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The role of water in drug binding: Calculating positions and bind-
ing free energies of active site water molecules, and their influence
on ligand binding by Hannah Bruce Macdonald

This thesis studies the ability of computer simulation to determine the lo-
cation and free energy of binding of active site water molecules, and the
energetic effect water molecules can have on ligand binding. The primary
method used involves sampling within the grand canonical ensemble, using
grand canonical Monte Carlo (GCMC).

The first results chapter looks at the introduction of replica exchange
(RE) to GCMC simulations, and the improvements this yields in the re-
liability of calculated water binding free energies. The results show that
GCMC can determine water binding free energies that are consistent with
double-decoupling methods, while being able to calculate multiple water free
energies simultaneously, without a priori knowledge of water locations.

The second chapter explores the accuracy of GCMC at determining the
locations of active site water molecules, using a large dataset of molecules and
targets of pharmaceutical interest. Understanding the accuracy of GCMC to
reproduce crystallographic water locations allows for reliable calculation of
protein-ligand complexes without experimentally known water locations be-
ing known. Focus will be placed on the variation of quoted water placement
success rates with different published protocols.

The final chapter of this thesis involves the integration of two techniques;
GCMC and ligand alchemical perturbation simulations. Grand canonical
Alchemical Perturbations (GCAP) will be presented, whereby relative bind-
ing free energies of pairs of ligands are calculated, while active site wa-
ter molecules are sampled using the grand canonical ensemble. This GC
sampling of water allows the ligands water network to dynamically adapt.
GCAP will be demonstrated for two example systems, where active site water
molecules are a key factor in the ligand binding affinities.
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2 CHAPTER 1. INTRODUCTION

Many cases are known where water molecules are known to directly influence
ligand binding affinity. For example, OppA is a non-specific tri-peptide binder, ca-
pable of binding to a class of ligands of the structure Lys-X-Lys, where X is any of
the natural amino acids.! The active site of OppA is therefore capable of binding
ligands of a range of sizes and properties. This promiscuity is made possible by a
varying network of water molecules occupying the active site volume around the
central amino acid, confirmed by X-ray crystallography studies.! Binding data of
the ligand class shows that displacement of water molecules in the active site cor-
responds to a decreasing binding affinity. In contrast, Scytalone Dehydratase (SD)
is a fungicidal protein-target for rice-blast disease in crops.? The SD enzyme catal-
yses two steps in the pathogenic fungus, M. grisea, in its biosynthesis of melanin.
Melanin is required by the fungus for its structural integrity, without which cell
penetration, which is required in its mechanism of infection is not possible. A range
of ligands are known to bind to the protein, causing inhibition of the enzyme and
disrupting the melanin pathway. Design of high-affinity ligands for this system has
focussed on displacing known active site water molecules, and displacement of one
particular water molecule can increase ligand affinity 100-30,000 fold.? These two
cases illustrate the lack of consistency that arises, whereby in OppA, disruption of
a water network weakens binding while in SD, the displacement of a water has the
opposite effect. Quantifying these changes in affinity are of significant importance

in drug design.

Various protein-ligand systems will be studied in this thesis. SD will be used
in Chapters 2 and 4. As it is a single water system, where displacement of the
said water molecule has a large impact on ligand binding affinity, it is a useful
test system. Bovine pancreatic trypsin inhibitor (BPTI) will also be used as a test
system in Chapter 2. BPTI is useful as it is a small protein that has a small pocket
that ligands do not bind, but contains three water molecules. This is useful for
empirically testing the effect of multiple water binding and water network effects.
Adenosine Asgreceptor is a membrane protein, which has a dataset of binding
affinity data for twelve related ligands.* This is an interesting system, as the two

associated crystallographic structures are low resolution (3UZA: 3.273 A, 3UZC:



3.341 A) where no water locations are resolved. This shows how grand canonical
(GC) methods can be advantageous for a case where the experimental data is of
low quality. Asqwill be used in Chapter 4 to demonstrate GCAP where multiple
water molecules are displaced by ligand perturbation. Chapter 3 will present anal-
ysis of the hydration of a dataset of 105 protein-ligand complexes, and demonstrate
a large scale test of GCMC.

This thesis uses GCMC methodologies to try reproduce experimental water
locations, and ligand binding affinities. If GCMC is shown to be reliable at re-
producing known experimental results, it can in future be applied to novel target
systems with confidence. GCMC will be used first, in the calculation of binding
free energies of active site water molecules; second, in the determination of the
locations of active site water molecules, and finally, for the calculation of ligand
binding free energies, in cases where water molecules are displaced resulting in
changes in affinity. GCMC involves simulating in the grand canonical ensemble,
the pVT ensemble, where p is chemical potential, V is volume and T is tempera-
ture. This involves the fluctuation of N (the number of atoms or molecules) within
the simulation through insertion and deletion Monte Carlo moves. The molecules
allowed to insert and delete in the protein-ligand systems studied in this thesis
are water molecules, with insertion and deletion moves attempted within a certain
user defined region of a protein-ligand complex. Insertion and deletion of water
molecules allows for the location of active site hydration sites to be predicted, as
well as their binding free energy calculated through using the grand canonical in-
tegration (GCI) equation. GCMC is beneficial over other water location methods
as it is able to calculate multiple waters simultaneously i.e. a network of water
molecules, without prior knowledge of where the waters are located, while pro-
viding binding affinities consistent with double decoupling (DD) simulations. The
theoretical basis and computational methodology of GCMC will be discussed in
Section 1.4.

Several methods are capable of locating and classifying water molecules in a

system, but this is only the starting point from a pharmaceutical perspective.
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Primarily, the binding affinity of a ligand is of interest, which can be calculated
by free energy methods, which are discussed in Section 1.2. These methods can
be used to determine the binding free energy of a ligand once the correct sur-
rounding water structure is known. Computationally, binding is often handled in
relative terms, and when comparing binding of two ligands with differing water
structures convergence issues can arise, solved only by lengthy simulations and as-
sociated thermodynamic cycles.® The method of grand canonical Alchemical Per-
turbation (GCAP) is able to avoid this, using free energy methods between two
ligands, while simultaneously optimising their respective water networks through
the water-location method of GCMC. GCAP will be introduced in Section 1.4.

1.1 Computational methods

Force fields

A force field is a set of parameters and a functional form that have been designed to
reproduce known properties of a system — either experimental values, or properties
determined from a higher level of computational theory. Force fields are often
designed for a specific use, i.e. Amber forcefields® for proteins, and the general
Amber force field (GAFF) for small organic molecules.” Herein, fixed-charge all-
atom force fields will be considered, however various coarse-grained and united-
atom models also exist. The functional form of the force field consists of both
the bonded and the non-bonded parameters. The bonded energy is determined
between covalently bonded ligands, through bond, angle and dihedral terms, while
the non-bonded terms are calculated for non-bonding atoms by considering the

electrostatic and van der Waals forces between atoms, Equation 1.1c.

Etotal = Ebonded + Enon—bonded (11&)
Ebonded = Ebond + Eangle + Edihedral (11b)
Enon—bonded = Eele + EvdW (11C)
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The bonded terms (Ejpongeq) are calculated using the following;

Ebond = kbond(r - 7"0)2 (12&)

Eangle = kangle(g - 90)2 (12b)

Bainedral = Y ki[l + kj(cos(kx + kr))] (1.2¢)
=1

both the bond and angle terms take the same form of a harmonic potential,
whereby the difference between a bond or angle (r or ) to a minimum value (r°
or #°) with a bond or angle strength (kpong 0or kangie). The form of the dihedral
energy is calculated is using the dihedral angle ¢, and a set of dihedral parameters,
k;_;. The bonded energy terms account for the energetic interactions of covalently
bonded atoms that are one, two or three bonds distance. For pairs of atoms that
are separated by four or more bonds, or not covalently linked, non-bonded energies
are calculated. These consist of the electrostatic terms; which are calculated using
the Coulomb equation, and intermolecular electron dispersion forces are calculated

using the Lennard-Jones potential;®

qi4dj
E., = 1.3
ele 47‘(’607’ ( a)
Tii\ M i\ T
B =10, (%) - (%)’ i

The Coulomb equation is shown in Equation 1.3a, where the electrostatic in-
teraction between two atoms at distance r can be calculated using their respective
charges (¢; and ¢;), where ¢, is the permittivity of free space. The Lennard-Jones
m-n potential, Equation 1.3b, is a pairwise approximation of many-body interac-
tions that would be computationally prohibitive to calculate directly. Many other
forms of pair potentials exist,?!? of which the Lennard-Jones 12-6 is the most
common. Both o and ¢, the collision radius and well-depth respectively, are em-
pirically determined parameters for an atom, which for a pair of atoms (o;; and

€ij) are calculated using arithmetic combining for o and geometric combining for
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1
Oij = 5(0'1 + O‘j) (1.4a)
€ij = (ei€;)? (1.4b)

these are the combining rules used in Amber, and other force fields use differing

combining rules.

In a system of more than a few atoms, the number of non-bonded interactions
will quickly outnumber the number of bonded interactions. To reduce this expense,
non-bonded interactions may be truncated by only calculating them for atoms, or
groups of atoms within a given cutoff distance, (r¢y). To smooth the non-bonded
interaction energy, the energy is scaled for some region (7 feqther)- ' Two atoms at

distance r will be scaled accordingly;

Eron—bonded = Scale(T)Enonfbonded (153)

7> reyt — scale(r) = 0.0 (1.5b)

Teut = T feather < T < Tcut — Scale(r) = o 3 (1.50)
Teut — (Tc’ut - Tfeather)

7 < Teut — T feather — Scale(r) = 1.0 (1.5d)

as scale(r) is 0.0 where r > 7., these energies do not need to be evaluated.

Statistical mechanics

A force field allows for the energy of a state of a system to be calculated. Statistical
mechanics is able to relate details of all states of a given system to macroscopic
properties. All possible states, or replicas of a given system is known as an ensem-
ble of states, whereby the type of ensemble is defined by the properties that are
constant between all replicas of states. The canonical ensemble (NVT) is where

the number of atoms (N), the volume (V) and the temperature (T) are consistent;
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the microcanonical ensemble (NVE) where E is energy, and the ensemble that is
exploited within this thesis; the grand canonical ensemble (1 VT). The canonical

ensemble allows for calculation of the Helmholtz free energy (A) of a system;!!

A= —kpTin(Q) (1.6)

where kg is the Boltzmann constant, and @) is the partition function. Different
ensembles provide different types of free energy. The partition function is the sum

of the energies of all microstates in the ensemble;
_ B
Q=> ¢ &7 (1.7)
i

where E; is the energy of the i*" microstate. In the classical limit, the canonical

partition function of N atoms, can be treated as an integral over all states,

1 Ei(r)
Q=158 /ekBT ar (1.8)

where h is Planck’s constant. The % term removes the overcounting of microstates
which are fundamentally the same, but differ only in the exchange of identical

atoms with differing labels. this can be substituted into Equation 1.6;

1 _Ei(n)
A= —kBTln <}‘L3]V]W/Tje kpT d?”) (19)

this leads to a result where the free energy of a system can be determined from

the ensemble of a canonical system.

Free energy

The following section leads to the resulting equation, Equation 1.9, where the
absolute Helmholtz free energy of a canonical ensemble can be calculated from
potential energy of each microstate of the system. However, this cannot be solved
for large systems for two reasons; firstly the number of microstates of the system
that must be integrated over is prohibitively large, and the () term results in

poor numerical behaviour.
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The issue of the large number of microstates will first be addressed using the
Boltzmann-weighted distribution of the phase space, and the issue of the numeri-
cal behaviour of e () will be reduced by considering relative free energy calcula-

tions. 1t

All of the j microstates of a system at temperature, T, will follow the Boltz-

mann distribution;

e—EiB

P, = 7fj -

(1.10)

Where the probability of the system being in microstate i is P;, where FE, is
the energy of microstate z, and 8 = kBLT is thermodynamic beta. The Boltzmann
distribution means that only a subsection of microstates will contribute signifi-
cantly to the ensemble observables. This means that integral over all microstates
can be simplified to simply summing over the important microstates of a system
— which is the states that are proximal to the minima and therefore contributing
to the denominator. The integral over all states can be replaced with a sum over

all states — or in practise a sum over contributing states.

B e—EiB
— R

An average property of the system can be calculated from the Boltzmann

P (1.11)

distribution of states, using the following;

(x) = fTX(r)e_éEi(r)dr
/. e=PEi(r)dr

(X) = / X (r)Py(r) (1.12b)

(1.12a)

This can be combined with Helmholtz free energy equation, Equation 1.9,

where the numerator has been multiplied by e #E+(MebE () = 1 to give;



1.1. COMPUTATIONAL METHODS 9

fT‘ e_/BET'(r) eBE’V'(T)

A =kpTin ) dr (1.13a)
fre kT

= kgTln </Pi(r)eBET(T)> (1.13Db)

— kpTln (< ePEr(7) >) (1.13¢)

This results in an equation whereby the Helmholtz free energy can be deter-
mined from the average potential energy of observed microstates, rather than the
entire ensemble. This allows for thermodynamic results to be calculated from a
sampling regime, which will be discussed in Sections 1.1 and 1.1. The result cal-
culates the absolute free energy of a system, and there is still the issue of the ef
term whereby the result will be unstable with addition of additional microstates as
additional states will cause large flucctuations to the free energy, and is only stable
for small systems with a small configurational phase space that can be sampled

adequately. Absolute free energies are not viable for biomolecular systems.

Relative free energies

To circumvent the issue of large energetic terms, relative free energies can be

calculated. 12

Adup = Ap — Au (1.14)
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where A is the Helmholtz free energy, calculated from the NVT ensemble.

AAap = —kpTin <gB> (1.15a)
A
_ J e
fr e_ﬁEB (T)e_ﬁEA(T)eﬁEA(T)
= —kgTin [ e FEa®) (1.15¢)
= —kpTIn (PA(T) / e—mEB(T)—EA(T))) (1.15d)
— —kpTln (<e—BAEAB<’“>>) (1.15¢)

Where AFE4p is the difference in energy of a microstate of system A in systems
A and B. This quantity will be smaller than the absolute energy, F4, and means

that the result can be evaluated.

With Equation 1.15e we now have a method of calculating the relative free
energy of a system, by calculating the energy difference between two systems,
for thermally significant states of the systems. To generate thermally significant
states, sampling methods will be used. States of a system can be generated using

either molecular dynamics or Monte Carlo simulations.

Molecular dynamics

Molecular dynamics (MD) simulation is the method of studying atomic systems
following the equations of classical dynamics.® Newton’s equations of motions are

solved repeatedly over short time steps.

F =ma (1.16a)
dv

F=— 1.16b
= (1.16b)

The positions and velocities of all the particles in a system are all coupled,
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which results in a many-body problem, meaning that the equations of motion
need to be integrated using a finite difference method, rather than being solved
analytically. The most common methods of integrating the equations of motions
is using either the Verlet'# or the velocity Verlet algorithm. The Verlet algorithm
is derived by first approximating the positions and momenta using a Taylor series

expansion;

x(t + 6t) = r(t) + 6t (1.17)
r(t + 0t) = r(t) + otv(t) + éétQa(t) + O(6t%)... (1.18a)
v(t + 0t) = v(t) + dta(t) + O(5t?)... (1.18b)

for the positions (), velocity (v) and acceleration (a) at time (¢) and an incre-
mentally small time after ¢, ¢t + t. The Verlet algorithm provides the positions at
time t + §t using;

r(t + 0t) = 2r(t) — r(t — 6t) + ot%a(t) (1.19)

which is dependent on the coordinates, the coordinates at the previous time
step and the acceleration. The velocity can also be determined by dividing the
difference in positions at ¢ + dt and t — dt. Other methods that also integrate
the equations of motions exist. !0 Updating the positions and velocities of the
atoms for a sufficient number of timesteps, allows the motion of the system for
a time Xdt, where X is the number of iterations that are performed. If the time
is sufficient, behaviours and properties of the system can be studied. From a
sufficiently long MD simulation, it is possible to calculate system properties that
are a function of atom coordinates and momenta. As MD simulations follow a
time trajectory, they are useful for understanding diffusion motions of systems,
and other time-dependent properties. However, even for reasonable numbers of
atoms, many computing hours are required to achieve simulation timescales on

the order of nanoseconds. MD, with the use of thermostats, is able to generate a
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set of microstates, which can be used with Equation 1.15e.

Monte Carlo

Monte Carlo is an alternate method for generating states of a systems, whereby
instead of a time-evolving set of states being generated as by MD, states are
generated by making random changes to the system.!! The potential energy of
each sampled state can be generated from the positions of atoms in the system,
but as the ‘motions’ are randomly generated, there is no momenta component.
The energy of a microstate is the sum of the potential energy, which is a function
of the atomistic coordinates, and the kinetic energy, a property of the atomistic
momenta. This allows the partition function to be decomposed into two parts —

coordinates and momentum;

1 _Er(p) _ Eg(@)
Q = W //6 kT ¢ kBT dpdq (120)
s JrJg

where F, and E} are the potential and kinetic energy respectively, which are in
turn, a function of the coordinates, r, and momenta, p, of the system. These are

separable;

0 1 / _Ekr<;>d / —i’“(?d (1.21a)
= — e B r e B p Zla
WNNT J, ,

Q = Qer (1.21b)

The kinetic partition function (Q,);!7
VN
@ = Nipew
where A = /h?/27kgTm, and m is atomic mass. The kinetic contribution to

the partition function is the partition fucntion of an ideal gas and is analytically

(1.22)

solvable. The potential energy part of the partition function can now be considered;

—Er(r)
QT = /e kBT d’)" (123)
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where when used in Equation 1.9, allows the Helmholtz free energy to be cal-

culated from the potential energy of the generated microstates.

States are generated by making random changes to the system of interest, with
much freedom with regards to the type of change that can be made. One example
of this are the insertion and deletion moves of GCMC that will be discussed in
much more detail. A MC move consists of making a random change, and assessing
this change based on the energetic difference between the system and the trial
system. Either the previous microstate, or the trial microstate will be accepted or
rejected into the ensemble of states, based on the Metropolic criteria. If the energy
of the trial state is lower than the previous, the trial move is accepted, and this
configuration is then used as the starting point for the following step. However, if
the trial configuration is higher in energy than the previous, the move is accepted
if a randomly generated number between 0 and 1 is smaller than the Boltzmann
factor;

rand(0,1) < e PAE (1.24)

this ensures that the states generated follow the correct Boltzmann distribution of

states.

In terms of the moves that can be made, these are generally applied to the
translation and rotation of atoms, functional groups or molecules. The number of
atoms moved, and the magnitude of the change will increase the likelihood of AFE
being large, and therefore reduce the likelihood of the move being accepted. On
the other hand, if the moves are very small, then the majority of moves will be
accepted, but the states generated are likely to be very similar. The move size is

often optimised such that approximately 50% of moves are accepted.

Metropolis sampling requires that the condition of detailed balance to hold
for systems in equilibrium.'®19 This states that the step from configuration a to
configuration b should be equally likely as the step from b to a, and should hold
for all configurations of a system. The likelihood of moving from configuration a

to configuration b (referred to as the flow, k(a — b)) is a product of the likelihood
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of being in state a (N(a)), the likelihood of the move to state B being proposed
(a(a — b)), and finally the likelihood of accepting the proposed move, acc(a — b);

k(a —b) =k(b— a) (1.25a)
k(a — b) = N(a)a(a — b)acc(a — b) (1.25Db)
where in the canonical ensemble, the likelihood of being in configuration a is

the Boltzmann factor; e #£(")_ If all random moves proposed are equally likely,

then a(a — b) = a(b — a), and the appropriate acceptance rates can be derived,;

accla — b) e BB

= 1.2
acc(b —a) e PEa(r) (1.26)
which leads to the Metropolis acceptance criteria;
acc(a — b) = min [1, e_’B(Eb(T)_E“(T))] (1.27)

1.2 Free energy calculations

The previous section refers to a and b, which are two microstates of the same state.
Here, we would like to compare the free energy of two different states, A and B,
using Equation 1.15e. This involves sampling in state A, following the Boltzmann
distribution of states, that MC sampling upholds, and evaluating the difference in
energy between each microstate of A, for both state A and B, AE4p(r). Integrat-
ing between these two states can be performed with various rigorous free energy
methods; including thermodynamic integration (TT),?° Bennett Acceptance Ratio
(BAR),?! and Multistate BAR (MBAR)?? methods.

Accuracy of free energy methods require the sampling of state A, to reflect
the Boltzmann distribution of state B. To improve overlap between the two states,
intermediate states can be introduced such to bridge the difference. The collection
of intermediate states are referred to as a a A coordinate, where A is a coupling

parameter. States A and B refer to the A end points, 0 and 1, while for intermediate
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states a fictitious potential is defined. One common definition;

U\ = (1= \Uy + \Up. (1.28)

where U()) is the fictitious potential at the A intermediate. The free energy at
each A value can be determined from the partition function of an ensemble at that

A using Equation 1.29.

QN V,T,\) = > e PV (1.29)
i
where ¢ are the microstates of the A ensemble. The average derivative of the
potential energy with respect to each A value can be used to compute the integral
over each of these derivatives. forming a path between A = 0 and 1, i.e. states A
and B, Equation 1.30.

AF(A—>B):/01 (SF(S&/\)CZ)\:/OI<5[§§\)\)>ACZ)\ (1.30)

Computationally, this is often performed using parallelised code, where indi-
vidual A values of a free energy path will be simulated on individual processors of
a node, commonly 12 or 16 X\ windows. As the method relies on overlapping phase
space, errors can occur if the A coupling between the two states is not sufficient.
RE can be applied to TI to reduce the effect of limited sampling.?? The general
method of RE is when swaps are attempted between multiple replicas of a system,
where each replica differs by a given property. Attempts to swap replicas are made
and swaps are accepted or rejected following acceptance criteria.?4?® The method
has been successfully applied to simulations of various properties such as tem-
perature?® and pH.?" The application of RE to TI by attempting swaps between
neighbouring A windows allows simulations to share coordinates of trajectories,
optimising sampling between the states and removing errors from the integration
path. RE methods have been applied to GCMC methods in this thesis, and the
benefits of this will be discussed in Chapter 2.

BAR is an alternate method of determining the free energy difference between
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two states.?! BAR calculates the difference in free energy between states A and B,
with the assumption that the two systems share all their microstates. With this
assumption, complete sampling of the phase space of state A, with the Hamiltonian
of A should cover the entire phase space of state B. Reversibly, A should be sampled
by the simulation of state B with the Hamiltonian of B. The difference in free
energy between the two states, will be the ratio of probabilities of sampling one

state from the system of the other, Equation 1.31

o BAF-C) _ (f(BWUB —Ua—=C)))a (1.31)

(f(BUA—=Up=0C)))p

where AF' is the free energy difference between the two states, (Uy), is the
potential energy U evaluted using the Hamiltonian of ,, while sampling in the
ensemble of y. Equation 1.31 will hold for any function, f, that also meets the

detailed balance condition. In practise f(z) = is used as it is the optimal

Tier
solution. C is an energy offset between the two systems, i.e. the value of inter-
est, AF. This requires the equation to be solved iteratively.'3 Iterations will only
converge if there is sufficient overlap between the two states. Multistate BAR
(MBAR) is a derivative of BAR, where all intermediate A states are considered in
the calculation, rather than only neighbouring states.?? MBAR has been shown to
be the most statistically efficient method to abstract free energy differences from

simulations?8 .

Single and dual topology calculations

For calculations of free energies of systems, thermodynamic cycles are often re-
quired to calculate the energies of interest. For example, to calculate the relative
solvation free energy of two molecules, the free energy difference between the two

species is required both in solution and in the gas phase.?’



1.2. FREE ENERGY CALCULATIONS 17

AG,

AGA AGB

solv solv

sol sol

AG,

Figure 1.1: Free energy cycle. Vertical legs are the solvation free energy of
A and B respectively, the difference of which can be determined by com-
putational calculation of the horizontal legs, the free-energy calculation of
peturbing A to B in the gas and solution phase.

Shown in Figure 1.1, the difference between the two vertical legs is the relative
solvation free energies of the species, while the horizontal legs are the perturba-
tion between the two species when solvated, and in the gas phase. The direct
calculation of the solvation free energy of each individual molecule is prohibitively
difficult, as the overlap of the phase space between a molecule in gas phase and
in solution is too poor to use the methods outlined above. Assuming the two
molecules are sufficiently similar, their phase space within a given environment
should overlap, allowing the computational methods of free energy calculation to
be possible. The two alchemical transformations are equal to the two solvation free
energies, AGSAOIU — AGilv = AG2 — AGy. Thermodynamic cycles are also used
for the calculation of molecular association, where gas and solv instead represent
bound and unbound complexes. The calculation of the free energy between two
states, requires a pathway to exist between the two states through the A coupling
parameter outlined above. The pathway taken between the two states is known as
the molecular mechanical topology. There are two main approaches to this, known

as single topology and dual topology, illustrated in Figure 1.2.

Illustrations of both single and dual topology are shown in Figure 1.2. In dual

topology, the pathway between the two states is generated by retaining two in-



18 CHAPTER 1. INTRODUCTION

Dual topology

}\‘ >

Single topology
A

Figure 1.2: Two protocols for alchemical perturbations; dual topology and
single topology. Dual topology contains two ligands, while one is decoupled
from the system across A, the other has its interactions turned on. Single
topology only contains one ligand, which is geometrically and electrostatically
altered between the two ligands considered.

v

dependent topologies of each state (A and B), both of which are present in the
calculation. Each state does not interact with the other, but interacts with its en-
vironment with an energy scaled by A. At each A value, two topologies exist, with
state A interacting with its environment with a value of A\, and B, a value of (1-)).
At A = 0 and 1, only one state will be ‘on’ and the other ‘off’.3? Single topology
differs from this as only one independent topology exists at intermediate states
generated by A scaling of the force field and geometric parameters. A molecular
geometry at each A value is required for the simulation, which at intermediate A
values will refer to an alchemical molecular structure. This involves the mapping
of the two structures onto each other, and changing differing bond lengths and
atom types across the A path. Where an atom is not present in the map of the
other, dummy atoms are required. When an atom is perturbed to a dummy state,
the bond to the dummy atom is retracted. The determination of the state of the
hybrid topology at intermediate A\ values can sometimes be non-obvious for two
states, and the accuracy of the result may vary depending on the protocol, if the
two end points are not clearly defined.?? When an atom is perturbed to a dummy

state, the bond to the dummy atom is retracted, such that the dummy atom is
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within the vdW radius of the bound atom. If the protocol differs in end states, the
free energy will be dependent on the method of shrinking/disappearing atoms or

31,32 requiring a bond length pseudo-potential of mean force correction to

groups,
ensure the free energy is independent to the shrinking of these groups. This issue
only arises when the dummy-bond is sampled within each A window. As bond
lengths are not sampled within the ProtoMS software, this is not a consideration
for these results. Any contributions due to a choice in single-topology protocol
should cancel directly between the two legs of the calculation, i.e. solvation and

bound legs.

At the end values of the A pathway, both single and dual topology may have
either created or annihilated of atoms in the system. If a molecule is ‘off’ it has no
interaction with its environment and is able to overlap with surrounding atoms. If
an atom is then turned on from this position of overlap, the energy will be infinite,
even if the interaction of the group is scaled to be very small at the neighbouring A
value. This is known as a singularity problem, occurring due to the r~'2 repulsion
term in the Lennard-Jones equation. Soft-core potential functions are able to stop
infinite energies by removing the points of singularity and ensuring the energies
are finite in these high energy conformations.®* One possible form of soft-core
potential function has the form of Equation 1.32,3* where a value of 0.5 for § is
suggested in the original work. As the interatomic distance, r;; approaches zero,
an unsoftened functional would result in an energy of infinity, while Equation 1.32
causes the energy to go to a constant, finite value ()\6)_60?]-, where € and o are
the combined Lennard-Jones parameters for a pair of atoms, and d controls the

degree of softness.

o2 o6
L] _ 4. (1 _ ij ij
Vi = 4ei;(1 - \) (()\501']')6 (Aéaij)?)) (1.32)

While the Lennard-Jones softening allows molecules to interact with a finite
value at short distances a consequence of this that charged molecules are able to
move closer together than if a normal potential is used. This can be bypassed

by two methods; either a two-step decoupling can occur, whereby the Lennard-
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Jones interactions and electrostatic interactions are decoupled from the system
in separate steps (a two-step decoupling), or an additional electrostatic softening

term can be used, Equation 1.33.

ele q;q;
Ve =(1-X) d (1.33)
Ameg /(N + ’I”ZQJ)

Various forms of the soft-core potentials exist and have been applied to a multi-
tude of energy calculations, from binding energies, solvation energies and solubility
of additives in amorphous materials. 3538 The calculated free energy difference will
be independent of the soft-core potential system, within a range of sensible pa-

rameters.

The above describes the protocol for relative binding free energies, however
this can be applied for absolute binding free energies. For absolute binding free
energies, state A will correspond to the ligand, and state B will be no ligand. Ab-
solute binding free calculations involve the decoupling of the entire ligand, across
the A pathway. Depending on the size of the ligand, this change is generally much
larger change than a relative perturbation between two similar ligands, thus re-
ducing the phase space overlap. Not only is the removal of the ligand a large
change in the system, but the protein itself may also adjust, differing in structure
between the apo and holo form. Absolute free energy packages counteract this by
introducing many A windows to the perturbation, increasing the computational
cost.?® An interesting application is the Waterswap implementation of absolute

40,41 wwhere instead of fully decoupling the ligand,

free energy calculations in Sire,
the ligand is perturbed across the A coordinate into N water molecules that occupy
the equivalent volume of the ligand. This prevents the creation of a vacuum on
decoupling, and will solvate the apo form of the protein. Waterswap assumes that
the apo form of the protein is solvated at a density of bulk water, and that the

conformation of the holo and apo protein do not significantly differ.
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Restraints and constraints

The dual topology method used for calculating ligand binding involves simulating
one molecule in the off state, at A = 0 and 1. When a molecule is entirely non-
interacting with the environment, it is able to move by a random walk through
the volume of the simulation. This causes the sampled phase space at A = 0 and
1 to significantly differ from intermediate A values as the molecule can move into
clashing regions owing to being non-interacting, which can result in a lack of over-
lap in the phase spaces of neighbouring coupling parameters. The prevention of
the non-interacting molecule sampling configurational space that is unavailable to
it when in an interacting state can be achieved by trapping the molecule in the
locality of the relevant configurational space. The relevant part of configurational
space can be defined by where the ligand is considered to be bound to the protein.
This is defined by Hill et al. as being a region in which all configurations with a
significant contribution to the chemical potential of the bound state are included,
without including large regions of unbound states i.e. states that contribute to
the chemical potential in the unbound state.*? Restraints and constraints differ
in application between MC and MD, as in MC, only the configurational partition
function is affected, while in MD, restraints also have an effect on the kinetic mo-
tion, and therefore the kinetic partition function. Here, discussion will focus on
restraints and constraints in MC simulations. Several methods of trapping the
molecule exist, including associating the movement of the two states present in a

43-45 o1 associating the ligand to a relevant region of the

dual topology simulation,
protein. 4647 In MC simulations where the macroscopic environmental coordinates
do not largely shift through the simulation, particularly if regions are treated as
rigid, the molecule can be associated to a location defined by cartesian coordi-
nates. In MD, where phase space is generally better explored, defining restraints
or constraints can often be more difficult, as the system may shift from the initial
cartesian frame of reference, and restraints need to be defined based on dynamic

atom locations.

Trapping a molecule in a given location has the effect of changing its chemi-

cal potential from that of a standard concentration.*® This can be corrected for,
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by calculating the energy associated with trapping the ligand, which depends on
the restraint or constraint method used. The two major methods that will be
considered here, are restraints and constraints. A constraint is where a hard-wall
potential is applied to the molecule, such that when the molecule occupies a region
outside its allowed volume (typically spherical) its energy will become infinite and
the move will be rejected. This has the effect of trapping the molecule into the
defined volume. Restraining a molecule typically involves applying a harmonic
potential to its energy, k(x — x,)?, where the minimum of the harmonic potential
is at x,, the expected location of the molecule, and its current location is x, where
k is the force constraint. The free energy calculated using a restraint or constraint
needs to be corrected, so that the trapped molecule effectively occupies the same
volume in the trapped phase as its standard state. The correction required is

shown in Equation 1.34.

Vsim

V< is the volume occupied by a molecule at standard concentration, which for
1 M solution is a volume per molecule of 1660 A3. V™ is the volume available to
the molecule in the simulation. For constraint calculations it is simply the volume

within the hardwall potential. For restraint calculations the volume available due
3

to the harmonic potential is calculated as (MTBT)E.@ This volume correction
is required whenever a restraint or a constraint is used. A harmonic restraint
was first used for the calculation of the binding free energy of a xenon atom to
myoglobin,*’ however the statistical basis for the correction was first presented by
Roux et al.?® when studying the affinity of water molecules in protein cavities. The
volume correction is required to relate free energy of the restrained or constrained
simulation back to a well-defined standard state. The resulting free energy should
be independent of the strength of harmonic restraint or volume of a constraint,
within the limit that the volume is consistent with the definition provided by Hill

et al. 42

With the GCMC method, which will be introduced in Section 1.4, a correction
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AGArf:st AGpen AG@rest

Figure 1.3: Schematic of double decoupling (DD). The ligand protein system
is shown, with the restraint illustrated using a black line. When the ligand
is ‘off” it is shown with a dashed border.

of a similar form to that required for double decoupling (DD) methods will be
presented in Section 2.3.5. DD is the process whereby the absolute binding free
energy of a species can be determined. First, a restraint is applied to the species,
shown as a ligand in a protein in Figure 1.3. The energetic cost of applying the
restraint, AGZ, , is often negligible, but can be calculated using the Zwanzig equa-
tion. AGpert is the free energy of perturbing the species from the fully interacting,
to the fully decoupled state. The final term, AG;7., is standard state term defined

rest

in equation 1.34 that can be solved analytically.

Further corrections

Gilson et al. present several other corrections to calculate the standard free energy
change of decoupling a ligand from a binding site*® . The main result is shown in
Equation 1.35.

AG-l@- _ <6U()‘)TA7TB7C37TS)> dA—kBTlTL( 9AB )
A

oA OAOB
free (;ergy symmetry
ysim & -
+kpTln ( = ) + kgTin <87r2> + P (V4 —Vap) (1.35)
ligand volume rotation system volumej

The free energy term in Equation 1.35 is determined from a simulation, with
methods outlined in Section 1.2. The symmetry correction arises from the denom-

inator of the molecular partition function of the bound complex and the unbound
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specices, where o is the symmetry number of each state. The ligand volume cor-
rection is the correction of the chemical potential of the restrained volume to that
in the standard state, discussed in Section 1.2 and Equation 1.34. The rotational
term is equivalent to the ligand volume, in the case where restraints on the molecule
prevents full orientational sampling, e.g. if a symmetrical molecule is prevented
from sampling any of its symmetry mates. The system volume correction is the
pressure-volume work associated with the overall protein-solvent system when a
ligand is decoupled. In most cases, the protein-solvent system is significantly larger
than the decoupled ligand, causing the change in system volume on decoupling to
be small, and the correction negligible. The difficulty of understanding the vari-

ous corrections to the free energy, and methods of applying them will be discussed.

The symmetry number is the number of states of a molecule that are inter-
changeable through the permutation of indistinguishable atoms.®! The symmetry
number of a molecule can be determined by inspection, whereby ¢ is the number
of unique configuration of atoms possible through the symmetry operations of its
point group. Note it is the number of unique permutations that contribute to the
symmetry number, rather than the range of operations. The symmetry correction
is required as computational modelling assigns distinguishable labels to simula-
tions i.e. (H1, H2) to atoms, which through molecular symmetry are equivalent.
If sampling allows H1 and H2 to interchange, the phase space of the molecule is
twice as large than if they do not interchange. More generally, a molecule with a
symmetry of o will have an available phase space proportional to ¢, depending on
the sampling of the system. A point of uncertainty is the contribution of internal
symmetry number of a molecule. A methyl group of a molecule is considered to
contribute a symmetry number of 3, if the group is free to rotate. Should the
group be unable to rotate such as at low energy, then the symmetry number of the
group is 1. This introduces both internal symmetry, and temperature dependence

if the likelihood of rotation has a thermally accessible barrier. 52

When calculating the binding free energy of ligand A with protein B, the

assumption would be that both the protein and the complex would have no sym-
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metry (op, oap = 1). However considering internal symmetry, a protein may have
a higher symmetry number, provided by each methyl, carboxylic acid or other ro-
tational R group. The assumption can be made that the protein has the same
symmetry in the bound and unbound state, then the two terms cancel leaving
only the term for the ligand symmetry. A large symmetrical molecule such as
benzene may lose its ability to rotate and fully sample its symmetry states, how-
ever small molecules such as water should be free to rotate when in complex. In
this case where the ligand is mobile and can sample as many orientations in the
bound leg as the free leg, the symmetry term will cancel, as the symmetry number

of the complex A-B should be a product of the symmetry number of both A and B.

Mobley et al. have worked on the use of orientational restraints to prevent
ligand flipping, and determined the appropriate symmetry correction.”? If a lig-
and has been restrained to only one of its possible orientations, then a symmetry
correction is required. If a ligand is unrestrained, however does not fully sample all
of its possible rotations, then the correction would also be required. Mobley et al.
state if ¢ [a ligand’s| orientations were sampled a number of times, no correction
factor would be necessary”. This is difficult to implement as it is unclear how much
of the symmetrical phase space needs to be sampled, and how frequent the transi-
tions between the two orientations would be required for a correction factor to be
applied. Ross et al.?® applied the symmetry correction when only one orientation
was observed during the fully ‘on’ state of the ligand during decoupling, however
Mobley et al. suggest that the correction factor would need to be applied to each

individual A replica, depending on the orientations sampled at each window.

The application of symmetry corrections and rotational corrections can be dif-
ficult to navigate. Corrections should be used if the sampling of the ligand in the
bound state differs to that of the free state, whether the difference arises due to
applied restraints or constraints, or as an artefact of the ligand being ‘trapped’
in the active site.?3%* The understanding that corrections are required when the
sampling between two legs is inconsistent supports the volume correction presented
in Chapter 2.
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replica exchange

Replica exchange (RE) is a computational tool developed to both improve sampling
and reduce the correlation times of simulations.?® The premise is that multiple
repeats of the same system are set up, each varying in a given parameter, where

55 A% and the Hamiltonian.?”

the parameter may be, but limited to; temperature,
Along the simulation trajectory, swaps are attempted between the different repeats,

and accepted or rejected following the Metropolis criterion,

Poa = min [1, e 0] (1.36)

where a swap between replicas ¢ and j is proportional to the potential energy

U, of each state, and thermodynamic beta 3, = l@% at the temperature 7.

Following the example of temperature, this allows configurations that are ac-
cessible at higher temperature to exchange with those at lower temperature. This
can allow for transitions that would not typically be observed in the lower tem-
perature repeats to be observed and overcome barriers in the simulation. These
swaps do not affect the Boltzmann distribution of any of the ensembles, and RE
methodologies have been expanded to molecular dynamics (REMD). 2

The introduction of replicas comes at additional computational expense. For
the additional cost to be of value, RE needs to be both efficient (a fair number
of accepted swaps) and useful (replicas are enhancing the sampling). These two
conditions are somewhat contradictory; the more different and interesting the two
states are, the less likely exchange is to occur. Multiple closely spaced replicas are
used, and various attempts have been made to most efficiently distribute differ-
ent replicas.?® If the replicas are too closely spaced however, while exchange will
be frequent, the benefits in terms of phase space accessed will be small. Mixing
between states has been shown to be most efficient when exchange attempt rates
are high.%” High exchange attempt rates are possible if the computational cost of

trialling an exchange is cheap. For some protocols such as temperature RE the
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acceptance probability for which is shown in Equation 1.36, the attempt is cheap,
as the temperature and the total energy of a configuration are known, but for
replica exchange between states of differing A\ or Hamiltonian, the acceptance test

requires additional energetic evaluations.

Typically exchanges are attempted between neighbouring replicas, so as to
increase the likelihood of accepted swaps. While this improves exchange rates, this
can result in slow diffusion of a replica across the replica space. Several exchange
schemes have been suggested to speed up the random walk of the replica. One
such method is to attempt an all-pairs exchange, % which was found to result in a
four-fold speed up of replica diffusion for an 8 replica system of aniline dipeptide
while maintaining detailed balance. Instead of only calculating F;; between states
¢ and j where j = i+ 1, all-pairs exchange calculates P;; for all other replicas. The
j state that is then swapped with state ¢ is randomly chosen from the normalised
probabilities of all swaps. All-pairs RE allows for quicker sampling as larger steps
of states are possible. An alternate protocol can be to use self-adjusted mixture
sampling (SAMS) whereby the parameter of a single walker is able to adjust along

the simulation, within a parameter’s locality.5"

1.3 Methods of calculating water binding

Two details of active site water molecules are of interest; their location and their
binding free energy. The location of an active site water molecule can be observed
experimentally from a crystal structure, however for a given protein-ligand com-
plex, the experimental structure may not exist, the protein may be too difficult to
crystallise, or it may have been studied in the apo form, or bound to a different lig-
and. Depending on the similarity between the different ligands, it can be difficult
to assume the ligands will bind in the same manner to each other, or if the water
network for one ligand is conserved with the other ligand. Understanding where
water molecules are in a crystal structure can be difficult, and will be discussed
in detail in Section 1.5. The electron densities gained from crystallographic stud-

ies are a superposition of all possible positions of the electron density during the
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course of the experiment, which means that only well ordered water molecules will
be observed. If the thermal fluctuation of a water molecule is greater than 1 A, the
limit at which electron densities can be resolved, it will not be seen in the crystallo-
graphic results.? NMR studies of protein systems are based on the intermolecular
nuclear Overhauser effect (NOE), whereby the distance between water molecules
and protein atoms are monitored, rather than the electron density.%® This means
that NMR can be used to observe more transient water molecules in protein com-
plexes that would be blurred in the corresponding electron density.®* NMR also
has limitations however, as the NOE intensity decays with proton-proton distance
at a rate of %, where r is the inter-proton distance, which requires the active site
water molecules to be directly interacting. For all of the stated reasons, it can be

experimentally difficult to conclude where active site water molecules are located.

The other factor of interest is the binding affinity of active site water molecules.
Rationalising if a water molecule should be retained or displaced in drug design
is difficult and requires knowing how tightly bound the water molecules are. A
weakly bound water molecule will be easy to displace, and doing so will release
entropy. A tightly bound water molecule will come at a larger energetic cost to
displace, although it may be occupying a region of protein that a ligand could in-
teract with more favourably. These factors also need to be balanced with the cost
of disrupting the hydrogen bonding network within the active site, as displacing
a water molecule may destabilise other adjacent molecules. While it is possible to
locate water molecules using crystallographic or NMR results, it is more difficult
to calculate a binding affinity of active site water. As this is impossible to directly
evaluate experimentally, it marks a region where computational techniques can
be helpful. Various methods exist to both locate active site water molecules and
calculate their binding affinity. This section will cover a few of these methods -DD
methods, Watermap, and Just Add Waters (JAWS).

The binding free energy of a water molecule to an active site could be cal-
culated from its relative binding and unbinding rates from determining residence

times from simulations. It is not currently possible to observe multiple binding
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events as standard in a typical simulation. The residence time of a water molecule
in an active site water network has been suggested to be on the order of microsec-
onds, % which is significantly longer than the timescale of a typical simulation.
This means that the binding and unbinding of active site water molecules is not
typically observed in the timescale of a simulation. These sampling limitations are
worsened in cases where the active site is occluded from the bulk, or if the water
molecule is ‘pinned’ by a binding partner that would need to unbind to allow for
a pathway for the waters of interest to vacate. In addition, ProtoMS and other
MC software packages often reduce the sampling of parts of the system such as the
protein backbone, where it could reasonably be expected that large scale motions
of the protein are required for water or ligand binding or unbinding to be observed.
All of these factors mean that it is not currently possible to determine the binding
free energy of a water molecule in a typical simulation through monitoring sim-

ulation residence times. This means that enhanced sampling methods are required.

The binding free-energy of a water can be calculated using the methods out-
lined in Section 1.2, where an individual water molecule can be decoupled from
its environment in the way that ligands are treated. While absolute binding free
energy calculations are generally avoided due to the large changes in energies
involved, absolute decoupling of a water molecule can be well-behaved as the
molecule is small, meaning the phase-space overlap is better than for a ligand,
where the ligands disappearance would cause a large change in the surrounding
system. In efforts to classify waters in protein systems and determine their use
for drug design, Barillari et al. calculated the binding free energies of 54 water
molecules in systems of interest using the DD method with TIL.%¢ For the calcu-
lations, hard-wall constraints were used to prevent the water leaving its location
during the calculation, and to exclude the volume to other water molecules. The
interactions between the water and its system were decoupled in two stages; firstly
decoupling electrostatic charges, followed by van der Waals interactions. This work
demonstrates a method of calculating a binding energy of a water molecule that
will be used herein, while also seen in other research.® The work by Barillari et al.

was able to demonstrate with a 95% level of confidence that water molecules that
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are tightly bound are more likely to be conserved between structures. However, no
statistical correlation was found between the affinity of a ligand, and the binding
energy of water molecules it displaced on binding. This highlights the need for
a method that can incorporate water binding within the active site, and the end

goal — the ligand affinity.

Another example whereby water binding free energies have been determined
using the DD method is a paper by Michel et al.® Michel el al.’s paper is the
basis for some of the research performed herein. For three systems, where a water
molecule is known to affect the binding of a ligand, the relative binding free en-
ergy of the ligands has been calculated, both with and without the water molecule
present. The two thermodynamic cycles between the ligands are mapped onto each
other using the free energy of binding of the water in the presence of each of the
ligands. This provides a thermodynamic map, whereby a ligand without a water
molecule can be compared to a different ligand with a water molecule through a
free energy pathway of various steps. Multiple pathways can exist between the
two states, which can result in different free energy differences due to errors in
cycle closures. This provides a method for comparing ligands for which water oc-
cupancies are different, but involves simulation of high-energy states, which can
introduce errors into the calculations. This method, as with other methods that
rely on the decoupling of individual water molecules, quickly become laborious as
the number of waters in a system increases, particularly if appropriate care is taken
for the order in which water molecules are decoupled. Double decoupling requires
a priori knowledge of a hydration site, as restraints or constraints are required.

Michel et al. determined the location of water molecules using JAWS.

While it is possible to perform DD on a collection of water molecules simul-
taneously, typically simulations are done only on one water at a time to increase
the accuracy of the results. DD is restrictive as the water location is required a
priori. Methods such as WaterMap and JAWS have been developed with these
issues in mind. At the time of writing, WaterMap is moving to a GCMC-type
method (release 2018-2), but the previous method (2018-1 and prior) will be de-
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scribed herein. WaterMap is an MD method, where the protein and ligand are
simulated in bulk solvent, and water positions are calculated based on the locations
of waters throughout the simulation, typically 2 ns in length.57:%% The locations of
the water molecules throughout the MD simulation are clustered before inhomo-
geneous solvation theory (IST) is used to determine thermodynamic properties of
each water.% Watermap has been used to locate water molecules in protein-ligand
systems, typically with a water network of a holo-protein structure determined,
followed by analysis of which molecules would be displaced if a ligand is overlaid
with the structure. This method of looking only at displaced molecules has a
tendency to overlook subtle changes and shifts in the water network which may
influence ligand binding.™ One limitation of WaterMap, as is the case with DD
methods, is that each hydration site is considered as its own entity rather than as
part of a network. It can be misleading to consider a water’s binding free energy
in isolation from the rest of the system, as the effects of perturbing the network
through secondary interactions can be missed. For this reason, grid inhomogeneous
solvation theory (GIST) has been developed, which considers the thermodynamic
properties of the grid, rather than each hydration site,”’ which is advantageous as
it is rapid to calculate. Both WaterMap and GIST have been applied to systems

of pharmaceutical interest.”? 74

Just Add Waters (JAWS) is a A\-dynamics MC based method, "> whereby water
molecules sample, and are mapped onto grid points. Water molecules are able to
scale in ), i.e. the degree to which they interact with their system through, sampled
using a MC test. The locations in which the water molecules spend much time
in the ‘on’ interacting state are understood to be favourable binding sites. The
water sampling locations are clustered to identify possible binding sites. A second
simulation is required for each of the possible binding sites found in the initial
calculation, whereby the binding free energy of that water is estimated from the
ratio of simulation in which the water molecule is ‘on’ or ‘off’.” The ‘on’ and ‘off’
states are defined as A > 0.95 and A\ < 0.05 respectively. The transfer free energy

is calculated using this ratio of on and off probabilities using Equation 1.37.
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(1.37)

AGrans ~ —kpTln (P (A > 0‘95)>

P(\ < 0.05)

The choice of 0.95 and 0.05 for the definition of on and off is arbitrary, and re-
sults in energies that are estimates, rather than rigorous. While still contributing
to the system sampling, the time a water molecule is in the A region between 0.05

and 0.95 it is not contributing to the free energy calculation.

The methods described are examples of a class of simulation-based predictions
of water molecules. Many other methods exist that also use IST to calculate the
free energy of water molecules. %7677 Other simulation based methods include 3D-
grids to probe an area, including by Setny et al. and 3D-RISM. Methods exist
that do not rely on simulation, but instead predict the locations of water molecules
based on the locations of water molecules in other crystal structures. These meth-

ods are referred to as knowledge-based, 7882

and are advantageous as no force field
or lengthy simulation time is required, but the methods will only be as good as the
data on which they are trained. One recently published knowledge-based method
is WarPP,%? and will be looked at in detail in Chapter 3, as their success rate of
80% of water molecules correctly predicted within 1.0 A cutoff for a large dataset

of 20,000 waters is — to our knowledge — the highest published success rate.

To conclude, experimental techniques exist that are able to locate water molecules
in protein systems while none exist that are able to directly determine their binding
free energy. This indicates that computational techniques may be able to provide
information that is useful for drug design. Double decoupling methods are limited,
as the water binding site needs to be known a priori. Additionally the simulations
often need restraints or constraints which can be non-trivial to perform. As DD
can only determine one water molecule at a time with ease, water network methods
have been developed, including WaterMap (MD) and JAWS (MC). Both methods
involve a two stage simulation — one to identify hydration sites and one to cal-
culate the binding free energy. WaterMap calculates binding free energies using

IST, which may be limited when water network energies are of primary interest.
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GIST has been developed to bridge this gap, but the underlying method is still
only as good as sampling allows. While JAWS enhances sampling using A scaling,
the free energies calculated are estimates. GCMC is a method that can deter-
mine the hydration sites of water networks, as well as rigorously calculating their
binding free energy in a single simulation. Where other methods available are a
compromise between the number of water molecules that can be simulated, and
the quality of resulting binding free energy, the GCMC method is able to calculate
both of these rigorously, within a single simulation. The theoretical basis of the
grand canonical ensemble, the MC insertion criteria, the computational methodol-
ogy and the rigorous calculation of Gibbs free energies will be outlined in Section
1.4, and developed further throughout this thesis.

1.4 Grand canonical Monte Carlo

As discussed, understanding where water molecules are and their binding free en-
ergies is not always easy to do experimentally. Various computational methods
have been developed to perform this task, and a selection of these have been pre-
sented in the previous section. While each method has its advantages, none of the
presented methods can calculate both the locations of multiple water molecules
and their binding free energies rigorously, within a single simulation. While the
free energies determined from DD are theoretically exact, the method does not
scale well for water networks. Methods that do scale to multiple water molecules,
such as JAWs or WaterMap, do not give energies as accurate as DD. GCMC is
able to handle both water placement and binding free energy calculation of many

waters in a single simulation.

The grand canonical (GC) ensemble is the statistical ensemble of states of a
given chemical potential, temperature and volume, uVT, where p is chemical po-
tential, V is volume and T is temperature. States in the GC ensemble, can vary
in both total energy and the number of particles. This can be thought of as being

open to exchanging both energy and particles with a reservoir, where the reservoir
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Figure 1.4: Illustration of the grand canonical ensemble, consisting of two,
canonical ensembles, with an interface permeable to molecules. The inner
ensemble will be the system of interest, while the outer is a non-interacting

ideal gas, of infinite size. Adapted from Understanding Molecular Simula-

tion.13

is an ideal gas. This allows properties dependent on an average number of particles
to be calculated as a function of their external conditions. One example of a use
of the GC ensemble is determining the extent of gas adsorption on a surface, at
constant temperature and pressure.'® In principle, a system like this, where the
the number of adsorbed particles varies, could be simulated in an NPT ensemble
(where P is pressure). However, equilibration between the surface and gas phase
may be far longer than feasibly computable due to slow diffusion. Large simula-
tions in the NPT ensemble would be required to gain the correct average molecular
occupancy, where the GC ensemble is able to bypass the slow diffusion processes

that are limiting in other ensembles.

theoretical basis

The grand canonical partition function can be calculated from the canonical par-
tition function. In the canonical ensemble, the system and a bath are in thermal
equilibrium, whereby energy is able to pass between the two systems. This is

known as the NVT ensemble. The grand canonical ensemble (4VT) can be un-
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derstood by considering a canonical (NVT) ensemble that has been divided into
two, where the divide is permeable to atoms. The two halves of the canonical
system, which will now be considered as one ideal part, and one ‘system’ part,
subscripted ¢ and s respectively, have their own chemical potential (x), volume
(vg), temperature (T), and number of atoms (n,). The partition functions of each

of the subsystems, are shown in Equations 1.38 and 1.39.13

Qi(ng,v;, T) = M/ds"ie_mj(sni) (1.38)
Usns Ns ,— sns
Qs(ns, v, T) = As,nsn./ds e PUEm) (1.39)

where A is the thermal de Broglie wavelength, U is the potential energy of
the system defined using scaled coordinates, s"*, where s"* = V=srme with re
are the unscaled system coordinates. The partition function of the overall, NVT

ensemble is the product of the two subsystems;

1

/ds”’/ds"se BU(s") o= BLH="T] (1.40)

nz TLS

Q(niansvvi7U87T) A3”1n A3ngn !

where the integral over the non-interacting ideal gas will be one. The division be-
tween the two subsystems is permeable, allowing n; and ns to interchange, however
the total number of particles, IV is constant, n; + ns = N. The partition function
of the ensemble needs to consider every possible division of atoms between the two

systems.

N UmvnS BU(sms)
_ Ng ,— s's
QN 03,05, T) = 37 e L /ds e (1.41)

ng=0

The chemical potential of an ideal gas can be determined from the ideal par-

tition function,
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F = —kpTin(Q,) (1.42a)
VN

F = —kgTln (W> (1.42b)

F =—kpgT [Nln (X;)) — Nin(N) + N} (1.42¢)

Equation 1.42¢ can be reached using Stirling’s approximation. The free energy

can be related to chemical potential using F' = ulV;

oF V
== —knT - 1.4
o~ H= helin (NA3> (1.43)
which when particle density, p = % is used;
1= kpTin(A3p) (1.44)

. Considering the limit where the ideal gas reservoir is infinitely larger than

the system, n; — oo, using Stirling’s approximation, Equation 1.41, becomes;

> i, M
v, v s . — Uf(s™s
Q(N,'Ui,'l)s,T) = M/dsn e BU(s™) (145)
0 7

ns=

which it is possible to rearrange to;

o0 Ui z ’U?S " _ ns
Q(N7vi7US7T) = Z (A?’m) A3n5n5! /dS ‘e /BU( ) (146)

ns=0

Substituting in Equation 1.44

0o Ns
— . v — ns
Q(N,vi,vs,T) = E : e Bumm/dsnse AU(") (1.47)

ns=0

. To remove dependency on n;, n; = N — ng can be used, leading to;

o0

— /Uns — Ns
Q(N,v;,vs,T) = ZM@B"”SM/@"% BU(s"™) (1.48)
ns=0
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where eV will cancel to 1 in the limit where N is large. This results in the
grand canonical partition function, Equation 1.49, where there is no longer any

dependence on the ideal gas reservoir,

Qp,vs, T) = > eﬁ“”sm%;' / ds"se=PUE™) (1.49a)
ngs=0 s
=) M Q(ns, v, T) (1.49b)
ns=0

which is related to the canonical partition function. Here, vs; and ng are used
to refer to the volume and number of particles of the system, but as there is no
longer any dependence on the ideal gas reservoir N and V are often used to refer
to the system, as opposed to how they are illustrated in Figure 1.4 and used in this

derivation. Using N and V to refer to the interacting system will be used onwards.

The detailed balance condition can be used to derive the acceptance criteria for
GC insertion and deletion moves. Detailed balance is discussed for configurational
sampling moves in Section 1.1, and the same method is used here. The probability

density of a grand canonical state is shown in Equation 1.50.

PNy N
ABNNI

While the probability of a particular insertion and deletion move are equal (a(N —

N x e=PU™) (1.50)

N +1) = a(N +1— N)), the acceptance criteria depend only on the density of
the states.

acc(N - N+1) NN +1)a(N+1— N) Ls1
accN+1—=N)  NHN)a(N = N +1) (1.51)

Substituting Equations 1.50 and 1.51;
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acc(N — N + 1) AN NI V(NHD) eBu(N+1) o—pU (s )
acc(N +1— N) T YV NBuN g—BU () ASNHD(N + 1)! (1.52a)
— /X?)(]:]'/_A'_l)eﬁue_ﬁ(U(SN+l)_U(5N)) (1.52b)
This leads to the insertion and deletion Metropolis criteria;
acc(N — N + 1) = min [1, Ag(N_i_l)eﬁ“e_’B[U(sNH)_U(sN)]} (1.53a)
acc(N — N — 1) = min [1, %VGB“GB[U(SN_I)U(SN)]] (1.53b)

which hold as long as insertion and deletion moves are attempted with equal
likelihood.

methods

Above, the GCMC insertion and deletion acceptance criteria are shown, required
for simulating in the puV'T ensemble. As N is a variable in GCMC simulations,
the value of N is controlled by u, the chemical potential. The excess chemical
potential of a system is the difference between the given chemical potential, and
the equivalent ideal gas system. This is the Helmholtz free energy required to move
a particle between a system and the ideal gas. This allows the excess chemical
potential to be related to the Helmholtz free energy difference between a system,

and the system with one fewer molecule, Equation 1.54, where AN =1

, AR,
H="AN

:Fex(N+1)_Fex(N) (154)

The excess chemical potential of a system can be determined computationally
using Widom’s particle insertion method.® Widom particle insertion involves re-
peated attempts to insert a test particle into a system, with the excess chemical
potential calculated from the exponential of the energy of the insertion, Equation
1.55.
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1 —BAU
o= ﬂln/dsNH <e >N (1.55)

In practise, this will be a summation over microstates observed, rather than an
integral over all states of the system. The GC acceptance criteria, Equation 1.53,
were derived by Adams, who first included the acceptance and deletion moves to
simulate with the VT ensemble, for both a hard-sphere fluid® and a Lennard-
Jones fluid.® The Adams formulation of GCMC is the method used in this work.
The method allows the chemical potential to be chosen for the simulation, however
choosing a sensible value of p is less intuitive than other parameters such as V and
T, as it is not an experimental observable. Adams combined the chemical potential
with other required constants, to use the B parameter (or Adams parameter),
Equation 1.56,

B=puB+In <‘j\g) (1.56)

Where Vi, is the volume of the GCMC region. This can be substituted into

Equation 1.53, to provide the equivalent Metropolis criteria shown;

acc(N — N + 1) = min [1, (Nil)eBemU(NH)U(N)]} (1.57a)

acc(N +1— N) =min [1, Ne*Be*mU(Nfl)*U(N)]} (1.57b)

As the chemical potential controls the average number of particles in a system,
the correct chemical potential can be established deterministically — where simu-
lations are repeated with different ; until an expected value of N is observed.®6 At
lower chemical potentials, fewer particles are inserted into the system, and there-
fore the lower the chemical potential at which a particle is first inserted, the more
favourable the inserted particle is interacting with the system. A consequence of
this is that the particles can be rank-ordered by affinity according to the chemical
potential at which they insert. This however requires knowing the expected value

of N for the system, which is a parameter that would ideally be calculated without
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prior knowledge.

The GCMC method has previously applied to ligand-protein systems, 36:87 with
water molecules treated as the GC species present in the simulation. The chemical
potential was determined by matching the known experimental value of number of
waters for a system, and the waters are rank ordered by the chemical potential at
which they first insert into the system. This implementation results in the method
being deterministic. Grand canonical integration (GCI) and other theoretical de-

velopments will be described that allow the method to be used predictively.

cavity bias

Whether GCMC is considered for protein-ligand systems, or other applications
such as interfaces or porous materials,®® the method can suffer from poor ac-
ceptance rates for insertion and deletion. GCMC is advantageous for systems
where the property of interest is dependent on a slow rate of diffusion, whereby
the GCMC methodology is able to computationally speed up the sampling of the
effect of the diffusion. One factor that may cause diffusion to be slow, is the den-
sity of the system of interest. If a system is high density, attempting an insertion
into the GCMC region can be difficult due to a high probability of overlapping,
high energy configurations. Attempts have been made to improve the acceptance
rates of GCMC, most notably through cavity bias. Cavity bias was presented by

Mezei to study a dense LJ fluid at the triple point.?%9

Cavity bias GCMC (CB-GCMC) has an additional stage in the algorithm,
where prior to an insertion, a grid search of N; points is attempted over the GCMC
region, to estimate the probability (PN) of finding a cavity of radius larger than
R.. Several methods of calculating PV are suggested by Mezei and are labelled
following the original notation; PN can be an average of all PN (r"V) observed
previously the simulation (mean, M), or an average of PN (r"V) where the insertion
or deletion move is accepted (accepted mean, AM) or PN (r"V) is determined by

C

a frame-wise grid search at each step, (grid search, GX). The insertion is then
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attempted into one of the grid points identified, and accepted or rejected based
on Equation 1.58a. This prevents attempting insertions that result in overlap and
high energy structures, by only attempting insertions where there is space. This
means that AU of insertion is finite and small, and will increase the likelihood of
acceptance. As the insertion acceptance criteria has changed, so must the deletion

acceptance to maintain detailed balance, Equation 1.58b.

CB : v N B =BUN+1)=U(N)]
acc(N — N +1) min [1, SN 1)Pc e’te ] (1.58a)
CB , AN g —BU(N+1)—U(N)]
acc(N — N —1)~7 =min |1, —x—e"e (1.58b)
VP

If the system has very high density (PY = 0), then there is no point within the
grid system for cavity bias to attempt an insertion, and 1.58a approaches zero. In
this case, the simulation will revert to unbiased GCMC insertion criteria, where
the insertion will be attempted at any location, with the acceptance criteria fol-
lowing Equation 1.53a. As it is possible for the insertion to revert to the unbiased
scheme, the deletion moves must be balanced with respect to this, whereby the

unbiased deletion move will be attempted with a probability of (1 — PN~1).

The work by Mezei considers cavity-bias GCMC simulations of densely packed
LJ fluids. Roux et al. have extended this methodology to make orientational-bias
cavity-bias GCMC for systems where the GC solute has orientational degrees of
freedom.?? This follows the basic methodology outlined by Mezei. However, once a
grid-based search has been performed to find a suitable cavity site, an orientation

[ of the species is chosen with the probability;

—BU

e

P = — 1.59
coO 221 e—BU; ( )

where Uj is the potential energy of the ¥ orientational state of the m orienta-

lth

tional trial states, of which the [*” state is chosen for insertion. Where co indicates

that the simulation has both a cavity and an orientational bias. This Pévo is then
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used in the acceptance insertion criteria shown in Equation 1.58. When a deletion
molecule is attempted, m — 1 alternate conformations for the water molecule of
interest are generated, so as to calculate Pé'vo for the deletion move. This ensures

detailed balance is maintained.

While cavity bias has been shown to be an effective method to increase ac-
ceptance rates of GCMC moves, the extent of its benefit will depend on the cost
of the additional effort of evaluating P2 throughout the simulation. Efficient
methods for calculating PV in the simulation have been suggested*! using a FCC
packing grid that updates with a frequency dependent on the types of accepted
moves within the simulations — a simple translation is unlikely to largely affect
the number or size of cavities, whereas a successful insertion or deletion will. The
additional orientation bias was also found to increase the GCMC insertion rates,
from 0.06% to 0.81%, but it also requires many additional calculation steps for
each MC of the protocol.

grand canonical integration

The binding affinity of a single water molecule can be calculated using the interacting-
particle method, presented by Clark et al.?® This has been applied to protein-ligand
systems, and a general form of the equation is shown in Equation 1.60. This re-
quires simulations performed over a range of chemical potentials, to give a range

of corresponding N values.

1
- 1 =+ eﬂAFtrans_B

N(B) (1.60)

The equation is of the form of a logistic function. This general form of the equa-
tion was presented by Ross et al., Equation 1.61,%* where the integral is performed
over the sum of multiple logistic functions. Equation 1.60 shows that AF},q,s will
be equal to the half-maximum point of the curve, where N(B) = 0.5. This is where

the chemical potential of the system is equal to that of the ideal gas system, and
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the water is equally likely to be in either system, resulting in an average occu-
pancy of 0.5. The half-maximum is determined by fitting a logistic function to the

simulation results, and from that calculating the point of half-maximum.

One benefit of GCMC is the ability to study multiple particles at the same
time, and for the case of water molecules in protein-ligand systems, the ability
to calculate the energies of multiple water molecules would provide a mechanism
with which the optimal water occupancy could be calculated stochastically. The
ability to calculate the optimal occupancy is an improvement on the purely deter-
ministic grand canonical methods discussed above. Ross et al. introduced the GC
Integration (GCI) Equation, whereby the form of the single-water, Equation 1.60,
can be generalised to the case of many-water systems. Previously, fitting a logistic
function to the titration points of a single-water system allowed the free energy
of that water to be determined. The generalised form can calculate the energy of

changing the water occupancy from N; to Ny molecules, Equation 1.61

N;! By
BAFtrans(Ni —>Nf) :Nfo—Nsz+ln <N1'> - N(B)dB (161)
I B;

AF}yrans is the energy of moving (f —) waters from an ideal gas into the system
of interest. B; and By are the Adams parameters which produce an average water

occupancy of N; and Ny waters respectively. The integral term is calculated by

fitting multiple logistic equations to the titration of multiple waters. The In ( g;',)
term is a multiplicity term, which accounts for the ability for molecules to exchange
within the active site. In DD simualtions, water molecules with specific atomic
labels are either restrained or constrained to a particular hydration site, whereas
GCMC allows for the exchange between different atomic labels to occupy different
sites. As all molecules can move into the ideal gas ‘off’ state and sample the
whole system, any water is able to insert into any water position within the site.
The logarithmic factorial term is able to account for the multiplicity of both the
initial and final water network considered. Equation 1.60 is equivalent to the GCI

equation, for the case between zero and one water, where N; = 0,Ny = 1;
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By
BAF,(0— 1) = N/B, WJFM / N(B (1.62a)

BAF,; = By — N(B) (1.62b)

B;
Firans has been replaced with Fy; and Fljpge to discern between the free energy
determined from Equations 1.60 and 1.61 respectively. Integrating Equation 1.60

glves;

By By 1
/B N(B)B = /B B (1.63a)
B

_ [ln (eﬂ‘Amee n eBﬂ Bf (1.63b)

BAFszn le B

e gle  e7f
=In (e,BAFsmgle T B > (1.63c)

1 + erfﬁAFsingle

—In (1 JRpy e s (1.63d)

For the single water case, both N(B;) = 0 and N(By) = 1 hold. For the
first condition, the denominator in Equation 1.60 must go to infinity, therefore the
limit BAF — B; — inf holds (alternately B; — BAF — —inf). For N(By) = 1, the
denominator must go to 1, and therefore the limit By — BAF — inf. Substituting
both of these into Equation 1.64a;

Bf Bf_ﬁAFsin le

/ N(B)AB = In | 1€ ’ (1.64a)
, 1 +W
By

/ N(B)dB = By — BAFsingle (1.64Db)

where AFy.; and AFy;, 4 are now equivalent by inspection of Equations 1.62b
and 1.64b.
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The form of the GCI Equation shown in Equation 1.61 does not determine
standard state binding free energies, but this will be discussed and the correct

form presented in Chapter 2.

The GCMC method determines A Fy qns, the Helmholtz free energy to transfer
water molecules from an ideal gas system into the system of interest. What we
would like to be able to calculate is the Gibbs free energy of binding, AGpying, of
transferring water molecules from bulk water to the system. For a network of water
molecules in a system, the equilibrium occupancy will be where the thermodynamic

equilibrium is where this is at a minimum;

dAGhyina(N
dN() =0 (1.65)

Where AGping is the binding free energy of the water molecules to the system
— the metric of interest in GCMC. The Gibbs free energy of binding is the free
energy of increasing the number of waters in the system, combined with the free

energy of removing those water molecules from solution;

AC;'bmd = AGsys - AG'sol (166)

Where AGy,; is the Gibbs free energy of insertion of the water molecules into
bulk water, Npso, where pgo is the chemical potential of a water molecule in
bulk water. The Gibbs free energy of the system, AGy,s, can be equated to the
Helmholtz free energy of the system, AFy,, as the effect of pressure on the Gibbs

free energy under standard conditions is negligible.?*

The Helmholtz free energy of a system, AFy, is the combined energy of
introducing the water molecules into a coupled ideal gas system, AFjq4e, before
transferring the water molecules from the ideal gas to the system AF},.qns. From

this with Equation 1.66, the Gibbs free energy of binding can be determined;

0
AGyind(N) = AEeartN) + AFprans(N) = AG 0 (N) (1.67)
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Figure 1.5: Thermodynamic cycle of the Gibbs free energy, where the system
is coupled to bulk water, and the Helmholtz free energy, where the system
is coupled to an ideal gas. The AGyng can be calculated by following the
alternate pathway around the cycle, using the approximation AGy,s = AFy,,.

In previous work, the AFj;4., was erroneously believed to have zero contribu-
tion to the energy. This error has been corrected, and the contribution of AFjgeq
explicitly included, in Section 2.3.3. The effect of this mistake, and its correction,
are discussed fully in Chapter 2. The overall thermodynamic cycle illustrating how
the Gibbs free energy of binding can be calculated from the other thermodynamic

contributions is shown in Figure 1.5.

computational implementation

Within this thesis, GCMC has only been attempted with water molecules. How-
ever, in theory the method could be used for any particle or species, and will be
defined as a GC particle in this section. GCMC simulations are performed using
in-house Monte Carlo biomolecular simulation program, ProtoMS.? GCMC dif-
fers from typical MC methods as the number of molecules, N is able to fluctuate

throughout the simulation, by insertion or deletion moves. Within ProtoMS, a
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cubic GCMC region is chosen by the user. In practice, any shape of GCMC re-
gion could be used, but a cuboid has been used for simplicity. Within this region
any molecules of the same species of the GC particle are removed during set up,
and insertions and deletions are only attempted within this region. If a transla-
tion move of a GC particle results in moving the centre of mass of the particle
outside the GC region, then the move will be rejected to prevent any GC water
molecules from leaving the box. Theoretically these molecules are coupled to an
ideal gas, however simulation of this ideal gas is not required. One method for
simulating additional particles to insert into the system is to simulate an overlay-
ing system of ‘ghost particles’. Insertion and deletion moves attempt to vary the
ghost molecules between an on and off state. These ghost molecules move through
the system through normal Metropolis sampling methods. The ghost molecules
are able to move freely as any MC move will be accepted as the species are non-
interacting; therefore they take a random walk throughout the region. ProtoMS
versions 2.3 and 3.0, as were used in the work by Ross et al., previously used this
method of sampling ghost water molecules, but there is a tendency for this method
to be slow to converge. If a water molecule has been deleted, then a vacancy will
be present in the system and it is likely that the newly off water will not move far
from this vacant site before it could be turned back on again. This hysteresis of
ghost water molecules does not alter the results of the simulation, but slows down

sampling of the site, and therefore convergence.?

The software has been updated such that the sampling of ghost particles is
avoided. Before each insertion, the ghost particle will be assigned a random ori-
entation and location within the GC region. The randomisation of the particle’s
position prevents the need for the random walk of the ghost particle. ProtoMS
uses the widely-adopted method established by Norman and Filinov,?” using three
moves of molecule displacement, deletion and insertion. The displacement and ro-
tation of GC atoms follows the typical Metropolis sampling, and the insertion
and deletion moves are accepted using Adam’s criteria, discussed in Section 1.4,
using Equation 1.53. Of the three grand canonical specific moves, the insertion
and deletion moves must be attempted with equal probabilities as to maintain

the requirement of detailed balance. The third move of grand canonical sampling
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has no requirement to be proportional to the insertion or deletion moves, however
convergence is found to be fastest when moves are sampled at a 1:1:1 ratio,?” thus

used as the default setting in ProtoMS.

1.5 Experimental comparisons

X-ray crystallography

Experimentally, protein structures can be determined by a range of methods such
as X-ray crystallography, NMR, fiber diffraction and electron microscopy. While
other methods are increasing in popularity, X-ray crystallography is the most
commonly used, and is the only method considered herein. Elucidation of crystal-
lographic structures is not trivial, as both protein crystallisation and solving the
electron density is difficult. Protein crystallisation is difficult as proteins are in-
herently sensitive to biological conditions; temperature, pH, ionic strength, metal
ions, inhibitors, cofactors and the presence of other small molecules.”® Protein
crystallisation is attempted by performing large-scale matrix trials to attempt to
find any conditions that stimulate crystallisation, which is then iteratively im-
proved to grow crystals of sufficient quality for X-ray studies. Some proteins are
more difficult to crystallise than others, such as intrinsically disordered proteins,
or membrane proteins that are largely hydrophobic and therefore generally insol-
uble. The bias in crystallisable proteins means that well-behaved targets are over
represented, while membrane proteins, which represent 20-30% of the proteomes“?

of most organisms make up only 1% of the protein data bank (PDB).1%

Crystallising the protein is only the first hurdle; the primary result of an X-ray
experiment is the electron density, which needs to be correctly assigned to atoms
of the molecule. The atomistic map of the model is then refined by optimising the
fit between the expected electron density of the model (F,4.) to the experimental
electron density (F,p).'%" The level of agreement between F,. and F,ps is mea-
sured by the R-factor, which is a measure of the global accuracy of the model.

This refinement of the atomistic model can be performed by using computational
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algorithms such as least-squares, however the models can become trapped in local
minima, and need intervention from qualified crystallographers to achieve the best
agreement. %2 Along with the atomistic model, each atom is assigned a temper-
ature factor (B-factor, which is different to the Adams’ parameter B). B-factors
describe the isotropic amplitude of displacement of an atom, within a range of 2
to 100 A2, and indicate how mobile or disordered an atom is, relative to the rest
of the structure. Anisotropic B-factors are available for some structures, and can
indicate a relationship between the structure of a molecule and its dynamics,'%3
however the crystallographic data needs to be high quality to justify modelling

anisotropic B-factors for a given structure. 04

While much of the model refinement process is automated, human input can be
required to find the model that is the best fit to the electron density. This human
input can be subjective, and can result in slightly different models depending on
the experimentalist. One example of this subjectivity is the case where the same
high-quality electron density was given to two experienced crystallographers. How-
ever, in their resultant atomistic models, over 50% of the assigned water molecule
locations differed by a distance greater than 1.0 A.1%% As the automation process in
crystallography continues to improve, the bias of the crystallographer in the results
should be reduced. Efforts have been made to post-process electron densities avail-
able in the PDB in a project called PDB_REDO.!% These re-refined structures
are publicly available online!?” and have all been produced without human inter-
vention (although the inherent design of the software will introduce some degree of
human influence), but also can improve structures that were processed with older
generations of software. While PDB_REDO is an interesting project; it is limited
in its application to our interest in active site water molecules. PDB_REDO will
attempt to reposition assigned water molecules, or remove clashing ones but does

not currently support the addition of missing water molecules.

Crystallographic structures are used to assess the accuracy of computational
methods of active site water locations. If active site water locations in crystallo-

graphic structures are not reliable, then this can make it difficult to determine if
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a computational method is functioning optimally. Efforts can be made to quan-
tify how reliable a crystallographic water molecule is by measuring the underlying
quality of the electron density in the local region. Various methods exist to assess
the validity of the model, including real-space R (RSR),'% and real-space corre-
lation coefficient (RSCC).1%? RSR compares the calculated and observed electron
density for a grid placed over the atoms of interest. RSCC is the calculated cor-
relation coefficient of the RSR. Both of these real-space methods are limited, as
both methods rely on, and are sensitive to, a choice of atomic radius as this defines
its extent in the electron density. The atomic radius can either be fixed based on
atom type, or a function of the atoms’ B-factor. This means that both the RSR
and the RSCC are strongly correlated with the metrics used for the model i.e.
B-factor. As the definition of the atomic radius was not rigidly defined in the
original publication, issues have arisen with results varying with differing software

packages to calculate supposedly the same metric. 110

Methods have been developed that calculate the quality of crystallographic
model by considering the difference density map. f, — f. and 2f, — f. are the
difference maps (f, and f. the observed and calculated electron densities respec-
tively), which can indicate regions where there is electron density with no atom
assigned, or where there are atoms assigned with no supporting electron density.
These difference maps can be useful in assessing the precision of a model, and the
real-space difference density Z score (RSZD) is a x? test for these differences to
measure the normalised difference in density.''® The real space observed density
score (RSZO) is a measure of the signal-to-noise ratio in the RSZD and is a mea-
sure of the precision of the proposed model. RSZO scores regions of well defined
electron density as greater than 1o, where o is the standard deviation in the elec-
tron density. RSZO should be more reliable than other real space methods, as the
atomic radius definition is clearly defined; calculated using using B-factor, element,
charge, and structure resolution, but with the B-factor being less correlated to the
final metric than for RSR and RSCC.

Electron density for individual atoms (EDIA) is another metric to assess the
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quality of the underlying electron density for a given atom. This was initially
developed and used to calculate electron densities of 2.3 million crystallographic
water molecules, '!! before being generalised to all atoms in a crystal structure. 12
In the EDIA calculation, the atomic radii used are taken from a calculated table,
depending on the element, charge and resolution of the structure. The table is
generated from all available PDB structures, and the average B-factor is available
based on an atoms element, charge and resolution, for resolutions between 0.5
and 3.0 A in steps of 0.5 A. The table of atomic radii used have been determined
from the average B-factor for all PDBs within the given resolution. Using the
average B-factor over each set of resolutions of PDBs should avoid issues with the
constrained optimisation of B-factors for a given structure. The EDIA score sits
on a scale between 0 - 1.2, where the higher the score, the better the electron
density supports the position of the atom. An EDIA score below 0.8 suggests that
there is not enough electron density to support the location of the atom, with this

value chosen based on inspection of many structures and electron densities. 2

affinity experiments

The usefulness of an organic molecule will depend on many factors from its ad-
sorption, distribution, metabolism, excretion, toxicity (ADMET), its affinity and
its specificity. While computational methods exist to attempt to model all of
these metrics, only the affinity will be considered in this thesis. The affinity of a

reversible ligand (L) to a protein (P) at equilibrium, can be considered;

P+ L= PL (1.68)

Where PL is the bound complex. The rate of association and dissociation are

respectively calculated as;

rateqss = k4 [P][L] (1.69a)
rategiss = k—[PL] (1.69b)
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where [X] indicates the concentration of species X. The rate constants of asso-
ciation and dissociation are shown as k4 and k_. The association step is a second
order reaction, as it depends on the concentration of two species. The rates of sec-
ond order reactions are often dominated by the rate of collision, rather than the
likelihood of conversion into product. The rate of collision in the case of a small
molecule and a protein is determined by the size of both species and the size of their
interaction surface. The association rate constant for a protein-ligand complex is
therefore fairly constant, typically within the range of 106 — 10"Ms~1.113 The
dissociation step is first order, depending only on the concentration of [PL]. The
dissociation rate constant, k_, is the probability of the ligand to unbind from the
complex within a given time. The equilibrium of the reaction shown in Equation

1.68 is the point at which rate,ss = rateg;ss, where the following holds;

ki [P|[L] = k_[PL] (1.70)
and the equilibrium constant (K.,),

where the larger K., more of the species are in the associated, PL, state. K¢,
has units of M1, if the activity is neglected. Inverse molar units are unintuitive,
therefore the dissociation constant K, which is the inverse of K., is more com-
monly used. Small values of K4, which uses units of M, typically indicate a slower
dissociation rate, and therefore a higher affinity of the ligand. The K of a reaction

can be related back to the Gibbs free energy change of the reaction,

AG = RTIn(Kg) (1.72)

where R is the gas constant and T is temperature.

The affinity of a ligand to its target can either be calculated using equilibrium,
or kinetic experiments. Equilibrium assays afford the rate of the association and
dissociation reactions, as a function of the concentration of one of the reactants.

Recording the concentration of product as a factor of reactant concentration should
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result in a hyperbola correlation, from which K, can be determined from the point
of half maximum.!'™® Kinetic experiments are more involved; rather than simply
changing the concentration of a reactant and recording the concentration of the
product as performed in equilibrium experiments, kinetic experiments involve al-
tering the conditions of the experiment and monitoring the time taken to return
to the equilibrium distribution. For a dissociation rate constant, this can be calcu-
lated by monitoring the displacement of a fluorescence labelled ligand on addition
to the system of a non-labelled ligand.'!? Kinetic experiments allow for the cal-

culation of k4 and k_, which in turn can be related back to K; using Equation 1.71.

Equilibrium or kinetic experiments can be performed using optical assays. One
example of an optical assay is where the fluorescence intensity is measured as a
function of a reactant concentration. Proteins fluoresce due to aromatic moieties
and disulfide bonds within their structure, with the strongest response occur-
ring from tryptophan residues. !4 These naturally occurring fluorescent groups are
known as intrinsic moieties. In some cases, a shift in fluorescence can be seen on
ligand binding, which can be used to monitor [PL] within the experiment. If there
is no tryptophan present (it accounts for ~1.3 % of amino acids in vertibrates!!?),
or ligand binding does not shift the fluorescence, then extrinsic fluorescing moi-
eties can be used. This involves tagging a reactant with an extrinsic dye molecule,
that allows for an optically measurable response. This is inconvenient as creates
additional synthetic work, and makes the possibly incorrect assumption that the

extrinsic moiety does not alter the binding of the ligand.

Surface plasmon resonance (SPR) methods are kinetic experiments; allowing
for the measurement of rate constants, rather than just K;. SPR is beneficial as
it does not require the labelling of any of the species involved. The protein is im-
mobilised on a sensor surface, over which a continuous flow of ligand is passed. As
the ligand molecules bind to the protein, the refractive index of the surface shifts
depending on both the mass of the ligand and the K. As it is possible to monitor
the refractive index as a function of both time and ligand concentration, the rate

constants can be elucidated by the method.!'® Limitations of SPR include the
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unquantified effect immobilising the species has on the association, and can give
incorrect results if the reaction is not bi-molecular, and it can be difficult to cal-

culate k. rates faster than 105AM/s~! or k_ rates outside the range of 10751571 116

Isothermal titration calorimetry is another method able to elucidate more than
just the K4 of a binding event. 7 Using two cells (one of which is a sample cell, the
other, a reference cell) that are thermally coupled using a thermally conducting
material within an adiabatic system, where the energy remains constant, the heat
evolved from a binding reaction is measured. The heat evolved is monitored by
recording the power required via a reference heater to maintain the same temper-
ature in the two cells. This allows Ky, the stoichiometry of the reaction and the
enthalpy AH to be directly determined. The Gibbs free energy (AG) can be cal-
culated from K  using Equation 1.72, which can in turn be combined with AH to
indirectly calculate the entropy of binding. In addition, the thermal heat capacity
(AC)) of the binding can be calculated by recording the temperature dependence
of the enthalpy. ITC is commonly used in the drug discovery process as elucidation
of additional thermodynamic properties can be useful for rationalising Structure

Activity Relationships of protein-ligand complexes. '8

1.6 Current errors in computational modelling

7119 George Box

“All models are wrong, but some are usefu
The applications of computational chemistry are broad, and computational
methods are able to contribute to science in many ways; from large scale in-silico
screening of small molecule libraries, to high-level quantum mechanical simulations
to elucidate a reaction pathway. While there are many examples of computational
simulations correctly modelling reality, there are many occurrences where they may
go wrong, and errors can occur. Errors that can arise belong to five categories:
error in the force field used, incomplete sampling of the model, incorrect model
generation during set up, mistakes in underlying theory, and computational bugs.

These will be discussed in turn.
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computational errors

Computational errors, i.e. programming errors, will exist in every software pack-
age. While never fully avoidable, they can be limited by ensuring coding best
practises. Best coding practise involves constant testing of code during develop-
ment, on a range of systems. If changes or new functionality is added to a package,
testing of seemingly unchanged sections of the code is also required, to ensure that
additions do not adversely affect other functionalities. Something that is often
missed when developing software for biomolecular simulations, is the testing of the
code on simplified test systems, such as Lennard-Jones fluids or bulk water, as
it can often be easier to spot errors in less complex, faster to converge systems.
Analytical result may be available for simple test systems, to provide reliable com-
parison. One such example is the high-profile disagreement between two renowned
scientists, groups were observing differing phase-states of water at the same condi-
tions. 1?0 The seven-year dispute was only resolved when it became apparent that
one groups’ simulations were occurring at a different temperature than which they
believed. Issues can also arise if software is used on hardware on which it has not
previously been implemented on, but this can be prevented by software such as
Docker, which are linux containers that allow for consistent development platforms

through virtual machines that are consitent at the operating-system level. 2!

force field errors

Within molecular modelling, a system is treated on an atomistic scale, and atoms
are assigned bonded (bonds, angles, dihedral) and non-bonded (van der Waals
(0,6) and electrostatic (q)) terms. A set of atom terms, known as a forcefield,
are parameterised to reproduce experimental properties. Errors in a model can
arise if the model is being used beyond the properties or conditions initially in-
tended. Some atoms cause particular issues for force field parameterisations; such
as charged ions, or if the fixed point charge does not capture the electronic struc-
ture of the atom. A huge range of varying parameters exist in the literature for one
ion type.'?? Another issue that can occur with force fields is mistakes in the atom

typing during parameterisation, due to large redundancy, and counter-intuitive
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differences in atom types. Methods to avoid atom types have begun with the
Open Force Field Consortium via the force field format, SMIRNOFF. 123

Other force field related issues can arise if the level of theory used in the
model is not appropriate for the issue of inquiry. Higher-level quantum simulations
may be more appropriate for certain questions. Polarisable forcefields exist which
can better respond to electronic influences. >4 These should be particularly useful
for protein-ligand binding, X-ray crystallography and other cases where correctly
modelling the electrostatic properties are necessary. The additional polarisation
terms require even more parameters to be optimised during force field development,

and the additional terms can reduce the speed of simulation.

sampling limitations

The discord between the timescales achievable computationally, and those timescales
at which biologically interesting processes occur, are frequently discussed. How-
ever, the timescales and complexity of systems modelled using computational
chemistry continue to increase. One factor causing this is software improvements,
with design of methods that are able to speed up the rate of sampling of a sys-
tem. Metadynamics is able to encourage a system over high energy barriers using

125 coarse-graining can speed up simulations by reducing the number of in-

biases,
teracting parameters 2% and many other enhanced sampling methods can overcome
energetic barriers. 127128 These methods allow the progress of a simulation, or its

effective timescale, to increase with a given amount of computational resource.

The other factor in the increase of available computational timescales is the
improvements in available hardware. The increase in achievable timescales associ-
ated with Moore’s Law, which states that computational power doubles every ~18
months, owing to the increase in the number and speed of transistors in integrated
circuits. 1?2 Moore’s Law has shown to be reliable since its prediction in 1965. An-
other achievement of computer science is the invention of GPU’s and introduction
of parallel computing, initially designed for the video game industry, but has been

repurposed for use in biomolecular simulations. '3° These computational advances
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have significantly improved the timescales achievable by simulation methods much

beyond the first example of a microsecond long simulation 20 years ago.'3!

One of the major hardware developments is the specialised MD machine, An-
ton, that contains custom-designed GPU chips.'3%133 Anton has demonstrated its
ability to simulate large systems for long timescales, and of particular note has
been its demonstration of unbiased binding simulations of ligands to their protein

134 While Anton is a remarkable machine that is able to lengthen simula-

targets.
tion timescales, its usefulness will be limited as long as access to the technology is

restricted.

Despite the improvements in software and hardware, computational timescales
are still significantly shorter than many biological processes. Improvements in both

software and hardware are likely to continue, as the field matures.

model errors

Errors can occur if the model used in a simulation is not correct. Crystallographic
structures are usually the starting point for building a model for simulation. The
process from a crystallographic structure to a computer simulation is not yet a
black-box method, but requires human input from a computational chemist. Hy-
drogen atoms are not observed in crystallographic structures due to their low
electron density, and must be added. This can be tricky for titratable functional
groups, such as arginine, histidine, lysine, aspartic acid, and glutamic acid. His-
tidine requires particular thought as three protonation states exist (4, € or both
protonated) and its rotameric state is also unclear as carbon and nitrogen have
similar electron densities. The same is true for both asparagine and glutamine,
which have isoelectronic rotamers. Constant pH simulations (CpHMD) !3° can aid
this, allowing for titratable sites to be protonated correctly according to the de-
fined pH. This can work for either protein or ligand functional groups, and can
limit the assumptions that are made about the locations of protons when setting

up a simulation.
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Particularly mobile regions of a protein can be difficult to observe in the elec-
tron density due to blurring and can result in missing side-chains or residues. Many
crystallographic structures are missing their termini. These missing residues can
be built in to the structure, but the uncertainty in the atomic positions will be
high, and the more residues are missing, the uncertainty will increase. Amino acids
within the sequence of the crystallised structure may be non-native if there are
cloning artefacts. The crystallographic conditions, such as the pH and temperature
can also alter the structure of the protein from its native, solvated state. A model
error that can be particularly problematic is the assignment of water molecules,
or other small molecules that are present due to the experimental conditions such
buffers or solvents. Owing to sampling limitations discussed previously, it is un-
likely that a system will be able to diffuse far from the local minima of its starting
position. This can cause errors where electron density is incorrectly assigned, as-
signing atoms where there is little supporting density, missing atoms where there
is electron density, or assigning the wrong small molecule to the density that is
available. Enhanced sampling methods can help with understanding where small
molecules should be in a system. GCMC is useful for solvating protein-ligand com-
plexes, highlighting where water molecules might have been erroneously added or
missing from a structure. Saltswap is able to sample distributions of salt con-
centrations, to correctly account for the locations of biologically relevant ions. 36
Both of these methods attempt to correct the discrepancy between the crystallo-

graphically available structure, and the structure of biological relevance.

Two things can aid with these errors in the simulation model. Either im-
provements can be made to the experimental model or the computational method.

Advancing methods such as neutron diffraction!3” 138

or cryoEM, and ensuring
best practise assignment of those results. Computational methods can also play
a role in reducing modelling errors. Methodologies that reduce the assumptions
made during model building will reduce errors. GCMC removes assumptions of
active site water locations, Saltswap removes assumptions of salt concentrations,
CpHMD reduces assumptions of the protonation states, and enhanced sampling

methods combined with sufficient simulation time that allow a system to rearrange
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itself if incorrectly modelled. These methodologies do however use their own as-
sumptions, but these remove a degree of human error when decisions are made by

the user.

theoretical errors

Theoretical errors, fall into two categories; accidental and intended. Accidental
errors are difficult to find in the literature, as they are unlikely to be largely pub-
licised. There is a theoretical error presented in this thesis, Chapter 2, where an
energetic contribution was theoretically overlooked. The error was missed empiri-
cally due to the level of noise from the results. Accidental theoretical errors may
occur when the noise of simulation results is such that the theoretical error is
indiscernible. Issues such as this can be difficult to spot, but repetition of simula-
tions, and good data for comparison, whether experimental or computational, can
indicate if something is amiss. Theoretical ‘errors’ can also exist when a conscious
decision is made to approximate a component of a simulation, whether this be as
simple as applying a cutoff for non-bonded contributions, or arbitrarily choosing
the free energy penalty for water molecule binding to be 7 kcal-mol~'.7? Arguably,
any force-field error could also be considered as a theoretical error, if a molecular

interaction has been approximated to some degree.

In conclusion, there are broadly five main issues that determine the accuracy
and precision of a computer simulation. Some may be alleviated by improving
computational power, improving the force field used in a simulation. Computa-
tional and theoretical errors can be difficult to spot, but their likelihood can be
reduced by ensuring best practices, and using reliable data for comparison and
benchmarking. Errors in the simulation model will improve with experimental de-
velopments that allow better understanding of the atomic positions of a structure
or an experimental ensemble of structures. Another way to improve the model
of a system is through intelligent computational methodologies such as constant
pH simulations, that reduce the reliance of the results on the initial model build-
ing, through adaptively correcting the model during the simulation. GCMC is an

example of this, where the enhanced sampling of active site water locations and
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occupancies is made possible through coupling active site water molecules with an

artificial reservoir.

Many topics have been introduced here, starting with the basics of computa-
tional simulation through discussion of both molecular dynamics and Monte Carlo
simulations in Section 1.1. It was illustrated how free energies can be calculated
from sampled microstates of ensembles, rather then requiring the full partition
function to be evaluated. Absolute free energies require evaluation involving an
ef term, which in practise will cause the results to vary significantly as more states
are considered. Relative free energies (e2F) are significantly more viable to deter-

mine from simulation.

Practical methods involved with calculating relative free energies was intro-
duced in Section 1.2, both in discussion of rigorous free energy methods (TI, BAR
and MBAR) and the practicalities of various restraints and constraints used within

simulation, which will be both used and discussed in Chapter 2.

The importance of water molecules for rational drug design has been discussed,
and a selection of other published methods that are able to calculate the binding
affinities of active site water molecules have been introduced in Section 1.3. Fol-
lowing in Section 1.4, the theoretical basis of simulating in the grand canonical
ensemble is shown, as well as how GCMC can be used to locate active site water
molecules. The binding affinity of GCMC water molecules can be determined by
using the GCI Equation, Equation 1.61.

Validating computational methods requires comparable data, whether that be
from other computational results, or through comparison to experimental data.
Both comparing results to other computational methods and comparison to ex-
perimental data will be used. Both experimental methods of calculating binding
affinity and X-ray crystallography are discussed in Section 1.5, which have been
used to validate GCMC water placement and free energy calculations in Chapters

3 and 4. Finally, the current state of computational simulation methods was sum-
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marised, with a discussion of regions of potential errors and limitations arise in

Section 1.6.

In the first results chapter, Chapter 2, RE will be introduced into GCMC sim-
ulations. RE between B values improves the reliability of binding free energies of
water molecules to such a degree that an issue in the accuracy of the results is
apparent. This inconsistency between binding free energies when calculated us-
ing GCMC with RE when compared to double-decoupling calculations led to a
re-derivation of the GCI Equation.

While GCMC has previously been validated on a small set of systems, Chap-
ter 3 presents a curated dataset of 105 protein-ligand complex of FDA approved
drug molecules. The dataset has been used to test the performance of GCMC on
systems of pharmaceutical interest — this is the largest validation of a simulation-
based methodology for locating active site water molecules. Not only is the success
of GCMC presented for a diverse dataset of relevant structures, but discussion fo-
cuses on the difficulty in quoting a single value for the success, and how this can
lead to difficulties when comparing between different published methods that are

simulated on different datasets, and analysed with different protocols.

While knowing where, and how stable, active site water molecules are is im-
portant, this is all for the primary goal of understanding the effect that water can
have on ligand affinity. Knowing the location and stability of an active site water
molecule is not necessarily informative as to if displacing said water molecules will
have a beneficial effect on the ligand’s affinity. GCAP allows for relative binding
free energies of ligands to be calculated with dynamic sampling of active site water
molecules. GCAP allows for ligand affinities to be accurately calculated, partic-
ularly in cases where the location of water molecules is unknown, or if the two
ligands considered bind with differing water networks. The GCAP method and

the results for two protein-ligand systems are demonstrated in Chapter 4.
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2.1 Introduction

GAR implemented replica exchange between neighbouring B values for GCMC' sim-
ulations in ProtoMS. All simulations were performed by HBM, the disagreement
between GCMC and DD methods were empirically observed by HBM, and theoret-
ically proven by GAR.

GCMC can determine the binding free energy of networks of water molecules
through performing a titration where the system is simulated at a range of chem-
ical potentials.®® The binding free energies of water molecules is dependent on
fitting multiple logistic functions to the titration results, which was introduced
in Section 1.4. The logistic function is then used to determine the binding free
energy of the water network using Equation 1.61. The smoother the results, the
smaller the error in the fit. Figure 2.1 is the titration result of BPTI, which has a
network of three water molecules in a small pocket. Figure 2.1 illustrates typical
GCMC results, where it is clear that the noise in the data will result in binding

free energies with large associated errors.
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Figure 2.1: GCMC titration data for BPTI system, without replica exchange.
Each point corresponds to the average number of water molecules at a given

B value. The first 200,000 MC steps have been excluded as equilibration.
Plot shows ten titration repeats for the system.
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As the results are noisy, fitting to the data to afford a reliable binding free en-
ergy is difficult. The noise in the GCMC results is the motivation for introducing
RE between neighbouring B values to the methodology.

This chapter will outline the re-validation of the GCMC methodology and
theory, following the introduction of RE of B values in ProtoMS. RE between
neighbouring chemical potentials reduces the variance of calculated binding free
energies, without notable change to the median values. This reduction in noise has
highlighted previously unobserved discrepancies between GCMC results and the
gold standard method, DD. This discrepancy will be illustrated in Section 2.3.2.
This discrepancy led to improvements both to the computational implementation

of GCMC, and reassessment of the underlying theory, Section 2.3.3.

The theoretical developments result in the determination of an updated GCI
equation, Equation 2.7, which is the major result of this chapter. Two changes
have been made to the equation; the addition of a volume term and the removal
of the multiplicity term. Simulations with a ‘toy’ system Scytalone Dehydratase
will demonstrate that the inclusion of the volume term results in binding free en-
ergies that are independent of GCMC box size in Section 2.3.5. The removal of
the multiplicity term will be supported using calculations with both Scytalone De-
hydratase; with two water molecules considered, and BPTI, Section 2.3.6. In all
cases, the results have been compared the gold standard method for water binding

free energies - DD.

RE has been implemented in the GCMC method and is illustrated in Figure
2.2. Throughout the simulation attempts are made to swap system configurations
between neighbouring B values. This is an enhanced sampling method, equivalent
to the exchange between neighbouring \ values used in free energy calculations. 13
A background to RE methods is found in Section 1.2. RE should enhance the sam-
pling in GCMC simulations, as simulations at higher chemical potentials, where
GCMC insertions are more probable are able to interchange with lower chemi-

cal potentials, which will have lower insertion acceptance rates. An attempt to
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Figure 2.2: Illustration of replica exchange in B value. Two possible swaps
are shown, in green where the two points are discordant and red where the
two points are concordant. Both swaps will be accepted or rejected following
the acceptance criterion, Equation 2.1. As the green swap is discordant, the
swap will always be accepted. As the red swap is concordant, it will be
swapped based on the probability derived from Equation 2.1.

swap neighbouring replicas is made every n moves, where the swap is accepted or

rejected based on the following acceptance criterion:

Poap = min[l,e(Bj_Bi)(Ni_Nj)] (2.1)

where B, and N, are the B value and water occupancy for the z'* replica
respectively. As the GCMC insertion and deletion Metropolis conditions are de-
pendent on B, N should theoretically increase with B. However in practice, owing
to sampling limitations, sometimes this monotonicity condition does not hold. RE
between neighbouring B values is essentially a test for the positive correlation
(where the increase in one variable corresponds to the increase of the other) of the
titration results. If the two neighbouring B values tested for a swap are discordant
- that is the higher chemical potential replica has a lower water occupancy, then
the attempt to swap the two points will always be accepted (the result is then
concordant). If the two neighbouring replicas are concordant, then they may be
swapped, based on the probability outlined in Equation 2.1, with the likelihood of

the swap being proportional to the gradient between the two points as the gradient,
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Az = Ay, is in this case is (Bj — B;)(N; — Nj). This has the effect of smooth-
ing the results of N against B. The reduction in noise of titration data results
in precise and reliable binding free energy values. In practice, RE is attempted
every n MC steps, where n is typically the default output frequency of ProtoMS.
At random, either the odd pairs, or the even pairs are chosen for an attempted

swap, i.e. from the set [1,2,3,4] either [1,2] and [3,4] are attempted to swap, or [2,3].

The RE protocol is the same as that used to perform swaps in A value in free
energy simulations, 3 where the swap is dependent on the energy difference be-
tween neighbouring A states. As calculating the energy difference between A states
is computationally expensive, swaps are attempted at the same time as simula-
tion output as the energies are calculated anyway at this point. This means that
the number of attempted swaps equals the number of results files output. With
replica exchange in B, as both B and N are explicitly updated at every step of
the simulation, the cost of any attempted swap is effectively free - excluding the
cost of evaluating Equation 2.1 and any (message passing interface) MPI costs.
RE in B could be attempted much more frequently as it is computationally cheap,
but is kept at the frequency for A for consistency. The following results indicate
that this RE frequency is sufficient. The RE protocol was implemented by GAR in
ProtoMS and tested by HBM.

2.2 Methodology

2.2.1 System set-up

For all proteins simulated, the amber14SB force-field has been used.® All ligands
have been simulated using the gaff14 forcefield with AM1-BCC charges.

BPTI protein and its surrounding solvent system were set up by GAR from
the 5PTI pdb entry.®® The region studied is a solvated cavity where no ligand is

bound. Calculations were performed on the apo structure.
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SD protein structure used is from the 3STD PDB entry. The protein was
scooped to a radius of 15 A. The protonation and tautomer states of the proteins
were determined using molprobity. '4? Two ligands bound to SD have been stud-
ied, ligands 1 and 3. The 3STD PDB entry has the bound structure of ligand 2,
from which the other two ligands binding positions has been assumed by structural

superimposition.

For all water simulated, the TIP4P force-field has been used. ! Protein-ligand
complexes were solvated using a half-harmonically restrained sphere of radius of
30 A, with any crystallographic water locations retained. This includes solvating

any sterically available active site regions.

2.2.2 Water binding affinities

Replica exchange

GCMC simulations were performed over a cavity of multiple waters (volume 5.0x4.0x8.0A3,
origin: 29.0, 5.0, -2.0). 1M GCMC only equilibration, 1M full sampling equilibra-

tion and 100M production steps were performed. Various replica exchange frequen-

cies were tested to compare to a no-RE protocol. The frequencies of attempted

RE were 100,000, 200,000, 500,000 and 1,000,000. For each, a B-value range of

-31.0 to 0.0 was used and was repeated 10 times. In the GCMC only equilibration

moves are split equally between grand canonical insertion, deletion and sampling.

When fully sampling bulk solvent, protein, GC insertion, GC deletion and GC
sampling are split with a ratio of 461:39:167:167:167 respectively.
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Table 2.1: Details of GCMC region used for each one-water system. The
GCMC region is cuboidal. Range and increments of B values used for each
set of calculations.

System origin (x,y,z) length (x,y,2) /A3 Bs

SD L.a 24.141, 11.225, 32.916 1 4-8 4 (26, -11, 1)
SD 1.b  27.913, 11.260, 28.713 4, 4-8, 4 (-26, -11, 1)
SD 3.a  24.141, 11.225, 32.916 4,4-8,4 (-10,45,1)
SD 3b  27.913, 11.260, 28.713 4,4-8,4 (-26, -11, 1)

2.2.3 Grand canonical integration
GCMC — single water

GCMC simulations were performed for a range of box sizes, with four repeats at
each volume. The range of box sizes was generated by extending the GCMC box
in 1 A steps, over a 5 A range along one axis. The box coordinates, and the di-

mension of extension are available in Table 2.1.

The protein is not sampled in these simulations, so a protein conformation
from a previous fully sampling GCMC simulation where both of the waters are
bound was chosen. Simulations of 20M MC moves were performed, with the first
4M steps excluded from analysis. No protein or ligand moves were sampled and
bulk water was excluded for the SD simulations, with all Monte Carlo moves as-
signed to grand canonical insertion, deletion and grand canonical water sampling
with equal probabilities. RE in B was attempted every 100,000 MC steps. As
water b is expected to have a lower binding free energy with ligand 3, water b was
included as a solvent molecule in the GCMC of the water a region. For ligand 1,
the simulations were repeated both with and without the other water molecule.
When present, the additional solvent molecule was sampled with an equal proba-
bility to the GC water.
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Table 2.2: Details of GCMC region used for each two-water system. The
GCMC region is cuboidal. Range and increments of B values used for each
set of calculations.

System origin (x,y,z)  length (x,y,2) /A3 Bs
SD Latb 24.1,11.2,30.0  4,8-13,4 (26, -11, 1)
SD 3.a+b 24.1,11.2,30.0  4,8-13, 4 (-26, +5, 1)

GCMC — multiple waters

Calculations of the SD in complex with ligands 1 and 3 were performed, with a
GCMC region covering both hydration sites @ and b (volume 4.0x8.0x4.0 A3, ori-
gin: 24.1, 11.2, 30.0). The GC region was extended in 1 A steps, over a 5 A range
along the y-axis. No protein or ligand sampling was performed, and bulk water

was excluded. Simulations were repeated four times at each volume.

For BPTI, the GCMC results used were taken from previous simulations, where
the method is outlined in Section 2.2.2.

double decoupling

For each water location found with GCMC, DD simulations were performed to
determine the binding free energy of each water. DD was performed over 16
alchemical A\ states, where the LJ and Coulombic terms were scaled simultane-
ously. Moves were split between protein, bulk water and decoupled water at a
ratio of 402:98:1 respectively. The water molecules were decoupled sequentially,
from weakest to strongest bound. Where the free energies of multiple waters are
similar and the order of binding was unclear, calculations were repeated with a
different order of decouplings. 500,000 equilibration and 40M production moves
were performed for each water at each A value. Each simulation was repeated four
times. Soft-cores (soft66 in ProtoMS package) 333537 were used for DD calculation

with 6=0.2 and 6,=2.0 used for the decoupled water molecule. The free energy to
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decouple the water from the system was determined using MBAR.

A harmonic restraint with a force constant of 2 kcal-mol~'-A~2 was used on
the oxygen of the water being decoupled at all A values. A gas phase correction

of,

AGY:, = kpTn (‘2‘;’?) (2.2)
where .
o2nkpT 2

Viim = ( 7z > (2.3)

was applied to account for the removal of the restraint from the decoupled
system.*® This is analogous to the volume term introduced in the GCI equation,
Equation 2.7. Prompted by the higher precision obtained in RE-GCMC and unlike
our previous study,®® the free energy penalty of applying the harmonic restraint
in the bound simulation was calculated using Bennett’s Acceptance Ratio method
from 40,000 Monte Carlo simulations steps with six equally spaced A values of the
restraint—from 0 kcal-mol~*-A=2 to 2 kcal-mol~"-A~2. No symmetry correction

was applied to water molecules.

For SD, GCMC was performed at 16 equally spaced B values from -22.7 to -7.7.
As the binding free energy of the water molecule with ligand 3 is unfavourable,
higher B values are required to couple the water into the system; therefore for this
ligand GCI was repeated for 16 B values from -12.7 to +2.3.

2.3 Results

2.3.1 Replica exchange in B

RE improves the monotonicity of GCMC titrations as well as reducing
the variance in the calculated binding free energies of water molecules.

As Ross et al. found the BPTT system the most difficult to converge in their orig-
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Figure 2.3: Hydrated pocket of the BPTI protein, containing three water
molecules. GCMC region is indicated by a black box. PDB: 5PTI.

inal work on the GCMC method,* this system may benefit the most from RE.
GCMC was performed on a small unliganded pocket of the protein that contains
three water molecules, Figure 2.3. The frequency at which RE is attempted during
a simulation is user defined, so frequencies of every one, two, five and ten-hundred
thousand steps were trialled. These different RE frequencies have been compared
to simulations with no RE. Ten repeats were performed at each frequency to im-

prove statistical precision.

Kendall tau shows that the monotonicity of the results are improved
with RE. The GCMC titrations from 10 results are shown in Figures 2.1 and 2.4,
both without RE, and with a RE of 100,000. RE has the effect of smoothing
the titration results results. The relationship between B and N should be mono-
tonically increasing, due to the GCMC insertion and deletion acceptance tests.
The Kendall rank correlation coefficient (7) has been used to test the monotonic-
ity of the two sets of results, where 7=1 indicates perfect positive monotonicity,
7=0.5 for random results, and 7=0 for perfect negative monotonicity. The 7 of

the non-RE data, shown in Figure 2.1, have a result and a standard error of 0.86
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Figure 2.4: GCMC titration data for BPTI system with replica exchange in
B every 100,000 steps. Each point corresponds to the average number of
water molecules at a given B value. The first 200,000 MC steps have been
excluded as equilibration.

(0.01) compared to 0.98 (0.00) with a RE rate of 100,000. The improvement to the
monotonicity is unsurprising as the RE acceptance test, Equation 2.1, will favour
results that are monotonic. Replica exchange in B is able to reduce the variance
in (N) for a given B value between simulations, which results in GCMC titrations
that are significantly smoother (Figure 2.4), as demonstrated by their improved
Kendall 7 correlation coefficient. As the function N(B) is smoother, the analytical
fitting of logistic functions to the titration is more reliable, providing binding free
energies with a tighter distribution using the GCI Equation. The sum of logistic

functions fit to the titration data take the form of;

NB) =Y — (2.4)

1 + ewOi—wiB
=1

where m is the user-defined number of steps in the titration data, and n; is
the number of water molecules coupled in a given step, with an inflection point of
wp; and steepness of w;. Both n; and w; are positive to ensure monotonicity of the

function.

RE reduces the variance in calculated binding free energies for BPTI.
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Figure 2.5: Boxplot of the median-centered free energies for each protocol,
where errors have been calculated over 1000 bootstrapping samples of 10
repeats. In each case it is the free energy difference between an empty GCMC
region, to a one, two and three water network, respectively. Replica exchange
with GCI produces free energies that have a consistently tighter distribution
than GCI free energies calculated without replica exchange.
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The binding free energies of the water molecules in the BPTI system shown in
Figure 2.5, are calculated by simulating at a range of B values and calculating
the average water occupancy at those values. The median-centred binding free
energies of each RE protocol, for each of the three waters is shown in Figure
2.5. The box-plots were generated by bootstrap sampling the titration data and
calculating the binding free energy of each sample. A bootstrap sample consisted
of one randomly sampled N value from the set of 10 repeats for each of the 32 B
values and the titration curve was estimated as previously described. It is clear
that both the range and inter-quartile range of the results are improved by RE.
Including RE in the simulation reduces the variance of GCI binding free energies
calculated. Based on these results no RE frequency appears to perform better
than any other frequency, therefore a RE frequency of 100,000 has been chosen
to further illustrate improvements to the results as it is the frequency at which
results are printed. This reduction of variance will prove to be vital improvement
in empirical results that will lead to the re-assessment of the form of the GCI
equation. The acceptance rate for B RE swaps was 90 % for all RE frequencies
attempted. This shows that the protocol is efficient, and that the replicas are well
spaced for this system. The acceptance rate for exchanges was consistent for all

of the RE frequencies considered.
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2.3.2 Comparison of RE-GCMC results with DD
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Figure 2.6: The binding free energies of the three water network in BPTI
calculated using different methods. To highlight the intrinsic uncertainty of
each method, the coloured bars indicate one standard deviation, as opposed
to the standard error, over all repeats. Results are calculated using a proto-
col without RE (blue), with a RE frequency of 100,000 (red) and with DD
comparison (orange), outlined in Section 2.3.

GCMUC simulations without RE have sufficiently large errors that they
erroneously appear consistent with DD. RE reduces the variance and
indicates a disagreement between GCMC and DD. The methods used for
DD and GCMC are such that the binding free energy of the three water network
should be the same for both methods. For simulations without RE, the standard

deviation of the results are large enough to indicate that the results without RE
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are statistically indistinguishable from the DD results, Figure 2.6. With the in-
troduction of RE, the median binding free energy of the GCMC results does not
notably deviate, however the variance is reduced such that it is clear there is a
discrepancy between this and the gold standard DD results. The improvement
of the method reveals an error in the determination of binding free energies via
GCMC, which was previously masked by the noise of the simulation. This has led

to the reassessment of the GCI equation, Section 2.3.3.

RE in B affords binding affinities with errors comparable to DD.
In addition to revealing the discrepancy between the two methods, RE has im-
proved the GCMC method such that the reproducibility of the simulations, i.e.
the standard deviation between repeats is comparable to that achieved from DD.
This means that GCMC is not only preferable due to its ability to calculate free
energies of multiple waters simultaneously, without requiring hydration site infor-
mation, but is also able to produce results as reliable as DD. Both methods, when
the computational expense of additional GCMC moves and restraint calculations

for DD are approximately comparable.

2.3.3 GCI equation

The mathematical derivation in this section was performed by GAR.

With the improvements in reliability of binding free energies evaluated using the
GCI Equation, a volume dependence — that is a dependence on the calculated
binding free energy of water molecules on the volume of the GCMC region is ap-
parent. The volume dependence led to re-evaluation of the GCI Equation, which

will be outlined in this section, before the problem is demonstrated in Section 2.3.5.

As GCMUC is inconsistent with DD methods, and observed to have
a volume dependence, the GCI equation is re-evaluated. The binding free
energy of water molecules in the SD system was calculated with a range of GCMC

volumes, which revealed that the binding energy of a water molecule was depen-
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dent on the GCMC volume. These results will be presented shortly, but first the
source of the issue — the neglect of the Helmholtz free energy contribution from
the ideal gas — is presented. This was erroneously overlooked when the noise
of the simulation was large. This noise has been reduced significantly with the
addition of B value RE, and further clarified by simplifying the simulation by not

sampling the protein-ligand environment.

The GCI equation, as stated by Ross et al. is shown below:

N;! By
BAFtrans(Ni — Nf) = Nfo — N;B; +In <NZ'> — N(B)dB (2.5)
I B;
details of which are discussed in Section 1.4. This allows the transfer energy
of f — i waters from an ideal gas into the system to be calculated. From this, the
relative binding free energy of water molecules can be determined, by accounting

for the transfer free energy of those water molecules into bulk (pse).

The volume correction can be understood by thinking about the pro-
portion of insertion attempts that will be feasible. The volume dependence
of the GCMC results using the above equation will be presented in the following
sections. This empirical dependence illustrates that a volume term in the GCI
equation is required to correct for this. Figure 2.7 shows two hypothetical model
systems, where in both there are two sites in the system, of which only one is a hy-
dration site and the other (grey) is not. The difference between these two systems
is the volume of the GC region, illustrated with a red dashed line. Both systems
are identical, except for the GC region over which insertions and deletions are at-
tempted, and the binding free energy of the water molecule should be identical for
both systems. Considering model A, all attempted insertions will occur on the fea-
sible position, therefore all the attempted insertions will be feasible, and accepted
based on a probability, where feasible means that the energies associated with the
insertion will be finite. If the GC volume of this system is doubled to cover an

inaccessible hydration site, only half of the attempted insertions will be feasible, as
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Figure 2.7: A two-site model system, where one site is a hydration site, and
the other is not accessible to water (i.e. occupied by protein or ligand in
a real system). The boundary of the GC region, in which GC insertions
are attempted, is illustrated with a dashed red line. For model A, the GC
region only covers the hydration site, whereas for model B the GC region
covers both the hydration site and the inaccessible site. Here, feasible is
used to indicate insertions that involve finite energy difference and therefore
will be accepted with some probability. The grey, inaccessible site will result
in infinite energies and therefore always be rejected.

the second site will give infinite energies and therefore an insertion move into this
region will always be rejected. This means that for both systems, when simulated
at the same chemical potential, system B will have fewer insertions accepted, and
therefore a lower average water occupancy. The rate of accepted deletion moves
is not dependent on the volume of the GC box. While it is possible that the
volume of the GC region could be accounted for in the GC acceptance rates, it

was found that the free energy results could be corrected with a post hoc correction.

Inclusion of the Helmholtz free energy for the ideal gas phase reme-
dies the observed volume dependence. The equation for Helmholtz free en-
ergy of an ideal gas is shown in Equation 2.6a, such that the free energy difference

to change the number of molecules in the gas is Equation 2.6b.
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Fideal(N) = kpTin

(%) 09
<]]\\;;',> (Ny — ;) (??)N] (2.6b)

If this is introduced to the GCI equation using the thermodynamic cycle shown

Figeat(N; = Ny) = kpTln

in Figure 1.5, and the equality piso = il + kBTln(‘f—;) is used, the GCI equation

becomes:

Vags, [P/
BAG(Ne— Ny) = NyBy = NiB, = By~ In(22) = [ " N(Byap (2)

Where the volume of the ideal gas, V45 will be equal to the volume of the GC
system Vs, such that the . V' is the volume of a water molecule in bulk water,
30.0 A3. This volume term is able to correct for the affect of the volume on the
GC insertion rates. This term is analogous to the volume correction introduced by
Gilson et al. that corrects for the energetic penalty of constraining or restraining
a molecule that is being decoupled in a DD simulation and yield standard free

energies. 8

The multiplicity term in the bound state is equivalent to the mul-

tiplicity in the ideal gas state. Initially the multiplicity term, ln(]]\\/[;!!) was

introduced to account for the inherent degeneracy present in the GCMC method —
any GC water molecule can occupy any hydration site in the protein — a degeneracy
that is not present in DD simulations, where each water molecule is constrained
to its own site and no exchange is allowed. This term cancels when the Helmholtz
free energy of the ideal gas is considered. While it is correct that there is a de-
generacy for inserting GCMC water molecules into a system with multiple sites,
this degeneracy is also present in the ideal gas phase of the thermodynamic cycle
as shown previously in Figure 1.5, and therefore the effect cancels within the ther-

modynamic cycle, and does not need to be considered. This will be empirically



2.3. RESULTS 81

supported by performing a set of simulations where the binding free energies of
two waters are considered individually, and together using the GC method, Sec-
tion 2.3.6. The following section will look at example systems to demonstrate the

consistency between GCMC and DD, for single-water and multiple-water systems.

2.3.4 Equilibrium B value

The equation for B is shown again below, Equation 1.56, which was previously

introduced in Section 1.4.

Vsys
B=uB+In Ag (1.56)

A network of water molecules is at equilibrium when the binding free energy

is at a minimum.

dAG (N)

_ 1.
e 0 (1.65)

The Gibbs binding free energy can be determined from these following terms,

however, A Fjq.q; 18 now recognised to contribute, as discussed in Section 1.4.

AG (N) = AFqeq1(N) + AFrans(N) — AGgo(N) (1.67)

Where the mixing of Gibbs and Helmholtz free energies is due to the approxi-

mation AFyys =~ AGgys. In the thermodynamic limit;

N
AFtrans(N) - /0 /’L/sys(N)dN (28)

Where AFirqns is the Helmholtz free energy to transfer N water molecules

from an ideal gas reservoir to the GCMC region. Substituting Equations 2.8, 2.6

1 /v\Y
N A3

Using Sterling’s approximation, allows Equation 2.9 to be differentiated with

and AGg, = Npuge into Equation 1.67 gives;

N
AGhpina(N) = / 1ys(N)AN — kpTln = Npsor - (2.9)
0




82 CHAPTER 2. WATER BINDING AFFINITIES

respect to N.

1% N
Nlin <> + Nin(N) — N| — Nusol

N
AGyina(N) = / 1ys(NYAN — kpT e
0

(2.10)

T = M;ys — k‘BT ln E —+ ln(N) — Usol = 0 (211)

Using 1), = psor + ksTIn(psaA®), and % = psys it is possible to equate the
chemical potential of the system, u’sys, and bulk solvent, ! ,, at the point of

equilibrium.

ulsys B kBTln(pSyS) = //sol - kBTln(psol) (212)

The equilibrium water occupancy can now be simulated directly,
rather than deterministically. Previously, neglecting the Helmholtz free energy
of the ideal gas phase, led to the understanding that the excess chemical potentials
of the system and solvent led to equilibrium. This meant that it was only possible
to simulate at a range of chemical potentials, and calculate which satisfied Equation
1.65. However, as it is the chemical potentials, rather than the excess chemical
potentials, that are equal at equilibrium, it is possible to determine the correct
chemical potential, or B value a priori. From Equation 1.56 and pl , = pso +

kgTIn(psqA?) is trivial to determine;

Vsys
Bug = Bt + 10 (12 (2.13)

Simulations can be run only at the equilibrium B value, rather than
requiring a full titration. The correct B value can be determined before sim-
ulating, using g ,, which is a constant for a given water model, and using the
volume of the GCMC region, Vs, which is user-defined. This means that only
one B value need be simulated to see the equilibrium location and occupancy of
the water molecules, as opposed to the range of chemical potentials previously re-

quired.®* This reduces the computational expense of the simulations. To determine
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AFrqans, and therefore AGﬁ; 4> the function N (B) is required to be integrated, so
a simulation of a range of B values is required to explicitly calculate the water
binding free energies. Knowing the equilibrium B value is still helpful for the
simulations where a range of chemical potentials are simulated for several reasons.
The range of B values to simulate can be determined based on By, as if only
favourable water molecules are of interest then only B values below the equilib-
rium value are required, which aids a more logical choice of simulation parameters.
The equilibrium B value can also provide a sanity check, as the IV that satisfies
the minimum in AG,;,,(N) should correspond to the N simulated at Beg. This

analysis is now performed automatically.

The main advantage of the ability to determine the equilibrium B value for
simulations is in the GCAP method, where GCMC is coupled to alchemical ligand

perturbations, and will be discussed in Chapter 4.
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2.3.5 Single-water system

Scytalone Dehydratase

o

A ]
N”N‘X | -
1 X=N /"}
) \ O | =
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\ ' ,/;\
O 3 X=CH N\} ,}(/\\* ;

Figure 2.8: Structure of SD ligands, of which ligands 1 and 3 are considered
herein. Ligand 3 bound to SD, with water A and B present. The active site
of SD is shown with a transparent grey surface. The incrementally increasing
GCMC boxes for each calculation are shown; A (red), B (green) and for the
box encompassing both waters (blue). Each box repeatedly increased in 1 A
increments. The increasing volume of the GCMC region covers protein, not
accessible to water.

GCMC calculations were performed on two single-water sites of the protein SD
in complex with two ligands, 1 and 3. For each system the calculation has been
repeated with an increasing length of GCMC box, which increases the volume of
the GCMC system (Vsys). These GCMC boxes are shown in Figure 2.8, with the
red and green GCMC boxes for waters A (red) and B (green) respectively. For
these simulations, simplifications were made to the regions of system that will be
sampled as converged, precise results are more important for this validation than
reliable experimental reproduction. No bulk water was simulated, and the protein
and ligand system were treated as rigid. Only the two active site water molecules

were sampled within these simulations.
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When Equation 2.7 is used to calculate water binding free energies,
the results are independent of the GCMC box volume. Figure 2.9 shows
the binding free energy of each water in each system when calculated with DD,
and both the old and new versions of the GCI Equation. The result obtained
using conventional DD methods is shown with a solid line. The GCMC results
illustrate a clear linear increase in binding free energy with an increasing GCMC
volume when calculated with the previous GCI equation. This was overlooked in
the GCMC method before, as the implementation of RE of B-values significantly
improved consistency between repeats of the same system. As the protein and lig-
and are non-sampling, the error between repeats is reduced, allowing the volume

effect of the method to be identified above the noise of previous calculations.

Changing the GCMC box volume changes the proportion of feasible
insertions that are attempted, and therefore the insertion acceptance
rate, which shifts the GCMC titration curve. Increasing the GC volume re-
duces the probability of attempting an insertion in the site of water binding. This
causes a decrease in successful insertion moves, and therefore results in a lower
average water occupancy for a given B value. Deletion moves are not proportional
to the volume of the box, and so do not affect the result. Figure 2.10 shows the
effect of the lower average water occupancy, where the titration curves are shifted
to higher B values as a consequence of the increasing box volume. The binding free
energy of the molecule is calculated from the integration of the fit, and therefore
the right-shifted titration results in a weaker binding free energy. No successful
water insertions have been made into the region of extension due to steric clashes
with the protein, indicating that this is not a consequence of locating an alternate
water location. This clearly illustrates a dependency of the binding free energy
calculated on the volume of the GC region, when calculated using the previous
GC result, Equation 1.61. This is a consequence of neglecting the Helmholtz free
energy of the ideal gas phase. The updated GCI equation, Equation 2.7, contains
the term —kpTin(¥ez), which is able to correct for this artefact. Using the up-

Vo
dated equations, the results from the simulations are shown in Figure 2.9 by the
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Figure 2.9: Binding free energy of waters in SD. Dotted line (purple) - GCMC
results using Equation 2.5 - without volume correction. Dashed line (green) -
GCMC result using Equation 2.7 - with volume correction. Solid line (blue)
- DD result. For each, the shaded region show one standard error calculated

from four repeats.
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GCMC titration data and fitted model
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Figure 2.10: Plot of titration results for water A with ligand 1 bound to
SD. Green, blue and red are results from GCMC box lengths of 4, 6 and 8
A respectively. As the volume of the box is increased, the titration curve
shifts to higher B values. This corresponds to lower binding free energies,
calculated using Equation 1.61.

dotted line. This shows that the new theoretical result provides water binding
free energies by the GCMC method that are both independent of box size and

consistent with DD results.

Figure 2.11 shows the thermodynamic cycle of removing both water molecules
A and B with both ligands, 1 and 3. The GCMC binding free energies have
been calculated using the new GCI equation, Equation 2.7. DD results have been
corrected for the restraint correction used on each water molecule, discussed in
Section 2.2.3. The GCI results are within 0.1 kcal-mol tof the DD results, and the

results and standard errors are available in Table A.2. These results show that the
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Figure 2.11: Thermodynamic pathway of the two waters considered for each
ligand with SD. A box and a green arrow indicates a GCMC simulation, and
a spring or a blue arrow indicates a restrained DD simulation. Energies are
shown in kcal-mol™. Errors are standard deviations from four repeats.

introduced volume term is needed, and the new GCI equation is the correct form.

2.3.6 Multiple-water systems

Tests of the GCI equation for a two, single water have shown that the new form
is correct so far as the inclusion of the volume term. However, as the multiplic-
ity term is zero in the old GCI Equation for the case of an occupancy change
of one water, it cannot indicate whether or not the multiplicity term is correct.
Simulations involving multiple waters are needed to clarify if the exclusion of the
multiplicity in the GCI equation is correct in the general form. Calculations were
performed for SD and BPTI.
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Scytalone Dehydratase

In SD, the same two water molecules, A and B, with both ligands, 1 and 3, were
considered as above, Section 2.3.5, however one larger GCMC region was used to
cover both hydration sites, shown in blue boxes (Figure 2.8) to calculate both of
their binding free energies simultaneously. As before, the system sampling was
limited only to these two waters. Five volumes of GCMC region were tested, in-

creasing incrementally by 1 A in length.

GCMC titration data and fitted model GCMC titration data and fitted model
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Figure 2.12: GCMC titration two-water networks in SD, with ligands 1 and
3. Fitting is calculated with four repeats, with calculations performed with
a box length of 8 A.

GCMC has been used to calculate the binding affinity of two active
site water molecules for SD with ligands 1 and 3. Figure 2.12 shows the
GCI titration for the two water system (waters A and B) when calculated in a
single simulation, using the smallest of the GCMC regions that covers both sites
(blue - Figure 2.8) for SD bound to both ligands 1 and 2. With ligand 1, the
waters couple into the system simultaneously, and therefore it is not possible to
decompose the energy of the two-water network to the two individual waters; how-
ever, the binding affinities can be assumed to be similar as they couple into the
system at the same B values. With ligand 3, the binding free energies of the two

waters in the system are different, and therefore enter the system at different B
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values. As the titration for ligand 3 occurs over two steps, the binding free energy
of the two water network can be decomposed to the two molecules. As before with
the single-water calculations, a box volume effect is observed for the calculations
over two-water network. The volume correction term in the new GCI equation is
able to remove the dependency, as with the one-water systems, Figure A.7. This
further supports that the volume correction term is required, and is consistent

with varying AN.
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Figure 2.13: Full thermodynamic cycle of GCMC and DD results for each SD
ligand. The two legs on the right are the same results as in Figure 2.10. The
left hand leg shows the result when GCMC is performed using a large box
over the two waters simultaneously, calculated using the new GCI equation,
Equation 2.7. Errors are standard deviations from four repeats.

Decomposing the energetic contributions of each water molecule sup-
ports that the multiplicity term should be excluded from the GCI Equa-
tion. The binding free energy of a two-water network should be equal to the sum
of the free energies of each independent water. This means that the free energy of
the networks can be compared to the energies calculated in Section 2.3.5. Figure

2.13 show the binding free energy of the two-water network, as calculated with the
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new GCI equation. The results are consistent with both the single water GCMC
and the DD results. As this is a network of two waters, the previous GCI formu-
lation would have a 0.4 kcal-mol !contribution from the multiplicity term. As the
DD and GCMC results all agree to within 0.1 kcal-mol 'this supports the exclu-
sion of the multiplicity term from the GCI equation as being theoretically correct.
This is a result of the multiplicity in the system being equal to the multiplicity
in the ideal gas reservoir, and therefore cancelling. The results of both the sin-
gle and multiple water SD water networks indicate that the updated form of the
GCI equation is now firmly consistent with the gold standard method - DD using
a simplified model system. This analysis has been made possible both through
the implementation of RE and the associated gains in reproducibility, and by the
simplification of the test system by removing many degrees of freedom from the

simulations.

BPTI

As the two water molecules A and B are separated and the system has been sim-
plified by removing sampling of protein, ligand and non-GCMC water molecules,
the more complex system of BPTI, where there is a hydrogen bonded network of
water molecules has also been considered. The titration of the BPTI pocket is
shown in Figure 2.14(a), where two water molecules (B and C) couple into the
region as a dimer, followed by a more weakly bound water molecule (A), where
the labelling of water molecules is shown in Figure 2.3. The binding free energy of
the water networks were calculated, Figure 2.14(b), which shows that the optimal
water occupancy of the pocket is three. Clustering of the GCMC water positions
was performed and the positions are shown in the BPTI cavity in Figure 2.3. These
three water molecules are all within 0.8 A of their locations in the crystal structure
(PDB: 5PTI).

The binding free energy of the three water BPTI network is con-
sistent when calculated by GCMC and DD. The GCMC titration, Figure
2.14(a) shows that the first two waters enter simultaneously as a dimer (waters A

and B), followed by the third water, (C). For rigorous DD simulations, the water
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Figure 2.14: The titration curve and binding free energy of water networks in
the BPTT system, using RE. A minimum binding free energy is found with a
water occupancy of 3. The grey region indicates the 95% confidence interval
of the standard error. The titration shows that the first two water molecules
enter the system as a dimer, followed by a third water molecule at a higher
B value.

molecules should be decoupled in turn, in the order of weakest bound to most
tightly bound, however any order should result in the same overall network en-
ergy. Performing double decoupling in order of weakest-to-tightest bound water
molecule is a common protocol, as if a weakly bound water is remaining in the sys-
tem once a more favourably bound water molecule has been decoupled, the weakly
bound water will be likely to adopt the more favourable site. As waters A and
B have similar binding free energies, the calculations have been performed twice,
once for each order of DD (A then B and B then A). The free energies of each
DD calculation and the GCMC results are shown in Figure 2.15. As the GCMC
titration finds the binding of the A-B dimer in a single step, it is not possible to
decompose the binding free energy to each individual water, and therefore this is
not shown. The DD results of the dimer find a different binding free energy of the
water molecule depending if it is calculated in the presence or absence of the other
dimer member, however the binding free energy of the pair of waters is consistent.
The GCMC results for the A-B dimer is consistent within error to both other sets

of calculations, which supports the form of the new GCI equation, with the volume
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correction and the multiplicity accounted for correctly.
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Figure 2.15: Thermodynamic cycle of the water network in the BPTT cavity.
Energies shown are the free energy of removing the indicated water from the
system, in units of kcal-mol !. Results are shown for DD (blue) and GCMC
(orange). The two routes of DD indicate the two orders in which the water
molecules in the dimer are decoupled. The GCI results have been calculated
using the new GCI equation. Red numbers indicate thermodynamic cycle
closures. Errors are standard deviations from four repeats.

Water A is the weakest bound of the three water molecules in the network,
found to insert at the highest B values in the GCMC simulations. Analysis with
the updated GCI equation found the water to bind with a free energy of -2.90
kcal-mol '. This is within error of the DD result; -3.20 kcal-mol !. The binding
free energy for the dimers, a and b are also consistent between the updated GCI
equation and the two DD pathways, where the free energies are -18.91, -18.47
and -18.64 kcal-mol 'respectively. The thermodynamic closure of all three cycles
shown in Figure 2.15. The closure is smaller than the standard deviations of

the simulations. This rigorously illustrates the consistency of the updated GCI
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equation to DD results, and supports the need for the ideal gas phase Helmholtz

free energy contribution to be considered.

2.4 Conclusion

RE is able to significantly improve the errors associated with calculating binding
free energies of water molecules using the GCI Equation. The improvements arise
due to the increase in monotonicity of GCMC titration plots, to which fitting is
performed to calculate the binding free energies. The smaller the error of the lo-
gistic fit, the smaller the error in the calculated binding free energy is. The free
energies calculated using RE-GCMC are comparable to free energies calculated

using DD.

The reduction of errors with the introduction of RE-GCMC reveals a discrep-
ancy of results when compared to the gold-standard DD methods. The discrepancy
is shown clearly in Figure 2.6, where GCMC with no RE has larger errors that
overlap with DD. When RE is used with GCMC, the median result stays the
same and the error reduces and the overlap with DD is lost. The discrepancy
prompted a re-evaluation of the theory of GCMC, and it was discovered that the
Helmholtz free energy of the ideal gas had been erroneously neglected. Introduc-
tion of the ideal gas Helmholtz free energy term to the GCI Equation resulted in
two changes; the addition of a volume correction, and the removal of the multi-
plicity terms. These changes have been derived mathematically, and verified with
the use of model systems in Section 2.3.3, and supported by empirical testing for

two systems in Sections 2.3.5 and 2.3.6.

A consequence of these theoretical improvements is the derivation of Beg, the
B value at which the system is in dynamic equilibrium with bulk water. Previ-
ously, a range of B values was needed to generate a titration curve from which
equilibrium could be established, by finding the minimum in the Gibbs free energy
for the system. B, removes the need for this, and the equilibrium can be directly

simulated.
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As the binding free energies of water molecules calculated using the GCMC
methodology have been shown to be consistent with other methods, the following
chapter will look at the precision in the placement of water molecules in the active
site. For the binding free energies calculated to be reliable, the location of the
water molecule must be realistic. GCMC will be used to locate hydration sites
in a dataset of 105 protein-ligand complexes, where the dataset has been gener-
ated using structures that are both high-quality and of pharmaceutically relevant
molecules. Discussion will focus on the effect that simulation protocol and analysis
methodology can have on the apparent success rate, and the consequence that this

can have when comparing between different published results.
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3.1 Introduction

This chapter has been completed with significant contribution from MLS. MLS and
HBM triaged the dataset and optimised the simulation protocol. MLS set up 25

structures of the dataset, w. All simulations, and analysis herein was performed

by HBM.

The experimental limitations of determining active site water locations have
been discussed in Section 1.5, and various computational methods that try to
determine the locations are discussed in Section 1.3. Computational methods for
locating active site water molecules can be useful for drug design, where it may not
be efficient to generate a crystallographic structure of every complex of interest.
While the previous chapter validated the GCMC determined binding free ener-
gies against other computational results, this chapter will validate the locations of
GCMC water molecules against a dataset of experimental structures. A dataset of

105 structures has been curated, against which the success of GCMC will be tested.

Various datasets of protein structures exist, by way of benchmarking different
methods for different applications. The iridium dataset is curated by OpenEye sci-
entific, and classifies structures based on how trustworthy the experimental data
are,'2 with particular focus on the crystallographic assignment of the ligand for
use in docking tests. The Astex diverse set is another generated dataset, consisting
of 85 structures, which has been collected due to their interest in drug design.!43
Currently, the ProtoMS implementation of GCMC has been applied to various
targets; SD, BPTI (two different pockets), MUP-I, Chk-1, HIV1-protease, ribonu-
clease A, GluR2, trypsin, and glutathione S-T.%* However, the method should be
validated on a larger set of systems, from which statistics of the success rates can
be reliably extracted. Here we have curated a dataset of 105 protein-ligand com-
plexes, which are of good experimental quality, pharmaceutically relevant ligands,
and contain water molecules. To our best knowledge, this is the largest validation
set of a simulation-based water placement methodology. Full details of the cura-

tion performed are outlined in Section 3.2.1.
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Different methods of crystallographic water placement have been tested and
validated on a range of crystal structures, using differing criteria to assess their
success. Proposed water molecules are generally assumed correct if they are lo-
cated within a given distance cutoff to a crystallographic water molecule. The
success rate of a method will vary as the considered cutoff is changed; the larger
the cutoff, the higher the success rate will be. To validate the performance of
GCMC in water placement, various cutoff distances will be considered to illus-
trate the accuracy of the method. The fact of using a cutoff means that randomly
placing water molecules within a region, with no intelligent consideration of chem-
istry, will also reproduce some of the crystallographic water molecules correctly by
virtue of chance. The larger the cutoff used the more likely randomly placed water
molecules will be to successfully find a crystallographic water position. The success
rates of GCMC water placements for various cutoffs will be presented alongside

the success rates of random water placements, to act as an illustrative baseline.

While efforts have been made to select high-quality crystallographic structures,
there is still a degree of uncertainty in the data. Water molecules that are dif-
fuse, or weakly bound may not be possible to resolve in any quality of structure.
Four metrics; the Z,s, EDIA, B-factor and B, scores will be used to inspect
the underlying electron density of assigned water molecules. Even if the electron
density is clear, there can also be a bias from the crystallographer, due to deci-
sions that they make during the refinement process. Another factor to consider
is the experimental crystallisation conditions, which may introduce ions or small
molecules that are not present in the biological conditions of the protein.'* In
addition, the xray diffraction conditions can also be non-biological, and the ma-
jority of our dataset has been resolved at <100 K. Despite this, crystallographic
data is the best comparison available for many structures, and therefore will be
used to benchmark GCMC, while taking due consideration for the degree of the

experimental accuracy.
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3.2 Methodology

3.2.1 Dataset generation

The dataset was generated by collating FDA approved drugs that have a protein-
bound structure within the PDB. The drug molecules were filtered using the cri-
teria outlined in Table 3.1, resulting in 1554 PDB structures, covering 279 FDA
approved drugs.

Table 3.1: Ligand requirements used for FDA dataset generation.

Carbon count >5
Phosphorous count =0
Molecular weight 100 — 750
Rotatable bonds <9
Ring size <9

Of these 1554 structures, the data were further filtered to include only struc-
tures released since 2000, with a resolution better than 2.5 A, of homo sapien, viral
or bacterial origin. The rejection of structures older than 2000 is due to more re-
cent improvement in the software used in assignments of crystal structures. Crystal
structures were excluded if they contained no water molecules. Complexes were
excluded if they were covalent binders, contained co-binding molecules, such as
organic solvent in close proximity to the ligand, or metal ions not covered within
ProtoMS software. Structures with any missing resides in the active site, or more
than 3 missing consecutive residues distal to the active site were removed. No
single drug molecule or protein was allowed within the final data set more than 5
times each so as to ensure the dataset is diverse. The resulting data set has 105
complexes of 80 unique proteins and 72 unique drugs, with no repeated protein-
ligand pairs. Details of the targets, ligands, pdb codes, publication years and

resolutions of the dataset are in Section A.2.

As it is only the location of water molecules that are to be considered here, it
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is possible to only simulate at the equilibrium B value only, defined previously in
Equation 2.13. Simulating only at B, avoids the need to perform the more compu-
tationally expensive full titration. As Chapter 2 demonstrated the improvements
in sampling when RE between B states is included in the protocol, three additional
B values proximal to B, will also be simulated. Water locations and other analy-
sis will only be performed on the B, replica. For uniformity across all systems in
the dataset, a cubic GCMC region that is a minimum distance of 4 A to all ligand

heavy atoms.

3.2.2 System set-up
FDA dataset

All 105 proteins used in the FDA dataset were set up using the following protocol.
The structures used are shown in Table A.1. Where a protein is replicated in the
dataset, the setup was performed all structures independently. The protonation
and tautomer states of the proteins were determined using Maestro. ' A scoop of
30 A was used, with full amino acid sampling within the inner 15 A and the rest
of the protein held rigid, for the sampling simulations. For the fixed simulations,

the whole protein is held rigid.

Proteins

For all proteins simulated, the amber14SB force-field has been used.®

Ligands

For all ligands, the gaff14 forcefield has been used with AM1-BCC charges. All 105
ligands used in the FDA dataset were set up and protonated, and tautomer state

145 The structures used are shown in Table A.1. Where a

chosen, using maestro.
ligand is replicated in the dataset, the setup was performed on all ligands inde-

pendently.
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Solvation

For all water simulated, the TIP4P force-field has been used.'4! Protein-ligand
complexes were solvated using a half-harmonically restrained sphere of radius of 30
A, with all crystallographic water molecules were removed. This includes solvating

any sterically available active site regions.

3.2.3 Simulation protocol

For every protein-ligand complex in the FDA dataset, two simulations were per-
formed; one sampling, and one fixed. GCMC has been performed using four B
values; Beg-1, Beg-0.5, Bey, Beg+0.5. A B spacing of 0.5 has been used to en-
sure good exchange between replicas for the full dataset, which is demonstrated

in Section A.1. A GCMC box of 4 A padding around ligand heavy atoms was used.

Sampling simulations consisted of 10 M GCMC only equilibration, 10 M full
sampling equilibration and 40 M full sampling production steps. Full sampling
consists of half of the simulation moves sampling the system, with the other
half performing GCMC moves. System sampling is shared between bulk water
molecules, protein residues and the ligand at a ratio of 1:5:50. GCMC sampling is

split equally between insertion, deletion and GCMC water sampling.

Fixed simulations consist of 10 M GCMC only equilibration steps, followed by
20 M GCMC only production steps. No protein, ligand or solvent is sampled. The
number of GCMC moves attempted will be the same as the sampling simulation,

within the limit of stochastic sampling.

EDIA scores were calculated using the proteins plus web server. 6 Zobs scores

were calculated using edstats in the CCP4 software suite. 147
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3.3 Results

The success of GCMC in placing crystallographic water molecules will be consid-
ered — that is the percentage of crystallographic water sites that are reproduced
to within a given distance cutoff. GCMC water locations from the simulation are
clustered using hierarchical linkage clustering, where a cluster is defined as requir-
ing all its members to have a maximum average cartesian distance of 3.0 A, that
is that the average distance of all members of a cluster is less than 3.0 A. MLS
has improved the clustering algorithm by applying an arbitrarily large distance
to GCMC water locations that appear in the same frame. The large distance
condition prevents two water molecules that are observed simultaneously in the
same frame being erroneously placed in the same cluster, and consequently sets
the maximum cluster occupancy at 100%, which was not true for previous appli-

cations of the algorithm.

Each water site will have an occupancy, which is the number of water molecules
from the simulation that are put in the cluster. While a full titration is needed
to calculate the binding affinity of a network of water molecules, some qualitative
assumptions can be made from simulations performed at B,,. If a water site is oc-
cupied for 50% of the simulation, then the water molecule is equally stable in this
site and in bulk water, which means that its binding free energy is 0.0 kcal-mol 'as
they are equally likely to occupy both bulk water and the hydration site. Water
molecules with higher occupancy can be generally be assumed to be more tightly

bound than lower occupancy water molecules.

3.3.1 Success rates

One protein-ligand complex from the FDA dataset, zanamivir bound to neu-
raminidase (PDB: 3B7E) will be used to introduce the methods of analysis, and
the issues that can arise with the analysis. The success rates will then be applied
to the entire dataset. Figure 3.1 shows the crystal structure of 3B7E, with the

GCMC region illustrated with a grey line, and crystallographic water locations
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Figure 3.1: Crystallographic structure of zanamivir bound to neuraminidase
(PDB: 3B7E), with the GCMC region indicated by a grey box. Crystallo-
graphic water locations within the GCMC region are shown by grey spheres.
All GCMC cluster centres (right) are shown, coloured blue (low) - red (high)
occupancy.

shown as grey spheres. On the right hand side, overlaid onto the crystal structure
are the cluster centres determined from GCMC simulation. These cluster centres
are coloured according to their occupancy — that is the amount of time they are
seen in the simulation, or the number of water molecules from the simulation that
are placed into that cluster — with blue indicating low occupancy water molecules,

through to red, high occupancy water molecules.

Some of the GCMC water molecules clearly overlap with the crystallographic
sites, some crystallographic water molecules are close to GCMC clusters that are
low occupancy, and some are a distance from the closest GCMC site. To decide
if a crystallographic site is correctly located comes with several considerations;
is the closest GCMC site close enough to be considered correct? Is GCMC site
occupied enough to be considered to correctly observed? Both of these issues will
be discussed in this section, where both the cartesian distance cutoff, and the
GCMC occupancy cutoff that are used to measure success will affect the result.
Another point to note is that cluster centres can be closer together than typical

water-water distances, which occurs where the water density is diffuse, and mul-
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Figure 3.2: GCMC cluster centres with occupancies > 50% with zanamivir
bound to neuraminidase (PDB: 3B7E). Green lines indicate distances of 1.0
- 1.5 A between crystallographic water sites and GCMC cluster centres and
all other labels are consistent with Figure 3.1.

tiple, low-occupancy cluster centres are used to fit the density. Figure 3.2 shows
the system, but with only GCMC cluster locations that have occupancies > 50%.

Here, GCMC cluster centres are not unrealistically close together.

Removing the low occupancy sites, reveals several GCMC sites that are not
observed by a > 50% occupied cluster. For some crystallographic sites, the distance
to the closest GCMC cluster center is increased when the low occupancy sites
are removed. Crystallographic-GCMC distances that are between 1.0 - 1.5 A
are highlighted by a green dash. Whether these sites should be considered as
correctly identified is a matter of opinion, and the distance cutoff used by different
published methods varies. What distance cutoff is considered will change the
apparent success of the method. Zanamivir bound to neuraminidase (PDB:3B7E)
has been used to introduce the issue of classifying the method as successful for
a single structure, but the overall results from the dataset of 105 protein-ligand

complexes will now be presented.

GCMC water molecules with occupancy of 50% or greater, have a
success rate of 51% and 67% at 1.0 and 1.4 A respectively. Deciding
if a crystallographic water molecule has been correctly identified will depend on

both the distance to a GCMC water site, and the occupancy of that site. Figure
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3.3 illustrates this, where the accuracy of GCMC has been recorded for various

distance cut-offs and GCMC water occupancies.

The accuracy of GCMC is dependent both on the cutoff used, and
the occupancy of GCMC water molecules considered. Both of the follow-
ing trends are to be expected; the longer the cut off, the more crystallographic
sites will be correctly predicted, and the higher the GCMC occupancy required,
the fewer sites are correctly identified. The higher reported accuracy with longer

cutoff can also be observed for the other methods shown.

Other published methods perform competitively, but it is difficult
to compare methods with different methodologies that have been ap-
plied to different datasets. Figure 3.3 contains published success rates for
other water placement methods, compiled by MLS. These data are based on the
test set used in the publication, and not our dataset of 105 structures. If methods
have quoted their success rates at different cutoffs, then they are all shown. Ac-
quaAlta quoted the success rate with two different datasets, at the same cutoff,
which are both shown. Considering only GCMC water molecules with occupancy
greater than 50% (red, Figure 3.3), the GCMC method has higher accuracy than
several published methods. Many other methods fall between the threshold of
any GCMC occupancy and 50%, indicating that GCMC is locating the sites, but
only transiently in the simulation. Other published methods have been shown for
comparison, but much of this Chapter will focus on the difficulty of comparing
different water placement methods by looking at the variability in success rates

that can be achieved by minor changes to the protocol.

Randomly placing water molecules within a system will correctly
identify some crystallographic water molecules by chance. For a base-
line comparison ‘random’ water locations have been generated. These involve the
identification of water sites using the ProtoMS set up tools, whereby water sites
are naively identified for a starting conformation. A pre-equilibrated water box is

overlaid with the complex and water molecules are removed if they overlap with
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Figure 3.3: Accuracy of GCMC at different cutoffs. Results based on random
solvation (black) are shown for a comparable baseline. GCMC results are
calculated for 632 active site crystallographic waters in 105 structures. Other
published methods are shown by markers; however, all have been calculated
using different protocols and test sets. A dashed black line is shown at 1.0 and
1.4 A, annotated with the GCMC percentage success rate for each occupancy
threshold at that distance.
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any atoms of the system. A water molecule is considered to be overlapping if the
vdW interaction energy of the water’s oxygen atom to the nearest atom of the
system is greater than 20.0 kcal-mol . The random results indicate that it is pos-
sible to correctly identify some crystallographic sites effectively by chance. 20% of
crystallographic water molecules are identified at a cutoff of 1.0 A, and this value
increases as the cutoff increases. At 63% at a 2.0 A cutoff, Dowser is only 5% bet-
ter than the random result of 57%, suggesting that shorter cutoffs should be used
to identify if water placement methods are accurate. As all of the computational
methods perform better than the random, naive solvation, this suggests that any
of the published water placement methods would be advantageous to use in the
setup of protein-ligand simulation. The success rate of randomly placing water
molecules is approaching 60% at 2.0 A, which is very high, and from here on, the
commonly used distances of 1.0 A and 1.4 A, where the random results have less

success, will be considered.

These results suggest that other water placement methods are outperforming
GCMC. However there are several major caveats to consider: GCMC is sampling
the protein-ligand environment while most other methods do not, and ‘correctness’
is determined against crystallographic water locations, that will come with their
own limitations e.g. trusting that the electron density has been correctly assigned.
These two caveats will be explored in the following two sections, looking at rigid

receptor results, and analysis of the underlying crystal structure quality.

3.3.2 Rigid receptor results

The methodology of many of the other methods shown use a rigid
molecule approximation during water placement, which will increase
the quoted accuracy. Of the other computational methods shown above in Fig-
ure 3.3, most treat the protein-ligand environment as rigid. Many of the methods
are knowledge based, where the locations of water molecules are assigned based

on knowledge of crystallographic water molecules in other structures. The method
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that performs the best at 1.0 A is the knowledge based method WarPP,%? with
a success rate of 80% for 1500 complexes, all of which are structures of 1.5 A
or better. Of all the methods shown, only GCMC,?* which uses a previous im-
plementation of ProtoMS following a different protocol, and Setny'4® sample the
protein-ligand environment. If the environment is sampled, then it is likely that
the system will move away from the crystallographic starting structure (a feature
of sampling), and therefore reduce the number of sites that are correctly identified

based on cartesian analysis.

GCMUC on the dataset has been repeated where the surrounding en-
vironment is kept rigid. Sampling of the complex allows the system to relax,
and sample alternate conformations. The majority of the structures in the dataset
have been crystallised at 70 K, and while GCMC simulations are performed at 300
K, the system is likely to adopt different conformations at the higher temperature.
For this dataset, sampling involves MC trial moves of the ligand, bulk water and
full sampling of protein residues (both side-chain and backbone) within 15 A, while
residues at a distance of 15 - 30 A are held rigid. For example, if an amino acid
side chain that forms a hydrogen bond with a water rotates, it may ‘pull’ the water
molecule along with it. This would result in the water sitting in a different posi-
tion, and therefore being assigned incorrect based on a cartesian assessment, but
nevertheless correct based on the interactions maintained. For this reason, GCMC
simulations have been repeated for the dataset of 105 FDA approved drug-protein
complexes, where the complex is held rigid while only GCMC water molecules
are sampled. No MC moves are assigned to protein, ligand or bulk water in the
simulation. Only insertions, deletions and translations of GCMC waters within
the GCMC region will be attempted.

Simulations where the system is kept as rigid have improved success
rates. In docking methodologies, whereby a small ligand is docked to a receptor,
the components may be held rigid, the ligand may be flexible, or both compo-
nents may be flexible. As flexibility is introduced into the model, the docking

more accurately captures the induced fit motion of protein ligand complemen-
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tarity. 14° However, as flexibility is introduced, the likelihood of reproducing the
native binding mode, if the rigid receptor is correctly oriented to the native state,
is reduced. 1% This is known as rigid receptor theory.®! If GCMC insertions and
deletions are considered as the repeated ‘docking’ of water molecules into the ac-
tive site, then the same rigid receptor theory should hold for GCMC. If sampling
of the protein-ligand complex results in the shift in a chemical group that covers
a crystallographic water position, then insertions will no longer be possible to ac-
cess during the simulation, which in turn would reduce the possible success rate
of GCMC. GCMC results are being compared to the single snapshot of a complex
that crystallography provides, which means that a rigid complex simulation, that
is unable to move away from the single snapshot to which they are compared, is
more likely to generate results in agreement with the X-ray water assignment. As
the sampling simulations consist of 50% system sampling and 50% GCMC sam-
pling, the rigid simulations consist of half of the number of MC moves, but 100%
GCMC sampling. This means that the number of GCMC moves attempted in

both sampling and rigid simulations is consistent.
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Figure 3.4: Accuracy of GCMC at different cutoffs, from fixed environment
simulations. The format is the same as in Figure 3.3

Fixing the surrounding environment in GCMC simulations improves
the success rate. Figure 3.4 shows the results at different cutoffs, with different
minimum GCMC cluster occupancies for the fixed simulation results. For all occu-
pancies and cutoffs, the success rates are higher than for the sampling results. As
the success rates are higher for the fixed simulations, this supports the rigid recep-
tor argument for GCMC simulations. The differences between different occupancy
thresholds are reduced in the fixed results compared to those with sampling. At 1
A distance cutoff, there is a 31% reduction in the success rates if water molecules
with <75% occupancy are excluded, while for the rigid results, the success rate is

reduced by only 14%. For these results, the fixed receptor data a fairer compari-
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son with many of the other modelling methods, although significant caveats still
exist; the results have been determined on different datasets of differing sizes, with
different classifications of water molecules. Classifications vary in several ways,
with some methods only considering conserved water sites® and others requir-
ing multiple hydrogen-bonding contacts.''! For the fixed receptor results, looking
at GCMC sites of any size (blue line) only WarPP,52 and GCMC?* (for a small
dataset of structures) have a higher success rate. Considering GCMC sites of 50%
occupancy or higher, WaterDock'®? and FlexX %3 score higher, although the re-
sults are fairly similar. WaterDock has been tested on a dataset of 37 structures,
covering an estimated 12 targets, which is a smaller, less diverse dataset than used
here. FlexX has been tested on a large dataset of 200 structures of 120 targets,
but only water molecules that form a hydrogen bond were considered. Based on
these differences in dataset and analysis, GCMC is performing similarly to the
best other methods.

While fixing the environment increases the success rates, sampling
the system affords other benefits. Keeping the environment fixed during
GCMC simulations has benefits; the simulation is faster, as time is saved by reduc-
ing the number of MC moves. For a faster simulation, the success rates improves;
for 50% occupancy at 1.0 A, the success rate increases by 15% (50% with sam-
pling, 65% with fixed). This fixing of the system allows GCMC to be more fairly
compared to other available methods, where the majority do not alter the envi-
ronment from the initial crystallographic starting structure. While the improved
success rate seems beneficial, it is not the only metric of success. Sampling the
protein and ligand conformations provides information on multiple conformations
of the systems. We are able to observe different ligand binding sites (this will
be discussed in Section 3.3.6) which can be extremely useful knowledge in drug
design. In addition, the structures used herein have resolved crystal structures,
whereas in a real drug design project, the exact protein-ligand complex of interest
may not be available, and methods such as homology modelling or docking may
be required. This would likely increase the need for sampling of the protein-ligand

environment during GCMC simulation. The fundamental goal is not just to pre-
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dict water molecule locations in complexes, but to do so in a manner that aids
the design of high affinity molecules. For example, seeing multiple binding modes
or multiple conformations of a key protein residue, or multiple networks of water
molecules that correspond to these different conformations is often more important
than the absolute cartesian agreement with crystallographic water locations. This
is particularly true when the relevance of a crystal structure to the structure of

biological relevance is considered.

3.3.3 Types of water molecule

Water molecules have been classified based on their crystallographic
contacts. The 632 active site crystallographic water molecules have been clas-
sified — as bridging, ligand, protein or solvent — based on 2.4-3.4 A cutoffs to
protein or ligand polar heavy atoms (nitrogen, oxygen, sulphur). Bridging water
molecules are within hydrogen bonding distance to polar atoms in both the protein
and the ligand. Ligand and protein water molecules are within hydrogen bond-
ing distance to either the ligand or the protein, while solvent water molecules are
considered bulk-like, as they are not within hydrogen bonding distance to any po-
lar atoms of the complex. This classification is performed on the crystallographic
water molecules, in reference to the crystallographic location of water molecules.
As the classification is performed on the crystal structure, no account is taken
of the flexibility of the system, and the possibility that the classification of these
water molecules may change through the simulation. Nittinger et al. only consider
water molecules with two or more possible hydrogen bonds to protein or ligand
atoms. The Nittinger et al. classification of water molecules has been reproduced
as closely as possible. As hydrogen atoms are not assigned in the clustering of
water molecules, the Nittinger et al. classification performed here, checks for two
H-bonding contacts, as defined before, to either protein or ligand. The require-
ment for two H-bonding contacts changes the proportions of types of waters, with
significantly more water molecules classified as solvent when the requirement of

two contacts is used. These are shown in Figure 3.5.
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Figure 3.5: Classification of 632 crystallographic water molecules included
in the dataset. A contact is defined as a 2.4-3.4 A distance to a polar atom
(nitrogen, oxygen, sulphur). H-bonding classifies water molecules based on
a single contact, while Nittinger et al. requires a water site to have two
H-bonding contacts, to be classified as bridging, protein or ligand.

Water molecules that directly interact with the ligand or are bridg-
ing will be the most important to predict correctly for drug design.
Different types of water molecules will be of different importance to drug design.
Both bridging and ligand bound water molecules will be in the first solvation
shell of the ligand, which accounts for 19% of the crystallographic water molecules
(14% by Nittinger classification). These water molecules are the most likely to
be perturbed by incremental changes to the ligand and also the primary candi-
dates for displacement during drug design. The correct identification of these water
molecules are arguably the most important to be correctly predicted. 10% of water
molecules have no contacts to either protein or ligand, and are therefore considered
as bulk. The percentage of bulk water molecules increases significantly when the
requirement for two hydrogen bonding contacts is used. These water molecules
may either be in the second solvation shell or have a crystallographic packing con-
tact which have not been considered herein, or may have one hydrogen bonding
contact if defined by the Nittinger classification. As solvent water molecules by
the H-bonding classification do not have direct contact with the protein-ligand
complex, the water molecule is likely to be more mobile and more disordered, and

more difficult to correctly predict. With the Nittinger et al. classification, no
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water molecules are ligand-bound, as any ligand-bound water molecules also have
a protein contact, and are therefore classified as bridging. If a ligand-bound water
molecule has two simultaneous contacts with the ligand, it also forms a protein

contact, and therefore will be classified as protein bound.
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Figure 3.6: Boxplots for both occupancies of GCMC water molecules, and
distances from crystallographic sites for each type of water molecule, fol-
lowing both methods of classification (H-bonding and Nittinger) for both
sampling and fixed simulations. Median and interquartile ranges are shown,
with whiskers indicating the rest of the distribution, excluding outliers. No
water molecules are classified as ligand-bound when using the Nittinger et
al. definition.

Different types of GCMC water molecules have differing occupan-
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cies and distances from crystallographic sites. Shown in Figure 3.6, for
sampling simulations, the median water occupancies are higher for bridging and
protein water molecules than for ligand bound and solvent water molecules, with
broad distributions of occupancies observed for all water molecule types. For the
fixed simulations, the distribution in occupancies for ligand and solvent water
molecules are much broader than the distribution for bridging or protein bound
water molecules. This suggests that these ligand and solvent water molecules
are more disordered in the fixed environment simulations, while the bridging and
protein-bound water molecules are more localised with higher occupancy through-
out the simulation. A water molecule with an occupancy of 50% would have a
binding free energy of 0.0 kcal-mol !. The occupancy results indicate how many of
each type of water molecule will be affected when the dataset are filtered for dif-
ferent occupancy cutoffs, Figure 3.3. The whiskers for distributions of distances of
sampling and fixed results are fairly similar for most types of water molecule, but
the median distance result is lower for the fixed simulations for bridging, ligand-
bound and protein-bound water molecules, and equivalent for solvent type water
molecules. The distribution of distances for bridging water molecules appears the
most significantly lowered when comparing fixed results to sampling. The lower
median distance explains the higher success rates achieved for fixed simulations,
relative to sampling simulations, shown in Figures 3.3 and 3.4. The majority of
ligand-bound water molecules in fixed simulations are within a 1.4 A distance cut-
off, despite having a broader distributions. For both sets of simulations, solvent
water molecules have lower occupancies, and larger distances to crystallographic
water molecules. The solvent water molecules are those for which GCMC performs
the worst, which is unsurprising, as the lack of local structure will make these wa-
ter molecules the most difficult to resolve in the crystal structure and the least
likely to be correctly identified during simulation without a directional hydrogen
bonding group from protein or ligand. Solvent-type water molecules are the least
likely to be used in drug design as they are diffuse and therefore not appropriate to
target for displacement. For this reason, the success rates have been recalculated
for each type of water molecule, and also for all water molecules excluding solvent

water molecules, Figure 3.7.
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Figure 3.7: Percentage of crystallographic water molecules correctly identi-
fied by GCMC (with an occupancy cut off of 50%) at different cutoffs, broken
down by classification. Results are calculated for 632 active site, crystallo-
graphic waters in 105 structures. A dashed black line is shown at 1.0 and 1.4
A, annotated with the GCMC percentage success rate for each classification
at that distance. A dashed purple line shows the success rate when solvent
water molecules are excluded from the analysis, with the success rate quoted
at 1.0 and 1.4 A.

The success rates of GCMC improves if solvent water molecules are
excluded from the calculation. The success rates as shown in Figures 3.3
and 3.4 have been broken down based on the classification of the water molecules,
shown in Figure 3.7. In agreement with Figure 3.6 the success rates are similar
for protein, ligand and bridging water molecules, while GCMC performs worse
for bulk solvent water molecules. If solvent water molecules are excluded from the
accuracy calculation, the success rate for GCMC increases from 50% to 52 or 59% -
fixed system increases from 65% to 68 or 72% - for a 1 A cutoff, both for H-bonding
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and Nittinger classification, respectively. WarPP is a knowledge based method,
with its success rate of 80% quoted for water molecules that form two hydrogen
bonds. The GCMC fixed simulation using the Nittinger et al. classification —
as comparable to their classification as possible — gives a result of 72% which is
close to theirs. The difference in success rates could exist for a variety of reasons.
One explanation is that different datasets have been used, or that their knowledge-
based method does not require parameterisation through use of force-fields, which
may be a source of error in the GCMC method. It is possible that our success rate
could improve with more optimisation on the ligand hydrogen atom locations, as
the ligand-bound water molecules lower the average slightly for fixed simulation.
The 9% increase in success rate for sampling simulations using the Nittinger et
al. classification to exclude solvent-type water molecules indicates how much the
success rate can vary with a slight change in protocol. The fluctuation in success
rate will be discussed further when crystal-structure quality is also taken into
consideration in Section 3.3.4. The variation of success rate shown just for the
GCMC simulations, based on the cutoff, occupancy considered and classification of
water molecules included in the dataset, illustrates how unreliable it is to compare
directly success rates quoted in the literature for different methods, using different

datasets, with different protocols and performed by different researchers.

Despite having a lower overall success rate, sampling simulations cor-
rectly locate 10% of the dataset that is missed by fixed sampling. Fixed
sampling performs relatively worse for ligand bound water molecules.
Figure 3.8 shows the distribution between sampling simulation and fixed simula-
tion distance for all crystallographic water molecules. The water molecules have
been coloured based on their classification in the crystal structure. Figure 3.8 b)
contains the same data as a), but focussed on water molecules that are found to
within 2.0 A of the X-ray location by both methods, and has been divided into
quadrants, to distinguish between water molecules that are found to within a 1.0
A cutoff, with the distributions of types of water molecules across these quadrants
shown in c¢). 40% of water molecules are correctly located by both sampling and
fixed backbone methods, and 25% of water molecules are missed by both meth-

ods. Sampling simulation are able to predict 10% of water molecules that are
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Figure 3.8: Distance of GCMC water molecules (>50% occupancy) to crystallographic water, for sampling
simulations against fixed simulations. Each datapoint corresponds to a crystallographic water molecule, with
the distance shown indicating the distance to the closest GCMC cluster center of occupancy greater than
50%. Crystallographic water molecules are sorted by contact type. a) shows all 632 crystallographic water
molecules. b) shows the same data as figure a), excluding water molecules that were not located to within
2.0 A for both sampling and fixed. Grey dashed lines are shown at a distance of 1.0 A for both sampling
and fixed, forming quadrants. The lower left quadrant indicates water molecules correctly identified by
GCMC in both sampling and fixed simulations and the upper left quadrant shows crystallographic water
molecules missed by both simulations. The upper right quadrant indicates water molecules that are identified
only by sampling, and the lower right quadrant indicates those found only by fixed simulation. ¢) Shows
the proportion of water molecules within each quadrant for the entire dataset overall (O), and for each
classification of water molecule.
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missed by fixed simulations, with a marginally larger proportion of these being
ligand bound water molecules. 25% of water molecules are found only in the fixed
simulations, where a slightly lower proportion of these are ligand bound water
molecules are found in these simulations, however these distances may not be sig-
nificant. Fixed simulations likely perform better as the environment is unable to
move away from the crystallographic starting point. The proportionally larger
likelihood of sampling simulations to predict ligand bound water molecules than
fixed simulations may possibly be due to the opportunity for hydrogen atoms to
sample, and achieve more optimal hydrogen bonding contacts with these water
molecules. This is simply one explanation, and it is unclear why the lack of sam-
pling of ligand hydrogens would be more detrimental to water placement than the
lack of sampling of protein hydrogens involved in hydrogen bonding. Potentially,
a method where protein backbone and ligand scaffold atoms are rigid, with side
chains and functional groups and hydrogen atoms able to sample could improve

the success rate relative to fixed simulations.

3.3.4 Quality of crystallographic data

Quality filters used to generate the dataset use metrics that describe the
overall quality of the crystal structure, rather than atomistic metrics.
All of the structures in the dataset have been published more recently than the
year 2000, with a resolution of 2.5 A or better, which attempts to ensure that the
structures are good quality. These however, are an assessment of the overall qual-
ity of the structures, but do not give an assessment of the quality of the electron
density for a given atom. Discussion of errors that can arise in crystallography
is given in Section 1.5. This section will look at different measures to assess the
quality of local water electron density, and if this linked to the likelihood GCMC
to correctly locate that water. This section shows results taken from the fixed
GCMC simulations, the same trends are observed in the sampling GCMC results,

but have been excluded for berevity.

Different metrics are available to assess the atomistic disorder or
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atomistic electron density. The B-factor is a measure of the uncertainty in
the position of an individual atom in a crystal structure. ®* B-factors often locally
converged based on the surrounding environment, and can vary between different
crystal structures, so a normalised B-factors (By,orm) will also be included in the
analysis, where the B-factor of an atom has been divided by the mean B-factor
of it’s crystal structure.'®® EDIA and Z,, are both assessments of the electron
density in proximity to an atom, to identify if there is sufficient density to support
the atom assignment, and are discussed in more detail in Section 1.5. The scales
of the different metrics differ, but a low score for both EDIA and Z,,, indicate
that there is less electron density. The opposite is true for B-factors and Bjorm,

where a higher score indicates greater uncertainty in the location of the atom.

Some correlation can be observed between the different atomic met-
rics. Figure 3.9 shows the distribution of all of these factors; EDIA, Zs, B-factor
and By for 569 water molecules in the dataset (632 water molecules, where
63 solvent molecules have been removed based on H-bonding classification). Both
EDIA and Z,, are calculated using an atom’s B-factor to estimate the atom’s
radius. EDIA uses a look-up table calculated by averaging B-factors from many
structures to assess structure quality, while Z,s uses the B-factor directly. EDIA
and Z,s use of B-factors explains why they are both correlated with B-factor
(p =-0.58 and -0.69 respectively), and why the correlation is stronger for Z,s than
for EDIA, as Z,,s uses the B-factor directly in the calculation, while EDIA uses
an average B-factor, given the resolution, atom type and atom charge. Z,,, and
B-factor are the most correlated pair of metrics considered. Both EDIA and Z,
are measures of whether there is sufficient electron density for a given atom, albeit
calculated in a different way. The two methods are correlated (p = 0.61, where p is
Pearson correlation coefficient), however the EDIA method has an upper limit on
the EDIA value of 1.2, which may explain the non-linear correlation observed. The
maximum EDIA score of 1.2 is imposed, rather than having a physical meaning.
If the EDIA limit of 1.2 were removed, a more linear distribution may exist with a
higher Pearson coefficient. The scatter plot of B-factor against B,,o, has a p cor-

relation of 0.48. Regions of highly correlated points can be seen in B-factor against
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Figure 3.9: Correlation plot for different crystallographic measures consid-
ered; EDIA, Z,,, B-factor and B,,,.,. Diagonal histogram plots show the
distribution of each metric, and non-diagonal scatter plots show the correla-
tions between different metrics. Data points are transparent, which means
that regions that appear darker correspond to multiple water molecules. An-
notations show the Pearson correlation coefficient (p) for all combinations of
metrics.
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Figure 3.10: Violin plots showing the distribution of metrics considered, for
water molecules found (green) or missed (red) to within 1 A cutoff in fixed
GCMC simulations. Results are shown for EDIA, Z,,,, B-factor and B,,m.
Note the different axis for each metric. Median values are shown by large
dashed lines, while interquartile ranges are indicated by the small dashed
lines.

Brorm plot, which arise when water molecules from the same structure have all
been normalised by the same average B-factor. B, is frequently considered a
more unbiased metric to use than B-factors, > however while this in no way indi-
cates which is more reliable, the non-perfect correlation indicates that differences
will arise depending on which value is considered. The diagonal histogram plot of
Byorm shows that the modal value is around 2, showing that water molecules in
crystal structures are likely to be more disordered than the average atom of the
system. Water molecules are therefore more likely to be disordered, and less likely

to be correctly assigned than other atoms in protein structures.

GCMC is more likely to miss water molecules that have less elec-
tron density and are more disordered. Distributions of the different metrics
of water molecules that have been found or missed are shown in Figure 3.10. This
highlights some differences in the water molecules found and missed. The distri-
bution of both EDIA and Z,s values of crystallographic water molecules that are
missed by GCMC is shifted to lower values than for those water molecules found.

Crystallographic water molecules with less electron density to support their place-
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ment in the crystal structure are more likely to be missed by GCMC, whether
EDIA or Z,s are used to assess the electron density. The shift in electron density
may suggest that some water molecules that are missed by GCMC may have been
incorrectly assigned in the electron density. Looking at the distribution of both
B-factors and By, show that water molecules missed by GCMC have marginally
higher values than those found. B-factors are a measure of the uncertainty in an
atom’s position, and therefore water molecules with higher B-factors or Bj,orm are
less clearly resolved. B-factors differ to EDIA or Z,,,, as they do not suggest if
a water molecule is truly there or not, but may suggest water molecules where a
longer, more lenient distance cutoff would be needed to locate it by computational
methods.

Different published methods have used inconsistent criteria to select
appropriate water molecules for testing. Validations of other computational
methods have excluded some crystallographic water molecules from their test sets
based on various assessments of the crystallographic water molecules. GCMC??
considers water molecules that are ‘conserved’, i.e. that are observed in multiple
crystal structures of the same target. WarPP?®? in addition to only considering wa-
ter molecules that have two hydrogen bonds, only assesses water molecules with an
EDIA score of >0.24 (a previous publication suggested an EDIA >0.8 to suggest
sufficient electron density !'2). If the success rate of GCMC with the FDA dataset
is analysed as similarly to the WarPP results as possible — using a distance cutoff
of 1.0 A, a minimum EDIA score of 0.24, GCMC sites that are over 50% occupied
for a fixed simulation for water molecules that form at least two polar contacts with
protein or ligand at hydrogen bonding distance — then the success rate is 72 %.
Figure 3.10 illustrates a difference between different metrics and the likelihood of
GCMC to correctly predict the site. Owing to the difference in distributions of wa-
ter molecules found and missed, if water molecules with poorly scoring metrics are
excluded from the dataset, the apparent success rate of the method will increase.
While EDIA scores of 0.24 and 0.8, and a Z,,s score of 1, have been suggested as
suitable cutoffs, these values seem to be a ball-park suggestion, rather than arising

from a physical measure. In addition, there is no cutoff for B-factors, or By,orm to
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distinguish a water molecule as ordered or disordered. For this reason, no specific
value of any metric has been chosen, instead the success rate of the method has

been plotted against a range of each metric, Figure 3.11.

Filtering the dataset based on crystallographic metrics improves the
success rate. Where each of EDIA and Z,, have a minimum of zero, all 632
crystallographic water molecules will be considered, and the success rates are con-
sistent with those shown in Figure 3.11. As the minimum for each increases, water
molecules will be excluded from the determination of the success rate, and a con-
sequence of excluding water molecules with low scores, the success rate of the
method is increased. For EDIA there is a notable increase in the success rate at
around 0.8. The success rate increases by 13% (fixed) and 19% (sampling) for
EDIA, and 16% (fixed) and 14% (sampling) for Z,,s depending on the cutoff ap-
plied. B-factor and B,ppy, differ to EDIA and Z,, as they are measures of atomic
uncertainty, where a higher value indicates more doubt. The plot for B-factor
and Bjorm need to be considered in the opposite direction, where the maximum
B-factor /B,orm will include the whole dataset (53% and 68% success rates for sam-
pling and fixed respectively), and as the plot moves to the left, the dataset becomes
more selective, removing water molecules with high B-factors. If a smaller, max-
imum B-factor/By,orm is considered (only considering water molecules with more
certainty in their position) then the success rate will increase. The gain in success
rate across the range of maximum B values is 14% (fixed) and 13% (sampling) for
B-factor, and 5% (fixed) and 14% (sampling) for Byoprm.

The changing success rates indicates how unreliable it would be to
compare two different water placement methods. Analysis into the effect
that different cutoffs of differing metrics have on the apparent success rate does
not indicate suitable crystallographic quality to be used, it does highlight the large
degree to which a success rate can vary based on water molecules analysed. It is
difficult to compare two computational methods. It can be hard to understand
whether a difference in success rate between methods is due one method being bet-

ter or purely down to differences in protocol. Using no cutoff for any of the metrics
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Figure 3.11: Success rate for both fixed and sampling simulations, when
the data set of 569 water molecules (632 water molecules, where 63 solvent
molecules have been removed based on H-bonding classification) is filtered
to remove low electron density water molecules (EDIA or Z,), or to remove
high uncertainty (B-factor or B,,..,,) water molecules. The success rate calcu-
lated using a 1.0 A distance cutoff, with GCMC cluster centres of occupancy
greater than 50%. The x-axis indicates the cutoff used for the minimum, or
maximum value of the metric used the filter the dataset. All points plotted
correspond to a dataset of at least 50 of the initial crystallographic water

molecules.
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seems naive — water molecules with little electron density, or much disorder, are
being used to benchmark a method. Excluding water molecules, however, begins
to lean towards cherry-picking of results, biasing a quoted success rate to higher
values. All of the values plotted in Figure 3.11 are determined from a dataset
of a minimum of 50 water molecules, however as this is an average of 0.5 water
molecules per structure analysed (50 waters from 100 structures), this too feels
overly selective. Ultimately, choosing any cutoff or quality filter on the results will
alter the success rate quoted. What seems to be more important is assessing all

methods to the same criteria to ensure a fair comparison.

Looking at crystallographic metrics helps somewhat to suggest which
water molecules may be artefacts, but they do not indicate where a crys-
tallographic water molecule has not been assigned, but would fit the
electron density. As the success rate increases when filtering out low-scoring
water molecules by different metrics, this suggests that some water molecules may
not be real, and are an artefact of the crystallographer and the refinement pro-
cess. These metrics are only recorded for water molecules that are present, and
do nothing to indicate where water molecules may be present experimentally, but
have not been assigned. Understanding if hydration sites are being missed as they
are partially occupied, or if they are disordered, is also difficult to quantify. Ex-
perimental locations of water molecules are the only information against which it
is possible to test the success of computational methods, but this does not mean

that the experimental data is without flaws.

3.3.5 Additional hydration sites

GCMC predicts many more hydration sites than are observed in the crystallo-
graphic structure, as illustrated in Figure 3.1. These additional sites can arise for
a range of reasons. Additional sites may be due to low occupancy GCMC clus-
ters, where the occupancy of the GCMC cluster is such that the electron density

would be too low to resolve. This may also occur for disordered water molecules,
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where the electron density will be blurred, and may not be assigned to a water
molecule. Another reason for the additional GCMC hydration sites is that, as the
GCMC region is cuboidal, and defined automatically across the dataset to have a
4 A padding around the heavy atoms of the ligand. Both the shape of the GCMC
region, and as the region has been uniformly defined irrespective of the nature of
the binding site, for many systems, the GCMC box extends over bulk-like water.
Bulk like water molecules are unlikely to be resolved in the crystal structure due
to their disorder, but will be identified by GCMC, which explains many additional
hydration sites that are distal to either protein or ligand. The final explanation for
the additional water sites as identified by GCMC is the temperature at which both
the simulation and the crystallography is performed. The majority of the dataset
has been resolved at 70 K, while all the GCMC simulations are performed at 300
K. It is likely that this temperature difference means that entropically bound water
molecules are more likely to be observed in the low temperature crystal structures,
while enthalpically bound water molecules will be stabilised at ambient room tem-
perature, but this is difficult to quantify and hard to test. One possibility to
probe the differences in bound water molecules at various temperatures would be
to study structures that have been resolved at both low and high temperatures,

or for complexes where neutron diffraction data is available.

3.3.6 Hydrogen bonding networks - 2RIN

One of the main advantages that GCMC has is the ability to sample networks of
molecules. Above, the analysis has been performed on cluster centres derived from
simulations. These results show that, with any analysis, fixed simulations have
higher success rates than the equivalent simulations that sample the protein-ligand
environment. While the success rates — the likelihood of correctly predicting the
locations of crystallographic water molecules — are lower with sampling simula-
tions, despite the additional computational expense, there are other advantages of
sampling simulations. The fixed simulations assume that the starting location is
correct. The starting location may not be at a minimum for multiple reasons —

unclear electron density, ambiguous assignment of the density, or if the complex
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has been generated using a computational technique such as docking. Allowing
the protein ligand to sample allows the system to move away from high-energy

conformations, and sample an ensemble of conformations for a complex.

One example of the dataset of 105 will be considered to illustrate the benefits
of including system sampling within GCMC simulations; ABC-transporter choline
binding protein with acetylcholine (PDB: 2RIN). Acetylcholine is a small molecule
that has one crystallographic water molecule within the GCMC region simulated.
The water molecule is protein-bound (based on both H-bonding or Nittinger et al.
classifications), and correctly located by both fixed and sampling GCMC simula-
tion, to 0.35 and 0.62 A respectively. GCMC however, predicts more hydration

sites than are resolved in the crystal structures, as discussed in Section 3.3.5.

Fixed GCMC

Fixed simulations of 2RIN reproduces the crystallographic sites. There
are four GCMC cluster centres from the fixed GCMC simulation, three of which
have occupancies of 100%, and one that is only 1.5% occupied. All three high
occupancy water molecules correspond to crystallographic water molecules, one
inside the GCMC region, while the other two crystallographic water sites are 0.8
A outside of the GCMC region, shown in Figure 3.12. The success rate of this

system in isolation is 100%.

Sampling GCMC

Sampling simulations result in more cluster sites, with the crystallo-
graphic water molecules reproduced as in the fixed simulations. In con-
trast to the fixed simulation results, the cluster locations from the sampling simu-
lations are shown in Figure 3.13. Instead of four GCMC water clusters, there are
now 13 cluster locations from the sampling results. As before, three of these sites
are 100% occupied (IDs 1 - 3), and are within 1 A of the three high occupancy
clusters from the fixed simulation and the crystallographic water molecules. Five

sites (IDs 4 - 7) are partially occupied, with occupancies of 81, 73, 35 and 35%
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Figure 3.12: Acetylcholine bound to ABC-transporter choline binding pro-
tein. GCMC cluster centres from the fixed simulations are shown. GCMC
region is shown by black line, protein shown in green cartoon, acetylcholine
coloured; carbon - green, nitrogen - blue, oxygen - red. Crystallographic
water locations are shown by yellow spheres. GCMC cluster locations are
labelled, and coloured using a spectrum of blue (low occupancy) to red (high
occupancy). Labels are the cluster IDs.



132 CHAPTER 3. WATER LOCATIONS

Figure 3.13: Acetylcholine bound to ABC-transporter choline binding pro-
tein. GCMC cluster centres from the sampling simulations are shown.
Colours are the same as Figure 3.12. The protein-ligand conformation shown
is the starting conformation, while the cluster locations are determined from
the dynamic simulation.

respectively. Clusters with occupancies lower than 25% have been excluded for

clarity.

One cluster site has been identified that is clashing with the start-
ing location of the ligand. The most notable aspect of Figure 3.13 after the
number of cluster centres, is the position of cluster 7, which is clashing with the
ligand. In the fixed simulation, the ligand will not move from the position shown,
so no attempts to insert the water molecule at this position would be accepted.
The conformation shown however, is the starting conformation, taken from the
crystallographic structure. The position of cluster 7 indicates that the ligand has

moved sufficiently for a water molecule to now occupy this site.

The correlation of a pair of water molecules can be calculated by counting
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Figure 3.14: Two representative frames of acetylcholine bound to ABC-
transporter choline binding protein. GCMC cluster centres from the fixed
simulations are shown as spheres, with low occupancy sites removed, while
water molecules from the representative frames are shown as sticks. Two
binding modes of the ligand are observed, with one similar to the crystal-
lographic position (left) and the other novel (right), which would not be
observed in the fixed simulations. The observed ligand flip reveals two hy-
dration sites, 6 and 7, while displacing the water molecule at cluster site
5.
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the frames in which they are observed together, and comparing this to how many
frames would be expected by chance. If a pair of water molecules are both 50%
occupied, if they were non-correlated, they would be expected to be observed
together 25% (50% x 50%) of the simulation. If they are observed together signifi-
cantly more, or significantly less than this, then they can be considered correlated
or anti-correlated. Cluster sites 5 and 7 are 3.3 A apart, which could be a long
hydrogen bond, however they are -17.2% anti-correlated (8.5% observed - 25.7%
random). Two representative frames of the simulation are shown in Figure 3.14
which demonstrates the anti-correlation of GCMC clusters 5 and 7. The acetyl-
choline flips during the simulation, and an alternate binding conformation is ob-
served. Omne of these conformations is complementary to GCMC cluster 5, while
the other stabilises GCMC cluster 7. Sampling of the 2RIN system is able to
reveal two possible binding modes, both of which are in agreement with the crys-
tallographic water locations, but with distinct water networks. While the results
are more complex, and the system is able to move away from the crystallographic
structure, with lower success rates, sampling GCMC simulations have a significant
advantage. Both of these ligand conformations and water networks would be of
importance if part of a drug design effort, and would not be seen by the fixed sim-
ulations, or any other published water location methodology that does not sample

the protein-ligand environment.

3.4 Conclusion

This chapter looks at the rate at which GCMC simulations correctly reproduce
crystallographic water locations. The locations of water molecules have been pre-
dicted for a dataset of 105 complexes of FDA drug molecules to protein targets.
The dataset has been generated with attempts to ensure good crystallographic
comparison — 2000 or more recent release date, 2.5 A resolution or better and
no structures with obvious crystallographic contacts. The placement of water
molecules has been attempted while both sampling the protein-ligand environ-

ment and while holding it rigid.
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A success rate of 59% and 72% has been demonstrated for sampling and fixed
simulations respectively, at a 1.0 A cutoff, for GCMC water molecules with greater
than 50% occupancy, for crystallographic water molecules with at least two polar
contacts to protein or ligand. The major result of this Chapter is not the suc-
cess rate itself, although this is gratifying, but rather the demonstration of how
variable the quoted success rate can be, depending on the protocol implemented.
The results vary depending on the occupancy of GCMC water molecules consid-
ered, the types of water molecules included in the dataset (and how those types
of water molecules are defined) and if various crystallographic metrics are used
to filter out lower-quality crystallographic water molecules. For a 1.0 A cutoff for
sampling simulations, success rates vary between 37% (GCMC sites greater than
75% occupied for all 632 crystallographic sites) to 72% (GCMC sites greater than
50% occupied, for h-bonding water molecules with an EDIA score greater than
0.9). This indicates that care needs to be taken when comparing published results

of differing methods, as much variation exists in the published protocols.

Here, the accuracy of GCMC has been tested on correctly locating water
molecules for a large dataset. In the following chapter, GCMC has been com-
bined with ligand free energy calculations to allow for dynamic adaptation of
the active site water network along the along the alchemical pathway, known as
GCAP. GCAP will be demonstrated on two systems, SD and A4, both of which
have limited crystallographic data where crystal structures are not available for
all protein-ligand complexes considered, and some of those which are available are

poorly resolved.
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4.1 Introduction

This chapter has been completed with help from CCA and GAR. GAR is respon-
sible for the initial implementation of GCAP in ProtoMS. CCA has written the
surface-GCAP analysis script that performs the calculation of 2D-MBAR. All sim-

ulations, and analysis herein was performed by HBM.

This chapter will look at the development of grand canonical alchemical per-
turbations (GCAP), whereby GCMC sampling of active site water molecules is
performed during relative ligand binding free energy calculations. This allows for
congeneric ligands to be simulated accurately, despite having differing active site

water networks.

Rational drug design often involves making stepwise modifications to a known
ligand to improve the affinity of the molecule. The relative binding affinity of two
ligands can be calculated by performing the perturbation of one ligand, into the
other in both bulk solvent, and in the bound ligand environment. Issues can arise
if the bound environment of the two ligands considered differ. If the change in
ligand causes a perturbation to the active site water network, then the change in
ligand will interfere with this. The water network may be unable to adapt appro-
priately within the timescale of the simulation if the bound water molecules are
unable to exchange with bulk, or if there is a kinetic barrier to water unbinding.
This issue will be particularly notable for occluded binding sites. If the water
network is unable to adapt, then either one or both ligands may be simulated in
a non-native state, which can introduce errors into the simulation. Relative bind-
ing free energies simulated in the NVT or NPT ensemble may incorrectly indicate
that one ligand is more favourably bound than another, if the water network is

complementary to that ligand.®

Simulating relative ligand free energy perturbations in the pVT ensemble
avoids this issue, as the sampling of active site water molecules is enhanced via

grand canonical sampling. The networks of the two ligands considered do not need
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to be the same — or even need to be known a priori — as the active site water

molecules are able to adapt across the alchemical pathway.

4.1.1 Grand canonical alchemical perturbations

GCAP is the methodology whereby relative ligand free energies can be calculated,
in combination with GCMC to correctly model the active site hydration state of
the ligands, for every A intermediate. This allows for the correct, equilibrium hy-
dration state to be modelled for both ligands, as well as all intermediate A states.
As with GCMC simulations, GCAP can be performed at a range of B values,
resulting in a two-dimensional simulation, over a range of B and A values. This
results in a two-dimensional binding free energy surface, and hence will be re-
ferred to as surface-GCAP. Alternatively, if only B, is simulated, each A window
is dynamically hydrated to an extent appropriate for equilibrium with bulk water,
and the result is a one-dimensional free energy curve along A (single-GCAP). As
GCAP is able to alter the hydration of the grand canonical region of the simu-
lation, this allows for the relative free energy of two ligands with differing water
occupancies to be determined in a single free energy simulation. GCMC has been
used previously to study changing water networks for an absolute binding free
energy calculation. ! Unlike previous work, we are simulating fully in the VT
ensemble, in contrast to only periods of uVT equilibration. Further, we show here
how simulations using multiple B values can be used to construct self-consistent
thermodynamic cycles for sets of ligands, with the full benefits of replica-exchange
in both B and .

For single-GCAP simulations, as only X is varied and B is constant at the
equilibrium B, value, the relative free energy of two ligands can be determined
using classical free energy approaches, discussed in Section 1.2. As with running
GCMC at a single B value, single-GCAP is only able to determine the equilibrium
number and location of water molecules, but not the binding affinities of the water
network. RE may be performed between simulations at different A values to aid

convergence. 23,139
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In surface-GCAP simulations, a range of both A and B values are simulated.
An illustration of the surface-GCAP simulations is shown in Figure 4.1. The
surface-GCAP simulations are aided by replica exchange (RE) in both dimensions;
A and B.157 The relative binding free energy of the ligands in their equilibrium
hydration states, as well as the number of water molecules, their locations and
the binding free energy of the water networks can all be determined from surface-
GCAP. MBAR is trivially applied to two dimensions, allowing for all available
states of the simulation to contribute in calculating the relative free energy of the
two ligands and their associated water networks.?? This is calculated by using the

reduced potential function, u;(x), Equation 4.1 with the MBAR estimator.

ui(x) = BUi(x) + pilN (x)] (4.1)

i is the index over all states, U; is the potential energy according to the it"
Hamiltonian, p; is the chemical potential of the i** state and N is the occupancy
of water molecules of state x. This 2D-MBAR allows the free energy of the ligand
perturbation to be calculated from the entire surface-GCAP simulations, using
statistically optimal contributions from all simulated states. Surface-GCAP is ad-
vantageous over single-GCAP, as it is able to calculate the binding free energy
of networks of water molecules for any perturbed state of the ligands, while also
benefitting from the convergence advantage of RE in B.'®7 The computational
resources required by single-GCAP is determined by the specified number of A
windows. Surface-GCAP requires the equivalent resources multiplied by the num-

ber of B values simulated.
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Figure 4.1: Relative ligand free energy methods, where one ligand (red) is
perturbed to another (green) across a A coordinate. A) A typical relative lig-
and free energy simulation where the perturbation is performed in an NVT
ensemble and the hydration state of the protein-ligand system is unable to
adapt to the perturbation. B) Single-GCAP. The same perturbation in the
grand canonical ensemble, where insertion and deletion moves allows the
water occupancy to vary across the A pathway. The equilibrium chemical
potential (B,,) solvates each ligand in dynamic equilibrium with bulk water.
C) Surface-GCAP. Both a A pathway and range of B values are simulated,
generating a two-dimensional network, with RE between neighbouring states.
The relative free energy between different B and A values can be determined
from the surface, using MBAR. Free energies of water networks can be cal-
culated by using the GCI equation at a given A value. Calculating relative
ligand binding affinities requires a corresponding bulk water ligand perturba-
tion. The bulk leg contributions are included in the calculation, but excluded
from this graphic for clarity.

Two systems will be used to present this method; Scytalone Dehydratase (SD),
used previously in Chapter 2, and a water soluble form of adenosine Assreceptor
(A24). SD has been used previously as a test systems for free energy methods;
there are three similar ligands on a common scaffold, with significantly different
binding free energies.® These differences have been suggested to be due to the
favourable displacement of an active site water molecule.? Michel et al. used this
system to demonstrate stepwise free energy calculations, whereby the ligand per-
turbation is performed, followed by DD of water molecules in the system.® Their

method will be reproduced herein for comparison to the GCAP methodologies.
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The GCMC region for SD will be a 4x4x4 A3 cubic box focussed on the single

potential water site illustrated in Figure 4.2.

H
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Figure 4.2: Representation of the SD ligand binding site, with the structures
of ligands 1, 2 and 3 shown. The potential active site water location is shown,
with hydrogen bonds (green dash) to two active site tyrosine residues. Ligand
2 is the only compound for which a crystallographic structure is available
(PDB:3STD), in which there is no water molecule present. The binding
modes of ligands 1 and 3 have been assumed to be the same as ligand 2.
The presence of a water molecule with the smaller ligands 1 and 3 has been
studied by Michel et al.?

For Asathere are twelve antagonists in the dataset of 1,2,4-triazine derivatives
published,* where various aromatic substitutions have been made to either ring
A or ring B, shown in Figure 4.4. Ligand names, R group numbering and ring
labelling are consistent with the previously published work.* Of the twelve ligands,
three have been selected for free energy calculations here; ligands E, F and G,
Figure 4.4. These were chosen as both E and G are the only holo-crystal structures
available (E PDB:3UZC, G PDB:3UZA), the differences between the ligands are
all located on ring A, and the relative free energies calculated from both the Kj;
and Kp data are consistent to within 1 kcal-mol~!, which is the level of accuracy
for which we would aim computationally. More details of the comparison of Kj;
and Kp are outlined in Section A.4. Any experimental AG s reported herein
will correspond to the K p results, calculated by surface plasmon resonance (SPR)

binding analysis. The crystallographic structures of ligands E and G are both 3.3 A
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Figure 4.3: Active site of Ay ligand G (PDB:3UZA). Protein residues (light
blue) Ligand G (green) shown as stlcks, with nitrogen (blue), oxygen (red)
and sulfur (yellow) shown. The GCMC box region, shown as black lines,
covers ring A of ligand G, and the active site cavity near ring A. No water
molecules are shown, as there are no resolved water molecules in the crystal
structure.

resolution, respectively. As these structures are low resolution, no crystallographic
water molecules have been resolved. While the lack of crystallographic water
locations makes the validation of GCMC more difficult, it illustrates a system
where water placement methodologies can be of most help.

As the ligand perturbations are all on ring A, a GCMC region covering a protein
pocket near ring A will be sampled. As there are no crystallographic waters it is
unclear how many hydration sites this box will cover, but it will likely be more
complex than the single water site considered for SD. The cavity near ring B will

be naively solvated using ProtoMS® during the system set up.

4.1.2 Free energy surfaces

To create the free energy surfaces, PMFs are calculated along B using GCI, and
along A using rigorous free energy methods. These are combined to generate a free

energy surface using least-squares fitting. For PMFs along B, free energy values
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Figure 4.4: Three A4 ligands that will be considered herein. All of the
substitutions are to ring A in the molecule.
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for states with non-integer occupancies are determined by linear interpolation of

the binding free energy curves output by GCI.

In principle it is possible to calculate free energy surfaces directly using MBAR.
The free energies produced between states with differing B values will include
contributions from changes in chemical potential however that are not physically
meaningful in the context of the binding free energies of interest in this work. The
above approach produces consistent Helmholtz free energy surfaces using GCI.
MBAR free energy differences between states at the same B value are consistent

with NVT free energy cycles.

In all cases, A = 0 corresponds to the larger ligand, and A = 1 to the smaller.

4.2 Methodology

4.2.1 System set-up
Proteins
For all proteins simulated, the amber14SB force-field has been used.%
SD protein structure used is from the 3STD PDB entry. The protein was

scooped to a radius of 15 A. The protonation and tautomer states of the proteins

were determined using molprobity.'4? In Chapter 2 two hydration sites in the SD
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active site were considered, water molecules A and B. Here, the water site A will
be used to define the GCMC region, as it is close to the site of the changes on the
ligands.

Aoy protein structure used is from the 3UZA PDB entry. For Asaa scoop of
20 A was used, with side chain and backbone sampling in the inner 16 A, and
side chain only beyond that. The protonation and tautomer states of the protein
were determined using Maestro.'#® Ay 4 has an active site Hisaorg residue; this was
€ protonated during the set up. Owing to its proximity to the GCMC region, the
single-GCAP simulations were repeated for the é protonated Hisarg. GCMC results

can be dependent on the tautomer and rotamer of histidine used in a simulation. %8

Ligands

For all ligands, the gaff14 forcefield has been used with AM1-BCC charges.

Three similar ligands bound to SD have been studied, ligands 1, 2 and 3. The
3STD PDB entry has the bound structure of ligand 2, from which the other two

ligands binding positions has been assumed.

For Ay the PDB file of the complex containing ligand G is used (PDB:3UZA).
Models of the other ligands (1 and 3 for SD, and E and F for As4) studied were
generated from these scaffolds. As the perturbation from ligand E to ligand G
involves both the addition and removal of functional groups, it has been performed
in two steps, via the intermediate, where the C-OH group of ligand E has been

perturbed to a N atom, but the meta groups are unchanged, shown in Figure 4.5.
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Figure 4.5: Ligand M (for mutant), not included in the published dataset,*
but used as the mid-point for the E — G leg, as this perturbation requires
both the growing and shrinking of different R groups. It is more straightfor-
ward to calculate the relative free energy of both E — M and G — M and
use this to calculate the E — G leg. M was calculated to have lower affinity
than any of E, F or G.

Solvation

For all water simulated, the TIP4P force-field has been used.!*! Protein-ligand
complexes were solvated using a half-harmonically restrained sphere of radius of
30 A, with any crystallographic water locations retained, apart from the FDA
dataset where all crystallographic water molecules were removed. This includes
solvating any sterically available active site regions. For the free simulation legs,
each ligand is solvated in a cubic box with a padding distance of 10 A between
ligand and box edge. For grand canonical simulations, water molecules within the

GCMC region are removed prior to the simulation.
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4.3 Simulation protocol

4.3.1 Ligand binding affinities

For any simulation performed with either multiple A windows or multiple B values
(or both), replica exchange between neighbouring B and A values was attempted
every 100,000 moves. For consistency with previous publications, a non-bonded in-
teraction cutoff of 10.0 A was used for SD, and a cutoff of 15.0 A for A 4simulations

was used.

Single-topology alchemical transformations were performed on pairs of SD lig-
ands. Perturbations were performed in two stages; considering the perturbation
as taking place from a large molecule to a small, the electrostatic parameters first
perturbed, followed by the van der Waals (vdW) interactions. Each simulation is
split across 16 equally spaced A windows. These perturbations are performed both
in the bound state and for the ligand in bulk solvent. 5M MC equilibration steps
are performed, followed by 40M production steps. The ratio of MC moves for each

system is shown in Table 4.1.

GCMC has been shown previously to be consistent with double decoupling
methods for calculating binding free energies of water molecules.**157 To validate
the thermodynamic consistency of GCAP, the SD system was simulated in the
bound state both with and without the active site water molecule. In addition, DD
has been performed on the active site water location in SD with all three ligands,
consistent with the method described by Ross et al.®” These simulations generate
the thermodynamic cycle shown in Figure 4.7, that allows for a comparison to the

GCAP results, in addition to the experimental data.

4.3.2 GCMC

For SD and As4, a region of the active site was defined using a GCMC box over
a region of the active site. For SD, this is a small box over a single active site

water molecule and for A4, a box covering the active site cavity near ring A
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Table 4.1: MC move ratios for each simulation performed. A — indicates that no GCMC type moves were
performed.

Simulation solvent protein solute GC insertion GC deletion GC sampling n equilibration / M n production / M
SD AP 280 218 2 — — — 5 40
SD DD 280 218 2 — — — 5 40
SD GCAP 280 218 2 167 167 167 5% 80
As 4 GCAP 376 118 7 167 167 167 10* 120
Ag 4 naive 376 118 7 — — — 10 60
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Table 4.2: Details of GCMC region used for each system. The GCMC region
is cuboidal. B, is calculated from the GCMC volume using Equation 2.13

System origin (x,y,z) length (x,y,z) /A Volume /A® B,
SD 24.141, 11.225, 32.916  4.000, 4.000, 4.000 64. -9.70
Aop -44.253, 0.565, -47.602 9.784, 6.533, 7.844 501.4 -7.65

was used, shown in Figure 4.3. GCMC region details are available in Table 4.2.
The simulation consists of an initial GCMC equilibration of 5M MC moves, with a
1:1:1 ratio of insertion, deletion and GC water sampling moves. Following this, 5M
equilibration and 80M production MC steps are attempted on the entire system

with the sampling ratios shown in Table 4.1.

For SD, GCMC was performed at 16 equally spaced B values from -22.7 to -7.7.
As the binding free energy of the water molecule with ligand 3 is unfavourable,
higher B values are required to couple the water into the system; therefore for this

ligand GCI was repeated for 16 B values from -12.7 to +2.3.

4.3.3 GCAP

The GCAP simulations followed the single-topology set up outlined above. These
simulations were performed for the pairs of SD ligands, and pairs of As4 ligands.
The MC move ratios are the same as for the alchemical pertubation simulations,
but with additional grand canonical MC moves. Details of move ratios are available
in Table 4.1. For SD, surface-GCAP simulations were performed with the B values
shown in Table A.3. For Ay 4, surface-GCAP was performed with 10 equally spaced
B values between -21.654 to -3.654 inclusive, so as cover the B, value, while also
titrating down to the B value where the water occupancy is zero. Single-GCAP
simulations were also performed on each system, at their respective B, values
(SD: -9.70, Agy: -7.65).
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Table 4.3: B value ranges for surface-GCAP simulations, where B,,;, and
B are inclusive. Interval shows the distance between neighbouring B
values and Np is the number of B values simulated.

System Biin  Bmes Interval Np
SDligl + 3 -197 -3.7 1 19
SDligl +2 -187 -9.7 1 10
SD lig2 + 3 -12.7 3.7 1 10

Asy (all pairs) -21.15 -7.65 1.5 10

4.4 Results

GCAP simulations have been performed on two systems — SD and Asx. SD is

554 where a small change in the ligand results in large dif-

a well-studied system,
ferences in affinity due to the displacement of an active site water molecule.? As
only one water is displaced, it is possible to validate the GCAP method using se-
quential steps of NVT alchemical perturbations and DD. To explore GCAP for a
multi water system, a series of 1,2,4-triazine derivatives A4 antagonists have been
reported.* These A4 antagonists have a range of ligand binding free energies, and
previous studies have suggested that differences in affinity may arise from different
active site water networks.%%160 Using three of these ligands, E, F and G, shown
in Figure 4.4, a thermodynamic cycle has been created, and the relative binding
free energy has been calculated using both the single-GCAP and surface-GCAP

methodology.

4.4.1 Scytalone dehydratase

For simple cases such as SD, where the water occupancy of the system is chang-
ing only by one for a set of ligands, a thermodynamic cycle can be constructed,
as was illustrated by Michel et al.?> Their thermodynamic cycle for SD has been
reproduced using our open-source software package, ProtoMS as a comparison for
the GCAP simulations, Figure 4.7.%
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Figure 4.6: Ligand 1 binding to the active site of SD (PDB:3STD), with
the GCMC region shown by a black box. Key tyrosine residues are shown.
Water position is calculated from GCMC simulations.

The relative binding affinities of the ligands, and DD of the water
molecule, has been performed for SD, following the protocol of Michel
et al. The two triangular cycles correspond to single-topology transformations
between the three ligands both in the absence and presence of the water (grey and
blue cycles respectively), calculated with typical DD and alchemical perturbation
simulations. The vertical legs correspond to the free energy of removing the wa-
ter in each of the protein-ligand complexes, calculated by DD. A positive energy
indicates a favorably bound water molecule, as it requires energy to remove the
water from the system. Where the energy of the water is unfavorable, it would not
be expected to be present in the bound ligand complex. These water binding free
energies therefore indicate that the water is expected to be present with ligand
1, and not with ligands 2 or 3. For two of the cycles, the thermodynamic cycle
closure is larger than the combined errors of its legs. This occurs for both cycles
that involve the hydrated ligand 2, where for the ligand alchemical perturbation
the water molecule is not restrained within the simulation. As the water molecule
is unrestrained it is displaced into an apolar cavity of the protein, ~ 8 A from
its starting position when ligand 2 is bound. As the water is restrained in the

decoupling simulations, the two end points of the legs may differ. This difference
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Figure 4.7: Relative binding free energies in kcal-mol™! of ligands 1, 2 and
3, with (blue) and without (grey) the active site water molecule (shown in
Figure 4.2) present. Free energies calculated using MBAR. No GCMC or
GCAP simulations were used to generate this map. Vertical legs correspond
to the free energy of decoupling the water from the system. This cycle is taken
from Michel et al., recalculated with similar conditions where possible using
the ProtoMS software package and using amber14SB and gaff14 force fields.
Standard errors from four independent repeats are shown in brackets, and
thermodynamic cycle closures in red. The calculated binding free energies
include the free energies from the equivalent bulk-water simulations.
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may be responsible for the poor closure of the cycles, however the cycles that will

be presented in Figure 4.8 all close to within error.

The stepwise combination of NVT ligand perturbation with water
DD correctly reproduces the rank order of affinity of the ligands. The
relative binding free energy of two ligands with different water occupancies can
be calculated by adding the free energies of steps between these two states. Mul-
tiple pathways exist between the states, which can result in a range of relative
free energies for each pair of ligands. This has been simplified to a single set of
relative binding free energies by choosing the pathway with fewest steps between
two states as this represents minimal computational effort. Where there are two
pathways with the same number of steps, the pathway with the smaller combined
statistical error has been chosen. Figure 4.8, cycle A shows the optimum calcu-
lated free energies of binding for the ligands at their preferred hydration states.
These simulations are able to correctly rank the relative binding free energies of
the three ligands. However, two of the three legs are further than one standard

error from the experimental result.

Calculating binding affinities using NVT ligand perturbations and
water DD simulations is labour intensive, and scales poorly with addi-
tional water molecules. Multiple alchemical perturbations and DD simulations
are required to generate these results, which is only feasible as the water occupancy
is being varied by one. To generate a thermodynamic map for an n water network
in a protein site would require n DD simulations to decouple each of the waters
sequentially, or n! simulations if all the different possible orders of annihilation of

water molecules are considered.

The relative binding free energies of the three SD ligands have been
calculated using both single and surface GCAP. GCMC has been shown
to be preferable to decoupling methods as the location of the hydration sites are
not needed and the binding free energy of n waters can be determined in a single

simulation series, whilst also capturing cooperative binding effects in water net-
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Figure 4.8: Relative binding free energies of the three SD ligands in
kcal-mol™!. Blue indicates a ligand expected to maintain the water in the
active site. The experimental binding free energies® are shown along with
cycle A) generated from Figure 4.7, using MBAR for ligand perturbations
and water perturbations. Cycle B) calculated using single-GCAP, and cy-
cle C) calculated using surface-GCAP. Standard errors from four repeats are
shown in brackets and overall cycle closures in red.
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works. %157 GCAP is able to perform a ligand transformation (either single or dual
topology, but only single is used here), with GCMC being used at each A value of
the transformation. This allows the correct water occupancy to be adopted at each
A value. This means that the thermodynamic free energy difference between two
ligands — despite any differences in their respective water occupancies or locations

— can be calculated within a single simulation series.

Single-GCAP

Single-GCAP simulations are able to correctly rank order the three SD
ligands. As it is possible to perform GCMC simulations at B, to predict the
equilibrium water occupancy and locations, it is also possible to perform GCAP
at one B value per X value. However, this loses the sampling benefits gained from
replica exchange in B in improving the precision of the results.'®” The binding
affinities of water networks are also unavailable when reducing the simulation to
a single B value. The results for single-GCAP simulations are shown in Figure
4.8, cycle B. The free energies calculated are consistent to within error of those
calculated by separate MBAR and DD simulations (cycle A), and with smaller

errors per leg.

Surface-GCAP

The relative binding free energies of the ligands calculated using surface-GCAP
are shown in Figure 4.8, cycle C.

Surface-GCAP simulations are able to reproduce the SD ligand bind-
ing affinities with the best experimental agreement and smallest associ-
ated errors of the three methods considered. As described in the methods,
simulations at multiple B and A values are performed with additional RE moves.
MBAR is used to estimate the free energy difference between the ligands with
their optimal hydration states. These free energy results are in good agreement
with both with the experimental results and the simulation results in cycle A. The
surface-GCAP simulations perform the best of the three computational methods

at reproducing the experimental results, although all methods are consistent to
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within error. The standard deviation for each simulation leg is the smallest, and

the cycle closure is very small at 0.1 kcal-mol ™.

Changes in the water occupancy are observed in the vdW legs of
the simulation. For SD, changes in water occupancy were observed during the
van der Waals (vdW) legs of the free energy calculations, when the R group of
the ligand is reduced or grown in size. For this reason the free-energy surface
generated by the vdW leg of the surface-GCAP is shown in Figure 4.9, for the
ligand 1 (A = 1) to 3 (A = 0) simulation. The perturbation between ligands 1 and
3 corresponds to the change from an aromatic nitrogen (ligand 1) to an aromatic
CH group (ligand 3). Examples of both electrostatic and vdW surfaces for all
three pairs of ligands are available in Section A.3, Figure A.3. In all cases, A =0

corresponds to the larger ligand, and A = 1 to the smaller.

The free energy surfaces are generated combining thermodynamic
integration at each B value, and PMFs at each A\ value. To create the
free energy surfaces, PMFs are calculated along B using GCI, and along A using
thermodynamic integration. These are combined to generate a free energy surface
using least-squares fitting. For PMF's along B, free energy values for states with
non-integer occupancies are determined by linear interpolation of the binding free
energy curves output by GCI. In principle it is possible to calculate free energy
surfaces directly using MBAR. The free energies produced between states with
differing B values will include contributions from changes in chemical potential
however that are not physically meaningful in the context of the binding free en-
ergies of interest in this work. The above approach produces consistent Helmholtz
free energy surfaces using GCI. MBAR free energy differences between states at

the same B value are consistent with NVT free energy cycles.
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Figure 4.9: The binding free energy surface (red) and the GCMC water
occupancy (blue) for the vdW leg of the surface-GCAP simulations of SD
ligands, 1 (A=1) and 3 (A=0). Note that at A=0 is not ligand 3 as the
electrostatics have been perturbed to those of ligand 1. The free energy of
the vdW perturbation of the bulk-solvent leg has been subtracted from the
bound-leg surface to afford the relative binding free energy surface. From
this relative binding free energy surface, the difference in free energy at the

minima at A=0 and 1, along with the equivalent energy of the electrostatic
leg give the relative binding free energy of the two ligands.
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Figure 4.10: The initial placement of water molecules in the naive solvation
simulations. This naive solvation is used with all ligands, but an unsubsti-
tuted scaffold is shown for clarity. The GCMC box is not included in the
naive simulations, but is shown in light grey for ease of comparison to Figure
4.12.

4.4.2 Ayy

Naive solvation

For comparison to other available methods, the As4 simulations were also per-
formed with a naive solvation. The naive simulation refers to the system being
set up using ProtoMS set up tools, where the system is solvated based the avail-
able pocket volume and simulated with the NVT ensemble. The set-up places
three water molecules within the GCMC region, shown in Figure 4.10. The water

molecules will be sampled with solvent MC steps.

A GCMC region of A; that covers the ring A cavity has been used
in the GCAP simulations. As before with SD, a free energy cycle between
three A4 ligands has been tested using the single- and surface-GCAP method-
ologies. With SD, a particular known water site of interest was chosen as the
focused GCMC region. With As,, no water molecules are present in either of
the two available crystal structures, although previous computational studies have
highlighted hydration sites near rings A and B, that can vary between different

ligands. Agy ligands were treated as if no prior information were available, and a
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Figure 4.11: Relative binding free energies of A, 4 ligand pairs in kcal-mol~?.
Results shown are experimental (blue), naive (green) single-GCAP (purple)
and surface-GCAP (orange). Error bars shown are standard errors from
three repeats of each leg.

GCMC region was chosen to cover the active site cavity near ring A and the sites
of alchemical perturbation, shown in Figure 4.3. The GCMC region is ~8 times
larger than for SD, and the number of water sites encapsulated in this region is

higher than for the single water case of SD.

Nave solvation (NVT ensemble) simulations do not correctly rank
order the ligands, while both single-GCAP and surface-GCAP do, with
surface-GCAP affording the best experimental agreement and smallest
associated errors. The relative binding free energies of the pairs of ligands have
been calculated using both single- and surface-GCAP, Figure 4.11. Both meth-
ods correctly rank order the ligands, with surface-GCAP results producing better
experimental agreement, and smaller standard errors, for all legs. The thermody-
namic cycles for these calculations are shown in Figure 4.13, where surface-GCAP
also has better thermodynamic closure. In contrast to this, the relative free ener-

gies have also been calculated using a naive solvation — where the water molecules



160 CHAPTER 4. LIGAND BINDING AFFINITIES

have been placed in the system using default set up tools based on available pocket
volume, and simulated with an NVT ensemble, Figure 4.11. The naive solvation
places three waters within the GCMC region, illustrated in Figure 4.10. Where
the GCAP methods were able to rank order the ligands, the naive calculations
do not. The naively solvated simulations predict ligand G to be the most tightly
bound, when experimentally it is the weakest binder. This shows the errors that
can occur if relative binding free energies are calculated without proper consid-
eration of the effect of the perturbation on the active site water network. The
difference between the naive cycle and the GCAP cycles is that no assumption
has been made about the network of water molecules in the region of the ligand
perturbation. The grand canonical ensemble allows the region to be dynamically
solvated, and adaptively change as the ligand perturbs. This also allows us to
predict the hydration sites for the various ligands, shown in Figure 4.12. As there
are no available crystallographic water molecules, these cannot be experimentally
validated.

GCMC cluster locations indicate the hydration sites of each of the
three ligands considered with As4. The clustered water locations, and their
occupancies are shown for all three ligands in Figure 4.12, labelled a - d, with
hydrogen bonding contacts shown with yellow dashed lines, determined using py-
mol. 1 Water site a is deep in the pocket, and is stable and conserved for all three
ligands. For ligands E and F, a water molecule b is able to bridge between their
hydroxy group and the water site a. Water site b is 100% occupied for ligand E,
but is only observed in ~40% of the simulation with ligand F. The destabilisation
of this water molecule is likely due to the local methyl substitution on ligand F.
With ligand E, as water site b is stable, a third site, water ¢ is observed in ~30%
of the simulation. This water is able to form two donating hydrogen bonds with
backbone carbonyl groups. With ligand G, the substituted phenyl group of ligands
E and F is replaced with a substituted pyridine group. The conserved water site
a is observed, in addition to water site d, which was not observed with ligands
E or F. Water site d bridges between two protein residues, rather than directly

hydrogen bonding with the pyridine group.

Surface-GCAP results can decompose the energetic contribution the
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Figure 4.12: GCMC water locations top to bottom for ligands E (purple), F
(light blue) and G (green) shown as sticks. Protein is represented as cartoon,
with residues shown as lines. Carbon atoms are colored per ligand, with
oxygen (red), nitrogen (dark blue), chlorine (yellow) and hydrogen (white).
Any non-polar hydrogen atoms are removed for clarity. Hydrogen bonding
(vellow dash) interactions are shown, determined using pymol.'® GCMC
hydration sites have been labelled a — d, with water occupancies labelled for
waters that are present <95% of the simulation. Water locations have been
calculated by clustering,” and a representative snapshot of the simulation is
shown that represents the cluster centres.
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water molecules provide to the relative affinities of ligands. As surface-
GCAP is performed at a range of B values, it is possible to calculate additional
free energy contributions, of the relative ligand binding free energy of the dry
pocket, and the free energies of the water networks. From the surface-GCAP
simulations, the binding free energy of the water network with each of the ligands
can be calculated using the GCI Equation where X is 0 or 1. This is equivalent to
performing a GCMC titration simulation, with the addition of RE in A as well as
B. This has been calculated for each of the surfaces, and is shown as vertical legs in
Figure 4.13. This shows that ligand E has the most tightly bound water network,
followed by ligand G, while ligand F has the least tightly bound water network,
despite being the highest affinity ligand. From surface-GCAP simulations, it is
also possible to calculate the relative free energy of the ligands in a dry pocket
by performing one-dimensional (1D) MBAR along the lowest B value, where the
GCMC region has an average water occupancy of zero. This dry free energy cycle
is shown in Figure 4.13, and while it is not intended to reproduce the experimental
results, it can be useful — along with the water network binding free energies —

for understanding from where the various energetic contributions arise.

4.4.3 Ligands F — G

The ligands F and G have the largest difference in affinity. As the relative hydra-
tion free energy of the two ligands is effectively zero, Table A.3, the difference in
affinities arises from active site interactions. The GCAP simulations are able to
show that the perturbation from ligand F to ligand G results in the loss of low-
occupied water site b and the introduction of water site d as the hydroxyl group
is removed. The water network with ligand G is 1.5 kcal-mol~! more stable than
with ligand F. This insight, provided by surface-GCAP, suggests that the high
affinity of ligand F is predominantly due to the protein-ligand complementarity,
rather than water stabilisation. This is illustrated by the dry leg affording a rela-
tive binding free energy of 3.0 kcal-mol~!. The free energy surfaces for the vdW
leg of this perturbation are shown in Figure 4.14. As before with SD, the surface

shows that the minima in the free energy coincides with the B, value (-7.65).



4.4. RESULTS 163

Dry cycle
-3.4 (0.3)
E » F
+8.4 +5.8
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-0.2(0.2)

Solvated cycle

Figure 4.13: Relative binding free energies of the three A, ligands in
kcal-mol~!. All results are calculated from the surface-GCAP simulations.
The dry cycle is calculated from using MBAR at B = -21.65, where the
GCMC region is free of water molecules. The solvated cycle is calculated
using MBAR on the whole surface, where the ligands will be correctly hy-
drated, Figure 4.12. The vertical legs are the free energy of the GCMC water
networks, calculated using GCI at the A end points of the surface. Standard
errors are shown, calculated from three repeats for ligand perturbations and
six repeats for water network calculations. Thermodynamic cycle closure is
shown in red.
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Figure 4.14: Free energy surface, and corresponding water occupancy from
the vdW leg of the ligand F (A=0) to ligand G (A=1) perturbation. Note
that this is not fully ligand F as the electrostatics have been perturbed to
those of ligand G. The lowest free energy region of the surface is at B, (-
7.65), where both ligands and any intermediate states will be dynamically
hydrated. B, is indicated on the surface, along with By, the B value at
which the dry cycles are calculated, where the average water occupancy is
zZero.

Where the GCMC region is under or over hydrated at lower or higher B values,
the free energy of the system increases. Looking also at the water occupancy at
B.,, the water occupancy increases as A changes from 0 to 1. This corresponds to
the replacement of partially occupied site b with fully occupied d. The partially
occupied nature of site b is easily simulated with the grand canonical ensemble,
and would be challenging with a fixed N ensemble. At A=0, where the system
has perturbed electrostatics, but the vdW interactions are still of ligand F, the
minimum in the free energy surface is broader than for A=1 (ligand G). This sug-
gests that ligand F (with its perturbed electrostatics) is stable with either 1 or
2 water molecules, whereas ligand G has favourable affinity only with two water
molecules present. Little change is seen between ligand F and ligand F with the
electrostatics perturbed, Figures A.4, A.5 and A.6.
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4.4.4 Ligands E — F

The difference between ligands E and F', is the substitutions at the meta position.
The alchemical perturbation that removes the methyl group close to water site b
results in the stabilisation of the water site, and its occupancy increases from 40%
to 100% across the alchemical pathway. This stabilises an additional water site,
water ¢, which is in turn 30% occupied when ligand E is bound. The changes to
sites b and ¢ correspond to a 2.6 kcal-mol~! favourable stabilization of the water
network. The relative free energy of the ligands when the pocket is dry is +3.4
(0.3) keal-mol™! less favourable for ligand E than ligand F, which shows that the
strong interactions of ligand F to the pocket directly, are mostly compensated by
the increased stability of the water network with ligand E. While the relative free
energy of the perturbation can be determined from the single-GCAP simulation,
the surface-GCAP simulation in addition allows the binding free energies of the
water network and the dry simulation to be calculated, which provides deeper
understanding of the energetics and stability of the different systems. The E to F
perturbation is also most improved when comparing to the experimental relative
binding free energies by surface-GCAP, relative to single-GCAP. This may be
because the difference in stability of the two ligands’ water networks is the largest

in the set.

4.4.5 Ligands E — G

As the perturbation from ligand E to ligand G involves both the addition and
removal of functional groups, it has been performed in two steps, via the interme-
diate, where the C-OH group of ligand E has been perturbed to a N atom, but the
meta groups are unchanged, shown in Figure 4.5. This perturbation from ligand
E to G results in the loss of water sites b and ¢, and the introduction of water
site d, corresponding to a loss in water network binding affinity of 1.1 kcal-mol~?.
The relative affinity of the dry leg, finds that ligand G is more tightly bound than
E by 0.6 kcal-mol~!; however, as the water network is able to better stabilise lig-

and E, ligand E is 1.0 kcal-mol~! more tightly bound than ligand G when solvated.
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Both GCAP methods perform well for As4, with the more com-
putationally expensive surface-GCAP simulations outperforming the
cheaper single-GCAP results. For the three ligands considered for As4, the
GCAP methodologies are able to correctly reproduce the experimental relative
binding free energies to within 1 kcal-mol~! accuracy, while also determining the
locations of the water molecules proximal to ring A. Attempting to calculate these
relative free energies by naively solvating the system results in poor experimental
agreement, with the lowest affinity ligand, ligand G, calculated as having the high-
est affinity. The starting locations of the water locations of the naive simulations
are shown in Figure 4.10 and indicate a water close to water site d, that is observed
with ligand G, but not with ligands E or F. This coincidental similarity in the posi-
tion of water d could explain why ligand G is predicted to be the most stable ligand
in the naive set of simulations. With ligands E and F, a water is not predicted
in this location with the GCAP methods and is kinetically prevented from diffus-
ing out of the pocket. Using the GCMC methodology, whereby water molecules
are located on the fly throughout the simulation, means that there is no assump-
tion of the number or location of water molecules within the region of interest.
This allows for ligands with different active site water networks to be calculated
directly. Although single-GCAP is computationally cheaper than surface-GCAP,
the surface simulations provide smaller errors, better thermodynamic closure and
better experimental agreement. In addition, simulating the whole surface through
using a range of B values not only allow the stability of the water networks to be
determined, by using GCI at a set A value, but also the relative free energy of the
ligands at a given level of hydration to be calculated, by using 1D MBAR along
A for a set B value. This information allows the energetic contributions from the
water network to be decomposed. However, this additional information comes at

computational cost, proportional to the number of additional B values simulated.

4.4.6 Hisy7g protonation

The protonation of an Asjactive site histidine residue has a significant

impact on the relative ligand affinities. The active site histidine (His278)
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His278 ¢ protonated His278 6 protonated
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Figure 4.15: Relative ligand binding free energies for Ay ligands with the
two protonation states of active site residue, His278

was € protonated by Maestro set up tools. As the residue is in close proximity to
the ligand and the GCMC region, the simulations were repeated also with the
protonation state. The results of this are shown in Figure 4.15. This changes the
rank ordering of the ligands, with ligand E stabilised, and ligand G destabilised.
The relative destabilisation of ligand G may be rationalised as it is the only com-
plex that contains a His278-water hydrogen bond, Figure 4.12. As the e proto-
nated form was suggested in the set up, and has significantly better experimental
agreement, this was shown in the main text. The ¢ protonated results show how
sensitive results can be to choices made in the system set up — whether that be
location of water molecules (demonstrated by the naive results in the manuscript),
and by the effect of protonation here. The alternate histidine rotamers have not
been considered. Ideally, GCAP would be performed with a constant-pH protocol

that would exchange the titratable active site residues during the simulation.

4.5 Conclusion

Issues arise in relative protein-ligand binding free energy calculations in cases where
water molecules become trapped in the protein binding site. This can occur where
the ligands considered have differing active site water networks. Conventional
alchemical perturbation methods do not always cope with this situation, partic-
ularly in occluded pockets, where exchange with bulk water may be prevented

within a feasible timescale due to kinetic barriers. GCMC has been developed
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to determine both active site water locations and water network free energies, all
within a single series of simple to perform simulations.?*7 In this paper, GCMC
has been combined with MBAR to achieve dynamic adaptation of water networks
with relative protein-ligand binding free energy calculations. Two protocols have
been presented; low-cost single-GCAP that simulates only at B4, thereby ensur-
ing equilibrium with bulk water, and high-precision surface-GCAP that simulates
at a range of B values. Using surface-GCAP it is possible to calculate relative
binding affinities between ligands at a chosen level of hydration, as well as isolate
the contribution that the displacement, or rearrangement, of a water network has
on the relative ligand binding affinity. Thus not only are robust, reproducible
protein-ligand binding free energies produced, but the associated changes in wa-
ter network in the binding site are observed. Moreover we have demonstrated
the decomposition of the protein-ligand free energies into terms related directly to
protein-ligand interactions and separately, to water stabilisation. We have shown
with two protein ligand systems that this can produce experimentally consistent
affinities, useful for drug design, and usefully rationalise Structure Activity Re-
lationships. We anticipate that this methodology will prove a powerful tool in

structure based drug design.
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This thesis studies the role of water molecules in ligand binding, and illustrates
how computational methods can be used in drug design. Grand canonical simu-
lations of active site water molecules has been applied in various ways to enhance
the sampling of occluded water molecules that can become trapped in conven-
tional simulations due to limited achievable timescales and kinetic barriers. First,
replica exchange has been introduced into GCMC simulations to improve sampling
of titration simulations, with the motivation of improving the reliability of water
network binding affinities. Second, GCMC has been applied to a large dataset to
understand the success rate of the method for correctly identifying crystallographic
water sites without a priori knowledge. Finally, GCMC has been introduced to
conventional ligand free energy calculations, to allow for direct calculation of rel-

ative binding affinities for pairs of ligands with differing active site water networks.

Chapter 2 demonstrates that replica exchange between neighbouring B val-
ues is computationally cheap and improves the monotonicity of GCMC titration
results. Improved monotonicity of results allows for better fitting of logistic func-
tions to the data, allowing for the precise determination of the Gibbs binding
free energy of networks of water molecules to an active site. Theoretical improve-
ments to the GCI Equation affords results that are both as accurate and reliable
as DD methods. The accuracy and reliability of GCMC has been demonstrated
for two systems; BPTI and SD. DD requires the laborious set up of multiple sim-
ulations to decouple each water molecule of interest individually with the use of
restraints of constraints. GCMC can calculate the binding free energy of multiple
water molecules simultaneously, allowing for network contributions to be accounted
for automatically. The theoretical improvements afforded the derivation of B,
whereby the system is in dynamic equilibrium with bulk water. Previously, a full
GCMC titration plot was required to calculate the optimum water occupancy of
a GCMC region, through minimising the Gibbs free energy; however, B, allows
for this to be simulated using only a single B value. This does, however, lose

the ability to calculate the water network binding free energy. Use of a single
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B,y allows for simulations to be computationally cheaper, as is demonstrated in
Chapter 3. The results of Chapter 3 illustrate how binding free energies afforded
by the new GCI Equation afford excellent agreement with values calculated using
DD methods.

Chapter 3 illustrates the success of GCMC to reproduce crystallographic water
locations for a dataset of 105 crystal structures. The dataset has been generated
of complexes from FDA approved drug molecules, with care taken to prevent over
representation of any particular drug or target. The focus on FDA-approved drug
molecules ensures the usefulness of the test-set for pharmaceutical applications.
Simulations were performed where the system was sampling (ligand, bulk water
and protein with 15 A of the ligand in addition to GCMC sampling) and where
the system was fixed (only GCMC sampling). Fixed system sampling was shown
to have higher success rates than sampling simulations, as the system does not
dynamically move away from the starting conformation. The main focus of this
Chapter, beyond determining the success rate of GCMC, was to study the vari-
ability that is possible in success rates based on different protocols. The success
rate of GCMC was shown to vary with; simulation protocol, GCMC occupancy,
classification of water molecules, and filtering the experimental data based on var-
ious quality metrics. The variation in the success rate makes apparent the need
for methods to be applied to one dataset with a consistent analysis protocol. The
intention is to make the FDA dataset readily available such that it can be used for
future testing. To the best of our knowledge, this is the largest test of a simulation-
based water placement method performed. At a distance cutoff of 1.0 A, for GCMC
clusters with occupancies > 50%, for crystallographic water molecules that form
at form two polar contacts to either protein or ligand, 59% and 72% of water

molecules are found by sampling and fixed simulations respectively.

Chapter 4 presents GCAP — where relative ligand free energy simulations
are performed in the grand canonical (constant VT) ensemble, allowing for the
ligand to perturb while the local active site water molecules can adapt accord-

ingly. Performing relative binding free energy calculations in the NVT ensemble,
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where the number and location of active site hydration sites are assigned a pri-
ort can cause errors, both with cycle closures as for SD, and reduce experimental
agreement for both systems tested. Two protocols were developed, one involving
GCMC simulations performed at B, (single-GCAP), and another, more compu-
tationally expensive method, where a full titration is performed at each A\ window
(surface-GCAP). Single-GCAP is able to calculate the relative binding free en-
ergy with the same computational resources as a typical NVT, with only slightly
longer simulation times (approximately 50% longer for single-GCAP as there are
twice as many MC steps, but the insertion and deletion moves are computation-
ally cheaper than conventional MC moves), for improved experimental agreement.
Surface-GCAP involves simulating the perturbation at a range of A windows and
B values, resulting in two-dimensional free energy surfaces. Surface-GCAP is more
computationally expensive, but it is able to afford the relative binding free energy
between the pair of ligands in any of the simulated hydration states. Determining
the relative free energy of the ligands with a dry pocket allows the free energy
contributions to be decomposed to inspect the contribution that water molecules
provide to GCMC, which can be useful for decision making in drug design projects.
The binding free energy of the water networks with both ligands can be determined
by using GCI on the A end points. The GCAP method allows for more accurate
binding free energies to be determined computationally, while fewer decisions are
required during simulation set up, allowing the method to be more readily auto-

mated, which can reduce errors.

There are several avenues to pursue in future work. In Chapter 2, nearest-
neighbour replica exchange was introduced to GCMC titration simulations. Future
work could include all-pairs replica exchange to allow for faster mixing of states at
different chemical potentials. Chapter 2 also demonstrated the ability to simulate
only at By, reducing the computational cost of the simulation, when only the
locations of water molecules are of interest. If SAMS were applied to sampling
B values in the proximity of B, then it may be possible to gain the benefits of

replica exchange, without additional computational cost.
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In Chapter 3, the success rate of GCMC was evaluated for a dataset of 105
protein-drug dataset. The dataset is of great value for future work. It is still
unclear if water molecules should be targeted for displacement during drug design,
and expanding this dataset to cover congeneric ligands and comparing the hydra-
tion patterns between them may be able to correlate SAR with the locations and
affinities of active site water molecules. Various point-charge water models exist,
and while TIP4P has been used throughout, the success rate of the data-set could
be evaluated using a range of water force-fields, which would indicate which model
— if any — is the most appropriate for modelling bound water molecules. This
force-field comparison could be expanded to study different protein and ligand

force fields for the application of identifying hydration sites.

MC sampling in simulations of the lengths performed herein are unlikely to
differ significantly from the starting conformation, particularly when sections of
the protein are held rigid. A hybrid methodology whereby GCMC simulations
are intermixed with MD sampling would allow for better sampling of the full con-
formational space of the system, and would make the results more reliable. A
GCAP-MD protocol would be suitable to model absolute ligand free energy calcu-
lations, whereby the ligand could be decoupled from the active site, and GCMC
would control the appropriate hydration of the system throughout. MD sampling
would out-perform a MC only methodology to capture the conformational changes

in the residues of the active site on ligand unbinding.

To conclude, grand canonical sampling methods have been applied to a range
of protein-ligand systems and its use has been demonstrated for the computational
determination of positions and binding affinities of active site water molecules, and

their influence on ligand binding.
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A.1 Optimising B-spacing

Replica exchange can be used for two non-exclusive benefits; im-
proving the titration profile of GCMC results and enhancing sampling
of a replica. The most efficient B-spacing for enhancing sampling of a
given replica is found to be dependent on the water occupancy of the
GCMC region, which can be approximated during the simulation set
up. While RE can improve the reliability of calculated binding free energies us-
ing GCMC titration results, it can also be used to improve the sampling of the
number of bound water molecules, N, at a given chemical potential. In the case
of determining the equilibrium location of the water molecules, it is possible to
simulate only at B.,. Simulating only the equilibrium condition heavily reduces
the computational resources required, as each B value requires a single processor.
For the case of BPTI, if only the location of water molecules was required, sim-
ulating only B, would reduce the computational cost (and required disk space)
by a factor of 32. However, as shown in Figure 2.4, considering a single B value
in isolation, a range of N can be observed when each B value is run in isolation
(i.e. without RE). A compromise between reducing the computational load, while
benefitting from replica exchange, is to sample a few B values, at and around the
equilibrium value. Before, the aim of RE was to smooth the titration curve, as
measured by the Kendall 7 score, Chapter 2. Now, as the GCI equation is not
being used in Chapter 3, it is the sampling of N that is of primary interest.

For the optimal sampling of water occupancies at Beg, successful RE moves
should be as frequent as possible, but if the replicas are too closely spaced, then the
exchange may be between repeats with the same N. One consequence of Equation
2.1 is that for AN=0, any attempted swap will always be accepted. While this
is beneficial in terms of exchanging configurations across the B space, it does not
enhance the sampling of water occupancies at a given B value. These simulations
to determine only the equilibrium location of water molecules are presented in
Chapter 3. In these simulations, good rates of RE are required to improve the

sampling of N, but exchanges between replicas of the same occupancy are not
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as useful. For this reason, the ratio of accepted GCMC swaps that are between
replicas of different N will be referred to as useful GCMC swaps. The optimal
spacing of B values will be tested for a subset of 10 structures from the FDA
dataset. Initially, a B-spacing of 1 was chosen, and the percentage of useful GCMC
replica swaps has been plotted against the average equilibrium water occupancy
for the system calculated from By, shown in Figure A.1. It demonstrates that
the greater the number of GCMC water molecules, the fewer B replica exchange
moves are attempted. The acceptance rate drops off very rapidly, with fewer than
10% of moves accepted for systems with more than 10 GCMC water molecules.
For nearly all the systems with more than 27 water molecules, the B value RE
acceptance rate is 0%, which means that the additional replicas are trapped, and
provide no information for equilibrium solvation. This plot makes sense; a B value
that is Beg% 1, is going to either include or exclude water molecules that are either
very weakly bound, favourably or unfavourably. If the number of water molecules
in the GCMC is larger, then the variance in the occupancy will be larger, likely
increasing AN. The larger N is for a system, the larger the variance in N, the
larger AN is likely to be, and therefore the much less likely an attempted RE swap
will be to be accepted.
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Figure A.1: Useful GCMC RE swaps for 10 systems of the FDA dataset, plot-
ted against the average equilibrium water occupancy for different B-spacings.
B-spacings are coloured as red=0.1, green=0.2, blue=0.5, purple=1.0

This suggests that the spacing between B values; when the enhanced sampling
of N is of interest, should depend on the equilibrium average N. The equilibrium
average N is a simulated observable, while the optimal B-spacing is something
that we would like to set a priori. A nalve surrogate for average N would be the
volume of the GCMC box, however Figure A.2 shows that there is little or weak
correlation (R?=0.48) between the GCMC volume and the average water occu-
pancy. Two GCMC boxes of the same size may contain very different number of
waters, depending if the ligand is surface binding, and most of the box is covering
bulk water, or a very occluded, dry pocket, where very few water molecules will
be located. An alternative metric was found to estimate N, of a GCMC region.
Within the ProtoMS set up, ProtoMS will naively solvate the protein-ligand com-

plex — retaining any crystallographic waters, and attempting to add additional
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waters at the density of bulk water, removing any that clash with protein or lig-
and atoms. When the GCMC box is generated, any waters within the GCMC box,
crystallographic or otherwise are removed from the GCMC region. The number
of water molecules removed from the system at this setup stage is a reasonable
estimate of the equilibrium water occupancy of the system, shown in Figure A.2,
with an R? of 0.92. This can be used in combination with Figure A.1 to indicate if
a given B-spacing is appropriate. During set-up of a GCMC simulation, the num-
ber of water molecules cleared from the GCMC region can be used to estimate the
expected value of N, using Figure A.2, right. This estimation for the expected av-
erage IN can be used with Figure A.1 to approximate the expected RE acceptance
rate for a range of B-spacings. An appropriate B-spacing can be chosen such that
reasonable acceptance rates for RE is expected. For the research using the FDA
dataset, Chapter 3, one B-spacing was preferred for the entire dataset. Based on
Figure A.1, a B-spacing of 0.5 was chosen, as even the largest systems have a
RE-acceptance rate of at least 15%. Using any closer spaced B values would both
not represent simulating anything sufficiently dissimilar to Be,, and would also be

too finely spaced to reasonably adopt in a titration simulation.
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Figure A.2: Plots of the equilibrium average water occupancy of the region
against the GCMC volume (blue,left) and the waters cleared from the GCMC
region (red,right) for 10 systems. The number of waters cleared is a better
predictor of the average water occupancy than the GCMC volume itself, with
R? values of 0.92 and 0.48 respectively.
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PDB Organism Protein Ligand Year Res. /A
1F9G S. Ppneumoniae Hyaluronate lyase Vitamin C 2001 2.00
1FXV E. coli Penicillin acylase Penicillin G 2001 2.25
1G5Y H. sapiens RXR alpha Alitretinoin 2001 2.00
1GWR H. sapiens Estrogen receptor alpha Estradiol 2002 2.40
1I1E C. botulinum Botulinum neurotoxin B adriamycin 2001 2.50
1IE9 H. sapiens Vitamin D receptor Calcitriol 2001 1.40
1LHU H. sapiens Sex hormone-binding globulin Estradiol 2002 1.80
1M27Z H. sapiens Glucocorticoid receptor Dexamethasone 2003 2.50
1S19 H. sapiens Vitamin D receptor Calcipotriol 2004 2.10
1SQN H. sapiens Progesterone receptor Norethisterone 2004 1.45
1SR7 H. sapiens Progesterone receptor Mometasone furoate 2004 1.46
1TUV E. coli YgiN Menadione 2005 1.70
1UO0U H. sapiens Thymidine phosphorylase Tipiracil 2004 2.11
1X70 H. sapiens Dipeptidyl peptidase IV Sitagliptin 2005 2.10
1Y14 H. sapiens PIM-1 kinase Adenosine 2005 2.40
2A15 M. tuberculosis RV0760 Nicotinamide 2005 1.68
2AA6 H. sapiens Mineralocorticoid receptor (S810L) Progesterone 2005 1.95
2AM9 H. sapiens Androgen receptor Testosterone 2006 1.64
2E5D H. sapiens Nicotinamide phosphoribosyltransferase Nicotinamide 2007 2.00
2F9W P. aeruginosa Type III CoaA Pantothenic acid 2006 1.90
2GQG H. sapiens ABL1 Dasatinib 2006 2.40
2HYY H. sapiens ABL Imatinib 2007 2.40
2P16 H. sapiens Coagulation Factor Xa Apixaban 2007 2.30
2QKS8 B. anthracis DHFR Methotrexate 2007 2.40
2RIN S. meliloti ABC-transporter choline binding protein Acetylcholine 2008 1.80
2W26 H. sapiens Factor Xa Rivaroxaban 2008 2.08
2W9H S. aureus DHFR Trimethoprim 2009 1.48
2WGJ H. sapiens c-Met Crizotinib 2009 2.00
2XN3 H. sapiens Thyroxine-binding globulin Mefenamic acid 2011 2.09
2XRH H. pylori HPO0O721 Niacin 2011 1.50
2Y7J H. sapiens Phopsphorylase kinase, gamma 2 Sunitinib 2011 2.50
3APV H. sapiens Alpha-1-acid glycoprotein Amitriptyline 2011 2.15
3APX H. sapiens Alphal-acid glycoprotein Chlorpromazine 2011 2.20
3AZZ T. maritima Laminarinase Gluconolactone 2011 1.81
3B7E I. A virus Neuraminidase Zanamivir 2008 1.45
3C7Q H. sapiens VEGFR2 Nintedanib 2008 2.10
3CSJ H. sapiens Glutathione S-transferase Chlorambucil 2008 1.90
3D90 H. sapiens Progesterone receptor Levonorgestrel 2009 2.26
3EW2 R. etli Rhizavidin Biotin 2008 2.30
3EYG H. sapiens JAK1 Tofacitinib 2009 1.90
3F8F L. lactis LmrR Daunorubicin 2008 2.20
3FL9 B. anthracis DHFR Trimethoprim 2009 2.40
3FUP H. sapiens JAK2 Tofacitinib 2009 2.40
3FUU T. thermophilus Methyltransferase Adenosine 2009 1.53
3G0B H. sapiens Dipeptidyl peptidase IV Alogliptin 2010 2.25
3GOE H. sapiens KIT kinase Sunitinib 2009 1.60
3GN8 H. sapiens AncGR2 Dexamethasone 2009 2.50
3145 R. rubrum Twin arginine translocation pathway signal protein Niacin 2009 1.36
3L4W H. sapiens Maltase-glucoamylase Miglitol 2010 2.00
3LXK H. sapiens JAK3 Tofacitinib 2010 2.00
3LXN H. sapiens TYK2 Tofacitinib 2010 2.50
3MYU M. genitalium MG289 Thiamine 2010 1.95
30LL H. sapiens Estrogen receptor beta Estradiol 2010 1.50
3QPS C. jejuni CmeR Cholic acid 2011 2.35
3QTO0 H. sapiens PPARgamma Mifepristone 2012 2.50
3RY2 S. avidinii Streptavidin Biotin 2011 0.95
3SG8 E. casseliflavus Aminoglycoside-2”-phosphotransferase type 4a Tobramycin 2011 1.80
3SG9 E. casseliflavus Aminoglycoside-2”-phosphotransferase type 4a Kanamycin 2011 2.15
3S7J S. denitrificans Shwanavidin Biotin 2012 1.45
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PDB Organism Protein Ligand Year Res. /A
3TEG H. sapiens Phenylalanyl-tRNA synthetase Levodopa 2011 2.20
3TI1 H. sapiens CDK2 Sunitinib 2012 1.99
3U5J H. sapiens BRD4 Alprazolam 2011 1.60
3U5K H. sapiens BRD4 Midazolam 2011 1.80
3UE4 H. sapiens ABL Bosutinib 2012 2.42
3VHU H. sapiens Mineralocorticoid receptor Spironolactone 2011 2.11
3VRI H. sapiens HLA class I histocompatibility antigen Abacavir 2012 1.60
3VW1 S. enterica RamR Gentian Violet 2013 2.21
3WAR H. sapiens CK2a Niacin 2013 1.04
4ASD H. sapiens VEGFR2 Sorafenib 2012 2.03
4BB2 H. sapiens Corticosteroid-binding globulin Progesterone 2012 2.48
4BBO B. japonicum Bradavidin Biotin 2013 1.60
4DT8 E. casseliflavus Aminoglycoside-2”-phosphotransferase type 4a Adenosine 2012 2.15
4DVE L. lactis ECF-type ABC transporter Biotin 2012 2.09
4E2J H. sapiens Glucocorticoid receptor 2 Mometasone furoate 2012 2.50
4EY6 H. sapiens Acetylcholinesterase Galantamine 2012 2.40
4G1Q Immunodeficiency virus 1 Reverse transcriptase Rilpivirine 2013 1.51
4GCP E. coli OmpF porin Ampicillin 2012 1.98
4KS8 H. sapiens PAK6 Sunitinib 2013 1.95
4LZR H. sapiens BRD4 Colchicine 2014 1.85
4MKC H. sapiens Anaplastic lymphoma kinase Ceritinib 2014 2.01
ANMY C. difficile ABC transporter Thiamine 2013 1.90
4008 H. sapiens Aurora A Adenosine 2014 2.50
40AR H. sapiens Progesterone receptor Ulipristal 2014 2.41
4P6W H. sapiens Glucocorticoid receptor Mometasone furoate 2014 1.95
4P6X H. sapiens Glucocorticoid receptor Hydrocortisone 2014 2.50
4QE6 H. sapiens FXR Chenodeoxycholic acid 2015 1.65
4QMN H. sapiens MST3 Bosutinib 2015 2.09
4QMS H. sapiens MST3 Dasatinib 2015 1.88
4QMZ H. sapiens MST3 Sunitinib 2015 1.88
4QRC H. sapiens FGFR4 Ponatinib 2014 1.90
4R38 E. litoralis LOV protein Riboflavin 2014 1.60
4RP9 E. coli UlaA/SgaT Vitamin C 2015 1.65
4RYA A. vitis ABC transporter Mannitol 2014 1.50
4S50V H. sapiens OX2 orexin receptor Suvorexant 2015 2.50
4TVJ H. sapiens PARP2 Olaparib 2015 2.10
4001 H. sapiens KIT kinase Ponatinib 2014 2.00
4U95 E. coli AcrB Minocycline 2014 2.00
4UDA H. sapiens Mineralocorticoid receptor Dexamethasone 2015 2.03
4ZN7 H. sapiens Estrogen receptor alpha Diethylstilbestrol 2016 1.93
4ZO0W E. coli MdfA Riboflavin 2015 2.45
5EDL B. subtilis ECF transporter Thiamine 2016 1.95
5G48 H. pylori RORg Diflunisal 2017 2.28
519X H. sapiens Ephrin A2 Bosutinib 2016 1.43
5P9I H. sapiens BTK Ibrutinib 2017 1.11
5TEO0 H. sapiens AAK1 Nintedanib 2016 1.90
5UFS H. sapiens Glucocorticoid receptor 2 Triamcinolone acetonide 2017 2.12

Table A.1: Details of 105 complexes used in the FDA dataset for the vali-
dation of GCMC. All structures are of human, bacterial or viral origin, with
an FDA approved drug molecule. The structures have been published since
the year 2000, with a resolution of 2.5 A or better.



A.3. SURFACE-GCAP RESULTS 183

A.3 Surface-GCAP results

Figure A.3: surface-GCAP results for SD. Columns left to right: Ligands 1-2,
2-3, 3-1. Rows top to bottom: electrostatic surface, electrostatic solvation,
van der Waals surface, van der Waals solvation.
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A.4 A,, experimental binding affinities

The original publication of the Asy ligand set considered herein® provides both
K; and Kp results for the set of ligands, measured using inhibition binding as-
says and SPR, respectively. As the free energy accuracy aimed for is typically
1 kcal-molin binding free energy calculations, we wanted to select a set of lig-
ands where the relative free energies were within 1 kcal-mol 'for demonstrating
the GCAP methodology. The relative experimental free energies were considered

as this reduces any possible systematic differences between the two measurements.
AGg,, = kpTIn(Kp) (5.1a)
AGKZ = —k:BTln(Ki) (5.1]3)

So the difference in the relative free energy for a pair of ligands (x and y),

between the two methods, can be calculated from:

AAG(z —y)k, — AAG(x — y)k, = kTIn <II§ZE3) + kgTin (gﬁg;) (5.2)
If the absolute value of Equation 5.2 is less than 1 kcal-mol 'then the perturbation
was considered for GCAP simulations. As crystal structures are only available
for ligand G and E, any ligands where the binding mode was unclear, i.e. where
either ring A or ring B was asymmetrically substituted, were excluded, as the
ligand may bind in either orientation. This excludes ligands B, J, K and L.
Ligand E is asymmetrically substituted, but the binding mode is available from
the crystal structure. Of the 8 remaining ligands, only 7 have published data for
both K; and Kp. This results in 42 possible pairs of ligands. Of the 42 pairs, only 8
pairs satisfied the requirement that Equation 5.2 was less than + 1 kcal-mol ';EF,
EG, EH, EI, FG, GH, GI and HI. Of these, the ligands E, F and G were chosen as
both ligands E and G have crystal structures available, and the differences in the

ligand seem significant enough to displace or disrupt active site water molecules.
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system GCI DD

onea | -5.50 (0.02) | -5.52 (0.03)
one b -5.17 (0.01) | -5.24 (0.02)
three a | +5.53 (0.02) | +5.47 (0.12)
three b | -5.30 (0.01) | -5.37 (0.07)

Table A.2: Binding free energy for each individual water for SD, calculated
by both GCI and DD, with the correction applied. Errors shown are standard
deviation over four repeats for the decoupling, and over five different sized
GCMC regions for the GCMC results.
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Figure A.7: Binding free energy of two-water networks with SD-ligand com-
plex. Dashed line - GCMC results (Equation 1.61), dotted line - GCMC
result including volume correction (Equation 2.7), Solid line - decoupling
result.

A.5 A, hydration free energies
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Table A.3: Relative free energy perturbations for ligands in the gas phase,
and bulk solvent phase. AG},q is the relative free energy of hydration of
the two ligands, calculated from AG,y - AGges. AG,y is used to calculate
AGying. All energies are in kcal-mol™!. Energies and standard errors for SD
are calculated using MBAR from four repeats, and Ay, from three.

Perturbation AG g5 AGgy AGhyq
2to 1 7100.9 (0.0) -101.1 (0.1) -0.1 (0.1)
2to 3 12,5 (0.0)  -11.5 (0.1) 1.0 (0.1)
3t01 290.1 (0.0)  -91.3 (0.1) -1.2 (0.1)
FtoE 5.7(0.0)  -49(0.2) 0.8 (0.2)
) 0.2 (0.1)

F to G 43.9 (0.0)  -43.7 (0.1 .
E to G -38.7(0.1)  -39.0 (0.2) -0.4 (0.2)
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