environment, it is able to move by a random walk through

the volume of the simulation. This causes the sampled phase space at � = 0 and

1 to significantly di↵er from intermediate � values as the molecule can move into

clashing regions owing to being non-interacting, which can result in a lack of over-

lap in the phase spaces of neighbouring coupling parameters. The prevention of

the non-interacting molecule sampling configurational space that is unavailable to

it when in an interacting state can be achieved by trapping the molecule in the

locality of the relevant configurational space. The relevant part of configurational

space can be defined by where the ligand is considered to be bound to the protein.

This is defined by Hill et al. as being a region in which all configurations with a

significant contribution to the chemical potential of the bound state are included,

without including large regions of unbound states i.e. states that contribute to

the chemical potential in the unbound state.42 Restraints and constraints di↵er

in application between MC and MD, as in MC, only the configurational partition

function is a↵ected, while in MD, restraints also have an e↵ect on the kinetic mo-

tion, and therefore the kinetic partition function. Here, discussion will focus on

restraints and constraints in MC simulations. Several methods of trapping the

molecule exist, including associating the movement of the two states present in a

dual topology simulation,43–45 or associating the ligand to a relevant region of the

protein.46,47 In MC simulations where the macroscopic environmental coordinates

do not largely shift through the simulation, particularly if regions are treated as

rigid, the molecule can be associated to a location defined by cartesian coordi-

nates. In MD, where phase space is generally better explored, defining restraints

or constraints can often be more di�cult, as the system may shift from the initial

cartesian frame of reference, and restraints need to be defined based on dynamic

atom locations.

Trapping a molecule in a given location has the e↵ect of changing its chemi-

cal potential from that of a standard concentration.48 This can be corrected for,
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by calculating the energy associated with trapping the ligand, which depends on

the restraint or constraint method used. The two major methods that will be

considered here, are restraints and constraints. A constraint is where a hard-wall

potential is applied to the molecule, such that when the molecule occupies a region

outside its allowed volume (typically spherical) its energy will become infinite and

the move will be rejected. This has the e↵ect of trapping the molecule into the

defined volume. Restraining a molecule typically involves applying a harmonic

potential to its energy, k(x� xo)2, where the minimum of the harmonic potential

is at xo, the expected location of the molecule, and its current location is x, where

k is the force constraint. The free energy calculated using a restraint or constraint

needs to be corrected, so that the trapped molecule e↵ectively occupies the same

volume in the trapped phase as its standard state. The correction required is

shown in Equation 1.34.

�G
� �
volcorr

= kBT ln

✓
V

sim

V � �

◆
(1.34)

V
� � is the volume occupied by a molecule at standard concentration, which for

1 M solution is a volume per molecule of 1660 Å3. V sim is the volume available to

the molecule in the simulation. For constraint calculations it is simply the volume

within the hardwall potential. For restraint calculations the volume available due

to the harmonic potential is calculated as
⇣
2⇡kBT

k

⌘ 3
2
.48 This volume correction

is required whenever a restraint or a constraint is used. A harmonic restraint

was first used for the calculation of the binding free energy of a xenon atom to

myoglobin,49 however the statistical basis for the correction was first presented by

Roux et al.50 when studying the a�nity of water molecules in protein cavities. The

volume correction is required to relate free energy of the restrained or constrained

simulation back to a well-defined standard state. The resulting free energy should

be independent of the strength of harmonic restraint or volume of a constraint,

within the limit that the volume is consistent with the definition provided by Hill

et al.42

With the GCMC method, which will be introduced in Section 1.4, a correction
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Figure 1.3: Schematic of double decoupling (DD). The ligand protein system
is shown, with the restraint illustrated using a black line. When the ligand
is ‘o↵’ it is shown with a dashed border.

of a similar form to that required for double decoupling (DD) methods will be

presented in Section 2.3.5. DD is the process whereby the absolute binding free

energy of a species can be determined. First, a restraint is applied to the species,

shown as a ligand in a protein in Figure 1.3. The energetic cost of applying the

restraint, �G
A
rest is often negligible, but can be calculated using the Zwanzig equa-

tion. �Gpert is the free energy of perturbing the species from the fully interacting,

to the fully decoupled state. The final term, �G
� �
rest

is standard state term defined

in equation 1.34 that can be solved analytically.

Further corrections

Gilson et al. present several other corrections to calculate the standard free energy

change of decoupling a ligand from a binding site48 . The main result is shown in

Equation 1.35.
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(1.35)

The free energy term in Equation 1.35 is determined from a simulation, with

methods outlined in Section 1.2. The symmetry correction arises from the denom-

inator of the molecular partition function of the bound complex and the unbound
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specices, where � is the symmetry number of each state. The ligand volume cor-

rection is the correction of the chemical potential of the restrained volume to that

in the standard state, discussed in Section 1.2 and Equation 1.34. The rotational

term is equivalent to the ligand volume, in the case where restraints on the molecule

prevents full orientational sampling, e.g. if a symmetrical molecule is prevented

from sampling any of its symmetry mates. The system volume correction is the

pressure-volume work associated with the overall protein-solvent system when a

ligand is decoupled. In most cases, the protein-solvent system is significantly larger

than the decoupled ligand, causing the change in system volume on decoupling to

be small, and the correction negligible. The di�culty of understanding the vari-

ous corrections to the free energy, and methods of applying them will be discussed.

The symmetry number is the number of states of a molecule that are inter-

changeable through the permutation of indistinguishable atoms.51 The symmetry

number of a molecule can be determined by inspection, whereby � is the number

of unique configuration of atoms possible through the symmetry operations of its

point group. Note it is the number of unique permutations that contribute to the

symmetry number, rather than the range of operations. The symmetry correction

is required as computational modelling assigns distinguishable labels to simula-

tions i.e. (H1, H2) to atoms, which through molecular symmetry are equivalent.

If sampling allows H1 and H2 to interchange, the phase space of the molecule is

twice as large than if they do not interchange. More generally, a molecule with a

symmetry of � will have an available phase space proportional to �, depending on

the sampling of the system. A point of uncertainty is the contribution of internal

symmetry number of a molecule. A methyl group of a molecule is considered to

contribute a symmetry number of 3, if the group is free to rotate. Should the

group be unable to rotate such as at low energy, then the symmetry number of the

group is 1. This introduces both internal symmetry, and temperature dependence

if the likelihood of rotation has a thermally accessible barrier.52

When calculating the binding free energy of ligand A with protein B, the

assumption would be that both the protein and the complex would have no sym-
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metry (�B, �AB = 1). However considering internal symmetry, a protein may have

a higher symmetry number, provided by each methyl, carboxylic acid or other ro-

tational R group. The assumption can be made that the protein has the same

symmetry in the bound and unbound state, then the two terms cancel leaving

only the term for the ligand symmetry. A large symmetrical molecule such as

benzene may lose its ability to rotate and fully sample its symmetry states, how-

ever small molecules such as water should be free to rotate when in complex. In

this case where the ligand is mobile and can sample as many orientations in the

bound leg as the free leg, the symmetry term will cancel, as the symmetry number

of the complex A-B should be a product of the symmetry number of both A and B.

Mobley et al. have worked on the use of orientational restraints to prevent

ligand flipping, and determined the appropriate symmetry correction.53 If a lig-

and has been restrained to only one of its possible orientations, then a symmetry

correction is required. If a ligand is unrestrained, however does not fully sample all

of its possible rotations, then the correction would also be required. Mobley et al.

state if “ [a ligand’s] orientations were sampled a number of times, no correction

factor would be necessary”. This is di�cult to implement as it is unclear how much

of the symmetrical phase space needs to be sampled, and how frequent the transi-

tions between the two orientations would be required for a correction factor to be

applied. Ross et al.54 applied the symmetry correction when only one orientation

was observed during the fully ‘on’ state of the ligand during decoupling, however

Mobley et al. suggest that the correction factor would need to be applied to each

individual � replica, depending on the orientations sampled at each window.

The application of symmetry corrections and rotational corrections can be dif-

ficult to navigate. Corrections should be used if the sampling of the ligand in the

bound state di↵ers to that of the free state, whether the di↵erence arises due to

applied restraints or constraints, or as an artefact of the ligand being ‘trapped’

in the active site.53,54 The understanding that corrections are required when the

sampling between two legs is inconsistent supports the volume correction presented

in Chapter 2.
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replica exchange

Replica exchange (RE) is a computational tool developed to both improve sampling

and reduce the correlation times of simulations.55 The premise is that multiple

repeats of the same system are set up, each varying in a given parameter, where

the parameter may be, but limited to; temperature,55 �
56 and the Hamiltonian.57

Along the simulation trajectory, swaps are attempted between the di↵erent repeats,

and accepted or rejected following the Metropolis criterion,

Pswap = min

h
1, e(�i��j)(Ui�Uj)

i
(1.36)

where a swap between replicas i and j is proportional to the potential energy

Ux of each state, and thermodynamic beta �x = 1
kBTx

at the temperature Tx.

Following the example of temperature, this allows configurations that are ac-

cessible at higher temperature to exchange with those at lower temperature. This

can allow for transitions that would not typically be observed in the lower tem-

perature repeats to be observed and overcome barriers in the simulation. These

swaps do not a↵ect the Boltzmann distribution of any of the ensembles, and RE

methodologies have been expanded to molecular dynamics (REMD).26

The introduction of replicas comes at additional computational expense. For

the additional cost to be of value, RE needs to be both e�cient (a fair number

of accepted swaps) and useful (replicas are enhancing the sampling). These two

conditions are somewhat contradictory; the more di↵erent and interesting the two

states are, the less likely exchange is to occur. Multiple closely spaced replicas are

used, and various attempts have been made to most e�ciently distribute di↵er-

ent replicas.58 If the replicas are too closely spaced however, while exchange will

be frequent, the benefits in terms of phase space accessed will be small. Mixing

between states has been shown to be most e�cient when exchange attempt rates

are high.59 High exchange attempt rates are possible if the computational cost of

trialling an exchange is cheap. For some protocols such as temperature RE the
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acceptance probability for which is shown in Equation 1.36, the attempt is cheap,

as the temperature and the total energy of a configuration are known, but for

replica exchange between states of di↵ering � or Hamiltonian, the acceptance test

requires additional energetic evaluations.

Typically exchanges are attempted between neighbouring replicas, so as to

increase the likelihood of accepted swaps. While this improves exchange rates, this

can result in slow di↵usion of a replica across the replica space. Several exchange

schemes have been suggested to speed up the random walk of the replica. One

such method is to attempt an all-pairs exchange,60 which was found to result in a

four-fold speed up of replica di↵usion for an 8 replica system of aniline dipeptide

while maintaining detailed balance. Instead of only calculating Pij between states

i and j where j = i+1, all-pairs exchange calculates Pij for all other replicas. The

j state that is then swapped with state i is randomly chosen from the normalised

probabilities of all swaps. All-pairs RE allows for quicker sampling as larger steps

of states are possible. An alternate protocol can be to use self-adjusted mixture

sampling (SAMS) whereby the parameter of a single walker is able to adjust along

the simulation, within a parameter’s locality.61

1.3 Methods of calculating water binding

Two details of active site water molecules are of interest; their location and their

binding free energy. The location of an active site water molecule can be observed

experimentally from a crystal structure, however for a given protein-ligand com-

plex, the experimental structure may not exist, the protein may be too di�cult to

crystallise, or it may have been studied in the apo form, or bound to a di↵erent lig-

and. Depending on the similarity between the di↵erent ligands, it can be di�cult

to assume the ligands will bind in the same manner to each other, or if the water

network for one ligand is conserved with the other ligand. Understanding where

water molecules are in a crystal structure can be di�cult, and will be discussed

in detail in Section 1.5. The electron densities gained from crystallographic stud-

ies are a superposition of all possible positions of the electron density during the
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course of the experiment, which means that only well ordered water molecules will

be observed. If the thermal fluctuation of a water molecule is greater than 1 Å, the

limit at which electron densities can be resolved, it will not be seen in the crystallo-

graphic results.62 NMR studies of protein systems are based on the intermolecular

nuclear Overhauser e↵ect (NOE), whereby the distance between water molecules

and protein atoms are monitored, rather than the electron density.63 This means

that NMR can be used to observe more transient water molecules in protein com-

plexes that would be blurred in the corresponding electron density.64 NMR also

has limitations however, as the NOE intensity decays with proton-proton distance

at a rate of r�6, where r is the inter-proton distance, which requires the active site

water molecules to be directly interacting. For all of the stated reasons, it can be

experimentally di�cult to conclude where active site water molecules are located.

The other factor of interest is the binding a�nity of active site water molecules.

Rationalising if a water molecule should be retained or displaced in drug design

is di�cult and requires knowing how tightly bound the water molecules are. A

weakly bound water molecule will be easy to displace, and doing so will release

entropy. A tightly bound water molecule will come at a larger energetic cost to

displace, although it may be occupying a region of protein that a ligand could in-

teract with more favourably. These factors also need to be balanced with the cost

of disrupting the hydrogen bonding network within the active site, as displacing

a water molecule may destabilise other adjacent molecules. While it is possible to

locate water molecules using crystallographic or NMR results, it is more di�cult

to calculate a binding a�nity of active site water. As this is impossible to directly

evaluate experimentally, it marks a region where computational techniques can

be helpful. Various methods exist to both locate active site water molecules and

calculate their binding a�nity. This section will cover a few of these methods -DD

methods, Watermap, and Just Add Waters (JAWS).

The binding free energy of a water molecule to an active site could be cal-

culated from its relative binding and unbinding rates from determining residence

times from simulations. It is not currently possible to observe multiple binding
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events as standard in a typical simulation. The residence time of a water molecule

in an active site water network has been suggested to be on the order of microsec-

onds,65 which is significantly longer than the timescale of a typical simulation.

This means that the binding and unbinding of active site water molecules is not

typically observed in the timescale of a simulation. These sampling limitations are

worsened in cases where the active site is occluded from the bulk, or if the water

molecule is ‘pinned’ by a binding partner that would need to unbind to allow for

a pathway for the waters of interest to vacate. In addition, ProtoMS and other

MC software packages often reduce the sampling of parts of the system such as the

protein backbone, where it could reasonably be expected that large scale motions

of the protein are required for water or ligand binding or unbinding to be observed.

All of these factors mean that it is not currently possible to determine the binding

free energy of a water molecule in a typical simulation through monitoring sim-

ulation residence times. This means that enhanced sampling methods are required.

The binding free-energy of a water can be calculated using the methods out-

lined in Section 1.2, where an individual water molecule can be decoupled from

its environment in the way that ligands are treated. While absolute binding free

energy calculations are generally avoided due to the large changes in energies

involved, absolute decoupling of a water molecule can be well-behaved as the

molecule is small, meaning the phase-space overlap is better than for a ligand,

where the ligands disappearance would cause a large change in the surrounding

system. In e↵orts to classify waters in protein systems and determine their use

for drug design, Barillari et al. calculated the binding free energies of 54 water

molecules in systems of interest using the DD method with TI.66 For the calcu-

lations, hard-wall constraints were used to prevent the water leaving its location

during the calculation, and to exclude the volume to other water molecules. The

interactions between the water and its system were decoupled in two stages; firstly

decoupling electrostatic charges, followed by van der Waals interactions. This work

demonstrates a method of calculating a binding energy of a water molecule that

will be used herein, while also seen in other research.5 The work by Barillari et al.

was able to demonstrate with a 95% level of confidence that water molecules that
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are tightly bound are more likely to be conserved between structures. However, no

statistical correlation was found between the a�nity of a ligand, and the binding

energy of water molecules it displaced on binding. This highlights the need for

a method that can incorporate water binding within the active site, and the end

goal — the ligand a�nity.

Another example whereby water binding free energies have been determined

using the DD method is a paper by Michel et al.5 Michel el al.’s paper is the

basis for some of the research performed herein. For three systems, where a water

molecule is known to a↵ect the binding of a ligand, the relative binding free en-

ergy of the ligands has been calculated, both with and without the water molecule

present. The two thermodynamic cycles between the ligands are mapped onto each

other using the free energy of binding of the water in the presence of each of the

ligands. This provides a thermodynamic map, whereby a ligand without a water

molecule can be compared to a di↵erent ligand with a water molecule through a

free energy pathway of various steps. Multiple pathways can exist between the

two states, which can result in di↵erent free energy di↵erences due to errors in

cycle closures. This provides a method for comparing ligands for which water oc-

cupancies are di↵erent, but involves simulation of high-energy states, which can

introduce errors into the calculations. This method, as with other methods that

rely on the decoupling of individual water molecules, quickly become laborious as

the number of waters in a system increases, particularly if appropriate care is taken

for the order in which water molecules are decoupled. Double decoupling requires

a priori knowledge of a hydration site, as restraints or constraints are required.

Michel et al. determined the location of water molecules using JAWS.

While it is possible to perform DD on a collection of water molecules simul-

taneously, typically simulations are done only on one water at a time to increase

the accuracy of the results. DD is restrictive as the water location is required a

priori. Methods such as WaterMap and JAWS have been developed with these

issues in mind. At the time of writing, WaterMap is moving to a GCMC-type

method (release 2018-2), but the previous method (2018-1 and prior) will be de-
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scribed herein. WaterMap is an MD method, where the protein and ligand are

simulated in bulk solvent, and water positions are calculated based on the locations

of waters throughout the simulation, typically 2 ns in length.67,68 The locations of

the water molecules throughout the MD simulation are clustered before inhomo-

geneous solvation theory (IST) is used to determine thermodynamic properties of

each water.69 Watermap has been used to locate water molecules in protein-ligand

systems, typically with a water network of a holo-protein structure determined,

followed by analysis of which molecules would be displaced if a ligand is overlaid

with the structure. This method of looking only at displaced molecules has a

tendency to overlook subtle changes and shifts in the water network which may

influence ligand binding.70 One limitation of WaterMap, as is the case with DD

methods, is that each hydration site is considered as its own entity rather than as

part of a network. It can be misleading to consider a water’s binding free energy

in isolation from the rest of the system, as the e↵ects of perturbing the network

through secondary interactions can be missed. For this reason, grid inhomogeneous

solvation theory (GIST) has been developed, which considers the thermodynamic

properties of the grid, rather than each hydration site,71 which is advantageous as

it is rapid to calculate. Both WaterMap and GIST have been applied to systems

of pharmaceutical interest.72–74

Just Add Waters (JAWS) is a �-dynamics MC based method,75 whereby water

molecules sample, and are mapped onto grid points. Water molecules are able to

scale in �, i.e. the degree to which they interact with their system through, sampled

using a MC test. The locations in which the water molecules spend much time

in the ‘on’ interacting state are understood to be favourable binding sites. The

water sampling locations are clustered to identify possible binding sites. A second

simulation is required for each of the possible binding sites found in the initial

calculation, whereby the binding free energy of that water is estimated from the

ratio of simulation in which the water molecule is ‘on’ or ‘o↵’.75 The ‘on’ and ‘o↵’

states are defined as � > 0.95 and � < 0.05 respectively. The transfer free energy

is calculated using this ratio of on and o↵ probabilities using Equation 1.37.
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�Gtrans ' �kBT ln
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The choice of 0.95 and 0.05 for the definition of on and o↵ is arbitrary, and re-

sults in energies that are estimates, rather than rigorous. While still contributing

to the system sampling, the time a water molecule is in the � region between 0.05

and 0.95 it is not contributing to the free energy calculation.

The methods described are examples of a class of simulation-based predictions

of water molecules. Many other methods exist that also use IST to calculate the

free energy of water molecules.69,76,77 Other simulation based methods include 3D-

grids to probe an area, including by Setny et al. and 3D-RISM. Methods exist

that do not rely on simulation, but instead predict the locations of water molecules

based on the locations of water molecules in other crystal structures. These meth-

ods are referred to as knowledge-based,78–82 and are advantageous as no force field

or lengthy simulation time is required, but the methods will only be as good as the

data on which they are trained. One recently published knowledge-based method

is WarPP,82 and will be looked at in detail in Chapter 3, as their success rate of

80% of water molecules correctly predicted within 1.0 Å cuto↵ for a large dataset

of 20,000 waters is — to our knowledge — the highest published success rate.

To conclude, experimental techniques exist that are able to locate water molecules

in protein systems while none exist that are able to directly determine their binding

free energy. This indicates that computational techniques may be able to provide

information that is useful for drug design. Double decoupling methods are limited,

as the water binding site needs to be known a priori. Additionally the simulations

often need restraints or constraints which can be non-trivial to perform. As DD

can only determine one water molecule at a time with ease, water network methods

have been developed, including WaterMap (MD) and JAWS (MC). Both methods

involve a two stage simulation — one to identify hydration sites and one to cal-

culate the binding free energy. WaterMap calculates binding free energies using

IST, which may be limited when water network energies are of primary interest.
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GIST has been developed to bridge this gap, but the underlying method is still

only as good as sampling allows. While JAWS enhances sampling using � scaling,

the free energies calculated are estimates. GCMC is a method that can deter-

mine the hydration sites of water networks, as well as rigorously calculating their

binding free energy in a single simulation. Where other methods available are a

compromise between the number of water molecules that can be simulated, and

the quality of resulting binding free energy, the GCMC method is able to calculate

both of these rigorously, within a single simulation. The theoretical basis of the

grand canonical ensemble, the MC insertion criteria, the computational methodol-

ogy and the rigorous calculation of Gibbs free energies will be outlined in Section

1.4, and developed further throughout this thesis.

1.4 Grand canonical Monte Carlo

As discussed, understanding where water molecules are and their binding free en-

ergies is not always easy to do experimentally. Various computational methods

have been developed to perform this task, and a selection of these have been pre-

sented in the previous section. While each method has its advantages, none of the

presented methods can calculate both the locations of multiple water molecules

and their binding free energies rigorously, within a single simulation. While the

free energies determined from DD are theoretically exact, the method does not

scale well for water networks. Methods that do scale to multiple water molecules,

such as JAWs or WaterMap, do not give energies as accurate as DD. GCMC is

able to handle both water placement and binding free energy calculation of many

waters in a single simulation.

The grand canonical (GC) ensemble is the statistical ensemble of states of a

given chemical potential, temperature and volume, µVT, where µ is chemical po-

tential, V is volume and T is temperature. States in the GC ensemble, can vary

in both total energy and the number of particles. This can be thought of as being

open to exchanging both energy and particles with a reservoir, where the reservoir
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Figure 1.4: Illustration of the grand canonical ensemble, consisting of two,
canonical ensembles, with an interface permeable to molecules. The inner
ensemble will be the system of interest, while the outer is a non-interacting
ideal gas, of infinite size. Adapted from Understanding Molecular Simula-
tion.13

is an ideal gas. This allows properties dependent on an average number of particles

to be calculated as a function of their external conditions. One example of a use

of the GC ensemble is determining the extent of gas adsorption on a surface, at

constant temperature and pressure.13 In principle, a system like this, where the

the number of adsorbed particles varies, could be simulated in an NPT ensemble

(where P is pressure). However, equilibration between the surface and gas phase

may be far longer than feasibly computable due to slow di↵usion. Large simula-

tions in the NPT ensemble would be required to gain the correct average molecular

occupancy, where the GC ensemble is able to bypass the slow di↵usion processes

that are limiting in other ensembles.

theoretical basis

The grand canonical partition function can be calculated from the canonical par-

tition function. In the canonical ensemble, the system and a bath are in thermal

equilibrium, whereby energy is able to pass between the two systems. This is

known as the NVT ensemble. The grand canonical ensemble (µVT) can be un-
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derstood by considering a canonical (NVT) ensemble that has been divided into

two, where the divide is permeable to atoms. The two halves of the canonical

system, which will now be considered as one ideal part, and one ‘system’ part,

subscripted i and s respectively, have their own chemical potential (µ), volume

(vx), temperature (T), and number of atoms (nx). The partition functions of each

of the subsystems, are shown in Equations 1.38 and 1.39.13
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where ⇤ is the thermal de Broglie wavelength, U is the potential energy of

the system defined using scaled coordinates, snx , where s
nx = V

� 1
3 r

nx with r
nx

are the unscaled system coordinates. The partition function of the overall, NVT

ensemble is the product of the two subsystems;
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where the integral over the non-interacting ideal gas will be one. The division be-

tween the two subsystems is permeable, allowing ni and ns to interchange, however

the total number of particles, N is constant, ni + ns = N . The partition function

of the ensemble needs to consider every possible division of atoms between the two

systems.
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ds
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The chemical potential of an ideal gas can be determined from the ideal par-

tition function,
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F = �kBT ln(Qp) (1.42a)

F = �kBT ln

✓
V

N

N !⇤3N

◆
(1.42b)

F = �kBT


Nln

✓
V

⇤3

◆
�Nln(N) +N

�
(1.42c)

Equation 1.42c can be reached using Stirling’s approximation. The free energy

can be related to chemical potential using F = µN ;

�F

�N
= µ = �kBT ln

✓
V

N⇤3

◆
(1.43)

which when particle density, ⇢ = N

V
is used;

µ = kBT ln(⇤
3
⇢) (1.44)

. Considering the limit where the ideal gas reservoir is infinitely larger than

the system, ni ! 1, using Stirling’s approximation, Equation 1.41, becomes;

Q(N, vi, vs, T ) =
1X

ns=0

v
ni
i
v
ns
s

⇤3nin
ni
i

⇤3nsns!

Z
ds

nse
��U(sns ) (1.45)

which it is possible to rearrange to;

Q(N, vi, vs, T ) =
1X

ns=0

✓
vi

⇤3ni

◆ni
v
ns
s

⇤3nsns!

Z
ds

nse
��U(sns ) (1.46)

Substituting in Equation 1.44

Q(N, vi, vs, T ) =
1X

ns=0

e
��µni

v
ns
s

⇤3nsns!

Z
ds

nse
��U(sns ) (1.47)

. To remove dependency on ni, ni = N � ns can be used, leading to;

Q(N, vi, vs, T ) =
1X

ns=0

⇠⇠⇠⇠
e
��µN

e
�µns

v
ns
s

⇤3nsns!

Z
ds

nse
��U(sns ) (1.48)
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where e
�N will cancel to 1 in the limit where N is large. This results in the

grand canonical partition function, Equation 1.49, where there is no longer any

dependence on the ideal gas reservoir,

Q(µ, vs, T ) =
1X

ns=0

e
�µns

v
ns
s

⇤3nsns!

Z
ds

nse
��U(sns ) (1.49a)

=
1X

ns=0

e
�µnsQ(ns, vs, T ) (1.49b)

which is related to the canonical partition function. Here, vs and ns are used

to refer to the volume and number of particles of the system, but as there is no

longer any dependence on the ideal gas reservoir N and V are often used to refer

to the system, as opposed to how they are illustrated in Figure 1.4 and used in this

derivation. Using N and V to refer to the interacting system will be used onwards.

The detailed balance condition can be used to derive the acceptance criteria for

GC insertion and deletion moves. Detailed balance is discussed for configurational

sampling moves in Section 1.1, and the same method is used here. The probability

density of a grand canonical state is shown in Equation 1.50.

N /
e
�µN

V
N

⇤3NN !
e
��U(sN ) (1.50)

While the probability of a particular insertion and deletion move are equal (↵(N !

N + 1) = ↵(N + 1 ! N)), the acceptance criteria depend only on the density of

the states.

acc(N ! N + 1)

acc(N + 1 ! N)
=

N(N + 1)↵(N + 1 ! N)

N(N)↵(N ! N + 1)
(1.51)

Substituting Equations 1.50 and 1.51;
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acc(N ! N + 1)

acc(N + 1 ! N)
=

⇤3N
N !

V Ne�µNe��U(sN )

V
(N+1)

e
�µ(N+1)

e
��U(sN+1)

⇤3(N+1)(N + 1)!
(1.52a)

=
V

⇤3(N + 1)
e
�µ
e
��(U(sN+1)�U(sN )) (1.52b)

This leads to the insertion and deletion Metropolis criteria;

acc(N ! N + 1) = min


1,

V

⇤3(N + 1)
e
�µ
e
��[U(sN+1)�U(sN )]

�
(1.53a)

acc(N ! N � 1) = min


1,

⇤3
N

V
e
��µ

e
��[U(sN�1)�U(sN )]

�
(1.53b)

which hold as long as insertion and deletion moves are attempted with equal

likelihood.

methods

Above, the GCMC insertion and deletion acceptance criteria are shown, required

for simulating in the µV T ensemble. As N is a variable in GCMC simulations,

the value of N is controlled by µ, the chemical potential. The excess chemical

potential of a system is the di↵erence between the given chemical potential, and

the equivalent ideal gas system. This is the Helmholtz free energy required to move

a particle between a system and the ideal gas. This allows the excess chemical

potential to be related to the Helmholtz free energy di↵erence between a system,

and the system with one fewer molecule, Equation 1.54, where �N = 1

µ
0 =

�Fex

�N
= Fex(N + 1)� Fex(N) (1.54)

The excess chemical potential of a system can be determined computationally

using Widom’s particle insertion method.83 Widom particle insertion involves re-

peated attempts to insert a test particle into a system, with the excess chemical

potential calculated from the exponential of the energy of the insertion, Equation

1.55.
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µ
0 = �

1

�
ln

Z
dsN+1

D
e
���U

E

N

(1.55)

In practise, this will be a summation over microstates observed, rather than an

integral over all states of the system. The GC acceptance criteria, Equation 1.53,

were derived by Adams, who first included the acceptance and deletion moves to

simulate with the µVT ensemble, for both a hard-sphere fluid84 and a Lennard-

Jones fluid.85 The Adams formulation of GCMC is the method used in this work.

The method allows the chemical potential to be chosen for the simulation, however

choosing a sensible value of µ is less intuitive than other parameters such as V and

T, as it is not an experimental observable. Adams combined the chemical potential

with other required constants, to use the B parameter (or Adams parameter),

Equation 1.56,

B = µ� + ln

✓
Vsys

⇤3

◆
(1.56)

Where Vsys is the volume of the GCMC region. This can be substituted into

Equation 1.53, to provide the equivalent Metropolis criteria shown;

acc(N ! N + 1) = min


1,

1

(N + 1)
e
B
e
��[U(N+1)�U(N)]

�
(1.57a)

acc(N + 1 ! N) = min

h
1, Ne

�B
e
��[U(N�1)�U(N)]

i
(1.57b)

As the chemical potential controls the average number of particles in a system,

the correct chemical potential can be established deterministically — where simu-

lations are repeated with di↵erent µ until an expected value of N is observed.86 At

lower chemical potentials, fewer particles are inserted into the system, and there-

fore the lower the chemical potential at which a particle is first inserted, the more

favourable the inserted particle is interacting with the system. A consequence of

this is that the particles can be rank-ordered by a�nity according to the chemical

potential at which they insert. This however requires knowing the expected value

of N for the system, which is a parameter that would ideally be calculated without
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prior knowledge.

The GCMCmethod has previously applied to ligand-protein systems,86, 87 with

water molecules treated as the GC species present in the simulation. The chemical

potential was determined by matching the known experimental value of number of

waters for a system, and the waters are rank ordered by the chemical potential at

which they first insert into the system. This implementation results in the method

being deterministic. Grand canonical integration (GCI) and other theoretical de-

velopments will be described that allow the method to be used predictively.

cavity bias

Whether GCMC is considered for protein-ligand systems, or other applications

such as interfaces or porous materials,88,89 the method can su↵er from poor ac-

ceptance rates for insertion and deletion. GCMC is advantageous for systems

where the property of interest is dependent on a slow rate of di↵usion, whereby

the GCMC methodology is able to computationally speed up the sampling of the

e↵ect of the di↵usion. One factor that may cause di↵usion to be slow, is the den-

sity of the system of interest. If a system is high density, attempting an insertion

into the GCMC region can be di�cult due to a high probability of overlapping,

high energy configurations. Attempts have been made to improve the acceptance

rates of GCMC, most notably through cavity bias. Cavity bias was presented by

Mezei to study a dense LJ fluid at the triple point.90,91

Cavity bias GCMC (CB-GCMC) has an additional stage in the algorithm,

where prior to an insertion, a grid search of Nt points is attempted over the GCMC

region, to estimate the probability (PN
c ) of finding a cavity of radius larger than

Rc. Several methods of calculating P
N
c are suggested by Mezei and are labelled

following the original notation; P
N
c can be an average of all PN

c (rN ) observed

previously the simulation (mean, M), or an average of PN
c (rN ) where the insertion

or deletion move is accepted (accepted mean, AM) or P
N
c (rN ) is determined by

a frame-wise grid search at each step, (grid search, GX). The insertion is then
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attempted into one of the grid points identified, and accepted or rejected based

on Equation 1.58a. This prevents attempting insertions that result in overlap and

high energy structures, by only attempting insertions where there is space. This

means that �U of insertion is finite and small, and will increase the likelihood of

acceptance. As the insertion acceptance criteria has changed, so must the deletion

acceptance to maintain detailed balance, Equation 1.58b.

acc(N ! N + 1)CB = min


1,

V

⇤3(N + 1)
P

N

c e
�µ
e
��[U(N+1)�U(N)]

�
(1.58a)

acc(N ! N � 1)CB = min


1,

⇤3
N

V P
N�1
c

e
�µ
e
��[U(N+1)�U(N)]

�
(1.58b)

If the system has very high density (PN
c = 0), then there is no point within the

grid system for cavity bias to attempt an insertion, and 1.58a approaches zero. In

this case, the simulation will revert to unbiased GCMC insertion criteria, where

the insertion will be attempted at any location, with the acceptance criteria fol-

lowing Equation 1.53a. As it is possible for the insertion to revert to the unbiased

scheme, the deletion moves must be balanced with respect to this, whereby the

unbiased deletion move will be attempted with a probability of (1� P
N�1
c ).

The work by Mezei considers cavity-bias GCMC simulations of densely packed

LJ fluids. Roux et al. have extended this methodology to make orientational-bias

cavity-bias GCMC for systems where the GC solute has orientational degrees of

freedom.92 This follows the basic methodology outlined by Mezei. However, once a

grid-based search has been performed to find a suitable cavity site, an orientation

l of the species is chosen with the probability;

P
N

CO =
e
��Ul

P
m

i=1 e
��Ui

(1.59)

where Ui is the potential energy of the ith orientational state of the m orienta-

tional trial states, of which the lth state is chosen for insertion. Where co indicates

that the simulation has both a cavity and an orientational bias. This PN

CO
is then
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used in the acceptance insertion criteria shown in Equation 1.58. When a deletion

molecule is attempted, m � 1 alternate conformations for the water molecule of

interest are generated, so as to calculate P
N

CO
for the deletion move. This ensures

detailed balance is maintained.

While cavity bias has been shown to be an e↵ective method to increase ac-

ceptance rates of GCMC moves, the extent of its benefit will depend on the cost

of the additional e↵ort of evaluating P
N
c throughout the simulation. E�cient

methods for calculating P
N
c in the simulation have been suggested91 using a FCC

packing grid that updates with a frequency dependent on the types of accepted

moves within the simulations – a simple translation is unlikely to largely a↵ect

the number or size of cavities, whereas a successful insertion or deletion will. The

additional orientation bias was also found to increase the GCMC insertion rates,

from 0.06% to 0.81%, but it also requires many additional calculation steps for

each MC of the protocol.

grand canonical integration

The binding a�nity of a single water molecule can be calculated using the interacting-

particle method, presented by Clark et al.93 This has been applied to protein-ligand

systems, and a general form of the equation is shown in Equation 1.60. This re-

quires simulations performed over a range of chemical potentials, to give a range

of corresponding N values.

N(B) =
1

1 + e��Ftrans�B (1.60)

The equation is of the form of a logistic function. This general form of the equa-

tion was presented by Ross et al., Equation 1.61,54 where the integral is performed

over the sum of multiple logistic functions. Equation 1.60 shows that �Ftrans will

be equal to the half-maximum point of the curve, where N(B) = 0.5. This is where

the chemical potential of the system is equal to that of the ideal gas system, and
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the water is equally likely to be in either system, resulting in an average occu-

pancy of 0.5. The half-maximum is determined by fitting a logistic function to the

simulation results, and from that calculating the point of half-maximum.

One benefit of GCMC is the ability to study multiple particles at the same

time, and for the case of water molecules in protein-ligand systems, the ability

to calculate the energies of multiple water molecules would provide a mechanism

with which the optimal water occupancy could be calculated stochastically. The

ability to calculate the optimal occupancy is an improvement on the purely deter-

ministic grand canonical methods discussed above. Ross et al. introduced the GC

Integration (GCI) Equation, whereby the form of the single-water, Equation 1.60,

can be generalised to the case of many-water systems. Previously, fitting a logistic

function to the titration points of a single-water system allowed the free energy

of that water to be determined. The generalised form can calculate the energy of

changing the water occupancy from Ni to Nf molecules, Equation 1.61

��Ftrans(Ni ! Nf ) = NfBf �NiBi + ln

✓
Ni!

Nf !

◆
�

Z
Bf

Bi

N(B)dB (1.61)

�Ftrans is the energy of moving (f�i) waters from an ideal gas into the system

of interest. Bi and Bf are the Adams parameters which produce an average water

occupancy of Ni and Nf waters respectively. The integral term is calculated by

fitting multiple logistic equations to the titration of multiple waters. The ln
⇣

Ni!
Nf !

⌘

term is a multiplicity term, which accounts for the ability for molecules to exchange

within the active site. In DD simualtions, water molecules with specific atomic

labels are either restrained or constrained to a particular hydration site, whereas

GCMC allows for the exchange between di↵erent atomic labels to occupy di↵erent

sites. As all molecules can move into the ideal gas ‘o↵’ state and sample the

whole system, any water is able to insert into any water position within the site.

The logarithmic factorial term is able to account for the multiplicity of both the

initial and final water network considered. Equation 1.60 is equivalent to the GCI

equation, for the case between zero and one water, where Ni = 0,Nf = 1;
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��Fgci(0 ! 1) =⇢
⇢>
1

NfBf �⇠⇠⇠:0
NiBi +

������*0

ln

✓
Ni!

Nf !

◆
�

Z
Bf

Bi

N(B)dB (1.62a)

��Fgci = Bf �

Z
Bf

Bi

N(B)dB (1.62b)

Ftrans has been replaced with Fgci and Fsingle to discern between the free energy

determined from Equations 1.60 and 1.61 respectively. Integrating Equation 1.60

gives;

Z
Bf

Bi

N(B)dB =

Z
Bf

Bi

1

1 + e
��Fsingle�B

dB (1.63a)

=
h
ln

⇣
e
��Fsingle + e

B

⌘iBf

Bi

(1.63b)

= ln

✓
e
��Fsingle + e

Bf

e
��Fsingle + eBi

◆
(1.63c)

= ln

✓
1 + e

Bf���Fsingle

1 + e
Bi���Fsingle

◆
(1.63d)

For the single water case, both N(Bi) = 0 and N(Bf ) = 1 hold. For the

first condition, the denominator in Equation 1.60 must go to infinity, therefore the

limit ��F �Bi ! inf holds (alternately Bi � ��F ! � inf). For N(Bf ) = 1, the

denominator must go to 1, and therefore the limit Bf � ��F ! inf. Substituting

both of these into Equation 1.64a;

Z
Bf

Bi

N(B)dB = ln

0

@�1 + e
Bf���Fsingle

1 +⇠⇠⇠⇠⇠⇠⇠: 0

e
Bi���Fsingle

1

A (1.64a)

Z
Bf

Bi

N(B)dB = Bf � ��Fsingle (1.64b)

where �Fgci and �Fsingle are now equivalent by inspection of Equations 1.62b

and 1.64b.
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The form of the GCI Equation shown in Equation 1.61 does not determine

standard state binding free energies, but this will be discussed and the correct

form presented in Chapter 2.

The GCMC method determines �Ftrans, the Helmholtz free energy to transfer

water molecules from an ideal gas system into the system of interest. What we

would like to be able to calculate is the Gibbs free energy of binding, �Gbind, of

transferring water molecules from bulk water to the system. For a network of water

molecules in a system, the equilibrium occupancy will be where the thermodynamic

equilibrium is where this is at a minimum;

d�Gbind(N)

dN
= 0 (1.65)

Where �Gbind is the binding free energy of the water molecules to the system

— the metric of interest in GCMC. The Gibbs free energy of binding is the free

energy of increasing the number of waters in the system, combined with the free

energy of removing those water molecules from solution;

�Gbind = �Gsys � �Gsol (1.66)

Where �Gsol is the Gibbs free energy of insertion of the water molecules into

bulk water, Nµsol, where µsol is the chemical potential of a water molecule in

bulk water. The Gibbs free energy of the system, �Gsys, can be equated to the

Helmholtz free energy of the system, �Fsys, as the e↵ect of pressure on the Gibbs

free energy under standard conditions is negligible.94

The Helmholtz free energy of a system, �Fsys, is the combined energy of

introducing the water molecules into a coupled ideal gas system, �Fideal before

transferring the water molecules from the ideal gas to the system �Ftrans. From

this with Equation 1.66, the Gibbs free energy of binding can be determined;

�Gbind(N) =⇠⇠⇠⇠⇠⇠:0
�Fideal(N) + �Ftrans(N)� �Gsol(N) (1.67)
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Figure 1.5: Thermodynamic cycle of the Gibbs free energy, where the system
is coupled to bulk water, and the Helmholtz free energy, where the system
is coupled to an ideal gas. The �Gbind can be calculated by following the
alternate pathway around the cycle, using the approximation�Gsys ⇡ �Fsys.

In previous work, the �Fideal was erroneously believed to have zero contribu-

tion to the energy. This error has been corrected, and the contribution of �Fideal

explicitly included, in Section 2.3.3. The e↵ect of this mistake, and its correction,

are discussed fully in Chapter 2. The overall thermodynamic cycle illustrating how

the Gibbs free energy of binding can be calculated from the other thermodynamic

contributions is shown in Figure 1.5.

computational implementation

Within this thesis, GCMC has only been attempted with water molecules. How-

ever, in theory the method could be used for any particle or species, and will be

defined as a GC particle in this section. GCMC simulations are performed using

in-house Monte Carlo biomolecular simulation program, ProtoMS.95 GCMC dif-

fers from typical MC methods as the number of molecules, N is able to fluctuate

throughout the simulation, by insertion or deletion moves. Within ProtoMS, a
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cubic GCMC region is chosen by the user. In practice, any shape of GCMC re-

gion could be used, but a cuboid has been used for simplicity. Within this region

any molecules of the same species of the GC particle are removed during set up,

and insertions and deletions are only attempted within this region. If a transla-

tion move of a GC particle results in moving the centre of mass of the particle

outside the GC region, then the move will be rejected to prevent any GC water

molecules from leaving the box. Theoretically these molecules are coupled to an

ideal gas, however simulation of this ideal gas is not required. One method for

simulating additional particles to insert into the system is to simulate an overlay-

ing system of ‘ghost particles’. Insertion and deletion moves attempt to vary the

ghost molecules between an on and o↵ state. These ghost molecules move through

the system through normal Metropolis sampling methods. The ghost molecules

are able to move freely as any MC move will be accepted as the species are non-

interacting; therefore they take a random walk throughout the region. ProtoMS

versions 2.3 and 3.0, as were used in the work by Ross et al., previously used this

method of sampling ghost water molecules, but there is a tendency for this method

to be slow to converge. If a water molecule has been deleted, then a vacancy will

be present in the system and it is likely that the newly o↵ water will not move far

from this vacant site before it could be turned back on again. This hysteresis of

ghost water molecules does not alter the results of the simulation, but slows down

sampling of the site, and therefore convergence.96

The software has been updated such that the sampling of ghost particles is

avoided. Before each insertion, the ghost particle will be assigned a random ori-

entation and location within the GC region. The randomisation of the particle’s

position prevents the need for the random walk of the ghost particle. ProtoMS

uses the widely-adopted method established by Norman and Filinov,97 using three

moves of molecule displacement, deletion and insertion. The displacement and ro-

tation of GC atoms follows the typical Metropolis sampling, and the insertion

and deletion moves are accepted using Adam’s criteria, discussed in Section 1.4,

using Equation 1.53. Of the three grand canonical specific moves, the insertion

and deletion moves must be attempted with equal probabilities as to maintain

the requirement of detailed balance. The third move of grand canonical sampling
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has no requirement to be proportional to the insertion or deletion moves, however

convergence is found to be fastest when moves are sampled at a 1:1:1 ratio,97 thus

used as the default setting in ProtoMS.

1.5 Experimental comparisons

X-ray crystallography

Experimentally, protein structures can be determined by a range of methods such

as X-ray crystallography, NMR, fiber di↵raction and electron microscopy. While

other methods are increasing in popularity, X-ray crystallography is the most

commonly used, and is the only method considered herein. Elucidation of crystal-

lographic structures is not trivial, as both protein crystallisation and solving the

electron density is di�cult. Protein crystallisation is di�cult as proteins are in-

herently sensitive to biological conditions; temperature, pH, ionic strength, metal

ions, inhibitors, cofactors and the presence of other small molecules.98 Protein

crystallisation is attempted by performing large-scale matrix trials to attempt to

find any conditions that stimulate crystallisation, which is then iteratively im-

proved to grow crystals of su�cient quality for X-ray studies. Some proteins are

more di�cult to crystallise than others, such as intrinsically disordered proteins,

or membrane proteins that are largely hydrophobic and therefore generally insol-

uble. The bias in crystallisable proteins means that well-behaved targets are over

represented, while membrane proteins, which represent 20-30% of the proteomes99

of most organisms make up only 1% of the protein data bank (PDB).100

Crystallising the protein is only the first hurdle; the primary result of an X-ray

experiment is the electron density, which needs to be correctly assigned to atoms

of the molecule. The atomistic map of the model is then refined by optimising the

fit between the expected electron density of the model (Fcalc) to the experimental

electron density (Fobs).101 The level of agreement between Fcalc and Fobs is mea-

sured by the R-factor, which is a measure of the global accuracy of the model.

This refinement of the atomistic model can be performed by using computational
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algorithms such as least-squares, however the models can become trapped in local

minima, and need intervention from qualified crystallographers to achieve the best

agreement.102 Along with the atomistic model, each atom is assigned a temper-

ature factor (B-factor, which is di↵erent to the Adams’ parameter B). B-factors

describe the isotropic amplitude of displacement of an atom, within a range of 2

to 100 Å2, and indicate how mobile or disordered an atom is, relative to the rest

of the structure. Anisotropic B-factors are available for some structures, and can

indicate a relationship between the structure of a molecule and its dynamics,103

however the crystallographic data needs to be high quality to justify modelling

anisotropic B-factors for a given structure.104

While much of the model refinement process is automated, human input can be

required to find the model that is the best fit to the electron density. This human

input can be subjective, and can result in slightly di↵erent models depending on

the experimentalist. One example of this subjectivity is the case where the same

high-quality electron density was given to two experienced crystallographers. How-

ever, in their resultant atomistic models, over 50% of the assigned water molecule

locations di↵ered by a distance greater than 1.0 Å.105 As the automation process in

crystallography continues to improve, the bias of the crystallographer in the results

should be reduced. E↵orts have been made to post-process electron densities avail-

able in the PDB in a project called PDB REDO.106 These re-refined structures

are publicly available online107 and have all been produced without human inter-

vention (although the inherent design of the software will introduce some degree of

human influence), but also can improve structures that were processed with older

generations of software. While PDB REDO is an interesting project; it is limited

in its application to our interest in active site water molecules. PDB REDO will

attempt to reposition assigned water molecules, or remove clashing ones but does

not currently support the addition of missing water molecules.

Crystallographic structures are used to assess the accuracy of computational

methods of active site water locations. If active site water locations in crystallo-

graphic structures are not reliable, then this can make it di�cult to determine if
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a computational method is functioning optimally. E↵orts can be made to quan-

tify how reliable a crystallographic water molecule is by measuring the underlying

quality of the electron density in the local region. Various methods exist to assess

the validity of the model, including real-space R (RSR),108 and real-space corre-

lation coe�cient (RSCC).109 RSR compares the calculated and observed electron

density for a grid placed over the atoms of interest. RSCC is the calculated cor-

relation coe�cient of the RSR. Both of these real-space methods are limited, as

both methods rely on, and are sensitive to, a choice of atomic radius as this defines

its extent in the electron density. The atomic radius can either be fixed based on

atom type, or a function of the atoms’ B-factor. This means that both the RSR

and the RSCC are strongly correlated with the metrics used for the model i.e.

B-factor. As the definition of the atomic radius was not rigidly defined in the

original publication, issues have arisen with results varying with di↵ering software

packages to calculate supposedly the same metric.110

Methods have been developed that calculate the quality of crystallographic

model by considering the di↵erence density map. fo � fc and 2fo � fc are the

di↵erence maps (fo and fc the observed and calculated electron densities respec-

tively), which can indicate regions where there is electron density with no atom

assigned, or where there are atoms assigned with no supporting electron density.

These di↵erence maps can be useful in assessing the precision of a model, and the

real-space di↵erence density Z score (RSZD) is a �
2 test for these di↵erences to

measure the normalised di↵erence in density.110 The real space observed density

score (RSZO) is a measure of the signal-to-noise ratio in the RSZD and is a mea-

sure of the precision of the proposed model. RSZO scores regions of well defined

electron density as greater than 1�, where � is the standard deviation in the elec-

tron density. RSZO should be more reliable than other real space methods, as the

atomic radius definition is clearly defined; calculated using using B-factor, element,

charge, and structure resolution, but with the B-factor being less correlated to the

final metric than for RSR and RSCC.

Electron density for individual atoms (EDIA) is another metric to assess the
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quality of the underlying electron density for a given atom. This was initially

developed and used to calculate electron densities of 2.3 million crystallographic

water molecules,111 before being generalised to all atoms in a crystal structure.112

In the EDIA calculation, the atomic radii used are taken from a calculated table,

depending on the element, charge and resolution of the structure. The table is

generated from all available PDB structures, and the average B-factor is available

based on an atoms element, charge and resolution, for resolutions between 0.5

and 3.0 Å in steps of 0.5 Å. The table of atomic radii used have been determined

from the average B-factor for all PDBs within the given resolution. Using the

average B-factor over each set of resolutions of PDBs should avoid issues with the

constrained optimisation of B-factors for a given structure. The EDIA score sits

on a scale between 0 - 1.2, where the higher the score, the better the electron

density supports the position of the atom. An EDIA score below 0.8 suggests that

there is not enough electron density to support the location of the atom, with this

value chosen based on inspection of many structures and electron densities.112

a�nity experiments

The usefulness of an organic molecule will depend on many factors from its ad-

sorption, distribution, metabolism, excretion, toxicity (ADMET), its a�nity and

its specificity. While computational methods exist to attempt to model all of

these metrics, only the a�nity will be considered in this thesis. The a�nity of a

reversible ligand (L) to a protein (P) at equilibrium, can be considered;

P + L *) PL (1.68)

Where PL is the bound complex. The rate of association and dissociation are

respectively calculated as;

rateass = k+[P ][L] (1.69a)

ratediss = k�[PL] (1.69b)
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where [X] indicates the concentration of species X. The rate constants of asso-

ciation and dissociation are shown as k+ and k�. The association step is a second

order reaction, as it depends on the concentration of two species. The rates of sec-

ond order reactions are often dominated by the rate of collision, rather than the

likelihood of conversion into product. The rate of collision in the case of a small

molecule and a protein is determined by the size of both species and the size of their

interaction surface. The association rate constant for a protein-ligand complex is

therefore fairly constant, typically within the range of 106 � 107Ms
�1.113 The

dissociation step is first order, depending only on the concentration of [PL]. The

dissociation rate constant, k�, is the probability of the ligand to unbind from the

complex within a given time. The equilibrium of the reaction shown in Equation

1.68 is the point at which rateass = ratediss, where the following holds;

k+[P ][L] = k�[PL] (1.70)

and the equilibrium constant (Keq),

Keq =
k+

k�
=

[PL]

[P ][L]
= K

�1
d

(1.71)

where the larger Keq, more of the species are in the associated, PL, state. Keq

has units of M�1, if the activity is neglected. Inverse molar units are unintuitive,

therefore the dissociation constant Kd, which is the inverse of Keq is more com-

monly used. Small values of Kd, which uses units of M , typically indicate a slower

dissociation rate, and therefore a higher a�nity of the ligand. The Kd of a reaction

can be related back to the Gibbs free energy change of the reaction,

�G
� �
bind

= RTln(Kd) (1.72)

where R is the gas constant and T is temperature.

The a�nity of a ligand to its target can either be calculated using equilibrium,

or kinetic experiments. Equilibrium assays a↵ord the rate of the association and

dissociation reactions, as a function of the concentration of one of the reactants.

Recording the concentration of product as a factor of reactant concentration should
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result in a hyperbola correlation, from which Kd can be determined from the point

of half maximum.113 Kinetic experiments are more involved; rather than simply

changing the concentration of a reactant and recording the concentration of the

product as performed in equilibrium experiments, kinetic experiments involve al-

tering the conditions of the experiment and monitoring the time taken to return

to the equilibrium distribution. For a dissociation rate constant, this can be calcu-

lated by monitoring the displacement of a fluorescence labelled ligand on addition

to the system of a non-labelled ligand.113 Kinetic experiments allow for the cal-

culation of k+ and k�, which in turn can be related back toKd using Equation 1.71.

Equilibrium or kinetic experiments can be performed using optical assays. One

example of an optical assay is where the fluorescence intensity is measured as a

function of a reactant concentration. Proteins fluoresce due to aromatic moieties

and disulfide bonds within their structure, with the strongest response occur-

ring from tryptophan residues.114 These naturally occurring fluorescent groups are

known as intrinsic moieties. In some cases, a shift in fluorescence can be seen on

ligand binding, which can be used to monitor [PL] within the experiment. If there

is no tryptophan present (it accounts for ⇠1.3 % of amino acids in vertibrates115),

or ligand binding does not shift the fluorescence, then extrinsic fluorescing moi-

eties can be used. This involves tagging a reactant with an extrinsic dye molecule,

that allows for an optically measurable response. This is inconvenient as creates

additional synthetic work, and makes the possibly incorrect assumption that the

extrinsic moiety does not alter the binding of the ligand.

Surface plasmon resonance (SPR) methods are kinetic experiments; allowing

for the measurement of rate constants, rather than just Kd. SPR is beneficial as

it does not require the labelling of any of the species involved. The protein is im-

mobilised on a sensor surface, over which a continuous flow of ligand is passed. As

the ligand molecules bind to the protein, the refractive index of the surface shifts

depending on both the mass of the ligand and the Kd. As it is possible to monitor

the refractive index as a function of both time and ligand concentration, the rate

constants can be elucidated by the method.116 Limitations of SPR include the
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unquantified e↵ect immobilising the species has on the association, and can give

incorrect results if the reaction is not bi-molecular, and it can be di�cult to cal-

culate k+ rates faster than 106Ms
�1 or k� rates outside the range of 10�5�1s�1.116

Isothermal titration calorimetry is another method able to elucidate more than

just the Kd of a binding event.117 Using two cells (one of which is a sample cell, the

other, a reference cell) that are thermally coupled using a thermally conducting

material within an adiabatic system, where the energy remains constant, the heat

evolved from a binding reaction is measured. The heat evolved is monitored by

recording the power required via a reference heater to maintain the same temper-

ature in the two cells. This allows Kd, the stoichiometry of the reaction and the

enthalpy �H to be directly determined. The Gibbs free energy (�G) can be cal-

culated from Kd using Equation 1.72, which can in turn be combined with �H to

indirectly calculate the entropy of binding. In addition, the thermal heat capacity

(�Cp) of the binding can be calculated by recording the temperature dependence

of the enthalpy. ITC is commonly used in the drug discovery process as elucidation

of additional thermodynamic properties can be useful for rationalising Structure

Activity Relationships of protein-ligand complexes.118

1.6 Current errors in computational modelling

“All models are wrong, but some are useful”119 — George Box

The applications of computational chemistry are broad, and computational

methods are able to contribute to science in many ways; from large scale in-silico

screening of small molecule libraries, to high-level quantum mechanical simulations

to elucidate a reaction pathway. While there are many examples of computational

simulations correctly modelling reality, there are many occurrences where they may

go wrong, and errors can occur. Errors that can arise belong to five categories:

error in the force field used, incomplete sampling of the model, incorrect model

generation during set up, mistakes in underlying theory, and computational bugs.

These will be discussed in turn.
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computational errors

Computational errors, i.e. programming errors, will exist in every software pack-

age. While never fully avoidable, they can be limited by ensuring coding best

practises. Best coding practise involves constant testing of code during develop-

ment, on a range of systems. If changes or new functionality is added to a package,

testing of seemingly unchanged sections of the code is also required, to ensure that

additions do not adversely a↵ect other functionalities. Something that is often

missed when developing software for biomolecular simulations, is the testing of the

code on simplified test systems, such as Lennard-Jones fluids or bulk water, as

it can often be easier to spot errors in less complex, faster to converge systems.

Analytical result may be available for simple test systems, to provide reliable com-

parison. One such example is the high-profile disagreement between two renowned

scientists, groups were observing di↵ering phase-states of water at the same condi-

tions.120 The seven-year dispute was only resolved when it became apparent that

one groups’ simulations were occurring at a di↵erent temperature than which they

believed. Issues can also arise if software is used on hardware on which it has not

previously been implemented on, but this can be prevented by software such as

Docker, which are linux containers that allow for consistent development platforms

through virtual machines that are consitent at the operating-system level.121

force field errors

Within molecular modelling, a system is treated on an atomistic scale, and atoms

are assigned bonded (bonds, angles, dihedral) and non-bonded (van der Waals

(�,✏) and electrostatic (q)) terms. A set of atom terms, known as a forcefield,

are parameterised to reproduce experimental properties. Errors in a model can

arise if the model is being used beyond the properties or conditions initially in-

tended. Some atoms cause particular issues for force field parameterisations; such

as charged ions, or if the fixed point charge does not capture the electronic struc-

ture of the atom. A huge range of varying parameters exist in the literature for one

ion type.122 Another issue that can occur with force fields is mistakes in the atom

typing during parameterisation, due to large redundancy, and counter-intuitive
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di↵erences in atom types. Methods to avoid atom types have begun with the

Open Force Field Consortium via the force field format, SMIRNOFF.123

Other force field related issues can arise if the level of theory used in the

model is not appropriate for the issue of inquiry. Higher-level quantum simulations

may be more appropriate for certain questions. Polarisable forcefields exist which

can better respond to electronic influences.124 These should be particularly useful

for protein-ligand binding, X-ray crystallography and other cases where correctly

modelling the electrostatic properties are necessary. The additional polarisation

terms require even more parameters to be optimised during force field development,

and the additional terms can reduce the speed of simulation.

sampling limitations

The discord between the timescales achievable computationally, and those timescales

at which biologically interesting processes occur, are frequently discussed. How-

ever, the timescales and complexity of systems modelled using computational

chemistry continue to increase. One factor causing this is software improvements,

with design of methods that are able to speed up the rate of sampling of a sys-

tem. Metadynamics is able to encourage a system over high energy barriers using

biases,125 coarse-graining can speed up simulations by reducing the number of in-

teracting parameters126 and many other enhanced sampling methods can overcome

energetic barriers.127,128 These methods allow the progress of a simulation, or its

e↵ective timescale, to increase with a given amount of computational resource.

The other factor in the increase of available computational timescales is the

improvements in available hardware. The increase in achievable timescales associ-

ated with Moore’s Law, which states that computational power doubles every ⇠18

months, owing to the increase in the number and speed of transistors in integrated

circuits.129 Moore’s Law has shown to be reliable since its prediction in 1965. An-

other achievement of computer science is the invention of GPU’s and introduction

of parallel computing, initially designed for the video game industry, but has been

repurposed for use in biomolecular simulations.130 These computational advances
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have significantly improved the timescales achievable by simulation methods much

beyond the first example of a microsecond long simulation 20 years ago.131

One of the major hardware developments is the specialised MD machine, An-

ton, that contains custom-designed GPU chips.132,133 Anton has demonstrated its

ability to simulate large systems for long timescales, and of particular note has

been its demonstration of unbiased binding simulations of ligands to their protein

targets.134 While Anton is a remarkable machine that is able to lengthen simula-

tion timescales, its usefulness will be limited as long as access to the technology is

restricted.

Despite the improvements in software and hardware, computational timescales

are still significantly shorter than many biological processes. Improvements in both

software and hardware are likely to continue, as the field matures.

model errors

Errors can occur if the model used in a simulation is not correct. Crystallographic

structures are usually the starting point for building a model for simulation. The

process from a crystallographic structure to a computer simulation is not yet a

black-box method, but requires human input from a computational chemist. Hy-

drogen atoms are not observed in crystallographic structures due to their low

electron density, and must be added. This can be tricky for titratable functional

groups, such as arginine, histidine, lysine, aspartic acid, and glutamic acid. His-

tidine requires particular thought as three protonation states exist (�, ✏ or both

protonated) and its rotameric state is also unclear as carbon and nitrogen have

similar electron densities. The same is true for both asparagine and glutamine,

which have isoelectronic rotamers. Constant pH simulations (CpHMD)135 can aid

this, allowing for titratable sites to be protonated correctly according to the de-

fined pH. This can work for either protein or ligand functional groups, and can

limit the assumptions that are made about the locations of protons when setting

up a simulation.
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Particularly mobile regions of a protein can be di�cult to observe in the elec-

tron density due to blurring and can result in missing side-chains or residues. Many

crystallographic structures are missing their termini. These missing residues can

be built in to the structure, but the uncertainty in the atomic positions will be

high, and the more residues are missing, the uncertainty will increase. Amino acids

within the sequence of the crystallised structure may be non-native if there are

cloning artefacts. The crystallographic conditions, such as the pH and temperature

can also alter the structure of the protein from its native, solvated state. A model

error that can be particularly problematic is the assignment of water molecules,

or other small molecules that are present due to the experimental conditions such

bu↵ers or solvents. Owing to sampling limitations discussed previously, it is un-

likely that a system will be able to di↵use far from the local minima of its starting

position. This can cause errors where electron density is incorrectly assigned, as-

signing atoms where there is little supporting density, missing atoms where there

is electron density, or assigning the wrong small molecule to the density that is

available. Enhanced sampling methods can help with understanding where small

molecules should be in a system. GCMC is useful for solvating protein-ligand com-

plexes, highlighting where water molecules might have been erroneously added or

missing from a structure. Saltswap is able to sample distributions of salt con-

centrations, to correctly account for the locations of biologically relevant ions.136

Both of these methods attempt to correct the discrepancy between the crystallo-

graphically available structure, and the structure of biological relevance.

Two things can aid with these errors in the simulation model. Either im-

provements can be made to the experimental model or the computational method.

Advancing methods such as neutron di↵raction137 or cryoEM,138 and ensuring

best practise assignment of those results. Computational methods can also play

a role in reducing modelling errors. Methodologies that reduce the assumptions

made during model building will reduce errors. GCMC removes assumptions of

active site water locations, Saltswap removes assumptions of salt concentrations,

CpHMD reduces assumptions of the protonation states, and enhanced sampling

methods combined with su�cient simulation time that allow a system to rearrange
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itself if incorrectly modelled. These methodologies do however use their own as-

sumptions, but these remove a degree of human error when decisions are made by

the user.

theoretical errors

Theoretical errors, fall into two categories; accidental and intended. Accidental

errors are di�cult to find in the literature, as they are unlikely to be largely pub-

licised. There is a theoretical error presented in this thesis, Chapter 2, where an

energetic contribution was theoretically overlooked. The error was missed empiri-

cally due to the level of noise from the results. Accidental theoretical errors may

occur when the noise of simulation results is such that the theoretical error is

indiscernible. Issues such as this can be di�cult to spot, but repetition of simula-

tions, and good data for comparison, whether experimental or computational, can

indicate if something is amiss. Theoretical ‘errors’ can also exist when a conscious

decision is made to approximate a component of a simulation, whether this be as

simple as applying a cuto↵ for non-bonded contributions, or arbitrarily choosing

the free energy penalty for water molecule binding to be 7 kcal·mol�1.72 Arguably,

any force-field error could also be considered as a theoretical error, if a molecular

interaction has been approximated to some degree.

In conclusion, there are broadly five main issues that determine the accuracy

and precision of a computer simulation. Some may be alleviated by improving

computational power, improving the force field used in a simulation. Computa-

tional and theoretical errors can be di�cult to spot, but their likelihood can be

reduced by ensuring best practices, and using reliable data for comparison and

benchmarking. Errors in the simulation model will improve with experimental de-

velopments that allow better understanding of the atomic positions of a structure

or an experimental ensemble of structures. Another way to improve the model

of a system is through intelligent computational methodologies such as constant

pH simulations, that reduce the reliance of the results on the initial model build-

ing, through adaptively correcting the model during the simulation. GCMC is an

example of this, where the enhanced sampling of active site water locations and
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occupancies is made possible through coupling active site water molecules with an

artificial reservoir.

Many topics have been introduced here, starting with the basics of computa-

tional simulation through discussion of both molecular dynamics and Monte Carlo

simulations in Section 1.1. It was illustrated how free energies can be calculated

from sampled microstates of ensembles, rather then requiring the full partition

function to be evaluated. Absolute free energies require evaluation involving an

e
E term, which in practise will cause the results to vary significantly as more states

are considered. Relative free energies (e�E) are significantly more viable to deter-

mine from simulation.

Practical methods involved with calculating relative free energies was intro-

duced in Section 1.2, both in discussion of rigorous free energy methods (TI, BAR

and MBAR) and the practicalities of various restraints and constraints used within

simulation, which will be both used and discussed in Chapter 2.

The importance of water molecules for rational drug design has been discussed,

and a selection of other published methods that are able to calculate the binding

a�nities of active site water molecules have been introduced in Section 1.3. Fol-

lowing in Section 1.4, the theoretical basis of simulating in the grand canonical

ensemble is shown, as well as how GCMC can be used to locate active site water

molecules. The binding a�nity of GCMC water molecules can be determined by

using the GCI Equation, Equation 1.61.

Validating computational methods requires comparable data, whether that be

from other computational results, or through comparison to experimental data.

Both comparing results to other computational methods and comparison to ex-

perimental data will be used. Both experimental methods of calculating binding

a�nity and X-ray crystallography are discussed in Section 1.5, which have been

used to validate GCMC water placement and free energy calculations in Chapters

3 and 4. Finally, the current state of computational simulation methods was sum-
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marised, with a discussion of regions of potential errors and limitations arise in

Section 1.6.

In the first results chapter, Chapter 2, RE will be introduced into GCMC sim-

ulations. RE between B values improves the reliability of binding free energies of

water molecules to such a degree that an issue in the accuracy of the results is

apparent. This inconsistency between binding free energies when calculated us-

ing GCMC with RE when compared to double-decoupling calculations led to a

re-derivation of the GCI Equation.

While GCMC has previously been validated on a small set of systems, Chap-

ter 3 presents a curated dataset of 105 protein-ligand complex of FDA approved

drug molecules. The dataset has been used to test the performance of GCMC on

systems of pharmaceutical interest — this is the largest validation of a simulation-

based methodology for locating active site water molecules. Not only is the success

of GCMC presented for a diverse dataset of relevant structures, but discussion fo-

cuses on the di�culty in quoting a single value for the success, and how this can

lead to di�culties when comparing between di↵erent published methods that are

simulated on di↵erent datasets, and analysed with di↵erent protocols.

While knowing where, and how stable, active site water molecules are is im-

portant, this is all for the primary goal of understanding the e↵ect that water can

have on ligand a�nity. Knowing the location and stability of an active site water

molecule is not necessarily informative as to if displacing said water molecules will

have a beneficial e↵ect on the ligand’s a�nity. GCAP allows for relative binding

free energies of ligands to be calculated with dynamic sampling of active site water

molecules. GCAP allows for ligand a�nities to be accurately calculated, partic-

ularly in cases where the location of water molecules is unknown, or if the two

ligands considered bind with di↵ering water networks. The GCAP method and

the results for two protein-ligand systems are demonstrated in Chapter 4.
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2.1 Introduction

GAR implemented replica exchange between neighbouring B values for GCMC sim-

ulations in ProtoMS. All simulations were performed by HBM, the disagreement

between GCMC and DD methods were empirically observed by HBM, and theoret-

ically proven by GAR.

GCMC can determine the binding free energy of networks of water molecules

through performing a titration where the system is simulated at a range of chem-

ical potentials.54 The binding free energies of water molecules is dependent on

fitting multiple logistic functions to the titration results, which was introduced

in Section 1.4. The logistic function is then used to determine the binding free

energy of the water network using Equation 1.61. The smoother the results, the

smaller the error in the fit. Figure 2.1 is the titration result of BPTI, which has a

network of three water molecules in a small pocket. Figure 2.1 illustrates typical

GCMC results, where it is clear that the noise in the data will result in binding

free energies with large associated errors.

Figure 2.1: GCMC titration data for BPTI system, without replica exchange.
Each point corresponds to the average number of water molecules at a given
B value. The first 200,000 MC steps have been excluded as equilibration.
Plot shows ten titration repeats for the system.
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As the results are noisy, fitting to the data to a↵ord a reliable binding free en-

ergy is di�cult. The noise in the GCMC results is the motivation for introducing

RE between neighbouring B values to the methodology.

This chapter will outline the re-validation of the GCMC methodology and

theory, following the introduction of RE of B values in ProtoMS. RE between

neighbouring chemical potentials reduces the variance of calculated binding free

energies, without notable change to the median values. This reduction in noise has

highlighted previously unobserved discrepancies between GCMC results and the

gold standard method, DD. This discrepancy will be illustrated in Section 2.3.2.

This discrepancy led to improvements both to the computational implementation

of GCMC, and reassessment of the underlying theory, Section 2.3.3.

The theoretical developments result in the determination of an updated GCI

equation, Equation 2.7, which is the major result of this chapter. Two changes

have been made to the equation; the addition of a volume term and the removal

of the multiplicity term. Simulations with a ‘toy’ system Scytalone Dehydratase

will demonstrate that the inclusion of the volume term results in binding free en-

ergies that are independent of GCMC box size in Section 2.3.5. The removal of

the multiplicity term will be supported using calculations with both Scytalone De-

hydratase; with two water molecules considered, and BPTI, Section 2.3.6. In all

cases, the results have been compared the gold standard method for water binding

free energies - DD.

RE has been implemented in the GCMC method and is illustrated in Figure

2.2. Throughout the simulation attempts are made to swap system configurations

between neighbouring B values. This is an enhanced sampling method, equivalent

to the exchange between neighbouring � values used in free energy calculations.139

A background to RE methods is found in Section 1.2. RE should enhance the sam-

pling in GCMC simulations, as simulations at higher chemical potentials, where

GCMC insertions are more probable are able to interchange with lower chemi-

cal potentials, which will have lower insertion acceptance rates. An attempt to
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Figure 2.2: Illustration of replica exchange in B value. Two possible swaps
are shown, in green where the two points are discordant and red where the
two points are concordant. Both swaps will be accepted or rejected following
the acceptance criterion, Equation 2.1. As the green swap is discordant, the
swap will always be accepted. As the red swap is concordant, it will be
swapped based on the probability derived from Equation 2.1.

swap neighbouring replicas is made every n moves, where the swap is accepted or

rejected based on the following acceptance criterion:

Pswap = min[1, e(Bj�Bi)(Ni�Nj)] (2.1)

where Bx and Nx are the B value and water occupancy for the x
th replica

respectively. As the GCMC insertion and deletion Metropolis conditions are de-

pendent on B, N should theoretically increase with B. However in practice, owing

to sampling limitations, sometimes this monotonicity condition does not hold. RE

between neighbouring B values is essentially a test for the positive correlation

(where the increase in one variable corresponds to the increase of the other) of the

titration results. If the two neighbouring B values tested for a swap are discordant

- that is the higher chemical potential replica has a lower water occupancy, then

the attempt to swap the two points will always be accepted (the result is then

concordant). If the two neighbouring replicas are concordant, then they may be

swapped, based on the probability outlined in Equation 2.1, with the likelihood of

the swap being proportional to the gradient between the two points as the gradient,
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�x = �y, is in this case is (Bj � Bi)(Ni � Nj). This has the e↵ect of smooth-

ing the results of N against B. The reduction in noise of titration data results

in precise and reliable binding free energy values. In practice, RE is attempted

every n MC steps, where n is typically the default output frequency of ProtoMS.

At random, either the odd pairs, or the even pairs are chosen for an attempted

swap, i.e. from the set [1,2,3,4] either [1,2] and [3,4] are attempted to swap, or [2,3].

The RE protocol is the same as that used to perform swaps in � value in free

energy simulations,139 where the swap is dependent on the energy di↵erence be-

tween neighbouring � states. As calculating the energy di↵erence between � states

is computationally expensive, swaps are attempted at the same time as simula-

tion output as the energies are calculated anyway at this point. This means that

the number of attempted swaps equals the number of results files output. With

replica exchange in B, as both B and N are explicitly updated at every step of

the simulation, the cost of any attempted swap is e↵ectively free - excluding the

cost of evaluating Equation 2.1 and any (message passing interface) MPI costs.

RE in B could be attempted much more frequently as it is computationally cheap,

but is kept at the frequency for � for consistency. The following results indicate

that this RE frequency is su�cient. The RE protocol was implemented by GAR in

ProtoMS and tested by HBM.

2.2 Methodology

2.2.1 System set-up

For all proteins simulated, the amber14SB force-field has been used.6 All ligands

have been simulated using the ga↵14 forcefield with AM1-BCC charges.

BPTI protein and its surrounding solvent system were set up by GAR from

the 5PTI pdb entry.54 The region studied is a solvated cavity where no ligand is

bound. Calculations were performed on the apo structure.
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SD protein structure used is from the 3STD PDB entry. The protein was

scooped to a radius of 15 Å. The protonation and tautomer states of the proteins

were determined using molprobity.140 Two ligands bound to SD have been stud-

ied, ligands 1 and 3. The 3STD PDB entry has the bound structure of ligand 2,

from which the other two ligands binding positions has been assumed by structural

superimposition.

For all water simulated, the TIP4P force-field has been used.141 Protein-ligand

complexes were solvated using a half-harmonically restrained sphere of radius of

30 Å, with any crystallographic water locations retained. This includes solvating

any sterically available active site regions.

2.2.2 Water binding a�nities

Replica exchange

GCMC simulations were performed over a cavity of multiple waters (volume 5.0x4.0x8.0Å3,

origin: 29.0, 5.0, -2.0). 1M GCMC only equilibration, 1M full sampling equilibra-

tion and 100M production steps were performed. Various replica exchange frequen-

cies were tested to compare to a no-RE protocol. The frequencies of attempted

RE were 100,000, 200,000, 500,000 and 1,000,000. For each, a B-value range of

-31.0 to 0.0 was used and was repeated 10 times. In the GCMC only equilibration

moves are split equally between grand canonical insertion, deletion and sampling.

When fully sampling bulk solvent, protein, GC insertion, GC deletion and GC

sampling are split with a ratio of 461:39:167:167:167 respectively.
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Table 2.1: Details of GCMC region used for each one-water system. The
GCMC region is cuboidal. Range and increments of B values used for each
set of calculations.

System origin (x,y,z) length (x,y,z) /Å3 Bs
SD 1.a 24.141, 11.225, 32.916 4, 4 - 8, 4 (-26, -11, 1)
SD 1.b 27.913, 11.260, 28.713 4, 4 - 8, 4 (-26, -11, 1)
SD 3.a 24.141, 11.225, 32.916 4, 4 - 8, 4 (-10,+5,1)
SD 3.b 27.913, 11.260, 28.713 4, 4 - 8, 4 (-26, -11, 1)

2.2.3 Grand canonical integration

GCMC — single water

GCMC simulations were performed for a range of box sizes, with four repeats at

each volume. The range of box sizes was generated by extending the GCMC box

in 1 Å steps, over a 5 Å range along one axis. The box coordinates, and the di-

mension of extension are available in Table 2.1.

The protein is not sampled in these simulations, so a protein conformation

from a previous fully sampling GCMC simulation where both of the waters are

bound was chosen. Simulations of 20M MC moves were performed, with the first

4M steps excluded from analysis. No protein or ligand moves were sampled and

bulk water was excluded for the SD simulations, with all Monte Carlo moves as-

signed to grand canonical insertion, deletion and grand canonical water sampling

with equal probabilities. RE in B was attempted every 100,000 MC steps. As

water b is expected to have a lower binding free energy with ligand 3, water b was

included as a solvent molecule in the GCMC of the water a region. For ligand 1,

the simulations were repeated both with and without the other water molecule.

When present, the additional solvent molecule was sampled with an equal proba-

bility to the GC water.
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Table 2.2: Details of GCMC region used for each two-water system. The
GCMC region is cuboidal. Range and increments of B values used for each
set of calculations.

System origin (x,y,z) length (x,y,z) /Å3 Bs
SD 1.a+b 24.1, 11.2, 30.0 4, 8 - 13, 4 (-26, -11, 1)
SD 3.a+b 24.1, 11.2, 30.0 4, 8 - 13, 4 (-26, +5, 1)

GCMC — multiple waters

Calculations of the SD in complex with ligands 1 and 3 were performed, with a

GCMC region covering both hydration sites a and b (volume 4.0x8.0x4.0 Å3, ori-

gin: 24.1, 11.2, 30.0). The GC region was extended in 1 Å steps, over a 5 Å range

along the y-axis. No protein or ligand sampling was performed, and bulk water

was excluded. Simulations were repeated four times at each volume.

For BPTI, the GCMC results used were taken from previous simulations, where

the method is outlined in Section 2.2.2.

double decoupling

For each water location found with GCMC, DD simulations were performed to

determine the binding free energy of each water. DD was performed over 16

alchemical � states, where the LJ and Coulombic terms were scaled simultane-

ously. Moves were split between protein, bulk water and decoupled water at a

ratio of 402:98:1 respectively. The water molecules were decoupled sequentially,

from weakest to strongest bound. Where the free energies of multiple waters are

similar and the order of binding was unclear, calculations were repeated with a

di↵erent order of decouplings. 500,000 equilibration and 40M production moves

were performed for each water at each � value. Each simulation was repeated four

times. Soft-cores (soft66 in ProtoMS package)33,35,37 were used for DD calculation

with �=0.2 and �c=2.0 used for the decoupled water molecule. The free energy to
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decouple the water from the system was determined using MBAR.

A harmonic restraint with a force constant of 2 kcal·mol�1·Å�2 was used on

the oxygen of the water being decoupled at all � values. A gas phase correction

of,

�G
gas

rest
= kBT ln

✓
Vsim

V o

◆
(2.2)

where

Vsim =

✓
2⇡kBT

k

◆ 3
2

(2.3)

was applied to account for the removal of the restraint from the decoupled

system.48 This is analogous to the volume term introduced in the GCI equation,

Equation 2.7. Prompted by the higher precision obtained in RE-GCMC and unlike

our previous study,54 the free energy penalty of applying the harmonic restraint

in the bound simulation was calculated using Bennett’s Acceptance Ratio method

from 40,000 Monte Carlo simulations steps with six equally spaced � values of the

restraint—from 0 kcal·mol�1·Å�2 to 2 kcal·mol�1·Å�2. No symmetry correction

was applied to water molecules.

For SD, GCMC was performed at 16 equally spaced B values from -22.7 to -7.7.

As the binding free energy of the water molecule with ligand 3 is unfavourable,

higher B values are required to couple the water into the system; therefore for this

ligand GCI was repeated for 16 B values from -12.7 to +2.3.

2.3 Results

2.3.1 Replica exchange in B

RE improves the monotonicity of GCMC titrations as well as reducing

the variance in the calculated binding free energies of water molecules.

As Ross et al. found the BPTI system the most di�cult to converge in their orig-
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Figure 2.3: Hydrated pocket of the BPTI protein, containing three water
molecules. GCMC region is indicated by a black box. PDB: 5PTI.

inal work on the GCMC method,54 this system may benefit the most from RE.

GCMC was performed on a small unliganded pocket of the protein that contains

three water molecules, Figure 2.3. The frequency at which RE is attempted during

a simulation is user defined, so frequencies of every one, two, five and ten-hundred

thousand steps were trialled. These di↵erent RE frequencies have been compared

to simulations with no RE. Ten repeats were performed at each frequency to im-

prove statistical precision.

Kendall tau shows that the monotonicity of the results are improved

with RE. The GCMC titrations from 10 results are shown in Figures 2.1 and 2.4,

both without RE, and with a RE of 100,000. RE has the e↵ect of smoothing

the titration results results. The relationship between B and N should be mono-

tonically increasing, due to the GCMC insertion and deletion acceptance tests.

The Kendall rank correlation coe�cient (⌧) has been used to test the monotonic-

ity of the two sets of results, where ⌧=1 indicates perfect positive monotonicity,

⌧=0.5 for random results, and ⌧=0 for perfect negative monotonicity. The ⌧ of

the non-RE data, shown in Figure 2.1, have a result and a standard error of 0.86
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Figure 2.4: GCMC titration data for BPTI system with replica exchange in
B every 100,000 steps. Each point corresponds to the average number of
water molecules at a given B value. The first 200,000 MC steps have been
excluded as equilibration.

(0.01) compared to 0.98 (0.00) with a RE rate of 100,000. The improvement to the

monotonicity is unsurprising as the RE acceptance test, Equation 2.1, will favour

results that are monotonic. Replica exchange in B is able to reduce the variance

in hNi for a given B value between simulations, which results in GCMC titrations

that are significantly smoother (Figure 2.4), as demonstrated by their improved

Kendall ⌧ correlation coe�cient. As the function N(B) is smoother, the analytical

fitting of logistic functions to the titration is more reliable, providing binding free

energies with a tighter distribution using the GCI Equation. The sum of logistic

functions fit to the titration data take the form of;

N(B) =
mX

i=1

ni

1 + ew0i�wiB
(2.4)

where m is the user-defined number of steps in the titration data, and ni is

the number of water molecules coupled in a given step, with an inflection point of

w0i and steepness of wi. Both ni and wi are positive to ensure monotonicity of the

function.

RE reduces the variance in calculated binding free energies for BPTI.
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Figure 2.5: Boxplot of the median-centered free energies for each protocol,
where errors have been calculated over 1000 bootstrapping samples of 10
repeats. In each case it is the free energy di↵erence between an empty GCMC
region, to a one, two and three water network, respectively. Replica exchange
with GCI produces free energies that have a consistently tighter distribution
than GCI free energies calculated without replica exchange.
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The binding free energies of the water molecules in the BPTI system shown in

Figure 2.5, are calculated by simulating at a range of B values and calculating

the average water occupancy at those values. The median-centred binding free

energies of each RE protocol, for each of the three waters is shown in Figure

2.5. The box-plots were generated by bootstrap sampling the titration data and

calculating the binding free energy of each sample. A bootstrap sample consisted

of one randomly sampled N value from the set of 10 repeats for each of the 32 B

values and the titration curve was estimated as previously described. It is clear

that both the range and inter-quartile range of the results are improved by RE.

Including RE in the simulation reduces the variance of GCI binding free energies

calculated. Based on these results no RE frequency appears to perform better

than any other frequency, therefore a RE frequency of 100,000 has been chosen

to further illustrate improvements to the results as it is the frequency at which

results are printed. This reduction of variance will prove to be vital improvement

in empirical results that will lead to the re-assessment of the form of the GCI

equation. The acceptance rate for B RE swaps was 90 % for all RE frequencies

attempted. This shows that the protocol is e�cient, and that the replicas are well

spaced for this system. The acceptance rate for exchanges was consistent for all

of the RE frequencies considered.
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2.3.2 Comparison of RE-GCMC results with DD

Figure 2.6: The binding free energies of the three water network in BPTI
calculated using di↵erent methods. To highlight the intrinsic uncertainty of
each method, the coloured bars indicate one standard deviation, as opposed
to the standard error, over all repeats. Results are calculated using a proto-
col without RE (blue), with a RE frequency of 100,000 (red) and with DD
comparison (orange), outlined in Section 2.3.

GCMC simulations without RE have su�ciently large errors that they

erroneously appear consistent with DD. RE reduces the variance and

indicates a disagreement between GCMC and DD. The methods used for

DD and GCMC are such that the binding free energy of the three water network

should be the same for both methods. For simulations without RE, the standard

deviation of the results are large enough to indicate that the results without RE
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are statistically indistinguishable from the DD results, Figure 2.6. With the in-

troduction of RE, the median binding free energy of the GCMC results does not

notably deviate, however the variance is reduced such that it is clear there is a

discrepancy between this and the gold standard DD results. The improvement

of the method reveals an error in the determination of binding free energies via

GCMC, which was previously masked by the noise of the simulation. This has led

to the reassessment of the GCI equation, Section 2.3.3.

RE in B a↵ords binding a�nities with errors comparable to DD.

In addition to revealing the discrepancy between the two methods, RE has im-

proved the GCMC method such that the reproducibility of the simulations, i.e.

the standard deviation between repeats is comparable to that achieved from DD.

This means that GCMC is not only preferable due to its ability to calculate free

energies of multiple waters simultaneously, without requiring hydration site infor-

mation, but is also able to produce results as reliable as DD. Both methods, when

the computational expense of additional GCMC moves and restraint calculations

for DD are approximately comparable.

2.3.3 GCI equation

The mathematical derivation in this section was performed by GAR.

With the improvements in reliability of binding free energies evaluated using the

GCI Equation, a volume dependence — that is a dependence on the calculated

binding free energy of water molecules on the volume of the GCMC region is ap-

parent. The volume dependence led to re-evaluation of the GCI Equation, which

will be outlined in this section, before the problem is demonstrated in Section 2.3.5.

As GCMC is inconsistent with DD methods, and observed to have

a volume dependence, the GCI equation is re-evaluated. The binding free

energy of water molecules in the SD system was calculated with a range of GCMC

volumes, which revealed that the binding energy of a water molecule was depen-
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dent on the GCMC volume. These results will be presented shortly, but first the

source of the issue — the neglect of the Helmholtz free energy contribution from

the ideal gas — is presented. This was erroneously overlooked when the noise

of the simulation was large. This noise has been reduced significantly with the

addition of B value RE, and further clarified by simplifying the simulation by not

sampling the protein-ligand environment.

The GCI equation, as stated by Ross et al. is shown below:

��Ftrans(Ni ! Nf ) = NfBf �NiBi + ln

✓
Ni!

Nf !

◆
�

Z
Bf

Bi

N(B)dB (2.5)

details of which are discussed in Section 1.4. This allows the transfer energy

of f � i waters from an ideal gas into the system to be calculated. From this, the

relative binding free energy of water molecules can be determined, by accounting

for the transfer free energy of those water molecules into bulk (µsol).

The volume correction can be understood by thinking about the pro-

portion of insertion attempts that will be feasible. The volume dependence

of the GCMC results using the above equation will be presented in the following

sections. This empirical dependence illustrates that a volume term in the GCI

equation is required to correct for this. Figure 2.7 shows two hypothetical model

systems, where in both there are two sites in the system, of which only one is a hy-

dration site and the other (grey) is not. The di↵erence between these two systems

is the volume of the GC region, illustrated with a red dashed line. Both systems

are identical, except for the GC region over which insertions and deletions are at-

tempted, and the binding free energy of the water molecule should be identical for

both systems. Considering model A, all attempted insertions will occur on the fea-

sible position, therefore all the attempted insertions will be feasible, and accepted

based on a probability, where feasible means that the energies associated with the

insertion will be finite. If the GC volume of this system is doubled to cover an

inaccessible hydration site, only half of the attempted insertions will be feasible, as
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Figure 2.7: A two-site model system, where one site is a hydration site, and
the other is not accessible to water (i.e. occupied by protein or ligand in
a real system). The boundary of the GC region, in which GC insertions
are attempted, is illustrated with a dashed red line. For model A, the GC
region only covers the hydration site, whereas for model B the GC region
covers both the hydration site and the inaccessible site. Here, feasible is
used to indicate insertions that involve finite energy di↵erence and therefore
will be accepted with some probability. The grey, inaccessible site will result
in infinite energies and therefore always be rejected.

the second site will give infinite energies and therefore an insertion move into this

region will always be rejected. This means that for both systems, when simulated

at the same chemical potential, system B will have fewer insertions accepted, and

therefore a lower average water occupancy. The rate of accepted deletion moves

is not dependent on the volume of the GC box. While it is possible that the

volume of the GC region could be accounted for in the GC acceptance rates, it

was found that the free energy results could be corrected with a post hoc correction.

Inclusion of the Helmholtz free energy for the ideal gas phase reme-

dies the observed volume dependence. The equation for Helmholtz free en-

ergy of an ideal gas is shown in Equation 2.6a, such that the free energy di↵erence

to change the number of molecules in the gas is Equation 2.6b.
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Fideal(N) = kBT ln

"
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N !

✓
Vgas
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◆N
#

(2.6a)

Fideal(Ni ! Nf ) = kBT ln

"✓
Ni!

Nf !

◆
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✓
Vgas

⇤3

◆N
#

(2.6b)

If this is introduced to the GCI equation using the thermodynamic cycle shown

in Figure 1.5, and the equality µsol = µ
0
sol

+kBT ln(
⇤3

V � � ) is used, the GCI equation

becomes:

��G
� �
bind

(Ni ! Nf ) = NfBf �NiBi � �µ
0
sol � ln(

Vsys

V � �
)�

Z
Bf

Bi

N(B)dB (2.7)

Where the volume of the ideal gas, Vgas will be equal to the volume of the GC

system Vsys, such that the . V � � is the volume of a water molecule in bulk water,

30.0 Å3. This volume term is able to correct for the a↵ect of the volume on the

GC insertion rates. This term is analogous to the volume correction introduced by

Gilson et al. that corrects for the energetic penalty of constraining or restraining

a molecule that is being decoupled in a DD simulation and yield standard free

energies.48

The multiplicity term in the bound state is equivalent to the mul-

tiplicity in the ideal gas state. Initially the multiplicity term, ln(Ni!
Nf !

) was

introduced to account for the inherent degeneracy present in the GCMC method –

any GC water molecule can occupy any hydration site in the protein – a degeneracy

that is not present in DD simulations, where each water molecule is constrained

to its own site and no exchange is allowed. This term cancels when the Helmholtz

free energy of the ideal gas is considered. While it is correct that there is a de-

generacy for inserting GCMC water molecules into a system with multiple sites,

this degeneracy is also present in the ideal gas phase of the thermodynamic cycle

as shown previously in Figure 1.5, and therefore the e↵ect cancels within the ther-

modynamic cycle, and does not need to be considered. This will be empirically



2.3. RESULTS 81

supported by performing a set of simulations where the binding free energies of

two waters are considered individually, and together using the GC method, Sec-

tion 2.3.6. The following section will look at example systems to demonstrate the

consistency between GCMC and DD, for single-water and multiple-water systems.

2.3.4 Equilibrium B value

The equation for B is shown again below, Equation 1.56, which was previously

introduced in Section 1.4.

B = µ� + ln
Vsys

⇤3
(1.56)

A network of water molecules is at equilibrium when the binding free energy

is at a minimum.

d�G
� �
bind

(N)

dN
= 0 (1.65)

The Gibbs binding free energy can be determined from these following terms,

however, �Fideal is now recognised to contribute, as discussed in Section 1.4.

�G
� �
bind

(N) = �Fideal(N) + �Ftrans(N)� �Gsol(N) (1.67)

Where the mixing of Gibbs and Helmholtz free energies is due to the approxi-

mation �Fsys ⇡ �Gsys. In the thermodynamic limit;

�Ftrans(N) =

Z
N

0
µ
0
sys(N)dN (2.8)

Where �Ftrans is the Helmholtz free energy to transfer N water molecules

from an ideal gas reservoir to the GCMC region. Substituting Equations 2.8, 2.6

and �Gsol = Nµsol into Equation 1.67 gives;

�Gbind(N) =

Z
N

0
µ
0
sys(N)dN � kBT ln

"
1

N !

✓
V

⇤3

◆N
#
�Nµsol (2.9)

Using Sterling’s approximation, allows Equation 2.9 to be di↵erentiated with
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respect to N.

�Gbind(N) =

Z
N

0
µ
0
sys(N)dN � kBT

"
Nln
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+Nln(N)�N

#
�Nµsol

(2.10)

d�Gbind(N)

dN
= µ

0
sys � kBT


ln

✓
V
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◆
+ ln(N)

�
� µsol = 0 (2.11)

Using µ
0
sol

= µsol + kBT ln(⇢sol⇤3), and N

V
= ⇢sys it is possible to equate the

chemical potential of the system, µ
0
sys, and bulk solvent, µ

0
sol

, at the point of

equilibrium.

µ
0
sys � kBT ln(⇢sys) = µ

0
sol � kBT ln(⇢sol) (2.12)

The equilibrium water occupancy can now be simulated directly,

rather than deterministically. Previously, neglecting the Helmholtz free energy

of the ideal gas phase, led to the understanding that the excess chemical potentials

of the system and solvent led to equilibrium. This meant that it was only possible

to simulate at a range of chemical potentials, and calculate which satisfied Equation

1.65. However, as it is the chemical potentials, rather than the excess chemical

potentials, that are equal at equilibrium, it is possible to determine the correct

chemical potential, or B value a priori. From Equation 1.56 and µ
0
sol

= µsol +

kBT ln(⇢sol⇤3) is trivial to determine;

Beq = �µ
0
sol + ln

✓
Vsys

V � �

◆
(2.13)

Simulations can be run only at the equilibrium B value, rather than

requiring a full titration. The correct B value can be determined before sim-

ulating, using µ
0
sol

, which is a constant for a given water model, and using the

volume of the GCMC region, Vsys, which is user-defined. This means that only

one B value need be simulated to see the equilibrium location and occupancy of

the water molecules, as opposed to the range of chemical potentials previously re-

quired.54 This reduces the computational expense of the simulations. To determine
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�Ftrans, and therefore �G
� �
bind

, the function N(B) is required to be integrated, so

a simulation of a range of B values is required to explicitly calculate the water

binding free energies. Knowing the equilibrium B value is still helpful for the

simulations where a range of chemical potentials are simulated for several reasons.

The range of B values to simulate can be determined based on Beq, as if only

favourable water molecules are of interest then only B values below the equilib-

rium value are required, which aids a more logical choice of simulation parameters.

The equilibrium B value can also provide a sanity check, as the N that satisfies

the minimum in �G
� �
bind

(N) should correspond to the N simulated at Beq. This

analysis is now performed automatically.

The main advantage of the ability to determine the equilibrium B value for

simulations is in the GCAP method, where GCMC is coupled to alchemical ligand

perturbations, and will be discussed in Chapter 4.
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2.3.5 Single-water system

Scytalone Dehydratase

Figure 2.8: Structure of SD ligands, of which ligands 1 and 3 are considered
herein. Ligand 3 bound to SD, with water A and B present. The active site
of SD is shown with a transparent grey surface. The incrementally increasing
GCMC boxes for each calculation are shown; A (red), B (green) and for the
box encompassing both waters (blue). Each box repeatedly increased in 1 Å
increments. The increasing volume of the GCMC region covers protein, not
accessible to water.

GCMC calculations were performed on two single-water sites of the protein SD

in complex with two ligands, 1 and 3. For each system the calculation has been

repeated with an increasing length of GCMC box, which increases the volume of

the GCMC system (Vsys). These GCMC boxes are shown in Figure 2.8, with the

red and green GCMC boxes for waters A (red) and B (green) respectively. For

these simulations, simplifications were made to the regions of system that will be

sampled as converged, precise results are more important for this validation than

reliable experimental reproduction. No bulk water was simulated, and the protein

and ligand system were treated as rigid. Only the two active site water molecules

were sampled within these simulations.
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When Equation 2.7 is used to calculate water binding free energies,

the results are independent of the GCMC box volume. Figure 2.9 shows

the binding free energy of each water in each system when calculated with DD,

and both the old and new versions of the GCI Equation. The result obtained

using conventional DD methods is shown with a solid line. The GCMC results

illustrate a clear linear increase in binding free energy with an increasing GCMC

volume when calculated with the previous GCI equation. This was overlooked in

the GCMC method before, as the implementation of RE of B-values significantly

improved consistency between repeats of the same system. As the protein and lig-

and are non-sampling, the error between repeats is reduced, allowing the volume

e↵ect of the method to be identified above the noise of previous calculations.

Changing the GCMC box volume changes the proportion of feasible

insertions that are attempted, and therefore the insertion acceptance

rate, which shifts the GCMC titration curve. Increasing the GC volume re-

duces the probability of attempting an insertion in the site of water binding. This

causes a decrease in successful insertion moves, and therefore results in a lower

average water occupancy for a given B value. Deletion moves are not proportional

to the volume of the box, and so do not a↵ect the result. Figure 2.10 shows the

e↵ect of the lower average water occupancy, where the titration curves are shifted

to higher B values as a consequence of the increasing box volume. The binding free

energy of the molecule is calculated from the integration of the fit, and therefore

the right-shifted titration results in a weaker binding free energy. No successful

water insertions have been made into the region of extension due to steric clashes

with the protein, indicating that this is not a consequence of locating an alternate

water location. This clearly illustrates a dependency of the binding free energy

calculated on the volume of the GC region, when calculated using the previous

GC result, Equation 1.61. This is a consequence of neglecting the Helmholtz free

energy of the ideal gas phase. The updated GCI equation, Equation 2.7, contains

the term �kBT ln(
Vbox
V � � ), which is able to correct for this artefact. Using the up-

dated equations, the results from the simulations are shown in Figure 2.9 by the
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(a) water A with ligand 1 (b) water B with ligand 1

(c) water A with ligand 3 (d) water B with ligand 3

Figure 2.9: Binding free energy of waters in SD. Dotted line (purple) - GCMC
results using Equation 2.5 - without volume correction. Dashed line (green) -
GCMC result using Equation 2.7 - with volume correction. Solid line (blue)
- DD result. For each, the shaded region show one standard error calculated
from four repeats.
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Figure 2.10: Plot of titration results for water A with ligand 1 bound to
SD. Green, blue and red are results from GCMC box lengths of 4, 6 and 8
Å respectively. As the volume of the box is increased, the titration curve
shifts to higher B values. This corresponds to lower binding free energies,
calculated using Equation 1.61.

dotted line. This shows that the new theoretical result provides water binding

free energies by the GCMC method that are both independent of box size and

consistent with DD results.

Figure 2.11 shows the thermodynamic cycle of removing both water molecules

A and B with both ligands, 1 and 3. The GCMC binding free energies have

been calculated using the new GCI equation, Equation 2.7. DD results have been

corrected for the restraint correction used on each water molecule, discussed in

Section 2.2.3. The GCI results are within 0.1 kcal·mol–1of the DD results, and the

results and standard errors are available in Table A.2. These results show that the
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Figure 2.11: Thermodynamic pathway of the two waters considered for each
ligand with SD. A box and a green arrow indicates a GCMC simulation, and
a spring or a blue arrow indicates a restrained DD simulation. Energies are
shown in kcal·mol–1. Errors are standard deviations from four repeats.

introduced volume term is needed, and the new GCI equation is the correct form.

2.3.6 Multiple-water systems

Tests of the GCI equation for a two, single water have shown that the new form

is correct so far as the inclusion of the volume term. However, as the multiplic-

ity term is zero in the old GCI Equation for the case of an occupancy change

of one water, it cannot indicate whether or not the multiplicity term is correct.

Simulations involving multiple waters are needed to clarify if the exclusion of the

multiplicity in the GCI equation is correct in the general form. Calculations were

performed for SD and BPTI.
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Scytalone Dehydratase

In SD, the same two water molecules, A and B, with both ligands, 1 and 3, were

considered as above, Section 2.3.5, however one larger GCMC region was used to

cover both hydration sites, shown in blue boxes (Figure 2.8) to calculate both of

their binding free energies simultaneously. As before, the system sampling was

limited only to these two waters. Five volumes of GCMC region were tested, in-

creasing incrementally by 1 Å in length.

(a) ligand 1 (b) ligand 3

Figure 2.12: GCMC titration two-water networks in SD, with ligands 1 and
3. Fitting is calculated with four repeats, with calculations performed with
a box length of 8 Å.

GCMC has been used to calculate the binding a�nity of two active

site water molecules for SD with ligands 1 and 3. Figure 2.12 shows the

GCI titration for the two water system (waters A and B) when calculated in a

single simulation, using the smallest of the GCMC regions that covers both sites

(blue - Figure 2.8) for SD bound to both ligands 1 and 2. With ligand 1, the

waters couple into the system simultaneously, and therefore it is not possible to

decompose the energy of the two-water network to the two individual waters; how-

ever, the binding a�nities can be assumed to be similar as they couple into the

system at the same B values. With ligand 3, the binding free energies of the two

waters in the system are di↵erent, and therefore enter the system at di↵erent B
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values. As the titration for ligand 3 occurs over two steps, the binding free energy

of the two water network can be decomposed to the two molecules. As before with

the single-water calculations, a box volume e↵ect is observed for the calculations

over two-water network. The volume correction term in the new GCI equation is

able to remove the dependency, as with the one-water systems, Figure A.7. This

further supports that the volume correction term is required, and is consistent

with varying �N .

(a) ligand 1 (b) ligand 3

Figure 2.13: Full thermodynamic cycle of GCMC and DD results for each SD
ligand. The two legs on the right are the same results as in Figure 2.10. The
left hand leg shows the result when GCMC is performed using a large box
over the two waters simultaneously, calculated using the new GCI equation,
Equation 2.7. Errors are standard deviations from four repeats.

Decomposing the energetic contributions of each water molecule sup-

ports that the multiplicity term should be excluded from the GCI Equa-

tion. The binding free energy of a two-water network should be equal to the sum

of the free energies of each independent water. This means that the free energy of

the networks can be compared to the energies calculated in Section 2.3.5. Figure

2.13 show the binding free energy of the two-water network, as calculated with the
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new GCI equation. The results are consistent with both the single water GCMC

and the DD results. As this is a network of two waters, the previous GCI formu-

lation would have a 0.4 kcal·mol–1contribution from the multiplicity term. As the

DD and GCMC results all agree to within 0.1 kcal·mol–1this supports the exclu-

sion of the multiplicity term from the GCI equation as being theoretically correct.

This is a result of the multiplicity in the system being equal to the multiplicity

in the ideal gas reservoir, and therefore cancelling. The results of both the sin-

gle and multiple water SD water networks indicate that the updated form of the

GCI equation is now firmly consistent with the gold standard method - DD using

a simplified model system. This analysis has been made possible both through

the implementation of RE and the associated gains in reproducibility, and by the

simplification of the test system by removing many degrees of freedom from the

simulations.

BPTI

As the two water molecules A and B are separated and the system has been sim-

plified by removing sampling of protein, ligand and non-GCMC water molecules,

the more complex system of BPTI, where there is a hydrogen bonded network of

water molecules has also been considered. The titration of the BPTI pocket is

shown in Figure 2.14(a), where two water molecules (B and C) couple into the

region as a dimer, followed by a more weakly bound water molecule (A), where

the labelling of water molecules is shown in Figure 2.3. The binding free energy of

the water networks were calculated, Figure 2.14(b), which shows that the optimal

water occupancy of the pocket is three. Clustering of the GCMC water positions

was performed and the positions are shown in the BPTI cavity in Figure 2.3. These

three water molecules are all within 0.8 Å of their locations in the crystal structure

(PDB: 5PTI).

The binding free energy of the three water BPTI network is con-

sistent when calculated by GCMC and DD. The GCMC titration, Figure

2.14(a) shows that the first two waters enter simultaneously as a dimer (waters A

and B), followed by the third water, (C). For rigorous DD simulations, the water
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(a) titration (b) binding free energy

Figure 2.14: The titration curve and binding free energy of water networks in
the BPTI system, using RE. A minimum binding free energy is found with a
water occupancy of 3. The grey region indicates the 95% confidence interval
of the standard error. The titration shows that the first two water molecules
enter the system as a dimer, followed by a third water molecule at a higher
B value.

molecules should be decoupled in turn, in the order of weakest bound to most

tightly bound, however any order should result in the same overall network en-

ergy. Performing double decoupling in order of weakest-to-tightest bound water

molecule is a common protocol, as if a weakly bound water is remaining in the sys-

tem once a more favourably bound water molecule has been decoupled, the weakly

bound water will be likely to adopt the more favourable site. As waters A and

B have similar binding free energies, the calculations have been performed twice,

once for each order of DD (A then B and B then A). The free energies of each

DD calculation and the GCMC results are shown in Figure 2.15. As the GCMC

titration finds the binding of the A-B dimer in a single step, it is not possible to

decompose the binding free energy to each individual water, and therefore this is

not shown. The DD results of the dimer find a di↵erent binding free energy of the

water molecule depending if it is calculated in the presence or absence of the other

dimer member, however the binding free energy of the pair of waters is consistent.

The GCMC results for the A-B dimer is consistent within error to both other sets

of calculations, which supports the form of the new GCI equation, with the volume
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correction and the multiplicity accounted for correctly.

Figure 2.15: Thermodynamic cycle of the water network in the BPTI cavity.
Energies shown are the free energy of removing the indicated water from the
system, in units of kcal·mol–1. Results are shown for DD (blue) and GCMC
(orange). The two routes of DD indicate the two orders in which the water
molecules in the dimer are decoupled. The GCI results have been calculated
using the new GCI equation. Red numbers indicate thermodynamic cycle
closures. Errors are standard deviations from four repeats.

Water A is the weakest bound of the three water molecules in the network,

found to insert at the highest B values in the GCMC simulations. Analysis with

the updated GCI equation found the water to bind with a free energy of -2.90

kcal·mol–1. This is within error of the DD result; -3.20 kcal·mol–1. The binding

free energy for the dimers, a and b are also consistent between the updated GCI

equation and the two DD pathways, where the free energies are -18.91, -18.47

and -18.64 kcal·mol–1respectively. The thermodynamic closure of all three cycles

shown in Figure 2.15. The closure is smaller than the standard deviations of

the simulations. This rigorously illustrates the consistency of the updated GCI
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equation to DD results, and supports the need for the ideal gas phase Helmholtz

free energy contribution to be considered.

2.4 Conclusion

RE is able to significantly improve the errors associated with calculating binding

free energies of water molecules using the GCI Equation. The improvements arise

due to the increase in monotonicity of GCMC titration plots, to which fitting is

performed to calculate the binding free energies. The smaller the error of the lo-

gistic fit, the smaller the error in the calculated binding free energy is. The free

energies calculated using RE-GCMC are comparable to free energies calculated

using DD.

The reduction of errors with the introduction of RE-GCMC reveals a discrep-

ancy of results when compared to the gold-standard DD methods. The discrepancy

is shown clearly in Figure 2.6, where GCMC with no RE has larger errors that

overlap with DD. When RE is used with GCMC, the median result stays the

same and the error reduces and the overlap with DD is lost. The discrepancy

prompted a re-evaluation of the theory of GCMC, and it was discovered that the

Helmholtz free energy of the ideal gas had been erroneously neglected. Introduc-

tion of the ideal gas Helmholtz free energy term to the GCI Equation resulted in

two changes; the addition of a volume correction, and the removal of the multi-

plicity terms. These changes have been derived mathematically, and verified with

the use of model systems in Section 2.3.3, and supported by empirical testing for

two systems in Sections 2.3.5 and 2.3.6.

A consequence of these theoretical improvements is the derivation of Beq, the

B value at which the system is in dynamic equilibrium with bulk water. Previ-

ously, a range of B values was needed to generate a titration curve from which

equilibrium could be established, by finding the minimum in the Gibbs free energy

for the system. Beq removes the need for this, and the equilibrium can be directly

simulated.
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As the binding free energies of water molecules calculated using the GCMC

methodology have been shown to be consistent with other methods, the following

chapter will look at the precision in the placement of water molecules in the active

site. For the binding free energies calculated to be reliable, the location of the

water molecule must be realistic. GCMC will be used to locate hydration sites

in a dataset of 105 protein-ligand complexes, where the dataset has been gener-

ated using structures that are both high-quality and of pharmaceutically relevant

molecules. Discussion will focus on the e↵ect that simulation protocol and analysis

methodology can have on the apparent success rate, and the consequence that this

can have when comparing between di↵erent published results.
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3.1 Introduction

This chapter has been completed with significant contribution from MLS. MLS and

HBM triaged the dataset and optimised the simulation protocol. MLS set up 25

structures of the dataset, w. All simulations, and analysis herein was performed

by HBM.

The experimental limitations of determining active site water locations have

been discussed in Section 1.5, and various computational methods that try to

determine the locations are discussed in Section 1.3. Computational methods for

locating active site water molecules can be useful for drug design, where it may not

be e�cient to generate a crystallographic structure of every complex of interest.

While the previous chapter validated the GCMC determined binding free ener-

gies against other computational results, this chapter will validate the locations of

GCMC water molecules against a dataset of experimental structures. A dataset of

105 structures has been curated, against which the success of GCMC will be tested.

Various datasets of protein structures exist, by way of benchmarking di↵erent

methods for di↵erent applications. The iridium dataset is curated by OpenEye sci-

entific, and classifies structures based on how trustworthy the experimental data

are,142 with particular focus on the crystallographic assignment of the ligand for

use in docking tests. The Astex diverse set is another generated dataset, consisting

of 85 structures, which has been collected due to their interest in drug design.143

Currently, the ProtoMS implementation of GCMC has been applied to various

targets; SD, BPTI (two di↵erent pockets), MUP-I, Chk-1, HIV1-protease, ribonu-

clease A, GluR2, trypsin, and glutathione S-T.54 However, the method should be

validated on a larger set of systems, from which statistics of the success rates can

be reliably extracted. Here we have curated a dataset of 105 protein-ligand com-

plexes, which are of good experimental quality, pharmaceutically relevant ligands,

and contain water molecules. To our best knowledge, this is the largest validation

set of a simulation-based water placement methodology. Full details of the cura-

tion performed are outlined in Section 3.2.1.
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Di↵erent methods of crystallographic water placement have been tested and

validated on a range of crystal structures, using di↵ering criteria to assess their

success. Proposed water molecules are generally assumed correct if they are lo-

cated within a given distance cuto↵ to a crystallographic water molecule. The

success rate of a method will vary as the considered cuto↵ is changed; the larger

the cuto↵, the higher the success rate will be. To validate the performance of

GCMC in water placement, various cuto↵ distances will be considered to illus-

trate the accuracy of the method. The fact of using a cuto↵ means that randomly

placing water molecules within a region, with no intelligent consideration of chem-

istry, will also reproduce some of the crystallographic water molecules correctly by

virtue of chance. The larger the cuto↵ used the more likely randomly placed water

molecules will be to successfully find a crystallographic water position. The success

rates of GCMC water placements for various cuto↵s will be presented alongside

the success rates of random water placements, to act as an illustrative baseline.

While e↵orts have been made to select high-quality crystallographic structures,

there is still a degree of uncertainty in the data. Water molecules that are dif-

fuse, or weakly bound may not be possible to resolve in any quality of structure.

Four metrics; the Zobs, EDIA, B-factor and Bnorm scores will be used to inspect

the underlying electron density of assigned water molecules. Even if the electron

density is clear, there can also be a bias from the crystallographer, due to deci-

sions that they make during the refinement process. Another factor to consider

is the experimental crystallisation conditions, which may introduce ions or small

molecules that are not present in the biological conditions of the protein.144 In

addition, the xray di↵raction conditions can also be non-biological, and the ma-

jority of our dataset has been resolved at <100 K. Despite this, crystallographic

data is the best comparison available for many structures, and therefore will be

used to benchmark GCMC, while taking due consideration for the degree of the

experimental accuracy.



100 CHAPTER 3. WATER LOCATIONS

3.2 Methodology

3.2.1 Dataset generation

The dataset was generated by collating FDA approved drugs that have a protein-

bound structure within the PDB. The drug molecules were filtered using the cri-

teria outlined in Table 3.1, resulting in 1554 PDB structures, covering 279 FDA

approved drugs.

Table 3.1: Ligand requirements used for FDA dataset generation.
Carbon count >5
Phosphorous count =0
Molecular weight 100 ! 750
Rotatable bonds < 9
Ring size < 9

Of these 1554 structures, the data were further filtered to include only struc-

tures released since 2000, with a resolution better than 2.5 Å, of homo sapien, viral

or bacterial origin. The rejection of structures older than 2000 is due to more re-

cent improvement in the software used in assignments of crystal structures. Crystal

structures were excluded if they contained no water molecules. Complexes were

excluded if they were covalent binders, contained co-binding molecules, such as

organic solvent in close proximity to the ligand, or metal ions not covered within

ProtoMS software. Structures with any missing resides in the active site, or more

than 3 missing consecutive residues distal to the active site were removed. No

single drug molecule or protein was allowed within the final data set more than 5

times each so as to ensure the dataset is diverse. The resulting data set has 105

complexes of 80 unique proteins and 72 unique drugs, with no repeated protein-

ligand pairs. Details of the targets, ligands, pdb codes, publication years and

resolutions of the dataset are in Section A.2.

As it is only the location of water molecules that are to be considered here, it
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is possible to only simulate at the equilibrium B value only, defined previously in

Equation 2.13. Simulating only at Beq avoids the need to perform the more compu-

tationally expensive full titration. As Chapter 2 demonstrated the improvements

in sampling when RE between B states is included in the protocol, three additional

B values proximal to Beq will also be simulated. Water locations and other analy-

sis will only be performed on the Beq replica. For uniformity across all systems in

the dataset, a cubic GCMC region that is a minimum distance of 4 Å to all ligand

heavy atoms.

3.2.2 System set-up

FDA dataset

All 105 proteins used in the FDA dataset were set up using the following protocol.

The structures used are shown in Table A.1. Where a protein is replicated in the

dataset, the setup was performed all structures independently. The protonation

and tautomer states of the proteins were determined using Maestro.145 A scoop of

30 Å was used, with full amino acid sampling within the inner 15 Å and the rest

of the protein held rigid, for the sampling simulations. For the fixed simulations,

the whole protein is held rigid.

Proteins

For all proteins simulated, the amber14SB force-field has been used.6

Ligands

For all ligands, the ga↵14 forcefield has been used with AM1-BCC charges. All 105

ligands used in the FDA dataset were set up and protonated, and tautomer state

chosen, using maestro.145 The structures used are shown in Table A.1. Where a

ligand is replicated in the dataset, the setup was performed on all ligands inde-

pendently.
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Solvation

For all water simulated, the TIP4P force-field has been used.141 Protein-ligand

complexes were solvated using a half-harmonically restrained sphere of radius of 30

Å, with all crystallographic water molecules were removed. This includes solvating

any sterically available active site regions.

3.2.3 Simulation protocol

For every protein-ligand complex in the FDA dataset, two simulations were per-

formed; one sampling, and one fixed. GCMC has been performed using four B

values; Beq-1, Beq-0.5, Beq, Beq+0.5. A B spacing of 0.5 has been used to en-

sure good exchange between replicas for the full dataset, which is demonstrated

in Section A.1. A GCMC box of 4 Å padding around ligand heavy atoms was used.

Sampling simulations consisted of 10 M GCMC only equilibration, 10 M full

sampling equilibration and 40 M full sampling production steps. Full sampling

consists of half of the simulation moves sampling the system, with the other

half performing GCMC moves. System sampling is shared between bulk water

molecules, protein residues and the ligand at a ratio of 1:5:50. GCMC sampling is

split equally between insertion, deletion and GCMC water sampling.

Fixed simulations consist of 10 M GCMC only equilibration steps, followed by

20 M GCMC only production steps. No protein, ligand or solvent is sampled. The

number of GCMC moves attempted will be the same as the sampling simulation,

within the limit of stochastic sampling.

EDIA scores were calculated using the proteins plus web server.146 Zobs scores

were calculated using edstats in the CCP4 software suite.147
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3.3 Results

The success of GCMC in placing crystallographic water molecules will be consid-

ered — that is the percentage of crystallographic water sites that are reproduced

to within a given distance cuto↵. GCMC water locations from the simulation are

clustered using hierarchical linkage clustering, where a cluster is defined as requir-

ing all its members to have a maximum average cartesian distance of 3.0 Å, that

is that the average distance of all members of a cluster is less than 3.0 Å. MLS

has improved the clustering algorithm by applying an arbitrarily large distance

to GCMC water locations that appear in the same frame. The large distance

condition prevents two water molecules that are observed simultaneously in the

same frame being erroneously placed in the same cluster, and consequently sets

the maximum cluster occupancy at 100%, which was not true for previous appli-

cations of the algorithm.

Each water site will have an occupancy, which is the number of water molecules

from the simulation that are put in the cluster. While a full titration is needed

to calculate the binding a�nity of a network of water molecules, some qualitative

assumptions can be made from simulations performed at Beq. If a water site is oc-

cupied for 50% of the simulation, then the water molecule is equally stable in this

site and in bulk water, which means that its binding free energy is 0.0 kcal·mol–1as

they are equally likely to occupy both bulk water and the hydration site. Water

molecules with higher occupancy can be generally be assumed to be more tightly

bound than lower occupancy water molecules.

3.3.1 Success rates

One protein-ligand complex from the FDA dataset, zanamivir bound to neu-

raminidase (PDB: 3B7E) will be used to introduce the methods of analysis, and

the issues that can arise with the analysis. The success rates will then be applied

to the entire dataset. Figure 3.1 shows the crystal structure of 3B7E, with the

GCMC region illustrated with a grey line, and crystallographic water locations
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Figure 3.1: Crystallographic structure of zanamivir bound to neuraminidase
(PDB: 3B7E), with the GCMC region indicated by a grey box. Crystallo-
graphic water locations within the GCMC region are shown by grey spheres.
All GCMC cluster centres (right) are shown, coloured blue (low) - red (high)
occupancy.

shown as grey spheres. On the right hand side, overlaid onto the crystal structure

are the cluster centres determined from GCMC simulation. These cluster centres

are coloured according to their occupancy — that is the amount of time they are

seen in the simulation, or the number of water molecules from the simulation that

are placed into that cluster — with blue indicating low occupancy water molecules,

through to red, high occupancy water molecules.

Some of the GCMC water molecules clearly overlap with the crystallographic

sites, some crystallographic water molecules are close to GCMC clusters that are

low occupancy, and some are a distance from the closest GCMC site. To decide

if a crystallographic site is correctly located comes with several considerations;

is the closest GCMC site close enough to be considered correct? Is GCMC site

occupied enough to be considered to correctly observed? Both of these issues will

be discussed in this section, where both the cartesian distance cuto↵, and the

GCMC occupancy cuto↵ that are used to measure success will a↵ect the result.

Another point to note is that cluster centres can be closer together than typical

water-water distances, which occurs where the water density is di↵use, and mul-
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Figure 3.2: GCMC cluster centres with occupancies > 50% with zanamivir
bound to neuraminidase (PDB: 3B7E). Green lines indicate distances of 1.0
- 1.5 Å between crystallographic water sites and GCMC cluster centres and
all other labels are consistent with Figure 3.1.

tiple, low-occupancy cluster centres are used to fit the density. Figure 3.2 shows

the system, but with only GCMC cluster locations that have occupancies > 50%.

Here, GCMC cluster centres are not unrealistically close together.

Removing the low occupancy sites, reveals several GCMC sites that are not

observed by a> 50% occupied cluster. For some crystallographic sites, the distance

to the closest GCMC cluster center is increased when the low occupancy sites

are removed. Crystallographic-GCMC distances that are between 1.0 - 1.5 Å

are highlighted by a green dash. Whether these sites should be considered as

correctly identified is a matter of opinion, and the distance cuto↵ used by di↵erent

published methods varies. What distance cuto↵ is considered will change the

apparent success of the method. Zanamivir bound to neuraminidase (PDB:3B7E)

has been used to introduce the issue of classifying the method as successful for

a single structure, but the overall results from the dataset of 105 protein-ligand

complexes will now be presented.

GCMC water molecules with occupancy of 50% or greater, have a

success rate of 51% and 67% at 1.0 and 1.4 Å respectively. Deciding

if a crystallographic water molecule has been correctly identified will depend on

both the distance to a GCMC water site, and the occupancy of that site. Figure
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3.3 illustrates this, where the accuracy of GCMC has been recorded for various

distance cut-o↵s and GCMC water occupancies.

The accuracy of GCMC is dependent both on the cuto↵ used, and

the occupancy of GCMC water molecules considered. Both of the follow-

ing trends are to be expected; the longer the cut o↵, the more crystallographic

sites will be correctly predicted, and the higher the GCMC occupancy required,

the fewer sites are correctly identified. The higher reported accuracy with longer

cuto↵ can also be observed for the other methods shown.

Other published methods perform competitively, but it is di�cult

to compare methods with di↵erent methodologies that have been ap-

plied to di↵erent datasets. Figure 3.3 contains published success rates for

other water placement methods, compiled by MLS. These data are based on the

test set used in the publication, and not our dataset of 105 structures. If methods

have quoted their success rates at di↵erent cuto↵s, then they are all shown. Ac-

quaAlta quoted the success rate with two di↵erent datasets, at the same cuto↵,

which are both shown. Considering only GCMC water molecules with occupancy

greater than 50% (red, Figure 3.3), the GCMC method has higher accuracy than

several published methods. Many other methods fall between the threshold of

any GCMC occupancy and 50%, indicating that GCMC is locating the sites, but

only transiently in the simulation. Other published methods have been shown for

comparison, but much of this Chapter will focus on the di�culty of comparing

di↵erent water placement methods by looking at the variability in success rates

that can be achieved by minor changes to the protocol.

Randomly placing water molecules within a system will correctly

identify some crystallographic water molecules by chance. For a base-

line comparison ‘random’ water locations have been generated. These involve the

identification of water sites using the ProtoMS set up tools, whereby water sites

are näıvely identified for a starting conformation. A pre-equilibrated water box is

overlaid with the complex and water molecules are removed if they overlap with
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Figure 3.3: Accuracy of GCMC at di↵erent cuto↵s. Results based on random
solvation (black) are shown for a comparable baseline. GCMC results are
calculated for 632 active site crystallographic waters in 105 structures. Other
published methods are shown by markers; however, all have been calculated
using di↵erent protocols and test sets. A dashed black line is shown at 1.0 and
1.4 Å, annotated with the GCMC percentage success rate for each occupancy
threshold at that distance.
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any atoms of the system. A water molecule is considered to be overlapping if the

vdW interaction energy of the water’s oxygen atom to the nearest atom of the

system is greater than 20.0 kcal·mol–1. The random results indicate that it is pos-

sible to correctly identify some crystallographic sites e↵ectively by chance. 20% of

crystallographic water molecules are identified at a cuto↵ of 1.0 Å, and this value

increases as the cuto↵ increases. At 63% at a 2.0 Å cuto↵, Dowser is only 5% bet-

ter than the random result of 57%, suggesting that shorter cuto↵s should be used

to identify if water placement methods are accurate. As all of the computational

methods perform better than the random, näıve solvation, this suggests that any

of the published water placement methods would be advantageous to use in the

setup of protein-ligand simulation. The success rate of randomly placing water

molecules is approaching 60% at 2.0 Å, which is very high, and from here on, the

commonly used distances of 1.0 Å and 1.4 Å, where the random results have less

success, will be considered.

These results suggest that other water placement methods are outperforming

GCMC. However there are several major caveats to consider: GCMC is sampling

the protein-ligand environment while most other methods do not, and ‘correctness’

is determined against crystallographic water locations, that will come with their

own limitations e.g. trusting that the electron density has been correctly assigned.

These two caveats will be explored in the following two sections, looking at rigid

receptor results, and analysis of the underlying crystal structure quality.

3.3.2 Rigid receptor results

The methodology of many of the other methods shown use a rigid

molecule approximation during water placement, which will increase

the quoted accuracy. Of the other computational methods shown above in Fig-

ure 3.3, most treat the protein-ligand environment as rigid. Many of the methods

are knowledge based, where the locations of water molecules are assigned based

on knowledge of crystallographic water molecules in other structures. The method
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that performs the best at 1.0 Å is the knowledge based method WarPP,82 with

a success rate of 80% for 1500 complexes, all of which are structures of 1.5 Å

or better. Of all the methods shown, only GCMC,54 which uses a previous im-

plementation of ProtoMS following a di↵erent protocol, and Setny148 sample the

protein-ligand environment. If the environment is sampled, then it is likely that

the system will move away from the crystallographic starting structure (a feature

of sampling), and therefore reduce the number of sites that are correctly identified

based on cartesian analysis.

GCMC on the dataset has been repeated where the surrounding en-

vironment is kept rigid. Sampling of the complex allows the system to relax,

and sample alternate conformations. The majority of the structures in the dataset

have been crystallised at 70 K, and while GCMC simulations are performed at 300

K, the system is likely to adopt di↵erent conformations at the higher temperature.

For this dataset, sampling involves MC trial moves of the ligand, bulk water and

full sampling of protein residues (both side-chain and backbone) within 15 Å, while

residues at a distance of 15 - 30 Å are held rigid. For example, if an amino acid

side chain that forms a hydrogen bond with a water rotates, it may ‘pull’ the water

molecule along with it. This would result in the water sitting in a di↵erent posi-

tion, and therefore being assigned incorrect based on a cartesian assessment, but

nevertheless correct based on the interactions maintained. For this reason, GCMC

simulations have been repeated for the dataset of 105 FDA approved drug-protein

complexes, where the complex is held rigid while only GCMC water molecules

are sampled. No MC moves are assigned to protein, ligand or bulk water in the

simulation. Only insertions, deletions and translations of GCMC waters within

the GCMC region will be attempted.

Simulations where the system is kept as rigid have improved success

rates. In docking methodologies, whereby a small ligand is docked to a receptor,

the components may be held rigid, the ligand may be flexible, or both compo-

nents may be flexible. As flexibility is introduced into the model, the docking

more accurately captures the induced fit motion of protein ligand complemen-
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tarity.149 However, as flexibility is introduced, the likelihood of reproducing the

native binding mode, if the rigid receptor is correctly oriented to the native state,

is reduced.150 This is known as rigid receptor theory.151 If GCMC insertions and

deletions are considered as the repeated ‘docking’ of water molecules into the ac-

tive site, then the same rigid receptor theory should hold for GCMC. If sampling

of the protein-ligand complex results in the shift in a chemical group that covers

a crystallographic water position, then insertions will no longer be possible to ac-

cess during the simulation, which in turn would reduce the possible success rate

of GCMC. GCMC results are being compared to the single snapshot of a complex

that crystallography provides, which means that a rigid complex simulation, that

is unable to move away from the single snapshot to which they are compared, is

more likely to generate results in agreement with the X-ray water assignment. As

the sampling simulations consist of 50% system sampling and 50% GCMC sam-

pling, the rigid simulations consist of half of the number of MC moves, but 100%

GCMC sampling. This means that the number of GCMC moves attempted in

both sampling and rigid simulations is consistent.
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Figure 3.4: Accuracy of GCMC at di↵erent cuto↵s, from fixed environment
simulations. The format is the same as in Figure 3.3

Fixing the surrounding environment in GCMC simulations improves

the success rate. Figure 3.4 shows the results at di↵erent cuto↵s, with di↵erent

minimum GCMC cluster occupancies for the fixed simulation results. For all occu-

pancies and cuto↵s, the success rates are higher than for the sampling results. As

the success rates are higher for the fixed simulations, this supports the rigid recep-

tor argument for GCMC simulations. The di↵erences between di↵erent occupancy

thresholds are reduced in the fixed results compared to those with sampling. At 1

Å distance cuto↵, there is a 31% reduction in the success rates if water molecules

with <75% occupancy are excluded, while for the rigid results, the success rate is

reduced by only 14%. For these results, the fixed receptor data a fairer compari-
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son with many of the other modelling methods, although significant caveats still

exist; the results have been determined on di↵erent datasets of di↵ering sizes, with

di↵erent classifications of water molecules. Classifications vary in several ways,

with some methods only considering conserved water sites54 and others requir-

ing multiple hydrogen-bonding contacts.111 For the fixed receptor results, looking

at GCMC sites of any size (blue line) only WarPP,82 and GCMC54 (for a small

dataset of structures) have a higher success rate. Considering GCMC sites of 50%

occupancy or higher, WaterDock152 and FlexX153 score higher, although the re-

sults are fairly similar. WaterDock has been tested on a dataset of 37 structures,

covering an estimated 12 targets, which is a smaller, less diverse dataset than used

here. FlexX has been tested on a large dataset of 200 structures of 120 targets,

but only water molecules that form a hydrogen bond were considered. Based on

these di↵erences in dataset and analysis, GCMC is performing similarly to the

best other methods.

While fixing the environment increases the success rates, sampling

the system a↵ords other benefits. Keeping the environment fixed during

GCMC simulations has benefits; the simulation is faster, as time is saved by reduc-

ing the number of MC moves. For a faster simulation, the success rates improves;

for 50% occupancy at 1.0 Å, the success rate increases by 15% (50% with sam-

pling, 65% with fixed). This fixing of the system allows GCMC to be more fairly

compared to other available methods, where the majority do not alter the envi-

ronment from the initial crystallographic starting structure. While the improved

success rate seems beneficial, it is not the only metric of success. Sampling the

protein and ligand conformations provides information on multiple conformations

of the systems. We are able to observe di↵erent ligand binding sites (this will

be discussed in Section 3.3.6) which can be extremely useful knowledge in drug

design. In addition, the structures used herein have resolved crystal structures,

whereas in a real drug design project, the exact protein-ligand complex of interest

may not be available, and methods such as homology modelling or docking may

be required. This would likely increase the need for sampling of the protein-ligand

environment during GCMC simulation. The fundamental goal is not just to pre-
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dict water molecule locations in complexes, but to do so in a manner that aids

the design of high a�nity molecules. For example, seeing multiple binding modes

or multiple conformations of a key protein residue, or multiple networks of water

molecules that correspond to these di↵erent conformations is often more important

than the absolute cartesian agreement with crystallographic water locations. This

is particularly true when the relevance of a crystal structure to the structure of

biological relevance is considered.

3.3.3 Types of water molecule

Water molecules have been classified based on their crystallographic

contacts. The 632 active site crystallographic water molecules have been clas-

sified — as bridging, ligand, protein or solvent — based on 2.4-3.4 Å cuto↵s to

protein or ligand polar heavy atoms (nitrogen, oxygen, sulphur). Bridging water

molecules are within hydrogen bonding distance to polar atoms in both the protein

and the ligand. Ligand and protein water molecules are within hydrogen bond-

ing distance to either the ligand or the protein, while solvent water molecules are

considered bulk-like, as they are not within hydrogen bonding distance to any po-

lar atoms of the complex. This classification is performed on the crystallographic

water molecules, in reference to the crystallographic location of water molecules.

As the classification is performed on the crystal structure, no account is taken

of the flexibility of the system, and the possibility that the classification of these

water molecules may change through the simulation. Nittinger et al. only consider

water molecules with two or more possible hydrogen bonds to protein or ligand

atoms. The Nittinger et al. classification of water molecules has been reproduced

as closely as possible. As hydrogen atoms are not assigned in the clustering of

water molecules, the Nittinger et al. classification performed here, checks for two

H-bonding contacts, as defined before, to either protein or ligand. The require-

ment for two H-bonding contacts changes the proportions of types of waters, with

significantly more water molecules classified as solvent when the requirement of

two contacts is used. These are shown in Figure 3.5.



114 CHAPTER 3. WATER LOCATIONS

Figure 3.5: Classification of 632 crystallographic water molecules included
in the dataset. A contact is defined as a 2.4-3.4 Å distance to a polar atom
(nitrogen, oxygen, sulphur). H-bonding classifies water molecules based on
a single contact, while Nittinger et al. requires a water site to have two
H-bonding contacts, to be classified as bridging, protein or ligand.

Water molecules that directly interact with the ligand or are bridg-

ing will be the most important to predict correctly for drug design.

Di↵erent types of water molecules will be of di↵erent importance to drug design.

Both bridging and ligand bound water molecules will be in the first solvation

shell of the ligand, which accounts for 19% of the crystallographic water molecules

(14% by Nittinger classification). These water molecules are the most likely to

be perturbed by incremental changes to the ligand and also the primary candi-

dates for displacement during drug design. The correct identification of these water

molecules are arguably the most important to be correctly predicted. 10% of water

molecules have no contacts to either protein or ligand, and are therefore considered

as bulk. The percentage of bulk water molecules increases significantly when the

requirement for two hydrogen bonding contacts is used. These water molecules

may either be in the second solvation shell or have a crystallographic packing con-

tact which have not been considered herein, or may have one hydrogen bonding

contact if defined by the Nittinger classification. As solvent water molecules by

the H-bonding classification do not have direct contact with the protein-ligand

complex, the water molecule is likely to be more mobile and more disordered, and

more di�cult to correctly predict. With the Nittinger et al. classification, no
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water molecules are ligand-bound, as any ligand-bound water molecules also have

a protein contact, and are therefore classified as bridging. If a ligand-bound water

molecule has two simultaneous contacts with the ligand, it also forms a protein

contact, and therefore will be classified as protein bound.
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Figure 3.6: Boxplots for both occupancies of GCMC water molecules, and
distances from crystallographic sites for each type of water molecule, fol-
lowing both methods of classification (H-bonding and Nittinger) for both
sampling and fixed simulations. Median and interquartile ranges are shown,
with whiskers indicating the rest of the distribution, excluding outliers. No
water molecules are classified as ligand-bound when using the Nittinger et
al. definition.

Di↵erent types of GCMC water molecules have di↵ering occupan-
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cies and distances from crystallographic sites. Shown in Figure 3.6, for

sampling simulations, the median water occupancies are higher for bridging and

protein water molecules than for ligand bound and solvent water molecules, with

broad distributions of occupancies observed for all water molecule types. For the

fixed simulations, the distribution in occupancies for ligand and solvent water

molecules are much broader than the distribution for bridging or protein bound

water molecules. This suggests that these ligand and solvent water molecules

are more disordered in the fixed environment simulations, while the bridging and

protein-bound water molecules are more localised with higher occupancy through-

out the simulation. A water molecule with an occupancy of 50% would have a

binding free energy of 0.0 kcal·mol–1. The occupancy results indicate how many of

each type of water molecule will be a↵ected when the dataset are filtered for dif-

ferent occupancy cuto↵s, Figure 3.3. The whiskers for distributions of distances of

sampling and fixed results are fairly similar for most types of water molecule, but

the median distance result is lower for the fixed simulations for bridging, ligand-

bound and protein-bound water molecules, and equivalent for solvent type water

molecules. The distribution of distances for bridging water molecules appears the

most significantly lowered when comparing fixed results to sampling. The lower

median distance explains the higher success rates achieved for fixed simulations,

relative to sampling simulations, shown in Figures 3.3 and 3.4. The majority of

ligand-bound water molecules in fixed simulations are within a 1.4 Å distance cut-

o↵, despite having a broader distributions. For both sets of simulations, solvent

water molecules have lower occupancies, and larger distances to crystallographic

water molecules. The solvent water molecules are those for which GCMC performs

the worst, which is unsurprising, as the lack of local structure will make these wa-

ter molecules the most di�cult to resolve in the crystal structure and the least

likely to be correctly identified during simulation without a directional hydrogen

bonding group from protein or ligand. Solvent-type water molecules are the least

likely to be used in drug design as they are di↵use and therefore not appropriate to

target for displacement. For this reason, the success rates have been recalculated

for each type of water molecule, and also for all water molecules excluding solvent

water molecules, Figure 3.7.
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Figure 3.7: Percentage of crystallographic water molecules correctly identi-
fied by GCMC (with an occupancy cut o↵ of 50%) at di↵erent cuto↵s, broken
down by classification. Results are calculated for 632 active site, crystallo-
graphic waters in 105 structures. A dashed black line is shown at 1.0 and 1.4
Å, annotated with the GCMC percentage success rate for each classification
at that distance. A dashed purple line shows the success rate when solvent
water molecules are excluded from the analysis, with the success rate quoted
at 1.0 and 1.4 Å.

The success rates of GCMC improves if solvent water molecules are

excluded from the calculation. The success rates as shown in Figures 3.3

and 3.4 have been broken down based on the classification of the water molecules,

shown in Figure 3.7. In agreement with Figure 3.6 the success rates are similar

for protein, ligand and bridging water molecules, while GCMC performs worse

for bulk solvent water molecules. If solvent water molecules are excluded from the

accuracy calculation, the success rate for GCMC increases from 50% to 52 or 59% -

fixed system increases from 65% to 68 or 72% - for a 1 Å cuto↵, both for H-bonding
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and Nittinger classification, respectively. WarPP is a knowledge based method,

with its success rate of 80% quoted for water molecules that form two hydrogen

bonds. The GCMC fixed simulation using the Nittinger et al. classification —

as comparable to their classification as possible — gives a result of 72% which is

close to theirs. The di↵erence in success rates could exist for a variety of reasons.

One explanation is that di↵erent datasets have been used, or that their knowledge-

based method does not require parameterisation through use of force-fields, which

may be a source of error in the GCMC method. It is possible that our success rate

could improve with more optimisation on the ligand hydrogen atom locations, as

the ligand-bound water molecules lower the average slightly for fixed simulation.

The 9% increase in success rate for sampling simulations using the Nittinger et

al. classification to exclude solvent-type water molecules indicates how much the

success rate can vary with a slight change in protocol. The fluctuation in success

rate will be discussed further when crystal-structure quality is also taken into

consideration in Section 3.3.4. The variation of success rate shown just for the

GCMC simulations, based on the cuto↵, occupancy considered and classification of

water molecules included in the dataset, illustrates how unreliable it is to compare

directly success rates quoted in the literature for di↵erent methods, using di↵erent

datasets, with di↵erent protocols and performed by di↵erent researchers.

Despite having a lower overall success rate, sampling simulations cor-

rectly locate 10% of the dataset that is missed by fixed sampling. Fixed

sampling performs relatively worse for ligand bound water molecules.

Figure 3.8 shows the distribution between sampling simulation and fixed simula-

tion distance for all crystallographic water molecules. The water molecules have

been coloured based on their classification in the crystal structure. Figure 3.8 b)

contains the same data as a), but focussed on water molecules that are found to

within 2.0 Å of the X-ray location by both methods, and has been divided into

quadrants, to distinguish between water molecules that are found to within a 1.0

Å cuto↵, with the distributions of types of water molecules across these quadrants

shown in c). 40% of water molecules are correctly located by both sampling and

fixed backbone methods, and 25% of water molecules are missed by both meth-

ods. Sampling simulation are able to predict 10% of water molecules that are
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missed by fixed simulations, with a marginally larger proportion of these being

ligand bound water molecules. 25% of water molecules are found only in the fixed

simulations, where a slightly lower proportion of these are ligand bound water

molecules are found in these simulations, however these distances may not be sig-

nificant. Fixed simulations likely perform better as the environment is unable to

move away from the crystallographic starting point. The proportionally larger

likelihood of sampling simulations to predict ligand bound water molecules than

fixed simulations may possibly be due to the opportunity for hydrogen atoms to

sample, and achieve more optimal hydrogen bonding contacts with these water

molecules. This is simply one explanation, and it is unclear why the lack of sam-

pling of ligand hydrogens would be more detrimental to water placement than the

lack of sampling of protein hydrogens involved in hydrogen bonding. Potentially,

a method where protein backbone and ligand sca↵old atoms are rigid, with side

chains and functional groups and hydrogen atoms able to sample could improve

the success rate relative to fixed simulations.

3.3.4 Quality of crystallographic data

Quality filters used to generate the dataset use metrics that describe the

overall quality of the crystal structure, rather than atomistic metrics.

All of the structures in the dataset have been published more recently than the

year 2000, with a resolution of 2.5 Å or better, which attempts to ensure that the

structures are good quality. These however, are an assessment of the overall qual-

ity of the structures, but do not give an assessment of the quality of the electron

density for a given atom. Discussion of errors that can arise in crystallography

is given in Section 1.5. This section will look at di↵erent measures to assess the

quality of local water electron density, and if this linked to the likelihood GCMC

to correctly locate that water. This section shows results taken from the fixed

GCMC simulations, the same trends are observed in the sampling GCMC results,

but have been excluded for berevity.

Di↵erent metrics are available to assess the atomistic disorder or
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atomistic electron density. The B-factor is a measure of the uncertainty in

the position of an individual atom in a crystal structure.154 B-factors often locally

converged based on the surrounding environment, and can vary between di↵erent

crystal structures, so a normalised B-factors (Bnorm) will also be included in the

analysis, where the B-factor of an atom has been divided by the mean B-factor

of it’s crystal structure.155 EDIA and Zobs are both assessments of the electron

density in proximity to an atom, to identify if there is su�cient density to support

the atom assignment, and are discussed in more detail in Section 1.5. The scales

of the di↵erent metrics di↵er, but a low score for both EDIA and Zobs indicate

that there is less electron density. The opposite is true for B-factors and Bnorm,

where a higher score indicates greater uncertainty in the location of the atom.

Some correlation can be observed between the di↵erent atomic met-

rics. Figure 3.9 shows the distribution of all of these factors; EDIA, Zobs, B-factor

and Bnorm for 569 water molecules in the dataset (632 water molecules, where

63 solvent molecules have been removed based on H-bonding classification). Both

EDIA and Zobs are calculated using an atom’s B-factor to estimate the atom’s

radius. EDIA uses a look-up table calculated by averaging B-factors from many

structures to assess structure quality, while Zobs uses the B-factor directly. EDIA

and Zobs use of B-factors explains why they are both correlated with B-factor

(⇢ =-0.58 and -0.69 respectively), and why the correlation is stronger for Zobs than

for EDIA, as Zobs uses the B-factor directly in the calculation, while EDIA uses

an average B-factor, given the resolution, atom type and atom charge. Zobs and

B-factor are the most correlated pair of metrics considered. Both EDIA and Zobs

are measures of whether there is su�cient electron density for a given atom, albeit

calculated in a di↵erent way. The two methods are correlated (⇢ = 0.61, where ⇢ is

Pearson correlation coe�cient), however the EDIA method has an upper limit on

the EDIA value of 1.2, which may explain the non-linear correlation observed. The

maximum EDIA score of 1.2 is imposed, rather than having a physical meaning.

If the EDIA limit of 1.2 were removed, a more linear distribution may exist with a

higher Pearson coe�cient. The scatter plot of B-factor against Bnorm has a ⇢ cor-

relation of 0.48. Regions of highly correlated points can be seen in B-factor against
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Figure 3.9: Correlation plot for di↵erent crystallographic measures consid-
ered; EDIA, Zobs, B-factor and Bnorm. Diagonal histogram plots show the
distribution of each metric, and non-diagonal scatter plots show the correla-
tions between di↵erent metrics. Data points are transparent, which means
that regions that appear darker correspond to multiple water molecules. An-
notations show the Pearson correlation coe�cient (⇢) for all combinations of
metrics.
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Figure 3.10: Violin plots showing the distribution of metrics considered, for
water molecules found (green) or missed (red) to within 1 Å cuto↵ in fixed
GCMC simulations. Results are shown for EDIA, Zobs, B-factor and Bnorm.
Note the di↵erent axis for each metric. Median values are shown by large
dashed lines, while interquartile ranges are indicated by the small dashed
lines.

Bnorm plot, which arise when water molecules from the same structure have all

been normalised by the same average B-factor. Bnorm is frequently considered a

more unbiased metric to use than B-factors,155 however while this in no way indi-

cates which is more reliable, the non-perfect correlation indicates that di↵erences

will arise depending on which value is considered. The diagonal histogram plot of

Bnorm shows that the modal value is around 2, showing that water molecules in

crystal structures are likely to be more disordered than the average atom of the

system. Water molecules are therefore more likely to be disordered, and less likely

to be correctly assigned than other atoms in protein structures.

GCMC is more likely to miss water molecules that have less elec-

tron density and are more disordered. Distributions of the di↵erent metrics

of water molecules that have been found or missed are shown in Figure 3.10. This

highlights some di↵erences in the water molecules found and missed. The distri-

bution of both EDIA and Zobs values of crystallographic water molecules that are

missed by GCMC is shifted to lower values than for those water molecules found.

Crystallographic water molecules with less electron density to support their place-
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ment in the crystal structure are more likely to be missed by GCMC, whether

EDIA or Zobs are used to assess the electron density. The shift in electron density

may suggest that some water molecules that are missed by GCMC may have been

incorrectly assigned in the electron density. Looking at the distribution of both

B-factors and Bnorm show that water molecules missed by GCMC have marginally

higher values than those found. B-factors are a measure of the uncertainty in an

atom’s position, and therefore water molecules with higher B-factors or Bnorm are

less clearly resolved. B-factors di↵er to EDIA or Zobs, as they do not suggest if

a water molecule is truly there or not, but may suggest water molecules where a

longer, more lenient distance cuto↵ would be needed to locate it by computational

methods.

Di↵erent published methods have used inconsistent criteria to select

appropriate water molecules for testing. Validations of other computational

methods have excluded some crystallographic water molecules from their test sets

based on various assessments of the crystallographic water molecules. GCMC54

considers water molecules that are ‘conserved’, i.e. that are observed in multiple

crystal structures of the same target. WarPP82 in addition to only considering wa-

ter molecules that have two hydrogen bonds, only assesses water molecules with an

EDIA score of >0.24 (a previous publication suggested an EDIA >0.8 to suggest

su�cient electron density112). If the success rate of GCMC with the FDA dataset

is analysed as similarly to the WarPP results as possible — using a distance cuto↵

of 1.0 Å, a minimum EDIA score of 0.24, GCMC sites that are over 50% occupied

for a fixed simulation for water molecules that form at least two polar contacts with

protein or ligand at hydrogen bonding distance — then the success rate is 72 %.

Figure 3.10 illustrates a di↵erence between di↵erent metrics and the likelihood of

GCMC to correctly predict the site. Owing to the di↵erence in distributions of wa-

ter molecules found and missed, if water molecules with poorly scoring metrics are

excluded from the dataset, the apparent success rate of the method will increase.

While EDIA scores of 0.24 and 0.8, and a Zobs score of 1, have been suggested as

suitable cuto↵s, these values seem to be a ball-park suggestion, rather than arising

from a physical measure. In addition, there is no cuto↵ for B-factors, or Bnorm to
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distinguish a water molecule as ordered or disordered. For this reason, no specific

value of any metric has been chosen, instead the success rate of the method has

been plotted against a range of each metric, Figure 3.11.

Filtering the dataset based on crystallographic metrics improves the

success rate. Where each of EDIA and Zobs have a minimum of zero, all 632

crystallographic water molecules will be considered, and the success rates are con-

sistent with those shown in Figure 3.11. As the minimum for each increases, water

molecules will be excluded from the determination of the success rate, and a con-

sequence of excluding water molecules with low scores, the success rate of the

method is increased. For EDIA there is a notable increase in the success rate at

around 0.8. The success rate increases by 13% (fixed) and 19% (sampling) for

EDIA, and 16% (fixed) and 14% (sampling) for Zobs depending on the cuto↵ ap-

plied. B-factor and Bnorm di↵er to EDIA and Zobs, as they are measures of atomic

uncertainty, where a higher value indicates more doubt. The plot for B-factor

and Bnorm need to be considered in the opposite direction, where the maximum

B-factor/Bnorm will include the whole dataset (53% and 68% success rates for sam-

pling and fixed respectively), and as the plot moves to the left, the dataset becomes

more selective, removing water molecules with high B-factors. If a smaller, max-

imum B-factor/Bnorm is considered (only considering water molecules with more

certainty in their position) then the success rate will increase. The gain in success

rate across the range of maximum B values is 14% (fixed) and 13% (sampling) for

B-factor, and 5% (fixed) and 14% (sampling) for Bnorm.

The changing success rates indicates how unreliable it would be to

compare two di↵erent water placement methods. Analysis into the e↵ect

that di↵erent cuto↵s of di↵ering metrics have on the apparent success rate does

not indicate suitable crystallographic quality to be used, it does highlight the large

degree to which a success rate can vary based on water molecules analysed. It is

di�cult to compare two computational methods. It can be hard to understand

whether a di↵erence in success rate between methods is due one method being bet-

ter or purely down to di↵erences in protocol. Using no cuto↵ for any of the metrics
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Figure 3.11: Success rate for both fixed and sampling simulations, when
the data set of 569 water molecules (632 water molecules, where 63 solvent
molecules have been removed based on H-bonding classification) is filtered
to remove low electron density water molecules (EDIA or Zobs), or to remove
high uncertainty (B-factor or Bnorm) water molecules. The success rate calcu-
lated using a 1.0 Å distance cuto↵, with GCMC cluster centres of occupancy
greater than 50%. The x-axis indicates the cuto↵ used for the minimum, or
maximum value of the metric used the filter the dataset. All points plotted
correspond to a dataset of at least 50 of the initial crystallographic water
molecules.
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seems näıve — water molecules with little electron density, or much disorder, are

being used to benchmark a method. Excluding water molecules, however, begins

to lean towards cherry-picking of results, biasing a quoted success rate to higher

values. All of the values plotted in Figure 3.11 are determined from a dataset

of a minimum of 50 water molecules, however as this is an average of 0.5 water

molecules per structure analysed (50 waters from 100 structures), this too feels

overly selective. Ultimately, choosing any cuto↵ or quality filter on the results will

alter the success rate quoted. What seems to be more important is assessing all

methods to the same criteria to ensure a fair comparison.

Looking at crystallographic metrics helps somewhat to suggest which

water molecules may be artefacts, but they do not indicate where a crys-

tallographic water molecule has not been assigned, but would fit the

electron density. As the success rate increases when filtering out low-scoring

water molecules by di↵erent metrics, this suggests that some water molecules may

not be real, and are an artefact of the crystallographer and the refinement pro-

cess. These metrics are only recorded for water molecules that are present, and

do nothing to indicate where water molecules may be present experimentally, but

have not been assigned. Understanding if hydration sites are being missed as they

are partially occupied, or if they are disordered, is also di�cult to quantify. Ex-

perimental locations of water molecules are the only information against which it

is possible to test the success of computational methods, but this does not mean

that the experimental data is without flaws.

3.3.5 Additional hydration sites

GCMC predicts many more hydration sites than are observed in the crystallo-

graphic structure, as illustrated in Figure 3.1. These additional sites can arise for

a range of reasons. Additional sites may be due to low occupancy GCMC clus-

ters, where the occupancy of the GCMC cluster is such that the electron density

would be too low to resolve. This may also occur for disordered water molecules,
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where the electron density will be blurred, and may not be assigned to a water

molecule. Another reason for the additional GCMC hydration sites is that, as the

GCMC region is cuboidal, and defined automatically across the dataset to have a

4 Å padding around the heavy atoms of the ligand. Both the shape of the GCMC

region, and as the region has been uniformly defined irrespective of the nature of

the binding site, for many systems, the GCMC box extends over bulk-like water.

Bulk like water molecules are unlikely to be resolved in the crystal structure due

to their disorder, but will be identified by GCMC, which explains many additional

hydration sites that are distal to either protein or ligand. The final explanation for

the additional water sites as identified by GCMC is the temperature at which both

the simulation and the crystallography is performed. The majority of the dataset

has been resolved at 70 K, while all the GCMC simulations are performed at 300

K. It is likely that this temperature di↵erence means that entropically bound water

molecules are more likely to be observed in the low temperature crystal structures,

while enthalpically bound water molecules will be stabilised at ambient room tem-

perature, but this is di�cult to quantify and hard to test. One possibility to

probe the di↵erences in bound water molecules at various temperatures would be

to study structures that have been resolved at both low and high temperatures,

or for complexes where neutron di↵raction data is available.

3.3.6 Hydrogen bonding networks - 2RIN

One of the main advantages that GCMC has is the ability to sample networks of

molecules. Above, the analysis has been performed on cluster centres derived from

simulations. These results show that, with any analysis, fixed simulations have

higher success rates than the equivalent simulations that sample the protein-ligand

environment. While the success rates — the likelihood of correctly predicting the

locations of crystallographic water molecules — are lower with sampling simula-

tions, despite the additional computational expense, there are other advantages of

sampling simulations. The fixed simulations assume that the starting location is

correct. The starting location may not be at a minimum for multiple reasons —

unclear electron density, ambiguous assignment of the density, or if the complex
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has been generated using a computational technique such as docking. Allowing

the protein ligand to sample allows the system to move away from high-energy

conformations, and sample an ensemble of conformations for a complex.

One example of the dataset of 105 will be considered to illustrate the benefits

of including system sampling within GCMC simulations; ABC-transporter choline

binding protein with acetylcholine (PDB: 2RIN). Acetylcholine is a small molecule

that has one crystallographic water molecule within the GCMC region simulated.

The water molecule is protein-bound (based on both H-bonding or Nittinger et al.

classifications), and correctly located by both fixed and sampling GCMC simula-

tion, to 0.35 and 0.62 Å respectively. GCMC however, predicts more hydration

sites than are resolved in the crystal structures, as discussed in Section 3.3.5.

Fixed GCMC

Fixed simulations of 2RIN reproduces the crystallographic sites. There

are four GCMC cluster centres from the fixed GCMC simulation, three of which

have occupancies of 100%, and one that is only 1.5% occupied. All three high

occupancy water molecules correspond to crystallographic water molecules, one

inside the GCMC region, while the other two crystallographic water sites are 0.8

Å outside of the GCMC region, shown in Figure 3.12. The success rate of this

system in isolation is 100%.

Sampling GCMC

Sampling simulations result in more cluster sites, with the crystallo-

graphic water molecules reproduced as in the fixed simulations. In con-

trast to the fixed simulation results, the cluster locations from the sampling simu-

lations are shown in Figure 3.13. Instead of four GCMC water clusters, there are

now 13 cluster locations from the sampling results. As before, three of these sites

are 100% occupied (IDs 1 - 3), and are within 1 Å of the three high occupancy

clusters from the fixed simulation and the crystallographic water molecules. Five

sites (IDs 4 - 7) are partially occupied, with occupancies of 81, 73, 35 and 35%
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Figure 3.12: Acetylcholine bound to ABC-transporter choline binding pro-
tein. GCMC cluster centres from the fixed simulations are shown. GCMC
region is shown by black line, protein shown in green cartoon, acetylcholine
coloured; carbon - green, nitrogen - blue, oxygen - red. Crystallographic
water locations are shown by yellow spheres. GCMC cluster locations are
labelled, and coloured using a spectrum of blue (low occupancy) to red (high
occupancy). Labels are the cluster IDs.
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Figure 3.13: Acetylcholine bound to ABC-transporter choline binding pro-
tein. GCMC cluster centres from the sampling simulations are shown.
Colours are the same as Figure 3.12. The protein-ligand conformation shown
is the starting conformation, while the cluster locations are determined from
the dynamic simulation.

respectively. Clusters with occupancies lower than 25% have been excluded for

clarity.

One cluster site has been identified that is clashing with the start-

ing location of the ligand. The most notable aspect of Figure 3.13 after the

number of cluster centres, is the position of cluster 7, which is clashing with the

ligand. In the fixed simulation, the ligand will not move from the position shown,

so no attempts to insert the water molecule at this position would be accepted.

The conformation shown however, is the starting conformation, taken from the

crystallographic structure. The position of cluster 7 indicates that the ligand has

moved su�ciently for a water molecule to now occupy this site.

The correlation of a pair of water molecules can be calculated by counting
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Figure 3.14: Two representative frames of acetylcholine bound to ABC-
transporter choline binding protein. GCMC cluster centres from the fixed
simulations are shown as spheres, with low occupancy sites removed, while
water molecules from the representative frames are shown as sticks. Two
binding modes of the ligand are observed, with one similar to the crystal-
lographic position (left) and the other novel (right), which would not be
observed in the fixed simulations. The observed ligand flip reveals two hy-
dration sites, 6 and 7, while displacing the water molecule at cluster site
5.
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the frames in which they are observed together, and comparing this to how many

frames would be expected by chance. If a pair of water molecules are both 50%

occupied, if they were non-correlated, they would be expected to be observed

together 25% (50% x 50%) of the simulation. If they are observed together signifi-

cantly more, or significantly less than this, then they can be considered correlated

or anti-correlated. Cluster sites 5 and 7 are 3.3 Å apart, which could be a long

hydrogen bond, however they are -17.2% anti-correlated (8.5% observed - 25.7%

random). Two representative frames of the simulation are shown in Figure 3.14

which demonstrates the anti-correlation of GCMC clusters 5 and 7. The acetyl-

choline flips during the simulation, and an alternate binding conformation is ob-

served. One of these conformations is complementary to GCMC cluster 5, while

the other stabilises GCMC cluster 7. Sampling of the 2RIN system is able to

reveal two possible binding modes, both of which are in agreement with the crys-

tallographic water locations, but with distinct water networks. While the results

are more complex, and the system is able to move away from the crystallographic

structure, with lower success rates, sampling GCMC simulations have a significant

advantage. Both of these ligand conformations and water networks would be of

importance if part of a drug design e↵ort, and would not be seen by the fixed sim-

ulations, or any other published water location methodology that does not sample

the protein-ligand environment.

3.4 Conclusion

This chapter looks at the rate at which GCMC simulations correctly reproduce

crystallographic water locations. The locations of water molecules have been pre-

dicted for a dataset of 105 complexes of FDA drug molecules to protein targets.

The dataset has been generated with attempts to ensure good crystallographic

comparison — 2000 or more recent release date, 2.5 Å resolution or better and

no structures with obvious crystallographic contacts. The placement of water

molecules has been attempted while both sampling the protein-ligand environ-

ment and while holding it rigid.
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A success rate of 59% and 72% has been demonstrated for sampling and fixed

simulations respectively, at a 1.0 Å cuto↵, for GCMC water molecules with greater

than 50% occupancy, for crystallographic water molecules with at least two polar

contacts to protein or ligand. The major result of this Chapter is not the suc-

cess rate itself, although this is gratifying, but rather the demonstration of how

variable the quoted success rate can be, depending on the protocol implemented.

The results vary depending on the occupancy of GCMC water molecules consid-

ered, the types of water molecules included in the dataset (and how those types

of water molecules are defined) and if various crystallographic metrics are used

to filter out lower-quality crystallographic water molecules. For a 1.0 Å cuto↵ for

sampling simulations, success rates vary between 37% (GCMC sites greater than

75% occupied for all 632 crystallographic sites) to 72% (GCMC sites greater than

50% occupied, for h-bonding water molecules with an EDIA score greater than

0.9). This indicates that care needs to be taken when comparing published results

of di↵ering methods, as much variation exists in the published protocols.

Here, the accuracy of GCMC has been tested on correctly locating water

molecules for a large dataset. In the following chapter, GCMC has been com-

bined with ligand free energy calculations to allow for dynamic adaptation of

the active site water network along the along the alchemical pathway, known as

GCAP. GCAP will be demonstrated on two systems, SD and A2A, both of which

have limited crystallographic data where crystal structures are not available for

all protein-ligand complexes considered, and some of those which are available are

poorly resolved.
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4.1 Introduction

This chapter has been completed with help from CCA and GAR. GAR is respon-

sible for the initial implementation of GCAP in ProtoMS. CCA has written the

surface-GCAP analysis script that performs the calculation of 2D-MBAR. All sim-

ulations, and analysis herein was performed by HBM.

This chapter will look at the development of grand canonical alchemical per-

turbations (GCAP), whereby GCMC sampling of active site water molecules is

performed during relative ligand binding free energy calculations. This allows for

congeneric ligands to be simulated accurately, despite having di↵ering active site

water networks.

Rational drug design often involves making stepwise modifications to a known

ligand to improve the a�nity of the molecule. The relative binding a�nity of two

ligands can be calculated by performing the perturbation of one ligand, into the

other in both bulk solvent, and in the bound ligand environment. Issues can arise

if the bound environment of the two ligands considered di↵er. If the change in

ligand causes a perturbation to the active site water network, then the change in

ligand will interfere with this. The water network may be unable to adapt appro-

priately within the timescale of the simulation if the bound water molecules are

unable to exchange with bulk, or if there is a kinetic barrier to water unbinding.

This issue will be particularly notable for occluded binding sites. If the water

network is unable to adapt, then either one or both ligands may be simulated in

a non-native state, which can introduce errors into the simulation. Relative bind-

ing free energies simulated in the NVT or NPT ensemble may incorrectly indicate

that one ligand is more favourably bound than another, if the water network is

complementary to that ligand.5

Simulating relative ligand free energy perturbations in the µVT ensemble

avoids this issue, as the sampling of active site water molecules is enhanced via

grand canonical sampling. The networks of the two ligands considered do not need
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to be the same — or even need to be known a priori — as the active site water

molecules are able to adapt across the alchemical pathway.

4.1.1 Grand canonical alchemical perturbations

GCAP is the methodology whereby relative ligand free energies can be calculated,

in combination with GCMC to correctly model the active site hydration state of

the ligands, for every � intermediate. This allows for the correct, equilibrium hy-

dration state to be modelled for both ligands, as well as all intermediate � states.

As with GCMC simulations, GCAP can be performed at a range of B values,

resulting in a two-dimensional simulation, over a range of B and � values. This

results in a two-dimensional binding free energy surface, and hence will be re-

ferred to as surface-GCAP. Alternatively, if only Beq is simulated, each � window

is dynamically hydrated to an extent appropriate for equilibrium with bulk water,

and the result is a one-dimensional free energy curve along � (single-GCAP). As

GCAP is able to alter the hydration of the grand canonical region of the simu-

lation, this allows for the relative free energy of two ligands with di↵ering water

occupancies to be determined in a single free energy simulation. GCMC has been

used previously to study changing water networks for an absolute binding free

energy calculation.156 Unlike previous work, we are simulating fully in the µVT

ensemble, in contrast to only periods of µVT equilibration. Further, we show here

how simulations using multiple B values can be used to construct self-consistent

thermodynamic cycles for sets of ligands, with the full benefits of replica-exchange

in both B and �.

For single-GCAP simulations, as only � is varied and B is constant at the

equilibrium Beq value, the relative free energy of two ligands can be determined

using classical free energy approaches, discussed in Section 1.2. As with running

GCMC at a single B value, single-GCAP is only able to determine the equilibrium

number and location of water molecules, but not the binding a�nities of the water

network. RE may be performed between simulations at di↵erent � values to aid

convergence.23,139
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In surface-GCAP simulations, a range of both � and B values are simulated.

An illustration of the surface-GCAP simulations is shown in Figure 4.1. The

surface-GCAP simulations are aided by replica exchange (RE) in both dimensions;

� and B.157 The relative binding free energy of the ligands in their equilibrium

hydration states, as well as the number of water molecules, their locations and

the binding free energy of the water networks can all be determined from surface-

GCAP. MBAR is trivially applied to two dimensions, allowing for all available

states of the simulation to contribute in calculating the relative free energy of the

two ligands and their associated water networks.22 This is calculated by using the

reduced potential function, ui(x), Equation 4.1 with the MBAR estimator.

ui(x) = � [Ui(x) + µiN(x)] (4.1)

i is the index over all states, Ui is the potential energy according to the i
th

Hamiltonian, µi is the chemical potential of the i
th state and N is the occupancy

of water molecules of state x. This 2D-MBAR allows the free energy of the ligand

perturbation to be calculated from the entire surface-GCAP simulations, using

statistically optimal contributions from all simulated states. Surface-GCAP is ad-

vantageous over single-GCAP, as it is able to calculate the binding free energy

of networks of water molecules for any perturbed state of the ligands, while also

benefitting from the convergence advantage of RE in B.157 The computational

resources required by single-GCAP is determined by the specified number of �

windows. Surface-GCAP requires the equivalent resources multiplied by the num-

ber of B values simulated.
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Figure 4.1: Relative ligand free energy methods, where one ligand (red) is
perturbed to another (green) across a � coordinate. A) A typical relative lig-
and free energy simulation where the perturbation is performed in an NVT
ensemble and the hydration state of the protein-ligand system is unable to
adapt to the perturbation. B) Single-GCAP. The same perturbation in the
grand canonical ensemble, where insertion and deletion moves allows the
water occupancy to vary across the � pathway. The equilibrium chemical
potential (Beq) solvates each ligand in dynamic equilibrium with bulk water.
C) Surface-GCAP. Both a � pathway and range of B values are simulated,
generating a two-dimensional network, with RE between neighbouring states.
The relative free energy between di↵erent B and � values can be determined
from the surface, using MBAR. Free energies of water networks can be cal-
culated by using the GCI equation at a given � value. Calculating relative
ligand binding a�nities requires a corresponding bulk water ligand perturba-
tion. The bulk leg contributions are included in the calculation, but excluded
from this graphic for clarity.

Two systems will be used to present this method; Scytalone Dehydratase (SD),

used previously in Chapter 2, and a water soluble form of adenosine A2Areceptor

(A2A). SD has been used previously as a test systems for free energy methods;

there are three similar ligands on a common sca↵old, with significantly di↵erent

binding free energies.3 These di↵erences have been suggested to be due to the

favourable displacement of an active site water molecule.2 Michel et al. used this

system to demonstrate stepwise free energy calculations, whereby the ligand per-

turbation is performed, followed by DD of water molecules in the system.5 Their

method will be reproduced herein for comparison to the GCAP methodologies.
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The GCMC region for SD will be a 4x4x4 Å3 cubic box focussed on the single

potential water site illustrated in Figure 4.2.

Figure 4.2: Representation of the SD ligand binding site, with the structures
of ligands 1, 2 and 3 shown. The potential active site water location is shown,
with hydrogen bonds (green dash) to two active site tyrosine residues. Ligand
2 is the only compound for which a crystallographic structure is available
(PDB:3STD), in which there is no water molecule present. The binding
modes of ligands 1 and 3 have been assumed to be the same as ligand 2.
The presence of a water molecule with the smaller ligands 1 and 3 has been
studied by Michel et al.5

For A2Athere are twelve antagonists in the dataset of 1,2,4-triazine derivatives

published,4 where various aromatic substitutions have been made to either ring

A or ring B, shown in Figure 4.4. Ligand names, R group numbering and ring

labelling are consistent with the previously published work.4 Of the twelve ligands,

three have been selected for free energy calculations here; ligands E, F and G,

Figure 4.4. These were chosen as both E andG are the only holo-crystal structures

available (E PDB:3UZC, G PDB:3UZA), the di↵erences between the ligands are

all located on ring A, and the relative free energies calculated from both the Ki

and KD data are consistent to within 1 kcal·mol�1, which is the level of accuracy

for which we would aim computationally. More details of the comparison of Ki

and KD are outlined in Section A.4. Any experimental �G
� �s reported herein

will correspond to the KD results, calculated by surface plasmon resonance (SPR)

binding analysis. The crystallographic structures of ligandsE andG are both 3.3 Å
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Figure 4.3: Active site of A2A ligand G (PDB:3UZA). Protein residues (light
blue) Ligand G (green) shown as sticks, with nitrogen (blue), oxygen (red)
and sulfur (yellow) shown. The GCMC box region, shown as black lines,
covers ring A of ligand G, and the active site cavity near ring A. No water
molecules are shown, as there are no resolved water molecules in the crystal
structure.

resolution, respectively. As these structures are low resolution, no crystallographic

water molecules have been resolved. While the lack of crystallographic water

locations makes the validation of GCMC more di�cult, it illustrates a system

where water placement methodologies can be of most help.

As the ligand perturbations are all on ring A, a GCMC region covering a protein

pocket near ring A will be sampled. As there are no crystallographic waters it is

unclear how many hydration sites this box will cover, but it will likely be more

complex than the single water site considered for SD. The cavity near ring B will

be näıvely solvated using ProtoMS95 during the system set up.

4.1.2 Free energy surfaces

To create the free energy surfaces, PMFs are calculated along B using GCI, and

along � using rigorous free energy methods. These are combined to generate a free

energy surface using least-squares fitting. For PMFs along B, free energy values
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Figure 4.4: Three A2A ligands that will be considered herein. All of the
substitutions are to ring A in the molecule.

for states with non-integer occupancies are determined by linear interpolation of

the binding free energy curves output by GCI.

In principle it is possible to calculate free energy surfaces directly using MBAR.

The free energies produced between states with di↵ering B values will include

contributions from changes in chemical potential however that are not physically

meaningful in the context of the binding free energies of interest in this work. The

above approach produces consistent Helmholtz free energy surfaces using GCI.

MBAR free energy di↵erences between states at the same B value are consistent

with NVT free energy cycles.

In all cases, � = 0 corresponds to the larger ligand, and � = 1 to the smaller.

4.2 Methodology

4.2.1 System set-up

Proteins

For all proteins simulated, the amber14SB force-field has been used.6

SD protein structure used is from the 3STD PDB entry. The protein was

scooped to a radius of 15 Å. The protonation and tautomer states of the proteins

were determined using molprobity.140 In Chapter 2 two hydration sites in the SD
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active site were considered, water molecules A and B. Here, the water site A will

be used to define the GCMC region, as it is close to the site of the changes on the

ligands.

A2A protein structure used is from the 3UZA PDB entry. For A2Aa scoop of

20 Å was used, with side chain and backbone sampling in the inner 16 Å, and

side chain only beyond that. The protonation and tautomer states of the protein

were determined using Maestro.145 A2A has an active site His278 residue; this was

✏ protonated during the set up. Owing to its proximity to the GCMC region, the

single-GCAP simulations were repeated for the � protonated His278. GCMC results

can be dependent on the tautomer and rotamer of histidine used in a simulation.158

Ligands

For all ligands, the ga↵14 forcefield has been used with AM1-BCC charges.

Three similar ligands bound to SD have been studied, ligands 1, 2 and 3. The

3STD PDB entry has the bound structure of ligand 2, from which the other two

ligands binding positions has been assumed.

For A2A the PDB file of the complex containing ligand G is used (PDB:3UZA).

Models of the other ligands (1 and 3 for SD, and E and F for A2A) studied were

generated from these sca↵olds. As the perturbation from ligand E to ligand G

involves both the addition and removal of functional groups, it has been performed

in two steps, via the intermediate, where the C-OH group of ligand E has been

perturbed to a N atom, but the meta groups are unchanged, shown in Figure 4.5.
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Figure 4.5: Ligand M (for mutant), not included in the published dataset,4

but used as the mid-point for the E — G leg, as this perturbation requires
both the growing and shrinking of di↵erent R groups. It is more straightfor-
ward to calculate the relative free energy of both E — M and G — M and
use this to calculate the E — G leg. M was calculated to have lower a�nity
than any of E, F or G.

Solvation

For all water simulated, the TIP4P force-field has been used.141 Protein-ligand

complexes were solvated using a half-harmonically restrained sphere of radius of

30 Å, with any crystallographic water locations retained, apart from the FDA

dataset where all crystallographic water molecules were removed. This includes

solvating any sterically available active site regions. For the free simulation legs,

each ligand is solvated in a cubic box with a padding distance of 10 Å between

ligand and box edge. For grand canonical simulations, water molecules within the

GCMC region are removed prior to the simulation.
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4.3 Simulation protocol

4.3.1 Ligand binding a�nities

For any simulation performed with either multiple � windows or multiple B values

(or both), replica exchange between neighbouring B and � values was attempted

every 100,000 moves. For consistency with previous publications, a non-bonded in-

teraction cuto↵ of 10.0 Å was used for SD, and a cuto↵ of 15.0 Å for A2Asimulations

was used.

Single-topology alchemical transformations were performed on pairs of SD lig-

ands. Perturbations were performed in two stages; considering the perturbation

as taking place from a large molecule to a small, the electrostatic parameters first

perturbed, followed by the van der Waals (vdW) interactions. Each simulation is

split across 16 equally spaced � windows. These perturbations are performed both

in the bound state and for the ligand in bulk solvent. 5M MC equilibration steps

are performed, followed by 40M production steps. The ratio of MC moves for each

system is shown in Table 4.1.

GCMC has been shown previously to be consistent with double decoupling

methods for calculating binding free energies of water molecules.54,157 To validate

the thermodynamic consistency of GCAP, the SD system was simulated in the

bound state both with and without the active site water molecule. In addition, DD

has been performed on the active site water location in SD with all three ligands,

consistent with the method described by Ross et al.157 These simulations generate

the thermodynamic cycle shown in Figure 4.7, that allows for a comparison to the

GCAP results, in addition to the experimental data.

4.3.2 GCMC

For SD and A2A, a region of the active site was defined using a GCMC box over

a region of the active site. For SD, this is a small box over a single active site

water molecule and for A2A, a box covering the active site cavity near ring A



148 CHAPTER 4. LIGAND BINDING AFFINITIES

T
ab

le
4.1:

M
C

m
ove

ratios
for

each
sim

u
lation

p
erform

ed
.
A

—
in
d
icates

th
at

n
o
G
C
M
C

typ
e
m
oves

w
ere

p
erform

ed
.S
im

u
la
tio

n
so

lv
e
n
t

p
ro

te
in

so
lu

te
G
C

in
se

rtio
n

G
C

d
e
le
tio

n
G
C

sa
m
p
lin

g
n

e
q
u
ilib

ra
tio

n
/

M
n

p
ro

d
u
c
tio

n
/

M
S
D

A
P

2
8
0

2
1
8

2
—

—
—

5
4
0

S
D

D
D

2
8
0

2
1
8

2
—

—
—

5
4
0

S
D

G
C
A
P

2
8
0

2
1
8

2
1
6
7

1
6
7

1
6
7

5
*

8
0

A
2
A

G
C
A
P

3
7
6

1
1
8

7
1
6
7

1
6
7

1
6
7

1
0
*

1
2
0

A
2
A

n
ä
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Table 4.2: Details of GCMC region used for each system. The GCMC region
is cuboidal. Beq is calculated from the GCMC volume using Equation 2.13

System origin (x,y,z) length (x,y,z) /Å Volume /Å3 Beq

SD 24.141, 11.225, 32.916 4.000, 4.000, 4.000 64. -9.70
A2A -44.253, 0.565, -47.602 9.784, 6.533, 7.844 501.4 -7.65

was used, shown in Figure 4.3. GCMC region details are available in Table 4.2.

The simulation consists of an initial GCMC equilibration of 5M MC moves, with a

1:1:1 ratio of insertion, deletion and GC water sampling moves. Following this, 5M

equilibration and 80M production MC steps are attempted on the entire system

with the sampling ratios shown in Table 4.1.

For SD, GCMC was performed at 16 equally spaced B values from -22.7 to -7.7.

As the binding free energy of the water molecule with ligand 3 is unfavourable,

higher B values are required to couple the water into the system; therefore for this

ligand GCI was repeated for 16 B values from -12.7 to +2.3.

4.3.3 GCAP

The GCAP simulations followed the single-topology set up outlined above. These

simulations were performed for the pairs of SD ligands, and pairs of A2A ligands.

The MC move ratios are the same as for the alchemical pertubation simulations,

but with additional grand canonical MC moves. Details of move ratios are available

in Table 4.1. For SD, surface-GCAP simulations were performed with the B values

shown in Table A.3. For A2A, surface-GCAP was performed with 10 equally spaced

B values between -21.654 to -3.654 inclusive, so as cover the Beq value, while also

titrating down to the B value where the water occupancy is zero. Single-GCAP

simulations were also performed on each system, at their respective Beq values

(SD: -9.70, A2A: -7.65).
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Table 4.3: B value ranges for surface-GCAP simulations, where Bmin and
Bmax are inclusive. Interval shows the distance between neighbouring B
values and NB is the number of B values simulated.

System Bmin Bmax Interval NB

SD lig 1 + 3 -19.7 -3.7 1 19
SD lig 1 + 2 -18.7 -9.7 1 10
SD lig 2 + 3 -12.7 -3.7 1 10
A2A (all pairs) -21.15 -7.65 1.5 10

4.4 Results

GCAP simulations have been performed on two systems — SD and A2A. SD is

a well-studied system,5,54 where a small change in the ligand results in large dif-

ferences in a�nity due to the displacement of an active site water molecule.3 As

only one water is displaced, it is possible to validate the GCAP method using se-

quential steps of NVT alchemical perturbations and DD. To explore GCAP for a

multi water system, a series of 1,2,4-triazine derivatives A2A antagonists have been

reported.4 These A2A antagonists have a range of ligand binding free energies, and

previous studies have suggested that di↵erences in a�nity may arise from di↵erent

active site water networks.159,160 Using three of these ligands, E, F and G, shown

in Figure 4.4, a thermodynamic cycle has been created, and the relative binding

free energy has been calculated using both the single-GCAP and surface-GCAP

methodology.

4.4.1 Scytalone dehydratase

For simple cases such as SD, where the water occupancy of the system is chang-

ing only by one for a set of ligands, a thermodynamic cycle can be constructed,

as was illustrated by Michel et al.5 Their thermodynamic cycle for SD has been

reproduced using our open-source software package, ProtoMS as a comparison for

the GCAP simulations, Figure 4.7.95
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Figure 4.6: Ligand 1 binding to the active site of SD (PDB:3STD), with
the GCMC region shown by a black box. Key tyrosine residues are shown.
Water position is calculated from GCMC simulations.

The relative binding a�nities of the ligands, and DD of the water

molecule, has been performed for SD, following the protocol of Michel

et al. The two triangular cycles correspond to single-topology transformations

between the three ligands both in the absence and presence of the water (grey and

blue cycles respectively), calculated with typical DD and alchemical perturbation

simulations. The vertical legs correspond to the free energy of removing the wa-

ter in each of the protein-ligand complexes, calculated by DD. A positive energy

indicates a favorably bound water molecule, as it requires energy to remove the

water from the system. Where the energy of the water is unfavorable, it would not

be expected to be present in the bound ligand complex. These water binding free

energies therefore indicate that the water is expected to be present with ligand

1, and not with ligands 2 or 3. For two of the cycles, the thermodynamic cycle

closure is larger than the combined errors of its legs. This occurs for both cycles

that involve the hydrated ligand 2, where for the ligand alchemical perturbation

the water molecule is not restrained within the simulation. As the water molecule

is unrestrained it is displaced into an apolar cavity of the protein, ⇠ 8 Å from

its starting position when ligand 2 is bound. As the water is restrained in the

decoupling simulations, the two end points of the legs may di↵er. This di↵erence
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Figure 4.7: Relative binding free energies in kcal·mol�1 of ligands 1, 2 and
3, with (blue) and without (grey) the active site water molecule (shown in
Figure 4.2) present. Free energies calculated using MBAR. No GCMC or
GCAP simulations were used to generate this map. Vertical legs correspond
to the free energy of decoupling the water from the system. This cycle is taken
from Michel et al., recalculated with similar conditions where possible using
the ProtoMS software package and using amber14SB and ga↵14 force fields.
Standard errors from four independent repeats are shown in brackets, and
thermodynamic cycle closures in red. The calculated binding free energies
include the free energies from the equivalent bulk-water simulations.
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may be responsible for the poor closure of the cycles, however the cycles that will

be presented in Figure 4.8 all close to within error.

The stepwise combination of NVT ligand perturbation with water

DD correctly reproduces the rank order of a�nity of the ligands. The

relative binding free energy of two ligands with di↵erent water occupancies can

be calculated by adding the free energies of steps between these two states. Mul-

tiple pathways exist between the states, which can result in a range of relative

free energies for each pair of ligands. This has been simplified to a single set of

relative binding free energies by choosing the pathway with fewest steps between

two states as this represents minimal computational e↵ort. Where there are two

pathways with the same number of steps, the pathway with the smaller combined

statistical error has been chosen. Figure 4.8, cycle A shows the optimum calcu-

lated free energies of binding for the ligands at their preferred hydration states.

These simulations are able to correctly rank the relative binding free energies of

the three ligands. However, two of the three legs are further than one standard

error from the experimental result.

Calculating binding a�nities using NVT ligand perturbations and

water DD simulations is labour intensive, and scales poorly with addi-

tional water molecules. Multiple alchemical perturbations and DD simulations

are required to generate these results, which is only feasible as the water occupancy

is being varied by one. To generate a thermodynamic map for an n water network

in a protein site would require n DD simulations to decouple each of the waters

sequentially, or n! simulations if all the di↵erent possible orders of annihilation of

water molecules are considered.

The relative binding free energies of the three SD ligands have been

calculated using both single and surface GCAP. GCMC has been shown

to be preferable to decoupling methods as the location of the hydration sites are

not needed and the binding free energy of n waters can be determined in a single

simulation series, whilst also capturing cooperative binding e↵ects in water net-
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Figure 4.8: Relative binding free energies of the three SD ligands in
kcal·mol�1. Blue indicates a ligand expected to maintain the water in the
active site. The experimental binding free energies3 are shown along with
cycle A) generated from Figure 4.7, using MBAR for ligand perturbations
and water perturbations. Cycle B) calculated using single-GCAP, and cy-
cle C) calculated using surface-GCAP. Standard errors from four repeats are
shown in brackets and overall cycle closures in red.
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works.54,157 GCAP is able to perform a ligand transformation (either single or dual

topology, but only single is used here), with GCMC being used at each � value of

the transformation. This allows the correct water occupancy to be adopted at each

� value. This means that the thermodynamic free energy di↵erence between two

ligands – despite any di↵erences in their respective water occupancies or locations

– can be calculated within a single simulation series.

Single-GCAP

Single-GCAP simulations are able to correctly rank order the three SD

ligands. As it is possible to perform GCMC simulations at Beq to predict the

equilibrium water occupancy and locations, it is also possible to perform GCAP

at one B value per � value. However, this loses the sampling benefits gained from

replica exchange in B in improving the precision of the results.157 The binding

a�nities of water networks are also unavailable when reducing the simulation to

a single B value. The results for single-GCAP simulations are shown in Figure

4.8, cycle B. The free energies calculated are consistent to within error of those

calculated by separate MBAR and DD simulations (cycle A), and with smaller

errors per leg.

Surface-GCAP

The relative binding free energies of the ligands calculated using surface-GCAP

are shown in Figure 4.8, cycle C.

Surface-GCAP simulations are able to reproduce the SD ligand bind-

ing a�nities with the best experimental agreement and smallest associ-

ated errors of the three methods considered. As described in the methods,

simulations at multiple B and � values are performed with additional RE moves.

MBAR is used to estimate the free energy di↵erence between the ligands with

their optimal hydration states. These free energy results are in good agreement

with both with the experimental results and the simulation results in cycle A. The

surface-GCAP simulations perform the best of the three computational methods

at reproducing the experimental results, although all methods are consistent to
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within error. The standard deviation for each simulation leg is the smallest, and

the cycle closure is very small at 0.1 kcal·mol�1.

Changes in the water occupancy are observed in the vdW legs of

the simulation. For SD, changes in water occupancy were observed during the

van der Waals (vdW) legs of the free energy calculations, when the R group of

the ligand is reduced or grown in size. For this reason the free-energy surface

generated by the vdW leg of the surface-GCAP is shown in Figure 4.9, for the

ligand 1 (� = 1) to 3 (� = 0) simulation. The perturbation between ligands 1 and

3 corresponds to the change from an aromatic nitrogen (ligand 1) to an aromatic

CH group (ligand 3). Examples of both electrostatic and vdW surfaces for all

three pairs of ligands are available in Section A.3, Figure A.3. In all cases, � = 0

corresponds to the larger ligand, and � = 1 to the smaller.

The free energy surfaces are generated combining thermodynamic

integration at each B value, and PMFs at each � value. To create the

free energy surfaces, PMFs are calculated along B using GCI, and along � using

thermodynamic integration. These are combined to generate a free energy surface

using least-squares fitting. For PMFs along B, free energy values for states with

non-integer occupancies are determined by linear interpolation of the binding free

energy curves output by GCI. In principle it is possible to calculate free energy

surfaces directly using MBAR. The free energies produced between states with

di↵ering B values will include contributions from changes in chemical potential

however that are not physically meaningful in the context of the binding free en-

ergies of interest in this work. The above approach produces consistent Helmholtz

free energy surfaces using GCI. MBAR free energy di↵erences between states at

the same B value are consistent with NVT free energy cycles.
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Figure 4.9: The binding free energy surface (red) and the GCMC water
occupancy (blue) for the vdW leg of the surface-GCAP simulations of SD
ligands, 1 (�=1) and 3 (�=0). Note that at �=0 is not ligand 3 as the
electrostatics have been perturbed to those of ligand 1. The free energy of
the vdW perturbation of the bulk-solvent leg has been subtracted from the
bound-leg surface to a↵ord the relative binding free energy surface. From
this relative binding free energy surface, the di↵erence in free energy at the
minima at �=0 and 1, along with the equivalent energy of the electrostatic
leg give the relative binding free energy of the two ligands.
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Figure 4.10: The initial placement of water molecules in the näıve solvation
simulations. This näıve solvation is used with all ligands, but an unsubsti-
tuted sca↵old is shown for clarity. The GCMC box is not included in the
näıve simulations, but is shown in light grey for ease of comparison to Figure
4.12.

4.4.2 A2A

Näıve solvation

For comparison to other available methods, the A2A simulations were also per-

formed with a näıve solvation. The näıve simulation refers to the system being

set up using ProtoMS set up tools, where the system is solvated based the avail-

able pocket volume and simulated with the NVT ensemble. The set-up places

three water molecules within the GCMC region, shown in Figure 4.10. The water

molecules will be sampled with solvent MC steps.

A GCMC region of A2Athat covers the ring A cavity has been used

in the GCAP simulations. As before with SD, a free energy cycle between

three A2A ligands has been tested using the single- and surface-GCAP method-

ologies. With SD, a particular known water site of interest was chosen as the

focused GCMC region. With A2A, no water molecules are present in either of

the two available crystal structures, although previous computational studies have

highlighted hydration sites near rings A and B, that can vary between di↵erent

ligands. A2A ligands were treated as if no prior information were available, and a
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Figure 4.11: Relative binding free energies of A2A ligand pairs in kcal·mol�1.
Results shown are experimental (blue), näıve (green) single-GCAP (purple)
and surface-GCAP (orange). Error bars shown are standard errors from
three repeats of each leg.

GCMC region was chosen to cover the active site cavity near ring A and the sites

of alchemical perturbation, shown in Figure 4.3. The GCMC region is ⇠8 times

larger than for SD, and the number of water sites encapsulated in this region is

higher than for the single water case of SD.

Nav̈e solvation (NVT ensemble) simulations do not correctly rank

order the ligands, while both single-GCAP and surface-GCAP do, with

surface-GCAP a↵ording the best experimental agreement and smallest

associated errors. The relative binding free energies of the pairs of ligands have

been calculated using both single- and surface-GCAP, Figure 4.11. Both meth-

ods correctly rank order the ligands, with surface-GCAP results producing better

experimental agreement, and smaller standard errors, for all legs. The thermody-

namic cycles for these calculations are shown in Figure 4.13, where surface-GCAP

also has better thermodynamic closure. In contrast to this, the relative free ener-

gies have also been calculated using a näıve solvation — where the water molecules
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have been placed in the system using default set up tools based on available pocket

volume, and simulated with an NVT ensemble, Figure 4.11. The näıve solvation

places three waters within the GCMC region, illustrated in Figure 4.10. Where

the GCAP methods were able to rank order the ligands, the näıve calculations

do not. The näıvely solvated simulations predict ligand G to be the most tightly

bound, when experimentally it is the weakest binder. This shows the errors that

can occur if relative binding free energies are calculated without proper consid-

eration of the e↵ect of the perturbation on the active site water network. The

di↵erence between the näıve cycle and the GCAP cycles is that no assumption

has been made about the network of water molecules in the region of the ligand

perturbation. The grand canonical ensemble allows the region to be dynamically

solvated, and adaptively change as the ligand perturbs. This also allows us to

predict the hydration sites for the various ligands, shown in Figure 4.12. As there

are no available crystallographic water molecules, these cannot be experimentally

validated.

GCMC cluster locations indicate the hydration sites of each of the

three ligands considered with A2A. The clustered water locations, and their

occupancies are shown for all three ligands in Figure 4.12, labelled a - d, with

hydrogen bonding contacts shown with yellow dashed lines, determined using py-

mol.161 Water site a is deep in the pocket, and is stable and conserved for all three

ligands. For ligands E and F, a water molecule b is able to bridge between their

hydroxy group and the water site a. Water site b is 100% occupied for ligand E,

but is only observed in ⇠40% of the simulation with ligand F. The destabilisation

of this water molecule is likely due to the local methyl substitution on ligand F.

With ligand E, as water site b is stable, a third site, water c is observed in ⇠30%

of the simulation. This water is able to form two donating hydrogen bonds with

backbone carbonyl groups. With ligand G, the substituted phenyl group of ligands

E and F is replaced with a substituted pyridine group. The conserved water site

a is observed, in addition to water site d, which was not observed with ligands

E or F. Water site d bridges between two protein residues, rather than directly

hydrogen bonding with the pyridine group.

Surface-GCAP results can decompose the energetic contribution the
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Figure 4.12: GCMC water locations top to bottom for ligands E (purple), F
(light blue) and G (green) shown as sticks. Protein is represented as cartoon,
with residues shown as lines. Carbon atoms are colored per ligand, with
oxygen (red), nitrogen (dark blue), chlorine (yellow) and hydrogen (white).
Any non-polar hydrogen atoms are removed for clarity. Hydrogen bonding
(yellow dash) interactions are shown, determined using pymol.161 GCMC
hydration sites have been labelled a� d, with water occupancies labelled for
waters that are present <95% of the simulation. Water locations have been
calculated by clustering,95 and a representative snapshot of the simulation is
shown that represents the cluster centres.
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water molecules provide to the relative a�nities of ligands. As surface-

GCAP is performed at a range of B values, it is possible to calculate additional

free energy contributions, of the relative ligand binding free energy of the dry

pocket, and the free energies of the water networks. From the surface-GCAP

simulations, the binding free energy of the water network with each of the ligands

can be calculated using the GCI Equation where � is 0 or 1. This is equivalent to

performing a GCMC titration simulation, with the addition of RE in � as well as

B. This has been calculated for each of the surfaces, and is shown as vertical legs in

Figure 4.13. This shows that ligand E has the most tightly bound water network,

followed by ligand G, while ligand F has the least tightly bound water network,

despite being the highest a�nity ligand. From surface-GCAP simulations, it is

also possible to calculate the relative free energy of the ligands in a dry pocket

by performing one-dimensional (1D) MBAR along the lowest B value, where the

GCMC region has an average water occupancy of zero. This dry free energy cycle

is shown in Figure 4.13, and while it is not intended to reproduce the experimental

results, it can be useful — along with the water network binding free energies —

for understanding from where the various energetic contributions arise.

4.4.3 Ligands F — G

The ligands F and G have the largest di↵erence in a�nity. As the relative hydra-

tion free energy of the two ligands is e↵ectively zero, Table A.3, the di↵erence in

a�nities arises from active site interactions. The GCAP simulations are able to

show that the perturbation from ligand F to ligand G results in the loss of low-

occupied water site b and the introduction of water site d as the hydroxyl group

is removed. The water network with ligand G is 1.5 kcal·mol�1 more stable than

with ligand F. This insight, provided by surface-GCAP, suggests that the high

a�nity of ligand F is predominantly due to the protein-ligand complementarity,

rather than water stabilisation. This is illustrated by the dry leg a↵ording a rela-

tive binding free energy of 3.0 kcal·mol�1. The free energy surfaces for the vdW

leg of this perturbation are shown in Figure 4.14. As before with SD, the surface

shows that the minima in the free energy coincides with the Beq value (-7.65).
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Figure 4.13: Relative binding free energies of the three A2A ligands in
kcal·mol�1. All results are calculated from the surface-GCAP simulations.
The dry cycle is calculated from using MBAR at B = -21.65, where the
GCMC region is free of water molecules. The solvated cycle is calculated
using MBAR on the whole surface, where the ligands will be correctly hy-
drated, Figure 4.12. The vertical legs are the free energy of the GCMC water
networks, calculated using GCI at the � end points of the surface. Standard
errors are shown, calculated from three repeats for ligand perturbations and
six repeats for water network calculations. Thermodynamic cycle closure is
shown in red.
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Figure 4.14: Free energy surface, and corresponding water occupancy from
the vdW leg of the ligand F (�=0) to ligand G (�=1) perturbation. Note
that this is not fully ligand F as the electrostatics have been perturbed to
those of ligand G. The lowest free energy region of the surface is at Beq (-
7.65), where both ligands and any intermediate states will be dynamically
hydrated. Beq is indicated on the surface, along with Bdry the B value at
which the dry cycles are calculated, where the average water occupancy is
zero.

Where the GCMC region is under or over hydrated at lower or higher B values,

the free energy of the system increases. Looking also at the water occupancy at

Beq, the water occupancy increases as � changes from 0 to 1. This corresponds to

the replacement of partially occupied site b with fully occupied d. The partially

occupied nature of site b is easily simulated with the grand canonical ensemble,

and would be challenging with a fixed N ensemble. At �=0, where the system

has perturbed electrostatics, but the vdW interactions are still of ligand F, the

minimum in the free energy surface is broader than for �=1 (ligand G). This sug-

gests that ligand F (with its perturbed electrostatics) is stable with either 1 or

2 water molecules, whereas ligand G has favourable a�nity only with two water

molecules present. Little change is seen between ligand F and ligand F with the

electrostatics perturbed, Figures A.4, A.5 and A.6.
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4.4.4 Ligands E — F

The di↵erence between ligands E and F, is the substitutions at the meta position.

The alchemical perturbation that removes the methyl group close to water site b

results in the stabilisation of the water site, and its occupancy increases from 40%

to 100% across the alchemical pathway. This stabilises an additional water site,

water c, which is in turn 30% occupied when ligand E is bound. The changes to

sites b and c correspond to a 2.6 kcal·mol�1 favourable stabilization of the water

network. The relative free energy of the ligands when the pocket is dry is +3.4

(0.3) kcal·mol�1 less favourable for ligand E than ligand F, which shows that the

strong interactions of ligand F to the pocket directly, are mostly compensated by

the increased stability of the water network with ligand E. While the relative free

energy of the perturbation can be determined from the single-GCAP simulation,

the surface-GCAP simulation in addition allows the binding free energies of the

water network and the dry simulation to be calculated, which provides deeper

understanding of the energetics and stability of the di↵erent systems. The E to F

perturbation is also most improved when comparing to the experimental relative

binding free energies by surface-GCAP, relative to single-GCAP. This may be

because the di↵erence in stability of the two ligands’ water networks is the largest

in the set.

4.4.5 Ligands E — G

As the perturbation from ligand E to ligand G involves both the addition and

removal of functional groups, it has been performed in two steps, via the interme-

diate, where the C-OH group of ligand E has been perturbed to a N atom, but the

meta groups are unchanged, shown in Figure 4.5. This perturbation from ligand

E to G results in the loss of water sites b and c, and the introduction of water

site d, corresponding to a loss in water network binding a�nity of 1.1 kcal·mol�1.

The relative a�nity of the dry leg, finds that ligand G is more tightly bound than

E by 0.6 kcal·mol�1; however, as the water network is able to better stabilise lig-

and E, ligand E is 1.0 kcal·mol�1 more tightly bound than ligandG when solvated.
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Both GCAP methods perform well for A2A, with the more com-

putationally expensive surface-GCAP simulations outperforming the

cheaper single-GCAP results. For the three ligands considered for A2A, the

GCAP methodologies are able to correctly reproduce the experimental relative

binding free energies to within 1 kcal·mol�1 accuracy, while also determining the

locations of the water molecules proximal to ring A. Attempting to calculate these

relative free energies by näıvely solvating the system results in poor experimental

agreement, with the lowest a�nity ligand, ligand G, calculated as having the high-

est a�nity. The starting locations of the water locations of the näıve simulations

are shown in Figure 4.10 and indicate a water close to water site d, that is observed

with ligandG, but not with ligands E or F. This coincidental similarity in the posi-

tion of water d could explain why ligandG is predicted to be the most stable ligand

in the näıve set of simulations. With ligands E and F, a water is not predicted

in this location with the GCAP methods and is kinetically prevented from di↵us-

ing out of the pocket. Using the GCMC methodology, whereby water molecules

are located on the fly throughout the simulation, means that there is no assump-

tion of the number or location of water molecules within the region of interest.

This allows for ligands with di↵erent active site water networks to be calculated

directly. Although single-GCAP is computationally cheaper than surface-GCAP,

the surface simulations provide smaller errors, better thermodynamic closure and

better experimental agreement. In addition, simulating the whole surface through

using a range of B values not only allow the stability of the water networks to be

determined, by using GCI at a set � value, but also the relative free energy of the

ligands at a given level of hydration to be calculated, by using 1D MBAR along

� for a set B value. This information allows the energetic contributions from the

water network to be decomposed. However, this additional information comes at

computational cost, proportional to the number of additional B values simulated.

4.4.6 His278 protonation

The protonation of an A2Aactive site histidine residue has a significant

impact on the relative ligand a�nities. The active site histidine (His278)
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Figure 4.15: Relative ligand binding free energies for A2A ligands with the
two protonation states of active site residue, His278

was ✏ protonated by Maestro set up tools. As the residue is in close proximity to

the ligand and the GCMC region, the simulations were repeated also with the �

protonation state. The results of this are shown in Figure 4.15. This changes the

rank ordering of the ligands, with ligand E stabilised, and ligand G destabilised.

The relative destabilisation of ligand G may be rationalised as it is the only com-

plex that contains a His278-water hydrogen bond, Figure 4.12. As the ✏ proto-

nated form was suggested in the set up, and has significantly better experimental

agreement, this was shown in the main text. The � protonated results show how

sensitive results can be to choices made in the system set up — whether that be

location of water molecules (demonstrated by the näıve results in the manuscript),

and by the e↵ect of protonation here. The alternate histidine rotamers have not

been considered. Ideally, GCAP would be performed with a constant-pH protocol

that would exchange the titratable active site residues during the simulation.

4.5 Conclusion

Issues arise in relative protein-ligand binding free energy calculations in cases where

water molecules become trapped in the protein binding site. This can occur where

the ligands considered have di↵ering active site water networks. Conventional

alchemical perturbation methods do not always cope with this situation, partic-

ularly in occluded pockets, where exchange with bulk water may be prevented

within a feasible timescale due to kinetic barriers. GCMC has been developed
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to determine both active site water locations and water network free energies, all

within a single series of simple to perform simulations.54,157 In this paper, GCMC

has been combined with MBAR to achieve dynamic adaptation of water networks

with relative protein-ligand binding free energy calculations. Two protocols have

been presented; low-cost single-GCAP that simulates only at Beq, thereby ensur-

ing equilibrium with bulk water, and high-precision surface-GCAP that simulates

at a range of B values. Using surface-GCAP it is possible to calculate relative

binding a�nities between ligands at a chosen level of hydration, as well as isolate

the contribution that the displacement, or rearrangement, of a water network has

on the relative ligand binding a�nity. Thus not only are robust, reproducible

protein-ligand binding free energies produced, but the associated changes in wa-

ter network in the binding site are observed. Moreover we have demonstrated

the decomposition of the protein-ligand free energies into terms related directly to

protein-ligand interactions and separately, to water stabilisation. We have shown

with two protein ligand systems that this can produce experimentally consistent

a�nities, useful for drug design, and usefully rationalise Structure Activity Re-

lationships. We anticipate that this methodology will prove a powerful tool in

structure based drug design.
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This thesis studies the role of water molecules in ligand binding, and illustrates

how computational methods can be used in drug design. Grand canonical simu-

lations of active site water molecules has been applied in various ways to enhance

the sampling of occluded water molecules that can become trapped in conven-

tional simulations due to limited achievable timescales and kinetic barriers. First,

replica exchange has been introduced into GCMC simulations to improve sampling

of titration simulations, with the motivation of improving the reliability of water

network binding a�nities. Second, GCMC has been applied to a large dataset to

understand the success rate of the method for correctly identifying crystallographic

water sites without a priori knowledge. Finally, GCMC has been introduced to

conventional ligand free energy calculations, to allow for direct calculation of rel-

ative binding a�nities for pairs of ligands with di↵ering active site water networks.

Chapter 2 demonstrates that replica exchange between neighbouring B val-

ues is computationally cheap and improves the monotonicity of GCMC titration

results. Improved monotonicity of results allows for better fitting of logistic func-

tions to the data, allowing for the precise determination of the Gibbs binding

free energy of networks of water molecules to an active site. Theoretical improve-

ments to the GCI Equation a↵ords results that are both as accurate and reliable

as DD methods. The accuracy and reliability of GCMC has been demonstrated

for two systems; BPTI and SD. DD requires the laborious set up of multiple sim-

ulations to decouple each water molecule of interest individually with the use of

restraints of constraints. GCMC can calculate the binding free energy of multiple

water molecules simultaneously, allowing for network contributions to be accounted

for automatically. The theoretical improvements a↵orded the derivation of Beq,

whereby the system is in dynamic equilibrium with bulk water. Previously, a full

GCMC titration plot was required to calculate the optimum water occupancy of

a GCMC region, through minimising the Gibbs free energy; however, Beq allows

for this to be simulated using only a single B value. This does, however, lose

the ability to calculate the water network binding free energy. Use of a single
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Beq allows for simulations to be computationally cheaper, as is demonstrated in

Chapter 3. The results of Chapter 3 illustrate how binding free energies a↵orded

by the new GCI Equation a↵ord excellent agreement with values calculated using

DD methods.

Chapter 3 illustrates the success of GCMC to reproduce crystallographic water

locations for a dataset of 105 crystal structures. The dataset has been generated

of complexes from FDA approved drug molecules, with care taken to prevent over

representation of any particular drug or target. The focus on FDA-approved drug

molecules ensures the usefulness of the test-set for pharmaceutical applications.

Simulations were performed where the system was sampling (ligand, bulk water

and protein with 15 Å of the ligand in addition to GCMC sampling) and where

the system was fixed (only GCMC sampling). Fixed system sampling was shown

to have higher success rates than sampling simulations, as the system does not

dynamically move away from the starting conformation. The main focus of this

Chapter, beyond determining the success rate of GCMC, was to study the vari-

ability that is possible in success rates based on di↵erent protocols. The success

rate of GCMC was shown to vary with; simulation protocol, GCMC occupancy,

classification of water molecules, and filtering the experimental data based on var-

ious quality metrics. The variation in the success rate makes apparent the need

for methods to be applied to one dataset with a consistent analysis protocol. The

intention is to make the FDA dataset readily available such that it can be used for

future testing. To the best of our knowledge, this is the largest test of a simulation-

based water placement method performed. At a distance cuto↵ of 1.0 Å, for GCMC

clusters with occupancies > 50%, for crystallographic water molecules that form

at form two polar contacts to either protein or ligand, 59% and 72% of water

molecules are found by sampling and fixed simulations respectively.

Chapter 4 presents GCAP — where relative ligand free energy simulations

are performed in the grand canonical (constant µVT) ensemble, allowing for the

ligand to perturb while the local active site water molecules can adapt accord-

ingly. Performing relative binding free energy calculations in the NVT ensemble,
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where the number and location of active site hydration sites are assigned a pri-

ori can cause errors, both with cycle closures as for SD, and reduce experimental

agreement for both systems tested. Two protocols were developed, one involving

GCMC simulations performed at Beq (single-GCAP), and another, more compu-

tationally expensive method, where a full titration is performed at each � window

(surface-GCAP). Single-GCAP is able to calculate the relative binding free en-

ergy with the same computational resources as a typical NVT, with only slightly

longer simulation times (approximately 50% longer for single-GCAP as there are

twice as many MC steps, but the insertion and deletion moves are computation-

ally cheaper than conventional MC moves), for improved experimental agreement.

Surface-GCAP involves simulating the perturbation at a range of � windows and

B values, resulting in two-dimensional free energy surfaces. Surface-GCAP is more

computationally expensive, but it is able to a↵ord the relative binding free energy

between the pair of ligands in any of the simulated hydration states. Determining

the relative free energy of the ligands with a dry pocket allows the free energy

contributions to be decomposed to inspect the contribution that water molecules

provide to GCMC, which can be useful for decision making in drug design projects.

The binding free energy of the water networks with both ligands can be determined

by using GCI on the � end points. The GCAP method allows for more accurate

binding free energies to be determined computationally, while fewer decisions are

required during simulation set up, allowing the method to be more readily auto-

mated, which can reduce errors.

There are several avenues to pursue in future work. In Chapter 2, nearest-

neighbour replica exchange was introduced to GCMC titration simulations. Future

work could include all-pairs replica exchange to allow for faster mixing of states at

di↵erent chemical potentials. Chapter 2 also demonstrated the ability to simulate

only at Beq, reducing the computational cost of the simulation, when only the

locations of water molecules are of interest. If SAMS were applied to sampling

B values in the proximity of Beq then it may be possible to gain the benefits of

replica exchange, without additional computational cost.
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In Chapter 3, the success rate of GCMC was evaluated for a dataset of 105

protein-drug dataset. The dataset is of great value for future work. It is still

unclear if water molecules should be targeted for displacement during drug design,

and expanding this dataset to cover congeneric ligands and comparing the hydra-

tion patterns between them may be able to correlate SAR with the locations and

a�nities of active site water molecules. Various point-charge water models exist,

and while TIP4P has been used throughout, the success rate of the data-set could

be evaluated using a range of water force-fields, which would indicate which model

— if any — is the most appropriate for modelling bound water molecules. This

force-field comparison could be expanded to study di↵erent protein and ligand

force fields for the application of identifying hydration sites.

MC sampling in simulations of the lengths performed herein are unlikely to

di↵er significantly from the starting conformation, particularly when sections of

the protein are held rigid. A hybrid methodology whereby GCMC simulations

are intermixed with MD sampling would allow for better sampling of the full con-

formational space of the system, and would make the results more reliable. A

GCAP-MD protocol would be suitable to model absolute ligand free energy calcu-

lations, whereby the ligand could be decoupled from the active site, and GCMC

would control the appropriate hydration of the system throughout. MD sampling

would out-perform a MC only methodology to capture the conformational changes

in the residues of the active site on ligand unbinding.

To conclude, grand canonical sampling methods have been applied to a range

of protein-ligand systems and its use has been demonstrated for the computational

determination of positions and binding a�nities of active site water molecules, and

their influence on ligand binding.
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A.1 Optimising B-spacing

Replica exchange can be used for two non-exclusive benefits; im-

proving the titration profile of GCMC results and enhancing sampling

of a replica. The most e�cient B-spacing for enhancing sampling of a

given replica is found to be dependent on the water occupancy of the

GCMC region, which can be approximated during the simulation set

up. While RE can improve the reliability of calculated binding free energies us-

ing GCMC titration results, it can also be used to improve the sampling of the

number of bound water molecules, N , at a given chemical potential. In the case

of determining the equilibrium location of the water molecules, it is possible to

simulate only at Beq. Simulating only the equilibrium condition heavily reduces

the computational resources required, as each B value requires a single processor.

For the case of BPTI, if only the location of water molecules was required, sim-

ulating only Beq would reduce the computational cost (and required disk space)

by a factor of 32. However, as shown in Figure 2.4, considering a single B value

in isolation, a range of N can be observed when each B value is run in isolation

(i.e. without RE). A compromise between reducing the computational load, while

benefitting from replica exchange, is to sample a few B values, at and around the

equilibrium value. Before, the aim of RE was to smooth the titration curve, as

measured by the Kendall ⌧ score, Chapter 2. Now, as the GCI equation is not

being used in Chapter 3, it is the sampling of N that is of primary interest.

For the optimal sampling of water occupancies at Beq, successful RE moves

should be as frequent as possible, but if the replicas are too closely spaced, then the

exchange may be between repeats with the same N . One consequence of Equation

2.1 is that for �N=0, any attempted swap will always be accepted. While this

is beneficial in terms of exchanging configurations across the B space, it does not

enhance the sampling of water occupancies at a given B value. These simulations

to determine only the equilibrium location of water molecules are presented in

Chapter 3. In these simulations, good rates of RE are required to improve the

sampling of N , but exchanges between replicas of the same occupancy are not
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as useful. For this reason, the ratio of accepted GCMC swaps that are between

replicas of di↵erent N will be referred to as useful GCMC swaps. The optimal

spacing of B values will be tested for a subset of 10 structures from the FDA

dataset. Initially, a B-spacing of 1 was chosen, and the percentage of useful GCMC

replica swaps has been plotted against the average equilibrium water occupancy

for the system calculated from Beq, shown in Figure A.1. It demonstrates that

the greater the number of GCMC water molecules, the fewer B replica exchange

moves are attempted. The acceptance rate drops o↵ very rapidly, with fewer than

10% of moves accepted for systems with more than 10 GCMC water molecules.

For nearly all the systems with more than 27 water molecules, the B value RE

acceptance rate is 0%, which means that the additional replicas are trapped, and

provide no information for equilibrium solvation. This plot makes sense; a B value

that is Beq± 1, is going to either include or exclude water molecules that are either

very weakly bound, favourably or unfavourably. If the number of water molecules

in the GCMC is larger, then the variance in the occupancy will be larger, likely

increasing �N . The larger N is for a system, the larger the variance in N, the

larger �N is likely to be, and therefore the much less likely an attempted RE swap

will be to be accepted.
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Figure A.1: Useful GCMC RE swaps for 10 systems of the FDA dataset, plot-
ted against the average equilibrium water occupancy for di↵erent B-spacings.
B-spacings are coloured as red=0.1, green=0.2, blue=0.5, purple=1.0

This suggests that the spacing between B values; when the enhanced sampling

of N is of interest, should depend on the equilibrium average N . The equilibrium

average N is a simulated observable, while the optimal B-spacing is something

that we would like to set a priori. A näıve surrogate for average N would be the

volume of the GCMC box, however Figure A.2 shows that there is little or weak

correlation (R2=0.48) between the GCMC volume and the average water occu-

pancy. Two GCMC boxes of the same size may contain very di↵erent number of

waters, depending if the ligand is surface binding, and most of the box is covering

bulk water, or a very occluded, dry pocket, where very few water molecules will

be located. An alternative metric was found to estimate Neq of a GCMC region.

Within the ProtoMS set up, ProtoMS will näıvely solvate the protein-ligand com-

plex — retaining any crystallographic waters, and attempting to add additional
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waters at the density of bulk water, removing any that clash with protein or lig-

and atoms. When the GCMC box is generated, any waters within the GCMC box,

crystallographic or otherwise are removed from the GCMC region. The number

of water molecules removed from the system at this setup stage is a reasonable

estimate of the equilibrium water occupancy of the system, shown in Figure A.2,

with an R2 of 0.92. This can be used in combination with Figure A.1 to indicate if

a given B-spacing is appropriate. During set-up of a GCMC simulation, the num-

ber of water molecules cleared from the GCMC region can be used to estimate the

expected value of N , using Figure A.2, right. This estimation for the expected av-

erage N can be used with Figure A.1 to approximate the expected RE acceptance

rate for a range of B-spacings. An appropriate B-spacing can be chosen such that

reasonable acceptance rates for RE is expected. For the research using the FDA

dataset, Chapter 3, one B-spacing was preferred for the entire dataset. Based on

Figure A.1, a B-spacing of 0.5 was chosen, as even the largest systems have a

RE-acceptance rate of at least 15%. Using any closer spaced B values would both

not represent simulating anything su�ciently dissimilar to Beq, and would also be

too finely spaced to reasonably adopt in a titration simulation.
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Figure A.2: Plots of the equilibrium average water occupancy of the region
against the GCMC volume (blue,left) and the waters cleared from the GCMC
region (red,right) for 10 systems. The number of waters cleared is a better
predictor of the average water occupancy than the GCMC volume itself, with
R2 values of 0.92 and 0.48 respectively.
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A.2 FDA Dataset

PDB Organism Protein Ligand Year Res. /Å

1F9G S. Ppneumoniae Hyaluronate lyase Vitamin C 2001 2.00
1FXV E. coli Penicillin acylase Penicillin G 2001 2.25
1G5Y H. sapiens RXR alpha Alitretinoin 2001 2.00
1GWR H. sapiens Estrogen receptor alpha Estradiol 2002 2.40
1I1E C. botulinum Botulinum neurotoxin B adriamycin 2001 2.50
1IE9 H. sapiens Vitamin D receptor Calcitriol 2001 1.40
1LHU H. sapiens Sex hormone-binding globulin Estradiol 2002 1.80
1M2Z H. sapiens Glucocorticoid receptor Dexamethasone 2003 2.50
1S19 H. sapiens Vitamin D receptor Calcipotriol 2004 2.10
1SQN H. sapiens Progesterone receptor Norethisterone 2004 1.45
1SR7 H. sapiens Progesterone receptor Mometasone furoate 2004 1.46
1TUV E. coli YgiN Menadione 2005 1.70
1UOU H. sapiens Thymidine phosphorylase Tipiracil 2004 2.11
1X70 H. sapiens Dipeptidyl peptidase IV Sitagliptin 2005 2.10
1YI4 H. sapiens PIM-1 kinase Adenosine 2005 2.40
2A15 M. tuberculosis RV0760 Nicotinamide 2005 1.68
2AA6 H. sapiens Mineralocorticoid receptor (S810L) Progesterone 2005 1.95
2AM9 H. sapiens Androgen receptor Testosterone 2006 1.64
2E5D H. sapiens Nicotinamide phosphoribosyltransferase Nicotinamide 2007 2.00
2F9W P. aeruginosa Type III CoaA Pantothenic acid 2006 1.90
2GQG H. sapiens ABL1 Dasatinib 2006 2.40
2HYY H. sapiens ABL Imatinib 2007 2.40
2P16 H. sapiens Coagulation Factor Xa Apixaban 2007 2.30
2QK8 B. anthracis DHFR Methotrexate 2007 2.40
2RIN S. meliloti ABC-transporter choline binding protein Acetylcholine 2008 1.80
2W26 H. sapiens Factor Xa Rivaroxaban 2008 2.08
2W9H S. aureus DHFR Trimethoprim 2009 1.48
2WGJ H. sapiens c-Met Crizotinib 2009 2.00
2XN3 H. sapiens Thyroxine-binding globulin Mefenamic acid 2011 2.09
2XRH H. pylori HP0721 Niacin 2011 1.50
2Y7J H. sapiens Phopsphorylase kinase, gamma 2 Sunitinib 2011 2.50
3APV H. sapiens Alpha-1-acid glycoprotein Amitriptyline 2011 2.15
3APX H. sapiens Alpha1-acid glycoprotein Chlorpromazine 2011 2.20
3AZZ T. maritima Laminarinase Gluconolactone 2011 1.81
3B7E I. A virus Neuraminidase Zanamivir 2008 1.45
3C7Q H. sapiens VEGFR2 Nintedanib 2008 2.10
3CSJ H. sapiens Glutathione S-transferase Chlorambucil 2008 1.90
3D90 H. sapiens Progesterone receptor Levonorgestrel 2009 2.26
3EW2 R. etli Rhizavidin Biotin 2008 2.30
3EYG H. sapiens JAK1 Tofacitinib 2009 1.90
3F8F L. lactis LmrR Daunorubicin 2008 2.20
3FL9 B. anthracis DHFR Trimethoprim 2009 2.40
3FUP H. sapiens JAK2 Tofacitinib 2009 2.40
3FUU T. thermophilus Methyltransferase Adenosine 2009 1.53
3G0B H. sapiens Dipeptidyl peptidase IV Alogliptin 2010 2.25
3G0E H. sapiens KIT kinase Sunitinib 2009 1.60
3GN8 H. sapiens AncGR2 Dexamethasone 2009 2.50
3I45 R. rubrum Twin arginine translocation pathway signal protein Niacin 2009 1.36
3L4W H. sapiens Maltase-glucoamylase Miglitol 2010 2.00
3LXK H. sapiens JAK3 Tofacitinib 2010 2.00
3LXN H. sapiens TYK2 Tofacitinib 2010 2.50
3MYU M. genitalium MG289 Thiamine 2010 1.95
3OLL H. sapiens Estrogen receptor beta Estradiol 2010 1.50
3QPS C. jejuni CmeR Cholic acid 2011 2.35
3QT0 H. sapiens PPARgamma Mifepristone 2012 2.50
3RY2 S. avidinii Streptavidin Biotin 2011 0.95
3SG8 E. casseliflavus Aminoglycoside-2”-phosphotransferase type 4a Tobramycin 2011 1.80
3SG9 E. casseliflavus Aminoglycoside-2”-phosphotransferase type 4a Kanamycin 2011 2.15
3SZJ S. denitrificans Shwanavidin Biotin 2012 1.45
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PDB Organism Protein Ligand Year Res. /Å

3TEG H. sapiens Phenylalanyl-tRNA synthetase Levodopa 2011 2.20
3TI1 H. sapiens CDK2 Sunitinib 2012 1.99
3U5J H. sapiens BRD4 Alprazolam 2011 1.60
3U5K H. sapiens BRD4 Midazolam 2011 1.80
3UE4 H. sapiens ABL Bosutinib 2012 2.42
3VHU H. sapiens Mineralocorticoid receptor Spironolactone 2011 2.11
3VRI H. sapiens HLA class I histocompatibility antigen Abacavir 2012 1.60
3VW1 S. enterica RamR Gentian Violet 2013 2.21
3WAR H. sapiens CK2a Niacin 2013 1.04
4ASD H. sapiens VEGFR2 Sorafenib 2012 2.03
4BB2 H. sapiens Corticosteroid-binding globulin Progesterone 2012 2.48
4BBO B. japonicum Bradavidin Biotin 2013 1.60
4DT8 E. casseliflavus Aminoglycoside-2”-phosphotransferase type 4a Adenosine 2012 2.15
4DVE L. lactis ECF-type ABC transporter Biotin 2012 2.09
4E2J H. sapiens Glucocorticoid receptor 2 Mometasone furoate 2012 2.50
4EY6 H. sapiens Acetylcholinesterase Galantamine 2012 2.40
4G1Q Immunodeficiency virus 1 Reverse transcriptase Rilpivirine 2013 1.51
4GCP E. coli OmpF porin Ampicillin 2012 1.98
4KS8 H. sapiens PAK6 Sunitinib 2013 1.95
4LZR H. sapiens BRD4 Colchicine 2014 1.85
4MKC H. sapiens Anaplastic lymphoma kinase Ceritinib 2014 2.01
4NMY C. di�cile ABC transporter Thiamine 2013 1.90
4O0S H. sapiens Aurora A Adenosine 2014 2.50
4OAR H. sapiens Progesterone receptor Ulipristal 2014 2.41
4P6W H. sapiens Glucocorticoid receptor Mometasone furoate 2014 1.95
4P6X H. sapiens Glucocorticoid receptor Hydrocortisone 2014 2.50
4QE6 H. sapiens FXR Chenodeoxycholic acid 2015 1.65
4QMN H. sapiens MST3 Bosutinib 2015 2.09
4QMS H. sapiens MST3 Dasatinib 2015 1.88
4QMZ H. sapiens MST3 Sunitinib 2015 1.88
4QRC H. sapiens FGFR4 Ponatinib 2014 1.90
4R38 E. litoralis LOV protein Riboflavin 2014 1.60
4RP9 E. coli UlaA/SgaT Vitamin C 2015 1.65
4RYA A. vitis ABC transporter Mannitol 2014 1.50
4S0V H. sapiens OX2 orexin receptor Suvorexant 2015 2.50
4TVJ H. sapiens PARP2 Olaparib 2015 2.10
4U0I H. sapiens KIT kinase Ponatinib 2014 2.00
4U95 E. coli AcrB Minocycline 2014 2.00
4UDA H. sapiens Mineralocorticoid receptor Dexamethasone 2015 2.03
4ZN7 H. sapiens Estrogen receptor alpha Diethylstilbestrol 2016 1.93
4ZOW E. coli MdfA Riboflavin 2015 2.45
5EDL B. subtilis ECF transporter Thiamine 2016 1.95
5G48 H. pylori RORg Diflunisal 2017 2.28
5I9X H. sapiens Ephrin A2 Bosutinib 2016 1.43
5P9I H. sapiens BTK Ibrutinib 2017 1.11
5TE0 H. sapiens AAK1 Nintedanib 2016 1.90
5UFS H. sapiens Glucocorticoid receptor 2 Triamcinolone acetonide 2017 2.12

Table A.1: Details of 105 complexes used in the FDA dataset for the vali-
dation of GCMC. All structures are of human, bacterial or viral origin, with
an FDA approved drug molecule. The structures have been published since
the year 2000, with a resolution of 2.5 Å or better.
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A.3 Surface-GCAP results

Figure A.3: surface-GCAP results for SD. Columns left to right: Ligands 1-2,
2-3, 3-1. Rows top to bottom: electrostatic surface, electrostatic solvation,
van der Waals surface, van der Waals solvation.
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Figure A.4: surface-GCAP results for A2A, ligands E-F. Surfaces shown are
the free energy surface (left, red) and the average water occupancy (right,
blue). Top row shows the electrostatics leg of the perturbation, and the
bottom for shows the vdW perturbation.
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Figure A.5: surface-GCAP results for A2A, ligands F-G. Surfaces shown are
the free energy surface (left, red) and the average water occupancy (right,
blue). Top row shows the electrostatics leg of the perturbation, and the
bottom for shows the vdW perturbation.
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Figure A.6: surface-GCAP results for A2A, ligands E-G. Surfaces shown are
the free energy surface (left, red) and the average water occupancy (right,
blue). The rows show; the electrostatics leg of the E - M perturbation, the
vdW leg of the E - M perturbation, the electrostatics leg of the G - M
perturbation, and the vdW leg of the G - M perturbation.
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A.4 A2A experimental binding a�nities

The original publication of the A2A ligand set considered herein4 provides both

Ki and KD results for the set of ligands, measured using inhibition binding as-

says and SPR, respectively. As the free energy accuracy aimed for is typically

1 kcal·mol–1in binding free energy calculations, we wanted to select a set of lig-

ands where the relative free energies were within 1 kcal·mol–1for demonstrating

the GCAP methodology. The relative experimental free energies were considered

as this reduces any possible systematic di↵erences between the two measurements.

�GKD = kBT ln(KD) (5.1a)

�GKi = �kBT ln(Ki) (5.1b)

So the di↵erence in the relative free energy for a pair of ligands (x and y),

between the two methods, can be calculated from:

��G(x� y)KD � ��G(x� y)Ki = kBT ln

✓
KD(x)

KD(y)

◆
+ kBT ln

✓
Ki(x)

Ki(y)

◆
(5.2)

If the absolute value of Equation 5.2 is less than 1 kcal·mol–1then the perturbation

was considered for GCAP simulations. As crystal structures are only available

for ligand G and E, any ligands where the binding mode was unclear, i.e. where

either ring A or ring B was asymmetrically substituted, were excluded, as the

ligand may bind in either orientation. This excludes ligands B, J, K and L.

Ligand E is asymmetrically substituted, but the binding mode is available from

the crystal structure. Of the 8 remaining ligands, only 7 have published data for

bothKi andKD. This results in 42 possible pairs of ligands. Of the 42 pairs, only 8

pairs satisfied the requirement that Equation 5.2 was less than ± 1 kcal·mol–1;EF,

EG, EH, EI, FG, GH, GI and HI. Of these, the ligands E, F and G were chosen as

both ligands E and G have crystal structures available, and the di↵erences in the

ligand seem significant enough to displace or disrupt active site water molecules.
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system GCI DD
one a -5.50 (0.02) -5.52 (0.03)
one b -5.17 (0.01) -5.24 (0.02)
three a +5.53 (0.02) +5.47 (0.12)
three b -5.30 (0.01) -5.37 (0.07)

Table A.2: Binding free energy for each individual water for SD, calculated
by both GCI and DD, with the correction applied. Errors shown are standard
deviation over four repeats for the decoupling, and over five di↵erent sized
GCMC regions for the GCMC results.

(a) waters a and b, ligand one (b) waters a and b, ligand three

Figure A.7: Binding free energy of two-water networks with SD-ligand com-
plex. Dashed line - GCMC results (Equation 1.61), dotted line - GCMC
result including volume correction (Equation 2.7), Solid line - decoupling
result.

A.5 A2Ahydration free energies
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Table A.3: Relative free energy perturbations for ligands in the gas phase,
and bulk solvent phase. �Ghyd is the relative free energy of hydration of
the two ligands, calculated from �Gsol - �Ggas. �Gsol is used to calculate
�Gbind. All energies are in kcal·mol�1. Energies and standard errors for SD
are calculated using MBAR from four repeats, and A2A from three.

Perturbation �Ggas �Gsol �Ghyd

2 to 1 -100.9 (0.0) -101.1 (0.1) -0.1 (0.1)
2 to 3 -12.5 (0.0) -11.5 (0.1) 1.0 (0.1)
3 to 1 -90.1 (0.0) -91.3 (0.1) -1.2 (0.1)
F to E -5.7 (0.0) -4.9 (0.2) 0.8 (0.2)
F to G -43.9 (0.0) -43.7 (0.1) 0.2 (0.1)
E to G -38.7 (0.1) -39.0 (0.2) -0.4 (0.2)
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